
Learning to Learn for Small
Sample Visual Recognition

Yu-Xiong Wang

CMU-RI-TR-18-22

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Robotics

May, 2018

The Robotics Institute
Carnegie Mellon University

Thesis Committee:
Martial Hebert, Chair

Deva Ramanan
Ruslan Salakhutdinov

Andrew Zisserman, University of Oxford
Yann LeCun, Facebook AI Research & New York University

c©Yu-Xiong Wang, 2018

To my grandparents, my wife, and little wangwang.

And also, to infinite space and time.

I

Abstract
Understanding how humans and machines recognize novel visual concepts from few

examples remains a fundamental challenge. Humans are remarkably able to grasp a new
concept and make meaningful generalization from just few examples. By contrast, state-of-
the-art machine learning techniques and visual recognition systems typically require thou-
sands of training examples and often break down if the training sample set is too small.

This dissertation aims to endow visual recognition systems with low-shot learning abil-
ity, so that they learn consistently well on data of different sample sizes. Our key insight is
that the visual world is well structured and highly predictable not only in data and feature
spaces but also in task and model spaces. Such structures and regularities enable the systems
to learn how to learn new recognition tasks rapidly by reusing previous experiences. This
philosophy of learning to learn, or meta-learning, is one of the underlying tenets towards ver-
satile agents that can continually learn a wide variety of tasks throughout their lifetimes. In
this spirit, we address key technical challenges and explore complementary perspectives.

We begin by learning from extremely limited data (e.g., one-shot learning). We cast
the problem as supervised knowledge distillation and explore structures within model pairs. We
introduce a meta-network that operates on the space of model parameters and encodes a
generic transformation from “student” models learned from few samples to “teacher” mod-
els learned from large enough sample sets. By learning a series of transformations as more
training data is gradually added, we further capture a notion of model dynamics to facili-
tate long-tail recognition with categories of different sample sizes. Moreover, by viewing
the meta-network as an effective model adaptation strategy, we combine it with learning a
generic model initialization and extend the use in few-shot human motion prediction tasks.

To further decouple a recognition model from ties to a specific set of categories, we
introduce self-supervision using meta-data. We expose the model to a large amount of un-
labeled real-world images through an unsupervised meta-training phase. By learning diverse
sets of low-density separators across auxiliary pseudo-classes, we capture a more generic, richer
description of the visual world. Since they are informative across different categories, we
alternatively use the low-density separators to constitute an “off-the-shelf” library as exter-
nal memory, enabling generation of new models on-the-fly for a variety of tasks, including
object detection, hypothesis transfer learning, domain adaptation, and image retrieval. By
doing so, we have essentially leveraged structures within a large collection of models.

We them move on to learning from a medium sized number of examples and explore
structures within an evolving model when learning from continuously changing data streams
and tasks. We rethink the dominant knowledge transfer paradigm that fine-tunes a fixed-
size pre-trained model on new labeled target data. Inspired by developmental learning,
we progressively grow a convolutional neural network with increased model capacity, which
significantly outperforms classic fine-tuning approaches. Furthermore, we address unsu-
pervised fine-tuning by transferring knowledge from a discriminative to a generative model on
unlabeled target data. We thus make progress towards a lifelong learning process.

From a different perspective, humans can imagine what novel objects look like from
different views. Incorporating this ability to hallucinate novel instances of new concepts
and leveraging joint structures in both data and task spaces might help recognition systems
perform better low-shot learning. We then combine a meta-learner with a “hallucinator”
that produces additional training examples, and optimize both models jointly, leading to
significant performance gains. Finally, combining these approaches, we suggest a broader
picture of learning to learn predictive structures through exploration and exploitation.

III

Acknowledgments

An advisor is unique in one’s life. At the very outset, I would like to extend my
sincere gratitude to my advisor, Martial Hebert, for his unique influence over
the past several years, as a mentor, collaborator, supporter, listener, advice giver,
teacher, role model, and friend. When writing this dissertation, I remember ev-
ery moment I have spent with Martial, especially those late afternoon discus-
sions. I appreciate all that he has done for me, his remarkable energy in work,
his enthusiasm for simple and solid research (of course that with elegant mathe-
matics!), and his encouragement and consistent support especially in the face of
failures and difficulties. All of these are the treasure for my future adventures.

I would also like to thank Deva Ramanan for being a fantastic mentor and a
close friend in the last two years of my Ph.D. studies. I have enjoyed our time
and the work we have done. I am sincerely grateful for his impact on my growth
— teaching me how to think as a scientist, guiding me how to craft compelling
stories, motiving me to insist on excellence, and exposing me to hands-on, real-
world applications.

Thank you to my thesis committee members, Russ Salakhutdinov, Andrew Zis-
serman, and Yann LeCun, for their thoughtful advice, precious feedback, and
flexibility throughout the entire process. I am thankful that I had the chance
to work with Russ as well. He has been an invaluable source of insight, ideas,
and practical guidance. I greatly appreciate Andrew and Yann for spending a
precious amount of time and effort on my research, engaging in discussion of
technical details, and providing useful ideas that drive me to think deeper. I
am most influenced by Andrew for his devil-in-the-details spirit towards solid
research and by Yann for his critical insight that breaks down complex prob-
lems into simple and manageable components and putting ideas in a broader
research perspective.

Over the years, a number of people have also helped shape my research style and
interests, and I have learned different useful skills from each one of them and
relied on their advice. I especially thank Chris Atkeson, Drew Bagnell, Larry
Davis, Fernando De la Torre, Alyosha Efros, David Forsyth, Bill Freeman, Abhi-
nav Gupta, Daniel Huber, Takeo Kanade, Kris Kitani, Fei-Fei Li, Hongdong Li,
David Lowe, Simon Lucey, Jitendra Malik, Matt Mason, Srinivas Narasimhan,
Jean Ponce, Raj Reddy, Chuck Rosenberg, Yaser Sheikh, Leonid Sigal, Rahul Suk-
thankar, Rick Szeliski, Alan Yuille, Larry Zitnick, and Changshui Zhang for their
guidance and encouragement. I would also like to thank members of Facebook
AI Research for an excellent internship experience; the work I have done there
becomes the last contribution of my dissertation. I am strongly indebted to Ross
Girshick and Bharath Hariharan for their incredible mentorship. My grateful
thanks are also extended to Dhruv Batra, Michael Cohen, Yann Dauphin, Pi-
otr Dollár, Mohamed Elhoseiny, Georgia Gkioxari, Kaiming He, Kevin Matzen,
Devi Parikh, Marcus Rohrbach, Mark Tygert, and Laurens van der Maaten for
valuable and insightful discussions. I am also extremely grateful to my M.S. ad-
visor, Yu-Jin Zhang, for introducing me to this fascinating world of vision and

V

learning.

I have also greatly benefited from colleagues and friends at the Smith Hall and
Robotics Institute, for whom I have great respect and admiration. Thank to
Aayush Bansal, Yang Cai, Xinlei Chen, Wen-Sheng Chu, Achal Dave, Tony Dear,
Allison Del Giorno, Debadeepta Dey, Carl Doersch, David Fouhey, Rohit Gird-
har, Liangke Gui, Hanzhang Hu, Peiyun Hu, Ed Hsiao, Hanbyul Joo, Hongwen
Kang, Gunhee Kim, Chen Kong, Zhenzhong Lan, Yong-Jae Lee, Martin Li, Yin
Li, Zhizhong Li, Minghuang Ma, Wei-Chiu Ma, Aravindh Mahendran, Kenneth
Marino, Pyry Matikainen, Daniel Maturana, Ishan Misra, Ravi Teja Mullapudi,
Dan Munoz, Luis Navarro-Serment, Ishan Nigam, Lerrel Pinto, Varun Ramakr-
ishna, Nick Rhinehart, Olga Russakovsky, Scott Satkin, Kumar Shaurya Shankar,
Abhinav Shrivastava, Gunnar Sigurdsson, Krishna Kumar Singh, Meng Song,
Ekaterina Taralova, Yuandong Tian, Pavel Tokmakov, Yao-Hung Tsai, Jack Val-
madre, Arun Venkatraman, Minh Vo, Jacob Walker, Xiaolong Wang, Fanyi Xiao,
Pengtao Xie, Xuehan Xiong, Gengshan Yang, Shoou-I Yu, Zhiding Yu, Yin Zhang,
Feng Zhou, Jiaji Zhou, Tinghui Zhou, and Jun-Yan Zhu, for discussions, feed-
back, and friendship. I am sincerely thankful to Pyry, Hongwen, Yuandong,
David, Carl, Abhinav, and Ishan for their efforts in my research initialization,
writing, and presentation.

Thank you to Suzanne Lyons Muth, Lynnetta Miller, Jess Butterbaugh, Christine
Downey, Alan Guisewite, and Alison Day for all of their help during my time at
the Robotics Institute. Thank you to Rocio Araujo for her help during my thesis
proposal and defense.

The love, support and blessing showered on me by my family kept me motivated
at my endeavour. I would specially like to thank my parents and my sister for
their never-ending love, wisdom, and encouragement over the many years. I
thank my parents-in-law for being the strongest support and a positive influence
in my life.

Last, but far from least, I must thank my wife, Liangyan. “Some of us get dipped in
flat, some in satin, some in gloss. But every once in a while you find someone who’s iri-
descent, and when you do, nothing will ever compare.” I appreciate her unconditional
love, selfless sacrifice, unwavering support, and understanding through thick
and thin as a wife and soul mate, and I appreciate her insights, comments, and
contributions in proofreading and polishing my papers as a colleague. Special
thanks to our little wangwang for the enjoyment and inspiration he has brought
to us. Their smiles always warm my heart.

VI

Support. This work was supported in part by ONR MURI N000141612007 and U.S. Army
Research Laboratory (ARL) under the Collaborative Technology Alliance Program, Coop-
erative Agreement W911NF-10-2-0016. We thank NVIDIA for donating GPUs and we also
thank AWS Cloud Credits for Research Program and Facebook’s Research and Academic
Relations Program.

VII

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Organization . 2

2 Related Work 9
2.1 Data Manufacturing . 9
2.2 Transfer Learning . 10
2.3 Unsupervised and Semi-Supervised Learning 12
2.4 Learning How to Learn . 12

I Learning to Learn: Knowledge Distillation through Model Regres-
sion Networks 15

3 Learning Model Transformation for Easy Small Sample Learning 19
3.1 Motivation . 19
3.2 Model Regression Networks . 21
3.3 Experimental Evaluation . 24
3.4 Data-Level or Model-Level Transformation?: A Graphical Illustration 30
3.5 Revisiting Model Transformation and Its Properties 32

4 Learning to Model the Tail by Capturing Model Dynamics 35
4.1 Motivation . 35
4.2 Long-Tail Recognition . 37
4.3 Head-to-Tail Meta-Knowledge Transfer . 38
4.4 Experimental Evaluation . 41

5 Learning to Initialize and Adapt for Few-Shot Motion Prediction 47
5.1 Motivation . 47
5.2 Human Motion Prediction . 49
5.3 Proactive and Adaptive Meta-Learning . 50
5.4 Experimental Evaluation . 53

IX

II Unsupervised Meta-Learning: Towards a Generic Recognition Model
61

6 Learning Low-Density Separators from Pseudo-Classes 65
6.1 Motivation . 65
6.2 Pre-Trained Low-Density Separators from Unsupervised Data 67
6.3 Low-Density Separator Networks . 71
6.4 Experimental Evaluation . 72
6.5 Experimental Analysis and Visualization . 76

7 Extension to Object Detection via Model Recommendation 81
7.1 Motivation . 81
7.2 Terminology and Approach Overview . 84
7.3 Collaborative Filtering . 85
7.4 Recommender System Analysis . 87
7.5 Unsupervised Meta-Learning for Object Detection 89

8 Additional Applications 95
8.1 Unsupervised Hypothesis Transfer Learning 95
8.2 Few-Shot Hash Learning for Image Retrieval 101

III Learning from Evolving Data Streams and Tasks: Rethinking Fine-
Tuning 107

9 Developmental Learning: Fine-Tuning by Increasing Model Capacity 111
9.1 Motivation . 111
9.2 Approach Overview . 112
9.3 Developmental Networks . 113
9.4 Experimental Evaluation . 115
9.5 A Single Universal Higher Capacity Model? 123

10 Factorized Convolutional Networks: Unsupervised Fine-Tuning for Image Clus-
tering 131
10.1 Motivation . 131
10.2 Unsupervised Feature Learning and Image Clustering 132
10.3 Factorized Convolutional Networks . 134
10.4 Experimental Evaluation . 137
10.5 Results and Discussion . 139

IV Combining Generative Learning with Meta-Learning 143

11 Few-Shot Learning from Imaginary Data 147
11.1 Motivation . 147
11.2 Generative Models for Few-Shot Learning . 148
11.3 Meta-Learning . 149
11.4 Meta-Learning with Learned Hallucination 151
11.5 Experimental Protocol . 153

X

11.6 Experimental Evaluation . 154

12 Conclusions and Future Work 161
12.1 Discussions: What Might be Wrong with Small Sample Learning? 161
12.2 Other Perspectives and Future Directions . 167

XI

List of Figures

3.1 A generic, category agnostic model transformation 20
3.2 The architecture of our model regression network 23
3.3 Performance sanity check . 25
3.4 Performance comparisons for fine-grained recognition, action recognition,

and scene classification . 28
3.5 Feature space evaluation . 29
3.6 Model type evaluation . 30
3.7 Graphical illustration of data-level and model-level transformations 31

4.1 Head-to-tail knowledge transfer in model space for long-tail recognition . . 36
4.2 MetaModelNet architecture for learning model dynamics 39
4.3 Detailed per class performance comparison 42
4.4 Visualizing model dynamics . 44

5.1 Few-shot human motion prediction in the wild 48
5.2 Visualizations of motion prediction results 57
5.3 Impact of the training sample size . 59

6.1 Unsupervised meta-training to improve the generality of pre-trained CNNs 66
6.2 Illustration of learning low-density separators 68
6.3 Revisiting CNN architectures via LDS . 72
6.4 Performance comparisons for scene classification, fine-grained recognition,

and action recognition . 74
6.5 Effect of fine-tuning . 75
6.6 Representative hyper-parameter sensitivity experiment 76
6.7 t-SNE feature visualization . 77
6.8 Example pseudo-classes visualization I . 78
6.9 Example pseudo-classes visualization II . 79
6.10 Example pseudo-classes visualization III . 80

7.1 Model recommender system for object detection 82
7.2 Continuous category space discovery . 83
7.3 Effect of probe set size for individual ESVM 88
7.4 Comparison of different collaborative filtering techniques 89
7.5 Average performance of ensemble PBC model recommendation 91
7.6 Collaborative detection & informative across different tasks 92

XIII

8.1 Performance comparisons w.r.t number of training examples on CIFAR10 . 103
8.2 Performance comparisons w.r.t. code length on CIFAR10 103
8.3 Performance comparisons on CIFAR100 . 105
8.4 Performance comparisons on SUN-397 . 106

9.1 Transfer and developmental learning of pre-trained CNNs by increasing model
capacity . 112

9.2 Variations of our developmental networks . 113
9.3 Analysis of unit allocation for two-layer width augmented networks 118
9.4 t-SNE visualizations . 121
9.5 Maximally activating images for width augmented networks I 122
9.6 Maximally activating images for depth augmented networks I 123
9.11 Learning curves of FC7 and FC+

7 on CUB200-2011 125
9.12 Maximally activating CUB200-2011 images for FC7 and FC+

7 units 125
9.7 Maximally activating images for width augmented networks II 127
9.8 Maximally activating images for width augmented networks III 128
9.9 Maximally activating images for depth augmented networks II 129
9.10 Maximally activating images for depth augmented networks III 130

10.1 Unsupervised transfer of pre-trained CNN representations via a factorized
convolutional network . 132

10.2 Illustration of unsupervised fine-tuning and factorized convolutional networks135
10.3 Hyper-parameter sensitivity analysis on Flowers-102 142

11.1 Learning novel visual concepts from less data via hallucination 148
11.2 Meta-learning with hallucination . 151
11.3 Accuracy variation as the novel class prior is varied 154
11.4 Improvement in accuracy by learned hallucination 156
11.5 Performance comparisons with previously published methods 157
11.6 Comparison of our learned hallucination with several ablations 158
11.7 t-SNE visualizations of hallucinated examples 159

12.1 Illustration of generating a target network without extensive data-oriented
learning . 162

12.2 Illustration of data manufacturing via unsupervised regularization 164
12.3 Illustration of developmental learning of generic features 165
12.4 Illustration of exploration and exploitation for learning predictive model struc-

ture . 166

XIV

List of Tables

3.1 Performance comparison for one-shot domain adaptation 26
3.2 Performance comparisons between different types of meta-networks 33
3.3 Performance comparisons when learning separate regression networks . . . 33

4.1 Performance comparison for long-tailed scene classification 42
4.2 Ablation analysis of variations of our MetaModelNet 43
4.3 Ablation analysis of joint feature fine-tuning and model dynamics learning 44
4.4 Large-scale performance comparisons . 45

5.1 Performance sanity check . 54
5.2 Mean angle error comparisons . 56
5.3 Ablation on model initialization vs. model adaptation. 58
5.4 Ablation on the structure ofH . 58

6.1 Performance comparisons with weakly-supervised CNNs 75

8.1 Performance comparisons for one-shot learning on common classes 99
8.2 Performance comparisons for one-shot learning on non-overlapping classes 100

9.1 Performance comparisons on SUN-397 . 117
9.2 Diagnostic analysis with different number of new units 118
9.3 Performance comparisons with and without introducing normalization and

scaling . 119
9.4 Demonstration of the ability of learning without forgetting on the source . . 120
9.5 Performance comparisons for scene classification and fine-grained recognition124
9.6 Performance comparisons on the source dataset 124
9.7 Performance comparisons on the target datasets 124
9.8 Continual transfer via width augmented networks 126

10.1 Accuracy and NMI of image clustering on two standard benchmark datasets 140
10.2 Accuracy and NMI of scene and fine-grained image clustering 140
10.3 Hyper-parameter sensitivity analysis on MIT-67 141
10.4 Performance comparison between different group-sparsity formulations . . 142
10.5 Performance comparison of classification accuracy 142

11.1 Top-5 accuracy on the novel classes and on all classes 156

XV

Chapter 1

Introduction

1.1 Overview
Over the past decade, large-scale visual recognition has achieved high performance levels
due to the integration of powerful machine learning techniques with big annotated training
data sets [154, 209, 212, 226, 242, 321, 347, 357]. In practical applications, however, training
examples are often expensive to acquire or otherwise scarce [112]. Visual phenomena follow
an intrinsic long-tailed distribution, in which a few sub-categories are common while many
are rare with limited training data even in the big-data setting [439, 440]. More crucially,
current recognition systems assume a set of categories known a priori, despite the obviously
dynamic and open nature of the visual world [30, 118, 263,397].

Such scenarios of learning novel categories from few examples pose a multitude of open
challenges for visual recognition in the wild. For instance, when operating in natural en-
vironments, robots are supposed to recognize unfamiliar objects after seeing only few ex-
amples [208]. Humans are remarkably able to grasp a new concept and make meaningful
generalization to novel instances from just few examples [112,326]. By contrast, typical ma-
chine learning techniques require tens, hundreds, or thousands of training examples and
often break down if the training sample set is too small [21, 157].

Understanding the small-sample, or few/low-shot, learning mechanisms remains a fun-
damental challenge. In the classical learning framework, generating a recognition model
from a single training example (or a scarce set of examples) is often infeasible due to over-
fitting effects. At a minimum, categorizing an object requires information about the cate-
gory’s mean and variance along each dimension in an appropriate feature space. The major-
ity of the work can be cast as variations of this straightforward similarity-based approach,
in which the mean represents the category prototype, and the inverse variances correspond
to the dimensional weights in a category-specific similarity metric [326].

One-shot learning may seem impossible because a single example provides information
about the mean or prototype of the category, but not about the variances or the similarity
metric. Giving equal weight to every dimension in a high-dimensional feature space, or
using the wrong similarity metric, is likely to be disastrous [326]. Hence, successful gen-
eralization from few training samples typically requires strong and appropriately tuned
inductive biases using additional available information [25, 157]. Because of the highly
predictive, structural patterns of the visual world, such information can be obtained by
leveraging relationships between object categories.

1

This view has inspired a series of research works in the fields of one/few-shot learn-
ing [104], inductive transfer or transfer learning [288], multi-task learning [54], learning to
learn [366], and meta-learning [328]. The existing work primarily focuses on learning struc-
tures in certain feature spaces between annotated object categories. Despite many notable
successes, it is still unclear what kind of underlying structures and inductive biases are
shared across a wide variety of categories and are useful for novel concepts.

Thesis Contributions. In this dissertation, we aim to endow visual recognition systems
with low-shot learning ability, so that they learn consistently well on data of different sam-
ple sizes. Our key insight is that the visual world is well structured and highly predictable
not only in data and feature spaces but also in task and model spaces. Such structures
and regularities enable the systems to learn how to learn new recognition tasks rapidly by
reusing previous experience, rather than considering each task in isolation.

This philosophy of learning to learn, or meta-learning, is one of the underlying tenets
towards versatile agents that can continually learn a wide variety of tasks throughout their
lifetimes. As defined in [370], given

• a family of tasks

• training experience for each of these tasks, and

• a family of performance measures (e.g., one for each task),

an algorithm is said to learn to learn if its performance at each task improves with experience
and with the number of tasks.

In this spirit, we address key technical challenges and leverage different and comple-
mentary perspectives, through knowledge distillation, unsupervised meta-learning, con-
tinual learning, and generative learning. We propose how these perspectives are equipped
with powerful deep learning approaches to facilitate the recognition of novel visual con-
cepts from few examples, producing state-of-the-art results for novel object and scene clas-
sification, fine-grained recognition, action recognition, domain adaptation, image retrieval,
and human motion prediction.

1.2 Organization
This dissertation is organized in the following four parts. The corresponding contributions
were previously presented in [137,138,394–401].

1.2.1 Part I — Knowledge Distillation through Learning to Learn
We begin our journey by developing a series of conceptually simple but powerful approaches
that can learn novel categories from extremely limited data, such as in one-shot learning.
In this line of work, rather than generating a recognition model for a specific task in isola-
tion, we cast small-sample recognition itself as a learning problem. We explore structures
within model pairs that are shared among different recognition tasks on the model space.
More precisely, we view a model learned from few annotated samples (as few as one and
up to hundreds) as a “student” model and view its corresponding model learned from large
enough sample sets (on the order of hundreds or thousands of) as a “teacher” model. We
are then interested in inferring the relationship between these two types of models so that

2

it is possible to estimate the teacher model based on its student model. By viewing recog-
nition tasks on existing categories as learning samples, we acquire the desired relationship
through learning to learn. Such meta-knowledge is then distilled as useful inductive biases
to facilitate the learning of novel classes.

?!"#$∗
!"#$&

Starting in Chapter 3 and [395], we initiate this
learning to learn approach. Our main hypothesis
is two-fold: (1) there exists a generic transformation
from small-sample “student” models to the under-
lying large-sample “teacher” models on the space of
model parameters, and (2) such a transformation could
be effectively learned by high-capacity regressors,
e.g., deep neural networks. We empirically validate
our hypothesis and introduce a meta-network, i.e., a
model regression network, to automatically learn the
transformation on a large collection of model pairs.
Experiments demonstrate that encoding this trans-

formation as prior knowledge greatly facilitates the recognition in the small sample size
regime on a broad range of tasks, including domain adaptation, fine-grained recognition,
action recognition, and scene classification.

Instead of treating a recognition model being static, our approach analyzes how the
model evolves for self-referential learning and self-improvement [335,336]. That is, we focus
on how a recognition model changes during the learning process when gradually having
access to more and more examples. By introducing this task-level meta-network, we explicitly
guide the learning process of the apprentice — the small-sample model, to achieve similar
levels of (generalization) performance as its teacher model. Such perspective is also broadly
relevant to the recent work on learning to optimize [10, 236, 310], model distillation [18, 49,
159], and the analogy between recognition models and physical systems [331].

We further investigate the property of the model transformation. In particular, we as-
sumed that the transformation is independent of the sample size whereas, in general, one
would envision that the transformation would change when the number of samples in-
creases dramatically all the way to identity for very large training sample sets. To tackle this
limitation, we learn a sample size dependent transformation in Chapter 4 and [401]. The
meta-network is instantiated as a residual network that learns the transformation graduality
while explicitly maintaining its identity property. This thus allows our final meta-network
to capture a notion of model dynamics, that predicts how model parameters are likely to
change as more training data is gradually added.

Moreover, in Chapter 4 and [401], we naturally extend our approach to address a more
challenging task: learn from long-tailed, imbalanced datasets that are prevalent in real-
world settings. Here, the challenge is to learn accurate “few-shot” models for classes in
the tail of the class distribution, for which little data is available. Often, the number of
training examples varies considerably across different classes. We then transfer the meta-
knowledge of model dynamics from the data-rich classes in the head of the distribution
to the data-poor classes in the tail. Again, we train a meta-network to predict many-shot
model parameters from few-shot model parameters. We transfer this meta-knowledge in
a progressive manner, from classes in the head to the “body”, and from the “body” to the
tail. That is, we transfer knowledge in a gradual fashion, regularizing meta-networks for
few-shot regression with those trained with more training data. We demonstrate results on
image classification datasets tuned for the long-tailed setting, that significantly outperform

3

common heuristics, such as data resampling or reweighting.
Our model regression meta-network can be also considered as an effective strategy for

adapting a model to novel tasks. On the other hand, having a good generalization from few
examples also relies on a generic initial model. To accomplish this, in Chapter 5 and [138],
we propose proactive and adaptive meta-learning that introduces a novel combination of model-
agnostic meta-learning and model regression networks and unifies them into an integrated,
end-to-end framework. By doing so, on the one hand, our meta-learner produces a generic
model initialization through aggregating contextual information from a variety of predic-
tion tasks; on the other hand, this model is effectively adapted as a task-specific one by
leveraging prior knowledge about how to transform few-shot model parameters to many-
shot model parameters. Using this approach, we deal with a novel problem of few-shot
human motion prediction. Human motion prediction, forecasting human motion in a few
milliseconds conditioning on historical 3D skeleton sequence, is a long-standing problem
in computer vision and robotic vision. Existing forecasting algorithms rely on extensive
annotated motion capture data and are brittle for novel actions. Our predictor model sig-
nificantly improves the prediction performance in the small-sample size regime.

1.2.2 Part II — Unsupervised Meta-Learning
The previous line of work is promising but still restrictive in the sense that the learned model
structures and dynamics are tied to a specific set of categories due to its supervised nature.
Even though current large-scale annotated datasets are comprehensive, they sample only
a small fraction of the visual world biased to a selection of categories. It is still not clear
how to take advantage of truly large sets of unlabeled real-world images, which constitute
a much less biased sampling of the visual world.

In this part of the work, we develop a large-scale self-supervision approach to leverag-
ing such unsupervised data sources as meta-data to improve the overall transferability of
supervised convolutional neural networks (CNNs) and thus to facilitate the recognition of
novel categories from few examples. We explore structures within a large collection of models
and our approach is based on the informal intuition that, given a very large set of models, it
is likely that some of the models would have good performance on a new recognition task,
as stated in the infinite monkey theorem [1] and early research on random projection [43]
and locality sensitive hashing [124].

Chapter 6 and [394] detail the proposed approach. Based
on the transferability property of CNNs [427], conceptually,
bottom and middle layers construct a feature space with high-
density regions corresponding to potential latent categories.
Top layer units in the pre-trained CNN, however, only have
access to those regions associated with the original, observed
categories. The units are then tuned to discriminate between
these regions by separating the regions while pushing them
further away from each other. To tackle this limitation, in-
spired by the intuition mentioned above, we introduce an ad-
ditional unsupervised meta-training phase and expose multiple
top layer units to a massive set of unlabeled images. We then
encourage these units to generate diverse sets of low-density separations across the esti-
mated pseudo-classes from the unlabeled data in activation spaces, which decouples them
from ties to the original specific set of categories. We propose an unsupervised margin

4

maximization that jointly estimates compact high-density regions and infers low-density
separators. The low-density separator modules can be plugged into any of the top layers
of a standard CNN architecture. The resulting modified CNNs, i.e., single-scale and multi-
scale low-density separator networks, are fairly generic to a wide spectrum of novel cat-
egories, which significantly improve the performance in scene classification, fine-grained
recognition, and action recognition with small training samples.

While these separations might not be meaningful in a semantic sense, the units have
acquired certain experience by “playing with the data”. Since “a unit tries to discriminate
the data manifold from its surroundings in all non-manifold directions” [35], we capture a more
generic, richer description of the visual world. Our low-density separators can be also
viewed as an effective, discriminative compression of the unsupervised data. For a novel
category, these separators implicitly connect its few examples with the corresponding la-
tent pseudo-classes in the feature space, thus providing additional bits of information for
the recognition task. While Chapter 6 provides a systematic way of integrating the low-
density separators into a CNN architecture as a single unified model, Chapter 7 and Chap-
ter 8 demonstrate that the separators could be, alternatively, used in an off-the-shelf fash-
ion without fine-tuning. By doing so, we are able to produce a large collection of “off-line”
models that are informative across different categories as external memory, and generate new
models on-the-fly for a variety of tasks.

In Chapter 7 and [397], we leverage the unsupervised meta-training to generate object
detectors in a way that is radically different from the conventional way of learning a de-
tector from a large corpus of annotated positive and negative data samples. We assume
that we have evaluated “off-line” a large library of detectors against a large set of detection
tasks. Given a new target task, we evaluate a subset of the models on few samples from the
new task and we use the matrix of models-tasks ratings to predict the performance of all
the models in the library on the new task, enabling us to select a good set of detectors for
the new task. This approach has three key advantages of great interest in practice: 1) gen-
erating a large collection of expressive models in an unsupervised manner is possible; 2) a
far smaller set of annotated samples is needed compared to that required for training from
scratch; and 3) recommending models is a very fast operation compared to the notoriously
expensive training procedures of modern detectors. (1) will make the models informative
across different categories; (2) will dramatically reduce the need for manually annotating
vast datasets for training detectors; and (3) will enable rapid generation of new detectors.

In Chapter 8 and [398], we consider a problem of hypothesis transfer learning. Cate-
gory classifiers trained from a large corpus of annotated data are widely accepted as the
sources for transfer or adaptation. Sources generated in this way are tied to a particular set
of categories, limiting their transferability across a wide spectrum of target categories. We
address this largely-overlooked yet fundamental source problem by introducing a system-
atic scheme for generating universal source hypotheses based on our unsupervised meta-
training and proposing a principled, scalable approach to automatically tuning the transfer
process. We demonstrate improvements over the state-of-the-art on domain adaptation and
hypothesis transfer in the small sample size regime.

Moreover, in Chapter 8 and [399], we further address few-shot hash learning for image
retrieval tasks. Current approaches to hash based semantic image retrieval assume a set of
pre-defined categories and rely on supervised learning from a large number of annotated
samples. The need for labeled samples limits their applicability in scenarios in which a user
provides at query time a small set of training images defining a customized novel category.
We then learn universal hash functions based on our unsupervised meta-learning and select

5

a task-specific combination of hash codes for a novel category from a few labeled samples.
The resulting unsupervised generic hashing significantly outperforms current supervised
and unsupervised hashing approaches on image retrieval tasks with small training samples.

1.2.3 Part III — Revisiting Fine-tuning in the Context of Continual Learn-
ing

We now consider learning novel categories from a medium sized number of examples and
explore structures within an evolving model when learning from continuously changing data
streams and tasks. For an autonomous agent, learning is a continual process. What it learns
at one time-step while solving one task, it can use later, perhaps to solve a completely dif-
ferent task. Current computer vision systems are already moving more or less in this direc-
tion. This is usually accomplished through fine-tuning a fixed-size network on new labeled
target data. Deep CNNs that are trained on a large enough, diverse “base” set of data (e.g.,
ImageNet) exhibit certain attractive transferability properties for a broad range of tasks. In-
deed, virtually every contemporary visual recognition system makes use of fine-tuning to
transfer knowledge from ImageNet. However, an open question is how to best adapt a pre-
trained CNN for novel categories and tasks. We address this issue here by rethinking the
standard fine-tuning framework. We start in Chapter 9 by analyzing what components and
parameters change during fine-tuning, and discover that increasing model capacity allows
for more natural model adaption through fine-tuning.

Input Images

Task I

Input Images

Task II
More precisely, in Chapter 9 and [400],

inspired by developmental learning, we
explore developmental neural networks that
grow in model capacity as new tasks as en-
countered. We demonstrate that the notion
of growing a network, by adding additional
units, helps facilitate knowledge transfer
when encountering new tasks. We explore
two mechanisms for adding units: either
by widening existing layers or deepening
the overall network, both of which signifi-

cantly outperform classic fine-tuning approaches. But in order to properly grow a network,
we show that newly added units must be appropriately normalized to allow for a pace of
learning that is consistent with pre-existing units. Through visualizations and analysis, we
demonstrate that developmental learning appears to regularize networks in a manner that
encourages diversity of units and help guide the adaptation of pre-existing and new units.

In Chapter 10 and [137], we further consider tasks with different degree of supervision.
In particular, we address “unsupervised fine-tuning” that transfers a pre-trained network
to target tasks with unlabeled data such as image clustering tasks. To this end, we introduce
group-sparse non-negative matrix factorization (NMF), a variant of NMF, to identify a rich
set of high-level latent variables that are informative on the target task. The resulting factor-
ized convolutional network can itself be seen as a feed-forward model that combines CNN and
two-layer structured NMF. We empirically validate our approach and demonstrate state-of-
the-art image clustering performance on challenging scene and fine-grained benchmarks.
We further show that, when used as unsupervised initialization, our approach improves
image classification performance as well.

Our observations thus support a developmental view of CNN optimization and recog-

6

nition model generation, in which model capacity is progressively grown throughout a
lifelong learning process. While the specific approach was developed in the scenario of
fine-tuning pre-trained CNNs, it suggests that such a principle might also benefit learn-
ing more generic CNN models from scratch: the network is self-growing and performing
curriculum learning based on rich sets of tasks.

1.2.4 Part IV — Combining Generative Learning with Meta-Learning

blue	heron

In previous approaches, we have focused more on
structures in task and model spaces. From a com-
plementary perspective, humans can quickly learn
new visual concepts, perhaps because they can eas-
ily visualize or imagine what novel objects look like
in different poses or surroundings. In particular,
many modes of variation (e.g., camera pose, trans-
lation, lighting changes, and even articulation) are
shared across categories. Incorporating this ability
to hallucinate novel instances of new concepts and
leveraging joint structures in both data and task spaces
might help recognition systems perform better low-
shot learning.

In Chapter 11 and [396], we present a novel
approach to low-shot learning that uses this idea.
While the images generated by current generative
adversarial networks (GANs) are visually appealing, they tend to be biased to the few pro-
vided examples and do not follow the sample statistics in a desired feature space that are
useful for recognition. The challenge then is to directly generate samples in the feature space
with a good coverage of intra-class variation. Our approach combines a meta-learner with
a “hallucinator” that produces additional training examples, and optimizes both models
jointly. Our hallucinator can be incorporated into a variety of meta-learners, and provides
significant gains irrespective of this choice.

Finally, in Chapter 12 we recap the dissertation by summarizing the contributions and
discussing additional directions. In particular, by combining our approaches and perspec-
tives, we suggest a broader picture of learning to learn predictive structures through explo-
ration and exploitation. We also point out some other perspectives and potential applica-
tions beyond vision domains.

7

Chapter 2

Related Work

Understanding how a visual system recognizes novel categories from few examples and at
a rapid pace is a fundamental challenge in the research of learning processes in both hu-
mans and machines [221]. While such an impressive competence has been demonstrated
in humans [105, 365], e.g., a six-year-old child has learned almost all of the 10 ∼ 30 thou-
sand object categories in the world [42], the underlying mechanism remains a mystery. One
widely used hypothesis is that humans make use of existing knowledge and experience ac-
quired from previously learned categories when learning new ones [297].

In a similar spirit, successful generalization from small training sample sets, for artifi-
cial systems, requires strong and appropriately tuned “inductive biases” using additional
available information [25, 157]. This has motivated a different yet relevant line of work in
the fields of one/few-shot learning [104], inductive transfer or transfer learning [288], multi-
task learning [54], learning to learn [366], and meta-learning [328]. Despite many notable
successes, it is still unclear what kind of underlying structure and experience are shared
across categories. In this thesis, we draw inspiration from the previous work but proposed
new perspectives and leveraged state-of-the-art learning techniques through deep neural
networks.

2.1 Data Manufacturing
For a learning task with limited training data, a natural source of information comes from
additional data via “data manufacturing” [21]. This can be achieved in various ways. For
instance, (1) obtain more examples of categories of interest from large amounts of unla-
beled data as in semi-supervised learning [57, 305, 441] and active learning [293, 412], or
from external annotated memory bank [417]; (2) augment the available examples by per-
forming simple image transformations including jittering and noise injection as commonly
used in deep learning [60, 95, 212] or complex category-independent example transforma-
tions [86, 144, 247]; (3) borrow examples from other relevant categories [239]; (4) introduce
Universum examples (i.e., unlabeled examples that do not belong to the concerned classes)
for max-margin regularization [407]; and (5) synthesize new virtual examples, either ren-
dered explicitly with computer graphics techniques or created implicitly through compo-
sitional representations [83, 94, 172, 267, 268, 289, 440]. These approaches can significantly
improve recognition performance if a generative model that accounts for the underlying,

9

natural intra-class variability is known. Unfortunately, such a model is usually unavail-
able [21] and the generation of additional real or artificial examples often requires substan-
tial effort.

Recently, a series of seminal work on generative adversarial networks (GANs) [23, 132,
257, 304, 314, 327, 433] casts new light on this problem. The main idea behind a GAN is to
have two competing neural network models. The generator model takes noise as input and
generates samples. The discriminator model receives samples from both the generator and
the training data, and has to be able to distinguish between the two sources. Conceptually,
this adversarial training procedure is useful for learning from few examples since it enables
hallucinating additional examples. However, the current implementations of GANs, which
primarily focus on directly generating natural images, bring limited performance boost in
this case.

Often, these generative models have to be hand-designed for the domain, such as strokes
[218,220] or parts [411] for handwritten characters. For more unconstrained domains, while
there has been significant recent progress [132, 304, 316], modern generative models still
cannot capture the entirety of the distribution [327]. Different classes might not share parts
or strokes, but may still share modes of variation, since these often correspond to camera
pose, articulation, etc. If one has a probability density on transformations, then one can
generate additional examples for a novel class by applying sampled transformations to the
provided examples [86, 144, 258].

Learning such a density is easier for handwritten characters that only undergo 2D trans-
formations [258], but much harder for generic image categories. This problem is tackled by
leveraging an additional dataset of images labeled with pose and attributes [86]; this allows
to learn how images transform when the pose or the attributes are altered. To avoid anno-
tation, transformations are transferred from a pair of examples from a known category to
a “seed” example of a novel class [144]. However, learning to do this transfer requires a
carefully designed pipeline with many heuristic steps. Our approach in Part IV follows this
line of work, but learns to do such transformations by combing with meta-learning in an
end-to-end manner, avoiding both brittle heuristics and expensive annotations. We present
a unified view of meta-learning and show that our hallucination strategy can be adopted in
any of the existing meta-learning methods.

2.2 Transfer Learning
In a broad sense, learning novel categories is addressed by exploiting and transferring
knowledge gained from familiar categories [13,33,54,102,195,288,292,306,318,324,366,371,
372]. This is to imitate the human ability to adapt previously acquired experience when
performing a new task [297].

2.2.1 Classic Transfer Learning
In the framework of classical machine learning, cross-generalization [21] and inter-class
transfer [157] are typically achieved by discovering shared feature representations: (1) cap-
tured by linear or nonlinear feature transformations [6,54,116,198,258,369,390], (2) obtained
by feature selection [108, 234, 235] or regularization [144], (3) described by similarities be-
tween novel classes and familiar classes [22], (4) encoded as a distance metric by metric
learning [26, 29, 113, 303, 388, 409] or kernel learning [157], and (5) learned by boosting ap-

10

proaches [282,374,410]. In addition, contrastive loss functions [141,202] and variants of the
triplet loss [113, 338, 358] have been used for learning feature representations suitable for
few-shot learning; the idea is to push examples from the same class closer together, and far-
ther from other classes. Similarly, classifiers trained on small datasets are also encouraged
to match those trained on large datasets by a carefully designed loss function [144].

Another type of knowledge transfer focuses on modeling (hyper-)parameters that are
shared across domains, typically in the context of generative statistical modeling [50, 103,
232, 317]. A variational Bayesian framework is first developed by incorporating previously
learned classes into the prior and combining with the likelihood to yield a new class pos-
terior distribution [103,104]. Gaussian processes [222,317] and hierarchical Bayesian mod-
els [326] are also employed to allow transferring in a non-parametric Bayesian way. The
recently proposed hierarchical Bayesian program learning utilizes the principles of compo-
sitionality and causality to build a probabilistic generative model of visual objects [218–220].
In addition, adaptive SVM and its variants present SVM-based model adaptation by com-
bining classifiers learned on related categories [13, 14, 96, 196, 217, 373,398,418].

2.2.2 Transfer of Deep Neural Networks
In the era of deep learning, due to the demonstrated promising transferability of deep con-
volutional neural networks (CNNs) [226, 427], knowledge transfers in a more consistent
manner [16,33,126,283,311]. It is common to pre-train a CNN on a large annotated dataset
(e.g., ImageNet [321] or Places [437]), and then use the CNN for target tasks in different
ways: (1) as a fixed feature extractor [311]; (2) as an initialization for fine-tuning [126, 283];
and (3) as a guidance to transfer of knowledge across different modalities [17, 118, 140, 378,
381]. These transfer techniques are developed directly on particular tasks. By contrast, in
this thesis we address a more general scenario that improves the overall transferability of
CNNs. More importantly, in the case of limited target data such as one/few-shot learn-
ing, (2) and (3) are typically infeasible due to over-fitting effects, and (1) leads to degraded
performance. Our approaches are developed to tackle these limitations.

A representative line of work addresses empirical evaluation of factors that affect the
transfer performance in the conventional fine-tuning framework [15, 70, 173, 311, 434]. In
Part III, however, we explore a better alternative to fine-tuning for the recognition of novel
categories. While we investigate how to increase model capacity to improve learning on
the target task, other contemporary work focuses on preserving the original capability on
the source task during transfer [119, 238]. More relevant to our work, the progressive net-
work [322] expands networks for reinforcement learning — a problem different from ours.
Notably, [322, 363] expand all the layers, leading to a target network twice as wide as the
source one, and they only train the new branch while freezing the original branch as off-
the-shelf features. This strategy does not apply to our recognition tasks that typically do
not have enough data to tackle such large growth in number of parameters. By contrast, we
add a small fraction of new units and fine-tune the entire network. As ad-hoc approaches,
[283] plug in a new adaptation layer to facilitate transfer for specific tasks, whereas their
focus is not on the dynamic augmentation of model capacity as ours. In addition to unsu-
pervised fine-tuning, we also explore unsupervised fine-tuning in Part III that transfers a
pre-trained network to target tasks with unlabeled data.

Our approach in Part III is reminiscent of developmental learning [174, 273, 345], and
is relevant to multi-task learning [54, 140, 262, 381] and lifelong learning [147, 265, 296, 368].
Different from the non-parametric shallow models (e.g., nearest neighbors) that increase

11

capacity when memorizing new data [367, 370], our developmental network cumulatively
grows its capacity from novel tasks. We learn predictive and recurrent structures in the model
parameter space from multiple tasks [7], but with dynamically growing parameters.

2.3 Unsupervised and Semi-Supervised Learning
In Part II, we combine both supervised and unsupervised learning. There has been growing
interest in learning CNNs in semi-supervised, self-supervised, or unsupervised fashions
to extract generic features [90, 95, 134, 190, 202, 264, 393, 408]. Most existing unsupervised
deep learning approaches focus on unsupervised learning of visual representations that
are both sparse and allow image reconstruction [281], including unsupervised deep belief
networks (DBN) [162], convolutional sparse coding [339], and multi-layer (denoising) auto-
encoders (DAE) [36, 224]. Other types of supervisory information, such as clustering [73],
surrogate classes [95], spatial context [90], temporal consistency [133, 134, 393], and image
captions [190], have been explored to train CNNs in an unsupervised manner. Although
showing initial promise, the performance of these unsupervised deep models is still not
on par with that of their supervised counterparts. Instead of performing greedy layer-wise
unsupervised pre-training in preparation for supervised training (e.g., in DBN and DAE),
our unsupervised meta-training in Part II “post-arranges” the supervised CNNs.

Another line of work trains deep multi-layer architectures in a semi-supervised fashion,
by jointly learning an embedding task [408] or introducing additional entropy regulariza-
tion [4,229] with unlabeled data. The methods typically improve the model generalization
for specific tasks, with both labeled and unlabeled data coming from the tasks of interest.
Our scenario, however, bears some similarities to self-taught learning [306]. We improve
the overall generality of CNNs for a wide spectrum of unseen categories by leveraging truly
large sets of unlabeled real-world images.

A key assumption in many semi-supervised and unsupervised algorithms is the struc-
ture assumption: the decision boundary should not cross high-density regions, but instead
lie in low-density regions [27, 56, 186, 408]. Given this assumption, our low-density sep-
arators in Part II aim to use unlabeled data to uncover this structure. Many algorithms
begin by inferring a probability distribution from random samples, for example through
density estimation [84], level set estimation [379], densest region detection [28], lowest-
density hyperplane estimation [27], and clustering [46, 165]. All of these tasks, however,
are notoriously difficult with respect to both sample complexity and computational com-
plexity. To deal with this, we follow an alternative discriminative framework as in trans-
ductive SVM [56, 186], semi-supervised SVM [37], and predictable discriminative binary
codes [309]. Given that most of these existing approaches [37, 186, 309] require certain la-
beled data, we then propose an unsupervised margin maximization to achieve low-density
separation. Our work can be thus viewed as combining both neural networks and the max-
margin principle into a unified framework.

2.4 Learning How to Learn
In Part I, we address the difference between a recognition model learned from few anno-
tated samples and the underlying model that would be learned from a large set of samples.
We meta-learn a generic, category agnostic transformation between small-sample and large-
sample models by a regression neural network in a model-level big-data setting. Our ap-

12

proach could be seen as an alternative parametric way of doing model distillation that relies
on the connection between different models (i.e., a student and a teacher model) [18,49,159].
While model distillation focuses on models with different capacity but learned on the same
data, our approach addresses models learned on different sized datasets and the acquired
meta-knowledge is more explicitly represented.

In the context of learning to learn [335,366], we use the obtained inter-class model struc-
ture to modify a small-sample recognition model of a novel category. Our approach is rel-
evant to the early and contemporary work on parameter prediction with one network that
modifies the weights of another [41,332–334] and the recent work on inducing the weights
of an image classifier from text [280, 352] or predicting network parameters from activa-
tions [300, 302]. From an optimization perspective, our approach is relevant to the recent
research on learning to optimize which replaces hand-designed update rules with a learned
update rule [10,236,310] and learning easily adaptable model parameters through gradient
descent [114]. From a high-level perspective, this line of work casts a set of related learning
tasks themselves as a learning problem.

Another different perspective is to capture knowledge common among a set of one-
shot learning tasks during meta-training, and then to use the knowledge for a novel one-
shot learning problem [41, 310, 388]. By virtue of deep learning, the recent approaches in
this family typically learn a similarity distance metric via neural networks [351]. Flagship
techniques include the early work of Siamese networks [48, 202] and their advanced ver-
sion matching networks [388], which are augmented with attention and memory, as well as
other modifications [259,351,354,376]. Due to the non-parametric nature (i.e., using nearest
neighbors as classifiers), these approaches are best effective for one-shot and extremely-few-
shot learning and their performance significantly degenerates when the number of training
samples increase. By contrast, due to its discriminative nature, our approach in Part I is
consistently effective across datasets of different sizes, as shown in [144]. Using additional
large-sample models as the explicit teacher also facilitates our meta-learning problem.

13

Part I

Learning to Learn: Knowledge
Distillation through Model

Regression Networks

15

The only person who is educated is the one who has
learned how to learn and change.

Carl Rogers

17

Chapter 3

Learning Model Transformation
for Easy Small Sample Learning

3.1 Motivation
Starting from this chapter, we explore a series of novel learning to learn approaches that
leverage the knowledge gained when learning models in large sample sets to facilitate rec-
ognizing novel categories from extremely limited samples, such as in one-shot learning.
From a discriminative machine learning perspective, object recognition is basically a pro-
cess that learns an object category classifier to separate annotated positive and negative
examples in a feature space. We assume a fixed, discriminative feature space, which is rea-
sonable especially considering the recent learned feature representations via deep convolu-
tional neural networks (CNNs). We now take the model such as SVM classifiers and make
important modifications. The central issue can be reduced to the following: how to estimate
a classifier that would be learned from a large set of samples (on the order of hundreds or
thousands of) based on its corresponding classifier learned from few annotated samples (as
few as one and up to hundreds)?

Our main hypothesis is that there exists a generic nonlinear transformation from small-
sample (or few-shot) models to the underlying large-sample (or many-shot) models for a va-
riety of categories. This hypothesis is validated empirically in Section 3.3. Intuitively, a model
can be viewed as a separating hyperplane in the feature space.1 Small training examples
already constrain the search space by pointing to an initial hyperplane not far from the de-
sired hyperplane produced by a large training set. When we gradually introduce additional
examples, the initial hyperplane is progressively subject to a series of transformations until
it converges, as illustrated in Figure 3.1.

We suspect that this transformation, or at least certain components of it, is fairly generic.
In a machine learning context, a learner needs to be biased in some way for it to general-
ize well [25, 112, 157, 326]. Consequently, there might exist some systematic bias from a
small-sample model to its large-sample version. In essence, this transformation potentially
captures the natural intra-class variability in a discriminative manner and represents how
sparse samples change to a category cluster. Hence, we view the model transformation as
a form of shared structure and, when available, it can be re-purposed for novel categories.

1A kernel model can be viewed as a separating hyperplane in the lifted feature space.

19

?

?

!"#$% !"#$∗

!'()∗
!'()%

!*#)+,%

!-(**%

Figure 3.1: Our main hypothesis is that there exists a generic, category agnostic nonlin-
ear transformation T from models θ0 learned from few annotated samples (represented
as blue) to the underlying models θ∗ learned from large sets of samples (represented as
red). We estimate the transformation T by learning a meta-level regression network on a
large collection of model pairs, i.e., a model regression network. For a novel category/task
(such as scene classification and fine-grained object recognition), we introduce the learned
T to construct the task model and thus facilitate its generalization in the small sample size
regime.

A desirable goal, then, is to find ways of automatically learning such a transformation.
We achieve this by introducing a meta-level network that operates on the space of model
parameters and learns on a large collection of model pairs, which we term as a model regres-
sion network. The meta-network explicitly regresses between the small-sample classifiers
(as input) and their corresponding large-sample classifiers (as ground-truth) on a variety
of known categories. The deep learning framework enables us to learn the transforma-
tion without imposing strong priors. Now, for a novel category/task, we distill the learned
transformation to construct the task model and thus facilitate its generalization in the small
sample size regime.

Recent progress in deep learning based object recognition shows that features extracted
from deep CNNs that are trained on a large set of particular object categories exhibit attrac-
tive transferability [16, 91, 311, 427]. They could thus serve as universal feature extractors
for novel categories/tasks. Our key insights then are that such generality would also hold
on a model level and that it would be learnable in a similar fashion as on the feature level.
This is also suggested by the duality perspective between the feature space and the classi-
fier space [386]. Eventually, the transformation can be viewed to be imposed on features
but parametrized in a model fashion.

From a complementary perspective, our approach could be seen as an alternative para-
metric way of doing model distillation that relies on the connection between different mod-
els [18, 49, 159]. In the terminology of model distillation [18, 159], we view a small-sample
model as a “student” model and view its corresponding large-sample model as a “teacher”
model. The student model is then transformed through our meta-network to mimic the
behavior (e.g., generalization ability) of its teacher model. Different from [18, 49, 159] that
focus on the relationship between models of different complexity (e.g., single and ensemble

20

models, and shallow and deep neural networks) on the same data, we deal with models
of the same type but trained on data of different sample sizes. Moreover, our knowledge
is explicitly represented by the meta-network, compared with using distillation loss as the
implicit knowledge in [18, 49, 159].

Our contributions are three-fold. (1) We first show how to construct a training “model
set” by generating a large collection of model pairs that are learned from small and large
sample sets respectively on various categories. (2) We show how a model regression net-
work, based on deep neural networks and this training model set, is learned and a generic
transformation between these two types of models is identified by the regressor. (3) We
finally show how our regression network is used to facilitate the recognition of novel cate-
gories from few samples, leading to significantly improved performance on a broad range
of tasks, including domain adaptation, fine-grained recognition, action recognition, and
scene classification.

3.2 Model Regression Networks

We are given a fixed, discriminative feature spaceX of dimensionality d, such as the current
deep CNN features.2 For an object category c of interest, we generate a model or classifier
h(x) that discriminates between its positive and negative instances x ∈ X . We consider, for
example, the linear SVM classifier commonly used for object recognition tasks, which is a
separating hyperplane in the feature space. The classifier h(·) can then be represented as a
weight vector θ belonging to the model parameter space Θ.

Let θ0 indicate a classifier learned from few annotated samples without any additional
information. Let θ∗ indicate the corresponding underlying classifier learned from a large
set of annotated samples of the same category. Our goal is to generate θ (or equivalently,
h(·)) that generalizes well from these few training examples, i.e., to make θ as close as to
the desired θ∗. The key assumption is that there exists a generic, nonlinear transformation
T̃ : Θ→ Θ for a broad range of categories, so that for θ0 and θ∗ in any category c, we have
θ∗ ≈ T̃

(
θ0
)
. That is, there is a set of large-sample models and T̃ is the projection into that

set (with θ∗ being a fixpoint of T̃). Once the transformation T̃ is available, we could easily
improve the classifier generalization.

Inspired by recent progress in deep learning, it is possible to estimate this transforma-
tion T̃ from a large set of known categories. A straightforward approach then is to learn
a regression function T parameterized by w based on a large collection of “annotated”
model pairs

{(
θ0j ,θ

∗
j

)}J
j=1

from these categories. That is, θ∗j ≈ T
(
θ0j ;w

)
for any small-

sample model θ0j and its large-sample model θ∗j learned on the same category. We employ
multi-layer neural networks as regressors, which are well-known to learn complex, nonlin-
ear functions with minimal human design. By doing so, we avoid an explicit description of
the space of transformations. We then use the obtained transformation in learning models
for novel categories.

2Notation: Matrices are denoted by bold and italicized capital letters, vectors are denoted by bold and italicized
lower-case letters, and transformation functions are denoted by italicized capital letters. For notational simplicity,
x already includes a constant 1 as the last element and thus θ includes the bias term.

21

3.2.1 Generation of Model Pairs
We start from large amounts of labeled data from a variety of categories, which are denoted
as {(xi, yi)}Li=1. Here xi ∈ Rd is the ith data sample in the feature space X , yi ∈ {1, . . . , C}
is the corresponding label, and C is the number of categories. Different from conventional
recognition systems that directly learn from the data and label pairs, we learn on a model
level. To this end, we produce a collection of model pairs

{(
θ0j ,θ

∗
j

)}J
j=1

as our training
model set using the original training data set {(xi, yi)}Li=1. Each model is generated as a
binary classifier focused on separating a single category from all the remaining categories
in a manner inspired by the one-vs.-all strategy in multi-class classification.

Specifically, for each category c, we first learn θc,∗ from a large sample set. We treat θc,∗

as the ground-truth model. Let the positive examples {xc,posi }Lci=1 be all the data points of
category c, where Lc is the total number of samples whose labels are c. We obtain negative
examples {xc,negi }Mi=1 by randomly sampling M data points from other categories not in
category c. We train a binary SVM classifier θc,∗ on the training setPc = {(xc,posi ,+1)}Lci=1∪
{(xc,negi ,−1)}Mi=1.

We now learn the small-sample model θc,0 for category c. Consistent with the few-shot
scenario that consists of few positive examples, we randomly sample N � Lc data points
{xc,posi }Ni=1 out of the Lc positive examples of category c. We train a binary SVM classifier
θc,0 on the reduced training set Qc = {(xc,posi ,+1)}Ni=1 ∪ {(x

c,neg
i ,−1)}Mi=1.

Note that we have many ways of choosing the small sample set for a given θc,∗ to learn
θc,0. This indicates that we could repeat the sampling procedure S times, leading to S

small-sample models
{
θc,0j

}S
j=1

learned from different small-sample sized training subset{
Qcj
}S
j=1

of Pc. Since they correspond to the unique ground-truth model, we thus obtain a

series of model pairs for category c as
{(
θc,0j ,θc,∗

)}S
j=1

. Including the learned model pairs

from all the C categories, we generate the desired training model sets
{(
θ0j ,θ

∗
j

)}J
j=1

, where
J = S × C. Due to subsampling, the size of the training model set could be potentially
large, with many orders of magnitude larger than the number of categories.

3.2.2 Regression Network

Given the training model set
{(
θ0j ,θ

∗
j

)}J
j=1

with one to one model correspondence, we aim
to learn a mapping: θ0 → θ∗. We parametrize the transformation as a regression function
T
(
θ0;w

)
, such that θ∗ ≈ T

(
θ0;w

)
. We simply use the square of the Euclidean distance to

quantify the quality of the approximation. For each model θ0j , we have the corresponding

small sample setQj =
{(
xji , y

j
i

)}M+N

i=1
used to learn the model as well. To make the regres-

sion more robust, we include the performance on these samples as an additional loss, which
is standard in the transfer learning approaches with model parameter sharing [398, 418].
Our final loss function then is

L (w)=

J∑
j=1

{
1

2

∥∥θ∗j − T (θ0j ;w
)∥∥2 + λ

M+N∑
i=1

[
1− yji

(
T
(
θ0j ;w

)T
xji

)]
+

}
. (3.1)

22

fc1 fc2 fc3 fc4

LReLU LReLU LReLU

Regression
Loss Layer

Performance
Loss Layer

Large-Sample
Model

Small-Sample
Model

!∗

!#

Figure 3.2: The architecture of our model regression network. Given a model θ0 learned
from few samples as input, it is passed though four fully-connected layers with leaky ReLU.
On the loss layer, a model regression loss and a classification performance (e.g., hinge) loss
on the training data is minimized jointly.

The second term represents the data fitting on the training samples. Here, the performance
loss is measured by a hinge loss, in which [x]+ = max(0, x), and it could be other types of
losses such as logistic loss as well.

Consistent with recent work, we use a multi-layer feed-forward neural network as the
regression function for its high capacity. As shown in Figure 3.2, our regression network
consists of F = 4 fully-connected layers where the f th layer applies a nonlinear transforma-
tion G , which is an affine transformation followed by a nonlinear activation function. We
use leaky ReLU. For the purpose of regression capacity, the number of units in the first two
layers is larger than the dimensionality of the input classifier weight vectors. The desired
transformation T is then represented as a series of transformations G layer by layer.

3.2.3 Implementation Details
For the feature space, consistent with recent work, we use the Caffe AlexNet CNN feature
pre-trained on ILSVRC 2012 [91, 185, 212]. All the weights of the CNN are frozen to those
learned on ILSVRC without fine-tuning on any other datasets. For each image, we extract
the feature on the center 224 × 224 crop of the 256 × 256 resized image. It is a d = 4,096-
dim feature vector fc6 taking from the penultimate hidden layer of the network, unless
otherwise specified.

To generate the training model set, we use the ILSVRC 2012 training data set for pur-
pose of reproducibility. There are 1,000 object categories with 600 to 1,300 images per cate-
gory and 1.2 million images in total. We use Liblinear [101] to train linear SVM models θ0
and θ∗. For each category, using all the positive images and randomly sampled negative
images, we train θ∗ with the optimal SVM regularization parameter obtained by 10-fold
cross-validation. We then randomly sample N = 1, 2, . . . , 9, 10, 15, 20, . . . , 100 positive im-
ages. For each N , we repeat random subsampling S = 5 times, and use different SVM
regularization parameters from 10{−2,−1,0,1,2} to train the SVM model θ0 from few sam-
ples. These are essentially valid ways of doing “data augmentation” [212] for training the
regression network, which mimic in practice how θ0 changes. Hence, the number of the
generated model pairs is 700 for each category, and the size of the training model set is

23

700,000. Finally, we randomly split the set with 685 model pairs as training and the remain-
ing 15 pairs as validation per category.

We then use Caffe [185] to train our model regression network on the generated training
model set and the corresponding training data set. The number of units from fc1 to fc4 are
6144, 5120, 4097, and 4097, respectively. We use 0.01 as the negative slope for leaky ReLU. λ
is set to 1. We implement the loss function as two loss layers in Caffe, with one loss layer fo-
cusing on the model regression accuracy and the other focusing on the performance loss on
the training data. We train the network using standard SGD and batch normalization [177].

3.2.4 Learning Target Models for Novel Categories

We now consider recognizing a novel category from a small labeled training set {(xi, yi)}Ki=1,
where xi ∈ Rd is a data sample and yi ∈ {−1, 1} is the corresponding label. As informa-
tive prior knowledge, we distill the obtained generic model transformation T into the target
model θ, so that it has better generalization than the one produced only from the few train-
ing examples. We use a coarse-to-fine procedure that learns the target model in three steps:
initialization, transformation, and refinement.

Initialization. In this first step, we directly learn the target model θ0 on the small train-
ing sample set {(xi, yi)}Ki=1.

Transformation. Using θ0 as input to our learned model regression network, after for-
ward propagation, we obtain the output model T

(
θ0;w

)
. This thus encodes the prior

knowledge about θ being preferable.
Refinement. We then introduce T

(
θ0;w

)
as biased regularization into the standard

SVM max-margin formulation to retrain the model by minimizing

R (θ) =
1

2

∥∥θ − T (θ0;w
)∥∥2 + η

K∑
i=1

[
1− yi

(
θTxi

)]
+
. (3.2)

Eqn. (3.2) is similar to the standard SVM formulation, with the only difference being the bias
towards T

(
θ0;w

)
instead of 0. η is the regularization parameter used to control the trade-

off between the regularization term and data fitting term. We thus obtain an intermediate
solution with a decision boundary close to the regressed classifier while separating the
labeled examples well.

3.3 Experimental Evaluation

In this section, we explore the use of our learned model regression network on a number
of supervised learning tasks with limited data, including domain adaptation, fine-grained
recognition, action recognition, and scene classification. We begin with a sanity check of
the regression network for the 1,000 training categories on the ILSVRC validation data set.
We then evaluate the network for one-shot domain adaptation and compare with state-of-
the-art adaptation approaches. We further evaluate our approach for novel fine-grained,
action, and scene categories. Finally, we present experimental results evaluating the impact
of different feature spaces and model types.

24

1 2 3 4 5 6 7 8 9
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Number of Positive Training Examples

40

50

60

70

80

90

100

A
c
c
u

ra
c
y
 (

%
)

Regression Sanity Check on ILSVRC

Figure 3.3: Performance sanity check of the model regression network by comparing small-
sample models θ0, large-sample models θ∗ (learned on thousands of examples), and re-
gressed models T (θ0) on the held-out ILSVRC validation set. X-axis: number of positive
training examples. Y-axis: average binary classification accuracy. Our network effectively
identifies a generic model transformation.

3.3.1 Sanity Check
Our model regression network is learned from the 1,000 categories on the ILSVRC training
data set. As a sanity check, the first question to answer is whether the learned transforma-
tion indeed improves generalization of the small-sample models for these categories. To
answer this question, we evaluate the models on the held-out ILSVRC validation data set,
which contains the same 1,000 categories with 50 images per category and has no overlap
with the ILSVRC training data.

Consistent with the way the models are generated, we evaluate them in a binary classi-
fication scenario. For each category, we construct a test set consisting of all these 50 positive
images and 50 randomly sampled negative images from other categories. We compare the
three types of models: small-sample models θ0, large-sample models θ∗ (as ground-truth),
and regressed models T (θ0) (without the refinement step). We evaluate how performance
varies with the number of positive training examplesN when used to learn θ0. We average
the classification accuracy over the models corresponding to the same N but with differ-
ent sampled training data and SVM regularization parameters. Figure 3.3 summarizes the
average performance over the 1,000 categories.

As expected, Figure 3.3 shows that T (θ0) significantly improves the generalization of θ0.
In the one-shot learning case, there is a notable 20% performance improvement of T (θ0)
over θ0, whose performance is only a little bit higher than chance (50% for binary classi-
fication). With increased number of training examples, the performance of T (θ0) gradu-
ally converges to that of θ∗ trained on thousands of examples. This verifies the existence
of a generic transformation from small-sample to large-sample models for these 1,000 cat-
egories, which is effectively identified by our model regression network. In the following
experiments, we will show that the learned transformation applies to other novel categories
as well.

25

Source Prior Knowledge Type Method Acc (%)

NA SVM (target only) [164] 62.28

Data SVM (source only) [164] 53.51

SVM (source and target) [164] 56.68

Feature

GFK [127] 65.16

SA [110] 59.30

Daumé III [81] 59.21

MMDT [163] 59.21

Model Parameter
PMT [13] 66.30

Late Fusion (Max) [164] 59.59

Late Fusion (Lin. Int. Avg) [164] 60.64

Joint Fine-tuning [164] 61.13

Model Transformation Model Regression Network (Ours) 68.47

Table 3.1: Performance comparison between our model transformation with state-of-the-art
approaches that adapt other types of prior knowledge gained on the ILSVRC source domain
in manners of data, feature, model parameter, and joint fine-tuning for one-shot learning
on the Webcam domain of the Office dataset.

3.3.2 One-Shot Adaptation

Our approach can be viewed as transferring certain prior knowledge gained from the source
domain (ILSVRC) to new tasks. It is thus interesting to compare different types of prior
knowledge, including those on data, feature, and model parameter levels. To this end, we
provide a comprehensive evaluation in the scenario of domain adaptation, in which the
target images come from the same set of source categories but are drawn from a differ-
ent distribution. Due to the common categories between source and target domains, this
experimental setup allows us to best identify the possible shared domain structure and
compare with state-of-the-art adaptation approaches without learning additional category
correspondence, which turns to be another difficult problem.

Datasets and tasks. We evaluate on the Office dataset [324], a standard domain adapta-
tion benchmark for multi-class object recognition. The Office dataset is a collection of 4,652
images from three distinct domains: Amazon, DSLR, and Webcam. We use Webcam as the
target domain since it was shown to be the most challenging shifted domain [164]. Of the
31 categories in the dataset, 16 overlap with the categories presented in the 1,000-category
ILSVRC. We focus on these common classes as our target (i.e., 16-way classification), as is
customary in [164]. Following a similar experimental setup in [164], 1 labeled training and
10 test images per category are randomly selected on Webcam. We report average multi-
class accuracy over 20 random train/test splits in Table 3.1.

Baselines. In addition to the SVM (target only) baseline that directly trains SVM clas-
sifiers on the target data, we compare against four other types of baselines that transfer
prior knowledge on the ILSVRC source domain gained in manners of data, feature, model
parameters, and joint fine-tuning.

26

• (Type I) Data level. SVM classifiers trained on only source data and both source and
target data, respectively.

• (Type II) Feature level. Geodesic flow kernel (GFK) [127], Daumé III [81], subspace
alignment (SA) [110], and max-margin domain transforms (MMDT) [163], which seek
common feature spaces using learned feature embedding, augmentation, or transfor-
mation.

• (Type III) Model parameter level. Projective model transfer (PMT) [13] and late fu-
sion [164], which adapt the parameters of the pre-trained source classifier to construct
the target classifier.

• (Type IV) Joint level. Fine-tune the weights of the pre-trained CNN on the 16-way
target classification task. These results are reported from [164].

Table 3.1 shows that our model transformation provides an alternative, competitive way
to encode the shared structure and prior knowledge. It is on par with or outperforms other
types of prior knowledge and adaption approaches. Notably, ours achieves significantly
better performance than fine-tuning, the standard transfer strategy for CNNs, in this one-
shot learning scenario. Fine-tuning requires a considerable amount of labeled target data
and actually reduces performance in the very sparse label regime.

3.3.3 Learning Novel Categories
We now evaluate whether our learned model regression network facilitates the recognition
of novel categories from few samples. For multi-class classification on the target datasets,
we test how performance varies with the number of training samples per category. Follow-
ing the standard practice, we train linear SVMs in a one-vs.-all fashion with default settings
in Liblinear [101]. After obtaining the regressed models, we then incorporate them to re-
train each one-vs.-all classifier.

Datasets and tasks. We evaluate on standard benchmark datasets for fine-grained recog-
nition: Caltech-UCSD Birds (CUB) 200-2011 [389] and Oxford 102 Flowers [279], for action
recognition (compositional semantic recognition): Stanford-40 actions [425], and for scene
classification: MIT-67 [375]. These datasets are widely used for evaluating CNN represen-
tations [15], and we consider their diversity and coverage of novel categories. We follow
the standard experimental setup (e.g., the train/test splits) for these datasets. In our ex-
periments, due to the lack of published protocols for small-sample learning, we randomly
generate the small-sample version of training images as shown in Figure 3.4 and use all the
same test images for testing.

Fine-grained recognition datasets. Caltech-UCSD Birds (CUB) 200 − 2011 [389] contains
11,788 images of 200 bird species (mostly North American). 5,994 images are used for train-
ing (29 or 30 images per class) and 5,794 images are used for testing. Bird bounding boxes,
15 part landmarks, 312 binary attributes, and boundary segmentation are available for this
dataset. We only use the bounding box annotation during training and testing. Oxford 102
Flowers [279] contains 102 flower classes and each class consists of between 40 and 258 im-
ages. 10 images per class are used as training data and the rest are used as test data. We do
not use the provided image segmentation for this dataset. The subtle difference across dif-
ferent subclasses requires a fine-detailed feature representation, which makes fine-grained
recognition a good test of whether a generic representation can capture these subtle details.

27

1 3 5 10 15 20 25 30
10

20

30

40

50

60

70

Number of Training Examples per Category

A
c
c
u
ra

c
y
 (

%
)

CUB200−2011

Refined (Ours)
Original

1 2 3 4 5 6 7 8 9 10
40

50

60

70

80

90

Number of Training Examples per Category

A
c
c
u
ra

c
y
 (

%
)

102 Flowers

Refined (Ours)
Original

135 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

Number of Training Examples per Category

A
c
c
u
ra

c
y
 (

%
)

Stanford−40

Refined (Ours)
Original
Model Transfer

135 10 15 20 25 30 40 50 80
10

20

30

40

50

60

70

Number of Training Examples per Category

A
c
c
u
ra

c
y
 (

%
)

MIT−67

Refined (Ours)
Original
Model Transfer
Finetuning

Figure 3.4: Performance comparisons between models learned from few samples and mod-
els refined by our model regression network for fine-grained recognition, action recogni-
tion, and scene classification on four benchmark datasets. For completeness, we also in-
clude additional baselines of transfer learning with model parameter sharing and CNN
fine-tuning on certain datasets. The AlexNet CNN is used as the feature space. X-axis:
number of training examples per class. Y-axis: average multi-class classification accuracy.
Since they benefit from the learned generic model transformation, ours significantly out-
perform all the baselines for small sample learning.

Action recognition datasets. Stanford-40 [425] contains 9,532 images of humans perform-
ing 40 actions, with between 180 and 300 images per action class. We follow the standard
split for this dataset: 100 images per class are used as training data and the rest are used
as test data. The compositional recognition tasks are challenging category tasks, which in-
clude classes where the type of interactions between objects is the key indicator. Hence,
these tasks require more sophistication to recognize than the other category recognition
tasks [16].

Scene classification datasets. MIT-67 [375] contains 15,620 images spanning 67 indoor
scene classes. The provided split for this dataset consists of 80 training and 20 test im-
ages per class. Having a significant statistics difference from the ILSVRC dataset, indoor
scenes tend to vary a lot in term of composition and are better characterized by the objects
which they contain. This makes MIT-67 an interesting and challenging test case for feature
representation.

Baselines. Due to the CNN training procedure, the original models directly learned
from target samples can be viewed as transfer learning with feature sharing. We also in-
clude the transfer learning baseline with model parameter sharing on Stanford-40 and MIT-
67, which transfers the 1,000 ILSVRC category models using [373]. Moreover, we report an
additional CNN fine-tuning baseline on MIT-67, which is the best fine-tuning result we have
achieved following [155].

Figure 3.4 summarizes the average performance over 10 random splits on these datasets.

28

1 3 5 10 15 20 25 30
Number of Training Examples per Category

0

20

40

60

80
A

c
c
u
ra

c
y
 (

%
)

CUB200-2011

VGG-Refined (Ours)
VGG-Original
UnsupervisedCNN-Refined (Ours)
UnsupervisedCNN-Original

1 2 3 4 5 6 7 8 9 10
Number of Training Examples per Category

0

20

40

60

80

A
c
c
u
ra

c
y
 (

%
)

102 Flowers

VGG-Refined (Ours)
VGG-Original
UnsupervisedCNN-Refined (Ours)
UnsupervisedCNN-Original

135 10 20 30 40 50 60 70 80 90 100
Number of Training Examples per Category

0

10

20

30

40

50

60

70

A
c
c
u
ra

c
y
 (

%
)

Stanford-40

VGG-Refined (Ours)
VGG-Original
UnsupervisedCNN-Refined (Ours)
UnsupervisedCNN-Original

135 10 15 20 25 30 40 50 80
Number of Training Examples per Category

0

20

40

60

A
c
c
u
ra

c
y
 (

%
)

MIT-67

VGG-Refined (Ours)
VGG-Original
UnsupervisedCNN-Refined (Ours)
UnsupervisedCNN-Original

Figure 3.5: Feature space evaluation between models learned from few samples and models
refined by our model regression network on these four benchmark datasets. The stronger
VGG CNN [347], pre-trained on ILSVRC, and the unsupervised CNN [393], pre-trained on
YouTube, are used as the feature space, respectively. Ours show consistent performance im-
provements over the original models for small sample learning in different feature spaces.

The performance of the model transfer is similar to the original models learned from few
samples due to the dissimilarity between source and target tasks. In our case of limited
target data, the standard fine-tuning approach leads to degraded performance due to over-
fitting. The models refined by our regression network, however, significantly outperform
them for a broad range of novel categories. Our approach has particularly large perfor-
mance boosts in one-shot learning scenarios. For example, there is a nearly 15% boost on
MIT-67.

3.3.4 Evaluation of Different Feature Spaces

In the previous experiments, we used the AlexNet CNN as the feature. To test the robust-
ness of our model regression network to the choice of the feature space, here we evaluate
two additional features: the more powerful VGG19 CNN [347] fc7, pre-trained on ILSVRC
2012, and the unsupervised CNN [393] fc6, pre-trained on YouTube videos. We keep the
other design choices the same (e.g., the way of generating the training model set and the re-
gression network structure). In a similar way as before, we train our network and evaluate
the recognition performance on the target tasks with few samples. Figure 3.5 validates the
benefit of our approach in different feature space settings. Importantly, it shows that the
data used to estimate the model transformation (ILSVRC) is not necessarily the same as the
data used to learn the feature representation (YouTube).

29

1 3 5 10 15 20 25 30
10

20

30

40

50

60

70

Number of Training Examples per Category

A
c
c
u
ra

c
y
 (

%
)

CUB200−2011

Refined (Ours)
Original

1 2 3 4 5 6 7 8 9 10
40

50

60

70

80

90

Number of Training Examples per Category

A
c
c
u
ra

c
y
 (

%
)

102 Flowers

Refined (Ours)
Original

135 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

Number of Training Examples per Category

A
c
c
u
ra

c
y
 (

%
)

Stanford−40

Refined (Ours)
Original

135 10 15 20 25 30 40 50 80
10

20

30

40

50

60

70

Number of Training Examples per Category

A
c
c
u
ra

c
y
 (

%
)

MIT−67

Refined (Ours)
Original

Figure 3.6: Model type evaluation between models learned from few samples and models
refined by our model regression network on these four benchmark datasets. We evalu-
ate the logistic regression as the model of interest. The robust performance shows generic
transformations for different types of models.

3.3.5 Evaluation of Different Types of Classification Models
In the previous experiments, we focused on SVM classifiers. In fact, the models do not need
to come from max-margin classifiers and could be other set of weights learned in different
fashions. To verify this, we test a widely used alternative classifier, logistic regression, and
keep the other design choices the same (e.g., the way of generating the training model set
and the regression network structure). Naturally, we change the hinge loss to the logistic
loss. In a similar way as before, we train our network and evaluate the recognition per-
formance on the target tasks with few samples as shown in Figure 3.6. Combining with
Figure 3.4, the logistic regression demonstrates comparable performance to SVM, and the
refined logistic regression classifiers generalize better as well.

3.4 Data-Level or Model-Level Transformation?: A Graphi-
cal Illustration

While our approach focuses on a model-level transformation, a contemporary line of work
generates additional examples by transforming existing examples through a regression neu-
ral network and then learns recognition models using the augmented dataset [86,144,247].
One interesting question thus arises: what is the connection and distinction between a data-
level transformation and a model-level transformation? Inspired by category theory and com-
mutative diagram [12], this issue can be graphically understood by Figure 3.7.

In Figure 3.7, the top left node A represents a small sample set Q0 = {xi}Mi=1, and the
bottom left node B represents its corresponding large sample set P∗ = {xi}Ni=1. The top

30

A

B

C

D

!"#$%

!"#$∗

Figure 3.7: Graphical illustration of data-level and model-level transformations. To gener-
ate a large-sample model θ∗ (node D) from a small-sample set Q0 (node A), we have two
commutative paths: the data-level transformation path A → B → D and the model-level
transformation path A→ C → D.

right nodeC represents the small-sample model θ0, and the bottom right nodeD represents
the large-sample model θ∗. There are two paths to generate θ∗ from Q0. The conventional
path A → B → D first transforms the few examples in Q0 to produce more examples and
obtain P∗, and then learns θ∗ using P∗. Our path A → C → D, however, first directly
learns θ0 using givenQ0, and then transforms θ0 to θ∗. Intuitively, these two paths should
commute and lead to the same θ∗, as suggested by the duality perspective between the
feature space and the classifier space [386]. In this view, our approach is essentially a valid
way of doing data augmentation but parametrized in a model fashion.

From a practical perspective, however, each of these two paths has its own advantages
and disadvantages, depending on specific tasks. On the one hand, our formulation leads
to an easier learning problem, since it is better regularized. More precisely, for category
c, different small-sample models θ0 correspond to a unique large-sample model θ∗ (i.e.,
learning a many-to-one transformation). By contrast, if directly learning a transformation
on the data level, one input example might correspond to potentially many output exam-
ples (i.e., learning a many-to-many transformation). In addition, our approach leads to test
time efficiency, since it directly generates the desired recognition model instead of inter-
mediate samples. On the other hand, learning a model-level transformation restricts the
small-sample and large-sample models to belong to the same type of model, since they are
supposed to reside in the same model parameter space. By contrast, learning a data-level
transformation might allow us to learn a higher-capacity model with augmented data for
potential better performance.

In a broad sense, the commutative diagram in Figure 3.7 not only applies to the small-
sample learning scenario, but it also has implication for other recognition problems. And
our model regression networks have been successfully used in [166,168,261]. For instance,
one might morph between chair recognition models of two different viewpoints3, or change
a raw tomato recognition model to a cooked tomato recognition model [180], or compose
classifiers of known visual concepts for unseen combinations of concepts [261], or map from
free-hand sketch space to the space of photo classifiers [166], or predict a category’s instance
segmentation parameters as a function of its bounding box detection parameters [168], by

3Inspired by a conversation with Andrew Zisserman.

31

directly leveraging the model-level transformation.

3.5 Revisiting Model Transformation and Its Properties

The conventional few-shot learning approaches typically view a recognition model as static
and they focus on discovering the relationship among models that are learned from large
amounts of examples [103, 232, 317]. Our approach, however, has analyzed the difference
between a small-sample recognition model and the underlying large-sample model. We
have explored whether it is possible and how to estimate a large-sample model based on
its corresponding small-sample model. Apparently, the vanilla regularization techniques
used in statistical modeling are insufficient to tackle this challenging problem.

To make this point further, our approach suggests a way to address the small-sample
learning problem through analyzing the model dynamics. While the existing work typically
focuses on the final learning performance, the entire learning history implicitly contains
abundant useful information for small-sample learning. That is, how does a recognition
model h (x;θ) change during the learning process when gradually having access to addi-
tional examples?

To address this issue, we make an analogy between the recognition model and a physical
system as suggested in [331]. Let us consider training a continuous time physical system
that performs potentially useful computations through its deterministic or stochastic dy-
namics. Given a state of sensory information (current and past inputs), the system is moving
towards configurations that better explain the observed sensory data (equilibrium) [331].
We can think of the system’s configuration as an explanation (or interpretation) for the ob-
served sensory data. In the case of our recognition model, this means that the parameters of
the model gradually move towards θ∗ that are more probable, given the sensory input (i.e.,
additional examples) and according to the current “model of the world” associated with
the parameters θ0 of the model.

We cast estimation of the model dynamics as a learning problem, and exploit structures
in the parameter space by leveraging supervised deep learning techniques. The model dy-
namics are explicitly represented by our meta-learner T . For a novel task m, we predict
the parameters of its recognition model from both few annotated examples and the meta-
learner that encodes the parameter structures from previous recognition tasks, replacing
the static model with a dynamic model hm

(
x; T

(
θ0m,w

))
. Hence, the learning occurs at

two different time scales: rapid learning within tasks and more gradual, meta learning
across many different tasks for self-referential learning and self-improvement [336]. The
latter learning phase explicitly guides the learning process of the small-sample model.

In conventional statistical learning, we have a particular function of interest, whose be-
havior is constrained through a set of function evaluations using example images and their
labels. In our setting, the examples are themselves recognition task instances, which means
generalization corresponds to the ability to transfer knowledge between different tasks.
Hence, our approach is different from the conventional approach of characterizing prop-
erties of tasks analytically and using these analytical insights to design learning algorithms
by hand, e.g., enforcing certain regularization for small-sample recognition.

Moreover, the model transformation has some interesting properties, which we discuss
below.

32

Method θ0 MLP ResNet1 ResNet2 ResNet3 ResNet4 θ∗

Acc (%) 77.64 94.85 90.62 95.88 96.62 97.68 98.60

Table 3.2: Performance comparisons of binary classification between different types of meta-
learners (i.e., model regression networks) for one-shot learning on 10 randomly sampled
categories from ILSVRC. Our original meta-network is a 4-layer perceptron (MLP) and we
now use ResNets with 1, 2, 3, and 4 residual blocks, respectively. The performance improve-
ment shows the importance of identity regularization and residual learning.

Identity Regularization and Residual Learning. In our approach, we assumed that the
transformation T was independent of the sample size whereas, in general, one would envi-
sion that T would change when the number of samples increases dramatically all the way
to T = identity for very large training sample sets. This suggests the importance of the
identity mapping in the model transformation. Also, we are actually more interested in es-
timating the change of the model parameter ∆θ instead of θ. Inspired by these insights and
the recent work on residual learning [149,154], we instantiate the meta-learner as a residual
network that learns the transformation graduality while explicitly maintaining its identity
property.

Experimental analysis. We now use the state-of-the-art ResNet152 features [154]. We
randomly sample 10 categories from ILSVRC. In a similar binary classification setup as be-
fore, we regress from 1-shot SVM θ0 to θ∗ using meta-level ResNets [149, 154] with 1, 2, 3,
and 4 residual blocks, respectively. Table 3.2 summarizes the results. The boosted recogni-
tion performance over our original version of regression networks (i.e., a multi-layer percep-
tron) shows the importance of identity regularization and residual learning. In addition,
the performance improves with the increased network depth.

Sample-Size Dependency. One limitation of the current few-shot learning approaches
is that they typically cannot perform consistently well across datasets of different sample
sizes [144]. A straightforward solution is to learn separate regression networks that address
different small-sample models. We evaluate this simple approach as follows.

Method 1-shot 2-shot 4-shot
θ01 T (θ01) θ02 T (θ02) θ04 T (θ04)

Acc (%) 18.87 27.72 30.01 36.44 39.85 45.62

Table 3.3: Performance comparisons of multi-class classification when learning sepa-
rate regression networks that address different small-sample models on the SUN-397
dataset [414]. We regress 1-shot, 2-shot, and 4-shot softmax classifiers to the large-sample
models using 3 different ResNets (each with 1 residual block), respectively. The perfor-
mance improvement shows the effectiveness of a sample-size dependent transformation.

Experimental analysis. In a multi-class classification setup, we generate the 1-shot, 2-
shot, and 4-shot softmax classifiers on the SUN-397 training dataset [414], respectively. We
regress these 3 types of small-sample models to the large-sample models using 3 different
ResNets (each with 1 residual block), respectively. Table 3.3 summarizes the results on the

33

validation dataset. In addition, when we test the learned transformation on the MIT-67
dataset, the classification performance of its 1-shot model improves from 39.91% to 46.04%.
These results show the effectiveness of a sample size dependent transformation.

Based on these properties, in the next chapter we will show how to design and learn
the model regression network in a more principled manner and how to apply it to address
learning novel categories on data of different sample sizes.

34

Chapter 4

Learning to Model the Tail by
Capturing Model Dynamics

4.1 Motivation
In this chapter, we extend our learning to learn approach to address a more general, realistic
long-tail recognition problem. State-of-the-art CNN models [154,212,347,357] are typically
learned with artificially balanced datasets [242,321,436], in which objects of different classes
have approximately evenly distributed, very large number of human-annotated images. In
real-world applications, however, visual phenomena follow a long-tailed distribution as
shown in Figure 4.1, in which the number of training examples per class varies significantly
from hundreds or thousands for head classes to as few as one for tail classes [385,439,440].

Minimizing the skewed distribution by collecting more tail examples is a notoriously
difficult task when constructing datasets [100,209,242,385]. Even those datasets that are bal-
anced along one dimension still tend to be imbalanced in others [285]; e.g., balanced scene
datasets still contain long-tail sets of objects [414] or scene subclasses [439]. This intrinsic
long-tail property poses a multitude of open challenges for recognition in the wild [31],
since the models will be largely dominated by those few head classes while degraded for
many other tail classes. Rebalancing training data [343, 435] is the most widespread state-
of-the-art solution, but this is heuristic and suboptimal — it merely generates redundant data
through over-sampling or loses critical information through under-sampling.

An attractive alternative is to transfer knowledge from data-rich head classes to data-
poor tail classes. While transfer learning from a source to target task is a well studied prob-
lem [288, 427], by far the most common approach is to fine-tune a model pre-trained on
the source task [162]. In the long-tailed setting, this fails to provide any noticeable im-
provement since pre-training on the head is quite similar to training on the unbalanced
long-tailed dataset (which is dominated by the head) [385].

Inspired by the recent work on meta-learning [10,236,310,348,394,395], we instead trans-
fer meta-level knowledge about learning to learn from the head classes. Specifically, we make
use of the approach in Chapter 3, which describes a method for learning from small datasets
(the “few-shot” learning problem) through estimating a generic model transformation. To
do so, Chapter 3 learns a meta-level network that operates on the space of model parame-
ters, which is specifically trained to regress many-shot model parameters (trained on large

35

0 50 100 150 200 250 300 350 400

Class index

0

200

400

600

800

1000

1200

O
cc

ur
re

nc
es

Head

Long tail

(a) Long-tail distribution on the SUN-397
dataset.

!" !#
Living Room

!∗

!%

!&

Library
Knowledge Transfer

ℱ
ℱ

!"

!&

!∗

(b) Knowledge transfer from head to tail classes.

Figure 4.1: Head-to-tail knowledge transfer in model space for long-tail recognition. Fig-
ure 4.1a shows the number of examples by scene class on SUN-397 [414], a representative
dataset that follows an intrinsic long-tailed distribution. In Figure 4.1b, from the data-rich
head classes (e.g., living rooms), we introduce a meta-learnerF to learn the model dynamics
— a series of transformations (denoted as solid lines) that represents how few k-shot mod-
els θk start from θ1 and gradually evolve to the underlying many-shot models θ∗ trained
from large sets of samples. The model parameters θ are visualized as points in the “dual”
model (parameter) space. We leverage the model dynamics as prior knowledge to facilitate
recognizing tail classes (e.g., libraries) by hallucinating their model evolution trajectories
(denoted as dashed lines).

datasets) from few-shot model parameters (trained on small datasets). Our meta-level re-
gressor, which we call MetaModelNet, is trained on classes from the head of the distribution
and then applied to those from the tail. As an illustrative example in Figure 4.1, consider
learning scene classifiers on a long-tailed dataset with many living-rooms but few outside
libraries. We learn both many-shot and few-shot living-room models (by subsampling the
training data as needed), and train a regressor that maps between the two. We can then
apply the regressor on few-shot models of libraries learned from the tail.

The above description suggests that we need to split up a long-tailed training set into a
distinct set of source classes (the head) and target classes (the tail). This is most naturally
done by thresholding the number of training examples per class. But what is the correct
threshold? A high threshold might result in a meta-network that simply acts as an identity
function, returning the input set of model parameters. This certainly would not be useful
to apply on few-shot models. Similarly, a low threshold may not be useful when regressing
from many-shot models. Instead, we propose a “continuous” strategy that builds multiple
regressors across a (logarithmic) range of thresholds (e.g., 1-shot, 2-shot, 4-shot regressors,
etc.), corresponding to different head-tail splits. Importantly, these regressors can be effi-
ciently implemented with a single, chained MetaModelNet that is naturally regularized with
residual connections, such that the 2-shot regressor need only predict model parameters
that are fed into the 4-shot regressor, and so on (until the many-shot regressor that defaults
to the identity). By doing so, MetaModelNet encodes a trajectory over the space of model pa-
rameters that captures their evolution with increasing sample sizes, as shown in Figure 4.1b.
Interestingly, such a network is naturally trained in a progressive manner from the head to-
wards the tail, effectively capturing the gradual dynamics of transferring meta-knowledge

36

from data-rich to data-poor regimes.
It is natural to ask what kind of dynamics are learned by MetaModelNet — how can one

consistently predict how model parameters will change with more training data? We posit
that the network learns to capture implicit data augmentation — for example, given a 1-shot
model trained with a single image, the network may learn to implicitly add rotations of that
single image. But rather than explicitly creating data, MetaModelNet predicts their impact
on the learned model parameters. Interestingly, past work tends to apply the same augmen-
tation strategies across all input classes. But perhaps different classes should be augmented
in different ways — e.g., churches maybe viewed from consistent viewpoints and should not
be augmented with out-of-plane rotations. MetaModelNet learns class-specific transforma-
tions that are smooth across the space of models — e.g., classes with similar model param-
eters tend to transform in similar ways (see Figure 4.1b and Figure 4.4 for more details).

Our contributions are three-fold. (1) We analyze the dynamics of how model parame-
ters evolve when given access to more training examples. (2) We show that a single meta-
network, based on deep residual learning, can learn to accurately predict such dynamics.
(3) We train such a meta-network on long-tailed datasets through a recursive approach that
gradually transfers meta-knowledge learned from the head to the tail, significantly improv-
ing long-tail recognition on a broad range of tasks.

4.2 Long-Tail Recognition

A widespread yet suboptimal strategy is to resample and rebalance training data in the pres-
ence of the long tail, either by sampling examples from the rare classes more frequently [343,
435], or reducing the number of examples from the common classes [148]. The former gen-
erates redundancy and quickly runs into the problem of over-fitting to the rare classes,
whereas the latter loses critical information contained within the large sample sets. An
alternative practice is to introduce additional weights for different classes, which, how-
ever, makes optimization of the models very difficult in the large-scale recognition scenar-
ios [170].

Our underlying assumption that model parameters across different classes share similar
dynamics is somewhat common in meta-learning [10,310,395]. While [10,310] consider the
dynamics during stochastic gradient descent (SGD) optimization, we address the dynam-
ics as more training data is gradually made available. In particular, the model regression
network in Chapter 3 empirically shows a generic nonlinear transformation from small-
sample to large-sample models for different types of feature spaces and classifier models.
We extend [395] for long-tail recognition by introducing a single network that can model
transformations across different sample sizes. To train such a network, we introduce recur-
sive algorithms for head-to-tail transfer learning and architectural modifications based on
deep residual networks (that ensure that transformations of large-sample models default to
the identity).

Long-tail recognition is relevant to few-shot learning. However, the existing few-shot
learning techniques [41, 310, 351, 388] are typically developed for a fixed set of few-shot
tasks, in which each class has the same, fixed number of training samples. They appear
difficult to generalize to novel tasks with a wide range of sample sizes, the hallmark of
long-tail recognition.

37

4.3 Head-to-Tail Meta-Knowledge Transfer
Given a long-tail recognition task of interest and a base recognition model such as a deep
CNN, our goal is to transfer knowledge from the data-rich head to the data-poor tail classes.
As shown in Figure 4.1, knowledge is represented as trajectories in model space that capture
the evolution of parameters with more and more training examples. We train a meta-learner
(MetaModelNet) to learn such model dynamics from head classes, and then “hallucinate”
the evolution of parameters for the tail classes. To simplify exposition, we first describe the
approach for a fixed split of our training dataset into a head and tail. We then generalize
the approach to multiple splits.

4.3.1 Fixed-Size Model Transformations
Let us write Ht for the “head” training set of (x, y) data-label pairs constructed by assem-
bling those classes for which there exist more than t training examples. We will use Ht to
learn a meta-network thats maps few-shot model parameters to many-shot parameters, and
then apply this network on few-shot models from the tail classes. To do so, we closely fol-
low the model regression framework in Chapter 3, but introduce notation that will be useful
later.1 Let us write a base learner as g(x;θ) as a feedforward function g(·) that processes
an input sample x given parameters θ. We first learn a set of “optimal” model parameters
θ∗ by tuning g on Ht with a standard loss function. We also learn few-shot models by ran-
domly sampling a smaller fixed number of examples per class from Ht. We then train a
meta-network F(·) to map or regress the few-shot parameters to θ∗.

Parameters. In principle, F(·) applies to model parameters from multiple CNN layers.
Directly regressing parameters from all layers is, however, difficult to do because of the
larger number of parameters. For example, recent similar methods for meta-learning tend
to restrict themselves to smaller toy networks [10, 310]. For now, we focus on parameters
from the last fully-connected layer for a single class — e.g., θ ∈ R4096 for an AlexNet archi-
tecture. This allows us to learn regressors that are shared across classes (as in Chapter 3),
and so can be applied to any individual test class. This is particularly helpful in the long-
tailed setting, where the number of classes in the tail tends to outnumber the head. Later we
will show that (nonlinear) fine-tuning of the “entire network” during head-to-tail transfer
can further improve performance.

Loss function. The meta-network F(·) is itself parameterized with weights w. The
objective function for each class is:

∑
θ∈kShot(Ht)

{
||F(θ;w)− θ∗||2 + λ

∑
(x,y)∈Ht

loss
(
g
(
x;F(θ;w)

)
, y
)}
. (4.1)

The final loss is averaged over all the head classes and minimized with respect tow. Here,
kShot(Ht) is the set of few-shot models learned by subsampling k examples per class from
Ht, and loss refers to the performance loss used to train the base network (e.g., cross-entropy).
λ > 0 is the regularization parameter used to control the trade-off between the two terms.
In Chapter 3, we found that the performance loss was useful to learn regressors that main-
tained high accuracy on the base task. This formulation can be viewed as an extension to

1For notation simplicity, this chapter uses a slight modification of the notation in Chapter 3. For example, we
use θ to denote the few-shot model instead of θ0 in Chapter 3.

38

Res0 Res1 Res!… "∗…

1Shot " 2Shot " 2%Shot "2&Shot "

Res'

ℱ) ℱ& (+ = 2&)

(a) Learning a sample-size dependent transforma-
tion.

BN

Leaky ReLU

Weight

BN

Leaky ReLU

Weight

2"Shot $

(b) Structure of residual blocks.

Figure 4.2: MetaModelNet architecture for learning model dynamics. We instantiate Meta-
ModelNet as a deep residual network with residual blocks i = 0, 1, . . . , N in Figure 4.2a,
which accepts few-shot model parameters θ (trained on small datasets across a logarithmic
range of sample sizes k, k = 2i) as (multiple) inputs and regresses them to many-shot model
parameters θ∗ (trained on large datasets) as output. The skip connections ensure the iden-
tity regularization. Fi denotes the meta-learner that transforms (regresses) k-shot θ to θ∗.
Figure 4.2b shows the structure of the residual blocks. Note that the meta-learners Fi for
different k are derived from this single, chained meta-network, with nested circles (subnet-
works) corresponding to Fi.

those in Chapter 3 and [310]. With only the performance loss, Eqn. (4.1) reduces to the loss
function in [310]. When the performance loss is evaluated on the subsampled set, Eqn. (4.1)
reduces to the loss function in Eqn. (3.1) in Chapter 3.

Training. What should be the value of k, for the k-shot models being trained? One
might be tempted to set k = t, but this implies that there will be some head classes near
the cutoff that have only t training examples, implying θ and θ∗ will be identical. To ensure
that a meaningful mapping is learned, we set

k = t/2.

In other terms, we intentionally learn very-few-shot models to ensure that target model
parameters are sufficiently more general.

4.3.2 Recursive Residual Transformations
We wish to apply the above module on all possible head-tail splits of a long-tailed training
set. To do so, we extend the above approach in three crucial ways:

• (Sample-size dependency) Generate a sequence of different meta-learners Fi, each
tuned for a specific k, where k = k(i) is an increasing function of i (that will be spec-
ified shortly). Through a straightforward extension, prior work on model regression
in Chapter 3 learns a single fixed meta-learner for all the k-shot regression tasks.

• (Identity regularization) Ensure that the meta-learner defaults to the identity function
for large i: Fi → I as i→∞.

39

• (Compositionality) Compose meta-learners out of each other: ∀i < j,Fi(θ) = Fj
(
Fij(θ)

)
where Fij is the regressor that maps between k(i)-shot and k(j)-shot models.

Here we dropped the explicit dependence of F(·) onw for notational simplicity. These ob-
servations emphasize the importance of (1) the identity regularization and (2) sample-size
dependent regressors for long-tailed model transfer. We operationalize these extensions
with a recursive residual network:

Fi(θ) = Fi+1

(
θ + f(θ;wi)

)
, (4.2)

where f denotes a residual block parameterized by wi and visualized in Figure 4.2b. In-
spired by [149,395], f consists of batch normalization (BN) and leaky ReLU as pre-activation,
followed by fully-connected weights. By construction, each residual block transforms an
input k(i)-shot model to a k(i + 1)-shot model. The final MetaModelNet can be efficiently
implemented through a chained network ofN + 1 residual blocks, as shown in Figure 4.2a.
By feeding in a few-shot model at a particular block, we can derive any meta-learner Fi
from the central underlying chain.

4.3.3 Training
Given the network structure defined above, we now describe an efficient method for training
based on two insights. (1) The recursive definition of MetaModelNet suggests a recursive
strategy for training. We begin with the last block and train it with the largest threshold (e.g.,
those few classes in the head with many examples). The associated k-shot regressor should
be easy to learn because it is similar to an identity mapping. Given the learned parameters
for the last block, we then train the next-to-last block, and so on. (2) Inspired by the general
observation that recognition performance improves on a logarithmic scale as the number of
training samples increases [353, 439, 440], we discretize blocks accordingly, to be tuned for
1-shot, 2-shot, 4-shot, ... recognition. In terms of notation, we write the recursive training
procedure as follows. We iterate over blocks i from N to 0, and for each i:

• Using Eqn. (4.1), train parameters of the residual block wi on the head split Ht with
k-shot model regression, where k = 2i and t = 2k = 2i+1.

The above “back-to-front” training procedure works because whenever block i is trained,
all subsequent blocks (i + 1, . . . , N) have already been trained. In practice, rather than
holding all subsequent blocks fixed, it is natural to fine-tune them while training block
i. One approach might be fine-tuning them on the current k = 2i-shot regression task
being considered at iteration i. But because MetaModelNet will be applied across a wide
range of k, we fine-tune blocks in a multi-task manner across the current viable range of
k = (2i, 2i+1, . . . , 2N) at each iteration i.

4.3.4 Implementation Details
We learn the CNN models on the long-tailed recognition datasets in different scenarios: (1)
using a CNN pre-trained on ILSVRC 2012 [91,185,212] as the off-the-shelf feature; (2) fine-
tuning the pre-trained CNN; and (3) training a CNN from scratch. We use ResNet152 [154]
for its state-of-the-art performance and use ResNet50 [154] and AlexNet [212] for their easy
computation.

40

When training the residual block i, we use the corresponding threshold t and obtain Ct
head classes. We generate the Ct-way many-shot classifiers on Ht. For few-shot models,
we learn Ct-way k-shot classifiers on random subsets of Ht. Through random sampling,
we generate S model mini-batches and each model mini-batch consists of Ct weight vector
pairs. In addition, to minimize the loss function (4.1), we randomly sample 256 image-label
pairs as a data mini-batch from Ht.

We then use Caffe [185] to train our MetaModelNet on the generated model and data
mini-batches based on standard SGD. λ is cross-validated. We use 0.01 as the negative slope
for leaky ReLU. Computation is naturally divided into two stages: (1) training a collection
of few/many-shot models and (2) learning MetaModelNet from those models. (2) is equiv-
alent to progressively learning a nonlinear regressor. (1) can be made efficient because it is
naturally parallelizable across models, and moreover, many models make use of only small
training sets.

4.4 Experimental Evaluation
In this section, we explore the use of our MetaModelNet on long-tail recognition tasks.
We begin with extensive evaluation of our approach on scene classification of the SUN-
397 dataset [414], and address the meta-network variations and different design choices.
We then visualize and empirically analyze the learned model dynamics. Finally, we eval-
uate on the challenging large-scale, scene-centric Places [436] and object-centric ImageNet
datasets [321] and show the generality of our approach.

4.4.1 Evaluation and Analysis on SUN-397
Dataset and task. We start our evaluation by fine-tuning a pre-trained CNN on SUN-397,
a medium-scale, long-tailed dataset with 397 classes and 100–2,361 images per class [414].
To better analyze trends due to skewed distributions, we carve out a more extreme version
of the dataset. Following the experimental setup in [3,173,400], we first randomly split the
dataset into train, validation, and test parts using 50%, 10%, and 40% of the data, respec-
tively. The distribution of classes is uniform across all the three parts. We then randomly
discard 49 images per class for the train part, leading to a long-tailed training set with 1–
1,132 images per class (median 47). Similarly, we generate a small long-tailed validation set
with 1–227 images per class (median 10), which we use for learning hyper-parameters. We
also randomly sample 40 images per class for the test part, leading to a balanced test set.
We report 397-way multi-class classification accuracy averaged over all classes.

Comparison with State-of-the-Art Approaches

We first focus on fine-tuning the classifier module while freezing the representation module
of a pre-trained ResNet152 CNN model [154,400] for its state-of-the-art performance. Using
MetaModelNet, we learn the model dynamics of the classifier module, i.e., how the classifier
weight vectors change during fine-tuning. Following the design choices in Section 4.3.2, our
MetaModelNet consists of 7 residual blocks. For few-shot models, we generate S = 1000
1-shot, S = 500 2-shot, and S = 200 4-shot till 64-shot models from the head classes for
learning MetaModelNet. At test time, given the weight vectors of all the classes learned
through fine-tuning, we feed them as inputs to the different residual blocks according to
their training sample size of the corresponding class. We then “hallucinate” the dynamics

41

Method Plain [154] Over-Sampling [343,435] Under-Sampling [148] Cost-Sensitive [170] MetaModelNet (Ours)

Acc (%) 48.03 52.61 51.72 52.37 57.34

Table 4.1: Performance comparison between our MetaModelNet and state-of-the-art ap-
proaches for long-tailed scene classification when fine-tuning the pre-trained ILSVRC
ResNet152 on the SUN-397 dataset. We focus on learning the model dynamics of the classi-
fier module while freezing the CNN representation module. By benefiting from the learned
generic model dynamics from head classes, ours significantly outperforms all the baselines
for the long-tail recognition.

0 50 100 150 200 250 300 350 400
Class index

-40

-20

0

20

40

60

80

R
el

at
iv

e
ac

cu
ra

cy
 g

ai
n

(%
)

0

200

400

600

800

1000

1200

O

cc
ur

re
nc

es

MetaModelNet (Ours)
Over-Sampling

Figure 4.3: Detailed per class performance comparison between our MetaModelNet and the
state-of-the-art over-sampling approach for long-tailed scene classification on the SUN-397
dataset. X-axis: class index. Y-axis (Left): per class classification accuracy improvement rel-
ative to the plain baseline. Y-axis (Right): number of training examples. Ours significantly
improves for the few-shot tail classes.

of these weight vectors and use the outputs of MetaModelNet to modify the parameters of
the final recognition model as in [395].

Baselines. In addition to the “plain” baseline that fine-tunes on the target data fol-
lowing the standard practice, we compare against three state-of-the-art baselines that are
widely used to address the imbalanced distributions. (1) Over-sampling [343, 435], which
uses the balanced sampling via label shuffling as in [343, 435]. (2) Under-sampling [148],
which reduces the number of samples per class to 47 at most (the median value). (3) Cost-
sensitive [170], which introduces additional weights in the loss function for each class with
inverse class frequency. For a fair comparison, fine-tuning is performed for around 60
epochs using SGD with an initial learning rate of 0.01, which is reduced by a factor of 10
around every 30 epochs. All the other hyper-parameters are the same for all approaches.

Table 4.1 summarizes the performance comparison averaged over all classes and Fig-
ure 4.3 details the per class comparison. Table 4.1 shows that our MetaModelNet provides
a promising way of encoding the shared structure across classes in model space. It outper-
forms existing approaches for long-tail recognition by a large margin. Figure 4.3 shows that
our approach significantly improves accuracy in the tail.

42

Method Model Regression [395] MetaModelNet+Fix Split (Ours) MetaModelNet+ Recur Split (Ours)

Acc (%) 54.68 56.86 57.34

Table 4.2: Ablation analysis of variations of our MetaModelNet. In a fixed head-tail split,
ours outperforms the original approach in Chapter 3 and [395], showing the merit of learn-
ing a sample-size dependent transformation. By recursively partitioning the entire classes
into different head-tail splits, our performance is further improved.

Ablation Analysis

We now evaluate variations of our approach and provide ablation analysis. Similar as in
Section 4.4.1, we use ResNet152 in the first two sets of experiments and only fine-tune the
classifier module. In the last set of experiments, we use ResNet50 [154] for easy computation
and fine-tune through the entire network. Tables 4.2 and 4.3 summarize the results.

Sample-Size Dependent Transformation and Identity Regularization. We compare with
the original approach in Chapter 3 and [395], which learns a single transformation for a va-
riety of sample sizes and k-shot models, and importantly, learns a network without identity
regularization. For a fair comparison, we consider a variant of MetaModelNet trained on
a fixed head and tail split, selected by cross-validation. Table 4.2 shows that training for a
fixed sample size and identity regularization provide a noticeable performance boost (2%).

Recursive Class Splitting. Adding multiple head-tail splits through recursion further im-
proves accuracy by a small but noticeable amount (0.5% as shown in Table 4.2). We posit
that progressive knowledge transfer outperforms the traditional approach because order-
ing classes by frequency is a natural form of curriculum learning.

Joint Feature Fine-Tuning and Model Dynamics Learning. We also explore (nonlinear)
fine-tuning of the “entire network” during head-to-tail transfer by jointly learning the clas-
sifier dynamics and the feature representation using ResNet50. We explore two approaches
as follows. (1) We first fine-tune the whole CNN on the entire long-tailed training dataset,
and then learn the classifier dynamics using the fixed, fine-tuned representation. (2) During
the recursive head-tail splitting, we fine-tune the entire CNN on the current head classes
in Ht (while learning the many-shot parameters θ∗), and then learn classifier dynamics us-
ing the fine-tuned features. Table 4.3 shows that progressively learning classifier dynamics
while fine-tuning features performs the best.

4.4.2 Understanding Model Dynamics
Because model dynamics are highly nonlinear, a theoretical proof is rather challenging and
outside the scope of this work. Here we provide some empirical analysis of model dynam-
ics. When analyzing the “dual model (parameter) space”, in which models parameters θ
can be viewed as points, Figure 4.4 shows that our MetaModelNet learns an approximately-
smooth, nonlinear warping of this space that transforms (few-shot) input points to (many-
shot) output points. For example, iceberg and mountain scene classes are more similar to

43

Scenario Pre-Trained Features Fine-Tuned Features (FT)

Method Plain [154] MetaModelNet (Ours) Plain [154] Fix FT + MetaModelNet (Ours) Recur FT + MetaModelNet (Ours)
Acc (%) 46.90 54.99 49.40 58.53 58.74

Table 4.3: Ablation analysis of joint feature fine-tuning and model dynamics learning on
a ResNet50 base network. Though results with pre-trained features underperform those
with a deeper base network (ResNet152, the default in our experiments), fine-tuning such
features significantly improves results, even outperforming the deeper base network. By
progressively fine-tuning the representation during the recursive training of MetaModel-
Net, performance significantly improves from 54.99% (changing only the classifier weights)
to 58.74% (changing the entire CNN).

-0.4 -0.2 0 0.2 0.4 0.6
-0.4

-0.2

0

0.2

0.4

0.6

(a) PCA visualization.

-40 -20 0 20 40 60
-40

-20

0

20

40MountainMountain Snowy

Iceberg

Hotel Room

Bedroom
Living Room

(b) t-SNE visualization.

Figure 4.4: Visualizing model dynamics. Recall that θ is a fixed-dimensional vector of
model parameters — e.g., θ ∈ R2048 when considering parameters from the last layer
of ResNet. We visualize models as points in this “dual” space. Specifically, we examine
the evolution of parameters predicted by MetaModelNet with dimensionality reduction —
PCA (Figure 4.4a) or t-SNE [384] (Figure 4.4b). 1-shot models (purple) to many-shot models
(red) are plotted in a rainbow order. These visualizations show that MetaModelNet learns
an approximately-smooth, nonlinear warping of this space that transforms (few-shot) in-
put points to (many-shot) output points. PCA suggests that many-shot models tend to have
larger norms, while t-SNE (which nonlinearly maps nearby points to stay close) suggests
that similar semantic classes tend to be close and transform in similar ways, e.g., the blue
rectangle encompasses “room” classes while the red rectangle encompasses “wintry out-
door” classes.

each other than to bedrooms. This implies that few-shot iceberg and mountain scene mod-
els lie near each other in parameter space, and moreover, they transform in similar ways
(when compared to bedrooms). This single meta-network hence encodes class-specific model
transformations. We posit that the transformation may capture some form of (class-specific)
data augmentation. Finally, we find that some properties of the learned transformations
are quite class-agnostic and apply in generality. Many-shot model parameters tend to have
larger magnitudes and norms than few-shot ones (e.g., on SUN-397, the average norm of 1-
shot models is 0.53; after transformations through MetaModelNet, the average norm of the
output models becomes 1.36). This is consistent with the common empirical observation
that classifier weights tend to grow with the amount of training data, showing that they
become more confident about their prediction.

44

Dataset Places-205 [436] ILSVRC-2012 [321]

Method Plain [212] MetaModelNet (Ours) Plain [212] MetaModelNet (Ours)

Acc (%) 23.53 30.71 68.85 73.46

Table 4.4: Performance comparisons on long-tailed, large-scale scene-centric Places [436]
and object-centric ImageNet [321] datasets. Our MetaModelNets facilitate the long-tail
recognition with significantly diverse visual concepts and distributions.

4.4.3 Generalization to Other Tasks and Datasets
We now focus on the more challenging, large-scale scene-centric Places [436] and object-
centric ImageNet [321] datasets. While we mainly addressed the model dynamics when
fine-tuning a pre-trained CNN in the previous experiments, here we train AlexNet mod-
els [212] from scratch on the target tasks. Table 4.4 shows the generality of our approach
and shows that MetaModelNets facilitate the recognition of other long-tailed datasets with
significantly different visual concepts and distributions.

Scene Classification on the Places Dataset. Places-205 is a large-scale dataset which con-
tains 2,448,873 training images approximately evenly distributed across 205 classes [436].
To generate its long-tailed version and better analyze trends due to skewed distributions, we
distribute it according to the distribution of SUN and carve out a more extreme version (p2,
or 2× the slope in log-log plot) out of the Places training portion, leading to a long-tailed
training set with 5–9,900 images per class (median 73). We use the provided validation
portion as our test set with 100 images per class.

Object Classification on the ImageNet Dataset. The ILSVRC 2012 classification dataset
contains 1,000 classes with 1.2 million training images (approximately balanced between
the classes) and 50K validation images [321]. There are 200 classes used for object detection
which are defined as higher-level classes of the original 1,000 classes. Taking the ILSVRC
2012 classification dataset and merging the 1,000 classes into the 200 higher-level classes,
we obtain a natural long-tailed distribution.

45

Chapter 5

Learning to Initialize and Adapt
for Few-Shot Motion Prediction

5.1 Motivation

In this chapter, we exploit our learning to learn approach beyond recognition to a prediction
task. One of the hallmarks of human intelligence is the ability to predict the future based
on past observations. Through perceiving and forecasting how the environment evolves
and how a fellow human acts, a human learns to interact with the world [387]. Remarkably,
humans acquire such prediction ability from just few experiences, which is yet generalizable
across different scenarios [337]. Similarly, to allow natural and effective interaction with
humans, artificial agents should be able to do the same, i.e., forecasting how a human moves
or acts in the near future conditioning on a series of historical movements [204]. As a more
concrete example illustrated in Figure 5.1, when deployed in natural environments, robots
are supposed to predict unfamiliar actions after seeing only few examples. While human
motion prediction has attracted increasing attention recently [20, 117, 123, 171, 183, 203, 207,
254,286], the existing approaches rely on extensive annotated motion capture (mocap) data
and are brittle for novel actions.

We believe that the significant gap between human and machine prediction arises from
two issues. First, motion dynamics are difficult to model because they entangle physical
constraints with goal-directed behaviors [254]. Second, there exists a lack of large-scale,
annotated motion data. Current mocap datasets are constructed with dedicated sensored
environments and so are not scalable. We think that this motivates the exploration of motion
models learned from limited training data. Unfortunately, a substantial amount of anno-
tated data is required for the state-of-the-art deep recurrent encoder-decoder network based
models [20, 117, 123, 183, 254] to learn the desired motion dynamics. One stark evidence of
this is that a constant pose predictor [254], as a naı̈ve approach that does not produce inter-
esting motion, sometimes achieves the best performance. One attractive solution is learning
a “basis” of underlying knowledge that is shared across a wide variety of action classes, in-
cluding never-before-seen actions. Much previous work learns a separate model for each
action and restricts the training process on subsets of mocap data. More recently, one-hot
vectors are introduced to incorporate the action class information and learn a single model
for different action classes [254]. This, however, is still difficult to generalize to novel ac-

47

Figure 5.1: Illustration of the importance of few-shot human motion prediction for applica-
tions such as human-robot interaction and collaboration. When deployed in natural envi-
ronments, a robot is supposed to predict unfamiliar actions after seeing only few examples
through a camera inside its eyes, in the absence of large-scale, annotated motion capture
data. Through forecasting how a human moves or acts in the near future conditioning on
a series of historical movements, the robot could respond appropriately and expeditiously.
Left: the robot starts learning an unfamiliar action, “waving”, by observing a few “wav-
ing” examples from the human standing in front of itself. Middle: The eyes of the robot
are blinded. Right: The robot is predicting “waving” action. Our meta-learning framework
facilitates the few-shot motion prediction.

tions. Transfer learning [16, 54, 91, 283, 288, 311, 400] can be in principle applied to alleviate
this problem by fine-tuning a pre-trained network from another task which has more la-
beled data; nevertheless, the benefit of pre-training decreases as the source task diverges
from the target task [427].

Here we make the first attempt to address few-shot human motion prediction. Inspired by
the recent progress on meta-learning and few-shot learning [114,335,366,388,395], we pro-
pose a novel meta-learning framework tailored for the task of human motion prediction.
While there is increasing research on meta-learning and few-shot learning, most of the cur-
rent approaches are developed for the simple domains like image classification with task-
specific model architectures [259,351,388], which cannot be easily applied to the task we are
interested in. Our key insight is that having a good generalization from few examples relies
on both a generic initial model and an effective strategy for adapting this model to novel
tasks. Based on this insight, our proactive and adaptive meta-learning (PAML) introduces a
novel combination of the state-of-the-art model-agnostic meta-learning (MAML) [114] and
model regression networks (MRN) in Chapter 3, and unifies them into an integrated, end-
to-end framework. By doing so, MAML enables the meta-learner to aggregate contextual
information from a variety of prediction tasks and thus produce a generic model initializa-
tion, and meanwhile MRN allows the meta-learner to transform a small-sample model and
thus improve its generalization.

More concretely, what is needed in the first place is a systematic way to learn a beneficial
common initialization that would serve as a good point to start training for the novel action
being considered. This can be achieved by explicitly learning the initial parameters of a
predictor model in a way that the model has maximal performance on a new task after the
parameters have been updated with few training examples from that new task. To this end,
we make use of the approach of MAML [114], which initializes the weights of a network
such that standard SGD can make rapid progress on new task. We learn this initialization
through a meta-learning procedure that learns from a large set of motion prediction tasks
with small amounts of data. After obtaining the pre-trained model, MAML uses one or few

48

SGD updates to adapt it to novel tasks. Although the initial model is somewhat generic,
plain SGD updates can only slightly modify its parameters [400] especially in the small-
sample size regime, otherwise it would lead to severe over-fitting to the new data [155].
This is still far from satisfactory, because the obtained task-specific model is different from
the one that would be learned from a large set of samples.

To address this limitation, we consider the meta-learning approaches that learn an up-
date function or learning rule. Specifically, we leverage MRN in Chapter 3 as the adaptation
strategy, which learns a meta-level network to regress many-shot model parameters from
few-shot model parameters. While MRN was developed in the context of convolutional
neural networks, we extend it to recurrent neural networks. More importantly, we unify
MAML with MRN as PAML, an end-to-end framework for motion prediction. Our PAML
model is not only directly initialized to produce the kinds of parameters that are useful for
later adaptation, but it can also be effectively adapted to novel actions through exploiting
the structure of model parameters shared across action classes.

Our contributions are three-fold. (1) To the best of our knowledge, this is the first
time exploring the few-shot learning problem for human motion prediction. We show how
meta-learning can be operationalized for predicting human motion from few examples. (2)
We present a novel meta-learning approach, combining model-agnostic meta-learning with
model regression networks, that learns both a generic model initialization and an effective
model adaptation strategy jointly. Our approach is general and can be applied to other tasks
as well. (3) We show how our approach facilitates the prediction of novel action classes from
few examples, leading to significantly improved performance on the challenging motion
capture dataset.

5.2 Human Motion Prediction
Human motion prediction has great application potential in a variety of scenarios in com-
puter vision and robotic vision, including motion generation for computer graphics [207],
proactive decision-making in autonomous driving systems [286], action anticipation [171,
203], and human-robot interaction and collaboration [204]. Traditional approaches mainly
focus on state-space equations and latent-variable models, such as hidden Markov mod-
els [47], linear dynamic models [295], Gaussian process latent variable models [383,391], bi-
linear spatio-temporal basis models [5], and restricted Boltzmann machines [355,359–361].
In the deep learning era, the recurrent neural networks (RNNs) based approaches have
attracted more attention and significantly pushed the state of the art in human motion pre-
diction [117,123,183,201,254,423].

Flagship techniques include LSTM-3LR, ERD [117], SRNNs [183], and residual sup. [254].
LSTM-3LR (3 layers of long short-term memory cells) learns pose representation and tem-
poral dynamics simultaneously via curriculum learning [117]. In additional to the concate-
nated LSTM units as in LSTM-3LR, ERD (encoder-recurrent-decoder) consists of nonlinear
space encoders for data pre-processing [117]. SRNNs (structural RNNs) model human ac-
tivity with a hand-designed spatio-temporal graph and introduce the encoded semantic
knowledge into a recurrent network [183]. These approaches fail to consider the shared
knowledge across action classes and they thus learn action-specific models and restrict
the training process on the corresponding subsets of the motion capture (mocap) dataset.
Residual sup. is a simple sequence-to-sequence architecture with a residual connection,
which incorporates the action class information via one-hot vectors [254]. Despite their

49

promise, the existing methods directly learn on the target task with large amounts of train-
ing data, and cannot generalize well from few examples or to novel action classes. There has
been little work on few-shot motion prediction as ours, which is crucial for robot learning in
practice. Our task is also significantly different from few-shot imitation learning: while this
line of work aims to learn and mimic human motion from demonstration [97,115,290,442],
our goal is to predict unseen future motions based on historical observations.

Our approach falls more into the learning to learn approaches. Often, such approaches
cannot be easily re-purposed to handle different model architectures and different problem
settings. Moreover, they aim to either obtain a better model initialization [114,278] or learn
an update function or learning rule [10, 32, 310, 332, 395], but not the both. By contrast, we
present a unified view by taking these two aspects into consideration and show how they
compensate and complement with each other in an integrated, end-to-end meta-learning
framework. Our approach is also general and can be potentially applied to other tasks in
addition to human motion prediction.

5.3 Proactive and Adaptive Meta-Learning
We now present our meta-learning framework for few-shot human motion prediction. The
predictor (i.e., learner) is a recurrent encoder-decoder network, which frames motion pre-
diction as a sequence-to-sequence problem. The encoder takes as inputs a sequence of his-
torical 3D skeletons and infers a latent representation. The decoder takes as inputs this la-
tent representation and a seed motion frame and produces the predicted future sequence.
The encoder and decoder are learned jointly to make the predicted sequence as close as to
its ground-truth sequence.

To enable the predictor to rapidly produce satisfactory prediction from just few training
sequences for a novel task (i.e., action class), we introduce proactive and adaptive meta-
learning (PAML). Through learning a large collection of few-shot prediction tasks on known
action classes, the predictor jointly learns a generic model initialization and an effective
model adaptation strategy. In the following sections, we first describe the meta-learning
setup for motion prediction tasks and explain the corresponding predictor architecture and
meta-learning procedure.

5.3.1 Meta-Learning Setup for Human Motion Prediction
Human motion is typically represented as sequential data. Given a historical motion se-
quence, we predict possible motion in the short-term or long-term future. Our goal here
is few-shot motion prediction that aims to train a predictor model that can quickly adapt to a
new task (i.e., a novel action class) using only few training sequences. To achieve this, we
introduce a meta-learning mechanism that treats entire prediction tasks as training examples.
During meta-learning, the predictor or learner is trained on a set of prediction tasks guided
by a high-level meta-learner, so that the trained predictor can accomplish the desired few-shot
adaptation ability.

The predictor (i.e., learner), represented by a parametrized function Pθ with parame-
ters θ, maps an input sequence X to an output sequence Ŷ . We denote the input mo-
tion sequence of length n as X =

{
x1,x2, . . . ,xn

}
, where xi ∈ Rd, i = 1, . . . , n is a mo-

tion vector consisting of a set of 3D body joint angles using their exponential map repre-
sentations [271], and d is the number of joint angles. The learner predicts motion vectors

50

Ŷ =
{
x̂n+1, x̂n+2, . . . , x̂n+m

}
in the nextm time steps, where x̂j ∈ Rd, j = n+1, . . . , n+m

is the predicted motion vector at time j, andm is the output sequence length. The ground-
truth of the future sequence is denoted as Y gt =

{
xn+1,xn+2, . . . ,xn+m

}
.

Meta-learning aims to train a learning procedure (i.e., the meta-learner) that enables the
predictor model to adapt to a large number of prediction tasks. For the k-shot prediction
task, each task T = {L,Dtrain,Dtest} aims to predict a certain action from few examples. It
consists of a loss function L, a small training set Dtrain = {(Xu,Y

gt
u)} , u = 1, . . . , k with

k action-specific past and future sequence pairs, and a test set Dtest that has a set number
of past and future sequence pairs for evaluation. The frame-wise Euclidean distance is
commonly used as the loss functionL for motion prediction. For each task, the meta-learner
takes as input the training set Dtrain and produces a predictor (learner) that achieves high
average prediction performance on its corresponding Dtest.

More precisely, we consider a distribution p (T) over prediction tasks that we want our
predictor to be able to adapt to. Meta-learning algorithms have two stages: meta-training
and meta-testing. During the meta-training stage, a prediction task Ti is sampled from
p (T), and the predictor P is trained on its corresponding small training set Dtrain with the
loss LTi from Ti. The predictor is then improved by considering how the test error on the
corresponding test set Dtest changes with respect to the parameters. The test error serves
as the training error of the meta-learning process. During the meta-testing stage, a held-
out set of prediction tasks drawn from p (T) (i.e., novel action classes) with its own small
training set Dtrain and test set Dtest are used to evaluate the performance of the predictor.

5.3.2 Learner: Encoder-Decoder Architecture
We use the state-of-the-art motion predictor in [254] as our learner P . It is a recurrent
encoder-decoder network that maps input to output sequences of skeletons. The encoder
and decoder consist of gated recurrent unit (GRU) [66] cells as the building blocks, due to
their superior performance. The input sequence is passed through the encoder to infer a
latent representation. This latent representation and a seed motion frame are then fed into
the decoder to output the first time step prediction. The decoder takes the output of itself as
the next time step input and generates further prediction sequentially. Different from [254],
to deal with novel action classes, we do not use one-hot vectors to indicate the action class
of the current input.

5.3.3 Proactive Meta-Learner: Generic Model Initialization
Intuitively, if we have a universal predictor that is broadly applicable to a variety of tasks
in p (T) instead of a single individual task, it would serve as a good point to start training
for a novel target task. We explicitly learn such general-purpose initial model by using
the approach of model-agnostic meta-learning (MAML) [114]. MAML is developed for
gradient-based learning rules (e.g., SGD) and aims to learn a model in a way that a few
SGD updates can make rapid progress on new tasks without over-fitting.

Concretely, when adapting to a new task Ti, the predictor’s parameters θ become θ′i. In
MAML, this is computed using one or more SGD updates on Dtrain of task Ti. For the sake
of simplicity and without loss of generality, we consider one SGD update:

θ′i = θ − α∇θLTi (Pθ) , (5.1)

51

where α is the learning rate hyper-parameter. We aim to optimize the initial θ such that the
updated θ′i will produce maximal performance on the corresponding test setDtest of task Ti.
When averaged across the tasks sampled from p (T), we have the following meta-objective
function:

min
θ

∑
Ti∼p(T)

LTi
(
Pθ′

i

)
=

∑
Ti∼p(T)

LTi

(
Pθ−α∇θLTi (Pθ)

)
. (5.2)

Note that the meta-optimization is performed over the predictor parameters θ, whereas
the objective is computed using the updated model parameters θ′. This meta-optimization
across tasks is performed via SGD in the form of

θ ← θ − β∇θ
∑

Ti∼p(T)

LTi
(
fθ′
i

)
, (5.3)

where β is the meta-learning rate hyper-parameter. During each iteration, we sample task
mini-batch from p (T) and perform the corresponding learner update in Eqn. (5.1) and meta-
learner update in Eqn. (5.3).

5.3.4 Adaptive Meta-Learner: Model Adaptation Strategy
In MAML, the model parameters θ′i of a new task Ti are obtained by performing few plain
SGD updates on top of the initial θ using its small training set Dtrain, following Eqn. (5.1).
After meta-training, θ tend to be generic. However, with limited training data from Dtrain,
SGD updates can only modify θ slightly, which is still far away from the desired θ∗i that
would be learned from a large set of target samples. Higher-level knowledge is thus neces-
sary to guide the model adaptation to novel tasks. To this end, we consider model regression
networks (MRN) in Chapter 3 as the adaptation strategy. MRN is developed in the context
of image classification and learns a generic transformation from models learned from few
samples to models learned from large enough sample sets.

More formally, let θ0i denote the model parameters learned from small training setDtrain
by using SGD updates (i.e., θ′i in Eqn. (5.1)). Let θ∗i denote the corresponding underlying
model parameters learned from a large set of annotated samples. Our goal is to make the
updated θ′i as close as to the desired θ∗i . MRN assumes that there exists a generic non-
linear transformation, represented by a regression functionH(·), parameterized withw, in
the model parameter space, such that θ∗i ≈ H

(
θ0i ;w

)
for a broad range of tasks Ti. The

square of the Euclidean distance is used to quantify the quality of the approximation. We
then estimate this transformation based on a large set of known tasks Ti drawn from p (T),
with model pairs

{(
θ0i ,θ

∗
i

)}
, during meta-training as follows:

min
w

∑
Ti∼p(T)

∥∥H (θ0i ;w
)
− θ∗i

∥∥2 . (5.4)

Consistent with Chapter 3, we use multi-layer feed-forward neural networks as the regres-
sion functionH.

5.3.5 An Integrated Framework
We introduce the adaptation strategy both in the meta-testing and meta-training phases.
For task Ti, after performing few SGD updates on small training set Dtrain, we then apply

52

the transformationH to obtain θ′i. That is, Eqn. (5.1) is modified as

θ′i = H (θ − α∇θLTi (Pθ) ;w) . (5.5)

During meta-training, for task Ti, we also have the underlying θ∗i , which is obtained by
performing SGD updates on the corresponding large sample set. Now, the meta-objective
in Eqn. (5.2) becomes

min
θ,w

∑
Ti∼p(T)

LTi
(
Pθ′

i

)
+

1

2
λ ‖θ′i − θ∗i ‖

2
, (5.6)

where λ is the trade-off hyper-parameter. Note that this is a joint optimization with respect
to both θ andw, and we perform this meta-optimization across tasks using SGD. Hence, we
integrate both model initialization and adaptation into an end-to-end meta-learning frame-
work. The model is initialized to produce the parameters that are optimal for its adaptation;
meanwhile, the model is effectively adapted by leveraging “learning to learn” knowledge
about the relationship between small-sample and large-sample models.

During meta-testing, for a novel prediction task, with the learned generic model initial-
ization θ and model transformationH, we use Eqn. (5.5) to obtain the task-specific predictor
model.

5.4 Experimental Evaluation
We now present the experimental results of few-shot human motion prediction based on
our proactive and adaptive meta-learning (PAML). Our approach is general and can be in
principle applied to a broad range of few-shot learning tasks. For performance calibration,
we begin with a sanity check of our approach on a standard few-shot image classification
task and compare with existing meta-learning approaches. We then focus on our main task
of human motion prediction. Through comparing with state-of-the-art motion prediction
approaches, we show that our PAML significantly improves the prediction performance in
the small sample size regime.

5.4.1 Sanity Check on Few-Shot Image Classification
While we propose a novel problem of few-shot human motion prediction, the majority of
existing meta-learning and few-shot learning approaches are developed in the scenario of
classification tasks. As a sanity check, the first question is how our meta-learning approach
compares with these prior techniques. For a fair comparison, we evaluate on the standard
few-shot image classification task. The most common setup is the N -way, k-shot classifi-
cation that aims to classify data into N classes when we only have a small number (k) of
labeled instances per class for training. The loss function is the cross-entropy error between
the predicted and true labels. Following [114, 259, 310, 351, 388], we evaluate on the most
widely used mini-ImageNet benchmark [310]. It consists of 64 meta-training and 24 meta-
test classes, with 600 images of size 84× 84 per class.

During meta-training, each task is sampled as an N -way, k-shot classification: we first
randomly sample N classes from the meta-training classes; for each class, we randomly
sample k and 1 examples to form the training and test set, respectively. During meta-testing,

53

Method 5-Way Acc (%)
1-shot 5-shot

Matching Networks [388] 43.56± 0.84 55.31± 0.73

MAML [114] 48.7± 1.84 63.1± 0.92

Meta-Learner LSTM [310] 43.4± 0.77 60.2± 0.71

Prototypical Networks [351] 46.61± 0.78 65.77± 0.70

Meta Networks [270] 49.21± 0.96 –

PAML (Ours) 53.26± 0.52 68.19± 0.61

Table 5.1: Performance sanity check of our approach by comparing with state-of-the-art
meta-learning and few-shot learning approaches for few-shot image classification on the
widely used mini-ImageNet dataset. Our PAML outperforms these baselines, showing its
general effectiveness for few-shot learning.

we report performance on the unseen classes from the meta-test classes. We use the con-
volutional network in [114] as the classifier (learner). Our model adaptation network is a
2-layers fully-connected network with leaky ReLU nonlinearity

Table 5.1 summarizes the performance comparisons with the existing approaches on the
standard 5-way, 1-/5-shot setting. Our PAML consistently outperforms all the baselines. In
particular, there is a notable 5% performance improvement compared with MAML, show-
ing the complementary benefits of our model adaptation strategy. This sanity check verifies
the effectiveness of our meta-learning approach. Moreover, some of these existing methods,
such as matching networks and prototypical networks, are designed with few-shot classifi-
cation in mind, and are not readily applicable to domains such as human motion prediction.
In the following experiments, we show how our approach can be used to facilitate the few-
shot motion prediction.

5.4.2 Few-Shot Human Motion Prediction
We now focus on using our meta-learning approach for human motion prediction. To the
best of our knowledge, this is the first time exploring the few-shot learning problem for hu-
man motion prediction. Due to the lack of published protocols, we propose our evaluation
protocol for this task.

Dataset. We evaluate on Human 3.6M [178], a heavily benchmarked, large-scale motion
capture (mocap) dataset that has been widely used in human motion analysis. Human 3.6M
contains seven actors performing 15 varied activities. Following the standard experimental
setup in [117, 183, 254], we down-sample the dataset by two, train on six subjects, and test
on subject five. Each activity contains hours of video from these actors performing such
activity. Sequence clips are randomly taken from the training and test videos to construct
the corresponding training and test sequences [183]. Given the past 50 mocap frames (2
seconds in total), we forecast the future 10 frames (400 milliseconds in total) in short-term
prediction and the future 40 frames (1,600 milliseconds in total) in long-term prediction.

Few-shot learning task and meta-learning setup. We use 11 classes of activities for
meta-training: directions, greeting, phoning, posing, purchases, sitting, sitting down, tak-
ing photo, waiting, walking dog, and walking together. And we use the remaining 4 classes
of activities for meta-testing: walking, eating, smoking, and discussion. These 4 activities

54

are commonly used to evaluate motion prediction algorithms in the previous work [117,
183, 254]. The k-shot motion prediction task which we address is: for a certain activity, given
a small collection of k action-specific past and future sequence pairs, we aim to learn a pre-
dictor model so that it is able to predict the possible future motion for a new past sequence
from that activity. Accordingly, the setup of k-shot prediction tasks in meta-learning is as
follows. During meta-training, for each task, we randomly select one activity out of 11, and
we sample k action-specific sequence pairs as Dtrain. During meta-testing, for each of the 4
novel activities, we sample k sequence pairs from its training set to produce small-sample
set Dtrain. We then adapt our meta-learned predictor to the target action-specific predictor.
We evaluate it on the corresponding test set. We run five trials for each activity and report
the average performance.

Implementation details. In our experiments, the predictor is residual sup., the state-
of-the-art human motion prediction approach based on a sequence-to-sequence encoder-
decoder network [254]. For the encoder and decoder, we use a single GRU cell [66] with
hidden size 1024, respectively. Following [254], we use tied weights between the encoder
and decoder. We use spatial embedding for both the encoder and decoder. We use separate
model adaptation networks for the embedding layers and the encoder/decoder, each of
which is a 3-layers fully-connected network with leaky ReLU nonlinearity. In most cases, k is
set as 5 and we also evaluate how performance changes when k varies. By cross-validation,
the trade-off parameter λ is set as 0.1, the learning rate α is set as 0.001, and the meta-
learning rate β is set as 0.005. For the predictor, we clip the gradient to a maximum `2-
norm of 5. We run 10, 000 iterations during meta-training. We use PyTorch [291] to train
our model.

Baselines. For a fair comparison, we compare with residual sup. [254], which is the
same predictor as ours but is not meta-learned. In particular, we evaluate its variations in
the small sample size regime and consider learning both action-specific and action-agnostic
models in the following scenarios.

• (Type I) Action-specific training from scratch. For each of the 4 target activities, we
directly learn an action-specific predictor using its k training sequence pairs.

• (Type II) Action-agnostic training from scratch. We learn a single predictor for the 4
target activities using all their training sequence pairs.

• (Type III) Off-the-shelf transfer. We learn a single predictor for the 11 meta-training
activities using their large number of training sequence pairs, and directly use this
predictor for the 4 target activities without modification.

• (Type IV) Multi-task learning. We learn a single predictor for all the 15 activities
using a large number of training sequence pairs per activity for the 11 meta-training
activities and k sequence pairs per activity for the 4 target activities.

• (Type V) Fine-tuning transfer. After learning a single predictor for the 11 meta-
training activities using their large number of training sequence pairs, we fine-tune it
to become an action-specific predictor for each of the 4 target activities, respectively,
using its k training sequence pairs.

Evaluation metrics. We evaluate our approach both quantitatively and qualitatively.
For the quantitative evaluation, we use the mean square error between the predicted mo-
tions and the ground-truth motions in the angle space, which is the standard metric in mo-
tion prediction [117, 183, 254]. We exclude the translation and rotation of the whole body,

55

since this information is independent of the actions themselves. We also qualitatively visu-
alize the predictions frame by frame, following [117,183,254].

Walking Eating

Type millisecond 80 160 320 400 560 1000 80 160 320 400 560 1000

Scratchspec 1.90 1.95 2.16 2.18 1.99 2.00 2.33 2.31 2.30 2.30 2.31 2.34
Residual sup. [254] w/ Scratchagn 1.78 1.89 2.20 2.23 2.02 2.05 2.27 2.16 2.18 2.27 2.25 2.31

(Baselines) Transferots 0.60 0.75 0.88 0.93 1.03 1.26 0.57 0.70 0.91 1.04 1.19 1.58
Multi-task 0.57 0.71 0.79 0.85 0.96 1.12 0.59 0.68 0.83 0.93 1.12 1.33
Transferft 0.44 0.55 0.85 0.95 0.74 1.03 0.61 0.65 0.74 0.78 0.86 1.19

Meta-learning (Ours) PAML 0.36 0.49 0.73 0.85 0.81 0.88 0.37 0.54 0.66 0.73 0.76 0.83

Smoking Discussion

Type millisecond 80 160 320 400 560 1000 80 160 320 400 560 1000

Scratchspec 2.88 2.86 2.85 2.83 2.80 2.99 3.01 3.13 3.12 2.95 2.62 2.99
Residual sup. [254] w/ Scratchagn 2.53 2.61 2.67 2.65 2.71 2.73 2.77 2.79 2.82 2.73 2.82 2.76

(Baselines) Transferots 0.70 0.84 1.18 1.23 1.38 2.02 0.58 0.86 1.12 1.18 1.54 2.02
Multi-task 0.71 0.79 1.09 1.20 1.25 1.23 0.53 0.82 1.02 1.17 1.33 1.97
Transferft 0.87 1.02 1.25 1.30 1.45 2.06 0.57 0.82 1.11 1.11 1.37 2.08

Meta-learning (Ours) PAML 0.41 0.70 0.82 1.05 1.00 1.03 0.43 0.73 1.01 1.06 1.15 1.17

Table 5.2: Mean angle error comparisons between our PAML and variants of residual
sup. [254] on the 4 target activities of the Human 3.6M dataset for k = 5-shot motion pre-
diction. Residual sup. is the state-of-the-art motion prediction approach; we evaluate its
variants in the small sample size regime and consider learning both action-specific and
action-agnostic models in different scenarios. Our PAML consistently and significantly out-
performs all the baselines. In particular, it is superior to the multi-task learning and transfer
learning baselines on all the actions across different time horizons.

Comparison with the state-of-the-art motion prediction approaches. Table 5.2 shows
the quantitative comparisons between our PAML and a variety of variants of residual sup.
on the 4 target activities in the small sample size regime. While residual sup. has achieved
impressive performance with a large amount of annotated motion sequences [254], its pre-
diction significantly degrades when only a limited number of training sequences are avail-
able. As expected, directly training the predictor from few examples leads to poor perfor-
mance (i.e., with the angle error in range 2 ∼ 3), due to severe over-fitting. In such scenarios
of training from scratch, learning an action-agnostic model is slightly better than learning
an action-specific one (e.g., decreasing the angle error by 0.1 at 80ms for walking), since the
former allows the predictor to exploit some common motion regularities from multiple ac-
tivities. By transferring knowledge from relevant activities with large sets of samples in a
more principled manner, the prediction performance improves a little bit. This is achieved
by multi-task learning, e.g., training an action-agnostic predictor using both the 11 source
and 4 target activities, or transfer learning, e.g., first training an action-agnostic predictor
using the source activities, and then using it either in the off-the-shelf manner or though
fine-tuning.

However, modeling multiple actions is more challenging than modeling each action sep-
arately, due to the significant diversity of different activities. The performance improvement

56

Smoking:

… …
… …
… …

Discussion:

… …
… …
… …

Figure 5.2: Visualizations for k = 5-shot motion prediction of smoking and discussion.
Top: the conditioning sequence and the ground-truth of the prediction sequence. Middle:
fine-tuning transfer of residual sup. [254], a top performing baseline. Bottom: our predic-
tion results. The ground-truth and the conditioning sequences are shown in black, and the
predictions are shown in color. Our PAML produces lower-error, smooth, and human-like
prediction through meta-learning. Best viewed in color with zoom.

of these multi-task learning and transfer learning baselines is limited and their performance
is also comparable. This thus demonstrates the general difficulty of our few-shot motion
prediction task. By contrast, our PAML consistently and significantly outperforms all the base-
lines on all the actions across different time horizons, showing the effectiveness of our meta-
learning mechanism. There is even a noticeable performance boost for the complicated
motions (e.g., decreasing the angle error by 0.5 at 80ms for smoking, compared with fine-
tuning transfer). By explicitly learning from a large number of few-shot prediction tasks
during meta-training, PAML is able to extract and leverage knowledge shared both across
different actions and across multiple few-shot prediction tasks, thus improving the prediction of
novel actions from few examples by a large margin.

Moreover, as mentioned before, most of the current meta-learning approaches, such
as matching networks [388] and prototypical networks [351], are developed for the simple
tasks like image classification with task-specific model architectures (e.g., learning an em-
bedding space that is useful for nearest neighbor or prototype classifiers), which are not
readily applicable to our problem. Unlike them, our approach is general and can be effec-
tively used across a broad range of tasks, as shown in Table 5.1 and Table 5.2. Figure 5.2
further visualizes our prediction and compares with a top performing baseline. From Fig-
ure 5.2, we can see that our PAML generates less-error, more smooth, and realistic predic-
tion.

Ablation studies. In Table 5.3 and Table 5.4, we evaluate the contributions of different
factors in our approach to the results.

Model initialization vs. model adaptation. Our meta-learning approach consists of two
components: a generic model initialization and an effective model adaptation network. To
understand the impact of each component, we conduct ablation analysis in Table 5.3. We
can see that each component by itself is superior to the baselines reported in Table 5.2.
This shows that meta-learning, in general, by leveraging shared knowledge across relevant
tasks, enables us to deal with a novel task in a sample-efficient way. Moreover, our full
PAML model consistently outperforms its variants, showing the effectiveness and comple-
mentarity of each component. This thus verifies the importance of simultaneously learning
a generic initial model and an effective strategy for adapting this model to novel tasks.

Structure of H. In Table 5.4 we compare different implementations of the model adap-
tation network H: as a simple affine transformation, or as a neural network with 2 ∼ 4

57

Walking Eating

Type millisecond 80 160 320 400 560 1000 80 160 320 400 560 1000

Best baselines Transferft 0.44 0.55 0.85 0.95 0.74 1.03 0.61 0.65 0.74 0.78 0.86 1.19

Meta-learning (Ours)
PAML w/ init 0.41 0.52 0.79 0.88 0.89 0.93 0.51 0.56 0.70 0.72 0.79 0.95
PAML w/ adapt 0.39 0.55 0.76 0.88 0.92 0.96 0.51 0.62 0.79 0.77 0.82 0.93
full PAML 0.36 0.49 0.73 0.85 0.81 0.88 0.37 0.54 0.66 0.73 0.76 0.83

Smoking Discussion

Type millisecond 80 160 320 400 560 1000 80 160 320 400 560 1000

Best baselines Transferft 0.87 1.02 1.25 1.30 1.45 2.06 0.57 0.82 1.11 1.11 1.37 2.08

Meta-learning (Ours)
PAML w/ init 0.56 0.74 0.96 1.12 1.03 1.19 0.55 0.75 1.03 1.07 1.39 1.56
PAML w/ adapt 0.59 0.77 0.87 1.09 1.12 1.13 0.49 0.81 1.15 1.16 1.19 1.32
full PAML 0.41 0.70 0.82 1.05 1.00 1.03 0.43 0.73 1.01 1.06 1.15 1.17

Table 5.3: Ablation on model initialization vs. model adaptation. Each component by it-
self outperforms the baselines. Our full PAML consistently achieves the best performance,
showing the importance of jointly learning a generic initial model and an effective strategy
for adapting this model to novel tasks.

Walking

Method 80 160 320 400 560 1000

PAML w/ 1-layer, None 0.40 0.52 0.75 0.88 0.86 0.92
PAML w/ 2-layer, ReLU 0.40 0.52 0.76 0.87 0.84 0.93
PAML w/ 2-layer, Leaky ReLU 0.39 0.50 0.75 0.86 0.85 0.92
PAML w/ 3-layer, ReLU 0.36 0.51 0.74 0.89 0.83 0.90
PAML w/ 3-layer, Leaky ReLU 0.36 0.49 0.73 0.85 0.81 0.88
PAML w/ 4-layer, ReLU 0.38 0.53 0.74 0.88 0.84 0.91
PAML w/ 4-layer, Leaky ReLU 0.37 0.51 0.75 0.86 0.82 0.90

Table 5.4: Ablation on the structure of H. We vary the number of fully-connected layers in
the model adaptation networkH, and try both ReLU and leaky ReLU as activation function
in the hidden layers. The results show that “3-layer, Leaky ReLU” works best, but in general
H is robust to specific implementation choices.

layers. Since leaky ReLU is used in Chapter 3, we try both ReLU and leakyReLU as activa-
tion function in the hidden layers. The results show that a 3-layer fully-connected network
with leaky ReLU gives the best prediction performance.

Impact of training sample sizes. In the previous experiments, we focused on a fixed k =
5-shot motion prediction task. To test how our meta-learning approach benefits from more
training sequences, we evaluate the performance change with respect to the sample size k.
Figure 5.3 summarizes the comparisons with fine-tuning transfer, a top performing baseline
reported in Table 5.2, when k varies from 1 to 100 at 80ms. As a reference, we also include
the oracle performance, which is the residual sup. baseline trained on the entire training set
of the target activity (i.e., with thousands of annotated sequence pairs). Figure 5.3 shows
that our approach consistently outperforms fine-tuning and improves its performance with
more and more training sequences. Interestingly, through our meta-learning mechanism,

58

1 2 5 10 20 50 100

k

0.25

0.3

0.35

0.4

0.45

0.5

M
e

a
n

 a
n

g
le

 e
rr

o
r

Walking

Oracle

Fine-tuning

PAML

1 2 5 10 20 50 100

k

0.2

0.3

0.4

0.5

0.6

M
e

a
n

 a
n

g
le

 e
rr

o
r

Eating

Oracle

Fine-tuning

PAML

1 2 5 10 20 50 100

k

0.3

0.4

0.5

0.6

0.7

0.8

M
e

a
n

 a
n

g
le

 e
rr

o
r

Smoking

Oracle

Fine-tuning

PAML

1 2 5 10 20 50 100

k

0.3

0.4

0.5

0.6

0.7

M
e

a
n

 a
n

g
le

 e
rr

o
r

Discussion

Oracle

Fine-tuning

PAML

Figure 5.3: Impact of the training sample size k for k-shot motion prediction. We compare
our PAML with fine-tuning transfer of residual sup. [254], a top performing baseline. As
a reference, we also include the oracle performance, which is residual sup. trained with
thousands of annotated sequence pairs. X-axis: number of training sequence pairs k per activ-
ity. Y-axis: mean angle error. Ours consistently outperform fine-tuning and with only 100
sequences, we achieve the performance slightly worse than the oracle.

with only 100 sequences, we achieve the performance that is slightly worse than the oracle
trained with thousands of sequences.

59

Part II

Unsupervised Meta-Learning:
Towards a Generic Recognition

Model

61

Essentially, all models are wrong, but some are useful.

George Edward Pelham Box; Norman Draper

63

Chapter 6

Learning Low-Density Separators
from Pseudo-Classes

6.1 Motivation
The previous line of work in Part I is promising but still restrictive in the sense that the
learned model transformation and dynamics are tied to a specific set of categories due to
its supervised nature. To decouple this tie, starting in this chapter, we develop a large-scale
self-supervision approach to leveraging unsupervised real-world images as meta-data and
learning a more generic recognition model.

Let us consider the generality of CNNs, which are typically trained on a particular set of
categories (e.g., ImageNet). Recent analysis shows that from bottom, middle, to top layers
of the network, features make a transition from general to specific [15, 427]. While features
in the bottom and middle layers are fairly generic to many categories (i.e., low-level features
of Gabor filters or color blobs and mid-level features of object parts), high-level features
in the top layers eventually become specific and biased to best discriminate between this
set of chosen categories. The generality of CNNs is thus limited by the specialization of top
layer units to their original task. With limited samples from target tasks, fine-tuning can-
not effectively adjust the units and would result in over-fitting, since it typically requires
a significant amount of labeled data. Using off-the-shelf CNNs becomes the best strategy,
despite the specialization and reduced performance.

In this chapter, we investigate how to improve pre-trained CNNs for learning novel
categories from few examples. Our key insight is to expose multiple top layer units to a
massive set of unlabeled images, as shown in Figure 6.1, which decouples these units from
ties to the original specific set of categories. This additional stage is called unsupervised
meta-training to distinguish this phase from the conventional unsupervised pre-training
phase [130] and the training phase on the target tasks. Based on the above transferability
analysis, intuitively, bottom and middle layers construct a feature space with high-density
regions corresponding to potential latent categories. Top layer units in the pre-trained CNN,
however, only have access to those regions associated with the original, observed categories.
The units are then tuned to discriminate between these regions by separating the regions
while pushing them further away from each other.

To tackle this limitation, our unsupervised meta-training provides a far larger pool of

65

1.2	 M	 100	 M	

Supervised Pre-Training
of Bottom and Middle Layers

Unsupervised Meta-Training
of Top Layers

Novel Category Recognition
from Few Examples

è	 è	

Figure 6.1: We aim to improve the generality of pre-trained CNNs for the recognition of
novel categories from few labeled examples. We perform a multi-stage training procedure:
(1) we first pre-train a CNN that recognizes a specific set of categories on a large-scale la-
beled dataset (e.g., ImageNet 1.2M), which provides fairly generic bottom and middle layer
units; (2) we then meta-train the top layers as low-density separators on a far larger set of un-
labeled data (e.g., Flickr 100M), which further improves the generality of multiple top layer
units; and (3) finally, we use our modified CNN on new categories/tasks (e.g., scene clas-
sification, fine-grained recognition, and action recognition), either as off-the-shelf features
or as initialization of fine-tuning that allows for end-to-end training.

unlabeled images as a much less biased sampling in the feature space. Now, instead of
producing separations tied to the original categories, we generate diverse sets of separa-
tions across the unlabeled data. Since “the unit tries to discriminate the data manifold from its
surroundings in all non-manifold directions” [35], we capture a more generic and richer de-
scription of the visual world [341].

How can we generate these separations in an unsupervised manner? Inspired by the
structure/manifold assumption in shallow semi-supervised and unsupervised learning (i.e.,
the decision boundary should not cross high-density regions, but instead lie in low-density
regions) [27,56], we introduce a low-density separator (LDS) module that can be plugged into
any (or all) top layers of a standard CNN architecture. More precisely, the vector of weights
connecting a unit to its previous layer (together with the non-linearity) can be viewed as
a separator or decision boundary in the activation space of the previous layer. LDS then
generates connection weights (decision boundaries) between successive layers that traverse
regions of as low density as possible and avoid intersecting high-density regions in the ac-
tivation space. Many LDS methods typically infer a probability distribution, for example
through densest region detection, lowest-density hyperplane estimation [27], and cluster-
ing [165]. However, exact clustering or density estimation is known to be notoriously diffi-
cult in high-dimensional spaces.

We instead adopt a discriminative paradigm [56,67,309,398] to circumvent the aforemen-
tioned difficulties. Using a max-margin framework, we propose an unsupervised, scalable,
coarse-to-fine approach that jointly estimates compact, distinct high-density pseudo-classes
(HDQC), i.e., sets of data points sampled in high-density regions, as stand-ins for plausible
high-density regions and infers low-density hyperplanes (separators). Our decoupled for-
mulations generalize those in supervised binary code discovery [309] and semi-supervised
learning [67], respectively; and more crucially, we propose a novel combined optimization to
jointly estimate HDQC and learn LDS in large-scale unsupervised scenarios, from the labeled

66

ImageNet 1.2M [321] to the unlabeled Flickr 100M dataset [364].
Our approach of exploiting unsupervised learning on top of CNN transfer learning is

unique as opposed to other recent work on unsupervised, weakly-supervised, and semi-
supervised deep learning. Most existing unsupervised deep learning approaches focus on
unsupervised learning of visual representations that are both sparse and allow image re-
construction [130], including deep belief networks (DBN), convolutional sparse coding, and
(denoising) auto-encoders (DAE). Our unsupervised LDS meta-training is different from
conventional unsupervised pre-training as in DBN and DAE in two important ways: (1)
our meta-training “post-arranges” the network that has undergone supervised training on
a labeled dataset and then serves as a kind of network “pre-conditioner” [130] for the target
tasks; and (2) our meta-training phase is not necessarily followed by fine-tuning and the
features obtained by meta-training could be used off the shelf.

Other types of supervisory information (by creating auxiliary tasks), such as cluster-
ing, surrogate classes [95,155], spatial context, temporal consistency, web supervision, and
image captions [190], have been explored to train CNNs in an unsupervised (or weakly-
supervised) manner. Although showing initial promise, the performance of these unsu-
pervised (or weakly-supervised) deep models is still not on par with that of their super-
vised counterparts, partially due to noisy or biased external information [190]. In addition,
our LDS, if viewed as an auxiliary task, is directly related to discriminative classification,
which results in more desirable and consistent features for the final novel-category recog-
nition tasks. Unlike using a single image and its pre-defined transformations [95] or other
labeled multi-view object [155] to simulate a surrogate class, our pseudo-classes capture a
more natural representation of realistic images. Finally, while we boost the overall gener-
ality of CNNs for a wide spectrum of unseen categories, semi-supervised deep learning
approaches typically improve the model generalization for specific tasks, with both labeled
and unlabeled data coming from the tasks of interest [4, 408].

Our contributions are three-fold. (1) We first show how LDS, based on an unsupervised
margin maximization, is generated without a bias to a particular set of categories. (2) We
detail how to use LDS modules in CNNs by plugging them into any (or all) top layers of
the architecture, leading to single-scale (or multi-scale) low-density separator networks. (3)
We finally show how such modified CNNs, with enhanced generality, are used to facilitate
the recognition of novel categories from few examples and significantly improve the perfor-
mance in scene classification, fine-grained recognition, and action recognition. The general
setup is depicted in Figure 6.1.

6.2 Pre-Trained Low-Density Separators from Unsupervised
Data

Given a CNN architecture pre-trained on a specific set of categories, such as the ImageNet
(ILSVRC) 1,000 categories, we aim to improve the generality of one of its top layers, e.g.,
the k-th layer. We fix the structures and weights of the layers from 1 to k−1, and view the
activation of layer k−1 as a feature space. A unit s in layer k is fully connected to all the
units in layer k−1 via a vector of weightsws. Eachws corresponds to a particular decision
boundary (partition) of the feature space. Intuitively, all the ws’s then jointly further dis-
criminate between these 1,000 categories, enforcing that the new activations in layer k are
more similar within classes and more dissimilar between classes.

67

. . . … . . .Layer k (LDS)

Layer k −1

Unsupervised data

A set of
pseudo-classes

A block of units

Low-density
separators

Figure 6.2: Illustration of learning low-density separators between successive layers on
a large amount of unlabeled data. Note the color correspondence between the decision
boundaries across the unlabeled data and the connection weights in the network.

To make ws’s and the associated units in layer k unspecific to the ImageNet 1,000 cate-
gories, we use a large amount of unlabeled images at the unsupervised meta-training stage.
The layers from 1 to k−1 remain unchanged, which means that we still tackle the same fea-
ture space. The new unlabeled images now constitute a less biased sampling of the feature
space in layer k−1. We introduce a new k-th layer with more units and encourage their
unbiased exploration of the feature space. More precisely, we enforce that the units learn
many diverse decision boundaries ws’s that traverse different low-density regions while
avoiding intersecting high-density regions of the unsupervised data (untied to the original
ImageNet categories). The set of possible arrangements of such decision boundaries is rich,
meaning that we can potentially generalize to a broad range of categories.

6.2.1 Approach Overview
For each unlabeled image Ii, where i ∈ {1, 2, . . . , N}, let xi ∈ RD and φi ∈ RS be the
vectorized activations in layers k−1 and k, respectively. Let W be the weights between
the two layers, where ws is the weight vector associated with the unit s in layer k. For
notational simplicity, xi already includes a constant 1 as the last element and ws includes
the bias term. We then have φsi = f

(
wsTxi

)
, where f(·) is a non-linear function, such as

sigmoid or ReLU. The resulting activation spaces of layers k−1 and k are denoted as X and
F , respectively.

To learn ws’s as low-density separators, we are supposed to have certain high-density
regions which ws’s separate. However, accurate estimation of high-density regions is dif-
ficult. We instead generate pseudo-classes as stand-ins for plausible high-density regions.
We want samples with the same pseudo-labels to be similar in activation spaces (constraint
within pseudo-classes), while those with different pseudo-labels should be very dissimilar

68

in activation spaces (constraints between pseudo-classes). Note that in contrast to cluster-
ing, generating pseudo-classes does not require inferring membership for each data point.
Formally, assuming that there are C desired pseudo-classes, we introduce a sample selec-
tion vector Tc ∈ {0, 1}N for each pseudo-class c. Tc,i = 1 if Ii is selected for assignment to
pseudo-class c and zero otherwise. As illustrated in Figure 6.2, the optimization for seeking
low-density separators (LDS) while identifying high-density pseudo-classes (HDPC) can be
framed as

findW ∈ LDS, T ∈ HDPC (6.1)
subject toW separate T .

This optimization problem enforces that each unit s learns a partition ws lying across the
low-density region among certain salient high-density pseudo-classes discovered by T .
This leads to a difficult joint optimization problem in theory, because W and T are in-
terdependent.

In practice, however, it may be unnecessary to find the global optimum. Reasonable
local optima are sufficient in our case to describe the feature space, as shown by the em-
pirical results in Section 6.4. We use an iterative approach that obtains salient high-density
pseudo-classes from coarse to fine (Section 6.2.3) and produces promising discriminative
low-density partitions among them (Section 6.2.2). We found that the optimization proce-
dures converge in our experiments.

6.2.2 Learning Low-Density Separators
Assume thatT is known, which means that we have already definedC high-density pseudo-
classes by Tc. We then use a max-margin formulation to learn W . Each unit s in layer k
corresponds to a low-density hyperplanews that separates positive and negative examples
in a max-margin fashion. To train ws, we need to generate label variables ls ∈ {−1, 1} for
eachws, which label the samples in the pseudo-classes either as positive (1) or negative (−1)
training examples. We can stack all the labels for learning ws’s to form L =

[
l1, . . . , lS

]
.

Moreover, in the activation space F of layer k, which is induced by the activation space X
of layer k−1 andws, it would be beneficial to further push for large inter-pseudo-class and
small intra-pseudo-class distances. We achieve such properties by optimizing

min
W ,L,Φ

S∑
s=1

‖ws‖2+η
N∑
i=1

S∑
s=1

Ii

[
1−lsi

(
wsTxi

)]
+

+
λ1
2

C∑
c=1

N∑
u=1
v=1

Tc,uTc,vd (φu,φv)−
λ2
2

C∑
c′=1

C∑
c′′=1
c′′ 6=c′

N∑
p=1
q=1

Tc′,pTc′′,qd (φp,φq),

(6.2)

where d is a distance metric (e.g., square of Euclidean distance) in the activation space F
of layer k. [x]+ = max (0, x) represents the hinge loss. Here we introduce an additional
indicator vector I ∈ {0, 1}N for all the pseudo-classes. Ii = 0 if Ii is not selected for as-
signment to any pseudo-class (i.e.,

∑C
c=1Tc,i = 0) and one otherwise. Note that I is actually

sparse, since only a portion of unlabeled samples are selected as pseudo-classes and only
their memberships are estimated in T .

The new objective is much easier to optimize compared to Eqn. (6.1), as it only requires
producing the low-density separators ws from known pseudo-classes given Tc. We then

69

derive an algorithm to optimize problem (6.2) using block coordinate descent. Specifically,
problem (6.2) can be viewed as a generalization of predictable discriminative binary codes
in [309]: (1) compared with the fully labeled case in [309], Eqn. (6.2) introduces additional
pseudo-class indicator variables to handle the unsupervised scenario; and (2) Eqn. (6.2)
extends the specific binary-valued hash functions in [309] to general real-valued non-linear
activation functions in neural networks.

We adopt a similar iterative optimization strategy as in [309]. To achieve a good local
minimum, our insight is that there should be diversity in ws’s and we thus initializ ws’s
as the top-S orthogonal directions of PCA on data points belonging to the pseudo-classes.
We found that this initialization yields promising results that work better than random
initialization and do not contaminate the pre-trained CNNs. For fixed W , we update Φ
using stochastic gradient descent to achieve improved separation in the activation space F
of layer k. This optimization is efficient if using ReLU as non-linearity. We use Φ to update
L. lsi = 1 if φsi > 0 and zero otherwise. Using L as training labels, we then train S linear
SVMs to update W . We iterate this process a fixed number of times—2 ∼ 4 in practice,
and we thus obtain the low-density separatorws for each unit and construct the activation
space F of layer k.

6.2.3 Generating High-Density Pseudo-Classes

In the previous section, we assumed T known and learned low-density separators between
high-density pseudo-classes. Now we explain how to find these pseudo-classes. Given the
activation space X of layer k−1 and the activation space F of layer k (linked by the low-
density separatorsW as weights), we need to generateC high-density pseudo-classes from
the unlabeled data selected byTc. We hope that the pseudo-classes are distinct and compact
in the activation spaces. That is, we want samples belonging to the same pseudo-classes
to be close to each other in the activation spaces, while samples from different pseudo-
classes should be far from each other in the activation spaces. To this end, we propose
a coarse-to-fine procedure that combines the seeding heuristics of K-means++ [77] and
a max-margin formulation [67] to gradually augment confident samples into the pseudo-
classes. We suppose that each pseudo-class contains at least τ0 images and at most τ images.
Learning T includes the following steps:

Skeleton generation. We first choose a single seed point Tc,ic = 1 for each pseudo-class
using the K-means++ heuristics in the activation space X of layer k−1. All the seed points
are now spread out as the skeleton of the pseudo-classes.

Pseudo-class initialization. We extend each single skeletal point to an initial pseudo-
class by adding its nearest neighbors [75] in the activation space X of layer k−1. Each of
the resulting pseudo-classes thus contains τ0 images, which satisfies the constraint for the
minimum number of selected samples.

Augmentation and refinement. In the above two steps, we select samples for pseudo-
classes based on the similarity in the activation space of layer k−1. Given this initial esti-
mate of pseudo-classes, we select additional samples using joint similarity in both activation
spaces of layers k−1 and k by leveraging a max-margin formulation. For each pseudo-class
c, we construct pseudo-class classifiers hXc and hFc in the two activation spaces. Note that
hXc andhFc are different from the low-density separatorws. We use SVM responses to select

70

additional samples, leading to the following optimization:

min
T ,hX

c ,hF
c

α

C∑
c=1

(∥∥∥hX
c

∥∥∥2
2
+ λX

N∑
i=1

Ii
[
1− yc,i

(
hXT

c xi

)]
+

)
+

C∑
c′=1

C∑
c′′=1
c′ 6=c′′

N∑
j=1

Tc′,jTc′′,j

+β

C∑
c=1

(∥∥∥hF
c

∥∥∥2
2
+ λF

N∑
i=1

Ii
[
1− yc,i

(
hFT

c φi

)]
+
−

N∑
j=1

Tc,j

(
hFT

c φj

))

s.t.τ0 ≤
N∑
i=1

Tc,i ≤ τ,∀c ∈ {1, . . . , C}, (6.3)

where yc,i is the corresponding binary label used for one-vs.-all multi-pseudo-class clas-
sification: yc,i = 1 if Tc,i = 1 and −1 otherwise. The first and second terms denote a
max-margin classifier in the activation space X , and the fourth and fifth terms denote a
max-margin classifier in the activation space F . The third term ensures that the same unla-
beled sample is not shared by multiple pseudo-classes. The last term is a sample selection
criterion that chooses those unlabeled samples with high classifier responses in the activa-
tion space F .

This formulation is inspired by the approach to selecting unlabeled images using joint
visual features and attributes [67]. We view our activation spaceX of layer k−1 as the feature
space, and the activation space F of layer k as the learned attribute space. However, differ-
ent from the semi-supervised scenario in [67], which provides an initially labeled training
images, our problem (6.3) is entirely unsupervised. To solve it, we use initial T correspond-
ing to the pseudo-classes obtained in the first two steps to train hXc and hFc . After obtaining
these two sets of SVMs in both activation spaces, we update T . Following a similar block
coordinate descent procedure as in [67], we iteratively re-train both hXc and hFc and update
T until we obtain the desired τ number of samples.

6.3 Low-Density Separator Networks

6.3.1 Single-Scale Layer-Wise Training
We start from how to embed our LDS as a new top layer into a standard CNN structure,
leading to single-scale network. To improve the generality of the learned units in layer k,
we need to prevent co-adaptation and enforce diversity between these units [130, 427]. We
adopt a simple random sampling strategy to train the entire LDS layer. We break the units
in layer k into (disjoint) blocks, as shown in Figure 6.2. We encourage each block of units to
explore different regions of the activation space described by a random subset of unlabeled
samples. This sampling strategy also makes LDS learning scalable since direct LDS learning
from the entire dataset is computationally infeasible.

Specifically, from an original selection matrix T0 ∈ {0, 1}N×C of all zeros, we first obtain
a random sub-matrix T ∈ {0, 1}M×C . Using this subset of M samples, we then generate C
high-density pseudo-classes by solving the problem (6.3) and learn S corresponding low-
density separator weights by solving the problem (6.2), yielding a block of S units in layer
k. We randomly produce J sub-matrices T , repeat the procedure, and obtain S×J units
(J blocks) in total. This thus constitutes layer k, the low-density separator layer. The entire
single-scale structure is shown in Figure 6.3a.

71

CNN Single-Scale
LDS+CNN

Layer

Layer 2

Layer1

Output Layer

Multi-Scale
LDS+CNN

LDS Layer

Layer 2

Layer 1

Output Layer

LDS Layer

Layer 1

Output Layer

LDS
Layer

 K Layer K

Layer k

(a)

……

Conv Max-pool

Avg-pool

è è

ê

Layer i

Conv

Avg-pool

è

ê

Layer K

Conv Norm Max-pool

Avg-pool

è è è

ê

è

Layer

LDS

FCa
ê

FCb
ê

LDS

FCa
ê

FCb

Softmax

ê

ê

ê

Add

LDS

FCa
ê

FCb
ê

ReLU ReLU ReLU

j

ê ê ê

(b)

Figure 6.3: We use our LDS to revisit CNN architectures. In Figure 6.3a, we embed
LDS learned from a large collection of unlabeled data as a new top layer into a stan-
dard CNN structure pre-trained on a specific set of categories (left), leading to single-scale
LDS+CNN (middle). LDS could be also embedded into different layers, resulting multi-
scale LDS+CNN (right). More specifically in Figure 6.3b, our multi-scale LDS+CNN ar-
chitecture is constructed by introducing LDS layers into multi-scale DAG-CNN [422]. For
each scale (level), we spatially (average) pool activations, learn and plug in LDS in this ac-
tivation space, add fully-connected layers FCa and FCb (with K outputs), and finally add
the scores across all layers as predictions for K output classes (that are finally soft-maxed
together) on the target task. We show that the resulting LDS+CNNs can be either used as
off-the-shelf features or discriminatively trained in an end-to-end fashion to facilitate novel
category recognition.

6.3.2 Multi-Scale Structure
For a convolutional layer of sizeH1×H2×F , whereH1 is the height,H2 is the width, and F is
the number of filter channels, we first compute a 1×1×F pooled feature by averaging across
spatial dimensions as in [422], and then learn LDS in this activation space as before. Note
that our approach applies to other types of pooling operation as well. Given the benefit
of complementary features, LDS could also be operationalized on several different layers,
leading to multi-scale/level representations. We thus modify the multi-scale DAG-CNN
architecture [422] by introducing LDS on top of the ReLU layers, leading to multi-scale
LDS+CNN, as shown in Figure 6.3b. We add two additional layers on top of LDS: FCa
(with F outputs) that selects discriminative units for target tasks, and FCb (withKoutputs)
that learns K-way classifier for target tasks. The output of the LDS layers could be used as
off-the-shelf multi-scale features. If using LDS weights as initialization, the entire structure
in Figure 6.3b could also be fine-tuned in a similar fashion as DAG-CNN [422].

6.4 Experimental Evaluation
In this section, we explore the use of low-density separator networks (LDS+CNNs) on a
number of supervised learning tasks with limited data, including scene classification, fine-
grained recognition, and action recognition. We use two CNN models: AlexNet [212] and
VGG19 [347] pre-trained on ILSVRC 2012 [321], as our reference networks. We imple-
ment the unsupervised meta-training on Yahoo! Flickr Creative Commons100M dataset
(YFCC100M) [364], which is the largest single publicly available image and video database.
We begin with plugging LDS into a single layer, and then introduce LDS into several top

72

layers, leading to a multi-scale model. We consider using LDS+CNNs as off-the-shelf fea-
tures in the small sample size regime, as well as through fine-tuning when enough data is
available in the target task.

Implementation details. During unsupervised meta-training, we use 99.2 million un-
labeled images on YFCC100M [364]. After resizing the smallest side of each image to be
256, we generate the standard 10 crops (4 corners plus one center and their flips) of size
224×224 as implemented in Caffe [185]. For single-scale structures, we learn LDS in the fc7
activation space of dimension 4,096. For multi-scale structures, following [422] we learn
LDS in activation spaces of Conv3, Conv4, Conv5, fc6, and fc7 for AlexNet, and we learn
LDS in activation spaces of Conv43, Conv44, Conv51, Conv52, and fc6 for VGG19. We use
the same sets of parameters to learn LDS in these activation spaces without further tuning.
In the LDS layer, each block has S = 10 units, which separate across M =20,000 randomly
sub-sampled data points. Repeating J = 2,000 sub-sampling, we then have 20,000 units in
total. Notably, each block of units in the LDS layer can be learned independently, making
feasible for parallelization. For learning LDS in Eqn. (6.2), η and λ1 are set to 1 and λ2 is set
to normalize for the size of pseudo-classes, which is the same setup and default parameters
as in [309]. For generating high-density pseudo-classes in Eqn. (6.3), following [67, 75], we
set the minimum and maximum number of selected samples per pseudo-classes to be τ0 =6
and τ=56, and produceC=30 pseudo-classes in total. We use the same setup and parame-
ters as in [67], where α=1, β=1. While using only the center crops to infer pseudo-classes,
we use all 10 crops to learn more accurate LDS.

Tasks and datasets. Similar as before, we evaluate on standard benchmark datasets
for scene classification: SUN-397 [414] and MIT-67 [375], fine-grained recognition: Oxford
102 Flowers [279], and action recognition (compositional semantic recognition): Stanford-
40 actions [425]. We follow the standard experimental setup (e.g., the train/test splits) for
these datasets as before. For example, on SUN-397, a subset of the dataset with 50 training
and 50 test images per class are used for evaluation, averaging over 10 fixed and publicly
available partitions.

6.4.1 Learning from Few Examples
The first question to answer is whether the LDS layers improve the transferability of the
original pre-trained CNNs and facilitate the recognition of novel categories from few ex-
amples. To answer this question, we evaluate both LDS+CNN and CNN as off-the-shelf
features without fine-tuning on the target datasets. This is the standard way to use pre-
trained CNNs [311]. We test how performance varies with the number of training samples
per category as in [395]. To make extensive comparisons with publicly available baselines,
we use VGG19 in this set of experiments. Following the standard practice, we train simple
linear SVMs in one-vs.-all fashion on L2-normalized features [311,422] in Liblinear [101].

Single-scale features. We begin by evaluating single-scale features on theses datasets.
For a fair comparison, we first reduce the dimensionality of LDS+CNN from 20,000 to 4,096,
the same dimensionality as CNN, followed by linear SVMs. This is achieved by selecting
from LDS+CNN the 4,096 most active features according to the standard criterion of multi-
class recursive feature elimination (RFE) [38] using the target dataset. We also tested PCA.
The performance drops, but it is still significantly better than the pre-trained CNN. Fig-
ure 6.4 summarizes the average performance over 10 random splits on these datasets. When
used as off-the-shelf features for small-sample learning, our single-scale LDS+CNN signif-
icantly outperforms the vanilla pre-trained CNN, which is already a strong baseline. Our

73

1 5 10 20 50
10

20

30

40

50

60

70

Number of Training Examples per Category

A
c
c
u

ra
c
y
 (

%
)

SUN−397

MS−LDS+CNN
SS−LDS+CNN
MS−DAG−CNN
SS−CNN
Places−CNN

135 10 15 20 25 30 40 50 80

30

40

50

60

70

80

Number of Training Examples per Category

A
c
c
u

ra
c
y
 (

%
)

MIT−67

MS−LDS+CNN
SS−LDS+CNN
MS−DAG−CNN
SS−CNN

1 2 3 4 5 6 7 8 9 10
40

50

60

70

80

90

100

Number of Training Examples per Category

A
c
c
u

ra
c
y
 (

%
)

102 Flowers

MS−LDS+CNN
SS−LDS+CNN
MS−DAG−CNN
SS−CNN

135 10 20 30 40 50 60 70 80 90 100
20

30

40

50

60

70

80

Number of Training Examples per Category

A
c
c
u

ra
c
y
 (

%
)

Stanford−40

MS−LDS+CNN
SS−LDS+CNN
MS−DAG−CNN
SS−CNN

Figure 6.4: Performance comparisons between our single-scale LDS+CNN (SS-LDS+CNN),
multi-scale LDS+CNN (MS-LDS+CNN) and the pre-trained single-scale CNN (SS-CNN),
multi-scale DAG-CNN (MS-DAG-CNN) baselines for scene classification, fine-grained
recognition, and action recognition from few labeled examples on four benchmark datasets.
VGG19 [347] is used as the CNN model for its demonstrated superior performance. For
SUN-397, we also include a publicly available strong baseline, Places-CNN, which trained
a CNN (AlexNet architecture) from scratch using a scene-centric database with over 7 mil-
lion annotated images from 400 scene categories, and which achieved state-of-the-art per-
formance for scene classification [437]. X-axis: number of training examples per class. Y-
axis: average multi-class classification accuracy. With improved transferability gained from
a large set of unlabeled data, our LDS+CNNs with simple linear SVMs significantly outper-
form the vanilla pre-trained CNN and powerful DAG-CNN for small sample learning.

results are particularly impressive for the big performance boost, for example nearly 20%
on MIT-67, in the one-shot learning scenario. This verifies the effectiveness of the layer-wise
LDS, which leads to a more generic representation for a broad range of novel categories.

Multi-scale features. Given the promise of single-scale LDS+CNN, we now evaluate
multi-scale off-the-shelf features. After learning LDS in each activation space separately,
we reduce their dimensionality to that of the corresponding activation space via RFE for
a fair comparison with DAG-CNN [422]. We train linear SVMs on these LDS+CNNs, and
then average their predictions. Figure 6.4 summarizes the average performance over differ-
ent splits for multi-scale features. Consistent with the single-scale results, our multi-scale
LDS+CNN outperforms the powerful multi-scale DAG-CNN. LDS+CNN is especially ben-
eficial to fine-grained recognition, since there is typically limited data per class for fine-
grained categories. Figure 6.4 also validates that multi-scale LDS+CNN allows for transfer
at different levels, thus leading to better generalization to novel recognition tasks compared
to its single-scale counterpart. In addition, Table 6.1 further shows that our LDS+CNNs
outperform weakly-supervised CNNs [190] that are directly trained on Flickr using exter-
nal caption information.

74

Type Approach SUN-397 MIT-67 102 Flowers Stanford-40

Weakly-supervised
CNNs

Flickr-AlexNet 42.7 55.8 74.2 53.0
Flickr-GoogLeNet 44.4 55.6 65.8 52.8
Combined-AlexNet 47.3 58.8 83.3 56.4
Combined-GoogLeNet 55.0 67.9 83.7 69.2

Ours SS-LDS+CNN 55.4 73.6 87.5 70.5
MS-LDS+CNN 59.9 80.2 95.4 72.6

Table 6.1: Performance comparisons of classification accuracy (%) between our LDS+CNNs
and weakly-supervised CNNs [190] on the four datasets when using the entire training sets.
In contrast to our approach that uses the Flickr dataset for unsupervised meta-training,
Flickr-AlexNet/GoogLeNet train CNNs from scratch on the Flickr dataset by using asso-
ciated captions as weak supervisory information. Combined-AlexNet/GoogLeNet con-
catenate features from supervised ImageNet CNNs and weakly-supervised Flickr CNNs.
Despite the same amount of data used for pre-training, ours outperform the weakly-
supervised CNNs by a significant margin due to their noisy captions and tags.

40

45

50

55

60

65

70

SS-C
NN-O

TS

SS-C
NN-FT

MS-D
AG-C

NN-O
TS

MS-D
AG-C

NN-FT

SS-LDS+CNN-O
TS

SS-LDS+CNN-FT

MS-LDS+CNN-O
TS

MS-LDS+CNN-FT

A
c
c
u

ra
c
y
 (

%
)

SUN397
MIT67

Figure 6.5: Effect of fine-tuning (FT) on SUN-397 (purple bars) and MIT-67 (blue bars).
Fine-tuning LDS+CNNs (AlexNet) further improves the performance over the off-the-shelf
(OTS) features for novel category recognition.

6.4.2 Fine-Tuning

With more training data available in the target task, our LDS+CNNs could be fine-tuned to
further improve the performance. For efficient and easy fine-tuning, we use AlexNet in this
set of experiments as in [422]. We evaluate the effect of fine-tuning of our single-scale and
multi-scale LDS+CNNs in the scene classification tasks, due to their relatively large number
of training samples. We compare against the fine-tuned single-scale CNN and multi-scale
DAG-CNN [422], as shown in Figure 6.5. For completeness, we also include their off-the-
shelf performance. As expected, fine-tuned models consistently outperform their off-the-

75

2 4 7 12 18 2430 50
40

60

80

100

A
c
c
u

ra
c
y
 (

%
)

C
1 2 6 10 1520 30

40

60

80

100

A
c
c
u
ra

c
y
 (

%
)

τ0

0.01 0.10.2 0.5 1 2 5 10
40

60

80

100

A
c
c
u

ra
c
y
 (

%
)

η

Figure 6.6: Representative hyper-parameter sensitivity experiment of single-scale
LDS+CNN w.r.t. C pseudo-classes, τ0 initial samples per pseudo-class, and η with other
hyper-parameters fixed on 102 Flowers for the case of 10 training examples per class. There
is a fairly smooth and flat region around Acc = 87%.

shelf counterparts. Importantly, Figure 6.5 shows that our approach is not limited to small-
sample learning and is still effective even in the many training examples regime.

6.5 Experimental Analysis and Visualization
In this section, we first provide hyper-parameter sensitivity analysis experiments, which
show that the hyper-parameters have a wide range of reasonable values to choose from.
The pseudo-class and feature visualizations further show the generality of our approach.

6.5.1 Hyper-Parameter Sensitivity Analysis
As mentioned in Section 6.4, we used the default hyper-parameters in [67,75,77,309]. More
crucially, most of these hyper-parameters themselves in [67, 309] are set without tuning,
where η = 1, α = 1, β = 1, λ1 = 1, for instance. Although we did not tune them either, our
approach already significantly outperformed the baselines and could be even better with
optimized hyper-parameters.

For the other hyper-parameters (e.g.,C, τ0, τ), a series of sensitivity analysis experiments
conducted in [67, 75, 77] (e.g.., Figure 6 in [77] and Figure 3 in [67]) show that “each of the
hyper-parameters has a wide range of reasonable values to choose from” [77]).

In addition, the visualization of randomly sampled pseudo-classes in Section 6.5.2 and
the recognition performance on the target tasks show that our approach is robust when
generating a large collection of pseudo-classes and learning LDS. Such large-scale ensemble
behavior substantially mitigates or even cancels out the randomization and deficiency of
individual pseudo-classes. This is consistent with a similar observation in [77].

We also provide a representative sensitivity analysis experiment in Figure 6.6, which
shows that there is a fairly smooth and flat region around Accuracy = 87%.

6.5.2 Pseudo-Classes Visualization
To better understand LDS+CNNs, we provide qualitative visualization of the pseudo-classes
in Figures 6.8, 6.9, and 6.10. In each figure, we show a set of pseudo-classes, which are sam-
pled randomly from the entire pool of generated pseudo-classes. These figures show that

76

Figure 6.7: t-SNE feature visualization [384] of single-scale LDS+CNN on the 102 Flowers
training and testing dataset. (We use both the training and testing data for better visual-
ization due to the limited training data on 102 Flowers.) Although low-density separators
are generated in an unsupervised fashion, it is interesting to note their generalization to
novel categories when considering semantic groupings of labels. Best viewed in color with
zoom.

our approach identifies diverse pseudo-classes with a wide coverage from large amounts
of unlabeled data.

6.5.3 Feature Visualization
By using the t-SNE algorithm [384], we find a 2-dimensional embedding of the single-scale
LDS+CNN features, and visualize them as points colored depending on their categories.
Figures 6.7 shows the visualization on the 102 Flowers dataset. It again demonstrates the
generality of our LDS+CNNs for novel categories.

77

Figure 6.8: Example pseudo-classes visualization I. This set of pseudo-classes were sampled
randomly from the entire pool of generated pseudo-classes (these are not curated). There
are C = 30 pseudo-classes in total for each random sub-sampling. Each row contains rep-
resentative images from two pseudo-classes, respectively. Viewing digitally with zoom is
recommended.

78

Figure 6.9: Example pseudo-classes visualization II. This set of pseudo-classes were sam-
pled randomly from the entire pool of generated pseudo-classes (these are not curated).
There areC = 30 pseudo-classes in total for each random sub-sampling. Each row contains
representative images from two pseudo-classes, respectively. Viewing digitally with zoom
is recommended.

79

Figure 6.10: Example pseudo-classes visualization III. This set of pseudo-classes were sam-
pled randomly from the entire pool of generated pseudo-classes (these are not curated).
There areC = 30 pseudo-classes in total for each random sub-sampling. Each row contains
representative images from two pseudo-classes, respectively. Viewing digitally with zoom
is recommended.

80

Chapter 7

Extension to Object Detection via
Model Recommendation

7.1 Motivation
Our unsupervised meta-learning has essentially produced a large collection of models (i.e.,
low-density separators). Chapter 6 integrates this model library into a single network,
through leveraging these separators to constitute a top layer of the network. An alterna-
tive way is to treat the library as external memory and use it in an “off-the-shelf” manner.
By doing so, it allows us to generate new models on-the-fly for a variety of tasks. In this
chapter, we show such use case by combining unsupervised meta-learning with model rec-
ommendation to address a more general, realistic object detection problem.

Over the past few decades, there has been much progress in designing effective object
detectors, especially when enough data are available. For example, classic techniques, such
as deformable part models (DPMs) [107] via sliding-window fashion, are best suitable for
semi-rigid objects, while Exemplar-SVMs [252] with simple linear SVMs are highly category
and instance specific; the recent top performing detection systems instead favor bottom-up
region proposals [72,126,382] which tend to perform well for non-rigid objects. Along with
these, more powerful appearance models, feature learning mechanisms beyond standard
hand-engineered features such as R-CNN [126], fast R-CNN [125], faster R-CNN [315], SPP-
net [152], YOLO [312,313], SSD [248], OHEM [344], R-FCN [79], FPN [243], RetinaNet [244],
and Mask R-CNN [150] are emerging.

All of these modern detectors have in common the same supervised training framework
in which a large annotated dataset is required and in which training from scratch is restarted
for a new task, e.g., a new category. In practice, however, it might be difficult to produce
enough data for a new task. Moreover, in many applications it is desirable to rapidly train a
new detector for a new task, something that is typically not possible in any of these current
approaches which require expensive training iterations. Thus, our objective is to quickly
generate good models for a detection task given a small number of labeled samples.

Again, similar to Chapter 6, our approach is based on the informal intuition that, given
a very large set of models, it is likely that some of the models would have good performance
on a new detection task, as stated in the infinite monkey theorem [1]. More formally, inspired
by this intuition, we explore a new approach, which is based on the observation that, while

81

Ratings(AP)

NA
0.6

0.01
NA
NA
0.5

---------------- VS ----------------

Model Library
(Detectors)

Predicted Ratings

Probe Ratings

Store Tasks Input Tasks

Unsupervised Meta-Training Phase Training Phase

Figure 7.1: During unsupervised meta-training phase, a large library of object detectors
informative across categories is generated. Their ratings on different detection tasks are
recorded to form a ratings store. For a new target task or category and using ratings of a
small probe set of detectors on its input task with limited samples, recommendations are
made by collaborative filtering. A usable object detector for this new task is thus rapidly
generated as single or ensemble of the recommended models.

it may be hard (impossible) to generate enough training data for a new task, it may be easy
to generate a large library of models and evaluate them off-line on a large set of tasks. Given
this data on the performance of many models on many tasks, it may be possible to guess
which of these stored models are best suited for a novel target task by evaluating them on
that new task. The hope of course is that we can do so with a smaller set of samples of the
target task than would be necessary for training from scratch. In addition to (hopefully)
requiring a much smaller sample set, this approach could be far more efficient because it
merely recommends models, which have been generated off-line.

A natural question then is why should such an approach be possible? The first observa-
tion is that, while any specific detector cannot generalize well across tasks, in a large-scale
library, however, it is likely that one of the library models happens to be tuned with the
similar conditions as the new target task. Combining multiple such models into a single
new model may perform well on the new task. This would be true especially when con-
sidering the shared properties across instances and categories [89,191,239,287]. This is not
sufficient, however, as we are still faced with the problem of selecting the right models out
of the library. A naı̈ve approach would be to evaluate each model from the library on the
input task and select the one(s) that perform the best. Unfortunately, this direct approach
typically performs poorly because of the limited data available in the input task. More pre-
cisely, the evaluation scores of the library model on the input task might be noisy enough
that the ranking of the models is not reliable.

The second observation then is that, if the library and the set of tasks are large enough,
there might be enough correlation between the models that it is possible to predict the
performance of the models on the target tasks by using the entire combined experience with
the model library and the tasks. This is similar to the approach taken in recommender
systems [206] in which a matrix of ratings of items (the analog of our models) by users
(the analog of our tasks) is used to predict the ratings that a new user (the target task)

82

airplane

armchair

awning

bag

balcony

ball

bars

basket

bed

bench bookcase

books

bottle

bottles

bowl
boxboxesbread

building

bus

cabinet

candle

car

chair

chandelier

clock

closet

clothes

counter

countertop

cupboard

curtain

cushion

desk

dish

dishwasher

dome

door

drawer

easel

fence

field

fireplace

floor

flowers

gate

glass

grass

ground
handrail

headstone

machine

microwave

mirror

monitor

mountain

oven

path

person

picture

pillow

plant

plate

platform

poster

pot

railing

refrigerator

river

road

rock

rocks

rug

sand

screen

sea

seats

shelves

shoes

showcase

sink

sky

sofa

staircase

stand

steps

stone

stones

stool

stove

streetlight

table

television

text

toilet

towel

tower

tray

tree truck

umbrella

van

vase

videos

wall

water

window

Figure 7.2: Continuous Category Space Discovery. We measure the similarity between the
107 categories on SUN by their number of shared PBC models within the top-200 ranked
ones, and visualize them using ForceAtlas [24,181]. The edge between two category nodes
indicates that they have at least 10 models in common. Although the models are generated
entirely unsupervisedly on PASCAL, it is interesting to note that visually or functionally
similar categories are naturally grouped together: such as the green cluster of monitor,
stove, microwave, oven, dishwasher; red cluster of sea, river, field, sky; and purple cluster
of car, bus, van, truck, etc.

would generate, i.e., predict the top ranked items (the analog of the best models for the
target task). Inspired by prior work in the context of recommending action classifiers [255,
256], our goal is to explore how this approach can be used in detection tasks — a more
general and challenging recognition scenario. While we share the same general idea of
using recommender system for vision tasks, the specific technical approaches here are quite
different from those in [255,256].

The general setup is thus as follows. We first build a large library of object detectors and
we record their performance or “ratings” on a large set of detection tasks, which we call the
“ratings store”. Consistent with Chapter 6, we call the process of generating and evaluating
large library of models off-line as “meta-training”. Given a new target task, recommenda-
tions are made by trying, or rating, a small subset, called the probe set, of detectors on the
input task with few samples. That small set of ratings, along with the ratings of all the
detectors in the ratings store, is used to predict the ratings of all the models on the tar-
get task. We then select models based on the recommendations and use them for the new
task. This thus becomes our new formulation of object detection, which we term as model
recommendation for object detection as shown in Figure 7.1.

Intuitively, in this approach we generate a new model by learning from experience, i.e.,
from the matrix of evaluations of models on tasks, instead of learning from supervised data
as is normally the case. The model recommendation system provides a succinct way to com-
bine both large-scale models and big visual data into a joint task-model space. By directly
manipulating in the new space, the experience of acquiring models becomes a procedure

83

similar to shopping for finished products in a store. The generated model library can be also
viewed as a prior or regularization with respect to the common visual knowledge. In previ-
ous work, examples of transfer of prior experience to a new task include concept drift [380],
domain adaption, transfer learning [288] (e.g., sparse prototype representations [303], hy-
pothesis transfer learning [215, 373], regularized SVM [14]), multi-task learning (e.g., rank-
reduced shared classification model [7, 298]), concept modeling in the field of multimedia
(e.g., LSCOM [272]), intermediate representation based on learning classifiers on related
tasks (e.g., Object Bank [237, 424], Classemes [38]), which address a different scenario and
often require extensive supervised retraining on the new target task.

Our contributions are four-fold. (1) We show how such a recommendation setup can
be operationalized using collaborative filtering techniques, including an analysis of its op-
eration on a large-scale, controlled experiment. (2) We detail how tasks are defined and
detectors are generated in the off-line stage. (3) We show how a universal detector library,
predictable discriminative binary codes (PBCs) based on our LDS in Chapter 6, is generated
without a bias to a particular set of categories, and we show how it is particularly effective
for populating the ratings store in this setup. New detectors are thus obtained rapidly on
novel classes with few samples without conventional supervised training involved. (4) An-
other interesting finding of this large-scale model system is a continuous category space
discovered by model sharing, as shown in Figure 7.2 and explained in Section 7.5.1.

7.2 Terminology and Approach Overview
A task Tj = {(xj1, yj1) , (xj2, yj2) , ...} is assumed to be a self-contained object detection
problem, where {xj1,xj2, ...} are input images, and {yj1, yj2, ...} are the corresponding an-
notations indicating labels and bounding boxes for objects of interest. Note that annotations
might have different interpretations across tasks. Moreover, the image samples associated
with a task need not be unique; the same data sample might be shared across many tasks
(e.g., if one dataset is used for different tasks).

Models we are interested in here are object detectors. They can be pre-trained detectors
with no free parameters, or they can be detectors trained on different data sources. They can
be quite strong models highly tuned for certain tasks, or they can be generic weak detectors.

The rating of a model Mi on a task Tj is a number describing how well the model per-
forms on that task, which is denoted by R(Mi;Tj) = rij , and is restricted to the range [0, 1].
For example, for the detection task, we follow the performance evaluation procedure of the
PASCAL VOC Challenge [100]. A detection is considered correct when the area of overlap
(measured by intersection-over-union, IoU) between the predicted bounding box and the
ground-truth bounding box exceeds 50%, and the precision/recall curve is computed ac-
cordingly. Since a single number is needed as rating, the average precision (AP) is chosen
to summarize the shape of the precision/recall curve.

The ratings store is a matrixR, of the ratings of the models in the library on different tasks,
where rows correspond to models, and columns correspond to tasks. The ratings store
records the performance of models on tasks generated off-line during the meta-training
phase, and encodes the performance distribution of models on different tasks. The matrix
is n×m, where n is the number of models in the library, andm is the number of store tasks.
We assume thatR is complete, i.e., every model has been rated on every task in the store.

Finally, the task in which we are actually interested is a target (or hidden) task. The data in
the input task is limited to a few samples from this target task. For instance, the target task

84

is to detect a certain type of cat; however, for its input task, we only have access to a limited
number of training samples, e.g., on the order of ten samples. We hope to recommend
models that work well on the target task. The available ratings are the ones from the probe
set on the input task, which are both limited and noisy. When this set of ratings on the
input task is fed into a model recommendation system, the returned predictions are a full
and de-noised version for the target task. Recommender systems relevant to our scenario
are based on well-established collaborative filtering techniques [206].

Due to the complexity of real-world scenarios, recommending a single best model and
hoping it will work well on the target task might not be realistic. One extension is to jointly
recommend sets of models as in ensemble learning [438] and mixture of experts [189]. The
simplest approach is to use the top-k recommendations, which simply selects the top-k
models based on their predicted ratings from model recommendation. However, this ob-
vious strategy can potentially recommend a highly redundant set. One alternative is to
recommend a diverse set of top performing models [319]. Once a set of models is selected,
they are combined by using a task-dependent fusion strategy, e.g., by training weights for
the models on the input task.

To sum up, we start with a large collection of models and images, from which we build
a ratings store during meta-training. Then, during training given a new input task and a
probe set on that task, we use collaborative filtering techniques to predict the ratings of all
the models on the hidden task and to return a single or ensemble of models with the highest
predicted ratings as the recommended models.

7.3 Collaborative Filtering
Based on the probe set ratings and the ratings store, collaborative filtering techniques pre-
dict the ratings of the entire library. We use collaborative filtering techniques based on ma-
trix factorization, which assume a low-rank approximation to the ratings store that naturally
embeds both tasks and models to a joint latent factor space of dimensionality d, such that
task-model interactions are modeled as inner products in that space [205, 206]. Although
the rating distribution of model recommendation might be different from that of the typi-
cal consumer recommender system, the ratings store still has exchangeability properties—
arrays of random variables whose distributions are invariant to permutations of rows and of
columns, which makes it statistically justified to use a factor model that implicitly encodes
the Aldous-Hoover theorem for exchangeable matrices [193,194].

In this approach, we associate each model Mi with a vector ui ∈ Rd, and each task Tj
with a vector vj ∈ Rd. For a given modelMi, the elements ofui measure the extent to which
the model possesses the factors. For a given task Tj , the elements of vj measure how well
models with the corresponding factors will perform on the task. The interaction between
Mi andTj , i.e., the overall performance of that model on the task, is then characterized by the
dot product of ui and vj . The estimate of rating rij of modelMi on task Tj is approximated
as

r̂ij = uTi vj . (7.1)

After the recommender system infers ui and vj from rating patterns, it can easily predict
the rating a model will give to any task by using Eqn. (7.1). The crucial issue is how to
transform each model and task into vectors ui,vj .

85

Many matrix factorization techniques can be considered in this context, such as re-
stricted Boltzmann machines [325], sparse coding [245, 246], and maximum margin ma-
trix factorization optimizing directly for ranking scores [405]. Here we limit ourselves to
direct factorization approaches which are sufficient for our purpose. Specifically, we con-
sider approaches based on singular value decomposition (SVD) and non-negative matrix
factorization (NMF), which we describe briefly in this section.

7.3.1 Factorization Techniques based on SVD
One simple way to identify the latent semantic model and task factors is by singular value
decomposition (SVD) to decompose the rating matrix R into two factor matrices. In prac-
tice, the distribution of ratings may be significantly biased: some models may produce sys-
tematically higher ratings than others, and some tasks may be systematically easier than
others. Hence, it is necessary to estimate the portion of rating values that individual model
or task biases can explain [206]. A first-order approximation of the rating rij is introduced
to identify the biases as bij = µ+qi+pj , where µ denotes the global average rating, and the
parameters qi and pj indicate the observed deviations of modelMi and task Tj , respectively,
from the average. The biases can be easily estimated from the ratings store as in [206, 256]
and used to modify Eqn. (7.1) as

r̂ij = µ+ qi + pj + uTi vj . (7.2)

Now, the residual rating, defined as rij = rij − µ− qi − pj , does not remain positive. In
this case, we can simply use conventional SVD to obtain the factor matrices. Formally, the
residual rating matrix is decomposed as

R = ESF ≈ (EdSd)Fd = UV, (7.3)

where d indicates the number of factors, Sd is the d× d upper left sub-matrix of S, and Ed,
Fd are the first d columns of the left-singular vector matrix E, the first d rows of the right-
singular vector matrix F , respectively. Hence, the model factor is U = EdSd ∈ Rn×d with
uTi as its ith row vector, and the task factor is V = Fd ∈ Rd×m with vj as its jth column
vector.

7.3.2 Factorization Techniques based on NMF
Given that the ratings are all non-negative, an alternative approach is to use non-negative
matrix factorization (NMF) [402], which incorporates the non-negativity constraint into the
factored matrices. Formally, given the rating matrixR ∈ Rn×m≥0 with non-negative elements,
NMF seeks to decomposeR into a non-negative n× d basis matrix U (model factor) and a
non-negative d×m coefficient matrix V (task factor) , such that

R ≈ UV =

d∑
l=1

u·lvl·, (7.4)

where u·l is the lth column vector ofU while vl· is the lth row vector of V . To learn the two
factor matrices, we use the prototypical multiplicative update rules [228].

Now, given the ratings of k probe models for an input task, denoted as rk, the factor
vector of the input task can be estimated by casting as a non-negative least-squares problem

86

with respect to v:

(ũk)v = rk, (7.5)

where v is a d× 1 vector, and ũk is a k× d sub-matrix of U , whose rows are ratings of probe
models on store tasks. v can be solved by fixing ũk while updating v using the multiplicative
update rules. After the factor v of the input task is learned, its ratings for all the models is
predicted as

r̂ = Uv. (7.6)

7.4 Recommender System Analysis
Naturally, the first and most important question to answer is whether collaborative filtering
could successfully recommend correct models. A second question is to elucidate the role of
the different design choices involved in this approach. To answer these questions, we de-
signed a controlled experiment with real detection tasks, large-scale data (namely, PASCAL
VOC 2007) and full-scale ratings store so that for any of the target tasks one or several of
the n models in the library is the correct model to use or at least a reasonable enough ap-
proximation. Thus, this is an example of controlled recommender systems whose expected
performance is known in advance. This is inspired by the M -closed framework [192] for
statistical evaluation.

Of course, in order to support this controlled analysis, this setup is somewhat contrived.
In particular, it uses a library of supervised models biased to a particular set of categories.
We will describe the actual set of models that we propose to use in a real system in the next
section, introducing a new way of generating object detectors in an unsupervised manner.

Specifically, we use all the 12,608 ESVMs [252] pre-trained for 20 categories on the PAS-
CAL VOC 2007 trainval dataset [100] as the model library. We treat these models inde-
pendently here when using them to make detections. When our target task is defined as
detection on the PASCAL VOC 2007 test dataset for the same 20 categories, there exists a
subset of ESVMs from the corresponding category in the library that work well for the task,
which are supposed to be identified by the recommender system.

Note that we use ESVMs as a convenient source for generating a large number of models
to test our approach. We do not advocate that using ESVMs is in general the best tool for
detection and, in fact, many other types of models could be used in this framework. For
example, model recommendation can be naturally applied to other banks of detectors such
as ELDAs [146] and Object Bank [237].

7.4.1 Task Generation
For the store tasks, generally speaking, we could design detection tasks based on specific
categories, and group different object instances in the dataset accordingly to generate tasks,
but this would bias the system strongly toward these specific categories and prevent it from
generalizing to new input tasks. Hence, to demonstrate the performance of the proposed
framework, we use purely random tasks instead. Specifically, each task is constructed by
randomly selecting 10 images from the PASCAL trainval dataset. We generate 10,000 differ-
ent tasks in total. The final ratings store is of size 12,608× 10,000. Since the images within
a certain task are random and are therefore not tied to a specific category, a detection for a

87

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Size (Ratio) of Probe Set

R
e
la

ti
v
e
 m

A
P

 t
o

 O
p

ti
m

u
m

Average Performance of Single ESVM

Random Search

Direct Search

SVD−Rec(#factor32)

SVD−Rec(#factor64)

Figure 7.3: Effect of probe set size for individual ESVM across 20 categories on the PASCAL
VOC 2007 detection test dataset. X-axis: probe set size (ratio to the size of the entire library).
Y-axis: average performance of the recommended model using SVD with different factor
numbers (green and blue curves) vs. random search (cyan-blue curve) and direct search
(red curve) baselines, reported as relative mAP to optimum, which is the best achievable
mAP for single ESVM (upper bound).

given task is counted as a positive detection if it intersects the bounding box of the ground-
truth annotation of any category. This is distinct from the typical detection task setting,
where one always focuses on sets of visually similar objects from the same category.

For the input tasks, we use the PASCAL VOC 2007 test dataset. We view the images
containing objects from these 20 categories as 20 hidden tasks, respectively. Then, for each
hidden task, we randomly select 10 images to create the corresponding input task. We
randomly generate 50 input tasks per hidden task, and report the average performance.

7.4.2 Experimental Evaluation
There are several design choices in this approach, such as different input tasks, collabora-
tive filtering techniques used, number of factors, size of probe sets, size of recommended
models, etc. We evaluated the impact of all of these design choices on this ESVM-based
setup in which we have predictable performance of the models. To this end, we only con-
sider recommending the single best model. The model is selected given the input task, and
then evaluated on the hidden task. The results are reported as relative mAP to optimum
(the best achievable mAP for single ESVM on the hidden task, which is an upper bound on
the performance).

Baselines. We compare against two natural baselines: 1) Random Search—randomly
pick a model from the probe set; 2) Direct Search—pick the best model from the probe set
based on their initial ratings on the input task.

Size of probe set. We randomly select a subset of models as the probe set. The average
performance over 20 categories using SVD is shown in Figure 7.3 as function of the size of
the probe set. The factor numbers are 32 and 64. Model recommendation works consistently
better than direct search as the probe set increases, even when using all the models as the
probe set. Note that the average model performance indicated by random search is quite
poor.

88

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
er

opla
ne

B
ic

yc
le

B
ird

B
oat

B
ottl

e
B
us

C
ar C

at

C
hai

r

C
ow

D
in

in
gta

ble
D
og

H
ors

e

M
oto

rb
ik

e

Per
so

n

Potte
dpla

nt

Shee
p

Sofa

Tra
in

Tvm
onito

r

A
ve

ra
ge

R
e

la
ti

v
e

 m
A

P
 t

o
 O

p
ti

m
u

m

Comparison of model recommendation by SVD & NMF

Direct Search

SVD−Rec(#factor100)

NMF−Rec(#factor100)

Figure 7.4: Comparison of different collaborative filtering techniques. X-axis: 20 categories
on the PASCAL VOC 2007 dataset. Y-axis: recommendation performance using SVD (green
bars) and NMF (red bars) both with factor number 100 vs. direct search baseline (blue bars),
reported as relative mAP to optimum. NMF works better than SVD in the majority of cases.

Different collaborative filtering techniques. The relative performance of SVD and
NMF when all the models are selected as the probe set is shown in Figure 7.4. The plot
shows that they have comparable performance, with NMF better than SVD. Combining
the two methods, i.e., using the average output of these two systems as the final predic-
tion would further improve the performance. Importantly, both collaborative filtering ap-
proaches perform significantly better than the naı̈ve direct search.

7.5 Unsupervised Meta-Learning for Object Detection
The results of the last section validate our claim that model recommendation is able to
select useful models. The other important issue remains how to generate a large collection
of potentially “expressive” models. ESVMs are restricted in that each model is highly tuned
for a specific instance, and thus constrained to one particular set of categories when building
models. However, models informative across categories and datasets could be achieved
via unsupervised meta-training. In this section, we give an example of meta-training that
generates object detector models based on our modified LDS, which we term as predictable
discriminative binary codes (PBCs) following [309].

We use CNNs as the feature space [212]. Different from Chapter 6, we use category-
independent region proposals as the basic processing and decision units. Given a large
corpus of unlabeled training images, we first generate region proposals using selective
search [382]. For each region proposal, we extract a 4,096-D feature vector fc7 from the
final hidden layer of the pre-trained CNNs structure on ILSVRC 2012 [321] (without fine-
tuning on other datasets) [126, 185, 212]. Now we have constructed a feature space with
unlabeled proposals.

Following the procedure in Chapter 6, we obtain several distinct and compact groups of
labeled data by employing Max-Min sampling [75], which we use as initial pseudo-labeled
data. We then produce the semi-supervised PBCs from these labeled datasets. Specifically,
from a large proposal pool P we first draw a subset AS by random subsampling. Within

89

AS , we create prototype sets BPL by Max-Min sampling. We view BPL as pseudo-labeled
data and the remaining ones in AS that are still unlabeled as CUL. We use the same setup
and parameters for the Max-Min sampling procedure reported in [75], resulting in BPL
consisting of 30 categories with 6 samples per category. Based on only the pseudo-labeled
data in BPL, we learn a 10-D prototype PBC (i.e., our modified LDS) [309]. We select and
add 50 samples to each pseudo-category from the unlabeled proposals CUL using category
specific attributes only to expand coverage as in [67]. Using this augmented dataset DAUG ,
we retrain a new 10-D PBC, i.e., 10 models. To ensure diversity, the subsampling procedure
repeats for T times, and we learn 10T models in total. They thus build up our model library
for widespread visual/attribute coverage.

7.5.1 Experimental Evaluation
To show that the PBC models generated by unsupervised meta-training are informative
across categories, we consider large-scale detection tasks across different datasets.

We use the entire PASCAL VOC 2007 dataset to generate model library and ratings store.
Store tasks are generated similarly as the previous ESVM-based system. The final ratings
store is of size 10,000 × 10,000. For the hidden tasks, we consider detection of 107 object
categories on the SUN 09 test dataset [68], which span from regions (e.g., road, sky) to well
defined objects (e.g., car, sofa) and highly deformable objects (e.g., river, curtain). The input
tasks are generated by randomly sampling 10 images from the corresponding category on
the SUN 09 training dataset. For those categories whose numbers of training samples are
smaller than 10, we use all the training samples. We also randomly generate 10 input tasks
per hidden task, and obtain the average performance. For each PBC model, we follow the
typical detection pipeline of R-CNN as in [126].

This is a challenging problem given that feature learning is implemented on ImageNet
and PBC models are hyper-trained on PASCAL, while the system is finally tested on SUN.
They are very different domains. The farther away from these source domains, the more
pertinent the test dataset will be for experimental evaluation. (Note that testing on other
datasets, e.g., PASCAL VOC 2012 and ImageNet, cannot serve this purpose due to shared
data.) Compared with PASCAL, on the SUN dataset the number of objects and the amount
of noise significantly increase with far more annotated object categories and typically 7
object classes per image [68]. Additional contextual information is thus usually necessary
to boost the detection performance [68, 71].

Ensemble Model Recommendation

To deal with the fact that different input tasks may require different factor numbers, we
perform collaborative filtering using SVD and NMF with factor numbers d ranging from
100 to 1000. For each d, we evaluate their precision on the input task, and we then average
the ratings across all these factor configurations. The final selected models are ranked ac-
cording to this averaged prediction. Consistent with early work in consumer recommender
system [413], we found that this method gives by far the best performance. After recom-
mending the top-k desired models, we calibrate them by standard Platt scaling [252,299] on
the input task to obtain comparable scores and then perform majority voting as the fused
score for each proposal, followed by non-maximum suppression. Moreover, following the
standard bounding box regression procedure [126], we also learn additional bounding box
regressors on the input tasks, and rectify the region proposals at test time to mitigate mislo-

90

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Ratio of Selected Models

m
A

P

Average Performance of Ensemble PBC

PBC−10

PBC−100

PBC−200

DPM [8]

Tree−Context [8]

Set−Context [9]

PBC−BB−10

PBC−BB−100

PBC−BB−200

R−CNN−10 [15]

TransferRegu [4]

Figure 7.5: Average performance of ensemble PBC model recommendation with varied in-
put task size over 107 categories on the SUN 09 dataset. X-axis: ratio of recommended
models in the library. The ensemble model recommendation results for input tasks of size
10, 100, 200 without and with bounding box regression are shown in two sets of curves—
PBC-10, PBC-100, PBC-200 and PBC-BB-10, PBC-BB-100, PBC-BB-200, respectively. We also
show two sets of baselines to calibrate the results: the top three horizontal lines are the av-
erage performance of DPM using the entire training dataset and additionally annotated
training data without and with introducing and encoding complex contextual relationships,
respectively; the bottom two horizontal lines are the average performance of R-CNN di-
rectly trained and additionally transferred from our source models using 10 images from
the input tasks, respectively. Note that accurate generic object detectors can be obtained
based on input tasks that are from different categories and domains compared with where
the PBC models are learned.

calizations induced by proposal based object detection. The average ensemble recommen-
dation result is shown in Figure 7.5.

Baselines. We compare against five strong baselines: 1) DPM using the entire SUN
training dataset and 26,000 additionally annotated objects [68]; 2) Tree-structured graphical
model [68] and 3) Set-based representation [71] to encode complex contextual relationships;
4) Direct R-CNN training using 10 images from the input tasks [126]; 5) Transfer regular-
ization [14] with R-CNN and our source models.

Figure 7.5 shows that ensemble of PBC models works consistently well as the size of the
recommended model increases, as shown in the six curves. The result is quite significant
if one notices the difference in numbers of training samples: Using only 10 images to select
models generated from an out-of-domain dataset our approach is not only better than R-
CNN directly trained from few samples, but it is also better than supervised DPM trained
from lots of in-domain data (hundreds to thousands), comparable to DPM with additional
contextual models. It is hard to make a direct comparison with Object Bank/Classemes
since they use the output of all the models as new features to retrain a new classifier while
we directly combine a subset of models. Experimentally, if we use Classemes features to
retrain a detector with few samples, it is worse than R-CNN. For the SUN dataset, the mAP
is low due to some hard categories. (The low mAP is of the same order of magnitude
as in challenging datasets, e.g., DPM on ImageNet.) Besides, in our case with large-scale

91

(a) (b)

Figure 7.6: (a) Collaborative detection of different models for the same task. For three rep-
resentative tasks: airplane, bed, and chair (left to right), we show the top detection of the
top-3 ranked models (red, green, and blue bounding boxes) on sample images (top to bot-
tom). Note that they would detect the same, different parts of the same, or different objects.
This complementary behavior explains the boosted performance of ensemble models in
Figure 7.5. (b) The same model is informative across different tasks. For five representa-
tive models (left to right), we show detection on sample images (top to bottom). Note that
the models learned by unsupervised meta-training can be to some extent interpreted as at-
tribute detectors. For example, the first column corresponds to all staircase-like objects with
vertical, horizontal, inclined, and curved orientations (bottom to top). This attributes-like
behavior explains the generality of the models for new target tasks in Figure 7.5.

sources of non-categorical classifiers, the conventional transfer learning techniques devel-
oped with well-trained categorical source classifiers [14] perform poorly due to induced
negative transfer. This indicates that cross-source relations estimated by the recommender
system are crucial to identify the relevant sources here. That is, because we have only few
target samples and because the generic sources are weak, direct transfer will be very noisy.

Similar to the object distribution in a large-scale scenario, the performance distribution
of models in the library for a specific task also follows a power law, which is implicitly en-
coded by the recommender system. Moreover, as we increase the sample size in the input
task from 10 to 100 and 200, it shows steadily increased performance due to more accurate
mAP, rank, calibration, and regressors estimation, and outperforms sophisticated contex-
tual models. Bounding box regression provides additional performance boost as expected.
This demonstrates that the recommender system both successfully builds expressive mod-
els during meta-training and selects useful models based on input tasks.

92

Qualitative Visualization

Detection and model visualization. To better understand the PBC models, we provide two
types of representative visualization: 1) Collaborative detection of different models for the
same task in Figure 7.6a; 2) Attributes-like behavior of the same model across different tasks
in Figure 7.6b.

Continuous category space discovery. By calculating the number of shared models,
a similarity matrix is obtained between the 107 categories. We use ForceAtlas [24, 181] to
visualize it in Figure 7.2. Although the models are generated without any label information,
visually or functionally similar categories are naturally grouped together. It again shows
the expressive power of the PBC models, which naturally identifies a continuous category
space.

93

Chapter 8

Additional Applications

In this chapter, we demonstrate how our meta-learning approach and LDS can be applied to
other problems and tasks with limited samples. We include two applications: unsupervised
hypothesis transfer learning and few-shot hash learning for image retrieval.

8.1 Unsupervised Hypothesis Transfer Learning

8.1.1 Motivation
The first application is hypothesis transfer learning (HTL) [13, 14, 63, 96, 196, 214–217, 373,
418, 419, 421], a transfer learning (TL) approach that has recently attracted increased atten-
tion. Transfer learning benefits from transfer of prior knowledge from related tasks to new
ones, in the majority of cases either on a data or instance level, or on a feature or parame-
ter level [288]. Despite featuring well established theoretical guarantees, these approaches
often suffer from great practical constraints and limitations [214,288]: they require reusing
data originating from the source domains and extensive supervised retraining on the target
task, which is prohibitively expensive for large source data. On the contrary, HTL transfers
directly on a model level by reusing source hypotheses — classifiers or models trained from
source data. This framework is practically appealing, since it requires neither the availabil-
ity of the source data nor any knowledge on how the source models relate to each other.
HTL is also efficient especially with small target samples, in which source hypotheses are
generated in advance and treated as black boxes without any consideration of their inner
workings at transfer stages.

Much attention in HTL (and also TL) has been focused on integrating the source infor-
mation into the target task in different ways. Unfortunately, very little work has addressed
the generation of useful source models. In most cases, sources are simply category classi-
fiers well-trained from large amounts of labeled samples. This however might be infeasible
for real-world applications: we focus on learning from few samples for target categories,
whereas we have to train good classifiers of related categories as sources from enough la-
beled data in advance. For instance, if we are interested in recognizing Père David’s deer1

from few samples, following the conventional HTL practice, we might need to first obtain

1A Père David’s deer is a species of deer that has the neck of a camel, the hoofs of a cow, the tail of a donkey,
and the antlers of a deer.

95

well-trained source classifiers of camels, cows, donkeys, and deer for transfer. Furthermore,
sources generated in this way are tied to a specific set of categories due to its supervised
nature, making it difficult to apply them across a wide spectrum of target categories.

It is thus unsurprising that the current HTL (and TL) algorithms are usually evaluated
under well-controlled experimental setups: (1) use small-scale well-trained classifiers as
sources, at most several hundred [13, 14, 419]; (2) split a dataset with a portion of cate-
gories as sources and the rest as targets, which implicitly reduces the impact of dataset
bias, e.g., leave-one-class-out [214,373]; (3) transfer between visually similar categories with
ideal sources [164,239].

To address this largely-overlooked yet fundamental problem, our LDS can be viewed as
a systematic scheme for generating universal and expressive source hypotheses in an unsu-
pervised fashion, which frees the recognition from ties to a particular set of categories and
which generalizes well for broad novel target classes. Now each hypothesis lies in a re-
gion of low density and the combined hypotheses constitute a joint partition of the feature
space, leading to a library of unsupervised universal sources (UUS) with widespread visual
coverage.

From the principle of Structural Risk Minimization, our UUS hypotheses provide an
alternative mechanism to encode prior knowledge and control model capacity. This is re-
lated to the use of Universum (i.e., unlabeled examples that do not belong to the concerned
classes, sometimes called “non-examples”) in addition to labeled data for capacity control,
which proved to be helpful in various learning tasks [407]. When facing a large collection
of non-examples, our UUS can be viewed as compressing the original source data while
implicitly modeling a general distribution and preserving relevant information for classifi-
cation.

Our UUS can be also considered as distinctive subdomains automatically discovered
in a large source domain. Conventional discovery of latent domains for domain adapta-
tion [128, 165] is supervised, in which object category labels are used to constrain feasible
subdomain separations on source datasets. However, our hypotheses are generated in an
entirely unsupervised manner without requiring any labeled data. Moreover, [128, 165]
need to explicitly model the distribution on different subdomains, and measure the dis-
tance between distributions. However, modeling the distribution of high-dimensional im-
age features on large datasets is typically more difficult than classifying them. Hence, our
approach is more flexible, scalable, and broadly applicable in practice.

This unprecedented large-scale source pool, with two orders of magnitude more hy-
potheses than the previous work, poses additional scalability challenges to the existing
HTL approaches. These algorithms adopt a discriminative SVM framework (usually with
a quadratic loss), in which a new target classifier is learned through adaptation by impos-
ing closeness between the target classifier and a linear combination of the source hypothe-
ses as regularizer. The weight associated to each source is either predefined for known
transfer relationship [196], or determined by designing heuristic meta-level features [419],
or estimated based on the conditional probability distribution of large amounts of unla-
beled target data [63]. In other cases, the weight is obtained by minimizing empirical error
with solely `2 norm [14,217,421] or sparsity-inducing (`0, `1) norm regularization [214,373].
These frameworks have been tested on problems with less than a few hundred sources, but
have already showed some difficulty in selecting informative sources due to severe over-
fitting [214,373]. To resolve this issue, we propose a scalable model transfer SVM (MT-SVM)
approach by combining an elastic net regularization and biased SVM with a hinge loss. The
relatedness among the tasks is autonomously evaluated through a principled optimization

96

problem without extra validation, unlabeled samples, or a predefined ontology.

8.1.2 Model Transfer Support Vector Machine
Once we obtain the J source hypotheses {wsrc

j }Jj=1 following the procedure of leaning
LDS in Chapter 6, the original training samples used to build them are no longer used.
We now consider a new target task with a small labeled training set {(xi, yi)}Li=1, where
xi ∈ Rd are the training samples and yi ∈ {−1, 1} are the corresponding labels. Hypothesis
transfer learning (HTL) attempts to infer the target hypothesis w from both {wsrc

j }Jj=1 and
{(xi, yi)}Li=1 that generalizes better than the one produced only from {(xi, yi)}Li=1. HTL
algorithms proposed so far are developed under a discriminative SVM framework modi-
fied by regularizing the distance between w and a linear combination of the sources wsrc.
To identify useful sources, it is recast as a variable selection problem by constraining the
combination weights with either `0, `1, or `2 norm [14, 214, 373]. However, a single type of
norm has its own pros and cons. Especially, in our scenario with only few target samples
and large-scale generic weak sources, these existing approaches would be very noisy due
to severe over-fitting and would induce negative transfer.

As a well-known recipe, an elastic net regularization, combining a weighted mixture of
`1 and squared `2 penalties, offers several desirable benefits: (1) `2 regularization is known
to improve the generalization ability of empirical risk minimization [214]; (2) `1 norm, as
a convex relaxation of `0 norm, always converges to a good solution in practice, avoiding
potential bad local minima when using a greedy scheme [214] to directly solve `0 problems;
(3) joint `1 and `2 enjoys a similar sparsity of representation and encourages a grouping
effect [443]; (4) it is particularly useful in our case that the number of predictors is much
bigger than the number of observations [443].

Formulation. By using the new regularization to rank the prior sources and introducing
them as reference into SVM, we then obtain the objective function for our model transfer
SVM (MT-SVM):

min
w,β

1

2

∥∥∥∥∥∥w −
J∑
j=1

βjw
src
j

∥∥∥∥∥∥
2

+
α

2

J∑
j=1

β2
j + γ

J∑
j=1

|βj |+ λ

L∑
i=1

[
1− yi

(
wTxi

)]
+
. (8.1)

The last term represents the data fit on the L training samples, measured by the hinge loss;
it is the new information from the target domain. The first term is similar to the max-
margin principle in standard SVMs, with the only difference being the bias towards the
linear combination of the generic source hypotheses

∑J
j=1 βjw

src
j instead of 0, in which

βj ’s are transfer weights; it is the prior information from the source domains. In order to
automatically select the best subset of known hypotheses from which to transfer, the second
and third terms are introduced as an elastic net regularization that favors sparse β. Here,
α, γ, and λ are the regularization parameters to control the trade-off between the error term
and regularization terms.

Following the duality derivation analogous to standard SVMs, the optimal solution to
Eqn. (8.1) satisfies

w =

J∑
j=1

βjw
src
j +

L∑
i=1

µiyixi, (8.2)

97

where µi’s are Lagrange multipliers. The final target model is then conceptually straight-
forward: it linearly combines the contribution from both the pre-trained generic models
and target specific data, i.e., support vectors from both source and target domains. Com-
bining Eqns. (8.1) and (8.2), as α → ∞ and γ → ∞, βj ’s will be forced to be zero and we
will get back the standard SVM, i.e., no transfer. As λ → 0, w will be forced to be purely
constructed as a weighted combination of {wsrc

j }’s, i.e., maximum transfer. As α→ 0, it be-
comes LASSO regression while ridge regression as γ → 0. Hence by tweaking α, γ, and λ
we obtain an intermediate solution with a decision boundary close to those of the auxiliary
classifiers while separating the labeled examples well.

Optimization. The objective in Eqn. (8.1) can be optimized by alternating minimization
of two subproblems:
• With fixed w, the objective function of finding transfer weights β becomes an elastic

net regularized least-squares minimization subproblem:

f(β)=
1

2

∥∥∥∥∥∥w −
J∑
j=1

βjw
src
j

∥∥∥∥∥∥
2

+
α

2

J∑
j=1

β2
j + γ

J∑
j=1

|βj |. (8.3)

• With fixed β, the objective function of learning target hypothesis w becomes a bias
regularized SVM subproblem:

f(w) =
1

2

∥∥∥∥∥∥w −
J∑
j=1

βjw
src
j

∥∥∥∥∥∥
2

+ λ

L∑
i=1

[
1−yi

(
wTxi

)]
+
. (8.4)

Source selection by modified feature-sign search: We solve Eqn. (8.3) by extending the
feature-sign search (FS) algorithm [230], one of the state-of-the-art techniques for efficient
sparse coding (i.e., `1 regularized least-squares) [245], to our case of elastic net regulariza-
tion (i.e., joint `1 and `2 regularized least-squares). FS searches and maintains an optimal
active set of potentially nonzero coefficients and sets other coefficients zero. Although it
was developed in the context of dictionary learning and sparse coding, FS still fits our sce-
nario, in which we could view the source hypotheses {wsrc

j }Jj=1 as known dictionary bases
and rearrange them into the matrix form of dictionaryW src. The equivalent optimization
problem of Eqn. (8.3) is then

f(β) =
1

2
‖w −W srcβ‖2 +

α

2
‖β‖2 + γ‖β‖1. (8.5)

Since the only difference lies in the extra `2 regularization term that is differentiable, we

modify the key update of β̂new in a series of “feature-sign steps” with
(
Ŵ srcTŴ src+αI

)−1
instead of

(
Ŵ srcTŴ src

)−1
as in [230]. (̂· represents the active set.)

Model transfer via adaptive SVM: The optimal w in Eqn. (8.4) can be obtained by the
Adaptive SVM algorithm [418, 419], which solves a quadratic program to maximize its La-
grange dual objective function. With small samples in our case, the problem can be effi-
ciently solved by (modified) sequential minimal optimization [196, 419]. In addition, we
initialize w using the standard SVM without bias on the given target training set. We then
iteratively infer β and refine w. Given the convexity of the problem, this block coordinate
descent algorithm will converge to the global minimum.

98

Transfer Scenario Method Acc (%)

Non-Transfer
SVM (source only) [164] 59.15± 1.1

SVM (target only) [164] 64.97± 1.8

SVM (source and target) [164] 66.93± 1.3

Transfer with Source Data
GFK [127] 67.97± 1.4

SA [110] 66.08± 1.4

Daumé III [81] 71.39± 1.5

HTL with Supervised Sources

PMT [13] 69.81± 1.8

MMDT [163] 67.75± 1.4

Late Fusion (Max) [164] 68.86± 1.2

Late Fusion (Lin. Int. Avg) [164] 66.45± 1.1

HTL with Unsupervised Sources Clustering+MT-SVM 67.13± 1.2

UUS+MT-SVM (Ours) 74.83± 1.2

HTL–Upper Bound Late Fusion (Lin. Int. Oracle) [164] 76 .76 ± 1 .3

Table 8.1: Performance comparisons between hypothesis transfer learning (HTL) with su-
pervised (SS) and unsupervised (USS) source hypotheses generated from ILSVRC for one-
shot learning in the Subset A (16 common classes) on the Webcam domain of the Office
dataset. We also include for completeness the results of transfer learning with source data.
Using a large library of unsupervised sources, ours yields performance superior to other
state-of-the-art HTL methods with well-trained source category models, and even close to
the oracle with an ideal source and the optimal transfer weight on the test set (performance
upper bound).

8.1.3 Experimental Evaluation
In this section, we present experimental results evaluating our unsupervised sources (UUS)
as well as our HTL approach (MT-SVM) on standard recognition benchmarks, comparing
several state-of-the-art methods, and validating across tasks and categories the generality
of our sources.

Implementation details. We use the modified J = 20,000 LDS [398] learned in fc7
feature space of the pre-trained AlexNet [91, 185, 212, 321] without fine-tuning as our UUS
hypotheses. In term of MT-SVM, for λ, we use the default value 1 as in Adaptive SVM [418,
419]. For α and γ, in a preliminary experiment, we tested the ImageNet categories as tar-
gets and our UUSs for transfer. Empirically, we found that keeping the number of selected
sources to be around 100 ∼ 200 yields good results. After searching α on a small grid
(0, 0.01, 0.1, 1, 10, 100) as suggested in [443], we found that α = 10 roughly achieved the
desired stable solution. For all our experiments, we then fixed α = 10, and tuned γ to
minimize the leave-one-out-error.

Comparisons with Supervised Sources. Naturally, the most critical question to answer
is whether our UUS indeed facilitates generalization to novel categories with few samples,
compared to their supervised counterparts (i.e., category models, SS). To this end, we eval-
uate them on the Office dataset [324] in an experimental setup similar to Section 3.3.2.

Source hypotheses. We use our generated library of 20K UUSs as unsupervised sources.

99

Transfer Scenario Method Acc (%)

Non-Transfer SVM (target only) 63.34± 2.1

HTL with SS

Multi-KT [373] 65.28± 1.3

DAM [96] 66.13± 1.4

GreedyTL [214] 68.72± 1.8

SS+MT-SVM 70.30± 1.2

HTL with USS Clustering+MT-SVM 64.92± 1.2

UUS+MT-SVM (Ours) 74.19± 1.3

Table 8.2: Performance comparisons between HTL with SS and USS for one-shot learning
in the Subset B (15 non-overlapping classes) on the Webcam domain of the Office dataset.

Moreover, for a fair comparison, we also generate another 20K sources by a naı̈ve unsu-
pervised approach denoted as clustering, which creates hypotheses by clustering the data
and produces classifiers between clusters. For supervised sources (SSs), we use the labeled
samples from the 1,000 categories on ILSVRC as source data, with approximately 1,200 ex-
amples per category. With the same CNN features, we then train source SVM classifiers in
one-vs.-all fashion, leading to 1,000 category models on these labeled samples.

Target tasks. To better understand the transfer process, we group the 31 target classes
into two subsets. Subset A: we focus on the 16 common classes between Webcam and
ILSVRC as our target categories as in [164]. 1 labeled training and 10 testing images per cat-
egory are randomly selected on the Webcam domain, i.e., one-shot transfer and a balanced
test set across categories. Therefore, each test split has 160 examples. Subset B: we also test
the other 15 non-overlapping classes as our target categories in the similar one-shot transfer
scenario. For each subset, we evaluate our two types of sources, independently calculate
the multiclass accuracy, and report the average performance and standard errors over 20
random train/test splits, as shown in Table 8.1 and Table 8.2.

Baselines. We compare against three types of baselines. Type I non-transfer: SVM
(source only), SVM (target only), and SVM (source and target). They are category SVMs
trained on only labeled source, only target, and both source and target data, respectively.
For completeness we also include Type II transfer learning based on (labeled or unla-
beled) source data: GFK [127], SA [110], and Daumé III [81]. For instance, Daumé III re-
trains SVMs on the augmented source and target data using tripled augmented feature,
resulting in a relatively expensive procedure given the potentially large size of the source
data and high feature dimensionality [164]. Note that some of these baselines are only avail-
able for Subset A, since they require that the source comes from the same category as the
target.

Type III baselines of HTL with supervised sources. For Subset A, transfer becomes a
domain adaptation problem: the transfer is largely dominated by the source category corre-
sponding to the target as the single most relevant one, making other categories uninvolved
in the transfer process. We then transfer the corresponding learned category models with-
out a source selection step, including (1) PMT [13], which regularizes the angle between
the target and source hyperplanes; (2) MMDT [163], which jointly optimizes over a feature

100

transformation mapping target points and classifier weights to the source feature space; (3)
Late Fusion, which independently trains a source and a target category classifier, and sets
the final score for each example by choosing the maximum (Max) or linear interpolation
(Lin. Int.) of source and target classifier scores. We report the performance of linear inter-
polation both averaged across linear combination hyper-parameter settings (Avg) and with
its best possible setting on the test set per experiment (Oracle). Importantly, the latter case
is the best achievable performance for HTL (upper bound), which is equivalent to an ideal
source (the same category as the target and with a large amount of training examples) trans-
ferred with the optimal transfer weight. These results are reported from [164]. For Subset B,
without explicit category correspondence, we use all 1,000 supervised sources and transfer
the relevant ones by state-of-the-art HTL approaches, including Multi-KT [373], DAM [96],
and GreedyTL [214].

Table 8.1 and Table 8.2 show that our transfer with unsupervised source hypotheses
outperforms non-transfer and other state-of-the-art techniques of transfer with source data
and transfer with supervised source hypotheses. Notably, in Table 8.1 ours achieves signif-
icant performance close to the oracle. Moreover, the naı̈ve unsupervised clustering approach
works poorly here. This verifies our assumption that information across categories is actu-
ally intrinsic in the data even without any supervision and could be effectively identified
by our UUS. With such unsupervised nature, our approach reduces the effort of collecting
large amounts of labeled data and training accurate relevant source category models, as is
normally the case in previous transfer learning works.

8.2 Few-Shot Hash Learning for Image Retrieval
Image retrieval is another important visual recognition problem and binary hashing, due to
its computational and storage efficiency, has attracted considerable attention for represen-
tation and retrieval in large-scale image databases [87,88,129,250,269,342,431,432]. While
one/few-shot learning [104], as a fundamental problem, has been extensively discussed in
the context of image recognition and classification [41, 388], very little work has addressed
this issue for hash learning and image retrieval. In practical applications, however, a user
might define customized query categories on-the-fly by supplying only a small set of spe-
cific examples, and requires the entire learning and retrieval procedure to be manageable
in real time [38, 59, 61, 62, 111, 143, 213]. Such few-shot hash learning scenarios pose a signifi-
cant challenge for the existing techniques, since they are usually category/dataset specific
and cannot generalize well from few examples or generalize to novel categories.

Specifically, the state-of-the-art hashing approaches are data-dependent and directly
learn hash functions from the target dataset in either an unsupervised or supervised man-
ner. The unsupervised hashing [129, 179, 406] aims to propagate neighborhood relation of
samples from a certain metric space into the Hamming space. However, distance metrics
(e.g., Euclidean distance or angular distance) typically cannot measure well the semantic
similarity that is essential for image retrieval. By leveraging supervisory information in
form of class labels, supervised hashing [250, 309, 342, 392] preserves semantic structure
of the data. Unfortunately, with limited data, these approaches are prone to over-fitting,
leading to degenerated performance.

Interestingly, the early research on data-independent hashing has learned generic binary
codes that are independent of the data and categories. The flagship representatives, the
locality sensitive hashing (LSH) and its variants [58, 124, 176, 184, 294], use simple random

101

projections to construct hash functions without exploring the data distribution. However,
LSH usually requires long binary codes to achieve satisfactory retrieval accuracies, leading
to large storage space and low recall performance [250]. Due to its pure data-independence,
LSH still lacks the ability to preserve the desired semantic similarity.

In the spirit of learning classifier-based representations, some approaches, including
Classemes [38], PiCoDes [40], Meta-Class [39], and predictable discriminative binary code
(DBC) [309], leverage an auxiliary labeled dataset and generate codes either from pre-defined
categories or learned super-classes of these categories. Unfortunately, to identify properties
shared by many categories, these approaches rely on a large corpus of annotated auxiliary
data samples and expensive training iterations. The generalization ability is still tied to
this particular set of categories due to its supervised nature. In particular, the code length
is usually constrained by the dimension of the original feature descriptors or number of
categories [38].

To address these limitations, our LDS provides a basic framework for generating unsu-
pervised generic hashing (UGH) in the sprite of LSH. Now a single code is informative by itself
while the entire library of codes have a good coverage of the feature space [124, 184, 294].
Given a new target task with few samples, task/category-specific codes are selected from
the large pool to form a compact representation of the novel category. The retrieval is ac-
complished by nearest neighbor search in the Hamming space. Distinguished from pre-
vious work, separating unsupervised code generation and task-specific code selection also
makes the code length adaptive for different categories/tasks and makes the use of long
codes feasible, which facilitates the practical usage of the hash codes [430].

8.2.1 Code Selection and Usage for Novel Categories

This large library of hash codes can be viewed as an over-complete representation. Given
a new target task, e.g., a novel category, at query time with a small set of training images,
we could simply use all of these codes as descriptors for image retrieval. Motivated by the
power of sparse representations, an alternative is to select the most informative bits so as to
infer what is shared with this specific input category. To achieve this, during the training
phase, using all the codes as features and the small training samples from the target task,
we first learn an `1-regularized model, e.g., `1-regularized SVM, and pick the active bits
according to the desired code length, which correspond to the weights of larger absolute
value [309]. We thus obtain category specific codes as a compact representation. Using
these codes, we then perform nearest neighbor search for retrieval purpose and evaluate
the performance.

8.2.2 Experimental Evaluation

In this section, we present experimental results evaluating our UGH on multiple standard
image retrieval benchmarks, comparing with several state-of-the-art supervised and un-
supervised hashing methods for small-sample learning, and validating across tasks and
categories the generality of UGH.

Implementation details. We use the modified 20,000 LDS [399] learned in fc6 feature
space of the pre-trained AlexNe [185,212] as our unsupervised generic hashing (UGH) func-
tions. For fair comparisons, our UGH and all the following supervised and unsupervised
baselines learn hash codes over the pre-trained AlexNet features. For all the baselines, we

102

1 3 5 10 15 202530 50 100
0

10

20

30

40

Number of Training Examples per Category

m
A

P
 (

%
)

UGH (Ours)
SDH
LSH
KSH
CCA−ITQ
FastHash
DBC

(a)

1 3 5 10 15 202530 50 100
0

10

20

30

40

50

Number of Training Examples per Category

P
re

c
is

io
n
 (

%
)

UGH (Ours)
SDH
LSH
KSH
CCA−ITQ
FastHash
DBC

(b)

Figure 8.1: Performance comparisons between UGH and competing supervised hashing
approaches for few-shot hash learning and image retrieval on the CIFAR10 dataset. X-axis:
number of training examples per category. Y-axis: mean average precision (mAP) (Fig-
ure 8.1a) and precision@2 (Figure 8.1b). With the same code length 16, our UGH signifi-
cantly outperforms these baselines for learning with few samples.

8 16 24 32
10

20

30

40

Number of Bits

m
A

P
 (

%
)

UGH (Ours)
SDH
LSH
KSH
CCA−ITQ
FastHash
DBC

(a)

8 16 24 32
10

20

30

40

Number of Bits

P
re

c
is

io
n
 (

%
)

UGH (Ours)
SDH
LSH
KSH
CCA−ITQ
FastHash
DBC

(b)

Figure 8.2: Performance comparisons between UGH and competing supervised hashing
approaches for few-shot hash learning and image retrieval on the CIFAR10 dataset. X-axis:
code length. Y-axis: mean average precision (mAP) (Figure 8.2a) and precision@2 (Fig-
ure 8.2b). With the same 10 training examples per category, our UGH consistently outper-
forms these baselines by large margins across different code lengths.

ran codes provided by the authors and used the suggested or optimized parameters in all
experiments.

Here similarity labels are defined by semantic-level labels. Images from the same cat-
egory are considered semantically similar, and vice verse. Following the standard evalu-
ation protocols [53, 129, 241, 250], each dataset is split into a large retrieval database and a
small query set. In the previous work, a large amount of random samples from the retrieval
database are used to train the hashing models [240, 250, 342, 432]. Since we are interested
in the few-shot learning scenarios, we randomly sample small size training data to select
(for our UGH) or learn (for baselines) hash codes. The number of training examples per
category varies from 1 to 100 and the length of the hash codes varies from 8 to 32 bits. The
retrieval performance on the query set is evaluated using mean average precision (mAP)
and precision within Hamming radius 2 (Precision@2). To reduce the influence of random
selection, all experiments are repeated ten times and the average mAP and precision are
reported.

103

Comparisons with Supervised Hashing. Naturally, the first and most important ques-
tion to answer is whether our UGH learned by unsupervised hyper-training indeed facili-
tates generalization to novel categories with few samples, compared to the state-of-the-art
supervised hashing methods. We answer this question on the CIFAR10 benchmark [211].
This dataset consists of 60,000 images from 10 object classes, with 6,000 images per class.
Following the standard practice [87], 50,000 images are used as the retrieval database and
10,000 images are used as the query set. This dataset is selected specifically for extensive
evaluation and analysis. We include evaluation on more changeling datasets in the later
sections.

Baselines. We compare against the state-of-the-art supervised hashing approaches, in-
cluding CCA-ITQ [129], FastHash [240], SDH [342], KSH [250], and DBC [309]. DBC is the
original supervised version of our approach. We also include the data-independent LSH as
reference. These approaches can be viewed as online binary codes, as the hash functions are
directly learned from the target dataset. In our preliminary experiments, we also tested the
recent supervised deep hashing via training neural networks [431, 432]. These approaches
typically require using the entire large-scale retrieval database for hash learning. With lim-
ited training data in our case, their performance is significantly inferior to that of other
baselines which we reported. We thus did not include their results here.

Influence of training set size. First we evaluate the performance as a function of the
number of training examples per category. The code length for all approaches is fixed
as 16: our UGH selects 16 category-specific codes from the 20,000 hash library and the
baselines directly learn the codes at length 16. Due to lack of public protocols for few-
shot learning, we randomly sample 1, 3, 5, 10, 15, 20, 25, 30, 50 and 100 images per category
from the retrieval database as the training set. Figure 8.1 summarizes the average mAP and
precision@2.

As shown in Figure 8.1, our UGH consistently outperforms all the other supervised
hashing for small-sample learning. While the vanilla hashing approaches are over-fitting in
this scenario, our universal binary representation, by leveraging large-scale unlabeled data,
is effectively learned and transferable to novel categories. In addition to the unsupervised
aspect, our code selection phase leads to both compact and discriminative codes for the
target task, making it significantly different from LSH which typically requires long binary
codes. To verify this, we tested random selection of the codes. While it is still better than the
baselines, the performance drops. e.g., in the one-shot case, the random selection achieved
18.42% mAP, which is better than 16.96% of CCA-ITQ (the best performing baselines) and
is worse than 20.80% of our UGH with discriminative code selection.

An obvious advantage of UGH over its supervised counterpart DBC is that UGH makes
it feasible to generate a large collection of hash codes based on unlabeled data. Another
promising finding, based on Figure 8.1, is that UGH demonstrates more expressive and uni-
versal capability for novel categories with few samples compared to DBC. This verifies our
assumption that information across categories is actually intrinsic in the data even without
any supervision. One explanation is that by using another large-scale dataset (e.g., Flicker-
2M) apart from where the CNN feature is learned (ILSVRC), UGH would potentially pre-
vent over-fitting and provide more generalization ability. This is similar to the case in which
models are trained on the training dataset and their parameters are tuned on another valida-
tion dataset. More importantly, we introduce a series of sampling procedures in producing
UGH to generate a diverse partition of the feature space in contrast to DBC (and other su-
pervised hashing baselines). This leads to distributed representations, which is a crucial
ingredient for generalization to new cases [34].

104

135 1015202530 50 100
0

5

10

15

Number of Training Examples per Category

m
A

P
 (

%
)

UGH (Ours)
SDH
LSH
KSH
CCA−ITQ
FastHash
DBC

(a)

135 1015202530 50 100
0

5

10

15

Number of Training Examples per Category

P
re

c
is

io
n
 (

%
)

UGH (Ours)
SDH
LSH
KSH
CCA−ITQ
FastHash
DBC

(b)

Figure 8.3: Performance comparisons between UGH and competing supervised hashing
approaches for few-shot hash learning and image retrieval on the CIFAR100 dataset. X-
axis: number of training examples per category. Y-axis: mean average precision (mAP)
(Figure 8.3a) and precision@2 (Figure 8.3b). With the same code length 16, our UGH signif-
icantly outperforms these baselines for large-scale image retrieval tasks with few training
samples.

Influence of code length. We also investigate the influence of the code length (the num-
ber of selected codes as the final descriptor) on the CIFAR10 dataset. 10 images per category
are randomly selected as the training set; the retrieval database and query set remain as be-
fore. Figure 8.2 shows the mAP and precisioin@2 achieved by UGH and the supervised
hashing baselines. These baselines directly learn the code at the desired length.

Figure 8.2 shows that UGH is more robust than other hashing competitors by maintain-
ing very stable performance across increasing code lengths. This indicates the effectiveness
of selecting category specific codes. CCA-ITQ tends to have good mAP performance; its
precision@2, however, drops drastically with longer hash codes 32, which shows its inabil-
ity to form compact clusters in the hash code space. A similar phenomenon is also observed
for FastHash. Moreover, these conventional hashing approaches are restrictive in the sense
that, for different code length, they need to re-learn the entire hash codes. On the contrary,
the unsupervised, off-line and parallel aspects of our code generation mechanism makes it
orders of magnitude faster and could be re-purposed for tasks with different desired code
length. Even with additional code selection stage, training is efficient since the implemen-
tation of SVMs with binary codes could be greatly simplified and sped up by using a logical
AND and a sparse summation for dot-products instead of floating-point calculations [39].
This favors such an approach to be used in ultra-large-scale scenarios.

Large-Scale Comparisons. We now move on to evaluate our UGH on the large-scale CIFAR100
dataset [211], which contains 100 categories with 600 images per category. Following the
standard practice [269], we randomly select 100 images per category as the query set and use
the remaining images as the retrieval database. Similar to the experimental setup as before,
we focus on the influence of the training set size. Figure 8.3 summarizes the comparisons
with the supervised baselines.

As shown in Figure 8.3, our UGH outperforms all the baselines by large margins in
this large-scale scenario. The low performance of LSH suggests that CIFAR100 is more
challenging than CIFAR10. In particular, Figure 8.3a shows that there is nearly 50% relative
mAP performance boost in the one-shot learning case. Although SDH achieves comparable
precision as our UGH when the number of samples is 100, it has a much lower mAP (3.63%

105

8 16 24 32
0

5

10

15

20

Number of Bits

m
A

P
 (

%
)

UGH (Ours)
SPH
KMH
SH
ITQ
BA

(a)

8 16 24 32
0

10

20

30

40

Number of Bits

P
re

c
is

io
n
 (

%
)

UGH (Ours)
SPH
KMH
SH
ITQ
BA

(b)

Figure 8.4: Performance comparisons between UGH and competing unsupervised hashing
approaches on the SUN-397 dataset. X-axis: code length. Y-axis: mean average precision
(mAP) (Figure 8.4a) and precision@2 (Figure 8.4b). Both UGH and the baselines learn un-
supervised hash codes over the pre-trained AlexNet features. The codes are learned on
Flickr-2M and then tested on SUN-397. Our UGH consistently generalizes better than these
baselines by large margins across different code lengths.

smaller) than ours. The improvements of UGH are more significant in the small sample
size regime (e.g., 1, 3 and 5), which is consistent with the observation on CIFAR10. While
the state-of-the-art hash codes are learned separately for different target tasks, our UGH is
inferred once off-line without knowing any target dataset, and generalizes well to the novel
task without requiring additional, extensive hash training.

Comparisons with Unsupervised Hashing. Our approach estimates diverse pseudo-classes
and learn hash functions that traverse across the low-density regions. Rather than simply
due to additional unsupervised data, this hash learning scheme is crucial for its generaliza-
tion across categories. To show this point, we further evaluate our UGH and unsupervised
hashing on the SUN-397 dataset [414]. Following the standard practice [88], we use a subset
which includes 42 categories with more than 500 images per category, leading to 35K im-
ages in total. The query set contains 4,200 images with 100 images per category randomly
sampled from the dataset. The remaining images are used as the retrieval database. We
focus on the influence of the code length.

Baselines. We compare against several state-of-the-art unsupervised hashing approaches,
including PCA-ITQ [129], binary autoencoder (BA) [53], spectral hashing (SH) [406], spher-
ical hashing (SPH) [156], and K-means hashing (KMH) [151], which are learned over the
AlexNet features. Similar to our use case, they are now used in an offline manner, in which
the codes are learned on Flickr and then tested on the target SUN-397.

Figure 8.4 shows that our UGH consistently achieves the best performance across dif-
ferent code lengths. This verifies that our generalization ability to novel tasks and cate-
gories comes not only from the generic CNN features, but also from the code generation
mechanism. In addition to the initial Max-Min sampling that enforces diversity, our UGH
introduces an additional expansion step to augment pseudo-categories with more data in
a bootstrap manner, yielding more accurate sampling of the feature space structure. We
further group the pseudo-categories into a set of abstract classes, leading to more generic
hash codes. On the contrary, the existing unsupervised hashing approaches are proposed
mainly for compression; with semantic information only coming from the input CNN fea-
tures, their generalization ability is significantly limited.

106

Part III

Learning from Evolving Data
Streams and Tasks: Rethinking

Fine-Tuning

107

Each day learn something new, and just as important,
relearn something old.

Robert Breault

109

Chapter 9

Developmental Learning:
Fine-Tuning by Increasing Model
Capacity

9.1 Motivation
We now consider learning novel categories from a medium sized number of labeled examples.
The current de facto standard is to train a deep CNN on a large enough, diverse “base” set of
data (e.g., ImageNet), and then transfer this source CNN to target tasks [16, 226, 311, 427].
Fine-tuning is by far the dominant strategy under this paradigm [16,126,145,283,311,422].
This approach was pioneered in [162] by transferring knowledge from a generative to a dis-
criminative model, and has since been generalized with great success [126, 429]. The basic
pipeline involves replacing the last “classifier” layer of a pre-trained network with a new
randomly initialized layer for the target tasks of interest. The modified network is then fine-
tuned with additional passes of appropriately tuned gradient descent on the target training
set. Virtually every contemporary visual recognition system uses this pipeline. Even though
its use is widespread, fine-tuning is still relatively poorly understood. For example, what
fraction of the pre-trained weights actually change and how? More importantly, an open
question remains how to best adapt a pre-trained CNN for novel categories/tasks.

To address these issues, in this chapter we explore developmental neural networks that
grow in model capacity as new tasks as encountered. We demonstrate that growing a net-
work, by adding additional units, facilitates knowledge transfer to new tasks. We explore
two approaches to adding units as shown in Figure 7.1: going deeper (more layers) and
wider (more channels per layer). Through visualizations, we demonstrate that these ad-
ditional units help guide the adaptation of pre-existing units. Deeper units allow for new
compositions of pre-existing units, while wider units allow for the discovery of comple-
mentary cues that address the target task. Due to their progressive nature, developmental
networks still remain accurate on their source task, implying that they can learn without
forgetting. Finally, we demonstrate that developmental networks particularly facilitate con-
tinual transfer across multiple tasks.

Our approach is loosely inspired by developmental learning in cognitive science. Hu-
mans, and in particular children, have the remarkable ability to continually transfer previously-

111

C1-C2-C3-C4-C5 FC6 FC7 FC8

Source	task

Target	task

Convolutional	layers

C1-C2-C3-C4-C5 FC6 FC7 FCa FC8

Target	task

Deeper	Developmental	Transfer

Wider	Developmental	Transfer

C1-C2-C3-C4-C5 FC6 FC7 FC8

Target	task	labels

Abbey

House

Target	task	labels

Abbey

House

Source	task	labels

Hen

Goldfish
Representation	module

Softmax

Classifier	module

Fully-connected	layers

Softmax

Softmax

FC7+

Figure 9.1: Transfer and developmental learning of pre-trained CNNs by increasing model
capacity for the recognition of novel categories from few examples. The network (e.g.,
AlexNet) is pre-trained on the source task (e.g., ImageNet classification) with abundant data
(middle row). Different from the dominant paradigm of fine-tuning a fixed-capacity model,
we grow this network when adapting it to a novel target task (e.g., SUN-397 scene classifica-
tion) in two ways: (1) going deeper by adding more layers (top) and (2) going wider by
adding more channels per layer (bottom).

acquired knowledge to novel scenarios. Much of the literature from both neuroscience [273]
and psychology [174] suggests that such sequential knowledge acquisition is intimately tied
with a child’s growth and development.

Our contributions are three-fold. (1) We first demonstrate that the dominant paradigm
of fine-tuning a fixed-capacity model is sub-optimal. (2) We explore several avenues for
increasing model capacity, both in terms of going deeper (more layers) and wider (more
channels per layer), and consistently find that increasing capacity helps, with a slight pref-
erence for widening. (3) We show that additional units must be normalized and scaled
appropriately such that the “pace of learning” is balanced with existing units in the model.
Finally, we use our analysis to build a relatively simple pipeline that “grows” a pre-trained
model during fine-tuning, producing state-of-the-art results across a large number of stan-
dard and heavily benchmarked datasets (for scene classification, fine-grained recognition,
and action recognition).

9.2 Approach Overview
Let us consider a CNN architecture pre-trained on a source domain with abundant data,
e.g., the vanilla AlexNet pre-trained on ImageNet (ILSVRC) with 1,000 categories [212,321].
We note in Figure 9.1 that the CNN is composed of a feature representation module F (e.g.,
the five convolutional layers and two fully connected layers for AlexNet) and a classifier
module C (e.g., the final fully-connected layer with 1,000 units and the 1,000 -way softmax for
ImageNet classification). Transferring this CNN to a novel task with limited training data

112

Novel	task	
image

Novel	task
ground	truth

(a) Classic Fine-Tuning

Novel	task	
image

Novel	task
ground	truth

(b) Depth Augmented Network
(DA-CNN)

Augmented
Pre-trained
Classifier

Novel	task	
image

Novel	task
ground	truth

(c) Width Augmented Network
(WA-CNN)

Novel	task	
image

Novel	task
ground	truth

(d) Jointly Depth and Width Aug-
mented Network (DWA-CNN)

Novel	task	
image

Novel	task
ground	truth

(e) Recursively Width Aug-
mented Network (WWA-CNN)

Figure 9.2: Illustration of classic fine-tuning (a) and variations of our developmental net-
works with augmented model capacity (b–e).

(e.g., scene classification of 397 categories from SUN-397 [414]) is typically done through
fine-tuning [3, 15, 173].

In classic fine-tuning, the target CNN is instantiated and initialized as follows: (1) the
representation moduleFT is copied fromFS of the source CNN with the parameters ΘFT =
ΘFS ; and (2) a new classifier model CT (e.g., a new final fully-connected layer with 397 units
and the 397 -way softmax for SUN-397 classification) is introduced with the parameters ΘCT
randomly initialized. All (or a portion of) the parameters ΘFT and ΘCT are fine-tuned by
continuing the backpropagation, with a smaller learning rate for ΘFT . Because FT and FS
have identical network structure, the representational capacity is fixed during transfer.

Our underlying thesis is that fine-tuning will be facilitated by increasing representational
capacity during transfer learning. We do so by adding S new units {us}Ss=1 into FT . As
we will show later in our experiments, this significantly improves the ability to transfer
knowledge to target tasks, particularly when fewer target examples are provided [373]. We
call our architecture a developmental network, in which the new representation moduleF∗T =
FT ∪ {us}Ss=1 , and the classifier module remains CT .

Conceptually, new units can be added to an existing network in a variety of ways. A re-
cent analysis, however, suggests that early network layers tend to encode generic features,
while later layers tend to endode task-specific features [427]. Inspired from this observation,
we choose to explore new units at later layers. Specifically, we either construct a completely
new top layer, leading to a depth augmented network (DA-CNN) as shown in Figure 9.2b, or
widen an existing top layer, leading to a width augmented network (WA-CNN) as shown in
Figure 9.2c. We will explain these two types of network configurations in Section 9.3. Their
combinations—a jointly depth and width augmented network (DWA-CNN) as shown in
Figure 9.2d and a recursively width augmented network (WWA-CNN) as shown in Fig-
ure 9.2e—will also be discussed in Section 9.4.

9.3 Developmental Networks
For the target task, let us assume that the representation module FT with fixed capacity
consists of K layers Lk, k = 1, . . . ,K with hidden activations hk ∈ Rnk , where nk is the
number of units at layer k . Let W k be the weights between layer k and layer k − 1 . That
is, hk = f

(
W khk−1

)
, where f(·) is a non-linear function, such as ReLU. For notational

113

simplicity, hk already includes a constant 1 as the last element and W k includes the bias
terms.

9.3.1 Depth Augmented Networks
A straightforward way to increase representational capacity is to construct a new top layer
La of size S using {us}Ss=1 on top of LK , leading to the depth augmented representation
moduleF∗T as shown in Figure 9.2b. We viewLa as an adaptation layer that allows for novel
compositions of pre-existing units, thus avoiding dramatic modifications to the pre-trained
layers for their adaptation to the new task. The new activations ha = f

(
W ahK

)
in layer

La become the representation that is fed into the classifier module CT , whereW a denotes
the weights between layers La and LK .

9.3.2 Width Augmented Networks
An alternative way is to expand the network by adding {us}Ss=1 to some existing layers
while keeping the depth of the network fixed as shown in Figure 9.2c. Without loss of
generality, we add all the units to the top layer LK . Now the new top representation layer
L∗K consists of two blocks: the original LK and the added L+

K with units {us}Ss=1 , leading
to the width augmented representation module F∗T . The connection weights between LK
and the underneath layer LK−1 remains, i.e., hK=f

(
WKhK−1

)
. We introduce additional

lateral connection weights WK+ between L+
K and LK−1 , which are randomly initialized,

i.e., hK+

=f
(
WK+

hK−1
)

. Finally, the concatenated activations
[
hK ,hK

+
]

of size nK+S

from layer L∗K are fed into the classifier module.

9.3.3 Learning at the Same Pace
Ideally, our hope is that the new and old units cooperate with each other to boost the target
performance. For width augmented networks, however, the units start to learn at a different
pace during fine-tuning: while the original units at layer Lk are already well learned on the
source domain and only need a small modification for adaptation, the new set of units at
layer L+

k are just set up through random initialization. They thus have disparate learning
behaviors, in the sense that their activations generally have different scales. Naı̈vely con-
catenating these activations would restrict the corresponding units, leading to degraded
performance and even causing collapsed networks, since the larger activations dominate
the smaller ones [249]. Although the weights might adjust accordingly as fine-tuning pro-
cesses, they require very careful initialization and tuning of parameters, which is dataset
dependent and thus not robust. This is partially the reason that the previous work showed
that network expansion was inferior to standard fine-tuning [238].

To reconcile the learning pace of the new and pre-existing units, we introduce an addi-
tional normalization and adaptive scaling scheme in width augmented networks, which is
inspired by the recent work on combining multi-scale pre-trained CNN features from dif-
ferent layers [249]. More precisely, after weight initialization of F∗T , we first apply an L2

-norm normalization to the activations hk and hk+ , respectively:

ĥk = hk
/∥∥hk∥∥

2
, ĥk

+

= hk
+
/∥∥∥hk+∥∥∥

2
. (9.1)

114

By normalizing these activations, their scales become homogeneous. Simply normalizing
the norms to 1 slows down the learning and makes it hard to train the network, since the
features become very small. Consistent with [249], we normalize them to a larger value
(e.g., 10 or 20), which encourages the network to learn well. We then introduce a scaling
parameter γ for each channel to scale the normalized value as in [249]:

yki = γiĥ
k
i , y

k+

j = γj ĥ
k+

j . (9.2)

which is motivated by batch normalization [177] and PReLU [153].
We found that for depth augmented networks, while this additional stage of normal-

ization and scaling is not crucial, it is still beneficial. In addition, this stage only introduces
negligible extra parameters, whose number is equal to the total number of channels. During
fine-tuning, following [249], the derivatives with respect to the scaling factor γ and activa-
tions h are computed by backpropagation and chain rule. Let ` be the loss to minimize, e.g.,
the softmax loss. We then have

∂`

∂ĥ
=
∂`

∂y
· γ, (9.3)

∂`

∂h
=
∂`

∂ĥ

(
I

‖h‖2
− hh

T

‖h‖32

)
, (9.4)

∂`

∂γi
=
∑
yi

∂`

∂yi
ĥi. (9.5)

The summation
∑
yi

in Eqn. (9.5) runs over all positions of the feature map for channel i .

9.4 Experimental Evaluation
In this section, we explore the use of our developmental networks for transferring a pre-
trained CNN to a number of supervised learning tasks with insufficient data, including
scene classification, fine-grained recognition, and action recognition. We begin with exten-
sive evaluation of our approach on scene classification of the SUN-397 dataset, focusing
on the variations of our networks and different design choices. We also show that the net-
work remains accurate on the source task. We then provide an in-depth analysis of fine-
tuning procedures to qualitatively understand why fine-tuning with augmented network
capacity outperforms classic fine-tuning. We further evaluate our approach on other novel
categories and compare with state-of-the-art approaches. Finally, we investigate whether
progressive augmenting outperforms fine-tuning a fixed large network and investigate how
to cumulatively add new capacity into the network when it is gradually adapted to multiple
tasks.

Implementation details. Following the standard practice, for computational efficiency
and easy fine-tuning we use the Caffe [185] implementation of AlexNet [212], pre-trained on
ILSVRC 2012 [321], as our reference network in most of our experiments. We found that our
observations also held for other network architectures, such as VGG [347] and ResNet [154].
We also provide a set of experiment using VGG16 [347]. For the target tasks, we randomly
initialize the classifier layers and our augmented layers. During fine-tuning, after resizing

115

the image to be 256 × 256 , we generate the standard augmented data including random
crops and their flips as implemented in Caffe [185]. During testing, we only use the central
crop, unless otherwise specified. For a fair comparison, fine-tuning is performed using
stochastic gradient descent (SGD) with the “step” learning rate policy, which drops the
learning rate in steps by a factor of 10 . The new layers are fine-tuned at a learning rate 10
times larger than that of the pre-trained layers (if they are fine-tuned). We use standard
momentum 0.9 and weight decay 0.0005 without further tuning.

9.4.1 Evaluation and Analysis on SUN-397

We start our evaluation on scene classification of the SUN-397 dataset, a medium-scale
dataset with around 108K images and 397 classes [414]. In contrast to other fairly small-
scale target datasets, SUN-397 provides sufficient number of categories and examples while
demonstrating apparent dissimilarity with the source ImageNet dataset. This greatly bene-
fits our insight into fine-tuning procedures and leads to clean comparisons under controlled
settings.

We follow the experimental setup in [3, 173], which uses a nonstandard train/test split
since it is computationally expensive to run all of our experiments on the 10 standard sub-
sets proposed by [414]. Specifically, we randomly split the dataset into train, validation, and
test parts using 50% , 10% , and 40% of the data, respectively. The distribution of categories
is uniform across all the three sets. We report 397 -way multi-class classification accuracy
averaged over all categories, which is the standard metric for this dataset. We report the
results using a single run due to computational constraints. Consistent with the results
reported in [3,173], the standard deviations of accuracy on SUN-397 classification are neg-
ligible, and thus having a single run should not affect the conclusions that we draw. For a
fair comparison, fine-tuning is performed for around 60 epochs using SGD with an initial
learning rate of 0.001 , which is reduced by a factor of 10 around every 25 epochs. All the
other parameters are the same for all approaches.

Learning with Augmented Network Capacity. We first evaluate our developmental net-
works obtained by introducing a single new layer to deepen or expand the pre-trained
AlexNet. For the depth augmented network (DA-CNN), we add a new fully connected layer
FCa of size SD on top of FC7 whose size is 4,096 , where SD ∈ {1,024, 2,048, 4,096, 6,144}
. For the width augmented network (WA-CNN), we add a set of SW new units as FC+

7

to FC7 , where SW ∈ {1,024, 2,048} . After their structures are adapted to the target task,
the networks then continue learning in four scenarios of gradually increasing the degree of
fine-tuning: (1) “New”: we only fine-tune the new layers, including the classifier layers and
the augmented layers, while freezing the other pre-trained layers (i.e., the off-the-shelf use
case of CNNs); (2) “ FC7 –New”: we fine-tune from the FC7 layer; (3) “ FC6 –New”: we
fine-tune from the FC6 layer; (4) “All”: we fine-tune the entire network.

Table 9.1 summarizes the performance comparison with classic fine-tuning. The per-
formance gap between our implementation of the fine-tuning baseline and that in [3, 173]
is mainly due to different number of iterations: we used twice of the number of epochs in
[3, 173] (30 epochs), leading to improved accuracy. Note that these numbers cannot be di-
rectly compared against other publicly reported results due to different data split. With rel-
atively sufficient data, fine-tuning through the full network yields the best performance for
all the approaches. Both our DA-CNN and WA-CNN significantly outperform the vanilla

116

Network Type Method Acc (%)
New FC7–New FC6–New All

AlexNet

Baselines
Finetuning-CNN 53.63 54.75 54.29 55.93

[3, 173] 48.4 — 51.6 52.2
Single
(Ours)

DA-CNN 54.24 56.48 57.42 58.54
WA-CNN 56.81 56.99 57.84 58.95

Combined
(Ours)

DWA-CNN 56.07 56.41 56.97 57.75
WWA-CNN 56.65 57.10 58.16 59.05

VGG16
Baselines Finetuning-CNN 60.77 59.09 50.54 62.80

Single
(Ours)

DA-CNN 61.21 62.85 63.07 65.55
WA-CNN 63.61 64.00 64.15 66.54

Table 9.1: Performance comparisons of classification accuracy (%) between the variations
of our developmental networks with augmented model capacity and classic fine-tuning with
fixed model capacity on scene classification of the SUN-397 dataset. The variations include:
(1) for AlexNet, depth augmented network (DA-CNN), width augmented network (WA-
CNN), jointly depth and width augmented network (DWA-CNN), and recursively width
augmented network (WWA-CNN); and (2) for VGG16, DA-CNN and WA-CNN. Both our
networks and the baselines are evaluated in four scenarios of gradually increasing the de-
gree of fine-tuning, including fine-tuning only new layers, from FC7 to new layers, from
FC6 to new layers, and the entire network. Ours consistently and significantly outperform
the vanilla fine-tuned CNN for both AlexNet and VGG16 CNNs in all these scenarios. This
shows the generality of our approach.

fine-tuned CNN in all the different fine-tuning scenarios. This verifies the effectiveness of in-
creasing model capacity when adapting it to a novel task. While they have achieved com-
parable performance, WA-CNN slightly outperforms DA-CNN.

Increasing the Network Capacity through Combination or Recursion. Given the promise
of DA-CNN and WA-CNN, we further augment the network by making it both deeper and
wider or two-layer wider. For the jointly depth and width augmented network (DWA-CNN)
(Figure ??), we add FCa of size SDW on top of FC7 while expanding FC7 using FC+

7 of
size SDW , where SDW ∈{1,024, 2,048} . For the recursively width augmented network
(WWA-CNN) (Figure ??), we both expand FC7 using FC+

7 of size SWW
7 and FC6 using

FC+
6 of size SWW

6 , where SWW
7 ∈{1,024, 2,048, 4,096} and SWW

6 is half of SWW
7 .

We compare DWA-CNN and WWA-CNN with DA-CNN and WA-CNN in Table 9.1. The
two-layer WWA-CNN generally achieves the best performance, indicating the importance
of augmenting model capacity at different and complementary levels. The jointly DWA-
CNN lags a little bit behind the purely WA-CNN. This implies different learning behaviors
when we make the network deeper or wider. Their combination thus becomes a non-trivial
task.

Diagnostic Analysis. While we summarize the best performance in Table 9.1, a diagnostic
experiment in Table 9.2 on the number of augmented unitsSD , SW , SDW , andSWW shows
that all of these variations of network architectures significantly outperform classic fine-tuning, in-

117

Method Configuration New FC7–New FC6-New All

DA-
CNN

FCa–1,024 53.36 56.31 57.22 57.98
FCa–2,048 53.82 56.47 57.14 58.07
FCa–4,096 54.02 56.46 57.41 58.32
FCa–6,144 54.24 56.48 57.42 58.54

WA-
CNN

FC+
7 –1,024 56.46 56.71 57.55 58.90

FC+
7 –2,048 56.81 56.99 57.84 58.95

DWA-
CNN

FC+
7 –1,024–FCa–1,024 55.44 55.77 56.71 57.49

FC+
7 –2,048-FCa–2,048 56.07 56.41 56.97 57.75

WWA-
CNN

FC+
6 –512–FC+

7 –1,024 56.13 57.10 57.65 58.80
FC+

6 –1,024–FC+
7 –2,048 56.49 57.10 57.98 59.05

FC+
6 –2,048–FC+

7 –4,096 56.65 57.03 58.16 58.98

Table 9.2: Diagnostic analysis of classification accuracy (%) for the variations of our develop-
mental network (including DA-CNN, WA-CNN, DWA-CNN, and WWA-CNN) with differ-
ent number of new units on SUN-397. Our networks demonstrate consistent improvements
over the conventional fine-tuning, indicating the generality and robustness of augmenting
model capacity for learning a novel task.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
54

55

56

57

58

59

60

Percentage of New Units in FC
+
7

A
cc

u
ra

cy
 (

%
)

Performance Comparison

FT−All
FT−New

Figure 9.3: Analysis of unit allocation for two-layer width augmented networks that expand
both FC7 and FC6 with a total of 2,000 new units on SUN-397. X-axis: percentage of the
new units allocated to FC+

7 . Y-axis: multi-class classification accuracy. We evaluate in the
fine-tuning “New” and “All” scenarios. The optimal pattern is a spread allocation where
the higher layer FC+

7 takes the majority of new units.

dicating the robustness of our approach. We found that this observation was also consistent
with other datasets, which we evaluated in the later section. Overall, the performance in-
creases with the augmented model capacity (represented by the size of augmented layers),
although the performance gain diminishes with the increasing number of new units.

118

Method Scaling New FC7–New FC6–New All

DA-CNN
FCa–2,048

w/o 53.82 56.47 56.25 57.21
w/ 53.51 56.15 57.14 58.07

WA-CNN
FC+

7 –2,048)

w/o (rand) 53.78 54.66 49.72 51.34
w/o (copy+rand) 53.62 54.35 53.70 55.31

w/ 56.81 56.99 57.84 58.95

Table 9.3: Performance comparisons of classification accuracy (%) for our depth (DA-CNN)
or width (WA-CNN) augmented network with and without introducing normalization and
scaling on SUN-397. The number of new units in FCa for DA-CNN or in FC+

7 for WA-CNN
is generally 2,048. Our normalization and scaling strategy reconciles the learning pace of
new and old units, and thus greatly benefits both types of networks, in particular WA-CNN.

Allocation of Units under a Size Budget. An interesting question arises from the above
analysis: given a budget of fixed number of new units, what is an optimal pattern of unit
allocation to different layers? We analyze this issue in the scenario of two-layer width aug-
mented network since it has achieved the best performance. Specifically, we expand both
FC7 and FC6 using a total of 2,000 new units, i.e., SWW

7 + SWW
6 = 2,000. We change the

size of the expanded layers FC+
7 and FC+

6 linearly in a step size of 200 while satisfying the
constraint of the total number of units, resulting in 11 WWA-CNN architectures. We then
fine-tune them in the “New” and “All” scenarios.

Figure 9.3 shows that all of these network variations are beneficial and outperform con-
ventional fine-tuning, which is consistent with the results in Table 9.2. Importantly, diffu-
sion of new units across both FC7 and FC6 leads to the best performance. This suggests
that a better strategy when augmenting the capacity is to expand somehow at different lay-
ers rather than focus on a sole layer. In addition, the augmented structure that achieves
the best performance demonstrates the shape of inverted triangle, in which the higher layer
FC+

7 takes the majority of new units. This is partially because FC6 is more generic to dif-
ferent tasks while FC7 is more specific to the original task, making it require more capacity
(new units) to represent the novel target.

Importance of Reconciling the Learning Pace of New and Old Units. The previous work
showed that network expansion did not introduce additional benefits [238]. We argue that
its unsatisfactory performance is because of the failure of taking into account the different
learning pace of new and old units. After exploration of different strategies, such as ini-
tialization, we found that the performance of a width augmented network significantly im-
proves by a simple normalization and scaling scheme when concatenating the pre-trained
and expanded layers. This issue is investigated for both types of model augmentation in
Table 9.3. The number of new units is generally 2,048 ; in the case of copying weights of the
pre-trained FC7 and then adding random noises as initialization for FC+

7 , we use 4,096
new units.

For WA-CNN, if we naı̈vely add new units without considering scaling, Table 9.3 shows
that the performance is either only marginally better or even worse than classic fine-tuning
(when fine-tuning more aggressively) in Table 9.1. This is consistent with the observation

119

made in [238]. However, once the learning pace of the new and old units is re-balanced by
scaling, WA-CNN exceeds the baseline by a large margin. For DA-CNN, directly adding
new units without scaling already greatly outperforms the baseline, which is consistent
with the observation in [283], although scaling provides additional performance gain. This
suggests slightly different learning behaviors for depth and width augmented networks.
When a set of new units are added to form a purely new layer, they have relatively more
freedom to learn from scratch, making the additional scaling beneficial yet inessential. When
the units are added to expand a pre-trained layer, however, the constraints from the synergy
require them to learn to collaborate with the pre-existing units, which is explicitly achieved
by the additional scaling.

Evaluation with the VGG16 Architecture. Table 9.1 also summarizes the performance of
DA-CNN and WA-CNN using VGG16 [347] and shows the generality of our approach. Due
to GPU memory and time constraints, we reduce the batch size and perform fine-tuning
for around 30 epochs using SGD. All the other parameters are the same as before. Also,
following the standard practice in Fast R-CNN [125], we fine-tune from the layer Conv2 1
in the “All” scenario.

Learning without Forgetting. Conceptually, due to their developmental nature, our net-
works should remain accurate on their source task. Table 9.4 validates such ability of learn-
ing without forgetting by showing their classification performance on the source ImageNet
dataset.

Type Method Acc (%)

Oracle ImageNet-AlexNet 56.9

References LwF [238] 55.9
Joint [238] 56.4

Ours
DA-CNN 55.3
WA-CNN 51.5

Table 9.4: Demonstration of the ability of learning without forgetting on the source (ImageNet)
ILSVRC 2012 validation set. For our DA-CNN and WA-CNN that are fine-tuned on SUN-
397, we re-fine-tune on the source ILSVRC 2012 training set, i.e., re-training a new 1,000-way
classifier layer and fine-tuning the augmented layers. We show the results of the oracle (i.e.,
the original AlexNet) and the approaches that are specifically designed to preserve the perfor-
mance on the source task during transfer [238] as references. While our approach focuses
on improving the performance on the target task, it remains accurate on the source task. In
addition, the existing approaches [238] can be naturally incorporated into our approach to
further improve the performance on both source and target tasks.

120

(a) Pre-Trained Network

(b) Classic Fine-Tuning

(c) Depth Augmented
Network (DA-CNN)

(d) Width Augmented
Network (WA-CNN)

Figure 9.4: t-SNE visualizations of the top feature layers on the SUN-397 validation set. DA-
CNN and WA-CNN show significantly better semantic separations. Best viewed in color
with zoom.

9.4.2 Understanding of Fine-Tuning Procedures
We now analyze the fine-tuning procedures from various perspectives to gain insight into
how fine-tuning modifies the pre-trained network and why it helps by increasing model
capacity. We evaluate on the SUN-397 validation set. For a clear analysis and comparison,
we focus on DA-CNN and WA-CNN, both with 2,048 new units.

Feature Visualization

To roughly understand the topology of the feature spaces, we visualize the features using
the standard t-SNE algorithm [384]. As shown in Figure 9.4, we embed the 4,096 -dim FC7

features of the pre-trained and fine-tuned networks, the 6,144 -dim wider FC7 + FC+
7 fea-

tures, and the 2,048 -dim deeper FCa features into a 2 -dim space, respectively, and plot
them as points colored depending on their semantic category. While classic fine-tuning
somehow improves the semantic separation of the pre-trained network, both of our net-
works demonstrate significantly clearer semantic clustering structures, which is compatible
with their improved classification performance.

Maximally Activating Images

To further analyze how fine-tuning changes the feature spaces, we retrieve the top-5 images
that maximally activate some unit as in [126]. We first focus on the common units in FC7

of the pre-trained, fine-tuned, and width augmented networks. In addition to using the
SUN-397 images, we also include the maximally activating images from the ILSVRC 2012
validation set for the pre-trained network as references. Figure 9.5 shows an interesting
transition: while the pre-trained network learns certain concentrated concept specific to the
source task (left), such concept spreads over as a mixture of concepts for the novel target task
(middle left). Fine-tuning tries to re-centralize one of the concepts suitable to the target task,
but with limited capability (middle right). Our width augmented network facilitates such
re-centralization, leading to more discriminative patterns (right). Similarly, we illustrate the

121

Figure 9.5: Top 5 maximally activating images for eight FC7 units. From left to right:
ILSVRC 2012 validation images for the pre-trained network, and SUN-397 validation im-
ages for the pre-trained, fine-tuned, and width augmented (WA-CNN) networks. Each row
of images corresponds to a common unit from these networks, indicating that our WA-
CNN facilitates the specialization of the pre-existing units towards the novel target task.
For example, the bottom row shows a transition from a parallel pattern in the pre-trained
ImageNet network to several mixed concepts in the fine-tuned network, and finally to a
pattern converging to vanishing points in our SUN-397 WA-CNN.

maximally activating images for units inFCa of the depth augmented network in Figure 9.6,
which shows quite different behaviors. Compared with the object-level concepts in the
width augmented network, the depth augmented network appears to have the ability to
model a large set of compositions of the pre-trained features and thus generates more scene-
level, better clustered concepts.

Additional visualizations of maximally activating images are in Figure 9.7 and Figure 9.8
for the width augmented network and in Figure 9.9 and Figure 9.10 for the depth augmented
network.

9.4.3 Generalization to Other Tasks and Datasets
We now evaluate whether our developmental networks facilitate the recognition of other
novel categories. We compare with publicly available baselines and report multi-class clas-
sification accuracy. While the different variations of our networks outperform these base-
lines, we mainly focus on the width augmented networks (WA-CNN).

Tasks and datasets. We evaluate on standard benchmark datasets for scene classifica-
tion: MIT-67 [375], for fine-grained recognition: Caltech-UCSD Birds (CUB) 200-2011 [389]
and Oxford 102 Flowers [279], and for action recognition: Stanford-40 actions [425]. These
datasets are widely used for evaluating the CNN transferability [15], and we consider their
diversity and coverage of novel categories. We follow the standard experimental setup (e.g.,
the train/test splits) for these datasets as detailed in Chapter 3.

Baselines. While comparing with classic fine-tuning is the fairest comparison, to show
the superiority of our approach, we also compare against other baselines that are specifically
designed for certain tasks. For a fair comparison, we focus on the approaches that use single

122

Figure 9.6: Top 5 maximally activating images from the SUN-397 validation set for fourteen
FCa units of the depth augmented network (DA-CNN). Each row of 5 images in the left
and right columns corresponds to a unit, respectively, which is well aligned to a scene-level
concept for the target task.

scale AlexNet CNNs. Importantly, our approach can be also combined with other CNN
variations (e.g., VGG-CNN [347], multi-scale CNN [145,422]) for further improvement.

Table 9.5 shows that our approach achieves state-of-the-art performance on these chal-
lenging benchmark datasets and significantly outperforms classic fine-tuning by a large
margin. In contrast to task customized CNNs that are only suitable for particular tasks and
categories, the consistently superior performance of our approach suggests that it is generic
for a wide spectrum of tasks.

9.5 A Single Universal Higher Capacity Model?

One interesting question is that our results could imply that standard models should have
used higher capacity even for the source task (e.g., ImageNet). To examine this, we explore
progressive widening of AlexNet (WA-CNN). Specifically, in the source domain, Table 9.6
shows that progressive widening of a network outperforms a fixed wide network trained
from scratch. More importantly, in the target domain, Table 9.7 shows that our progressive
widening significantly outperforms fine-tuning a fixed wide network.

123

Type MIT-67 102 Flowers CUB200-2011 Stanford-40
Approach Acc(%) Approach Acc(%) Approach Acc(%) Approach Acc(%)

ImageNet CNNs
Finetuning-CNN 61.2 Finetuning-CNN 75.3 Finetuning-CNN 62.9 Finetuning-CNN 57.7
Caffe [422] 59.5 CNN-SVM [311] 74.7 CNN-SVM [311] 53.3 Deep Standard [16] 58.9
— — CNNaug-SVM [311] 86.8 CNNaug-SVM [311] 61.8 — —

Task Customized
CNNs

Caffe-DAG [422] 64.6 LSVM [301] 87.1 LSVM [301] 61.4 Deep Optimized [16] 66.4
— — MsML+ [301] 89.5 DeCaf+DPD [91] 65.0 — —
Places-CNN [437] 68.2 MPP [426] 91.3 MsML+ [301] 66.6 — —
— — Deep Optimized [16] 91.3 MsML+* [301] 67.9 — —

Data Augmented CNNs Combined-AlexNet [190] 58.8 Combined-AlexNet [190] 83.3 — — Combined-AlexNet [190] 56.4

Multi-Task CNNs
Joint [238] 63.9 — — Joint [238] 56.6 — —
LwF [238] 64.5 — — LwF [238] 57.7 — —

Ours WA-CNN 66.3 WA-CNN 92.8 WA-CNN 69.0 WA-CNN 67.5

Table 9.5: Performance comparisons of classification accuracy (%) between our develop-
mental networks (WA-CNN) and the previous work for scene classification, fine-grained
recognition, and action recognition. We roughly divide the baselines into four types: (1)
ImageNet CNNs, which post-process the off-the-shelf CNN or fine-tune it in a standard
manner; (2) task customized CNNs, which modify a standard CNN for a particular target
task (e.g., for MIT-67, Places-CNN trains a customized CNN on the Places dataset with 400
scene categories [437]); (3) data augmented CNNs, which concatenate features from the Im-
ageNet AlexNet and an additional CNN trained on 100 million Flickr images in a weakly
supervised manner [190]; (4) multi-task CNNs, which (approximately) train a CNN jointly
from both the source and target tasks. Ours show consistently superior performance and
generality for a wide spectrum of tasks.

Dataset CNN WA-CNN-scratch WA-CNN-grow (Ours)

ImageNet 56.9 57.6 57.8

Table 9.6: Performance comparisons of classification accuracy (%) on the source dataset be-
tween a standard AlexNet (CNN), a wide AlexNet trained from scratch (WA-CNN-scratch),
and a wide network trained progressively by fine-tuning on the source task itself (WA-CNN-
grow). Progressive learning appears to help even on the source task.

Dataset CNN-FT WA-CNN-ori WA-CNN-grow (Ours)

MIT-67 61.2 62.3 66.3
CUB200-2011 62.9 63.2 69.0

Table 9.7: Performance comparisons of classification accuracy (%) on the target datasets
between standard fine-tuning of a standard AlexNet (CNN-FT), standard fine-tuning of
a wide AlexNet (WA-CNN-ori), and fine-tuning by progressive widening of a standard
AlexNet (WA-CNN-grow). With the same model capacity, WA-CNN-grow significantly
outperforms WA-CNN-ori. See Figure 9.11 for a discussion.

124

1 2 3 4

Iteration (1e3)

20

30

40

50

60

70
A

c
c
u

ra
c
y
 (

%
)

WA-CNN-ori

1 2 3 4

Iteration (1e3)

0

20

40

60

A
c
c
u

ra
c
y
 (

%
)

WA-CNN-grow

Figure 9.11: Learning curves of separate FC7 and FC+
7 and their combination for WA-

CNN on the CUB200-2011 test set. Left and Right show different learning behaviors: the
FC+

7 curve is below the FC7 curve for WA-CNN-ori, and above for WA-CNN-grow. Units
in WA-CNN-ori appear to overly-specialize to the source, while the new units in WA-CNN-
grow appear to be diverse experts better tuned for the novel target task. Interestingly, these
experts allow for better adaptation of pre-existing and new units (Figure 9.12).

Figure 9.12: Top 5 maximally activating CUB200-2011 images for a representative FC7 unit
(1st row) and an FC+

7 unit (2nd row). Each row of images corresponds to a common unit
from two networks: WA-CNN-ori (left) and WA-CNN-grow (right). Compared to WA-
CNN-ori, WA-CNN-grow facilitates the adaptation of pre-existing and new units towards
the novel task by capturing discriminative patterns (top: birds in water; bottom: birds with
yellow belly).

9.5.1 Cooperative Learning
Figure 9.11 and Figure 9.12 provide an in-depth analysis of the cooperative learning behav-
ior between the pre-existing and new units and show that developmental learning appears
to regularize networks in a manner that encourages diversity of units.

9.5.2 Continual Transfer across Multiple Tasks
Transfer across multiple tasks or datasets is of interest in real-world scenarios. Our ap-
proach is in particular suitable for such scenarios since we are able to cumulatively increase
the model capacity and thus transfer knowledge from a series of previous tasks for the new
one. In Table 9.8, we focus on MIT-67 as the target task. According to the similarity mea-
sure between the source and target datasets [16, 70], SUN-397 is more similar to the source
ImageNet dataset than MIT-67. Our approach is suitable for such multi-task transfer since

125

WA-CNN (Ours) Baselines
Scenario ImageNet→MIT67 ImageNet→SUN→MIT67 Places [437] ImageNet-VGG [238]

Acc(%) 66.3 79.3 68.2 74.0

Table 9.8: Through progressive growing via SUN-397, a widened AlexNet significantly im-
proves the performance on MIT-67, and even outperforms fine-tuning a Places AlexNet that
is directly trained on the Places dataset with 400 scene categories [437] and fine-tuning a
fixed ImageNet VGG16 with higher capacity by a large margin.

it facilitates smooth transfer across tasks, i.e., gradual transfer starting from target tasks that
are similar to the source task and then moving to target tasks that are dissimilar to the
source task. Specifically, using our width augmented network (WA-CNN), from the pre-
trained ImageNet AlexNet, we first add 2,048 new units as FC+

7 and transfer on SUN-397;
we then further add 1,024 new units as FC++

7 and transfer on MIT-67. Table 9.8 shows
that by leveraging additional data from SUN-397 and shared knowledge across multiple
tasks, the performance on the target MIT-67 significantly improves. In particular, the per-
formance even outperforms Places AlexNet that is directly trained using the Places dataset with 400
scene categories [437] and outperforms more powerful ImageNet VGG that is directly transferred on
MIT-67 [238] by a large margin. Our approach is in particular suitable for continual, smooth
transfer across multiple tasks since we are able to cumulatively increase model capacity as
demonstrated in Table 9.8.

126

Unit a

Unit b

Unit c

Unit d

Unit e

Figure 9.7: Top 5 maximally activating images for five FC7 units (from top to bottom). For
each unit, top left: 5 ILSVRC 2012 validation images for the pre-trained network as ref-
erence; top right: 5 SUN-397 validation images for the pre-trained network; bottom left:
5 SUN-397 validation images for the conventional fine-tuned network; and bottom right:
5 SUN-397 validation images for our width augmented network (WA-CNN). Each set of
images in the sub-figure correspond to a common unit from these networks, indicating a
transition that shows how fine-tuning with fixed and augmented capacity changes the pre-
trained network. In particular, our WA-CNN facilitates the specialization of the pre-existing
units towards the novel target task. e.g., unit e shows a transition from a menu-like smooth sur-
face in the pre-trained ImageNet network to several mixture of concepts in the fine-tuned
network, and finally to a ocean-sky-view-like smooth surface in our SUN-397 WA-CNN.

127

Unit f

Unit g

Unit h

Unit i

Unit j

Figure 9.8: Top 5 maximally activating images for five FC7 units (from top to bottom). For
each unit, top left: 5 ILSVRC 2012 validation images for the pre-trained network as ref-
erence; top right: 5 SUN-397 validation images for the pre-trained network; bottom left:
5 SUN-397 validation images for the conventional fine-tuned network; and bottom right:
5 SUN-397 validation images for our width augmented network (WA-CNN). Each set of
images in the sub-figure correspond to a common unit from these networks, indicating a
transition that shows how fine-tuning with fixed and augmented capacity changes the pre-
trained network. In particular, our WA-CNN facilitates the specialization of the pre-existing
units towards the novel target task. e.g., unit f shows a transition from a penguin-like verti-
cally repeated pattern in the pre-trained ImageNet network to several mixture of concepts
in the fine-tuned network, and finally to a wardrobe-like vertically repeated pattern in our
SUN-397 WA-CNN.

128

Figure 9.9: Top 5 maximally activating images from the SUN-397 validation set for twenty-
four FCa units in our depth augmented network (DA-CNN). From the left to right column,
each row of 5 images correspond to a unit. Different from the object-level concepts discov-
ered in the width augmented network, DA-CNN appears to have the ability to model a large
set of new compositions of pre-existing units and thus generates more scene-level, better clustered
concepts towards the novel target task, e.g., auditorium and veterinary room in the first row.

129

Figure 9.10: Top 5 maximally activating images from the SUN-397 validation set for twenty-
four FCa units in our depth augmented network (DA-CNN). From the left to right column,
each row of 5 images correspond to a unit. Different from the object-level concepts discov-
ered in the width augmented network, DA-CNN appears to have the ability to model a large
set of new compositions of pre-existing units and thus generates more scene-level, better clustered
concepts towards the novel target task, e.g., bullring and castle in the first row.

130

Chapter 10

Factorized Convolutional
Networks: Unsupervised
Fine-Tuning for Image Clustering

10.1 Motivation
In the conventional paradigm and our modification in Chapter 9, fine-tuning requires an-
notated target data, and we use the term “supervised fine-tuning” to refer it. However, in
scenarios where there are no labeled images for novel categories or tasks (e.g., in image
clustering applications), such supervised fine-tuning is inapplicable and how to best adapt
a pre-trained CNN still remains an open challenge. Hence, we propose “unsupervised fine-
tuning” as a new paradigm to address this issue.

To this end, we transfer knowledge from a discriminative to a generative model and explore
“factorized convolutional networks” (FCNs) that fine-tune the pre-trained CNN representa-
tions in an unsupervised manner. Given unlabeled target images, a factorization of the CNN
representations is learned using low-rank and group-sparsity constraints. Inspired by the
success of non-negative matrix factorization (NMF) [227,402] in clustering applications, we
introduce a novel NMF based adaptation module with a generative loss that can be plugged
into any standard CNN to facilitate the desired unsupervised transfer. As a classic multi-
variate analysis technique, the appeal of NMF is the ability to disentangle exploratory fac-
tors of variations underlying unlabeled, non-negative data samples as well as the inherent
clustering property. Intuitively, the CNN activations of interest are those after the rectified
linear units (ReLUs), which consistently show better recognition performance for various
tasks and which are also non-negative. It is thus natural to investigate NMF techniques on
top of CNN activations for image clustering, as shown in Figure 10.1.

More precisely, our key insight is to effectively adapt between the source and target
tasks by both utilizing generic statistics learned from a large corpus of labeled source im-
ages through CNNs and separating out the current underlying factors of variation relevant
to the observed, unlabeled target data via NMF. To better select a group of correlated CNN
activations, we propose a variant of NMF — group-sparse NMF (GSNMF), which identi-
fies a rich set of informative and discriminative latent variables across tasks. Given that
NMF/GSNMF could also be interpreted as a two-layer neural network [227], our GSNMF

131

Input	Layer

Group	SparsityNMF

Input	Layer

Group-Sparse NMF

Figure 10.1: Unsupervised transfer of pre-trained CNN representations to novel target tasks
with unlabeled data via a factorized convolutional network (FCN). Off-the-shelf features that
are extracted from CNNs pre-trained on ImageNet are limited to describing subtle differ-
ences among novel fine-grained categories, as visualized by embedding the features in a
2-dim space via t-SNE [384] (left). By leveraging group-sparse non-negative matrix factor-
ization (GSNMF), unsupervised fine-tuning is accomplished and features extracted from the
resulting GSNMF-FCN model lead to more discriminative clusters (right). We thus learn a
better representation with enhanced transferability for target tasks with unlabeled data, in
which conventional supervised fine-tuning with back-propagation is inapplicable.

based FCN is then regarded as a principled feed-forward model. This allows to fine-tune
the resulting augmented architecture (i.e., modifying the CNN parameters as well) on the
target task with respect to a NMF based objective using stochastic gradient descent and
back-propagation.

Our contributions are four-fold. (1) Different from the conventional strategy that trans-
fers knowledge from a generative to a discriminative model [162], we propose a novel way
of CNN transfer — supervised, discriminative pre-training and then unsupervised, genera-
tive fine-tuning. (2) Based on this general principle, we show how factorized convolutional
networks (FCNs), which combine NMF and pre-trained CNN, learn a more generic fea-
ture representation across tasks. (3) We show how to explicitly enforce group-sparsity on
FCN to better leverage the correlation of CNN activations by introducing elastic net regu-
larization into NMF. (4) Our unsupervised fine-tuning is general; it could be used in image
clustering tasks and also used as unsupervised initialization to further improve classifica-
tion tasks. Finally, to the best of our knowledge, we are the first to evaluate the performance
of image clustering on challenging large-scale scene and fine-grained recognition datasets,
producing state-of-the-art results.

10.2 Unsupervised Feature Learning and Image Clustering
Unsupervised feature learning. Unsupervised feature learning focuses on discovering
low-dimensional features that capture some structure underlying the high-dimensional un-
labeled data. Classic approaches include principal component analysis (PCA) [188], inde-

132

pendent component analysis (ICA) [175], and locally linear embedding (LLE) [320]. In-
spired by the hierarchical architecture of the neural system, many new schemes that stack
multiple layers of simple learning blocks, such as sparse coding [230], restricted Boltz-
mann machines (RBMs) [161], auto-encoders [131], and NMF [227], have been proposed
to build deep representations [231, 403]. One similar work is the deep semi-NMF model,
which stacks semi-NMF together to learn low-dimensional feature representations [377].
Another similar work is the deep linear discriminant analysis model, which projects high-
dimensional observations to linearly separable representations [93].

Different from the previous work, we combine a NMF layer with a pre-trained deep
CNN and use the reconstruction error as the objective function to fine-tune the network
for unsupervised learning. We extend [139] in three important ways. (1) [139] is pipelined,
while ours is end-to-end. [139] simply applies NMF on top of off-the-shelf CNN features, in
which NMF reduces the dimension of fixed CNN features. In contrast, ours is more gen-
eral and introduces NMF (and its variant) as a feature reconstruction (generative) loss for
unsupervised CNN fine-tuning. Ours thus integrates NMF and CNN as a principled feed-
forward network, and allows for fine-tuning the full network with back-propagation. As
shown in the following sections, we not only learn the NMF adaptation layers, but also
modify (a portion of) the pre-trained CNN weights using the generative loss towards the tar-
get task. Due to the end-to-end nature, ours is more flexible and achieves better perfor-
mance. (2) [139] can only deal with image clustering. In contrast, due to the end-to-end
nature, ours could be also used as unsupervised initialization and improves image classification
on target tasks. (3) We have substantially extended experimental results, including more
datasets, more baselines, different clustering techniques (k-means and spectral clustering),
additional hyper-parameter analysis, and ablation analysis.

Domain adaptation and transfer learning. Another related line of work focuses on stan-
dard domain adaptation with the assumption that the data from source and target datasets
share the same set of categories but have shifted distributions [120, 122]. Our work, how-
ever, does not have this assumption and addresses a more general, challenging task (i.e.,
different but relevant source and target categories/tasks). The learning processes are dif-
ferent as well. [120,122] explicitly use the source labels to infer the target labels. In contrast,
we transfer a pre-trained (ImageNet) network to unsupervised target tasks and do not use
the source labels in this process. Besides, [120, 122] are evaluated on image classification
tasks while our work is mainly evaluated on image clustering tasks. The reconstruction
loss used in [122] is also different: [122] simply reconstructs target raw images with the
mean squared error loss, whereas we reconstruct the learned CNN features and leverage
their non-negativity. More recently, a recurrent network with a single loss function is pro-
posed to guide the agglomerative clustering [420]. While this work uses different network
architectures for different datasets to train a dataset specific model, it fails to address the
subtle difference among fine-grained categories. Different from this work, our model uses
the same parameters and network architecture for all datasets, leading to a more universal
feature representation.

In transfer learning, the target task is different from but related to the source task [288],
such as transfer from object-centric source categories to scene-centric target categories or
from coarse source categories to fine-grained target categories. The standard fine-tuning
strategy [16] and its variants [238, 400] in supervised transfer are inapplicable here since
they require a significant amount of labeled target data, which is simply not available. For
novel categories, effective unsupervised transfer of CNN representations remains an open
challenge [394].

133

Image clustering. Different from previous work [78, 109, 349], we use CNN features
and evaluate our model on both standard image clustering datasets and large-scale image
classification datasets. The latter datasets still remain challenging even for (supervised)
image classification tasks. In related work, an ensemble of image prototype sets is sampled
from the available data to represent a rich set of visual categories, and images are pro-
jected onto these prototypes as new feature representations [77]. Unlike [77], which takes
advantage that the test data is used as unlabeled data for training (i.e., transductive learn-
ing), we follow strict train/test splits for each dataset to ensure the generalization of our
approach. Direct clustering in a pre-trained, fixed supervised CNN feature space [77] is
simple but sub-optimal due to domain shift. Performing clustering through unsupervised
deep feature learning provides an attractive option [415]. However, the performance of the
unsupervised deep models is still not on par with that of their supervised counterparts. On
the contrary, we leverage both supervised CNN feature learning and unsupervised transfer
learning.

10.3 Factorized Convolutional Networks
Let us consider a CNN architecture pre-trained on a source domain with abundant data, for
example the vanilla VGGNet [347] pre-trained on ImageNet (ILSVRC) 1,000 categories [321].
The CNN is composed of a feature representation moduleF (e.g., the 13 convolutional layers
C1-C13 and two fully-connected layers fc6, fc7 for VGGNet) and a classifier module C (e.g.,
the last fully-connected layer fc8 with 1,000 units and the 1,000-way softmax for ImageNet
classification) [400].

We now transfer this CNN for representation learning on unlabeled target images in
tasks such as image clustering. The transfer is accomplished through our unsupervised
fine-tuning and the target CNN is instantiated and initialized in the following way, as shown
in Figure 10.2: (1) the representation moduleFT is copied fromFS of the source CNN with
the parameters ΘFT = ΘFS , and (2) the classifier module C is removed and a new “adaptation
module” A is introduced that consists of a group-sparse non-negative matrix factorization
(GSNMF) on top of fc7 activations.

Note that the unsupervised fine-tuning is different from conventional supervised fine-
tuning; in the latter case, a new classifier module CT (e.g., a new fc8 and softmax) is intro-
duced with the parameters ΘCT randomly initialized.

As a complex non-linear function of all input pixels, the fc7 representation may cap-
ture mid-level object parts as well as their high-level configurations [283]. Our GSNMF
module then reduces feature dimension and enlarges sparsity among different groups si-
multaneously, thus identifying a rich set of informative latent variables useful for unsuper-
vised adaptation. The GSNMF module is trained while a portion of the parameters ΘFT
are optionally fine-tuned (depending on the amount of available data) by continuing the
back-propagation.

10.3.1 NMF/GSNMF Module
We consider anM dimensional random vector xwith non-negative elements, e.g., the CNN
fc7 activations in our case. Its N observations are denoted as xi, i = 1, 2, . . . , N . N is the
batch size in our stochastic optimization. Let the data matrix be X = [x1,x2, . . . ,xN] ∈
RM×N≥0 . NMF seeks a non-negative basis matrix W ∈ RM×L≥0 and a coefficient matrix H ∈

134

C1-C2…-C13 fc6 fc7 GSNMF

Feature
Reconstruction

Error

Parameters transferred
from Pre-trained VGGNet

New Adaptation Module
Trained on Target Task

Representation Module

Figure 10.2: Illustration of unsupervised fine-tuning and factorized convolutional networks.
A network (e.g., VGGNet) is trained on the source task (e.g., ImageNet classification) with
a large amount of labeled images. The pre-trained parameters of its feature representation
module (C1-C13 and fc6, fc7) are then transferred to the target task with unlabeled data
(e.g., image clustering). In such unsupervised scenario, we introduce a new “adaptation
module” that consists of a group-sparse non-negative matrix factorization (GSNMF) on
top of fc7 activations to compensate for the different image dataset statistics (e.g., type of
objects, typical viewpoints) between the source and target data. We then train the GSNMF
module while fine-tuning the representation module based on the GSNMF reconstruction
(generative) loss using the unlabeled target image data.

RL×N≥0 such that
X ≈WH. (10.1)

Usually L� min(M,N).
While classic NMF is able to identify informative latent variables, it is commonly known

that large deep neural networks typically are comprised of many redundant and highly cor-
related units [167]. Hence, to better select a group of correlated CNN activations, we enforce
additional group-sparsity constraints on NMF. The joint `1 and `2 norm penalty, i.e., elastic
net regularization, has been widely used as a group-sparse regularization technique [443].
The `1 part generates a sparse model while the `2 part encourages a smoothing, group-
ing effect [251]. Such group-sparsity property is beneficial when transferring a pre-trained
CNN to a novel task, since it allows to select the correlated features suitable to the target
data while discarding those uncorrelated ones. We thus impose a weighted mixture of `1
and squared `2 penalties on the coefficient matrix H to achieve the desired group-sparse
representations. The resulting GSNMF objective function is defined as

f(W,H) =
1

2
‖X −WH ‖2F +

λ1

2
‖H ‖22 +λ2 ‖H ‖1,

s.t.W,H ≥ 0.
(10.2)

Here λ1 and λ2 are the hyper-parameters that control the importance of the `1 and `2 regu-
larization terms.

10.3.2 Optimization
We use the alternating minimization procedure and multiplicative update rule to optimize
Eqn. (10.2) following [228]. Since we impose group-sparsity on the coefficient matrixH , the
update rule ofW remains the same as that in the standard NMF formulation [228]. We use
gradient descent to optimize H , and the first-order update rule of H should be generally

135

in the form of
H ←H − η ∗ ∂f(H)

∂H
, (10.3)

where ∗ denotes the element-wise multiplication and the matrix η is the step size. We take
the derivative of f(H) in Eqn. (10.2) with respect toH , leading to

∂f

∂H
= −W TX +W TWH + λ1H + λ2I, (10.4)

where I is an all-ones matrix of the same size asH . Since the `1 norm is not differentiable
at 0, Eqn. (10.4) is the subgradient at 0. Following a similar deriving procedure as in [228],
we let the adaptive step size η to be

η =
H

W TWH + λ1H + λ2I
, (10.5)

where the division is element-wise division, and we then have the following update rule{
W ←W ∗ XHT

WHHT
,

H ←H ∗ WTX
WTWH+λ1H+λ2I

.
(10.6)

Here the coefficient H is the new feature representation. Eqn. (10.6) is a straightforward
modification to the multiplicative update rule in the standard NMF optimization [228]. Fol-
lowing a similar proof to that of [228] which uses an auxiliary function analogous to that
used for proving convergence of the Expectation Maximization algorithm [82], we can show
that the process converges. Since the update rules are multiplicative, when W and H are
initialized as non-negative, they will remain non-negative during the optimization.

10.3.3 Unsupervised Fine-Tuning of the Network
As shown in Figure 10.2, we use the feature reconstruction (generative) loss in Eqn. (10.2)
for our unsupervised fine-tuning, in contrast to the cross-entropy loss in conventional su-
pervised fine-tuning. In the off-the-shelf (OTS) scenario, we only train the GSNMF mod-
ule while freezing the pre-trained representation module. In the fine-tuning (FT) scenario,
we train the GSNMF module while fine-tuning the representation module. Following the
standard NMF practice, in our implementation, we introduce additional `2 normalization
layers to x and the basis matrix W before the factorization layer. Regularizing the feature
vector norm has been a staple of unsupervised learning approaches to prevent degenerate
solutions and collapsed networks [308].

During each iteration, after forward propagation, we obtain the fc7 activations (i.e., x)
on the mini-batch. The mini-batch size is N = 256. We learn W and H using the update
rule in Eqn. (10.6) . We then fix W and H , and the loss in Eqn. (10.2) reduces to the stan-
dard Euclidean loss ‖ X −WH ‖2F . We back-propagate the Euclidean error to update
the parameters in the CNN representation module. This alternating fine-tuning strategy
using generative connections could also be seen broadly relevant to the wake-sleep algo-
rithm [160]. In our evaluation with limited target data, we froze the remaining layers un-
derneath fc7 and did not fine-tune them due to over-fitting concerns. With more training
data available, additional layers could be further fine-tuned.

Algorithm complexity. The time complexity of our approach is polynomial timeO(NLT),
where N is the number of samples, L is the feature dimension, and T is the iteration num-
ber. In our experiments, a forward-backward pass took less than 0.5 second on a single
Titan GPU.

136

10.4 Experimental Evaluation
In this section, we evaluate the representation transferability of our factorized convolutional
networks (FCNs) on both standard image clustering datasets and multiple much more chal-
lenging benchmarks for image clustering, in which no labeled data is provided. We first in-
troduce the datasets and the implementation details, and then present quantitative results
by comparing with several state-of-the-art methods and validating across tasks the gener-
ality of FCN. In absolute terms, we achieve the best performance on all these benchmarks.
We also show that FCN can be used as unsupervised initialization to further improve the
performance of classification tasks. Our approach is general as it can be applied to different
CNN architectures. Here we focus on VGGNet [347] and evaluate variants of our model:

NMF-FCN. All layers of VGGNet are frozen, and we feed the fc7 activations to an NMF
module. The coefficient matrixH is used as the new feature representation.

GSNMF-FCN-OTS. All layers of VGGNet are frozen, and we feed the fc7 activations
to a GSNMF module, in which the group-sparsity constraints are imposed on the standard
NMF layer.

GSNMF-FCN-FT. All layers except the fc7 layer are frozen, and we combine VGGNet
with a GSNMF module and fine-tune fc7 as well. The coefficient matrix H is used as the
new feature representation.

10.4.1 Datasets

Our model is evaluated on diverse datasets including standard image clustering datasets
and large-scale image classification datasets (used for the image clustering tasks):

MNIST [226]. MNIST consists of 28×28 gray scale images of handwritten digits ranging
from 0 to 9. The dataset contains 50,000 training samples, 10,000 validation samples, and
10,000 test samples.

COIL-20 [274]. COIL-20 consists of 1440 32×32 gray scale images of 20 objects. The
images of each object were taken 5 degree apart.

As there is no standard large-scale image clustering dataset, we evaluate our model on
large-scale image classification datasets whose labels are not used during training: scene
classification on MIT-67 [375], fine-grained recognition on Caltech-UCSD Birds (CUB) 200-
2011 [389] and Oxford 102 Flowers [279]. We follow the standard experimental setup (e.g.,
the train/test splits) for these datasets as detailed in Chapter 3.

These are very challenging tasks because of the following reasons. (1) There are strong
domain shifts between the source and target datasets. Compared to the object-centric ILSVRC
dataset where the CNN features are pre-trained, the target MIT-67 dataset is more scene-
centric and consists of similar objects presented in different indoor scenes [375], and the
target Birds-200 and Flowers-102 datasets involve very subtle differences between exam-
ples of a visual category [16]. Importantly, the transferability of a CNN decreases when
the target task is far from the CNN source task [16]. (2) The datasets used for evaluation
are standard classification benchmarks, and they are still very challenging even for super-
vised image classification. However, we tackle a more difficult scenario here by testing the
representations for unsupervised image clustering, without having access to the label in-
formation on these datasets. We will show that with limited amount of unlabeled training
data from distinct target tasks, our FCN model is capable of discovering informative and
discriminative latent variables from CNN representations.

137

10.4.2 Baseline Models
In order to evaluate the performance of our FCN model, we compared it against not only
the state-of-the-art algorithm, but also other linear and nonlinear dimension reduction al-
gorithms that could be useful in learning effective feature representations. These baselines
include:

CNN. All layers of VGGNet are frozen, and the fc7 activations are used as the feature
representation with dimension 4,096.

PCA-CNN. We perform PCA over the CNN representation and use the coefficient as
the new feature representation. The number of principal components is set as 1,024.

LLE-CNN [92]. Locally linear embedding uses an eigenvector based optimization tech-
nique to find the low-dimensional embedding of points, such that each point is still de-
scribed with the same linear combination of its neighbors. The number of nearest neighbors
is set as 12 and the feature dimension is set as 1,024.

Autoencoder-CNN (AE-CNN). After careful preliminary experiments, we choose lin-
ear activations as the transition functions of the encoder and decoder. The autoencoder is
trained in 200 epochs with a batch size of 128. To avoid over-fitting, we use 10% of training
data as validation data.

Non-Negative AutoEncoder-CNN (NNAE-CNN). Due to limited training data, we use
linear activations as the transition functions as above. During each iteration, we force the
weights of the encoder and decoder to be non-negative.

EP-CNN [76, 77]. Ensemble projection samples from the available training data as an
ensemble of image prototype sets and learns discriminative functions over these prototype
sets. We follow the same parameter setting in [76, 77], and the feature dimension is 3,000.

10.4.3 Implementation Details
Our FCN model includes two modules and is implemented in Keras [69]. For the CNN
layers, we use the VGGNet pre-trained on ILSVRC where all the layers except fc7 are frozen
to those learned on ILSVRC without fine-tuning [347]. In our preliminary experiment, we
fine-tuned fc6 as well. Compared with only fine-tuning fc7, the performance dropped
due to limited target data in our case. This is consistent with the observation in standard
supervised fine-tuning. With more training data, fine-tuning more layers should further
improve the performance. For each image, we resize the image to 224 × 224, and extract a
4,096-dim feature vector from the entire image.

For the GSNMF module, to speed up the convergence rate of NMF, we use the non-
negative double singular value decomposition (NNDSVD) [45]. NNDSVD is a method
based on two SVD processes: one approximates the initial data matrix, and the other ap-
proximates the positive components of the resulting partial SVD factors. We use the unla-
beled training data on the target task to learn the bases and coefficients. L is set as 1,024.
The test images are then fed forward to the learned FCN model, producing a final 1,024-dim
feature representation.

Note that our main purpose is to validate whether the proposed approach is able to
boost the transferability of CNN features for image clustering and is not to propose a better
clustering approach. Hence, we use two standard clustering methods, which are spectral
clustering (SC) [277] and k-means. Choosing the k number of clusters is typically difficult
for clustering algorithms without any prior knowledge of the data. We then chose k as the
number of classes for each target dataset. In our preliminary experiments, we found that

138

ours consistently outperformed baselines with different values of k, due to our improved
feature representations. For a fair comparison, we perform `2 normalization on the feature
representations for both our models and baselines. To reduce the influence of randomness
introduced by different initializations of k-means, the k-means grouping stages in SC and k-
means are repeated 10 times. The result with the minimum distortion is selected. Euclidean
distance is used for both methods.

10.4.4 Methodology
Hyper-parameter settings. For the regularization parameters λ1 and λ2 in GSNMF, in a
preliminary experiment, we tested image clustering on the Scene-15 dataset [106], which is
a relatively small dataset. After searching λ1 and λ2 on a 2D grid 10[−4:1:1] × 10[−4:1:1], we
observed that the best performance was achieved when λ1 = 0.02 and λ2 = 0.05. In all our
experiments, we then simply set λ1 as 0.02 and λ2 as 0.05.

Choosing the optimal representation dimension L remains challenging in dimension-
ality reduction. Similarly, in our preliminary experiment, we tested image clustering on
Scene-15 and MIT-67, and found L = 1,024 usually achieved the best performance. In all
our experiments, we then simply set L = 1,024. Even better performance could be obtained
by further tuning these hyper-parameters. We also conduct hyper-parameter sensitivity
analysis to test how λ1, λ2 and L affect the clustering accuracy.

Evaluation metrics. Consistent with the previous work, accuracy [416] and normalized
mutual information (NMI) [51] are used as the evaluation criterion. We assume that the
clustering algorithm is tested on N samples. For a sample xi, the cluster label is denoted as
ri, and its ground truth label is ti. Accuracy is defined as

accuracy =

∑N
i=1 δ(ti,map(ri))

N
, (10.7)

where δ(x, y) equals to 1 if x is equal to y, and 0 otherwise. The function map(x) is the best
permutation mapping function, which maps a cluster to its corresponding predicted label.
Hence, a higher accuracy indicates that more samples are predicted correctly.

Now let C denote the cluster centers of the ground truth, and C
′ denote the cluster

centers predicted by the clustering algorithm. NMI is then defined as

NMI(C,C
′
) =

MI(C,C
′
)

max(H(C), H(C′)
, (10.8)

whereH(C) andH(C
′
) are the entropies ofC andC ′ , respectively. MI(C,C ′

) is the mutual
information of C and C

′ . NMI measures the dependency of two distributions. A higher
NMI means that two distributions are more similar.

10.5 Results and Discussion
In our FCN model, we aim to learn better high-level representations by introducing the
GSNMF module on top of the original CNN representation. Furthermore, by fine-tuning
the CNN representation module (the last fully-connected layer in our case), the additional
degree of freedom allows the FCN model to represent the target data more effectively. To
validate this, we evaluate our model on standard image clustering datasets and large-scale
benchmarks.

139

Method
k-means spectral clustering

MNIST COIL-20 MNIST COIL-20
Acc NMI Acc NMI Acc NMI Acc NMI

Baselines

CNN 46.7 38.4 74.0 89.2 51.1 41.3 84.3 92.0
PCA-CNN 55.0 47.2 76.9 89.9 48.4 39.6 84.4 91.9

LLE-CNN [92] 29.0 23.0 34.2 34.5 28.9 17.4 22.6 24.7
AE-CNN 45.9 37.3 81.7 90.4 54.9 44.6 81.7 92.1

NNAE-CNN 46.0 37.4 77.1 90.0 49.2 40.6 85.7 92.3
EP-CNN [76,77] 60.0 58.0 80.5 92.2 53.2 47.6 86.7 93.8

Ours
NMF-FCN 61.7 57.8 82.3 93.0 56.4 47.6 88.6 93.9

GSNMF-FCN-OTS 62.2 58.0 84.3 94.4 57.6 47.9 89.2 94.0
GSNMF-FCN-FT 63.3 58.6 79.6 89.4 58.4 48.0 86.5 92.7

Table 10.1: Accuracy (%) and normalized mutual information (NMI) (%) of image clustering
on two standard benchmark datasets. k-means and spectral clustering are used on top of
the feature representations of our FCN model and baseline models. The best results are in
bold.

Method
k-means spectral clustering

MIT-67 Birds-200 Flowers-102 MIT-67 Birds-200 Flowers-102
Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI

Baselines

CNN 45.0 63.2 32.5 61.6 45.7 63.7 37.3 57.6 26.5 57.0 44.7 63.6
PCA-CNN 45.9 63.8 32.1 62.0 46.3 63.9 37.3 57.5 29.1 58.7 46.0 63.0

LLE-CNN [92] 17.4 32.8 21.3 49.4 26.6 45.9 20.7 42.3 17.3 33.4 18.0 35.3
AE-CNN 46.8 64.3 32.6 62.2 46.8 64.5 35.4 57.1 28.0 58.0 43.8 62.1

NNAE-CNN 43.0 63.0 32.4 61.8 45.6 64.5 35.3 58.8 29.0 58.7 46.6 63.5
EP-CNN [76,77] 47.2 64.6 31.0 61.1 43.9 60.0 43.7 61.9 29.0 59.6 43.0 61.3

Ours
NMF-FCN 46.8 64.0 34.1 62.2 50.2 65.7 42.8 61.4 28.7 58.9 45.3 64.7

GSNMF-FCN-OTS 47.7 64.5 34.4 62.1 51.0 65.9 43.2 62.3 31.0 59.8 45.7 63.9
GSNMF-FCN-FT 48.2 64.9 35.1 62.5 50.1 64.9 44.2 62.5 32.2 60.0 44.7 62.0

Table 10.2: Accuracy (%) and normalized mutual information (NMI) (%) of scene and fine-
grained image clustering on three large-scale benchmark datasets. k-means and spectral
clustering are used on top of the feature representations of our FCN model and baseline
models. The best results are in bold.

Evaluation on standard image clustering datasets. Table 10.1 summarizes the compar-
ison between our model and the baseline models. Our FCN model outperforms the original
CNN representation by a large margin on these standard image clustering datasets. For ex-
ample, in terms of accuracy, our FCN model outperforms the original CNN representation
by 16.6% on MNIST and 10.3% on COIL-20.

Evaluation on large-scale benchmark datasets. Table 10.2 summarizes the k-means
and spectral clustering (SC) performance of our FCN representation and related baseline
features on the scene and fine-grained recognition datasets. We can see that our FCN rep-
resentation outperforms the original CNN feature and other representations by a consider-
able margin using the same clustering method. For instance, in terms of clustering accuracy,
FCN outperforms CNN by 3.2% on MIT-67, 2.6% on Birds-200 (where chance is 0.5%), and

140

Method
Dimension L PCA-CNN AE-CNN GSNMF-FCN (Ours)

256 40.3 42.7 43.2
512 42.8 43.9 45.1
1024 45.9 46.8 48.2
2048 43.6 45.2 46.0

Table 10.3: Hyper-parameter sensitivity analysis on MIT-67: Accuracy (%) comparison be-
tween our FCN and PCA-CNN, AE-CNN as functions of the feature dimension L.

5.3% on Flowers-102 (where chance is 1%) when k-means is used.
Given that there are only 10 images available for each class on Flowers-102 to fine-

tune our network, GSNMF-FCN-FT performs slightly worse than GSNMF-FCN-OTS, while
GSNMF-FCN-OTS significantly outperforms CNN. Consistent with the standard super-
vised fine-tuning, for target tasks with medium sized data, GSNMF-FCN-FT consistently
outperforms GSNMF-FCN-OTS (e.g., by 1% on Birds-200 with 200 classes and 5,994 images).
With more data, GSNMF-FCN-FT will further improve the performance.

Moreover, EP-CNN reported improved performance over CNN in transductive learning,
where the EP representation (ensemble of classifiers) was learned using both the training
and test datasets [76]; however, in our case of learning representation on the training dataset
and conducting clustering on the test dataset, EP-CNN shows inferior performance to CNN.
This means that having access to the distribution of the test data is advantageous for EP-
CNN.

The superior performance of our GSNMF-FCN reveals that it learns a more generic and
transferable representation to capture the subtlety of differences across different categories
and tasks. In particular, these results show that our approach, pre-trained on ILSVRC,
is effective on a broad range of target domains, ranging from low source-target distance
(e.g., MIT-67), to medium distance (e.g., Birds-200, Flowers-102), and to large distance (e.g.,
MNIST) [16].

Hyper-parameter sensitivity analysis. We now examine the influence of the hyper-
parameters of our model on its clustering performance. They are the regularization coef-
ficients λ1, λ2 and the feature dimension L. We first evaluate L on MIT-67, and Table 10.3
shows that FCN consistently outperforms PCA-CNN and AE-CNN in different settings of
L. We then evaluate λ1, λ2 on Flowers-102. Each time we change the value of one hyper-
parameter with the others fixed to the values described in the experimental settings.

Figure 10.3 summarizes the hyper-parameter sensitivity analysis. The performance of
our model increases withλ2 at first and then stabilizes quickly given a certainλ1. It validates
that our model benefits from imposing the regularization terms. After λ2 increases above
some threshold (e.g., 0.05), the accuracy and NMI become stable; as λ2 increases further,
the performance drops accordingly, implying that a larger `2 regularization coefficient will
hurt the performance. Similar trend is observed for the `1 regularization (e.g., for a fixed
λ2 = 0.05, our model achieves best when λ1 lies in the range from 0.02 to 0.05).

Evaluation of group-sparsity formulations. Our GSNMF-FCN uses the joint `1 and `2
norm penalty to impose group-sparsity. The mixed `2,1 norm penalty is an alternative [197].
In our preliminary experiment, we compared the two formulations, and found that intro-

141

λ2

0
0

.0
0

1

0
.0

1

0
.0

2

0
.0

5

0
.1

A
c
c
u
ra

c
y
 (

%
)

45

46

47

48

49

50

51

52
λ1 = 0

λ1 = 0.001

λ1 = 0.01

λ1 = 0.02

λ1 = 0.05

λ1 = 0.1

λ1 = 0.5

λ1 = 1

(a) Accuracy

λ2

0
0

.0
0

1

0
.0

1

0
.0

2

0
.0

5

0
.1

N
M

I
(%

)

63.5

64

64.5

65

65.5

66

66.5

67
λ1 = 0

λ1 = 0.001

λ1 = 0.01

λ1 = 0.02

λ1 = 0.05

λ1 = 0.1

λ1 = 0.5

λ1 = 1

(b) NMI

Figure 10.3: Hyper-parameter sensitivity analysis on Flowers-102: Accuracy (%) and NMI
(%) of our FCN as functions of its regularization coefficients λ1 and λ2.

Method MNITS Birds-200

mixed `2,1
joint `1 and `2 (Ours)

56.5 29.1
57.6 31.0

Table 10.4: Performance comparison of clustering accuracy (%) between different group-
sparsity formulations. The joint `1 and `2 norm penalty outperforms the mixed `2,1 norm.

Method MIT-67 Birds-200 Flowers-102

CNN
GSNMF-FCN (Ours)

70.78 68.51 82.44
72.75 70.89 84.70

Table 10.5: Performance comparison of classification accuracy (%) between GSNMF-FCN
and CNN. Learning SVM classifiers on top of the unsupervised GSNMF-FCN embedding
outperforms training SVMs in the original CNN space.

ducing group sparsity helped and the joint `1 and `2 norm worked better, as shown in
Table 10.4.

Unsupervised fine-tuning as initialization for image classification. Our FCN can be
used to improve the classification performance as well. We evaluate this point by first learn-
ing GSNMF embedding on the target training data without using the labels and then train-
ing SVM classifiers on top of the learned embedding using the training labels. Table 10.5
shows that our approach outperforms SVM directly trained with the original CNN feature
representation.

142

Part IV

Combining Generative Learning
with Meta-Learning

143

What I cannot create, I do not understand.

Richard Phillips Feynman

145

Chapter 11

Few-Shot Learning from
Imaginary Data

11.1 Motivation
Different from the previous chapters, in this part we explore from another perspective and
focus on what is missing in the current meta-learning methods. Meta-learning methods
train a learner, which is a parametrized function that maps labeled training sets to classifiers.
Meta-learners are trained by sampling small training sets and test sets from a large universe
of labeled examples, feeding the sampled training set to the learner to get a classifier, and
then computing the loss of the classifier on the sampled test set. These methods directly
frame few-shot learning as an optimization problem.

However, generic meta-learning methods treat images as black boxes, ignoring the struc-
ture of the visual world. In particular, many modes of variation (for example camera pose,
translation, lighting changes, and even articulation) are shared across categories. As hu-
mans, our knowledge of these shared modes of variation may allow us to visualize what a
novel object might look like in other poses or surroundings (Figure 11.1). If machine vision
systems could do such “hallucination” or “imagination”, then the hallucinated examples
could be used as additional training data to build better classifiers.

Unfortunately, building models that can perform such hallucination is hard, except for
simple domains like handwritten characters [258]. For general images, while considerable
progress has been made recently in producing realistic samples, most current generative
modeling approaches suffer from the problem of mode collapse [327]: they are only able to
capture some modes of the data. This may be insufficient for few-shot learning since one
needs to capture many modes of variation to be able to build good classifiers. Furthermore,
the modes that are useful for classification may be different from those that are found by
training an image generator. Prior work has tried to avoid this limitation by explicitly using
pose annotations to generate samples in novel poses [86], or by using carefully designed,
but brittle, heuristics to ensure diversity [144].

Our key insight is that the criterion that we should aim for when hallucinating additional
examples is neither diversity nor realism. Instead, the aim should be to hallucinate exam-
ples that are useful for learning classifiers. Therefore, we propose a new method for few-shot
learning that directly learns to hallucinate examples that are useful for classification by the

147

blue	heron

Figure 11.1: Given a single image of a novel visual concept, such as a blue heron, a person
can visualize what the heron would look like in other poses and different surroundings.
If computer recognition systems could do such hallucination, they might be able to learn
novel visual concepts from less data.

end-to-end optimization of a classification objective that includes data hallucination in the
model.

We achieve this goal by unifying meta-learning with hallucination. Our approach trains
not just the meta-learner, but also a hallucinator: a model that maps real examples to hal-
lucinated examples. The few-shot training set is first fed to the hallucinator; it produces
an expanded training set, which is then used by the learner. Compared to plain meta-
learning, our approach uses the rich structure of shared modes of variation in the visual
world. We show empirically that such hallucination adds a significant performance boost
to two different meta-learning methods [351, 388], providing up to a 6 point improvement
when only a single training example is available. Our method is also agnostic to the choice
of the meta-learning method, and provides significant gains irrespective of this choice. It
is precisely the ability to leverage standard meta-learning approaches without any modifi-
cations that makes our model simple, general, and very easy to reproduce. Compared to
prior work on hallucinating examples, we use no extra annotation and significantly outper-
form hallucination based on brittle heuristics [144]. We also present a novel meta-learning
method and discover and fix flaws in previously proposed benchmarks.

11.2 Generative Models for Few-Shot Learning
One class of few-shot learning approaches builds generative models that can share priors
across categories [104, 121, 326]. Often, these generative models have to be hand-designed
for the domain, such as strokes [218, 220] or parts [411] for handwritten characters. For
more unconstrained domains, while there has been significant recent progress [132, 304,
316], modern generative models still cannot capture the entirety of the distribution [327].

Different classes might not share parts or strokes, but may still share modes of varia-
tion, since these often correspond to camera pose, articulation, etc.. If one has a probability
density on transformations, then one can generate additional examples for a novel class by
applying sampled transformations to the provided examples [86, 144, 258]. Learning such

148

a density is easier for handwritten characters that only undergo 2D transformations [258],
but much harder for generic image categories. This problem is tackled by leveraging an
additional dataset of images labeled with pose and attributes [86]; this allows to learn how
images transform when the pose or the attributes are altered. To avoid annotation, transfor-
mations are transferred from a pair of examples from a known category to a “seed” example
of a novel class [144]. However, learning to do this transfer requires a carefully designed
pipeline with many heuristic steps. Our approach follows this line of work, but learns to
do such transformations in an end-to-end manner, avoiding both brittle heuristics and ex-
pensive annotations. We present a unified view of meta-learning and show that our hallu-
cination strategy can be adopted in any of the existing meta-learning methods.

11.3 Meta-Learning
Let X be the space of inputs (e.g., images) and Y be a discrete label space. Let D be a distri-
bution over X × Y . Supervised machine learning typically aims to capture the conditional
distribution p(y|x) by applying a learning algorithm to a parameterized model and a training
set Strain = {(xi, yi) ∼ D}Ni=1. At inference time, the model is evaluated on test inputs x to
estimate p(y|x). The composition of the inference and learning algorithms can be written
as a function h (a classification algorithm) that takes as input the training set and a test input
x, and outputs an estimated probability distribution p̂ over the labels:

p̂(x) = h(x, Strain). (11.1)

In few-shot learning, we want functions h that have high classification accuracy even
when Strain is small. Meta-learning is an umbrella term that covers a number of recently
proposed empirical risk minimization approaches to this problem [114, 310, 351, 388, 395].
Concretely, they consider parametrized classification algorithms h(·, ·;w) and attempt to es-
timate a “good” parameter vector w, namely one that corresponds to a classification algo-
rithm that can learn well from small datasets. Thus, estimating this parameter vector can
be construed as meta-learning [368].

Meta-learning algorithms have two stages. The first stage is meta-training in which the
parameter vector w of the classification algorithm is estimated. During meta-training, the
meta-learner has access to a large labeled dataset Smeta that typically contains thousands of
images for a large number of classes C. In each iteration of meta-training, the meta-learner
samples a classification problem out of Smeta. That is, the meta-learner first samples a subset
ofm classes fromC. Then it samples a small “training” set Strain and a small “test” set Stest.
It then uses its current weight vectorw to compute conditional probabilities h(x, Strain;w)
for every point (x, y) in the test set Stest. Note that in this process h may perform internal
computations that amount to “training” on Strain. Based on these predictions, h incurs a
loss L(h(x, Strain;w), y) for each point in the current Stest. The meta-learner then back-
propagates the gradient of the total loss

∑
(x,y)∈Stest

L(h(x, Strain;w), y). The number of
classes in each iteration, m, and the maximum number of training examples per class, n,
are hyperparameters.

The second stage is meta-testing in which the resulting classification algorithm is used to
solve novel classification tasks: for each novel task, the labeled training set and unlabeled
test examples are given to the classification algorithm and the algorithm outputs class prob-
abilities.

149

Different meta-learning approaches differ in the form ofh. The data hallucination method
introduced in this paper is general and applies to any meta-learning algorithm of the form
described above. Concretely, we will consider the following three meta-learning approaches:

Prototypical Networks. Snell et al. [351] propose an architecture for h that assigns class
probabilities based on distances from class means µk in a learned feature space:

h(x, Strain;w) = p̂(x) (11.2)

p̂k(x) =
e−d(φ(x;wφ),µk)∑
j e
−d(φ(x;wφ),µj)

(11.3)

µk =

∑
(xi,yi)∈Strain

φ(xi;wφ)I[yi = k]∑
(xi,yi)∈Strain

I[yi = k]
. (11.4)

Here p̂k are the components of the probability vector p̂ and d is a distance metric (Eu-
clidean distance in [351]). The only parameters to be learned here are the parameters of the
feature extractor wφ. The estimation of the class means µk can be seen as a simple form of
“learning” from Strain that takes place internal to h.

Matching Networks. Vinyals et al. [388] argue that when faced with a classification prob-
lem and an associated training set, one wants to focus on the features that are useful for those
particular class distinctions. Therefore, after embedding all training and test points indepen-
dently using a feature extractor, they propose to create a contextual embedding of the train-
ing and test examples using bi-directional long short-term memory networks (LSTMs) and
attention LSTMs, respectively. These contextual embeddings can be seen as emphasizing
features that are relevant for the particular classes in question. The final class probabilities
are computed using a soft nearest-neighbor mechanism. More specifically,

h(x, Strain;w) = p̂(x) (11.5)

p̂k(x) =

∑
(xi,yi)∈Strain

e−d(f(x),g(xi))I[yi = k]∑
(xi,yi)∈Strain

e−d(f(x),g(xi))
(11.6)

f(x) =AttLSTM(φ(x;wφ), {g(xi)}Ni=1;wf) (11.7)
{g(xi)}Ni=1 =BiLSTM({φ(xi;wφ)}Ni=1;wg). (11.8)

Here, again d is a distance metric. Vinyals et al.used the cosine distance. There are three
sets of parameters to be learned: wφ,wg, and wf .

Prototype Matching Networks. One issue with matching networks is that the attention
LSTM might find it harder to “attend” to rare classes (they are swamped by examples of
common classes), and therefore might introduce heavy bias against them. Prototypical net-
works do not have this problem since they collapse every class to a single class mean. We
want to combine the benefits of the contextual embedding in matching networks with the
resilience to class imbalance provided by prototypical networks.

To do so, we collapse every class to its class mean before creating the contextual embed-
dings of the test examples. Then, the final class probabilities are based on distances to the
contextually embedded class means instead of individual examples:

150

,	heron)

,	heron)

Sample

G

h
(

(

!"#$%&'

!"#$%&

!"#$%&
$()

!"*+"

Noise	,
-.

Figure 11.2: Meta-learning with hallucination. Given an initial training set Strain, we cre-
ate an augmented training set Saug

train by adding a set of generated examples SGtrain. SGtrain is
obtained by sampling real seed examples and noise vectors z and passing them to a para-
metric hallucinator G. The hallucinator is trained end-to-end along with the classification
algorithm h. Dotted red arrows indicate the flow of gradients during back-propagation.

h(x, Strain;w) = p̂(x) (11.9)

p̂k(x) =
e−d(f(x),νk)∑
j e
−d(f(x),νj)

(11.10)

f(x) =AttLSTM(φ(x;wφ), {νk}|Y|k=1;wf) (11.11)

νk =

∑
(xi,yi)∈Strain

g(xi)I[yi = k]∑
(xi,yi)∈Strain

I[yi = k]
(11.12)

{g(xi)}Ni=1 =BiLSTM({φ(xi;wφ)}Ni=1;wg). (11.13)

The parameters to be learned are wφ,wg , and wf . We call this novel modification to
matching networks prototype matching networks.

11.4 Meta-Learning with Learned Hallucination
We now present our approach to few-shot learning by learning to hallucinate additional
examples. Given an initial training set Strain, we want a way of sampling additional hallu-
cinated examples. Following recent work on generative modeling [132,200], we will model
this stochastic process by way of a deterministic function operating on a noise vector as input.
Intuitively, we want our hallucinator to take a single example of an object category and pro-
duce other examples in different poses or different surroundings. We therefore write this
hallucinator as a function G(x, z;wG) that takes a seed example x and a noise vector z as
input, and produces a hallucinated example as output. The parameters of this hallucinator
are wG.

151

We first describe how this hallucinator is used in meta-testing, and then discuss how we
train the hallucinator.

Hallucination During Meta-Testing. During meta-testing, we are given an initial training
set Strain. We then hallucinate ngen new examples using the hallucinator. Each hallucinated
example is obtained by sampling a real example (x, y) from Strain, sampling a noise vector
z, and passing x and z to G to obtain a generated example (x′, y) where x′ = G(x, z;wG).
We take the set of generated examples SGtrain and add it to the set of real examples to produce
an augmented training set Saug

train = Strain ∪ SGtrain. We can now simply use this augmented
training set to produce conditional probability estimates using h. Note that the hallucinator
parameters are kept fixed here; any learning that happens, happens within the classification
algorithm h.

Meta-Training the Hallucinator. The goal of the hallucinator is to produce examples that
help the classification algorithm learn a better classifier. This goal differs from realism:
realistic examples might still fail to capture the many modes of variation of visual concepts,
while unrealistic hallucinations can still lead to a good decision boundary [80]. We therefore
propose to directly train the hallucinator to support the classification algorithm by using
meta-learning.

As before, in each meta-training iteration, we samplem classes from the set of all classes,
and at most n examples per class. Then, for each class, we useG to generate ngen additional
examples till there are exactly naug examples per class. Again, each hallucinated example
is of the form (x′, y), where x′ = G(x, z;wG), (x, y) is a sampled example from Strain and
z is a sampled noise vector. These additional examples are added to the training set Strain

to produce an augmented training set Saug
train. Then this augmented training set is fed to

the classification algorithm h, to produce the final loss
∑

(x,y)∈Stest
L(h(x, Saug

train), y), where
Saug
train = Strain ∪ SGtrain and SGtrain = {(G(xi, zi;wG), yi)

ngen

i=1 : (xi, yi) ∈ Strain}.
To train the hallucinator G, we require that the classification algorithm h(x, Saug

train;w)
is differentiable with respect to the elements in Saug

train. This is true for many meta-learning
algorithms. For example, in prototypical networks, h will pass every example in the train-
ing set through a feature extractor, compute the class means in this feature space, and use
the distances between the test point and the class means to estimate class probabilities. If
the feature extractor is differentiable, then the classification algorithm itself is differentiable
with respect to the examples in the training set. This allows us to back-propagate the final
loss and update not just the parameters of the classification algorithm h, but also the pa-
rameters wG of the hallucinator. Figure 11.2 shows a schematic of the entire process.

Using meta-learning to train the hallucinator and the classification algorithm has two
benefits. First, the hallucinator is directly trained to produce the kinds of hallucinations that
are useful for class distinctions, removing the need to precisely tune realism or diversity, or
the right modes of variation to hallucinate. Second, the classification algorithm is trained
jointly with the hallucinator, which enables it to make allowances for any errors in the hallu-
cination. Conversely, the hallucinator can spend its capacity on suppressing precisely those
errors which throw the classification algorithm off.

Note that the training process is completely agnostic to the specific meta-learning al-
gorithm used. We will show in our experiments that our hallucinator provides significant
gains irrespective of the meta-learner.

152

11.5 Experimental Protocol
We use the benchmark proposed in [144]. This benchmark captures more realistic scenar-
ios than others based on handwritten characters [218] or low-resolution images [388]. The
benchmark is based on ImageNet images and subsets of ImageNet classes. First, in the repre-
sentation learning phase, a convolutional neural network (ConvNet) based feature extractor
is trained on one set of classes with thousands of examples per class; this set is called the
“base” classesCbase. Then, in the few-shot learning phase, the recognition system encounters
an additional set of “novel” classes Cnovel with a small number of examples n per class. It
also has access to the base class training set. The system has to now learn to recognize both
the base and the novel classes. It is tested on a test set containing examples from both sets of
classes, and it needs to output labels in the joint label spaceCbase∪Cnovel. The top-5 accuracy
averaged over all classes, and also the top-5 accuracy averaged over just base-class examples,
and the top-5 accuracy averaged over just novel-class examples are reported in [144].

Tradeoffs between Base and Novel Classes. We observed that in this kind of joint eval-
uation, different methods had very different performance tradeoffs between the novel and
base class examples and yet achieved similar performance on average. This makes it hard
to meaningfully compare the performance of different methods on just the novel or just the
base classes. Further, we found that by changing hyperparameter values of some meta-
learners it was possible to achieve substantially different tradeoff points without substan-
tively changing average performance. This means that hyperparameters can be tweaked to
make novel class performance look better at the expense of base class performance (or vice
versa).

One way to concretize this tradeoff is by incorporating a prior over base and novel
classes. Consider a classifier that gives a score sk(x) for every class k given an image x.
Typically, one would convert these into probabilities by applying a softmax function:

pk(x) = p(y = k|x) =
esk∑
j e
sj
. (11.14)

However, we may have some prior knowledge about the probability that an image belongs
to the base classes Cbase or the novel classes Cnovel. Suppose that the prior probability that
an image belongs to one of the novel classes is µ. Then, we can update Eqn. (11.14) as
follows:

pk(x) = p(y = k|x) (11.15)
= p(y = k|y ∈ Cbase,x)p(y ∈ Cbase|x)

+ p(y = k|y ∈ Cnovel,x)p(y ∈ Cnovel|x) (11.16)

=
eskI[k ∈ Cbase]∑
j e
sjI[j ∈ Cbase]

(1− µ)

+
eskI[k ∈ Cnovel]∑
j e
sjI[j ∈ Cnovel]

µ. (11.17)

The prior probability µmight be known beforehand, but can also be cross-validated to cor-
rect for inherent biases in the scores sk. However, note that in some practical settings, one
may not have a held-out set of categories to cross-validate.Thus resilience to this prior is
important.

153

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Novel class prior

0

20

40

60

80

100

T
o
p
-5

 a
cc

u
ra

cy
 (

%
)

All classes

Novel classes

Base classes

Figure 11.3: The variation of the overall, novel class, and base class accuracy for MN in the
evaluation proposed in [144] as the novel class prior µ is varied.

Figure 11.3 shows the impact of this prior on matching networks in the evaluation pro-
posed in [144]. Note that the overall accuracy remains fairly stable, even as novel class
accuracy rises and base class accuracy falls. Such prior probabilities for calibration were
proposed for the zero-shot learning setting [55].

A New Evaluation. The existence of this tunable tradeoff between base and novel classes
makes it hard to make apples-to-apples comparisons of novel class performance if the model
is tasked with making predictions in the joint label space. Instead, we use a new evaluation
protocol that evaluates four sets of numbers:

1. The model is given test examples from the novel classes, and is only supposed to pick
a label from the novel classes. That is, the label space is restricted to Cnovel (note that
doing so is equivalent to setting µ = 1 for prototypical networks but not for matching
networks and prototype matching networks because of the contextual embeddings).
We report the top-5 accuracy on the novel classes in this setting.

2. Next, the model is given test examples from the base classes, and the label space is
restricted to the base classes. We report the top-5 accuracy in this setting.

3. The model is given test examples from both the base and novel classes in equal pro-
portion, and the model has to predict labels from the joint label space. We report
the top-5 accuracy averaged across all examples. We present numbers both with and
without a novel class prior µ; the former set cross-validates µ to achieve the highest
average top-5 accuracy.

Note that, following [144], we use a disjoint set of classes for cross-validation and testing.
This prevents hyperparameter choices for the hallucinator, meta-learner, and novel class
prior from becoming overfit to the novel classes that are seen for the first time at test time.

11.6 Experimental Evaluation

11.6.1 Implementation Details
Unlike prior work on meta-learning which experiments with small images and few classes
[114, 310, 351, 388], we use high resolution images and our benchmark involves hundreds

154

of classes. This leads to some implementation challenges. Each iteration of meta-learning
at the very least has to compute features for the training set Strain and the test set Stest. If
there are 100 classes with 10 examples each, then this amounts to 1000 images, which no
longer fits in memory. Training a modern deep convolutional network with tens of layers
from scratch on a meta-learning objective may also lead to a hard learning problem.

Instead, we first train a convolutional network based feature extractor on a simple classi-
fication objective on the base classes Cbase. Then we extract and save these features to disk,
and use these pre-computed features as inputs. For most experiments, consistent with [144],
we use a small ResNet-10 architecture [154]. Later, we show some experiments using the
deeper ResNet-50 architecture [154].

Meta-learner architectures. We focus on state-of-the-art meta-learning approaches, in-
cluding prototypical networks (PN) [351], matching networks (MN) [388], and our improve-
ment over MN — prototype matching networks (PMN). For PN, the embedding architec-
ture consists of two MLP layers with ReLU as the activation function. We use Euclidean
distance as in [351]. For MN, following [388], the embedding architecture consists of a one
layer bi-directional LSTM that embeds training examples and attention LSTM that embeds
test samples. We use cosine distance as in [388]. For our PMN, we collapse every class to
its class mean before the contextual embeddings of the test examples, and we keep other
design choices the same as those in MN.

Hallucinator architecture and initialization. For our hallucinator G, we use a three
layer MLP with ReLU as the activation function. We add a ReLU at the end since the pre-
trained features are known to be non-negative. All hidden layers have a dimensionality of
512 for ResNet-10 features and 2048 for ResNet-50 features. Inspired by [223], we initial-
ize the weights of our hallucinator network as block diagonal identity matrices. This sig-
nificantly outperformed standard initialization methods like random Gaussian, since the
hallucinator can “copy” its seed examples to produce a reasonable generation immediately
from initialization.

11.6.2 Results
As in [144], we run five trials for each setting of n (the number of examples per novel class)
and present the average performance. Different approaches are comparably good for base
classes, achieving 92% top-5 accuracy. We focus more on novel classes since they are more
important in few-shot learning. Table 11.1 contains a summary of the top-5 accuracy for
novel classes and for the joint space both with and without a cross-validated prior. Standard
deviations for all numbers are of the order of 0.2%. We discuss specific results, baselines,
and ablations below.

Impact of Hallucination. We first compare meta-learners with and without hallucination
to judge the impact of hallucination. We look at prototypical networks (PN) and prototype
matching networks (PMN) for this comparison. Figure 11.4 shows the improvement in top-
5 accuracy we get from hallucination on top of the original meta-learner performance. The
actual numbers are shown in Table 11.1.

We find that our hallucination strategy improves novel class accuracy significantly, by
up to 6 points for prototypical networks and 2 points for prototype matching networks. This
suggests that our approach is general and can work with different meta-learners. While the
improvement drops when more novel category training examples become available, the

155

Novel All All with prior
Method n=1 2 5 10 20 n=1 2 5 10 20 n=1 2 5 10 20

ResNet-10
PMN w/ G* 45.8 57.8 69.0 74.3 77.4 57.6 64.7 71.9 75.2 77.5 56.4 63.3 70.6 74.0 76.2
PMN* 43.3 55.7 68.4 74.0 77.0 55.8 63.1 71.1 75.0 77.1 54.7 62.0 70.2 73.9 75.9
PN w/ G* 45.0 55.9 67.3 73.0 76.5 56.9 63.2 70.6 74.5 76.5 55.6 62.1 69.3 73.1 75.4
PN [?] 39.3 54.4 66.3 71.2 73.9 49.5 61.0 69.7 72.9 74.6 53.6 61.4 68.8 72.0 73.8
MN [?] 43.6 54.0 66.0 72.5 76.9 54.4 61.0 69.0 73.7 76.5 54.5 60.7 68.2 72.6 75.6

LogReg 38.4 51.1 64.8 71.6 76.6 40.8 49.9 64.2 71.9 76.9 52.9 60.4 68.6 72.9 76.3
LogReg w/ Analogies [?] 40.7 50.8 62.0 69.3 76.5 52.2 59.4 67.6 72.8 76.9 53.2 59.1 66.8 71.7 76.3

ResNet-50
PMN w/ G* 54.7 66.8 77.4 81.4 83.8 65.7 73.5 80.2 82.8 84.5 64.4 71.8 78.7 81.5 83.3
PMN* 53.3 65.2 75.9 80.1 82.6 64.8 72.1 78.8 81.7 83.3 63.4 70.8 77.9 80.9 82.7
PN w/ G* 53.9 65.2 75.7 80.2 82.8 65.2 72.0 78.9 81.7 83.1 63.9 70.5 77.5 80.6 82.4
PN [?] 49.6 64.0 74.4 78.1 80.0 61.4 71.4 78.0 80.0 81.1 62.9 70.5 77.1 79.5 80.8
MN [?] 53.5 63.5 72.7 77.4 81.2 64.9 71.0 77.0 80.2 82.7 63.8 69.9 75.9 79.3 81.9

Table 11.1: Top-5 accuracy on the novel classes and on all classes (with and without pri-
ors) for different values of n. ∗Our methods. PN: Prototypical networks, MN: Matching
networks, PMN: Prototype matching networks, LogReg: Logistic regression. Methods with
“w/ G” use a meta-learned hallucinator.

1 2 5 10 20

of examples / novel class

0

1

2

3

4

5

6

Im
p
ro

v
e
m

e
n
t

in
 t

o
p
-5

 a
cc

u
ra

cy
 (

a
b
so

lu
te

)

Novel classes
(PN w/ G) - (PN)

(PMN w/ G) - (PMN)

1 2 5 10 20

of examples / novel class

0

1

2

3

4

5

6

7

8

Im
p
ro

v
e
m

e
n
t

in
 t

o
p
-5

 a
cc

u
ra

cy
 (

a
b
so

lu
te

)

All classes
(PN w/ G) - (PN)

(PMN w/ G) - (PMN)

(PN w/ G) - (PN) w/ prior

(PMN w/ G) - (PMN) w/ prior

Figure 11.4: Improvement in accuracy by learned hallucination for different meta-learners
as a function of the number of examples available per novel class.

gains remain significant until n = 20 for prototypical networks and n = 5 for prototype
matching networks.

Accuracy in the joint label space (right half of Figure 11.4) shows the same trend. How-
ever, note that the gains from hallucination decrease significantly when we cross-validate
for an appropriate novel-class priorµ (shown in dotted lines). This suggests that part of the
effect of hallucination is to provide resilience to mis-calibration. This is important in practice
where it might not be possible to do extensive cross-validation; in this case, meta-learners
with hallucination demonstrate significantly higher accuracy than their counterparts with-
out hallucination.

156

1 2 5 10 20

of examples / novel class

35

40

45

50

55

60

65

70

75

80
T
o
p
-5

 a
cc

u
ra

cy
 (

%
)

Novel classes

PMN w/ G

PN

MN

LogReg w/ Analogies

LogReg

1 2

of examples / novel class

37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

57.5

60.0

T
o
p
-5

 a
cc

u
ra

cy
 (

%
)

Novel classes (zoom)

1 2 5 10 20

of examples / novel class

50

55

60

65

70

75

80

T
o
p
-5

 a
cc

u
ra

cy
 (

%
)

All classes (with prior)

Figure 11.5: Our best approach compared to previously published methods. From left to
right: just the novel classes, zoomed in performance for the case when the number of ex-
amples per novel class n ≤ 2, performance on the joint label space with a cross-validated
prior.

Comparison to Prior Work. Figure 11.5 and Table 11.1 compare our best approach (proto-
type matching networks with hallucination) with previously published approaches in few-
shot learning. These include prototypical networks [351], matching networks [388], and the
following baselines:

1. Logistic regression: This baseline simply trains a linear classifier on top of a pre-trained
ConvNet-based feature extractor that was trained on the base classes.

2. Logistic regression with analogies: This baseline uses the procedure described in [144] to
hallucinate additional examples. These additional examples are added to the training
set and used to train the linear classifier.

Our approach easily outperforms all baselines, providing almost a 2 point improvement
across the board on the novel classes, and similar improvements in the joint label space even
after allowing for cross-validation of the novel category prior. Our approach is thus state-
of-the-art.

Another intriguing finding is that our proposed prototype matching network outper-
forms matching networks on novel classes as more novel class examples become available
(Table 11.1). On the joint label space, prototype matching networks are better across the
board.

Interestingly, the method proposed in [144] underperforms the standard logistic regres-
sion baseline (although it does show gains when the novel class prior is not cross-validated,
as shown in Table 11.1, indicating that its main impact is resilience to mis-calibration).

Unpacking the Performance Gain. To unpack where our performance gain is coming
from, we perform a series of ablations to answer the following questions.
Are sophisticated hallucination architectures necessary?
In the semantic feature space learned by a convolutional network, a simple jittering of the
training examples might be enough. We created several baseline hallucinators that did
such jittering by: (a) adding Gaussian noise with a diagonal covariance matrix estimated
from feature vectors from the base classes, (b) using dropout (PN/PMN w/ Dropout),
and (c) generating new examples through a weighted average of real ones (PN/PMN w/
Weighted). For the Gaussian hallucinator, we evaluated both a covariance matrix shared
across classes and class-specific covariances. We found that the shared covariance outper-
formed class-specific covariances by 0.7 point and reported the best results. We tried both

157

1 2 5 10 20

of examples / novel class

8

6

4

2

0

2

4

6
Im

p
ro

v
e
m

e
n
t

in
 t

o
p
-5

 a
cc

u
ra

cy
 (

a
b
so

lu
te

)
Novel classes

(PN w/ G) - (PN)

(PN w/ Gaussian) - (PN)

(PN w/ Gaussian(tr)) - (PN)

(PN w/ init G) - (PN)

(PN w/ det. G) - (PN)

(PN w/ det. G(tr)) - (PN)

(PN w/ Dropout) - (PN)

(PN w/ Weighted) - (PN)

(PN w/ Analogies) - (PN)

1 2 5 10 20

of examples / novel class

5

4

3

2

1

0

1

2

3

Im
p
ro

v
e
m

e
n
t

in
 t

o
p
-5

 a
cc

u
ra

cy
 (

a
b
so

lu
te

)

Novel classes

(PMN w/ G) - (PMN)

(PMN w/ Gaussian) - (PMN)

(PMN w/ Gaussian(tr)) - (PMN)

(PMN w/ init G) - (PMN)

(PMN w/ det. G) - (PMN)

(PMN w/ det. G(tr)) - (PMN)

(PMN w/ Dropout) - (PMN)

(PMN w/ Weighted) - (PMN)

(PMN w/ Analogies) - (PMN)

Figure 11.6: Comparison of our learned hallucination with several ablations for both PN
(left) and PMN (right). Our approach significantly outperforms the baselines, showing that
a meta-learned hallucinator is important. Best viewed in color with zoom.

retraining the meta-learner with this Gaussian hallucinator, and using a pre-trained meta-
learner: PN/PMN w/ Gaussian uses a pre-trained meta-learner and PN/PMN w/ Gaus-
sian(tr) retrains the meta-learner. As shown in Figure 11.6, while such hallucinations help a
little, they often hurt significantly, and lag the accuracy of our approach by at least 3 points.
This shows that generating useful hallucinations is not easy and requires sophisticated ar-
chitectures.
Is meta-learning the hallucinator necessary?
Simply passing Gaussian noise through an untrained convolutional network can produce
complex distributions. In particular, ReLU activations might ensure the hallucinations are
non-negative, like the real examples. We compared hallucinations with (a) an untrained G
and (b) a pre-trained and fixed G based on analogies from [144] with our meta-trained ver-
sion to see the impact of our training. Figure 11.6 shows the impact of these baseline hal-
lucinators (labeled PN/PMN w/ init G and PN/PMN w/ Analogies, respectively). These
baselines hurt accuracy significantly, suggesting that meta-training the hallucinator is im-
portant.
Does the hallucinator produce diverse outputs?
A persistent problem with generative models is that they fail to capture multiple modes [327].
If this is the case, then any one hallucination should look very much like the others, and
simply replicating a single hallucination should be enough. We compared our approach
with: (a) a deterministic baseline that uses our trained hallucinator, but simply uses a fixed
noise vector z = 0 (PN/PMN w/ det. G) and (b) a baseline that uses replicated halluci-
nations during both training and testing (PN/PMN w/ det. G(tr)).These baselines had a
very small, but negative effect. This suggests that our hallucinator produces useful, diverse
samples.

Visualizing the Learned Hallucinations. Figure 11.7 shows t-SNE [384] visualizations of
hallucinated examples for novel classes from our learned hallucinator and a baseline Gaus-
sian hallucinator for prototypical networks. As before, we used statistics from the base class
distribution for the Gaussian hallucinator. Note that t-SNE tends to expand out parts of the
space where examples are heavily clustered together. Thus, the fact that the cloud of hallu-

158

(a) Gaussian baseline (b) G with 1 seed

(c) 2 seeds (d) 4 seeds

Figure 11.7: t-SNE visualizations of hallucinated examples. Seeds are shown as stars, real
examples as crosses, hallucinations as triangles. (a) Gaussian, single seed. (b,c,d) Our ap-
proach, 1, 2, and 4 seeds respectively. Best viewed in color with zoom.

cinations for the Gaussian hallucinator is pulled away from the class distributions suggests
that these hallucinations are very close to each other and far away from the rest of the class.
In contrast, our hallucinator matches the class distributions more closely, and with different
seed examples captures different parts of the space. Interestingly, our generated examples
tend to cluster around the class boundaries. This might be an artifact of t-SNE, or perhaps a
consequence of discriminative training of the hallucinator. However, our hallucinations are
still fairly clustered; increasing the diversity of these hallucinations is an avenue for future
work.

Representations from Deeper Models. All experiments till now used a feature represen-
tation trained using the ResNet-10 architecture [144]. The bottom half of Table 11.1 shows
the results on features from a ResNet-50 architecture. As expected, all accuracies are higher,
but our hallucination strategy still provides gains on top of both prototypical networks and
prototype matching networks.

159

Chapter 12

Conclusions and Future Work

Wir müssen wissen — wir werden wissen!

— David Hilbert

This dissertation has made some progress towards endowing visual recognition sys-
tems with the ability of learning novel visual concepts from few examples. At first glance,
this task seems daunting; current recognition systems are developed upon classic statisti-
cal machine learning, which is essentially guaranteed by the (weak) law of large numbers.
However, to make low-shot learning possible, we need new ideas and to rethink the learn-
ing paradigm.

At the heart of the dissertation is the idea that we should leverage the structures and
regularities of visual world not only in feature space but also in task and model space. By
learning to learn such structures as appropriately tuned inductive biases, we are able to
reuse previous experience, and address a new recognition task rapidly from limited training
examples. In this spirit, we have addressed key technical challenges and explored different
and complementary perspectives, including knowledge distillation, unsupervised meta-
learning, continual learning, and generative learning.

In this final chapter, we take a step back from the work. We first discuss the observations,
speculations, and lessons learned when developing our approaches, and address their lim-
itations and possible future improvements. We then provide some other perspectives and
potential future directions. Much work remains to be done in terms of understanding the
low-shot learning mechanism and achieving applicable recognition performance.

12.1 Discussions: What Might be Wrong with Small Sample
Learning?

Learning Process — Generating a Target Network without Extensive Data-Oriented Learn-
ing. Learning a recognition model is now generally cast as learning a parametrized neu-
ral network via gradient-based optimization. One partial reason why the model fails in
the face of few labeled examples is that gradient-based optimization is slow and requires
many weight updates using stochastic gradient descent (SGD) to gradually map training
examples to model parameters [310, 388]. The variants of gradient-based optimization al-
gorithms, such as momentum [275], Adagrad [98], Adadelta [428], and ADAM [199], were

161

Θ"#$% Θ"#$∗

Θ'()%Θ'()∗

Meta-Learner

?

?

Θ*#)+,%

Θ-(**%

Learner

Parameter
updates

Error
signal

Figure 12.1: The meta-learner learns the model dynamics T from small-sample models Θ0

(represented as blue) to the underlying large-small models Θ∗ (represented as red) based on
a large collection of model pairs from different recognition tasks. For a novel recognition
task, the meta-learner proposes model updates to increase the learner’s generalization in
the small sample size regime.

not designed specifically to perform well under the constraint of a set number of updates.
Specifically when applied to non-convex optimization problems, with a reasonable choice
of hyper-parameters these algorithms do not have very strong guarantees of speed of con-
vergence, beyond that they will eventually converge to a good solution after what could be
many millions of iterations [310]. There is also recent exploration of training neural net-
works without back-propagation, such as [331].

In Part I, we provided a different perspective regarding model optimization by studying
the relationship between models learned from few annotated samples and models learned
from large enough sample sets. We then explicitly encoded their difference (i.e., transfor-
mation) using a higher-level meta-model. Ideally, the meta-model is supposed to extract
and contain statistically sufficient [404] information across a certain distribution of tasks. For
a novel task from the same or relevant distribution, the meta-model allows to generate the
corresponding model rapidly without extensive learning phases. The central issue then is,
to make all this possible, what kind of information the meta-model should contain?

We explored “the direct change of model parameters” in Part I. Contemporary work also
considered “estimation of gradient” [10, 182, 236, 310]. These approaches can be viewed
as storing the first-order information in the space of model parameters. It is interesting to
investigate higher-order parameter dynamics or other types of information. Moreover, we
used a simple feed-forward network as the meta-model, which might not be enough to en-
code complex information. It is thus interesting to equip the meta-model with additional
memory [135,329] through recurrent architectures in the form of recurrent neural networks
(RNNs) or long short-term memories (LSTMs). In addition, our specific approach was de-
veloped in the context of simple linear classifiers, i.e., the final layer of a CNN model. It is
also interesting to explore the dynamics of other layers, including the fully-connected and
convolutional layers, in a similar fashion as shown in Figure 12.1. This might be challenging
due to the significant increase in the number of parameters and the mutual dependency of

162

parameters in hierarchical layers.

Loss Function in the Small Data Regime. Without the guarantee from the law of large
numbers, it is likely that small-sample learning and large-sample learning follow different
learning rules. Hence, the difficulty of small-sample learning might partially lie in the lack
of an appropriate objective function, which might be significantly different from that in the
large sample size regime. We tackled this slightly in this thesis. In Part IV, we directly
hallucinated additional examples that were useful for the end-goal of learning classifiers,
rather than aiming at the diversity or realism criterion as normally do. In Chapter 9, we
observed that feature activations tended to become smaller when fine-tuning a pre-trained
network on limited target data. A similar phenomenon has also been observed in [144], in
which a novel loss function for representation learning is proposed to penalize the differ-
ence between classifiers learned on large and small datasets. More generally, what is an
appropriate objective function when learning in the small sample size regime?

The recent seminal work of generative adversarial networks (GANs) [23,132,257,304,314,
327,433] might cast some interesting light on small-sample learning, owing to its promising
learning mechanism [65]. Traditional machine learning needs to be given an explicit objec-
tive function, which evaluates how well the model is doing and which is typically effective
with enough training samples. This objective function forms the basis of what the model
learns and how well it learns. Typically, such an objective function is carefully, manually
constructed. This is where the adversarial network shines. The adversarial network learns
its own objective function — its own complex rules of what is correct and what is wrong —
bypassing the need to carefully design and construct one [65].

Data Manufacturing via Unsupervised Regularization. A straightforward solution to
low-shot learning is to generate additional data, as we did in Part IV or through genera-
tive adversarial networks (GANs). However, this line of work is still restrictive in the sense
that the learned generator is tied to a specific set of categories due to its supervised na-
ture. The challenge then is to enable the generator to hallucinate examples in the feature
space with a good coverage of intra-class variation for a broad range of categories. Our
low-density separators in Part II can be viewed as an effective, discriminative compression
of the unsupervised data. For a novel category, these separators implicitly connect its few
examples with the corresponding latent pseudo-classes in the feature space, thus providing
additional bits of information for the recognition task.

Our approach suggests a way to hallucinate additional examples by leveraging the joint
regularity from generative learning and a large amount of unlabeled real-world images, as
shown in Figure 12.2. It is interesting to investigate different ways to combine a generator
(e.g., GAN) with our unsupervised meta-learning. For instance, (1) we first produce plausi-
ble pseudo-classes and further expand them via the generator; and (2) we directly generate
examples while satisfying the statistics in the feature space, which is constrained by the un-
supervised data (e.g., using the maximum mean discrepancy (MMD) [136, 378] criterion).
Other ways might be introducing tangent propagation which encourages invariant repre-
sentations [346]. Moreover, the initial feature space could be fine-tuned as well during the
sample generation process.

163

Noise

Example
Images

Generator

Discriminator

Real

Fake

100 M

Sample in a
feature space

Sample in a
feature space

Figure 12.2: We generate additional examples by combing generative adversarial networks
(GANs) with a large amount of unlabeled real-world images (e.g., Flickr images) for learning
from few examples. Plausible samples are directly generated in a feature space that is useful
for recognition. The unsupervised data are exploited to satisfy the sample statistics in the
desired feature space as well as to provide a good coverage of intra-class variation.

Developmental Learning of Generic Features. Assuming that we already have “the grand
generic feature representation”1, the small-sample learning problem might have been, at
least partially, solved. In this case, a single example will suffice to discriminatively repre-
sent the entire class. The current approaches to learning CNNs, however, aim to learn a
generic feature representation but they are based on a fixed set of visual concepts through
representative images and a fixed model with constant capacity. This is not enough. In
Part III, as improvements to the standard practice of fine-tuning a fixed-size network on
labeled target data, we progressively grew a convolutional neural network with increased
model capacity. Our approach thus suggests a developmental view of CNN optimization,
in which model capacity is progressively grown throughout a lifelong learning process.

From a unified perspective, there is no clear boundary between learning an initial model
and fine-tuning a pre-trained model, since both procedures are conducted using SGD. While
our approach was developed in the scenario of fine-tuning pre-trained CNNs, it is interest-
ing to explore if such a principle also benefits learning more generic CNN models from
scratch, especially when learning from continuously evolving data streams and tasks. This
strategy decouples the model from ties to the original specific set of categories and the lim-
ited representational capability.

In this framework, the resulting developmental neural network is a directed graph of
pre-trained networks linked together with auxiliary, untrained units. It is interesting to in-
vestigate different configurations for constructing the network. In particular, inspired by
the recent work on network modularization [8,9,169,210], we treat the already learned net-
works as modular components to compose a more advanced model. Rather than augment
the network on unit levels, we now progressively grow the network by adding composi-
tional modules or interleaved modules, as shown in Figure 12.3. Some specific architec-
tures takes the forms of (1) introducing an entire new tower (i.e., placing the pre-trained
and new modules in parallel or in a stitch manner), which leads to a two-towers approach;
(2) sequentially stack more modules on the top, which leads to a depth augmented mod-
ular network; (3) expanding certain existing modules, which leads to a width augmented
modular network; and (4) their combinations.

1This term is inspired by the grand unified field theory in physics.

164

Softmax

Classifier module

New Task !

Pre-existing Representation
Modules 1, … , ! − 1

New Representation Module !

Figure 12.3: The developmental neural networks progressively grow in model capacity
throughout a lifelong learning process, thus capturing a more generic and richer description
of the visual world. We treat the pre-existing networks as modular components and intro-
duce additional modules to compose a more advanced model via compositional or/and
interleaved configurations as new tasks as encountered.

These additional modules help guide the adaptation of pre-existing modules. Composi-
tional modules allow for new compositions of pre-existing modules, while interleaved mod-
ules allow for the discovery of complementary cues that address the new task. To improve
the ability of learning without forgetting and make the network grow in a smooth man-
ner, it is also interesting to investigate adding identity shortcuts and introducing weighting
schemes for the pre-existing and new modules, training the new components while freezing
the original modules or re-training the entire network.

During self-growing, the network is performing curriculum learning based on rich sets
of tasks. It is interesting to investigate different types of tasks: (1) the same type of recog-
nition tasks using different datasets, which consist of data sampled from easy to hard cat-
egories; (2) different recognition tasks using the same collection of sample images, such as
from a coarse task of image classification to a fine-grained task of semantic segmentation;
(3) tasks with different degree of supervision, from supervised tasks to self-supervised or
unsupervised tasks. The corresponding learning objective functions of the network are con-
structed correspondingly and changed dynamically. For instance, in the unsupervised sce-
nario, we generate a diverse set of pseudo-tasks as in Chapter 6. By leveraging the smooth-
ness among tasks, the developmental network facilitates continual transfer across multiple
tasks.

The Dynamics of a Large Collection of Models. In Part II, we showed the use of a large
collection of models for the purpose of small-sample recognition. However, the analysis of
the properties, behaviors, and applications of a large-scale model library goes beyond this
thesis. In Part II, we mainly leveraged the intuition and observation that, in a large-scale
library, it is likely that one of the library models happens to be tuned with the similar con-
ditions as the new target task. In addition, we observed that the recognition performance of
the library models on a new target task also followed a long-tail distribution. In Chapter 7,
we further discovered a continuous category space based on the number of shared models

165

between different categories.
Traditionally, in machine learning, the use of multiple learning algorithms is discussed

in ensemble learning [85, 438], which focuses on achieving better predictive performance
than could be obtained from any of the constituent learning algorithms alone. The results
in Part II suggest another promising direction — systematically analyzing the dynamics,
equilibrium, synergetics, and self-organization of patterns and structures in such a large-
scale model library system. By doing so, we might develop a corresponding theory similar
to thermodynamics [52] and synergetics [142] in physics and have far-reaching applications.

Predictive Structure Learning: Exploration and Exploitation. Let us imagine that we are
given a very large amount of unsupervised images as a much less biased sampling in a
feature space. Within this universe of images, we have certain annotated image categories
as well. On the one hand, the learning to learn approach discussed in Chapter 3 is essen-
tially performing exploitation [233, 253, 284]: we probe a limited (but promising) region of
the feature space (represented by the annotated categories) with the hope of improving a
promising recognition model M that we already have at hand. During this process, we
have acquired certain shared model structure. This operation amounts then to intensify-
ing (refining) the search in the vicinity ofM, which is the learning of recognition models
for relevant novel categories. On the other hand, the unsupervised meta-learning approach
discussed in Chapter 6 is essentially performing exploration [233,253,284]: we probe a much
larger portion of the feature space (but in a much coarse level due to the lack of supervision)
with the hope of finding other promising recognition models that are yet to be refined. This
operation amounts then to diversifying the search in order to have a good coverage of visual
concepts and categories.

Meta-Meta-Learner

!"#$%

!"#$∗

'()*+,

Figure 12.4: Illustration of exploration and exploitation for learning predictive model struc-
ture from annotated image categories and a very large amount of unsupervised images.
After the meta-learners learn the model structure in the supervised region of the feature
space, an additional meta-meta-learner is introduced to refine the meta-learners after ex-
ploring the unsupervised region of the feature space.

Such a perspective and the recent advance in processing large-scale datasets [187] thus
suggest the combination of these two approaches. In addition to the meta-learners dis-
cussed in Chapter 3 (which learn model structures from small-sample models to large-
sample models in the supervised region of the feature space), we introduce a higher-level
meta-meta-learner that refines the meta-learner after exploring the unsupervised region of

166

the feature space through pseudo-classes and low-density separators discussed in Chap-
ter 6. For instance, the meta-learners are instantiated as LSTMs and their hidden states
are modified by the meta-meta-learner, which might be another LSTM. During the learn-
ing process, the model might progressively grow in a manner as in Chapter 9 and thus
becomes more and more versatile and generic.

12.2 Other Perspectives and Future Directions
Exploratory Learning and Adversarial Interaction. In this thesis, we mainly focused on
learning structures from collections of images, and paid little attention to the interaction
with the physical world. Humans, especially babies and children, however, learn more in an
exploratory and multi-modal way [350]. People live in a physical world, full of rich regular-
ities that organize perception, action, and ultimately thought. Hence, people interact with
the world through a vast array of sensory systems, including not only vision but also audi-
tion, touch, smell, proprioception, and balance. Importantly, people explore the world by
moving and acting in highly variable and playful ways that are not goal-oriented. Through
adversarial interactions, people accumulate and transfer previous experiences, and discover
new problems and new solutions. In machine learning, such learning mechanism is stud-
ied in reinforcement learning [356] and more recently deep reinforcement learning [266].
It is interesting to address few-shot learning by combing exploratory learning with meta-
learning and leveraging the state-of-the-art deep reinforcement learning [11] and multi-
modal learning [19] techniques.

Reasoning using Symbolic, Hybrid Approaches. Another import aspect of human intel-
ligence is the ability of reasoning [44, 99]. Machine reasoning is typically defined as “al-
gebraically manipulating previously acquired knowledge in order to answer a new ques-
tion” [44]. By transferring knowledge from common classes to rare classes, reasoning might
benefit small-sample tail classes in long-tail recognition [64]. Earlier work in machine rea-
soning focuses on symbolic approaches [276], in which relations between abstract symbols
are defined by the language of mathematics and logic and conclusions are generated by
using logical techniques like deduction and induction. Recently, there is growing interest
in integrating reasoning on top of deep representation learning [225,330], leading to hybrid
approaches. It is interesting to explore how reasoning systems that consist of knowledge
base and inference engine would effectively improve few-shot learning.

New Recognition Model Architectures. The backbone recognition model in this thesis
was the state-of-the-art convolutional neural networks. At the heart of object recognition is
equivalence and invariance [2,74]. Nonetheless, CNNs have some fundamental limitations,
as pointed by the recent work [158, 323]. From the architecture design, the internal repre-
sentation of CNNs does not take into account important orientational and relative spatial
relationships between objects parts. Hence, CNNs require a large amount of labeled images
from different view points to learn view-invariant representation. Some emerging model
architectures, such as capsule networks [158, 323], explicitly encode relative relationships
between objects and represent them as a 4D pose matrix. By combining our meta-learning
approaches with such new architectures that have the built-in understanding of 3D space ,
we could further improve the recognition performance by only using a fraction of the data
that a CNN would use.

167

High-Level Tasks. In this thesis, for evaluation purpose, we mainly focused on the task
of image classification and we also considered other applications such as image clustering
(Chapter 10), object detection (Chapter 7), image retrieval (Chapter 8), and human motion
prediction (Chapter 5). Small sample learning is much broader concept and our learning to
learn approaches are also general and can be potentially applied in other domains and tasks
as well. Contemporary work also investigates other few-shot scenarios, such as semantic
segmentation [307,340], robotic imitation learning [97,115], visual question answering [260,
362]. It is interesting to investigate how our approaches extend to these and other high-level
few-shot learning tasks and generalize beyond vision domains.

168

Bibliography

[1] The infinite monkey theorem. http://en.wikipedia.org/wiki/Infinite_monkey_theorem.
[2] A. Achille and S. Soatto. Emergence of invariance and disentangling in deep representations.

In ICML Workshops, 2017.
[3] P. Agrawal, R. Girshick, and J. Malik. Analyzing the performance of multilayer neural networks

for object recognition. In ECCV, 2014.
[4] A. Ahmed, K. Yu, W. Xu, Y. Gong, and E. P. Xing. Training hierarchical feed-forward visual

recognition models using transfer learning from pseudo-tasks. In ECCV, 2008.
[5] I. Akhter, T. Simon, S. Khan, I. Matthews, and Y. Sheikh. Bilinear spatiotemporal basis models.

ACM TOG, 31(2):17, 2012.
[6] Y. Amit, M. Fink, N. Srebro, and S. Ullman. Uncovering shared structures in multiclass classi-

fication. In ICML, 2007.
[7] R. K. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks

and unlabeled data. JMLR, 6:1817–1853, 2005.
[8] J. Andreas, M. Rohrbach, T. Darrell, and D. Klein. Learning to compose neural networks for

question answering. In NAACL, 2016.
[9] J. Andreas, M. Rohrbach, T. Darrell, and D. Klein. Neural module networks. In CVPR, 2016.

[10] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, and N. de Freitas.
Learning to learn by gradient descent by gradient descent. In NIPS, 2016.

[11] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath. A brief survey of deep
reinforcement learning. IEEE Signal Processing Magazine, 34(6):26–38, 2017.

[12] S. Awodey. Category theory. Oxford University Press, 2010.
[13] Y. Aytar and A. Zisserman. Tabula rasa: Model transfer for object category detection. In ICCV,

2011.
[14] Y. Aytar and A. Zisserman. Enhancing exemplar SVMs using part level transfer regularization.

In BMVC, 2012.
[15] H. Azizpour, A. S. Razavian, J. Sullivan, A. Maki, and S. Carlsson. Factors of transferability for

a generic ConvNet representation. TPAMI, 2015.
[16] H. Azizpour, A. Sharif Razavian, J. Sullivan, A. Maki, and S. Carlsson. From generic to specific

deep representations for visual recognition. In CVPR Workshops, 2015.
[17] J. Ba, K. Swersky, S. Fidler, and R. Salakhutdinov. Predicting deep zero-shot convolutional

neural networks using textual descriptions. In ICCV, 2015.
[18] J. Ba and R. Caruana. Do deep nets really need to be deep? In NIPS, 2014.
[19] T. Baltrušaitis, C. Ahuja, and L.-P. Morency. Multimodal machine learning: A survey and tax-

onomy. IEEE TPAMI, 2018.

169

http://en.wikipedia.org/wiki/Infinite_monkey_theorem

[20] E. Barsoum, J. Kender, and Z. Liu. HP-GAN: Probabilistic 3D human motion prediction via
GAN. arXiv preprint arXiv:1711.09561, 2017.

[21] E. Bart and S. Ullman. Cross-generalization: Learning novel classes from a single example by
feature replacement. In CVPR, 2005.

[22] E. Bart and S. Ullman. Single-example learning of novel classes using representation by simi-
larity. In BMVC, 2005.

[23] S. Bartunov and D. P. Vetrov. Fast adaptation in generative models with generative matching
networks. arXiv preprint arXiv:1612.02192, 2016.

[24] M. Bastian, S. Heymann, and M. Jacomy. Gephi: An open source software for exploring and
manipulating networks. In International AAAI Conference on Weblogs and Social Media, 2009.

[25] J. Baxter. A Bayesian/information theoretic model of learning to learn via multiple task sam-
pling. Machine Learning, 28(1):7–39, 1997.

[26] A. Bellet, A. Habrard, and M. Sebban. A survey on metric learning for feature vectors and
structured data. arXiv preprint arXiv:1306.6709, 2013.

[27] S. Ben-david, T. Lu, D. Pál, and M. Sotáková. Learning low density separators. In AISTATS,
2009.

[28] S. Ben-David, N. Eiron, and H. U. Simon. The computational complexity of densest region
detection. Journal of Computer and System Sciences, 64(1):22–47, 2002.

[29] S. Ben-David and R. Schuller. Exploiting task relatedness for multiple task learning. In COLT,
2003.

[30] A. Bendale and T. Boult. Towards open world recognition. In CVPR, 2015.
[31] S. Bengio. Sharing representations for long tail computer vision problems. In ICMI, 2015.
[32] S. Bengio, Y. Bengio, J. Cloutier, and J. Gecsei. On the optimization of a synaptic learning rule.

In Optimality in Artificial and Biological Neural Networks, 1992.
[33] Y. Bengio. Deep learning of representations for unsupervised and transfer learning. In ICML

Workshop on Unsupervised and Transfer Learning, 2012.
[34] Y. Bengio. Deep learning: Progress in theory and attention mechanisms. In CVPR Workshop on

Deep Vision, 2015.
[35] Y. Bengio. https://disqus.com/by/yoshuabengio/, 2016.
[36] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of deep net-

works. In NIPS, 2007.
[37] K. Bennett and A. Demiriz. Semi-supervised support vector machines. In NIPS, 1999.
[38] A. Bergamo and L. Torresani. Classemes and other classifier-based features for efficient object

categorization. IEEE TPAMI, 36(10):1988–2001, 2014.
[39] A. Bergamo and L. Torresani. Meta-class features for large-scale object categorization on a bud-

get. In CVPR, 2012.
[40] A. Bergamo, L. Torresani, and A. W. Fitzgibbon. Picodes: Learning a compact code for novel-

category recognition. In NIPS, 2011.
[41] L. Bertinetto, J. F. Henriques, J. Valmadre, P. Torr, and A. Vedaldi. Learning feed-forward one-

shot learners. In NIPS, 2016.
[42] I. Biederman. Recognition-by-components: A theory of human image understanding. Psycho-

logical review, 94(2):115, 1987.
[43] E. Bingham and H. Mannila. Random projection in dimensionality reduction: Applications to

image and text data. In SIGKDD, 2001.

170

https://disqus.com/by/yoshuabengio/

[44] L. Bottou. From machine learning to machine reasoning. Machine learning, 94(2):133–149, 2014.
[45] C. Boutsidis and E. Gallopoulos. SVD based initialization: A head start for nonnegative matrix

factorization. Pattern Recognition, 41(4):1350–1362, 2008.
[46] P. Bradley, K. Bennett, and A. Demiriz. Constrained k-means clustering. Microsoft Research,

Redmond, 2000.
[47] M. Brand and A. Hertzmann. Style machines. In Proceedings of the 27th annual conference on

Computer graphics and interactive techniques, 2000.
[48] J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. LeCun, C. Moore, E. Säckinger, and R. Shah. Sig-

nature verification using a ”siamese” time delay neural network. International Journal of Pattern
Recognition and Artificial Intelligence, 7(4):669–688, 1993.

[49] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil. Model compression. In KDD, 2006.
[50] J. Burgess. One-shot learning in discriminative neural networks. PhD thesis, University of Cam-

bridge, 2016.
[51] D. Cai, X. He, J. Han, and T. S. Huang. Graph regularized nonnegative matrix factorization for

data representation. TPAMI, 33(8):1548–1560, 2011.
[52] H. B. Callen. Thermodynamics and an introduction to thermostatistics. Wiley, 1985.
[53] M. A. Carreira-Perpinán and R. Raziperchikolaei. Hashing with binary autoencoders. In CVPR,

2015.
[54] R. Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.
[55] W.-L. Chao, S. Changpinyo, B. Gong, and F. Sha. An empirical study and analysis of generalized

zero-shot learning for object recognition in the wild. In ECCV, 2016.
[56] O. Chapelle and A. Zien. Semi-supervised classification by low density separation. In AISTATS,

2005.
[57] O. Chapelle, B. Schölkopf, and A. Zien. Semi-supervised learning. Adaptive Computation and

Machine Learning. The MIT Press, 2006.
[58] M. S. Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings of

the thiry-fourth annual ACM symposium on Theory of computing, 2002.
[59] K. Chatfield, R. Arandjelović, O. Parkhi, and A. Zisserman. On-the-fly learning for visual search

of large-scale image and video datasets. International journal of multimedia information retrieval,
4(2):75–93, 2015.

[60] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details:
Delving deep into convolutional nets. In BMVC, 2014.

[61] K. Chatfield, K. Simonyan, and A. Zisserman. Efficient on-the-fly category retrieval using con-
vnets and gpus. In ACCV, 2014.

[62] K. Chatfield and A. Zisserman. VISOR: Towards on-the-fly large-scale object category retrieval.
In ACCV, 2012.

[63] R. Chattopadhyay, J. Ye, S. Panchanathan, W. Fan, and I. Davidson. Multisource domain adap-
tation and its application to early detection of fatigue. In SIGKDD, 2011.

[64] X. Chen, L.-J. Li, L. Fei-Fei, and A. Gupta. Iterative visual reasoning beyond convolutions. In
CVPR, 2018.

[65] S. Chintala and Y. LeCun. A path to unsupervised learning through ad-
versarial networks. https://code.facebook.com/posts/1587249151575490/

a-path-to-unsupervised-learning-through-adversarial-networks/, 2016.
[66] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio. On the properties of neural machine

translation: Encoder-decoder approaches. In Eighth Workshop on Syntax, Semantics and Structure
in Statistical Translation, 2014.

171

https://code.facebook.com/posts/1587249151575490/a-path-to-unsupervised-learning-through-adversarial-networks/
https://code.facebook.com/posts/1587249151575490/a-path-to-unsupervised-learning-through-adversarial-networks/

[67] J. Choi, M. Rastegari, A. Farhadi, and L. Davis. Adding unlabeled samples to categories by
learned attributes. In CVPR, 2013.

[68] M. J. Choi, J. J. Lim, A. Torralba, and A. S. Willsky. Exploiting hierarchical context on a large
database of object categories. In CVPR, 2010.

[69] F. Chollet et al. Keras. https://keras.io, 2015.
[70] B. Chu, V. Madhavan, O. Beijbom, J. Hoffman, and T. Darrell. Best practices for fine-tuning

visual classifiers to new domains. In ECCV Workshops, 2016.
[71] R. G. Cinbis and S. Sclaroff. Contextual object detection using set-based classification. In ECCV,

2012.
[72] R. G. Cinbis, J. Verbeek, and C. Schmid. Segmentation driven object detection with Fisher vec-

tors. In ICCV, 2013.
[73] A. Coates and A. Y. Ng. Learning feature representations with k-means. In Neural Networks:

Tricks of the Trade. 2012.
[74] T. Cohen and M. Welling. Group equivariant convolutional networks. In ICML, 2016.
[75] D. Dai and L. V. Gool. Ensemble projection for semi-supervised image classification. In ICCV,

2013.
[76] D. Dai, M. Prasad, C. Leistner, and L. Van Gool. Ensemble partitioning for unsupervised image

categorization. In ECCV. 2012.
[77] D. Dai and L. Van Gool. Unsupervised high-level feature learning by ensemble projection

for semi-supervised image classification and image clustering. arXiv preprint arXiv:1602.00955,
2016.

[78] D. Dai, T. Wu, and S.-C. Zhu. Discovering scene categories by information projection and cluster
sampling. In CVPR, 2010.

[79] J. Dai, Y. Li, K. He, and J. Sun. R-FCN: Object detection via region-based fully convolutional
networks. In NIPS, 2016.

[80] Z. Dai, Z. Yang, F. Yang, W. W. Cohen, and R. Salakhutdinov. Good semi-supervised learning
that requires a bad GAN. In NIPS, 2017.

[81] H. Daumé III. Frustratingly easy domain adaptation. In ACL, 2007.
[82] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via

the em algorithm. Journal of the royal statistical society. Series B (methodological), 39(1):1–38, 1977.
[83] E. L. Denton, S. Chintala, A. Szlam, and R. Fergus. Deep generative image models using a

Laplacian pyramid of adversarial networks. In NIPS, 2015.
[84] L. Devroye and G. Lugosi. Combinatorial methods in density estimation. Springer Science & Busi-

ness Media, 2012.
[85] T. G. Dietterich. Ensemble methods in machine learning. In International workshop on multiple

classifier systems, 2000.
[86] M. Dixit, R. Kwitt, M. Niethammer, and N. Vasconcelos. AGA: Attribute-guided augmentation.

In CVPR, 2017.
[87] T.-T. Do, A.-D. Doan, and N.-M. Cheung. Learning to hash with binary deep neural network.

In ECCV, 2016.
[88] T.-T. Do, A.-D. Doan, D.-T. Nguyen, and N.-M. Cheung. Binary hashing with semidefinite re-

laxation and augmented Lagrangian. In ECCV, 2016.
[89] C. Doersch, A. Gupta, and A. A. Efros. Mid-level visual element discovery as discriminative

mode seeking. In NIPS, 2013.

172

https://keras.io

[90] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context
prediction. In ICCV, 2015.

[91] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. DeCAF: A deep
convolutional activation feature for generic visual recognition. In ICML, 2014.

[92] D. L. Donoho and C. Grimes. Hessian eigenmaps: Locally linear embedding techniques for
high-dimensional data. National Academy Sciences, 100(10):5591–5596, 2003.

[93] M. Dorfer, R. Kelz, and G. Widmer. Deep linear discriminant analysis. In ICLR, 2016.
[94] A. Dosovitskiy, J. T. Springenberg, and T. Brox. Learning to generate chairs with convolutional

neural networks. In CVPR, 2015.
[95] A. Dosovitskiy, J. T. Springenberg, M. Riedmiller, and T. Brox. Discriminative unsupervised

feature learning with convolutional neural networks. In NIPS, 2014.
[96] L. Duan, I. W. Tsang, D. Xu, and T.-S. Chua. Domain adaptation from multiple sources via

auxiliary classifiers. In ICML, 2009.
[97] Y. Duan, M. Andrychowicz, B. Stadie, O. J. Ho, J. Schneider, I. Sutskever, P. Abbeel, and

W. Zaremba. One-shot imitation learning. In NIPS, 2017.
[98] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and

stochastic optimization. JMLR, 12:2121–2159, 2011.
[99] J. S. B. Evans. Bias in human reasoning: Causes and consequences. Lawrence Erlbaum Associates,

Inc, 1989.
[100] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The PASCAL visual

object classes (VOC) challenge. IJCV, 88(2):303–338, 2010.
[101] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for large

linear classification. JMLR, 9:1871–1874, 2008.
[102] A. Farhadi, M. K. Tabrizi, I. Endres, and D. Forsyth. A latent model of discriminative aspect. In

CVPR, 2009.
[103] L. Fei-Fei, R. Fergus, and P. Perona. A Bayesian approach to unsupervised one-shot learning of

object categories. In ICCV, 2003.
[104] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. IEEE TPAMI,

28(4):594–611, 2006.
[105] L. Fei-Fei. Knowledge transfer in learning to recognize visual objects classes. In International

Conference on Development and Learning, 2006.
[106] L. Fei-Fei and P. Perona. A Bayesian hierarchical model for learning natural scene categories.

In CVPR, 2005.
[107] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with dis-

criminatively trained part-based models. TPAMI, 32(9):1627–1645, 2010.
[108] A. Ferencz, E. G. Learned-Miller, and J. Malik. Building a classification cascade for visual iden-

tification from one example. In ICCV, 2005.
[109] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised scale-invariant

learning. In CVPR, 2003.
[110] B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars. Unsupervised visual domain adapta-

tion using subspace alignment. In ICCV, 2013.
[111] B. Fernando and T. Tuytelaars. Mining multiple queries for image retrieval: On-the-fly learning

of an object-specific mid-level representation. In ICCV, 2013.
[112] M. Fink. Acquiring a new class from a few examples: Learning recurrent domain structures in humans

and machines. PhD thesis, The Hebrew University of Jerusalem, 2011.

173

[113] M. Fink. Object classification from a single example utilizing class relevance metrics. In NIPS,
2005.

[114] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In ICML, 2017.

[115] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine. One-shot visual imitation learning via meta-
learning. In Conference on Robot Learning (CoRL), 2017.

[116] F. Fleuret and G. Blanchard. Pattern recognition from one example by chopping. In NIPS, 2005.
[117] K. Fragkiadaki, S. Levine, P. Felsen, and J. Malik. Recurrent network models for human dynam-

ics. In ICCV, 2015.
[118] Y. Fu and L. Sigal. Semi-supervised vocabulary-informed learning. In CVPR, 2016.
[119] T. Furlanello, J. Zhao, A. M. Saxe, L. Itti, and B. S. Tjan. Active long term memory networks.

arXiv preprint arXiv:1606.02355, 2016.
[120] Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backpropagation. In ICML,

2015.
[121] D. George, W. Lehrach, K. Kansky, M. Lázaro-Gredilla, C. Laan, B. Marthi, X. Lou, Z. Meng,

Y. Liu, H. Wang, A. Lavin, and D. S. Phoenix. A generative vision model that trains with high
data efficiency and breaks text-based CAPTCHAs. Science, 2017.

[122] M. Ghifary, W. B. Kleijn, M. Zhang, D. Balduzzi, and W. Li. Deep reconstruction-classification
networks for unsupervised domain adaptation. In ECCV, 2016.

[123] P. Ghosh, J. Song, E. Aksan, and O. Hilliges. Learning human motion models for long-term
predictions. In 3DV, 2017.

[124] A. Gionis, P. Indyk, R. Motwani, et al. Similarity search in high dimensions via hashing. In
VLDB, 1999.

[125] R. Girshick. Fast R-CNN. In ICCV, 2015.
[126] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object

detection and semantic segmentation. In CVPR, 2014.
[127] B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for unsupervised domain adap-

tation. In CVPR, 2012.
[128] B. Gong, K. Grauman, and F. Sha. Reshaping visual datasets for domain adaptation. In NIPS,

2013.
[129] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative quantization: A procrustean ap-

proach to learning binary codes for large-scale image retrieval. IEEE TPAMI, 35(12):2916–2929,
2013.

[130] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT Press, 2016. http://www.

deeplearningbook.org.
[131] I. Goodfellow, H. Lee, Q. V. Le, A. Saxe, and A. Y. Ng. Measuring invariances in deep networks.

In NIPS, 2009.
[132] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and

Y. Bengio. Generative adversarial nets. In NIPS, 2014.
[133] R. Goroshin, M. Mathieu, and Y. LeCun. Learning to linearize under uncertainty. In NIPS, 2015.
[134] R. Goroshin, J. Bruna, J. Tompson, D. Eigen, and Y. LeCun. Unsupervised learning of spatiotem-

porally coherent metrics. In ICCV, 2015.
[135] A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. arXiv preprint arXiv:1410.5401,

2014.

174

http://www.deeplearningbook.org
http://www.deeplearningbook.org

[136] A. Gretton, K. M. Borgwardt, M. Rasch, B. Schölkopf, and A. J. Smola. A kernel method for the
two-sample-problem. In NIPS, 2007.

[137] L.-Y. Gui, L. Gui, Y.-X. Wang, L.-P. Morency, and J. M. F. Moura. Factorized convolutional net-
works: Unsupervised fine-tuning for image clustering. In WACV, 2018.

[138] L.-Y. Gui, Y.-X. Wang, D. Ramanan, and J. M. F. Moura. Few-shot human motion prediction via
meta-learning. In ECCV Submission, 2018.

[139] L. Gui and L.-P. Morency. Learning and transferring deep Convnet representations with group-
sparse factorization. In ICCV Workshops, 2015.

[140] S. Gupta, J. Hoffman, and J. Malik. Cross modal distillation for supervision transfer. In CVPR,
2016.

[141] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant map-
ping. In CVPR, 2006.

[142] H. Haken. Synergetics. Physics Bulletin, 28(9):412, 1977.
[143] X. Han, B. Singh, V. I. Morariu, and L. S. Davis. VRFP: On-the-fly video retrieval using web

images and fast fisher vector products. IEEE TMM, 19(7):1583–1595, 2017.
[144] B. Hariharan and R. Girshick. Low-shot visual recognition by shrinking and hallucinating fea-

tures. In ICCV, 2017.
[145] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hypercolumns for object segmentation and

fine-grained localization. In CVPR, 2015.
[146] B. Hariharan, J. Malik, and D. Ramanan. Discriminative decorrelation for clustering and clas-

sification. In ECCV, 2012.
[147] K. Hashimoto, C. Xiong, Y. Tsuruoka, and R. Socher. A joint many-task model: Growing a

neural network for multiple NLP tasks. In ICLR, 2017.
[148] H. He and E. A. Garcia. Learning from imbalanced data. IEEE TKDE, 21(9):1263–1284, 2009.
[149] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In ECCV,

2016.
[150] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-CNN. In ICCV, 2017.
[151] K. He, F. Wen, and J. Sun. K-means hashing: An affinity-preserving quantization method for

learning binary compact codes. In CVPR, 2013.
[152] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks

for visual recognition. In ECCV, 2014.
[153] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level

performance on imagenet classification. In ICCV, 2015.
[154] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR,

2016.
[155] D. Held, S. Thrun, and S. Savarese. Robust single-view instance recognition. In ICRA, 2016.
[156] J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and S.-E. Yoon. Spherical hashing. In CVPR, 2012.
[157] T. Hertz, A. B. Hillel, and D. Weinshall. Learning a kernel function for classification with small

training samples. In ICML, 2006.
[158] G. Hinton, N. Frosst, and S. Sabour. Matrix capsules with EM routing. In ICLR, 2018.
[159] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. In NIPS

workshops, 2014.
[160] G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The “wake-sleep” algorithm for unsupervised

neural networks. Science, 268(5214):1158, 1995.

175

[161] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural
Computation, 18(7):1527–1554, 2006.

[162] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural net-
works. Science, 313(5786):504–507, 2006.

[163] J. Hoffman, E. Rodner, J. Donahue, T. Darrell, and K. Saenko. Efficient learning of domain-
invariant image representations. In ICLR, 2013.

[164] J. Hoffman, E. Tzeng, J. Donahue, Y. Jia, K. Saenko, and T. Darrell. One-shot adaptation of
supervised deep convolutional models. In ICLR Workshops, 2014.

[165] J. Hoffman, B. Kulis, T. Darrell, and K. Saenko. Discovering latent domains for multisource
domain adaptation. In ECCV, 2012.

[166] C. Hu, D. Li, Y.-Z. Song, T. Xiang, and T. M. Hospedales. Sketch-a-classifier: Sketch-based photo
classifier generation. In CVPR, 2018.

[167] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang. Network trimming: A data-driven neuron pruning
approach towards efficient deep architectures. arXiv preprint arXiv:1607.03250, 2016.

[168] R. Hu, P. Dollár, K. He, T. Darrell, and R. Girshick. Learning to segment every thing. In CVPR,
2018.

[169] R. Hu, M. Rohrbach, J. Andreas, T. Darrell, and K. Saenko. Modeling relationships in referential
expressions with compositional modular networks. In CVPR, 2017.

[170] C. Huang, Y. Li, C. C. Loy, and X. Tang. Learning deep representation for imbalanced classifi-
cation. In CVPR, 2016.

[171] D.-A. Huang and K. M. Kitani. Action-reaction: Forecasting the dynamics of human interaction.
In ECCV, 2014.

[172] S. Huang and D. Ramanan. Recognition in-the-tail: Training detectors for unusual pedestrians
with synthetic imposters. In CVPR, 2007.

[173] M. Huh, P. Agrawal, and A. A. Efros. What makes ImageNet good for transfer learning? In
NIPS workshops, 2016.

[174] W. Huitt and J. Hummel. Piaget’s theory of cognitive development. Educational psychology
interactive, 3(2):1–5, 2003.

[175] A. Hyvärinen, J. Karhunen, and E. Oja. Independent component analysis, volume 46. John Wiley
& Sons, 2004.

[176] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of
dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing,
1998.

[177] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In ICML, 2015.

[178] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu. Human3.6M: Large scale datasets and
predictive methods for 3D human sensing in natural environments. IEEE TPAMI, 36(7):1325–
1339, 2014.

[179] G. Irie, Z. Li, X.-M. Wu, and S.-F. Chang. Locally linear hashing for extracting non-linear man-
ifolds. In CVPR, 2014.

[180] P. Isola, J. J. Lim, and E. H. Adelson. Discovering states and transformations in image collections.
In CVPR, 2015.

[181] M. Jacomy, S. Heymann, T. Venturini, and M. Bastian. Forceatlas2, a continuous graph layout
algorithm for handy network visualization. Medialab center of research, 560, 2011.

[182] M. Jaderberg, W. M. Czarnecki, S. Osindero, O. Vinyals, A. Graves, D. Silver, and
K. Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. 2017.

176

[183] A. Jain, A. R. Zamir, S. Savarese, and A. Saxena. Structural-RNN: Deep learning on spatio-
temporal graphs. In CVPR, 2016.

[184] H. Jégou, L. Amsaleg, C. Schmid, and P. Gros. Query adaptative locality sensitive hashing. In
ICASSP, 2008.

[185] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell.
Caffe: Convolutional architecture for fast feature embedding. In ACM MM, 2014.

[186] T. Joachims. Transductive inference for text classification using support vector machines. In
ICML, 1999.

[187] J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity search with GPUs. arXiv preprint
arXiv:1702.08734, 2017.

[188] I. Jolliffe. Principal component analysis. Wiley Online Library, 2002.
[189] M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the EM algorithm. Neural

computation, 6(2):181–214, 1994.
[190] A. Joulin, L. van der Maaten, A. Jabri, and N. Vasilache. Learning visual features from large

weakly supervised data. In ECCV, 2016.
[191] M. Juneja, A. Vedaldi, C. Jawahar, and A. Zisserman. Blocks that shout: Distinctive parts for

scene classification. In CVPR, 2013.
[192] J. B. Kadane and N. A. Lazar. Methods and criteria for model selection. Journal of the American

Statistical Association, 99(465):279–290, 2004.
[193] O. Kallenberg. Probabilistic symmetries and invariance principles. Springer Science & Business

Media, 2006.
[194] A. Karatzoglou, M. Weimer, and A. J. Smola. Collaborative filtering on a budget. In AISTATS,

2010.
[195] A. Khosla, T. Zhou, T. Malisiewicz, A. A. Efros, and A. Torralba. Undoing the damage of dataset

bias. In ECCV, 2012.
[196] W. Kienzle and K. Chellapilla. Personalized handwriting recognition via biased regularization.

In ICML, 2006.
[197] J. Kim, R. D. Monteiro, and H. Park. Group sparsity in nonnegative matrix factorization. In

ICDM, 2012.
[198] J. Kim and J. Collomosse. Incremental transfer learning for object recognition in streaming

video. In ICIP, 2014.
[199] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
[200] D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In ICLR, 2014.
[201] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba, and S. Fidler. Skip-

thought vectors. In NIPS, 2015.
[202] G. Koch, R. Zemel, and R. Salakhutdinov. Siamese neural networks for one-shot image recog-

nition. In ICML Deep Learning Workshop, 2015.
[203] H. Koppula and A. Saxena. Learning spatio-temporal structure from RGB-D videos for human

activity detection and anticipation. In ICML, 2013.
[204] H. S. Koppula and A. Saxena. Anticipating human activities using object affordances for reactive

robotic response. IEEE TPAMI, 38(1):14–29, 2016.
[205] Y. Koren. Factor in the neighbors: Scalable and accurate collaborative filtering. TKDD, 4(1):1–24,

2010.
[206] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems.

IEEE Computer, 42(8):30–37, 2009.

177

[207] L. Kovar, M. Gleicher, and F. Pighin. Motion graphs. ACM TOG, 21(3):473–482, 2002.
[208] E. A. Krause, M. Zillich, T. E. Williams, and M. Scheutz. Learning to recognize novel objects in

one shot through human-robot interactions in natural language dialogues. In AAAI, 2014.
[209] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalanditis, L.-J. Li, D. A.

Shamma, M. Bernstein, and L. Fei-Fei. Visual genome: Connecting language and vision using
crowdsourced dense image annotations. IJCV, 123(1):32–73, 2017.

[210] V. Krishnan and D. Ramanan. Tinkering under the hood: Interactive zero-shot learning with
net surgery. arXiv preprint arXiv:1612.04901, 2016.

[211] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. 2009.
[212] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional

neural networks. In NIPS, 2012.
[213] P. Kulkarni, G. Sharma, J. Zepeda, and L. Chevallier. Transfer learning via attributes for im-

proved on-the-fly classification. In WACV, 2014.
[214] I. Kuzborskij, B. Caputo, and F. Orabona. Transfer learning through greedy subset selection. In

International Conference on Image Analysis and Processing (ICIAP), 2015.
[215] I. Kuzborskij and F. Orabona. Stability and hypothesis transfer learning. In ICML, 2013.
[216] I. Kuzborskij and F. Orabona. Fast rates by transferring from auxiliary hypotheses. Machine

Learning, 106(2):171–195, 2017.
[217] I. Kuzborskij, F. Orabona, and B. Caputo. From N to N+1: Multiclass transfer incremental

learning. In CVPR, 2013.
[218] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through

probabilistic program induction. Science, 350(6266):1332–1338, 2015.
[219] B. M. Lake, R. Salakhutdinov, J. Gross, and J. B. Tenenbaum. One shot learning of simple visual

concepts. In CogSci, 2011.
[220] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. One-shot learning by inverting a composi-

tional causal process. In NIPS, 2013.
[221] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman. Building machines that learn

and think like people. Behavioral and Brain Sciences, 2016.
[222] N. D. Lawrence, J. C. Platt, and M. I. Jordan. Extensions of the informative vector machine. In

Deterministic and Statistical Methods in Machine Learning. 2005.
[223] Q. V. Le, N. Jaitly, and G. E. Hinton. A simple way to initialize recurrent networks of rectified

linear units. arXiv preprint arXiv:1504.00941, 2015.
[224] Q. V. Le, R. Monga, M. Devin, K. Chen, G. S. Corrado, J. Dean, and A. Y. Ng. Building high-level

features using large scale unsupervised learning. In ICML, 2012.
[225] Y. LeCun. Power and the limits of deep learning. In Workshop of AI and The Future of Work, 2017.
[226] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
[227] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization.

Nature, 401(6755):788–791, 1999.
[228] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In NIPS, 2001.
[229] D.-H. Lee. Pseudo-label: The simple and efficient semi-supervised learning method for deep

neural networks. In ICML Workshops, 2013.
[230] H. Lee, A. Battle, R. Raina, and A. Ng. Efficient sparse coding algorithms. In NIPS, 2006.
[231] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable

unsupervised learning of hierarchical representations. In ICML, 2009.

178

[232] S.-I. Lee, V. Chatalbashev, D. Vickrey, and D. Koller. Learning a meta-level prior for feature
relevance from multiple related tasks. In ICML, 2007.

[233] H. Lehtihet. Exploration and exploitation. https://www.researchgate.net/post/

What_is_the_difference_between_exploration_vs_exploitation_intensification_

vs_diversification_and_global_search_vs_local_search.
[234] K. Levi, M. Fink, and Y. Weiss. Learning from a small number of training examples by exploiting

object categories. In CVPR Workshops, 2004.
[235] K. Levi and Y. Weiss. Learning object detection from a small number of examples: The impor-

tance of good features. In CVPR, 2004.
[236] K. Li and J. Malik. Learning to optimize. In ICLR, 2017.
[237] L.-J. Li, H. Su, E. P. Xing, and F.-F. Li. Object bank: A high-level image representation for scene

classification & semantic feature sparsification. In NIPS, 2010.
[238] Z. Li and D. Hoiem. Learning without forgetting. In ECCV, 2016.
[239] J. J. Lim, R. Salakhutdinov, and A. Torralba. Transfer learning by borrowing examples for mul-

ticlass object detection. In NIPS, 2011.
[240] G. Lin, C. Shen, Q. Shi, A. van den Hengel, and D. Suter. Fast supervised hashing with decision

trees for high-dimensional data. In CVPR, 2014.
[241] G. Lin, C. Shen, D. Suter, and A. van den Hengel. A general two-step approach to learning-based

hashing. In ICCV, 2013.
[242] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.

Microsoft COCO: Common objects in context. In ECCV, 2014.
[243] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature pyramid networks

for object detection. In CVPR, 2017.
[244] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object detection. In

ICCV, 2017.
[245] B.-D. Liu, Y.-X. Wang, B. Shen, Y.-J. Zhang, and M. Hebert. Self-explanatory sparse representa-

tion for image classification. In ECCV, 2014.
[246] B.-D. Liu, Y.-X. Wang, Y.-J. Zhang, and B. Shen. Learning dictionary on manifolds for image

classification. Pattern Recognition, 46(7):1879–1890, 2013.
[247] B. Liu, M. Dixit, R. Kwitt, and N. Vasconcelos. Feature space transfer for data augmentation. In

CVPR, 2018.
[248] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. SSD: Single shot

multibox detector. In ECCV, 2016.
[249] W. Liu, A. Rabinovich, and A. C. Berg. ParseNet: Looking wider to see better. In ICLR workshop,

2016.
[250] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang. Supervised hashing with kernel. In CVPR,

2012.
[251] W. Liu, S. Zheng, S. Jia, L. Shen, and X. Fu. Sparse nonnegative matrix factorization with the

elastic net. In IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2010.
[252] T. Malisiewicz, A. Gupta, and A. A. Efros. Ensemble of exemplar-SVMs for object detection and

beyond. In ICCV, 2011.
[253] J. G. March. Exploration and exploitation in organizational learning. Organization science,

2(1):71–87, 1991.
[254] J. Martinez, M. J. Black, and J. Romero. On human motion prediction using recurrent neural

networks. In CVPR, 2017.

179

https://www.researchgate.net/post/What_is_the_difference_between_exploration_vs_exploitation_intensification_vs_diversification_and_global_search_vs_local_search
https://www.researchgate.net/post/What_is_the_difference_between_exploration_vs_exploitation_intensification_vs_diversification_and_global_search_vs_local_search
https://www.researchgate.net/post/What_is_the_difference_between_exploration_vs_exploitation_intensification_vs_diversification_and_global_search_vs_local_search

[255] P. Matikainen, R. Sukthankar, and M. Hebert. Classifier ensemble recommendation. In ECCV
Workshop on Web-scale Vision and Social Media, 2012.

[256] P. Matikainen, R. Sukthankar, and M. Hebert. Model recommendation for action recognition.
In CVPR, 2012.

[257] A. Mehrotra and A. Dukkipati. Generative adversarial residual pairwise networks for one shot
learning. arXiv preprint arXiv:1703.08033, 2017.

[258] E. G. Miller, N. E. Matsakis, and P. A. Viola. Learning from one example through shared den-
sities on transforms. In CVPR, 2000.

[259] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel. A simple neural attentive meta-learning.
In ICLR, 2018.

[260] I. Misra, R. Girshick, R. Fergus, M. Hebert, A. Gupta, and L. van der Maaten. Learning by asking
questions. In CVPR, 2018.

[261] I. Misra, A. Gupta, and M. Hebert. From red wine to red tomato: Composition with context. In
CVPR, 2017.

[262] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert. Cross-stitch networks for multi-task learning.
In CVPR, 2016.

[263] I. Misra, Y.-X. Wang, and M. Hebert. Learning object models from few examples. In SPIE
Unmanned Systems Technology XVIII, 2016.

[264] I. Misra, C. L. Zitnick, and M. Hebert. Shuffle and learn: Unsupervised learning using temporal
order verification. In ECCV, 2016.

[265] T. M. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Betteridge, A. Carlson, B. D. Mishra,
M. Gardner, B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed, N. Nakashole, E. A.
Platanios, A. Ritter, M. Samadi, B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen, A. Saparov,
M. Greaves, and J. Welling. Never-ending learning. In AAAI, 2015.

[266] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529, 2015.

[267] Y. Movshovitz-Attias. Dataset curation through renders and ontology matching. PhD thesis,
Carnegie Mellon University, 2015.

[268] Y. Movshovitz-Attias, Q. Yu, M. C. Stumpe, V. Shet, S. Arnoud, and L. Yatziv. Ontological
supervision for fine grained classification of street view storefronts. In CVPR, 2015.

[269] L. Mukherjee, J. Peng, T. Sigmund, and V. Singh. Network flow formulations for learning binary
hashing. In ECCV, 2016.

[270] T. Munkhdalai and H. Yu. Meta networks. In ICML, 2017.
[271] R. M. Murray, Z. Li, S. S. Sastry, and S. S. Sastry. A mathematical introduction to robotic manipula-

tion. CRC press, 1994.
[272] M. Naphade, J. R. Smith, J. Tesic, S.-F. Chang, W. Hsu, L. Kennedy, A. Hauptmann, and J. Curtis.

Large-scale concept ontology for multimedia. IEEE MultiMedia, 13(3):86–91, 2006.
[273] C. A. Nelson, M. L. Collins, and M. Luciana. Handbook of developmental cognitive neuroscience.

MIT Press, 2001.
[274] S. A. Nene, S. K. Nayar, and H. Murase. Columbia object image library (COIL-20). Technical

report, CUCS-005-96, 1996.
[275] Y. Nesterov. A method of solving a convex programming problem with convergence rate o

(1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983.

180

[276] A. Newell. Physical symbol systems. Cognitive science, 4(2):135–183, 1980.
[277] A. Y. Ng, M. I. Jordan, Y. Weiss, et al. On spectral clustering: Analysis and an algorithm. NIPS,

2002.
[278] A. Nichol and J. Schulman. Reptile: A scalable metalearning algorithm. arXiv preprint

arXiv:1803.02999, 2018.
[279] M.-E. Nilsback and A. Zisserman. Automated flower classification over a large number of

classes. In Sixth Indian Conference on Computer Vision, Graphics & Image Processing (ICVGIP),
2008.

[280] H. Noh, P. H. Seo, and B. Han. Image question answering using convolutional neural network
with dynamic parameter prediction. In CVPR, 2016.

[281] B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy
employed by V1? Vision research, 37(23):3311–3325, 1997.

[282] A. Opelt, A. Pinz, and A. Zisserman. Incremental learning of object detectors using a visual
shape alphabet. In CVPR, 2006.

[283] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image repre-
sentations using convolutional neural networks. In CVPR, 2014.

[284] T. Osugi, D. Kim, and S. Scott. Balancing exploration and exploitation: A new algorithm for
active machine learning. In ICDM, 2005.

[285] W. Ouyang, X. Wang, C. Zhang, and X. Yang. Factors in finetuning deep model for object
detection with long-tail distribution. In CVPR, 2016.

[286] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli. A survey of motion planning and con-
trol techniques for self-driving urban vehicles. IEEE Transactions on Intelligent Vehicles, 1(1):33–
55, 2016.

[287] M. Palatucci, D. Pomerleau, G. E. Hinton, and T. M. Mitchell. Zero-shot learning with semantic
output codes. In NIPS, 2009.

[288] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE TKDE, 22(10):1345–1359, 2010.
[289] D. Park and D. Ramanan. Articulated pose estimation with tiny synthetic videos. In CVPR,

2015.
[290] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal. Learning and generalization of motor skills by

learning from demonstration. In ICRA, 2009.
[291] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga,

and A. Lerer. Automatic differentiation in pytorch. In NIPS Workshops, 2017.
[292] N. Patricia and B. Caputo. Learning to learn, from transfer learning to domain adaptation: A

unifying perspective. In CVPR, 2014.
[293] G. Patterson, G. Van Horn, S. Belongie, P. Perona, and J. Hays. Tropel: Crowdsourcing detectors

with minimal training. In Human Computation and Crowdsourcing (HCOMP), 2015.
[294] L. Paulevé, H. Jégou, and L. Amsaleg. Locality sensitive hashing: A comparison of hash func-

tion types and querying mechanisms. Pattern Recognition Letters, 31(11):1348–1358, 2010.
[295] V. Pavlovic, J. M. Rehg, and J. MacCormick. Learning switching linear models of human motion.

In NIPS, 2001.
[296] M. Pickett, R. Al-Rfou, L. Shao, and C. Tar. A growing long-term episodic & semantic memory.

In NIPS Workshops, 2016.
[297] S. Pinker. How the mind works. Annals of the New York Academy of Sciences, 882(1):119–127, 1999.
[298] H. Pirsiavash, D. Ramanan, and C. C. Fowlkes. Bilinear classifiers for visual recognition. In

NIPS, 2009.

181

[299] J. C. Platt. Probabilistic outputs for support vector machines and comparisons to regularized
likelihood methods. In Advances in large margin classifiers, 1999.

[300] H. Qi, M. Brown, and D. G. Lowe. Learning with imprinted weights. In CVPR, 2018.
[301] Q. Qian, R. Jin, S. Zhu, and Y. Lin. Fine-grained visual categorization via multi-stage metric

learning. In CVPR, 2015.
[302] S. Qiao, C. Liu, W. Shen, and A. Yuille. Few-shot image recognition by predicting parameters

from activations. In CVPR, 2018.
[303] A. Quattoni, M. Collins, and T. Darrell. Transfer learning for image classification with sparse

prototype representations. In CVPR, 2008.
[304] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convo-

lutional generative adversarial networks. In ICLR, 2016.
[305] I. Radosavovic, P. Dollár, R. Girshick, G. Gkioxari, and K. He. Data distillation: Towards omni-

supervised learning. In CVPR, 2018.
[306] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: Transfer learning from

unlabeled data. In ICML, 2007.
[307] K. Rakelly, E. Shelhamer, T. Darrell, A. Efros, and S. Levine. Conditional networks for few-shot

semantic segmentation. In ICLR Workshop, 2018.
[308] M. Ranzato. Unsupervised learning of feature hierarchies. PhD thesis, 2009.
[309] M. Rastegari, A. Farhadi, and D. Forsyth. Attribute discovery via predictable discriminative

binary codes. In ECCV, 2012.
[310] S. Ravi and H. Larochelle. Optimization as a model for few-shot learning. In ICLR, 2017.
[311] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. CNN features off-the-shelf: An as-

tounding baseline for recognition. In CVPR Workshops, 2014.
[312] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object

detection. In CVPR, 2016.
[313] J. Redmon and A. Farhadi. YOLO9000: better, faster, stronger. In CVPR, 2017.
[314] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee. Generative adversarial text to

image synthesis. In ICML, 2016.
[315] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with

region proposal networks. In NIPS, 2015.
[316] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate

inference in deep generative models. In ICML, 2014.
[317] E. Rodner and J. Denzler. One-shot learning of object categories using dependent Gaussian

processes. In Annual Symposium of the German Association for Pattern Recognition, 2010.
[318] E. Rodner. Visual transfer learning: Informal introduction and literature overview. arXiv

preprint arXiv:1211.1127, 2012.
[319] S. Ross, J. Zhou, Y. Yue, D. Dey, and J. A. Bagnell. Learning policies for contextual submodular

prediction. In ICML, 2013.
[320] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding.

Science, 290(5500):2323–2326, 2000.
[321] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,

M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
IJCV, 115(3):211–252, 2015.

[322] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu, R. Pas-
canu, and R. Hadsell. Progressive neural networks. arXiv preprint arXiv:1606.04671, 2016.

182

[323] S. Sabour, N. Frosst, and G. E. Hinton. Dynamic routing between capsules. In NIPS, 2017.
[324] K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual category models to new domains.

In ECCV, 2010.
[325] R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted boltzmann machines for collaborative

filtering. In ICML, 2007.
[326] R. Salakhutdinov, J. Tenenbaum, and A. Torralba. One-shot learning with a hierarchical non-

parametric Bayesian model. In ICML Workshops, 2012.
[327] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved tech-

niques for training GANs. In NIPS, 2016.
[328] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. One-shot learning with

memory-augmented neural networks. In ICML, 2016.
[329] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. Meta-learning with memory-

augmented neural networks. In ICML, 2016.
[330] A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu, P. Battaglia, and T. Lillicrap.

A simple neural network module for relational reasoning. In NIPS, 2017.
[331] B. Scellier and Y. Bengio. Equilibrium propagation: Bridging the gap between energy-based

models and backpropagation. Frontiers in computational neuroscience, 11:24, 2017.
[332] J. Schmidhuber. Evolutionary principles in self-referential learning. On learning how to learn:

The meta-meta-... hook.) Diploma thesis, Institut f. Informatik, Tech. Univ. Munich, 1987.
[333] J. Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent

networks. Neural Computation, 4(1):131–139, 1992.
[334] J. Schmidhuber. A neural network that embeds its own meta-levels. In IEEE International Con-

ference on Neural Networks, 1993.
[335] J. Schmidhuber, J. Zhao, and M. Wiering. Shifting inductive bias with success-story algorithm,

adaptive levin search, and incremental self-improvement. Machine Learning, 28(1):105–130,
1997.

[336] J. Schmidhuber. Learning how to learn learning algorithms: Recursive self-
improvement. https://uclmr.github.io/nampi/talk_slides/schmidhuber\

discretionary{-}{}{}nampi.pdf, 2016.
[337] L. A. Schmidt. Meaning and compositionality as statistical induction of categories and constraints.

PhD thesis, Massachusetts Institute of Technology, 2009.
[338] F. Schroff, D. Kalenichenko, and J. Philbin. FaceNet: A unified embedding for face recognition

and clustering. In CVPR, 2015.
[339] P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun. Pedestrian detection with unsuper-

vised multi-stage feature learning. In CVPR, 2013.
[340] A. Shaban, S. Bansal, Z. Liu, I. Essa, and B. Boots. One-shot learning for semantic segmentation.

In BMVC, 2017.
[341] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean. Outrageously

large neural networks: The sparsely-gated mixture-of-experts layer. In ICLR, 2017.
[342] F. Shen, C. Shen, W. Liu, and H. Tao Shen. Supervised discrete hashing. In CVPR, 2015.
[343] L. Shen, Z. Lin, and Q. Huang. Relay backpropagation for effective learning of deep convolu-

tional neural networks. In ECCV, 2016.
[344] A. Shrivastava, A. Gupta, and R. Girshick. Training region-based object detectors with online

hard example mining. In CVPR, 2016.

183

https://uclmr.github.io/nampi/talk_slides/schmidhuber\discretionary {-}{}{}nampi.pdf
https://uclmr.github.io/nampi/talk_slides/schmidhuber\discretionary {-}{}{}nampi.pdf

[345] O. Sigaud and A. Droniou. Towards deep developmental learning. IEEE Transactions on Cogni-
tive and Developmental Systems (TCDS), 8(2):90–114, 2016.

[346] P. Y. Simard, Y. A. LeCun, J. S. Denker, and B. Victorri. Transformation invariance in pattern
recognition—tangent distance and tangent propagation. In Neural networks: tricks of the trade.
1998.

[347] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recog-
nition. In ICLR, 2015.

[348] A. Sinha, M. Sarkar, A. Mukherjee, and B. Krishnamurthy. Introspection: Accelerating neural
network training by learning weight evolution. In ICLR, 2017.

[349] J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and W. T. Freeman. Discovering objects and
their location in images. In ICCV, 2005.

[350] L. Smith and M. Gasser. The development of embodied cognition: Six lessons from babies.
Artificial life, 11(1-2):13–29, 2005.

[351] J. Snell, K. Swersky, and R. S. Zemel. Prototypical networks for few-shot learning. In NIPS,
2017.

[352] R. Socher, M. Ganjoo, C. D. Manning, and A. Ng. Zero-shot learning through cross-modal
transfer. In NIPS, 2013.

[353] C. Sun, A. Shrivastava, S. Singh, and A. Gupta. Revisiting unreasonable effectiveness of data in
deep learning era. In ICCV, 2017.

[354] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales. Learning to compare:
Relation network for few-shot learning. In CVPR, 2018.

[355] I. Sutskever, G. E. Hinton, and G. W. Taylor. The recurrent temporal restricted Boltzmann ma-
chine. In NIPS, 2009.

[356] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press Cambridge,
1998.

[357] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. Going deeper with convolutions. In CVPR, 2015.

[358] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Web-scale training for face identification. In
CVPR, 2015.

[359] G. W. Taylor and G. E. Hinton. Factored conditional restricted boltzmann machines for model-
ing motion style. In ICML, 2009.

[360] G. W. Taylor, G. E. Hinton, and S. T. Roweis. Modeling human motion using binary latent
variables. In NIPS, 2007.

[361] G. W. Taylor, L. Sigal, D. J. Fleet, and G. E. Hinton. Dynamical binary latent variable models for
3D human pose tracking. In CVPR, 2010.

[362] D. Teney and A. v. d. Hengel. Visual question answering as a meta learning task. arXiv preprint
arXiv:1711.08105, 2017.

[363] A. V. Terekhov, G. Montone, and J. K. O’Regan. Knowledge transfer in deep block-modular
neural networks. In Conference on Biomimetic and Biohybrid Systems, 2015.

[364] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland, D. Borth, and L.-J. Li.
YFCC100M: The new data in multimedia research. Communications of the ACM, 59(2):64–73,
2016.

[365] S. Thorpe, D. Fize, and C. Marlot. Speed of processing in the human visual system. Nature,
381(6582):520, 1996.

[366] S. Thrun and L. Pratt. Learning to learn. Springer Science & Business Media, 2012.

184

[367] S. Thrun. Is learning the n-th thing any easier than learning the first? In NIPS, 1996.
[368] S. Thrun. Lifelong learning algorithms. In Learning to learn. 1998.
[369] S. Thrun and T. M. Mitchell. Learning one more thing. In IJCAI, 1995.
[370] S. Thrun and J. O’Sullivan. Clustering learning tasks and the selective cross-task transfer of

knowledge. In Learning to learn. 1998.
[371] T. Tommasi. Learning to learn by exploiting prior knowledge. PhD thesis, École Polytechnique

Fédérale de Lausanne, 2013.
[372] T. Tommasi, F. Orabona, and B. Caputo. Safety in numbers: Learning categories from few

examples with multi model knowledge transfer. In CVPR, 2010.
[373] T. Tommasi, F. Orabona, and B. Caputo. Learning categories from few examples with multi

model knowledge transfer. IEEE TPAMI, 36(5):928–941, 2014.
[374] A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing visual features for multiclass and mul-

tiview object detection. IEEE TPAMI, 29(5):854–869, 2007.
[375] A. Torralba and A. Quattoni. Recognizing indoor scenes. In CVPR, 2009.
[376] E. Triantafillou, R. Zemel, and R. Urtasun. Few-shot learning through an information retrieval

lens. In NIPS, 2017.
[377] G. Trigeorgis, K. Bousmalis, S. Zafeiriou, and B. Schuller. A deep semi-NMF model for learning

hidden representations. In ICML, 2014.
[378] Y.-H. H. Tsai, L.-K. Huang, and R. Salakhutdinov. Learning robust visual-semantic embeddings.

In ICCV, 2017.
[379] A. B. Tsybakov et al. On nonparametric estimation of density level sets. The Annals of Statistics,

25(3):948–969, 1997.
[380] A. Tsymbal. The problem of concept drift: Definitions and related work. Technical report,

Computer Science Department, Trinity College Dublin, 2004.
[381] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko. Simultaneous deep transfer across domains

and tasks. In ICCV, 2015.
[382] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. Selective search for object recognition.

IJCV, 104(2):154–171, 2013.
[383] R. Urtasun, D. J. Fleet, A. Geiger, J. Popović, T. J. Darrell, and N. D. Lawrence. Topologically-

constrained latent variable models. In ICML, 2008.
[384] L. van der Maaten and G. Hinton. Visualizing data using t-SNE. JMLR, 9(Nov):2579–2605, 2008.
[385] G. Van Horn and P. Perona. The devil is in the tails: Fine-grained classification in the wild.

arXiv preprint arXiv:1709.01450, 2017.
[386] V. N. Vapnik. Statistical learning theory. Wiley New York, 1998.
[387] D. Vernon, C. Von Hofsten, and L. Fadiga. A roadmap for cognitive development in humanoid robots.

Springer Science & Business Media, 2011.
[388] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra. Matching networks for

one shot learning. In NIPS, 2016.
[389] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-200-2011

dataset. Technical report, California Institute of Technology, 2011.
[390] J. Wan, Q. Ruan, W. Li, and S. Deng. One-shot learning gesture recognition from RGB-D data

using bag of features. JMLR, 14(1):2549–2582, 2013.
[391] J. M. Wang, D. J. Fleet, and A. Hertzmann. Gaussian process dynamical models for human

motion. IEEE TPAMI, 30(2):283–298, 2008.

185

[392] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hashing for large-scale search. IEEE
TPAMI, 34(12):2393–2406, 2012.

[393] X. Wang and A. Gupta. Unsupervised learning of visual representations using videos. In ICCV,
2015.

[394] Y.-X. Wang and M. Hebert. Learning from small sample sets by combining unsupervised meta-
training with CNNs. In NIPS, 2016.

[395] Y.-X. Wang and M. Hebert. Learning to learn: Model regression networks for easy small sample
learning. In ECCV, 2016.

[396] Y.-X. Wang, R. Girshick, M. Hebert, and B. Hariharan. Low-shot learning from imaginary data.
In CVPR, 2018.

[397] Y.-X. Wang and M. Hebert. Model recommendation: Generating object detectors from few
samples. In CVPR, 2015.

[398] Y.-X. Wang and M. Hebert. Learning by transferring from unsupervised universal sources. In
AAAI, 2016.

[399] Y.-X. Wang and M. Hebert. Few-shot hash learning for image retrieval. In ICCV Workshops,
2017.

[400] Y.-X. Wang, D. Ramanan, and M. Hebert. Growing a brain: Fine-tuning by increasing model
capacity. In CVPR, 2017.

[401] Y.-X. Wang, D. Ramanan, and M. Hebert. Learning to model the tail. In NIPS, 2017.
[402] Y.-X. Wang and Y.-J. Zhang. Nonnegative matrix factorization: A comprehensive review. IEEE

TKDE, 25(6):1336–1353, 2013.
[403] Z. Wang, S. Chang, J. Zhou, M. Wang, and T. S. Huang. Learning a task-specific deep architec-

ture for clustering. In ICDM.
[404] L. Wasserman. All of statistics: A concise course in statistical inference. Springer Science & Business

Media, 2013.
[405] M. Weimer, A. Karatzoglou, Q. V. Le, and A. Smola. Maximum margin matrix factorization for

collaborative ranking. In NIPS, 2007.
[406] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In NIPS, 2009.
[407] J. Weston, R. Collobert, F. Sinz, L. Bottou, and V. Vapnik. Inference with the universum. In

ICML, 2006.
[408] J. Weston, F. Ratle, H. Mobahi, and R. Collobert. Deep learning via semi-supervised embedding.

In ICML, 2008.
[409] L. Wolf, T. Hassner, and Y. Taigman. The one-shot similarity kernel. In ICCV, 2009.
[410] L. Wolf and I. Martin. Robust boosting for learning from few examples. In CVPR, 2005.
[411] A. Wong and A. L. Yuille. One shot learning via compositions of meaningful patches. In ICCV,

2015.
[412] M. Woodward and C. Finn. Active one-shot learning. In NIPS Deep Reinforcement Learning

Workshop, 2017.
[413] M. Wu. Collaborative filtering via ensembles of matrix factorizations. In Proceedings of KDD

Cup and Workshop, 2007.
[414] J. Xiao, K. A. Ehinger, J. Hays, A. Torralba, and A. Oliva. SUN database: Exploring a large

collection of scene categories. IJCV, 119(1):3–22, 2016.
[415] J. Xie, R. Girshick, and A. Farhadi. Unsupervised deep embedding for clustering analysis. In

ICML, 2015.

186

[416] W. Xu, X. Liu, and Y. Gong. Document clustering based on non-negative matrix factorization.
In Proceedings of International ACM SIGIR Conference on Research and Development in Informaion
Retrieval (ACM SIGIR), 2003.

[417] Z. Xu, L. Zhu, and Y. Yang. Few-shot object recognition from machine-labeled web images. In
CVPR, 2017.

[418] J. Yang, R. Yan, and A. Hauptmann. Adapting SVM classifiers to data with shifted distributions.
In ICDM Workshops, 2007.

[419] J. Yang, R. Yan, and A. Hauptmann. Cross-domain video concept detection using adaptive
svms. In ACM MM, 2007.

[420] J. Yang, D. Parikh, and D. Batra. Joint unsupervised learning of deep representations and image
clusters. In CVPR, 2016.

[421] J. Yang and A. G. Hauptmann. A framework for classifier adaptation and its applications in
concept detection. In ACM international conference on Multimedia information retrieval (MIR), 2008.

[422] S. Yang and D. Ramanan. Multi-scale recognition with DAG-CNNs. In ICCV, 2015.
[423] Z. Yang, Y. Yuan, Y. Wu, W. W. Cohen, and R. R. Salakhutdinov. Review networks for caption

generation. In NIPS, 2016.
[424] B. Yao, G. Bradski, and L. Fei-Fei. A codebook-free and annotation-free approach for fine-

grained image categorization. In CVPR, 2012.
[425] B. Yao, X. Jiang, A. Khosla, A. L. Lin, L. Guibas, and L. Fei-Fei. Human action recognition by

learning bases of action attributes and parts. In ICCV, 2011.
[426] D. Yoo, S. Park, J.-Y. Lee, and S. Kweon. Multi-scale pyramid pooling for deep convolutional

representation. In CVPR Workshops, 2015.
[427] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep neural

networks? In NIPS, 2014.
[428] M. D. Zeiler. ADADELTA: An adaptive learning rate method. arXiv preprint arXiv:1212.5701,

2012.
[429] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV,

2014.
[430] R. Zhang, L. Lin, R. Zhang, W. Zuo, and L. Zhang. Bit-scalable deep hashing with regularized

similarity learning for image retrieval and person re-identification. IEEE TIP, 24(12):4766–4779,
2015.

[431] Z. Zhang, Y. Chen, and V. Saligrama. Efficient training of very deep neural networks for super-
vised hashing. In CVPR, 2016.

[432] F. Zhao, Y. Huang, L. Wang, and T. Tan. Deep semantic ranking based hashing for multi-label
image retrieval. In CVPR, 2015.

[433] J. Zhao, M. Mathieu, and Y. Lecun. Energy-based generative adversarial networks. In ICLR,
2017.

[434] L. Zheng, Y. Zhao, S. Wang, J. Wang, and Q. Tian. Good practice in CNN feature transfer. arXiv
preprint arXiv:1604.00133, 2016.

[435] Q. Zhong, C. Li, Y. Zhang, H. Sun, S. Yang, D. Xie, and S. Pu. Towards good practices for
recognition & detection. In CVPR workshops, 2016.

[436] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba. Places: A 10 million image database
for scene recognition. IEEE TPAMI, 2017.

[437] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep features for scene
recognition using places database. In NIPS, 2014.

187

[438] Z.-H. Zhou. Ensemble methods: Foundations and algorithms. CRC Press, 2012.
[439] X. Zhu, D. Anguelov, and D. Ramanan. Capturing long-tail distributions of object subcate-

gories. In CVPR, 2014.
[440] X. Zhu, C. Vondrick, C. C. Fowlkes, and D. Ramanan. Do we need more training data? IJCV,

119(1):76–92, 2016.
[441] X. Zhu. Semi-supervised learning literature survey. Technical report, University of Wisconsin-

Madison, 2005.
[442] Y. Zhu, Z. Wang, J. Merel, A. Rusu, T. Erez, S. Cabi, S. Tunyasuvunakool, J. Kramár, R. Hadsell,

N. de Freitas, and N. Heess. Reinforcement and imitation learning for diverse visuomotor skills.
arXiv preprint arXiv:1802.09564, 2018.

[443] H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–320, March 2005.

188

	Introduction
	Overview
	Organization

	Related Work
	Data Manufacturing
	Transfer Learning
	Unsupervised and Semi-Supervised Learning
	Learning How to Learn

	I Learning to Learn: Knowledge Distillation through Model Regression Networks
	Learning Model Transformation for Easy Small Sample Learning
	Motivation
	Model Regression Networks
	Experimental Evaluation
	Data-Level or Model-Level Transformation?: A Graphical Illustration
	Revisiting Model Transformation and Its Properties

	Learning to Model the Tail by Capturing Model Dynamics
	Motivation
	Long-Tail Recognition
	Head-to-Tail Meta-Knowledge Transfer
	Experimental Evaluation

	Learning to Initialize and Adapt for Few-Shot Motion Prediction
	Motivation
	Human Motion Prediction
	Proactive and Adaptive Meta-Learning
	Experimental Evaluation

	II Unsupervised Meta-Learning: Towards a Generic Recognition Model
	Learning Low-Density Separators from Pseudo-Classes
	Motivation
	Pre-Trained Low-Density Separators from Unsupervised Data
	Low-Density Separator Networks
	Experimental Evaluation
	Experimental Analysis and Visualization

	Extension to Object Detection via Model Recommendation
	Motivation
	Terminology and Approach Overview
	Collaborative Filtering
	Recommender System Analysis
	Unsupervised Meta-Learning for Object Detection

	Additional Applications
	Unsupervised Hypothesis Transfer Learning
	Few-Shot Hash Learning for Image Retrieval

	III Learning from Evolving Data Streams and Tasks: Rethinking Fine-Tuning
	Developmental Learning: Fine-Tuning by Increasing Model Capacity
	Motivation
	Approach Overview
	Developmental Networks
	Experimental Evaluation
	A Single Universal Higher Capacity Model?

	Factorized Convolutional Networks: Unsupervised Fine-Tuning for Image Clustering
	Motivation
	Unsupervised Feature Learning and Image Clustering
	Factorized Convolutional Networks
	Experimental Evaluation
	Results and Discussion

	IV Combining Generative Learning with Meta-Learning
	Few-Shot Learning from Imaginary Data
	Motivation
	Generative Models for Few-Shot Learning
	Meta-Learning
	Meta-Learning with Learned Hallucination
	Experimental Protocol
	Experimental Evaluation

	Conclusions and Future Work
	Discussions: What Might be Wrong with Small Sample Learning?
	Other Perspectives and Future Directions

