
L E A R N I N G W I T H S PA R S I T Y: S T R U C T U R E S ,
O P T I M I Z AT I O N A N D A P P L I C AT I O N S

Xi Chen

July 2013

CMU-ML-13-105

School of Computer Science
Machine Learning Department

Carnegie Mellon University
Pittsburgh, PA

Thesis Committee
Jaime Carbonell, Chair

Tom Mitchell
Larry Wasserman

Robert Tibshirani (Stanford)

Submitted in partial fulfillment of the requirements for the Degree of Doctor of
Philosophy

Copyright © 2013 Xi Chen

This research was sponsored by the Air Force Research Laboratory under grant number
FA87500720137 and by a fellowship from IBM Corporation.

The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of any sponsoring

institution, the U.S. government or any other entity.

Dedicated to my grandparents Jingrong Wang and Kai Chen, and
my wife Yingze Wang.

A B S T R A C T

The development of modern information technology has enabled col-
lecting data of unprecedented size and complexity. Examples include
web text data, microarray & proteomics, and data from scientific do-
mains (e.g., meteorology). To learn from these high dimensional and
complex data, traditional machine learning techniques often suffer
from the curse of dimensionality and unaffordable computational
cost. However, learning from large-scale high-dimensional data promises
big payoffs in text mining, gene analysis, and numerous other conse-
quential tasks.

Recently developed sparse learning techniques provide us a suite
of tools for understanding and exploring high dimensional data from
many areas in science and engineering. By exploring sparsity, we can
always learn a parsimonious and compact model which is more inter-
pretable and computationally tractable at application time. When it
is known that the underlying model is indeed sparse, sparse learning
methods can provide us a more consistent model and much improved
prediction performance. However, the existing methods are still insuf-
ficient for modeling complex or dynamic structures of the data, such
as those evidenced in pathways of genomic data, gene regulatory net-
work, and synonyms in text data.

This thesis develops structured sparse learning methods along with
scalable optimization algorithms to explore and predict high dimen-
sional data with complex structures. In particular, we address three
aspects of structured sparse learning:

1. Efficient and scalable optimization methods with fast conver-
gence guarantees for a wide spectrum of high-dimensional learn-
ing tasks, including single or multi-task structured regression,
canonical correlation analysis as well as online sparse learning.

2. Learning dynamic structures of different types of undirected
graphical models, e.g., conditional Gaussian or conditional for-
est graphical models.

3. Demonstrating the usefulness of the proposed methods in vari-
ous applications, e.g., computational genomics and spatial-temporal
climatological data. In addition, we also design specialized sparse
learning methods for text mining applications, including rank-
ing and latent semantic analysis.

In the last part of the thesis, we also present the future direction of
the high-dimensional structured sparse learning from both computa-
tional and statistical aspects.

iv

K E Y W O R D S

Machine Learning, Sparse Learning, Optimization, Structure, Regres-
sion, Multi-task Regression, Canonical Correlation Analysis, Undi-
rected Graphical Models, First-order Method, Stochastic Optimiza-
tion, Text Mining, Ranking, Latent Semantic Analysis, Spatial-temporal
Data, Computational Genomics.

v

A C K N O W L E D G M E N T S

First, I would like to thank my advisor Jaime Carbonell for his great
advice and support through the entire Ph.D. journey. I am particularly
grateful to him for not only directing me towards exciting problems
and applications, but also allowing me the freedom to pursue the
topics I am passionate about. His vision on new research problems,
his leadership as the department head, as well as his extremely nice
and sincere personality all deeply influence me and will continue to
shape me in the future.

I also deeply appreciate my other thesis committee members, Tom
Mitchell, Larry Wasserman and Robert Tibshirani. They put a lot of ef-
fort on this thesis and provided many insightful suggestions. In fact,
their help on me is far beyond the scope of this thesis. Our depart-
ment head, Tom Mitchell, is the most amazing department head that
I could ever dream to have. He established the first machine learning
department in the world and I am so lucky to be a part of the depart-
ment. He helped me so much from the very first day that I joined the
department, from choosing advisor and selecting courses, to career
preparation and job search. Larry Wasserman (and John Lafferty)’s
great course on 10702 open the door of the field of statistical machine
learning to me, which is such a great field that I would love to devote
my entire career to explore. In addition to the research, I worked with
Tom Mitchell and Larry Wasserman as teaching assistants in Machine
Learning (10701) and Statistical Machine Learning (10702) classes. I
learned so much from them on how to be a good teacher. Moreover,
I feel so fortunate to have Robert Tibshirani from Stanford University
as my external committee member, who is the founding father of the
sparse learning field.

I am very grateful to my research advisor, Manuel Blum, during
my Master at ACO program. He guided me at the beginning of my
graduate study as father figures. I learned from him not only how
to approach to a research problem, but also how to be a good and
helpful person. Even after I started my Ph.D. study, we had meetings
and discussions on a weekly or bi-weekly basis. Through my six years’
graduate study, Prof. Manuel Blum cares not only about my progress
on research but also my future career and life.

I also thank many other faculty members in Machine Learning and
Statistics Department: Christos Faloutsos, Stephen Fienberg, Geoffrey
Gordon, Steve Hanneke, Robert Kass, Seyoung Kim, Zico Kolter, John
Lafferty, Jing Lei, Jeff Schneider, Aarti Singh, Eric Xing, Yiming Yang,
as well as in Tepper School of Business: Egon Balas, Gerard Cornue-
jols and Javier Peña. I was so fortunate to have many great courses
from them and have very fruitful collaborations with many of them,
including Seyoung, Kim, John Lafferty, Eric Xing and Javier Peña.

During my Ph.D., I did three great internships at Microsoft Re-
search, IBM and NEC Research Lab. I sincerely thank my mentors,

vi

managers and friends in these labs for their great help and support:
Dengyong Zhou, Lin Xiao, John Platt, Chris J.C. Burges, Paul Ben-
nett, Kevyn-Collins Thompson, Susan Dumais, Eric Horvitz, Jingrui
He, Yan Liu, Hanghang Tong, Rick Lawrence, Yanjun Qi, Bing Bai
and Hans Peter Graf. I thank IBM for generously providing the Ph.D.
fellowship to support the research in this thesis.

I am also indebted to many other colleagues and friends at CMU,
who played critical role during my Ph.D. through collaborations, dis-
cussions and suggestions. Some of them include: Sivaraman Balakr-
ishnan, Byron Boots, Duen Horng (Polo) Chau, Tinglong Dai, Bin Fan,
Rob Hall, Qirong Ho, Tzu-Kuo Huang, Haijie (Jay) Gu, Mladen Ko-
lar, Akshay Krishnamurthy, Hai-Son Le, Song Le, Yucheng Low, Qi-
hang Lin, Han Liu, Yingda Lu, Yifei Ma, Ankur Parikh, Andrea Qual-
izza, Aaditya Ramdas, James Sharpnack, Mingyu Tang, Liang Xiong,
Guang Xiang, Min Xu, Yang Xu, Chong Wang, Xiaolin Yang, Junming
Yin, Yisong Yue, Linxue Zhang, Yi Zhang, Bin Zhao, Yuan Zhou, Jun
Zhu. In particular, I would like to thank Han Liu and Qihang Lin.
Han Liu taught me a lot on modern statistics. Qihang Lin, as one
of my most important collaborators, not only taught me knowledge
about the frontier of modern optimization, but also proposed many
interesting problems to me. We had so many enjoyable discussions
and I was often amazed by his depth and breath in mathematics.

I also owe special thanks to Diane Stidle and Sharon Cavlovich,
who had done a perfect administration job and provided crucial as-
sistance in making sure that my graduate experience is enjoyable.

Most importantly, I want to thank my grandparents, Jingrong Wang
and Kai Chen. As elder Chinese scholars in mathematics and physics,
at the age of 80s, they are still studying modern analysis and quan-
tum field theory with incredible enthusiasm. Their enthusiasm about
new knowledge and attitude towards science and life deeply influ-
ence me over more than 20 years and will continue to influence my
entire life. This thesis is dedicated to them. I love you and miss you
so much, though I never say that. I also thank my parents for their
companionship, love and support. Finally, I would like to thank my
wife, Yingze Wang for her unconditional love and sacrifice during the
past five years — you are the best !

vii

C O N T E N T S

i thesis overview 1

1 thesis overview 3

1.1 Motivation and Statement 3

1.2 Thesis Overview 3

1.3 Main Results and Organization 4

1.3.1 Part ii: Background 4

1.3.2 Part iii: Optimization for Sparse Learning 4

1.3.3 Part iv: Learning Dynamic Graphical Models 6

1.3.4 Part v: Sparse Learning for Text Mining 6

1.3.5 Part vi: Conclusions and Future Work 7

ii background 9

2 background 11

2.1 Structured Sparse Regression 11

2.2 Multi-task Structured Sparse Regression 13

2.3 Sparse Canonical Correlation Analysis 15

2.4 Sparse Gaussian Graphical Model 16

2.5 First-order Optimization 16

iii optimization for sparse learning 19

3 smoothing proximal gradient method for struc-
tured sparse regression 21

3.1 Introduction and Motivation 21

3.2 Smoothing Proximal Gradient 23

3.2.1 Reformulation of Structured Sparsity-inducing
Penalty 23

3.2.2 Smooth Approximation to Structured Sparsity-
inducing Penalty 25

3.2.3 Smoothing Proximal Gradient Descent 27

3.2.4 Issues on the Computation of the Lipschitz Con-
stant 29

3.2.5 Convergence Rate and Time Complexity 30

3.3 Related Optimization Methods 31

3.3.1 Related work for mixed-norm based group-lasso
penalty 31

3.3.2 Related work for fused lasso 32

3.4 Extensions to Multi-task Regression with Structures on
Outputs 34

3.5 Experiment 35

3.5.1 Simulation Study I: Overlapping Group Lasso 36

3.5.2 Simulation Study II: Multi-task Graph-guided
Fused Lasso 38

3.5.3 Real Data Analysis: Pathway Analysis of Breast
Cancer Data 39

3.6 Appendix: Technical Proofs 42

ix

x contents

4 structured sparse canonical correlation anal-
ysis 45

4.1 Introduction and Motivation 45

4.2 Group Structured Sparse CCA 47

4.2.1 Optimization Algorithm 47

4.3 Group Pursuit in Sparse CCA 52

4.4 Experiment 53

4.4.1 Computational Efficiency of Excessive Gap Method 54

4.4.2 Simulations 55

4.4.3 Real eQTL Data 57

5 stochastic optimization : optimal regularized dual

averaging methods 63

5.1 Introduction and Motivation 63

5.2 Preliminary and Notations 66

5.3 Optimal Regularized Dual Averaging Method 67

5.3.1 Convergence Rate 68

5.3.2 Mini-batch Strategy and Distributed Comput-
ing 70

5.3.3 Variance Bounds 70

5.3.4 High Probability Bounds 71

5.4 Multi-stage ORDA for Stochastic Strongly Convex Op-
timization 72

5.5 Related Works 73

5.6 Experiments 75

5.6.1 Simulated Experiments 75

5.6.2 Real Data Experiments 78

5.7 More Discussions on Scalability Issue and Distributed
Implementation 79

5.8 Appendix: Technical Proofs 80

iv learning dynamic sparse graphical models 91

6 graph-valued regression 93

6.1 Introduction and Motivation 93

6.2 Graph-Valued Regression 94

6.3 Graph-Optimized CART 96

6.3.1 Greedy Partitioning 98

6.4 Theoretical Properties 99

6.5 Experiment 102

6.5.1 Synthetic Data 102

6.5.2 Climate Data Analysis 107

6.6 Appendix: Technical Proof 109

7 markov forest regression 115

7.1 Introduction and Motivation 115

7.2 Background 117

7.3 Forest-optimized CART estimator 118

7.4 Computational Algorithm 120

7.5 Experimental Results 120

7.5.1 Simulation Study 121

7.5.2 Stock Data Analysis 122

contents xi

v sparse learning for text mining 125

8 learning preferences with millions of parame-
ters by enforcing sparsity 127

8.1 Introduction and Motivation 127

8.2 Basic Model 129

8.2.1 Margin Rank Loss 129

8.2.2 Stochastic Subgradient Descent 130

8.3 Preference Learning with Sparsity 130

8.3.1 Training the Sparse Model 131

8.3.2 Refitting the Sparse Model 132

8.4 Experiment 133

8.4.1 Experiment Setup 133

8.4.2 Results 135

9 sparse latent semantic analysis 139

9.1 Introduction and Motivation 139

9.2 Sparse LSA 140

9.2.1 Optimization Formulation of LSA 140

9.2.2 Sparse LSA 141

9.2.3 Optimization Algorithm 142

9.3 Extension of Sparse LSA 145

9.3.1 Group Structured Sparse LSA 145

9.3.2 Non-negative Sparse LSA 145

9.4 Related Work 146

9.4.1 PCA 146

9.4.2 Sparse Coding 147

9.4.3 LDA 147

9.4.4 Matrix Factorization 148

9.5 Experimental Results 148

9.5.1 Text Classification Performance 148

9.5.2 Efficiency and Storage 151

9.5.3 Topic-word Relationship 152

9.5.4 Gene Function Identification with Gene Groups
Information 153

vi conclusions and future directions 157

10 conclusions and future directions 159

10.1 Conclusions 159

10.2 Future Directions 161

bibliography 163

L I S T O F F I G U R E S

Figure 2.1 Illustration of the multi-task regression with graph
structure on outputs. 15

Figure 3.1 A geometric illustration of the smoothness of fµ(β).
(a) The 3-D plot of z(α,β), (b) the projection of (a)
onto the β-z space, (c) the 3-D plot of zs(α,β), and
(d) the projection of (c) onto the β-z space. 26

Figure 3.2 Regression coefficients estimated by different meth-
ods based on a single simulated datable. b = 0.8
and threshold ρ = 0.3 for the output correlation
graph are used. Red pixels indicate large values. (a)
The correlation coefficient matrix of phenotypes,
(b) the edges of the phenotype correlation graph
obtained at threshold 0.3 are shown as black pix-
els, (c) the true regression coefficients used in sim-
ulation. Absolute values of the estimated regres-
sion coefficients are shown for (d) lasso, (e) `1/`2
regularized multi-task regression, (f) Graph-guided
fused lasso. Rows correspond to outputs and columns
to inputs. 38

Figure 3.3 Comparisons of SPG, FOBOS and QP. (a) Vary K
from 50 to 10, 000, fixing N = 500, J = 100; (b) Vary
J from 50 to 10, 000, fixing N = 1000,K = 50; and
(c) Vary N from 500 to 10000, fixing J = 100,K =

50. 38

Figure 3.4 Results from the analysis of breast cancer datable.
(a) Balanced error rate for varying the number of
selected genes, and (b) the number of pathways for
varying the number of selected genes. 40

Figure 4.1 Illustration of the excessive gap method 49

Figure 4.2 (a) True u and v; (b) Estimated u and v using
the `1-regularized sparse CCA; (c) Estimated u
and v using the group-structured sparse CCA. 55

Figure 4.3 (a) True u and v; (b) Estimated u and v using
the `1-regularized sparse CCA; (c) Estimated u
and v using the group pursuit sparse CCA. 56

Figure 4.4 Overview chart of KEGG functional enrichment
using (a) the group-structured sparse CCA; (b)
`1-regularized sparse CCA 58

Figure 4.5 The number of selected SNPs in each chromo-
some using (a) the `1-regularized sparse CCA;
(b) the group-structured sparse CCA. 60

Figure 4.6 Overview chart of KEGG functional enrichment
using the tree-structured sparse CCA; 60

Figure 4.7 Selected genes and their relationship estimated
by the network-structured sparse CCA 60

xii

List of Figures xiii

Figure 5.1 Objective values v.s. Iterations. Only the first
200 iterations are plotted for better visualiza-
tion and the ease of comparisons. 76

Figure 5.2 Objective values v.s. Iterations. Only the first
200 iterations are plotted for better visualiza-
tion and the ease of comparisons. 76

Figure 5.3 ORDA v.s. M_ORDA. 77

Figure 6.1 (a) The 22 subregions defined on [0, 1]2. The
horizontal axis corresponds to the first dimen-
sion denoted as X1 while the vertical axis cor-
responds to the second dimension denoted as
X2. The bottom left point corresponds to [0, 0]
and the upper right point corresponds to [1, 1].
(b) The ground true graph for subregion 4. (c)
The ground true graph for subregion 17. (d)
The ground true graph for subregion 22. 103

Figure 6.2 (a) The learned dyadic tree structure; (b) The
induced partition on [0, 1]2 and the number la-
beled on each subregion corresponds to each
leaf node ID of the tree in (a); (c) The held-out
negative log-likelihood risk for each split. The
order of the splits corresponds the ID of the
tree node (from small to large) 104

Figure 6.3 (a) Learned tree structure; (b) Corresponding
partitions 105

Figure 6.4 Comparison of our algorithm with glasso (a)
Precision; (b) Recall; (c) F1-score; (d) Estimated
graph by applying glasso on the entire dataset 106

Figure 6.5 (a) Learned tree structure; (b) Learned parti-
tions where the labels correspond to the index
of the leaf node in (a) 106

Figure 6.6 (a) Color map of F1-score via applying glasso
on the entire dataset; (b) Color map of F1-score
learned by our method. Red pixels indicate large
values (approaching 1) and blue pixels indicate
small values (approaching 0) as shown in the
color bar. 107

Figure 6.7 The climate data. (a) Learned partitions for the
125 locations and projected to the US map, with
the estimated graphs for subregions 2, 3, and
65; (b) Estimated graph with data pooled from
all 125 locations; (c): the re-scaled partition pat-
tern induced by the learned dyadic tree struc-
ture. 108

Figure 7.1 (a) The 22 subregions defined on [0, 1]2. The
horizontal axis corresponds to the first dimen-
sion denoted as X1 while the vertical axis cor-
responds to the second dimension denoted as
X2. The bottom left point corresponds to [0, 0]
and the upper right point corresponds to [1, 1].
(b) (c) (d) The ground true forest for the subre-
gion 1, 18, and 22. 121

Figure 7.2 Results for the analysis of stock prices vs. oil
price 123

Figure 8.1 The test error rate and the density W for 3

benchmark datasets 135

Figure 9.1 Illustration of Sparse LSA (a) View of Matrix
Factorization, white cells in A indicates the zero
entries (b) View of document-topic-term rela-
tionship. 143

Figure 9.2 Classification accuracy vs the dimensionality
of latent space for (a) 20NG; (b) RCV1. 149

Figure 9.3 Classification Accuracy vs effective dimension
for (a) 20NG (b) RCV1 150

L I S T O F TA B L E S

Table 3.1 Comparison of Per-iteration Time Complexity
31

Table 3.2 Comparisons of different first-order methods
for optimizing mixed-norm based overlapping-
group-lasso penalties. 32

Table 3.3 Comparisons of different methods for optimiz-
ing graph-guided fused lasso 33

Table 3.4 Comparison of Per-iteration Time Complexity
for Multi-task Regression 35

Table 3.5 Comparisons of different optimization meth-
ods on the overlapping group lasso. SPG is
more efficient than the first-order method FO-
BOS in terms of CPU time. As compared to
IPM for solving SOCP, although SPG has slightly
worse objective values, it is much more scal-
able and efficient. 37

Table 4.1 Comparison between ExGap with Grad and
IPM for SOCP 53

xiv

List of Tables xv

Table 4.2 List of pathways with at least 2 selected genes
in the pathway: the first two columns are the
pathway ID and annotation from KEGG, the
third column is the number of selected genes
in this pathway; the fourth column is the ratio
of the number of selected genes in the pathway
(third column) over the number of genes in the
dataset in the pathway; the last column gives
the p-values which is calculated as the hyper-
geometric probability to get so many genes for
a KEGG pathway annotation. 58

Table 4.3 GO enrichment analysis for the selected genes
using the group-structured sparse CCA: the first
two columns are the GO ID (category) and an-
notation, the third column is the number of
selected genes having the GO annotation, the
fourth column is the GO cluster size and the
last column gives the p-value. The rows are
ranked according to the increasing order of p-
values. 59

Table 5.1 Summary for different stochastic gradient al-
gorithms. V is short for V(x∗, x0); AC for “ac-
celerated”; M for “multi-stage" and NA stands
for either “not applicable” or “no analysis of
the rate". 74

Table 5.2 Comparisons for different algorithms in objec-
tive value and F1-score for solving Lasso prob-
lem. 76

Table 5.3 Comparisons for different algorithms in objec-
tive and F1-score for solving Elastic-net prob-
lem. 76

Table 5.4 The statistics of the experimental datasets. 77

Table 5.5 Experimental results for MNIST in terms of ob-
jective value, density of the final solution and
testing error. 78

Table 5.6 Experimental results for 20-newsgroup in terms
of objective value, density of the final solution
and testing error. 78

Table 5.7 Speed-up for distributed implementation 79

Table 6.1 The graph estimation performance over differ-
ent subregions 104

Table 7.1 Comparison of Fo-CART and Go-CART with
n = 5000 and n = 10000: for those simulation
where the true partitions are correctly recov-
ered, we report the mean value (standard devi-
ation) for precision, recall and F1-score. 122

Table 8.1 The statistics of the experimental datasets 133

Table 8.2 Retrieval Performance. Items in bold fonts are
the best among methods tested. 136

Table 8.3 The examples of learned related word pairs in
20NG 137

Table 9.1 The statistics of the experimental datasets 149

Table 9.2 Density of A (%) 150

Table 9.3 Computational Efficiency and Storage 152

Table 9.4 Topic-word learned by NN Sparse LSA 153

Table 9.5 Topic-word learned by LDA 154

L I S T I N G S

A C R O N Y M S

xvi

Part I

T H E S I S O V E RV I E W

1
T H E S I S O V E RV I E W

1.1 motivation and statement

Modern data acquisition techniques produce massive amounts of high-
dimensional data with complex structures from various domains, such
as microarray and proteomics data, web text data, climatological data,
and image data, etc. The task of understanding and extracting useful
knowledge from these massive data presents significant challenges
for machine learning and statistics. For example, in tumor classifica-
tion problems, we need to select most predictive genes from thou-
sands of genes to find promoting factors of a disease. In such a case,
we face the challenge that the data is high-dimensional but the num-
ber of available samples is very limited. In addition, it is essential to
incorporate the structural prior information among genes extracted
from the biological domain into the learning procedure. Consider
text mining task (e.g. document ranking and classification) as another
example. To deal with text data, which is not only high-dimensional
but also astronomical in size, the learning algorithms demand a much
better scalability. Due to the high-dimensionality and complex struc-
tures of these data, traditional machine learning techniques cannot
be easily applied. To address the attendant challenges, recently devel-
oped sparse learning methods provide us a suite of powerful tools.
However, many of existing sparse learning methods either fail to in-
corporate rich structural information, or are computationally very ex-
pensive.

The main goal of this thesis is to develop both flexible and compu-
tationally efficient sparse learning methods to better understand and
explore the high dimensional and complex real datasets.

1.2 thesis overview

The central hypothesis of the thesis is that a suite of learning and op-
timization techniques based on exhibiting structures and sparseness
can and will enable more accurate reliable solutions to larger and
richer predictive tasks across a wide variety of domains. In particular,
this thesis focuses addressing both computational and statistical as-
pects of learning from high-dimensional large-scale structured data
in the following three different aspects:

• Optimization for learning from large-scale and high-dimensional
data: To exploit high-dimensional data, it is important to uti-
lize the structural information in the features. We proposed a
smoothing proximal gradient method as a unified framework to
address computational challenges of learning from high-dimensional
structured data [29, 31]. We further extended the proposed opti-

3

4 thesis overview

mization algorithm to stochastic settings for data-intensive or on-
line applications. The developed stochastic optimization algorithm
[30] achieves the optimal convergence rate and can be easily
parallelized to handle web-scale data.

• Statistical methods for learning complex structures: In addi-
tion to the prediction of response values, we also proposed
to predict the structure of responses [92]. In particular, we de-
veloped learning methods to infer network structures of high-
dimensional responses evolving with the inputs (e.g., time, lo-
cations or tasks).

• Applications: We have applied the proposed methods to a broad
class of real-world problems. Examples include text mining (e.g.,
learning to rank [26], structured topic modeling [28]), spatio-
temporal environmental data analysis [92], and bioinformatics
[29, 25].

1.3 main results and organization

This thesis presents a series of results in high-dimensional structured
sparse learning from both computational and statistical aspects. We
organize the thesis as follows.

1.3.1 Part ii: Background

In Part ii, we review some background of structured sparse learn-
ing, including sparse regression, structured sparse regression and its
multi-task extensions, sparse canonical correlation analysis, sparse
Gaussian graphical model and some basics of first-order optimiza-
tion methods.

1.3.2 Part iii: Optimization for Sparse Learning

Variable selection plays an important role in high dimensional regres-
sion, which not only improves the prediction accuracy but also leads
to better interpretation of the resulting model. A popular approach
for variable selection is to jointly optimize the empirical risk function
with non-smooth `1-regularization (e.g., Lasso [133]). However, the
simple `1-regularization does not take advantage of prior knowledge
of the structures among the variables (e.g., similarity among variables
encoded as graph structures or pathways among genes represented
as group structures). Recently, various structured sparsity-inducing
regularizers have been proposed to encode prior structural informa-
tion in high-dimensional data. However, due to the non-smoothness
and non-separability of structured regularizers, the corresponding op-
timizations for solving the so-called structured sparse regression have
been widely recognized as a challenging problem.

1.3 main results and organization 5

1.3.2.1 Smoothing Proximal Gradient Methods

To address computational challenge in structured sparse regression, we
proposed a unified smoothing proximal-gradient (SPG) optimization method
which can deal with a wide spectrum of structured regularizers, in-
cluding (potentially overlapping) groups, hierarchical trees and graphs
[27]. Utilizing the dual norm, we made a key observation that a va-
riety of structured regularizers can be reformulated into a special
form. Capitalizing on this form, we introduced its smooth approx-
imation and solved this approximation via an accelerated gradient
descent scheme. Since our method only utilizes the gradient infor-
mation, it is much more scalable than other optimization methods
(e.g., Newton method or interior-point method) and can be applied
to ultra high-dimensional problems with millions of variables. We fur-
ther proved that it enjoys a fast theoretical convergence rate of O(1/t)
where t is the number of iterations, which is much faster than the
standard subgradient methods with the rate O(1/

√
t). Moreover, we

proposed several variants of SPG, tailored to address multivariate re-
sponse / multi-task regression where the correlated responses also lie
in a high dimensional space with certain structures [29], as well as
structured canonical correlation analysis [31].

We applied the proposed methods to study associations between
genomic and phenotypic variations, known as genome-wide association
study, which is a fundamental problem in computational biology. The
data that we investigated are ultra high-dimensional with millions of
variables and rich structural information. Our methods fully utilize
the pathway and regulatory network information as prior knowledge
and successfully uncover many important structures among genes,
which provides new insights into gene regulation as well as potential
controlling factors of diseases [29, 25].

This part of work was done through collaboration with Jaime Car-
bonell, Seyoung Kim, Qihang Lin, Han Liu and Eric Xing.

1.3.2.2 Uniformly-Optimal Stochastic Optimization

When the data are not only high-dimensional but also of enormous
size, or when the data are collected in an online fashion, batch op-
timization methods usually cannot scale up. We proposed a new
stochastic optimization method [30], optimal regularized dual averaging,
which can provide real-time services for web data arriving at a high-
rate. Instead of minimizing the empirical loss, the proposed method
directly minimizes the regularized expected loss. In particular, we adopted
the data sampling technique to construct an unbiased estimator of the
gradient of the expected loss, which is the so-called stochastic gradient.
Instead of directly using stochastic gradient as the descent direction,
our method uses the weighted average of all historical stochastic gra-
dients so that the noise in each gradient can be partially canceled
and the algorithm provably converges to the optimal solution. The-
oretically, our method achieves the uniformly-optimal convergence rate
in the stochastic first-order optimization framework. That is, this con-

6 thesis overview

vergence rate cannot be further improved regardless of the problem
being smooth or non-smooth, convex or strongly convex.

This work was done through collaboration with Qihang Lin and
Javier Peña.

1.3.3 Part iv: Learning Dynamic Graphical Models

Exploring structural information is a critical step to understand com-
plex data. One important structure to explore is the network structure,
e.g., the dependency relationship among various features (e.g. profes-
sion, education, hobby, etc) in social network data. Graphical models,
particularly Markov Random Fields, are widely used in modeling
dependency relationships as sparse network structures. Most of the exist-
ing work in learning graphical models assume that the structures are
static. However, this assumption is clearly violated in the real world,
since the structures are often changing gradually but smoothly de-
pending on other conditions, (e.g. time, space, etc). We formulated
the problem of learning dynamic structures of graphical models as
a supervised learning problem, where we predict the network struc-
ture among high-dimensional features as responses to a set of inputs.
To address this so-called “graph-valued regression” problem, we pro-
posed a new statistical method named Go-CART (Graph-Optimized
Classification And Regression Tree) [92]. Our method can efficiently
learn dynamic sparse network structures evolving over a set of dimen-
sions and can scale up to very large networks. Theoretically, the or-
acle inequalities on excess risk and structure estimation consistency
are established. We applied the proposed Go-CART method to study
a climatological dataset and our method successfully explored dy-
namic dependency structures among different climatological factors
evolving with time and location. We further extended Go-CART to
Forest-Optimized CART where we could learn dynamic forest struc-
tured graphical models from the data and effectively deal with the
discrete data.

This work was done with collaboration with Han Liu, John Lafferty
and Larry Wasserman.

1.3.4 Part v: Sparse Learning for Text Mining

Text data is often highly sparse in the sense that many features (words,
links, phrases, named entities, etc) are irrelevant for the modeling
task. Therefore, the developed sparse learning methods and stochas-
tic optimization techniques are powerful tools for various web-scale
text mining tasks, e.g., learning to rank [26], topic modeling [28].

1. Learning to Rank [26]: We developed a scalable learning method
to address ranking problem with millions of raw features (e.g. En-
glish words, n-grams, or tags such as POS and named-entities).
Our method carefully models the pair-wise relationship to cap-
ture the synonymys and polysemes in text. We addressed the

1.3 main results and organization 7

scalability issue by adding sparsity constraint and then training
the model with the developed stochastic optimization method.

2. Topic Modeling [28]: We developed a new latent semantic anal-
ysis method, sparse LSA, for learning a compact representa-
tion of the topic-word relationship. Compared to the standard
topic modeling techniques (e.g, latent semantic analysis and la-
tent Dirichlet allocation [14]), our method requires very small
amount of memory and has low computational cost. Using sparse
LSA, we can efficiently learn topics from a large corpus with
tens of millions of documents.

This part of work was done when I interned at NEC Research Lab,
in collaboration with Yanjun Qi and Bing Bai.

1.3.5 Part vi: Conclusions and Future Work

The conclusions of the thesis and future directions are provided in
the last part of the thesis.

Part II

B A C K G R O U N D

2
B A C K G R O U N D

2.1 structured sparse regression

In a high-dimensional regression problem, our goal is to predict the
output y from a high-dimensional input vector x ∈ RJ. Given a
dataset of N input/output pairs: {xi,yi} for i = 1, . . . ,N, let y de-
note the vector of outputs and X denote the matrix of inputs of N
samples. The `1-regularized estimator can be obtained by solving the
following convex optimization problem:

min
β∈RJ

f(β) ≡ g(β) + λ‖β‖1 =
n∑
i=1

`(yi,βTxi) + λ‖β‖1, (2.1)

where the loss function ` : RJ → R is assumed to be a convex dif-
ferentiable function with Lipschitz continuous gradient; and the reg-
ularizer is a convex non-smooth `1-norm penalty ‖β‖1 =

∑J
j=1 |βj|,

which is adopted to enforce sparsity among β [133, 24]. Typical exam-
ples of of loss function include (1) the squared loss for least squares
regression:

`(yi,βTxi) =
1

2
(yi −β

Txi)2. (2.2)

and the corresponding loss g(β) = 1
2‖y − Xβ‖22; (2) the logistic loss

for classification problem with y ∈ {−1,+1}:

`(yi,βTxi) = log(1+ exp(−yiβTxi)). (2.3)

In the last decade, numerous methods have been proposed to study
the `1-regularization regression problem, from the theoretical per-
spective [156, 143, 11, 155] to efficient computational methods [44,
110, 47, 147, 6]. The readers can refer to [55] (Chapter 18) for more
discussions on `1-regularized methods.

The standard `1-norm penalty does not assume any dependencies,
grouping or other structures among the input variables, which limits
its applicability to complex high-dimensional scenarios in many real
problems. More structured constraints on the input variables such as
groupness or pairwise similarities can be introduced by employing a
more sophisticated sparsity-inducing penalty that induces joint spar-
sity patterns among related inputs. We generically denote the struc-
tured penalty byΩ(β) and the corresponding regression problem can
be formulated as:

min
β∈RJ

f(β) ≡ g(β) +Ω(β) + λ‖β‖1. (2.4)

Note that we keep the `1-norm to explicitly enforce sparsity on every
individual feature. If one is only interested in structured sparsity, the

11

12 background

parameter λ in (2.4) can be simply set to 0, which can be viewed as a
special case of the above formulation.

In this section, we briefly overview some widely adopted struc-
tured penalties.

1. Group Lasso Penalty with Disjoint Groups

In some situations, the variables are partitioned into groups
and it is desirable to jointly include or exclude all the variables
within a group. A typical example is when dealing with cat-
egorical data, each variable can be expressed via a group of
dummy variables; and one should conduct variable selection
on a group level instead of individual level. To achieve group
level variable selection, one can adopt the `1/`q mixed-norm
based group Lasso penalty with any q > 1 [150]:

Ω(β) ≡ γ
∑
g∈G

wg‖βg‖q ≡ γ
∑
g∈G

wg{
∑
j∈g

|βj|
q}1/q, (2.5)

where G denotes a partition of {1, . . . , J}, βg ∈ R|g| is the sub-
vector of β for the variables in group g; wg is the predefined
weight for group g; and ‖ · ‖q is the vector `q-norm . This `1/`q
mixed-norm penalty plays the role of jointly setting all of the
coefficients within each group to zero or non-zero values. In
practice, the `1/`2 and `1/`∞ are the most popular norms. The-
oretically, it has been demonstrated that if the group structure
is consistent with the true sparsity pattern, `1/`2 group Lasso
penalty has the potential to improve the accuracy of the estima-
tor [63].

2. Group Lasso Penalty with Overlapping Groups

To model more complex group structures, the groups in G in
(2.5) are allowed to overlap [66]. In other words, the coefficient
for a variable βj can appear in different `q-norms. Due to the
sigularity of the `q-norm, the penalty in (2.5) will set some βg
to zeros. If we denote the set of groups that βg = 0 by G0 ⊂ G,
the support of the estimated β̂ is:

supp(β̂) ⊂
(⋃

g∈G0 g
)c

(2.6)

A commonly used special case of general overlapping group
structure is the hierarchial structure (e.g. a tree or a forest) [157].
Specially, we assume that variables correspond to nodes of a
tree and a given variable is included in the model only if all its
ancestors in the tree has already been selected. The general over-
lapping group structure has an important application in path-
way selection for gene expression data. In more details, a biolog-
ical pathway is a group of genes that participate in a particular
biological process to perform certain functionality in a cell. To
find the controlling factors related to a disease, it is more mean-
ingful to study the genes by considering their pathways. We
will discuss more about this application in Chapter 3.

2.2 multi-task structured sparse regression 13

3. Chain-structured Fusion Penalty

If the variables are ordered in some meaningful way (e.g. on
a timeline), using the (chain-structured) fusion penalty, we can
learn a piece-wise constant coefficient vector [134]. The fusion
penalty, which is the `1-norm of the coefficients’ successive dif-
ferences, takes the following form:

Ω(β) = γ

J−1∑
j=1

|βj+1 −βj|. (2.7)

It has been widely applied to hot-spot detection for comparative
genomic hybridization (CGH) data [136] and time-series data
analysis [75].

4. Graph-guided Fusion Penalty

The work in [73] extends the the chain-structure fusion penalty
in (2.7) to a more general graph-guided fusion penalty. The
graph-guided fusion penalty can encode the prior knowledge
about the structural constraints over features in the form of
pairwise relatedness described by a graph G ≡ (V ,E), where
V = {1, . . . , J} denotes the variables of interest, and E denotes
the set of edges among V . Additionally, we let rml ∈ R denote
the weight of the edge e = (m, l) ∈ E, corresponding to cor-
relation or other proper similarity measures between features
m and l. The graph-guided fusion penalty, which encourages
the coefficients of related features to share similar magnitude,
is defined as follows:

Ω(β) = γ
∑

e=(m,l)∈E,m<l

τ(rml)|βm − sign(rml)βl|, (2.8)

where τ(rml) represent a general weight function that enforces
a fusion effect over coefficients βm and βl of relevant features.
It can be any monotonically increasing function of the abso-
lute values of correlations and the most popular examples in-
clude τ(r) = |r| or τ(r) = |r|2. The sign(rml) in (2.8) ensures
that two positively correlated inputs would tend to influence
the output in the same direction, whereas two negatively cor-
related inputs impose opposite effect. Since the fusion effect is
calibrated by the edge weight, the graph-guided fusion penalty
in (2.8) encourages highly inter-correlated inputs corresponding
to a densely connected subnetwork in G to be jointly selected
as relevant.

It is noteworthy that when rml = 1 for all e = (m, l) ∈ E, and G
is simply a chain over nodes, the graph-guided fusion penalty
is reduced to the chain-structured fusion penalty in (2.7).

2.2 multi-task structured sparse regression

In multi-task learning, we are interested in learning multiple related
tasks jointly by analyzing data from all of the tasks at the same time

14 background

instead of considering each task individually [132, 20, 149, 154, 112].
When data are scarce, it is greatly advantageous to borrow the infor-
mation in the data from other related tasks to learn each task more
effectively. More specifically, we consider the multi-task sparse regres-
sion problem, where each task is to learn a functional mapping from
a high-dimensional input space to a continuous-valued output space
and only a small number of inputs are relevant to the output. In multi-
task regression, it is often assumed that parameters for different tasks
share the same sparsity pattern [139, 2, 113]; and the task of conduct-
ing variable selection can be achieved via learning the joint sparsity
pattern of parameters.

For the simplicity of illustration, we assume all different tasks share
the same input matrix. Let X ∈ RN×J denote the matrix of input
data for J inputs and Y ∈ RN×K denote the matrix of output data
for K outputs over N samples. We assume a linear regression model
for each of the k-th output: yk = Xβk + εk, ∀k = 1, . . . K, where
βk = [β1k, . . . ,βJk]T is the regression coefficient vector for the k-th
output and εk is Gaussian noise. Let B = [β1, . . . ,βK] ∈ RJ×K be
the matrix of regression coefficients for all of the K outputs. Then,
the multi-task (or multivariate-response) structured sparse regression
problem can be naturally formulated as the following optimization
problem:

min
B∈RJ×K

f(B) ≡ 1
2
‖Y − XB‖2F +Ω(B) + λ‖B‖1, (2.9)

where ‖ · ‖F denotes the matrix Frobenius norm, ‖ · ‖1 denotes the ma-
trix entry-wise `1 norm, and Ω(B) is a structured sparsity-inducing
penalty with a structure over the outputs.

A popular approach is to adopt a joint sparsity regularization to
encourage sparsity across all tasks. In particular, one can adopt the
l1/lq mixed-norm penalty with q > 1 [2, 113, 104]:

λ‖B‖q,1 = γ

J∑
j=1

‖βj‖q, (2.10)

where βj = (β1j ,β2j , . . . ,βKj) ∈ RK is the j-th row of B and γ is a posi-
tive regularization parameter. The l1/lq mixed-norm penalty has the
effect that each entire βj is shrunk to zero all together. However, this
penalty cannot be incorporate a complex structure in how the outputs
themselves are correlated. In many applications, it is advantageous to
utilize the prior structural information among outputs to guide the
variable selection. For example, in genetic association analysis, where
the goal is to discover few genetic variants or single nucleotide poly-
morphisms (SNPs) out of millions of SNPs (inputs) that influence
phenotypes (outputs) such as gene expression measurements, the cor-
relation structure of the phenotypes can be naturally represented as
a graph, which can be used to guide the selection of SNPs as shown
in Figure 2.1.

By extending the structured penalties introduced in Section 2.1, the
two most widely used structured penalty for multi-task regression
are defined as follows.

2.3 sparse canonical correlation analysis 15

Inputs
(SNPs) ACGTTTTACTGTACAATTTAC

Outputs
(phenotypes)

Figure 2.1: Illustration of the multi-task regression with graph structure on
outputs.

1. Group Lasso Penalty in Multi-task Regression

We define the group lasso penalty for a structured multi-task
regression as follows:

Ω(B) ≡ γ
J∑
j=1

∑
g∈G

wg‖βgj ‖q, (2.11)

where G = {g1, . . . ,g|G|} is a subset of the power set of {1, . . . ,K}
and βgj is the vector of regression coefficients correspond to out-
puts in group g: {βkj ,k ∈ g}. The `1/`q mixed-norm penalty for
multi-task regression in (2.10) is a special case of (2.11) where
G only has one group g = {1, . . . , J}. The tree-structured group-
lasso penalty introduced in [72] is also a special case of (2.11).

2. Graph-guided Fusion Penalty in Multi-task Regression

Assuming that a graph structure over the K outputs is given as
G with a set of nodes V = {1, . . . ,K} each corresponding to an
output variable and a set of edges E, the graph-guided fusion
penalty for a structured multi-task regression is given as:

Ω(B) = γ
∑

e=(m,l)∈E

τ(rml)

J∑
j=1

|βmj − sign(rml)βlj |. (2.12)

2.3 sparse canonical correlation analysis

Given two datasets X and Y on the same set of observations, we as-
sume that each column of X and Y is normalized to have mean zero
and standard deviation one. Canonical correlation analysis (sparse
CCA) [146, 145] provides a more “symmetric” solution in which it
finds two sparse canonical vectors u and v to maximize the correla-
tion between Xu and Yv.

The sparse CCA proposed in [146, 145] takes the following form:

max
u,v

uTXTYv (2.13)

s.t. ‖u‖2 6 1, ‖v‖2 6 1,
P1(u) 6 c1, P2(v) 6 c2,

16 background

where P1 and P2 are convex and non-smooth sparsity-inducing penal-
ties that yield sparse u and v. Witten et al. (2009) studied two specific
forms of the penalty P (either P1 or P2): (1) `1-norm penalty P(w) =

‖w‖1, which will result in a sparse w vector. (2) chain-structured fu-
sion penalty P(w) = ‖w‖1 + γ

∑
j |wj −wj−1|, which assumes that

variables have a natural ordering and will result in w sparse and
smooth along the ordering.

2.4 sparse gaussian graphical model

Undirected graphical models (a.k.a. Markov Random Fields) have
been widely adopted for modeling dependency relationships [74].
Let Y be a p-dimensional random vector with distribution P. A com-
mon way to study the structure of P is to construct the undirected
graph G = (V ,E), where the vertex set V corresponds to the p com-
ponents of the vector Y. The edge set E is a subset of the pairs of
vertices, where an edge between Yu and Yv is absent if and only if
Yu is conditionally independent of Yv given all the other variables:
V\u,v ≡ {Yi, 1 6 i 6 p, i 6= u, v}

(u, v) 6∈ E ⇔ Yu ⊥⊥ Yv |V\u,v (2.14)

Let y1, . . . ,yn be a random sample of vectors from P, where each
yi ∈ Rp. We are interested in the case where p is large and, in fact,
may diverge with n asymptotically. One way to estimate G from the
sample is the graphical lasso or glasso [151, 48, 5], where one assumes
that P is Gaussian with mean µ and covariance matrix Σ. Missing
edges in the graph correspond to zero elements in the precision ma-
trix Ω = Σ−1 [83]. A sparse estimate of Ω is obtained by solving

Ω̂ = arg min
Ω�0

{
tr(SΩ) − log |Ω|+ λ‖Ω‖1

}
(2.15)

where Ω is positive definite, S is the sample covariance matrix, and
‖Ω‖1 =

∑
j,k |Ωjk| is the elementwise `1-norm of Ω. A fast algorithm

for finding Ω̂ was given by Friedman et al. [48], which involves esti-
mating a single row (and column) of Ω in each iteration by solving
a lasso regression. The theoretical properties of Ω̂ have been studied
by Rothman et al. [120] and Ravikumar et al. [116].

If Y does not follow a multivariate Gaussian distribution, we can
use the technique in [90] to find a set of a set of univariate func-
tions {fj}

p
j=1 such that f(Y) ≡ (f1(Y1), . . . , fp(Yp)) ∼ N(µ,Σ) and apply

glasso on the transformed data.

2.5 first-order optimization

The aforementioned sparse regression problems can always be formu-
lated as a composite convex optimization problem:

min
β
f(β) = g(β) + P(β), (2.16)

2.5 first-order optimization 17

where g(β) is a smooth convex loss function with Lipschitz continu-
ous gradient. P(β) is a general non-smooth convex penalty function.
As shown in previous sections, it can be the `1-norm λ‖β‖1; or struc-
tured penalty Ω(β) in Eq. (2.5), (2.7) or (2.8); or the sum of `1-norm
and structured penalty Ω(β) + λ‖β‖1.

The traditional generic solvers include (1) subgradient descent method
and (2) interior point method (IPM). For subgradient method, it con-
verges very slowly with the rate (i.e. the number of iterations) of
O(1
ε2
), where ε is the desired accuracy and the obtained solutions

are usually not sparse. For all the structured penalties that we con-
sidered here, the corresponding regression problem can always be
cast to a semidefinite programming or its simpler special form (e.g.
second-order cone programming (SOCP) or quadratic programming
(QP)) and solved by interior point methods (IPM). Although IPM has
a logarithmic convergence rate O(log(1ε)), it is computationally pro-
hibitive for problems of even a moderate size.

Due to the separability of some non-smooth penalties (e.g. `1-norm
penalty), coordinate descent methods can be directly applied where
we optimize the objective with one variable (or a block of variables) at
a time while keeping all others fixed [47]. Although it has surprisingly
good empirical performance, it is limited in that the convergence can-
not be guaranteed when nondifferential terms are not separable [137].

Another class of optimization methods, proximal methods (as a
special first-order methods) have become increasingly popular in the
past few years in the machine learning communities. They enjoy the
optimal convergence under the first-order black-box model; and more
importantly, since they only use the gradient information, they are
much more scalable than second-order methods or IPM and hence
more suitable for large-scale applications. Although proximal meth-
ods have many variations, including Nesterov’s composite method
[110] and fast-iterative shrinkage-thresholding algorithm [6] (see [138]
for a survey of different proximal methods), all of them need to solve
a so-called proximal problem (or proximal operator, proximal map-
ping, generalized gradient update) at each iteration. More specifi-
cally, the proximal operator, which is based on the linearization of
the smooth loss function g at the current estimate w, takes the follow-
ing form:

arg min
β

QL(β, w) ≡ g(w) + 〈∇g(w),β−w〉+ L
2
‖β−w‖22 + P(β),

(2.17)

where L is the Lipschitz constant of ∇g and hence the problem in
Eq. (2.17) is a quadratic upper bound of the original problem in Eq.
(2.16). We also note that the term L

2‖β− w‖22 can be replaced by any
Bregman divergence between β and w. The proximal operator can be
written as:

arg min
β

1

2
‖β− (w −

1

L
∇g(w))‖22 +

1

L
P(β) (2.18)

18 background

We note that if there is no non-smooth term P(β), Eq. (2.18) sim-
ply reduces to the standard gradient descent update rule with the
step size 1/L: β = w − 1

L∇g(w). It is known that when the proximal
operator admits a closed-form or exact solution, proximal methods
enjoy O(1/ε) convergence rate and accelerated techniques can fur-
ther improve the rate to O(1/

√
ε), which has already been optimal

for solving any smooth convex function under the first-order black-
box model [108]. Therefore, to guarantee the convergence of proximal
methods, it is crucial that the structure of penalty is simple enough
so that the proximal operator can be computed exactly; otherwise, er-
ror introduced in each proximal operator will be accumulated over
iterations and the convergence is hard to analyze.

Let v = (w − 1
L∇g(w)), when P(β) = λ‖β‖1, it is well-known that

the proximal operator is simply component-wise soft-thresholding
operation [47]:

βj = sign(vj)max(0, |vj|−
λ

L
). (2.19)

Recently, a number of works have been devoted to address the issue
of how to exactly compute the proximal operator. For non-overlapping
groups with the `1/`2 or `1/`∞ mixed-norms, the proximal operator
can be solved via a simple projection [96, 39]. A one-pass coordinate
ascent method has been developed for hierarchical groups with the
`1/`2 or `1/`∞ [67, 95], and quadratic min-cost network flow for arbi-
trary overlapping groups with the `1/`∞ [101]. However, for the `1/`2
with overlapping groups and general graph-guided fusion penalty,
there is no exact solution for proximal operator and it is the exact
challenge that I will address in this thesis.

In the next Part, we will first discuss how to solve the structured
sparse learning for large-scale data in an efficient and scalable man-
ner.

Part III

O P T I M I Z AT I O N F O R S PA R S E L E A R N I N G

3
S M O O T H I N G P R O X I M A L G R A D I E N T M E T H O D F O R
S T R U C T U R E D S PA R S E R E G R E S S I O N

As we discussed in the introduction part, estimating high dimen-
sional regression models regularized by a structured sparsity-inducing
penalty that encodes prior structural information on either the input
or output variables remains a challenging problem from the com-
putational aspect. In this chapter, we consider two widely adopted
types of penalties of this kind as motivating examples: 1) the general
overlapping-group-lasso penalty, generalized from the group-lasso
penalty; and 2) the graph-guided-fused-lasso penalty, generalized from
the fused-lasso penalty. We propose a general optimization approach,
the smoothing proximal gradient (SPG) method, which can solve struc-
tured sparse regression problems with any smooth convex loss un-
der a wide spectrum of structured sparsity-inducing penalties. Our
approach combines Nesterov’s smoothing technique with the acceler-
ated proximal gradient method. It achieves a convergence rate signifi-
cantly faster than the standard first-order methods, subgradient meth-
ods, and is much more scalable than the most widely used interior-
point methods.

3.1 introduction and motivation

As outlined in Chapter 2, in recent years, various extensions of the
`1-norm lasso penalty have been introduced to take advantage of the
prior knowledge of the structures among inputs to encourage closely
related inputs to be selected jointly [150, 134, 66]. Similar ideas have
also been explored to leverage the output structures in multivariate-
response regression (or multi-task regression), where one is interested
in estimating multiple related functional mappings from a common
input space to multiple outputs [112, 71, 72]. In this case, the struc-
ture over the outputs is available as prior knowledge, and the closely
related outputs according to this structure are encouraged to share a
similar set of relevant inputs. These progresses notwithstanding, the
development of efficient optimization methods for solving the estima-
tion problems resultant from the structured sparsity-inducing penalty
functions remains a challenge for reasons we will discuss bellow. In
this paper, we address the problem of developing efficient optimiza-
tion methods that can handle a broad family of structured sparsity-
inducing penalties with complex structures.

When the structure to be imposed during shrinkage has a relatively
simple form, such as non-overlapping groups over variables (e.g.,
group lasso [150]), or a linear-ordering (a.k.a., chain) of variables (e.g.,
fused lasso [134]), efficient optimization methods have been devel-
oped. For example, under group lasso, due to the separability among

21

22 smoothing proximal gradient method for structured sparse regression

groups, a proximal operator1 associated with the penalty can be com-
puted in closed-form; thus, a number of composite gradient methods
[6, 110, 96] that leverage the proximal operator as a key step (so-called
“proximal gradient method”) can be directly applied. For fused lasso,
although the penalty is not separable, a coordinate descent algorithm
was shown feasible by explicitly leveraging the linear ordering of the
inputs [47].

Unfortunately, these algorithmic advancements have been outpaced
by the emergence of more complex structures one would like to im-
pose during shrinkage. For example, in order to handle a more gen-
eral class of structures such as a tree or a graph over variables, various
regression models that further extend the group lasso and fused lasso
ideas have been recently proposed. Specifically, rather than assuming
the variable groups to be non-overlapping as in the standard group
lasso, the overlapping group lasso [66] allows each input variable to be-
long to multiple groups, thereby introducing overlaps among groups
and enabling incorporation of more complex prior knowledge on the
structure. Going beyond the standard fused lasso, the graph-guided
fused lasso extends the original chain structure over variables to a gen-
eral graph over variables, where the fused-lasso penalty is applied to
each edge of the graph [73]. Due to the non-separability of the penalty
terms resultant from the overlapping group or graph structures in
these new models, the aforementioned fast optimization methods
originally tailored for the standard group lasso or fused lasso can-
not be readily applied here, due to, for example, unavailability of a
closed-form solution of the proximal operator. In principle, generic
convex optimization solvers such as the interior-point methods (IPM)
could always be used to solve either a second-order cone program-
ming (SOCP) or a quadratic programming (QP) formulation of the
aforementioned problems; but such approaches are computationally
prohibitive for problems of even a moderate size.

In this Chapter, we propose a generic optimization approach, the
smoothing proximal gradient (SPG) method, for dealing with a broad
family of sparsity-inducing penalties of complex structures. We use
the overlapping-group-lasso penalty and graph-guided-fused-lasso
penalty mentioned above as our motivating examples. Although these
two types of penalties are seemingly very different, we show that
it is possible to decouple the non-separable terms in both penalties
via the dual norm; and reformulate them into a common form to
which the proposed method can be applied. We call our approach a
“smoothing" proximal gradient method because instead of optimiz-
ing the original objective function directly as in other proximal gradi-
ent methods, we introduce a smooth approximation to the structured
sparsity-inducing penalty using the technique from Nesterov [109].
Then, we solve the smoothed surrogate problem by a first-order proxi-
mal gradient method known as the fast iterative shrinkage-thresholding
algorithm (FISTA)[6]. We show that although we solve a smoothed

1 The proximal operator associated with the penalty is defined as: arg minβ
1
2‖β −

v‖22 + P(β), where v is any given vector and P(β) is the non-smooth penalty.

3.2 smoothing proximal gradient 23

problem, when the smoothness parameter is carefully chosen, SPG
achieves a convergence rate of O(1ε) for the original objective for any
desired accuracy ε. Below, we summarize the main advantages of this
approach:

(a) It is a first-order method, as it uses only the gradient informa-
tion. Thus, it is significantly more scalable than IPM for SOCP or
QP. Since it is gradient-based, it allows warm restarts, thereby po-
tentiates solving the problem along the entire regularization path
[47].

(b) It is applicable to a wide class of optimization problems with a
smooth convex loss and a non-smooth non-separable structured
sparsity-inducing penalty. Additionally, it is applicable to both
uni- and multi-task sparse structured regression, with structures
on either (or both) inputs/outputs.

(c) Theoretically, it enjoys a convergence rate of O(1ε), which domi-
nates that of the standard first-order method such as subgradient
method whose rate is of O(1

ε2
).

(d) Finally, SPG is very easy to implement.

3.2 smoothing proximal gradient

In this section, we present the smoothing proximal gradient method.
The main difficulty in optimizing the objective function of structured
sparse regression as defined in (2.4) arises from the non-separability
of β in the non-smooth penalty Ω(β). For both types of penalties, we
show that using the dual norm, the non-separable structured-sparsity-
inducing penaltiesΩ(β) can be formulated asΩ(β) = maxα∈QαTCβ.
Based on that, we introduce a smooth approximation to Ω(β) using
the technique from Nesterov [109] such that its gradient with respect
to β can be easily calculated.

3.2.1 Reformulation of Structured Sparsity-inducing Penalty

In this section, we show that utilizing the dual norm, the non-separable
structured sparsity-inducing penalty in both (2.5) and (2.8) can be de-
coupled; and reformulated into a common form as a maximization
problem over the auxiliary variables.

1. Reformulating overlapping-group-lasso penalty

Since the dual norm of an `2-norm is also `2-norm, we can
write ‖βg‖2 as ‖βg‖2 = max‖αg‖261α

T
gβg, where αg ∈ R|g|

is a vector of auxiliary variables associated with βg. Let α =[
αTg1 , . . . ,α

T
g|G|

]T
. Then, α is a vector of length

∑
g∈G |g| with

domain Q ≡ {α | ‖αg‖2 6 1, ∀g ∈ G}, where Q is the Carte-
sian product of unit balls in Euclidean space and therefore, a

24 smoothing proximal gradient method for structured sparse regression

closed and convex set. We can rewrite the overlapping-group-
lasso penalty in (2.5) as:

Ω(β) = γ
∑
g∈G

wg max
‖αg‖261

αTgβg = max
α∈Q

∑
g∈G

γwgα
T
gβg = max

α∈Q
αTCβ,(3.1)

where C ∈ R
∑
g∈G |g|×J is a matrix defined as follows. The rows

of C are indexed by all pairs of (i,g) ∈ {(i,g)|i ∈ g, i ∈ {1, . . . , J},g ∈
G}, the columns are indexed by j ∈ {1, . . . , J}, and each element
of C is given as:

C(i,g),j =

{
γwg if i = j,

0 otherwise.
(3.2)

Then, we have Cβ =
[
γwg1β

T
g1

, . . . ,γwg|G|
βTg|G|

]T
.

Example. We give a concrete example of C. Assume β ∈ R3

(i.e., J = 3) with groups G = {g1 = {1, 2},g2 = {2, 3}}. Then, the
matrix C is defined as follows:

j = 1 j = 2 j = 3

i = 1 ∈ g1 γwg1 0 0

i = 2 ∈ g1 0 γwg1 0

i = 2 ∈ g2 0 γwg2 0

i = 3 ∈ g2 0 0 γwg2

Note that C is a highly sparse matrix with only a single non-
zero element in each row and

∑
g∈G |g| non-zero elements in

the entire matrix, and hence, can be stored with only a small
amount of memory during the optimization procedure.

2. Reformulating graph-guided-fused-lasso penalty

First, we rewrite the graph-guided-fused-lasso penalty in (2.8)
as follows:

γ
∑

e=(m,l)∈E,m<l

τ(rml)|βm − sign(rml)βl| ≡ ‖Cβ‖1,

where C ∈ R|E|×J is the edge-vertex incident matrix:

Ce=(m,l),j =

γ · τ(rml) if j = m

−γ · sign(rml)τ(rml) if j = l

0 otherwise.

(3.3)

Again, we note that C is a highly sparse matrix with 2 · |E|
non-zero elements. Since the dual norm of the `∞-norm is the
`1-norm, we can further rewrite the graph-guided-fused-lasso
penalty as:

‖Cβ‖1 ≡ max
‖α‖∞61

αTCβ, (3.4)

where α ∈ Q = {α|‖α‖∞ 6 1,α ∈ R|E|} is a vector of auxiliary
variables associated with ‖Cβ‖1, and ‖ · ‖∞ is the `∞-norm de-
fined as the maximum absolute value of all entries in the vector.

3.2 smoothing proximal gradient 25

Remark 3.1. As a generalization of graph-guided-fused-lasso penalty,
the proposed optimization method can be applied to the `1-norm of any
linear mapping of β (i.e., Ω(β) = ‖Cβ‖1 for any given C).

To provide a deeper insight into this reformulation, we show that
(3.1) can be viewed as Fenchel Conjugate[58] of the indicator function.

Definition 3.1. The Fenchel conjugate of a function f(x) is the function f∗

defined by:

f∗(y) = sup
x∈dom(f)

(
xTy − f(x)

)
. (3.5)

Let δQ(x) be the indicator function:

δQ(x) =

0 x ∈ Q,

+∞ x 6∈ Q;

the penalty function Ω(β) is the Fenchel conjugate of δQ at Cv:

Ω(β) = max
α∈Q

αTCβ = δ∗Q(Cβ). (3.6)

3.2.2 Smooth Approximation to Structured Sparsity-inducing Penalty

The common formulation ofΩ(β) given above (i.e.,Ω(β) = maxα∈QαTCβ)
is still a non-smooth function of β, and this makes the optimization
challenging. To tackle this problem, using the technique from Nes-
terov [109], we construct a smooth approximation to Ω(β) as follow-
ing:

fµ(β) = max
α∈Q

(
αTCβ− µd(α)

)
, (3.7)

where µ is a positive smoothness parameter and d(α) is a smoothing
function defined as 12‖α‖

2
2. The original penalty term can be viewed

as fµ(β) with µ = 0; and one can verify that fµ(β) is a lower bound
of f0(β). In order to bound the gap between fµ(β) and f0(β), let
D = maxα∈Q d(α). In our problems, D = |G|/2 for the overlapping-
group-lasso penalty and D = |E|/2 for the graph-guided-fused-lasso
penalty. Then, it is easy to verify that the maximum gap between
fµ(β) and f0(β) is µD:

f0(β) − µD 6 fµ(β) 6 f0(β).

From Theorem 1 as presented below, we know that fµ(β) is a smooth
function for any µ > 0. Therefore, fµ(β) can be viewed as a smooth
approximation to f0(β) with a maximum gap of µD; and the µ controls
the gap between fµ(β) and f0(β). Given a desired accuracy ε, the
convergence result in Section 3.2.5 suggests µ = ε

2D to achieve the
best convergence rate. When µ = ε

2D , we have f0(β) − ε
2 6 fµ(β) 6

f0(β).
Now we present the key theorem [109] to show that fµ(β) is smooth

in β with a simple form of the gradient.

26 smoothing proximal gradient method for structured sparse regression

−1
0

1

−4−2024
−4

−2

0

2

4

αβ

z

−4 −2 0 2 4
−4

−2

0

2

4

β

z

−1
0

1

−4−2024
−5

0

5

αβ

z
s

−4 −2 0 2 4
−6

−4

−2

0

2

4

β

z
s

(a) (b) (c) (d)

Figure 3.1: A geometric illustration of the smoothness of fµ(β). (a) The 3-D
plot of z(α,β), (b) the projection of (a) onto the β-z space, (c) the
3-D plot of zs(α,β), and (d) the projection of (c) onto the β-z
space.

Theorem 3.1. For any µ > 0, fµ(β) is a convex and continuously-differentiable
function in β, and the gradient of fµ(β) takes the following form:

∇fµ(β) = CTα∗, (3.8)

where α∗ is the optimal solution to (3.7). Moreover, the gradient ∇fµ(β) is
Lipschitz continuous with the Lipschitz constant Lµ = 1

µ‖C‖
2, where ‖C‖

is the matrix spectral norm of C defined as ‖C‖ ≡ max‖v‖261 ‖Cv‖2.

By viewing fµ(β) as the Fenchel Conjugate of d(·) at Cβ
µ , the smooth-

ness can be obtained by applying Theorem 26.3 in Rockafellar [119].
The gradient in (3.8) can be derived from the Danskin’s Theorem
[10] and the Lipschitz constant is shown in Nesterov [109]. For the
purpose of completeness, the details of the proof are given in the
appendix.

Geometric illustration of Theorem 3.1 To provide insights on
why fµ(β) is a smooth function as Theorem 1 suggests, in Figure
3.1, we show a geometric illustration for the case of one-dimensional
parameter (i.e., β ∈ R) with µ and C set to 1. First, we show ge-
ometrically that f0(β) = maxα∈[−1,1] z(α,β) with z(α,β) ≡ αβ is
a non-smooth function. The three-dimensional plot for z(α,β) with
α restricted to [−1, 1] is shown in Figure 3.1(a). We project the sur-
face in Figure 3.1(a) onto the β− z space as shown in Figure 3.1(b).
For each β, the value of f0(β) is the highest point along the z-axis
since we maximize over α in [−1, 1]. We can see that f0(β) is com-
posed of two segments with a sharp point at β = 0 and hence is non-
smooth. Now, we introduce d(α) = 1

2α
2, let zs(α,β) ≡ αβ− 1

2α
2 and

fµ(β) = maxα∈[−1,1] zs(α,β). The three-dimensional plot for zs(α,β)
with α restricted to [−1, 1] is shown in Figure 3.1(c). Similarly, we
project the surface in Figure 3.1(c) onto the β − zs space as shown
in Figure 3.1(d). For fixed β, the value of fµ(β) is the highest point
along the z-axis. In Figure 3.1(d), we can see that the sharp point at
β = 0 is removed and fµ(β) becomes smooth.

To compute the ∇fµ(β) and Lµ, we need to know α∗ and ‖C‖. We
present the closed-form equations for α∗ and ‖C‖ for the overlapping-
group-lasso penalty and graph-guided-fused-lasso penalty in the fol-
lowing propositions. The proof is presented in the appendix.

1. α∗ under overlapping-group-lasso penalty

3.2 smoothing proximal gradient 27

Proposition 3.1. Let α∗, which is composed of {α∗g}g∈G, be the opti-
mal solution to (3.7) for the overlapping-group-lasso penalty in (2.5).
For any g ∈ G,

α∗g = S2(
γwgβg

µ
),

where S2 is the projection operator which projects any vector u to the
`2 ball:

S2(u) =

 u
‖u‖2 ‖u‖2 > 1,

u ‖u‖2 6 1.
(3.9)

In addition, we have ‖C‖ = γmaxj∈{1,...,J}

√∑
g∈G s.t. j∈g

(wg)2.

2. α∗ under graph-guided-fused-lasso penalty

Proposition 3.2. Let α∗ be the optimal solution of (3.7) for graph-
guided-fused-lasso penalty in (2.8). Then, we have:

α∗ = S∞(Cβ
µ

),

where S∞ is the projection operator defined as follows:

S∞(x) =

x, if − 1 6 x 6 1

1, if x > 1

−1, if x < −1.

For any vector α, S∞(α) is defined as applying S∞ on each and every
entry of α.

‖C‖ is upper-bounded by
√
2γ2maxj∈V dj, where

dj =
∑

e∈E s.t. e incident on j

(τ(re))
2 (3.10)

for j ∈ V in graph G, and this bound is tight. Note that when τ(re) =
1 for all e ∈ E, dj is simply the degree of the node j.

3.2.3 Smoothing Proximal Gradient Descent

Given the smooth approximation to the non-smooth structured sparsity-
inducing penalties, now, we apply the fast iterative shrinkage-thresholding
algorithm (FISTA) [6, 138] to solve a generically reformulated opti-
mization problem, using the gradient information from Theorem 3.1.
We substitute the penalty term Ω(β) in (2.4) with its smooth approx-
imation fµ(β) to obtain the following optimization problem:

min
β
f̃(β) ≡ g(β) + fµ(β) + λ‖β‖1. (3.11)

Let

h(β) = g(β) + fµ(β) =
1

2
‖y − Xβ‖22 + fµ(β). (3.12)

28 smoothing proximal gradient method for structured sparse regression

Algorithm 3.1 Smoothing Proximal Gradient Descent (SPG) for Struc-
tured Sparse Regression

Input: X, y, C, β0, Lipschitz constant L, desired accuracy ε.
Initialization: set µ = ε

2D where D = maxα∈Q 12‖α‖
2
2 (D = |G|/2 for

the overlapping-group-lasso penalty and D = |E|/2 for the
graph-guided-fused-lasso penalty), θ0 = 1, w0 = β0.
Iterate For t = 0, 1, 2, . . ., until convergence of βt:

1. Compute ∇h(wt) according to (3.13).

2. Solve the proximal operator associated with the `1-norm:

βt+1 = arg min
β

QL(β, wt) (3.15)

≡ arg min
β

h(wt) + 〈β− wt,∇h(wt)〉+ λ‖β‖1 +
L

2
‖β− wt‖22

3. Set θt+1 = 2
t+3 .

4. Set wt+1 = βt+1 + 1−θt
θt
θt+1(β

t+1 −βt).

Output: β̂ = βt+1.

be the smooth part of f̃(β). According to Theorem 3.1, the gradient
of h(β) is given as:

∇h(β) = XT (Xβ− y) +CTα∗. (3.13)

Moreover, ∇h(β) is Lipschitz-continuous with the Lipschitz constant:

L = λmax(XTX) + Lµ = λmax(XTX) +
‖C‖2

µ
, (3.14)

where λmax(XTX) is the largest eigenvalue of (XTX).
Since f̃(β) only involves a very simple non-smooth part (i.e., the `1-

norm penalty), we can adopt FISTA [6] to minimize f̃(β) as shown in
Algorithm 3.1. Algorithm 3.1 alternates between the sequences {wt}

and {βt} and θt can be viewed as a special “step-size”, which deter-
mines the relationship between {wt} and {βt} as in Step 4 of Algo-
rithm 3.1. As shown in Beck and Teboulle [6], such a way of setting
θt leads to Lemma 1 in Appendix, which further guarantees the con-
vergence result in Theorem 3.2.

Rewriting QL(β, wt) in (3.15):

QL(β, wt) =
1

2
‖β− (wt −

1

L
∇h(wt))‖22 +

λ

L
‖β‖1.

Let v = (wt − 1
L∇h(w

t)), the closed-form solution for βt+1 can be
obtained by soft-thresholding [47] as presented in the next proposi-
tion.

Proposition 3.3. The closed-form solution of

min
β

1

2
‖β− v‖22 +

λ

L
‖β‖1

3.2 smoothing proximal gradient 29

can be obtained by the soft-thresholding operation:

βj = sign(vj)max(0, |vj|−
λ

L
), j = 1, . . . , J. (3.16)

An important advantage of using the proximal operator associated
with the `1-norm QL(β, wt) is that it can provide us with sparse so-
lutions, where the coefficients for irrelevant inputs are set exactly to
zeros, due to the soft-thresholding operation in (3.16). When the term
λ‖β‖1 is not included in the objective, for overlapping group lasso,
we can only obtain the group level sparsity but not the individual
feature level sparsity inside each group. However, as for optimiza-
tion, Algorithm 3.1 still applies in the same way. The only difference
is that Step 2 of Algorithm 3.1 becomes βt+1 = arg minβ h(w

t) +

〈β− wt,∇h(wt)〉+ L
2‖β− wt‖22 = wt − 1

L∇h(w
t). Since there is no

soft-thresholding step, the obtained solution β̂ has no exact zeros. We
then need to set a threshold (e.g., 10−5) and select the relevant groups
which contain the variables with the parameter above this threshold.

3.2.4 Issues on the Computation of the Lipschitz Constant

When J is large, the computation of λmax(XTX) and hence the Lips-
chitz constant L could be very expensive. To further accelerate Algo-
rithm 3.1, a line search backtracking step could be used to dynami-
cally assign a constant Lt for the proximal operator in each iteration
[6]. More specifically, given any positive constant R, let

QR(β, wt) = h(wt) + 〈β− wt,∇h(wt)〉+ λ‖β‖1 +
R

2
‖β− wt‖22,

and
βt+1 ≡ βR(wt) = arg min

β

QR(β, wt).

The key to guarantee the convergence rate of Algorithm 3.1 is to en-
sure that the following inequality holds for each iteration:

f̃(βt+1) = h(βt+1) + λ‖βt+1‖1 6 QR(βt+1, wt). (3.17)

It is easy to check when R is equal to the Lipschitz constant L, it will
satisfy the above inequality for any βt+1 and wt. However, when it is
difficult to compute the Lipschitz constant, instead of using a global
constant L, we could find a sequence {Lt}

T
t=0 such that Lt+1 satisfies

the inequality (3.17) for the t-th iteration. In particular, we start with
any small constant L0. For each iteration, we find the smallest integer
a ∈ {0, 1, 2, . . .} such that by setting Lt+1 = τaLt where τ > 1 is a
pre-defined scaling factor, we have:

f̃(βLt+1(w
t)) 6 QLt+1(βLt+1(w

t), wt). (3.18)

Then we set βt+1 = βLt+1(w
t) ≡ arg minQLt+1(β, wt).

30 smoothing proximal gradient method for structured sparse regression

3.2.5 Convergence Rate and Time Complexity

Although we optimize the approximation function f̃(β) rather than
the original f(β) directly, it can be proven that f(β̂) is sufficiently
close to the optimal objective value of the original function f(β∗). The
convergence rate of Algorithm 3.1 is presented in the next theorem.

Theorem 3.2. Let β∗ be the optimal solution to (2.4) and βt be the ap-
proximate solution at the t-th iteration in Algorithm 3.1. If we require
f(βt) − f(β∗) 6 ε where f is the original objective, and set µ = ε

2D , then
the number of iterations t is upper-bounded by√

4‖β∗ −β0‖22
ε

(
λmax(XTX) +

2D‖C‖2
ε

)
. (3.19)

The key idea behind the proof of this theorem is to decompose
f(βt) − f(β∗) into three parts: (i) f(βt) − f̃(βt), (ii) f̃(βt) − f̃(β∗), and
(iii) f̃(β∗) − f(β∗). (i) and (iii) can be bounded by the gap of the ap-
proximation µD; and (ii) only involves the function f̃ and can be up-
per bounded by O(1

t2
) as shown in Beck and Teboulle [6]. We obtain

(3.19) by balancing these three terms. The details of the proof are
presented in the appendix. According to Theorem 3.2, Algorithm 3.1
converges in O(

√
2D
ε) iterations, which is much faster than the sub-

gradient method with the convergence rate of O(1
ε2
). Note that the

convergence rate depends on D through the term
√
2D, and the D

depends on the problem size.

Remark 3.2. Since there is no line search in Algorithm 3.1, we cannot
guarantee that the objective values are monotonically decreasing over itera-
tions theoretically. One simple strategy to guarantee the monotone decreas-

ing property is to first compute β̃
t+1

= arg minβQL(β, wt) and then set
βt+1 = arg min

β∈{β̃
t+1

,βt}
f(β).

Remark 3.3. Theorem 3.2 only shows the convergence rate for the objective
value. As for the estimator βt, since it is a convex optimization problem, it
is well known that βt will eventually converge to β∗. However, the speed
of convergence of βt to β∗ depends on the structure of the input X. If h(β)
is a strongly convex function with the strongly convexity parameter σ > 0.
In our problem, it is equivalent to saying that XTX is a non-singular matrix
with the smallest eigenvalue σ > 0. Then we can show that if f(βt) −

f(β∗) 6 ε at the convergence, then ‖βt − β∗‖2 6
√
2ε
σ . In other words,

βt converges to β∗ in `2-distance at the rate of O(1
ε2
). For general high-

dimensional sparse learning problems with J > N, XTX is singular and
hence the optimal solution β∗ is not unique. In such a case, one can only
show that βt will converge to one of the optimal solutions. But the speed
of the convergence of ‖βt −β∗‖2 or its relationship with f(βt) − f(β∗) is
widely recognized as an open problem in optimization community.

As for the time complexity, the main computational cost in each it-
eration comes from calculating the gradient ∇h(wt). Therefore, SPG
shares almost the same per-iteration time as the subgradient descent

3.3 related optimization methods 31

Table 3.1: Comparison of Per-iteration Time Complexity

Overlapping Group Lasso Graph-guided Fused Lasso

SPG O(Jmin(J,N) +
∑
g∈G |g|) O(Jmin(J,N) + |E|)

IPM O
(
(J+ |G|)2(N+

∑
g∈G |g|)

)
O
(
(J+ |E|)3

)
but with a faster convergence rate. In more details, if J < N and XTX
and XTy can be pre-computed and stored in memory, the computa-
tion of first part of ∇h(wt), (XTX)wt − (XTy), takes the time com-
plexity of O(J2). Otherwise, if J > N, we can compute this part by
XT (Xwt − y) which takes the time complexity of O(JN). As for the
generic solver, IPM for SOCP for overlapping group lasso or IPM for
QP for graph-guided fused lasso, although it converges in fewer it-
erations (i.e., log(1ε)), its per-iteration complexity is higher by orders
of magnitude than ours as shown in Table 3.1. In addition to time
complexity, IPM requires the pre-storage of XTX and each IPM itera-
tion requires significantly more memory to store the Newton linear
system. Therefore, the SPG is much more efficient and scalable for
large-scale problems.

3.3 related optimization methods

Recently, many first-order approaches have been developed for var-
ious subclasses of overlapping group lasso and graph-guided fused
lasso. Below, we provide a survey of these methods.

3.3.1 Related work for mixed-norm based group-lasso penalty

Most of the existing optimization methods developed for mixed-norm
penalties can handle only a specific subclass of the general overlapping-
group-lasso penalties. Most of these methods use the proximal gradi-
ent framework [6, 110] and focus on the issue of how to exactly solve
the proximal operator. For non-overlapping groups with the `1/`2
or `1/`∞ mixed-norms, the proximal operator can be solved via a
simple projection [96, 39]. A one-pass coordinate ascent method has
been developed for tree-structured groups with the `1/`2 or `1/`∞
[67, 95], and quadratic min-cost network flow for arbitrary overlap-
ping groups with the `1/`∞ [101].

Table 3.2 summarizes the applicability, the convergence rate, and
the per-iteration time complexity for the available first-order meth-
ods for different subclasses of group lasso penalties. More specifically,
the methods in the first three rows adopt the proximal gradient frame-
work. The first column of these rows gives the solver for the proximal
operator. Each entry in Table 3.2 contains the convergence rate and
the per-iteration time complexity. For the sake of simplicity, for all
methods, we omit the time for computing the gradient of the loss
function which is required for all of the methods (i.e., ∇g(β) with

32 smoothing proximal gradient method for structured sparse regression

Table 3.2: Comparisons of different first-order methods for optimizing
mixed-norm based overlapping-group-lasso penalties.

Method
No overlap No overlap Overlap Overlap Overlap Overlap

`1/`2 `1/`∞ Tree `1/`2 Tree `1/`∞ Arbitrary
`1/`2

Arbitrary `1/`∞

Projection [96]
O(1√

ε
) O(1√

ε
)

N.A. N.A. N.A. N.A.

O(J) O(J log J)

Coordinate Ascent [67, 95]
O(1√

ε
) O(1√

ε
) O(1√

ε
) O(1√

ε
)

N.A. N.A.

O(J) O(J log J) O(
∑
g∈G |g|) O(

∑
g∈G |g| log |g|)

Network Flow [101] N.A.
O(1√

ε
)

N.A.
O(1√

ε
)

N.A.
O(1√

ε
)

quadratic min-
cost flow

quadratic min-cost
flow

quadratic min-cost
flow

FOBOS [39]
O(1ε) O(1ε) O(1ε) O(1ε) O(1

ε2
) O(1ε)

O(J) O(J log J) O(
∑
g∈G |g|) O(

∑
g∈G |g| log |g|)

O(
∑
g∈G |g|)

(subgradient)
quadratic min-cost
flow

SPG
O(1ε) O(1ε) O(1ε) O(1ε) O(1ε) O(1ε)

O(J) O(J log J) O(
∑
g∈G |g|) O(

∑
g∈G |g| log |g|)O(

∑
g∈G |g|) O(

∑
g∈G |g| log |g|)

O(J2)). The per-iteration time complexity in the table may come from
the computation of proximal operator or subgradient of the penalty.
“N.A." stands for “not applicable” or no guarantee in the convergence.
As we can see from Table 3.2, although our method is not the most
ideal one for some of the special cases, our method along with FO-
BOS [39] are the only generic first-order methods that can be applied
to all subclasses of the penalties.

As we can see from Table 3.2, for arbitrary overlaps with the `1/`∞,
although the method proposed in Mairal et al. [101] achieves O(1√

ε
)

convergence rate, the per-iteration complexity can be high due to solv-
ing a quadratic min-cost network flow problem. From the worst-case
analysis, the per-iteration time complexity for solving the network
flow problem in Mairal et al. [101] is at least O(|V ||E|) = O((J +

|G|)(|G|+ J+
∑
g∈G |g|)), which is much higher than our method with

O(
∑
g∈G |g| log |g|). More importantly, for the case of arbitrary over-

laps with the `1/`2, our method has a superior convergence rate to
all the other methods.

3.3.2 Related work for fused lasso

For the graph-guided-fused-lasso penalty, when the structure is a
simple chain, the pathwise coordinate descent method [47] can be
applied. For the general graph structure, a first-order method that ap-
proximately solves the proximal operator was proposed in Liu et al.
[97]. However, the convergence cannot be guaranteed due to the er-
rors introduced in computing the proximal operator over iterations.

Recently, two different path algorithms have been proposed [135,
159] that can be used to solve the graph-guided fused lasso as a spe-
cial case. Unlike the traditional optimization methods that solve the

3.3 related optimization methods 33

Table 3.3: Comparisons of different methods for optimizing graph-guided
fused lasso

Method & Condition Pre-processing Time Per-iteration Time Complexity No. of Iterations

H. Zhou & K. Lange [159] (X full
column rank, entire path) O(J3) O

(
(|E|+ J)2

)
O(|E|+ J)

R. Tibshirani & J. Taylor [135] (X
full column rank, entire path)

O
(
J3 +N(|E|+ J)min((|E|+ J),N)

)
O
(

min((|E|+ J)2 ,N2)
)

O(|E| + J) (lower
bound)

R. Tibshirani & J. Taylor [135]
(X not full column rank, entire
path)

O
(
J3 + J2N+(|E|+ J)2N

)
O(N2)

O(|E| + J) (lower
bound)

SPG (single regularization pa-
rameter) O(NJ2) O(J2 + |E|) O(1ε)

problem for a fixed regularization parameter, they solve the entire
path of solutions, and thus, has great practical advantages. In addi-
tion, for both methods, updating solutions from one hitting time to
another is computationally very cheap. More specifically, a QR de-
composition based updating scheme was proposed in Tibshirani and
Taylor [135] and the updating in Zhou and Lange [159] can be done
by an efficient sweep operation.

However, for high-dimensional data with J � N, the path algo-
rithms have the following problems:

1. For a general design matrix X other than the identity matrix,
the method in Tibshirani and Taylor [135] needs to first com-
pute the pseudo-inverse of X: X+ = (XTX)+XT , which could be
computationally expensive for large J.

2. The original version of the algorithms in Tibshirani and Taylor
[135], Zhou and Lange [159] requires that X has a full column
rank. When J > N, although one can add an extra ε‖β‖22 term,
this changes the original objective value especially when ε is

large. For smaller ε, the matrix (X∗)TX∗ with X∗ =

 X

εI

 is

highly ill-conditioned; and hence computing its inverse as the
initilization step in Tibshirani and Taylor [135] is very difficult.
There is no known result on how to balance this trade-off.

3. In both Tibshirani and Taylor [135] and Zhou and Lange [159],
the authors extend their algorithm to deal with the case when X
does not have a full column rank. The extended version requires
a Gramm-Schmidt process as the initialization which could take
some extra time.

In Table 3.3, we present the comparisons for different methods.
From our analysis, the method in [159] is more efficient than the one
in Tibshirani and Taylor [135] since it avoids the heavy computation
of the pseudo-inverse of X. In practice, if X has a full column rank
and one is interested in solutions on the entire path, the method in
[159] is very efficient and faster than our method.

34 smoothing proximal gradient method for structured sparse regression

3.4 extensions to multi-task regression with structures

on outputs

The structured sparsity-inducing penalties as discussed in the pre-
vious section can be similarly used in the multi-task regression set-
ting [72, 73] where the prior structural information is available for
the outputs instead of inputs. In a sparse multi-task regression with
structure on the output side, we encounter the same difficulties of
optimizing with non-smooth and non-separable penalties as in the
previous section, and the SPG can be extended to this problem in a
straightforward manner. Due to the importance of this class of prob-
lems and its applications, in this section, we briefly discuss how our
method can be applied to the multi-task regression with structured-
sparsity-inducing penalties.

Using the similar techniques in Section 3.2.1, Ω(B) can be reformu-
lated as:

Ω(B) = max
A∈Q
〈CBT , A〉, (3.20)

where 〈U, V〉 ≡ Tr(UTV) denotes a matrix inner product. C is con-
structed in the similar way as in (3.2) or (3.3) just by replacing the
index of the input variables with the output variables, and A is the
matrix of auxiliary variables. In particular,

1. Group Structure: A =
[
[αT1g1 . . .α

T
1g|G|

]T . . . [αTJg1 . . .α
T
Jg|G|

]T
]
,

where each subvector αjg is the auxiliary variables for ‖βjg‖2
such that ‖βjg‖2 = max‖αjg‖261α

T
jgβjg. A is a (

∑
g∈G |g|)× J

matrix with domain Q ≡ {A | ‖αjg‖2 6 1, ∀ j ∈ {1, . . . , J} ,g ∈ G}.

2. Graph Structure: A is the auxiliary matrix for ‖CBT‖1 such that

‖CBT‖1 ≡ max
‖A‖∞61

〈CBTA〉,

where ‖ · ‖∞ is the matrix entry-wise infinity norm. Therefore,
we define A as a J by K + |E| matrix with the domain Q =

{A|‖A‖∞ 6 1}.

Then we introduce the smooth approximation of (3.20):

fµ(B) = max
A∈Q

(
〈CBT , A〉− µd(A)

)
, (3.21)

where d(A) ≡ 1
2‖A‖

2
F. Following a proof strategy similar to that in

Theorem 3.1, we can show that fµ(B) is convex and smooth with
gradient∇fµ(B) = (A∗)TC, where A∗ is the optimal solution to (3.21).
The closed-form solution of A∗ and the Lipschitz constant for ∇fµ(B)
can be derived in the same way.

By substituting Ω(B) in (2.9) with fµ(B), we can adopt Algorithm
3.1 to solve (2.9) with convergence rate ofO(1ε). The per-iteration time
complexity of SPG as compared to IPM for SOCP or QP formulation
is presented int Table 3.4. As we can see, the per-iteration complex-
ity for SPG is linear in max(|K|,

∑
g∈G |g|) or max(|K|, |E|) while tradi-

tional approaches based on IPM scape at least cubically to the size of
outputs K.

3.5 experiment 35

Table 3.4: Comparison of Per-iteration Time Complexity for Multi-task Re-
gression

Overlapping Group Lasso Graph-guided Fused Lasso

SPG O(JKmin(J,N) + J
∑
g∈G |g|) O(JKmin(J,N) + J|E|)

IPM O
(
J2(K+ |G|)2(KN+ J(

∑
g∈G |g|))

)
O
(
J3(K+ |E|)3

)
3.5 experiment

In this section, we evaluate the scalability and efficiency of the smooth-
ing proximal gradient method (SPG) on a number of structured sparse
regression problems via simulation, and apply SPG to an overlapping
group lasso problem on a real genetic datable.

On an overlapping group lasso problem, we compare the SPG with
FOBOS [39] and IPM for SOCP.2 On a multi-task graph-guided fused
lasso problem, we compare the running time of SPG with that of
the FOBOS [39] and IPM for QP.3 Note that for FOBOS, since the
proximal operator associated with Ω(β) cannot be solved exactly, we
set the “loss function” to l(β) = g(β) +Ω(β) and the penalty to
λ‖β‖1. According to Duchi and Singer [39], for the non-smooth loss
l(β), FOBOS achieves O

(
1
ε2

)
convergence rate, which is slower than

our method.
All experiments are performed on a standard PC with 4GB RAM

and the software is written in MATLAB. The main difficulty in com-
parisons is a fair stopping criterion. Unlike IPM, SPG and FOBOS do
not generate a dual solution, and therefore, it is not possible to com-
pute a primal-dual gap, which is the traditional stopping criterion for
IPM. Here, we adopt a widely used approach for comparing different
methods in optimization literature. Since it is well known that IPM
usually gives more accurate (i.e., lower) objective, we set the objec-
tive obtained from IPM as the optimal objective value and stop the
first-order methods when the objective is below 1.001 times the opti-
mal objective. For large datasets for which IPM cannot be applied, we
stop the first-order methods when the relative change in the objective
is below 10−6. In addition, maximum iterations is set to 20,000.

Since our main focus is on the optimization algorithm, for the pur-
pose of simplicity, we assume that each group in the overlapping
group lasso problem receives the same amount of regularization and
hence set the weights wg for all group to be 1. In principle, more
sophisticated prior knowledge of the importance for each group can
be naturally incorporated into wg. In addition, we notice that each
variable j with the regularization λ|βj| in λ‖β‖1 can be viewed as a
singleton group. To ease the tuning of parameters, we again assume
that each group (including the singleton group) receives the same

2 We use the state-of-the-art MATLAB package SDPT3 [140] for SOCP.
3 We use the commercial package MOSEK (http://www.mosek.com/) for QP. Graph-

guided fused lasso can also be solved by SOCP but it is less efficient than QP.

http://www.mosek.com/

36 smoothing proximal gradient method for structured sparse regression

amount of regularization and hence constrain the regularization pa-
rameters λ = γ.

The smoothing parameter µ is set to ε
2D according to Theorem 3.2,

whereD is determined by the problem size. It is natural that for large-
scale problems with large D, a larger ε can be adopted without affect-
ing the recovery quality significantly. Therefore, instead of setting ε,
we directly set µ = 10−4, which provided us with reasonably good
approximation accuracies for different scales of problems based on
our experience for a range of µ in simulations. As for FOBOS, we set
the stepsize rate to c√

t
as suggested in Duchi and Singer [39], where

c is carefully tuned to be 0.1√
NJ

for univariate regression and 0.1√
NJK

for
multi-task regression.

3.5.1 Simulation Study I: Overlapping Group Lasso

We simulate data for a univariate linear regression model with the
overlapping group structure on the inputs as described below. As-
suming that the inputs are ordered, we define a sequence of groups
of 100 adjacent inputs with an overlap of 10 variables between two
successive groups so that

G = {{1, . . . , 100}, {91, . . . , 190}, . . . , {J− 99, . . . , J}},

with J = 90|G|+ 10. We set βj = (−1)j exp(−(j− 1)/100) for 1 6 j 6 J.
We sample each element of X from i.i.d. Gaussian distribution, and
generate the output data from y = Xβ+ ε, where ε ∼ N(0, IN×N).

To demonstrate the efficiency and scalability of SPG, we vary J, N
and γ and report the total CPU time in seconds and the objective
value in Table 3.5. The regularization parameter γ is set to either |G|/5
or |G|/20. As we can see from Table 3.5, firstly, both SPG and FOBOS
are more efficient and scalable by orders of magnitude than IPM for
SOCP. For larger J and N, we are unable to collect the results for
SOCP. Secondly, SPG is more efficient than FOBOS for almost all dif-
ferent scales of the problems.4 Thirdly, for SPG, a smaller γ leads to
faster convergence. This result is consistent with Theorem 3.2, which
shows that the number of iterations is linear in γ through the term
‖C‖. Moreover, we notice that a largerN does not increase the compu-
tational time for SPG. This is also consistent with the time complexity
analysis, which shows that for linear regression, the per-iteration time
complexity is independent of N.

However, we find that the solutions from IPM are more accurate
and in fact, it is hard for first-order approaches to achieve the same
precision as IPM. Assuming that we require ε = 10−6 for the accuracy
of the solution, it takes IPM about O(log(1ε)) ≈ 14 iterations to con-
verge while O(1ε) = 106 iterations for SPG. This is the drawback for
any first-order method. However, in many real applications, we do

4 In some entries in Table 3.5, the Obj. from FOBOS is much larger than other methods.
This is because that FOBOS has reached the maximum number of iterations before
convergence. Instead, for our simulations, SPG generally converges in hundreds or
at most, a few thousands, iterations and never pre-terminates.

3.5 experiment 37

Table 3.5: Comparisons of different optimization methods on the overlap-
ping group lasso. SPG is more efficient than the first-order method
FOBOS in terms of CPU time. As compared to IPM for solving
SOCP, although SPG has slightly worse objective values, it is much
more scalable and efficient.

|G| = 10 N=1,000 N=5,000 N=10,000

(J = 910) CPU (s) Obj. CPU (s) Obj. CPU (s) Obj.

γ = 2

SOCP 103.71 266.683 493.08 917.132 3777.46 1765.518

FOBOS 27.12 266.948 1.71 918.019 1.48 1765.613

SPG 0.87 266.947 0.71 917.463 1.28 1765.692

γ = 0.5

SOCP 106.02 83.304 510.56 745.102 3585.77 1596.418

FOBOS 32.44 82.992 4.98 745.788 4.65 1597.531

SPG 0.42 83.386 0.41 745.104 0.69 1596.452

|G| = 50 N=1,000 N=5,000 N=10,000

(J = 4510) CPU (s) Obj. CPU (s) Obj. CPU (s) Obj.

γ = 10

SOCP 4144.20 1089.014 - - - -

FOBOS 476.91 1191.047 394.75 1533.314 79.82 2263.494

SPG 56.35 1089.052 77.61 1533.318 78.90 2263.601

γ = 2.5

SOCP 3746.43 277.911 - - - -

FOBOS 478.62 286.327 867.94 559.251 183.72 1266.728

SPG 33.09 277.942 30.13 504.337 26.74 1266.723

|G| = 100 N=1,000 N=5,000 N=10,000

(J = 9010) CPU (s) Obj. CPU (s) Obj. CPU (s) Obj.

γ = 20

FOBOS 1336.72 2090.808 2261.36 3132.132 1091.20 3278.204

SPG 234.71 2090.792 225.28 2692.981 368.52 3278.219

γ = 5

FOBOS 1689.69 564.209 2287.11 1302.552 3342.61 1185.661

SPG 169.61 541.611 192.92 736.559 176.72 1114.933

not require the objective to be extremely accurate (e.g., ε = 10−3 is
sufficiently accurate in general) and first-order methods are more suit-
able. More importantly, first-order methods can be applied to large-
scale high-dimensional problems while IPM can only be applied to
small or moderate scale problems due to the expensive computation
necessary for solving the Newton linear system.

38 smoothing proximal gradient method for structured sparse regression

(a) (b) (c) (d)

(e) (f)

Figure 3.2: Regression coefficients estimated by different methods based on
a single simulated datable. b = 0.8 and threshold ρ = 0.3 for the
output correlation graph are used. Red pixels indicate large val-
ues. (a) The correlation coefficient matrix of phenotypes, (b) the
edges of the phenotype correlation graph obtained at threshold
0.3 are shown as black pixels, (c) the true regression coefficients
used in simulation. Absolute values of the estimated regression
coefficients are shown for (d) lasso, (e) `1/`2 regularized multi-
task regression, (f) Graph-guided fused lasso. Rows correspond
to outputs and columns to inputs.

0 2000 4000 6000 8000 10000
0

2000

4000

6000

8000

10000

12000

14000

K (|E|=5K)

T
im

e
(s

e
c
o

n
d

s
)

SPG
FOBOS
QP

0 2000 4000 6000 8000 10000
0

2000

4000

6000

8000

10000

J

T
im

e
(s

e
c
o

n
d

s
)

SPG
FOBOS
QP

0 2000 4000 6000 8000 10000
0

200

400

600

800

1000

N

T
im

e
(s

e
c
o

n
d

s
)

SPG
FOBOS
QP

(a) (b) (c)

Figure 3.3: Comparisons of SPG, FOBOS and QP. (a) Vary K from 50 to
10, 000, fixing N = 500, J = 100; (b) Vary J from 50 to 10, 000,
fixing N = 1000,K = 50; and (c) Vary N from 500 to 10000, fixing
J = 100,K = 50.

3.5.2 Simulation Study II: Multi-task Graph-guided Fused Lasso

We simulate data using the following scenario analogous to the prob-
lem of genetic association mapping, where we are interested in iden-
tifying a small number of genetic variations (inputs) that influence
the phenotypes (outputs). We use K = 10, J = 30 and N = 100. To
simulate the input data, we use the genotypes of the 60 individu-
als from the parents of the HapMap CEU panel [131], and generate
genotypes for additional 40 individuals by randomly mating the orig-
inal 60 individuals. We generate the regression coefficients βk’s such
that the outputs yk’s are correlated with a block-like structure in the
correlation matrix. We first choose input-output pairs with non-zero
regression coefficients as we describe below. We assume three groups
of correlated output variables of sizes 3, 3, and 4. We randomly se-
lect inputs that are relevant jointly among the outputs within each

3.5 experiment 39

group, and select additional inputs relevant across multiple groups
to model the situation of a higher-level correlation structure across
two subgraphs as in Figure 3.2(a). Given the sparsity pattern of B,
we set all non-zero βij to a constant b = 0.8 to construct the true
coefficient matrix B. Then, we simulate output data based on the lin-
ear regression model with noise distributed as standard Gaussian,
using the simulated genotypes as inputs. We threshold the output
correlation matrix in Figure 3.2(a) at ρ = 0.3 to obtain the graph in
Figure 3.2(b), and use this graph as prior structural information for
graph-guided fused lasso. As an illustrative example, the estimated
regression coefficients from different regression models for recover-
ing the association patterns are shown in Figures 3.2(d)–(f). While
the results of lasso and `1/`2-regularized multi-task regression with
Ω(B) =

∑J
j=1 ‖βj,:‖2 [112] in Figures 3.2 (d) and (e) contain many

false positives, the results from graph-guided fused lasso in Figure
3.2(f) show fewer false positives and reveal clear block structures.
Thus, the graph-guided fused lasso proves to be a superior regres-
sion model for recovering the true regression pattern that involves
structured sparsity in the input/output relationships.

To compare SPG with FOBOS and IPM for QP in solving such a
structured sparse regression problem, we vary K, J, N, and present
the computation time in seconds in Figures 3.3(a)-(c), respectively. We
select the regularization parameter γ using a separate validation dat-
able, and report the CPU time for graph-guided fused lasso with the
selected γ. The input/output data and true regression coefficient ma-
trix B are generated in the way similar as above. More precisely, we
assume that each group of correlated output variables is of size 10.
For each group of the outputs, We randomly select 10% of the input
variables as relevant. In addition, we randomly select 5% of the in-
put variables as relevant to every two consecutive groups of outputs
and 1% of the input variables as relevant to every three consecutive
groups. We set the ρ for each datable so that the number of edges
is 5 times the number of the nodes (i.e. |E| = 5K). Figure 3.3 shows
that SPG is substantially more efficient and can scale up to very high-
dimensional and large-scale datasets. Moreover, we notice that the
increase of N almost does not affect the computation time of SPG,
which is consistent with the complexity analysis in Section 3.2.5.

3.5.3 Real Data Analysis: Pathway Analysis of Breast Cancer Data

In this section, we apply the SPG to an overlapping group lasso prob-
lem with a logistic loss on a real-world datable collected from breast
cancer tumors [142, 65].The main goal is to demonstrate the impor-
tance of employing structured sparsity-inducing penalties for perfor-
mance enhancement in real life high-dimensional regression prob-
lems, thereby further exhibit and justify the needs of efficient solvers
such as SPG for such problems.

The data are given as gene expression measurements for 8,141

genes in 295 breast-cancer tumors (78 metastatic and 217 non-metastatic).

40 smoothing proximal gradient method for structured sparse regression

0 500 1000 1500 2000
0.25

0.3

0.35

0.4

0.45

0.5

Number of Variables (Genes)

B
a

la
n

ce
d

 E
rr

o
r

R
a

te

Overlapping−group−lasso penalty
L1−norm penalty

0 500 1000 1500 2000
0

100

200

300

400

500

600

700

800

Number of Variables (Genes)

N
u

m
b

e
r

o
f

P
a

th
w

a
ys

Overlapping−group−lasso penalty
L1−norm penalty

(a) (b)

Figure 3.4: Results from the analysis of breast cancer datable. (a) Balanced
error rate for varying the number of selected genes, and (b) the
number of pathways for varying the number of selected genes.

A lot of research efforts in biology have been devoted to identifying
biological pathways that consist of a group of genes participating in a
particular biological process to perform a certain functionality in the
cell. Thus, a powerful way of discovering genes involved in a tumor
growth is to consider groups of interacting genes in each pathway
rather than individual genes independently [100]. The overlapping-
group-lasso penalty provides us with a natural way to incorporate
these known pathway information into the biological analysis, where
each group consists of the genes in each pathway. This approach can
allow us to find pathway-level gene groups of significance that can
distinguish the two tumor types. In our analysis of the breast can-
cer data, we cluster the genes using the canonical pathways from the
Molecular Signatures Database [126], and construct the overlapping-
group-lasso penalty using the pathway-based clusters as groups. Many
of the groups overlap because genes can participate in multiple path-
ways. Overall, we obtain 637 pathways over 3,510 genes, with each
pathway containing 23.47 genes on average and each gene appearing
in four pathways on average. Instead of analyzing all 8,141 genes, we
focus on these 3,510 genes which belong to certain pathways. We set
up the optimization problem of minimizing the logistic loss with the
overlapping-group-lasso penalty to classify the tumor types based on
the gene expression levels, and solve it with SPG.

Since the number of positive and negative samples are imbalanced,
we adopt the balanced error rate defined as the average error rate of
the two classes.5 We split the data into the training and testing sets
with the ratio of 2:1, and vary the λ = γ from large to small to obtain
the full regularization path.

In Figure 3.4, we compare the results from fitting the logistic re-
gression with the overlapping-group-lasso penalty with a baseline
model with only the `1-norm penalty. Figure 3.4(a) shows the bal-
anced error rates for the different numbers of selected genes along

5 See http://www.modelselect.inf.ethz.ch/evaluation.php for more details.

http://www.modelselect.inf.ethz.ch/evaluation.php

3.5 experiment 41

the regularization path. As we can see, the balanced error rate for the
model with the overlapping-group-lasso penalty is lower than the
one with the `1-norm, especially when the number of selected genes
is between 500 to 1000. The model with the overlapping-group-lasso
penalty achieves the best error rate of 29.23% when 696 genes are
selected, and these 696 genes belong to 125 different pathways. In
Figure 3.4(b), for the different numbers of selected genes, we show
the number of pathways to which the selected genes belong. From
Figure 3.4(b), we see that when the group structure information is
incorporated, fewer pathways are selected. This indicates that regres-
sion with the overlapping-group-lasso penalty selects the genes at the
pathway level as a functionally coherent groups, leading to an easy
interpretation for functional analysis. On the other hand, the genes
selected via the `1-norm penalty are scattered across many pathways
as genes are considered independently for selection. The total com-
putational time for computing the whole regularization path with 20

different values for the regularization parameters is 331 seconds for
the overlapping group lasso.

We perform functional enrichment analysis on the selected path-
ways, using the functional annotation tool [62], and verify that the se-
lected pathways are significant in their relevance to the breast-cancer
tumor types. For example, in a highly sparse model obtained with
the group-lasso penalty at the very left end of Figure 3.4(b), the se-
lected gene markers belong to only seven pathways, and many of
these pathways appear to be reasonable candidates for an involve-
ment in breast cancer. For instance, all proteins in one of the selected
pathways are involved in the activity of proteases whose function is to
degrade unnecessary or damaged proteins through a chemical reac-
tion that breaks peptide bonds. One of the most important malignant
properties of cancer involves the uncontrolled growth of a group of
cells, and protease inhibitors, which degrade misfolded proteins, have
been extensively studied in the treatment of cancer. Another inter-
esting pathway selected by overlapping group lasso is known for
its involvement in nicotinate and nicotinamide metabolism. This path-
way has been confirmed as a marker for breast cancer in previous
studies [100]. In particular, the gene ENPP1 (ectonucleotide pyrophos-
phatase/phosphodiesterase 1) in this pathway has been found to be
overly expressed in breast tumors [1]. Other selected pathways in-
clude the one related to ribosomes and another related to DNA poly-
merase, which are critical in the process of generating proteins from
DNA and relevant to the property of uncontrolled growth in cancer
cells.

We also examine the number of selected pathways that gives the
lowest error rate in Figure 3.4. At the error rate of 29.23%, 125 path-
ways (696 genes) are selected. It is interesting to notice that among
these 125 pathways, one is closely related to apoptosis, which is the
process of programmed cell death that occurs in multicellular or-
ganisms and is widely known to be involved in un-controlled tu-
mor growth in cancer. Another pathway involves the genes BRCA1,

42 smoothing proximal gradient method for structured sparse regression

BRCA2, and ATR, which have all been associated with cancer suscep-
tibility.

For comparison, we examine the genes selected with the `1-norm
penalty that does not consider the pathway information. In this case,
we do not find any meaningful functional enrichment signals that are
relevant to breast cancer. For example, among the 582 pathways that
involve 687 genes at 37.55% error rate, we find two large pathways
with functional enrichments, namely response to organic substance (83

genes with p-value 3.3E-13) and the process of oxidation reduction (73

genes with p-value 1.7E-11). However, both are quite large groups
and matched to relatively high-level biological processes that do not
provide much insight on cancer-specific pathways.

3.6 appendix : technical proofs

Proof of Theorem 3.1

Recall that d(α) = 1
2‖α‖

2 with the dom(α) = Q. According to Defini-

tion 3.1, the conjugate of d(·) at Cβ
µ is: d∗

(
Cβ
µ

)
= supα∈Q

(
αT Cβ

µ − d(α)
)

,
and hence

fµ(β) ≡ arg max
α∈Q

(
αTCβ− µd(α)

)
= µd∗

(
Cβ

µ

)
.

According to Theorem 26.3 in Rockafellar [119] “a closed proper con-
vex function is essentially strictly convex if and only if its conjugate
is essentially smooth”, since d(α) is a closely proper strictly convex
function, its conjugate is smooth. Therefore, fµ(β) is a smooth func-
tion.

Now we apply Danskin’s Theorem (Prop B.25 in Bertsekas [10]) to
derive ∇fµ(β). Let φ(α,β) = αTCβ− µd(α). Since d(·) is a strongly
convex function, arg maxα∈Qφ(α,β) has a unique optimal solution
and we denote it as α∗. According to Danskin’s Theorem:

∇fµ(β) = ∇βφ(α
∗,β) = CTα∗. (3.22)

As for the proof of Lipschitz constant of fµ(β), readers may refer
to Nesterov [109].

Proof of Proposition 3.1

α∗ = arg max
α∈Q

(
αTCβ−

µ

2
‖α‖22

)
(3.23)

= arg max
α∈Q

∑
g∈G

(
γwgα

T
gβg −

µ

2
‖αg‖22

)
= arg min

α∈Q

∑
g∈G
‖αg −

γwgβg

µ
‖22

3.6 appendix : technical proofs 43

Therefore, (3.23) can be decomposed into |G| independent problems:
each one is the Euclidean projection onto the `2-ball:

α∗g = arg min
αg:‖αg‖261

‖αg −
γwgβg

µ
‖22,

and α∗ =
[
(α∗g1)

T , . . . , (α∗g|G|
)T
]T

. According to the property of `2-
ball, it can be easily shown that:

α∗g = S2(
γwgβg

µ
),

where S2(u) =

 u
‖u‖2 ‖u‖2 > 1,

u ‖u‖2 6 1.
As for ‖C‖,

‖Cv‖2 = γ
√∑
g∈G

∑
j∈g

(wg)2v2j = λ

√√√√ J∑
j=1

(
∑

g∈G s.t. j∈g
(wg)2)v2j ,

the maximum value of ‖Cv‖2, given ‖v‖2 6 1, can be achieved by set-
ting v

ĵ
for j corresponding to the largest summation

∑
g∈G s.t. j∈g(wg)

2

to one, and setting other vj’s to zeros. Hence, we have

‖Cv‖2 = γ max
j∈{1,...,J}

√∑
g∈G s.t. j∈g

(wg)2.

Proof of Proposition 3.2

Similar to the proof technique of Proposition 1, we reformulate the
problem of solving α∗ as a Euclidean projection:

α∗ = arg max
α∈Q

(
αTCβ−

µ

2
‖α‖22

)
= arg min

α:‖α‖∞61
‖α−

Cβ

µ
‖22,

and the optimal solution α∗ can be obtained by projecting Cβ
µ onto

the `∞-ball.
According to the construction of matrix C, we have for any vector

v:

‖Cv‖22 = γ2
∑

e=(m,l)∈E

(τ(rml))
2(vm − sign(rml)vl)2 (3.24)

By the simple fact that (a ± b)2 6 2a2 + 2b2 and the inequality
holds as equality if and only if a = ±b, for each edge e = (m, l) ∈ E,
the value (vm− sign(rml)vl)2 is upper bounded by 2v2m+ 2v2l . Hence,
when ‖v‖2 = 1, the right-hand side of (3.24) can be further bounded
by:

‖Cv‖22 6 γ2
∑
e=(m,l)∈E 2(τ(rml))

2(v2m + v2l)

= γ2
∑
j∈V(
∑
e incident on k 2(τ(re))

2)v2j

= γ2
∑
j∈V 2djv

2
j

6 2γ2maxj∈V dj,

(3.25)

44 smoothing proximal gradient method for structured sparse regression

where
dj =

∑
e∈E s.t. e incident on j

(τ(re))
2.

Therefore, we have

‖C‖ ≡ max
‖v‖261

‖Cv‖2 6
√
2γ2max

j∈V
dj.

Note that this upper bound is tight because the first inequality in
(3.25) is tight.

Proof of Theorem 3.2

Based on the result from Beck and Teboulle [6], we have the following
lemma:

Lemma 3.1. For the function f̃(β) = h(β) + λ‖β‖1, where h(β) is an
arbitrary convex smooth function and its gradient ∇h(β) is Lipschitz con-
tinuous with the Lipschitz constant L. We apply Algorithm 3.1 to minimize
f̃(β) and let βt be the approximate solution at the t-th iteration. For any β,
we have the following bound:

f̃(βt) − f̃(β) 6
2L‖β−β0‖22

t2
. (3.26)

In order to use the bound in (3.26), we use the similar proof scheme
as in Lan [79] and decompose f(βt) − f(β∗) into three terms:

f(βt) − f(β∗) =
(
f(βt) − f̃(βt)

)
+
(
f̃(βt) − f̃(β∗)

)
+
(
f̃(β∗) − f(β∗)

)
.(3.27)

According to the definition of f̃, we know that for any β

f̃(β) 6 f(β) 6 f̃(β) + µD,

where D ≡ maxα∈Q d(α). Therefore, the first term in (3.27), f(βt) −
f̃(βt), is upper-bounded by µD, and the last term in (3.27) is less than
or equal to 0 (i.e., f̃(β∗)− f(β∗) 6 0). Combining (3.26) with these two
simple bounds, we have:

f(βt) − f(β∗) 6 µD+
2L‖β∗ −β0‖22

t2
(3.28)

6 µD+
2‖β∗ −β0‖22

t2

(
λmax(XTX) +

‖C‖2

µ

)
.

By setting µ = ε
2D and plugging this into the right-hand side of (3.28),

we obtain

f(βt) − f(β∗) 6
ε

2
+
2‖β∗‖22
t2

(
λmax

(
XTX

)
+
2D‖C‖2

ε

)
. (3.29)

If we require the right-hand side of (3.29) to be equal to ε and solve
it for t, we obtain the bound of t in (3.19).

4
S T R U C T U R E D S PA R S E C A N O N I C A L
C O R R E L AT I O N A N A LY S I S

In the previous chapter, we propose SPG to solve linear regression
with structured-sparsity-inducing penalty. In fact, the idea of smooth-
ing the structured-sparsity-inducing penalty has wide applications
in various structured statistical models. In this chapter, we propose
to solve structured sparse canonical correlation analysis (structured
sparse CCA) with the application to an important genome-wide as-
sociation study problem, eQTL mapping. We extend the sparse CCA
so that it could exploit either the pre-given or unknown group struc-
ture via the structured-sparsity-inducing penalty. Since each subprob-
lem of structured sparse CCA is strongly convex in nature, by combin-
ing Nesterov’s excessive gap method with the smoothed structured-
sparsity-inducing penalty, we can achieve a fast rate of convergence
of O(1/

√
ε) as compared to O(1/ε) of SPG. We demonstrate the effec-

tiveness of our models on both simulated and genetic datasets.

4.1 introduction and motivation

A fundamental problem in genome-wide association study (GWA
study) is to understand associations between genomic and pheno-
typic variations, which is referred as expression quantitative trait loci
(eQTLs) mapping. The eQTL mapping discovers genetic associations
between genotype data of single nucleotide polymorphisms (SNPs)
and phenotype data of gene expression levels to provide insights into
gene regulation, and potentially, controlling factors of a disease. More
formally, we have two datasets X (e.g. SNPs data) and Y (e.g. gene ex-
pression data) of dimensions n× d and n× p collected on the same
set of n observations. Both p and d could be much larger than n in
an eQTL study. Our goal is to investigate the relationship between X
and Y.

A popular approach for eQTL mapping is to formulate the problem
into a sparse multivariate regression [87, 73]. These methods treat X as
input, Y as output and try to identify a small subset of input variables
that simultaneously related to all the responses. Despite the promis-
ing aspects of these models, such multivariate-regression approaches
are not symmetric in that the regression coefficients are only put on
the X side. There is no clear reason why one wants to regress Y on
X but instead of X on Y for an association study. Also, in the study
of eQTL mapping, it is difficult to find a small subset of SNPs which
can explain the expression levels for all the involved genes.

In contrast to sparse multivariate regression approach, sparse canon-
ical correlation analysis (sparse CCA) [146, 145] provides a more
“symmetric” solution in which it finds two sparse canonical vectors
u and v to maximize the correlation between Xu and Yv. In eQTL

45

46 structured sparse canonical correlation analysis

mapping, sparse CCA automatically selects a subset of SNP geno-
types and a subset of gene expression levels and maximizes their
linear combination correlations. Although sparse CCA has been suc-
cessfully applied to some genomic datasets (e.g. CGH data [145]), it
has not well been studied for eQTL mapping. In a study of eQTL
mapping, it is a great interest for biologists to seek for a subset of
SNP genotypes and a subset of gene expression levels that are closely
related. To address this problem, we apply sparse CCA to eQTL map-
ping; and show that by incorporating the proper structural informa-
tion, sparse CCA can be a useful tool for GWA study.

It is well known that when dealing with high-dimensional data,
prior structural knowledge is crucial for the analysis, which facilities
model’s interpretability. For example, a biological pathway is a group
of genes that participate in a particular biological process to perform
certain functionality in a cell. To find the controlling factors related
to a disease, it is more meaningful to study the genes by considering
their pathways. However, the existing sparse CCA models use the `1-
regularization and do not incorporate the rich structural information
among variables (e.g. genetic pathways). In this chapter, we propose
a structured sparse CCA framework that can naturally incorporate the
group structural information. In particular, we consider two scenar-
ios: (1) when the group structure is pre-given, we propose to incor-
porate such prior knowledge using the overlapping-group-lasso penalty
[66]. Compare to the standard group lasso [150], we allow arbitrary
overlaps among groups which reflects the fact that a gene may belong
to multiple pathways. We refer to this model as the group-structured
sparse CCA; (2) if such structural information is not available as a
priori, we propose the group pursuit sparse CCA using a group pursuit
penalty based on a fusion penalty, which simultaneously conducts
variable selection and structure estimation.

We formulate the structured sparse CCA into a biconvex problem
and adopt an alternative strategy to conduct the optimization. How-
ever, unlike in [146] where the simple `1-norm penalty is used, our for-
mulation involves the non-separable overlapping-group-lasso penalty
and group pursuit penalty. Such non-separability poses great challenge
on optimization techniques.

Although many methods have been proposed [39, 66, 67, 101, 94,
29] for solving the related sparse learning problems, they either can-
not be applied to our problem or achieve a sub-optimal convergence
rate. In this work, we propose to apply the excessive gap method
[107] to solve the sparse CCA with a wide class of structured-sparsity-
inducing penalties. Since it is a first-order method, the per-iteration
time complexity is very low (e.g. linear in the sum of group sizes)
and the method can scale up to millions of variables. It is a primal-
dual approach which diminishes the primal-dual gap over iterations.
For each subproblem in the alternating optimization procedure, the
algorithm achieves the convergence rate of O(1/t2) (i.e. the duality
gap is less than O(1/t2)) in t iterations.

4.2 group structured sparse cca 47

4.2 group structured sparse cca

Here, we extend the sparse CCA introduced in Section 2.3 to more
general forms of P to incorporate the group structural information.
In eQTL mapping, the structural knowledge among genes on Y side
is often of more interest. For the ease of illustration, we assume that
P1(u) = ‖u‖1 and mainly focus on P2(v), which incorporates the
structural information. Since (2.13) is biconvex in u and v individually,
a natural optimization strategy is the alternating approach: fix u and
optimize over v; then fix v and optimize over u; and iterate over these
two steps. In our a setting, the optimization with respect to u with
P1(u) = ‖u‖1 is relatively simple and the closed-form solution has
been obtained in [146]. However, due to the complicated structure of
P2(v), the optimization with respect to v cannot be easily solved and
we will address this challenge in the following.

In particular, we study the problem in which the group structural
information among variables in Y is pre-given from the domain knowl-
edge; and our goal is to identify a small subset of relevant groups un-
der the sparse CCA framework. More formally, let us assume that the
set of groups of variables in Y: G = {g1, . . . ,g|G|} is defined as a sub-
set of the power set of {1, . . . ,p}, and is available as prior knowledge.
Note that the members (groups) of G are allowed to overlap. Inspired
by the group-lasso penalty [150] and the elastic-net penalty [162], we de-
fine our penalty P2(v) as follows:

P2(v) =
∑
g∈G

wg‖vg‖2 +
c

2
vTv, (4.1)

where vg ∈ R|g| is the subvector of v in group g, wg is the predefined
weight for group g; c is the tuning parameter and ‖ · ‖2 is the vector `2-
norm. The `1/`2 mixed-norm penalty in P2(v) plays the role of group
selection. Since some gene expression levels are highly correlated, the
ridge penalty c

2vTv addresses the problem of the collinearity, enforc-
ing strongly correlated variables to be in or out of the model together.
In addition, according to [162, 103], the ridge penalty is crucial to
ensure the stable variable selection when p � n, which is a typical
setting of eQTL mapping.

Rather than solving the constraint form of P2(v), we solve the reg-
ularized problem using the Lagrange form:

min
u,v

−uTXTYv +
τ

2
vTv + θ

∑
g∈G

wg‖vg‖2 (4.2)

s.t. ‖u‖2 6 1, ‖v‖2 6 1, ‖u‖1 6 c1,

where there exists a one to one correspondence between (θ, τ) and
(c, c2) (c2 is the upper bound of P2(v)). We refer to this model (4.2)
as the group-structured sparse CCA.

4.2.1 Optimization Algorithm

The main difficulty in solving (4.2) arises from optimizing with re-
spect to v. Let the domain of v be denoted as Q1 = {v | ‖v‖2 6 1},

48 structured sparse canonical correlation analysis

β = 1
τYTXu and γ = θ

τ , the optimization of (4.2) with respect to v can
be written as:

min
v∈Q1

f(v) ≡ l(v) + P(v), (4.3)

where l(v) = 1
2‖v − β‖22 is the Euclidean distance loss function and

P(v) is the overlapping-group-lasso penalty: P(v) = γ
∑
g∈Gwg‖vg‖2.

The optimization problem in (4.3) is so-called proximal mapping (or
proximal operator) associated with the function P(v).

As shown in Section 3.2.1, we can rewrite P(v) as:

P(v) = max
α∈Q2

αTCv = δ∗Q2(Cβ). (4.4)

Here α =
[
αTg1 , . . . ,α

T
g|G|

]T
is the concatenation of the vectors {αg}g∈G

and δ is the indicator function. We denote the domain of α as:

Q2 ≡ {α | ‖αg‖2 6 1, ∀g ∈ G}.

The matrix C ∈ R(
∑
g∈G |g|)×p is defined as:

C(i,g),j =

γwg if i = j,

0 otherwise.
(4.5)

where the rows of C are indexed by all pairs of (i,g) ∈ {(i,g)|i ∈
g, i ∈ {1, . . . ,p}}, the columns are indexed by j ∈ {1, . . . ,p}. Using
the Nesterov’s smoothing technique [109], we construct the smooth
approximation as shown in Section 3.2.2:

Pµ(v) = max
α∈Q2

(
αTCv − µd(α)

)
, (4.6)

with its gradient ∇Pµ(v) = CTαµ(v), where αµ(v) is the optimal so-
lution to: αµ(v) = argmaxα∈Q2α

TCv − µd(α). Here µ is the positive
smoothness parameter and d(α) is defined as 12‖α‖

2
2.

We substitute P(v) in the original objective function f(v) with Pµ(v)
and construct the smooth approximation of f(v):

fµ(v) ≡ l(v) + Pµ(v). (4.7)

The relationship of fµ(v) and f(v) can be characterized by the follow-
ing inequality:

f(v) − µD 6 fµ(v) 6 f(v), (4.8)

where D = maxα∈Q2 d(α) = |G|/2, where |G| is the number of groups.
The fundamental idea of the excessive gap method [107] is to di-

minish the duality gap between the objective f(v) and its Fenchel dual
over iterations. In this section, we derive the Fenchel dual of f(v) and
study its property. According to Theorem 3.3.5 in [15], the Fenchel
dual problem of f(v), φ(α), takes the following form:

φ(α) = −l∗(−CTα) − δQ2(α), (4.9)

4.2 group structured sparse cca 49

Figure 4.1: Illustration of the excessive gap method

where l∗ is the Fenchel Conjugate of l and

−l∗(−CTα) = − max
v∈Q1

−vTCTα− l(v) = min
v∈Q1

vTCTα+
1

2
‖v −β‖22.

As shown in [109], The gradient of φ(α) takes the following form:

∇φ(α) = Cv(α), (4.10)

where

v(α) = argminv∈Q1v
TCTα+

1

2
‖v −β‖22. (4.11)

Moreover, ∇φ(α) is Lipschitz continuous with the Lipschitz constant
L(φ) = 1

σ‖C‖
2, where σ = 1 is the strongly convex parameter for func-

tion l(v) and ‖C‖ is the matrix spectral norm of C: ‖C‖ ≡ max‖x‖2=1 ‖Cx‖2.
According to the next proposition, the closed-form equations for

v(α) and ‖C‖ can be written as follows:

Proposition 4.1. v(α) takes the following form:

v(α) = S2
(
β−CTα

)
, (4.12)

where S2 is the projection operator (shrinking to the `2- ball) and ‖C‖ takes
the following form:

‖C‖ = γ max
j∈{1,...,p}

√∑
g∈G s.t. j∈g

(wg)2. (4.13)

According to Proposition 4.1, the value of the Lipschitz constant
for ∇φ(α) is:

L(φ) = ‖C‖2 = γ2 max
j∈{1,...,p}

∑
g∈G s.t. j∈g

(wg)
2. (4.14)

According to the Fenchel duality theorem [15], we know that under
certain mild conditions which hold for our problem: minv∈Q1 f(v) =
maxα∈Q2 φ(α), and for any v ∈ Q1 and α ∈ Q2:

φ(α) 6 f(v). (4.15)

50 structured sparse canonical correlation analysis

The key idea of the excessive gap method [107] is to simultaneously
maintain two sequences {vt}, {αt} and a diminishing smoothness pa-
rameter sequence {µt} such that:

fµt(v
t) 6 φ(αt); µt+1 6 µt; and lim

t→∞µt = 0 (4.16)

The geometric illustration of this idea is presented in Figure 4.1. Com-
bining (4.8), (4.15) and (4.16), we have that:

fµt(v
t) 6 φ(αt) 6 f(vt) 6 fµt(v

t) + µtD (4.17)

From (4.17), when µt → 0, we have f(vt) ≈ φ(αt), which are hence
the optimal primal and dual solutions.

Moreover, in the excessive gap method, a gradient mapping opera-
tor ψ : Q2 → Q2 is defined as follows: for any z ∈ Q2,

ψ(z) = arg max
α∈Q2

{
〈∇φ(z),α− z〉− 1

2
L(φ)‖α− z‖22

}
. (4.18)

The gradient mapping operator ψ for our problem can also be com-
puted in closed-form as presented in the next proposition as shown
in the next Proposition.

Proposition 4.2. For any z ∈ Q2, ψ(z) in (4.18) is the concatenation of
subvectors [ψ(z)]g for all groups g ∈ G. For any group g,

[ψ(z)]g = S2

(
zg +

[∇φ(z)]g
L(φ)

)
,

where [∇φ(z)]g = γwg[v(z)]g is the g-th subvector of ∇φ(z) and the
projection operator S2 is defined in (3.9).

Propositions and 4.1 and 4.2 have shown that, for our problem, all
the essential ingredients of the excessive gap framework can be com-
puted in closed-form. We present the excessive gap method to solve
proximal mapping associated with overlapping-group-lasso penalty
in Algorithm 4.1.

The Lemma 7.4 and Theorem 7.5 in [107] guarantee that both the
starting points, v0 and α0, and the sequences, {vt} and {αt} in Algo-
rithm 4.1 satisfy the key condition fµt(v

t) 6 φ(αt) in (4.16). Using
(4.17), the convergence rate can be established via the duality gap:

f(vt) −φ(αt) 6 fµt(v
t) + µtD−φ(αt) 6 µtD. (4.19)

From (4.19), we can see that the duality gap which characterizes the
convergence rate is reduced at the same rate at which µt approaches
to 0. According to Step 4 in Algorithm 4.1, the closed-form equation
of µt can be written as:

µt = (1− τt−1)µt−1 =
t

t+ 2
µt−1 =

t

t+ 2
· t− 1
t+ 1

· · · 2
4
· 1
3
· µ0

=
2

(t+ 1)(t+ 2)
µ0 =

4L(φ)

(t+ 1)(t+ 2)
=

4‖C‖2

(t+ 1)(t+ 2)
. (4.20)

Combining (4.19) and (4.20), we immediately obtain the conver-
gence rate of Algorithm 4.1 [107].

4.2 group structured sparse cca 51

Algorithm 4.1 Excessive Gap Algorithm for Proximal Mapping Asso-
ciated with Overlapping-group-lasso Penalty
Input: β, γ, G and {wg}g∈G
Initialization: (1) Construct C; (2) Compute L(φ) as in (4.14) and set
µ0 = 2L(φ); (3) Set v0 = v(0) = S2(β); (4) Set α0 = ψ(0)
Iterate For t = 0, 1, 2, . . ., until convergence of vt:

1. Set τt = 2
t+3

2. Compute αµt(v
t).

3. Set zt = (1− τt)α
t + τtαµt(v

t)

4. Update µt+1 = (1− τt)µt

5. Compute v(zt) = S2(β−CTzt) as in (4.12).

6. Update vt+1 = (1− τt)vt + τtv(zt)

7. Update αt+1 = ψ(zt) as in Proposition 4.2.

Output: vt+1.

Theorem 4.1. (Rate of convergence for duality gap) The duality gap be-
tween the primal solution {vt} and dual solution {αt} generated from Algo-
rithm 4.1 satisfies:

f(vt) −φ(αt) 6 µtD =
4‖C‖2D

(t+ 1)(t+ 2)
, (4.21)

where D = maxα∈Q2 d(α). In other words, if we require that the duality

gap is less than ε, Algorithm 4.1 needs at most
⌈
2‖C‖

√
D
ε − 1

⌉
iterations.

According to [108], the convergence rate in Theorem 4.1 has already
achieved the optimal rate for solving any convex smooth problem
using only the first-order information.

As for time complexity, it is easy to verify that the per-iteration
complexity time of Algorithm 4.1 is linear in p+

∑
g∈G |g|, which is

very cheap and hence can easily scale up to high-dimensional data.

Remark 4.1. As compared to the smoothing proximal gradient method
(SPG) introduced in Chapter 3, the excessive gap method achieves a faster
convergence rate of O(1/t2) instead of O(1/t) of SPG. This is mainly be-
cause that the loss function in CCA (Euclidean distance loss) is strongly
convex while the loss in high-dimensional regression is not. The excessive
gap method replies on the strong convexity of the loss function to achieve the
faster O(1/t2) rate.

52 structured sparse canonical correlation analysis

4.3 group pursuit in sparse cca

When the group information is not given as prior information, it is
of desire to automatically group the relevant variables into clusters
under the sparse CCA framework. For this purpose, we propose the
group pursuit sparse CCA model in this section. Our group pursuit
approach is based on pairwise comparisons between vi and vj for
all 1 6 i < j 6 p: when vi = vj, the i-th and j-th variables are
grouped together. We identify all subgroups among p variables by
conducting pairwise comparisons and applying transitivity rule, i.e.
vi = vj and vj = vk implies that the i-th, j-th, and k-th variables
are clustered into the same group. The pairwise comparisons can be
naturally encoded in the graph-guided fusion penalty as introduced in
Section 2.1,

∑
i<j |vi − vj|, where the `1-norm will enforce vi − vj = 0

for closely related (i,j) pairs. The idea of using such a penalty arises
from the fused lasso in [134], where it uses the penalty

∑p−1
j=1 |vj+1− vj|

to capture the changing point of the parameters on an ordered chain
and the learned parameters are piece-wise constant.

In practice, instead of using the simple penalty
∑
i<j |vi− vj| which

treats each pair of variables equally, we could add the weight wij to
incorporate the prior knowledge that how likely that the i-th and j-th
variables are in the same group. Moreover, the `1-norm of v is also
incorporated in the penalty to enforce sparse solution as in the fused
lasso [134]. Then, our group pursuit penalty can be formulated as:

P2(v) =
∑
i<j

wij|vi − vj|+ c
′‖v‖1 +

c

2
vTv, (4.22)

where c ′ is the tuning parameter to balance the `1-norm penalty and
the fusion penalty. This penalty function will simultaneously select
the relevant variables and cluster them in to groups in an automatic
manner. A natural way for assigning wij is to set wij = |rij|

q, where
rij is the correlation between the i-th and j-th variable; q models the
strength of the prior: a larger q results in a stronger belief of the
correlation based group structure. For the purpose of simplicity, we
set wij = |rij| with q = 1 throughout this chapter; while in principle,
any prior knowledge of the possibility of being in the same group can
be incorporated into w.

In some cases, we have the prior knowledge that the i-th and j-th
variables do not belong to the same group; then the term |vi − vj|

should not appear in the group pursuit penalty (4.22). Therefore,
rather than having |vi − vj| for all (i, j) pairs which forms a com-
plete graph, we generalize the group pursuit penalty with the fusion
penalty defined on an arbitrary graph with the edge set E. In summary,
the group pursuit sparse CCA is defined as follows:

min
u,v

−uTXTYv +
τ

2
vTv + θ1‖v‖1 + θ2

∑
(i,j)∈E

wij|vi − vj| (4.23)

s.t. ‖u‖2 6 1, ‖v‖2 6 1, P1(u) 6 c1.

It is straightforward to specialize excessive gap method for solving
the group pursuit sparse CCA with a similar approach. . Note that

4.4 experiment 53

Table 4.1: Comparison between ExGap with Grad and IPM for SOCP

|G| = 20, p = 20, 100 |G| = 40, p = 40, 100

γ = 0.2 CPU Primal Obj Rel_Gap Iter γ = 0.4 CPU Primal Obj Rel_Gap Iter

ExGap 4.059E-3 4.4063E+3 4.900E-12 2 ExGap 1.960E-2 8.8682E+3 5.259E-11 3

Grad 3.135E+1 4.4063E+3 — 69 Grad 1.753E-1 8.8682E+3 — 19

SOCP 4.866E+1 4.4063E+3 8.723E-8 17 SOCP 9.642E+2 8.8682E+3 7.048E-9 20

γ = 2 CPU Primal Obj Rel_Gap Iter γ = 4 CPU Primal Obj Rel_Gap Iter

ExGap 2.591E-2 4.4123E+3 1.197E-9 9 ExGap 1.626E-1 8.8851E+3 8.384E-7 18

Grad 3.496E+1 4.4123E+3 — 773 Grad 9.462E+1 8.8851E+3 — 1036

SOCP 4.440E+1 4.4123E+3 8.267E-5 13 SOCP 2.952E+3 8.8851E+3 3.844E-8 18

|G| = 100, p = 100, 100 |G| = 500, p = 500, 100

γ = 1 CPU Primal Obj Rel_Gap Iter γ = 5 CPU Primal Obj Rel_Gap Iter

ExGap 2.172E-1 2.2296E+4 6.646E-8 9 ExGap 4.381E+1 1.1211E+5 4.816E-8 51

Grad 5.219E+1 2.2296E+4 — 199 Grad 1.021E+2 1.1211E+5 — 723

γ = 10 CPU Primal Obj Rel_Gap Iter γ = 50 CPU Primal Obj Rel_Gap Iter

ExGap 1.288E+0 2.2362E+4 7.891E-7 48 ExGap 1.855E+2 1.1250E+5 9.757E-7 2144

Grad 9.463E+1 2.2363E+4 — 1293 Grad 2.831E+3 1.1286E+5 — 20000

|G| = 1000, p = 1, 000, 100 |G| = 5000, p = 5, 000, 100

γ = 10 CPU Primal Obj Rel_Gap Iter γ = 50 CPU Primal Obj Rel_Gap Iter

ExGap 2.232E+2 2.2456E+5 9.376E-7 102 ExGap 1.579E+3 1.1245E+6 9.615E-7 1752

Grad 2.432E+2 2.2456E+5 — 867 Grad 2.977E+5 1.1261E+6 — 20000

γ = 100 CPU Primal Obj Rel_Gap Iter γ = 500 CPU Primal Obj Rel_Gap Iter

ExGap 8.108E+3 2.2500E+5 8.677E-7 3872 ExGap 7.432E+3 1.1250E+6 9.851E-7 9080

Grad 5.718E+3 2.2668E+5 — 20000 Grad 2.981E+5 1.1498E+6 — 20000

other group pursuit penalties [125, 158] have also been recently pro-
posed in the regression setting. However, they either cannot obtain
sparse solutions or is computationally very difficult under the sparse
CCA framework.

4.4 experiment

In this section, we present the numerical results on both simulated
and real datasets to illustrate the performance of the proposed algo-
rithm.

54 structured sparse canonical correlation analysis

4.4.1 Computational Efficiency of Excessive Gap Method

In this section, we evaluate the scalability and efficiency of the exces-
sive gap method (ExGap) for solving the proximal mapping associ-
ated with the overlapping-group-lasso penalty:

arg min
v:‖v‖261

f(v) =
1

2
‖v −β‖22 + γ

∑
g∈G

wg‖vg‖2,

where β is given and all wg are assumed to be 1 for simplicity. We
compare ExGap with two widely used optimization methods: (1) for-
mulating the problem into a second-order cone programming (SOCP)
and solving by interior-point method (IPM) using the state-of-the-
art MATLAB package SPDT3 [140] and (2) projected subgradient-
descent method (Grad) The stepsize of the Grad is set to η√

t
as sug-

gested in [39], where the constant η is carefully tuned to be 0.1√
p .

All of the experiments are performed on a PC with Intel Core 2

Quad Q6600 2.4GHz CPU and 4GB RAM. The software is written in
MATLAB. We terminate the optimization procedure of ExGap and
SOCP when the relative duality gap (Rel_Gap) is less than 10−6:
Rel_Gap =

|f(vt)−φ(αt)|
1+|f(vt)|+|φ(αt)| 6 10−6. For Grad, since there is no dual

solutions, we use objective of ExGap as the “optimal” objective for
Grad and stop Grad when its objective is less than 1.00001 times the
objective of ExGap. We set the maximum iteration for all methods to
be 20,000.

More specifically, we generate the data using the similar approach
as in [65], with an overlapping group structure imposed on β as de-
scribed below. Assuming that inputs are ordered and each group
is of size 1000, we define a sequence of groups of 1000 adjacent in-
puts with an overlap of 100 variables between two successive groups,
i.e. G = {{1, . . . , 1000}, {901, . . . , 1900}, . . . , {p − 999, . . . ,p}} with p =

1000|G|+ 100. We set the support of β to be the first half of the vari-
ables and set the values of β in the support to be 1 and otherwise
0.

We vary the number of the groups |G| and report the CPU time
in seconds (CPU), primal objective value (Primal Obj), relative dual-
ity gap (Rel_Gap) and the number of iterations (Iter) in Table 4.1. For
each setting of |G|, we use two levels of regularization: (1) γ =

|G|
100 and

(2) γ =
|G|
10 . Note that when |G| > 50 (p > 50, 100), we are unable to

collect results for SOCP, because they lead to out-of-memory errors
due to the large storage requirement for solving the Newton linear
system. In addition, for large |G|, Grad cannot converge in 20,000 it-
erations. From Table 4.1, we can see that ExGap achieves the same
objective value as SOCP with small relative duality gap. For all differ-
ent scales of the problem, ExGap is much more efficient than SOCP
and Grad. It can easily scale up to high-dimensional data with mil-
lions of variables. Another interesting observation is that: for smaller
γ which leads to smaller ‖C‖ and L(φ), the convergence of ExGap is
much faster. This observation is consistent with convergence result in

4.4 experiment 55

0 50 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

u
0 50 100

−5

−4

−3

−2

−1

0

1

2

3

4

5

v

(a)

0 50 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

u
0 50 100

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

v

(b)

0 50 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

u
0 50 100

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

v

(c)

Figure 4.2: (a) True u and v; (b) Estimated u and v using the `1-regularized
sparse CCA; (c) Estimated u and v using the group-structured
sparse CCA.

Theorem 4.1. It suggests that ExGap is more efficient when the non-
smooth part plays less important role in the optimization problem.

4.4.2 Simulations

In this and next subsections, we use simulated data and a real eQTL
dataset to investigate the performance of the overlapping group-structured
and network-structured sparse CCA. All the regularization param-
eters are chosen from {0.01, 0.02, . . . , 0.09, 0.1, 0.2, . . . , 0.9, 1, 2, 10} and
set using the permutation-based method in [145]. Instead of tuning all
the parameters on a multi-dimensional grid which is computationally
heavy, we first train the `1-regularized sparse CCA (i.e. P1(u) = ‖u‖1,
P2(v) = ‖v‖1) and the tuned regularization parameter c1 in (2.13)
is used for all structured models. For the overlapping-group-lasso
penalty in (4.2), all the group weights {wg} are set to 1. In addition,
we observe that the learned sparsity pattern is quite insensitive to the
parameter τ (the regularization parameter for the quadratic penalty);
and therefore we set it to 1 for simplicity. For all algorithms, we use
10 random initializations of u and select the results that lead to the
largest correlation.

56 structured sparse canonical correlation analysis

0 50 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

u
0 50 100

−5

−4

−3

−2

−1

0

1

2

3

4

5

v

(a)

0 50 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

u
0 50 100

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

v

(b)

0 50 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

u
0 50 100

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

v

(c)

Figure 4.3: (a) True u and v; (b) Estimated u and v using the `1-regularized
sparse CCA; (c) Estimated u and v using the group pursuit
sparse CCA.

4.4.2.1 Group-structured Sparse CCA

In this section, we conduct the simulation where the overlapping
group structure in v is given as a priori. We generate the data X
and Y with n = 50, d = 100 and p = 82 as follows. Let u be
a vector of length d with 20 0s, 20 -1s, and 60 0s. We construct
v with p = 82 variables using the same approach as in [65]: as-
suming that v is covered by 10 groups; each group has 10 variables
with 2 variables overlapped between every two successive groups, i.e.
G = {{1, . . . , 10}, {9, . . . , 18}, . . . , {73, . . . , 82}}. For the indices of the 2nd,
3rd, 8th, 9th and 10th groups, we set the corresponding entries of
v to be zeros and the other entries are sampled from i.i.d. N(0, 1).
In addition, we randomly generate a latent vector z of length n and
normalize it to unit length.

We generate the data matrix X with each Xij ∼ N(ziuj, 1) and Y
with each Yij ∼ N(zivj, 1). The true and estimated vectors for u and
v are presented in Figure 4.2. For the group-structured sparse CCA,
we add the regularization

∑
g∈G ‖vg‖2 on v where G is taken from

the prior knowledge. It can be seen that the group-structured sparse
CCA recovers the true v much better while the simple `1-regularized
sparse CCA leads to an over-sparsified v vector.

4.4 experiment 57

4.4.2.2 Group Pursuit Sparse CCA

In this simulation we assume that the group structure over v is un-
known and the goal is to uncover the group structure using the
network-structured sparse CCA. We generate the data X and Y with
n = 50 and p = d = 100 as follows. Let u be a vector of length d
with 20 0s, 20 -1s, and 60 0s as in the previous simulation study; and
v be a vector of length p with 10 3s, 10 -1.5s, 10 1s, 10 2s and 60 0s.
In addition, we randomly generate a latent vector z of length n and
normalize it to unit length.

We generate X with each sample xi ∼ N(ziu, 0.1Id×d); and Y with
each sample yi ∼ N(ziv, 0.1Σy) where (Σy)jk = exp−|vj−vk|. We con-
duct the group pursuit via the network-structured sparse CCA in
(4.23), where we add the fusion penalty for each pair of variables
in v, i.e., E is the edge set of the complete graph. The estimated
vector u and v are presented in Figure 4.3 (c). It can be easily seen
that the network-structured sparse CCA correctly captures the group
structure in the v vector. This experiment demonstrates that network-
structured sparse CCA could be a useful tool for conducting group
pursuit in the CCA framework.

4.4.3 Real eQTL Data

4.4.3.1 Group-structured Sparse CCA: Pathway Selection

In this section, we report experiment results on a yeast eQTL data[18,
45]. In particular, we have two data matrices, X and Y. X contains
d = 1260 SNPs from the chromosomes 1–16 for n = 124 yeast strains.
Y is the gene expression data of p = 1, 155 genes for the same 124

yeast strains. All these p = 1, 155 genes are from the KEGG database
[69]. According to KEGG, these genes belong to 92 pathways. We
treat each pathway as a group . The statistics of the 92 pathways are
summarized as follows: the average number of genes in each group
is 25.78; and the largest group has 475 genes. One thing to note is that
there are a lot of overlapping genes among the 92 pathways and the
average appearance frequency of each gene in the pathways is 2.05.
To achieve more refined resolution of gene selection, besides the 92

pathway groups, we also add in p = 1, 155 groups where each group
only has one singleton gene. Therefore, instead of just selecting genes
at the pathway level, we could also select genes within each pathway.

Using the group-structured sparse CCA, we selected altogether 121

SNPs (i.e. the number of nonzero elements in estimated u) and 47

genes (i.e. the number of nonzero elements in estimated v). These 47

genes spread over 32 pathways. Such a high coverage of pathways
is mainly due to the fact that several selected genes are important
in different biological processes and hence each of them belongs to
multiple pathways. There are 14 pathways that contain at least two
selected genes as listed in Table 4.2. Among these 14 pathways, 5 of
them are highly significant with the p-value less than 0.001. Using
the tool ClueGo [12], the overview chart of KEGG enrichment on the

58 structured sparse canonical correlation analysis

Table 4.2: List of pathways with at least 2 selected genes in the pathway:
the first two columns are the pathway ID and annotation from
KEGG, the third column is the number of selected genes in this
pathway; the fourth column is the ratio of the number of selected
genes in the pathway (third column) over the number of genes
in the dataset in the pathway; the last column gives the p-values
which is calculated as the hypergeometric probability to get so
many genes for a KEGG pathway annotation.

ID Annotation No. Genes Ratio p-value

00072 Synthesis and degradation of ketone bod-
ies

2 100.0 7.65E-4**

00280 Valine, leucine and isoleucine degradation 2 18.18 3.58E-2

00620 Pyruvate metabolism 2 6.06 2.35E-1

00640 Propanoate metabolism 2 18.18 3.58E-2

00650 Butanoate metabolism 2 10.00 1.05E-2

00900 Terpenoid backbone biosynthesis 7 53.85 1.26E-8**

01100 Metabolic pathways 29 4.58 1.00E-3*

01110 Biosynthesis of secondary metabolites 15 6.64 7.24E-4**

00100 Steroid biosynthesis 10 66.67 2.84E-13**

00190 Oxidative phosphorylation 4 5.26 1.59E-1

00514 O-Mannosyl glycan biosynthesis 3 23.07 4.81E-3

00600 Sphingolipid metabolism 2 15.38 4.91E-2

03050 Proteasome 2 5.71 2.56E-1

04144 Endocytosis 2 5.56 2.66E-1

(a) (b)

Figure 4.4: Overview chart of KEGG functional enrichment using (a) the
group-structured sparse CCA; (b) `1-regularized sparse CCA

selected genes is presented in Figure 4.4 (a). We can see from Figure
4.4 (a) that the Terpenoid backbone biosynthesis is the most important
functional group, which is a large class of natural products consisting
of isoprene (C5) units. In fact, the first 8 pathways in Table 4.2 are
all closely related to Terpenoid backbone biosynthesis. As a comparison,
the `1-regularized sparse CCA selects 173 SNPs and 71 genes and

4.4 experiment 59

Table 4.3: GO enrichment analysis for the selected genes using the group-
structured sparse CCA: the first two columns are the GO ID (cate-
gory) and annotation, the third column is the number of selected
genes having the GO annotation, the fourth column is the GO
cluster size and the last column gives the p-value. The rows are
ranked according to the increasing order of p-values.

GO ID GO Attribute N X p-value

0006696 ergosterol biosynthetic process 17 25 2.71E-32

0008204 ergosterol metabolic process 17 27 2.09E-31

0006694 steroid biosynthetic process 17 34 5.61E-29

0016126 sterol biosynthetic process 17 34 5.61E-29

0016125 sterol metabolic process 17 45 2.52E-26

0008202 steroid metabolic process 17 49 1.46E-25

0008610 lipid biosynthetic process 20 149 4.71E-21

0006066 cellular alcohol metabolic process 21 210 2.09E-19

0044255 cellular lipid metabolic process 21 259 1.71E-17

0006629 lipid metabolic process 21 279 8.00E-17

0003824 catalytic activity 42 2195 9.20E-15

0006720 isoprenoid metabolic process 7 13 1.35E-12

0008299 isoprenoid biosynthetic process 7 13 1.35E-12

0005783 endoplasmic reticulum 20 410 2.28E-12

0043094 cellular metabolic compound sal-
vage

12 159 1.08E-09

0005789 endoplasmic reticulum membrane 15 293 1.42E-09

0044432 endoplasmic reticulum part 15 317 4.23E-09

0006695 cholesterol biosynthetic process 4 5 1.36E-08

0008203 cholesterol metabolic process 4 5 1.36E-08

0031090 organelle membrane 23 954 4.61E-08

0044444 cytoplasmic part 39 2810 6.43E-08

0044237 cellular metabolic process 46 4187 1.08E-07

0044238 primary metabolic process 43 3581 1.86E-07

0055114 oxidation reduction 13 309 2.32E-07

0016491 oxidoreductase activity 13 318 3.23E-07

0008152 metabolic process 46 4321 4.35E-07

these 71 genes belong to 50 pathways. The KEGG enrichment for `1-
regularized sparse CCA is presented Figure 4.4(b).

In addition to the above pathway analysis, we also perform the
enrichment analysis on the selected genes according to the standard
Gene Ontology (GO). The enrichment is carried out using the stan-
dard annotation tool from [9] and the result is shown in Table 4.3
with the cutoff point set to 1E-3. We see that most of clusters are
significantly enriched and many of them are known to be explicitly
relevant. For example, isoprenoid metabolic process and isoprenoid biosyn-
thetic process are very closely related to terpenoid backbone biosynthesis.

The group-structured sparsity-inducing penalty on genes will also
affect the selection of SNPs. As a comparison, the `1-regularized sparse
CCA selects 173 SNPs. while the group-structured sparse CCA selects
only 121 SNPs. The number of selected SNPs in each chromosome is

60 structured sparse canonical correlation analysis

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

Index of Chromosome

N
o.

 o
f S

N
P

s
0 2 4 6 8 10 12 14 16

0

10

20

30

40

50

60

Index of Chromosome

N
o.

 o
f S

N
P

s

(a) (b)

Figure 4.5: The number of selected SNPs in each chromosome using (a)
the `1-regularized sparse CCA; (b) the group-structured sparse
CCA.

Figure 4.6: Overview chart of
KEGG functional
enrichment using the
tree-structured sparse
CCA;

Figure 4.7: Selected genes and
their relationship
estimated by the
network-structured
sparse CCA

presented in Figure 4.5. As we can see, most of the selected SNPs us-
ing the group-structured sparse CCA belong to Chromosome 12 and
13.

4.4.3.2 Tree-structured Sparse CCA

In this experiment, rather than utilizing the group information ex-
tracted from the KEGG pathways [69], we learn a hierarchical tree
structure on the same yeast dataset and then use the learned tree
structure to define the groups. In more details, we run the hierarchical
agglomerative clustering on the p× p correlation matrix of Y where
each leaf node of the tree corresponds to a single gene. We discard
the tree nodes for weak correlations near the root of the tree. In partic-
ularly, we calculate the distance of each tree node to the root; normal-
ize them by the maximum distance and discard those nodes with the
distance less than 0.3. Each node of the tree defines a group which
contains the genes represented by its leaf children nodes. Finally, we
obtain 973 groups corresponding to internal nodes and 1,155 single-
ton group corresponding to leaf nodes. After obtaining the group

4.4 experiment 61

structure induced from the clustering tree, we then apply the group-
structured sparse CCA as in the last section. We name the obtained
model as tree-structured sparse CCA.

The tree-structured sparse CCA selects altogether 123 SNPs and 66

genes. An overview chart of functional enrichment using the KEGG
pathways is presented in Figure 4.6. As we can see, most of the func-
tions are identical to those learned by the group-structured sparse
CCA with the group information obtained from KEGG, e.g. Terpenoid
backbone biosynthesis, Steroid biosynthesis, O-Mannosyl glycan biosynthe-
sis, Sphingolipid, etc. We also perform the GO enrichment analysis on
the selected genes and obtained 30 GO clusters. All of these clusters
are significantly enriched and 25 of them are the same as the GO clus-
ters obtained by the group-structured sparse CCA with the groups
from KEGG. This experiment suggests that, even without any prior
knowledge of the pathway information as group structure, our corre-
lation based tree-structured sparse CCA can also select the relevant
genes and provide the similar enrichment results.

4.4.3.3 Group Pursuit Sparse CCA

Now, we do not assume any prior information of the group structure
among the genes. Our goal is to simultaneously select the relevant
genes and group them into clusters. Using the group pursuit sparse
CCA in (4.23) and thresholding the absolute value of the pair-wise
correlation at 0.8 to construct the edge set E, we selected 61 genes in
total. We present the obtained clusters among these 61 genes in Figure
4.4 (c) where two selected genes are connected if the absolute value
of difference between the estimated parameters (|vi − vj|) is less than
1E-3 (singleton nodes are not plotted due to space limitations) . We
observe that there are two obvious clusters. With the learned cluster-
ing structure, we can study the functional enrichment of one cluster
by another which leads to more elaborate analysis as compared to the
analysis of all the genes.

5
S T O C H A S T I C O P T I M I Z AT I O N : O P T I M A L
R E G U L A R I Z E D D U A L AV E R A G I N G M E T H O D S

In the previous chapters, we focus on deterministic optimization prob-
lems where we assume that the data points are pre-given and each
gradient needs to be computed on all the data points. In this chap-
ter, we study the stochastic optimization which directly minimizes
the expectation of the loss function. In particular, we consider a wide
spectrum of regularized stochastic optimization problems for large-scale
online optimization where both the loss function and regularizer can
be non-smooth. We develop a new algorithm based on the regular-
ized dual averaging (RDA) method, that can simultaneously achieve
the optimal convergence rates for both convex and strongly convex
loss. In particular, for strongly convex loss, it achieves the optimal
rate of O(1N + 1

N2
) for N iterations, which improves the rate O(logN

N)

for previous regularized dual averaging algorithms. In addition, our
method constructs the final solution directly from the proximal map-
ping instead of averaging of all previous iterates. For widely used
sparsity-inducing regularizers (e.g., `1-norm), it has the advantage of
encouraging sparser solutions. We further develop a multi-stage ex-
tension using the proposed algorithm as a subroutine, which achieves
the uniformly-optimal rate O(1N + exp{−N}) for strongly convex loss.

5.1 introduction and motivation

Many risk minimization problems in machine learning can be for-
mulated into a regularized stochastic optimization problem of the
following form 1:

minx∈X{φ(x) := f(x) + h(x)}. (5.1)

Here, the set of feasible solutions X is a convex set in Rn, which is
endowed with a norm ‖ · ‖ and the dual norm ‖ · ‖∗. The regularizer
h(x) is assumed to be convex, but could be non-differentiable. Pop-
ular examples of h(x) include `1-norm and related sparsity-inducing
regularizers. The loss function f(x) takes the form:

f(x) := Eξ(F(x, ξ)) =
∫
F(x, ξ)dP(ξ),

where ξ is a random vector with the distribution P. In typical regres-
sion or classification tasks, ξ is the input and response (or class label)
pair. We assume that for every random vector ξ, F(x, ξ) is a convex

1 In this chapter, following standard notations in the field of stochastic optimization,
we use x to denote decision variables, i.e., the regression coefficient vector (β in
previous chapters) in the regression setting.

63

64 stochastic optimization : optimal regularized dual averaging methods

and continuous function in x ∈ X. Therefore, f(x) is also convex. Fur-
thermore, we assume that there exist constants L > 0, M > 0 and
µ̃ > 0 such that

µ̃

2
‖x− y‖2 6 f(y) − f(x) − 〈y− x, f ′(x)〉 (5.2)

6
L

2
‖x− y‖2 +M‖x− y‖, ∀x,y ∈ X,

where f ′(x) ∈ ∂f(x), the subdifferential of f. We note that this assump-
tion allows us to adopt a wide class of loss functions. For example, if
f(x) is smooth and its gradient f ′(x) = ∇f(x) is Lipschitz continuous,
we have L > 0 and M = 0 (e.g., squared or logistic loss). If f(x) is
non-smooth but Lipschitz continuous, we have L = 0 and M > 0 (e.g.,
hinge loss). If µ̃ > 0, f(x) is strongly convex and µ̃ is the so-called
strong convexity parameter.

In general, the optimization problem in (5.1) is challenging since
the integration in f(x) is computationally intractable for high-dimensional
P. In many learning problems, we do not even know the underlying
distribution P but can only generate i.i.d. samples ξ from P. A tra-
ditional approach is to consider empirical loss minimization problem
where the expectation in f(x) is replaced by its empirical average on a
set of training samples {ξ1, . . . , ξm}: femp(x) :=

1
m

∑m
i=1 F(x, ξi). How-

ever, for modern data-intensive applications, minimization of empir-
ical loss with an off-line optimization solver could suffer from very
poor scalability.

In the past few years, many stochastic (sub)gradient methods [39,
41, 61, 82, 106, 52, 68, 80, 56, 115] have been developed to directly
solve the stochastic optimization problem in (5.1), which enjoy low
per-iteration complexity and the capability of scaling up to very large
data sets. In particular, at the t-th iteration with the current iterate
xt, these methods randomly draw a sample ξt from P; then compute
the so-called “stochastic subgradient” G(xt, ξt) ∈ ∂xF(xt, ξt) where
∂xF(xt, ξt) denotes the subdifferential of F(x, ξt) with respect to x at
xt; and update xt using G(xt, ξt). These algorithms fall into the class
of stochastic approximation methods. More rigourously, a stochastic gra-
dient of f(x) at x (denoted as G(x, ξ)) is defined as a vector-valued
vector such that EξG(x, ξ) = f ′(x) ∈ ∂f(x). Recently, Xiao [148] pro-
posed the regularized dual averaging (RDA) method and its accelerated
version (AC-RDA) based on Nesterov’s primal-dual method [111]. In-
stead of only utilizing a single stochastic subgradient G(xt, ξt) of the
current iteration, it updates the parameter vector using the average
of all past stochastic subgradients {G(xi, ξi)}ti=1 and hence leads to
improved empirical performances.

In this chapter, we propose a novel regularized dual averaging
method, called optimal RDA or ORDA, which achieves the optimal
expected convergence rate of E[φ(x̂) −φ(x∗)], where x̂ is the solution
from ORDA and x∗ is the optimal solution of (5.1). As compared to
previous dual averaging methods, it has three main advantages:

1. For strongly convex f(x), ORDA improves the convergence rate

of stochastic dual averaging methods O(σ
2 logN
µ̃N) ≈ O(

logN
µ̃N)

5.1 introduction and motivation 65

[111, 148] to an optimal rateO
(
σ2+M2

µ̃N + L
N2

)
≈ O

(
1
µ̃N

)
, where

σ2 is the variance of the stochastic subgradient,N is the number
of iterations, and the parameters µ̃, M and L of f(x) are defined
in (5.2).

2. ORDA is a self-adaptive and optimal algorithm for solving both
convex and strongly convex f(x) with the strong convexity pa-
rameter µ̃ as an input. When µ̃ = 0, ORDA reduces to a variant
of AC-RDA in [148] with the optimal rate for solving convex
f(x). Furthermore, our analysis allows f(x) to be non-smooth
while AC-RDA requires the smoothness of f(x). For strongly
convex f(x) with µ̃ > 0, our algorithm achieves the optimal
rate of

(
1
µ̃N

)
while AC-RDA does not utilize the advantage of

strong convexity.

3. Existing RDA methods [148] and many other stochastic gradi-
ent methods (e.g., [106, 52]) can only show the convergence rate
for the averaged iterates: x̄N =

∑N
t=1 ρtxt/

∑N
t=1 ρt, where the

{ρt} are nonnegative weights. However, in general, the average
iterates x̄N cannot keep the structure that the regularizer tends
to enforce (e.g., sparsity, low-rank, etc). For example, when h(x)
is a sparsity-inducing regularizer (`1-norm), although xt com-
puted from proximal mapping will be sparse as t goes large, the
averaged solution could be non-sparse. In contrast, our method
directly generates the final solution from the proximal mapping,
which leads to sparser solutions.

In addition to the rate of convergence, we also provide variance
bounds and high probability bounds on the error of objective values. The
variance bound is important for characterizing the the uncertainty of
the error. By showing that Var[φ(x̂) −φ(x∗)] converges to zero at the
rate of O(1/N) for ORDA, we conclude that each single run of our
algorithm is reliable when N is large enough. For high probability
bounds, utilizing a technical lemma from [42], we could show the
same bound as in RDA [148] but under a weaker assumption.

Furthermore, using ORDA as a subroutine, we develop the multi-
stage ORDA which obtains the convergence rate ofO

(
σ2+M2

µ̃N + exp{−
√
µ̃/LN}

)
for strongly convex f(x). Recall that ORDA has the rateO

(
σ2+M2

µ̃N + L
N2

)
for strongly convex f(x). The rate of muli-stage ORDA improves the
second term in the rate of ORDA from O

(
L
N2

)
to O

(
exp{−

√
µ̃/LN}

)
and achieves the so-called “uniformly-optimal " rate [105]. Although
the improvement is on the non-dominating term, multi-stage ORDA
is an optimal algorithm for both stochastic and deterministic opti-
mization. In particular, for deterministic strongly convex and smooth
f(x) (M = 0), one can use the same algorithm but only replaces the
stochastic subgradient G(x, ξ) by the deterministic gradient ∇f(x).
Then, the variance of the stochastic subgradient σ = 0. Now the term
σ2+M2

µ̃N in the rate equals to 0 and multi-stage ORDA becomes an opti-

mal deterministic solver with the exponential rateO
(

exp{−
√
µ̃/LN}

)
.

66 stochastic optimization : optimal regularized dual averaging methods

This is the reason why such a rate is “uniformly-optimal”, i.e., opti-
mal with respect to both stochastic and deterministic optimization.

5.2 preliminary and notations

In the framework of first-order stochastic optimization, the only avail-
able information of f(x) is the stochastic subgradient. Formally speak-
ing, stochastic subgradient of f(x) at x,G(x, ξ), is a vector-valued func-
tion such that EξG(x, ξ) = f ′(x) ∈ ∂f(x). Following the existing liter-
ature in stochastic optimization [79, 52, 80] , a standard assumption
on G(x, ξ) is made throughout the chapter : there exists a constant σ
such that for all x ∈ X,

Eξ(‖G(x, ξ) − f ′(x)‖2∗) 6 σ2. (5.3)

We note that this assumption is weaker than the standard assump-
tion in online learning setting. In particular, in most online learning
literature (e.g., [161, 148, 124]), it either assumes that: there exists a
constant B such that for all x ∈ X and ξ:

‖G(x, ξ)‖∗ 6 B. (5.4)

or for all x ∈ X:

Eξ(‖G(x, ξ)‖2∗) 6 B2. (5.5)

It can be seen that the assumption in (5.4) implies the one in (5.5).
By some simple derivation as follows, we could see that (5.5) implies
our assumption in (5.3). In particular, by the fact that

‖G(x, ξ) − f ′(x)‖2∗ 6
(
‖G(x, ξ)‖∗ + ‖f ′(x)‖∗

)2
6 2‖G(x, ξ)‖2∗ + 2‖f ′(x)‖2∗

we have:

Eξ(‖G(x, ξ) − f ′(x)‖2∗) 6 2Eξ
(
‖G(x, ξ)‖2∗

)
+ 2‖Eξ(G(x, ξ))‖2∗

6 2B2 + 2Eξ(‖G(x, ξ)‖2∗) 6 4B2,

where we use the convexity of ‖ · ‖2∗ and Jensen’s inequality.
A key updating step in dual averaging methods, the proximal map-

ping, utilizes the Bregman divergence. Letω(x) : X→ R be a strongly
convex and differentiable function, the Bregman divergence associ-
ated with ω(x) is defined as:

V(x,y) := ω(x) −ω(y) − 〈∇ω(y), x− y〉. (5.6)

One typical and simple example isω(x) = 1
2‖x‖

2
2 together with V(x,y) =

1
2‖x− y‖

2
2. One may refer to [148] for more examples. We can always

scale ω(x) so that V(x,y) > 1
2‖x− y‖

2 for all x,y ∈ X. Following the
assumption in [52]: we assume that V(x,y) grows quadratically with
the parameter τ > 1, i.e., V(x,y) 6 τ

2‖x − y‖
2 with τ > 1 for all

x,y ∈ X. In fact, we could simply choose ω(x) with a τ-Lipschitz
continuous gradient so that the quadratic growth assumption will be
automatically satisfied.

Furthermore, we define µ = µ̃
τ , which scales the strong convexity

parameter µ̃ by 1
τ , where τ is the quadratic growth constant. There-

fore, for any x,y ∈ X, µV(x,y) 6 µ̃
2 ‖x− y‖

2.

5.3 optimal regularized dual averaging method 67

Algorithm 5.1 Optimal Regularized Dual Averaging Method:
ORDA(x0,N, Γ , c)
Input Parameters: Starting point x0 ∈ X, the number of iterations N,
constants Γ > L and c > 0.
Parameters for f(x): Constants L, M and µ̃ for f(x) in (5.2) and set
µ = µ̃/τ.
Initialization: Set θt = 2

t+2 ; νt = 2
t+1 ; γt = c(t+ 1)3/2 + τΓ ; z0 = x0.

Iterate for t = 0, 1, 2, . . . ,N:

1. yt =
(1−θt)(µ+θ

2
tγt)

θ2tγt+(1−θ2t)µ
xt +

(1−θt)θtµ+θ
3
tγt

θ2tγt+(1−θ2t)µ
zt

2. Sample ξt from the distribution P(ξ) and compute the stochas-
tic subgradient G(yt, ξt).

3. gt = θtνt
(∑t

i=0
G(yi,ξi)
νi

)
4. zt+1 = arg minx∈X

{
〈x,gt〉+ h(x) + θtνt

(∑t
i=0

µV(x,yi)
νi

)
+ θtνtγt+1V(x, x0)

}
5. xt+1 = arg minx∈X

{
〈x,G(yt, ξt)〉+ h(x) +

(
µ

τθ2t
+ γt
τ

)
V(x,yt)

}
Output: xN+1

5.3 optimal regularized dual averaging method

In dual averaging methods [111, 148], the key proximal mapping step
utilizes the average of all past stochastic subgradients to update the
parameter vector. In particular, it takes the form:

zt+1 = arg min
x∈X

{
〈gt, x〉+ h(x) +

βt

t
V(x, x0)

}
,

where βt is the step-size and

gt =
1

t+ 1

t∑
i=0

G(zi, ξi).

For strongly convex f(x), the current dual averaging methods achieve

a rate of O(σ
2 logN
µ̃N), which is suboptimal. In this section, we pro-

pose a new dual averaging algorithm which adapts to both strongly
and non-strongly convex f(x) via the strong convexity parameter µ̃
and achieves optimal rates in both cases. In addition, for previous
dual averaging methods, to guarantee the convergence, the final so-
lution takes the form: x̂ = 1

N+1

∑N
t=0 zt and hence is not sparse in

nature for sparsity-inducing regularizers. Instead of taking the aver-
age, we introduce another proximal mapping and generate the final
solution directly from the second proximal mapping. This strategy
will provide us sparser solutions in practice. It is worthy to note that
in RDA, zN has been proved to achieve the desirable sparsity pat-
tern (i.e., manifold identification property) [86]. However, according
to [86], the convergence of φ(zN) to the optimal φ(x∗) is established
only under a more restrictive assumption that x∗ is a strong local min-
imizer of φ relative to the optimal manifold and the convergence rate

68 stochastic optimization : optimal regularized dual averaging methods

is quite slow. Without this assumption, the convergence of φ(zN) is
still unknown.

The proposed optimal RDA (ORDA) method is presented in Al-
gorithm 5.1. In general, the constant Γ which defines the step-size pa-
rameter γt is set to L. However, we allow Γ to be an arbitrary constant
greater than or equal to L to facilitate the introduction of the multi-
stage ORDA in the later section. The parameter c is set to achieve the
optimal rates for both convex and strongly convex loss. When µ > 0
(or equivalently, µ̃ > 0), c is set to 0 so that γt ≡ τΓ > τL; while for
µ = 0, c =

√
τ(σ+M)

2
√
V(x∗,x0)

. Since x∗ is unknown in practice, one might

replace V(x∗, x0) in c by a tuning parameter.
Here, we make a few more explanations of Algorithm 5.1. In Step

1, the intermediate point yt is a convex combination of xt and zt and
when µ = 0, yt = (1− θt)xt + θtzt. The choice of the combination
weights is inspired by [52]. Second, with our choice of θt and νt, it is
easy to prove that

∑t
i=0

1
νi

= 1
θtνt

. Therefore, gt in Step 3 is a convex
combination of {G(yi, ξi)}ti=0. As compared to RDA which uses the
average of past subgradients, gt in ORDA is a weighted average of all
past stochastic subgradients and the subgradient from the larger iter-
ation has a larger weight (i.e., G(yi, ξi) has the weight 2(i+1)

(t+1)(t+2)). In
practice, instead of storing all past stochastic subgradients, gt could
be simply updated based on gt−1:

gt = θtνt

(
gt−1

θt−1νt−1
+
G(yt, ξt)
νt

)
.

We also note that since the error in the stochastic subgradientG(yt, ξt)
will affect the sparsity of xt+1 via the second proximal mapping, to
obtain stable sparsity recovery performances, it would be better to
construct the stochastic subgradient with a small batch of samples
[148, 35]. This could help to reduce the noise of the stochastic subgra-
dient.

5.3.1 Convergence Rate

We present the convergence rate for ORDA. We start by presenting a
general theorem without plugging the values of the parameters. To
simplify our notations, we define ∆t := G(yt, ξt) − f ′(yt).

Theorem 5.1. For ORDA, if we require c > 0 when µ̃ = 0, then for any
t > 0: the gap between φ(xt+1) and φ(x∗) can be characterized by:

φ(xt+1) −φ(x
∗) (5.7)

6 θtνtγt+1V(x
∗, x0) +

θtνt

2

t∑
i=0

(‖∆i‖∗ +M)2(
µ
τθi

+ θiγi
τ − θiL

)
νi

+ θtνt

t∑
i=0

〈x∗ − ẑi,∆i〉
νi

,

where

ẑt =
θtµ

µ+ γtθ2t
yt +

(1− θt)µ+ γtθ
2
t

µ+ γtθ2t
zt, (5.8)

5.3 optimal regularized dual averaging method 69

is a convex combination of yt and zt; and ẑt = zt when µ = 0. Taking the
expectation on both sides of (5.7):

Eφ(xt+1) −φ(x
∗) 6 θtνtγt+1V(x

∗, x0) + (σ2 +M2)θtνt

t∑
i=0

1(
µ
τθi

+ θiγi
τ − θiL

)
νi

.(5.9)

The proof of Theorem 5.1 is given in Appendix. In the next two
corollaries, we establish the rates of convergence in expectation for
ORDA by choosing different values for c based on µ̃.

Corollary 5.1. For convex f(x) with µ̃ = 0 , by setting c =
√
τ(σ+M)

2
√
V(x∗,x0)

and Γ = L, we obtain:

Eφ(xN+1) −φ(x
∗) 6

4τLV(x∗, x0)
N2

+
8(σ+M)

√
τV(x∗, x0)√
N

. (5.10)

Based on (5.9), the proof of Corollary 5.1 is straightforward with
the details in Appendix. Since x∗ is unknown in practice, one could
set c by replacing V(x∗, x0) in c with any value D∗ > V(x∗, x0). By
doing so, (5.10) remains valid after replacing all V(x∗, x0) by D∗. For
convex f(x) with µ̃ = 0, the rate in (5.10) has achieved the uniformly-
optimal rate according to [105]. In fact, if f(x) is a deterministic and
smooth function with σ = M = 0 (e.g., smooth empirical loss), one
only needs to change the stochastic subgradient G(yt, ξt) to ∇f(yt).
The resulting algorithm, which reduces to Algorithm 3 in [138], is an
optimal deterministic first-order method with the rate O(LV(x∗,x0)

N2
).

We note that the quadratic growth assumption of V(x,y) is not
necessary for convex f(x). If one does not assume this assumption
and replaces the last step in ORDA by

xt+1 = arg min
x∈X

{
〈x,G(yt, ξt)〉+ h(x) +

(
µ

2θ2t
+
γt

2

)
‖x− yt‖2

}
,

we can achieve the same rate as in (5.10) but just removing all τ from
the right hand side. But the quadratic growth assumption is indeed
required for showing the convergence for strongly convex f(x) as in
the next corollary.

Corollary 5.2. For strongly convex f(x) with µ̃ > 0, we set c = 0 and
Γ = L and obtain that:

Eφ(xN+1) −φ(x
∗) 6

4τLV(x∗, x0)
N2

+
4τ(σ2 +M2)

µN
. (5.11)

The dominating term in (5.11), O
(
1
µN

)
, is optimal and better than

the O
(

logN
µN

)
rate for previous dual averaging methods. However,

ORDA has not achieved the uniformly-optimal rate, which takes the

form ofO(σ
2+M2

µN +exp(−
√
µ
LN)). In particular, for deterministic smooth

and strongly convex f(x) (i.e., empirical loss with σ =M = 0), ORDA

70 stochastic optimization : optimal regularized dual averaging methods

only achieves the rate of O(L
N2

) while the optimal deterministic rate

should be O
(

exp(−
√
µ
LN)

)
[108]. Inspired by the multi-restart tech-

nique in [56, 80], we present a multi-stage extension of ORDA in
Section 5.4 which achieves the uniformly-optimal convergence rate.

5.3.2 Mini-batch Strategy and Distributed Computing

Since our algorithms only utilize the stochastic gradient information,
the distributed mini-batch strategy in [37] can be directly applied
to further accelerated the algorithms. In particular, we assume for
each iteration t, a query of the oracle returns b stochastic gradi-
ents {G(yt, ξti)}bi=1, where b is the mini-batch size and each ξti is
drawn i.i.d. from P. Let G(yt,ξt) := 1

b

∑b
i=1G(x, ξti) be the aver-

age of all these stochastic gradients at yt. If we replace G(yt, ξt) by
G(yt,ξt) in either Algorithm 5.1, it is easy to verify that the variance
of the stochastic gradient is reduced by a factor of b, i.e., ‖G(x,ξt) −
f ′(x)‖2∗ 6 σ2/b, ∀ x. Assume that we can process each query of the or-
acle (i.e., b stochastic gradients) in a distributed manner with a subse-
quent vector-sum operation based averaging step. The averaging step
can be done via a vector-sum operation based on the minimum-depth
spanning-tree of the distributed network topology as in [37]. Then ac-
cording to Section 5.2 in [37], such a distributed mini-batch strategy
achieves an asymptotic optimal (linear) speed-up, i.e., the distributed
algorithm is b times faster to achieve the same optimization error than
the serial algorithm. Put another way, in the same amount of wall-
clock time, serial algorithm achieves optimization error of O(1/

√
N);

while distributed algorithm achieves error of O(1/
√
Nb).

5.3.3 Variance Bounds

Corollary 5.1 and 5.2 imply that φ(xN+1) converges to φ(x∗) on aver-
age. However, it does not provide the accuracy of the solution from
a single run of ORDA. We prove that under certain assumptions, the
variance of the error of the objective value, Var[φ(xN+1)−φ(x

∗)], also
converges to zero at a rate of O(1N). Therefore, the error of the objec-
tive value will eventually converge to a distribution that concentrates
close to zero and we can conclude that any single run of ORDA is
reliable if N is large enough.

Theorem 5.2. We assume that there exists a constant D such that ‖x∗ −
ẑt‖ 6 D for all t, where ẑt is defined in (5.8). We also assume the fourth
moment of G(x, ξ) − f ′(x) is bounded by σ4 for any x ∈ X, i.e.,

E‖G(x, ξ) − f ′(x)‖4∗ 6 σ4. (5.12)

5.3 optimal regularized dual averaging method 71

Then for any t > 0, the variance of the error is bounded by:

Var[φ(xt+1) −φ(x∗)] 6 3θ2tν
2
tγ
2
t+1V(x

∗, x0)2

+6θ2tν
2
t (σ

4 +M4)

(t∑
i=0

1(
µ
τθi

+ θiγi
τ − θiL

)
νi

)2

+3θ2tν
2
tD
2σ2

t∑
i=0

1

ν2i
. (5.13)

Based on (5.13), for convex f(x) with µ̃ = 0 and c =
√
τ(σ+M)

2
√
V(x∗,x0)

, we have:

Var[φ(xN+1) −φ(x
∗)] 6

96τ2L2V(x∗, x0)2

N4
+
120(σ+M)2τV(x∗, x0) + 4D2σ2

N
.(5.14)

For strongly convex f(x) with c = 0, we have:

Var[φ(xN+1) −φ(x
∗)] 6

48τ2L2V(x∗, x0)2

N4
+
96τ2(σ4 +M4)

N2µ2
+
4D2σ2

N
.(5.15)

Because zt and yt always stay inside X and ẑt is their convex com-
bination, the condition ‖x∗ − ẑt‖ 6 D for all t is automatically sat-
isfied when X is bounded and D is the diameter of X. Even if X is
unbounded, we can try to confine the search to a bounded set which
contains the optimal solution. We also note that the boundedness of
the 4-th moment condition implies our basic assumption on the vari-
ance of the stochastic subgradient in (5.3) according to Jensen’s in-
equality, i.e., E‖G(x, ξ) − f ′(x)‖2∗ 6 (E‖G(x, ξ) − f ′(x)‖4∗)

1
2 6 σ2. In

other words, we need a stronger assumption here in order to provide
a bound on the variance. The detailed proof is in Appendix.

5.3.4 High Probability Bounds

For stochastic optimization problems, another evaluation criterion is
the confidence level of the objective value. In particular, it is of great
interest to find ε(N, δ) as a monotonically decreasing function in both
N and δ ∈ (0, 1) such that the solution xN+1 satisfies

Pr (φ(xN+1) −φ(x
∗) > ε(N, δ)) 6 δ.

In other words, we want to show that with probability at least 1− δ,
φ(xN+1) −φ(x

∗) < ε(N, δ).
According to Markov inequality, for any ε > 0, Pr(φ(xN+1) −

φ(x∗) > ε) 6 E(φ(xN+1)−φ(x∗))
ε . Therefore, we have ε(N, δ) = Eφ(xN+1)−φ(x∗)

δ .
Under the basic assumption in (5.3), namely Eξ(‖G(x, ξ) − f ′(x)‖2∗) 6

σ2, and according to Corollary 5.1 and 5.2, ε(N, δ) = O
(
(σ+M)

√
V(x∗,x0)√
Nδ

)
for convex f(x), and ε(N, δ) = O

(
σ2+M2

µNδ

)
for strongly convex f(x).

However, the above bounds are quite loose. To obtain tighter bounds,
we strengthen the basic assumption of the stochastic subgradient in
(5.3) to the “light-tail” assumption [106]. In particular, we assume that
E
(
exp
{
‖G(x, ξ) − f ′(x)‖2∗/σ2

})
6 exp{1}, ∀x ∈ X. By further making

72 stochastic optimization : optimal regularized dual averaging methods

the boundedness assumption (‖x∗− ẑt‖ 6 D) and utilizing a technical
lemma from [42], we obtain a much tighter high probability bound

with ε(N, δ) = O
(√

ln(1/δ)Dσ√
N

)
for both convex and strongly convex

f(x).

Theorem 5.3. We assume that (1) E
(
exp
{
‖G(x, ξ) − f ′(x)‖2∗/σ2

})
6

exp{1}, ∀x ∈ X (i.e., “light-tail" assumption) and (2) there exists a constant
D such that ‖x∗ − ẑt‖ 6 D for all t. By setting Γ = L in ORDA, for any
iteration t and δ ∈ (0, 1), we have, with probability at least 1− δ:

φ(xt+1) −φ(x
∗)) 6 ε(t, δ) (5.16)

with

ε(t, δ) = θtνtγt+1V(x
∗, x0) + θtνt

t∑
i=0

M2

ηiνi

+θt

 t∑
i=0

σ2

ηi
+
8σ2 ln(2/δ)
(µ+γ0τ − L)

+ 16σ2

√√√√ t∑
i=0

ln(2/δ)
η2i

+

√
3 ln

2

δ
θtνtDσ

(
t∑
i=0

1

ν2i

)1/2
, (5.17)

where ηi =
(
µ
τθi

+ θiγi
τ − θiL

)
.

For convex f(x) with µ̃ = 0, by setting c =
√
τ(σ+M)

2
√
V(x∗,x0)

and Γ = L, we

have

ε(N, δ) =
4τLV(x∗, x0)

N2
+
24
√
τV(x∗, x0)(σ+M)√

N
+
16 ln(2/δ)

√
τV(x∗, x0)σ
N

+
16σ

√
ln(2/δ) ln(N+ 3)V(x∗, x0)

N
+
2
√

ln(2/δ)Dσ√
N

. (5.18)

For convex f(x) with µ̃ > 0 (or equivalently µ > 0), by setting c = 0 and
Γ = L, , we have

ε(N, δ) =
4τLV(x∗, x0)

N2
+
16τ(σ2 +M2) ln(N+ 2)

µN

+
48σ2 ln(2/δ)

µN
+
2
√

ln(2/δ)Dσ√
N

. (5.19)

By making stronger assumptions as in Theorem 5.3, we obtain

much tighter bounds with ε(N, δ) = O
(√

ln(1/δ)Dσ√
N

)
in (5.18) and

(5.19) as compared to the simple bounds obtained by Markov inequal-
ity. The proof of Theorem 5.3 is presented in Appendix.

5.4 multi-stage orda for stochastic strongly convex op-
timization

As we show in Section 5.3.1, for convex f(x), ORDA achieves the
uniformly-optimal rate. However, for strongly convex f(x), although
the dominating term of the convergence rate in (5.11) is optimal,

5.5 related works 73

Algorithm 5.2 Multi-stage ORDA for Stochastic Strongly Convex Op-
timization
Initialization: x0 ∈ X, a constant V0 > φ(x0)−φ(x∗) and the number
of stages K.
Iterate for k = 1, 2, . . . ,K:

1. Set Nk = max
{
4
√
τL
µ , 2

k+9τ(σ2+M2)
µV0

}
2. Set Λk = N

3/2
k

√
2k−1µ(σ2+M2)

τV0

3. Generate x̃k by calling the sub-routine ORDA(x̃k−1,Nk, Γ =

Λk + L, c = 0)

Output: x̃K

the overall rate is not uniformly-optimal. Inspired by the multi-stage
stochastic approximation methods [56, 68, 80], we propose the multi-
stage extension of ORDA in Algorithm 5.2 for stochastic strongly
convex optimization. For each stage 1 6 k 6 K, we run ORDA in
Algorithm 5.1 as a sub-routine for Nk iterations with the parameter
γt = c(t+ 1)3/2 + τΓ with c = 0 and Γ = Λk + L. Roughly speaking,
we set Nk = 2Nk−1 and Λk = 4Λk−1. In other words, we double
the number of iterations for the next stage but reduce the step-size.
The multi-stage ORDA has achieved uniformly-optimal convergence
rate as shown in Theorem 5.4 with the proof in Appendix. The proof
technique follows the one in [80]. Due this specialized proof tech-
nique, instead of showing E(φ(xN)) − φ(x

∗) 6 ε(N) as in ORDA,
we show the number of iterations N(ε) to achieve the ε-accurate so-
lution: E(φ(xN(ε))) − φ(x

∗) 6 ε. But the two convergence rates are
equivalent.

Theorem 5.4. If we run multi-stage ORDA for K stages with K = log2
(
V0
ε

)
for any given ε, we have E(φ(x̃K)) −φ(x

∗) 6 ε and the total number of
iterations is upper bounded by:

N =

K∑
k=1

Nk 6 4

√
τL

µ
log2

(
V0

ε

)
+
1024τ(σ2 +M2)

µε
. (5.20)

5.5 related works

In the last few years, a number of stochastic gradient methods [39,
41, 61, 82, 106, 148, 52, 80, 56, 40, 42] have been developed to solve
(5.1), especially for a sparsity-inducing h(x). In Table 5.1, we compare
the proposed ORDA and its multi-stage extension with some widely
used stochastic gradient methods using the following metrics. For the
ease of comparison, we assume f(x) is smooth with M = 0.

1. The convergence rate for solving (non-strongly) convex f(x) and
whether this rate has achieved the uniformly-optimal (Uni-opt)
rate.

74 stochastic optimization : optimal regularized dual averaging methods

Table 5.1: Summary for different stochastic gradient algorithms. V is short
for V(x∗, x0); AC for “accelerated”; M for “multi-stage" and NA
stands for either “not applicable” or “no analysis of the rate".

Convex f(x) Strongly Convex f(x)
Final x̂ Bregman

Rate Uni-opt Rate Opt Uni-opt

FOBOS [39] O
(
G
√
V√
N

)
NO O

(
G2 logN
µ̃N

)
NO NO Prox NO

COMID [41] O
(
G
√
V√
N

)
NO O

(
G2 logN
µ̃N

)
NO NO Prox YES

SAGE [61] O
(
σ
√
D√
N

+ LD
N2

)
NEARLY O

(
σ2

µ̃N
+ LD
N2

)
YES NO Prox NO

AC-SA [52] O
(
σ
√
V√
N

+ LV
N2

)
YES O

(
σ2

µ̃N
+ LV
N2

)
YES NO Avg YES

M-AC-SA [80] NA NA O

(
σ2

µ̃N
+ exp{−

√
µ̃
LN}

)
YES YES Avg YES

Epoch-GD [56] NA NA O
(
G2

µ̃N

)
YES NO Avg NO

RDA [148] O
(
G
√
V√
N

)
NO O

(
G2 logN
µ̃N

)
NO NO Avg YES

AC-RDA [148] O
(
σ
√
V√
N

+ LV
N2

)
YES NA NA NA Avg YES

ORDA O
(
σ
√
V√
N

+ LV
N2

)
YES O

(
σ2

µ̃N
+ LV
N2

)
YES NO Prox YES

M-ORDA NA NA O

(
σ2

µ̃N
+ exp{−

√
µ̃
LN}

)
YES YES Prox YES

2. The convergence rate for solving strongly convex f(x) and whether
(1) the dominating term of rate is optimal, i.e., O

(
σ2

µ̃N

)
and (2)

the overall rate is uniformly-optimal.

3. Whether the final solution x̂, on which the results of conver-
gence are built, is generated from the weighted average of pre-
vious iterates (Avg) or from the proximal mapping (Prox). For
sparsity-inducing regularizers, the solution directly from the
proximal mapping is often sparser than the averaged solution.

4. Whether an algorithm allows to use a general Bregman diver-
gence in proximal mapping or it only allows the Euclidean dis-
tance V(x,y) = 1

2‖x− y‖
2
2 .

In Table 5.1, the algorithms in the first 7 rows are stochastic ap-
proximation algorithms where only the current stochastic gradient
is used at each iteration. The last 4 rows are dual averaging meth-
ods where all past subgradients are used. Some algorithms in Table
5.1 make a more restrictive assumption on the stochastic gradient:
∃G > 0, E‖G(x, ξ)‖2∗ 6 G2,∀x ∈ X. It is easy to verify that this as-
sumption implies our basic assumption in (5.3) by Jensen’s inequality.

As we can see from Table 5.1, the proposed ORDA possesses all
good properties except that the convergence rate for strongly convex
f(x) is not uniformly-optimal. Multi-stage ORDA further improves
this rate to be uniformly-optimal. In particular, SAGE [61] achieves
a nearly optimal rate since the parameter D in the convergence rate
is chosen such that E

(
‖xt − x∗‖22

)
6 D for all t > 0 and it could

be much larger than V ≡ V(x∗, x0). In addition, SAGE requires the
boundedness of the domain X, the smoothness of f(x), and only al-
lows the Euclidean distance in proximal mapping. As compared to

5.6 experiments 75

AC-SA [52] and multi-stage AC-SA [80], our methods do not require
the final averaging step; and as shown in our experiments, ORDA has
better empirical performances due to the usage of all past stochastic
subgradients. Furthermore, we improve the rates of RDA and extend
AC-RDA to an optimal algorithm for both convex and strongly con-
vex f(x). Another highly relevant work is [68]. Juditsky et al. [68] pro-
posed multi-stage algorithms to achieve the optimal strongly convex
rate based on non-accelerated dual averaging methods. However, the
algorithms in [68] assume that φ(x) is a Lipschitz continuous func-
tion, i.e., the subgradient of φ(x) is bounded. Therefore, when the
domain X is unbounded, the algorithms in [68] cannot be directly
applied. Recently, the paper [115] develops another stochastic gradi-
ent method which achieves the rate O(G

2

µ̃N) for strongly convex f(x).
However, for non-smooth f(x), it requires the averaging of the last a
few iterates and this rate is not uniformly-optimal.

5.6 experiments

In this section, we conduct simulated experiments to demonstrate the
performance of ORDA and its multi-stage extension (M_ORDA). We
compare our ORDA and M_ORDA (only for strongly convex loss)
with several state-of-the-art stochastic gradient methods, including
RDA and AC-RDA [148], AC-SA [52], FOBOS [39] and SAGE [61]. For
a fair comparison, we compare all different methods using solutions
which have expected convergence guarantees. For all algorithms, we
tune the parameter related to step-size (e.g., c in ORDA for convex
loss) within an appropriate range and choose the one that leads to
the minimum objective value.

5.6.1 Simulated Experiments

In this experiment, we solve a sparse linear regression problem:

min
x∈Rn

f(x) + h(x),

where
f(x) =

1

2
Ea,b((a

Tx− b)2) +
ρ

2
‖x‖22,

and h(x) = λ‖x‖1. The input vector a is generated from N(0, In×n)
and the response b = aTx∗ + ε, where x∗i = 1 for 1 6 i 6 n/2 and 0
otherwise and the noise ε ∼ N(0, 1). When ρ = 0, the problem is the
well known Lasso [133] and when ρ > 0, it is known as Elastic-net
[162]. The regularization parameter λ is tuned so that a deterministic
solver on all the samples can correctly recover the underlying spar-
sity pattern. We set n = 100 and create a large pool of samples for
generating stochastic gradients and evaluating objective values. The
number of iterations N is set to 500. We note that it is fair to run
each algorithm for N = 500 iterations for the comparison since all the
competitors in this experiment are stochastic first-other methods. In
particular, in every iteration, each algorithm receives one new data

76 stochastic optimization : optimal regularized dual averaging methods

Obj (std) F1-score (std)

RDA 2.087e+1 (2.760e-2) 0.67 (0.00)

AC-RDA 2.067e+1 (3.144e-2) 0.67 (0.00)

AC-SA 2.066e+1 (1.661e-2) 0.67 (0.00)

FOBOS 2.098e+1 (3.151e-2) 0.83 (0.02)

SAGE 2.065e+1 (3.162e-2) 0.82 (0.02)

ORDA 2.056e+1 (1.761e-2) 0.92 (0.02)

Table 5.2: Comparisons for different
algorithms in objective
value and F1-score for
solving Lasso problem.

50 100 150 200
20

21

22

23

24

25

26

27

28

Iteration

O
b

je
c
ti
v
e

RDA
AC−RDA
AC−SA
FOBOS
SAGE
ORDA

Figure 5.1: Objective values v.s. It-
erations. Only the first
200 iterations are plot-
ted for better visualiza-
tion and the ease of
comparisons.

Obj (std) F1-score (std)

RDA 2.157e+1 (2.998e-2) 0.67 (0.00)

AC-RDA 2.112e+1 (2.525e-2) 0.67 (0.00)

AC-SA 2.101e+1 (8.306e-3) 0.67 (0.00)

FOBOS 2.119e+1 (2.216e-3) 0.84 (0.02)

SAGE 2.109e+1 (4.749e-3) 0.73 (0.02)

ORDA 2.097e+1 (6.248e-3) 0.87 (0.02)

M_ORDA 2.098e+1 (6.248e-3) 0.88 (0.02)

Table 5.3: Comparisons for different
algorithms in objective and
F1-score for solving Elastic-
net problem.

50 100 150 200
23

24

25

26

27

28

29

30

31

Iteration

O
b

je
c
ti
v
e

RDA
AC−RDA
AC−SA
FOBOS
SAGE
ORDA

Figure 5.2: Objective values v.s. It-
erations. Only the first
200 iterations are plot-
ted for better visualiza-
tion and the ease of
comparisons.

sample from the underlying distribution and main per-iteration com-
putational cost are the same (i.e., computing the stochastic gradient).

Since we focus on stochastic optimization instead of online learn-
ing, we could randomly draw samples from an underlying distribu-
tion. So we construct the stochastic gradient using the mini-batch
strategy [37, 35] with the batch size 50. We run each algorithm for 100

times and report the mean of the objective value and the F1-score for
sparsity recovery performance. F1-score is defined as 2 precision·recall

precision+recall
where

precision =

p∑
i=1

1{x̂i=1,x∗i=1}
/

p∑
i=1

1{x̂i=1}

and

recall =
p∑
i=1

1{x̂i=1,x∗i=1}
/

p∑
i=1

1{x∗i=1}.

The higher the F1-score is, the better the recovery ability of the spar-
sity pattern.

5.6 experiments 77

100 200 300 400 500

20

22

24

26

28

30

Iteration
O

b
je

ct
iv

e

ORDA
M_ORDA

Figure 5.3: ORDA v.s. M_ORDA.

Table 5.4: The statistics of the experimental datasets.

Training Samples (m) # Testing Samples # Features (n)

MNIST (6 vs 7) 12,183 1,986 784

20 Newsgroup 1,027 400 17,390

We first set ρ = 0 to test algorithms for (non-strongly) convex f(x).
The result is presented in Table 5.2 (the first two columns). We also
plot the decrease of the objective values for the first 200 iterations in
Figure 5.1. From Table 5.2, ORDA performs the best in both objective
value and recovery ability of sparsity pattern. For those optimal al-
gorithms (e.g., AC-RDA, AC-SA, SAGE, ORDA), they achieve lower
final objective values and the rates of the decrease are also faster. We
note that for dual averaging methods, the solution generated from the
(first) proximal mapping (e.g., zt in ORDA) has almost perfect spar-
sity recovery performance. However, since here is no convergence
guarantee for that solution, we do not report results here.

Then we set ρ = 1 to test algorithms for solving strongly convex
f(x). The results are presented in Table 5.2 (the last two columns)
and Figure 5.2 and 5.3. As we can see from Table 5.2, ORDA and
M_ORDA perform the best. Although M_ORDA achieves the theoret-
ical uniformly-optimal convergence rate, the empirical performance
of M_ORDA is almost identical to that of ORDA. This observation
is consistent with our theoretical analysis since the improvement of
the convergence rate only appears on the non-dominating term. In
addition, ORDA, M_ORDA, AC-SA and SAGE with the convergence
rate O(1µ̃N) achieve lower objective values as compared to other al-

gorithms with the rate O(logN
µ̃N) . For better visualization, we do not

include the comparison between M_ORA and ORDA in Figure 5.2.
Instead, we present the comparison separately in Figure 5.3. From
Figure 5.3, the final objective values of both algorithms are very close.
An interesting observation is that, for M_ORDA, each time when a
new stage starts, it leads to a sharp increase in the objective value
following by a quick drop.

78 stochastic optimization : optimal regularized dual averaging methods

Table 5.5: Experimental results for MNIST in terms of objective value, den-
sity of the final solution and testing error.

MNIST Obj Density(%) Err(%)

RDA 570.26 62.50 0.106

AC-RDA 527.95 71.42 0.098

AC-SA 514.40 80.73 0.106

FOBOS 560.73 53.44 0.123

SAGE 547.54 55.86 0.114

ORDA 497.62 41.70 0.065

Table 5.6: Experimental results for 20-newsgroup in terms of objective value,
density of the final solution and testing error.

20 Newsgroups Obj Density(%) Err(%)

RDA 272.07 43.42 3.310

AC-RDA 252.36 68.36 3.213

AC-SA 249.13 89.39 3.213

FOBOS 281.54 33.99 3.408

SAGE 232.56 33.15 3.310

ORDA 229.30 22.23 2.823

5.6.2 Real Data Experiments

In this section, we compare different stochastic gradient methods for
binary classification task using two real datasets: MNIST data for digi-
tal recognition2 and 20-newsgroup for document categorization3. The
MNIST data consists of images for digits from 0 to 9, where each
image is represented by a 28 × 28 = 784 gray-scale pixel-map. We
normalize the value of each gray-scale by dividing 255 so that each
feature value is between 0 and 1. Following the original RDA paper
in [148], we construct a binary classification task of distinguishing be-
tween digit 6 and 7. For the 20-newsgroup, we classify the postings
from two related newsgroups alt.atheism and talk.religion.misc using
the tf-idf of the vocabulary as features. The summary statistics of the
data are presented in Table 5.4. We note that two datasets are qual-
itatively very different: for MNIST, the number of features is more
than the number of samples; while for 20-newsgroup, there are many
more features than samples. We train the classifier via the sparse lo-
gistic regression:

min
x∈Rn

mEa,b log(1+ exp(−b(aTx)))︸ ︷︷ ︸
f(x)

+ λ‖x‖1︸ ︷︷ ︸
h(x)

, (5.21)

where a ∈ Rn denotes the sample, b ∈ {−1,+1} is the class label and
m is the total number of training samples. We multiply the expected

2 http://yann.lecun.com/exdb/mnist/

3 http://people.csail.mit.edu/jrennie/20Newsgroups/

http://yann.lecun.com/exdb/mnist/
http://people.csail.mit.edu/jrennie/20Newsgroups/

5.7 more discussions on scalability issue and distributed implementation 79

Table 5.7: Speed-up for distributed implementation

No. of Cores 4 8 12 24 48

Speed-up 1 1.62 2.16 2.71 3.27

loss by m to avoid a too small objective value. The parameter λ is
set to 10 for MNIST and 0.1 for 20-newsgroup to achieve reasonable
amount of sparsity. We run each algorithm for 500 iterations with the
batch size 50 and report the objective value, density of the final solu-
tion and testing error in Table 5.5 and Table 5.6. As we can see, on
both datasets, ORDA achieves the best performance in all three differ-
ent evaluation metrics. DP-SA leads to the second smallest testing er-
ror. Uniformly-optimal methods achieve smaller objective values and
testing errors as compared to those non-uniformly-optimal methods.

5.7 more discussions on scalability issue and distributed

implementation

We note that in our experiments, the scale of the datasets are rela-
tively small and thus deterministic optimization algorithms (e.g., glm-
net [47], FISTA [6]) can be applied and lead to faster convergence.
However, for some large-scale datasets which can not fit into mem-
ory or for some online data (e.g., twitter data or search log which
are collected at a real time), the deterministic algorithms cannot be
easily applied. On the other hand, for our methods, since each iter-
ation only utilizes one (or a few) data samples, they can be easily
distributed and hence applied to large-scale datasets with millions of
samples and features or streaming data.

Another advantage for our methods is that there is a simple dis-
tributed implementation using the technique from [37]. Since our
algorithms only utilize the stochastic gradient, the distributed mini-
batch strategy in [37] can be directly applied to further accelerate
the algorithms. In particular, we assume for each iteration t, a query
of the stochastic oracle returns b stochastic gradients {G(x, ξti)}bi=1,
where b is the mini-batch size and each ξti is drawn i.i.d. from P. Let
G(x,ξt) := 1

b

∑b
i=1G(x, ξti) be the average of all these stochastic gra-

dients. If we replace G(x, ξt) by G(x,ξt) in either ORDA, it is easy to
verify that the variance of the stochastic gradient is reduced by a fac-
tor of b, i.e., Eξ

(
‖G(x,ξt) − f ′(x)‖2∗

)
6 σ2/b, ∀ x ∈ X. Assume that

we can process each query of the oracle (i.e., b stochastic gradients)
in a distributed manner with a subsequent averaging step based on
the vector-sum operation. Then according to Section 5.2 in [37], such
a distributed mini-batch strategy achieves an asymptotic optimal (lin-
ear) speed-up. Put another way, in the same amount of wall-clock
time, the serial ORDA achieves an optimization error of O(1/

√
N);

while a distributed implementation achieves an error of O(1/
√
Nb).

We tested the distributed implementation on a web-spam classifica-
tion dataset [144] using the NIMLE distributed computing toolkit de-
veloped by IBM [53]. The dataset contains 350,000 samples with about

80 stochastic optimization : optimal regularized dual averaging methods

16.6 million of tri-gram features and we use the `1-regularized logistic
regression as the objective function. The algorithm is implemented on
a 12 machine cluster with 4 cores on each machine. In Table 5.7, we
report the speed-up by varying the number of cores (as compared to
using a single machine with 4 cores). As we can see, the distributed
implementation indeed leads to significant improvement on the com-
puting time. However, it is still far from the linear speed-up. This is
mainly due to communication latency time among different machines
and some other overhead (e.g., pre-processing).

5.8 appendix : technical proofs

Proof of Theorem 5.1

We first state a basic property for Bregman distance functions in the
following Proposition. This proposition generalizes Lemma 1 in [81]
by extending one distance function to a sequence of functions.

Proposition 5.1. Given any proper lsc convex functionψ(x) and a sequence
of {zi}ti=0 with each zi ∈ X, if z+ = arg minx∈X

{
ψ(x) +

∑t
i=0 ηiV(x, zi)

}
,

where {ηi > 0}ti=0 is a sequence of parameters, then ∀x ∈ X:

ψ(x) +

t∑
i=0

ηiV(x, zi) > ψ(z+) +
t∑
i=0

ηiV(z+, zi) +

(
t∑
i=0

ηi

)
V(x, z+).(5.22)

Proof of Proposition 5.1. For a Bregman distance function V(x,y), let
∇1V(x,y) denote the gradient of V(·,y) at the point x. It is easy to
show that:

V(x,y) ≡ V(z,y) + 〈∇1V(z,y), x− z〉+ V(x, z), ∀ x,y, z ∈ X,

which further implies that:

t∑
i=0

ηiV(x, zi) (5.23)

=

t∑
i=0

ηiV(z+, zi) +
t∑
i=0

ηi〈∇1V(z+, zi), x− z+〉+

(
t∑
i=0

ηi

)
V(x, z+).

Since z+ is the minimizer of the convex functionψ(x)+
∑t
i=0 ηiV(x, zi),

it is known that there exists a subgradient g of ψ at z+ (g ∈ ∂ψ(z+))
such that:

〈g+
t∑
i=0

ηi∇1V(z+, z), x− z+〉 > 0 ∀x ∈ X. (5.24)

5.8 appendix : technical proofs 81

Using the above two relations and the definition of subgradient
(ψ(x) > ψ(z+) + 〈g, x− z+〉 for all x ∈ X), we conclude that:

ψ(x) +

t∑
i=0

ηiV(x, zi)

> ψ(z+) +

t∑
i=0

ηiV(z+, zi)

+〈g+
t∑
i=0

ηi∇1V(z+, zi), x− z+〉+

(
t∑
i=0

ηi

)
V(x, z+)

> ψ(z+) +

t∑
i=0

ηiV(z+, zi) +

(
t∑
i=0

ηi

)
V(x, z+).

To better present the proof of Theorem 5.1, we denote G(yt, ξt) by
G(yt) and define:

∆t := G(yt) − f
′(yt) = G(yt, ξt) − f ′(yt) (5.25)

We first show some basic properties ∆t. Let ξ[t] denote the collec-
tion of i.i.d. random vectors {ξi}ti=0. Since both random vectors yt and
zt are functions of ξ[t−1] and are independent of {ξi}Ni=t, we have that
for any t > 1 and any α,β:

E∆t = Eξ[t−1] [Eξt(∆t|ξ[t−1])] = Eξ[t−1]0 = 0; (5.26)

E‖∆t‖2∗ = Eξ[t−1] [Eξt(‖∆t‖
2
∗ |ξ[t−1])] 6 Eξ[t−1]σ

2 = σ2; (5.27)

E〈αyt +βzt,∆t〉 = Eξ[t−1] [〈αyt +βzt, Eξt∆t〉|ξ[t−1]] (5.28)

= Eξ[t−1][〈αyt +βzt, 0〉|ξ[t−1]] = 0,

Proof of Theorem 5.1. With our choice of θt, νt, γt, it is easy to show
(see [138]) that:

t∑
i=0

1

νi
=

1

θtνt
,

1− θt
θtνt

=
1

θt−1νt−1
, θt 6 νt. (5.29)

We further define 1
θ−1ν−1

= 0. We first bound the objective value
φ(xt+1) by:

φ(xt+1) = f(xt+1) + h(xt+1) 6 f(yt) + 〈xt+1 − yt, f ′(yt)〉

+
L

2
‖xt+1 − yt‖2 +M‖xt+1 − yt‖+ h(xt+1)

6 f(yt) + 〈xt+1 − yt,G(yt)〉+
(
µ

τθ2t
+
γt

τ

)
V(xt+1,yt) + h(xt+1)︸ ︷︷ ︸

C1

−
1

2

(
µ

τθ2t
+
γt

τ
− L

)
‖xt+1 − yt‖2 − 〈xt+1 − yt,∆t〉+M‖xt+1 − yt‖︸ ︷︷ ︸

C2

82 stochastic optimization : optimal regularized dual averaging methods

We bound the terms C1 and C2 respectively. Let x̂t+1 be the convex
combination of xt and zt+1:

x̂t+1 = (1− θt)xt + θtzt+1.

Then we have x̂t+1 − yt = θt(zt+1 − ẑt), where

ẑt =
θtµ

µ+ γtθ2t
yt +

(1− θt)µ+ γtθ
2
t

µ+ γtθ2t
zt,

which is a convex combination of yt and zt. By the fact that xt+1
is the minimizer of C1 and utilizing the relationship V(xt+1,yt) 6
τ‖xt+1−yt‖2

2 and x̂t+1 − yt = θt(zt+1 − ẑt):

C1 6 f(yt) + 〈x̂t+1 − yt, f ′(yt)〉+ θt〈zt+1 − ẑt,∆t〉

+

(
µ+ γtθ

2
t

2

)
‖zt+1 − ẑt‖2 + h(x̂t+1). (5.30)

By the convexity of ‖ · ‖2 and the fact that 12‖x− y‖
2 6 V(x,y) for

any x,y ∈ X:

(
µ+ γtθ

2
t

2

)
‖zt+1 − ẑt‖2

6 θtµV(zt+1,yt) +
(
(1− θt)µ+ θ

2
tγt
)
V(zt+1, zt). (5.31)

We plug (5.31) back into RHS of (5.30) and substitute x̂t+1 with
(1− θt)xt + θtzt+1. By the convexity of h(·):

C1 6 (1− θt)
(
f(yt) + 〈xt − yt, f ′(yt)〉+ h(xt)

)
+ θt

(
f(yt) + 〈zt+1 − yt,G(yt)〉+ h(zt+1) + µV(zt+1,yt) +

(
(1− θt)µ

θt
+ γtθt

)
V(zt+1, zt)

)
︸ ︷︷ ︸

C3

+θt〈zt+1 − ẑt,∆t〉+ θt〈yt − zt+1,∆t〉
6 (1− θt)φ(xt) +C3 + θt〈yt − ẑt,∆t〉. (5.32)

Now we bound C3 using Proposition 5.1. Utilizing the first equality
in (5.29), we can re-write zt as

zt = arg min
x∈X

{
ψ̃t(x) +

t−1∑
i=0

µ

νi
V(x,yi) + γtV(x, x0)

}
,

where

ψ̃t(x) :=

t−1∑
i=0

f(yi) + 〈x− yi,G(yi)〉+ h(x)
νi

.

Furthermore, we defineψt(x) :=
∑t−1
i=0

f(yi)+〈x−yi,G(yi)〉+h(x)+µV(x,yi)
νi

and apply Proposition 5.1 with x = zt+1:(
t−1∑
i=0

µ

νi
+ γt

)
V(zt+1, zt) 6

(
ψ̃t(zt+1) +

t−1∑
i=0

µ

νi
V(zt+1,yi) + γtV(zt+1, x0)

)

−

(
ψ̃t(zt) +

t−1∑
i=0

µ

νi
V(zt,yi) + γtV(zt, x0)

)
= ψt(zt+1) + γtV(zt+1, x0)

−ψt(zt) − γtV(zt, x0) (5.33)

5.8 appendix : technical proofs 83

We can bound the last term in C3 by (5.33). In particular, according
to (5.29):(
(1− θt)µ

θt
+ γtθt

)
V(zt+1, zt) 6 νt

(
t−1∑
i=0

µ

νi
+ γt

)
V(zt+1, zt)

6 νt (ψt(zt+1) + γtV(zt+1, x0) −ψt(zt) − γtV(zt, x0)) .

With the above inequality, we immediately obtain an upper bound for
C3. Therefore, by the definition of ψt(·), we bound the term C1 by:

C1 6 (1− θt)φ(xt) (5.34)

+θtνt (ψt+1(zt+1) −ψt(zt) + γtV(zt+1, x0) − γtV(zt, x0)) + θt〈yt − ẑt,∆t〉.

To bound C2, since the parameter c > 0whenever µ = 0, we always
have µ

τθ2t
+ γt
τ − L > 0. Using a simple inequality: −α2 κ

2 + βκ 6 β2

2α

(α > 0), with α = µ

τθ2t
+ γt
τ − L, β = ‖∆t‖∗ +M and κ = ‖xt+1 − yt‖,

we have:

C2 6 −
1

2

(
µ

τθ2t
+
γt

τ
− L

)
‖xt+1 − yt‖2 + ‖xt+1 − yt‖(‖∆t‖∗ +M)

6
(‖∆t‖∗ +M)2

2
(
µ

τθ2t
+ γt
τ − L

) . (5.35)

By summing up the upper bound for C1 in (5.34) and the bound
for C2 in (5.35), we obtain an upper bound for φ(xt+1) according to
(5.30). Utilizing the second relation in (5.29), we build up the follow-
ing recursive inequality:

φ(xt+1)

θtνt
6

φ(xt)

θt−1νt−1
+
(
ψt+1(zt+1) −ψt(zt) + γtV(zt+1, x0) − γtV(zt, x)

)
+

(‖∆i‖∗ +M)2

2
(
µ
τθt

+ θtγt
τ − θtL

)
νt

+
〈yt − ẑt,∆t〉

νt
6 · · ·

6
φ(x0)

θ−1ν−1
+ψt+1(zt+1) −ψ0(z0) + γtV(zt+1, x0) − γtV(zt, x)

+

t∑
i=0

(‖∆i‖∗ +M)2

2
(
µ
τθi

+ θiγi
τ − θiL

)
νi

+

t∑
i=0

〈yi − ẑi,∆i〉
νi

= ψt+1(zt+1) + γtV(zt+1, x0)

+

t∑
i=0

(‖∆i‖∗ +M)2

2
(
µ
τθi

+ θiγi
τ − θiL

)
νi

+

t∑
i=0

〈yi − ẑi,∆i〉
νi

, (5.36)

where the last inequality is obtained by the fact that 1
θ−1ν−1

= 0,
V(z0, x0) = 0, ψ0(z0) = 0. Using the fact that

zt+1 = arg min
x∈X

{ψt+1(x) + γt+1V(x, x0)}

84 stochastic optimization : optimal regularized dual averaging methods

and γt 6 γt+1, (5.36) further implies that:

φ(xt+1)

θtνt
6 ψt+1(x

∗) + γt+1V(x
∗, x0) +

t∑
i=0

(‖∆i‖∗ +M)2

2
(
µ
τθi

+ θiγi
τ − θiL

)
νi

+

t∑
i=0

〈yi − ẑi,∆i〉
νi

=

t∑
i=0

f(yi) + 〈x∗ − yi, f ′(yi)〉+ h(x∗) + µV(x∗,yi)
νi

+

t∑
i=0

〈x∗ − yi,∆i〉
νi

+γt+1V(x
∗, x0) +

t∑
i=0

(‖∆i‖∗ +M)2

2
(
µ
τθi

+ θiγi
τ − θiL

)
νi

+

t∑
i=0

〈yi − ẑi,∆i〉
νi

6
t∑
i=0

φ(x∗)

νi
+ γt+1V(x

∗, x0)

+

t∑
i=0

(‖∆i‖∗ +M)2

2
(
µ
τθi

+ θiγi
τ − θiL

)
νi

+

t∑
i=0

〈x∗ − ẑi,∆i〉
νi

. (5.37)

Multiplying by θtνt on both sides of (5.37), we obtain the result in
(5.7). From the properties of ∆i in (5.26)–(5.28), we conclude that for
all i, E〈x∗ − ẑi,∆i〉 = 0 and E(‖∆i‖∗ +M)2 6 2σ2 + 2M2. By taking
the expectation on both sides of (5.7) and using the aforementioned
properties for ∆i, we obtain the result in (5.9).

Proof of Corollary 5.1

Proof. When µ = 0, the expected gap in the objective function in (5.9)
for the last iterate becomes:

Eφ(xN+1) −φ(x
∗) (5.38)

6 θNνNγN+1V(x
∗, x0) + (σ2 +M2)θNνN

N∑
t=0

1(
γt
τ − L

)
θtνt

With choice of θN = 2
N+2 , νN = 2

N+1 and γN+1 = c(N+2)3/2+τL,
the first term in (5.38) is bounded by:

θNνNγN+1V(x
∗, x0) 6

4τLV(x∗, x0)
N2

+
8c V(x∗, x0)√

N
(5.39)

Similarly, the second term in (5.38) can be bounded by:

(σ2 +M2)θNνN

N∑
t=0

1(
γt
τ − L

)
θtνt

6
2τ(σ+M)2

c
√
N

(5.40)

By summing the above two inequalities, we obtain that:

Eφ(xN+1) −φ(x
∗) 6

4τLV(x∗, x0)
N2

+
8c V(x∗, x0)√

N
+
2τ(σ+M)2

c
√
N

(5.41)

We minimize the RHS of (5.41) with respect to c and obtain the con-
vergence rate result in Corollary 5.1 and the corresponding optimal
c =

√
τ(σ+M)

2
√
V(x∗,x0)

.

5.8 appendix : technical proofs 85

Proof of Corollary 5.2

Proof. When µ > 0, we set c = 0 and γt ≡ τL and then (5.9) becomes:

Eφ(xN+1) −φ(x
∗) 6 θNνNτLV(x

∗, x0) +
τ(σ2 +M2)

µ
θNνN

N∑
t=0

θt

νt

6
4τLV(x∗, x0)

N2
+
4τ(σ2 +M2)

µN
. (5.42)

This gives the result in (5.11) in Corollary 5.1.

Proof of Theorem 5.2

Proof. Since Var[φ(xt+1) −φ(x∗)] 6 E[(φ(xt+1) −φ(x
∗))2], utilizing

(5.7), we can derive the bound for Var[φ(xt+1)−φ(x∗)]. Following the
elementary inequality (a+ b+ c)2 6 3a2 + 3b2 + 3c2 for any a,b, c ∈
R, we have:

Var[φ(xt+1) −φ(x∗)] 6 E[(φ(xt+1) −φ(x
∗))2]

6 3θ2tν
2
t γ
2
t+1V(x

∗, x0)2︸ ︷︷ ︸
C1

+3θ2tν
2
t

1

4
E

((t∑
i=0

(‖∆i‖∗ +M)2(
µ
τθi

+ θiγi
τ − θiL

)
νi

)2)
︸ ︷︷ ︸

C2

+3θ2tν
2
t E

((t∑
i=0

〈x∗ − ẑi,∆i〉
νi

)2)
︸ ︷︷ ︸

C3

. (5.43)

We first bound C2. According to our assumption E‖G(x, ξ)− f ′(x)‖4∗ 6
σ4,∀x ∈ X, we have for any t:

E(‖∆t‖∗ +M)4 6 8E(‖∆t‖4∗ +M4)

= 8Eξ[t−1] [Eξt(‖∆t‖
4
∗ |ξ[t−1])] + 8M

4

6 8(σ4 +M4).

According to Cauchy-Schwarz’s inequality:

E((‖∆i‖∗ +M)2(‖∆j‖∗ +M)2) 6
√

E(‖∆i‖∗ +M)4
√

E(‖∆j‖∗ +M)4

6 8(σ4 +M4), ∀ i, j,

we have:

C2 =
1

4
E

((t∑
i=0

(‖∆i‖∗ +M)2(
µ
τθi

+ θiγi
τ − θiL

)
νi

)2)

6
1

4

t∑
i=0

t∑
j=0

E((‖∆i‖∗ +M)2(‖∆j‖∗ +M)2)(
µ
τθi

+ θiγi
τ − θiL

)
νi

(
µ
τθj

+
θjγj
τ − θjL

)
νj

6 2(σ4 +M4)

 t∑
i=0

1(
µ
τθi

+ θiγi
τ − θiL

)
νi

2 . (5.44)

86 stochastic optimization : optimal regularized dual averaging methods

To bound C3. First note that

C3 =

t∑
i=0

1

ν2i
(E〈x∗ − ẑi,∆i〉)2 + 2

∑
06i<j6t

1

ν2iν
2
j

E
(
〈x∗ − ẑi,∆i〉〈x∗ − ẑj,∆j〉

)
.(5.45)

For the quadratic terms in C3, by the assumption that ‖x∗ − ẑi‖ 6 D,
we have:

E
[
(〈x∗ − ẑi,∆i〉)2

]
6 E

[
‖x∗ − ẑi‖2‖∆i‖2∗

]
6 D2σ2. (5.46)

For the cross terms, since 〈x∗ − ẑi,∆i〉 only depends on ξ[i] and ẑj
only on ξ[j−1], by (5.28):

E
(
〈x∗ − ẑi,∆i〉〈x∗ − ẑj,∆j〉

)
= Eξ[j−1]

(
〈x∗ − ẑi,∆i〉Eξj〈x

∗ − ẑj,∆j〉|ξ[j−1]
)

= 0. (5.47)

By (5.46) and (5.47), we have:

C3 = E

((t∑
i=0

〈x∗ − ẑi,∆i〉
νi

)2)
6 D2σ2

t∑
i=0

1

ν2i
. (5.48)

By plugging (5.44) and (5.48) back into (5.43), we immediately ob-
tain (5.13) in Theorem 5.2. By plugging all the parameters according
to Corollary 5.1 and 5.2, we have the results in (5.14) and (5.15).

Proof of Theorem 5.3

We prove Theorem 5.3 using the following two lemmas.

Lemma 5.1 (Lemma 6 in [79]). Let ξ0, ξ1, . . . be a sequence of i.i.d. ran-
dom variables and ϕi = ϕi(ξ[i]) be deterministic Borel functions of ξ[i]
such that:

1. E(ϕi|ξ[i−1]) = 0;

2. There exists a positive deterministic sequence {σi}:

E
(
exp
{
ϕ2i /σ

2
i

}
|ξ[i−1]

)
6 exp{1}.

Then for any δ ∈ (0, 1), Prob
(∑t

i=0ϕi >
√
3 ln(1/δ)(

∑t
i=0 σ

2
i)
1/2
)
6

δ.

Lemma 5.2 (Lemma 5 in [42]). Under the assumptions in Theorem 5.3,
for any positive and nondecreasing sequence ηi, we have

t∑
i=0

‖∆i‖2∗
ηi

>
t∑
i=0

E‖∆i‖2∗
ηi

+ max

8σ2 ln(1/δ)
η0

, 16σ2

√√√√ t∑
i=0

ln(1/δ)
η2i

holds with probability at most δ ∈ (0, 1).

We note that although Lemma 5 in [42] assumes that ηi = η
√
i+ 1,

its proof and conclusion remain valid for any positive nondecreasing
sequence {ηi}.

5.8 appendix : technical proofs 87

Proof of Theorem 5.3. To simply notations, let ηi =
(
µ
τθi

+ θiγi
τ − θiL

)
.

For both convex and strongly convex f(x), according to our setting of
parameters, it is easy to verifty that {ηi} is a positive monotonically
increasing sequence. According to Theorem 5.1:

φ(xt+1) −φ(x
∗) 6 θtνtγt+1V(x

∗, x0) + θtνt
t∑
i=0

M2

ηiνi︸ ︷︷ ︸
C1

+ θtνt

t∑
i=0

‖∆i‖2∗
ηiνi︸ ︷︷ ︸

C2

+ θtνt

t∑
i=0

〈x∗ − ẑi,∆i〉
νi︸ ︷︷ ︸

C3

,

Firstly, we analyze the last term C3 using Lemma 5.1. Let ϕi(ξ[i]) :=
〈x∗−ẑi,∆i〉

νi
and hence C3 = θtνt

∑t
i=0ϕi. It is easy to verify that

E(ϕi|ξ[i−1]) = 0 and there exists a sequence σi = Dσ
νi

such that:

E(exp{ϕ2i /σ
2
i }|ξ[i−1]) ≡ E

(
exp

{(
〈x∗ − ẑi,∆i〉

νi

)2
/
D2σ2

ν2i

})

6 E

(
exp
{
‖x∗ − ẑi‖2‖∆i‖2∗

D2σ2

})
6 exp{1},

where the last inequality holds because ‖x∗ − ẑt‖ 6 D and our “light-
tail” assumption. By Lemma 5.1, we conclude that for any δ ∈ (0, 1),

Pr
(
C3 >

√
3 ln

2

δ
θtνtDσ

(t∑
i=0

1

ν2i

)1/2
︸ ︷︷ ︸

D3

)
6
δ

2
. (5.49)

Secondly, we bound the term C2 using Lemma 5.2. Since νi is de-
creasing in i, we have

C2 = θtνt

t∑
i=0

‖∆i‖2∗
ηiνi

6 θtνt

t∑
i=0

‖∆i‖2∗
ηiνt

= θt

t∑
i=0

‖∆i‖2∗
ηi

. (5.50)

Since ηi is increasing in i when Γ = L, we can directly apply Lemma
5.2 as follows:

Pr

C2 > θt

 t∑
i=0

σ2

ηi
+
8σ2 ln(2/δ)
(µ+γ0τ − L)

+ 16σ2

√√√√ t∑
i=0

ln(2/δ)
η2i

︸ ︷︷ ︸

D2

6 Pr

θt t∑
i=0

‖∆i‖2∗
ηi

> θt

 t∑
i=0

E‖∆i‖2∗
ηi

+ max

8σ2 ln(2/δ)
(µ+γ0τ − L)

, 16σ2

√√√√ t∑
i=0

ln(2/δ)
η2i

6
δ

2

88 stochastic optimization : optimal regularized dual averaging methods

where the first inequality is from (5.50), a+ b > max{a,b} and the
fact E‖∆i‖2∗ 6 σ2 ln

(
E exp

(
‖∆i‖2∗
σ2

))
6 σ2 ln(e) = σ2 and the second

inequality is due to Lemma 5.2.
Combining (5.51) and (5.49), by the union bound:

Pr (φ(xt+1) −φ(x∗) > C1 +D2 +D3)

6 ¡¡ Pr (C1 +C2 +C3 > C1 +D2 +D3)

6 Pr (C2 > D2) + Pr (C3 > D3) 6
δ

2
+
δ

2
= δ, (5.51)

we immediately obtain (5.17). The bounds in (5.18) and (5.19) can be
derived by plugging all the parameters into (5.17).

Proof of Theorem 5.4

To prove theorem 5.4, we first state a corollary of Theorem 5.1.

Corollary 5.3. For strongly convex f(x), by setting c = 0 and Γ = Λ+ L
in ORDA, we obtain that:

Eφ(xN+1) −φ(x
∗) 6

4τ(Λ+ L)V(x∗, x0)
N2

+
(N+ 3)(σ2 +M2)

Λ
. (5.52)

The proof technique follows the proof in [80]. The main idea is to
show that E(φ(x̃k)) −φ(x

∗) 6 V02
−k, where x̃k is the solution from

the k-th stage.

Proof. We show by induction that

E(φ(x̃k)) −φ(x
∗) 6 V02

−k. (5.53)

By the definition of V0 (V0 > φ(x̃0) −φ(x∗)), this inequality holds for
k = 0.

Assuming (5.53) holds for the (k− 1)-th stage, by the strong con-
vexity of f(x), we have

E[V(x∗, x̃k−1)] 6 E
[τ
2
‖x̃k−1 − x∗‖2

]
6 E

[
τ

µ̃
(φ(x̃k−1) −φ(x

∗))

]
6

V02
−(k−1)

µ

According to Corollary 5.3 and the setting of Nk and Γk, we have

E[φ(x̃k) −φ(x
∗)] 6

4τ(Λk + L)EV(x
∗, x̃k−1)

N2k
+

(Nk + 3)(σ
2 +M2)

Λk

6
4τLV02

−(k−1)

µN2k
+
4τΛkV02

−(k−1)

µN2k
+
4Nk(σ

2 +M2)

Λk

6
4τLV02

−(k−1)

µN2k
+
8
√
(σ2 +M2)τV02−(k−1)

√
µNk

6
V02

−k

2
+

V02
−k

2
= V02

−k.

Therefore, we prove that E[φ(x̃k) −φ(x
∗)] 6 V02

−k for k > 1.

5.8 appendix : technical proofs 89

After running K stages of multi-stage ORDA with K = log2
(
V0
ε

)
,

we have E[φ(x̃k) − φ(x
∗)] 6 V02

−K = ε. The total number of itera-
tions from these K stages is upper bounded by:

K∑
k=1

Nk 6
K∑
k=1

max

{
4

√
τL

µ
,
2k+9τ(σ2 +M2)

µV0

}

6
K∑
k=1

[
4

√
τL

µ
+
2k+9τ(σ2 +M2)

µV0

]

= 4

√
τL

µ
K+

1024τ(σ2 +M2)(2K − 1)

µV0

6 4

√
τL

µ
log2

(
V0

ε

)
+
1024τ(σ2 +M2)

µε

Part IV

L E A R N I N G D Y N A M I C S PA R S E G R A P H I C A L
M O D E L S

6
G R A P H - VA L U E D R E G R E S S I O N

In the first part of the thesis, we discussed efficient optimization
techniques for multi-task regression, where the goal is to predict
E(Y|X = x). Here Y and X denote the random response and input
vectors, respectively. In many applications, instead of estimating the
conditional mean of Y given X as in multi-task regression, we are in-
terested in estimating conditional structures of Y given X, i.e., learn-
ing dynamic structures of Y varying with X. One of the most im-
portant structures in machine learning is the undirected graphical
model (a.k.a., Markov network), which decode the dependency struc-
ture of a random vector into a graph G. In this chapter, we study the
problem of estimating the conditional undirected graphical model
of Y give X as input, denoted as G(x). We refer to this problem as
“graph-valued regression”. We propose a semiparametric method for
estimating G(x) that builds a tree on the X space just as in CART (clas-
sification and regression trees), but at each leaf of the tree estimates
a graph. We call the method “Graph-optimized CART,” or Go-CART.
We study the theoretical properties of graph-valued regression using
dyadic partitioning trees, establishing oracle inequalities on risk min-
imization and graph estimation consistency. We also demonstrate the
application of Go-CART to a meteorological dataset, showing how
graph-valued regression can provide an interesting tool for analyz-
ing high dimensional data.

6.1 introduction and motivation

Let Y be a p-dimensional random vector with distribution P. A com-
mon way to study the structure of P is to construct the undirected
graph G = (V ,E), where the vertex set V corresponds to the p compo-
nents of the vector Y. The edge set E is a subset of the pairs of vertices,
where an edge between Yj and Yk is absent if and only if Yj is condi-
tionally independent of Yk given all the other variables. G is so-called
the undirected graphical model with respect to the distribution P of
Y.

Suppose now that Y and X are both random vectors, and let P(· |X)
denote the conditional distribution of Y given X. In a typical regres-
sion or classification problem, we are interested in the conditional
mean µ(x) = E (Y |X = x). But if Y is multivariate, we may be also in-
terested in how the structure of P(· |X) varies as a function of X. In par-
ticular, let G(x) be the undirected graph corresponding to P(· |X = x).
We refer to the problem of estimating G(x) as graph-valued regression.

Let G = {G(x) : x ∈ X} be a set of graphs indexed by x ∈ X, where
X is the domain of X. Then G induces a partition of X, denoted as
X1, . . . ,Xm, where x1 and x2 lie in the same partition element if and
only if G(x1) = G(x2). Graph-valued regression thus reduces to esti-

93

94 graph-valued regression

mating the partition and estimating the graph within each partition
element.

We present three different partition-based graph estimators; two
that use global optimization, and one based on a greedy splitting
procedure. One of the optimization based schemes uses penalized
empirical risk minimization, the other uses held-out risk minimiza-
tion. As we show, both methods enjoy strong theoretical properties
under relatively weak assumptions; in particular, we establish oracle
inequalities on the excess risk of the estimators, and partition selec-
tion consistency (under stronger assumptions) in Section 6.4. While
the optimization based estimates are attractive, they do not scale well
computationally when the input dimension is large. An alternative
is to adapt the greedy algorithms of classical CART, as we describe
in Section 6.3.1. In Section 6.5 we present experimental results on
both synthetic data and a meteorological dataset, demonstrating how
graph-valued regression can be an effective tool for analyzing high
dimensional data with covariates.

6.2 graph-valued regression

Let y1, . . . ,yn be a random sample of vectors from P, where each
yi ∈ Rp. We are interested in the case where p is large and, in fact,
may diverge with n asymptotically. One way to estimate G from the
sample is the graphical lasso or glasso [49, 5], where one assumes that
P is Gaussian with mean µ and covariance matrix Σ. Missing edges
in the graph correspond to zero elements in the precision matrix Ω =

Σ−1. A sparse estimate of Ω is obtained by solving

Ω̂ = arg min
Ω�0

{
tr(SΩ) − log |Ω|+ λ‖Ω‖1

}
(6.1)

where Ω is positive definite, S is the sample covariance matrix, and
‖Ω‖1 =

∑
j,k |Ωjk| is the elementwise `1-norm of Ω. A fast algorithm

for finding Ω̂ was given by Friedman et al. [49], which involves esti-
mating a single row (and column) of Ω in each iteration by solving a
lasso regression. The theoretical properties of Ω̂ have been studied by
Rothman et al. [120] and Ravikumar et al. [117]. In practice, it seems
that the glasso yields reasonable graph estimators even if Y is not
Gaussian; however, proving conditions under which this happens is
an open problem.

We briefly mention three different strategies for estimating G(x),
the graph of Y conditioned on X = x, each of which builds upon the
glasso.

Parametric Estimators. Assume that Z = (X, Y) is jointly multivari-

ate Gaussian with covariance matrix Σ =

(
ΣX ΣXY

ΣYX ΣY

)
. We can esti-

mate ΣX, ΣY , and ΣXY by their corresponding sample quantities Σ̂X,
Σ̂Y , and Σ̂XY , and the marginal precision matrix of X, denotedΩX, can
be estimated using the glasso. The conditional distribution of Y given
X = x is obtained by standard Gaussian formulas. In particular, the
conditional covariance matrix of Y |X is Σ̂Y|X = Σ̂Y − Σ̂YXΩ̂XΣ̂XY and

6.2 graph-valued regression 95

a sparse estimate of the conditional precision Ω̂Y|X can be obtained by
directly plugging in Σ̂Y|X into glasso. However, the estimated graph
does not vary with different values of X.

Kernel Smoothing Estimators. We assume that Y given X is Gaus-
sian, but without making any assumption about the marginal distri-
bution of X. Thus Y |X = x ∼ N(µ(x),Σ(x)). Under the assumption
that both µ(x) and Σ(x) are smooth functions of x, we estimate Σ(x)
via kernel smoothing:

Σ̂(x) =

∑n
i=1 K

(
‖x−xi‖
h

)
(yi − µ̂(x)) (yi − µ̂(x))

T∑n
i=1 K

(
‖x−xi‖
h

)
where K is a kernel (e.g. the probability density function of the stan-
dard Gaussian distribution), ‖ · ‖ is the Euclidean norm, h > 0 is a
bandwidth and

µ̂(x) =

n∑
i=1

K

(
‖x− xi‖
h

)
yi

/ n∑
i=1

K

(
‖x− xi‖
h

)
.

Now we apply glasso in (6.1) with S = Σ̂(x) to obtain an estimate of
G(x). This method is appealing because it is simple and very similar
to nonparametric regression smoothing; the method was analyzed
for one-dimensional X in [160]. However, while it is easy to estimate
G(x) at any given x, it requires global smoothness of the mean and
covariance functions.

Partition Estimators. In this approach, we partition X into finitely
many connected regions X1, . . . ,Xm. Within each Xj, we apply the
glasso to get an estimated graph Ĝj. We then take Ĝ(x) = Ĝj for all
x ∈ Xj. To find the partition, we appeal to the idea used in CART (clas-
sification and regression trees) [17]. We take the partition elements to
be recursively defined rectangles with sides parallel to the axes. As
is well-known, we can then represent the partition by a tree, where
each leaf node corresponds to a single partition element. In CART,
the leaves are associated with the means within the partitions; while
in our case, there will be an estimated undirected graph for each
leaf node. We refer to this method as Graph-optimized CART, or Go-
CART. The remainder of this chapter is devoted to the details of this
method.

Discussions on Kernel Smoothing v.s. Partition Estimators. Al-
though both kernel smoothing and partition estimators can be ap-
plied for the estimation of the conditional Gaussian graphical mod-
els, one should choose different estimators for different applications.
In particular, when the underlying graphs changes smoothly with
respect to input x as evidenced in many time-varying applications,
kernel smoothing estimator is a more suitable choice due to its lo-
cal smoothing effect. However, there are two drawbacks for the ker-
nel smoothing estimator. The first one is that since one has to apply
glasso for each data point x with its Σ̂(x), the computational cost of
kernel smoothing estimator is prohibitive when applied to a large

96 graph-valued regression

number of data points. The second drawback is that when the di-
mensionality of x is high, the kernel smoothing estimator without
dimensionality reduction displays a high variability.

On the other hands, when using partition estimators, one advan-
tage is that it could help us find abruptly changing points in the
x space. This will be particularly useful for many applications. For
example, for climate data analysis where x represents locations and
y represents a set of climatological factors, changing points in the
x space might correspond to some interesting geographical features
(e.g., a mountain between two adjacent locations might lead to very
different climate phenomena of these locations). To put it another
way, when using partition estimators, we normally do not assume
graphs for adjacent x are close and our goal is to detect those chang-
ing points. In addition, the partition based estimator can easily scale
to large dataset with many data points and works well even when
the dimensionality of x is high. In fact, when the dimensionality of x
is high, our Go-CART estimator will only make splits on just a few
relevant dimensions of x and leave other dimensions unsplit.

6.3 graph-optimized cart

Let X ∈ Rd and Y ∈ Rp be two random vectors, and let {(x1,y1), . . . , (xn,yn)}
be n i.i.d. samples from the joint distribution of (X, Y). The domains
of X and Y are denoted by X and Y respectively; and for simplicity
we take X = [0, 1]d. We assume that

Y |X = x ∼ Np(µ(x),Σ(x))

where µ : Rd → Rp is a vector-valued mean function and Σ : Rd →
Rp×p is a matrix-valued covariance function. We also assume that for
each x, Ω(x) = Σ(x)−1 is a sparse matrix, i.e., many elements of Ω(x)

are zero. In addition, Ω(x) may also be a sparse function of x, i.e.,
Ω(x) = Ω(xR) for some R ⊂ {1, . . . ,d} with cardinality |R| � d. The
task of graph-valued regression is to find an inverse covariance Ω̂(x)

to estimate Ω(x) for any x ∈ X; in some situations the graph of Ω(x)

is of greater interest than the entries of Ω(x) themselves.
Go-CART is a partition based conditional graph estimator. We par-

tition X into finitely many connected regions X1, . . . ,Xm, and within
each Xj we apply the graphical lasso to estimate a graph Ĝj. We then
take Ĝ(x) = Ĝj for all x ∈ Xj. To find the partition, we restrict our-
selves to dyadic splits, as studied by [123, 13]. The primary reason
for such a choice is the computational and theoretical tractability of
dyadic partition based estimators.

Let T denote the set of dyadic partitioning trees (DPTs) defined
over X = [0, 1]d, where each DPT T ∈ T is constructed by recur-
sively dividing X by means of axis-orthogonal dyadic splits. Each
node of a DPT corresponds to a hyperrectangle in [0, 1]d. If a node is
associated to the hyperrectangle A =

∏d
l=1[al,bl], then after being

dyadically split along dimension k, the two children are associated
with the sub-hyperrectangles A

(k)
L =

∏
l<k[al,bl] × [ak, ak+bk2] ×

6.3 graph-optimized cart 97

∏
l>k[al,bl] and A

(k)
R = A\A

(k)
L . Given a DPT T , we denote by

ΠT = {X1, . . . ,XmT
} the partition of X induced by the leaf nodes of

T . For a dyadic integer N = 2K, we define TN to be the collection of
all DPTs such that no partition has a side length smaller than 2−K.
We use µT (x) and ΩT (x) to denote the piecewise constant mean and
precision functions associated with T :

µT (x) =

mT∑
j=1

µXj · I
(
x ∈ Xj

)
and ΩT (x) =

mT∑
j=1

ΩXj · I
(
x ∈ Xj

)
,

where µXj ∈ Rp and ΩXj ∈ Rp×p are the mean vector and precision
matrix for Xj.

Before formally defining our graph-valued regression estimators,
we require some further definitions. Given a DPT T with an induced
partition ΠT = {Xj}

mT

j=1 and corresponding mean and precision func-
tions µT (x) and ΩT (x), the negative conditional log-likelihood risk
R(T ,µT ,ΩT) and its sample version R̂(T ,µT ,ΩT) are defined as fol-
lows:

R(T ,µT ,ΩT) =
mT∑
j=1

E

[(
tr
[
ΩXj

(
(Y − µXj)(Y − µXj)

T
)]

− log |ΩXj |
)
· I
(
X ∈ Xj

)]
,

R̂(T ,µT ,ΩT) =
1

n

n∑
i=1

mT∑
j=1

[(
tr
[
ΩXj

(
(yi − µXj)(yi − µXj)

T
)]

− log |ΩXj |
)
· I
(
xi ∈ Xj

)]
.

Let [[T]] > 0 denote a prefix code over all DPTs T ∈ TN; thus,∑
T∈TN 2

−[[T]] 6 1. One such prefix code [[T]] is proposed in [123],
and takes the form [[T]] = 3|ΠT |− 1+ (|ΠT |− 1) logd/ log 2. A simple
upper bound for [[T]] is

[[T]] 6 (3+ logd/ log 2)|ΠT |. (6.2)

Our analysis will assume that the conditional means and precision
matrices are bounded in the ‖ · ‖∞ and ‖ · ‖1 norms; specifically we
suppose there is a positive constant B and a sequence L1,n, . . . ,LmT ,n >

0, where each Lj,n ∈ R+ is a function of the sample size n, and we
define the domains of each µXj and ΩXj as

Mj = {µ ∈ Rp : ‖µ‖∞ 6 B} ,

Λj =
{
Ω ∈ Rp×p : Ω is positive Ω � 0, ‖Ω‖1 6 Lj,n

}
. (6.3)

With this notation in place, we can now define two estimators.

Definition 6.1. The penalized empirical risk minimization Go-CART
estimator is defined as

T̂ ,
{
µ̂
X̂j

, Ω̂
X̂j

}m
T̂

j=1
= argminT∈TN,µXj

∈Mj,ΩXj
∈Λj

{
R̂(T ,µT ,ΩT) + pen(T)

}
where R̂ is defined in (6.2) and

pen(T) = γn ·mT

√
[[T]] log 2+ 2 log(np)

n

where γn > 0 is a regularization parameter.

98 graph-valued regression

Empirically, we may always set the dyadic integer N to be a reason-
ably large value; the tuning parameter γn is responsible for selecting
a suitable DPT T ∈ TN.

We also formulate an estimator that minimizes held-out risk. For
this purpose, suppose that

{
(x ′1,y ′1), . . . , (x

′
n2

,y ′n2)
}

is an i.i.d. sample
of held-out data. The held-out negative log-likelihood risk is then
given by

R̂out(T ,µT ,ΩT) =
1

n2

n2∑
i=1

mT∑
j=1

{(
tr
[
ΩXj

(
(y ′i − µXj)(y

′
i − µXj)

T
)]

− log |ΩXj |
)
· I
(
x ′i ∈ Xj

)}
.

Definition 6.2. For each DPT T define

µ̂T , Ω̂T = argminµXj
∈Mj,ΩXj

∈ΛjR̂(T ,µT ,ΩT)

where R̂ is defined in (6.2) but only evaluated on D1 = {(x1,y1), . . . , (xn1 ,yn1)}.
The held-out risk minimization Go-CART estimator is

T̂ = argminT∈TN R̂out(T , µ̂T , Ω̂T).

6.3.1 Greedy Partitioning

The procedures in the last section require us to find an optimal dyadic
partitioning tree within TN. Although dynamic programming can be
applied, as in [13], the computation does not scale to large input di-
mensions d. In this section, we propose a simple yet effective greedy
algorithm to find an approximate solution (T̂ , µ̂T , Ω̂T). We focus on
the held-out risk minimization form as in Definition 6.2, due to its
superior empirical performance. But note that our greedy approach
is generic and can easily be adapted to the penalized empirical risk
minimization form.

First, consider the simple case that we are given a dyadic tree struc-
ture T which induces a partition ΠT = {X1, . . . ,XmT

} on X. For any
partition element Xj, we estimate the sample mean using the training
dataset D1:

µ̂Xj =
1∑n1

i=1 I
(
xi ∈ Xj

) n1∑
i=1

yi · I
(
xi ∈ Xj

)
.

The glasso is then used to estimate a sparse precision matrix Ω̂Xj .
More precisely, let Σ̂Xj be the sample covariance matrix for the parti-
tion element Xj, given by

Σ̂Xj =
1∑n1

i=1 I
(
xi ∈ Xj

) n1∑
i=1

(
yi − µ̂Xj

) (
yi − µ̂Xj

)T · I (xi ∈ Xj
)

.

The estimator Ω̂Xj is obtained by optimizing

Ω̂Xj = arg min
Ω�0

{
tr(Σ̂XjΩ) − log |Ω|+ λj‖Ω‖1

}
,

where λj is in one-to-one correspondence with Lj,n in (6.3). In prac-
tice, we run the full regularization path of the glasso, from large λj,

6.4 theoretical properties 99

which yields very sparse graph, to small λj, and select the graph
that minimizes the held-out negative log-likelihood risk. (Note that
if there is no additional held-out validation data, the Bayesian infor-
mation criterion (BIC) suggested by [151] could be adopted. In prac-
tice, compared to BIC, the held-out risk minimization is more stable
and has better sparsity pattern recovery quality.) To further improve
the model selection performance, we refit the parameters of the pre-
cision matrix after the graph has been selected. That is, the glasso
typically results in a large estimation bias as a consequence of the
`1-regularization. To reduce the bias, we first estimate the sparse pre-
cision matrix using `1-regularization, and then we refit the Gaussian
model without `1-regularization, but enforcing the sparsity pattern
obtained in the first step.

The natural, standard greedy procedure starts from the coarsest
partition X = [0, 1]d and then computes the decrease in the held-out
risk by dyadically splitting each hyperrectangle A along dimension
k ∈ {1, . . . d}. The dimension k∗ that results in the largest decrease in
held-out risk is selected, where the change in risk is given by

∆R̂
(k)
out (A, µ̂A, Ω̂A)

= R̂out(A, µ̂A, Ω̂A) − R̂out(A
(k)
L , µ̂

A
(k)
L

, Ω̂
A

(k)
L

) − R̂out(A
(k)
R , µ̂

A
(k)
R

, Ω̂
A

(k)
R

).

If splitting any dimension k of A leads to an increase in the held-out
risk, the element A should no longer be split and hence becomes a
partition element of ΠT .

This greedy partitioning method parallels the classical algorithms
for classification and regression that have been used in statistical
learning for decades. However, the strength of the procedures given
in Definitions 6.1 and 6.2 is that they lend themselves to a theoret-
ical analysis under relatively weak assumptions, as we show in the
following section. The theoretical properties of greedy Go-CART are
left to future work.

6.4 theoretical properties

We define the oracle risk R∗ over TN as

R∗ = R(T∗,µ∗T ,Ω∗T) = inf
T∈TN,µXj

∈Mj,ΩXj
∈Λj

R(T ,µT ,ΩT).

Note that T∗, µ∗T∗ , and Ω∗T∗ might not be unique, since the finest
partition always achieves the oracle risk. To obtain oracle inequalities
on our estimation procedure, we make the following two technical
assumptions.

Assumption 6.1. Let T ∈ TN be an arbitrary DPT which induces a par-
tition X1, . . . ,XmT

on X, we assume that there exists a constant B, such
that

max
16j6mT

‖µXj‖∞ 6 B and max
16j6mT

sup
Ω∈Λj

log |Ω| 6 Ln

100 graph-valued regression

where Λj is defined in (6.3) and Ln = max16j6mT
Lj,n, where Lj,n is the

same as in (6.3). We also assume that

Ln = o(
√
n).

Assumption 6.2. Let Y = (Y1, . . . , Yp)T ∈ Rp. For any for any A ⊂ X,
we define

Zk`(A) = YkY` · I(X ∈ A) − E(YkY` · I(X ∈ A))
Zj(A) = Yj · I(X ∈ A) − E(Yj · I(X ∈ A)).

We assume there exist constants M1,M2, v1, and v2, such that

sup
k,`,A

E|Zk`(A)|
m 6

m!Mm−2
2 v2

2
and sup

j,A
E|Zj(A)|

m 6
m!Mm−2

1 v1

2
.

for all m > 2.

Theorem 6.1. Let T ∈ TN be a DPT that induces a partition X1, . . . ,XmT

on X. For any δ ∈ (0, 1/4), let T̂ , µ̂
T̂

, Ω̂
T̂

be the estimator obtained using
the penalized empirical risk minimization objective of Definition 6.1, with a
penalty term pen(T) of the form

pen(T) = (C1 + 1)LnmT

√
[[T]] log 2+ 2 logp+ log(48/δ)

n

where C1 = 8
√
v2 + 8B

√
v1 + B

2. Then for sufficiently large n, the excess
risk inequality

R(T̂ , µ̂
T̂

, Ω̂
T̂
) − R∗ 6 inf

T∈TN

{
2pen(T) + inf

µXj
∈Mj,ΩXj

∈Λj
(R(T ,µT ,ΩT) − R∗)

}

holds with probability at least 1− 4δ.

A similar oracle inequality holds when using the held-out risk min-
imization form.

Theorem 6.2. Let T ∈ TN be a DPT which induces a partition X1, . . . ,XmT

on X. We define φn(T) to be a function of n and T such that

φn(T) = pen(T) = (C2 +
√
2)LnmT

√
[[T]] log 2+ 2 logp+ log(384/δ)

n

where C2 = 8
√
2v2 + 8B

√
2v1 +

√
2B2 and Ln = max16j6mT

Lj,n. Parti-
tion the data into D1 = {(x1,y1), . . . , (xn1 ,yn1)} and D2 = {((x ′1,y ′1), . . . , (x

′
n2

,y ′n2))}
with sizes n1 = n2 = n/2. Let T̂ , µ̂

T̂
, Ω̂
T̂

be the estimator constructed
using the held-out risk minimization criterion of Definition 6.2. Then, for
sufficiently large n, the excess risk inequality

R(T̂ , µ̂
T̂

, Ω̂
T̂
) − R∗ 6 inf

T∈TN

{
3φn(T) + inf

µXj
∈Mj,ΩXj

∈Λj
(R(T ,µT ,ΩT) − R∗)

}
+φn(T̂)

with probability at least 1− δ.

6.4 theoretical properties 101

Note that in contrast to the statement in Theorem 6.1, Theorem 6.2
results in a stochastic upper bound due to the extra φn(T̂) term,
which depends on the complexity of the final estimate T̂ . Due to
space limitations, the proofs of both theorems are detailed in the sup-
plementary materials.

We now temporarily make the strong assumption that the model is
correct, so that Y given X is conditionally Gaussian, with a partition
structure that is given by a dyadic tree. We show that with high prob-
ability, the true dyadic partition structure can be correctly recovered.

Assumption 6.3. The true model is

Y |X = x ∼ Np(µ
∗
T∗(x),Ω

∗
T∗(x)) (6.4)

where T∗ ∈ TN is a DPT with induced partition Π(T∗) = {X∗j }
mT∗
j=1 , such

that the precision matrix satisfies

Ω∗T∗(x) =

mT∗∑
j=1

Ω∗j I(x ∈ X∗j).

Under this assumption, clearly

inf
µ∗
T∗ ,Ω∗

T∗∈MT∗
R(T∗,µ∗T∗ ,Ω

∗
T∗) = inf

T∈TN,µT ,ΩT∈MT

R(T ,µT ,ΩT),

where MT is given by

MT =
{
µ(x) =

mT∑
j=1

µXj I(x ∈ Xj), Ω(x) =

mT∑
j=1

ΩXj I(x ∈ Xj) : µXj ∈Mj, ΩXj ∈ Λj
}

.

We have the following definitions:

Definition 6.3. A tree estimation procedure T̂ is tree partition consistent
in case

P
(
Π(T̂) ⊂ Π(T∗)

)
→ 1

as n→∞.

Note that the estimated partition may be finer than the true parti-
tion. Establishing a tree partition consistency result requires further
technical assumptions. The following assumption specifies that for
arbitrary adjacent subregions of the true dyadic partition, either the
means or the variances should be sufficiently different. Without such
an assumption, of course, it is impossible to detect the boundaries of
the true partition.

Assumption 6.4. Let X∗i and X∗j be adjacent partition elements of T∗, so
that they have a common parent node within T∗. Let Σ∗X∗i = (Ω∗X∗i

)−1. We
assume there exist positive constants c1, c2, c3, c4, such that either

2 log

∣∣∣∣∣Σ
0
X∗i

+ Σ0X∗j
2

∣∣∣∣∣− log |Σ0X∗i
|− log |Σ0X∗j

| > c4

or ‖µ∗X∗i − µ
∗
X∗j
‖22 > c3. We also assume

ρmin(Ω
∗
X∗j

) > c1, ∀j = 1, . . . ,mT∗ ,

where ρmin(·) denotes the smallest eigenvalue. Furthermore, for any T ∈ TN
and any A ∈ ΠT , we have P (X ∈ A) > c2.

102 graph-valued regression

Theorem 6.3. Under the above assumptions, we have

inf
T∈TN, Π(T∗)*Π(T)

inf
µT ,ΩT∈MT

R(T ,µT ,ΩT) − inf
µ,Ω∈MT∗

R(T∗,µ0T∗ ,Ω
0
T∗)

> min{
c1c2c3
2

, c2c4}

where c1, c2, c3, c4 are defined in Assumption 6.4. Moreover, the Go-CART
estimator in both the penalized risk minimization and held-out risk mini-
mization form is tree partition consistent.

This result shows that, with high probability, we obtain a finer par-
tition than T∗; the assumptions do not, however, control the size of
the resulting partition. The proof of this result appears in the supple-
mentary material.

6.5 experiment

We now present the performance of the greedy DPT learning algo-
rithm of Section 6.3.1 on both synthetic data and a real meteorological
dataset. In each experiment, we set the dyadic integer to N = 210 to
ensure that we can obtain sufficiently fine partitions of the covariate
space X. Furthermore, we always ensure that the region (hyperrect-
angle) represented by each leaf node contains no fewer than 10 data
points to guarantee reasonable estimates of the sample means and
sparse inverse covariance matrices.

6.5.1 Synthetic Data

6.5.1.1 Dyadic Underlying Partition

We generate n data points x1, . . . , xn ∈ Rd with n = 10, 000 and
d = 10 uniformly distributed on the unit hypercube [0, 1]d. We split
the square [0, 1]2 defined by the first two dimension of the unit hy-
percube into 22 subregions as shown in Figure 6.1 (a). For the t-th
subregion where 1 6 t 6 22, we generate an Erdös-Rényi random
graph Gt = (Vt,Et) with the number of vertices p = 20, the number
of edges |E| = 10 and the maximum node degree is 4. As an illustra-
tion example, the random graphs for subregion 4 (smallest region), 17

(middle region) and 22 (large region) are presented in Figure 6.1 (b),
(c) and (d) respectively. For each graph Gt, we generate the inverse
covariance matrix Ωt according to:

Ωti,j =

1 if i = j,

0.245 if (i, j) ∈ Et,

0 otherwise,

where 0.245 guarantees the positive definiteness of Ωt when the max-
imum node degree is 4.

For each data point xi in the t-th subregion, we associate it with
a 20-dimensional response vector yi generated from a multivariate

6.5 experiment 103

1

2 3

4

5

6 7

8

9

10 11

12

13

14 15

16

17

18

19

20

21

22

1 2

3

4

5

6

7

8

9
101112

13

14

15

16

17

18

19

20 1 2
3

4

5

6

7

8

9
101112

13

14

15

16

17

18

19
20 1 2

3

4

5

6

7

8

9
1011

12
13

14

15

16

17

18

19
20

(a) (b) (c) (d)
Figure 6.1: (a) The 22 subregions defined on [0, 1]2. The horizontal axis cor-

responds to the first dimension denoted as X1 while the vertical
axis corresponds to the second dimension denoted as X2. The
bottom left point corresponds to [0, 0] and the upper right point
corresponds to [1, 1]. (b) The ground true graph for subregion 4.
(c) The ground true graph for subregion 17. (d) The ground true
graph for subregion 22.

Gaussian distributionN20
(
0,
(
Ωt
)−1). We also create an equally-sized

held-out dataset in the same manner based on {Ωt}22t=1.
We apply the greedy algorithm on this synthetic dataset. The learned

dyadic tree structure and its induced partitions are presented in Fig-
ure 6.2. Estimated graphs for some nodes are also illustrated. Note
that the label for each subregion in the subplot (c) is the leaf node ID
of tree in subplot (a). We conduct 100 Monte Carlo simulations and
find that 82 times out of 100 runs our algorithm perfectly recover the
ground true partitions on the X1-X2 plane and never wrongly split
any irrelevant dimensions ranging from X3 to X10. Moreover, the es-
timated graphs have interesting patterns. Even though the graphs
within each subregion are sparse, the estimated graph by pooling all
the data together is highly dense. With the progress of our algorithm,
the estimated graphs become sparser and sparser. However, for the
immediate parent nodes of the true subregions, the graphs become
denser again. Out of the 82 simulations where we correctly identify
the tree structure, we list the graph estimation performance for sub-
regions 1, 4, 17, 18, 21, 22 in terms of precision, recall, and F1-score.
Let Ê be the estimated edge set while E be the true edge set. These
criteria are defined as:

precision =
|Ê∩ E|
|Ê|

, recall =
|Ê∩ E|
|E|

, F1-score = 2 · precision · recall
precision + recall

.

We see that for a larger subregion, it is easier for us to get a better
recovery performance. While good recovery for a very small region
becomes more challenging. This makes sense. In fact, for subregion 1

(the smallest one), we have only approximately 10000/64 ≈ 156 data
points. It’s more challenging to perfectly estimate the sparsity pattern
of in total p(p− 1)/2 = 190 edges. In contrast, for the subregion 18,
we have around 10000/16 = 625 data points fall inside, which makes
graph estimation much easier. We also plot the held-out risk in the
subplot (c). As we can see, the first few splits lead to the most sig-
nificant decreases in term of the held-out risk. The whole risk curve
illustrates a diminishing return behavior. Correctly splitting the large
rectangle into middle ones leads to significant decrease of the risk;
in contrast, splitting the middle rectangles into the smaller ones does
not reduce the risk as much. We have more simulated experiments

104 graph-valued regression

 1

 2 3

 4

 5 6

 7

 8 9 10 11

 12

 13 14

 15 16

 17 18

 19

 20 21 22 23 24 25 26 27

 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

 X1<

 0.5

 X1>

 0.5

 X2<

 0.5

 X2>

 0.5

 X2<

 0.5

 X2>

 0.5

 X2<

 0.25

 X2>

 0.25

 X1<

 0.75

 X1>

 0.75

 X1<

 0.25

 X1>

 0.25

 X1<

 0.25

 X1>

 0.25

 X2<

 0.75

 X2>

 0.75

 X2<

 0.75

 X2>

 0.75

 X2<

 0.125

 X2>

 0.125

 X1<

 0.375

 X1>

 0.375

 X2<

 0.625

 X2>

 0.625

 X1<

 0.875

 X1>

 0.875

 X1<

 0.125

 X1>

 0.125

 X1<

 0.125

 X1>

 0.125

 X2<

 0.375

 X2>

 0.375

 X2<

 0.375

 X2>

 0.375

 X1<

 0.625

 X1>

 0.625

 X1<

 0.625

 X1>

 0.625

 X2<

 0.875

 X2>

 0.875

 X2<

 0.875

 X2>

 0.875

1
2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

18

19

20

1
2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

18

19

20

1
2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

18

19

20

1
2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

18

19

20

1
2

3

4

5

6

7

8

9

1011
12

13

14

15

16

17

18

19

20

1
2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

18

19

20

1
2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

18

19

20

1
2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

18

19

20
1

2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

18

19

20

1
2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

18

19

20

1
2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

18

19

20

1
2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

18

19

20

1
2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

18

19

20

1
2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

18

19

20 1
2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

18

19

20
1

2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

18

19

20 1
2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

18

19
20

5

6

13

14

17

18

28 29

30 31

32

33

34

35

36 37

38 39

40

41

42

43

0 5 10 15 20 25
20.8

20.9

21

21.1

21.2

21.3

Splitting Sequence No.

H
e
ld

−
o
u
t

R
is

k

(a)
(c)

(b)

Figure 6.2: (a) The learned dyadic tree structure; (b) The induced partition
on [0, 1]2 and the number labeled on each subregion corresponds
to each leaf node ID of the tree in (a); (c) The held-out negative
log-likelihood risk for each split. The order of the splits corre-
sponds the ID of the tree node (from small to large)

when the ground true conditional covariance matrix is a continuous
function of the x. We present them in the appendix.

Table 6.1: The graph estimation performance over different subregions

Mean values over 100 runs (Standard deviation)

subregion region 1 region 4 region 17 region 18 region 21 region 22

Precision 0.8327 (0.15) 0.8429 (0.15) 0.9821 (0.05) 0.9853 (0.04) 0.9906 (0.04) 0.9899 (0.05)

Recall 0.7890 (0.16) 0.7990 (0.18) 1.0000 (0.00) 1.0000 (0.00) 1.0000 (0.00) 1.0000 (0.00)

F1 − score 0.7880 (0.11) 0.7923 (0.12) 0.9904 (0.03) 0.9921 (0.02) 0.9949 (0.02) 0.9913 (0.02)

6.5.1.2 Non-Dyadic Underlying Partition

To further demonstrate recovery quality of our method, in this section,
we simulate the data where the ground true conditional covariance
matrix is continuous in X; and we compare the graphs estimated by
our method to the one by applying glasso directly on the entire data.

Chain Structure
We consider the case where X lies on a one dimensional chain. More

precisely, we generate n equally spaced points x1, . . . , xn ∈ R with
n = 10, 000 on [0, 1]. We generate an Erdös-Rényi random graph G1 =
(V1,E1) with the number of vertices p = 20, the number of edges
|E| = 10 and the maximum node degree to be 4 as the basis. Then we
simulate the output y1, . . . ,yn] ∈ Rp as follows:

1. From t = 2 to T , we construct the graphGt = (Vt,Et) as follows:
(a) with probability 0.05, remove one edge from Gt−1 and (b)

6.5 experiment 105

with probability 0.05, add one edge to the graph generated in
(a). We make sure that the total number of edges is between 5

and 15; and maximum node degree is still 4.

2. For each graph Gt, generate the inverse covariance matrix Ωt:

Ωt(i, j) =

1 if i = j,

0.245 if (i, j) ∈ Et,

0 otherwise,

where 0.245 guarantees the positive definiteness ofΩt when the
maximum degree is 4.

3. For each t, we sample yt from a multivariate Gaussian distri-
bution with mean µ = (0, . . . , 0) ∈ Rp and covariance matrix
Σt = (Ωt)−1:

yt ∼ N(µ,Σt),

In addition, we generate the equal-sized held-out data in the same
manner as described based with the same µ and Σt and apply our
greedy algorithm to learn the dyadic tree structure and correspond-
ing inverse covariance matrices. The learned tree structure and the
corresponding partitions are presented in Figure 6.3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

height = 5

 1

 2

 3

 4

 5

 6 7

 8 9

 10

 11 12 13 14

 15 16

 17

 18 19 20 21 22 23 24 25 26 27

 X1<
 0.5

 X1>
 0.5

 X1<
 0.25

 X1>
 0.25

 X1<
 0.75

 X1>
 0.75

 X1<
 0.125

 X1>
 0.125

 X1<
 0.375

 X1>
 0.375

 X1<
 0.625

 X1>
 0.625

 X1<
 0.875

 X1>
 0.875

 X1<
 0.3125

 X1>
 0.3125

 X1<
 0.4375

 X1>
 0.4375

 X1<
 0.5625

 X1>
 0.5625

 X1<
 0.6875

 X1>
 0.6875

 X1<
 0.8125

 X1>
 0.8125

 X1<
 0.34375

 X1>
 0.34375

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

X

(a) (b)

Figure 6.3: (a) Learned tree structure; (b) Corresponding partitions

To examine the recovery quality of the underlying graph structure,
we compare our estimated graphs to the one estimated by directly
applying glasso to the entire dataset. We present the comparison of
precision, recall and F1-score in Figure 6.4 (a), (b) and (c) respectively.
As we can see, out method achieves much higher precision and F1-
Score. As for recall, glasso is even slightly better than us because the
graphs estimated by glasso on the entire data is very dense as shown
in 6.4 (d). The dense graphs lead to to fewer false negatives (thus large
recall values) but many false positives (thus small precision values).

Two-way Grid Structure
We demonstrate Go-CART for a two dimensional design X. The

underlying graph structures and Y are generated in the way similar
to that in in the previous section as follows: We generate equally

106 graph-valued regression

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

P
re

ci
si

on

GO−CART
glasso

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

R
ec

al
l

GO−CART
glasso

(a) (b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

F
1−

S
co

re

GO−CART
glasso

1 2
3

4

5

6

7

8

9
101112

13

14

15

16

17

18

19

20

(c) (d)

Figure 6.4: Comparison of our algorithm with glasso (a) Precision; (b) Recall;
(c) F1-score; (d) Estimated graph by applying glasso on the entire
dataset

 1

 2 3

 4

 5 6

 7

 8

 9

 10 11 12 13 14

 15

 16 17 18 19

 X1<

 0.5

 X1>

 0.5

 X2<

 0.5

 X2>

 0.5

 X2<

 0.5

 X2>

 0.5

 X2<

 0.25

 X2>

 0.25

 X2<

 0.75

 X2>

 0.75

 X2<

 0.25

 X2>

 0.25

 X1<

 0.75

 X1>

 0.75

 X1<

 0.25

 X1>

 0.25

 X2<

 0.75

 X2>

 0.75

8

10

11

12

13

14

16 17

18

19

(a) (b)

Figure 6.5: (a) Learned tree structure; (b) Learned partitions where the labels
correspond to the index of the leaf node in (a)

spaced x1, . . . , xn ∈ R2 with n = 10, 000 on a unit two-way grid
[0, 1]2. We generate an Erdös-Rényi random graph G1,1 = (V1,1,E1,1)

with the number of vertices p = 20, the number of edges |E| = 10

and the maximum node degree to be 4 then construct the graphs for
each x along diagonals. More precisely, for each pair of i, j, where
1 6 i 6 100 and 1 6 j 6 100, we randomly select either Gi−1,j (if it
exists) or Gi,j−1 (if it exists) with equal probability as the basis graph.
Then, we construct the graph Gi,j = (Vi,j,Ei,j) by removing one edge
and adding one edge with probability 0.05 based on the selected basis
graph and taking care that the number of edge is between 5 and
15 and the maximum degree is still 4. With the underlying graph
structures, we generate the covariance matrix and output Y in the
same way as in the last section.

6.5 experiment 107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b)

Figure 6.6: (a) Color map of F1-score via applying glasso on the entire
dataset; (b) Color map of F1-score learned by our method. Red
pixels indicate large values (approaching 1) and blue pixels indi-
cate small values (approaching 0) as shown in the color bar.

We apply the greedy algorithm to learn the dyadic tree structure
and corresponding inverse covariance matrices. The learned tree struc-
ture and the corresponding partitions are presented in Figure 6.5. We
plot the F1-score obtained by glasso on the entire data as compared
to our method in Figure 6.6. As we can see, for most x, our method
achieves significantly higher F1-score than directly applying glasso.
Note that since the graphs around the middle part of the diagonal
(line connecting [0, 1] and [1, 0]) have the most variability, therefore
the F1-scores for both method in this area are relatively low.

6.5.2 Climate Data Analysis

In this section ,we apply Go-CART on a meteorology dataset [99],
which contains monthly data of 18 different meteorological factors
from 1990 to 2002. We use the data from 1990 to 1995 as the train-
ing data and data from 1996 to 2002 as the held-out validation data.
The observations span 125 locations in the US on an equally spaced
grid with the range of latitude from 30.475 to 47.975 and the range of
longitude from -119.75 to -82.25. The 18 meteorological factors mea-
sured for each month include CO2, CH4, H2, CO, average temperature
(TMP), diurnal temperature range (DTR), minimum temperate (TMN),
maximum temperature (TMX), precipitation (PRE), vapor (VAP), cloud
cover (CLD), wet days (WET), frost days (FRS), global solar radiation
(GLO), direct solar radiation (DIR), extraterrestrial radiation (ETR), ex-
traterrestrial normal radiation (ETRN) and UV aerosol index (UV). (for
more details, see [99]).

As a comparison to our method, we estimate the sparse graph with
all the data from 125 locations using the graphical lasso algorithm, the
estimated graph is shown in Figure 6.7 (a). As we can see, there is no
edge connecting to any of CO2, CH4, H2 and CO. It contradicts our do-
main knowledge that these 4 factors are greenhouse gases and should
correlate to the solar radiation factors (including GLO, DIR, ETR, ETRN,

108 graph-valued regression

and UV) in some way according IPCC report [64], one of the most au-
thoritative reports in the field of meteorology. The reason why the
estimated graph against the domain knowledge may be because that
we pull all the data together so that the positive correlations at one
location might be counteracted by the negative correlations at other
locations.

To incorporate the geographical information, we treat the location
information (longitude and latitude) for each site as a two-dimensional
covariate x. The meteorology data of p = 18 factors are treated as the
response y. We learn the dyadic tree structure using the greedy algo-
rithm and obtain altogether 87 partitioned subregions as is shown in
Figure 6.7. We use different colors and shapes to denote subregions
so that no adjacent subregions has both the same color and shape.
Note that since there are only 8 colors being utilized, it’s possible
that some non-adjacent parts can share the same color without caus-
ing confusion.

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15

16

17

18
19

20

21

22

23

24 25 26 27

28 29 30 31

32 33 34 35

36

37

38

39

40 41

42 43

44
45

46 47

48
49

50
51

52
53

54
55

56 57

58 59 60 61

62 63

64

65

66

67

68

69

70 71 72 73

74 75 76 77

78 79 80 81

82 83 84 85
86 87

1

2

3

4

5 6

7

8

9

10

11

12

13

14

15

16

17

18 19

20

21

22

23

24 25 26 27

28 29 30 31

32 33 34 35

36

37

38

39

40 41

42 43

44 45

46 47

48 49

50 51

52 53 54 55

56 57

58 59 60 61

62 63

64

65

66

67

68

69

70 71 72 73

74 75 76 77

78 79 80 81

82 83 84 85 86 87

CO2
CH4

CO

H2

WET

CLD

VAP

PRE

FRS
DTR

TMN

TMP

TMX

GLO

ETR

ETRN

DIR

UV

CO2
CH4

CO

H2

WET

CLD

VAP

PRE

FRS
DTR

TMN

TMP

TMX

GLO

ETR

ETRN

DIR

UV
CO2

CH4

CO

H2

WET

CLD

VAP

PRE

FRS
DTR

TMN

TMP

TMX

GLO

ETR

ETRN

DIR

UV
CO2

CH4

CO

H2

WET

CLD

VAP

PRE

FRS
DTR

TMN

TMP

TMX

GLO

ETR

ETRN

DIR

UV

(a)

(b)

(c)

Figure 6.7: The climate data. (a) Learned partitions for the 125 locations and
projected to the US map, with the estimated graphs for subre-
gions 2, 3, and 65; (b) Estimated graph with data pooled from all
125 locations; (c): the re-scaled partition pattern induced by the
learned dyadic tree structure.

As an illustrative example, we plot the estimated graphs for subre-
gions 2 (corresponding to the strip land from Los Angles, California
to Phoenix, Arizona) and subregion 3 (corresponding the strip land
from Bakersfield, California to Flagstaff, Arizona) near the Pacific
Ocean in the subplots (b) and (c) of Figure 6.7. First, the graphs for
these two adjacent subregions are quite similar which suggests some
spatial smoothness of the learned graphs. Second, for both graphs, CO
is connected solar radiation factors in an either direct or indirect way.
And H2 is connected to UV which are in accordance with the Chapter
7 of IPCC report [64]. For the comparison purpose, we also plot in
subplot (d) the estimated graph for subregion 65 which corresponds
to the border of South Dakota and Nebraska in the mainland of the

6.6 appendix : technical proof 109

US. Clearly, the graph in Figure 6.7 (d) is quite different from those
in (b) and (c). We omit the plots for all 87 subregions due to the space
limit. In fact, we find out the graphs corresponding to the locations
along the coasts are sparser than those corresponding to the locations
in the mainland. This interesting pattern might provide insights to
help meteorologists better understand the dependency relationships
among these meteorological factors at different locations.

6.6 appendix : technical proof

Proof of Theorem 6.1

Proof. For any T ∈ TN, we denote

Sj,n =
1

n

n∑
i=1

(yi − µXj)(yi − µXj)
T · I(xi ∈ Xj) (6.5)

S̄j = E(Y − µXj)(Y − µXj)
T · I(X ∈ Xj). (6.6)

We then have∣∣∣R(T ,µT ,ΩT) − R̂(T ,µT ,ΩT)
∣∣∣ (6.7)

6

∣∣∣∣ m∑
j=1

tr
[
ΩXj

(
Sj,n − S̄j

)]∣∣∣∣+ ∣∣∣∣ m∑
j=1

log |ΩXj | ·
[1
n

n∑
i=1

I(xi ∈ Xj) − EI(X ∈ Xj)
]∣∣∣∣

6
m∑
j=1

‖ΩXj‖1 ·
∥∥Sj,n − S̄j

∥∥∞︸ ︷︷ ︸
A1

+

m∑
j=1

∣∣∣log |ΩXj |
∣∣∣ · ∣∣∣∣ 1n

n∑
i=1

I(xi ∈ Xj) − EI(X ∈ Xj)

∣∣∣∣︸ ︷︷ ︸
A2

.

We now analyze the terms A1 and A2 separately.
For A2, using the Hoeffding’s inequality, for ε > 0, we get

P

(∣∣∣∣ 1n
n∑
i=1

I(xi ∈ Xj) − EI(X ∈ Xj)

∣∣∣∣ > ε
)

6 2 exp
(
−2nε2

)
, (6.8)

which implies that,

P

(
sup
T∈TN

∣∣∣∣ 1n
n∑
i=1

I(xi ∈ Xj) − EI(X ∈ Xj)

∣∣∣∣/εT > 1
)

6 2
∑
T∈TN

exp
(
−2nε2T

)
, (6.9)

where εT means ε is a function of T . For any δ ∈ (0, 1), we have, with
probability at least 1− δ/4,

∀T ∈ TN,
∣∣∣∣ 1n

n∑
i=1

I(xi ∈ Xj) − EI(X ∈ Xj)

∣∣∣∣ 6
√

[[T]] log 2+ log(8/δ)
2n

(6.10)

where [[T]] > 0 is the prefix code of T given in (6.2).
From Assumption 6.1, since ΩXj ∈ Λj, we have that

max
16j6mT

log
∣∣ΩXj

∣∣ 6 Ln (6.11)

Therefore, with probability at least 1− δ/4,

A2 6 LnmT

√
[[T]] log 2+ log(8/δ)

2n
. (6.12)

110 graph-valued regression

Next, we analyze the term A1. It’s obvious that

max
16j6mT

‖ΩXj‖1 6 Ln. (6.13)

We only need to bound the term
∥∥Sj,n − S̄j

∥∥∞. By Assumption 6.2
and the union bound, we have, for any ε > 0,

P
(∥∥Sj,n − S̄j

∥∥∞ > ε)
6 P

(∥∥∥ 1
n

n∑
i=1

yiy
T
i I(xi ∈ Xj) − E

[
YYT I(X ∈ Xj)

]∥∥∥∞ > ε

4

)
(6.14)

+P

(∥∥∥ 1
n

n∑
i=1

yiµ
T
Xj
I(xi ∈ Xj) − E

[
YµTXjI(X ∈ Xj)

]∥∥∥∞ > ε

4

)
(6.15)

+P

(∥∥∥ 1
n

n∑
i=1

µXjy
T
i I(xi ∈ Xj) − E

[
µXjY

T I(X ∈ Xj)
]∥∥∥∞ > ε

4

)
(6.16)

+P

(∥∥∥ 1
n

n∑
i=1

µXjµ
T
Xj
I(xi ∈ Xj) − E

[
µXjµ

T
Xj
I(X ∈ Xj)

]∥∥∥∞ > ε

4

)
. (6.17)

Using the fact that ‖µ‖∞ 6 B and the Assumption 6.2, we can apply
Bernstein’s exponential inequality on (6.14), (6.15), and (6.16). Also,
since the indicator function is bounded, we can apply Hoeffding’s
inequality on (6.17). We then obtain:

P
(∥∥Sj,n − S̄j

∥∥∞ > ε) (6.18)

6 2p2 exp
(
−
1

32

(
nε2

v2 +M2ε

))
+4p2 exp

(
−

1

32B2

(
nε2

v1 +M1ε

))
+2p2 exp

(
−
2nε2

B4

)
.

Therefore, for any δ ∈ (0, 1/4), we have, for any ε→ 0 as n goes to
infinity, with probability at least 1− δ/4:

∀T ∈ TN,
∥∥Sj,n − S̄j

∥∥∞ 6 (8
√
v2) ·

√
[[T]] log 2+ 2 logp+ log(24/δ)

n
(6.19)

+ (8B
√
v1) ·

√
[[T]] log 2+ 2 logp+ log(48/δ)

n
(6.20)

+ B2 ·
√

[[T]] log 2+ 2 logp+ log(24/δ)
2n

(6.21)

Combined with (6.13), we get that

A1 6 C1LnmT

√
[[T]] log 2+ 2 logp+ log(48/δ)

n
. (6.22)

where C1 = 8
√
v2 + 8B

√
v1 +B

2.
Since the above analysis holds uniformly over the whole space of

TN, when choosing

pen(T) = (C1 + 1)LnmT

√
[[T]] log 2+ 2 logp+ log(48/δ)

n
, (6.23)

we then get, with probability at least 1− δ/2,

sup
T∈TN,µj∈Mj,Ωj∈Λj

∣∣∣R(T ,µT ,ΩT) − R̂(T ,µT ,ΩT)
∣∣∣ 6 pen(T) (6.24)

6.6 appendix : technical proof 111

for large enough n.
Given the uniform deviation inequality in (6.24), we have, for large

enough n: for any δ ∈ (0, 1), with probability at least 1− δ,

R(T̂ , µ̂
T̂

, Ω̂
T̂
) 6 R̂(T̂ , µ̂

T̂
, Ω̂
T̂
) + pen(T̂)

= inf
T∈TN,µXj

∈Mj,ΩXj
∈Λj

{
R̂(T ,µT ,ΩT) + pen(T)

}
6 inf

T∈TN

{
R̂(T ,µ∗T ,Ω∗T) + pen(T)

}
6 inf

T∈TN
{R(T ,µ∗T ,Ω∗T) + 2pen(T)}

= inf
T∈TN

{
inf

µXj
∈Mj,ΩXj

∈Λj
(R(T ,µT ,ΩT) + 2pen(T)

}
.

The desired result of the theorem follows by subtracting R∗ from both
sides.

Proof of Theorem 6.2

Proof. From (6.24), we have, for large enough n, on the dataset D1,
with probability at least 1− δ/4

sup
T∈TN,µj∈Mj,Ωj∈Λj

∣∣∣R(T ,µT ,ΩT) − R̂(T ,µT ,ΩT)
∣∣∣ 6 φn(T). (6.25)

Follow the same line of analysis, we can also get, on the validation
dataset D2, with probability at least 1− δ

4 .

sup
T∈TN

∣∣∣R(T , µ̂T , Ω̂T) − R̂out(T , µ̂T , Ω̂T)
∣∣∣ 6 φn(T) (6.26)

for large enough n. Where µ̂T , Ω̂T are as defined in (6.4).
Using the fact that

T̂ = argminT∈TN R̂out(T , µ̂T , Ω̂T), (6.27)

we have, for large enough n: for any δ ∈ (0, 1), with probability at
least 1− δ,

R(T̂ , µ̂
T̂

, Ω̂
T̂
) 6 R̂out(T̂ , µ̂

T̂
, Ω̂
T̂
) +φn(T̂)

= inf
T∈TN

R̂out(T , µ̂
T̂

, Ω̂
T̂
) +φn(T̂)

6 inf
T∈TN

{
R(T , µ̂

T̂
, Ω̂
T̂
) +φn(T)

}
+φn(T̂)

6 inf
T∈TN

{
R̂(T , µ̂

T̂
, Ω̂
T̂
) +φn(T) +φn(T)

}
+φn(T̂)

= inf
T∈TN

{
3φn(T) + inf

µXj
∈Mj,ΩXj

∈Λj
R(T ,µT ,ΩT)

}
+φn(T̂).

The result follows by subtracting R∗ on both sides.

112 graph-valued regression

Proof of Theorem 6.3

Proof. For any T ∈ TN, Π(T∗) * Π(T), there must exists a subregion
X ′ ∈ Π(T) such that there does not exist any A ∈ Π(T∗) which makes
X ′ ⊂ A. In this case, we can find a minimal class of disjoint subregions
{X̃1, . . . , X̃k ′} ∈ Π(T∗), such that

X ′ ⊂ ∪k ′i=1X̃i, (6.28)

where k ′ > 2. We define X∗i = X̃i ∩X ′ for i = 1, . . . ,k ′. Then we have

X ′ = ∪k ′i=1X∗i . (6.29)

Let {µ0X∗j ,Ω
0
X∗j

}k
′
j=1 be the corresponding true parameters on X̃1, . . . , X̃k ′ .

We denote R(X ′,µ0T∗ ,Ω
0
T∗) to be the risk of µ0T∗ and Ω0T∗ on the subre-

gion X ′, then

R(X ′,µ0T∗ ,Ω
0
T∗)

=

k ′∑
j=1

E

[(
tr
[
Ω0X∗j

(
(Y − µ∗X∗j

)(Y − µ∗X∗j
)T
)]

− log |Ω0X∗j
|
)
· I(X ∈ X∗j)

]

= pP
(
X ∈ X ′

)
−

k ′∑
j=1

P
(
X ∈ X0j

)
log |Ω0X∗j

|.

Since the DPT T does not further partition X ′, we have, for any
µT ,ΩT ∈MT :

R(X ′,µT ,ΩT) =

k′∑
j=1

E

[(
tr
[
ΩT

(
(Y − µT)(Y − µT)

T
)]

− log |ΩT |
)
· I(X ∈ X∗j)

]

=

k′∑
j=1

E

[(
tr
[
ΩT

(
(Y − µT)(Y − µT)

T
)])
· I(X ∈ X∗j)

]
− P(X ∈ X ′) log |ΩT |.

Since

(Y − µT)(Y − µT)
T = (Y − µ0X∗j

)(Y − µ0X∗j
)T + (Y − µ0X∗j

)(µ0X∗j
− µT)

T

+(µ0X∗j
− µT)(Y − µ

0
X∗j

)T + (µ0X∗j
− µT)(µ

0
X∗j

− µT)
T .

This implies that

k ′∑
j=1

E

[(
tr
[
ΩT

(
(Y − µT)(Y − µT)

T
)])
· I(X ∈ X∗j)

]

=

k ′∑
j=1

P
(
X ∈ X0j

) [
tr(ΩT (Ω∗j)

−1) + tr(ΩT (µ0X∗j − µT)(µ
0
X∗j

− µT)
T)
]

.

Using the fact that

R(X ′,µT ,ΩT) > max{R(X ′,µ0T∗ ,ΩT),R(X
′,µT ,Ω0T∗)}, (6.30)

We consider the two cases on the R.H.S. separately.
Case 1: The µ’s are different.

6.6 appendix : technical proof 113

we know that

inf
µT ,ΩT∈MT

R(X ′,µT ,ΩT) − R(X ′,µ0T∗ ,Ω
0
T∗) (6.31)

> inf
µT
R(X ′,µT ,Ω0T∗) − R(X

′,µ0T∗ ,Ω
0
T∗)

= inf
µT

k ′∑
j=1

P
(
X ∈ X0j

)
(µ0X∗j

− µT)
TΩ0X∗j

(µ0X∗j
− µT)

> c1c2 inf
µT

k ′∑
j=1

‖µ0X∗j − µT‖
2
2

where the last inequality follows from that fact that ρmin(Ω
0
X∗j

) >

c1, P
(
X ∈ X0j

)
> c2. It’s easy to see that a lower bound of the last

term is achieved at µ̄T ,

µ̄T =
1

k ′

k ′∑
j=1

µ0X∗j
. (6.32)

Furthermore, for any two DPTs T and T ′, if Π(T) ⊂ Π(T ′). it’s obvi-
ous that

inf
µT ,ΩT∈MT

R(T ,µT ,ΩT) > inf
µT ′ ,ΩT ′∈MT ′

R(T ′,µT ′ ,ΩT ′). (6.33)

Therefore, in the sequel, without loss of generality, we only need to
consider the case k ′ = 2.

The result of this case then follows from the fact that

2∑
j=1

‖µ0X∗j − µ̄T‖
2
2 =

1

2
‖µX∗1 − µX∗2‖

2
2 >

c3
2

. (6.34)

Case 2: The Ω’s are different.
In this case, we have

inf
µT ,ΩT∈MT

R(X ′,µT ,ΩT) − R(X ′,µ0T∗ ,Ω
0
T∗) > inf

ΩT
R(X ′,µ0T∗ ,ΩT) − R(X

′,µ0T∗ ,Ω
0
T∗)

= inf
ΩT

k ′∑
j=1

P
(
X ∈ X0j

)(
tr
[
Ω−1

X∗j
(ΩT −Ω0X∗j

)
]
−
(

log |ΩT |− log |Ω0X∗j
|
))

> c2 inf
ΩT

k ′∑
j=1

(
tr
[
Ω−1

X∗j
(ΩT −Ω0X∗j

)
]
−
(

log |ΩT |− log |Ω0X∗j
|
))

> c2 inf
ΣT

k ′∑
j=1

tr
[
Σ0X∗j

(Σ−1T −Ω0X∗j
)
]
+ log

|ΣT |

|Σ0
X∗j

|

= c2 inf

ΣT

k ′∑
j=1

tr
(
Σ0X∗j

Σ−1T

)
+ log

|ΣT |

|Σ0
X∗j

|
− p

where ΣT = Ω−1

T

As discussed before, we only need to consider the case k ′ = 2, a
lower bound of the last term is achieved at

Σ̄T =
ΣX∗1

+ ΣX∗2

2
(6.35)

114 graph-valued regression

Plug-in Σ̄T , we get

inf
ΣT

2∑
j=1

tr
(
Σ0X∗j

Σ−1T

)
+ log

|ΣT |

|Σ0
X∗j

|
− p

 >
2∑
j=1

tr
(
Σ0X∗j

Σ̄−1T

)
+ log

|Σ̄T |

|Σ0
X∗j

|
− p

= tr

(
(2Σ̄T − ΣX∗2)Σ̄

−1
T

)
+ log

|Σ̄T |

|ΣX∗1 |
− p+ tr

(
ΣX∗2 Σ̄

−1
T

)
+ log

|Σ̄T |

|ΣX∗2 |
− p

= log
|Σ̄T |

|ΣX∗1 |
+ log

|Σ̄T |

|ΣX∗2 |

= 2 log
∣∣∣∣ΣX∗1 + ΣX∗22

∣∣∣∣− log |ΣX∗1 |− log |ΣX∗2 |

> c4.

where the last inequality follows from the given assumption.
Therefore, we have

inf
µT ,ΩT∈MT

R(X ′,µT ,ΩT) − R(X ′,µ0T∗ ,Ω
0
T∗) > c2c4. (6.36)

The desired result of theorem is obtained by combining the above
discussed two cases.

7
M A R K O V F O R E S T R E G R E S S I O N

In the previous chapter, we proposed a new problem of estimating
the Markov network (a.k.a. undirected graphical model) of a random
vector Y conditioned on another random vector X as input, referred to
as “graph-valued regression”. We further proposed a partition-based
estimator called graph-optimized CART (Go-CART) to address this
problem. However, Go-CART requires Y to be continuous and fol-
low a conditional Gaussian distribution, which greatly restricts the
model’s applicability. In this chapter, we propose Markov forest re-
gression as an important complementary approach, where a condi-
tional forest-structured Markov network is estimated, allowing both
discrete and continuous Y. In the proposed forest-optimized CART
(Fo-CART) estimator, we build a dyadic partitioning tree on X where
the set of leaf nodes defines a partition of the input space, and es-
timate a forest-structured Markov network on each leaf node of the
tree. We also empirically demonstrate the usefulness of the proposed
methods on both simulated and real datasets.

7.1 introduction and motivation

A useful way to explore the structure of a distribution P for the ran-
dom vector Y = (Y1, . . . , Yd) ∈ Rd is to estimate its Markov network,
or undirected graph [83, 43]. This encodes the structure of P into an
undirected graph G = (V ,E), where the vertex set V corresponds to
Y1, . . . , Yd. The edge set encodes conditional independencies among
components of Y; an edge is missing between Yu and Yv if and only
if Yu and Yv are conditionally independent given the rest of the vari-
ables. To avoid overfitting, it is often assumed that the graph is sparse,
with a small number of edges.

For continuous Y, a large body of literature assumes that its cor-
responding distribution P is multivariate Gaussian N(µ,Σ). By opti-
mizing the `1-regularized log-likelihood, one can recover the under-
lying Markov network via the estimated inverse covariance matrix
[152, 5, 49]. For binary Y, one approach is to assume a discrete Gaus-
sian distribution—an Ising model—and estimate the corresponding
Markov network by solving an approximate sparse maximum like-
lihood problem [5, 118]. In addition to such parametric models, an-
other tractable class of sparse graphical models is the set of forest-
structured models. Recently, significant progress has been made on
estimating forest- or tree-structured graphical models [23, 127, 129,
93, 128, 32]. For both discrete and continuous Y, the forest structure
can be estimated via a Chow-Liu algorithm [33] with a thresholding
procedure [129, 93].

Existing literature mainly focuses on estimating the Markov net-
work for a high dimensional random vector Y. However, for many im-

115

116 markov forest regression

portant applications, the data have both a high dimensional response
variable Y and a vector of covariates X. In this setting, it is of interest
to estimate the Markov network of Y as a function of X. This problem
is known as graph-valued regression [92]. In particular, let P(· |X) be
the conditional distribution of Y given X. For the case where Y is con-
tinuous, Liu et al. [92] assumed that P(· |X = x) follows a Gaussian
distribution N(µ(x),Σ(x)) and proposed a penalized maximum log-
likelihood estimator, named graph-optimized CART (or Go-CART)
[92], to estimate the conditional graph structure. A kernel smoothing
based approach was further proposed in [76] for continuous Y but it
is limited in that it does not partition the input space X, and requires
that X is very low-dimensional.

In this paper, we address the problem of estimating a conditional
discrete Markov network. It is not straightforward to extend Go-CART
to handle a discrete response. The main challenge is that Go-CART
adopts a likelihood-based framework. Most methods for estimating
discrete Markov networks either resort to pseudo-likelihood based
inference or approximation algorithms, due to the intractable compu-
tation of the partition function in likelihood [5, 118]. To handle dis-
crete Y, we relax the conditional Gaussian assumption and propose
the Markov forest regression as a complement to Go-CART. Markov
forest regression estimates a forest-structured Markov network F(x)
associated with the conditional distribution P(· |X = x). Note that
we do not assume the Markov network of the ground true condi-
tional distribution P(· |X = x) is a forest; rather, we try to estimate
a forest-structured conditional distribution P̂(· |X = x) that best ap-
proximates P(· |X = x). Since the likelihood of a forest-structured dis-
tribution factors into univariate and bivariate marginals and can be
easily computed, a partition-based maximum log-likelihood estima-
tor can be defined in a similar way as in Go-CART. In particular, let
X denote the domain of X. We partition X into finitely many regions
X1, . . .Xm. For each partition element Xj, we estimate a forest F̂Xj for
the corresponding Y, and take F̂(x) = F̂Xj for all x ∈ Xj. To find the
partition, we adopt the basic technique behind classification and re-
gression trees (CART), recursively splitting the domain X into small
hyperrectangles to build up a partitioning tree. We use log-likelihood
as the search criterion for the best partitioning tree structure using a
forest-structured model at each leaf node. We refer to this method as
Forest-optimized CART, or Fo-CART.

The Fo-CART estimator complements Go-CART [92] and can nat-
urally handle both discrete and continuous response vectors without
assuming a conditional Gaussian distribution. In this paper, we focus
on the case of discrete Y, but our method easily extends to the contin-
uous case. The only difference is that for discrete data, univariate and
bivariate marginals for learning the forest structure are estimated via
normalized counts; in the continuous case, they are estimated using
the nonparametric kernel density estimation.

7.2 background 117

7.2 background

In this section, we introduce the necessary building-blocks of Fo-
CART .

Forest Learning. We first consider the simple case where we only
have Y and are interested in estimating its forest-structured Markov
network. For simplicity, we assume a common domain for each com-
ponent of Y, denoted as Y. Let Td be the family of trees with d nodes
and Fd the family of forests with d nodes. From Cayley’s theorem
[21], we know that the number of possible forests in Fd is upper
bounded by (d+ 1)d−1. Let PF be a forest-structured distribution for
Y which is Markov to F = (V ,E(F)) ∈ Fd. It is known that the joint
density of PF factorizes as follows [83]:

pF(y) = prod
d
u=1p(yu)prod(u,v)∈E(F)

p(yu,yv)
p(yu)p(yv)

, (7.1)

where p(yu) and p(yu,yv) are univariate and bivariate marginals. We
define P(Fd) be the family of distributions supported by graphs in Fd:
P(Fd) = {PF takes the form (7.1), for some F ∈ Fd}, always assuming
that the corresponding densities exist (with respect to some fixed base
measure).

Suppose we are given n i.i.d. samples y(1), . . . ,y(n) drawn from
the distribution P; the true Markov network of P does not have to be
a forest, i.e., P may not belong to P(Fd). The oracle forest density q∗

is defined as

q∗ = arg min
q∈P(Fd)

−EP[logq(Y)] = arg min
q∈P(Fd)

D(p ‖q), (7.2)

where D(p ‖q) is the KL-divergence between p and q. Our goal is to
estimate a forest structure F̂ having an associated density p̂

F̂
that best

approximates q∗.
Let e be the edge connecting Yu and Yv. We denote the mutual

information corresponding to e by:

I(e) ≡ I(u, v) =
∑

(yu,yv)∈Y2
p(yu,yv) log

p(yu,yv)
p(yu)p(yv)

. (7.3)

The forest structure F̂ with the associated density p̂
F̂

can be estimated
via a thresholded Chow-Liu based algorithm [129, 93]:

1. Given the data y(1), . . . ,y(n), estimate univariate marginals {p̂(yu)}u∈V
and bivariate marginals {p̂(yu,yv)}16u<v6d. Compute the set
of empirical mutual information quantities:

I(u, v) ≡
∑

(yu,yv)∈Y2
p̂(yu,yv) log

p̂(yu,yv)
p̂(yu) p̂(yv)

for all 1 6 u < v 6 d.

2. Run a maximum-weight spanning tree algorithm [77] to obtain
an edge set of the tree: E(T̂) ≡ arg maxE(T):T∈Td

∑
e∈E(T) I(e)

[33].

118 markov forest regression

3. Define a threshold ε. Prune the tree T̂ to a forest F̂ by selecting
those edges ê such that I(ê) > ε: E(F̂) = {ê ∈ E(T̂) : I(ê) >
ε}, The corresponding density estimator is defined as p̂

F̂
=

produ∈V p̂(yu)prod(u,v)∈E(F̂)
p̂(yu,yv)
p̂(yu) p̂(yv)

.

The first two steps constitute the Chow-Liu algorithm; the third
thresholding step addresses overfitting by pruning a tree to a more
sparse forest. For discrete Y, the estimated marginals are simply the
normalized counts of each observed symbol in Y and Y2. The thresh-
old ε can be set to be ε = n−β according to [129], where β is a
tuning parameter between 0 and 1. For continuous Y, Liu et al. [93]
propose to estimate the marginals via kernel density estimation and
the threshold ε is tuned based on validation data. For both cases, the
above algorithm is both structure consistent and risk consistent. In
this paper, we mainly consider discrete Y but our algorithm can be
easily extended to the continuous case.

Dyadic Partitioning Trees. To obtain the partition of the input
space, we adopt dyadic partitioning trees (DPT), as in [92]. DPTs
has been widely applied to regression and classification tasks, and
enjoy strong theoretical properties [89, 123]. For simplicity, we as-
sume the domain of X ∈ Rb to be X = [0, 1]b. A DPT T defined
over X is constructed by recursively dividing X by means of axis-
orthogonal dyadic splits. Each node of T is associated with a hyper-
rectangle in X = [0, 1]b and the root node corresponds to X itself.
Given a DPT T , the set of leaf nodes defines a partition of X that de-
note by Π(T) = {X1, . . . ,XmT

}. To restrict the complexity of the class
DPTs, we introduce a dyadic integer N = 2K and define TN to be
the collection of all DPTs such that no partition Xj has a side length
smaller than 1

N = 2−K. A prefix code [[T]] on the set of DPTs T ∈ TN
satisfies

∑
T∈TN 2

−[[T]] 6 1. A specific prefix code in [123] takes the
form: [[T]] = 3|Π(T)|− 1+ (|Π(T)|− 1) logb/ log 2 with a simple upper
bound [[T]] 6 (3+ logb/ log 2)|Π(T)|.

7.3 forest-optimized cart estimator

In this section, we introduce our Forest-optimized CART estimator
(Fo-CART). Fo-CART is a partition based conditional forest estimator.
Given a DPT T ∈ TN, X = [0, 1]b is partitioned into mT connected
hyperrectangles induced by the leaf nodes, Π(T) = {X1, . . . ,XmT

}. For
each partition element Xj, we estimate a forest structure F̂Xj and take
F̂(x) = F̂Xj for all x ∈ Xj.

Let D = {(x(1),y(1)), . . . , (x(n),y(n))} be n i.i.d. samples from the
joint distribution of (X, Y). Let FT (x) and pFT (x) be the forest structure
and the corresponding density associated with T :

FT (x) = FXj and pFT (x) = pFXj if x ∈ Xj. (7.4)

Given a DPT T and the corresponding FT (x) and pFT (x), the negative

7.3 forest-optimized cart estimator 119

log-likelihood risk R(T , FT ,pFT) and its sample version R̂(T , FT ,pFT)
are defined as follows:

R(T , FT ,pFT) =
mT∑
j=1

E
[
I(X ∈ Xj) ·

{ d∑
u=1

logpXj(yu) +
∑

(u,v)∈E(FXj)
log

pXj(yu,yv)

pXj(yu)pXj(yv)

}]
(7.5)

R̂(T , FT ,pFT) =
1

n

n∑
i=1

mT∑
j=1

I(x(i) ∈ Xj)
{ d∑
u=1

logpXj(y
(i)
u) +

∑
(u,v)∈E(FXj)

log
pXj(y

(i)
u ,y(i)v)

pXj(y
(i)
u)pXj(y

(i)
v)

}
,

(7.6)

where pXj is the marginal density of Y with the corresponding X ∈ Xj.
With this notation in place, we define our Fo-CART estimator:

Definition 7.1. Penalized empirical risk minimization Fo-CART esti-
mator:

T̂ ,
{
F̂
X̂j

, p̂
F̂
X̂j

}m
T̂

j=1

= argminT∈TN,FT ,pFT

{
R̂(T , FT ,pFT)+γn ·pen(T)

}
,

(7.7)

where R̂ is defined in (7.6) and pen(T) = dmT

√
4 log(n)+[[T]] log2

2n

with tuning parameter γn.
It is difficult to tune γn empirically. Therefore, we define a more

practical held-out risk minimization estimator as follows. We split our
dataset D into two sets, training data D1 = {(x(1),y(1)), . . . , (x(n1),y(n1))}
and held-out validation data D2 = {(x̃(1), ỹ(1)), . . . , (x̃(n2), ỹ(n2))} with
n1 + n2 = n. Following equation (7.6), the held-out negative log-
likelihood risk is given by

R̂out(T , FT ,pFT) =
1

n2

n2∑
i=1

mT∑
j=1

I(x̃(i) ∈ Xj)
{ d∑
u=1

logpXj(ỹ
(i)
u)+

∑
(u,v)∈E(FXj)

log
pXj(ỹ

(i)
u , ỹ(i)v)

pXj(ỹ
(i)
u)pXj(ỹ

(i)
v)

}
.

(7.8)

Definition 7.2. For each DPT T ∈ TN with the induced partition Π(T) =
{Xj}

mT

j=1, define{
F̂Xj , p̂F̂Xj

}mT

j=1

= argminFT ,pFT
R̂(T , FT ,pFT),

where the risk R̂ is evaluated on the training set D1. The forest F̂T and
density p̂

F̂T
are constructed as in (7.4). We then search for the best DPT T̂

using the held-out validation data:

T̂ = argminT∈TN R̂out(T , F̂T , p̂
F̂T
).

where R̂out as defined in (7.8) is evaluated on D2. The held-out risk mini-
mization Fo-CART estimator is T̂ with its induced partition Π(T̂) = {X̂j}

m
T̂

j=1

and
{
F̂
X̂j
p̂
F̂
X̂j

}m
T̂

j=1
.

120 markov forest regression

7.4 computational algorithm

Exhaustive search of the best DPT in TN could be computationally
very expensive for large b, even using the dynamic programming
scheme in [13]. As in [92], we adopt a greedy tree learning algorithm
to find a DPT T̂ with the corresponding

{
F̂
X̂j

, p̂
F̂
X̂j

}m
T̂

j=1
. We focus on

the held-out risk minimizer in Definition 7.2 due to its superior em-
pirical performance. However, the greedy tree learning algorithm also
applies to the penalized empirical risk minimization form in Defini-
tion 7.1.

Given a small hyperrectangle A associated to a node of a DPT
T , let D(A) = {i ∈ {1, . . . ,n1} : x(i) ∈ A} be indices of the train-
ing samples that fall into A. We estimate all univariate and bivari-
ate marginals p̂A using the data {y(i) : i ∈ D(A)}. We then use the
thresholded Chow-Liu algorithm as described in Section 2 to estimate
the forest structure F̂A with the density p̂

F̂A
and compute the held-

out negative log-likelihood R̂out(A, F̂A, p̂
F̂A

) using the validation data
D2 = {(x̃(1), ỹ(1)), . . . , (x̃(n2), ỹ(n2))}:

R̂out(A, F̂A, p̂
F̂A

) =
1

n2

∑
i:x̃(i)∈A

{ d∑
u=1

log p̂A(ỹ
(i)
u)+

∑
(u,v)∈E(F̂A)

log
p̂A(ỹ

(i)
u , ỹ(i)v)

p̂A(ỹ
(i)
u)pA(ỹ

(i)
v)

}
.

(7.9)

Note that we tune the threshold ε, which gives different forest struc-
tures and choose the one that leads to the minimum held-out negative
log-likelihood R̂out(A, F̂A, p̂

F̂A
).

The greedy tree learning algorithm starts from the coarsest par-
tition X = [0, 1]b and then computes the decrease in the held-out
risk by dyadically splitting each hyperrectangle A along dimension
k ∈ {1, . . . b}. For each split, we pick the dimension k∗ that leads to
the largest decrease in the held-out risk:

k∗ = arg max
k∈{1,...,b}

R̂out(A, F̂A, p̂
F̂A

) − R̂out(A
(k)
L , F̂

A
(k)
L

, p̂
F̂
A
(k)
L

) − R̂out(A
(k)
R , F̂

A
(k)
R

, p̂
F̂
A
(k)
R

),

where A
(k)
L and A

(k)
R are the left and right children obtained by dyad-

ically splitting A along the dimension k. If splitting any dimension k
of A leads to an increase in the held-out risk, A should no longer be
split and hence becomes a partition element of Π(T).

7.5 experimental results

We evaluate the performance of the greedy version of the Fo-CART
estimator for discrete Y on both synthetic and real datasets. For all ex-
periments, the threshold ε = n−β

1 is tuned on the validation data us-
ing the method described in Section 7.4 with β ∈ {0.05, 0.1, 0.15, . . . , 0.95};
the dyadic integer N is set to 210. In addition, to guarantee a reason-
able empirical estimate of the marginals, we always ensure that each
leaf node contains at least 10 data points.

7.5 experimental results 121

1

2 3

4

5

6 7

8

9

10 11

12

13

14 15

16

17

18

19

20

21

22

1
2

3

4

5

6 7
8

9

10

11

12

13
14

15

16

17

18

19

20

1
2

3

4

5

6

7

8

9

10

11

12 13

1415 16

17
18

19
20

1

2

3

4

5

6

7

8
9

10

11 12

13

14
15

16

17

18

19

20

(a) (b) (c) (d)

Figure 7.1: (a) The 22 subregions defined on [0, 1]2. The horizontal axis cor-
responds to the first dimension denoted as X1 while the vertical
axis corresponds to the second dimension denoted as X2. The
bottom left point corresponds to [0, 0] and the upper right point
corresponds to [1, 1]. (b) (c) (d) The ground true forest for the
subregion 1, 18, and 22.

7.5.1 Simulation Study

We generate n data points x(1), . . . , x(n) uniformly distributed on the
unit hypercube [0, 1]b with b = 10. We split the first two dimensions
into 22 subregions as shown in Figure 7.1 (a). For the t-th subregion
where 1 6 t 6 22, we generate a forest Ft of d = 20 vertices as follows:
Ft consists of 4 random disconnected subtrees, Ft = {Tt1 , Tt2 , Tt3 , Tt4},
each of size 5. As an illustration, the randomly generated forest for
subregions 1, 18 and 22 are shown in Figure 7.1 (b), (c) and (d) re-
spectively. For each data point x(i) falling in to the t-th subregion, we
associate a 20-dimensional binary response vector y(i) ∈ {0, 1}20 as
follows. For each subtree of Ft, we randomly choose a node u as the
root and assign y(i)u = 0 and y(i)u = 1 with equal probability 0.5. Then
we traverse the subtree to determine the parent node for each node
via a breadth-first search (BFS). For any node v in this subtree with
its parent pa(v), we assign y(i)v = 1− y

(i)
pa(v) with probability 0.8 and

y
(i)
v = y

(i)
pa(v) with probability 0.2.

We compare Fo-CART with the Go-CART estimator of [92]. Since Y
is binary, Go-CART cannot be directly applied due to the difficulty of
computing the partition function in the Ising model. Here, we adopt
the approximate log-likelihood proposed in [5] which gives an up-
per bound of the partition function. The tuning parameter for the
`1-regularization in Go-CART is chosen from a very large value (re-
sulting in empty graphs for all leaf nodes of the DPT) to a small value
(resulting in full graphs) using the held-out negative log-likelihood
criteria. We conduct 100 Monte-Carlo simulations for n = 5000 and
n = 10000. Both Fo-CART and Go-CART never wrongly split on any
of the irrelevant dimensions, i.e. X3 to X10. As a comparison between
Fo-CART and Go-CART, we report the number of times that the algo-
rithm correctly recovers the ground true partition as in Figure 7.1(a).
For those simulations where we correctly identify the partitions, we
list the graph estimation performance for subregions 1, 18, 22 which
represents the small, middle and large region respectively. For each
subregion, let Ê be the estimated edge set while E is the true edge set.

122 markov forest regression

Table 7.1: Comparison of Fo-CART and Go-CART with n = 5000 and
n = 10000: for those simulation where the true partitions are cor-
rectly recovered, we report the mean value (standard deviation)
for precision, recall and F1-score.

n=5000 Fo-CART Go-CART

of correct parti-
tion recovering 64 / 100 54 / 100

Subregion 1 18 22 1 18 22

Precision 0.9773 (0.05) 0.9978 (0.01) 0.9919 (0.03) 0.6366 (0.08) 0.7564 (0.10) 0.8417 (0.08)

Recall 0.9896 (0.03) 1.0000 (0.00) 1.0000 (0.00) 0.9971 (0.02) 1.0000 (0.00) 1.0000 (0.00)

F1-Score 0.9831 (0.04) 0.9989 (0.01) 0.9957 (0.01) 0.7743 (0.06) 0.8572 (0.06) 0.9110 (0.05)

n=10000 Fo-CART Go-CART

of correct parti-
tion recovering 79 / 100 68 / 100

Subregion 1 18 22 1 18 22

Precision 0.9913 (0.03) 0.9956 (0.02) 0.9958 (0.02) 0.7303 (0.08) 0.7993 (0.09) 0.8111 (0.10)

Recall 0.9984 (0.01) 1.0000 (0.00) 1.0000 (0.00) 1.0000 (0.00) 1.0000 (0.00) 1.0000 (0.00)

F1-Score 0.9947 (0.02) 0.9977 (0.01) 0.9978 (0.01) 0.8417 (0.05) 0.8849 (0.06) 0.8914 (0.06)

The graph estimation performance is measured in terms of precision,
recall and F1-score defined as follows: precision = |Ê∩E|/|Ê|, recall =
|Ê ∩ E|/|E|, F1-score = (2 · precision · recall)/(precision + recall). The
results are presented in Table 7.1.

As we see from the Table 7.1, in 100 runs, Fo-CART recovers the
true partition with higher probability, and it outperforms Go-CART
in terms of graph estimation. For Go-CART, we see that the recall
is close to one, but the precision is low, which indicates that Go-
CART tends to estimate an overly dense graph. This is expected since
Go-CART does not utilize the fact that the underlying graph struc-
ture is a forest. For both methods, the graph estimation is better for
larger subregions (e.g. subregion 22) than small ones (e.g. subregion
1); this is simply because that large region contains more data points.
In addition, for n = 5000 where subregion 1 only contains about
5000/64 ≈ 78 data points, the graph estimation is almost perfect for
Fo-CART, with an F1-Score of 0.9831.

7.5.2 Stock Data Analysis

We apply Fo-CART to analyze the relationship among stocks of differ-
ent companies Y as a function of oil price X. For better visualization,
we choose d = 53 well-known companies from the S&P 500 with at
least 100,000 employees. Instead of considering the raw stock price,
which could be at very different scales for different companies, we
measure the log-return, defined as the logarithm ratio of the stock
price at time t to its previous time t− 1. We take the sign of the log
return as our output Y. We collect the data in a similar approach as in
[76] from Jan 1, 2003 to Dec 31, 2005 with in total n = 749 data points

7.5 experimental results 123

(a)

(b) (c)

(d)

(e)

(f)

Figure 7.2: Results for the analysis of stock prices vs. oil price

1. In sum, our data consists of {x(i),y(i)}749i=1, where each x(i) ∈ R is
the oil price and y(i) ∈ R53 is the sign of the log-return of the stock
prices. We split the data randomly in half for training and validation.

By learning a DPT, we split the oil price space X as shown in Figure
7.2 (a). As we can see, our DPT does not split X when the oil price
is very high (above 70$), very low (below 30$) and between around
50$ and 65$. This indicates that the forest structure (and hence the
dependency of stock between companies) is quite stable in these price
ranges. In contrast, for other price ranges with many splits, the rela-
tionship on stock portfolio between companies is very sensitive to the
oil price.

For each partition, we estimate a forest structure. As an illustrative
example, we plot the forest structures corresponding to the lowest
oil price range and highest oil price range in Figure 7.2 (b) and (c)
respectively. We use different colors and shapes of vertices to repre-
sent the companies in different categories: for example, IT technology
(DELL, IBM, HPQ (Hewlett-Packard), ORCL (Oracle), etc), Financial (BAC
(Bank of America), C (Citi), JPM (JP Morgan Chase), WFC (Walls Fargo), etc),
Services (e.g. FDX (FedEx), UPS, MCD (McDonald), etc). There are some
interesting observations. For example, for IT companies, when the
oil price is low, they form a small cluster with a strong dependency
as shown in Figure 7.2 (b) by a red circle. A similar observation can
also be made for the financial companies. When the oil price is high,
the IT companies become more separated, as shown in Figure 7.2 (c).
Interestingly, in Figure 7.2 (c), although DELL and IBM (in red circle)
are not directly connected and hence conditionally independent, the
shortest path between them passes BAC, WFC. This might suggest that

1 The stock data is collected from http://www.finance.yahoo.com and the oil price is
from http://tonto.eia.doe.gov.

http://www.finance.yahoo.com
http://tonto.eia.doe.gov

124 markov forest regression

when the price of oil is high, DELL and IBM are related to each other
through the financial companies.

We also investigate the relationship between pairs of stocks. For a
pair of companies, we measure the shortest distance between them
in the forest (counts of edges) at each partition and plot the distance
as a function of oil price (see Figure 7.2 (d)–(f)). If there is no path
between two companies, the distance is set to infinity. An interesting
observation is that for companies that sell similar products or provide
similar services, the distances between them as a function of oil price
often shows a “bimodal” pattern. For example, as shown in Figure
(d) for BAC and WFC and Figure (e) for FDX and UPS, the distance
between them is small either when the oil price is low or high and
the distance is large with two peaks around $40 to $50 and $60 to $65.

Part V

S PA R S E L E A R N I N G F O R T E X T M I N I N G

8
L E A R N I N G P R E F E R E N C E S W I T H M I L L I O N S O F
PA R A M E T E R S B Y E N F O R C I N G S PA R S I T Y

In the previous chapters of the thesis, we have demonstrated the ap-
plications of sparse learning to tumor classification, genome-wide as-
sociation study, climate data analysis as well as stock analysis. In ad-
dition to these, another important application domain of sparse learn-
ing is text mining, since text data are usually ultra-high dimensional
and large-scale. In this part, we study two applications of sparse learn-
ing to text mining tasks, learning preferences and latent semantic
analysis.

In the first chapter, we study the retrieval task that ranks a set of
objects for a given query in the pairwise preference learning frame-
work. Recently researchers found out that raw features (e.g. words
for text retrieval) and their pairwise features which describe relation-
ships between two raw features (e.g. word synonymy or polysemy)
could greatly improve the retrieval precision. However, most existing
methods can not scale up to problems with many raw features (e.g.
English vocabulary), due to the prohibitive computational cost on
learning and the memory requirement to store a quadratic number of
parameters. In this chapter, we propose to learn a sparse representa-
tion of the pairwise features under the preference learning framework
using the L1 regularization. Based on stochastic gradient descent, an
online algorithm is devised to enforce the sparsity using a mini-batch
shrinkage strategy. On multiple benchmark datasets, we show that
our method achieves better performance with fast convergence, and
takes much less memory on models with millions of parameters.

8.1 introduction and motivation

Learning preferences among a set of objects (e.g. documents) given
another object as query is a central task of information retrieval and
text mining. One of the most natural frameworks for this task is the
pairwise preference learning, expressing that one document is preferred
over another given the query [50]. Most existing methods [141] learn
the preference or relevance function by assigning a real valued score
to a feature vector describing a (query, object) pair. This feature vector
normally includes a small number of hand-crafted features, such as
the BM25 scores for the title or the whole text, instead of the very
natural raw features [98]. A drawback of using hand-crafted features
is that they are often expensive and specific to datasets, requiring
domain knowledge in preprocessing. In contrast, the raw features are
easily available, and carry strong semantic information (such as word
features in text mining).

In this chapter we study a basic model presented in [54, 4] which
uses the raw word features under the supervised pairwise preference

127

128 learning preferences with millions of parameters by enforcing sparsity

learning framework and consider feature relationships in the model1.
To be specific, let D be the dictionary size, i.e. the size of the query
and document feature set2, given a query q ∈ RD and a document
d ∈ RD, the relevance score between q and d is modeled as:

f(q,d) = q>Wd =
∑
i,j

WijΦ(qi,dj), (8.1)

where Φ(qi,dj) = qi · dj and Wij models the relationship/correla-
tion between ith query feature qi and jth document feature dj. This
is essentially a linear model with pairwise features Φ(·, ·) and the pa-
rameter matrix W ∈ RD×D is learned from labeled data. Compared
to most of the existing models, the capacity of this model is very large
because of the D2 free parameters which can carefully model the rela-
tionship between each pair of words. From a semantic point of view,
a notable superiority of this model is that it can capture synonymy
and polysemy as it looks at all possible cross terms, and can be tuned
directly for the task of interest.

Although it is very powerful, the basic model in (8.1) suffers from
the following weakness which hinders its wide application:

1. Memory issue: Given the large dictionary size D, it requires
a huge amount of memory to store the W matrix with a size
quadratic in D. When D = 10, 000, storing W needs nearly 1Gb
of RAM (assuming double); when D = 30, 000, it requires 8Gb
of RAM.

2. Generalization ability: Given D2 free parameters (entries of W),
when the number of training samples is limited, it can easily
lead to overfitting. Considering the dictionary with the size
D = 10, 000, we have D2 = 108 free parameters that need to
be estimated which is far too many for small corpora.

To address the above weakness, we propose to constrain W to be
a sparse matrix with many zero entries for the pairs of words which
are irrelevant for the preference learning task. If W is a highly sparse
matrix, then it consumes much less memory and has only a limited
number of free parameters to be estimated. In other words, a sparse
W matrix will allow us to greatly scale up the dictionary size to model
those non-frequent words which are often essential for the preference
ordering. In addition, we can have faster and more scalable learning
algorithm since most entries of W are zeros so that those multiplica-
tions can be avoided. Another advantage of learning a sparse repre-
sentation of W is its good interpretability. The zero Wij indicate that
ith query feature and jth document feature are not correlated to the
specific task. A sparse W matrix will accurately capture correlation
information between pairs of words and the learned correlated word

1 For the sake of clarity, we present the model in a text retrieval scenario. We use
the term “words” for features, and “query” and “documents” for data instances,
depending on their roles.

2 In our model and algorithm, there is no need to restrict that query q and document
d have the same feature size D; however we make this assumption for simplicity of
explanation.

8.2 basic model 129

pairs could explain the semantic rationale behind the preference or-
dering.

In order to enforce the sparsity on W, inspired by the success of the
sparse linear regression model—“lasso” [133], we impose the entry-
wise `1 regularization on W. A practical challenge in using the `1
regularized model is to develop an efficient and scalable learning al-
gorithm. Since in many preference learning related applications (e.g.
search engine), the model needs to be trained in a timely fashion and
new (query, document) pairs may be added to the repository at any
time, stochastic gradient descent in the online learning framework is
the most desirable learning method for our task [16]. To enforce the
`1 regularization, based on [39], we propose to perform a mini-batch
shrinking step for every T iterations in the stochastic gradient descent
which can lead to the sparse solution. Moreover, to reduce the addi-
tional bias introduced by the `1 regularization, we further propose a
refitting step which can improve the preference prediction while keep-
ing the learned sparsity pattern.

The key idea of this work is that: learning on a large number of
corpus-independent raw features, or even on combinations of such
features, is not impossible. Although the number of involved param-
eters is intimidatingly large, using sparsity as a powerful tool, the
model can be well controlled and efficiently learned. We believe these
ideas form a fresh perspective and will benefit many other retrieval
related tasks as well.

8.2 basic model

Let us denote the set of documents in the corpus as {dk}Kk=1 ⊂ RD

and the query as q ∈ RD, where D is the dictionary size, and the
jth dimension of a document/query vector indicates the frequency
of occurrence of the jth word, e.g. using the tf-idf weighting and then
normalizing to unit length [3].

Given a query q and a document d, we wish to learn a scoring
function f(q,d) that measures the relevance of d to q. In this chapter,
we assume that f is a linear function which takes the form of (8.1).
Each entry of W represents a “relationship” between a pair of words.

8.2.1 Margin Rank Loss

Suppose we are given a set of tuples R (labeled data), where each tu-
ple contains a query q, a preferred document d+ and an unpreferred
(or lower ranked) document d−. We would like to learn aW such that
q>Wd+ > q>Wd−, making the right preference prediction.

For that purpose, given tuple (q,d+,d−), we employ the widely
adopted margin rank loss [57]:

LW(q,d+,d−) ≡ h(qTWd+ − qTWd−) (8.2)

= max(0, 1− qTWd+ + qTWd−),

130 learning preferences with millions of parameters by enforcing sparsity

where h(x) ≡ max(0, 1− x) is the well-known hinge loss function as
adopted in SVM.

Our goal is to learn the W matrix which minimize the loss in (8.2)
summing over all tuples (q,d+,d−) in R:

W∗ = arg min
W

1

|R|

∑
(q,d+,d−)∈R

LW(q,d+,d−). (8.3)

8.2.2 Stochastic Subgradient Descent

In general, the size of R is very large and new tuples may be added
to R in a streaming manner, which makes it difficult to directly train
the objective in (8.3). To overcome this challenge, we adopt stochastic
(sub)gradient descent (SGD) in an online learning framework [161],

Specifically, at each iteration, we randomly draw a sample (q,d+,d−)
from R, compute the subgradient3 of LW(q,d+,d−) with respect to
W as following:

∇LW(q,d+,d−)

=

−q(d+ − d−)> if q>W(d+ − d−) < 1

0 otherwise
, (8.4)

and then update the W matrix accordingly. It has been shown that
SGD achieves fast learning on large scale datasets [16].

We suggest to initialize W0 to the identity matrix as this initial-
izes the model to the same solution as a cosine similarity score. The
strategy introduces a prior expressing that the weight matrix should
be close to the identity matrix. We consider term correlations only
when it is necessary to increase the score of a relevant document,
or conversely, decrease the score of a irrelevant document. As for
the learning rate ηt, we suggest to adopt a decaying learning rate:
ηt =

C√
t
, where C is a pre-defined constant as the initial learning rate.

Intuitively, it should be better than the fixed learning rate since at
the beginning, when W is far away from the optimal solution W∗, a
larger learning rate is desirable since it leads to a significant decrease
of the objective value. On the other hand, when W gets close to W∗, a
smaller rate should be adopted to avoid missing the optimal solution.
We will show the advantage of the decaying learning rate scheme
over the fixed one in the experiment section.

8.3 preference learning with sparsity

As discussed in the introduction, the model and the learning algo-
rithm in the previous section will lead to a dense W matrix which
consumes a large amount of memory and has poor generalization
ability for small corpora. To address these problems, we can learn a
sparse model with a small number of nonzero entries of W. In order

3 Since L is a non-smooth function, it does not have the gradient but only has the
subgradient.

8.3 preference learning with sparsity 131

to obtain a sparseW, inspired by [133], we add an entry-wise `1 norm
to the W as a regularization term to the loss function. We propose to
optimize the following objective function:

W∗ = arg min
W

1

|R|

∑
(q,d+,d−)∈R

LW(q,d+,d−) + λ‖W‖1, (8.5)

where ‖W‖1 =
∑D
i,j=1 |Wij| is the entry-wise `1 norm of W and λ

is the regularization parameter which controls the sparsity level (the
number of nonzero entries) ofW. In general, a larger λ leads to a more
sparse W. On the other hand, a too sparse W will miss some useful
relationship information among word pairs (considering diagonal W
as an extreme case). Therefore, in practice, we need to tune λ to obtain
a W with a suitable sparsity level.

8.3.1 Training the Sparse Model

To optimize (8.5), we adopt a variant of the general sparse online
learning scheme in [39]. In [39], after updating Wt at each iteration
in SGD, a shrinkage step is performed by solving the following opti-
mization problem:

Ŵt = arg min
W

1

2
‖W −Wt‖2F + ληt‖W‖1, (8.6)

and then use Ŵt as the starting point for the next iteration. In 8.6,
‖ · ‖F denote the matrix Frobenius norm and ηt is the decaying learn-
ing rate for the tth iteration. According to the proposition 3.3, we
know that performing (8.6) will shrink those Wt

ij with an absolute
value less than ληt to zero and hence lead to a sparse W matrix. In
particular, the solution Ŵt to the optimization problem in (8.6) takes
the following form:

Ŵt
ij =

Wt
ij + ληt if Wt

ij < −ληt

0 if − ληt 6Wt
ij 6 ληt

Wt
ij − ληt if Wt

ij > ληt

(8.7)

Although performing the shrinkage step leads a sparse W solution,
it is very expensive for a large dictionary size D. For example, when
D = 10, 000, we need D2 = 108 operations. Therefore, we suggest to
perform the shrinkage step for every T iteration cycles. In general, a
smaller T guarantees that the shrinkage step can be done in a timely
fashion so that the entries of W will not grow too large to produce in-
accurate∇LW(q,d+,d−); on the other hand, a smaller T increases the
computational cost of the training process. In practice, we suggest to
set T = 100. The details of the algorithm are presented in Algorithm
8.1.

Note that when t is a multiple of T , we perform the shrinkage step
with a cumulative regularization parameter for ‖W‖1 from t− T + 1

132 learning preferences with millions of parameters by enforcing sparsity

to t: λ
∑t
k=t−T+1 ηt. The reason why we adopt cumulative regulariza-

tion parameter is due to the following simple fact that: WT obtained
by solving a sequence of successive optimization problems:

Wt = arg min
W

1

2
‖W −Wt−1‖2F + ληt‖W‖1, t = 1, . . . T

is identical to the one by solving the following single optimization
problem:

WT = arg min
W

1

2
‖W −W0‖2F + λ

T∑
t=1

ηt‖W‖1.

Although we take the gradient update so that Algorithm 8.1 is not
exactly identical to the one taking the shrinkage step at every itera-
tion, empirically, the learned sparse W from Algorithm 8.1 is a good
approximation.

Algorithm 8.1 Sparse SGD

Initialization: W0 ∈ RD×D, T , learning rate sequence {ηt}.
Iterate for t = 1, 2, . . . until convergence of Wt:

1. Randomly draw a tuple (q,d+,d−) ∈ R

2. Compute the subgradient of LWt−1(q,d+,d−) with respect to
W: ∇LWt−1(q,d+,d−)

3. Update Wt =Wt−1 − ηt∇LWt−1(q,d+,d−)

4. If (t mod T =0)

Wt = arg min
W

1

2
‖W −Wt‖2F + λ

t∑
k=t−T+1

ηt‖W‖1

8.3.2 Refitting the Sparse Model

From (8.7), we see that `1 regularization will not only shrink the
weights for uncorrelated word pairs to zero but also reduce the ab-
solute value of the weights for correlated word pairs. This additional
bias introduced by `1 regularization often harm the prediction per-
formance. In order to reduce this bias, we propose to refit the model
without `1 regularization, but enforcing the sparsity pattern of W ob-
tained from Algorithm 8.1.

More precisely, after learning the sparse Ŵ from Algorithm 8.1,
let Ω be the indices of nonzero entries of Ŵ, i.e. Ω = {(i, j)|Ŵij 6=
0}. Given a matrix W ∈ RD×D, let PΩ(W) ∈ RD×D be the matrix
defined as following:

PΩ(W)ij =

Wij if (i, j) ∈ Ω

0 if (i, j) 6∈ Ω
,

8.4 experiment 133

Table 8.1: The statistics of the experimental datasets

20NG RCV1 MNIST

No. of training samples 11,314 15,564 60,000

No. of testing samples 7,532 518,571 10,000

No. of Classes 20 53 10

Dictionary Size D 10,000 10,000 784

No. of Free Parameters 108 108 614, 656

where PΩ is called the projection operator which projects W onto Ω.
In the refitting step, given Ω, we try to minimize the following

objective function:

W∗ = arg min
W

1

|R|

∑
(q,d+,d−)∈R

LPΩ(W)(q,d+,d−), (8.8)

We still adopt SGD to minimize (8.8), but replace ∇LW(q,d+,d−)
with ∇LPΩ(W)(q,d+,d−). Using the chain rule for subgradient, we
can show that ∇LPΩ(W)(q,d+,d−) takes the following form:

∇LPΩ(W)(q,d+,d−)

=

−PΩ(q(d+ − d−)>) if q>PΩ(W)(d+ − d−) < 1

0 otherwise
.

In the experiment section, we show that the prediction performance
gets improved after the refitting step.

8.4 experiment

8.4.1 Experiment Setup

Pairwise preference learning discussed in this chapter belongs to a
more general framework “Learning to rank”, which is a key topic
in the research of information retrieval [141]. Learning to rank meth-
ods are usually evaluated using standard benchmark data like TREC4

data or LETOR [98]. However, TREC has only a limited number of
queries available, which makes the training of a large number of fea-
tures very difficult. On the other hand, LETOR and most of the other
learning to rank datasets (e.g. Microsoft Learning to Rank Datasets5,
Yahoo! Learning to Rank Challenge Datasets6) have only few hun-
dred (or even less) features such as BM25 or pagerank scores instead
of the actual word features, and are therefore not adequate for eval-
uating our methods. It would be ideal to test the proposed method
on click-through data from web search logs, but such data are not
publicly available.

4 http://trec.nist.gov/

5 http://research.microsoft.com/en-us/projects/mslr/

6 http://learningtorankchallenge.yahoo.com

http://trec.nist.gov/
http://research.microsoft.com/en-us/projects/mslr/
http://learningtorankchallenge.yahoo.com

134 learning preferences with millions of parameters by enforcing sparsity

As pointed out by a seminal paper [46], preference learning and
multiclass classification can be modeled in a unified framework. It
is natural to adopt the multiclass classification (with many differ-
ent classes) datasets to evaluate the our proposed preference learning
models. More precisely, we construct training samples (q,d+,d−) ∈
R where q and d+ are in the same class while q and d− belong
to different classes. In our experiment, we use several benchmark
multiclass classification datasets, including the text datasets 20 News-
groups7 (20NG), RCV1

8[88] and digital recognition dataset MNIST9.
For 20NG and RCV1, we adopt the normalized tf-idf of the 10,000

most frequent words as the document features. For MINST, the nor-
malized grey scale pixel values are used as features. Some statistics
of these datasets are shown in Table 8.1.

For the experiments, we use the cosine similarity as the baseline,
i.e. W = I and mainly compare the following methods:

1. W is a diagonal matrix.

2. W is unconstrained and trained by SGD with the fixed learning
rate η = 0.01.

3. W is unconstrained and trained by SGD with the decaying learn-
ing rates ηt = C√

t
where C = 200.

4. W is sparse and trained by Algorithm 8.1 with the decaying
learning rates ηt = C√

t
where C = 200 and then perform the

corresponding refitting step10.

Note that for the decaying learning rate case, we try a wide range
of starting rate C and find that C = 200 can provide us the most rapid
decrease of the objective value. So C is set to be 200 through out the
chapter. As for the regularization parameter λ, when the dictionary
size is large, say D = 10, 000 for the text data, we choose λ which
leads to the 5% to 10% density (percentage of nonzero entries) of
W. When D is relatively small, say 748 for the MNIST dataset, we
set λ so that the density of W is roughly 50%. This way of setting
λ provides us a sparse enough W which has the advantage of the
memory savings and being easy to interpret. In the meanwhile, we
have enough nonzero entries of W to guarantee a reasonably good
preference learning performance on the testing datasets.

We compare the performance of each method by the following met-
rics:

1. Test error rate: for a testing tuple (q,d+,d−), if qTWd+ 6 qTWd−,
test error is increased by 1 and normalized by the test sample
size.

7 http://people.csail.mit.edu/jrennie/20Newsgroups

8 We adopt the preprocessing method in [7], remove the multi-labelled instances and
result in 53 different classes.

9 http://yann.lecun.com/exdb/mnist

10 For the fair comparison, we use exactly the same training samples in the refitting
step as in the sparse learning procedure without any additional samples.

http://people.csail.mit.edu/jrennie/20Newsgroups
http://yann.lecun.com/exdb/mnist

8.4 experiment 135

Figure 8.1: The test error rate and the density W for 3 benchmark datasets

0 2 4 6 8 10

x 10
4

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Data Accesses

T
es

t E
rr

or
 R

at
e

(%
)

Sparse SGD
Sparse SGD (Refitting)
SGD (Decaying Learning Rate)
SGD (Fixed Learning Rate)

(a) The test error curve for 20NG

0 2 4 6 8 10

x 10
4

0

0.2

0.4

0.6

0.8

1

Number of Data Accesses

D
en

si
ty

 o
f W

 (
%

)

Sparse SGD
SGD (Decaying Learning Rate)
SGD (Fixed Learning Rate)

(b) The density of W for 20NG

0 2 4 6 8 10

x 10
4

0

0.05

0.1

0.15

0.2

0.25

Number of Data Accesses

T
es

t E
rr

or
 R

at
e

(%
)

Sparse SGD
Sparse SGD (Refitting)
SGD (Decaying Learning Rate)
SGD (Fixed Learning Rate)

(c) The test error curve for RCV1

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

Number of Data Accesses

D
en

si
ty

 o
f W

 (
%

)

Sparse SGD
SGD (Decaying Learning Rate)
SGD (Fixed Learning Rate)

(d) The density of W for RCV1

0 2 4 6 8 10

x 10
4

0.05

0.1

0.15

0.2

0.25

Number of Data Accesses

T
es

t E
rr

or
 R

at
e

(%
)

Sparse SGD
Sparse SGD (Refitting)
SGD (Decaying Learning Rate)
SGD (Fixed Learning Rate)

(e) The test error curve for MNIST

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Data Accesses

D
en

si
ty

 o
f W

 (
%

)

Sparse SGD
SGD (Decaying Learning Rate)
SGD (Fixed Learning Rate)

(f) The density of W for MNIST

2. Mean average precision (MAP) [34].

And we also provide the semantic information encoded in the W
matrix for the text data.

8.4.2 Results

8.4.2.1 Learning Curves

It has been shown that test error rate is monotonic to area under
ROC curve (AUC). In Figure 8.1, we show the curves of the test error
rate and the corresponding density of W vs. the number of training
iterations, i.e. the number of accesses of the training data. Each row
in Figure 8.1 corresponds to one dataset.

We have the following observations:

136 learning preferences with millions of parameters by enforcing sparsity

Table 8.2: Retrieval Performance. Items in bold fonts are the best among
methods tested.

MAP Test Error Rate Density
Identity 0.185 0.323 1e-4
Diagonal 0.190 0.318 1e-4
SGD FLR 0.258 0.197 0.848

SGD DLR 0.399 0.099 0.618

Sparse 0.360 0.114 0.101

Sparse-R 0.426 0.090 0.101

W-Sparse 0.380 0.105 0.158

W-Sparse-R 0.428 0.089 0.158

(a) 20NG

MAP Test Error Rate Density
Identity 0.380 0.230 1e-4
Diagonal 0.390 0.223 1e-4
SGD FLR 0.451 0.087 0.470

SGD DLR 0.453 0.046 0.236

Sparse 0.463 0.036 0.069

Sparse-R 0.501 0.029 0.069

W-Sparse 0.471 0.037 0.086

W-Sparse-R 0.506 0.029 0.086

(b) RCV1

MAP Test Error Rate Density
Identity 0.453 0.221 1/784

Diagonal 0.460 0.318 1/784

SGD FLR 0.610 0.096 0.724

SGD DLR 0.654 0.082 0.652

Sparse 0.654 0.083 0.458

Sparse-R 0.669 0.075 0.458

(c) MNIST

1. For SGD with the fixed learning rate, the test error rate de-
creases very slowly, and is relatively flat compared to other
methods.

2. The schemes with decaying learning rates (including two sparse
models “Sparse SGD”, and the dense model “SGD (Decaying
Learning Rate)”) have similarly good convergence rate.

3. Using the same regularization parameter, “Sparse SGD” achieves
the most sparse model. For dense models, “SGD (Decaying Learn-
ing Rate)” reaches a more sparse model than using naive method
“SGD (Fixed Learning Rate)”. This is another evidence that de-
caying learning rates are superior to fixed learning rates.

8.4 experiment 137

Table 8.3: The examples of learned related word pairs in 20NG

Query word Five most related document words
clinton clinton government health people gay

cpu mac drive scsi card jon
graphics graphics tiff image color polygon
handgun gun weapons handgun militia fbi
hockey hockey game espn colorado team

motorcycle bike brake turbo rpi cylinder
religions god religions bible christian jesus

4. Refitting the sparse models clearly achieves the best test error
rate while keeping the low density of the W matrix.

8.4.2.2 Retrieval Performance and Memory

In this section, we present mean average precision (MAP), test er-
ror rate and the memory space of W of each method after training
100,000 iterations. The results are presented in Table 8.2. We use the
abbreviation for each method due to the space limitation of the table.
“Identity” stands for W = I and “Diagonal” means that W is a diag-
onal matrix where only the diagonal entries are learned. ‘SGD FLR”
means SGD with the fixed learning rate, while “SGD DLR” means
SGD with the decaying learning rate. Both of them are trained on the
basic model without the `1 regularization. “Sparse” and “Sparse-R”
are sparse models, without refitting and with refitting, respectively.

The results on MAP are essentially consistent to those on the test
error rate. The sparse method with decaying learning rate has sim-
ilar performance compared to its dense counterpart but takes much
less memory. Moreover, sparse models after refitting achieves the best
performance

8.4.2.3 Anecdotal Evidence

The sparse model can also provide much useful semantic information.
For example, we can easily infer the most related word pair between
query word and document word from the sparse W matrix. More
precisely, each row of W represents the strength of the correlation
(either positive or negative) of document words to a specific query
word. Given the ith query word, we sort the absolute value of the ith

row ofW in a descending order and pick the first few nonzero entries.
Those selected entries of W represent the most correlated document
words to the given ith query word.

In Table 8.3, we present the query words from different categories
and the five most correlated document words from the learned sparse
W in (8.5). We can see that most correlated document words are
clearly from the same topics as the query words. It also provide us
some interesting semantic information. For example, in 20NG, “fbi”
is closely related to “handgun”; “colorado” to “hockey” which indi-
cates that there might be a popular hockey team in Colorado (in fact,

138 learning preferences with millions of parameters by enforcing sparsity

it is Colorado Avalanche team); “government” to “clinton” which in-
dicates that Clinton might be a famous politician (The former US
president Bill Clinton).

9
S PA R S E L AT E N T S E M A N T I C A N A LY S I S

Latent semantic analysis (LSA), as one of the most popular unsuper-
vised dimension reduction tools, has a wide range of applications in
text mining and information retrieval. The key idea of LSA is to learn
a projection matrix that maps the high dimensional vector space rep-
resentations of documents to a lower dimensional latent space, i.e.
so called latent topic space. In this chapter, we propose a new model
called Sparse LSA, which produces a sparse projection matrix via the
`1 regularization. Compared to the traditional LSA, Sparse LSA se-
lects only a small number of relevant words for each topic and hence
provides a compact representation of topic-word relationships. More-
over, Sparse LSA is computationally very efficient with much less
memory usage for storing the projection matrix. Furthermore, we
propose two important extensions of Sparse LSA: group structured
Sparse LSA and non-negative Sparse LSA. We conduct experiments
on several benchmark datasets and compare Sparse LSA and its ex-
tensions with several widely used methods, e.g. LSA, Sparse Coding
and LDA. Empirical results suggest that Sparse LSA achieves similar
performance gains to LSA, but is more efficient in projection compu-
tation, storage, and also well explain the topic-word relationships.

9.1 introduction and motivation

Latent Semantic Analysis (LSA) [36], as one of the most successful
tools for learning the concepts or latent topics from text, has widely
been used for the dimension reduction purpose in information re-
trieval. More precisely, given a document-term matrix X ∈ RN×M,
where N is the number of documents and M is the number of words,
and assuming that the number of latent topics (the dimensionality of
the latent space) is set as D (D 6 min{N,M}), LSA applies singular
value decomposition (SVD) to construct a low rank (with rank-D) ap-
proximation of X: X ≈ USVT , where the column orthogonal matrices
U ∈ RN×D (UTU = I) and V ∈ RM×D (VTV = I) represent doc-
ument and word embeddings into the latent space. S is a diagonal
matrix with the D largest singular values of X on the diagonal 1. Sub-
sequently, the so-called projection matrix defined as A = S−1VT pro-
vides a transformation mapping of documents from the word space
to the latent topic space, which is less noisy and considers word syn-
onymy (i.e. different words describing the same idea). However, in
LSA, each latent topic is represented by all word features which some-
times makes it difficult to precisely characterize the topic-word rela-
tionships.

1 Since it is easier to explain our Sparse LSA model in terms of document-term ma-
trix, for the purpose of consistency, we introduce SVD based on the document-term
matrix which is a different from standard notations using the term-document matrix.

139

140 sparse latent semantic analysis

1. It is intuitive that only a part of the vocabulary can be relevant
to a certain topic. By enforcing sparsity of A such that each row
(representing a latent topic) only has a small number nonzero
entries (representing the most relevant words), Sparse LSA can
provide us a compact representation for topic-word relationship
that is easier to interpret.

2. With the adjustment of sparsity level in projection matrix, we
could control the granularity (“level-of-details”) of the topics
we are trying to discover, e.g. more generic topics have more
nonzero entries in rows of A than specific topics.

3. Due to the sparsity of A, Sparse LSA provides an efficient strat-
egy both in the time cost of the projection operation and in the
storage cost of the projection matrix when the dimensionality
of latent space D is large.

4. Sparse LSA could project a document q into a sparse vector rep-
resentation q̂ where each entry of q̂ corresponds to a latent
topic. In other words, we could know the topics that q belongs
to directly form the position of nonzero entries of q̂. Moreover,
sparse representation of projected documents will save a lot of
computational cost for the subsequent retrieval tasks, e.g. rank-
ing (considering computing cosine similarity), text categoriza-
tion, etc.

Furthermore, we propose two important extensions based on Sparse
LSA:

1. Group Structured Sparse LSA: we add group structured sparsity-
inducing penalty as in [150] to select the most relevant groups
of features relevant to the latent topic.

2. Non-negative Sparse LSA: we further enforce the non-negativity
constraint on the projection matrix A. It could provide us a
pseudo probability distribution of each word given the topic,
similar as in Latent Dirichlet Allocation (LDA) [14].

We conduct experiments on four benchmark data sets, with two on
text categorization, one on breast cancer gene function identification,
and the last one on topic-word relationship identification from NIPS
proceeding papers. We compare Sparse LSA and its variants with
several popular methods, e.g. LSA [36], Sparse Coding [85] and LDA
[14]. Empirical results show clear advantages of our methods in terms
of computational cost, storage and the ability to generate sensible
topics and to select relevant words (or genes) for the latent topics.

9.2 sparse lsa

9.2.1 Optimization Formulation of LSA

We considerN documents, where each document lies in anM-dimensional
feature space X, e.g. tf-idf [3] weights of the vocabulary with the

9.2 sparse lsa 141

normalization to unit length. We denote N documents by a matrix
X = [X1, . . . ,XM] ∈ RN×M, where Xj ∈ RN is the j-th feature vec-
tor for all the documents. For the dimension reduction purpose, we
aim to derive a mapping that projects input feature space into a D-
dimensional latent space where D is smaller than M. In the informa-
tion retrieval content, each latent dimension is also called an hidden
“topic”.

Motivated by the latent factor analysis [55], we assume that we have
D uncorrelated latent variables U1, . . . ,UD, where each Ud ∈ RN has
the unit length, i.e. ‖Ud‖2 = 1. Here ‖ · ‖2 denotes the vector `2-
norm. For the notation simplicity, we put latent variables U1, . . . ,UD
into a matrix: U = [U1, . . . ,UD] ∈ RN×D. Since latent variables are
uncorrelated with the unit length, we have UTU = I, where I is the
identity matrix. We also assume that each feature vector Xj can be
represented as a linear expansion in latent variables U1, . . . ,UD:

Xj =

D∑
d=1

adjUd + εj, (9.1)

or simply X = UA + ε, where A = [adj] ∈ RD×M gives the mapping
from the latent space to the input feature space and ε is the zero mean
noise. Our goal is to compute the so-called projection matrix A.

We can achieve this by solving the following optimization prob-
lem which minimizes the rank-D approximation error subject to the
orthogonality constraint of U:

minU,A
1

2
‖X − UA‖2F (9.2)

subject to: UTU = I,

where ‖ · ‖F denotes the matrix Frobenius norm. The constraint UTU =

I is according to the uncorrelated property among latent variables.
At the optimum of (9.2), UA leads to the best rank-D approxima-

tion of the data X. In general, larger theD is, the better the reconstruc-
tion performance. However, larger D requires more computational
cost and large amount memory for storing A. This is the issue that
we will address in the next section.

After obtaining A, given a new document q ∈ RM, its representa-
tion in the lower dimensional latent space can be computed as:

q̂ = Aq. (9.3)

9.2.2 Sparse LSA

As discussed in the introduction, one notable advantage of sparse
LSA is due to its good interpretability in topic-word relationship.
Sparse LSA automatically selects the most relevant words for each
latent topic and hence provides us a clear and compact representa-
tion of the topic-word relationship. Moreover, for a new document
q, if the words in q has no intersection with the relevant words of

142 sparse latent semantic analysis

d-th topic (nonzero entries in Ad, the d-th row of A), the d-th ele-
ment of q̂, Adq, will become zero. In other words, the sparse latent
representation of q̂ clearly indicates the topics that q belongs to.

Another benefit of learning sparse A is to save computational cost
and storage requirements whenD is large. In traditional LSA, the top-
ics with larger singular values will cover a broader range of concepts
than the ones with smaller singular values. For example, the first few
topics with largest singular values are often too general to have spe-
cific meanings. As singular values decrease, the topics become more
and more specific. Therefore, we might want to enlarge the number
of latent topics D to have a reasonable coverage of the topics. How-
ever, given a large corpus with millions of documents, a larger D will
greatly increase the computational cost of projection operations in tra-
ditional LSA. In contrary, for Sparse LSA, projecting documents via a
highly sparse projection matrix will be computationally much more
efficient; and it will take much less memory for storing A when D is
large.

The illustration of Sparse LSA from a matrix factorization perspec-
tive is presented in Figure 9.1(a). An example of topic-word relation-
ship is shown in Figure 9.1(b). Note that a latent topic (“law” in this
case) is only related to a limited number of words.

In order to obtain a sparse A, inspired by the lasso model in [133],
we add an entry-wise `1-norm of A as the regularization term to the
loss function and formulate the Sparse LSA model as:

minU,A
1

2
‖X − UA‖2F + λ‖A‖1 (9.4)

subject to: UTU = I,

where ‖A‖1 =
∑D
d=1

∑M
j=1 |adj| is the entry-wise `1-norm of A and

λ is the positive regularization parameter which controls the density
(the number of nonzero entries) of A. In general, a larger λ leads
to a sparser A. On the other hand, a too sparse A will miss some
useful topic-word relationships which harms the reconstruction per-
formance. Therefore, in practice, we need to try to select larger λ
to obtain a more sparse A while still achieving good reconstruction
performance. We will show the effectiveness of λ in more details in
Section 9.5.

9.2.3 Optimization Algorithm

In this section, we propose an efficient optimization algorithm to
solve (9.4). Although the optimization problem is non-convex, fixing
one variable (either U or A), the objective function with respect to the
other is convex. Therefore, a natural approach to solve (9.4) is by the
alternating approach:

1. When U is fixed, the optimization problem with respect to A
takes the following form:

min
A

1

2
‖X − UA‖2F + λ‖A‖1. (9.5)

9.2 sparse lsa 143

(a)

(b)

Figure 9.1: Illustration of Sparse LSA (a) View of Matrix Factorization, white
cells in A indicates the zero entries (b) View of document-topic-
term relationship.

The optimization in (9.5) has a closed-form solution due to the
fact that UTU = I. In particular, as shown in Proposition 3.3, the
optimal A can be obtained via the soft-thresholding operation:

Aij = sign
(
(UTX)ij

)
max

(
0, |(UTX)ij|− λ

)
.

In fact, this is an extra computational benefit brought by the
orthogonality constraint of the matrix U.

2. When A is fixed, the optimization problem is equivalent to:

minU
1

2
‖X − UA‖2F (9.6)

subject to: UTU = I.

The objective function in (9.6) can be further written as:

1

2
‖X − UA‖2F

=
1

2
tr((X − UA)T (X − UA))

= −tr(ATUTX) +
1

2
tr(XTX) +

1

2
tr(ATUTUA)

= −tr(ATUTX) +
1

2
tr(XTX) +

1

2
tr(ATA),

144 sparse latent semantic analysis

where the last equality is according to the constraint that UTU =

I. By the fact that tr(ATUTX) ≡ tr(UTXAT), the optimization
problem in (9.6) is equivalent to

maxU tr(UTXAT) (9.7)

subject to: UTU = I.

Let V = XAT . In fact, V is the latent topic representations of the
documents X. Assuming that V is full column rank, i.e. with
rank(V) = D, (9.7) has the closed form solution as shown in the
next theorem [163]:

Theorem 9.1. Suppose the singular value decomposition (SVD) of V
is V = P∆Q, the optimal solution to (9.7) is U = PQ.

Since N is much larger than D, in most cases, V is full col-
umn rank. If it is not, we may approximate V by a full column
rank matrix Ṽ = P∆̃Q. Here ∆̃dd = ∆dd if ∆dd 6= 0; otherwise
∆̃dd = δ, where δ is a very small positive number. In the later
context, for the simplicity purpose, we assume that V is always
full column rank.

It is worthy to note that since D is usually much smaller than
the vocabulary size M, the computational cost of SVD of V ∈
RN×D is much cheaper than SVD of X ∈ RN×M in LSA.

As for the starting point, any A0 or U0 stratifying (U0)TU0 = I can
be adopted. We suggest a very simple initialization strategy for U0 as
following:

U0 =
(

ID
0

)
, (9.8)

where ID theD byD identity matrix. It is easy to verify that (U0)TU0 =
I.

The optimization procedure can be summarized in Algorithm 9.1.

Algorithm 9.1 Optimization Algorithm for Sparse LSA
Input: X, the dimensionality of the latent space D, regularization pa-
rameter λ

Initialization:U0 =
(

ID
0

)
,

Iterate until convergence of U and A:

1. Compute A directly by the soft-thresholding operation in (9.5).

2. Project X onto the latent space: V = XAT .

3. Compute the SVD of V: V = P∆Q and let U = PQ.

Output: Sparse projection matrix A.

As for the stopping criteria, let ‖ · ‖∞ denote the matrix entry-wise
`∞-norm, for the two consecutive iterations t and t+ 1, we compute

9.3 extension of sparse lsa 145

the maximum change for all entries in U and A: ‖U(t+1)−U(t)‖∞ and
‖A(t+1) − A(t)‖∞; and stop the optimization procedure when both
quantities are less than the prefixed constant τ. In our experiments,
we set τ = 0.01.

9.3 extension of sparse lsa

In this section, we propose two important extensions of Sparse LSA
model.

9.3.1 Group Structured Sparse LSA

Although entry-wise `1-norm regularization leads to the sparse pro-
jection matrix A, it does not take advantage of any prior knowledge
on the structure of the input features (e.g. words). When the features
are naturally clustered into groups, it is more meaningful to enforce
the sparsity pattern at a group level instead of each individual fea-
ture; so that we can learn which groups of features are relevant to a
latent topic. It has many potential applications in analyzing biolog-
ical data. For example, in the latent gene function identification, it
is more meaningful to determine which pathways (groups of genes
with similar function or near locations) are relevant to a latent gene
function (topic).

Inspired by the group lasso [150], we can encode the group struc-
ture via a `1/`2 mixed norm regularization of A in Sparse LSA. For-
mally, we assume that the set of groups of input features G = {g1, . . . ,g|G|}
is defined as a subset of the power set of {1, . . . ,M}, and is available
as prior knowledge. For the purpose of simplicity, we assume that
groups are non-overlapped. The group structured Sparse LSA can be
formulated as:

minU,A
1

2
‖X − UA‖2F + λ

D∑
d=1

∑
g∈G

wg‖Adg‖2 (9.9)

subject to: UTU = I,

where Adg ∈ R|g| is the subvector of A for the latent dimension d and
the input features in group g; wg is the predefined regularization
weight each group g, λ is the global regularization parameter; and
‖ · ‖2 is the vector `2-norm which enforces all the features in group
g for the d-th latent topic, Adg, to achieve zeros simultaneously. A
simple strategy for setting wg is wg =

√
|g| as in [150] so that the

amount of penalization is adjusted by the size of each group.

9.3.2 Non-negative Sparse LSA

It is natural to assume that each word has a non-negative contribution
to a specific topic, i.e. the projection matrix A should be non-negative.
In such a case, we may normalize each row of A to 1:

ãdj =
adj∑M
j=1 adj

.

146 sparse latent semantic analysis

Since adj measures the relevance of the j-th word,wj, to the d-th topic
td, from the probability perspective, ãdj can be viewed as a pseudo
probability of the word wj given the topic td, P(wj|td). Similar to
topic modeling in the Bayesian framework such as LDA [14], the non-
negative Sparse LSA can also provide the most relevant/likely words
to a specific topic.

More formally, the non-negative Sparse LSA can be formulated as
the following optimization problem:

minU,A
1

2
‖X − UA‖2F + λ‖A‖1 (9.10)

subject to: UTU = I, A > 0.

According to the non-negativity constraint of A, |adj| = adj and (9.10)
is equivalent to:

minU,A
1

2
‖X − UA‖2F + λ

D∑
d=1

J∑
j=1

adj (9.11)

subject to: UTU = I, A > 0.

9.4 related work

There are numerous related work in a larger context of the matrix
factorization. Here, we briefly review those work mostly related to us
and point out the difference from our model.

9.4.1 PCA

Principal component analysis (PCA) [55], which is closely related
to LSA, has been widely applied for the dimension reduction pur-
pose. In the content of information retrieval, PCA first center each
document by subtracting the sample mean. The resulting document-
term matrix is denoted as Y. PCA computes the covariance matrix
Σ = 1

NYTY and performs SVD on Σ keeping only the first D eigen-
values: Σ ≈ P∆D×DPT . For each centered document y, its projected
image is PTy. In recent years, many variants of PCA, including kernel
PCA [122], sparse PCA [163], non-negative sparse PCA [153], robust
PCA [78], have been developed and successfully applied in many ar-
eas.

However, it is worthy to point out that the PCA based dimension
reduction techniques are not suitable for the large text corpus due to
the following two reasons:

1. When using English words as features, the text corpus repre-
sented as X is a highly sparse matrix where each rows only has
a small amount of nonzero entries corresponding to the words
appeared in the document. However, by subtracting the sam-
ple mean, the centered documents will become a dense matrix
which may not fit into memory since the number of documents
and words are both very large.

9.4 related work 147

2. PCA and its variants, e.g. sparse PCA, rely on the fact that YTY
can be fit into memory and SVD can be performed on it. How-
ever, for large vocabulary size M, it is very expensive to store
M by M matrix and computationally costly to perform SVD on
YTY.

In contrast with PCA and its variants (e.g. sparse PCA), our method
directly works on the original sparse matrix without any standardiza-
tion or utilizing the covariance matrix, hence is more suitable for the
text learning task.

9.4.2 Sparse Coding

Sparse coding, as another unsupervised learning algorithm, learns ba-
sis functions which capture higher-level features in the data and has
been successfully applied to image processing [114] and speech recog-
nition [51]. Although the original form of sparse coding is formulated
based on the term-document matrix, for the easy of comparison, in
our notations, sparse coding [85] can be modeled as:

minU,A
1

2
‖X − UA‖2F + λ‖U‖1 (9.12)

subject to: ‖Aj‖22 6 c, j = 1, . . .M,

where c is a predefined constant, A is called dictionary in sparse cod-
ing context; and U are the coefficients. Instead of projecting the data
via A as our method, sparse coding directly use U as the projected
image of X. Given a new data q, its projected image in the latent space
can be computed by solving the following lasso type of problem:

min
q̂

1

2
‖q− AT q̂‖+ λ‖q̂‖1. (9.13)

In the text learning, one drawback is that since the dictionary A is
dense, it is hard to characterize the topic-word relationships from
A. Another drawback is that for each new document, the projection
operation in (9.13) is computationally very expensive.

9.4.3 LDA

Based on the LSA, probabilistic LSA [59] was proposed to provide the
probabilistic modeling, and further Latent Dirichlet Allocation (LDA) [14]
provides a Bayesian treatment of the generative process. One great
advantage of LDA is that it can provide the distribution of words
given a topic and hence rank the words for a topic. The non-negative
Sparse LSA proposed in Section 9.3.2 can also provide the most rele-
vant words to a topic and can be roughly viewed as a discriminative
version of LDA. However, when the number of latent topics D is very
large, LDA performs poorly and the posterior distribution is almost
the same as prior. On the other hand, when using smaller D, the doc-
uments in the latent topic space generated by LDA are not discrimi-
native for the classification or categorization task. In contrast, as we

148 sparse latent semantic analysis

show in experiments, our method greatly outperforms LDA in the
classification task while providing reasonable ranking of the words
for a given topic.

9.4.4 Matrix Factorization

Our basic model is also closely related to matrix factorization which
finds the low-rank factor matrices U, A for the given matrix X such
that the approximation error ‖X − UA‖2F is minimized. Important ex-
tensions of matrix factorization include non-negative matrix factor-
ization [84], which enforces the non-negativity constraint to X, U and
A; probabilistic matrix factorization [121], which handles the missing
values of X and becomes one of the most effective algorithms in col-
laborative filtering; sparse non-negative matrix factorization [60, 70],
which enforces sparseness constraint on either U or A; and orthog-
onal non-negative matrix factorization [38], which enforces the non-
negativity and orthogonality constraints simultaneously on U and/or
A and studies its relationship to clustering.

As compared to sparse non-negative matrix factorization [60, 70],
we add orthogonality constraint to the U matrix, i.e. UTU = I, which
enforces the soft clustering effect of the documents. More specifically,
each dimension of the latent space (columns of U) can be viewed as
a cluster and the value that a document has on that dimension as
its fractional membership in the cluster. The orthogonality constraint
tries to cluster the documents into different latent topics. As com-
pared to orthogonal non-negative matrix factorization [38], instead of
enforcing both non-negativity and orthogonality constraints, we only
enforce orthogonality constraint on U, which further leads to a closed-
form solution for optimizing U as shown in Theorem 9.1. In summary,
based on the basic matrix factorization, we combine the orthogonal-
ity and sparseness constraints into a unified framework and use it for
the purpose of semantic analysis. Another difference between Sparse
LSA and matrix factorization is that, instead of treating A as factor
matrix, we use A as the projection matrix.

9.5 experimental results

In this section, we conduct several experiments on real world datasets
to test the effectiveness of Sparse LSA and its extensions.

9.5.1 Text Classification Performance

In this subsection, we consider the text classification performance af-
ter we project the text data into the latent space. We use two widely
adopted text classification corpora, 20 Newsgroups (20NG) dataset 2

and RCV1 [88]. For the 20NG, we classify the postings from two news-
groups alt.atheism and talk.religion.misc using the tf-idf of the vocabu-
lary as features. For RCV1, we remove the words appearing fewer

2 See http://people.csail.mit.edu/jrennie/20Newsgroups/

http://people.csail.mit.edu/jrennie/20Newsgroups/

9.5 experimental results 149

Table 9.1: The statistics of the experimental datasets

20NG RCV1

No. of Samples 1425 15,564

No. of Words 17,390 7,413

No. of Classes 2 53

10 50 100 500 1000

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Dimension of latent space

C
la

ss
ifi

ca
tio

n
 A

cc
u
ra

cy

Sparse LSA+SVM
NN Sparse LSA+SVM
LSA+SVM
Sparse Coding+SVM
LDA+SVM

10 50 100 500 1000
0.4

0.5

0.6

0.7

0.8

0.9

1

Dimension of latent space

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Sparse LSA+SVM
NN Sparse LSA+SVM
LSA+SVM
Sparse Coding+SVM
LDA+SVM

(a) (b)

Figure 9.2: Classification accuracy vs the dimensionality of latent space for
(a) 20NG; (b) RCV1.

than 10 times and standard stopwords; pre-process the data accord-
ing to [8] 3; and convert it into a 53 classes classification task. More
statistics of the data are shown in Table 9.1.

We evaluate different dimension reduction techniques based on the
classification performance of linear SVM classifier. Specifically, we
consider

1. Traditional LSA;
2. Sparse Coding with the code from [85] and the regularization

parameter is chosen by cross-validation on train set;
3. LDA with the code from [14];
4. Sparse LSA;
5. Non-negative Sparse LSA (NN Sparse LSA).

After projecting the documents to the latent space, we randomly split
the documents into training/testing set with the ratio 2 : 1 and per-
form the linear SVM using the package LIBSVM [22] with the reg-
ularization parameter Csvm ∈ {1e − 4, . . . , 1e + 4} selected by 5-fold
cross-validation.

Firstly, following the traditional way of comparing different dimen-
sion reduction methods, we vary the dimensionality of the latent
space and plot the classification accuracy in Figure 9.2. For Sparse
LSA and NN Sparse LSA, the regularization parameter λ is fixed to

3 See http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.

html

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html

150 sparse latent semantic analysis

Table 9.2: Density of A (%)

Dimension 10 50 100 500 1000

Sparse LSA 1.48 0.80 0.74 0.32 0.18

NN Sparse LSA 1.44 0.72 0.55 0.31 0.17

Other Methods 100 100 100 100 100

(a) 20NG

Dimension 10 50 100 500 1000

Sparse LSA 13.52 7.46 7.40 2.71 1.13

NN Sparse LSA 11.65 4.97 0.40 1.91 0.79

Other Methods 100 100 100 100 100

(b) RCV1

10
−2

10
−1

10
0

10
1

10
2

10
3

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Effective Dimension

C
la

ss
ifi

ca
tio

n
 A

cc
u

ra
cy

Sparse LSA+SVM
NN Sparse LSA+SVM
LSA+SVM
Sparse Coding+SVM
LDA+SVM

10
−1

10
0

10
1

10
2

10
3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Effective Dimension

C
la

ss
ifi

ca
tio

n
 A

cc
u

ra
cy

Sparse LSA+SVM
NN Sparse LSA+SVM
LSA+SVM
Sparse Coding+SVM
LDA+SVM

(a) (b)

Figure 9.3: Classification Accuracy vs effective dimension for (a) 20NG (b)
RCV1

be 0.05 and the corresponding densities (proportion of nonzero en-
tries) of A are shown in Table 9.2.

It can be seen that the performances of LSA and Sparse Coding
are comparable. Sparse Coding is slightly worse than LSA for 20NG
while slightly better for RCV1. When the dimensionality of latent
space is small, Sparse LSA is slightly worse than LSA. It is expectable
since the number of parameters in the projection matrix is already
very few, sparse model may miss important topic-word relationships.
In contrast, for higher dimensional latent space, Sparse LSA shows
its advantage in the sense that it can achieve similar classification
performance with a highly sparse model (see Table 9.2). A sparse A
will further save both computational and storage cost as shown in
the next section. NN Sparse LSA achieves similar classification per-
formance as Sparse LSA with a more sparse A. LDA performs not
well for the classification task, which is also expectable since LDA is

9.5 experimental results 151

a generative model designed for the better interpretability instead of
dimension reduction performance 4.

Since Sparse LSA has fewer effective parameters (nonzero entries)
in projection matrix, for more fair comparisons, we introduce a con-
cept called effective dimension which has been widely adopted in sparse
learning. We define the effective dimension of A to be #nz(A)

M , where
#nz(A) is the number of nonzero entries of A andM is the vocabulary
size 5. For other methods, including LSA, Sparse Coding, LDA, the
effective dimension is just the dimensionality of the latent space since
all the parameters affects the projection operation. In other words, we
compare the classification performance of different methods based on
the same number of learned nonzero parameters for the projection.

The result is shown in Figure 9.3. For Sparse LSA and NN Sparse
LSA, we fix the number of latent topics to be D = 1000 and vary the
value of regularization parameter λ from large number (0.5) to small
one (0) to achieve different #nz(A), i.e. different effective dimensions.
As we can see, Sparse LSA and NN Sparse LSA greatly outperform
other methods in the sense that they achieve good classification ac-
curacy even for highly sparse models. In practice, we should try to
find a λ which could lead to a sparser model while still achieving
reasonably good dimension reduction performance.

In summary, Sparse LSA and NN Sparse LSA show their advan-
tages when the dimensionality of latent space is large. They can achieve
good classification performance with only a small amount of nonzero
parameters in the projection matrix.

9.5.2 Efficiency and Storage

In this section, we fix the number of the latent topics to be 1000, regu-
larization parameter λ = 0.05 and report the projection time, storage
and the density of the projected documents for different methods in
Table 9.36. The Proj. time is computed as the CPU time for the projec-
tion operation and the density of projected documents is the propor-
tion of nonzero entries of q̂ = Aq for a document q. Both quantities
are computed for 1000 randomly selected documents in the corpus.
Storage is the memory for storing the A matrix.

For Sparse LSA and NN Sparse LSA, although the classification ac-
curacy is slightly worse (below 1%), the projection time and memory
usage are smaller by orders of magnitude than LSA and Sparse Cod-
ing. In practice, if we may need to project millions of documents, e.g.
web-scale data, into the latent space in a timely fashion (online set-
ting), Sparse LSA and NN Sparse LSA will greatly cut computational
cost. Moreover, given a new document q, using Sparse LSA or NN
Sparse LSA, the projected document will also be a sparse vector.

4 For RCV1 using LDA, when the dimensionality of the latent space exceeds 100, the
classification performance is very poor (nearly random guess). Therefore, we omit
the result here.

5 Effective dimension might be less than 1 if #nz(A) < M.
6 “Proj.”, “Doc”, “ACC.” are abbreviations for “projection/projected”, “document”

and “classification accuracy”, respectively.

152 sparse latent semantic analysis

Table 9.3: Computational Efficiency and Storage

Proj. Time (ms) Storage (MB)

Sparse LSA 0.25 (4.05E-2) 0.6314

NN Sparse LSA 0.22 (2.78E-2) 0.6041

LSA 31.6 (1.10) 132.68

Sparse Coding 1711.1 (323.9) 132.68

Density of Proj. Doc. (%) Acc. (%)

Sparse LSA 35.81 (15.39) 93.01 (1.17)

NN Sparse LSA 35.44 (15.17) 93.00 (1.14)

LSA 100 (0) 93.89 (0.58)

Sparse Coding 86.94 (3.63) 90.54 (1.55)

(a) 20NG

Proj. Time (ms) Storage (MB)

Sparse LSA 0.59 (7.36E-2) 1.3374

NN Sparse LSA 0.46 (6.66E-2) 0.9537

LSA 13.2 (0.78) 113.17

Sparse Coding 370.5 (23.3) 113.17

Density of Proj. Doc. (%) Acc. (%)

Sparse LSA 55.38 (11.77) 88.88 (0.43)

NN Sparse LSA 46.47 (11.90) 88.97 (0.49)

LSA 100 (0) 89.38 (0.58)

Sparse Coding 83.88 (2.11) 88.79 (1.55)

(b) RCV1

9.5.3 Topic-word Relationship

In this section, we qualitatively show that the topic-word relationship
learned by NN Sparse LSA as compared to LDA. We use the bench-
mark data: NIPS proceeding papers7 from 1988 through 1999 of 1714

articles, with a vocabulary 13,649 words. We vary the λ for NN Sparse
LSA so that each topic has at least ten words. The top ten words for
the top 7 topics 8 are listed in Table 9.4.

It is very clear that NN Sparse LSA captures different hot topics
in machine learning community in 1990s, including neural network,
reinforcement learning, mixture model, theory, signal processing and
computer vision. For the ease of comparison, we also list the top 7

topics for LDA as in Table 9.5. Although LDA also gives the represen-
tative words, the topics learned by LDA are not very discriminative

7 Available at http://cs.nyu.edu/~roweis/data/
8 We use D = 10. However, due to the space limit, we report the top 7 topics.

http://cs.nyu.edu/~roweis/data/

9.5 experimental results 153

Table 9.4: Topic-word learned by NN Sparse LSA

Topic 1 Topic 2 Topic 3 Topic 4

network learning network model

neural reinforcement learning data

networks algorithm data models

system function neural parameters

neurons rule training mixture

neuron control set likelihood

input learn function distribution

output weight model gaussian

time action input em

systems policy networks variables

Topic 5 Topic 6 Topic 7

function input image

functions output images

approximation inputs recognition

linear chip visual

basis analog object

threshold circuit system

theorem signal feature

loss current figure

time action input

systems policy networks

in the sense that all the topics seems to be closely related to neural
network.

9.5.4 Gene Function Identification with Gene Groups Information

For text retrieval task, it is not obvious to identify the separated
group structures among words. Instead, one important application
for the group structured Sparse LSA is in gene-set identifications as-
sociated to hidden functional structures inside cells. Genes could be
naturally separated into groups according to their functions or loca-
tions, known as pathways. We use a benchmark breast cancer dataset
from [65], which includes a set of cancer tumor examples and each
example is represented by a vector of real values, e.g. the quanti-
ties of different genes found in the data example. Essentially, group
structured Sparse LSA analyzes relationships between the cancer ex-

154 sparse latent semantic analysis

Table 9.5: Topic-word learned by LDA

Topic 1 Topic 2 Topic 3 Topic 4

learning figure algorithm single

data model method general

model output networks sets

training neurons process time

information vector learning maximum

number networks input paper

algorithm state based rates

performance layer function features

linear system error estimated

input order parameter neural

Topic 5 Topic 6 Topic 7

rate algorithms function

unit set neural

data problem hidden

time weight networks

estimation temporal recognition

node prior output

set obtain visual

input parameter noise

neural neural parameters

properties simulated references

amples and genes they contain by discovering a set of “hidden gene
functions” (i.e. topics in text case) related to the cancer and the gene
groups. And it is of great interest for biologists to determine which
sets of gene groups, instead of individual genes, associate to the same
latent functions relevant to a certain disease.

Specifically, the benchmark cancer data consists of gene expression
values from 3510 genes in 295 breast cancer examples (78 metastatic
and 217 non-metastatic). Based each gene’s associated “biological pro-
cess” class in the standard “gene ontology” database [130], we split
these 3510 genes into 1103 non-overlapped groups, which we use as
group structures in applying group structured Sparse LSA.

We set the parameter λ = 0.12 and select the first five projected
“functional” components which are relevant to 93 gene groups totally.
The selected gene groups make a lot of sense with respect to their
association with the breast cancer disease.

9.5 experimental results 155

For instance, 12 gene groups are relevant to the second hidden
“function”. One selected pathway covering 6 gene variables involves
with the so called "unsaturated fatty acid biosynthetic process". High
fat diets are well-known to be associated with certain kinds of can-
cers, including breast cancer, in particular. The predominant usage of
excessively high dietary unsaturated omega-6 fatty acid is at the root
of many modern health problems, some of which are concerned with
the immune system. The association of this important process to can-
cer seems very reasonable. Other chosen groups involve functional en-
richments of “mRNA metabolic process”, “regulation of programmed
cell death” and “B cell receptor signal” (B cells are an important com-
ponent of adaptive immunity), etc. Clearly this hidden function (the
2nd projection) space involves the critical “metabolic” components
relevant to important biochemical changes leading to characteristic
cell change and death.

Alternatively, we also perform the dimension reduction on this can-
cer data using the basic Sparse LSA without considering the group
structures among genes. The resulting functional components could
not be analyzed as clear and as easy as the group structured Sparse
LSA case. The reason of the difficulty is that the discovered gene func-
tions are quite large gene groups (i.e. more than 100 genes involved).
They represent relatively high level biological processes which are
essential for cells in any case, but not necessarily limited to the cer-
tain cancer disease this data set is about. It is hard to argue the rela-
tionship between such a large amount of genes to the target “breast
cancer” cause.

Part VI

C O N C L U S I O N S A N D F U T U R E D I R E C T I O N S

10
C O N C L U S I O N S A N D F U T U R E D I R E C T I O N S

10.1 conclusions

In summary, this thesis makes some attempts to address the following
challenges arising in big data analytics:

1. High-dimensionality: The modern scientific or web data are
often ultra-high dimensional (e.g. text data, genetic data) but
also extremely sparse in that only a small subset of features are
relevant for specific learning tasks and these need to be identi-
fied. The `1-regularized sparse learning methods provide us a
suite of powerful tools which strive to identify a small subset of
variables maximally relevant for the learning task. This thesis
adapts and extends the existing `1-regularized sparse learning
methods in different aspects to address various real-world ap-
plications.

2. Large-scale: The web data are often large-scale. In particular,
for many web applications, the data is collected in a streaming
fashion and hence, the number of available instances could be
unlimited. This thesis proposes an uniformly-optimal stochastic
optimization method for general regularized expected risk min-
imization problems [30]. And the developed algorithm can be
directly applied to perform categorization or ranking tasks for
large-scale online information retrieval tasks.

3. Complex Structures: Many scientific data are often highly com-
plex, which renders the prediction tasks very difficult. Exam-
ples include potentially implicit group structures, such as path-
ways in genetic and proteomic data; and graph structures, such
as dependency and associative relationships in social network
analysis, gene regulatory network in microarray data, etc.

• Known Prior Structures: When the knowledge about the
structure among variables is given as a priori, many struc-
tured sparsity-inducing penalties have been proposed to
encode such knowledge. However, there is lack of a uni-
fied, efficient and scalable optimization method for solv-
ing objective functions with structured penalty functions.
This thesis presents a general smoothing proximal gradi-
ent method to address different learning problems with a
wide spectrum of penalty functions, including regression
[27, 29], multi-task regression [29] and canonical correla-
tion analysis [31].

• Unknown Structures: When there is unknown hidden struc-
ture inside the data, it is desirable to extract those struc-

159

160 conclusions and future directions

tures, which might lead to new scientific discoveries. In ad-
dition, the hidden structures (groups, networks) of the data
are seldom static, as relations and dependencies change
over time, location or task. In this thesis, we proposed par-
tition based estimators for predicting dynamic network or
forest structures and applied them to various real appli-
cations, ranging from climatological data analysis to stock
analysis [92].

The aforementioned challenges are core challenges in understand-
ing, extracting useful information and making predictions from high-
dimensional large-scale complex data. This thesis conducts some pre-
liminary research on addressing these challenges and opens up many
opportunities for future works. In the next section, we will discuss a
few promising future directions.

In addition to the proposed optimization and statistical methods,
we also summarize the applications of the thesis as follows.

1. Tumor Classification with Pathway Information: Tumor clas-
sification from microarray data is an important issue in com-
putational biology, which could potentially help detect cancer
at an earlier stage. It remains a challenging problem to utilize
rich structural information among genes (e.g., pathways) to fa-
cilitate the classification task. In Chapter 3, we incorporate path-
ways information into the overlapping group lasso penalty and
solve the corresponding optimization problem using the pro-
posed smoothing proximal gradient method. Our results on the
breast cancer data show that we not only achieve a better classi-
fication accuracy as compared to the vanilla lasso approach, but
also identify some important pathways.

2. Genome-wide Association Study: We propose to apply the canon-
ical correlation analysis to an important genome-wide associa-
tion problem—eQTL mapping, while incorporating rich struc-
tural information among genes. We obtain more significant func-
tional enrichment results as compared to the `1-regularized sparse
CCA (see Chapter 4 for more details). It will be great to collabo-
rate with biologists in the future to conduct wet lab experiments
to further verify the new observations from structured sparse
CCA.

3. Climate Data Analysis: Global warming becomes one of the
most critical environmental problems in the 21st century. One
of the preliminary studies for this problem from the machine
learning and statistical aspect is to better understand the corre-
lation among different climatological factors. In Chapter 6, we
apply Go-CART to estimate the graphical models among vari-
ous important climatological factors at different locations of the
US. Our results show that such a more refined analysis leads
to more interpretable results than estimating a single graphical
model by pooling all the data from different locations.

10.2 future directions 161

4. Stock Data Analysis: We apply the FoCART estimator proposed
in Chapter 7 to an interesting stock data analysis problem. In
contrast to the relationship between stock market and time which
has been extensively studied, we study how the correlation among
stocks changes with respect to the oil price and have some in-
teresting observations (see Chapter 7).

5. Ranking in Text Mining: We propose to apply sparse learning
technique for the ranking task with millions of raw features.
Our method achieves fast convergence rate, better generaliza-
tion ability and takes much less memory for web ranking with
millions of features.

6. Latent Semantic Analysis in Text Mining: We propose a new
topic modeling technique based on sparse learning technique.
As compared to the Bayesian latent Dirichlet allocation approach
[14], our method leads to more discriminative topic representa-
tions as well as better classification accuracy based on the latent
representation of the documents.

In addition to the applications studied in this thesis, sparse learn-
ing techniques have a much wider spectrum of applications, e.g., com-
puter vision, information retrieval, fMRI, economics, etc. In the next
section, we will discuss about some other promising applications that
we would like investigate using sparse learning techniques in the fu-
ture.

10.2 future directions

The results in this thesis lead to several future directions as follows:

1. Optimization: Computation will always be one of the major
bottlenecks for learning from massive data since the data grows
at an unprecedented rate. Although we have discussed a dis-
tributed implementation of optimal regularized dual averaging in
Chapter 5 using mini-batch strategy from [37], there is still much
more room for improvement. It is desirable to develop paral-
lel / distributed algorithms on multi-core machines or network-
based clusters to process and learn from terabyte-scale to petabyte-
scale data. To achieve that goal, one needs to carefully investi-
gate different locking schemes in distributed optimization to
accelerate the algorithm.

Different optimization methods have their own advantages on
different objective functions. In addition to first-order methods,
it would be fruitful to investigate other optimization methods
(e.g., coordinate descent, alternating direction method of mul-
tipliers) and propose their stochastic or distributed extensions
to deal with large-scale or streaming data. Eventually, the goal
is to provide user-friendly software for general large-scale dis-
tributed optimization to the public.

162 conclusions and future directions

2. Exploring and Learning Structures: To understand complex
data, it is critical to unveil the underlying structures among vari-
ables. How to automatically learn and utilize different hidden
structures from data is one of the major challenges in modern
data analysis.

In Chapter 3, we study how to encode prior structural informa-
tion via structured regularizers in regression settings. However,
when the prior information is unavailable, it is important to
automatically extract intrinsic structures (e.g., group structure,
manifold structure, matrix block structure) from high-dimensional
data and utilize the structures to facilitate the predication and
data interpretation.

In addition, learning the dependency relationship as an undi-
rected network structure has been carefully studied in Part iv.
There are many others structures, e.g., group structures, forest
structures, directed graphical models, that need to be further
explored.

3. Applications: We expect the results of this thesis could have
more applications in various domains, e.g., functional magnetic
resonance images (fMRI) study, computer vision, computational
genomics and text mining. For example, based on the robust
PCA [19], we further proposed a robust sparse matrix factor-
ization approach for video background modeling and activity
detection. It can be envisioned that sparse learning will become
a powerful tool for many computer vision tasks and the scalable
computational methods are increasingly important for address-
ing those tasks since there will be huge amount of images for
the training purpose.

Take fMRI study as another example, Liu et al. proposed multi-
task lasso to address the problem of predicting human brain ac-
tivity proposed in [102] and we further extended it to adaptive
multi-task lasso to boost the performance. Since the fMRI im-
ages are usually ultra-high dimensional, sparse learning meth-
ods are particularly suitable for modeling fMRI images. In the
future, it will be very fruitful to collaborate with domain ex-
perts to explore new challenges from real applications and pro-
pose new sparse learning methods along with scalable compu-
tational tools to address these challenges.

B I B L I O G R A P H Y

[1] N. Abate, M. Chandalia, P. Satija, B. Adams-Huet, and et. al.
Enpp1/pc-1 k121q polymorphism and genetic susceptibility to
type 2 diabetes. Diabetes, 54(4):1027–1213, 2005.

[2] A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task
feature learning. Machine Learning, 73:243–272, 2008.

[3] R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern information re-
trieval. Addison-Wesley Harlow, England, 1999.

[4] B. Bai, J. Weston, R. Collobert, and D. Grangier. Supervised
semantic indexing. In ECIR, 2009.

[5] O. Banerjee, L. E. Ghaoui, and A. d’Aspremont. Model selec-
tion through sparse maximum likelihood estimation. Journal of
Machine Learning Research, 9:485–516, March 2008.

[6] A. Beck and M. Teboulle. A fast iterative shrinkage threshold-
ing algorithm for linear inverse problems. SIAM Journal of Image
Science, 2(1):183–202, 2009.

[7] R. Bekkerman and M. Scholz. Data weaving: Scaling up the
state-of-the-art in data clustering. In CIKM, 2008.

[8] R. Bekkerman and M. Scholz. Data weaving: Scaling up the
state-of-the-art in data clustering. In Proceedings of ACM Interna-
tional Confernece on Information and Knowledge Management, 2008.

[9] G. Berriz, J. Beaver, C. Cenik, M. Tasan, and F. Roth. Next gen-
eration software for functional trend analysis. Bioinformatics,
25(22):3043–3044, 2009.

[10] D. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

[11] P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of
lasso and dantzig selector. Annals of Statistics, 37(4):1705–1732,
2009.

[12] G. Bindea and B. M. et. al. Cluego: a cytoscape plug-in to deci-
pher functionally grouped gene ontology and pathway annota-
tion networks. Bioinformatics, 25 (8):1091–1093, 2009.

[13] G. Blanchard, C. Schäfer, Y. Rozenholc, and K.-R. Müller.
Optimal dyadic decision trees. Mach. Learn., 66(2-3):209–
241, 2007. ISSN 0885-6125. doi: http://dx.doi.org/10.1007/
s10994-007-0717-6.

[14] D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. Jour-
nal of Machine Learning Research, 3:993–1022, 2003.

163

164 bibliography

[15] J. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Opti-
mization: Theory and Examples. Springer, 2000.

[16] L. Bottou and Y. LeCun. Large-scale on-line learning. In Ad-
vances in Neural Information Processing Systems 15. MIT Press,
2004.

[17] L. Breiman, J. Friedman, C. J. Stone, and R. Olshen. Classification
and regression trees. Wadsworth Publishing Co Inc, 1984.

[18] R. B. Brem and L. Krulyak. The landscape of genetic complexity
across 5,700 gene expression traits in yeast. PNAS, 102 (5):1572–
1577, 2005.

[19] E. J. Candes, X. Li, Y. Ma, and J. Wright. Robust principal com-
ponent analysis? Journal of ACM, 58(1):1–37, 2009.

[20] R. Caruana. Multitask learning. Machine Learning Journal, 28:
41–75, 1997.

[21] A. Cayley. A theorem on trees. Quarterly Journal of Mathematics,
23:376–378, 1889.

[22] C. Chang and C. Lin. LIBSVM: a library for support vector ma-
chines, 2001. Software available at http://www.csie.ntu.edu.

tw/~cjlin/libsvm.

[23] A. Chechetka and C. Gusterin. Efficient principled learning of
thin junction trees. In NIPS, 2007.

[24] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic de-
composition by basis pursuit. SIAM Journal on Scientific and
Statistical Computing, 20:33–61, 1998.

[25] X. Chen and H. Liu. An efficient optimization algorithm for
structured sparse cca, with applications to eqtl mapping. Statis-
tics in Biosciences, 4(1):3–26, 2012.

[26] X. Chen, B. Bai, Y. Qi, Q. Lin, and J. Carbonell. Learning pref-
erences using millions of parameters by enforcing sparsity. In
International Conference on Data Mining (ICDM), 2010.

[27] X. Chen, Q. Lin, S. Kim, J. Carbonell, and E. P. Xing. Smoothing
proximal gradient method for general structured sparse learn-
ing. In Uncertainty in Artificial Intelligence (UAI), 2011.

[28] X. Chen, Y. Qi, B. Bai, Q. Lin, and J. Carbonell. Sparse latent
semantic analysis. In SIAM International Conference on Data Min-
ing (SDM), 2011.

[29] X. Chen, Q. Lin, S. Kim, J. Carbonell, and E. P. Xing. Smoothing
proximal gradient method for general structured sparse learn-
ing. Annals of Applied Statistics, 6(2):719–752, 2012.

[30] X. Chen, Q. Lin, and J. Pena. Optimal regularized dual averag-
ing methods for stochastic optimization. In Advances in Neural
Information Processing Systems (NIPS), 2012.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

bibliography 165

[31] X. Chen, H. Liu, and J. Carbonell. Structured sparse canoni-
cal correlation analysis. In International Conference on Artificial
Intelligence and Statistics (AISTATS), 2012.

[32] M. Choi, V. Tan, A. Anandkumar, and A. Willsky. Learning la-
tent tree graphical models. Journal of Machine Learning Research,
1501–1542:2011, 12.

[33] C. Chow and C. Liu. Approximating discrete probability distri-
butions with dependence trees. Information Theory, IEEE Trans-
actions on, 14(3):462–467, 1968.

[34] G. Cormack and T. Lynam. Statistical precision of information
retrieval evaluation. In SIGIR, 2006.

[35] A. Cotter, O. Shamir, N. Srebro, and K. Sridharan. Better mini-
batch algorithms via accelerated gradient methods. In Advances
in Neural Information Processing Systems (NIPS), 2011.

[36] S. Deerwester, S. T. Dumais, G. W. Furnas, T. Landauer, and
R. Harshman. Indexing by latent semantic analysis. Journal of
the American Society for Information Science, 41, 1990.

[37] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal
distributed online prediction using mini-batches. Journal of Ma-
chine Learning Research, 13:165–202, 2012.

[38] C. Ding, T. Li, W. Peng, and H. Park. Orthogonal nonnegative
matrix tri-factorizations for clustering. In ACM SIGKDD, 2006.

[39] J. Duchi and Y. Singer. Efficient online and batch learning using
forward backward splitting. Journal of Machine Learning Research,
10:2899–2934, 2009.

[40] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient meth-
ods for online learning and stochastic optimization. In Confer-
ence on Learning Theory (COLT), 2010.

[41] J. Duchi, S. Shalev-Shwartz, Y. Singer, and A. Tewari. Compos-
ite objective mirror descent. In Conference on Learning Theory
(COLT), 2010.

[42] J. Duchi, P. L. Bartlett, and M. Wainwright. Randomized
smoothing for stochastic optimization. arXiv:1103.4296v1, 2011.

[43] D. Edwards. Introduction to graphical modelling. Springer-Verlag
Inc, 1995.

[44] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle
regression. The Annals of Statistics, 32:407–499, 2004.

[45] J. Z. et. al. Integrating large-scale functional genomic data to
dissect the complexity of yeast regulatory networks. Nature
Genetics, 40:854–861, 2008.

166 bibliography

[46] F.Aiolli and A. Sperduti. Learning preferences for multiclass
problems. In Advances in Neural Information Processing Systems
18, 2004.

[47] J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani. Pathwise
coordinate optimization. Annals of Applied Statistics, 1:302–332,
2007.

[48] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covari-
ance estimation with the graphical lasso. Biostatistics, 9:432–441,
2008.

[49] J. H. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse
covariance estimation with the graphical lasso. Biostatistics, 9

(3):432–441, 2007.

[50] J. Fürnkranz and E. Hüllermeier. Pairwise preference learning
and ranking. In ECML, 2003.

[51] S. Garimella, S. Nemala, M. Elhilali, T.Tran, and H. Herman-
sky. Sparse coding for speech recognition. In IEEE International
Confernece on Acoustics, Speech and Signal Processing, 2010.

[52] S. Ghadimi and G. Lan. Optimal stochastic approximation algo-
rithms for strongly convex stochastic composite optimization, i:
a generic algorithmic framework. SIAM Journal on Optimization,
22:1469–1492, 2012.

[53] A. Ghoting, P. Kambadur, E. Pednault, and R. Kannan. Nimble:
A toolkit for the implementation of parallel data mining and
machine learning algorithms on mapreduce. In ACM SIGKDD
Conference, 2011.

[54] D. Grangier and S. Bengio. A discriminative kernel-based ap-
proach to rank images from text queries. IEEE Trans. PAMI., 30

(8):1371–1384, 2008. ISSN 0162-8828. doi: http://dx.doi.org/10.
1109/TPAMI.2007.70791.

[55] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Sta-
tistical Learning: Data Mining, Inference, and Prediction. Springer-
Verlag, 2 edition, 2009.

[56] E. Hazan and S. Kale. Beyond the regret minimization barrier:
an optimal algorithm for stochastic strongly-convex optimiza-
tion. In Conference on Learning Theory (COLT), 2011.

[57] R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank
boundaries for ordinal regression. MIT Press, Cambridge, MA,
2000.

[58] J.-B. Hiriart-Urruty and C. Lemarechal. Fundamentals of Convex
Analysis. Springer, 2001.

[59] T. Hofmann. Probabilistic latent semantic analysis. In Proceed-
ings of Uncertainty in Artificial Intelligence, pages 289–296, 1999.

bibliography 167

[60] P. Hoyer. Non-negative matrix factorization with sparseness
constraints. Journal of Machine Learning Research, 5:1457–1469,
2004.

[61] C. Hu, J. T. Kwok, and W. Pan. Accelerated gradient methods
for stochastic optimization and online learning. In Advances in
Neural Information Processing Systems (NIPS), 2009.

[62] D. W. Huang, B. T. Sherman, and R. A. Lempicki. Systematic
and integrative analysis of large gene lists using david bioinfor-
matics resources. Nature Protoc, 4(1):44–57, 2009.

[63] J. Huang and T. Zhang. The benefit of group sparsity. Annals of
Statistics, 38(4):1978–2004, 2010.

[64] Climate Change 2007–The Physical Science Basis IPCC Fourth
Assessment Report. IPCC, 2007.

[65] L. Jacob, G. Obozinski, and J.-P. Vert. Group lasso with overlap
and graph lasso. In International Conference on Machine Learning,
2009.

[66] R. Jenatton, J.-Y. Audibert, and F. Bach. Structured variable se-
lection with sparsity-inducing norms. Technical report, INRIA,
2009.

[67] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal meth-
ods for sparse hierarchical dictionary learning. In ICML, 2010.

[68] A. Juditsky and Y. Nesterov. Primal-dual subgradient methods
for minimizing uniformly convex functions. August 2010.

[69] M. Kanehisa and S. Goto. Kegg: Kyoto encyclopedia of genes
and genomes. Nucleic Acids Research, 28:27–30, 2000.

[70] H. Kim and H. Park. Sparse non-negative matrix factorizations
via alternating non-negativity-constrained least squares for mi-
croarray data analysis. Bioinformatics, 23:1495–1502, 2007.

[71] S. Kim and E. P. Xing. Statistical estimation of correlated
genome associations to a quantitative trait network. PLoS Ge-
netics, 5(8), 2009.

[72] S. Kim and E. P. Xing. Tree-guided group lasso for multi-task
regression with structured sparsity. In ICML, 2010.

[73] S. Kim, K.-A. Sohn, and E. P. Xing. A multivariate regression
approach to association analysis of a quantitative trait network.
Bioinformatics, 25(12):204–212, 2009.

[74] R. Kinderman and J. L. Snell. Markov Random Fields and Their
Applications. American Math Society, 1980.

[75] M. Kolar, L. Song, and E. P. Xing. Sparsistent learning of
varying-coefficient models with structural changes. In NIPS,
2009.

168 bibliography

[76] M. Kolar, L. Song, A. Ahmed, and E. P. Xing. Estimating time-
varying networks. The Annals of Applied Statistics, 4 (1):94–123,
2010.

[77] J. B. Kruskal. On the shortest spanning subtree of a graph
and the traveling salesman problem. Proceedings of the Ameri-
can Mathematical Society, 7(1):48–50, 1956.

[78] F. D. la Torre and M. Black. Robust principal component anal-
ysis for computer vision. In Internation Conference on Computer
Vision, 2001.

[79] G. Lan. An optimal method for stochastic composite optimiza-
tion. Mathematical Programming, 133 (1):365–397, 2012.

[80] G. Lan and S. Ghadimi. Optimal stochastic approximation al-
gorithms for strongly convex stochastic composite optimization,
part ii: shrinking procedures and optimal algorithms. Technical
report, University of Florida, 2010.

[81] G. Lan, Z. Lu, and R. D. C. Monteiro. Primal-dual first-order
methods with o(1/ε) iteration-complexity for cone program-
ming. Mathematical Programming, 2009.

[82] J. Langford, L. Li, and T. Zhang. Sparse online learning via
truncated gradient. Journal of Machine Learning Research, 10:777–
801, 2009.

[83] S. L. Lauritzen. Graphical Models. Oxford: Clarendon Press,
1996.

[84] D. Lee and H. S. Seung. Algorithms for non-negative matrix fac-
torization. In Advances in Neural Information Processing Systems
(NIPS), 1999.

[85] H. Lee, A. Battle, R. Raina, and A. Ng. Efficient sparse coding
algorithms. In Advances in Neural Information Processing Systems
(NIPS), 2007.

[86] S. Lee and S. J. Wright. Manifold identification of dual aver-
aging methods for regularized stochastic online learning. In
International Conference on Machine Learning (ICML), 2011.

[87] S. Lee, J. Zhu, and E. P. Xing. Adatpive multi-task lasso: with
applications to eqtl detection. In Advances in Neural Information
Processing Systems (NIPS), 2010.

[88] D. Lewis, Y.Yang, T. Rose, and F. Li. Rcv1: A new benchmark
collection for text categorization. Journal of Machine Learning
Research, 5:361–397, 2004.

[89] H. Liu and X. Chen. Multivariate dyadic regression trees for
sparse learning problems. In NIPS, 2010.

bibliography 169

[90] H. Liu, J. Lafferty, and L. Wasserman. The nonparanormal:
Semiparametric estimation of high dimensional undirected
graphs. J. Mach. Learn. Res., 10:2295–2328, 2009.

[91] H. Liu, M. Palatucci, and J. Zhang. Blockwise coordinate de-
scent procedures for the multi-task lasso, with applications to
neural semantic basis discovery. In International Conference on
Machine Learning (ICML), 2009.

[92] H. Liu, X. Chen, J. Lafferty, and L. Wasserman. Graph-valued
regression. In Advances in Neural Information Processing Systems
(NIPS), 2010.

[93] H. Liu, M. Xu, H. Gu, A. Gupta, J. Lafferty, and L. Wasserman.
Forest density estimation. Journal of Machine Learning Research,
12:907–951, 2011.

[94] J. Liu and J. Ye. Fast overlapping group lasso.
ArXiv:1009.0306v1 [cs.LG], 2010.

[95] J. Liu and J. Ye. Moreau-yosida regularization for grouped tree
structure learning. In NIPS, 2010.

[96] J. Liu, S. Ji, and J. Ye. Multi-task feature learning via efficient
`2,1-norm minimization. In UAI, 2009.

[97] J. Liu, L. Yuan, and J. Ye. An efficient algorithm for a class of
fused lasso problems. In the 16th ACM SIGKDD, 2010.

[98] T. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. Letor: Benchmark
dataset for research on learning to rank for information re-
trieval. In SIGIR 2007 Workshop on Learning to Rank for Infor-
mation Retrieval, 2007.

[99] A. C. Lozano, H. Li, A. Niculescu-Mizil, Y. Liu, C. Perlich,
J. Hosking, and N. Abe. Spatial-temporal causal modeling for
climate change attribution. In ACM SIGKDD, 2009.

[100] S. Ma and M. R. Kosorok. Detection of gene pathways with pre-
dictive power for breast cancer prognosis. BMC Bioinformatics,
11(1), 2010.

[101] J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Network flow
algorithms for structured sparsity. In NIPS, 2010.

[102] T. M. Mitchell, S. V. Shinkareva, A. Carlson, K. Chang, V. L.
Malave, R. A. Mason, and M. A. Just. Predicting human brain
activity associated with the meanings of nouns. Science, 320:
1191, 2008.

[103] D. Mol, D. Vito, and L. Rosasco. Elastic net regularization in
learning theory. Journal of Complexity, 25:201–230, 2009.

[104] S. Negahban and M. J. Wainwright. Simultaneous support re-
covery in high dimensions: Benefits and perils of block `1/`∞-
regularization. IEEE Transactions on Information Theory, 57 (6):
3841–3863, 2011.

170 bibliography

[105] A. Nemirovski and D. Yudin. Problem complexity and method
efficiency in optimization. John Wiley New York, 1983.

[106] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust
stochastic approximation approach to stochastic programming.
SIAM Journal on Optimization, 19(4):1574–1609, 2009.

[107] Y. Nesterov. Excessive gap technique in non-smooth convex
minimization. Technical report, UniversitÃ© catholique de
Louvain, Center for Operations Research and Econometrics
(CORE), 2003.

[108] Y. Nesterov. Introductory lectures on convex optimization: a basic
course. Kluwer Academic Pub, 2003.

[109] Y. Nesterov. Smooth minimization of non-smooth functions.
Mathematical Programming, 103(1):127–152, 2005.

[110] Y. Nesterov. Gradient methods for minimizing composite objec-
tive function. ECORE Discussion Paper 2007, 2007.

[111] Y. Nesterov. Primal-dual subgradient methods for convex prob-
lems. Mathematical Programming, 120:221–259, 2009.

[112] G. Obozinski, B. Taskar, and M. I. Jordan. High-dimensional
union support recovery in multivariate regression. In NIPS,
2009.

[113] G. Obozinski, B. Taskar, and M. I. Jordan. Joint covariate se-
lection and joint subspace selection for multiple classification
problems. Statistics and Computing, 20:231–252, 2010.

[114] B. A. Olshausen and D. J. Field. Sparse coding with an over-
complete basis set: A strategy employed by v1? Vision Research,
37:3311–3325, 1997.

[115] A. Rakhlin, O. Shamir, and K. Sridharan. To average or not
to average? making stochastic gradient descent optimal for
strongly convex problems. In International Conference on Machine
Learning (ICML), 2012.

[116] P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu. Model
selection in gaussian graphical models: High-dimensional con-
sistency of l1-regularized mle. In Advances in Neural Information
Processing Systems (NIPS), 2008.

[117] P. Ravikumar, M. Wainwright, G. Raskutti, and B. Yu. Model se-
lection in Gaussian graphical models: High-dimensional consis-
tency of `1-regularized MLE. In Advances in Neural Information
Processing Systems 22, Cambridge, MA, 2009. MIT Press.

[118] P. Ravikumar, M. J. Wainwright, and J. Lafferty. High-
dimensional Ising model selection using `1-regularized logistic
regression. Annals of Statistics, 38 (3):1287–1319, 2010.

bibliography 171

[119] R. Rockafellar. Convex Analysis. Princeton Univ. Press, 1996.

[120] A. J. Rothman, P. J. Bickel, E. Levina, and J. Zhu. Sparse per-
mutation invariant covariance estimation. Electronic Journal of
Statistics, 2:494–515, 2008.

[121] R. Salakhutdinov and A. Mnih. Probabilistic matrix factoriza-
tion. In Advances in Neural Information Processing Systems (NIPS),
volume 20, 2007.

[122] B. Schölkopf, A. J. Smola, and K.-R. Müller. Kernel principal
component analysis. In Advances in Kernel Methods—Support
Vector Learning. MIT Press, 1999.

[123] C. Scott and R. Nowak. Minimax-optimal classification with
dyadic decision trees. Information Theory, IEEE Transactions on,
52(4):1335–1353, 2006.

[124] O. Shamir and T. Zhang. Stochastic gradient descent for non-
smooth optimization: Convergence results and optimal averag-
ing schemes. In International Conference on Machine Learning
(ICML), 2013.

[125] X. Shen and H.-C. Huang. Grouping pursuit through a reg-
ularization solution surface. Journal of the American Statistical
Association, 105(490):727–739, 2010.

[126] A. Subramanian, P. Tamayo, V. Mootha, and et. al. Gene set en-
richment analysis: A knowledge-based approach for interpret-
ing genome-wide expression profiles. Proceedings of the National
Academy of Sciences, 102(43):15545–15550, 2005.

[127] V. Tan, A. Anandkumar, and A. Willsky. Learning Gaussian tree
models: Analysis of error exponents and extremal structures.
IEEE Transactions on Signal Processing, 58 (5):2701–2714, 2010.

[128] V. Tan, A. Anandkumar, and A. Willsky. A large-deviation anal-
ysis for the maximum-likelihood learning of markov tree struc-
tures. IEEE Transactions on Information Theory, 1714–1735:2011,
57 (3).

[129] V. F. Tan, A. Anandkumar, and A.S.Willsky. Learning high-
dimensional markov forest distributions: Analysis of error rates.
Journal of Machine Learning Research, 1:1–48, 2010.

[130] The Gene Ontology Consortium. Gene ontology: tool for the
unification of biology. Nature Genetics, 25(1):25–9, 2000.

[131] The International HapMap Consortium. A haplotype map of
the human genome. Nature, 437:1399–1320, 2005.

[132] S. Thrum and L. Pratt. Learning to Learn. Kluwer Academic
Publishers, 1998.

[133] R. Tibshirani. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society: Series B, 58:267–288, 1996.

172 bibliography

[134] R. Tibshirani and M. Saunders. Sparsity and smoothness via
the fused lasso. Journal of the Royal Statistical Society, Series B,
67(1):91–108, 2005.

[135] R. Tibshirani and J. Taylor. The solution path of the generalized
lasso. Annals of Statistics, 39 (3):1335–1371, 2010.

[136] R. Tibshirani and P. Wang. Spatial smoothing and hot spot
detection for cgh data using the fused lasso. Biostatistics, 0:1–12,
2007.

[137] P. Tseng. Convergence of a block coordinate descent method for
nondifferentiable minimization. Journal of Optimization Theory
and Applications, 109 (3):475–494, 2001.

[138] P. Tseng. On accelerated proximal gradient methods for convex-
concave optimization. SIAM Journal on Optimization (Submitted),
2008.

[139] B. Turlach, W. Venables, and S. Wright. Simultaneous variable
selection. Technometrics, 47:349–363, 2005.

[140] R. H. Tütüncü, K. C. Toh, and M. J. Todd. Solving semidefinite-
quadratic-linear programs using sdpt3. Mathematical Program-
ming, 95:189–217, 2003.

[141] T.Y.Liu. Learning to Rank for Information Retrieval. Now Publish-
ers Inc, 2009.

[142] M. J. van de Vijver et al. A gene-expression signature as a
predictor of survival in breast cancer. New England Journal of
Medicine, 347:1999–2009, 2002.

[143] M. J. Wainwright. Sharp thresholds for high-dimensional and
noisy sparsity recovery using `1-constrained quadratic pro-
grams. IEEE Transactions on Information Theory, 55:2183–2202,
2009.

[144] S. Webb, J. Caverlee, , and C. Pu. Introducing the webb spam
corpus: Using email spam to identify web spam automaticall.
In Proceedings of the Third Conference on Email and Anti-Spam
(CEAS), 2006.

[145] D. Witten and R. Tibshirani. Extensions of sparse canonical cor-
relation analysis with applications to genomic data. Statistical
Applications in Genetics and Molecular Biology, 8 (1):1–27, 2009.

[146] D. Witten, R. Tibshirani, and T. Hastie. A penalized matrix
decomposition, with applications to sparse principal compo-
nents and canonical correlation analysis. Biostatistics, 10:515–
534, 2009.

[147] T. Wu and K. Lange. Coordinate descent algorithms for lasso
penalized regression. The Annals of Applied Statistics, 2:224–244,
2008.

bibliography 173

[148] L. Xiao. Dual averaging methods for regularized stochastic
learning and online optimization. Journal of Machine Learning
Research, 11:2543–2596, 2010.

[149] K. Yu, V. Tresp, and A. Schwaighofer. Learning gaussian pro-
cesses from multiple tasks. In Proceedings of the 22nd Interna-
tional Conference on Machine Learning, 2005.

[150] M. Yuan and Y. Lin. Model selection and estimation in regres-
sion with grouped variables. Journal of the Royal Statistical Soci-
ety: Series B, 68:49–67, 2006.

[151] M. Yuan and Y. Lin. Model selection and estimation in the
Gaussian graphical model. Biometrika, 94(1):19–35, 2007.

[152] M. Yuan and Y. Lin. Model selection and estimation in the
Gaussian graphical model. Biometrika, 94(1):19–35, 2007.

[153] R. Zass and A. Shashua. Nonnegative sparse pca. In Advances
in Neural Information Processing Systems (NIPS), 2007.

[154] J. Zhang, Z. Ghahramani, and Y. Yang. Flexible latent variable
models for multi-task learning. Machine Learning, 73(3):221–242,
2008.

[155] T. Zhang. Some sharp performance bounds for least squares
regression with l1 regularization. Annals of Statistics, 37:2109–
2114, 2009.

[156] P. Zhao and B. Yu. On model selection consistency of lasso.
Journal of Machine Learning Research, 7:2541–2563, 2006.

[157] P. Zhao, G. Rocha, and B. Yu. Grouped and hierarchical model
selection through composite absolute penalties. Annals of Statis-
tics, 37(6A):3468–3497, 2009.

[158] W. Zhong and J. Kwok. Efficient sparse modeling with auto-
matic feature grouping. In ICML, 2011.

[159] H. Zhou and K. Lange. A path algorithm for constrained es-
timation. Technical report, UCLA, 2011. arXiv:1103.3738v1

[stat.CO].

[160] S. Zhou, J. Lafferty, and L. Wasserman. Time varying undi-
rected graphs. Machine Learning, 78(4), 2010.

[161] M. Zinkevich. Online convex programming and generalized
infinitesimal gradient ascent. In ICML, 2003.

[162] H. Zou and T. Hastie. Regularization and variable selection via
the elastic net. Journal of the Royal Statistical Society: Series B,
67(2):301–320, 2005.

[163] H. Zou, T. Hastie, and R. Tibshirani. Sparse principal compo-
nent analysis. Journal of Computational and Graphical Statistics,
15, 2004.

	Dedication
	Abstract
	Keyword
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Thesis Overview
	1 Thesis Overview
	1.1 Motivation and Statement
	1.2 Thesis Overview
	1.3 Main Results and Organization
	1.3.1 Part ii: Background
	1.3.2 Part iii: Optimization for Sparse Learning
	1.3.3 Part iv: Learning Dynamic Graphical Models
	1.3.4 Part v: Sparse Learning for Text Mining
	1.3.5 Part vi: Conclusions and Future Work

	Background
	2 Background
	2.1 Structured Sparse Regression
	2.2 Multi-task Structured Sparse Regression
	2.3 Sparse Canonical Correlation Analysis
	2.4 Sparse Gaussian Graphical Model
	2.5 First-order Optimization

	Optimization for Sparse Learning
	3 Smoothing Proximal Gradient Method for Structured Sparse Regression
	3.1 Introduction and Motivation
	3.2 Smoothing Proximal Gradient
	3.2.1 Reformulation of Structured Sparsity-inducing Penalty
	3.2.2 Smooth Approximation to Structured Sparsity-inducing Penalty
	3.2.3 Smoothing Proximal Gradient Descent
	3.2.4 Issues on the Computation of the Lipschitz Constant
	3.2.5 Convergence Rate and Time Complexity

	3.3 Related Optimization Methods
	3.3.1 Related work for mixed-norm based group-lasso penalty
	3.3.2 Related work for fused lasso

	3.4 Extensions to Multi-task Regression with Structures on Outputs
	3.5 Experiment
	3.5.1 Simulation Study I: Overlapping Group Lasso
	3.5.2 Simulation Study II: Multi-task Graph-guided Fused Lasso
	3.5.3 Real Data Analysis: Pathway Analysis of Breast Cancer Data

	3.6 Appendix: Technical Proofs

	4 Structured Sparse Canonical Correlation Analysis
	4.1 Introduction and Motivation
	4.2 Group Structured Sparse CCA
	4.2.1 Optimization Algorithm

	4.3 Group Pursuit in Sparse CCA
	4.4 Experiment
	4.4.1 Computational Efficiency of Excessive Gap Method
	4.4.2 Simulations
	4.4.3 Real eQTL Data

	5 Stochastic Optimization: Optimal Regularized Dual Averaging Methods
	5.1 Introduction and Motivation
	5.2 Preliminary and Notations
	5.3 Optimal Regularized Dual Averaging Method
	5.3.1 Convergence Rate
	5.3.2 Mini-batch Strategy and Distributed Computing
	5.3.3 Variance Bounds
	5.3.4 High Probability Bounds

	5.4 Multi-stage ORDA for Stochastic Strongly Convex Optimization
	5.5 Related Works
	5.6 Experiments
	5.6.1 Simulated Experiments
	5.6.2 Real Data Experiments

	5.7 More Discussions on Scalability Issue and Distributed Implementation
	5.8 Appendix: Technical Proofs

	Learning Dynamic Sparse Graphical Models
	6 Graph-Valued Regression
	6.1 Introduction and Motivation
	6.2 Graph-Valued Regression
	6.3 Graph-Optimized CART
	6.3.1 Greedy Partitioning

	6.4 Theoretical Properties
	6.5 Experiment
	6.5.1 Synthetic Data
	6.5.2 Climate Data Analysis

	6.6 Appendix: Technical Proof

	7 Markov Forest Regression
	7.1 Introduction and Motivation
	7.2 Background
	7.3 Forest-optimized CART estimator
	7.4 Computational Algorithm
	7.5 Experimental Results
	7.5.1 Simulation Study
	7.5.2 Stock Data Analysis

	Sparse Learning for Text Mining
	8 Learning Preferences with Millions of Parameters by Enforcing Sparsity
	8.1 Introduction and Motivation
	8.2 Basic Model
	8.2.1 Margin Rank Loss
	8.2.2 Stochastic Subgradient Descent

	8.3 Preference Learning with Sparsity
	8.3.1 Training the Sparse Model
	8.3.2 Refitting the Sparse Model

	8.4 Experiment
	8.4.1 Experiment Setup
	8.4.2 Results

	9 Sparse Latent Semantic Analysis
	9.1 Introduction and Motivation
	9.2 Sparse LSA
	9.2.1 Optimization Formulation of LSA
	9.2.2 Sparse LSA
	9.2.3 Optimization Algorithm

	9.3 Extension of Sparse LSA
	9.3.1 Group Structured Sparse LSA
	9.3.2 Non-negative Sparse LSA

	9.4 Related Work
	9.4.1 PCA
	9.4.2 Sparse Coding
	9.4.3 LDA
	9.4.4 Matrix Factorization

	9.5 Experimental Results
	9.5.1 Text Classification Performance
	9.5.2 Efficiency and Storage
	9.5.3 Topic-word Relationship
	9.5.4 Gene Function Identification with Gene Groups Information

	Conclusions and Future Directions
	10 Conclusions and Future Directions
	10.1 Conclusions
	10.2 Future Directions

	Bibliography

