
Legible Robot Motion Planning

Anca D. Dragan
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Siddhartha Srinivasa, CMU RI (Chair)

Jodi Forlizzi, CMU HCII
Geoff Gordon, CMU MLD

Henrik Christensen, Georgia Tech

CMU-RI-TR-15-15

Abstract

The goal of this thesis is to enable robots to produce motion that is
suitable for human-robot collaboration and co-existence. Most mo-
tion in robotics is purely functional: industrial robots move to package
parts, vacuuming robots move to suck dust, and personal robots
move to clean up a dirty table. This type of motion is ideal when the
robot is performing a task in isolation. Collaboration, however, does
not happen in isolation. In collaboration, the robot’s motion has an
observer, watching and interpreting the motion.

In this work, we move beyond functional motion, and introduce
the notion of an observer into motion planning, so that robots can gen-
erate motion that is mindful of how it will be interpreted by a human
collaborator. We formalize predictability and legibility as properties
of motion that naturally arise from the inferences that the observer
makes, drawing on action interpretation theory in psychology. Pre-
dictable motion stems from a goal-to-action inference and matches
the observer’s expectation, given the robot’s goal. Legible motion
stems from an action-to-goal inference: the robot is clearly conveying
its goal with its ongoing motion. We propose models for these infer-
ences based on the principle of rational action, Bayesian inference,
and the principle of maximum entropy. We then use a combination of
constrained trajectory optimization and machine learning techniques
to enable robots to plan motion that is predictable or legible.

Finally, we verify that the generated motions are more predictable
and legible, and evaluate the impact of such motion on a physical
human-robot collaboration task. Our results suggest that predictabil-
ity and legibility do not only increase task performance, but also
make the collaboration process more fluent, increasing subjective
metrics such as trust or comfort. We also show generalizations of the
legibility formalism to deception, gestures, and assistive teleopera-
tion.

Acknowledgements
I could not ask for a better advisor than Sidd Srinivasa. Thank you, Sidd, for being a fantastic mentor, my
greatest collaborator, and one of my best friends. Thanks for taking a chance on a 1st year who didn’t even
know what a Jacobian was, and thanks for all of your help and guidance throughout the years.

I am very grateful to the other members of my committee — Geoff Gordon, Jodi Forlizzi, and Henrik
Christensen — for bringing in unique and interdisciplinary perspectives to my work. Geoff: I have bene-
fited tremendously from your Machine Learning expertise, from my first year in grad school till now (and
I am sure I’ll be pinging you again in the future). Jodi: when I started tackling HRI, you put up with my
roboticist ignorance, and taught me so much along the way! And Henrik: you’ve been an invaluable source
of experience; you could tell me what will go wrong before I even tried it!

I’ve been so fortunate to have many other collaborators and mentors over the years, without whom
this work would not have been possible: Carolyn Rose, Drew Bagnell, Andrea Thomaz, Matt Mason, Ous-
sama Khatib, Alison Okamura, Gaurav Sukhatme, Nathan Ratliff, Matt Zucker, Stefie Tellex, Brian Ziebart,
Brenna Argall, Maya Cakmak, Katharina Muelling, Henny Admoni, Kyle Strabala, Min Kyung Lee. I look
forward to so much more interaction with all of you! I’ve also mentored students who have added their
own new and unique dimensions to the research, and I’d especially like to call out Rachel Holladay, Ken-
ton Lee, Stefanos Nikolaidis, Elizabeth Cha, and Shira Bauman. Rachel, you will always be “Minion 0”!

Working in the Personal Robotics Lab has been an amazing experience: we worked on research together,
we worked on demos together, we worked on talks together, we went to the Carribean together. Thanks
Mehmet, Alvaro, Dmitry, and Mike 0, for taking care of me coming in. And thanks Shervin, Mike 1&2, Jen,
Liz, Kyle, Aaron W, Aaron J, Pras, Pyry, for a unparelleled work environment.

Chris, you’ve been a wonderful partner in crime, a constant source of support, and a very helpful critic.
I feel very lucky to have a significant other who also contributes to my research, and I wouldn’t trade our
pillow talk on functional gradients for anything.

I’d also like to thank Michael Kohlhase and Herbert Jaeger for starting my path in Computer Science at
Jacobs University Bremen, and for giving me a taste for AI. And a special callout to my undergrad friends,
Mitko, Lucka, Steffi, Gina, and Oli, who have listened to my problems and lent their moral support over
the course of my PhD: you guys are my second family, and our reunions make me so happy!

Going back many years, this all started with Nicole Becheanu’s advice to apply to pursue my Bachelor’s
degree outside of Romania. Nicole, my physics teacher, had a vision for my future that I hadn’t even dared
dream about. When I left for undergrad, it was the second time I had ever stepped outside of my home
country. It’s been a heck of an adventure, and it pretty much began in Nicole’s living room — thank you
Nicole!

My final thanks go to my parents, Liliana and Nelu Dragan, who supported and even encouraged
their only child to move all the way across the Atlantic ocean so that she can pursue her passion. I am
immensely fortunate to have parents who sacrifice their own happiness for my own, and I’ll try my hardest
to make it worth their while!

Contents

1 Introduction 9

2 Related Work 15

2.1 Autonomously Generating Motion around Humans 15

2.2 Non-Autonomous Motion around Humans 16

2.3 Human Inferences 17

3 Formalizing Motion Planning with Observer Inferences 21

3.1 Formalizing Predictability and Legibility 21

3.2 Modeling Predictable Motion via Optimization 24

3.3 Modeling Legible Motion via Optimization 25

3.4 From Theory to Real Users 28

3.5 Chapter Summary 34

4 Trajectory Optimization 35

4.1 Functional Gradient Trajectory Optimization 35

4.2 Optimizing with Constraints 44

4.3 Learning from Experience 52

4.4 Chapter Summary 64

5 Generating Predictable Motion 65

5.1 The Predictability Gradient 65

8 anca d. dragan

5.2 Learning from Demonstration 66

5.3 Familiarization to Robot Motion 81

5.4 Chapter Summary 95

6 Generating Legible Motion 97

6.1 The Legibility Gradient 97

6.2 Trust Region Constraint 101

6.3 From Theory to Users 103

6.4 Chapter Summary 107

7 User Study on Physical Collaboration 109

7.1 Motions 109

7.2 Hypotheses 111

7.3 Experimental Design 111

7.4 Analysis 116

7.5 Chapter Summary 122

8 Generalizations of Legibility 123

8.1 Viewpoint, Occlusion, Other DOFs 123

8.2 Deception 124

8.3 Pointing Gestures 132

8.4 Assistive Teleoperation 138

8.5 Relation to Language 146

9 Final Words 149

10 Bibliography 165

1
Introduction

(ξS:Q) = argmax
G∈G

P(G |ξS:Q)

ξ S:Q

away from the red object. But it is less predictable, as it does
not match the expected behavior of reaching directly. We will
show in Sections III and IV how we can quantify this effect
with Bayesian inference, which allows us to derive, among
other things, the online probabilites of the motion reaching
for either object, illustrated as bar graphs in Fig.1.

Our work makes the following three contributions:
1. We formalize legibility and predictability in the context
of goal-directed motion in Section II as stemming from
inferences in opposing directions. The formalism emphasizes
their difference, and directly relates to the theory of action
interpretation [11] and the concepts of “action-to-goal” and
“goal-to-action” inference. Our formalism also unifies pre-
vious descriptions of legibility, quantifying readability and
understandability, and encouraging anticipation as a direct
consequence of our definitions.
2. Armed with mathematical definitions of legibility and
predictability, we propose a way in which a robot could model
these inferences in order to evaluate and generate motion that
is legible or predictable (Sections III and IV). The models are
based on cost optimization, and resonate with the principle of
rational action [12], [13].
3. We demonstrate that legibility and predictability are contra-
dictory not just in theory, but also in practice. We present
an extensive experiment for three characters that differ in
their complexity and anthropomorphism: a simulated point
robot, the bi-manual mobile manipulator HERB [14], and a
human (Section V). The experiment confirms the contradiction
between predictable and legible motion, and reveals interesting
challenges (Section VI). We found, for instance, that different
people expect a complex robot like HERB to act in different
ways: for a robot to be predictable, it must adapt to the
particulars of the observer.

The difference between legibility and predictability of mo-
tion is crucial for human-robot interaction, in particular for
collaboration between humans and robots. Collaboration is a
delicate dance of prediction and action, where agents must
predict their collaborator’s intentions as well as make their
own intentions clear – they must act legibly. We are excited
to be taking an essential step towards better human-robot
collaboration: by emphasizing the difference between legibility
and predictability, we advocate for a different approach to
motion planning, in which robots decide between optimizing
for legibility and optimizing for predictability, depending on
the context they are in.

II. FORMALIZING LEGIBILITY
AND PREDICTABILITY

So far, we have identified that legible motion is intent-
expressive, and predictable motion matches what is expected.
Here, we formalize these definitions for the context of goal-
directed motion, where a human or robot is executing a
trajectory towards one goal G from a set of possible goals G,
like in Fig.1. In this context, G is central to both properties:
the intent is reaching the goal G, and what is expected depends
on G:

Definition 2.1: Legible motion is motion that enables an
observer to quickly and confidently infer the goal.

Definition 2.2: Predictable motion is motion that matches
what an observer would expect, given the goal.

A. Formalism

1) Legibility: Imagine someone observing the orange tra-
jectory from Fig.1. As the robot’s hand departs the starting
configuration and moves along the trajectory, the observer is
running an inference, predicting which of the two goals it
is reaching for. We denote this inference function that maps
(snippets of) trajectories from all trajectories ⌅ to goals as

IL : ⌅! G

The bar graphs next to the hands in Fig.1 signify the observer’s
predictions of the two likely goals. At the very beginning, the
trajectory is confusing and the observer has little confidence in
the inference. However, the observer becomes confident very
quickly – even from the second configuration of the hand along
the trajectory, it becomes clear that the green object is the
target. This quick and confident inference is the hallmark of
legibility.

We thus formalize legible motion as motion that enables an
observer to confidently infer the correct goal configuration G
after observing only a snippet of the trajectory, ⇠S!Q, from
the start S to the configuration at a time t, Q = ⇠(t):

IL(⇠S!Q) = G

The quicker this happens (i.e. the smaller t is), the more
legible the trajectory is.

This formalizes terms like “readable” [4], or “understand-
able” [6], and encourages “anticipatory” motion [5] because it
brings the relevant information for goal prediction towards the
beginning of the trajectory, thus lowering t. The formalism can
also generalize to outcome-directed motion (e.g. gestures such
as pointing at, waving at, etc.) by replacing the notion of goal
with that of an outcome – here, legible motion becomes motion
that enables quick and confident inference of the desired
outcome.

2) Predictability: Now imagine someone knowing that the
hand is reaching towards the green goal. Even before the robot
starts moving, the observer creates an expectation, making an
inference on how the hand will move – for example, that the
hand will start turning towards the green object as it is moving
directly towards it. We denote this inference function mapping
goals to trajectories as

IP : G ! ⌅

We formalize predictable motion as motion for which the
trajectory ⇠S!G matches this inference:

IP (G) = ⇠S!G

The more the trajectory matches the inference, measurable
for example using a distance metric between IP (G) and
⇠S!G, the more predictable the trajectory is.

Integrating the Observer’s !
Inferences in Motion Planning:!

Formalism and Model!

Planning !
Predictable Motion!

Planning !
Legible Motion!

Deception!

Impact on Interaction!

Legible Pointing!
Learning from
Demonstration!

Trajectory
Optimization!

-­‐10	

0	

10	

0! 1!

Assistive
Teleoperation!

Familiarization! [CH. 3]!

[CH. 4]!

[CH. 5]! [CH. 6]!

[CH. 7.1]!

[CH. 7.2]!

[CH. 7.3]!

[CH. 8]!

Figure 1.1: Thesis overview. We in-
troduce a formalism for robot motion
planning with a human observer. We
formalize predictability and legibility
as properties of motion that enable the
observer’s goal-to-action and action-
to-goal inferences: we first introduce
mathematical measures for these prop-
erties that are tractable to evaluate, and
then use a combination of trajectory
optimization and learning techniques to
autonomously generate predictable and
legible motion. We also show general-
izations to deception, pointing gestures,
and assistive teleoperation. Finally, we
evaluate the impact of this motion in
physical interactions.

Collaboration is a delicate dance of prediction and action, where
the two agents predict each other’s intent, as well as act to make their
own intentions clear. When we collaborate, we rely on being able
to anticipate our collaborator’s next actions, and not be surprised
by what comes next. When we clean up the dining room table with
someone, as they reach for the empty bottle of water, we anticipate
their goal and start reaching for the plate sitting next to it instead.
We communicate relentlessly and via numerous channels.

The goal of this thesis is to enable robots to take part in the communication that needs to
occur during collaboration, in order to efficiently and fluently collaborate with humans.

10 legible robot motion planning

We envision personal robots clearing a table with someone in
their home, manufacturing robots welding a part together with a
human co-worker, or rehabilitation robots assisting spinal cord injury
patients with their activities of daily living.

Among the various channels of communication, we focus on
motion — a channel that naturally arises in physical tasks, and is
sometimes the only channel available to a robot, e.g., an industrial
manipulator. While communication through motion is natural in
animation, dance, or theater, it is understudied in robotics. The key
reason for this is that except for specialized motion, like gesture,
most motion in robotics is purely functional: industrial robots move functional motion solves the piano

mover’s problem: achieve the goal,
avoid collisions

to package parts, vacuuming robots move to suck dust, and personal
robots move to clean up a dirty table.

Collaboration, however, demands moving beyond solely functional
motion. Functional motion is ideal when robots perform tasks in iso-
lation. But, motion in human-robot collaboration is never performed
in isolation. In collaboration, the motion has an observer. The robot’s
motion must communicate to the collaborator, who is observing and
interpreting the motion. Thus, understanding and generating motion
for human-robot collaboration must consider additional constraints
beyond those for functionally completing the task. This is our central
tenet.

This thesis integrates the idea of an observer into motion plan- predictable motion enables the “goal-to-
action” inference: it matches expecta-
tions

ning, enabling the robot to reason about how its motion will be inter-
preted by its observer. We formalize two properties of motion, pre-
dictability and legibility, based on two complementary inferences that legible motion enables the “action-to-

goal” inference: it conveys intenta human observer makes when observing motion (Chapter 3). Pre-
dictable motion matches expectation — it matches the observer’s
inference of the motion from a known intent (a “goal-to-action” in-
ference). Legible motion communicates its intent — it enables the
observer’s inference of the correct intent from the ongoing motion
(an “action-to-goal” inference). To then generate such motion, we
propose a cost-based Bayesian model for these two inferences, build-
ing on tools from machine learning and trajectory optimization.

Predictability and legibility, although often confused in the lit-
erature, are fundamentally different: they stem from inferences in
opposing directions. They are contradictory in ambiguous situations,
when the urgency to communicate intent — to be legible — is even
greater. As a result, planners cannot target predictability and assume
that intent will be conveyed as a result: in situations where conveying
intent is important, planners must explicitly reason about the legibility of
the motion.

introduction 11

With this work, we enable robots to plan legible motion, and we
test its importance in studies with novice users during physical col-
laborations. Our results suggest that the interaction does not only
become objectively better (e.g., the human-robot team is more effi-
cient), but also subjectively better (e.g., users strongly prefer working
with a legible robot, they trust it more, they think it is more capable,
etc.)

Finally, we also show the generalization of our formalism beyond
legible goal-directed motion, to producing deceptive motion, to gen-
erating legible pointing gestures, and to inferring human intent from
ongoing action.

Contributions. This thesis makes the following contributions:

Formalizing Observer-Interpretable Motion: We introduce a for-
malism for motion planning in terms of the inferences made by the
motion’s observer, leading to two important properties of motion:
predictability and legibility.

We propose models for the observer’s inferences based on the
principle of rational action in the theory of action interpretation,
the principle of maximum entropy, and Bayesian inference, leading
to quantifiable measures of predictability and legibility. Finally, we
propose an approximation to make their evaluation tractable for
robots with many degrees of freedom 1, and test the predictions that

1 A.D. Dragan, K.T. Lee, and S.S. Srini-
vasa. Legibility and predictability of
robot motion. In International Conference
on Human-Robot Interaction (HRI), 2013

these metrics make about the motion in a user study (Chapter 3).

Improving Trajectory Optimization: Generating predictable or leg-
ible motion relies on optimizing the measures that our formalism
introduces. To do so, we build on functional gradient optimization
(Section 4.1). We alleviate the challenge of optimizing non-convex
cost functions in high-dimensional spaces by capitalizing on the
structure found in day-to-day manipulation tasks.

First, manipulation tasks are described by a set of goal configu-
rations, as opposed to a single configuration like in classic motion
planning. We enable optimizers to take advantage of goal sets by for-
malizing goal sets as an instance of trajectory-wide constraints, and
deriving an algorithm for optimization with such hard constraints 2

2 A.D. Dragan, N. Ratliff, and S.S.
Srinivasa. Manipulation planning with
goal sets using constrained trajectory
optimization. In ICRA, May 2011

(Section 4.2).
Second, robots perform similar manipulation tasks over and over

again, creating a library of previous experiences. We develop an
algorithm that learns from these experiences to predict, in a new
situation, what a good trajectory initialization would be — i.e., a
trajectory that lies in a good basin of attraction. In doing so, we take
advantage of the fact that only a few attributes of the trajectory are
enough to describe a good basin 3 (Section 4.3).

3 A.D. Dragan, G. Gordon, and S. Srini-
vasa. Learning from experience in
manipulation planning: Setting the
right goals. In ISRR, 2011

12 legible robot motion planning

Learning Predictable Motion from Demonstration: Predictable mo-
tion matches the observer’s expectation. Different observers, however,
can have different expectations. Thus, to improve predictability, we
rely on demonstrations from the observer, and the ability to general-
ize them to new situations.

In low-dimensional spaces, the robot can directly learn a cost
function to optimize from these demonstrations, via Inverse Optimal
Control. In high-dimensional spaces, where this is intractable, we
adapt demonstrations locally. To do so, we formalize the adaptation
problem as a Hilbert norm minimization, turning it into a trajectory
optimization problem 4 (Section 5.2).

4 A.D. Dragan, K. Muelling, J.A. Bag-
nell, and S.S. Srinivasa. Movement
primitives via optimization. In In-
ternational Conference on Robotics and
Automation (ICRA), 2015

We also investigate whether we can invert the teacher-learner re-
lationship: can the robot become the teacher, and train the human
observer’s expectations? We call this process familiarization 5 (Sec-

5 A.D. Dragan and S.S. Srinivasa.
Familiarization to robot motion. In
International Conference on Human-Robot
Interaction (HRI), 2014

tion 5.3)).

Planning Legible Motion: To move from predictability to legibility,
we first derive the functional gradient for the legibility metric. We
then introduce a constrained trajectory optimization algorithm to
generate motion that is legible, and test its performance in a user
study 6 (Chapter 6).

6 A.D. Dragan and S.S. Srinivasa.
Generating legible motion. In Robotics:
Science and Systems (R:SS), Berlin,
Australia, June 2013

One intuitive result is that the robot starts exaggerating its mo-
tion to the left of to the right when reaching for an object, in order
to better convey whether its goals is the one on the left or the one
on the right. Exaggeration is one of the twelve Disney principles of
animation, and it is not surprising that it could be useful in express-
ing intent. However, nowhere did we have to handcode exaggeration
as a strategy. The robot figured out that it should exaggerate, and it
figured out how to do it:

Exaggeration naturally emerged out of the mathematics of legible motion.

Evaluating Impact on Human-Robot Collaboration: Although our
studies test that the robot can indeed generate more legible and more
predictable motions, it is crucial to also test the impact of generating
such motion on physical collaborations. We do so in a final wrap-up
study that brings users in a shared workspace collaboration with the
robot, and evaluates the success of the collaboration both objectively
and subjectively.

Our results suggest that legible motion leads to more effective and
fluent collaborations than predictable motion, which is in turn better
than functional motion. However, the difference between legibility
and predictability is more subtle (smaller effect) compared to that
between predictability and functionality 7 (Chapter 7).

7 A.D. Dragan, S. Bauman, J. Forlizzi,
and S.S. Srinivasa. Effects of robot
motion on human-robot collaboration.
In International Conference on Human-
Robot Interaction (HRI), 2015Showing Generalization: Even though we originally developed the

introduction 13

legibility formalism for generating goal-directed legible motion, it has
been applied across a variety of domains (Chapter 8).

The formalism directly generalizes to changes in observer view-
point, occluded regions, and using different degrees of freedom on
the robot to produce different effects. For instance, the robot will
open its hand more than needed as its reaching in order to convey
that it is about to grasp the larger object, and close its hand more
than needed in order to convey that it is about to grasp the smaller
object.

The most direct extension was to go beyond conveying intent, to
deceiving: if we can maximize the probability of the user inferring
the correct goal, we can also minimize it, or purposefully target ambi-
guity 8 (Section 8.2).

8 A.D. Dragan, R. Holladay, and S.S.
Srinivasa. An analysis of deceptive
robot motion. In Robotics: Science and
Systems (R:SS), 2014

We also introduced an algorithm for generating legible deictic
gestures. When a robot points at an object in a real-world scene, it
is not always immediately clear to an observer what it intends to be
pointing at. The goal was to address the challenge of finding a final
pointing configuration that clearly conveys to a human observer what
object the robot is pointing at 9 (Section 8.3).

9 R. Holladay, A.D. Dragan, and S.S.
Srinivasa. Legible robot pointing. In
International Symposium on Human and
Robot Communication (Ro-Man), 2014

Moving beyond conveying intent, we used the same model of how
humans infer intent to enable the robot to make predictions about
the human. We applied this in an assistive teleoperation setting,
where the robot predicts the operator’s intent from their ongoing
inputs, and starts assisting to achieve it by arbitrating between the
direct input and the predicted policy. We then studied the arbitration
function from both a stability viewpoint, as well as a user-centric
viewpoint. Our results suggests that assistance is useful, but the
arbitration function should be mediated by the robot’s confidence in
its prediction, the task difficulty, and the user’s personal preferences
10 (Section 8.4).

10 A.D. Dragan and S.S. Srinivasa.
Formalizing assistive teleoperation.
In Robotics: Science and Systems (R:SS),
Sydney, Australia, July 2012

Finally, we show how the same underlying formalism can be ap-
plied to language to produce unambiguous sentences, that the the
listener’s language grounding process into account and increase the
probability that the listener will make the right grounding. We do so
by showing the connection between our work and that of Tellex et al.
[212].

Overall, this thesis takes a first step towards motion planning
informed by the inferences that human observers make. It enables
tractable motion planning over the human’s belief of the robot’s goal,
resulting in legible motions, and shows generalizations of legibility
beyond goal-directed motion. Our prediction and hope is that as
robots become more and more capable and need to work with and
around humans, the need for such algorithms that generate behavior
mindful of the human will become more and more prevalent.

2
Related Work

Each chapter below touches upon
relevant prior work. Here we focus on
the context of planning motion with
human observers.

We build upon a long history of robots operating in human environ-
ments — integrated systems that combine navigation, perception,
motion planning, and learning in real-world environments. These
include wheeled mobile manipulators [168, 11, 149, 150, 215, 120, 7]
and humanoid robots [189, 169, 112, 116, 5, 117].

The main experimental platform in this thesis is our personal
robot HERB, a bi-manual mobile manipulator whose pictures are
sprinkled throughout the remaining chapters, which joins an active
list of personal robots [38, 10, 19, 107, 181].

These robots address several challenges of human environments
including navigation in clutter [126], building world models [96], and
discovering, recognizing and registering objects [40, 42, 158, 43, 41].
A crucial challenge for accomplishing tasks in these unstructured
environments in motion planning in high-dimensional manipulation
configuration spaces.

2.1 Autonomously Generating Motion around Humans

Autonomously generating motion that avoids collisions with the
environment means solving the motion planning problem.

Much of robotic motion planning has focused on func-
tional motion, with sampling-based planners being widely used
in high-dimensional spaces [18, 119, 101, 141, 134, 100, 35, 123, 118].

Even producing functional motion is complicated by numerous
constraints imposed on the robot’s motion, including torque limits,
collisions, and most often the pose of the end-effector [205, 130, 232,
233, 68, 25, 231, 44, 199].

However, recent progress in trajectory optimization has
made it possible to not just produce feasible motion, but to produce

16 legible robot motion planning

motion that optimizes cost. Optimizing cost is a crucial step towards
producing motion mindful of observer inferences.

Among the several trajectory optimization techniques [159, 219,
103, 114, 216], we propose to use CHOMP [184, 185], an algorithm
for real-world manipulation problems. CHOMP uses functional
gradients [228, 178, 237, 182, 32], which are efficient and effective
(with planning times of 20 − 100ms) and inherit sound properties
(e.g., invariance to reparametrization) from variational calculus.

Our main contribution is agnostic to the optimizer, but we do
make certain improvement to trajectory optimization for manipula-
tion tasks.

Autonomous motion around humans typically deals

with safety. The first step in motion planning when humans are
present is to avoid injuring the human. Humans move, which means
the planner needs to handle dynamic obstacles and be able to replan
[221, 175, 72] and adjust the timing of its path [137, 91]. Some tech-
niques anticipate the future human motion in order to preemptively
plan a successful avoidance path [239, 152].

The human’s physical comfort is the next step towards motion
planning around humans, that certain planners have begun to ad-
dress. Planners can ensure the robot is visible [200], or that when it
hands an object to the human, the require human configuration is
comfortable [153].

In contrast, this thesis tackles human internal state, by
introducing motion planners that reason about the inferences that
the human needs to make for seamless interaction and collaboration.
With prior work tackling physical human state, the time is ripe for
motion planning to start addressing the human beyond safety and
physical comfort.

In motion planning with human inferences, we instantiate belief
space planning [180] because we plan over the human’s belief. How-
ever, because we specifically look at goal inferences, we can write the
state explicitly as a function of the robot’s current state (which we
assume to be observable): a Markov world separates the goal from
past states, conditioned on the current state.

2.2 Non-Autonomous Motion around Humans

Motion that does match human expectation, or that communicates, is
typically not autonomously planned in a way that generalizes across
any environment. However, techniques do exist that require expert

related work 17

input for designing such motion.

Human-like motion: Predictable motion is expected, and related
to human-like motion. Several animation techniques have been de-
veloped to produce natural motion, including keyframing [140],
retargetting motion-capture trajectories from a professional actor onto
a new character [85, 111, 142]. Animation also uses trajectory opti-
mization [229, 188, 36, 147], in some cases generating natural motion
autonomously.

Biomechanics studies have explored spatial and temporal coordi-
nation [73, 138] in human motion. Gielniak and Thomaz [82] have
developed a metric for human-like motion (spatio-temproal corre-
spondence) that is optimized to generate human-like variations of
given motion. Another algorithm generates variations in motion that
stay true to the intent of the original [80].

Communicative motion: Legible motion communicates intent
(enables intention inference [146], “readable” [210], or “understand-
able” [9]), and is often cited in conjunction to or as an effect of pre-
dictability [110, 20, 8, 62, 125]. The robotics literature has developed
algorithms inspired by Disney animation principles, that algorith-
mically change a given motion to add communicative enhance-
ments like “secondary motion", “anticipation", and “exaggeration."
[79, 84, 81].

2.3 Human Inferences

This thesis looks at the two complementary inferences humans make
relating an agent’s actions and its goals. This is a subject of study in
action interpretation theory in psychology.

Motivation in collaboration theory. Collaboration (also
referred to as joint action or shared cooperative activity) is a social
interaction in which the interactants are mutually responsive to one
another, there is a shared goal, and the participants coordinate their
plans of action and intentions [30]. The ability to express intent is
argued to be a crucial aspect of the collaboration process [218].

In particular, exaggerating motion to better convey intent (an ex-
ample arising out of legibility optimization in this thesis) is espe-
cially acknowledged as enhancing collaboration, and is considered
a “coordination smoother”, helping the process of prediction and
monitoring of the collaborator’s activity [225]. Motion or action in-
terpretation has been heavily studied in experiments with infants,
establishing the perception of intentionality [17, 34, 21, 160, 77] and

18 legible robot motion planning

the principle of rational action [78]. We build on these theories in our
formalism and models for motion (Chapter 3).

Action-to-goal and goal-to-action. Humans have a univer-
sal tendency to interpret the behaviors of others as intentional, goal-
directed actions. Very young infants segment complex actions into
units corresponding to the initiation and completion of intentional
action [17]. They show surprise when confronted with actions that
are inefficient in achieving their goals [78], and are more likely to
imitate actions that they perceive as intentional than those they per-
ceive as accidental [34, 21]. Older infants have been shown to imitate
the demonstrator’s actual goals rather than the exact demonstrations
[160, 77].

"action-to-goal": what is the goal of the
agent, given its ongoing action?

"goal-to-action": what action will the
agent take, given its goal?

Interpreting the behavior of others as goal directed enables an
observer to make sense of this behavior, and it plays a crucial role in
collaboration [218]. In one theoretical account, Csibra and Gergely
[47] propose two inferences fundamental to action interpretation. An
“action-to-goal” inference is based on understanding the function of
an action, and refers to the observer’s ability to infer someone’s goal
state from his ongoing actions (e.g., because he is pouring coffee
beans into the grinder, he will eventually hold a cup of coffee). A
“goal-to-action” inference refers to an observer’s ability to predict the
actions that someone will take based on his goal (e.g., because he
wants to make coffee, he will pour coffee beans into the grinder). As
Section 3.1 will reveal, these two inferences in opposing directions are
fundamental to legibility and predictability.

teleological reasoning is a mechanism
for these inferences rooted in the
expectation of efficient behavior

One key cognitive mechanism through which both of these infer-
ences may take place is teleological reasoning, rooted in the principle
of rational action [78, 46, 203, 77] — humans expect others to act ra-
tionally and take the actions that are most justifiable [46] or efficient
[47] given a particular situation and a particular goal. Therefore, if
the goal is known, they can infer the action by asking which action
would be most efficient in achieving it. Furthermore, while observing
an action, they can infer its likely goal by considering “what end state
would be efficiently brought about by the action" [47]. There is ample
evidence that even very young infants take efficiency into account
when imitating and predicting actions [78, 77]. Teleological reason-
ing motivates our cost-based models in Section 3.2 and Section 3.3,
because (a) it leads to theory well-supported in robotics and machine
learning, and (b) it has been shown to extend beyond observing hu-
mans [78], including to observing robots [115].

Bayesian models of intent inference. We are of course not the
first to point out the Bayesian relation between the two inferences:

related work 19

action-to-goal and goal-to-action. A Bayesian approach for intent
inference has been introduced in plan recognition [37], cognitive
science [16], psychology [176], natural language understanding [90],
and perception of human action [239].

One challenge that we faced for inferring goals from ongoing
motion is that this inference happens in continuous time and from
ongoing trajectories though a high-dimensional configuration space.
We introduce the general formulation, along with approximations
that make the computation tractable.

A key insight that legible motion brings about is the difference be-
tween inferring intent and conveying intent. Previous work focused
on action-to-goal and goal-to-action inferences in a Bayesian setting,
where the space to search (goals and actions respectively) and the
space over which the probability distributions normalize (goals and
actions respectively) match: when inferring goals, we search over
goals, and normalize the probability distribution over goals.

It is when we move to conveying intent that the two space no
longer match: we normalize over goals (take the candidate goals
that the observer might infer into account), but search over actions
(trajectories). As a result, actions that are probable given a goal are
not the best at conveying that same goal. Legible motion will depart
from predictability in order to better convey intent.

3
Formalizing Motion Planning with Observer Inferences

(ξS:Q) = argmax
G∈G

P(G |ξS:Q)

ξ S:Q

away from the red object. But it is less predictable, as it does
not match the expected behavior of reaching directly. We will
show in Sections III and IV how we can quantify this effect
with Bayesian inference, which allows us to derive, among
other things, the online probabilites of the motion reaching
for either object, illustrated as bar graphs in Fig.1.

Our work makes the following three contributions:
1. We formalize legibility and predictability in the context
of goal-directed motion in Section II as stemming from
inferences in opposing directions. The formalism emphasizes
their difference, and directly relates to the theory of action
interpretation [11] and the concepts of “action-to-goal” and
“goal-to-action” inference. Our formalism also unifies pre-
vious descriptions of legibility, quantifying readability and
understandability, and encouraging anticipation as a direct
consequence of our definitions.
2. Armed with mathematical definitions of legibility and
predictability, we propose a way in which a robot could model
these inferences in order to evaluate and generate motion that
is legible or predictable (Sections III and IV). The models are
based on cost optimization, and resonate with the principle of
rational action [12], [13].
3. We demonstrate that legibility and predictability are contra-
dictory not just in theory, but also in practice. We present
an extensive experiment for three characters that differ in
their complexity and anthropomorphism: a simulated point
robot, the bi-manual mobile manipulator HERB [14], and a
human (Section V). The experiment confirms the contradiction
between predictable and legible motion, and reveals interesting
challenges (Section VI). We found, for instance, that different
people expect a complex robot like HERB to act in different
ways: for a robot to be predictable, it must adapt to the
particulars of the observer.

The difference between legibility and predictability of mo-
tion is crucial for human-robot interaction, in particular for
collaboration between humans and robots. Collaboration is a
delicate dance of prediction and action, where agents must
predict their collaborator’s intentions as well as make their
own intentions clear – they must act legibly. We are excited
to be taking an essential step towards better human-robot
collaboration: by emphasizing the difference between legibility
and predictability, we advocate for a different approach to
motion planning, in which robots decide between optimizing
for legibility and optimizing for predictability, depending on
the context they are in.

II. FORMALIZING LEGIBILITY
AND PREDICTABILITY

So far, we have identified that legible motion is intent-
expressive, and predictable motion matches what is expected.
Here, we formalize these definitions for the context of goal-
directed motion, where a human or robot is executing a
trajectory towards one goal G from a set of possible goals G,
like in Fig.1. In this context, G is central to both properties:
the intent is reaching the goal G, and what is expected depends
on G:

Definition 2.1: Legible motion is motion that enables an
observer to quickly and confidently infer the goal.

Definition 2.2: Predictable motion is motion that matches
what an observer would expect, given the goal.

A. Formalism

1) Legibility: Imagine someone observing the orange tra-
jectory from Fig.1. As the robot’s hand departs the starting
configuration and moves along the trajectory, the observer is
running an inference, predicting which of the two goals it
is reaching for. We denote this inference function that maps
(snippets of) trajectories from all trajectories ⌅ to goals as

IL : ⌅! G

The bar graphs next to the hands in Fig.1 signify the observer’s
predictions of the two likely goals. At the very beginning, the
trajectory is confusing and the observer has little confidence in
the inference. However, the observer becomes confident very
quickly – even from the second configuration of the hand along
the trajectory, it becomes clear that the green object is the
target. This quick and confident inference is the hallmark of
legibility.

We thus formalize legible motion as motion that enables an
observer to confidently infer the correct goal configuration G
after observing only a snippet of the trajectory, ⇠S!Q, from
the start S to the configuration at a time t, Q = ⇠(t):

IL(⇠S!Q) = G

The quicker this happens (i.e. the smaller t is), the more
legible the trajectory is.

This formalizes terms like “readable” [4], or “understand-
able” [6], and encourages “anticipatory” motion [5] because it
brings the relevant information for goal prediction towards the
beginning of the trajectory, thus lowering t. The formalism can
also generalize to outcome-directed motion (e.g. gestures such
as pointing at, waving at, etc.) by replacing the notion of goal
with that of an outcome – here, legible motion becomes motion
that enables quick and confident inference of the desired
outcome.

2) Predictability: Now imagine someone knowing that the
hand is reaching towards the green goal. Even before the robot
starts moving, the observer creates an expectation, making an
inference on how the hand will move – for example, that the
hand will start turning towards the green object as it is moving
directly towards it. We denote this inference function mapping
goals to trajectories as

IP : G ! ⌅

We formalize predictable motion as motion for which the
trajectory ⇠S!G matches this inference:

IP (G) = ⇠S!G

The more the trajectory matches the inference, measurable
for example using a distance metric between IP (G) and
⇠S!G, the more predictable the trajectory is.

Integrating the Observer’s !
Inferences in Motion Planning:!

Formalism and Model!

We begin with our formalism for motion interpretable by an ob-
server. We define functional, consistent, predictable, and legible motion,
with the last two intimately related to the existence of an observer,
and stemming from the two (symmetric) inferences the observer
makes (Section 3.1). We propose then quantifiable metrics for pre-
dictability and legibility based on mathematical models of these
inferences, with roots in the principle of maximum entropy and
Bayesian inference (Sections 3.2 and 3.3).

3.1 Formalizing Predictability and Legibility

ξ : [0, 1]→ Q is a trajectory

G ∈ G is a candidate goal

We focus on goal-directed motion. Here, an actor is given a
motion planning problem P ∈ P and executes a trajectory ξ ∈ Ξ,
with Ξ the Hilbert space of trajectories, towards one goal G ∈ G from
a set of possible goals. It is perhaps most intuitive to think about
legible end effector trajectories, but we broadly define trajectories
to mean the full configuration space (full body motion), including
even mobile robot trajectories [87]. We use the example in Fig. 3.1,
where a robot is extending its hand reaching for the green object to
formalize a taxonomy of motion. We formalize functionality, consistency,
predictability and legibility, with the last two intimately dependent on
an observer.

Figure 3.1: Functional motion.

Definition 3.1.1 Functional motion is that which achieves the goal.

We formalize functional motion as that for which the trajectory ξ

satisfies conditions of feasibility, for example, starts at the starting
configuration S, achieves (ends at) goal G, and avoids obstacles:

ξ ∈ Ξf ⊆ Ξ (3.1)

where Ξf is the subspace of feasible trajectories.

22 legible robot motion planning

Much of robotic motion planning has focused on functional mo-
tion, with sampling-based planners being widely used in high-
dimensional spaces [18, 119, 101, 141, 134, 100, 35, 123, 118]. These
planners use random sampling to produce plans quickly. But, ran-
domization produces inconsistency, resulting in a different trajectory,
like the one from Fig. 3.1, every run. Deterministic sampling [92, 93]
produces consistency within a problem but not across problems. If
either goal were ever so slightly moved, the resulting trajectory could
be significantly different.

Figure 3.2: Consistent motion.

Definition 3.1.2 Consistent motion is that where similar problems have
similar trajectories.

We formalize consistent motion as that which is consistent across
problems P ∈ P :

P1 close to P2 =⇒ ξ1 close to ξ2 (3.2)

This defines a notion of continuity of trajectories across problems.
When P and Ξ are endowed with measures of distance, we can for-
malize this using epsilon-delta closeness as:

for all ε > 0 there is δ > 0 such that, whenever dP (P1, P2) < ε, then dΞ(ξ1, ξ2) < δ

In contrast, repeatability just requires consistency within the same
problem.

Trajectory optimization produces consistency by optimizing cost
[159, 219, 103, 114, 216, 184]. The trajectory from Fig. 3.2 is consis-
tent. If either object were slightly moved, the trajectory would change
only slightly, as shown. It is not, however, predictable or legible, be-
cause the optimizer does not reason about the existence of an observer
watching, expecting or making inferences on the motion. What does
the presence of an observer imply for robot motion?

Figure 3.3: Predictable motion.

Definition 3.1.3 Predictable motion is that which matches what an ob-
server would expect, given the goal.

Imagine someone observing the robot, knowing that the hand will
reach towards the green goal. Even before any motion, the observer
creates an expectation of what trajectory they envision the robot will
take. We denote this inference function mapping goals to trajectories
as:

IP : G → Ξ f (3.3)

When motion is predictable, the trajectory ξS→G closely matches
this inference:

ξS→G = IP(G) (3.4)

formalizing motion planning with observer inferences 23

The trajectory from Fig. 3.3 is predictable to our observer, as it Can consistent motion become predictable
with familiarity? We explore this hypoth-
esis in Section 5.3.

matches what they expected. However, it is also ambiguous: another
observer would not be able to tell which object the robot wants to
grasp until the very end. Thus, predictable motion is not necessarily
legible.

Definition 3.1.4 Legible motion is that which enables an observer to
quickly and confidently infer the goal.

Figure 3.4: Legible motion.

Finally, imagine someone observing the robot as it executes the
trajectory from Fig. 3.4. As the robot’s hand starts moving along the
trajectory, the observer is running an inference, predicting which of
the two goals it is reaching for. We denote this inference function
that maps (snippets of) trajectories from the set of all trajectories Ξ to
goals as:

IL : Ξ→ G (3.5)

At the very start of the trajectory from Fig. 3.4, the observer has little
confidence. However, the intended goal becomes clear quickly. This
quick and confident inference is the hallmark of legibility.

We thus formalize legible motion as motion that enables an ob-
server to confidently infer the correct goal G after observing a trajec-
tory snippet ξS→Q, from S to Q = ξ(t):

IL(ξS→Q) = G (3.6)

This unifies terms like “readable” [210], “understandable” [9],
and “anticipatory” [84]. The legible trajectory from Fig. 3.4 is very
different from the predictable trajectory from Fig. 3.3, as they stem
from inferences in opposing directions: IP maps goals to trajectories,
while IL maps trajectories to goals. This is our key insight:

Predictability and legibility stem from inferences in opposing directions, which makes them fundamen-
tally different and often contradictory properties of motion.

The theory of action interpretation has a natural connection We summarize action interpretation in
Section 2.3to our formalism. In goal-directed motion, actions are trajectories

and goals are goal configurations. Thus the inference occurring in
legibility, from trajectory to goal, ξS→Q 7→ G, relates naturally to
the “action-to-goal” inference. Likewise, the inference occurring in
predictability, from goal to trajectory, G 7→ ξS→G, relates naturally to
“goal-to-action”.

We present a summary of the connec-
tion to psychology in Table 3.1.

In what follows, we present models for the two inferences that
enable a robot to quantify predictability and legibility of motion
in terms of costs on trajectories that can be optimized. The models

24 legible robot motion planning

Human Inference Type Example Analogy in Motion Property of Motion

action 7→ goal ... pour beans in grinder 7→ coffee ξS→Q 7→ G legibility
goal 7→ action coffee 7→ ... pour beans in grinder ... G 7→ ξS→G predictability

Table 3.1: Legibility and predictability
as enabling inferences in opposing
direction.are based on cost optimization, maximum entropy, and Bayesian

inference, they resonate with the principle of rational action [78, 46],
and echo earlier works on action understanding via inverse planning
[16].

3.2 Modeling Predictable Motion via Optimization

Invoking the Principle of Rational Action. We model our
observer as expecting the robot to act according to the principle of ra-
tional action [78, 46, 203, 77]: humans expect other agents, including
robots, to act rationally and take the actions that are most justifiable
[46] or efficient [47] given a particular situation and a particular goal.

We model the notion of “efficiency” via a cost functional defining
what it means to be efficient, as in Fig. 3.5 (top). For example, if the
observer expected the robot’s hand to move directly towards the
object it wants to grasp (as opposed to taking an unnecessarily long
path to it), then “efficiency” would be defined by the cost functional
penalizing the trajectory’s length.

C : Ξ → R+ is the cost functional
that models the cost that the observer
expects the robot to optimize
C is called a functional because it maps
functions (trajectories ξ) onto scalars.

Throughout this thesis, we will refer to the cost functional modeling the
observer’s expectation as C:

C : Ξ→ R+

with lower costs signifying more “efficient” trajectories.

A running example for C that we use throughout this work is the
integral over squared velocities:

C[ξ] =
1
2

∫
||ξ̇||2dt (3.7)

Applying the Euler-Lagrange formula
for this C, we get ξ̈ = 0, meaning the
optimal ξ has zero acceleration, thus
it has constant velocity and is a linear
function of time, ξ = at + b. In this
example, our observer expects the robot
to approximately move in a straight line
at constant velocity.

However, if the human observer expects human-like motion, the
animation (e.g., [140, 229, 85]) or biomechanics (e.g., [73, 138]) litera-
ture can serve to provide better approximations for C.

One challenge is that efficiency of robot motion can have different
meanings for different observers. If the observer were willing to
provide examples of what they expect, the robot could learn a better
C via Inverse Optimal Control [2, 183, 238].

Our user study in Section 3.4 suggests
that different people have different
expectations about how the same robot
will move.

formalizing motion planning with observer inferences 25

Although IOC works for low degree of freedom robots (e.g., mo-
bile robots), it is not tractable in higher dimensional spaces. To pro-
duce predictable motion in such spaces beyond our approximation
of C from Eq. 3.7, we develop local adaptation methods for demon-
strations, as well as study familiarizing users to the robot’s motion in
Chapter 6.

The Predictability Inference IL . We model the observer as
expecting that the robot will approximately be minimizing C. More
precisely, we assume that the observer has some expectation of how
costly the robot’s trajectory will be:

E[C[ξ]] = K

If K = arg minξ C[ξ], then the observer
is certain that the robot will produce
the optimal trajectory accruing to C. A
higher K captures more uncertainty that
the observer might have.

(ξS:Q) =

argmax
G∈G

P(G|ξS:Q)
ξ S:QG1

G2

away from the red object. But it is less predictable, as it does
not match the expected behavior of reaching directly. We will
show in Sections III and IV how we can quantify this effect
with Bayesian inference, which allows us to derive, among
other things, the online probabilites of the motion reaching
for either object, illustrated as bar graphs in Fig.1.

Our work makes the following three contributions:
1. We formalize legibility and predictability in the context
of goal-directed motion in Section II as stemming from
inferences in opposing directions. The formalism emphasizes
their difference, and directly relates to the theory of action
interpretation [11] and the concepts of “action-to-goal” and
“goal-to-action” inference. Our formalism also unifies pre-
vious descriptions of legibility, quantifying readability and
understandability, and encouraging anticipation as a direct
consequence of our definitions.
2. Armed with mathematical definitions of legibility and
predictability, we propose a way in which a robot could model
these inferences in order to evaluate and generate motion that
is legible or predictable (Sections III and IV). The models are
based on cost optimization, and resonate with the principle of
rational action [12], [13].
3. We demonstrate that legibility and predictability are contra-
dictory not just in theory, but also in practice. We present
an extensive experiment for three characters that differ in
their complexity and anthropomorphism: a simulated point
robot, the bi-manual mobile manipulator HERB [14], and a
human (Section V). The experiment confirms the contradiction
between predictable and legible motion, and reveals interesting
challenges (Section VI). We found, for instance, that different
people expect a complex robot like HERB to act in different
ways: for a robot to be predictable, it must adapt to the
particulars of the observer.

The difference between legibility and predictability of mo-
tion is crucial for human-robot interaction, in particular for
collaboration between humans and robots. Collaboration is a
delicate dance of prediction and action, where agents must
predict their collaborator’s intentions as well as make their
own intentions clear – they must act legibly. We are excited
to be taking an essential step towards better human-robot
collaboration: by emphasizing the difference between legibility
and predictability, we advocate for a different approach to
motion planning, in which robots decide between optimizing
for legibility and optimizing for predictability, depending on
the context they are in.

II. FORMALIZING LEGIBILITY
AND PREDICTABILITY

So far, we have identified that legible motion is intent-
expressive, and predictable motion matches what is expected.
Here, we formalize these definitions for the context of goal-
directed motion, where a human or robot is executing a
trajectory towards one goal G from a set of possible goals G,
like in Fig.1. In this context, G is central to both properties:
the intent is reaching the goal G, and what is expected depends
on G:

Definition 2.1: Legible motion is motion that enables an
observer to quickly and confidently infer the goal.

Definition 2.2: Predictable motion is motion that matches
what an observer would expect, given the goal.

A. Formalism

1) Legibility: Imagine someone observing the orange tra-
jectory from Fig.1. As the robot’s hand departs the starting
configuration and moves along the trajectory, the observer is
running an inference, predicting which of the two goals it
is reaching for. We denote this inference function that maps
(snippets of) trajectories from all trajectories ⌅ to goals as

IL : ⌅! G

The bar graphs next to the hands in Fig.1 signify the observer’s
predictions of the two likely goals. At the very beginning, the
trajectory is confusing and the observer has little confidence in
the inference. However, the observer becomes confident very
quickly – even from the second configuration of the hand along
the trajectory, it becomes clear that the green object is the
target. This quick and confident inference is the hallmark of
legibility.

We thus formalize legible motion as motion that enables an
observer to confidently infer the correct goal configuration G
after observing only a snippet of the trajectory, ⇠S!Q, from
the start S to the configuration at a time t, Q = ⇠(t):

IL(⇠S!Q) = G

The quicker this happens (i.e. the smaller t is), the more
legible the trajectory is.

This formalizes terms like “readable” [4], or “understand-
able” [6], and encourages “anticipatory” motion [5] because it
brings the relevant information for goal prediction towards the
beginning of the trajectory, thus lowering t. The formalism can
also generalize to outcome-directed motion (e.g. gestures such
as pointing at, waving at, etc.) by replacing the notion of goal
with that of an outcome – here, legible motion becomes motion
that enables quick and confident inference of the desired
outcome.

2) Predictability: Now imagine someone knowing that the
hand is reaching towards the green goal. Even before the robot
starts moving, the observer creates an expectation, making an
inference on how the hand will move – for example, that the
hand will start turning towards the green object as it is moving
directly towards it. We denote this inference function mapping
goals to trajectories as

IP : G ! ⌅

We formalize predictable motion as motion for which the
trajectory ⇠S!G matches this inference:

IP (G) = ⇠S!G

The more the trajectory matches the inference, measurable
for example using a distance metric between IP (G) and
⇠S!G, the more predictable the trajectory is.

(G) =
argmin

ξ∈ΞS:G

C(ξ)
(G)

G

ξ *S→G = argmin
ξ∈ΞS→G

C(ξ) G* = argmax
G∈G

P(G |ξS→Q)

ξ *S→G ξ S→Q
G1

G2

G

Fig. 2. In our models, the observer expects the robot’s motion to optimize
a cost function C (left), and uses that expectation to identity which goal is
most probable given the robot’s motion so far (right)

B. Connection to Psychology

A growing amount of research in psychology suggests that
humans interpret observed behaviors as goal-directed actions
[11], [15]–[19], a result stemming from studies observing in-
fants and how they show surprise when exposed to inexplicable
action-goal pairings. [11]] summarize two types of inference
stemming from the interpretation of actions as goal directed:
“action-to-goal” and “goal-to-action”.

“Action-to-goal” refers to an observer’s ability to infer
someone’s goal state from their ongoing actions (e.g. because
they are pouring coffee beans into the grinder, the will
eventually hold a cup of coffee). “Action-to-goal” inference
answers the question “What is the function of this action?”.

“Goal-to-action” refers to an observer’s ability to predict
the actions that someone will take based on their goal (e.g.
because they want to make coffee, they will will pour coffee
beans into the grinder). “Goal-to-action” inference answers the
question “What action would achieve this goal?”.

This has a natural connection to our formalism. In goal-
directed motion, actions are trajectories and goals are goal
configurations. Thus the inference occurring in legibility,
from trajectory to goal, ⇠S!Q 7! G, relates naturally to
“action-to-goal” inference. Likewise, the inference occurring
in predictability, from goal to trajectory, G 7! ⇠S!G, relates
naturally to “goal-to-action”.

C. Summary

Our formalism emphasizes the difference between legibility
and predictability in theory: they stem from inferences in
opposing directions (from trajectories to goals vs. from goals
to trajectories), with strong parallels in the theory of action
interpretation. In what follows, we introduce one way for a
robot to model these two inferences (summarize in Fig.2), and
present an experiment that emphasizes the difference between
the two properties in practice.

III. MODELING PREDICTABLE MOTION

A. The Trajectory Inference IP

To model IP is to model the observer’s expectation. One
way the robot could do so is by assuming that the human
observer expects it to be a rational agent acting efficiently
[11] or justifiably [13] to achieve a goal. This is known as

the principle of rational action [12], [13], and it has been
shown to apply to non-human agents, including robots [20].
The robot could model this notion of “efficiency” via a cost
function defining what it means to be efficient. For example,
if the observer expected the robot’s hand to move directly
towards the object it wants to grasp (as opposed to taking
an unnecessarily long path to it), then “efficiency” would be
defined by the cost function penalizing the trajectory’s length.

Throughout this paper, we will refer to the cost function
modeling the observer’s expectation as C:

C : ⌅! R+

with lower costs signifying more “efficient” trajectories.
The most predictable trajectory is then the most “efficient”:

IP (G) = arg min
⇠2⌅S!G

C(⇠) (1)

C represents what the observer expects the robot to opti-
mize, and therefore encompasses every aspect of the observer’s
expectation, including (when available) body motion, hand
motion, arm motion, and gaze.

B. Evaluating and Generating Predictability

Predictability can be evaluated based on C: the lower
the cost, the more predictable (expected) the trajectory. We
propose a predictability score normalized from 0 to 1:

predictability(⇠) = exp
�
�C(⇠)

�
(2)

Generating predictable motion means maximizing this
score, or equivalently minimizing the cost function C – as
in (1). This presents two major challenges: learning C, and
minimizing C.

First, the robot needs access to the cost function C that
captures how the human observer expects it to move. If the
human observer expects human-like motion, animation (e.g.
[21]) or biomechanics (e.g. [22], [23]) literature can serve to
provide approximations for C. Our experiment (Section V)
uses trajectory length as a proxy for the real C, resulting in
the shortest path to goal – but this is merely one aspect of
expected behavior. As our experiment will reveal, efficiency
of robot motion has different meanings for different observers.
If the observer were willing to provide examples of what they
expect, the robot could learn how to act via Learning from
Demonstration [24]–[26] or Inverse Reinforcement Learning
[27]–[29]. Doing so in a high-dimensional space, however, is
still an active area of research.

Second, the robot must find a trajectory that minimizes C.
This is tractable in low-dimensional spaces, or if C is convex.
While efficient trajectory optimization techniques do exist for
high-dimensional spaces and non-convex costs [30], they are
subject to local minima, and how to alleviate this issue in
practice remains an open research question [31], [32].

ξ *S→G = argmin
ξ∈ΞS→G

C(ξ) G* = argmax
G∈G

P(G |ξS→Q)

ξ *S→G ξ S→Q
G1

G2

G

Fig. 2. In our models, the observer expects the robot’s motion to optimize
a cost function C (left), and uses that expectation to identity which goal is
most probable given the robot’s motion so far (right)

B. Connection to Psychology

A growing amount of research in psychology suggests that
humans interpret observed behaviors as goal-directed actions
[11], [15]–[19], a result stemming from studies observing in-
fants and how they show surprise when exposed to inexplicable
action-goal pairings. [11]] summarize two types of inference
stemming from the interpretation of actions as goal directed:
“action-to-goal” and “goal-to-action”.

“Action-to-goal” refers to an observer’s ability to infer
someone’s goal state from their ongoing actions (e.g. because
they are pouring coffee beans into the grinder, the will
eventually hold a cup of coffee). “Action-to-goal” inference
answers the question “What is the function of this action?”.

“Goal-to-action” refers to an observer’s ability to predict
the actions that someone will take based on their goal (e.g.
because they want to make coffee, they will will pour coffee
beans into the grinder). “Goal-to-action” inference answers the
question “What action would achieve this goal?”.

This has a natural connection to our formalism. In goal-
directed motion, actions are trajectories and goals are goal
configurations. Thus the inference occurring in legibility,
from trajectory to goal, ⇠S!Q 7! G, relates naturally to
“action-to-goal” inference. Likewise, the inference occurring
in predictability, from goal to trajectory, G 7! ⇠S!G, relates
naturally to “goal-to-action”.

C. Summary

Our formalism emphasizes the difference between legibility
and predictability in theory: they stem from inferences in
opposing directions (from trajectories to goals vs. from goals
to trajectories), with strong parallels in the theory of action
interpretation. In what follows, we introduce one way for a
robot to model these two inferences (summarize in Fig.2), and
present an experiment that emphasizes the difference between
the two properties in practice.

III. MODELING PREDICTABLE MOTION

A. The Trajectory Inference IP

To model IP is to model the observer’s expectation. One
way the robot could do so is by assuming that the human
observer expects it to be a rational agent acting efficiently
[11] or justifiably [13] to achieve a goal. This is known as

the principle of rational action [12], [13], and it has been
shown to apply to non-human agents, including robots [20].
The robot could model this notion of “efficiency” via a cost
function defining what it means to be efficient. For example,
if the observer expected the robot’s hand to move directly
towards the object it wants to grasp (as opposed to taking
an unnecessarily long path to it), then “efficiency” would be
defined by the cost function penalizing the trajectory’s length.

Throughout this paper, we will refer to the cost function
modeling the observer’s expectation as C:

C : ⌅! R+

with lower costs signifying more “efficient” trajectories.
The most predictable trajectory is then the most “efficient”:

IP (G) = arg min
⇠2⌅S!G

C(⇠) (1)

C represents what the observer expects the robot to opti-
mize, and therefore encompasses every aspect of the observer’s
expectation, including (when available) body motion, hand
motion, arm motion, and gaze.

B. Evaluating and Generating Predictability

Predictability can be evaluated based on C: the lower
the cost, the more predictable (expected) the trajectory. We
propose a predictability score normalized from 0 to 1:

predictability(⇠) = exp
�
�C(⇠)

�
(2)

Generating predictable motion means maximizing this
score, or equivalently minimizing the cost function C – as
in (1). This presents two major challenges: learning C, and
minimizing C.

First, the robot needs access to the cost function C that
captures how the human observer expects it to move. If the
human observer expects human-like motion, animation (e.g.
[21]) or biomechanics (e.g. [22], [23]) literature can serve to
provide approximations for C. Our experiment (Section V)
uses trajectory length as a proxy for the real C, resulting in
the shortest path to goal – but this is merely one aspect of
expected behavior. As our experiment will reveal, efficiency
of robot motion has different meanings for different observers.
If the observer were willing to provide examples of what they
expect, the robot could learn how to act via Learning from
Demonstration [24]–[26] or Inverse Reinforcement Learning
[27]–[29]. Doing so in a high-dimensional space, however, is
still an active area of research.

Second, the robot must find a trajectory that minimizes C.
This is tractable in low-dimensional spaces, or if C is convex.
While efficient trajectory optimization techniques do exist for
high-dimensional spaces and non-convex costs [30], they are
subject to local minima, and how to alleviate this issue in
practice remains an open research question [31], [32].

Figure 3.5: We model the observer’s
expectation as the optimization of a
cost function C (above). The observer
identifies based on C the most probable
goal given the robot’s motion so far
(below).

An expected value implies a probability distribution that the ob-
server has over the space of trajectories (from the starting config-
uration to the goal). There are many probability distributions that
satisfy the constraint above. To select one, we apply the principle of
maximum entropy and recover the least biased distribution:

max
P

∫
−P[ξ] log P[ξ]dξ (3.8)

s.t. E[C[ξ]] = K

Solving the above results in P[ξ] ∝ exp
(
−λC[ξ]

)
— a Bolzmann

distribution. Absorbing the Lagrange multiplier λ into C, we define
the following score for predictability:

Predictability[ξ] = exp
(
−C[ξ]

)
(3.9)

Therefore, the observer infers the trajectory with highest probabil-
ity, i.e., lowest cost, given a goal G — the most predictable trajectory:

IP(G) = arg min
ξ∈ΞS→G

C[ξ] (3.10)
We discuss how to optimize C in
Chapter 4.

3.3 Modeling Legible Motion via Optimization

The Legibility Inference IL . To model IL is to model how the
observer infers the goal from a snippet of the trajectory ξS→Q . One
way to do so is by assuming that the observer compares the possi-
ble goals in the scene in terms of how probable each is given ξS→Q .
This is supported by action interpretation: Csibra and Gergeley [47]
argue, based on the principle of rational action, that humans assess

26 legible robot motion planning

which end state would be most efficiently brought about by the ob-
served ongoing action.Taking trajectory length again as an example
for the observer’s expectation, this translates to predicting a goal be-
cause ξS→Q moves directly toward it and away from the other goals,
making them less probable.

One model for IL is to compute the probability for each goal
candidate G and to choose the most likely, as in Fig. 3.5(bottom):

IL(ξS→Q) = arg max
G∈G

P(G|ξS→Q) (3.11)

Using Bayes’ rule, we get:

IL(ξS→Q) = arg max
G∈G

P[ξS→Q |G]P(G) (3.12)

with P(G) the prior that the observer has over the set of goals G .

We assume a uniform prior. Context
from the task and previous actions
could be used to obtain a more in-
formed prior.

The probability of a trajectory snippet ξS→Q given a goal is equal
to the probability mass of all trajectories going through the snippet
and then ending up at the goal, over the probability mass of all tra-
jectories from start to goal (Fig. 3.6). Using that P[ξ] is a Boltzmann
distribution, and assuming that the cost C can be different for differ-
ent goals, leading to a cost CG for each goal G, we get:

P[ξS→Q |G] =
exp

(
−CG [ξS→Q]

) ∫
ξQ→G

exp
(
−CG [ξQ→G]

)
∫

ξS→G
exp

(
−CG [ξS→G]

) (3.13)

S

G

Q

Figure 3.6: ξS→Q in black, examples of
ξQ→G in green, and further examples
of ξS→G in orange. Trajectories more
costly w.r.t. C are less probable.

In low-dimensional spaces, Eq. 3.13 can be evaluated exactly
through soft-maximum value iteration [239]. In high-dimensional
spaces, where this is expensive, an alternative is to approximate the
integral over trajectories using Laplace’s method.

First, we approximate C[ξX→Y] by its second order Taylor series
expansion around ξ∗X→Y = arg minξX→Y C[ξX→Y]:

C[ξX→Y] ≈ C[ξ∗X→Y] +∇C[ξ∗X→Y]
T(ξX→Y − ξ∗X→Y)+

1
2
(ξX→Y − ξ∗X→Y)

T∇2C[ξ∗X→Y](ξX→Y − ξ∗X→Y) (3.14)

Since ∇C[ξ∗X→Y] = 0 at the optimum, we get

∫

ξX→Y

exp
(
−C[ξX→Y]

)
≈ exp

(
−C[ξ∗X→Y]

)

∫

ξX→Y

exp
(
−1

2
(ξX→Y − ξ∗X→Y)

T HX→Y(ξX→Y − ξ∗X→Y)
)

(3.15)

Evaluating the Gaussian integral leads to

HX→Y the Hessian of the cost function
around ξ∗X→Y .

∫

ξX→Y

exp
(
−C[ξX→Y]

)
≈ exp

(
−C[ξ∗X→Y]

)
√

2πk
√
|HX→Y|

(3.16)

formalizing motion planning with observer inferences 27

The probability becomes

P[ξS→Q|G] ≈
exp

(
−CG[ξS→Q]− CG[ξ

∗
Q→G]

)√
|HQ→G|

exp
(
−CG[ξ

∗
S→G]

)√
|HS→G|

P(G) (3.17)

If the cost function is quadratic, the Hessian is constant and we get
goal predictions by

VG(Q) is the value function. i.e., the
cost of the optimal trajectory ξ∗Q→G

P(G|ξS→Q) ∝
exp

(
−C[ξS→Q]−VG(Q)

)

exp
(
−VG(S)

) P(G) (3.18)

Predicting goals by computing the arg maxG P[G|ξS→Q] using the
formula above implements an intuitive principle: if the actor appears
to be taking (even in the optimistic case) a trajectory that is a lot
costlier than the optimal one to that goal, the goal is likely not the
intended one.

Much like teleological reasoning suggests
1, this evaluates 1 Gergely Csibra and GyÃűrgy

Gergely. Obsessed with goals:
Functions and mechanisms of tele-
ological interpretation of actions in
humans. Acta Psychologica, 124(1):60

– 78, 2007

how efficient (w.r.t. C) going to a goal is through the observed trajec-
tory snippet ξS→Q relative to the most efficient (optimal) trajectory,
ξ∗S→G.

In ambiguous situations like the one in Fig. 3.7, a large portion of
ξ∗S→G is also optimal (or near-optimal) for a different goal, making
both goals almost equally likely along it. This is why legibility does not
also optimize C — rather than matching expectation, it manipulates it to
convey intent.

The Legibility Cost Functional Based on C. A legible tra-
jectory is one that enables quick and confident predictions. A score
for legibility therefore tracks the probability assigned to the robot’s
actual goal GR across the trajectory: trajectories are more legible if
this probability is higher, with more weight being given to the earlier
parts of the trajectory via a function f (t):

Legibility[ξ] =

∫
P(GR|ξS→ξ(t)) f (t)dt∫

f (t)dt
(3.19)

f (t)/
∫

f (t)dt can be analogous to a
discount factor in an MDP.

P(GR|ξS→ξ(t)) can be computed using
C, as in (3.18).

Chapter 6 discusses optimizing the
legibility functional.

Legibility is Not Predictability. Legibility optimizes a different
functional than predictability. This difference in optimization crite-
ria supports the formalism’s prediction that the two properties are
fundamentally different, and that increasing a trajectory’s score with
respect to one property can mean decreasing the score with respect to
the other.

The implication of this contradiction is that in planning, a robot
cannot assume that being predictable will automatically mean that

28 legible robot motion planning

it is conveying its intent: in situations where intentionality is important,
such as collaborative tasks, robots should explicitly reason about legibility.

In what follows, we present an experiment testing this theoretical
contradiction in practice, when real users evaluate how legible or
predictable a trajectory is.

3.4 From Theory to Real Users

The mathematics of predictability and legibility imply that being
more legible can mean being less predictable and vice-versa. We set
out to verify that this is also true in practice, when we expose sub-
jects to robot motion. We ran an experiment in which we evaluated
two trajectories — a theoretically more predictable one ξP and a the-
oretically more legible one ξL — in terms of how predictable and
legible they are to novices.

3.4.1 Hypothesis

There exist two trajectories ξL and ξP for the same task such that ξP is more
predictable than ξL and ξL is more legible than ξP.

Figure 3.7: The end effector trace for
the HERB predictable (gray) and legible
(orange) trajectories.

Figure 3.8: We use three characters:
a point robot (dot on the screen), a
bi-manual manipulator, and a human
actor.

3.4.2 Experimental Setup

We chose a task like the one in Fig. 3.8: reaching for one of two
objects present in the scene. The objects were close together in order
to make this an ambiguous task, in which we expect a larger differ-
ence between predictable and legible motion.

We manipulated two variables: the trajectory type, and the
character executing it.
Character: We chose to use three characters for this task (Fig. 3.8) —
a simulated point robot, our bi-manual mobile manipulator named
HERB [204], and a human — because we wanted to explore the dif-
ference between humans and robots, and between complex and sim-
ple characters.
Trajectory: We hand designed (and recorded videos of) trajectories
ξP and ξL for each of the characters such that predictability(ξP) >

predictability(ξL) according to Eq. 3.9, but legibility(ξP) <

legibility(ξL) according to Eq. 3.19.
With the HERB character, we controlled for effects of timing, elbow

location, hand aperture and finger motion by fixing them across both
trajectories. For the orientation of the wrist, we chose to rotate the
wrist according to a profile that matches studies on natural human
motion [138, 70]), during which the wrist changes angle more quickly

formalizing motion planning with observer inferences 29

Figure 3.9: The trajectories for each
character.

30 legible robot motion planning

in the beginning than it does at the end of the trajectory. Fig. 3.7 plots
the end effector trace for the HERB trajectories.

The gray trajectory has a larger pre-
dictability score (0.54 > 0.42), while the
orange one has a higher legibility score
(0.67 > 0.63).With the human character, we used a natural reach for the pre-

dictable trajectory, and we used a reach that exaggerates the hand
position to the right for the legible trajectory (much like with HERB
or the point robot). We cropped the human’s head from the videos to
control for gaze effects.

Fig. 3.9 shows the start, end, along with an intermediate waypoint
for each trajectory.

We used two dependent measures: predictability and legibility.
Predictability: Predictable trajectories match the observer’s expecta-
tion. To measure how predictable a trajectory is, we showed subjects
the character in the initial configuration and asked them to imagine
the trajectory they expect the character will take to reach the goal. We
then showed them the video of the trajectory and asked them to rate
how much it matched the one they expected, on a 1-7 Likert scale.
To ensure that they take the time to envision a trajectory, we also
asked them to draw what they imagined on a two-dimensional rep-
resentation of the scene before they saw the video. We further asked
them to draw the trajectory they saw in the video as an additional
comparison metric.

We measure predictability by asking
participants how much the trajectory
matched what they predicted.

We measure legibility by asking partici-
pants to stop the motion when they are
confident in the goal.

Legibility: Legible trajectories enable quick and confident goal pre-
diction. To measure how legible a trajectory is, we showed subjects
the video of the trajectory and told them to stop the video as soon
as they knew the goal of the character. We recorded the time taken
and the prediction, and whether they were correct. This measure
draws on the protocol used by Gielniak et al. 2 in their research on

2 M.J. Gielniak and A.L. Thomaz. Gen-
erating anticipation in robot motion. In
RO-MAN, pages 449 –454, 31 2011-aug.
3 2011

anticipatory motion.

Subject Allocation. We split the experiment into two sub-
experiments with different subjects: one about measuring predictabil-
ity, and the other about measuring legibility.

For the predictability part, the character factor was between-
subjects because seeing or even being asked about trajectories for one
character can bias the expectation for another. However, the trajectory
factor was within-subjects in order to enable relative comparisons on
how much each trajectory matched expectation. This lead to three
subject groups, one for each character.

We counter-balanced the order of the
trajectories within a group to avoid
ordering effects.

For the legibility part, both factors were between-subjects because
the goal was the same (further, right) in all conditions. This leads to
six subject groups.

To eliminate users that do not pay
attention to the task and provide
random answers, we added a control
question, e.g., "What was the color of
the point robot?" and disregarded the
users who gave wrong answers from
the data set.

We recruited a total of 432 subjects (distributed approximately
evenly between groups) through Amazon’s Mechanical Turk, all from

formalizing motion planning with observer inferences 31

the United States and with approval rates higher than 95%.

3.4.3 Analysis

Overall, the predictable motions were
evaluated as more predictable in practice as
well. The exception was for HERB, which
points to a need of using a better cost C
(Chapter 5).

Predictability. In line with our hypothesis, a factorial ANOVA
revealed a significant main effect for the trajectory: subjects rated
the predictable trajectory ξP as matching what they expected better
than ξL, F(1, 310) = 21.88, p < .001. The main effect of the character
was only marginally significant, F(1, 310) = 2, 91, p = .056. The
interaction effect was significant however, with F(2, 310) = 10.24,
p < .001. The post-hoc analysis using Tukey corrections for multiple
comparisons revealed, as Fig. 3.10 shows, that our hypothesis holds
for the point robot (adjusted p < .001) and for the human (adjusted
p = 0.28), but not for HERB.

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	

Hu

m
an
	

HE
RB

	

Po

in
t	
 R

ob
ot
	

Legible	
 Traj	
 Predictable	
 Traj	

Figure 3.10: Ratings (on Likert 1-7) of
how much the trajectory matched the
one the subject expected.

The trajectories the subjects drew confirm this (Fig. 3.11): while for
the point robot and the human the trajectory they expected is, much
like the predictable one, a straight line, for HERB the trajectory they
expected splits between straight lines and trajectories looking more
like the legible one.

Expected	
 Predictable	
 Legible	

	
 P
oi
nt
	
 R
ob

ot
	

	
 H
ER

B	

Hu

m
an
	

Figure 3.11: The drawn trajectories
for the expected motion, for ξP (pre-
dictable), and for ξL (legible).

For HERB, ξL was just as (or even more) predictable than ξP.

Follow-Up Study 1. We conducted an exploratory follow-up study
with novice subjects from a local pool to help understand this phe-
nomenon. We asked them to describe the trajectory they would ex-
pect HERB to take in the same scenario, and asked them to motivate
it. Surprisingly, all 5 subjects imagined a different trajectory, motivat-
ing it with a different reason.

Two subjects thought HERB’s hand would reach from the right
side because of the other object: one thought HERB’s hand is too big
and would knock over the other object, and the other thought the
robot would be more careful than a human. This brings up an inter-
esting possible correlation between legibility and obstacle avoidance.
However, as Fig. 6.8 shows, a legible trajectory still exaggerates mo-
tion away from the other candidate objects even in if it means getting
closer to a static obstacle like a counter or a wall.

Another subject expected HERB to not be flexible enough to reach
straight towards the goal in a natural way, like a human would, and
thought HERB would follow a trajectory made out of two straight
line segments joining on a point on the right. She expected HERB to
move one joint at a time. We often saw this in the drawn trajectories
with the original set of subjects as well (Fig. 3.11, HERB, Expected).

The other subjects came up with interesting strategies: one thought
HERB would grasp the bottle from above because that would work

32 legible robot motion planning

Point Robot HERB Human

time (s)

Probability(correct inference)

Point Robot HERB Human

% of users that made an inference and are correct

time (s)

0	

1.
5	
 3	

4.
5	
 6	

7.
5	
 9	

10
.5
	

12
	

13
.5
	

15
	

16
.5
	

18
	

19
.5
	

0	

1.
5	
 3	

4.
5	
 6	

7.
5	
 9	

10
.5
	

12
	

13
.5
	

15
	

16
.5
	

18
	

19
.5
	

Predictable	
 Traj	

Legible	
 Traj	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

0	

1.
5	
 3	

4.
5	
 6	

7.
5	
 9	

10
.5
	

12
	

13
.5
	

15
	

16
.5
	

18
	

19
.5
	

0	

20	

40	

60	

80	

100	

0	

1.
5	
 3	

4.
5	
 6	

7.
5	
 9	

10
.5
	

12
	

13
.5
	

15
	

16
.5
	

18
	

19
.5
	
 0	

1.
5	
 3	

4.
5	
 6	

7.
5	
 9	

10
.5
	

12
	

13
.5
	

15
	

16
.5
	

18
	

19
.5
	
 0	

1.
5	
 3	

4.
5	
 6	

7.
5	
 9	

10
.5
	

12
	

13
.5
	

15
	

16
.5
	

18
	

19
.5
	

Figure 3.12: Cumulative number of
users that responded and were correct
(above) and the approximate probabil-
ity of being correct (below).

better for HERB’s hand, while the other thought HERB would use the
other object as a prop and push against it in order to grasp the bottle.

Follow-Up Study 2. Many of the participants from the first follow-
up study had misconceptions about how the robot would move. This
inspired us to test whether it would make a difference to expose
participants to a robot motion from a different situation before we
ask them which trajectory they expect in the new situation.

We thus ran a last study online (N = 16), where participants
first watched a video of a predictable motion in a different situation
(different location of the target object). This was meant to help give
participants some context for how the robot’s different joints can
move. Then, participants saw two videos, of ξP and ξL, and chose
which better matched their expectation.

Unlike in the original study, now 70% of the participants selected
ξP as more predictable. A binomial test showed this to be signifi-
cantly higher than chance (p = .0251).

Section 5.3 studies the idea of famil-
iarizing users to robot motion and its
limitations in more detail.

Legibility. We collected from each subject the time at which they
stopped the trajectory and their guess of the goal. Fig. 3.12 (above)
shows the cumulative percent of the total number of subjects as-
signed to each condition that made a correct prediction as a function
of time along the trajectory. With the legible trajectories, more of the
subjects tend to make correct predictions faster.

To compare the trajectories statistically, we unified time and cor-
rectness into a typical score inspired by the Guttman structure (e.g.,
[24]): guessing wrong gets a score of 0, and guessing right gets a

formalizing motion planning with observer inferences 33

higher score if it happens earlier.

Overall, the legible trajectories were
evaluated as more legible in practice as
well.

A factorial ANOVA predicting this score revealed, in line with our
hypothesis, a significant effect for trajectory: the legible trajectory
had a higher score than the predictable one, F(1, 241) = 5.62, p =

.019. The means were 6.75 and 5.73, much higher than a random
baseline of making a guess independent of the trajectory at uniformly
distributed time, which would result in a mean of 2.5 — the subjects
did not act randomly. No other effect in the model was significant.

Figure 3.13: Legibility is not obstacle
avoidance. Here, in the presence of an
obstacle that is not a potential goal, the
legible trajectory still moves towards
the wall, unlike the obstacle-avoiding
one (gray trace).

Although a standard way to combine timing and correctness in-
formation, this score rewards subjects that gave an incorrect answer
0 reward. This is equivalent to assuming that the subject would keep
making the incorrect prediction. However, we know this not to be the
case. We know that at the end (time T), every subject would know
the correct answer. We also know that at time 0, subjects have a prob-
ability of 0.5 of guessing correctly. To account for that, we computed
an approximate probability of guessing correctly given the trajectory
so far as a function of time — see Fig. 3.12(below). Each subject’s
contribution propagates (linearly) to 0.5 at time 0 and 1 at time T.
The result shows that indeed, the probability of making a correct
inference is higher for the legible trajectory at all times.

This effect is strong for the point robot and for HERB, and not
as strong for the human character. We believe that this might be a
consequence of the strong bias humans have about human motion —
when a human moves even a little unpredictably, confidence in goal
prediction drops. This is justified by the fact that subjects did have
high accuracy when they responded, but responded later compared
to other conditions.

Chapter 6 discusses trading off legibil-
ity with keeping the motion efficient
and preventing over-exaggeration.

In summary, the legible trajectories tended to be more legible, and
the predictable trajectories tended to be more predictable (especially
when they were not the first motions the participants ever saw the
character performed, as in our follow-up). The character factor did
not have a significant effect, but it deed seem to influence the out-
come to a limited extent.

Limitations. The main limitation is the dependance on C — on the
one hand, our example C can make a good straw-man across users;
on the other hand, our results suggests that customizing C can be
beneficial (Chapter 5). There is also a need to establish how legible to
be, and, as we will see in Chapter 6, our model’s assumptions only
hold in some region beyond which users start predicting a “some-
thing else” hypothesis.

Additional studies are required to further test the model in differ-
ent situations, beyond the one setup we used in this experiment.

34 legible robot motion planning

3.5 Chapter Summary

This chapter introduced a mathematical formalism for predictable
and legible motion. We started with the assumption that the observer
expects the robot to approximately optimize a cost function. This
induced a probability density function over the space of trajectories
given a goal. Bayesian inference and an approximation for tractability
then led to a mathematical measure for how legible a trajectory is.

C
↓

P[ξ|G]
↓

P(G|ξS→Q)
↓

Legibility[ξ]
↓

user study

We also discussed the results of a study designed to test the for-
malism’s prediction that legibility and predictability can be contradic-
tory. Overall, a trajectories more predictable in theory were also more
predictable in practice, and trajectories more legible in theory were
also more legible in practice.

One exception was HERB’s predictable trajectory, which many
participants originally perceived as less predictable than its legible
counterpart. However, our follow-up study showed that this is no
longer the case as soon as participants get to see another example
trajectory. In that case, the majority of participants do find the pre-
dictable trajectory more predictable.

Still, the motion with a lower predictability cost when using the
example cost functional C falls short of being predictable enough to
all users. 30% of users still vote against it, even after having seen a
similar motion before, and, as our in-person study reveals, different
people have different notions of what C is.

Chapter 5 introduces two ways to alleviate this issue: learning
motion from user-demonstrated trajectories instead of assuming a C,
and familiarizing the human with the robot’s C — an idea we already
used in our follow-up study, but which we will test more thoroughly
and for which we will analyze its limitations. But first, we take a
first step towards generating predictable and legible motion in the
next chapter, by focusing on a common ingredient they both require:
trajectory optimization for motion planning (Chapter 4).

4
Trajectory Optimization

Trajectory
Optimization!

So far, we introduced mathematical measures for predictability and
legibility of goal-directed motion. In order to generate motion with
these properties, the robot needs the ability to generate trajectories
with high Predictability and Legibility scores, i.e., the ability to
perform trajectory optimization.

In this chapter, we build on a local functional trajectory optimiza-
tion method (Section 4.1), and introduce two complementary ways of
alleviating convergence to poor local optima: expanding good local
basins of attraction by adding the flexibility of goal sets (Section 4.2),
and learning to initialize the optimizer in a good basin of attraction
using prior experience (Section 4.3).

4.1 Functional Gradient Trajectory Optimization

The goal of trajectory optimization in the context of motion plan-
ning is to generate a trajectory that optimizes some cost or utility
functional (like C from Eq. 3.7 or Legibility from Eq. 3.19) while
avoiding collisions with the environment and self-collisions.

Our approach to trajectory optimization is motivated by two ideas:

By iteratively following the gradient
direction, the trajectory optimizer can
start with an infeasible trajectory and
bend it out of collision.

1. Gradient information is often available and can be computed
inexpensively. This includes gradients regarding utility, as well as
gradients regarding obstacle avoidance, which can be used to ac-
tively push the trajectory out of collision. Therefore, our approach
uses gradients to iteratively improve an initial (possibly infeasible)
trajectory, like a straight line through the configuration space.

We define our cost functional U as a combination of a prior
term Uprior(this will become the predictability or legibility mea-
sures in later chapters) and an obstacle avoidance term Uobs.

The obstacle functional is developed as a line integral of a scalar
cost field c, defined so that it is invariant to re-timing. Consider a
robot arm sweeping through a cost field, accumulating cost as is

36 legible robot motion planning

moves. Regardless of how fast or slow the arm moves through the
field, it must accumulate the exact same cost.

The physical intuition of an arm sweeping through a cost field,
hints at a further simplification. Instead of computing the cost
field in the robot’s high-dimensional configuration space, we com-
pute it in its workspace (typically 2-3 dimensional) and use body
points on the robot to accumulate workspace cost to compute Uobs. Think of the trajectory as an infinite

vector. Then 〈ξ1, ξ2〉 = ξT
1 Mξ2, with

M and Hermitian positive-definite
matrix. If M = I, the inner product is
Euclidean and treats each time point
independently. Off-diagonal elements
of M represent relations between
different time points.

2. The inner product in the Hilbert space Ξ of trajectories need
not be Euclidean. In fact, because non-Euclidean inner products
couple time along the trajectory, they can much better capture the
structure of motions, in which any current time point is intimately
related to the previous and the next.

The natural gradient is an operator
analogous to the ordinary gradient, but
depends on the geometry of the space
(the Riemannian metric) and not on the
parametrization. When the space is a
curved manifold, the natural gradient
is the steepest direction of the target
function, and is equal to the ordinary
gradient transformed by the inverse of
the Riemannian metric tensor, as we
show in Eq. 4.8. The natural gradient is
commonly used in MLE with the Fisher
metric — here we use it with a metric
that better captures the geometry of
the trajectory space than the Euclidean
inner product.

Changing the inner product changes the gradient direction.
We use the natural gradient, which is covariant to reparametriza-
tion. The effect is that Euclidean changes are no longer applied
independently, but propagated to the rest of the trajectory.

In what follows, we introduce the obstacle cost functional, a useful
inner product choice, and the functional gradient descent algorithm
(named CHOMP — “Covariant Hamiltonian Optimization for Mo-
tion Planning”; first introduced in [184], journal version followed
[240]).

4.1.1 The Cost Functional

The cost functional separately measures two complementary aspects
of motion planning:

U [ξ] = Uprior[ξ] + αUobs[ξ]

The first term, Uprior, is a prior term. It dictates how the robot
should move in the absence of any obstacle information. This can be
the predictability and legibility measures, or any term that captures
efficiency for the robot or smoothness, encompassing dynamical
properties like velocities, accelerations, jerk, etc.1 1 An example prior is C from Eq. 3.7.

Our theory extends straightforwardly
to higher-order derivatives such as
accelerations or jerks.

We discuss gradients on this prior term separately for predictabil-
ity (Chapter 5) and legibility (Chapter 6).

The second term, Uobs, is the obstacle term. It encourages collision
free trajectories by penalizing parts of the robot that are close to
obstacles, or already in collision.

B: the set of body points

x: the forward kinematics mapping

c: the workspace obstacle cost

Let B ⊂ R3 be the set of points on the exterior body of the robot
and let x : C × B → R3 denote the forward kinematics, mapping
a robot configuration q ∈ Q and a particular body point u ∈ B to
a point x(q, u) in the workspace. Furthermore, let c : R3 → R be a

trajectory optimization 37

workspace cost function that penalizes the points inside and around
the obstacles. We define this workspace cost function in terms of the
Euclidean distance to the boundaries of obstacles, D(x):

c(x) =





−D(x) + 1
2 ε, if D(x) < 0

1
2ε (D(x)− ε)2, if 0 < D(x) ≤ ε

0 otherwise

(4.1)
The cost of a point in the workspace
smoothly drops to zero as a distance of
the allowable threshold ε is reached.

The obstacle objective Uobs is an integral that collects the cost en-
countered by each workspace body point in B on the robot as it
sweeps across the trajectory. Specifically, it computes the arc length
parametrized line integral of each body point’s path through the
workspace cost field and integrates those values across all body
points:

Uobs[ξ] =
∫ 1

0

∫

B
c
(

x
(
ξ(t), u

)) ∥∥∥∥
d
dt

x
(
ξ(t), u

)∥∥∥∥ du dt (4.2)

The arc-length parametrization ensures that the obstacle objective is

The workspace cost function c is mul-
tiplied by the norm of the workspace
velocity of each body point, transform-
ing what would otherwise be a simple
line integral into its corresponding
arc-length parametrization.

invariant to re-timing of the trajectory (i.e., moving along the same
path at a different speed). The benefit is that the objective functional
provides no incentive to directly alter the trajectory’s speed through
the workspace for any point on the robot.

! = 0.7

! = 0

! = 1

! = 0.5 ! = 1 ! = 0

!(!)

!

∇!(!)

obstacle

!!

!′

! = 0.7

! = 0

! = 1

! = 0.5 ! = 1 ! = 0

!(!)

!

∇!(!)

obstacle

!!

!′

Figure 4.1: The obstacle cost tracks a
set of body points through time. Each
body point at each time point has a
workspace gradient, which Eq. 4.3
compounds in a trajectory gradient.

The functional Euclidean gradient of the obstacle term, derived in
[184], is

∇̄Uobs[ξ] =
∫

B
JT‖x′‖

[
(I − x̂′ x̂′T)∇c− cκ

]
du, (4.3)

4.1.2 An Example Inner Product

Optimizers often implicitly use a Euclidean inner product:

〈ξ1, ξ2〉I =
∫

ξ1(t)Tξ2(t)dt (4.4)

If we write trajectories as (possibly infinitely long) vectors of configu-
rations this becomes:

〈ξ1, ξ2〉I = ξT
1 ξ2 (4.5)

Euclidean inner products treat each point in time along the tra-
jectory as being independent from the rest. Consider the norm of a
trajectory — the inner product with itself. Time t only interacts with
itself, it is not affected by any other time. With a Euclidean inner
product, trajectories are no more than sequences of independent con-
figurations, each one amnesic of the past and ignorant of the future.

However, trajectories should be more than that. Time forces config-
urations along the way to relate to each other. The inner product can

38 legible robot motion planning

capture this by relating time t with more than just itself. An example
is

〈ξ1, ξ2〉A = ξT
1 Aξ2 (4.6)

with A having off-diagonal non-zero elements that relate the current
time point with the previous and the next.

Figure 4.2: A couples time along the
trajectory, turning the trajectory into an
elastic band: when a Euclidean gradient
would pull one single point away from
the rest of the trajectory, the natural
gradient pulls the entire trajectory with
it (details in Section 4.1.3.

A particular A that we use throughout the thesis is the Hessian of
integral over squared velocities along the trajectory:

A = ∇2
∫
||ξ̇||2dt = KTK (4.7)

with K the finite differencing matrix (accounting for a constant start
and goal configuration):

K =




1 0 0 ... 0 0
−1 1 0 ... 0 0
0 −1 1 ... 0 0

...
0 0 0 ... −1 1
0 0 0 ... 0 −1




a!

b!

c!
Figure 4.3: A Euclidean inner product
makes trajectory b closer to a than c is.
In contrast, our example inner product
makes c closer.

Using A instead of the Euclidean inner product changes how
we compute distances between trajectories. For instance, looking at
Fig. 4.3:

||a− b||I < ||a− c||I
but

||a− b||A > ||a− c||A
The second property is useful because trajectory c is a smoother de-
formation of a than b is. Our optimization algorithm in Section 4.1.3
is informed by this preference and takes gradient steps in the correct
Hilbert space.

This inner product takes advantage of the underlying geometry
of the space of trajectories: that time along the trajectory is not in-
dependent. More complex geometries can also be used, including
those that do not correspond to a fixed inner product A, but that
have a different A for any two trajectories. Examples include metrics
that act differently around obstacles or singularities, or metrics in the
workspace. Workspace metrics in particular depend on the forward
kinematics mapping, which changes with the configuration.

4.1.3 Algorithm (CHOMP)

We perform natural gradient descent. We start with an initial
trajectory, ξ0, and iteratively move through Ξ following the direction
of the natural gradient.

trajectory optimization 39

Let ∇ξiU be the Euclidean gradient of U about ξi, computable by
the Euler-Lagrange formula:

∂U
∂ξ
− d

dt
∂U
∂ξ̇

Figure 4.4: The top plots the columns
of the identity matrix (each time point
is independent), whereas the bottom
plots the columns of A−1, for A = KTK
(a change at one time point leads
to a propagation to the rest of the
trajectory).

Let ∇A
ξi
U be the gradient in the Hilbert space in which A is the

inner product. Then the following holds:

∇A
ξi
U = A−1∇ξiU (4.8)

One way to see this is to write the first order Taylor series ex-
pansion in two ways: one using the Euclidean gradient and inner
product, and one using the natural gradient and its associated inner
product:

U [ξ] ≈ U [ξi] +
〈
ξ − ξi,∇ξiU

〉
I

U [ξ] ≈ U [ξi] +
〈

ξ − ξi,∇A
ξi
U
〉

A

Therefore, the two gradients are related by:

(ξ − ξi)
T∇ξiU = (ξ − ξi)

T A∇A
ξi
U , ∀ξ ∈ Ξ

This relation implies that the natural gradient ∇A
ξi
U satisfies Eq. 4.8.

At each iteration, we follow the direction of the natural gradient:

ξi+1 = ξi −
1
η
∇A

ξi
U = ξi −

1
η

A−1∇ξiU (4.9) η controls the step size.

An alternative derivation of the update rule comes from min-
imizing the first order approximation of U about the current trajec-
tory, ξi, subject to a regularization term that prevents the optimizer
from going too far away from ξi:

min
ξ
U [ξi] +

〈
ξ − ξi,∇ξiU

〉
I +

η

2
||ξ − ξi||2A (4.10)

This is a quadratic cost in ξ, and we obtain the global optimum by

This is similar to a second-order New-
ton method, but uses a fixed norm A
instead of computing the Hessian.

taking its gradient and setting it to 0:

∇ξiU + ηA(ξ − ξi) = 0 (4.11)

ξi+1 = ξi −
1
η

A−1∇ξiU (4.12)

The update rule has a very intuitive interpretation. It
propagates the entries of the Euclidean gradient, at each time t, down
to the start and the end of the trajectory. The propagation is dictated
by the inverse of the norm. Fig. 4.4 shows how the norm propagates
the gradient for two different choices: the Euclidean gradient (no
propagation), and the A from Eq. 4.7.

40 legible robot motion planning

Figure 4.5: Grasping in clutter scenes,
with different starting configurations,
target object locations, and clutter
distribution (from left to right: no
clutter, low, medium and high clutter).

4.1.4 Gradient-Based Optimization Experiments

For solving motion planning problems in high-dimensional spaces,
a historical dichotomy exists between trajectory optimization (e.g.,
CHOMP) and sampling-based approaches (e.g., the Rapidly-exploring
Random Tree [136]). Recently, algorithms such as RRT* [118] have
brought optimization to sampling-based planners.

Here, we evaluate the performance of CHOMP on motion plan-
ning problems commonly encountered in real-world manipulation
domains, and comparing it with such sampling-based approaches.
We focus on a motion planning problem which arises in common
manipulation tasks: planning to a pre-grasp pose among clutter.2 2 A pre-grasp pose is an arm configu-

ration which positions the hand in a
pre-grasp position relative to an object.

Note on experimental design: It is im-
portant to observe that the experiments
presented in this section are not “apples
to apples” comparisons in that we are
juxtaposing a (local) optimization algo-
rithm with global randomized search
algorithms. Obviously the effective-
ness of our approach depends strongly
upon the inherent structure underlying
the planning problem, including the
sparsity and regularity of obstacles.
Certainly, there exist any number of
maze-like motion planning problems
for which CHOMP is ill-suited. How-
ever, as we hypothesize below, it can
come to fill some of the space which
has until recently been occupied by
sampling-based methods; hence, we feel
the comparison between heterogeneous
systems is well motivated.

Experimental Design. We explore day-to-day manipulation task
of grasping in cluttered environments. For the majority of our ex-
periments, we use a canonical grasping in clutter problem: the robot
is tasked with moving to grasp a bottle placed on a table among a
varying number of obstacles, as in Fig. 4.5.

We test the following hypotheses:

H1: CHOMP can solve many structured, day-to-day manipulation tasks,
and it can do so very fast.

H2: For a large number of structured, day-to-day manipulation tasks,
CHOMP obtains a feasible, low-cost trajectory in the same time that an
RRT obtains a feasible, high-cost trajectory.

We compare CHOMP, RRT and RRT*. To ensure fairness of the
comparison, we conduct the experiments in a standard simulation
environment — OpenRAVE [55] version 0.6.4, and use the standard
implementations for RRT (bi-directional RRT-Connect) and RRT*
from the Open Motion Planning Library (OMPL) version 0.10.23.

3 The bug fix for RRT* (path improve-
ment) in 0.11.1 did not alter the results
on our problems, for our time intervals.
We did verify that the issue was indeed
fixed by finding problems on which the
RRT* did eventually improve the path.

We run each algorithm on each problem 20 times, for 20 seconds
each (single-thread CPU time). The RRT shortcuts the path (using the
shortcutting method available in OpenRAVE) until the final time is

trajectory optimization 41

Figure 4.6: From left to right: a paired
time comparison between RRT and
CHOMP when both algorithms suc-
ceed, success rates for both algorithms
within the 20 s time interval and the
planning time histograms for both al-
gorithms. In the time comparison chart
on the left, each data point is one run
of the RRT algorithm vs. the discrete
run of CHOMP on a problem. Due to
the large number of data points, the
standard error on the mean is very
small.

reached. We measure at each time point if the algorithm has found
a feasible solution, and we use the path length for cost to ensure a fair
comparison, biased towards the randomized planners. This is the
cost that the RRT shortcutting method optimizes, but not directly
the cost that CHOMP optimizes. Instead, CHOMP minimizes sum
squared velocities (which correlates to, but is different from, path
length), while pulling the trajectory far from obstacles.

We created grasping in clutter problems with varying features:
starting configurations, target locations and clutter distributions. We
split the problems into a training and testing set, such that no test-
ing problem has any common features with a training one. This is
important, as it tests true generalization of the parameters to differ-
ent problems. We used the training set to adjust parameters for all
algorithms, giving each the best shot at performing well. We had 170
testing problems, leading to 3400 runs of each algorithm. Below, we
present the results for the deterministic version of CHOMP vs. RRT,
and then discuss the comparison with RRT*.

Time to Produce a Feasible Solution. Supporting H1, CHOMP
(the deterministic version) succeeded on about 80% of the problems,
with an average time of 0.34s (SEM = 0.0174). On problems where
both CHOMP and RRT succeed, CHOMP found a solution 2.6 sec-
onds faster, and the difference is statistically significant (as indicated
by a paired t-test, t(2586) = 49.08, p < 0.001). See Fig. 4.6 for the Overall, CHOMP has a lower success rate

than an RRT on these problems. When it
does succeed, it does so faster.

paired time comparison.
The CHOMP times do not include the time to compute the Signed

Distance Field from the voxelized world (which the robot acquires
in practice through a combination of cached voxelized static envi-
ronments and voxel grids obtained online via laser scans). The SDF
computation takes an average of 0.1 seconds.

Collision Checking — The Grain of Salt. The time taken by
the RRT heavily depends on the time it takes to perform collision

42 legible robot motion planning

checks. Our implementation uses OpenRAVE for collision checking,
and the average time for a check was approximately 444 microsec-
onds (averaged over 174 million checks).4 4 This is faster than the times reported

in the benchmark comparison from
[186] for an easier problem, indicat-
ing that our results for the RRT are
indicative of its typical performance.

RRT may improve with recent, more advanced collision checkers
(e.g., FCL [171]). For example, if collision checking were 5 times faster
(an optimistic estimate for state-of-the-art performance), the difference in
success rate would be much higher in favor of the RRT, and the planning
time when both algorithms succeed would become comparable, with an
estimated average difference of only 0.2s in favor of CHOMP.

H2, as we will see in following section, would remain valid: for
many problems (namely 78%), CHOMP produces a low-cost feasible
trajectory in the same time that an RRT produces a high-cost feasible
trajectory.

Overall, CHOMP produces a better solu-
tion faster on the majority of problems in
our test set.

Cost and Feasibility Comparison when the RRT Returns

its First Solution. 3067 of the 3400 RRT runs yielded feasible
trajectories. For every successful RRT run, we retrieved the CHOMP
trajectory from the same problem at the time point when the RRT ob-
tained a solution. In 78% of the cases, the CHOMP trajectory was fea-
sible, and its path length was on average 57% lower. This difference
in path length was indeed significant (t(2401) = 65.67, p < 0.001):
in 78% of the cases, in the same time taken by an RRT to produce a feasible
solution, CHOMP can produce a feasible solution with significantly lower
cost (H2).5

5 Note that that the CHOMP trajectories
evaluated here were not the ones
with the smallest path length: the
algorithm is optimizing a combination
of a smoothness and an obstacle cost.
Therefore, CHOMP is increasing the
path length even after the trajectory
becomes feasible, in order to keep it far
from obstacles.

Time Budgets. In practice, planners are often evaluated within fixed
time budgets. In this comparison, we take that perspective and allow
each planner a fixed planning time, and evaluate its result (for both
feasibility and path length).

We found that the relative performance of CHOMP and RRT de-
pends greatly on the time budget allotted (and of course, on the col-
lision checker). For CHOMP, we run iterations until such time that a
final full-trajectory collision check will finish before the given budget;
the check is then performed, and the result is reported.6 For the RRT,

6 Note that a CHOMP trajectory can
oscillate between feasible and infeasible
during optimization; it may be the case
that an infeasible CHOMP result was in
fact feasible at an earlier time, but the
algorithm is unaware of this because it
only performs the expensive collision
check right before it returns.

we simply stop planning or shortcutting at the end of the budget. We
evaluated time budgets of 1, 2, 3, 5, 10, and 20 s. The summary of
these results is shown in Table 4.1.

The results illustrate the differences between the planners. For
short time budgets (< 5 s), the deterministic CHOMP has a higher
success rate than the RRT; however, it plateaus quickly, and does not
exceed 75% for any budget. The RRT continues to improve, with
a 90.2% success rate within the longest budget. Across all feasible
solutions for all budgets, CHOMP significantly outperforms the RRT
when evaluated by path length.

trajectory optimization 43

Time Success (Percentage) Average Path Length (radians)
Budget RRT CHOMP RRT CHOMP

1 s 16.5 24.7 4.37 3.69
2 s 47.0 68.2 6.85 4.89
3 s 57.1 70.6 6.64 4.94
5 s 66.3 74.1 6.69 5.00

10 s 88.0 74.7 6.79 5.03
20 s 90.2 74.7 6.58 5.03

Table 4.1: Comparison of CHOMP and
RRT for different time budgets.

Comparison with Randomized Optimal Motion Plan-
ning (RRT*). We compared the performance of CHOMP and Bi-
Directional RRT-Connect to the RRT* implementation in OMPL. The
RRT* range (step size) parameter was set equal to that of the RRT
(corresponding to a workspace distance of 2 cm). We chose other
algorithm parameters (goal bias, ball radius constant, and max ball
radius) as directed by the implementation documentation.

RRT* had a 5.97% success rate on our testing suite of clutter prob-
lems. When it did succeed, it found its first feasible solution after an
average of 6.34s, and produced an average path length of 11.64 rad.
On none of our testing problems was it able to improve its first path
within the 20s time budget (although we did verify that for other
problems, this does happen with a long enough time budget).

Figure 4.7: The start and the goal for
a complex problem of reaching into
the back of a narrow microwave. The
robot is close to the corner of the room,
which makes the problem particularly
challenging because it gives the arm
very little space to move through. The
goal configuration is also very different
from the start, requiring an “elbow
flip”. Two starts were used, one with
a flipped turret (e.g., J1 and J3 offset
by π, and J2 negated), leading to very
different straight-line paths.

Beyond Grasping in Clutter. Our experiments so far focused
on grasping an object surrounded by clutter. But how does CHOMP
perform on more complex tasks, defined by narrow spaces? To ex-
plore this question, we investigated the algorithm’s performance on
the problem setup depicted in Fig. 4.7: reaching to the back of a nar-
row microwave placed in a corner, with little free space for the arm
to move through. We ran CHOMP and BiRRT-Connect for 8 different
scenarios (with different start and goal IK configurations). CHOMP
was able to solve 7 of the 8 scenarios, taking an average of 1.04 sec-
onds. The RRT had a total success rate of 67.1%, taking an average
of 63.36 seconds to first-feasible when it succeeds. On the problem
for which CHOMP failed, the RRT had a 10% success rate. A colli-
sion check here took an average of 2023 microseconds (requiring a
speed up of 60x to make the RRT first-feasible time equal to that of
CHOMP).

In summary, our results suggest that for many real-world problems,
a trajectory optimizer will often retrieve better paths than a random-
ized motion planner, given the same time budget.

44 legible robot motion planning

Limitations. Trajectory optimization is local and there are certainly
tasks on which convergence to high-cost local optima is problematic,
and on which a randomized motion planner would be much more
effective.

Because interaction with humans demands optimization, and
because randomized optimal motion planning did not outperform
gradient optimization for the types of problems we tested on, in what
follows we focus on ways to alleviate the issue of convergence to
high-cost optima.

4.2 Optimizing with Constraints

Figure 4.8: Top: The trajectory found
when using specified single goal.
The optimizer cannot avoid collision
with the red box. Bottom: A feasible
trajectory found by an optimizer that
can take advantage of a goal set.

In many real-world problems, the ability to plan a trajectory from a
starting configuration to a goal configuration that avoids obstacles
is sufficient. However, there are problems that impose additional
constraints on the trajectory, like carrying a glass of water that should
not spill, lifting a box with both hands without letting the box slip, or
not becoming too unpredictable when optimizing for legibility7.

7 we discuss this in Section 6.2
In this section, we derive an extension of the optimizer that can

handle trajectory-wide equality constraints, and show its intuitive
geometrical interpretation. We then focus on a special type of con-
straint, which only affects the endpoint of the trajectory. This type
of constraint enables the optimizer to plan to a set of possible goals
rather than the typical single goal configuration, which adds more
flexibility to the planning process and increases the chances of con-
verging to a low-cost trajectory, as in Fig. 4.8.

4.2.1 Trajectory-Wide Constraints

We assume that we can describe a constraint on the Hilbert space of
trajectories in the form of a nonlinear differentiable vector valued
function H : Ξ → Rk, for which H[ξ] = 0 when the trajectory ξ

satisfies the required constraints.
At every step, we optimize the regularized linear approximation of

U from (4.10), subject to the nonlinear constraints H[ξ] = 0:

ξi+1 = arg min
ξ∈Ξ
U [ξi] + U [ξi]

T(ξ − ξi) +
η

2
‖ξ − ξi‖2

A (4.13)

s.t. H[ξ] = 0

We can also handle inequality con-
straints by tracking which constraints
are active at every iteration.

We first observe that this problem is equivalent to the problem of
taking the unconstrained solution in Eq. 4.12 and projecting it onto
the constraints. This projection, however, measures distances not with

trajectory optimization 45

respect to the Euclidean norm, but with respect to the Hilbert space
norm A. To show this, we rewrite the objective:

minU [ξi] +∇U [ξi]
T(ξ − ξi) +

η

2
‖ξ − ξi‖2

A ⇔

min∇U [ξi]
T(ξ − ξi) +

η

2
(ξ − ξi)

T A(ξ − ξi)⇔

min
(

ξi −
1
ηi

A−1∇U [ξi]− ξ

)T
A
(

ξt −
1
ηi

A−1∇U [ξi]− ξ

)

.
The problem can thus be written as:

Project the unconstrained step onto the
constraint: find the closest trajectory to
the one obtained by taking an uncon-
strained step, subject to the constraint.

ξt+1 = arg min
ξ∈Ξ
‖ξt

unconstr. (4.12)︷ ︸︸ ︷
− 1

η
A−1∇U [ξi] −ξ‖2

A (4.14)

s.t. H[ξ] = 0

This interpretation will become particularly relevant in the next sec-
tion, which uncovers the insight behind the update rule we will ob-
tain by solving Eq. 4.13.

To derive a concrete update rule for Eq. 4.13, we linearize H
around ξi:

H[ξ] ≈ H[ξi] +
∂

∂ξ
H[ξi](ξ − ξi) = B(ξ − ξi) + b

B = ∂
∂ξH[ξi] is the Jacobian of the

constraint functional evaluated at ξt
and b = H[ξi].

The Lagrangian of the constrained gradient optimization problem
in Eq. 4.13, now with linearized constraints, is

Lg[ξ, λ] = U [ξi] +∇U [ξi]
T(ξ − ξi) +

η

2
‖ξ − ξi‖2

A + λT(B(ξ − ξi) + b)

and the corresponding first-order optimality conditions are:
{
∇ξLg = ∇U [ξi] + ηA(ξ − ξi) + BTλ = 0
∇λLg = B(ξ − ξi) + b = 0

(4.15)

Since the linearization is convex, the first order conditions com-
pletely describe the solution, enabling the derivation of a new update
rule in closed form. If we denote λ

η = γ, from the first equation we
get:

ξ = ξi −
1
η

A−1∇U [ξi]− A−1BTγ

Substituting in the second equation:

γ = (BA−1BT)−1(b− 1
η

BA−1∇U [ξi])

Using γ in the first equation, we solve for ξ:

46 legible robot motion planning

Offset
Correction!

Zero Set
Projection!

Constraint
Surface!

H [ξ]= 0
B(ξ −ξi)+ b = 0

B(ξ −ξi) = 0
ξi

ξi+1

Constrained
Update!

Figure 4.9: The constrained update
rule takes the unconstrained step and
projects it w.r.t. A onto the hyperplane
through ξi parallel to the approximated
constraint surface (given by the lin-
earization B(ξ − ξt) + b = 0). Finally,
it corrects the offset between the two
hyperplanes, bringing ξi+1 close to
H[ξ] = 0.

ξ = ξi

unconstr. (4.12)︷ ︸︸ ︷
− 1

η
A−1∇U [ξi] +

zero set projection
︷ ︸︸ ︷
1
η

A−1BT(BA−1BT)−1BA−1∇U [ξi]

offset correction︷ ︸︸ ︷
−A−1BT(BA−1BT)−1b (4.16)

The labels on the terms above hint at the goal of the next section,
which provides an intuitive geometrical interpretation for this update
rule.

4.2.2 Geometrical Interpretation

Looking back at the constrained update rule in Eq. 4.16, we can ex-
plain its effect by analyzing each of its terms individually. Gaining
this insight not only leads to a deeper understanding of the algo-
rithm, and relates it to an intuitive procedure for handling constraints
in general. By the end of this section, we will have mapped the al-
gorithm indicated by Eq. 4.16 to the projection problem in Eq. 4.14:
take an unconstrained step, and then project it back onto the feasible
region.

The components of the update rule from
Eq. 4.16 can be mapped to taking an
unconstrained step, and then projecting it
onto the approximation of the constraint
manifold (in two stages), as predicted by
Eq. 4.14.

We split the update rule in three parts, depicted in Fig. 4.9: take
the unconstrained step, project it onto a hyperplane that passes
through the current trajectory and is parallel to the approximation
of the constraint surface, and finally, correct the offset between these
two hyperplanes:

1. The first term computes the unconstrained step: smooth the un-
constrained Euclidean gradient ∇U [ξi] through A−1 and scale it,
as in Eq. 4.12. Intuitively, the other terms will need to adjust this
step, such that the trajectory obtained at the end of the iteration,

trajectory optimization 47

Figure 4.10: One iteration of the goal
set version of the optimizer: take an
unconstrained step, project the final
configuration onto the constraint
surface, and propagate that change to
the rest of the trajectory.

ξi+1, is feasible. Therefore, these terms must implement the projec-
tion onto the constraint with respect to A, as shown in Eq. 4.14.

2. Linearizing H provides an approximation of the constraint sur-
face, given by B(ξ − ξi) + b = 0. The current trajectory, ξi, lies on
a parallel hyperplane, B(ξ − ξi) = 0.8 What the second term in the

8 When ξi is feasible, b = 0 and the two
are identical, intersecting the constraint
surface at ξi .

update rule does is to project the unconstrained increment onto
the zero set of B(ξ − ξi) with respect to the metric A, as depicted
in Fig. 4.9.

Formally, the term is the solution to the problem that mini-
mizes the adjustment to the new unconstrained trajectory (w.r.t. A)
needed to satisfy B(ξ − ξi) = 0:

Find the smallest ∆ξ to add to the
unconstrained trajectory in order to
bring the resulting trajectory onto the
zero set B(ξ − ξi) = 0.

min
∆ξ

1
2
‖∆ξ‖2

A (4.17)

s.t. B
((

ξi −
1
η

A−1∇U [ξi] + ∆ξ

)
− ξi

)
= 0

Therefore, the second term projects the unconstrained step onto
the zero set of B(ξ − ξi). If b 6= 0, the trajectory is still not on the
approximation to the constraint surface, and the third step makes
this correction.

3. The first two steps lead to a trajectory on B(ξ − ξi) = 0, at an
offset from the hyperplane that approximates the feasible region,
B(ξ − ξi) + b = 0. Even if the Euclidean gradient ∇U [ξi] is 0 and
the previous two terms had no effect, the trajectory ξi might have
been infeasible, leading to b 6= 0. The third term subtracts this
offset, resulting in a trajectory that lies on the approximate con-
straint surface. It is the solution to the problem that minimizes the
adjustment to ξi (again, w.r.t. the norm A) such that the trajectory

48 legible robot motion planning

gets back onto the target hyperplane:

min
∆ξ

1
2
‖∆ξ‖2

A (4.18)

s.t. B ((ξi + ∆ξ)− ξi) + b = 0

As Fig. 4.9 shows, adding the third term to the result of the previ-

Find the smallest ∆ξ to add to ξi in
order to correct its offset from the
constraint manifold B(ξ − ξi) + b = 0.

ous two steps9 brings the trajectory onto the approximation of the 9 The result is ξi when the uncon-
strained step is zero, and it lies some-
where else along B(ξ − ξi) = 0 other-
wise.

constraint surface.

In summary, the algorithm can be thought of as first taking an un-
constrained step in the direction dictated solely by the cost func-
tion, and then projecting it onto its guess of the feasible region in
two steps, the last of which aims at correcting previous errors. For
the special case of endpoint constraints, which the next section ad-
dresses, the projection further simplifies to a purely Euclidean opera-
tor, which is then smoothed through the matrix A.

4.2.3 Goal Set Constraints

Goal sets are a special instance of trajectory-wide constraints. Goal
sets are omnipresent in manipulation: picking up objects, placing
them on counters or in bins, handing them off — all of these tasks
encompass continuous sets of goals.

Sampling-based planners do exist that can plan to a goal set [23].
However, the optimizer described thus far plans to a single goal con-
figuration rather than a goal set. This single goal assumption limits
its capabilities: goal sets enlarge the space of candidate trajectories,
and, as Section 4.2.4 will show, enable the optimizer to converge to
better solutions.

We use constrained optimization to
enable the optimizer to take advantage
of the additional flexibility induced by
the existence of goal sets. This is one
of two ways we discuss for alleviating
convergence to high-cost local optima.

In order to exploit goal sets, the trajectory endpoint, which is
a constant in the original optimizer, becomes a variable. That is,
we use trajectory functions ξ defined on (0, 1] as opposed to (0, 1).
This leads to a small change in the finite differencing matrix K from
Section 4.110. 10 K now has an additional column at

the end because there is an additional
point in the trajectory. This column has
a 1 as its last entry, contributing to the
last finite difference.

The goal set variant thus becomes a version of the constrained
optimizer from Eq. 4.13, in which the trajectories satisfying H[ξ] = 0
are the ones that end on the goal set.

Constraints that affect only the goal are a special case of trajectory
constraints, for which H[ξ] = H1(ξ(1)) (the constraint is a function
of only the final configuration of the trajectory). Therefore, a large
portion of the update rule will focus on the last configuration. Since
B = [0, . . . , 0, B̃], in this case B only affects the last block-row of A−1,
which we denote by A1. Also note that the last d × d block in A−1,
is in fact of the form βId, since there are no cross-coupling terms
between the joints.

trajectory optimization 49

Therefore, the update rule becomes:

ξi+1 = ξi −
1
η

A−1∇U [ξi] +
1

ηβ
AT

1 B̃T(B̃B̃T)−1B̃A1∇U [ξi] +
1
β

AT
1 B̃T(B̃B̃T)−1b (4.19)

Although not the simplest version of this update rule, this form
lends itself to an intuitive geometrical interpretation. As depicted
in Fig. 4.10, the update follows the “take an unconstrained step and
project it” rule, only this time the projection is much simpler: it is
a configuration-space projection with respect to the Euclidean norm,
rather than a trajectory-space projection with respect to the Hilbert
norm A.

The same projection from Fig. 4.9 now applies only to the end-
configuration of the trajectory. To see this, note that 1

η A1∇U is a term
that simply retrives the unconstrained step for the end configuration
from 1

η A−1∇U . Then, B̃T(B̃B̃T)−1B̃ projects it onto the row space of

B̃. This correction is then propagated to the rest of the trajectory, as
illustrated by Fig. 4.10, through 1

β AT
1 .

Initial !
Goal!

Final!
Goal!

Figure 4.11: Changing the goal de-
creases cost. The goal set algorithm
modifies the trajectory’s goal in order
to reduce its final cost. The figure plots
the initial vs. the final goals obtained
by the single goal and the goal set algo-
rithm on a grasping in clutter problem.
The area of each bubble is proportional
to the cost of the final trajectory.

The entries of A1, on each dimension, interpolate linearly from
0 to β. Therefore, 1

β AT
1 linearly interpolates from a zero change at

the start configuration to the correction at the end point. Since AT
1

multiplies the last configuration by β, 1
β scales everything down such

that the endpoint projection applies exactly.

In summary, we showed that the projection onto a linearized ver-
sion of the goal set constraint simplifies to a two step procedure.
We first project the final configuration of the trajectory onto the lin-
earized goal set constraint with respect to the Euclidean metric in
the configuration space, which gives us a desired perturbation ∆q of
that final configuration. We then smooth that desired perturbation
linearly back across the trajectory so that each configuration along
the trajectory is perturbed by a fraction of ∆q.

4.2.4 Goal Set Experiments

So far we derived the optimization algorithm under trajectory-wide
constraints, and analyzed the particular case of constraints that affect
only the endpoint of the trajectory. This type of constraint enables
relaxing the constant goal assumption made in Section 4.1 and allows
the optimizer the flexibility of a set of goal configurations. In this
section, we test this with simulation experiments.

Experimental Setup. We design an experiment to test the follow-
ing hypothesis:

50 legible robot motion planning

Figure 4.12: A cost comparison of the
single goal with the goal set variant
of CHOMP on problems from four
different environment types: grasping
in clutter from a difficult, and from an
easy starting configuration, handing off
an object, and placing it in the recycle
bin.

Hypothesis: Taking advantage of the goal set describing manipulation
tasks during optimization results in final trajectories with significantly
lower cost.

We focus on day-to-day manipulation tasks, and define four types
of tasks: grasping in cluttered scenes with both an easy and a diffi-

We use a 7-DOF Barrett WAM mounted
atop of a Segway base for most of this
section of our experiments. To ensure
a fair comparison, we use the same
parameter set for both algorithms.

cult starting pose of the arm, handing off an object, or placing it in
the recycle bin — see Fig. 4.12. We set up various scenarios that rep-
resent different obstacle configurations and, in the case of hand-offs
and recycling, different initial poses of the robot. Each scenario is
associated with a continuous goal set. e.g., the circle of grasps around
a bottle, or the rectangular prism in workspace that ensures the object
will fall into the bin.

We compare the algorithms starting from straight line trajectories
to each goal in a discretized version of this set. This reduces the
variance and avoids biasing the comparison towards one algorithm or
the other, by selecting a particularly good goal or a particularly bad
one. For each scenario and initial goal, we measure the cost of the
final trajectory produced by each algorithm.

Results and Analysis. We ran CHOMP and Goal Set CHOMP
for various scenarios and goals, leading to approximately 1300 runs
of each algorithm. Fig. 4.12 shows the results on each task type: the
Goal Set Algorithm does achieve lower costs.

We used a two-tailed paired t-test on each task to compare the per-
formances of the two algorithms, and found significant differences in
three out of the four: on all task but grasping in clutter from a hard
starting configuration, taking advantage of goal sets led to signifi-
cantly better trajectories (p < 0.05). Across all tasks, we found a 43%
improvement in cost in favor of Goal Set CHOMP, and the difference

trajectory optimization 51

Figure 4.14: The end effector trajectory
before and after optimization with Goal
Set CHOMP. The initial (straight line in
configuration space) trajectory ends at a
feasible goal configuration, but collides
with the clutter along the way. The final
trajectory avoids the clutter by reaching
from a different direction.

was indeed significant (p < 0.001), confirming our hypothesis.

Figure 4.13: The trajectory obtained by
CHOMP for extracting the bottle from
the microwave while keeping it upright
(a trajectory-wide constraint).

We did find scenarios in which the average performance of Goal
Set CHOMP was in fact worse than that of CHOMP. This can be the-
oretically explained by the fact that both these algorithms are local
methods, and the goal set one could make a locally optimal decision
which converges to a shallower local minima. At the same time, we
do expect that the average performance improves by allowing goal
sets. A further analysis of these scenarios suggested a different ex-
planation: although on most cases the goal set version was better,
there were a few runs when it did not converge to a “goal-feasible”
trajectory (and therefore reported a very high cost of the last feasible
trajectory, which was close to the initial one). We noticed that this is
mainly related to the projection being impeded by joint limits. For-
malizing joint limits as trajectory constraints and projecting onto both
constraint sets at the same time would help mediate this problem.

Fig. 4.11 shows one of the successful scenarios. Here, the target
object is rotationally symmetric and can be grasped from any direc-
tion. The figure depicts how Goal Set CHOMP changed the grasp
direction and obtained lower costs (as indicated by the size of the
bubbles).

The next figure, Fig. 4.14, shows a similar setup for a different mo-
bile manipulator. Although the initial trajectory ends at a collision-
free goal, it intersects with the clutter. Goal Set CHOMP converges
to a trajectory ending at a goal in free space, which is much easier to
reach.

In summary, exploiting goal sets in optimization leads to lower-cost
trajectories.

Limitations. A main limitation is that the optimizer is still local,
and adding goal sets does not necessarily mean every situation will
be improved. In fact, there are scenarios in which not allowing the
end point to change results in a better trajectory. Furthermore, joint
limit constraints can interfere with the projection onto the goal mani-
fold.

52 legible robot motion planning

4.2.5 Trajectory-Wide Constraints Implementation

Our experience with trajectory-wide constraints on CHOMP has
been mixed. CHOMP does successfully find collision-free trajectories
that abide by such constraints, as the theory shows. For example,
we solved the task of bimanually moving a box by enforcing a fixed
relative transform between the robot’s hands, and the task of keeping
an object upright while extracting it from the microwave (Fig. 4.13).
However, this is computationally expensive when the constraint
affects all points along the trajectory. Every iteration requires the
inversion of a new matrix BA−1BT , an O((nd)2.376) operation (where
n is the number of trajectory points and d is the dimensionality of the
constraint at each point). For example, for the task in Fig. 4.13, d is 2
and CHOMP solves the problem in 17.02 seconds.

Furthermore, handling joint limits separately, as CHOMP usually
does, can sometimes oppose the constraint projection: joint limits
need to also be handled as hard constraints, and the unconstrained
step needs to be projected on both constraints at once.

4.3 Learning from Experience

Constrained optimization enables taking advantage of goal sets, and
the previous section showed that goal sets can improve optimization
by giving the optimizer additional flexibility. However, optimization
is still local, and can still converge to high-cost minima. In this sec-
tion, we discuss a complementary approach: rather than improving
the optimizer itself, we will learn to initialize it in a good basin of
attraction. The optimizer will converge to a local minimum, but the
initialization will aim to ensure that it will be a low-cost minimum. As a complementary approach to

widening good basins of attraction, we
also focus on learning to initialize the
optimizer in a good basin in the first
place: convergence to local optima is
not bad, as long as it is low-cost optima.

So how does the robot acquire a trajectory-generating oracle?
In designing the oracle, we take advantage of three key features:
the optimization process itself, the repetition in the tasks, and the
structure in the scenes.

The optimization process relieves us from the need to produce
low-cost initial trajectories. The cost of the trajectory is irrelevant, as long
as it lies in the basin of attraction of a low-cost trajectory. Repetition or
similarity in tasks allows the oracle to learn from previous experience
how to produce trajectories. Finally, structure in the scenes suggests
that we can use qualitative attributes to describe trajectories. For exam-
ple, in a kitchen, we could say “go left of the microwave and grasp
the object from the right.” These attributes provide a far more com-
pact representation of trajectories than a sequence of configurations.

This work combines all three features and proposes a learning
algorithm that, given a new situation, can generate trajectories in the

trajectory optimization 53

basin of attraction of a low-cost trajectory by predicting the values of
qualitative attributes that this trajectory should posses.11 11 As a consequence, instead of focusing

on every single voxel of a scene at once,
we first make some key decisions based
on previous experience, and then refine
the details during the optimization.

The idea of using previous experience to solve similar prob-
lems is not new. In Artificial Intelligence, it is known as Case-Based
Reasoning [224], where the idea is to use the solution to the most
similar solved problem to solve a new problem. In the MDP do-
main, Konidaris and Barto [132] looked at transferring the entire
value function of an MDP to a new situation. Stolle and Atkeson con-
structed policies for an MDP by interpolating between trajectories
[206], and then used local features around states to transfer state-
action pairs to a new problem [207]. In motion planning, learning
from experience has included reusing previous collision-free paths
[29] or biasing the sampling process in randomized planners [157]
based on previous environments.

Jetchev and Toussaint [108] explored trajectory prediction in deter-
ministic and observable planning problems. They focused on predict-
ing globally optimal trajectories: given a training dataset of situations
and their globally optimal trajectories, predict the globally optimal
trajectory for a new situation. Much like Case-Based Reasoning, their
approach predicted an index into the training dataset of trajectories
as the candidate trajectory [108, 54] or clustered the trajectories and
predicted a cluster number [108, 109].12 12 Since prediction is not perfect, a

post-processing stage, where a local op-
timizer is initialized from the prediction
is used to converge to the closest local
minimum.

Our approach differers in two key ways. First, we take advantage
of the necessity of the optimization stage, and focus on the easier
problem of predicting trajectories that fall in the basin of attraction of
low-cost minima. Second, by predicting low-dimensional attributes
instead of whole past trajectories, we are able to generate trajectories
beyond the database of previous experience, allowing us to general-
ize further away from the training set.

Relation to Computer Vision. Although the dataset-indexing
techniques are a promising start in the field of learning from experi-
ence for trajectory optimization, they are limited: they are reminis-
cent of earlier works in computer vision, where one way to classify
an image is to find the closest image in the training set according to
some features and predict its label (or find a set of closest images and
verify their predictions in post-processing).

Our work takes inspiration from at-
tribute prediction in computer vision.

In 2006, the vision community started thinking about learning the
distance metric between images [76], and this is the state at which
trajectory prediction is now. In 2009 however, the object recognition
community started changing this classification paradigm and shifting
towards a much more general way of recognizing objects based on a
simple idea: predict attributes of the object instead of the object itself,

54 legible robot motion planning

Figure 4.15: A toy example that exem-
plifies the idea of attributes: there are
two basins of attraction, and a simple
attribute (the decision of going right vs.
left) discriminates between them.

and then use the attributes to predict the object [139, 71]. This not
only improved recognition of known objects, but also allowed learners
to recognize objects they had never seen before.13 13 A similar technique was used in [170]

to recognize from brain scans words
that a subject was thinking, by using
physical attributes of the words as an
intermediate representation.

We propose to do the same for trajectory prediction: rather than
predicting trajectories directly, we predict qualitative attributes of the
trajectories first, such as where their goal point is or which side of an
obstacle they choose, and then map these qualitative attributes into
initial guesses for a local optimizer.

4.3.1 Trajectory Attribute Prediction

The term “trajectory prediction” refers to the problem of mapping
situations S (task descriptions) to a set of trajectories Ξ that solve
them:

τ : S→ Ξ (4.20)

Previous work [108, 109] proposed
solving this problem by learning to
index into a dataset of examples. This
approach is limited by the dataset
of previously executed trajectories,
much like, for example, the earlier
work in object recognition was limited
by labeled images it used. In our
work, we combine the idea of using
a lower dimensional representation
of trajectories rather than the full
dimensional representation with the
ability to predict new trajectories that
generalize to more different situations.

Our approach to solving the problem takes advantage of the ca-
pabilities of the optimizer. Since this optimizer is local, it will not
produce the globally optimal trajectory independent of initialization,
but it can produce various local minima with different costs. The
training data set therefore contains not only the best trajectory found
for the scene, but it can also include various other local optima. We
also emphasize that trajectory prediction serves as an initialization
stage for the optimizer, which leads to the following crucial observa-
tion: In order to predict the optimal trajectory, we can predict any trajectory
in its basin of attraction, and let the optimizer converge.

Insight: It is enough to learn to predict
low-dimensional attributes of a trajec-
tory, which then place the optimizer in
a good basin of attraction.

We propose that there often exist some lower-dimensional tra-
jectory attributes such that predicting these attribute values, rather
than a full-dimensional trajectory, places the optimizer in the desired
basin of attraction. The insight is that in producing a trajectory, a
planner is faced with a few key decisions that define the topology of
the trajectory. Once the right decisions are made, producing a good
trajectory comes down to local optimization from any initialization
that satisfies those decisions. This implies that we can reduce the
problem of predicting a good trajectory to that of predicting these
core attributes, and then mapping these core attributes to a trajectory.

trajectory optimization 55

Figure 4.16: High-dimensional prob-
lems are described by many basins of
attraction, but there are often attributes
of the trajectory that can discriminate
between low cost basins and high cost
basins. In this case, such an attribute is
around vs. above the fridge door.

We will discuss each of these two subproblems in turn.

To explain the idea of attribute prediction, we start with the
toy world from Figure 4.15: a point robot needs to get from a start
to a goal while minimizing cost . If we run CHOMP in this world,
we get two solutions depending on the initial trajectory: a low and a
high cost one. In order to converge to the low-cost trajectory, we can
start with any trajectory to the right of the obstacle. Predicting the
optimal trajectory reduces to predicting a single bit of information:
right vs. left of the obstacle.

In Fig. 4.15, it is enough to predict
whether to go left or right of the obsta-
cle.

In higher dimensional problems, there are many basins of attrac-
tions and instead of globally optimal trajectories we can talk about
good local minima vs. high-cost and sometimes infeasible local min-
ima. In this setting, it is often the case that the lower-cost basins are
still described by simple decisions (i.e., low-dimensional, even dis-
crete, trajectory attributes). Figure 4.16 shows an example where In Fig. 4.16, it is enough to predict

whether to go above or around the
fridge door.

going above an obstacle vs. around it will determine whether the op-
timizer converges to a low cost trajectory vs. a high cost one. In this
case, a single bit of information will place the optimizer in a good
basin of attraction. An optimizer like CHOMP can be initialized with
a simple trajectory that satisfies this property, such as the one in Fig-
ure 4.17, and, as exemplified in the same figure, will bend it out of
collision to a low-cost trajectory.

We propose changing the trajectory prediction paradigm

based on this observation, to a trajectory attributes prediction prob-
lem where we first predict key attributes that a good trajectory
should have:

τ : S→ A(Ξ, S) (4.21)

A(Ξ, S) denotes the trajectory at-
tributes, which are conditioned on the
situation, e.g., “in front of the shelf” or
“elbow up around the cabinet”. These
attributes implicitly define a subset of
trajectories ΞA ⊆ Ξ, and as a second
step the optimizer is initialized from
any trajectory ξ ∈ ΞA.

56 legible robot motion planning

Figure 4.17: Once the right choice is
made (above the fridge door), we can
easily create a trajectory that satisfies
it. This trajectory can have high cost,
but it will be in the basin of attraction
of a low-cost solution, and running a
local optimizer (e.g., CHOMP) from it
produces a successful trajectory.

The overall framework is

S→ A(Ξ, S)→ ξ ∈ ΞA → ξ∗

with ξ∗ the locally optimal trajectory in the basin of attraction of ξ.
Constructing a trajectory from a set of attributes (A(Ξ, S) → ξ ∈

ΞA) can be cast as solving a simple constrained optimization prob-
lem: starting from a straight line trajectory, we want to keep it short
while satisfying certain constraints on a few of its way-points. Since
this problem is convex, generating a trajectory from attributes is very
fast. As an example of such a problem, “above X and then to the left
of Y” translates into two constraints on two way-points of a piecewise
linear trajectory. The example from Figure 4.17 is an instantiation of
that, with one constraint on one mid-point, above the fridge door,
which generates two straight line segments in configuration space.
Similarly, a goal attribute will be a constraint on the final end-point
of the trajectory.

Figure 4.18: Top: the robot in one of
the goal configurations for grasping the
bottle. Bottom: for the same scene, the
black contour is a polar coordinate plot
of the final cost of the trajectory that the
optimizer converges to as a function of
the goal it starts at; goals that make it
hard to reach the object are associated
with higher cost; the bar graph shows
the difference in cost between the best
goal (shown in green and marked with
*) and the worst goal (shown in red).

4.3.2 Goals as Attributes

Even thought the constrained optimizer from the previous section
can take advantage of goal sets, it is still local. The initial goal choice
(the goal the initial trajectory ends at) still has a high impact on the
final cost of the trajectories.

Figure 4.18 plots this final cost for a variety of initial choices, in the
problem of reaching for a target object in a small amount of clutter.
Because of the large difference illustrated in the figure, the choice of
a goal is a crucial component in the optimizer’s initialization process.
Here, we discuss several methods for taking advantage of previous
experience14. 14 Previous experience means data from

previous goal initializations in different
situations along with the cost of the
resulting optimized trajectory.Features. To enable learning, we designed features that capture

potential factors in deciding how good a goal is. These are indicators
of how much free space there is around the goal and how hard it is

trajectory optimization 57

to reach it. A subset of these features are depicted in Figures 4.19,
4.20, 4.21, and 4.22. We constructed these indicators with simplicity
in mind, as a test of what can be done with very little input. We do
however believe that much higher performance is achievable with
a larger set of features, followed perhaps by a feature selection ap-
proach. We are also excited about the possibility of producing such
features from a much rawer set using feature learning, although
important questions, such as informing the algorithm about the kine-
matics of the robot, are still to be teased out.

Figure 4.19: Feature 1: the length of the
straight line trajectory.

We use a minimalist set of features:

• The distance in configuration space from the starting point to the
goal: ||ξ(1)− ξ(0)||. Shorter trajectories tend to have lower costs,
so minimizing this distance can be relevant to the prediction.

• The obstacle cost of the goal configuration: the sum of obstacle
costs for all body points on the robot,

∫
c(x(ξ(1), b))db, with c

the obstacle cost in the workspace and x the forward kinematics
function.

Figure 4.20: Features 2 and 3: the
obstacle cost of the goal and of the
straight line trajectory.

• The obstacle cost of the straight-line trajectory from the start to
the goal ξ̄:

∫ ∫
c(x(ξ̄(t), b))dbdt. If the straight line trajectory goes

through the middle of obstacles, it can potentially be harder to
reach a collision-free solution.

Figure 4.21: Feature 5: the free space
radius around the elbow.

• The goal radius: a measure of the free space around the goal in
terms of how many goals around it have collision-free inverse
kinematics solutions. For example, the goal set of grasping a bottle
can be expressed as a Workspace Goal Region [22] with a main
direction of freedom in the yaw of the end effector (this allows
grasping the bottle from any angle, as in Figure 4.18). In this case,
the feature would compute how many goals to the left and to
the right of the current one have collision-free inverse kinematics
solutions, and select the minimum of those numbers as the goal
radius. The closer the clutter will be to the goal, the smaller this
radius will be. It has the ability to capture the clutter at larger
distances than the second feature can.

• The elbow room: the maximum radius of a collision-free sphere
located at the elbow, indicating how much free space the elbow
has around it for that particular goal configuration. Configura-
tions that restrict the motion of the elbow are potentially harder to
reach.

• The target collision amount: the percent of the last m configu-
rations of the initial trajectory that are colliding with the target
object. This feature is another factor in how easy it is to reach the

58 legible robot motion planning

goal — if the initial trajectory passes through the target object,
bending it out of collision could be too difficult.

Figure 4.22: Feature 6: collision with the
target object.

Domain Adaptation. Among the features, the distance from the
start as well as the initial trajectory cost can differ substantially be-
tween different scenes, and so may cause difficulty for generalization.
A classical approach to deal with this problem is standardization,
which we can not do directly because of the large difference between
our training and test set statistics. The test set contains some scenes
that are considerably harder, and some that are far easier than any in
the training set: training data will never capture the entire diversity
of the situations the robot will face.

We still need to generalize to these situations, so we normalize the
distance and cost features in a situation — this makes all situations
have the same range of costs, allowing the learner to distinguish
among them. We then add in the mean values of these two features,
to give the learner access to how difficult the scene is, and only then
standardize.15

15 More sophisticated domain adapta-
tion strategies (e.g., [28]) are an area of
future work.

Learners [Classification].
a) The Vanilla Version: The easiest way to approach the problem of

deciding which goal is optimal is to directly predict if a goal will be
optimal or not. For every situation, we assign the goal corresponding
to the minimum final cost the value 1, and 0 to all the other goals.

We can now train a standard classifier, such as a Support Vector
Machine, to predict optimality of a goal. In a new scene, given a set
of goal configurations, this classifier will select any number of goals
to be optimal, and we will select a random one of these as the initial
guess for the optimizer. If the classifier predicts that none of these
goals are optimal, then we select randomly among all goals, i.e., the
classifier has not given the optimizer any information.

b) The Data-Efficient Version: Since we have access to costs and not
just to the binary decision of “is optimal”, another approach is to
allow the classifier to predict any goal within a certain percent of the
minimum cost. This can help by softening the data for the classifier,
but there is of course a trade-off with predicting higher cost goals.16 16 We determined the value for this

trade-off (the percent cutoff) on a
validation set.

Learners [Inverse Optimal Control].
a) The Vanilla Version: A different way to look at the problem is

to treat the best goals as expert demonstrations. In Inverse Optimal
Control, we want to create a cost function that explains why the
experts are optimal — in our case, we want a cost function cIOC in
feature space such that the best goal does have the best cost in every
situation. Once we have this function, we can apply it to the goals

trajectory optimization 59

in a new scene and choose the goal g∗ = arg ming cIOC(fg) (here fg

denotes the features associated with goal g).
Taking the Maximum Margin Planning approach 17, we want 17 N. Ratliff, J. A. Bagnell, and M. Zinke-

vich. Maximum margin planning.
In International Conference on Machine
Learning (ICML), 2006

to find a cost function cIOC = wT f that makes the optimal goal
have the lowest cost by some margin. To improve generalization, we
will require a larger margin for goals that are farther away from the
expert: in particular, we define l(g, g′) to be the structured margin,
which is zero when g = g′ and large when g and g′ are far apart.
Then saying that some goal g is optimal means wT fg ≤ wT fg′ ∀g′.
Adding in our structured margin, penalizing constraint violations
with a slack variable, and regularizing w, we have:

min
w ∑

s

(
wT fgs

exp −min
i
(wT fgs

i
− l(gs

i , gs
exp))

)
+

λ

2
||w||2 (4.22)

where gs
i denotes goal i in situation s, and l(g, g′) = || fg − f ′g||2

is the structured margin which penalizes solutions from being far
away in feature space from the expert in situation s. Overall, w pays a
penalty for allowing non-expert goals to have low costs.

Taking the subgradient of (4.22) yields the following update rule:

w← w− α

(
∑

s

(
fgs

exp − fgs∗
)
+ λw

)
(4.23)

where gs∗ = arg min
gi

(wT fgs
i
− l(gs

i , gs
exp)) (4.24)

Predicted!

A
ct
ua
l!

Predicted!
A
ct
ua
l!

Threshold!

Er
ro
r!

Figure 4.23: From left to right: the ac-
tual vs. predicted cost without thresh-
olding, the actual vs. predicted cost
with thresholding, and the dependence
of the fit error of a validation set of
medium and low cost examples on the
threshold (on the left of the minimum,
the regressors pays too much attention
to high costs, on the right it uses too
little data.

This algorithm is targeted at identifying the minimum cost goal
(4.24), ignoring the costs associated with all other goals. It gains effi-
ciency as it does not waste resources trying to explain what happens
with other goals. Our experiments will test whether this focus on the
expert pays off (Section 4.3.3).

b) The Data-Efficient Version: With IOC, there exists a way of intro-
ducing the true cost information (which we do have, unlike typical
IOC problems which are only given expert examples), without los-
ing the focus on the expert. By changing the margin ls to be the true
cost difference between the goal and the expert goal rather than the
distance in features, l(gs

i , gs
exp) = U(ξ

f inal
gexp)−U(ξ

f inal
gi), the algorithm

will ensure that the minimum with respect to its new cost is close in
true cost to the expert, i.e., has low cost.

Learners [Regression].
a) The Vanilla Version A third way to predict the minimum cost

goals is to predict the final cost associated to each of the goals:

f s
gi
→ U(ξ

f inal
gi)

60 legible robot motion planning

with ξ
f inal
gi the final trajectory obtained by initializing the optimizer

with the straight line to goal gi, and choose the best one:

g∗ = arg min
gi

U(ξ
f inal
gi)

This is sometimes referred to as arg min-regression. We looked at
three different regressors:

• Linear Regression: w = F†C, with F a matrix concatenating every
feature vector on every situation, one per row, and C a vector
concatenating all the final costs obtained by the goal set variant of
our optimizer, one per row.

• Gaussian Process: A wide Gaussian radial basis kernel performed
the best, since we need far knowledge transfers.

• Neural Network: We used the Back-Propagation Neural Network
with one hidden layer. We determined the number of nodes in this
layer, as well as the weight decay coefficient based on performance
on a validation set.

b) The Data-Efficient Version: Looking at the initial performance of
Linear Regression on the training set (Figure 4.23, left), it becomes
apparent that there are a lot of data points with very high cost, and
predicting that cost accurately is not only unnecessary, but leads to
not being able to identify the good solutions from the mediocre ones.
This suggests that even these regressors should not use all the data,
but rather focus their efforts on discriminating among the lower-cost
solutions by truncating the cost at some threshold.

We selected this threshold based on a validation set as shown in
Figure 4.23 (right). The plot shows that a very low threshold de-
grades performance by confusing the learner to pay attention to the
high-cost outliers, and a very high threshold also degrades perfor-
mance by starving the learner of data. Figure 4.23 (center) portrays
the new predictions based on the learned threshold, forming a much
better fit for the solutions we are interested in, while keeping the
high-cost predictions sufficiently high.18 18 We also tried to do the thresholding

per scene instead of on the entire
training data, but this did not cause a
significant improvement, because the
effect on how well the regressors can fit
the data is minimal.

4.3.3 Learning from Experience Experiments

We conducted three experiments: two that analyze how well we
can generalize to new situations, and another that presents a more
realistic evaluation of the day-to-day performance.

Generalization From Limited Data. In a first experiment,
we wanted to test how well we can generalize to new situations,
going beyond the exemplars already executed. We used only two

trajectory optimization 61

Figure 4.24: Two training situations
along with their corresponding best
goal, and a test situation in which
the correct goal is predicted. If the
learner were constrained to the set
of previously executed trajectories, it
would not have been able to generalize
to this new scene.

scenes for training, shown in Figure 4.24, where the goal was the
grasp the bottle while avoiding the table holding the object, as well as
the box placed next to the target. We ran CHOMP to each goal in a
discretization of the goal set, and recorded the final cost. Figure 4.24

shows the goals that produced the best cost for each of the scenes.
We then trained a neural network to predict this cost given only the
first three features. Predicting attribute values instead of

full trajectories enables the learner to
predict options that go beyond its library
of previous experience. Even if grasping an
object from the left was never the optimal
strategy, the learner can predict it on a
test problem by evaluating features of this
attribute value for the new environment.

For testing, we moved the object to a very different location than
in the training examples, also shown in Figure 4.24. With a Nearest-
Neighbor approach, the robot would identify one of the training
scenes as closest, and initialize the optimizer from the best final tra-
jectory for that scene. In this case, all the trajectories go to a goal that
is sub-optimal or even colliding with the environment. The trajectory
attributes approach, however, allows us to go beyond these previ-
ously executed trajectories. The learner predicts that goal shown on
the right of Figure 4.24 will produce the best cost. This goal has never
been optimal in the training examples, yet because it stays away from
clutter while maintaining a short distance from the starting configu-
ration, the learner will recognize it as better than the other choices.
Indeed, when initializing the optimizer from the straight line trajec-
tory to that goal, the final cost is only 1% higher than the best path
we were able to find using multiple initializations of the optimizer to
the different goals.

Generalization Dependence on Train-Test Similarity In
this next experiment, we were interested in testing how far away
from the training data we can transfer knowledge to. We created
one testing situation, and trained two of the regressors (the Neural

62 legible robot motion planning

Figure 4.25: The loss over the minimum
cost on the same test set when train-
ing on scenes that are more and more
different, until everything changes dras-
tically in the scene and performance
drops significantly. However, the loss
decreases back to around 8% when
training on a wide range of significantly
different scenes, showing that the al-
gorithm can do far transfers if given
enough variety in the training data.

Network and the Gaussian Process) on situations that are more and
more different from the testing one. In Figure 4.25, we plot the per-
formance in these cases as the percent of degradation of cost over the
minimum that the optimizer can reach — the final cost correspond-
ing to initializing the optimizer with a straight line trajectory to the
best goal. These performances, averaged across 15 different clutter
configurations, are compared with our baseline: what happens if we
randomly choose a collision-free goal, without any learning?

In the first setting, we train and test on the same dataset. Both
the Neural Network and the GP perform drastically better than the
no-learning baseline. We then change the situation slightly: first the
clutter configurations change, then the target object position changes
by approx. 20cm, followed by the starting configuration of the robot.
In the last but one test, we change all these situation descriptors
drastically, and the performance decreases significantly, although the
learning algorithms still outperform the baseline. Finally, we show
that more variety in the training set can lead to better generalization.
When we increase the number of examples in the training set — we
still train on very different situations, but we provide a wider range
with more possible starting configurations and target poses — we
notice that the performance again improves to about 8% for both
regressors. The random choice baseline does of course not take into
account this data and performs the same, around 62% degradation
over the minimum cost.

Figure 4.26: Top: Percentage loss over
the best cost for all the methods. Solid
bars are the data-efficient versions,
and transparent bars are the vanilla
algorithms, which perform worse.
Bottom: The predicted minimum cost
vs. the true minimum cost as function
of the number of choices considered.

Main Experiment. We are also interested in a realistic evaluation
of the day-to-day performance of our system, as well as establishing
which learning approach is most suitable for our problem. Should
the learner focus on just the optimal goal, or should it also focus on

trajectory optimization 63

the sub-optimal goals and their performance?
We created a large set of training examples, comprising of 90 sit-

uations varying in the starting configuration, target object pose, and
clutter distribution. In each situation, we ran the optimizer starting
from the straight line trajectory to each of the collision-free goals in
the discretized goal set (a total of 1154 examples) and recorded the
final cost. We also created a test set of 108 situations (1377 examples)
that differ in all three components from the training data.
Hypothesis. Learning from experience improve the final result of the opti-
mization.

Figure 4.26(top) shows the percentage of cost degradation over the
minimum, averaged across all testing situations, for the five learn-
ing approaches. The solid bars are the data-efficient versions of the
algorithms: the regressors use thresholds established on a separate
validation set, IOC uses the cost distance for the structured margin,
and the classifier predicts goals close to the minimum as well.

Overall, using prior experience helps, even
when using simple predictors.

In line with our hypothesis, all methods perform better than not
using the experience. Furthermore, the vanilla versions of these
methods, shown with transparent bars, always perform worse than
their data-efficient counterparts.

The best performer is our version of data-efficient IOC — this
algorithm focuses on predicting the expert rather than fitting cost,
while taking into account the true cost and ensuring that non-expert
predictions have low cost. Although both IOC and LR are linear,
the advantage of IOC over LR is its expert prediction focus. The
non-linear regressors have similar performance as IOC, and their
advantage is a better fit of that data. The SVM is focusing on low-
costs with a linear kernel, so its performance is, as expected, close to
LR.

In these experiments, we had a fairly fine discretization of the goal
set per scene. It makes sense to ask if we could get away with fewer
choices. Figure 4.26(bottom) indicates that the answer is yes: with
5 goals, for example, we can predict the minimum cost better, and
we this minimum is not a lot larger than the one considering, say, 20

goals.

In summary, attribute prediction can help trajectory optimization
produce better solutions faster, even in cases where the attribute
values describing a good basin of attraction are different from the
attribute values that performed well before: the robot can more easily
generalize and is not constrained by the successful trajectories that it
has already encountered.

Limitations. Finding good attributes remains a challenge. Fur-

64 legible robot motion planning

thermore, our work can be augmented by work on contextual library
optimization 19 in order to predict not one choice, but a sequence of 19 Debadeepta Dey, Tian Y Liu, Boris

Sofman, and Drew Bagnell. Efficient
optimization of control libraries. Tech-
nical report, DTIC Document, 2011

choices that the optimizer should attempt.

4.4 Chapter Summary

Key to generating predictable or legible motion is the ability to gen-
erate motion that is optimal. Predictability and legibility instantiate
optimality, for different choices of the cost functional to be optimized.

In this chapter, we started with an algorithm for trajectory opti-
mization. The algorithm capitalizes on two observations: 1) gradients
are often easy to compute, and provide useful information, and 2)
non-Euclidean inner products lead to gradient steps that propagate
local information globally to the trajectory. The optimizer iteratively
follows the direction of the natural gradient of a cost functional com-
bining an obstacle avoidance term with any differentiable prior (e.g.,
smoothness, efficiency, predictability, legibility).

exploit goal sets

↑

trajectory optimization

[gradient information]
[non-Euclidean inner product]

↓

learn to initialize

Despite taking advantage of these two ideas, trajectory optimiza-
tion is still challenging for robots with a high number of degrees
of freedom. Obstacles induce non-convex constraints that, in turn,
induce local optima. A local, gradient-based optimizer will some-
time converge to high-cost local optima. On the other hand, global
optimizers are not tractable.

This chapter introduced two complementary ways to alleviate
convergence to bad local optima: goal set constraints, and learning
from experience.

The first was to exploit the existence of goal sets in typical ma-
nipulation tasks. We cast goal sets as an instance of trajectory-wide
constraints, and showed how the derivation simplifies when the con-
straint only affects the end point of the trajectory. Our results suggest
that exploiting goal sets does significantly improve optimization in
tasks like reaching, placing, or handing off.

The second was to exploit the previous experience that the robot
has: different motion planning problems it has attempted with differ-
ent initializations. The robot learns from both failures and successes
to predict, for a new problem, low dimensional attributes of the tra-
jectory meant to place the initialization of the optimizer in a good
basin of attraction. Our results show the utility of this for the choice
of a goal as an attribute, but there is an opportunity for future work
to explore more complex and possibly learned attributes.

Armed with an optimizer, the robot now has a necessary tool in
place to generate predictable (Chapter 5) and legible (Chapter 6)
motion.

5
Generating Predictable Motion

Planning !
Predictable Motion!

Learning from
Demonstration!

-­‐10	

0	

10	

0! 1!

Familiarization!

Predictable motion matches the observer’s expectation, given a
known goal for the robot. In Chapter 3, we formalized predictabil-
ity in terms of the cost functional C that the observer expects the
robot to optimize, and introduced one example for C — the integral
over squared velocities in the configuration space (Eq. 3.7).

Here, we derive the gradient for this example C (Section 5.1),
which the robot can directly use in the optimizer from Chapter 4.
However, as the experiment in Section 3.4 suggests, directly using
this C is often not enough: for a robot like HERB, different partici-
pants had different notions of what C should be.

In the remainder of the chapter, we discuss two complementary
ways of alleviating this issue: learning predictable motion from user
demonstrations (Section 5.2), and familiarizing the observer though
example motions to the robot’s C (Section 5.3).

5.1 The Predictability Gradient

In Chapter 4, we derived an optimizer that takes natural gradient
steps in the space of trajectories, with the update rule outlined in
Eq. 4.12. This update rule depends on the Euclidean gradient ∇ξiU :

∇ξiU = ∇ξiUprior + α∇ξiUobs

Eq. 4.3 shows the formula for ∇ξiUobs. To generate predictable
motion, we need to derive ∇ξiUprior = ∇ξi C.

Our example C from Eq. 3.7 is the integral over squared velocities:

C[ξ] =
∫

F(ξ(t), ξ̇(t), t)dt

We can find its Euclidean gradient using Euler-Lagrange as

F(ξ(t), ξ̇(t), t) = 1
2 ||ξ̇(t)||2

∇ξC(t) =
∂F

∂ξ(t)
− d

dt
∂F

∂ξ̇(t)
= 0− d

dt
ξ̇(t) = −ξ̈(t)

66 legible robot motion planning

Therefore, our missing gradient piece is

∇ξiUprior = −ξ̈i

The most predictable motion is attained when C reaches its mini-
mum, which happens when the gradient is 0:

−ξ̈(t) = 0⇒ ξ̇(t) = k1 ⇒ ξ(t) = k1t + k2
k1 and k2 are determined by the end
point constraints, ξ(0) = s and ξ(1) =
g.

With our example C, our observer thinks that the most predictable
trajectory is the straight line to the goal, at constant velocity.

5.2 Learning from Demonstration

The C from the previous section is a good starting point, and can
possibly be used as a common denominator across multiple users.
However, our study from Section 3.4 suggests that different users
have different expectations of how the same robot would move.

On the other hand, we are assuming a non-adversarial context,
where the user directly benefits from the robot being more pre-
dictable. Therefore, users might be willing to train the robot’s motion
planner by giving the robot demonstrated trajectories for how it should
move in different situations.

Problem Statement. Given a demonstration ξD (like the gray tra-
jectory in Fig. 5.2) from a start s to a goal g (or a set of such demon-
strations), the robot needs to generalize it to new situations. A very
common type of generalization that the robot will face — the main
one we focus in this section — is adaptation to new end-points: a
new start ŝ and/or a new goal ĝ.

Given a demonstration ξD from s to g,
how should the robot adapt it to new
end-point configurations ŝ and ĝ? We
discuss at the end of the section how to
handle changes in the obstacles in the
environment as well.

There are two schools of thought on addressing this problem:
a model-based approach and a model-free approach. The former is
to recover a cost function (typically as a weighted combination of
features, U[ξ] = wT fξ), which “explains” ξD. This is referred to as In-
verse Reinforcement Learning (IRL) [2, 238, 183]. In the deterministic
case, this means that ξD has the lowest cost by a margin [183]:

Find w s.t. wT fξD ≤ wT fξ + ζ, ∀ξ ∈ Ξg
s

In the nosy case, it means that ξD has high probability (applying

ζ is a slack variable

again the principle of maximum entropy) [238]:

Z is the normalizermax
w

P(ξD|s, g, w) =
1
Z

exp
(
−wT fξD

)

generating predictable motion 67

IRL imposes a model on the problem — that the demonstration
can be explained by trajectory optimization as the (approximate)
minimum of some cost, typically as a linear combination of features.
It can transfer far from the demonstration, but it is not tractable in
high-dimensional spaces because it relies on globally solving the for-
ward problem — given a cost, find its optimum in an environment,
or evaluate the expected features it will produce in that environment.

0!

20!

40!

0! 1!

ξ̂ x(z)−ξD
x (z)

z
s

ĝg

ĝx − gx

ξD(z) ξ̂(z)

Figure 5.1: Using a norm M for adapta-
tion propagates the change in the start
and goal, from {s,g} to {ŝ, ĝ}, to the rest
of the trajectory, changing ξD into ξ̂.
The difference between the two as a
function of time is plotted in blue.

fD
x(z)

s

ĝg

-­‐6	

-­‐5	

-­‐4	

-­‐3	

-­‐2	

-­‐1	

0	

1	

2	

3	

4	

5	

0! 1!

T D (z) ˆT (z)

z

Figure 5.2: In contrast, DMPs represent
the demonstration as a spring damper
system tracking a moving target tra-
jectory TD , compute differences fD
(purple) between TD and the straight
line trajectory, and apply the same
differences to the new straight line
trajectory between the new endpoints.
This results in a new target trajectory
T̂ for the dynamical system to track.
When M = A, the velocity norm from
Eq. 4.7, the two adaptations are equiv-
alent. In general, different norms M
would lead to different adaptions.

In contrast, model-free approaches do not attempt to explain the
demonstration, but use various processes to morph it to the new
situation. These techniques do not necessarily transfer as far from
the demonstration, but remain tractable and even efficient in high-
dimensional spaces. Due to their computational efficiency, they can be
useful in generalizing predictable motion.

Among several such methods [33, 234, 193, 13], a commonly used
one is a Dynamic Movement Primitive (DMP) [105, 104]. DMPs have
seen wide application across a variety of domains, including biped
locomotion [166], grasping [174], placing and pouring [172], dart
throwing [127], ball paddling [128], pancake flipping [133], playing
pool [173], and handing over an object [179].

DMPs represent a demonstration as a dynamical system track-
ing a moving target configuration, and adapt it to new start and goal
constraints by simply changing the start and goal parameters in the
equation of the moving target. The adaptation process is the same,
regardless of the task and of the user, and is merely one instance of a
larger problem.

Our work focuses on the second family of methods due to
their computational efficiency, and connects them to trajectory opti-
mization. We introduce a generalization of this adaptation process —
we provide a variational characterization of the problem by formaliz-
ing the adaptation of a demonstrated trajectory to new endpoints as
an optimization over a Hilbert space of trajectories (Section 5.2.1). We
find the closest trajectory to the demonstration, in the linear subspace
induced by the new endpoint constraints (Fig. 5.3). Distance (the
notion of “closer”) is measured by the norm induced by the inner
product in the space.

Using this formalism, different choices for the inner product lead
to different adaptation processes. We prove that DMPs implement
this optimization in the way they adapt trajectories, for a particu-
lar choice of a norm (Section 5.2.2). We do so by proving that when
updating the endpoints, the moving target tracked by the dynami-
cal system adapts (as in Fig. 5.2) using the very same norm A from
Chapter 4, Eq. 4.7. We then show that this also implies that the adap-
tation in the trajectory space, obtained by then tracking the adapted

68 legible robot motion planning

target, is also the result of optimizing a norm based on A.
Beyond providing a deeper understanding of DMPs and what cri-

teria they are inherently optimizing when adapting demonstrations,
our generalization frees the robot from a fixed adaptation process by
enabling it to use any inner product (or norm). Because computing
the minimum norm adaptation is near-instant, any such adaption
process can be used in the DMP to obtain the new moving target
trajectory.

Thus, we can select a more appropriate norm based on the task
at hand (Section 5.2.3). What is more, if the user is willing to pro-
vide a few examples of how to adapt the trajectory as well, then the
robot can learn the desired norm (also Section 5.2.3): the robot can
learn, from the user, not only the trajectory, but also how to adapt the
trajectory to new situations.

We conduct an experimental analysis of the benefit of learning a
norm both with synthetic data where we have ground truth, as well
as with kinesthetic demonstrations on a robot arm. Our results show
a significant improvement in how well the norm that the robot learns
is able to reconstruct a holdout set of demonstrations, compared to
the default DMP norm.

By learning how to adapt the demonstrated
trajectories, the robot can produce trajec-
tories for new situations that better match
what the user would demonstrate, i.e., more
predictable motions.

In summary, we contribute a deeper theoretical understanding of
DMPs that relates them to trajectory optimization, and also leads
to practical benefits for learning from demonstration. In particular,
robots can more predictable motion by adapting trajectories in a
manner that more closely matches what the user would demonstrate
(and therefore expect) in a new situation.

5.2.1 Hilbert Norm Minimization

In this subsection, we formalize trajectory adaptation as a Hilbert
norm minimization problem. We then derive the solution to this
problem, and study the case in which translating trajectories carries
no penalty. This is the case for the norm DMPs use in their adapta-
tion process.

Given a demonstrated trajectory ξD, we propose to adapt it to a
new start ŝ (the robot’s starting configuration) and a new goal ĝ by
solving:

ξ̂ = arg min
ξ∈Ξ
||ξD − ξ||2M

s.t. ξ(0) = ŝ

ξ(1) = ĝ (5.1)

Fig. 5.3 illustrates this problem. Different inner products lead to

M is the norm defined by the inner
product in the Hilbert space of trajecto-
ries, as in Eq. 4.6.

generating predictable motion 69

ξD

ξ̂

(s,g) (ŝ, ĝ)

ξD +M
−1(λ ,0,...,0,γ)T

Figure 5.3: We adapt ξD by finding the
closest trajectory to it that satisfies the
new end point constraints. The x axis
is the start-goal tuple, and the y axis
is the rest of the trajectory. M warps
the space, transforming (hyper)spheres
into (hyper)ellipsoids. The space of all
adaptations of ξD is a linear subspace of
Ξ.

different Ms, which in turn lead to different adaptations.

Solution. The Lagrangian of Eq. 5.1 is

L = (ξD − ξ)T M(ξD − ξ) + λT(ξ(0)− ŝ) + γT(ξ(1)− ĝ) (5.2)

Taking the gradient w.r.t. ξ, λ, and γ:

∇ξL = M(ξD − ξ) + (λ, 0, ..0)T + (0, .., 0, γ)T (5.3)

∇λL = ξ(0)− ŝ, ∇γL = ξ(1)− ĝ (5.4)

Thus, the solution is:

ξ̂ = ξD + M−1(λ, 0, .., 0, γ)T (5.5)

where the vectors λ and γ are set by Eq. 5.4.
This has an intuitive interpretation: correct the start and the goal, and

propagate the differences across the trajectory in a manner dictated by the
norm M (Fig. 5.2).1 Fig. 5.3 depicts the geometry of the space. 1 It is a simplified version of the update

from the goal set optimization in
Section 4.2: think of ξD as the trajectory
obtained after an unconstrained step,
and of the goal manifold as comprising
of just ĝ.

Free Translations. Often times, we are interested in being able to
translate trajectories at no cost, i.e., if ξ̂ = ξ + ξk, with ξk(t) = k, ∀t
(a constant valued trajectory), then ||ξ̂ − ξ||M = 0, ∀k. However, that
makes M a semi-norm, as 〈ξk, ξk〉 = 0, ∀k, which makes the problem ill
posed.

Our optimizer from Chapter 4 bypasses the semi-norm problem
because at least one of the trajectory endpoints is constant (both in
Section 4.1, only the start in Section 4.2). Similarly, the key to free

70 legible robot motion planning

translations while maintaining a full norm is fixing one of the end-
points, e.g., the starting configuration: one can adapt the trajectory’s
goal in a restricted space of trajectories that all have the same (con-
stant) start, and then translate the result to the new starting configu-
ration.

Let Ξs=k be the subspace of trajectories s.t. the starting configura-
tion is a constant k: ξ(0) = k, ξ ∈ Ξs=k ⊂ Ξ. M is a full norm in Ξs=k,
as no translations are allowed.

Let σk : Ξs=k → Ξs=0, σk(ξ) = ξ − ξk be the function that translates
trajectories from Ξs=k to start at s = 0. This function is bijective,
σ−1

k (ξ) = ξ + ξk.
We can reformulate Eq. 5.1 to finding the closest trajectory within

Ξs=0 that ends at ĝ− ŝ, and translating this trajectory to the new start
ŝ, thereby obtaining a trajectory from ŝ to ĝ− ŝ + ŝ = ĝ:

Perform the adaptation in a space with
a constant starting configuration 0, then
translate to the correct start.

ξ̂ = σ−1
ŝ

(
arg min

ξ∈Ξs=0
||σs(ξD)− ξ||2M

)

s.t. ξ(1) = ĝ− ŝ (5.6)

The solution to this, following an analogous derivation to the con-
strained optimization problem in Eq. 5.1, is to take the demonstration
translated to 0, correct the goal to ĝ− ŝ, propagate this change to the
rest of the trajectory via M, and then translate the result to the new
start:

ξ̂ = σ−1
ŝ

(
σs(ξD) + M−1(0, .., 0, γ)T

)
(5.7)

with γ s.t. ˆξ(1) = ĝ. For a norm M with no coupling between joints,
and m the last entry in M, this becomes:

ξ̂ = σ−1
ŝ

(
σs(ξD) +

1
m

M−1(0, .., 0, (ĝ− ŝ)− (g− s))T
)

(5.8)

This corrects the goal in Ξs=0 from g− s to ĝ− ŝ, effectively changing
the goal in Ξ from g to ĝ.2 2 Note that here we are overloading M.

In Eq. 5.6, we are measuring norms in
a space of trajectories with constant
start 0, which is a lower dimensional
space of trajectories ξ̃ : (0, 1] →
Q that do not contain the starting
configuration (which is not a variable).
In this space, we can define a norm M̃
by ||ξ̃||M̃ = ||ξ||M , with ξ(0) = 0 and
ξ(z) = ξ̃(z)∀z ∈ (0, 1]. M̃ is then of
dimensionality one less than M and
full rank, and what we actually use in
Eq. 5.8.

5.2.2 DMP Adaptation as a Special Case of Hilbert Norm Minimiza-
tion

In this subsection, we summarize a commonly used version of DMPs,
and write it as a target tracker with a moving target. Next, we show
that the adaptation of the tracked target to a new start and goal is an
instance of Hilbert norm minimization (Theorem 1). Finally, we show
that this induces an adaption in trajectory space that is an instance of
norm minimization (Theorem 2).

DMPs. A commonly used version [172, 173, 179, 174] of a DMP is
a second order linear dynamical system which is stimulated with a

generating predictable motion 71

non-linear forcing term:

τ2ξ̈(t) = K(g− ξ(t))− Dτξ̇(t)− K(g− s)u + K f̄ (u) (5.9)

where K(g− ξ(t)) is an attractor towards the goal, K(g− s)u avoids
jumps at the beginning of the movement, Dξ̇(t) is a damper, and
K f̄ (u) is a nonlinear forcing term. u is a phase variable generated by
the dynamical system

τu̇ = −αu

Thus, u maps time from 1 to (almost) 0:

u(t) = e−
α
τ t (5.10)

DMP Adaptation as Tracked Target Adaptation. Let z =

1− u. We can reformulate a DMP as a target tracker with a moving
target, T (z): What was previously ξ(t), here be-

comes T (z). ξ(t) is now the original
trajectory, as a function of time going
from 0 to T. We first show that DMPs
minimize a norm in the tracked target
space T (z), and then use that to show
that there is a norm being minimized in
the original trajectory space ξ(t).

τ2ξ̈(t) = K(T (z)− ξ(t))− Dτξ̇(t) (5.11)

with T (z) moving from s to g as a function of z on a straight line
constant speed in z plus a deviation f as a function of z, f (z) = f̄ (u):

T (z) = s + z(g− s) + f (z) (5.12)

Given a demonstration ξD, one forms a DMP by computing fD(z)
from Eq. 5.11.3 To generalize to a new ŝ and ĝ, the target changes 3 Typically, there is a smoothing step

before adaptation where f̄D is fitted by
some basis functions, f̄D(u) =

∑ ψi(u)θiu
∑ ψi(u)

.
The same smoothing can be applied to
a trajectory before performing Hilbert
norm minimization.

from Eq. 5.13 to Eq. 5.14:

TD(z) = s + z(g− s) + fD(z) (5.13)

T̂ (z) = ŝ + z(ĝ− ŝ) + fD(z) (5.14)

The linear function from s to g is adapted to the new endpoints,
becoming ŝ + z(ĝ− ŝ) (black trajectories in Fig. 5.2), and the deviation
fD remains fixed (purple deviations in Fig. 5.2).

Relation to Hilbert Norm Minimization. We prove the fol-
lowing:

The adaptation of the target being tracked by the DMP, from TD to T̂ , is
a special case of the Hilbert norm adaptation from ξD to ξ̂, when the norm
M = A from Eq. 4.7.

To prove this, we show the equivalence between the DMP adapted
trajectory T̂ and the outcome of the Hilbert norm minimization ξ̂

from Eq. 5.8, for T = ξ.
We do this in two steps. Since T̂ is the sum of a straight line tra-

jectory (as a function of z) and a fixed deviation, we first show that

72 legible robot motion planning

the Eq. 5.6 will adapt a straight line trajectory to another straight line
when M is the norm A. Next we show that when adding a nonzero
deviation to the initial trajectory, the same deviation is added by
Eq. 5.6 to the adapted trajectory.

Therefore, we first focus on the case when fD = 0. In this case, the
targets are straight lines from the start to the goal, moving at constant
speed: T (z) = ξstraight(z) = (g− s)z + s, and T̂ (z) = ξ̂straight(z) =

(ĝ− ŝ)z + ŝ.
In Lemma 3, we show that the adaptation of ξstraight to a new start

ŝ and a new goal ĝ with respect to the norm A matches ξ̂straight. We
build to this via two other lemmas, where the key is to represent
straight lines in terms of the norm A. We first prove that ξstraight

minimizes ξT Aξ (Lemma 1). This enables us to write out ξstraight in
terms of A (Lemma 2).

We then generalize this to non-zero fD using that fD in not actu-
ally changed by the norm M in Eq. 5.8.

Lemma 1: ξstraight is the solution to minimizing Eq. 4.7. Constant speed straight line trajectories
have minimum norm under A.

Proof: We show this by showing that the solution to Eq. 4.7 is a
straight line with constant velocity, just like ξstraight. The gradient of
C is

∇ξC = −ξ̈

and setting this to 0 results in ξ = az + b. ξ(0) = s ⇒ b = s, and
ξ(1) = g⇒ a = g− s. Thus, ξ = (g− s)z + s = ξstraight. �

Lemma 2: σs(ξstraight) =
1
m A−1(0, .., 0, g)T with m the last entry of A

as in Eq. 5.8. We can write constant speed straight line
trajectories in closed form in terms of A.

Proof: From Lemma 1 and from C[ξ] = ξT Aξ, we infer that σs(ξstraight),
which is the straight line from 0 to g− s, is the solution to

min
ξ∈Ξs=0

ξT Aξ

s.t. ξ(1) = g− s (5.15)

Writing the Lagrangian and taking the gradient like before, we get
that σs(ξstraight) =

1
m A−1(0, .., 0, g− s)T : this term is the straight line

from 0 to g− s. �

Lemma 3: ξ̂straight is the solution to Eq. 5.6 for ξD = ξstraight. Constant speed straight lines get adapted by
A to constant speed straight lines.

Proof: From Lemma 2, the term 1
m M−1(0, .., 0, (ĝ − ŝ) − g)T from

Eq. 5.8 is the straight line from 0 to (ĝ− ŝ)− (g− s), i.e., ((ĝ− ŝ)−
g)t.

generating predictable motion 73

Thus, Eq. 5.8 becomes

ξ̂ = σ−1
ŝ

(
σs(ξstraight)+

+
1
m

M−1(0, .., 0, (ĝ− ŝ)− (g− s))T
)
⇒

ξ̂ = σ−1
ŝ ((g− s)z + ((ĝ− ŝ)− (g− s))z)⇒

ξ̂ = σ−1
ŝ ((ĝ− ŝ)z)⇒

ξ̂ = (ĝ− ŝ)z + ŝ⇒
ξ̂ = ξ̂straight

�

Theorem 1: T̂ is the solution to Eq. 5.6 for ξD = T : straight lines plus
deviations get adapted by A to straight lines plus the same deviations, like
the target trajectories in DMPs.

Proof: When fD = 0, T = ξstraight, and T̂ = ξ̂straight. The theorem
follows from Lemma 3.

When fD 6= 0, the demonstrated target is TD = ξstraight + fD,
and the adapted target is T̂ = ξ̂straight + fD. This adapted target still
matches the solution in Eq. 5.8:

ξ̂ = σ−1
ŝ

(
σs(ξstraight + fD)+

+
1
m

M−1(0, .., 0, (ĝ− ŝ)− (g− s))T
)
⇒

ξ̂ = σ−1
ŝ

(
σs(ξstraight) + fD+

+
1
m

M−1(0, .., 0, (ĝ− ŝ)− (g− s))T
)
⇒

ξ̂ = σ−1
ŝ (fD + (ĝ− ŝ)z)⇒

ξ̂ = fD + (ĝ− ŝ)z + ŝ⇒
ξ̂ = T̂

�
Therefore, the target adaptation that the DMP does, from T to

T̂ , is none other than the Hilbert norm minimization from Eq. 5.1,
with the same norm as the one often used in trajectory optimization
algorithms like CHOMP.

Norm Minimization Directly in the Trajectory Space. Because the
tracked target adaption from T to T̂ is a Hilbert norm minimization,
then the corresponding adaptation in the space of trajectories, which
adapts ξD into ξ̂ by tracking T̂ , is also the result of a Hilbert norm
minimization.

To see this, let β : ξ 7→ T be the function mapping a demonstrated
trajectory to the corresponding tracked target like in Eq. 5.11. Given a

74 legible robot motion planning

particular spring damper system, β is a bijection: every demonstrated
trajectory maps to a unique tracked target, and every tracked target
maps to a unique trajectory when tracked by the spring damper. Fur-
thermore, β is linear, due to Eq. 5.11 and additivity and homogeneity
of differentiation.

A is not always an appropriate choice
for the Hilbert norm. Each of the plots
below compares adapting a different
original trajectory ξD (gray) using A
(ξ̂A, blue) vs. using a better norm (ξ̂M ,
orange). The norms we used, much like
A, do not allow free rotations, but free
rotations could be obtained similarly to
free translations.

s

g

ŝ

ĝ

ξD
ξ̂A

ξ̂M1

Figure 5.4: Minimum jerk.

s

g

ŝ

ĝ

ξD

ξ̂A

ξ̂M2

Figure 5.5: Reweighing time.

s

g

ŝ

ĝ

ξD

ξ̂A

ξ̂M3

Figure 5.6: Coupling timepoints.

Because β is bijective and linear, the norm A in the tracked target
spaces induces a norm P in the trajectory space: ||ξ||P = ||β(ξ)||A.

Theorem 2: The final trajectory obtained by tracking the adapted
target T̂ , ξ̂ = β−1(T̂), is the closest trajectory to ξD that satisfies
the new endpoint constraints with respect to the norm P: the final
trajectory in a DMP is the result of Eq. 5.1 for M = P.

Proof: Assume ∃ξ with endpoints ŝ and ĝ s.t. ||ξD − ξ||P < ||ξD −
ξ̂||P, i.e., ξ is closer to ξD than ξ̂ is. Then ||β(ξD − ξ)||A < ||β(ξD −
ξ̂)||A ⇒ ||β(ξD)− β(ξ)||A < ||β(ξD)− β(ξ̂)||A ⇒ ||TD − β(ξ)||A <

||TD − T̂ ||A, which contradicts Theorem 1: we know that T̂ is the
closest to TD w.r.t. the norm A given the endpoint constraints, thus
β(ξ) cannot be closer. �

Therefore, DMPs adapt trajectories by minimizing a norm that
depends on both A (the norm used to adapt the tracked target), as
well as the particulars of the dynamical system (represented here by
the function β).

5.2.3 Implications

Theoretical Implications. Our work connects DMPs to trajectory
optimization, providing an understanding of what objective the DMP
adaptation process is inherently optimizing.

Our work also opens the door for handling obstacle avoidance
via planning. Currently with DMPs, obstacles that appear as part of
new situations influence the adapted trajectory in a reactive manner,
akin to a potential field. Certain more difficult situations, however,
require using a motion planner for successful obstacle avoidance,
which reasons about the entire trajectory and not just the current
configuration. Using our generalization, a trajectory optimizer akin
to CHOMP can search for a trajectory that minimizes the adapta-
tion norm (as opposed to the trajectory norm, as in CHOMP) while
avoiding collisions.
Practical Implications. First, the generalization frees us from the
default A norm, and enables us to select more appropriate norms for
each task. We discuss this benefit below.

Second, the generalization gives the robot the opportunity to learn
how to adapt trajectories from the user. If the user is willing to pro-
vide not only a demonstration, but also a few adaptations of that

generating predictable motion 75

1	

(a) Minimum Velocity (A)! (b) Minimum Jerk (M1)! (c) Reweighing Velocities (M2)! (d) Coupling Timepoints (M3)!

Figure 5.7: The different changes to
the norm structure result in different
adaptation effects.

demonstration to different start and goal configurations, then the
robot can use this set of trajectories to learn the desired norm M. We
describe an algorithm for doing so below.

Aside 1 — Computation. The adapta-
tion in a DMP happens instantly, by
instantiating the start and goal vari-
ables with new values. Hilbert norm
minimization has an analytical solution,
with computational complexity in the
discrete case dominated by a single
matrix multiplication. This means any
DMP can adapt its moving target using
norm minimization.

Aside 2 — Using a Spring Damper.
DMPs first cast the trajectory as a
moving target tracked by a spring
damper, and adapt the moving target
trajectory. Hilbert norm minimization
can be used to adapt trajectories both
for the moving target, as well as for
the demonstrated trajectory itself.
The decision to use a spring damper
is independent from the adaptation
process.

Selecting a Better Norm. The norm A can lead to good adap-
tations (see Fig. 4.17), but it is not always the most suitable norm.
Figures 5.4 through 5.6 show three cases where a different norm
leads to better adaptations. In all three cases, the better norm is a
modification of the matrix structure of A (as shown in Fig. 5.7).

The first case, Fig. 5.4, uses a demonstrated trajectory that mini-
mizes jerk. Therefore, using a norm that stems from jerk as opposed
to velocities, results in the correct adaptation — the minimum jerk
trajectory (orange). This norm is band diagonal, like A, but has a
winder band because computing the jerk requires terms further
away from the current trajectory point than computing velocities
(Fig. 5.7(b)).

The second case, Fig. 5.5, uses a demonstrated trajectory that
moves faster in the middle than it does in the beginning and end.
Therefore, a norm that weighs velocities in middle of the trajectory
less than velocities at the endpoints (unlike A, for which the veloc-
ities at every time point matter equally), results in the adaption in
orange: the trajectory remains a straight line, and follows a similar
velocity profile as the demonstration. This norm is a reweighing of
the rows of A (Fig. 5.7(c)).

The third case, Fig. 5.6, uses a loop as the demonstrated trajectory.
The demonstration itself is not necessarily minimizing any L2 norm.
However, a more appropriate norm for adapting this demonstration
couples waypoints that are distant in time but close in space: instead
of only minimizing velocities, it also minimizes the distance between
the two points that begin and end the loop. Unlike A, which is band
diagonal, this norm also has entries far from the diagonal, depending
on how far apart in time these two waypoints are (Fig. 5.7(d)).

76 legible robot motion planning

Learning a Better Norm. As we saw in the previous section,
different norms result in different ways of adapting a demonstrated
trajectory. If the user providing the demonstration is willing to also
provide example adaptations to new endpoints, then the robot can
learn the norm M from these examples: instead of adapting trajectories
in a pre-defined way, the robot can learn from the user how it should adapt
trajectories.

Let D = {ξi} be the set of user demonstrations, each of them
corresponding to a different tuple of endpoints (ξi(0), ξi(1)). The
robot needs to find a norm M such that for each pair of trajectories
(ξi, ξ j) ∈ D × D, ξ j is the closest trajectory to ξi out of all trajec-
tories between the new endpoints, ξ j(0) and ξ j(1), i.e., find a norm
that explains why the user adapted ξi into ξ j and not into any other
trajectory:

||ξi − ξ j||M ≤ ||ξi − ξ||M, ∀ξ ∈ Ξ
g=ξ j(1)
s=ξ j(0)

(5.16)

Equivalently:

||ξi − ξ j||2M ≤ min
ξ∈Ξ
||ξi − ξ||2M

s.t. ξ(0) = ξ j(0)

ξ(1) = ξ j(1) (5.17)

One way to find an M under these constraints is to follow Max-
imum Margin Planning 4. We find M by minimizing the following 4 N. Ratliff, J. A. Bagnell, and M. Zinke-

vich. Maximum margin planning.
In International Conference on Machine
Learning (ICML), 2006

expression:

min
M

∑
i,j
||ξi − ξ j||2M −min

ξ∈Ξ
[||ξi − ξ||2M −L(ξ, ξ j)]

s.t. ξ(0) = ξ j(0)

ξ(1) = ξ j(1)

s.t. M � 0 (5.18)

with L a loss function, e.g., a function evaluating to 0 when the
trajectory matches ξ j and to 1 otherwise, and M � 0 the positive-
definiteness constraint.

If ξ∗ij is the optimal solution to the inner minimization problem,
then the gradient update is:

M = M− α ∑
i,j
[(ξi − ξ j)(ξi − ξ j)

T − (ξi − ξ∗ij)(ξi − ξ∗ij)
T] (5.19)

followed by a projection onto the space of positive definite matrices.

Aside 3 — Geometry. An M that
satisfies all the constraints only exists
if the demonstrations in D lie in a
linear subspace of Ξ of dimensionality
2d, with d the number of degrees of
freedom: the adaptation induces a
foliation of the space, with each linear
subspace of a demonstration and all its
adaptations to new endpoints forming a
plaque of the foliation. Fig. 5.3 depicts
such a linear subspace, obtained by
adapting ξD .

This follows from Eq. 5.5: the space of all adaptations of a tra-
jectory is parametrized by the vectors λ and γ. Similarly, when we
allow free translations, the linear subspace has dimensionality d
(Eq. 5.7). Note that there are many norms that satisfy the constraints

generating predictable motion 77

0!

0.5!

1!

1.5!

2!

2.5!

3!

2! 4! 8! 16! 32! 64!

Num. of Demonstrations! Noise Factor!

W
ay

po
in

t E
rr

or
!

W
ay

po
in

t E
rr

or
!

0!

2!

4!

6!

8!

10!

12!

1! 10! 100! 1000! 10000!

Learned Norm
Error!
Training Noise!

H1 a&b! H2 a&b!

Ideal! Noisy! Learned!

Figure 5.8: Left: an ideal adapted
trajectory (gray), a noisy adapted
trajectory (red) that we use for training,
and the reproduction using the learned
norm (green), with a 6-fold average
reduction in noise. Center: the error on
a test set as a function of the number of
training examples. Right: the error on
a test set as a function of the amount
of noise, compared to the magnitude
of the noise (red). Error bars show
standard error on the mean — when
not visible, the error bars are smaller
than the marker size.

in this case, because only a subset of the rows of M−1 are used in the
adaptation.

When the demonstrations do not form such a linear subspace, the
algorithm will find an approximate M that minimizes the criterion
in Eq. 5.18. We study the effects of noise in the next section. Other
techniques for finding an approximate M, such as least squares or
PCA, would also apply, but they would minimize different criteria,
e.g., the difference between the trajectories themselves (∑ ||ξ j − ξ∗ij||2),
and not the difference between the norms.

5.2.4 Experimental Analysis

We divide our experiments in two parts. The first experiment an-
alyzes the ability to learn a norm from only a few demonstrations,
under different noise conditions. We do this on synthetically gen-
erated data so that we can manipulate the noise and compare the
results to ground truth. We assume an underlying norm, generate
noisy demonstrations based on it, and test the learner’s ability to re-
cover the norm. The second experiment tests the benefit of learning
the norm with real kinesthetic demonstrations on a robot arm.

Synthetic Data. To analyze the dependency of learning the norm
on the number of demonstrations, we generate demonstrations for
different endpoints using a given norm M and some arbitrary initial
trajectory. We then use the training data to learn a norm M̃. For
simplicity, we focus on norms that allow free translations, and that
do not couple different joints (similar to A).

Dependent Measures. We test the quality of a learned norm M̃ us-
ing two measures (which significantly correlate, see Analysis): one
is about the norm itself, and the other is about the effect it has on
adaptations.

78 legible robot motion planning

Waypoint Error: This measure captures deviations of the behavior in-
duced by the learned norm from desired behavior. We generate a test
set of 1200 new start and goal configuration tuples for testing, lead-
ing to 1200 adapted trajectories using M as ground truth. We then
adapt the demonstrated trajectory to each tuple using the learned
norm M̃. For each obtained trajectory, we measure the mean way-
point deviation from the ground truth trajectories, and combine these
into an average across the entire set.
Norm Error: This measure captures deviations in the learned norm
itself (between M and M̃). Because only the last row of M−1 (which
we denote M−1

N) affects the resulting adaptation, we compute the
norm of the component of the normalized M̃−1

N that is orthogonal to
the true normalized M−1

N .

Ideal Demonstrations. We first test learning from ideal demonstra-
tions, meaning perfectly adapted using M, without any noise.

Because of the structure that M imposes on the optimal adapta-
tions (a linear subspace of dimensionality 2d in general, d for free
translations), only a few ideal demonstrations are necessary to per-
fectly retrieve M: 3 in the general case, and 2 in the case of free trans-
lations.

As a sanity check, we ran an experiment in which we chose the
starting trajectory from Fig. 4.17 and generated 100 random norms.
For each norm, we computed the two measures above. The resulting
error was exactly 0 in each case: the learning algorithm perfectly
retrieved the underlying norm.

Tolerance to Noise. Real demonstrations will not be perfect adapta-
tions — they will be noisy. With noise comes the necessity for more
than the minimal number of demonstrations, and the questions of
how many demonstrations are needed and how robust the learning is
to the amount of noise.
Manipulated Variables. In this experiment, we study these questions
by manipulating two factors: (1) the number of demonstrations, and
(2) the amount of noise we add to the adaptations in the training
data.

We added Gaussian noise to the ideal adaptations using a covari-
ance matrix that adds more noise to the middle of the trajectory than
the endpoints (since the endpoints are fixed when requesting an
adaptation).

For the first factor — number of demonstrations — we started at 2
(the minimum number required), and chose exponentially increasing
levels (2, 4, 8, 16, 32, 64) to get an idea for what the scale of the num-
ber of demonstration should be. For the second factor, we scaled the

generating predictable motion 79

covariance matrix (by 1, 10, 100, 1000, 10000) up to the point where
the average noise for a trajectory waypoint was 50% of the average
distance from start to goal (which we considered an extreme amount
that exceeds by far levels we expect to see in practice). This resulted
in 30 total conditions, and we ran the experiment with 30 different
random seeds for each condition.
Hypotheses:
H1a. The number of demonstration positively affects the learned norm Sanity Check

quality.
H1b. There is a point beyond which increasing the number of examples We Only Need a Small Number of

Examplesresults in practically equivalent norm quality.
H2a. The amount of noise negatively affects norm quality. Sanity Check

H2b. The waypoint error is significantly lower than the noise on the train- Learning is Tolerant to Noise

ing examples.
Analysis. The waypoint error and norm error measures were indeed
significantly correlated (standardized Crohnbach’s α = 0.95), suggest-
ing that the waypoint error also captures the deviation from the real
norm.

A factorial least squares regression revealed that, in line with H1a
and H2a, both factors were significant: as the number of demon-
strations increased, the error did decrease (F(1, 867) = 24.07,
p < .0001), and as the amount of noise increased, the error did in-
crease (F(1, 867) = 628.35, p < .0001).

Fig. 5.8 plots these two effects. In support of H1b, the error stops
decreasing after 8 demonstrations (it takes a difference threshold
of 0.3 for an equivalence test between the error at 8 and the error at
16 to reject the hypothesis that they are practically the same with
p = .04). This suggests that learning the norm can happen from
relatively few demonstrations.

In support of H2b, the error was significantly lower than the noise
in the training trajectories (t(899) = 19.35, p < .0001): on average,
the error was lower by a factor of 6.71, and this factor increased sig-
nificantly with the number of demonstrations (F(1, 869) = 869.01,
p < .0001).

0.15!

0.17!

0.19!

0.21!

0.23!

2! 3! 4! 5! 6!

W
ay

po
in

t E
rr

or
 (r

ad
)!

Num. of Demonstrations!

Learned Norm!

Norm A!

Figure 5.9: The average waypoint error
on a holdout set of pointing gesture
demonstrations on the HERB robot,
for the adaptations obtained using the
learned norm, compared to error when
using the default A.

Real Data. Our simulation study compared the learned norm to
ground truth. Next, we were interested in studying the benefits of
learning the norm with real kinesthetic demonstrations on a robot
arm.

We collected 9 expert demonstrations of pointing gestures on the
HERB robot, where the task was to point to a particular location
on a board, as in Fig. 5.10(a). We chose pointing as a task because
the shape of the adapted trajectories is important for such gestures.
We used up to 6 of these trajectories for training, and held out 3 for

80 legible robot motion planning

(a) Robot Setup! (b) Demonstrations! (c) Norm A Adaptations! (d) Learned Norm Adaptations!

Figure 5.10: A comparison between
adapting trajectories with the default
A metric (c) and adapting using a
learned metric (d) on a holdout set
of demonstrated pointing gestures
(shown in black). The trajectory ξD
used for adaptation is in gray. Note
that the adaption happens in the full
configuration space of the robot, but
here we plot the end effector traces
for visualization. The learned norm
more closely reproduces two of the
trajectories, and has higher error in
the third. Overall, the error decreases
significantly (see Fig. 5.9).

testing.
Dependent Measures. We use the waypoint error measure from
before, this time from the noisy holdout set as opposed to ground
truth. We cannot use the norm error since we no longer have access
to the true norm M.
Manipulated Variables. We used both the learned norm, as well
as the default A norm from Eq. 4.7, to generate adaptations of the
same original demonstration (its end effector trace is shown in gray
in Fig. 5.10(c and d)). Note that even though the learned norm has
access to more than the original demonstration, we used this demon-
stration only when testing the adaptation, to remain fair to the de-
fault norm. In practice, if the user provides multiple demonstrations,
the one corresponding the situation closest to the test situation could
be used for adaptation.

We also manipulated how many of the 6 demonstrations the learn-
ing algorithm used.
Hypotheses:
H3. As before, we expect that the number of demonstrations positively af- Data Improves Performance

fects performance of the learned norm, i.e., error in reproducing the holdout
trajectories decreases as the number of demonstrations increases.
H4. The learned norm has smaller error in reproducing the holdout demon- Learned Norm > Default A

strations than the default A norm.
Analysis. Fig. 5.10 qualitatively compares the learned and the default
norm, and Fig. 5.9 plots our results.

Overall, the performance did tend to improve with the number of
demonstrations, but the effect was not significant (F(4, 26) = 1.31,
p = .29). In support of H4, the error was significantly lower overall
when learning the norm than when using the DMP default (t(30) =

31.96, p < .0001), suggesting that for real kinesthetic demonstrations,
there is indeed a practical benefit to the generalization we propose in
this paper.

In summary, by learning the norm, the robot can produce trajecto-

generating predictable motion 81

ries in new situations that better match the desired shape, thus mak-
ing the motion more predictable than when using a default adapta-
tion procedure. The computation is instantaneous, and obstacles can
be handle in the same way we do in trajectory optimization — by
adding Uobs to the objective.

Limitations. Even a learned adaptation forces all the adaptation of
a particular demonstration to lie in the same hyperplane. Norms that
are richer than the L2 norm would make this adaptation process even
more flexible, though they would require more demonstrations.

5.3 Familiarization to Robot Motion

The previous section discussed one way for the robot to become more
predictable: having the user train the robot through demonstrations
— the user acts as the teacher, and provides demonstrations to the
robot, which adapts its motion planner based on these examples.

In this section, we invert the teacher-learner relationship. Rather
than focusing on the robot learning from the user’s demonstrations
(where it is difficult to obtain demonstrations [6], which, as we saw
in the previous section, are then difficult to generalize), we explore
the idea of the user learning from the robot’s demonstrations, via
familiarization:

Definition 5.3.1 Familiarization to robot motion is the process of exposing
the observer to how the robot moves in different situations.

Figure 5.11: (Top) One of our users
getting more comfortable with work-
ing/standing next to the robot after
familiarization, as he can better predict
how the robot will move. (Bottom)
Users identify the robot’s actual tra-
jectory (we plot here its end effector
trace only, in green, but show users
the robot actually moving along it) as
the one they expect more often after
familiarization.

Many times, we take for granted that familiarization works. Fa-
miliarization is often used in studies prior to experimental condi-
tions [121], under the assumption that it will adapt the user’s men-
tal model of the robot. Studies on sensemaking [227] support this
assumption [198, 164, 14, 131, 208], as does the remarkable adapt-
ability of humans: we learn new languages [162], adapt to new ways
of communicating [209], and even remap existing sensors like our
tongues to new senses, like vision [220].

Here, we study the effects of familiarization to motion on pre-
dictability. On the one hand, the breadth of human adaptability
suggests that with familiarization, if the robot’s motion is consis-
tent, it will become significantly more predictable. On the other hand,
the same obstacles robots face when learning motion — the high-
dimensionality and complexity of the space — might induce similar
limitations in humans.

We ran a series of three experiments investigating the effect of fa-
miliarization to two different types of motion, on the predictability of
the motion. We also tested whether increased predictability matters

82 legible robot motion planning

by testing the users’ comfort with the robot.

Our first experiment (Section 5.3.2) analyzed familiarization to
consistent motion produced by our optimizer from Chapter 4. We
evaluated predictability before and after familiarization by testing
whether users identify the actual robot motion as the one they expect
it to execute (from a set of different motions, see Fig. 8.12, bottom), as
well as asking users to rate the motion on a subjective predictability
scale.

We first tested whether consistent
motion that is somewhat predictable to
begin with becomes more predictable
after familiarization.

Our results do support the utility of familiarization — the motion
became significantly more predictable. However, we came across unex-
pected limitations of familiarization. We found that despite improv-
ing predictability, familiarization can fail to make the motion fully
predictable, and can fail to generalize to new situations.

Next, we tested familiarization on a different type of motion. The
initial study indicated that the optimizer-generated motion was mod-
erately natural:

Definition 5.3.2 Natural motion is motion that is predictable without (or
prior to) familiarization.

We tested how familiarization depends
on how predictable the motion starts
out to begin with, and what happens as
the number of examples increases.

This finding raised an interesting question: would familiariza-
tions still have an effect when the motion is less natural? In a second
experiment (Section 5.3.3), we found that some unnatural motion
may never reach a high predictability level, even when exposed to
over twice the number of motions, suggesting that familiarization
saturates.

Finally, we tested the practical effects of increasing predictability
(Section 5.3.4) — does the user comfort with working or standing
next to the robot also increase? We found a significant effect of fa-
miliarization on comfort. However, a lot of users over-trusted the
robot, moving closer to it than would be safe. This has a surprising
implication: less predictable motion might actually be safer in some
situations, as it might prevent over-trust.

Our last study tests the effects of
familiarization more practically, on the
users’ comfort with the robot

In summary, familiarization is an essential aspect of human-robot
interactions, and it is important to study it and understand its limi-
tations — sometimes, we cannot rely solely on human adaptability.
Our data suggests that familiarization to motion helps, but cannot be
used exclusively for generating predictable motion. The robot still has the
burden of producing motion that is not too unnatural — motion with
which it is easy to familiarize. However, given such motion, familiariza-
tion shows great promise for significantly improving predictability

generating predictable motion 83

Figure 5.12: For the same situation, the
trajectories for the more natural motion
in Section 5.3.2 (top, green), and for
the less natural motion in Section 5.3.3
(bottom, orange).

and ultimately enabling better human-robot collaboration.

5.3.1 Generating Motion

We generate motion using our optimizer from Chapter 4, using two
different costs. We use our example cost C from Eq. 3.7 to generate
consistent and relatively natural motion.

We use this cost in Section 5.3.2, when we test how useful familiar-
ization is for state-of-the art generated motion. Fig. 5.12 (top, green)
shows one of the example motions. We find that they are moderately
natural, i.e., have good levels of predictability even before familiar-
ization, and that familiarization increases their predictability further.
This prompts us to test familiarization for less natural motion in
Section 5.3.3 — would it still work?

To test familiarization on less natural motion, we changed
the cost function. Rather than using our C, which uses the same
weight on each of the robot’s degrees of freedom, we weigh different
degrees of freedom differently:

CW [ξ] =
∫
||ξ̇(t)||2Wdt =

∫
ξ̇(t)TW ξ̇(t)dt (5.20)

By choosing a W with lower values for the shoulder joints and
higher values for the wrist joints, the robot starts penalizing mo-
tion in the wrist, and starts moving it less at the expense of moving
the shoulder more. This is contrary to what human motion does in
reaching tasks [138], which suggests it will also make the robot’s
motion less natural. Our results in Section 5.3.3 support this.

Fig. 5.12 shows a comparison between the original cost function
and this modified version (bottom, orange).

84 legible robot motion planning

	
 	
 	
 	
 	

Pre-Test !

Objective
Predictability!

Subjective
Predictability!

A
B
C

1 7

	
 	

Level 1!

ABC! ABC! 	
 	
 	
 	
 	
 	
 	
 	

Level 2!

ABC! ABC!

Level 3 !
ABC! ABC!

Familiarization!

Perceived Utility!

Post-Test!

Objective
Predictability!

Subjective
Predictability!

1 7

Level 1!
ABC! ABC!

Level 2!
ABC! ABC!

Level 3!
ABC! ABC!

1 7
None!

A
B
C

None!

0.15m!

(a)! (b)! (c)! (d)!

Figure 5.13: The overall experimental
procedure, consisting of a familiariza-
tion phase (b), and a pre- and post-test
for predictability (a and c). The tests
involve three types of examples (Levels
1-3), each with two instances to aid
robustness. For each example, we show
users three trajectories and ask them
to identify which one they expect the
robot to perform, as well as rate each
on a predictability scale. The grid in (d)
depicts target object placements on the
table (shown in Fig. 8.12 and Fig. 5.12)
to produce the familiarization exam-
ples. The ones we re-use for testing
(Level 1) are highlighted in blue, and
the ones we set aside for testing-only
(Level 3) are highlighted in brown. The
crosses represent additional example
locations we use in the follow up study
with more examples.

5.3.2 Does Familiarization Work?

We designed a user study to test the utility of familiarization to robot
motion. Does exposing the users to how the robot moves help them
form the right expectations in the future? And if so, how good do
users get at predicting the robot’s motion?

Methods. We exposed users to examples of the robot’s motion
(Fig. 5.13, b), and measured improvement in predictability by ad-
ministering a pre- (Fig. 5.13, a) and post-test (Fig. 5.13, c), using both
objective and subjective measures. We detail our procedure below.

Design Decisions. The complexity and high-dimensionality of robot
motion are the key obstacle to the utility of familiarization. We de-
signed our experiment to alleviate this issue: we focus on familiarization by
training.

We made familiarization a targeted learning experience, rather
than treating it as exposure to the robot “in the wild”. We chose a
narrowly scoped task, structured the examples users see by parametriz-
ing the task, and presented users with many examples comprising a
good task discretization.
Robot Task. Rather than showing users a snippet of a daily activ-
ity, we chose to show them structured examples that better support
learning. To do so, we narrowed the scope of our study to a single
type of task, and extracted examples by parameterizing the task and
discretizing the parameter space.

Of all possible tasks, we focus on reaching motions. Reaching for
an object (and grasping it) is one of the most common manipulation
tasks state-of-the art robots perform (along with placing): we see it
in manufacturing environments [102] as well as in personal [204, 26]
and assistive robotics [161].

We designed a typical reaching task, where HERB uses its right
arm to reach for a target object on the table (see Fig. 5.12). We parametrize
the task by a starting configuration for the arm, a goal configuration
where the robot can grasp the target object, and obstacles in the envi-

generating predictable motion 85

ronment which the robot’s motion must not collide with.
We selected these parameters by replicating a scenario in which

HERB drives up to the table and reaches for the bottle: we selected
HERB’s typical driving configuration as the start, and kept the table
in place as the obstacle.
Example Number and Order. We generated examples by varying
the goal parameter. We varied the location of the target object on the
tabletop, as depicted in Fig. 5.13 (d). To aid familiarization, we dis-
cretized this space finely, forming a 5× 3 grid with 0.15m resolution
for where the bottle can be placed. This creates a space of 15 possible
examples, 2 of which we kept aside for our pre- and post- test Level
3.

We followed human teaching patterns and presented the examples
to the users in the order from most simple to most complex [214].
Here, we defined simplicity based on how efficient each trajectory
was relative to the distance between the starting configuration and
the goal.
User Instructions. We decided to specifically instruct the users to
actively try to learn how the robot moves, in line with our decision of
making this a learning task rather than a passive observation task.

Design Overview. We outline below the dependent and independent
variables, as well as our subject allocation.
Manipulated Factors. We manipulate two factors: familiarization
and difference level.

We manipulate familiarization by testing the predictability of We manipulate familiarization by
measuring predictability before and
after the robot gives the user examples

motion both before and after exposing the users to the examples.
We use recordings of HERB executing the CHOMP-generated mo-
tions.

With difference level, we look at test situations that relate in We manipulate difference level by
having test situations that are more
and more different from the training
examples that users see.

different ways to the examples.
We select two of the 13 possible scenarios the user will see during

training and identify these as Level 1 situations. Next, we select one
of the two and change the start configuration or add another obstacle,
and identify these as Level 2 situations. Finally, the user is shown
the two scenarios that will not be shown as part of the training set.
These scenarios are Level 3 situations.

Fig. 5.14 shows an example situation for each level. Since there is
no clear ordering in terms of difficulty between levels 2 and 3, we
keep this variable as nominal (as opposed to ordinal) in our analysis
below.

We use two situations for each difference level (as opposed to
only one) in order to alleviate the risk of introducing confounds in
the manipulation. This leads to a total of 6 test situations, which we

86 legible robot motion planning

(a) Level 1 (b) Level 2 (c) Level 3

Figure 5.14: Example of the three
distance levels.

present to the users in a randomized order both before and after
familiarization.
Dependent Measures. We measured the predictability of the robot’s
motion in the 6 test situations using both an objective, as well as a
subjective metric.
Objective Predictability. For our objective metric, we measured the We measure predictability objectively

by testing whether the participant can
identify the robot’s consistent motion
from a set of trajectories.

accuracy with which users can identify the robot’s actual motion
from a set of different motions. This is a way of of objectively mea-
suring whether users expect the motion that the robot would execute.

For each test situation, we first presented the users with an image
of the robot in the starting configuration, with the bottle placed in the
corresponding location. We asked them to spend a minute imagining
how they expect the robot to move his arm. To make sure they think
the task through, we asked them to describe the motion.

Next, we showed them video recordings of HERB executing three
motion trajectories (in randomized order). One of these is the ac-
tual trajectory (represented by a green dot in Fig. 5.13 (a) and (c))
produced according to the procedure outlined in Section 5.3.1.

We selected the other two motions (by varying the goal configura-
tion) such that they are spatially similar either to the actual trajectory
from the same situation, or to the actual trajectory from one of the
example situations.

We imposed a minimum distance requirement on the test motions:
they have to achieve a minimum distance (either at the end effector
or at the elbow) from one another. We choose a threshold (of 0.2m) to
signify “practical difference”: if the users cannot distinguish among
motions that are too similar, this has no practical side effect — at the
limit, differences among motions will not even be observable to the
naked eye; on the other had, if users mistake the motions for one in
which the robot’s arm reaches a different part of the space, this can
have severe practical consequences when working next to the robot.

These two motions are represented as red dots in Fig. 5.13 (a)
and (c). Fig. 8.12 (bottom) shows the end effector traces for the three
candidate trajectories in one of the test situations.

After seeing the three trajectories, we asked the users a multiple-
choice question: “Which of the trajectories matched the one you

generating predictable motion 87

expected?”. The choices were trajectories 1-3. as well as a “None”
option (which, despite the strong wording in the question of hav-
ing “matched” the expected trajectory, was only used in 12% of the
cases).
Subjective Predictability. For our subjective metric, we designed a We measure predictability subjectively

by asking participants to rate the
motion.

scale for predictability, comprised of three 1-7 Likert scale statements
shown in Table 5.1.

Trajectory ’x’ matched what I expected.
Trajectory ’x’ is predictable.
I would be surprised if the robot executed Trajectory ’x’ in this situation.

Table 5.1: The predictability scale.

We asked users, after seeing all three trajectories, to indicate their
level of agreement with each statement, for each trajectory (in order
to not give away which trajectory HERB would actually execute). In
our analysis below, we show that the scale has internal reliability,
and combine the ratings for HERB’s actual trajectory (with the third
statement reverse-coded) into our subjective metric.

Aside from measuring the motion’s predictability before and after
familiarization, we were also interested in two additional measures:
whether the users thought that familiarization helped, and what they
thought of the robot’s motion.
Perceived Utility. After we showed them the motion examples, users
did Likert self reports on utility (whether seeing how HERB moves
helps them predict how HERB would move in a new situation), on
improvement (whether they are better now at predicting how HERB
would move than they were originally), and on confidence (whether
they are confident they can predict how HERB would move).
Motion Attributes. We also asked them about the motions that they
saw. We were interested in whether the CHOMP motions made sense
to them, whether they were more fluid or more machine-like than
they originally expected, and whether they would be comfortable
working next to the robot if it moved in the way they saw.
Subject Allocation. We opted for a within-subjects design. We ex-
plicitly wanted to measure predictability for the same user before
and after familiarization in order to avoid additional variance.
Furthermore, users never get to see what the right answer to the test
situations are. This enables us to treat difference level as a within-
subjects factor as well.

We recruited 25 users (11 female and 14 male, with ages between
19 and 56, M = 34.68, SD = 10.29, and only 5 reporting having
a technical background) via Amazon Mechanical Turk. They per-
formed the study in an average of 50 minutes. To avoid rushed re-

88 legible robot motion planning

sponses, we prevented users from advancing in the task without
watching all videos and answering all questions, and we asked con-
trol questions at the end to verify attention.
Hypothesis. Familiarization significantly improves the predictability of
motion, as reflected by both the objective accuracy metric, as well as the
subjective user ratings.

Analysis. We analyze predictability through both the objective and
subjective measures.
Accuracy (objective). Supporting our hypothesis, familiarization
had a significant effect on the users’ accuracy in recognizing HERB’s
actual motion, as indicated by a logistic regression using familiarization

and difference level as factors (χ2(1, 300) = 8.53, p = .0035). There
was no main effect for difference level, and no interaction effect. A
factorial repeated-measures ANOVA treating accuracy as a 0− 1 con-
tinuous variable (F(1, 270), p = .0039) confirmed the significance of
familiarization. This test has the advantage of allowing a treatment
of the user ID as a random variable, and is considered to be robust to
dichotomous data [48].

Familiarization can make motion more
predictable.

Prior to familiarization, users already had a 62% accuracy (sig-
nificantly higher than the 33% random choice, Pearson χ2(1, 150) =

55.47, p < .0001), suggesting that the CHOMP-generated motions
were moderately natural.

Familiarization did significantly increase accuracy, but, surpris-
ingly, only to 77%.

Although familiarization helps make the CHOMP motion more
predictable, our data suggest that it has important limitations: de-
spite the test situations coming from the same task as the training
ones, and despite the fine discretization of the task space, users were
not able to always identify the correct trajectory from other (spatially
different) trajectories. For distance Level 1, i.e., testing situations that
were also present in the training examples, the accuracy was highest,
at 84%.

0!

20!

40!

60!

80!

100!

Overall! Level 1! Level 2! Level 3!

A
cc

ur
ac

y!
before!
after!

Figure 5.15: Overall, familiarization
significantly improves the accuracy in
recognizing the robot’s motion (left).
Different test situations, however, show
different improvements (right). Error
bars show standard error.

Fig. 5.15 shows the accuracy improvement after familiarization,
both across tasks as well as split by the difference level: accuracy
is highest on testing on situations that were also used as training
examples (Level 1), as well as on situations with the same target lo-
cation as a training example, but different starting/obstacle locations
(Level 2). The test situations that were at the limits of the task (Level
3) did not see an improvement with familiarization (Fig. 5.15, right),
suggesting that familiarization can have limited generalization.

Familiarization does not always make the
motion fully predictable, and can have
limited generalization ability.

Predictability Rating (subjective). Our scale for predictability
comprised of ratings for expectedness, predictability, and surprise
(reverse-coded) showed internal reliability (Chronbach’s α = 0.91),

generating predictable motion 89

leading to a combined score for predictability based on the three rat-
ings. This score is correlated with the accuracy (Pearson’s r(288) =

.73, p < .0001).
To test the effects of familiarization and difference level

on this score, we ran a factorial repeated-measures ANOVA. This
showed a significant main effect for familiarization (F(1, 270) =

10.17, p = .0016), but not for difference level (and no interaction
effect). These results are consistent with our findings for accuracy,
and strengthen the utility of familiarization to robot motion.

Utility Type M SD t(24) for M 6= 4 p

example helpfulness for prediction 5.76 1.09 8.06 <.0001

improvement in prediction capability 5.6 1.32 6.04 <.0001

confidence in prediction capability 5.76 0.97 9.07 <.0001

Table 5.2: The utility of familiarization
ratings.

Perceived Utility. Table 5.2 shows the responses for the perceived
utility of familiarization. Participants thought that seeing the videos
helps them predict how HERB will move in a new situation, that
they are better at predicting how HERB will move in a new situation
than they were before seeing the videos, and were confident they
can make this prediction accurately. These ratings are significantly
different from the neutral stance of 4 (1-7 scale), even after Bonferroni
corrections for multiple comparisons.

Motion Attribute M SD t(24) for M 6= 4 p

makes sense 6.56 0.71 17.98 <.0001

more fluid than expected 5.52 1.66 4.57 <.0001

more machine-like than expected 2.32 1.62 -5.17 <.0001

comfort for collaboration 5.8 1.15 7.79 <.0001

Table 5.3: The motion ratings.

Motion Attributes. Table 5.3 shows the responses for the motion
attribute questions, together with the results of a t-test against the
neutral mean of 4. Participants strongly agreed that HERB’s motion
made sense. They also agreed that the motions are more fluent than
they originally expected, and disagreed that the motions were more
machine like. All participants but one reported that they would be
comfortable collaborating with HERB on a close-proximity task if
it moved in the way they saw. The means are significantly differ-
ent from the neutral stance, and remain significant after Bonferroni
corrections.

These findings, together with the initial accuracy on CHOMP
motions, suggest that CHOMP makes a good starting choice for
familiarization. The next section will put familiarization to a more

90 legible robot motion planning

difficult test. It will study the effect of familiarization for less natural
motions — does it still work, and how predictable do these motions
become?

5.3.3 Familiarization to Unnatural Motion

Our results showed an improvement with familiarization when the
motions are moderately natural. This led us to wonder: what if the
robot moved in an unnatural way? Would familiarization still in-
crease predictability?

Methods. To investigate the effect of familiarization on less natural
motion, we ran the same study, replacing the type of motion per-
formed by the robot with the less natural version from Section 5.3.1,
also depicted in Fig. 5.12 (bottom, orange).

For the testing situations, we were interested in whether famil-
iarization would change the users’ model and make them select the
actual trajectory against the more natural CHOMP one. Thus, we
selected the original CHOMP trajectory as one of the alternatives
whenever possible, i.e., whenever it was practically different (using
our definition of having a difference in the end effector or elbow
locations of above 0.2m).

We recruited 25 new users via Amazon Mechanical Turk, and
eliminated 1 for failing to answer the control questions correctly,
leading to 11 male and 13 female users, with ages between 19 and 45
(M = 29.16, SD = 7.12).
Hypothesis. Familiarization significantly improves the predictability of the
less natural motion. Furthermore, it brings the less natural motion to the
same predictability level as the more natural motion.

Analysis. We analyze the subjective and objective measures, pro-
vide a combined analysis with the previous experiment, and run a
follow-up testing whether adding more examples helps.

0!

20!

40!

60!

80!

100!

before! after!

A
cc

ur
ac

y!

 Mod. Natural! Mod. Unnatural!

4!

4.5!

5!

5.5!

6!

before! after!

Ra
tin

g!

 Mod. Natural! Mod. Unnatural!

Figure 5.16: Results for familiarization
to a less natural motion, as compared to
the more natural CHOMP motion from
Fig. 5.15. The error bars represent stan-
dard error on the mean. Familiarization
does improve predictability, but not to
the level of the more natural C motions.

Manipulation Check. The initial accuracy this time was only 34%
(close to the random choice mark of 33%5). This confirms that the 5 this is 25% if we take the “none”

option into accountmotions were less natural (less predictable before familiarization)
than the CHOMP motions from the previous section (χ2(1, 588) =

47.38, p < .0001). We call this type of motion moderately unnatural:
low accuracy without going below the random choice threshold.
Accuracy and Rating Fig. 5.16(top) shows the accuracy before and
after familiarization, as compared to the data from the more natural
motions in the previous section. Consistent with our previous find-
ings, and with our hypothesis, familiarization has a significant
positive effect on accuracy, as evidenced by a logistic regression with

generating predictable motion 91

our two factors (χ2 = 6.95, p = .0084).
Despite this improvement, the accuracy after familiarization is

merely 48% — familiarization fails to bring this motion to the same
predictability level that it brings the CHOMP motion (i.e., 77% ac-
curacy). This is also supported by the ratings on our predictability
scale: although familiarization has a positive main effect on the score
(F(1, 286) = 5.09, p = .0248), the score after familiarization is signif-
icantly lower than for the CHOMP motion, as seen in Fig. 5.16(bot-
tom).

Furthermore, for the test situations where a CHOMP trajectory
was one of the options, more users chose the CHOMP trajectory
(48%) than the trajectory generated by the cost function with which
they were familiarized (43% on these situations).

Given that the initial accuracy on these tests was 29%, familiar-
ization did change the users’ model of how the robot moves, but was
not enough to make the true model more likely in their view than the more
natural CHOMP model.
Combined Analysis. The difference between the moderately nat-
ural and the moderately unnatural motions is also reflected when
looking at the data overall. A logistic regression with naturalness

(low versus high), familiarization, and difference level as fac-
tors shows significant main effects for all three factors (naturalness
χ2(1, 588) = 49.71, p < .0001; familiarization χ2(1, 588) = 15.46,
p < .0001; difference level χ2(2, 588) = 14.26, p = .0008). It
also shows an interaction effect between difference level and initial
predictability (χ2(2, 588) = 10.19, p = .0061).

A factorial repeated-measures ANOVA yielded the same results,
and the Tukey HSD post-hoc analysis on the interaction effect re-
vealed that all conditions for the moderately natural motions had
significantly better accuracy than all moderately unnatural condi-
tions, with the exception of difference level 2. The tests in this level
maintained high accuracy, possibly due to a similarity in the motion
for the test situations in this difference level).

Overall, we see that lower naturalness of motion results in lower
predictability even after familiarization.

Familiarization can fail to bring less natural
motion to the same predictability levels it
brings more natural motion.

Follow-Up: Do we just need more examples? Upon finding
this limitation, we wondered: could we bring predictability levels
as high as for the more natural motion by simply increasing the
number of examples? Is this limitation caused by the amount of
familiarization?
Methods. We tested this in a follow-up study. We created more ex-
amples by discretizing the space further, as shown by the grid crosses
in Fig. 5.13. After eliminating the ones close to the testing situations

92 legible robot motion planning

from Level 3 (shown in gray in the figure), we obtained 16 new ex-
amples (leading to a possible total of 13 + 16 = 29).

We replicated our previous study, manipulating one additional fac-
tor — the number of examples — with 3 levels: 13 (previous study),
21, and 29. We added the additional examples after the original ones,
maintaining their order and thus avoiding the order of the examples
as a confound.

The number of examples factor was between-subjects.
This was necessary in order to manage the different number of

examples in the familiarization stage. We recruited 25 users per level
of examples.
Analysis. Fig. 5.17 shows the accuracy before and after familiariza-
tion for each case. Familiarization can saturate: final pre-

dictability does not increase with the
number of examples.

0!

20!

40!

60!

80!

100!

13! 21! 29!

A
cc

ur
ac

y
!

before! after!

examples!

49!

38!34!

49!
38!

31!

Figure 5.17: The limitation of famil-
iarization on less natural motion is
not due to the number of examples,
since more examples fail to improve
performance.

Surprisingly, accuracy decreases in the last case, with the largest
number of examples. This decrease is significant in a logistic regres-
sion over all example levels, which shows a main effect for number of

examples (χ2(2, 876) = 6.85, p = .0325), and marginally significant in
a factorial repeated-measures ANOVA (F(2, 70) = 2.80, p = .0675).

The accuracy after familiarization with 29 examples is consistently
smaller than with 13 or 21, in particular for difference level 1, i.e.,
tests that appear in the training data.

This could imply that with more examples to learn from, users are
more focused on a general model and less able to keep in mind par-
ticular cases. Rather than over fitting to the limited number of exam-
ples, users might be fitting a more general but less accurate model.
There can also be something specific to the examples added that adds
confusion. Further investigation is needed in order to understand this
drop, and verify it is not produced by chance.

5.3.4 Familiarization and Comfort

In the previous sections, we found that familiarization increases
the motion’s predictability. Here, we are taking a first step towards
analyzing the practical consequences of improved predictability
to human-robot collaboration. In particular, does familiarization
improve the users’ comfort with working next to the robot?

Methods. We designed an experiment where we evaluated user
comfort before and after familiarization, using both an indirect, objec-
tive metric, as well as a direct, subjective metric.
Manipulated Factors. We manipulated two factors: familiarization
and naturalness of the motion. We used the same familiarization
procedure as before, and the two motions from Section 5.3.2 and
Section 5.3.3.

generating predictable motion 93

1! 2! 3! 4! 5! 6! 7! 8! 9!

5in! before!after!

too close!

0!

5!

10!
before! after! Figure 5.18: Markers measuring dis-

tance to the robot are spaced 5 inches
apart. Familiarization brought users
7.35 inches closer to the robot.

We decided against manipulating the difference level factor
in this study, and only used a Level 1 situation. We could not use
Level 3, as familiarization had no effect on the predictability of
motion in situations from this level. Furthermore, our pilot for this
study (with 6 users) showed no differences between Level 1 and
Level 2.
Dependent Measures. We evaluated comfort in two ways:
Objective Comfort. The robot was set in a Level 1 situation, in the
starting configuration. The experimenter told the users that the robot
will move to reach for the target object, and asked them to stand
side-by-side with the robot, as close as possible, but far enough away
that they felt confident that the arm would not hit them as it moves
during the reach (Fig. 8.12).

We marked the floor with 18 marks, starting right next to the robot
and moving outward, placed every 5 inches (Fig. 5.18). We measured
the distance (marker ID) from the user to the robot.

Although indirect, this metric is of high practical relevance for
collaboration: we want users to be comfortable enough to get close
to the robot as it is working, in oder to be able to do their own tasks
simultaneously.
Subjective Comfort. We also directly asked users to indicate (on a
Likert scale from 1 to 7), their level of agreement with the statement:
“I would feel comfortable working side by side with the robot on a
close-proximity task like cleaning up the dining room table.” (which
we augmented with “if it moved in the way I saw” after familiariza-
tion).
Subject Allocation. We used a mixed design. We kept familiarization
within-subjects, measuring improvement in comfort before and after

94 legible robot motion planning

exposure to the robot’s motion. However, naturalness was between-
subjects, as each user could only familiarize with one type of motion
(to avoid confusion and ordering effects).

We recruited 16 users from the local community (9 female and 7
male, with ages between 20 and 64, M = 36.68, SD = 16.6, with 7
reporting having a technical background).
Hypothesis. Familiarization significantly improves comfort with working
next to the robot, as indicated by both the objective and subjective metrics.

Analysis. We were very surprised by how comfortable users were
with the robot to begin with: with no prior knowledge of how HERB
moves, users stood only 33 inches from the robot’s arm, while the
arm could touch them even at 45 inches away. A particularly trusting
user stood only 20 inches away, which makes it very difficult for
the robot to avoid them even when it knows exactly where they are.
Users also rated their comfort with the robot very highly (M = 6.52,
SD = 0.61).

A factorial ANOVA showed a significant main effect for familiarization
on our objective metric (F(1, 14) = 12.68, p = .0031): in line with our
hypothesis, users were willing to stand closer to the robot after famil-
iarization (M = 5.28, SD = 1.49) than they were initially (M = 6.75,
SD = 1.84) — a difference of 1.47× 5 = 7.35 inches.

Familiarization can increase comfort with
working side-by-side with the robot.

We found no effect of familiarization on our subjective metric.
The mean improved ever-so-slightly (M = 6.56, SD = 0.51).

Although there was no significant effect for naturalness, the
means for the objective metric reveal that users did stand slightly
further away in the unnatural condition. The means very closely
matched the actual safe distances (5.06 for the natural case, and 5.5
for the unnatural case) — users were surprisingly good at estimating
the correct spot on which stand, on average.

However, this has an interesting side-effect: familiarization made a
lot of users over-trust the robot, in that it made them stand too close to
it (5 out of 8 in the natural condition, and 3 out of 8 in the unnatural
condition). Overall, familiarization had a marginally significant
effect on whether users over-trusted the robot (χ2(1, 32) = 3.56,
p = .0592), which could have a startling implication:

Less predictable motion might actually be safer in some cases, in that it
might prevent over-trusting the robot.

This echoes findings in the trust literature: unreliable behavior
increases trust 6. However, when the robot needs to be conservative 6 Munjal Desai, Mikhail Medvedev,

Marynel Vázquez, Sean McSheehy,
Sofia Gadea-Omelchenko, Christian
Bruggeman, Aaron Steinfeld, and Holly
Yanco. Effects of changing reliability on
trust of robot systems. In HRI, 2012

about safety (e.g., in the case of industrial arms), this can be a desired
effect.

In summary, we did find that motion becomes significantly more

generating predictable motion 95

predictable after familiarization, at least when the familiarization
process is presented as a learning task. We also found that users’
comfort level increases.

Limitations. On the other hand, we found that familiarization is
not always enough to enable users to identify the robot’s motion
(despite choosing among spatially different trajectories), and that
less natural motion reaches lower predictability levels. Our data
suggests that this limitation can not (at least not always) be overcome
by increasing the familiarization length: familiarization can saturate.

Furthermore, our experiments used a pre-test, which could prompt
the users’ learning toward test situations, and inflate the effect of fa-
miliarization. Predictability after familiarization could be even lower
than our measurements indicate.

Of all the factors that could affect the utility of familiarization, our
experiments touched upon two: the naturalness of motion, and the
number of examples the robot gives the users. Many other factors
could impact familiarization: the anthropomorphism of the robot
(would users have a harder time with less anthropomorphic robot?),
the dimensionality of the space (would they have an easier time with
robots with fewer DOF?), the convexity of the cost function the robot
optimizes (does non-convexity affect humans as it does machines?),
the breadth of examples (one task vs. many), as well as the order or
the examples.

5.4 Chapter Summary

In this chapter, after deriving the gradient descent update rule for
predictable motion using a straw-man C, we explored two comple-
mentary ways of improving predictability: having the robot adapt
to the human (learning from demonstration), and having the human
adapt to the robot (familiarization). human

examples−−−−−→ robot

↑

gradient-based optimization for
predictability

↓

robot
examples−−−−−→ human

In learning from demonstration, we used a local trajectory adap-
tation approach, but cast it as a general trajectory optimization prob-
lem — by learning the adaptation norm, we we were able to bring
an optimization and Inverse Reinforcement Learning perspective on
these techniques.

With familiarization, we saw that familiarization does help. How-
ever, although our studies were controlled and focused, they revealed
surprising limitations of familiarization. Given that we made opti-
mistic choices for the factors we did not manipulate, aiding famil-
iarizations, we expect to see similar limitations when performing
familiarization “in-the-wild”: familiarization improves predictability,
but the robot still faces the challenge of producing good motion with
which to familiarize.

6
Generating Legible Motion

Planning !
Legible Motion!

Chapter 3 introduced a mathematical measure for legibility — the
Legibility score from Eq. 3.19. In this chapter, we go from the abil-
ity to evaluate how legible a trajectory is, to the ability to generate
legible motion. This demands going beyond modeling the observer’s
goal inference, to creating motion that results in the correct goal be-
ing inferred, i.e., going from "I can tell that you believe I am grasping
this.", to "I know how to make you believe I am grasping this".

We build on functional gradient descent (Chapter 4) in Section 6.1
to optimize the our legibility measure. Fig. 6.1 depicts this optimiza-
tion process: by exaggerating the motion to the right, the robot makes
the other goal option, GO, far less likely to be inferred by the ob-
server that the correct goal GR.

The ability to optimize for legibility led us to a surprising observa-
tion: that there are cases in which the trajectory becomes too unpre-
dictable. As we saw in Section 3.4, some unpredictability is sometimes
necessary to convey intent — it is (like the outermost trajectory in
Fig. 6.1) that confuses users and lowers their confidence in what the
robot is doing, leading to an additional, “something else” hypothesis.

We address this fundamental limitation by prohibiting the opti-
mizer to “travel to uncharted territory”, i.e., go outside of the region
in which its assumptions have support — we call this a “trust re-
gion” of predictability (Section 6.2). The trust region serves as an
approximation to preventing the “something else” hypothesis from
gaining too much probability mass. Our user studies indicate that
indeed, there exists a size for this region in which legibility improves
in practice, but outside of which the users’ confidence in knowing the
robot’s goal drops.

6.1 The Legibility Gradient

We optimize for legibility by iteratively following Eq. 4.12, using the
predictable motion as ξ0. To instantiate the update rule, the robot

98 legible robot motion planning

0 2000 4000 6000 8000 10000 12000
11

11.2

11.4

11.6

11.8

12

12.2

12.4

12.6

12.8

13

Iteration Number

Le
gi

bi
lit

y
Sc

or
e

0 2000 4000 6000 8000 10000 12000
11

11.2

11.4

11.6

11.8

12

12.2

12.4

12.6

12.8

13

Iteration Number

Le
gi

bi
lit

y
Sc

or
e

S

GR	

GO	

0 2000 4000 6000 8000 10000 12000
11

11.2

11.4

11.6

11.8

12

12.2

12.4

12.6

12.8

13

Iteration Number

Le
gi

bi
lit

y
Sc

or
e

100000	

0! 10! 100! 1000! 10000! 100000!

1.0!

0.8!

0.9!

0.82!

0.84!

0.86!

0.88!

0.92!

0.94!

0.96!

0.99!

Figure 6.1: The legibility optimization
process for a task with two candidate
goals. By moving the trajectory to the
right, the robot is more clear about its
intent to reach the object on the right.

needs access to ∇U , and we use the negative Legibility (which we
want to maximize rather than minimize, as before) as the prior term
in U .

Notation. Let P(ξ(t), t) = P(GR|ξS→ξ(t)) f (t) and K = 1∫
f (t)dt . The

legibility score is then

Legibility[ξ] = K
∫
P(ξ(t), t)dt (6.1)

Further, let

Set up Legibility for Euler-Lagrange.

g = exp
(
VGR(S)−VGR(Q)

)
(6.2)

h = ∑
G

exp
(
VG(S)−VG(Q)

)
P(G) (6.3)

The probability of a goal is

P(GR|ξS→ξ(t)) =
g
h

(6.4)

and
P(ξ(t), t) =

g
h

f (t) (6.5) Set up P for quotient rule.

Derivation. Analogous to Euler-Lagrange:

∇Legibility = K
(

∂P
∂ξ
− d

dt
∂P
∂ξ ′

)
(6.6)

generating legible motion 99

P is not a function of ξ ′, thus d
dt

δP
δξ ′ = 0.

δP
δξ

(ξ(t), t) =
g′h− h′g

h2 P(GR) f (t) (6.7)

which after a few simplifications becomes

10! 20!
40!

Figure 6.2: Legible trajectories on
a robot manipulator assuming C,
computed by optimizing Legibility in
the full dimensional space. The figure
shows trajectories after 0 (gray), 10, 20,
and 40 iterations.

Figure 6.3: A full-arm depiction of
the optimized trajectories at 0 and 20
iterations.

∂P
∂ξ

(ξ(t), t) =
exp

(
VGR(S)−VGR(ξ(t))

)
(
∑G exp

(
VG(S)−VG(ξ(t))

)
P(G)

)2 P(GR)

∑
G

(
exp

(
−VG(ξ(t))

)
P(G)

exp
(
−VG(S)

) (V′G(ξ(t))−V′GR
(ξ(t)))

)
f (t)

= P(GR|ξS→GR)∑
G

(
P(G|ξS→ξ(t))(V

′
G(ξ(t))−V′GR

(ξ(t)))
)

f (t) (6.8)

Finally,

∇Legibility(t) = K
∂P
∂ξ

(ξ(t), t) (6.9)

with ∂P
∂ξ (ξ(t), t) from (6.8).

The gradient has an intuitive direction: it pushes each point along
the trajectory in the direction that minimizes the cost-to-go to the
actual goal GR (−V′GR

), and away from the direction that minimizes
the cost-to-go to the other goal, for every pair (GR, other goal):

Legibility is about conveying that the robot’s goal is the actual goal, but also
conveying that it is not any of the other candidate goals that the observer
might infer instead.

Without obstacle avoidance, we follow Eq. 4.12 with only this
gradient:

ξi+1 = ξi +
1
η

A−1∇Legibility (6.10)

In the presence of obstacles, we use

∇Uprior = −∇Legibility (6.11)

Exaggeration emerges out of legibility optimization.
Fig. 6.1 shows the optimizer at work in the center of the image, and
also plots the score over iterations. Note that this uses a very small
step size — in practice, with a larger 1

η , only a few iterations are
needed.

Fig. 6.2 shows the optimization for HERB for a reaching task, and
Fig. 6.3 shows the initial trajectory along with an optimized one.

In both cases, the robots start with a straight trajectory to their
goals, and autonomously start exaggerating the trajectory to the right
so that the goal on the right becomes more clear.

100 legible robot motion planning

Exaggeration is one of the 12 Disney principles of animation, but
nowhere did we have to encode exaggeration as a strategy: the robots
figured out that they should exaggerate, as well as the details of that
exaggeration:

Exaggeration naturally emerged out of the mathematics of legible motion.

Understanding Legible Trajectories Armed with a legible
motion generator, we investigate legibility further, looking at factors
that affect the final trajectories.

S S

GR	

GO	

GR	

GO	

Figure 6.4: More ambiguity (right) leads
to the need for greater departure from
predictability.

Ambiguity. Certain scenes are more ambiguous than others, in that
the legibility of the predictable trajectory is lower. The more ambigu-
ous a scene is, the greater the need to depart from predictability and
exaggerate the motion. Fig. 6.4 compares two scenes, the one on the
right being more ambiguous by having the candidate goals closer
and thus making it more difficult to distinguish between them. This
ambiguity is reflected in its equivalent legible trajectory (both trajec-
tories are obtained after 1000 iterations).

S

GR	

GO	

S

GO	

GR	

Figure 6.5: Smaller scales (left) lead to
the need for greater departure from
predictability.

Scale. The scale does affect legibility when the value functions VG are
affected by scale, as in our running example. Here, reaching some-
where closer raises the demand on legibility (Fig. 6.5). Intuitively, the
robot could still reach for GO and suffer little penalty compared to a
larger scale, which puts an extra burden on its motion if it wants to
institute the same confidence in its intent.

S

GR	

GO	

f1

f2

Figure 6.6: Effects of the weighting
function f (t).

Weighting in Time. The weighting function f from Eq. 3.19 quali-
tatively affects the shape of the trajectory by placing the emphasis
(or exaggeration) earlier or later (Fig. 6.6). f can capture the need
to convey the intent as early as possible, decaying as the trajectory
progresses. An exponential decaying f is analogous to a discount
factor in an MDP, discounting future reward (here, the probability of
the correct goal). In the limit, f can cause the robot so “signal” in the
very beginning, a strategy that our animator from Section 8.2 uses.

Figure 6.7: Legible trajectories for
multiple goals.

Multiple Goals. Although for simplicity, our examples so far were
focused on discriminating between two goals, legibility does apply in
the context of multiple goals (Fig. 6.1). Notice that for the goal in the
middle, the most legible trajectory coincides with the predictable one:
any exaggeration would lead an observer to predict a different goal
— legibility is limited by the complexity in the scene.
Obstacle Avoidance. We plot in Fig. 6.8 what we happens when C
itself trades off between efficiency and obstacle avoidance, i.e., we use
a new C′ = C + Uobs. Legibility in this case will move the predictable
trajectory much closer to the obstacle in order to disambiguate be-
tween the two goals.
Local optima. There is no guarantee that Legibility is concave.
This is clear for the case of a non-convex C, where we often see differ-

generating legible motion 101

Figure 6.8: Legibility given a C that
accounts for obstacle avoidance. The
gray trajectory is the predictable tra-
jectory (minimizing C), and the orange
trajectories are obtained via legibility
optimization for 10, 102, 103, 104, and
105 iterations.

ent initializations lead to different local maxima.
In fact, even for quadratic VGs, P(GR|ξS→Q) is — aside from

scalar variations — a ratio of sums of Gaussian functions of the form
exp

(
−VG(ξ(t))

)
. Convergence to local optima is thus possible even

in this simple case.
As a side-effect, it is also possible that initializing the optimizer

with the most predictable trajectory leads to convergence to a local
maxima.

Figure 6.9: Legibility is dependent on
the initialization.

6.2 Trust Region Constraint

Automating the generation of legible motion led us to a surprising
observation: in some cases, by optimizing the legibility functional, one
can become arbitrarily unpredictable.

Proof: Our gradient derivation in (6.8) enables us to construct cases
in which this occurs. In a two-goal case like in Fig. 6.1, with our
example C (Eq. 3.7), the gradient for each trajectory configuration
points in the direction GR − GO and has positive magnitude ev-
erywhere but at ∞, where C[ξ] = ∞. Fig. 6.10 (red) plots C across
iterations. �

The reason for this peculiarity is that the model for how ob-
servers make inferences in Eq. 3.11 fails to capture how humans make
inferences in highly unpredictable situations. In reality, observers might
get confused by the robot’s behavior and stop reasoning about the
robot’s possible goals the way the model assumes they would —
comparing the sub-optimality of its actions with respect to each of
them. Instead, they might start believing that the robot is malfunc-
tioning 1 or that it is not pursuing any of the goals — a “something 1 E. Short, J. Hart, M. Vu, and B. Scas-

sellati. No fair!! an interaction with a
cheating robot. 2010

else” hypothesis that is supported by our user studies in Section 6.3,
which show that this belief significantly increases at higher C costs.

This complexity of action interpretation in humans, which is dif-
ficult to capture in a goal prediction model, can significantly affect
the legibility of the generated trajectories in practice. Optimizing the

102 legible robot motion planning

S

GR	

GO	

!=160"!=80"!=40"!=20"!=10"

0 200 400 600 800 10000

50

100

Iteration Number

C !

Figure 6.10: The expected (or pre-
dictable) trajectory in gray, and the
legible trajectories for different trust
region sizes in orange. On the right, the
cost C over the iterations in the uncon-
strained case (red) and constrained case
(green).

legibility score outside of a certain threshold for predictability can ac-
tually lower the legibility of the motion as measured with real users
(as it does in our study in Section 6.3.2). Unpredictability above a
certain level can also be detrimental to the collaboration process in
general [8, 95, 167].

We propose to address these issues by only allowing optimiza-
tion of legibility where the model holds, i.e., where predictability is
sufficiently high. We call this a “trust region” of predictability — a
constraint that bounds the domain of trajectories, but that does so
w.r.t. the cost functional C, resulting in C[ξ] ≤ β:

By constraining C, we constrain how
large the probability of the “something
else” hypothesis is allowed to become:
a constraint on the trajectory imposes
a constraint on any snippet of the
ongoing trajectory, which, along with
the prior value on “something else”,
induce a constraint on the probability
mass of this hypothesis.

The legibility model can only be trusted inside this trust region.

The parameter β, as our study will show, is identifiable by its effect
on legibility as measured with users — the point at which further
optimization of the legibility functional makes the trajectory less
legible in practice.

We thus define a trust region of predictability, constraining the tra-
jectory to stay below a maximum cost in C during the optimization:

This is the case of no obstacle avoid-
ance. With obstacles, replace Legbility

with U = −Legibility + αUobs.

ξi+1 = arg max
ξ

Legibility[ξi] +∇Legibility
T(ξ − ξi)

− η

2
||ξ − ξi||2M

s.t. C[ξ] ≤ β (6.12)

To solve this, we proceed analogously to Section 4.2: we first lin-
earize the constraint, which now becomes ∇CT(ξ − ξi) + C[ξi] ≤ β.
The Lagrangian is

L[ξ, λ] = Legibility[ξi] + ∇̄Legibility
T(ξ − ξi) (6.13)

− η

2
||ξ − ξi||2A + λ(β−∇CT(ξ − ξi)− C[ξi])

generating legible motion 103

with the following KKT conditions:

∇Legibility− ηA(ξ − ξi)− ∇̄Cλ = 0 (6.14)

λ(β−∇CT(ξ − ξi)− C[ξi]) = 0 (6.15)

λ ≥ 0 (6.16)

C[ξ] ≤ β (6.17)

Inactive constraint: λ = 0 and

ξi+1 = ξi +
1
η

A−1∇Legibility (6.18)

Active constraint: The constraint becomes an equality constraint
on the trajectory, for which the derivation for ξi+1 is an instance of
Eq. 4.16. From (6.14) we get

ξi+1 = ξi +
1
η

A−1 (∇Legibility− λ∇C)︸ ︷︷ ︸
∇(Legibility− λC)

(6.19)

Substituting in (6.15) to get the value for λ and using (6.14) again, we

This is the functional gradient of
Legibility with an additional (linear)
regularizer λC penalizing unpredictability.

obtain a new update rule:

ξi+1 = ξi +
1
η

A−1∇Legibility−

1
η

A−1∇C(∇CT A−1∇C)−1∇CT A−1∇Legibility

︸ ︷︷ ︸
projection on ∇CT(ξ − ξi) = 0

−

A−1∇C(∇CT A−1∇C)−1(C[ξi]− β)︸ ︷︷ ︸
offset correction to ∇CT(ξ − ξi) + C[ξi] = β

(6.20)

Fig. 6.10 shows the outcome of the optimization for various β

values. In what follows, we discuss what effect β has on the legibility
of the trajectory in practice, as measured through users observing the
robot’s motion.

6.3 From Theory to Users

Legibility is intrinsically a property that depends on the observer: a
real user. In this section, we test our legibility motion planner, as well
as our theoretical notion of a trust region, on users observing motion.
If our assumptions are true, then by varying β ∈ [βmin, βmax], we ex-
pect to find that an intermediate value β∗ produces the most legible
result: much lower than β∗ and the trajectory does not depart pre-
dictability enough to convey intent, much higher and the trajectory
becomes too unpredictable, confusing the users and thus actually
having a negative impact on legibility.

104 legible robot motion planning

6.3.1 Main Experiment

Hypotheses.
H1 The size of the trust region, β, has a significant effect on legibility.
H2 Legibility will significantly increase with β at first, but start decreas-

ing at some large enough β.
Manipulated Variables. We manipulated β, selecting values that
grow geometrically (with scalar 2) starting at 10 and ending at 320, a
value we considered high enough to either support or contradict the
expected effect. We also tested β = minξ C[ξ], which allows for no
additional legibility and thus produces the predictable trajectory (we
denote this as β = 0 for simplicity). We created optimal trajectories
for each β in the scene from Fig. 6.11: a point robot reaching for one
of two goals. (a) Before

(b) After
Figure 6.11: We measure legibility by
measuring at what time point along the
trajectory users feel confident enough
to provide a goal prediction, as well as
whether the prediction is correct.

Dependent Measures. We measured the legibility of the seven trajec-
tories. Our measurement method follows Section 3.4: we showed the
users a video of the trajectory, and asked them to stop the video as
soon as they felt confident in their prediction of which goal the robot
is headed toward (Fig. 6.11). We recorded their goal prediction and
the time from the start of the video to the point where they stopped
it, and combined the two into a single metric based on the Guttman
score 2. Incorrect predictions received a score of 0, and correct ones

2 G.R. Bergersen, J.E. Hannay, D.I.K.
Sjoberg, T. Dyba, and A. Karahasanovic.
Inferring skill from tests of program-
ming performance: Combining time
and quality. In ESEM, 2011

received a linearly higher score when the response time was lower,
i.e., when they became confident in the correct prediction earlier. We
used slow videos (28s) to control for response time effects.
Subject Allocation. We chose a between-subjects design in order
to not bias the users with trajectories from previous conditions. We
recruited 320 participants through Amazon’s Mechanical Turk ser-
vice, and took several measures to ensure reliability of the results. All
participants were located in the USA to avoid language barriers, and
they all had an approval rate of over 95%. We asked all participants
a control question that tested their attention to the task, and elimi-
nated data associated with wrong answers to this question, as well as
incomplete data, resulting in a total of 297 samples.
Analysis. An ANOVA using β as a factor supported H1, showing
that the factor had a significant effect on legibility (F(6, 290) = 12.57,
p < 0.001). Fig. 6.12(left) shows the means and standard errors for
each condition.

An all-pairs post-hoc analysis with Tukey corrections for multiple
comparisons revealed that all trajectories with β ≥ 20 were signifi-
cantly more legible than the predictable trajectory (β = 0), all with
p ≤ 0.001, the maximum being reached at β = 40 This supports the
first part of H2, that legibility significantly increases with β at first:
there is no practical need to become more unpredictable beyond this point.

Legibility did significantly increase with
β at first, but there was no significant
decrease after β∗.

generating legible motion 105

3!
3.5!

4!
4.5!

5!
5.5!

6!
6.5!

0! 40! 320!

Ra
tin

g!

! !

Confidence in Prediction!

0.8!

0.85!

0.9!

0.95!

1!

0! 40! 320!

Su
cc

es
s R

at
e!

! !

Success Rate!

1!

2!

3!

4!

5!

6!

0! 40! 320!

Ra
tin

g!

! !

Belief in "Neither Goal"!

15!
17!
19!
21!
23!
25!
27!

0! 10! 20! 40! 80! 160! 320!

Le
gi

bi
lty

 S
co

re
!

!"

Score w. Self-Chosen Times!

* * * *

Figure 6.12: Left: The legibility score for
all 7 conditions in our main experiment:
as the trust region grows, the trajectory
becomes more legible. However, beyond
a certain trust region size (β = 40), we
see no added benefit of legibility. Right:
In a follow-up study, we showed users
the entire first half of the trajectories,
and asked them to predict the goal,
rate their confidence, as well as their
belief that the robot is heading towards
neither goal. The results reinforce the
need for a trust region.

The maximum mean legibility was the trajectory with β = 40.
Beyond this value, the mean legibility stopped increasing. Contrary
to our expectation, it did not significantly decrease. In fact, the differ-
ence in score between β = 40 and β = 320 is in fact significantly less
than 2.81 (t(84) = 1.67, p = 0.05). At a first glance, the robot’s overly
unpredictable behavior seems to not have caused any confusion as to
what its intent was.

Analyzing the score histograms (Fig. 6.13) for different β values,
we observed that for the hight βs, users did not stop the trajectory
in the middle: the guessed the goal in the beginning, or waited until
the end. The consequence is that our legibility measure failed to capture
whether the mid-part of the trajectory becomes illegible. Thus, we ran a
follow-up study to verify that legibility in this region does decrease
at β = 320 as compared to our β∗ = 40.

6.3.2 Follow-Up Study

Our follow-up study was designed to investigate legibility during
the middle of the trajectories. The setup was the same, but rather
than allowing the users to set the time at which they provide an
answer, we fixed the time and instead asked them for a prediction
and a rating of their confidence on a Likert scale from 1 to 7. We
hypothesize that in this case, the users’ confidence (aggregated with
success rate such that a wrong prediction with high confidence is
treated negatively) will align with our H2: it will be higher for β = 40
than for β = 320.

We ran a follow-up study to test leg-
ibility at a fixed time point, rather
than at the point where each user feels
confident as we did before.

We conducted this study with 90 users. Fig. 6.12 plots the confi-
dences and success rates, showing that they are higher for β = 40
than they are for both of the extremes, 0 and 320. An ANOVA con-
firmed that the confidence effect was significant (F(2, 84) = 3.64,
p = 0.03). The post-hoc analysis confirmed that β = 40 had signifi-
cantly higher confidence t(57) = 2.43, p = 0.45. Legibility did decrease for β > β∗, with

participants starting to infer a “something
else” hypothesis.

We also asked the users to what extent they believed that the
robot was going for neither of the goals depicted in the scene (also
Fig. 6.12). In an analogous analysis, we found that users in the β = 40

106 legible robot motion planning

Legibility Score Legibility Score Legibility Score

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Histogram for β = 0 Histogram for β = 40 Histogram for β = 320

Figure 6.13: The distribution of scores
for three of the conditions. With a very
large trust region, even though the
legibility score does not significantly
decrease, the users either infer the goal
very quickly, or they wait until the end
of the trajectory, suggesting a legibility
issue with the middle portion of the
trajectory.

condition believed this significantly less than users in the β = 320
condition (t(57) = 5.7, p < 0.001).

In summary, the results support the existence of a trust region of
expectation within which legibility optimization can make trajectories signif-
icantly more legible to novice users. Outside of this trust region, being
more legible w.r.t. Legibility an impractical quest, because it no
longer improves legibility in practice. Furthermore, the unpredictabil-
ity of the trajectory can actually confuse the observer enough that
they can no longer accurately and confidently predict the goal, and
perhaps even doubt that they have the right understanding of how
the robot behaves. They start believing in a "neither goal" option that
is not present in the scene. Indeed, the legibility formalism can only be
trusted within this trust region.

Limitations. The need for a trust region is limiting. First, it only
approximates the true objective of drawing Bayesian inference on
the “something else hypothesis”. Second, even if it were an exact
inference, it would still depend on a parameter (β, or the prior on the
actual goals in the scene) which needs to be tuned or learned.

Furthermore, there are limitations to how legible the robot can be.
As scenes become more and more complex, optimizing for legibility
starts having little advantage over being predictable. On the positive
side, our formalism can quantify how legible the robot can be in any
given task, and even enable sequencing the goals in the most legible
way.

Additionally, as we saw in Section 5.3, an observer’s expectations
change over time: C changes, which in turns changes Legibility.
Further analysis is needed to understand these effects.

generating legible motion 107

6.4 Chapter Summary
legibility optimization

↓

exaggeration naturally emerges

↓

trust region constrains
over-exaggeration

↓

user study

In this chapter, we introduced a functional gradient descent optimiza-
tion algorithm for generating legible motion. Strategies from anima-
tion, like exaggeration, emerged out of the optimization without the
need to pre-specify them. We also showed that the optimization can
be unbounded, and that a trust region constraint is useful in practice
for enabling robots to best take advantage of the legibility formalism.

7
User Study on Physical Collaboration

Impact on Interaction!

So far, our user studies tested whether the robot can produce motion
that is more predictable or more legible. Here, we put these plan-
ners, along with a functional motion planner, in the context of a real
physical collaboration in order to test whether the predictability and
legibility improvements ultimately affect the collaboration fluency.

We use a task that requires coordinating [156] with the robot (by in-
ferring its goals and performing complementary actions), and study
how the choice of a planner affects the fluency of the collaboration
through both objective and subjective measures inspired by prior
work on fluency 1.

1 G Hoffman. Evaluating fluency in
human-robot collaboration. In HRI
Workshop on Human Robot Collaboration,
2013

We designed a study (N = 18) with objective measures, like the
time it takes for participants to infer their action based on the robot’s
goal (coordination time), how efficient they are at the task (total task
time), and how much they move while the robot is moving (concur-
rent motion), and subjective measures, like how participants perceive
the collaboration in terms of fluency, comfort, trust, etc.

7.1 Motions

We plan predictable and legible motion as described in Sections 5.1
and 6.1. We plan functional motion using a bi-directional RRT [135].

Functional. Fig. 7.2 (left) shows the end effector trace of a func-
tional motion plan to grasp the object on the right. Fig. 7.1 (left)
shows a snapshot of the motion, along with a participant’s reaction
to it. The motion is not efficient, puts the robot in unnatural config-
urations, and can at times be deceptive about the robot’s goal — it
might seem like the goal is the one of the left until the very end of
the motion.

Thus, we expect that people who collaborate with a robot that
produces such motion will not be comfortable, and will not be able to
coordinate with the robot because of the difficulty in inferring what

110 legible robot motion planning

Functional! Predictable! Legible!
still waiting, leaning back! still waiting! already started!

Figure 7.1: Snapshots from the three
types of motion at the same time
point along the trajectory. The robot
is reaching for the dark blue cup. The
functional motion is erratic and some-
what deceptive, and the participant
leans back and waits before committing
to a color. The predictable motion is
efficient, but ambiguous, and the partic-
ipant is still not willing to commit. The
legible motion makes the intent more
clear, and the participant is confident
enough to start the task.

the robot is doing.

Predictable. Fig. 7.2 (center) shows the end effector trace of a
predictable motion plan, a snapshot of which is in Fig. 7.1 (center).
This motion is efficient, but it can be ambiguous about the robot’s
goal, making it difficult to infer its intent. This is especially true in
the beginning of the motion, when the predictable trajectory to the
goal on the right is very similar to what the predictable trajectory to
the goal on the left would look like. The participant in Fig. 7.1 is still
waiting to be confident about the robot’s intent.

Because predictable motion matches what people expect, we
anticipate that people who collaborate with a robot that produces
predictable motion will be more comfortable than with functional
motion, and better able to coordinate with the robot. However, we
expect ambiguous situations to lead to difficulties in coordination,
caused by the inability to quickly infer the robot’s intent.

Functional! Predictable! Legible!

Figure 7.2: The end effector traces of the
three types of motion for one part of the
task.

Legible. Fig. 7.2 (right) shows the end effector trace of a legible
motion plan, a snapshot of which is in Fig. 7.1 (right). This motion is
less efficient than the predictable one (slightly more unpredictable),
but, by exaggerating the motion to the right, it more clearly conveys
that the actual goal is the one on the right. The participant in Fig. 7.1
already knows the robot’s goal and has started her part of the task in
response.

We expect that the benefit of clearly conveying intent will make
legible motion better for collaboration than both predictable and
functional motion. However, predictable motion is already much

user study on physical collaboration 111

better at conveying intent than functional motion is. It is also more
predictable (by definition) than legible motion. Together, this can
imply a more subtle difference when going from predictability to
legibility, than when going from functionality to predictability.

7.2 Hypotheses

As the predictions in the previous section suggest, we anticipate that
the type of motion the robot plans will affect the collaboration both
objectively and subjectively. We also expect it to affect participants’
perceptions of how predictable and legible the motions are.
H1 - Objective Collaboration Metrics. Motion type will positively objective effects

affect the collaboration objectively, with legible motion being the best, and
functional motion being the worst.
H2 - Perceptions of the Collaboration. Motion type will positively affect subjective effects

the participants’ perception of the collaboration, with legible motion being
the best, and functional motion being the worst.
H3 - Perceptions of Legibility and Predictability. Participants will perceptions about the motion itself

rate the legible motion as more legible than the predictable motion, and the
predictable motion as more legible than the functional motion. In contrast,
participants will rate the predictable motion as more predictable than the
legible motion, and the legible motion as more predictable than the functional
motion.

7.3 Experimental Design

To explore the effect of motion type on human-robot collaboration,
we conducted a counterbalanced within-subjects study in which
participants collaborated on a task with HERB.

7.3.1 Task

Challenges. Designing a human-robot collaborative task for com-
paring these types of motion was challenging for four reasons.

First, the success of a collaboration depends on more than the type Challenge 1: restrict task to motion.

of robot motion. Other errors during the collaboration can drastically
affect the findings. Therefore, the task needs to emphasize the role of
motion.

Second, since the study is not testing how the robot should re- Challenge 2: robot cannot react to the
user.spond to the human’s motion, the human’s action needs to depend

on the robot’s, but not vice-versa.
Third, the task must be repeatable: each participant must face Challenge 3: plan the same motions

across participants.the exact same motion planning situations. Different situations (e.g.,

112 legible robot motion planning

	

	

	

	

	

	

	

	

	

	

	

? 	

	

	

	

	

	

	

	

	

	

	

! 	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

#1!
unambiguous!

#2!
known!

#3!
ambiguous!

#4!
known!

Figure 7.3: For each tea order, the robot
starts reaching for one of the cups.
The participant infers the robot’s goal
and starts gathering the corresponding
ingredients. Both place their items on
the tray, and move on to the next order.
For order #3, the cups are further away
from the robot, and closer to each other,
making the situation ambiguous.

an object being at a slightly different location) can result in vastly
different motions in the case of the functional planner, which could
lead to a confound.

And fourth, the task should be as realistic as possible to the partic- Challenge 4: quasi-realistic scenario.

ipants, and simulate a real world collaboration.

To satisfy these four constraints, the task followed a cof-
feeshop scenario, in which participants work together with the robot
to collaboratively fulfill tea orders. The robot retrieves the correct
cup, and the participant gathers the ingredients. Key to this task
was that the selection of the ingredients depends on which cup the robot is The human’s task depends on what the

robot is doing.retrieving.
Fig. 7.3 shows a schematic of the task setup. There are four or-

ders total, and four different-colored cups. For each order, the robot
reaches for one of the cups, and the participant tries to infer the
correct color and starts getting the corresponding ingredients from
color-coded bins. This emphasizes the role of motion; it does not
require that the robot respond to the human; and it leads to a repeat-
able task because the location of the cups and the order in which the
robot picks them up can be predetermined.

The experiment required the participant to fulfill four orders con-
secutively instead of a single one because (1) this structure places
participants in a longer interaction, and (2) it gives participants a

user study on physical collaboration 113

chance to familiarize to the motion type. The four orders split into
groups of two, as in Fig. 7.3: participants know that the the first two
cups the robot reaches for are in the front, and the next two are in the
back. Thus, participants do not know the robot’s goal a-priori for the
first and third order.

The cups are placed such that the situation corresponding to the
first order is unambiguous — the cups are far enough apart that the
predictable motion should be sufficient to convey the goal early on.
The test situation is really the third order, which is ambiguous and
thus the best at identifying the differences among the three planners.
Furthermore, there is not a strong surprise factor, as each participant
will have already seen the robot fulfill two orders.

7.3.2 Procedure

Participants entered the lab and following informed consent, were
administered a pre-study questionnaire. Next, the experimenter
explained the collaborative task and informed participants that three
“programs” were being tested for the robot. They practiced the task
once, after which they performed the task three times, one with each
“program” (motion type). After each task, they took notes about the
collaboration with the robot. At the end, they were administered a
post-study questionnaire, and asked to describe the three programs
they had experienced.

7.3.3 Manipulated Variables

We manipulated a single variable, motion type, to be functional, pre-
dictable, or legible. Since the functional planner is nondeterministic,
committing to a particular trajectory for each situation is a nontriv-
ial decision. We did so by generating a small set of trajectories and
selecting the trajectory with the smallest legibility score. This em-
phasizes situations where functional motion accidentally leads to
deceptive paths, which can harm coordination.

We controlled for by imposing the same duration for all trajecto-
ries.

7.3.4 Participant Assignment Method

We recruited a total of 18 participants (5 males, 13 females, aged
18− 61, M = 29.17, SD = 12.50) from the local community. Only five
of the participants reported having a technical background.

The experiment used a within-subjects design because it enables
participants to compare the three motions. Participants were told that

114 legible robot motion planning

there were three different robot “programs” to avoid biasing them
towards explicitly looking for differences in the motion itself.

We fully counterbalanced the order of the conditions to control
for order effects. We used a practice round to eliminate some of the
variance introduced by the novelty effect. During the practice round,
the robot moved predictably, helping to set the predictable motion as
their expectation.

The three test rounds (with the three motion types) used the same
ordering of the cups, while the practice round used a different order-
ing. This way, participants would know that the ordering is not set,
while allowing for the ability to eliminate cup order as a confound.
A single participant noticed the repeating pattern, as detailed in the
Analysis section.

7.3.5 Dependent Measures

The measures capture the success of a collaboration in both objective
and subjective ways, and are based on Hoffman’s metrics for fluency
in human-robot collaborations [98].

Objective measures include the coordination time, the total task time,
and the concurrent motion time for the test order (order #3).

The coordination time is the amount of time from the moment coordination time: time to infer the goal

the robot starts moving, until the participant infers the correct goal
(either by declaring it aloud, which we ask participants to do, or by
starting to reach for the correct ingredients, whichever comes first).
The total task time is the amount of time, from the moment the robot task time: time to complete the human

part of the taskstarts moving, until the last ingredient touches the tray. Finally, the
concurrent motion time is the amount of time when both the human concurrent motion: time when the

human and robot are both movingand the robot are moving.
Table 7.1 shows the seven subjective scales that we used, together we used scales for fluency, trust,

robot contribution, capability, and
safety/confort, as well as closeness

with a few forced-choice questions. The fluency and trust scales were
used as-is from [98]. The robot contribution scale was shortened to
avoid asking participants too many questions. A subset of questions
were chosen related to capability, and extended questions were chosen
related to safety/comfort. We added additional questions were added
that were more appropriate to the physical setup (feeling safe next to
the robot, and being confident that the robot can avoid collisions with
them).

The closeness to the robot question from [163] (not shown in the
table) asked participants to select among five diagrams portraying
different levels of mental proximity to the robot during the task.

Additionally, participants answered forced-choice questions at the
end, about which program they were the fastest with, which program

user study on physical collaboration 115

Fluency α = .91
1.The human-robot team worked fluently together.
2.The robot contributed to the fluency of the team interaction .
Robot Contribution [shortened] α = .75
1.I had to carry the weight to make the human-robot team better.(r)
2.The robot contributed equally to the team performance.
3.The robot’s performance was an important contribution to the success of
the team.
Trust α = .91
1.I trusted the robot to do the right thing at the right time.
2.The robot was trustworthy.
3.The robot and I trust each other.
Safety/Comfort [extended] α = .83
1.I feel uncomfortable with the robot.(r)
2.I believe the robot likes me.
3.I feel safe working next to the robot. [new]
4.I am confident the robot will not hit me as it is moving. [new]
Capability α = .72
1.I am confident in the robot’s ability to help me.
2.The robot is intelligent.
Predictability [re-phrased for clarity] α = .86
1.If I were told what cup the robot was going to reach for ahead of time, I
would be able to correctly anticipate the robot’s reaching motion.
2.The robot’s reaching motion matched what I would have expected given the
cup it was reaching for.
3.The robot’s reaching motion was surprising.(r)
Legibility [new] α = .95
1.The robot can reason about how to make it easier for me to predict what it
is reaching for.
2.It was easy to predict what the robot was reaching for.
3.The robot moved in a manner that made its intention clear.
4.The robot was trying to move in a way that helped me figure out what it
was reaching for.
Forced-Choice Questions α = .91
1.Which program were you the fastest with?
2.Which program was the easiest?
3.Which program do you prefer?

Table 7.1: Subjective measures.

was easiest to work with, and which program they preferred.
The subjective measures also included perceived predictability

and legibility. The predictability scale was adapted from Section 5.3.
For this experiment, we added clarifications because the task was

116 legible robot motion planning

so focused on predicting goals that the word “predictable” was too
easily misunderstood in this context.

We devised a legibility scale to capture both how easy inferring
the goal is, as well as whether participants believe that the robot has
the ability to reason about making this inference easy, and whether it
was explicitly trying to do so.

In addition to these measures, we administered a pre-survey to
participants, asking demographics questions, as well as the "Big-5"
personality questionnaire, since personality type could potentially
correlate with how they experience the collaboration.

Finally, we adapted the service orientation attitude scale 2, measur- 2 Min Kyung Lee, Sara Kiesler, Jodi
Forlizzi, Siddhartha Srinivasa, and
Paul Rybski. Gracefully mitigating
breakdowns in robotic services. In HRI,
2010

ing whether participants have a relational or utilitarian orientation
toward a food service provider. The questions were modified to refer
to food preparation. We chose this measure because having a rela-
tional attitude could correlate with the way participants interpret
legibility, in particular whether they think the robot is purposefully
trying to help them infer the goal easier.

7.4 Analysis

Each of the 18 participants performed the task three times, with each
task consisting of four orders (trials). This led to a total of 216 trials,
out of which 54 were test trials (order #3), 54 were unambiguous
trials (order #1) that still had a coordination time, and the rest were
trials that did not need coordination.

7.4.1 H1 - Objective Measures

A repeated measures ANOVA on the coordination time (R2 = .67)
showed a significant effect for motion type (F(2, 51) = 52.06, p <

.0001), in line with H1. Robot motion does affect collaboration.

A post-hoc analysis with Tukey HSD supported H1, showing
that all three conditions were significantly different from each other,
with functional taking significantly longer than predictable (p <

.0001), and predictable taking significantly longer than legible (p =

.01). Legible motion resulted in a 33% decrease in coordination time
compared to predictable motion.3 3 These results are for the test trials.

There was no difference between
legibility and predictability on the
unambiguous trials (Fig. 7.3), since the
predictable motion is sufficiently legible
when there is little ambiguity.

Fig. 7.4 shows a scatter plot of the coordination time by the total
task time. As expected, legible motion < predictable motion < func-
tional motion in terms of coordination time, with functional motion
being better separated as a cluster. These differences propagate to the
total task time.

There is one outlier in the plot, for the functional motion (the blue
circle in the center left). This was a participant who noticed a repeat-

user study on physical collaboration 117

0!
2!
4!
6!
8!

10!
12!
14!

Coordination
Time!

Human Action
Time!

Total
Task Time!

Ti
m

e
(s

)!
Functional!
Predictable!
Legible!

5!

7!

9!

11!

13!

15!

0! 2! 4! 6! 8! 10!

To
ta

l T
as

k
Ti

m
e

(s
)!

Coordination Time (s)!

Functional!
Predictable!
Legible!

Figure 7.4: Findings for objective
measures.

ing pattern in the ordering of the cups, and achieved minimal coordi-
nation time as a result during his third condition, which happened to
be the functional condition.

A repeated measures ANOVA on the total task time (R2 = .56)
showed similar results. Motion type was significant (F(2, 51) = 32.59,
p < .0001), and the post-hoc showed a significant difference between
predictable and functional (p < .0001), partially supporting H1.

However, the difference between predictable and legible, although
trending in the expected direction (Fig. 7.4 bottom center), was no
longer significant (p = .27). Surprisingly, participants took slightly
longer to gather the ingredients in the legible condition (“human
action time”, Fig. 7.4 bottom center). Analysis of the video recordings
showed that even though some participants could infer the correct
cup earlier, they would hesitate a bit during the task, looking back at
the robot again to make sure they made the right prediction and thus
slowing down.

Surprisingly, participants did not wait for the robot to finish mov-
ing in the functional condition, as we had anticipated. Instead, par-
ticipants were comfortable enough to do the task while the robot
was still moving. Since the robot took longer than the participants to
achieve its part of the task, the concurrent motion time was equal to
the human action time and did not provide any additional insight.

Participants’ main complaint about the functional motion was that
it was difficult to coordinate with the robot, and not that they felt
unsafe. This could potentially be the result of placing participants in
a lab setting, leading to them over-trusting the robot.

Functional!

Legible!

Figure 7.5: Some of the participants
kept a larger distance to the robot dur-
ing the functional condition. However,
most participants were surprisingly
comfortable with the robot during this
condition.

Some of the participants did lean back more, as if to avoid the
robot arm, and also took a curved path to place the ingredients on
the tray (see Fig. 7.5 for an example). Many participants looked sur-
prised when the robot started moving. However, there were some
who remained completely unphased by the motion.

Because of the delay in inferring the correct cup, a participant
exclaimed “Wait for me!” as she was hurrying to catch up because

118 legible robot motion planning

0!

0.2!

0.4!

0.6!

0.8!

1!

User Choice!

Sc
or

e!
Functional!

Predictable!

Legible!

0!

1!

2!

3!

4!

5!

6!

7!

Fluency! Closeness*! Robot Contrib.! Trust! Predictability! Safety/Comfort! Capability! Legibility!

Li
ke

rt
 R

at
in

g!

Figure 7.6: Findings for subjective
measures. Closeness was on a 5-point
scale.of the long coordination time. Some of the participants would speed

up in gathering the ingredients in the functional condition, as if they
were trying to catch up to the robot and still finish the task before.
This was not the case in general, with some of the participants having
a longer action time than in the predictable condition, stopping more
to watch the robot, and hesitating in gathering the ingredients.

None of the participants complained about the robot being much
slower than them. This could be due to the bias of participating in a
lab experiment. However, as the “Wait for me!” complaint suggests,
participants seemed to actually mind the robot finishing its part of
the task before they finished theirs, emphasizing the importance of
synchronization in collaboration tasks.

Overall, supporting H1, legible motion had significantly lower
coordination time than predictable, which had significantly lower
coordination time than legible. 17 out of 18 participants had lower
coordination time with the legible motion compared to predictable,
and 15 had a lower total task time. As expected, the difference be-
tween legibility and predictability was more subtle than that between
predictability and pure functionality. Surprisingly, the robot moving
functionally did not affect concurrent motion time, and participants
were comfortable enough to move at the same time as the robot even
with functional motion.

7.4.2 H2 - Perceptions of the Collaboration

Table 7.1, which lists the subjective scales, also shows the internal
consistency of each scale, reported via Cronbach’s α. Most scales had
good to excellent consistency, the exceptions being capability and robot
contribution, which were acceptable. Scale items were combined into a
score and analyzed with repeated-measures ANOVAs. Fig. 7.6 plots
the results.

The score produced by the overall forced-choice questions was

user study on physical collaboration 119

significantly affected by the motion type (F(2, 51) = 13.59, p < .0001),
with the post-hoc revealing that legible motion had a significantly
higher score than predictable motion (p < .01), but predictable
motion was only marginally better than functional motion (p = .08).
12 out of the 18 participants preferred the legible motion.

All the Likert ratings showed a significant effect for motion type
as well, with post-hocs revealing that functional motion was signifi-
cantly lower rated than predictable and legible motion in every case
(with p < .0001, except for capability, details below). The legible mo-
tion tended to be rated higher than predictable, but those differences
were not significant. Fig. 7.6 summarizes these findings.

The biggest difference between predictability and legibility was in
fluency. Safety, on the other hand, was the same for both — this is not
surprising, given that legible motion is better at conveying intent, but
this does not necessarily lead to an increased feeling of safety.

Capability was high with the functional motion as well, though still
significantly lower than with predictable motion (p = .03).

With respect to additional participant measures, unsur-
prisingly, being extroverted significantly correlated to having a rela-
tion attitude towards a food preparation partner (r(16) = .51, p =

.03). Additionally, extroversion inversely correlated with preferring
the legible motion over the other two motion types (r(16) = −.49,
p = .04). However, extroversion did not correlate with whether or
not the legible motion worked objectively, i.e., achieved lower coor-
dination time. More research is needed to verify this result and un-
derstand why introverts might be more likely to appreciate a legible
robot.

Overall, participants significantly preferred the legible motion over
the predictable motion, and tended to prefer the predictable motion
over the functional. However, as with the objective measures, their
ratings of the collaboration suggest that legibility is a more subtle
improvement over predictability, compared to the improvement of
predictability over functionality.

7.4.3 H3 - Perceptions of Predictability and Legibility: Rationalization
of the Motion

Perceptions of Legibility. As predicted by H3, motion type
significantly affected the legibility rating (F(2, 51) = 67.56, p < .0001).
The post-hoc analysis did show a significant difference between
functional and predictable motion (p < .0001), but not between

120 legible robot motion planning

predictable and legible motion.
The biggest difference between predictable and legible motion was

in how easy participants thought it was to predict the robot’s goal
(question 2) (mean 6 vs. 6.61). Participants thought the legible motion
made goal inference easier. In contrast, participants did not think
that the robot was more capable of higher-order reasoning. Question
1 yielded almost no difference between predictability and legibility,
and had a lower overall mean (5.11 vs. 5.27).

Participants’ comments matched their ratings of legibility of
motion. Three participants described the functional motion as “ex-
aggerated”, with one of them commenting that “the arm motions
were so exaggerated that it was hard to see which cup he was going
to choose until just before”. Many of the participants referred to it as
less intent-expressive, commenting that “it made it almost impossible
to guess” or that it was “trickier”.

One participant said that the functional motion made her less
confident about the intent even for the orders where the cup was
predetermined (2nd and 4th): “even when I knew the cup it would
grab, I was still less confident than with the other programs”. Indeed,
we noticed some participants hesitate more during the functional
motion condition on these orders, while others remained completely
focused and ignored the erratic nature of the motion.

Interestingly, some participants attributed agency to the random
nature of the functional motion: “he was picking a cup at ran-
dom”, “the robot appeared to be searching before selecting a cup”,
“makes me think that it’s playing on purpose”, “it appeared that the
robot had a mind of its own, along with its own agenda”, the robot
“tricked me”. One participant actually rated the functional program
as the one they prefer overall, and a couple rated it as the most intel-
ligent of the three, possibly because of this attribution of agency.

Because the predictable and legible motions are more

similar to each other than they are to the functional motion, par-
ticipants tended to contrast the two in their descriptions of the three
programs.

Most participants described the predictable motion as somewhat
less intent-expressive than the legible: “slightly harder to recognize”,
“the direction it’s going in isn’t as clear as the (legible motion)”,
“slight uncertainty about the cup choice”, “not very clear as the (leg-
ible motion)”, “not as easy as (the legible motion); I had to wait a bit
after his hand moved to realize the cup he was going for”, “it was
had to determine which he’d pick”, “it was not as clear”.

In contrast, the descriptions for the legible motion referred to it as

user study on physical collaboration 121

“easier to predict [the cup]” and “very straightforward”, noting that
one “could clearly see the trajectory of its hand to the cup”. Some
of the participants recognized that the robot was altering the motion
in order to better convey intent. They thought that “the wide move-
ments made it easy to identify [the cup]”, “the angle was such that
you could discern”, and that “he starts out clearly moving towards
one direction”.

One of the participants even associated the beginning of the
robot’s legible motion to a communicative gesture: “it was almost
like the robot was pointing at the cup he was going for right before,
while he was moving his arm”.

Perceptions of Predictability. Motion type significantly af-
fected the predictability rating as well (F = 50.48, p < .0001). Counter
to H3, however, participants actually tended to rate the legible mo-
tion higher, and the ratings for predictability and legibility signifi-
cantly correlated (r(52) = .91, p < .0001). Note that, as shown by the second

follow-up study in Section 3.4, it is not
the case that users perceive the legible
motion as more predictable when they
do not collaborate, if they have seen an
example of predictable motion a-priori.
This was the case with our participants,
who have seen a practice round of
predictable motion. In such cases, 70%
of users perceive the predictable motion
as indeed more predictable when they
do not collaborate with the robot and
have no need for coordination.

It appears that when legibility works for someone and they can in-
fer the goal easier, they tend to rationalize it as the “natural” motion,
or even “direct” or “efficient”. In contrast, some participants refer to
the predictable motion as “inefficient”, and even as “going towards
the other cup initially”, which is inaccurate.

This rationalization may happen because of the importance of
inferring intent in the task. Legible motion is easier for collabora-
tion, and that makes participants believe it is what they would have
expected.

In summary, the results do largely support our hypotheses, with the
exception of how people perceive predictability: participants rational-
ized the legible motion as also being more predictable/efficient.

Limitations. This was a narrowly-scoped study, with a task cho-
sen to emphasize the role of motion. There are certainly many other
aspects of collaboration that are important, including (but not lim-
ited to) other channels of communication. Furthermore, to run well-
controlled study, we had a contrived task that is not as realistic as we
had hoped.

Our study also included a task with only four orders, whereas in
real situations humans and robots will have prolonged interactions
over many tasks. As a result, humans will adapt to robot motion and
the need for legibility will decrease to a certain extent. On the other
hand, even when motion is perfectly predictable, there are inherently
ambiguous situations. An example of this is human motion: although
a human’s motion is perfectly predictable to another human, we still

122 legible robot motion planning

change the way we move and use exaggeration in collaborations 4. 4 Giovanni Pezzulo, Francesco Don-
narumma, and Haris Dindo. Human
sensorimotor communication: a theory
of signaling in online social interactions.
PloS one, 8(11):e79876, 2013

7.5 Chapter Summary

We conducted a study that puts functional, predictable, and legible
motions in the context of a real physical collaboration. We found
that the legible motion was significantly better for collaboration than
the predictable motion, and the predictable motion was significantly
better than the functional motion. The difference between predictable
and legible was more subtle than the difference between predictable
and functional. legible > predictable >> functional

users preferred the legible motion

users perceived the legible motion also
as more predictable

The findings from this study suggest that functional motion is not
enough for collaborative tasks that require coordination, and that
the robot should take the collaborator’s expectations into account
when planning motion. Although this was a laboratory study with
an artificial task, the findings lead to interesting conjectures about
motion design for collaborative tasks.

One finding is that legibility is preferable to predictability in coor-
dination tasks, as it decreases coordination time, collaborators prefer
it overall, and rationalize it as more predictable despite it actually
being less efficient (and them not being able to anticipate it a-priori).
Furthermore, for quadratic costs C, legibility has no computational
overhead compared to predictability in planning time.

Furthermore, functional motion might be enough for tasks that do
not require coordination nor close proximity (such as repetitive tasks
like those one might encounter on a factory floor, or tasks that have
been carefully planned in advance, with separate and known roles).
Participants were surprisingly willing to move at the same time as
the robot, and mainly complained about not being able to coordinate.

Predictable motion seems to be best when coordination is not nec-
essary (or the situations are not ambiguous, making the predictable
motion legible enough), but when people work in close proximity to
the robot and would be uncomfortable with surprising motion.

8
Generalizations of Legibility

This chapter presents generalizations of the legibility formalism from
Chapter 3 to different situations, tasks, and channels of communica-
tion.

8.1 Viewpoint, Occlusion, Other DOFs

In this section, we focus on goal-directed legible motion beyond the
situations from Chapter 6.

Effects of Observer Viewpoint. So far, we have seen the robot Project led by Stefanos Nikolaidis.

exaggerate the motion to the left or right to convey the goal on the
left or on the right. This works very well when the observer is across
from the robot, like in Fig. 8.1 - Viewpoint 1. But the same trajectory
is no longer very legible when the observer is side by side with the
robot (Viewpoint 2).

Viewpoint 1! Viewpoint 2! Viewpoint 3!

Optimized for Viewpoint 2!
Optimized for Viewpoint 1! Figure 8.1: The red trajectory works

in viewpoint 1, but is not as legible
in viewpoint 2. The robot finds a
different way to exaggerate when the
observer has a different viewpoint
(green trajectory). From viewpoint 2,
it looks like the robot is exaggerating
more, but that is not the case (see green
trajectory in viewpoint 1). The two
trajectories have the same cost C, but
exaggerate in different directions (see
viewpoint 3).

By defining the cost C in the observer’s viewpoint (i.e., using
C(T(ξ)) instead of C(ξ), where T is a transformation that projects
the trajectory onto the camera plane of the observer), the robot can
generate a trajectory that is legible not to an omniscient observer, but
to that particular observer. The robot exaggerates the trajectory in a

124 legible robot motion planning

different direction for Viewpoint 2.

Effects of Occlusion. Sometimes, there are occlusions which Project led by Stefanos Nikolaidis.

prevent the observer from some portions of the trajectory. Our for-
malism treats portions that cannot be observer the same as portions
that happen in the future: we model the observer as integrating over
all possible options, as we did in Eq. 3.13. At a waypoint that is oc-
cluded, the observer does not know the current configuration ξ(t),
leading to an additional integral over the occluded region.

Figure 8.2: The robot does not exagger-
ate in the occluded region, so that it can
exaggerate more outside of it.

Taking occlusions into account, the robot comes up with interest-
ing strategies, like the one in Fig. 8.2: the robot “realizes” that it does
not need to exaggerate the trajectory while occluded, and it can ex-
aggerate more (given the same constraint β on C) when the observer
can actually perceive the trajectory.

Using other DOFs. Motion trajectories are not restricted to the
arm degrees of freedom. Legibility optimization can also be applied
over the hand DOFs, leading again to the robot moving its fingers
inefficiently, but in a way that better conveys intent, as in Figures 8.3
and 8.4.

Figure 8.3: The robot uses a smaller
than needed hand aperture to convey
that it will grasp the smaller object.

Figure 8.4: The robot uses a larger than
needed hand aperture to convey that it
will grasp the larger object.

We could have handcoded each of these strategies, but we did
not need to. The same formalism can generate the different motions
and strategies for all three contexts from above:

The mathematics of legibility leads to generalization.

8.2 Deception

The formalism for legible motion targets effective communication.
But effective communication, which clearly conveys truthful infor-
mation, has a natural counterpart: effective deception, which clearly
conveys false information, or hides information altogether.

Robotic deception has obvious applications in the military [53], but
its uses go far beyond. At its core, deception conveys intentionality
[213], and that the robot has a theory of mind for the deceived [27]
which it can use to manipulate their beliefs. It makes interactions
with robots more engaging, particularly during game scenarios [223,
213, 197].

Deceptive motion is an integral part of being an opponent in most
sports, like squash [74], soccer [201], or rugby [106]. It can also find
uses outside of competitions, such as tricking patients into exerting
more force during physical therapy [31].

Furthermore, a robot that can generate deceptive motion also has the
ability to quantify an accidental leakage of deception and therefore avoid

generalizations of legibility 125

deceiving accidentally. As the study in Chapter 7 revealed, users some-
times think of the functional and even the predictable motion as
being deceptive.

8.2.1 Deceptive Motion Strategies

We can use our legibility formalism to generate three different decep-
tion strategies, chosen based on our studies on how humans deceive
1: exaggeration (decoy), switching, and ambiguity. The resulting

1 A.D. Dragan, R. Holladay, and S.S.
Srinivasa. An analysis of deceptive
robot motion. In Robotics: Science and
Systems (R:SS), 2014motions are in Fig. 8.5.

(a) Exaggerating ! (b) Switching! (c) Ambiguous!

Figure 8.5: Strategies replicated by
the model: the typical exaggeration
towards another goal, as well as the
switching and ambiguous trajectories.
The trajectories in gray show the
optimization trace, starting from the
predictable trajectory.

Exaggeration/Decoy. The typical strategy that users demonstrated
in [58] is about selecting another goal, Gdecoy, and conveying that
through the motion. In our model, this translates to maximizing the
probability of that goal:

ξexaggerate = arg max
ξ

∫
P(Gdecoy|ξS→ξ(t))dt (8.1)

Solving this optimization problem leads to the trajectory in Fig. 8.5a.
This is the opposite of legibility: in a situation with two candidate
goals, this strategy is equivalent to minimizing Legibility.

Switching. The switching strategy alternates between the goals. If
σ : [0, 1] → G is a function mapping time to which goal to convey
at that time, then the switching trajectory translates in our model to
maximizing the probability of goal σ(t) at every time point:

ξswitching = arg max
ξ

∫
P(σ(t)|ξS→ξ(t))dt (8.2)

126 legible robot motion planning

0!
0.2!
0.4!
0.6!
0.8!

1!

0! 0.2! 0.4! 0.6! 0.8! 1!Pr
ob

ab
ili

ty
 o

f G
ac
tu
al
!

Time!

Exaggerating!
Switching!
Ambiguous!

Figure 8.6: The probability of the actual
goal along each model trajectory.

Unlike other strategies, this one depends on the choice of σ. Opti-
mizing for a default choice of σ (a piece-wise function alternating
between Gother and Gactual , σ(t) = Gother for t ∈ [0, .25) ∪ [.5, .75) and
σ(t) = Gactual for t ∈ [.25, .5) ∪ [.75, 1]) leads to the trajectory from
Fig. 8.5b, which alternates between conveying the goal on the right
and the one on the left.

Ambiguity. The ambiguous strategy keeps both goals as equally
likely as possible along the way, which translates to minimizing the
absolute difference between the probability of the top two goals:

ξambiguous = arg min
ξ

∫
|P(Gactual |ξS→ξ(t))

− P(Gother|ξS→ξ(t)))|dt (8.3)

Fig. 8.5c is the outcome of this optimization: it keeps both goals just
as likely until the end, when it commits to one. An alternate way of
reaching such a strategy is to maximize the entropy of the probability
distribution over all goals in the scene.

8.2.2 Comparing Strategies

Using this model, we see that different strategies can be thought of
as optimizing different objectives, which gives us insight into why
exaggeration was the most popular in the user demonstrations from
[58]: it is the most effective at reducing the probability of the actual goal
being inferred along the trajectory.

Theoretical comparison. Fig. 8.6 plots the P(Gactual) along the
way for each strategy: the lower this is, the more deceptive the strat-
egy. While the ambiguous strategy keeps the probability distribution
as close to 50− 50 as possible, and the switching strategy conveys
the actual goal for parts of the trajectory, the exaggerate (or decoy)

generalizations of legibility 127

(c) Ambiguous(a) Exaggerated (b) Switching 0

0.2

0.4

0.6

0.8

1

P
re

d
ic

ti
o

n
 I

n
co

rr
ec

tn
es

s

-7

-5

-3

-1

1

3

5

7

Exaggerated
Switching
Ambiguous

F
al

se
 P

re
d

ic
ti

o
n

 C
o

n
fi

d
en

ce

Figure 8.7: A comparison among the
three deception strategies: ambiguous,
exaggerated and switching.strategy biases the distribution toward the other goal as much as pos-

sible for the entire trajectory duration: the observer will not only be
wrong, but will be confidently wrong.

User study comparison. We designed an online user study that
compares the effectiveness of the three deception strategies from
Fig. 8.5: exaggerating, switching and ambiguous. From Fig. 8.6, we
predict that exaggerating is more deceptive than the other two:
Hypothesis. The exaggerating deceptive trajectory is more deceptive then
the switching and ambiguous strategies.
Manipulated Factors. We manipulated the deception strategy used
(with the 3 levels outlined above), and the time point at which the
trajectory is evaluated (with 6 time points equally spaced throughout
the trajectory). This yielded a total of 18 conditions.
Dependent Measures. We measured how deceptive the trajectories
are by measuring which goal the users believe the robot is going
toward as the trajectory is unfolding: the less correct the users are,
the more deceptive the motion.

For each trajectory and time point, we generated a video of the
robot (i.e., a disc on the screen) executing the trajectory up to that
time point. We measured incorrectness and confidence. We asked the
users to watch the video, predict which goal the robot is going to-
wards, and rate their confidence in the prediction on a 7 point Likert
scale. We treat the confidence as negative for correct predictions
(meaning the trajectory failed to deceive).2 2 This is analogous to our evaluation of

legibility from the follow-up study in
Section 6.3.

Participants. We used a between-subjects design again, and recruited
a total of 360 users (20 per condition) on Amazon’s Mechanical Turk.
We eliminated users who failed to answer a control question cor-
rectly, leading to 313 users (191 male, 122 female, aged 18− 65).

Analysis. An ANOVA for incorrectness showed a significant main
effect for deception strategy (F(2, 310) = 77.98, p < .0001), with the

128 legible robot motion planning

post-hoc revealing that all three strategies were significantly different
from each other (all with p < .0001). An ANOVA for false prediction
confidence yielded analogous findings.

As Fig. 8.7 shows, the exaggerating strategy was the most success-
ful at deception, followed by the ambiguous strategy. This supports
our hypothesis and the prediction of our model, since the exaggerat-
ing strategy assigns the lowest probability to the actual goal along the
way (as shown in Fig. 8.6).

Fig. 8.8 shows the correctness rate over time for the three strate-
gies. This experimental evaluation has similar results to the theo-
retical prediction from Fig. 8.6: the exaggerating strategy decreases
correctness over time, the switching strategy oscillates, and the am-
biguous strategy stays closer to .5.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

C
o

rr
ec

tn
es

s
R

at
e

Time

Exaggerated

Switching

Ambiguous

Figure 8.8: The correctness rate for the
three strategies as evaluated with users.

However, we do observe differences from the predicted values.
The exaggerating and ambiguous trajectories were more deceptive
than expected, and the switching was less deceptive. In particular for
switching, this could be an effect of the time point discretization we
selected.

8.2.3 Generalization to Arm Motion

In this section, we put deception to the test beyond 2 degrees of free-
dom, by applying the model to HERB’s 7DOF arm. Fig. 8.10 (top)
shows the resulting deceptive trajectory, along with a comparison
between its end effector trace and that of the predictable trajectory
(bottom left).

Both trajectories are planned s.t. they minimize cost and avoid
collisions. The difference is in the cost functional: the predictable tra-
jectory minimizes C, while the deceptive one minimizes Legibility

(implements Eq. 8.1).

Figure 8.9: Optimization trace for
deception.

Fig. 8.9 shows the optimization trace transforming the predictable
into the deceptive trajectory. After a few iterations, the trajectory

generalizations of legibility 129

-7!
-5!
-3!
-1!
1!
3!
5!
7!

Pr
ed

ic
tio

n
C

on
fid

en
ce
! Deceptive!

Predictable!

0!

0.2!

0.4!

0.6!

0.8!

1!

Pr
ed

ic
tio

n
In

co
rr

ec
tn

es
s!

Figure 8.10: Top: The deceptive trajec-
tory planned by the model. Bottom: a
comparison between this trajectory and
the predictable baseline.shape starts bending to make progress in the objective, but remains

on the constraint manifold imposed by the obstacle avoidance term.

To evaluate whether this trajectory is really deceptive,
we repeat our evaluation from the previous section, now with the
physical robot.
Manipulated Factors and Dependent Measures. We again manipu-
late trajectory and time-point, this time with only two levels for the
trajectory factor: the deceptive and predictable trajectories from
Fig. 8.10. This results in 6 conditions. We use the same dependent
measures as before.
Participants. For this study, we recruited 120 participants (20 per
condition; 80 male, 40 female, aged 19− 60) on Amazon’s Mechanical
Turk.
Hypothesis. The model deceptive trajectory is more deceptive than the
predictable baseline.
Analysis. In line with our hypothesis, a factorial ANOVA for cor-
rectness did reveal a significant main effect for trajectory (F(1, 117) =

150.81, p < .0001). No other effects were significant. Fig. 8.10 plots
the results.

The users who were deceived relied on the principle of rational
action 3, commenting that the robot’s initial motion towards the left 3 GyÃűrgy Gergely, Zoltan Nadasdy,

Gergely Csibra, and Szilvia Biro. Taking
the intentional stance at 12 months of
age. Cognition, 56(2):165 – 193, 1995

“seemed like an inefficient motion if the robot were reaching for the
other bottle”.

When the robot’s trajectory starts moving towards the other bottle,

130 legible robot motion planning

the users find a way to rationalize it: “I think that jerking to my left
was to adjust it arm to move right.”, or “It looks as if the robot is
going for the bottle on my right and just trying to get the correct
angle and hand opening”.

As for the features of the motion that people used to make their
decision, the direction of the motion and the proximity to the tar-
get were by far the most prevalent, though one user quoted hand
orientation as a feature as well.

Not all users were deceived, especially at the end. A few users
guessed correctly from the very beginning, making (false) argu-
ments about the robot’s kinematics, e.g., “he moved the arm forward
enough so that if he swung it round he could reach the bottle”.

8.2.4 Implications of Deception for HRI

Our studies thus far test that the robot can generate deceptive mo-
tion. Our final study is about what effect this has on the perceptions
and attitudes of people interacting with the robot.

Although no prior work has investigated deceptive motion, some
studies have looked into deceptive robot behavior during games. A
common pattern is that unless the behavior is very obviously decep-
tive, users tend to perceive being deceived as unintentional: an error
on the side of the robot [197, 223, 113]. In a taxonomy of robot decep-
tion, Shim et al. [195] associate physical deception with unintentional,
and behavioral deception with intentional. Deceptive motion could be
thought of as either of the two, leading to our main question for this
study:

Do people interpret deceptive motion as intentional?

And, if so, what implications does this have on how they perceive
the robot? Literature on the ethics of deception cautions about a drop
in trust [94, 15], while work investigating games with cheating robots
measures an increase in engagement [197, 223]. We use these as part
of our dependent measures in the study.

We also measure perceived intelligence, because deception is also
associated with the agent having a theory of mind about the deceived
[27].

Experimental Setup. We designed an experiment to test some of
the implications of deception during a game.
Procedure. The participants play a game against the robot, in which
they have to anticipate which bottle (of the two in front of them)
the robot will grab, and steal it from the robot, like in Fig. 8.11. The
faster they do this, the higher their score in the game.

generalizations of legibility 131

1!

2!

3!

4!

5!

6!

7!

Unintentional! Intentional!

A
dv

er
sa

ry
 R

at
in

g!

1!

2!

3!

4!

5!

6!

7!

Unintentional! Intentional!

Tr
us

t R
at

in
g! Before

Deception!

After
Deception!

* p = .01!

* p = .03!

* p = .01!

1!

2!

3!

4!

5!

6!

7!

Unintentional! Intentional!

In
te

lli
ge

nc
e

Ra
tin

g!

Figure 8.11: A snapshot of the decep-
tion game, along with the adversary
and trust ratings: after deception, users
rate the robot’s skill as an adversary
higher, and trust in the robot decreases.
The difference is larger when they
perceive the deception as intentional.

Before the actual game, in which the robot executes a deceptive
trajectory, they play two practice rounds (one for each bottle) in
which the robot moves predictably. These are meant to expose them
to how the robot can move, and get them to form a first impression
of the robot.

We chose to play two practice rounds instead of one for two rea-
sons: (1) to avoid changing the participants’ prior on what bottle is
next, and (2) to show participants that the robot can move directly
to either bottle, be it on the right or left. However, to still leave some
suspicion about how the robot can move, we translate the bottles to a
slightly different position for the deception round.
Dependent Measures. After the deception round, we first ask the
participants whether the robot’s motion made it seem (initially) like it
was going to grab the other bottle. If they say yes, then we ask them
whether they think that was intentional, and whether they think the
robot is reasoning about what bottle they will think it would pick up
(to test attribution of a theory of mind).

Both before and after the deception round, we ask participants to
rate, on a 7 point Likert scale, how intelligent, trustworthy, engaging,
and good at being an adversary the robot is.
Participants. We recruited 12 participants from the local community
(9 male, 3 female, aged 20− 44).
Hypothesis. The ratings for intelligence, engagement, and adversary in-
crease after deception, but trust drops.

Analysis. The users’ interpretation was surprisingly mixed, indicat-
ing that deception in motion can be subtle enough to be interpreted
as accidental.

Out of 12 users, 7 thought the robot was intentionally deceiv-
ing them, while 5 thought it was unintentional. Among those 5, 2
thought that the deceptive motion was hand-generated by a pro-
grammer, and not autonomously generated by the robot by reasoning
about their inference. The other 3 attributed the way the motion
looked to a necessity, rationalizing it based on how they thought the

132 legible robot motion planning

kinematics of the arm worked, e.g., “it went in that direction because
it had to stretch its arm out”.

Analyzing the data across all 12 users (Fig. 8.11), the rating of the
robot as an adversary increased significantly (paired t-test, t(11) =

4.60, p < .001), and so did the rating on how engaging the robot is
(t(11) = 2.45, p = .032), while the robot’s trustworthiness dropped
(t(11) = −3.42, p < .01). The intelligence rating had a positive trend
(increased by .75 on the scale), but it was not significant (p = .11).
With Bonferroni corrections for multiple comparisons, only adversary
and trust remain significant, possibly because of our small sample
size. Further studies with larger sample sizes would be needed to
investigate the full extent of the effect of deceptive motion on the
interaction.

We also analyzed the data split by whether deception was per-
ceived as intentional — this leads to even smaller sample sizes, mean-
ing these findings are very preliminary and should be interpreted as
such. We see larger differences in all metrics in the intentional case
compared to the unintentional. This is somewhat expected: if decep-
tion is attributed to an accident, it is not a reflection on the robot’s
qualities. The exception is the rating of the robot as an adversary:
both ratings increase significantly (Fig. 8.11), perhaps because even
when the deception was accidental, it was still effective at winning
the game.

There was one user whose trust did not drop, despite finding
deception intentional. He argued that the robot did nothing against
the rules. Other users, however, commented that even though the
robot played by the rules, they now know that it is capable of tricking
them and thus trust it less.

In summary, our legibility formalism can be used to generate decep-
tive robot motion. This motion is effective at deceiving, increases the
robot’s perceived capability, and lowers trust.

Limitations. Thus far, we have studied single-instance deception.
Iterated deception raises a game-theoretical aspect of the problem,
which we only began studying 4. 4 A.D. Dragan, R. Holladay, and S.S.

Srinivasa. From legibility to deception.
Autonomous Robotics, 2015

8.3 Pointing Gestures

The legibility formalism applies beyond goal-directed motion, to
other channels of communication. Communication can entail explicit
verbal statements [226, 90, 50] (which we discuss in Section 8.5), or
nonverbal cues through gaze [165, 3] or gestures [83, 151, 190, 191].

Among these, here we focus on spacial deixis — on producing

generalizations of legibility 133

pointing gestures. Regardless of language and culture, we rely on Project led by Rachel Holladay.

pointing to refer to objects in daily interactions [124], be it at the
grocery store, during a meeting, or at a restaurant.

Imagine pointing at one of the objects on a table. This pointing
configuration has to accomplish two tasks: (1) it has to convey to
the observer that you are pointing at the goal object, and (2) it has to
convey that you are not pointing at any other object.

Myopically deciding on a pointing configuration that ignores this
second task can lead to the situation in Fig. 8.12(top), where even
though the robot’s pointer is directly aligned with the further bottle,
it is unclear to an observer which of two objects is the goal. It is the
second task, of not conveying other goals, that ensures the clarity —
or legibility — of the pointing gesture.

The problem of generating pointing configurations has been
studied in robotics as an inverse kinematics problem of aligning an
axis with a target point [217], or a visually-guided alignment task
[151]. Here, we explicitly focus on finding an axis that will make
the target object most clear, analogously to work on legible motion
[66, 67, 211, 83, 20, 8] or handovers [153].

Legible pointing has been a focus in the computer graphics com-
munity [230]. There, it is possible to go beyond the physical con-
straints of robots and augment a character’s configuration with vir-
tual features, such as extending the character’s arm to the goal object
[75], or visually highlighting the object [97]. Here, we focus on legible
pointing while constrained by the physical world.

Figure 8.12: Top: An efficient pointing
configuration that fails to clearly convey
to an observer that the goal is the
further bottle. Bottom: Its less efficient,
but more legible counterpart, which
makes the goal clear.

If the robot in Fig. 8.12 had a laser ray going out of its index
finger and landing on the target object, then both configurations
would be perfectly legible. In reality though, there is ambiguity
about the pointing direction. We do not have the accuracy of laser
pointers — not in forming pointing configurations, and definitely
not in observing them. What we have is more akin to a torch light,
shooting rays in a range of directions.

Starting with such a ray model, we introduce the cost function C
for pointing, and show that applying the legibility formalism to this
cost produces more legible pointing gestures.

8.3.1 The Cost C for Predictable Pointing

We begin by modeling pointing as the minimum of a cost function
based on rays that shoot out from the pointer and intersect the goal
objects, or get blocked by obstacles in the scene.

Formally, the robot is in a starting configuration, S ∈ Q, and needs

134 legible robot motion planning

to point at the goal object G within a set of objects G. The robot must
find a pointing configuration P ∈ Q. We model finding this pointer
as an optimization problem. G

𝜙𝜙(𝑃𝑃)
S

Figure 8.13: The ray model only takes
into account rays that hit the object,
weighing them more when they are
more aligned with the pointer.

The natural human end effector shape when pointing is to close all
but the index finger [89, 39], which serves as the pointer. We assume
the robot’s end effector is in some equivalent shape, as in Fig. 8.12.
Let φ(P) denote the transform of the pointer when the robot is in
configuration P.

We expect a good pointing configuration to satisfy the follow-
ing trivial properties: (1) the pointer must be directly oriented to-
wards the goal object; (2) there should be no obstacles in between the
pointer and the goal object.

Figure 8.14: Surface plot for CG .

Figure 8.15: Surface plot for
Legibility.

We design a cost function for pointing such that the minima sat-
isfy these properties, and deviating from them is more and more
expensive. To this end, we propose a ray model as in Fig. 8.13, where
ray vectors r shoot out from the pointer. Rays that do not contact the
goal object are assigned no weight. Rays that contact the goal object
are assigned a higher weight when they are more aligned with the
pointer φ(P):

RG(P) =
∫

δ(P, r, G)w(r)dr∫
w(r)dr

(8.4)

with w increasing with the dot product between the pointer and the
ray, and δ a function evaluating to 1 when the ray at angle r intersects
the goal object, and 0 otherwise.

However, simply accounting for the ray intersections does not tell
the whole story. As the pointer φ(P) moves closer the the goal G,
more rays intersect and therefore RG increases. This would imply
that the best pointing position would be to be as close to the object as
possible to the point of touching it.

In contrast, humans observing agents tend to apply the principle
of rational action, expecting them to take efficient actions to achieve
their goals [78]. In the case of pointing, this implies we expect robots
to not deviate too much from their starting configuration. Thus, we
model the cost of a pointing configuration as the trade-off between a
high reward RG and moving the minimal distance from the start:

CG(P) = (1− RG(P)) +
λ

M
||S− P||2 (8.5)

with
M = max

p∈Q
||S− p||2 (8.6)

Fig. 8.14 plots this cost for all positions in a 2D grid, assuming the
direction of the pointer is aligned with the goal object (in green).
There is a large increase in cost around the other object (in red),

generalizations of legibility 135

because this objects starts blocking the rays when the pointer is in
those positions.

8.3.2 Legible Pointing

As with goal-directed motion, let

P(P|G) ∝ e−CG(P) (8.7)

and use that to compute

Legibity(P) = P(G|P) = e−CG(P)

∑g∈G e−Cg(P)
(8.8) Very importantly, this normalizes over

the set of candidate objects.

Fig. 8.15 shows this probability (Legibility).

Figure 8.16: Legibility is different from
the ray model because it accounts for
the probability that will be assigned to
the other objects. In this example, both
pointers are equally good according
to the ray model, because the other
object does not occlude either pointer.
However, the pointer in right the
right image is more legible. We put
this to the test in practice in our last
experiment.

Difference from CG . A main implication of optimizing for legi-
bility is that the distance from the starting configuration S becomes
inconsequential: P(G|P) does not depend on the distance to S.

Proof: P(G|P) = e−CG(P)

∑g∈G e−Cg(P) ⇒ P(G|P) = e−(1−RG(P))+ λ
M ||S−P||2

∑g∈G e−(1−Rg(P))+ λ
M ||S−P||2 ⇒

P(G|P) = e−(1−RG(P))

∑g∈G e−(1−Rg(P)) �

This happens because the purpose of legibility is to find the abso-
lute clearest pointing configuration, even if that requires more effort:
legibility will spare no expense in making the goal object clear.

As a result, the optimal pointing configuration is different from
the optimum with respect to CG.

Difference from RG . Because legibility incorporates the proba-
bility of the other potential goals in the scene, the resulting pointing
configuration is also different from simply using the ray model only,
RG. We create an illustrative example in Fig. 8.16, where we constrain
the position of the pointer to a fixed distance to the goal object.

The figure shows two different pointers. They both have the same
ray value RG, because in both cases the other object does not block
any rays that would normally hit the goal.

However, the pointer in the left image is much less legible because
it does not account for the probability an observer would assign to
the other object. In contrast, the pointer on the right is the result for
optimizing LG, and makes the intended goal much more clear.

8.3.3 From Theory to Users

Experimental Design. Our study compares how clearly a pointing
configuration conveys its goal object for the cost and legibility opti-

136 legible robot motion planning

mizations, testing our model’s prediction that maximizing legibility
will be more effective than minimizing cost.
Manipulated Factors: We manipulate legibility — whether the point-
ing is generated by minimizing the cost CG from (8.5) or by maximiz-
ing the legibility score LG from (8.8). For efficiency, we perform the
optimization in a restricted space of pointers, where the pointer is
constrained to point directly at the goal object (we explore effects of
orientation exaggeration in a side study), and the optimization over
position happens in the 2D plane, constrained by the robot’s arm
reachability.

Figure 8.17: The four experimental
conditions for our main study, which
manipulates legibility and observer
viewpoint. From top to bottom: Cost
View 1, Legibility View 1, Cost View 2,
and Legibility View 2.

We also manipulate the viewpoint. The point of view of the ob-
server can change the perception of geometry. To control for this
potential confound, we test two different opposite view points, one
from the right of the robot and the other from the left.

We use a factorial design, leading to a total of four conditions,
shown in Fig. 8.17.
Dependent Measures: We measure how clearly the pointing config-
uration expresses its goal object (as opposed to other objects in the
scene).

We show the participants (an image of) the robot pointing, and
ask them to 1) select which of the two objects on the table the robot
is pointing at (the objects are labeled in the images) — we use this
to measure prediction correctness, and 2) rate their confidence on a
7-point Likert scale — we use this to measure correct prediction con-
fidence by computing a score equal to the confidence for correct pre-
dictions, and equal to the negative of the confidence for incorrect
prediction (i.e., we penalize being confidently wrong).

We also ask participants to rate how expected or natural the robot’s
pointing configuration is, on a 7-point Likert scale, since the cost
minimization was designed to better match the expectation of ef-
ficiency, while the legibility optimization was designed to be more
clear about which object is conveyed.
Hypotheses:

H1. Legibility positively affects prediction correctness and correct predic-
tion confidence.

H2. Legibility negatively affects expectedness.
Subject Allocation: We opted for a between-subjects design in order
to avoid biasing the participants. This is especially important because
all conditions have the same target object, and seeing one pointer
affects the prior over what the robot is pointing at.

We recruited 20 participants per condition (leading to a total of
80 participants) using Amazon’s Mechanical Turk. We imposed two
selection criteria for the participants: a high acceptance rate on their
previous work to avoid participants who are not carefully consider-

generalizations of legibility 137

ing the task, and a US location to avoid language barriers.

0	

0.2	

0.4	

0.6	

0.8	

1	

Pr

ed
ic

tio
n

Co
rre

ct
ne

ss
	

0	

1	

2	

3	

4	

5	

6	

7	

Co
rre

ct
 P

re
di

ct
io

n
Co

nfi
de

nc
e	

Cost	

Legibility	

0	

0.2	

0.4	

0.6	

0.8	

1	

Pr
ed

ic
tio

n
Co

rre
ct

ne
ss
	

0	

1	

2	

3	

4	

5	

6	

7	

Co
rre

ct
 P

re
di

ct
io

n
Co

nfi
de

nc
e	

View 1	

View 2	

Figure 8.18: Effects of legibility (top)
and viewpoint (bottom) on correct-
ness of predictions (left), and correct
prediction confidence (right).

Analysis. In line with our first hypothesis, a logistic regression on
prediction correctness with legibility and viewpoint as factors revealed a
significant main effect for legibility (Wald χ2(1, 80) = 12.68, p < .001):
legible pointing was indeed more legible (or clear) than minimizing the
pointing cost. The viewpoint factor was marginal (χ2(1, 80) = 2.86,
p = .09), with the first viewpoint leading to worse predictions.

With correct prediction confidence, the differences were all the more
clear. A factorial ANOVA also showed a significant main effect for
legibility (F(1, 76) = 21.86, p < .0001), and also one for viewpoint
(F(1, 76) = 4.85, p = 0.03). The interaction effect was only marginal
(F(1, 76) = 64.8, p = .057).

Fig. 8.18 plots the two measures for each factor. We see that legibil-
ity increase both measures, but increases the confidence score more,
and that it has a larger effect than the viewpoint. Our data also re-
vealed that legibility optimization is less susceptible to viewpoint changes
than cost optimization: for the legible pointing, the mean difference
between viewpoints for confidence is only 0.25, compared to 3.85 for
the cost minimization.

Looking at the rating for how expected or natural the pointing
configuration is, we found that the second hypothesis was only sup-
ported for one of the easier viewpoints (view 2). An ANOVA re-
vealed only a significant interaction effect (F(1, 76) = 12.8, p = .028),
with the Tukey HSD post-hoc analysis showing that for the second

138 legible robot motion planning

viewpoint (which led to large differences for the cost minimization
configuration), the cost minimization configuration was significantly
more expected than the legible configuration (p = .0446).

This was not true for the first viewpoint, where the cost mini-
mization rating was much lower than for the first viewpoint, despite
the actual configurations being identical. This shows the importance of
viewpoints: an expected/natural configuration from one viewpoint
can seem unnatural from a different viewpoint. Our conjecture is that
this happens because certain viewpoints deem the cost minimization
output too unclear.

In summary, we found that optimizing for legibility does make the
goal object of the pointer more clear in practice.

Limitations. A key limitation is the use of images as opposed to
in-person views of the robot: this was a logistical necessity for the
between-subjects design, but future work should follow up with a
smaller pool of in-person users, and include the full gesture from
the starting configuration to the pointing one. However, even using
images provided insight into the utility of legibility and the biases
introduced by changes in the viewpoint.

A second limitation is that because of the ray model, the legibility
gradient for pointing is not analytic, but requires numerical evalua-
tion. A faster approximation would be needed for real-time legibility
pointing optimization.

8.4 Assistive Teleoperation

Our legibility formalism includes a tractably-computable model of
how humans infer goals from ongoing trajectories.5 Here, we use the 5 Building on work in plan recognition

[37], cognitive science [16], psychology
[176], natural language understanding
[90], and perception of human action
[239].

same algorithm to enable the robot to infer the user’s goal from their
ongoing trajectory.

We analyze the context of assistive teleoperation. In direct teleoper-
ation, the user realizes their intent, for example grasping the bottle
in Fig. 8.12, by controlling the robot via an interface. Direct tele-
operation is limited by the inadequacies and noise of the interface,
making tasks, especially complex manipulation tasks, often tedious
and sometimes impossible to achieve. In assistive teleoperation, the
robot attempts to predict the user’s intent, and augments their input,
thus simplifying the task. Here, the robot faces two challenges when
assisting: 1) predicting what the user wants, which we do through
the legibility formalism, and 2) deciding how to use this prediction to
assist.

We contribute a principled analysis of assistive teleoperation. We

generalizations of legibility 139

Arbitration
(1-α)U+ αP

User Input
U

Robot Prediction
P

Robot Action

{G}	
 {G}	

P

{G}	

Feasible	
 U	
 range	

w/o	
 assistance	

Feasible	
 U	
 range	
 with	

assistance	

Figure 8.19: (Top) The user provides an
input U. The robot predicts their intent,
and assists them in achieving the task.
(Middle) Policy blending arbitrates
user input and robot prediction of
user intent. (Bottom) Policy blending
increases the range of feasible user
inputs (here, α = 0.5).

introduce policy blending, which formalizes assistance as an arbitra-
tion of two policies: the user’s input and the robot’s prediction of
the user’s intent. At any instant, given the input, U, and the pre-
diction, P, the robot combines them using a state-dependent arbi-
tration function α ∈ [0, 1] (Fig. 8.12(middle)). Policy blending with
accurate prediction has a strong corrective effect on the user input
(Fig. 8.12,bottom). Of course, the burden is on the robot to predict
accurately and arbitrate appropriately.

Despite the diversity of methods proposed for assistance, from the
robot completing the grasp when close to the goal [129], to virtual
fixtures for following paths [1], to potential fields towards the goal
[4], all methods can be seen as arbitrating user input and robot pre-
diction. This common lens for assistance enables us to analyze the
factors that affect its performance, and recommend design decisions
for arbitration.

Prior work (detailed in Section 8.4.1) compared more manual vs.
more autonomous assistance modes [155, 235, 122] with surprisingly
conflicting results in terms of what users prefer. Rather than using
autonomy as a factor, we introduce aggressiveness: arbitration should
be moderated by the robot’s confidence in the prediction, leading
to a spectrum from very timid to very aggressive assistance, from
small augmentation of user input even when confident to large aug-

140 legible robot motion planning

mentation even when unsure. Rather than analyzing the effect of
aggressiveness (or autonomy) alone on the performance of assistance,
we conduct a user study that analyzes how aggressiveness interacts
with new factors, like prediction correctness and task difficulty, in order
to help explain the seemingly contradictory findings from above.

8.4.1 Prior Work as Policy Blending

In 1963, Goertz [88] proposed manipulators for handling radioactive
material that are able to turn cranks based on imprecise operator
inputs, introducing one of the first instances of assistive teleopera-
tion. Since then, research on this topic has proposed a great variety
of methods for assistance, ranging from the robot having full control
over all or some aspect of the motion [187, 154, 49, 235, 122, 155, 51,
69], to taking control (or releasing it) at some trigger [129, 145, 194],
to never fully taking control [45, 4, 235, 155, 1]. For example, Debus
et al. [49] propose that the robot should be in full control of the ori-
entation of a cylinder while the user is inserting it into a socket. In
[129], the robot takes over to complete the grasp when close enough
to the target. Crandal et al. [45] propose to mix the user input with a
potential field in order to avoid obstacles.

Attempts to compare different modes of assistance are sometimes
contradictory. For example, You and Hauser [235] found that for a
complex motion planning problem in a simulated environment, users
preferred a fully autonomous mode, where they only clicked on
the desired goal, to more reactive modes of assistance. On the other
hand, Kim et al. [122] found that users preferred a manual mode and
not the autonomous one for manipulation tasks like object grasping.

Policy blending provides a unifying view of assistance, leading to
an analysis which helps conciliate these differences. Table 8.1 shows
how various methods proposed arbitrate user input and robot predic-
tion (or simply robot policy, in cases where intent is assumed to be
known). For example, potential field methods (e.g., [45, 4, 236]) that
help the user avoid obstacles become blends of the user input with
a policy obtained from the repulsive force field, under a constant ar-
bitration function that establishes a trade-off. Virtual fixture-based
methods (e.g., [155, 145, 1, 236]) that are commonly used to guide the
user along a predefined path become blends of the user input with a
policy that projects this input onto the path. The arbitration function
dictates the intensity of the fixture at every step, corresponding to a
normalized “stiffness/compliance” gain. However, the same frame-
work also allows for the less studied case in which the robot is able

generalizations of legibility 141

Method Prediction Arbitration

[187, 154, 49, 235, 122, 155, 144] no

[51, 69] predefined paths/behaviors

[45, 4, 235, 155] no

[236] predefined paths/behaviors

[129, 194, 148, 202] no

[145] predefined paths/behaviors

[1, 236] predefined paths/behaviors

[222] fixed environment, goals (2D) no

[239] fully flexible (goal+policy) (2D) no

Table 8.1: Assistive teleoperation and
intent prediction methods.

to generate a full policy for completing the task on its own, rather
than an attractive/repulsive force or a constraint (e.g., [129, 194]).
In this case, the arbitration is usually a switch from autonomous to
manual, although stages that trade off between the two (not fully
taking control but still correcting the user’s input) are also possible
[12]. Arbitration as a linear blend has also been proposed for un-
manned ground vehicles [12], and outside the teleoperation domain
for mediating between two human input channels [86].

Analyzing assistance based on how arbitration is done, together
new factors like prediction correctness and task difficulty, helps ex-
plain previously contradictory findings: our results show that aggres-
sive assistance is preferable on hard tasks, like the ones from [235],
where autonomy is significantly more efficient; opinions are split
on easier tasks, like the ones from [122], where the autonomous and
manual mode were comparable in terms of time to completion.

The same table shows how prior methods handle prediction of the
user’s intent. Aside from work that classifies which one of a prede-
fined set of paths or behaviors the user is currently engaging [51, 69],
most work assumes the robot has access to the user’s intent, e.g., that
it knows what object to grasp and how (except in [202], which deals
with time delays in ball catching by projecting the input forward in

142 legible robot motion planning

time using a minimum-jerk model). Predicting or recognizing intent
has received a lot of attention outside of the teleoperation domain,
dating back to high-level plan recognition [192]. Predicting intended
motion, however, is usually again limited to classifying behaviors, or
is done in low-dimensional spaces [222, 239]. In the following sec-
tion, which presents the building blocks of assistance, we present the
general prediction problem, along with simplifying assumptions that
make it tractable.

8.4.2 Arbitration

Given U and P, the robot must decide on what to do next. The ar-
bitration function α, which makes this decision, can depend on a
number of inputs, such as the distance to the goal or to the closest
object, or even a binary switch operated by the user. We propose a
simple principle: that arbitration must be moderated by how good
the prediction is.
Timid vs. Aggressive. In trading off between not over-assisting (pro-
viding unwanted assistance) and not under-assisting (failing to pro-
vide needed assistance), the arbitration lies on a spectrum: On the
one hand, the assistance could be very timid, with α taking small val-
ues even when the robot is confident in its prediction. On the other
hand, it could be very aggressive: α could take large values even
when the robot does not trust the predicted policy.
Inescapable Local Minima Do not Occur. In general, when arbi-
trating between two policies, we need to guarantee that inescapable
local minima do not occur. In our case, these are states at which the
arbitration results in the same state as at the previous time step, re-
gardless of the user input.
Theorem. Let Q be the current robot configuration. Denote the
prediction velocity as p = P − Q, and the user input velocity as
u = U − Q. Arbitration never leads to inescapable local minima, un-
less ∀u 6= 0, p = −ku for some k ≥ 0, and α = 1

k+1 (i.e., the policy is
always chosen to directly oppose the user’s input, and the arbitration
is computed adversarially, or p = 0 and α = 1 for all user inputs).

Proof: Assume that at time t, a local minima occurs in the arbitra-
tion, i.e., (1− α)(Q + u) + α(Q + p) = Q. Further assume that this
minima is inescapable, i.e., (1− α′)(Q + u′) + α′(Q + p′) = Q, ∀u′,
where p′ and α′ are the corresponding prediction and arbitration if u′

is the next user input. ⇔ (1− α′)u′ + α′p′ = 0, ∀u′.
Case 1: ∀u′ 6= 0, the corresponding α′ 6= 0⇒ p′ = − 1−α

α u′, ∀u′ 6= 0
⇒ p′ = −ku′ and α = 1

k+1 , with k ≥ 0 (since α ∈ [0, 1]) ∀u′ 6= 0.
Contradiction with the problem statement.

Case 2: ∃u′ 6= 0 s.t. the corresponding α′ = 0⇒ (1− 0)u′ + 0p′ = 0

generalizations of legibility 143

⇒ u′ = 0. Contradiction with u′ 6= 0.
⇒ ∃u′ s.t. (1− α′)(Q + u′) + α′(Q + p′) 6= Q, �
Therefore, with an adversarial exception, the user can always take

a next action that escapes a local minimum.
Evaluating Confidence. Earlier, we had proposed that the arbitration
should take into account how good the prediction is, i.e., a measure
of the confidence in the prediction, c, that correlates to prediction
correctness. One way to evaluate c is to assume that the closer the
predicted goal gets, the more likely it becomes that it is the correct
goal: c = max(0, 1− d

D), with d the distance to the goal and D some
threshold past which the confidence is 0. Alternately, confidence
can be defined as the probability assigned to the prediction. If a cost
function is assumed, the match between the user’s input and this cost
should also factor in. If a classifier is used for prediction, then such a
probability is obtained through calibration 6. 6 John C. Platt. Probabilistic outputs for

support vector machines and compar-
isons to regularized likelihood methods.
In Advances in Large Margin Classifiers,
1999

8.4.3 A Study on Assistance

Mathematically, arbitration can be any non-adversarial function of
the robot’s confidence in its prediction, from very timid to very ag-
gressive. But assistive teleoperation is fundamentally a human-robot
interaction task, and this interaction imposes additional require-
ments on arbitration: the robot must arbitrate in an efficient and
user-preferred way. Therefore, we embarked upon a user study that
analyzes the effect of the aggressiveness of arbitration on the perfor-
mance of assistance — an analysis that we believe must incorporate
other factors, like prediction correctness (users might not appreci-
ate assistance if the robot is wrong) and task difficulty (users might
appreciate assistance if the task is very hard for them).

Experimental Design. We tasked 8 users with teleoperating the
robot to grasp an object from a table, as in Fig. 8.19. There were al-
ways two graspable objects, and we gave the user, for every trial, the
farther of the two as goal. We implemented a whole-body interface
that tracks their skeleton (OpenNI, www.openni.org), yielding an
arm configuration which serves as the user input U. The robot makes
a prediction of the goal and the policy to it (that minimizes length
in configuration-space), leading to P, and combines the two via the
arbitration function α.
Hypotheses. We test the following two hypotheses:

1. H1. Prediction correctness, task difficulty, and aggressiveness of assis- Main Effects

tance each has a significant effect on task performance.

2. H2. Aggressive assistance performs better on hard tasks if the robot is Interaction Effects

144 legible robot motion planning

right, while the timid assistance performs better on easy task if the robot is
wrong.

Figure 8.20: Hard and Right Task

Figure 8.21: Hard and Wrong Task

Manipulated Variables. We manipulated prediction correctness by
using a simple, easy to manipulate goal prediction method: the am-
nesic prediction based on workspace distance, which always selects
the closest object. We setup wrong conditions at the limit of the robot
being wrong yet rectifiable. We place the intended object further,
guaranteeing wrong prediction until the user makes his preference
clear by providing an input U closer to the correct goal. We setup
right conditions by explicitly informing the robot of the user’s in-
tended goal.

We manipulated task difficulty by changing the location of the
two objects and placing the target object in an easily reachable lo-
cation (e.g., grasping the bottle in Fig. 8.21 makes an easy task) vs.
a location at the limit of the interface’s reachability (e.g., grasping
the box in Fig. 8.21 is a hard task). This leads to four types of tasks:
Easy&Right, Easy&Wrong, Hard&Right and Hard&Wrong.

Finally, we manipulated the aggressiveness of the assistance by
changing the arbitration function, and used the distance-based mea-
sure of confidence from Section 8.4.2. As the user makes progress
towards the predicted object, the confidence increases. We had two
assistance modes, shown in Fig. 8.22: the timid mode increases the as-
sistance with the confidence, but plateaus at a maximum value, never
fully taking charge. On the other hand, the aggressive mode eagerly
takes charge as soon as the confidence exceeds a threshold.

Figure 8.22: The arbitration function for
the timid and the aggressive assistance
modes. The aggressive mode reaches a
higher maximum value earlier.

Subject Allocation. We chose a within-subjects design, enabling
us to ask users to compare the timid and aggressive mode on each
task. Each of our 8 participants (all students, 4 males and 4 females)
executed both modes on each of the four types of tasks. To avoid
ordering effects, we used a balanced Latin square for the task order,
and balanced the order of the modes within each task.
Dependent Measures. We measure the performance of assistance
in two ways: the amount of time each user took to complete the task
under each condition, and each user’s preference for the timid vs. the
aggressive mode on each task type (on a 7 point Likert scale where
the two ends are the two choices). We expect the two measures to be
correlated: if an assistance mode is faster on a task, then the users
will also prefer it for that task. We also asked the users additional
questions for each condition, about how helpful the robot was, how
much its motion matched the intended motion, and how highly they
would rate the robot as a teammate.
Covariates. We identified the following confounds: the users’ initial
teleoperation skill, their rating of the robot without assistance, and
the learning effect. To control for these, users went though a training

generalizations of legibility 145

phase, teleoperating the robot without assistance. This partially elim-
inated the learning effect and gave us a baseline for their timing and
ratings. We used these as covariates, together with number of tasks
completed at any point — a measure of prior practice.

Figure 8.23: The results of the assistive
teleoperation user study.

Analysis. We analyze both the objective and subjective measures.
Teleoperation Timing. The average time per task was approxi-
mately 28s. We performed a factorial repeated-measures ANOVA
with Bonferroni corrections for multiple comparisons and a signifi-
cance threshold of p = 0.05, which resulted in a good fit of the data
(R2 = 0.66). In line with our first hypothesis, we found main ef-
fects for all three factors: hard tasks took 22.9s longer than easy ones
(F(1, 53) = 18.45, p < .001), tasks where the policy was wrong took
30.1s longer than when right (F(1, 53) = 31.88, p < .001), and the ag-

gressive mode took overall 19.4s longer than the timid (F(1, 53) = 13.2,
p = .001). We found a significant interaction effect between aggres-
siveness and correctness, showing that when wrong, being timid
is significantly better than being aggressive. This is confirmed in
Fig. 8.23, which compares the means and standard errors on each
task: the timid mode is better on both Easy&Wrong and Hard&Wrong.
The timid mode performed about the same on Easy&Right, and, as ex-
pected, worse on Hard&Right (the time taken for aggressive is smaller
than for timid for every user). Surprisingly, the interaction effect
among all factors was only marginally significant (F(1, 53) = 2.63,
p = .11). We believe that increasing our user pool would strengthen
this effect.

To conclude based on this regression that the timid mode is over-
all better would be misleading, because it would assume that the
robot is wrong in 50% of the tasks (in general, either by predicting
he wrong goal, or by computing a motion that, for example, col-

146 legible robot motion planning

lides with an unseen obstacle). Our data indicates that the aggressive
mode is overall more efficient if the robot is wrong in less than 16%
of the cases. However, efficiency is only part of the story: as the next
section points out, some users are more negatively affected than others by a
wrong robot policy.
User Preferences. Fig. 8.23 also shows the users’ preferences on
each task, which indeed correlated to the timing results (Pearson’s
r(30) = .66, p < .001). The outliers were users with stronger pref-
erences than the time difference would indicate. For example, some
users strongly preferred the timid mode on Hard&Wrong tasks, despite
the time difference not being as high as with other users. The oppo-
site happened on Hard&Right tasks, on which some users strongly
preferred the aggressive mode despite a small time difference, com-
menting that they appreciated the precision of the autonomy. On
Easy&Right tasks, the opinions were split and some users preferred
the timid mode despite a slightly longer time, motivating that they
felt more in control of the robot. Despite the other measures (helpful-
ness, ranking as a teammate, etc.) strongly correlating to the prefer-
ence rating (r(30) > .85, p < .001), they provided similar interesting
nuances. For example, the users that preferred the aggressive mode
on Easy&Right tasks because they liked having control of the robot
were willing to admit that the aggressive mode was more helpful.
On the other hand, we also encountered users that preferred the ag-
gressive mode, and even users that followed the robot’s motion while
aggressive, not realizing that they were not in control and finding
the motion of the robot to match their own very well (i.e., the pre-
dicted policy P matched what they intended, resulting in seamless
teleoperation).

In summary, although difference in timing is a good indicator of
the preference, it does not capture a user’s experience in its entirety.
First, some users exaggerate the difference in preferences. Second,
some users prefer the timid mode despite it being slightly less effi-
cient. Third, assistance shouldn’t just be quick — it should also be intent-
transparent. Our users commented that “Assistance is good if you can
tell that [the robot] is doing the right thing”.

8.5 Relation to Language

Tellex et al. 7 used the same underlying legibility formalism to make 7 Stefanie Tellex, Ross Knepper, Adrian
Li, Daniela Rus, and Nicholas Roy.
Asking for help using inverse semantics

natural language requests from a robot legible — easily understood
by a human.

In language, motions become utterances, and goals become ground-
ings. To speak legibly, the robot needs to maximize the probability

generalizations of legibility 147

that the listener will infer a desired grounding from the robot’s utter-
ance: Motion Language

trajectory ξ utterance Λ
goal G grounding Γ

max
Λ

P(Γ|Λ, φ)

with φ a correspondence vector mapping words to their groundings.
The predictability inference, P(Λ|Γ, φ), captures efficiency in

speech:
P(Λ|Γ, φ) ∝ P(φ|Λ, Γ) = ∏

i
P(φi|λi, γi1 , .., γik) This ignores constant terms, and

factorizes the probability using a
graphical model structure called a
grounding graph [212]. The product
prevents adding unnecessary words.

Maximizing for legibility uses this probability, but normalizes it
over the space of possible groundings as opposed to possible sen-
tences, taking into consideration what the listener might infer and
making sure to disambiguate the desired grounding from the rest:

max
Λ

P(φ|Λ, Γ)
∑Γ′ P(φ|Λ, Γ′)

The result is that the robot will say “Hand me the table leg” when
there is only one such option, but it will add clarifying adjectives that
best differentiate that leg from any other in the scene when necessary,
e.g., “Hand me the while table leg”, or “Hand me the table leg that is
on the couch”.

9
Final Words

The goal of this thesis was to integrate the notion of a human ob-
server, and in particular the inferences that he or she makes, into
motion planning. We focused on two complementary inferences that
are fundamental to goal-directed motion: “action-to-goal” and “goal-
to-action”, and formalized predictability and legibility of motion
based on them (Chapter 3).

We modeled predictability using the principle of rational action:
we assumed that the observer expects the robot to take the most
efficient motion to achieve its goal, and captured efficiency via a cost
functional over the space of trajectories. We mainly worked with
a simple assumption of what efficiency means to the observer, but
Chapter 5 also introduced ways of learning predictable motion from
demonstration, or familiarizing the observer with the robot’s own
notion of efficiency. However, customizing predictable motion to the
observer and taking advantage of the co-adaptation that will occur is
still an open area of research.

The cost function for predictability induced, though the principle
of maximum entropy, a probability density function over trajectories.
Bayesian inference starting with this density function (along with
a Laplace approximation for tractability) gave the robot a model of
how the observer infers its goal from its ongoing trajectory. This
model echoes techniques and findings in plan recognition, cognitive
science, natural language understanding, and perception of humans.
The exact same model enabled the robot to make the same inference
about a human during a collaborative task, so that it can then assist
the human in achieving the task more efficiently (Section 8.4.

Armed with such a model, the robot could then use trajectory op-
timization (Chapter 4) to find motions that are legible — that make
the observer infer the correct goal quickly and confidently (Chap-
ter 6). Techniques from animation that we typically need to hand-
code, such as exaggeration, naturally emerge out of this optimization.

Our user studies were two-fold. A first set of studies tested the

150 legible robot motion planning

model’s ability to generate legible motion, supporting our hypothesis
that legibility in practice increases within some trust region as the
theoretical legibility score improves. But we also tested what impact
legible motion has on collaborations.

When users collaborated with the robot on a physical task, pre-
dictable motion was significantly better than purely functional mo-
tion both objectively, as well as subjectively (as measured through
multi-item Likert scales for the fluency of the collaboration). Legible
motion was better than predictable motion, albeit the difference were
more subtle.

Participants rationalized the legible motion as more efficient, sug-
gesting that with legibility, robots can spend the same the same op-
timization effort (modulo convergence to local optima) as with pre-
dictable motion but improve efficiency and user perception. With
functional motion, participants mainly complained about coordina-
tion with the robot being difficult, and not about feeling unsafe.

Overall, our studies suggest that legibility can be useful when
robots collaborate, and that functional motion could be sufficient for
tasks where no coordination is required and the human and robot
don’t share the workspace. One-time tasks are especially well served
by legible motion, because the need for intent inference is highest. In
particular, one-time tasks with ambiguous scenes require legibility
for coordination. In contrast, repetitive tasks where the human would
apriori know the goal are well served by predictable motion when
the human and the robot interact in the same workspace, and by
functional motion when the workspaces are different.

Finally, we have also seen that even though we designed the for-
malism for goal-directed motion, it is applicable across different tasks
and channels of communication, including gestures and even lan-
guage (Chapter 8).

However, these final words are anything but final. There
are so many aspects of legible motion that remain open challenges,
including handling continuous goal regions as opposed to a set of
discrete goal configurations, handling multiple observers, analyzing
the interaction between different channels of communication (and
deciding on the best one to use for a give task), and studying how the
communication should evolve and adapt over the course of repeated
interactions.

Furthermore, goal-to-action and action-to-goal inferences, albeit
important, are by no means the only inferences that humans make
when observing motion. We infer properties of the agent, of the
task, of the current behavior. This thesis is merely one step towards
autonomously generating motion that is mindful of and that can
influence these inferences.

List of Figures

1.1 Thesis overview. We introduce a formalism for robot motion plan-
ning with a human observer. We formalize predictability and leg-
ibility as properties of motion that enable the observer’s goal-to-action
and action-to-goal inferences: we first introduce mathematical mea-
sures for these properties that are tractable to evaluate, and then use
a combination of trajectory optimization and learning techniques to
autonomously generate predictable and legible motion. We also show
generalizations to deception, pointing gestures, and assistive tele-
operation. Finally, we evaluate the impact of this motion in physi-
cal interactions. 9

3.1 Functional motion. 21

3.2 Consistent motion. 22

3.3 Predictable motion. 22

3.4 Legible motion. 23

3.5 We model the observer’s expectation as the optimization of a cost
function C (above). The observer identifies based on C the most prob-
able goal given the robot’s motion so far (below). 25

3.6 ξS→Q in black, examples of ξQ→G in green, and further examples of
ξS→G in orange. Trajectories more costly w.r.t. C are less probable.

26

3.7 The end effector trace for the HERB predictable (gray) and legible
(orange) trajectories. 28

3.8 We use three characters: a point robot (dot on the screen), a bi-manual
manipulator, and a human actor. 28

3.9 The trajectories for each character. 29

3.10 Ratings (on Likert 1-7) of how much the trajectory matched the one
the subject expected. 31

3.11 The drawn trajectories for the expected motion, for ξP (predictable),
and for ξL (legible). 31

3.12 Cumulative number of users that responded and were correct (above)
and the approximate probability of being correct (below). 32

152 legible robot motion planning

3.13 Legibility is not obstacle avoidance. Here, in the presence of an ob-
stacle that is not a potential goal, the legible trajectory still moves to-
wards the wall, unlike the obstacle-avoiding one (gray trace). 33

4.1 The obstacle cost tracks a set of body points through time. Each body
point at each time point has a workspace gradient, which Eq. 4.3 com-
pounds in a trajectory gradient. 37

4.2 A couples time along the trajectory, turning the trajectory into an elas-
tic band: when a Euclidean gradient would pull one single point away
from the rest of the trajectory, the natural gradient pulls the entire
trajectory with it (details in Section 4.1.3. 38

4.3 A Euclidean inner product makes trajectory b closer to a than c is.
In contrast, our example inner product makes c closer. 38

4.4 The top plots the columns of the identity matrix (each time point is
independent), whereas the bottom plots the columns of A−1, for A =

KTK (a change at one time point leads to a propagation to the rest
of the trajectory). 39

4.5 Grasping in clutter scenes, with different starting configurations, tar-
get object locations, and clutter distribution (from left to right: no
clutter, low, medium and high clutter). 40

4.6 From left to right: a paired time comparison between RRT and CHOMP
when both algorithms succeed, success rates for both algorithms within
the 20 s time interval and the planning time histograms for both al-
gorithms. In the time comparison chart on the left, each data point
is one run of the RRT algorithm vs. the discrete run of CHOMP on
a problem. Due to the large number of data points, the standard er-
ror on the mean is very small. 41

4.7 The start and the goal for a complex problem of reaching into the
back of a narrow microwave. The robot is close to the corner of the
room, which makes the problem particularly challenging because it
gives the arm very little space to move through. The goal configu-
ration is also very different from the start, requiring an “elbow flip”.
Two starts were used, one with a flipped turret (e.g., J1 and J3 off-
set by π, and J2 negated), leading to very different straight-line paths. 43

4.8 Top: The trajectory found when using specified single goal. The op-
timizer cannot avoid collision with the red box. Bottom: A feasible
trajectory found by an optimizer that can take advantage of a goal
set. 44

4.9 The constrained update rule takes the unconstrained step and projects
it w.r.t. A onto the hyperplane through ξi parallel to the approximated
constraint surface (given by the linearization B(ξ − ξt) + b = 0).
Finally, it corrects the offset between the two hyperplanes, bringing
ξi+1 close to H[ξ] = 0. 46

final words 153

4.10 One iteration of the goal set version of the optimizer: take an uncon-
strained step, project the final configuration onto the constraint sur-
face, and propagate that change to the rest of the trajectory. 47

4.11 Changing the goal decreases cost. The goal set algorithm modifies
the trajectory’s goal in order to reduce its final cost. The figure plots
the initial vs. the final goals obtained by the single goal and the goal
set algorithm on a grasping in clutter problem. The area of each bub-
ble is proportional to the cost of the final trajectory. 49

4.12 A cost comparison of the single goal with the goal set variant of CHOMP
on problems from four different environment types: grasping in clut-
ter from a difficult, and from an easy starting configuration, hand-
ing off an object, and placing it in the recycle bin. 50

4.14 The end effector trajectory before and after optimization with Goal
Set CHOMP. The initial (straight line in configuration space) trajec-
tory ends at a feasible goal configuration, but collides with the clut-
ter along the way. The final trajectory avoids the clutter by reaching
from a different direction. 51

4.13 The trajectory obtained by CHOMP for extracting the bottle from the
microwave while keeping it upright (a trajectory-wide constraint). 51

4.15 A toy example that exemplifies the idea of attributes: there are two
basins of attraction, and a simple attribute (the decision of going right
vs. left) discriminates between them. 54

4.16 High-dimensional problems are described by many basins of attrac-
tion, but there are often attributes of the trajectory that can discrim-
inate between low cost basins and high cost basins. In this case, such
an attribute is around vs. above the fridge door. 55

4.17 Once the right choice is made (above the fridge door), we can eas-
ily create a trajectory that satisfies it. This trajectory can have high
cost, but it will be in the basin of attraction of a low-cost solution,
and running a local optimizer (e.g., CHOMP) from it produces a suc-
cessful trajectory. 56

4.18 Top: the robot in one of the goal configurations for grasping the bot-
tle. Bottom: for the same scene, the black contour is a polar coordi-
nate plot of the final cost of the trajectory that the optimizer converges
to as a function of the goal it starts at; goals that make it hard to reach
the object are associated with higher cost; the bar graph shows the
difference in cost between the best goal (shown in green and marked
with *) and the worst goal (shown in red). 56

4.19 Feature 1: the length of the straight line trajectory. 57

4.20 Features 2 and 3: the obstacle cost of the goal and of the straight line
trajectory. 57

4.21 Feature 5: the free space radius around the elbow. 57

4.22 Feature 6: collision with the target object. 58

154 legible robot motion planning

4.23 From left to right: the actual vs. predicted cost without threshold-
ing, the actual vs. predicted cost with thresholding, and the depen-
dence of the fit error of a validation set of medium and low cost ex-
amples on the threshold (on the left of the minimum, the regressors
pays too much attention to high costs, on the right it uses too little
data. 59

4.24 Two training situations along with their corresponding best goal, and
a test situation in which the correct goal is predicted. If the learner
were constrained to the set of previously executed trajectories, it would
not have been able to generalize to this new scene. 61

4.25 The loss over the minimum cost on the same test set when training
on scenes that are more and more different, until everything changes
drastically in the scene and performance drops significantly. How-
ever, the loss decreases back to around 8% when training on a wide
range of significantly different scenes, showing that the algorithm
can do far transfers if given enough variety in the training data. 62

4.26 Top: Percentage loss over the best cost for all the methods. Solid bars
are the data-efficient versions, and transparent bars are the vanilla
algorithms, which perform worse. Bottom: The predicted minimum
cost vs. the true minimum cost as function of the number of choices
considered. 62

5.1 Using a norm M for adaptation propagates the change in the start
and goal, from {s,g} to {ŝ, ĝ}, to the rest of the trajectory, changing
ξD into ξ̂. The difference between the two as a function of time is plot-
ted in blue. 67

5.2 In contrast, DMPs represent the demonstration as a spring damper
system tracking a moving target trajectory TD, compute differences
fD (purple) between TD and the straight line trajectory, and apply
the same differences to the new straight line trajectory between the
new endpoints. This results in a new target trajectory T̂ for the dy-
namical system to track. When M = A, the velocity norm from Eq. 4.7,
the two adaptations are equivalent. In general, different norms M
would lead to different adaptions. 67

5.3 We adapt ξD by finding the closest trajectory to it that satisfies the
new end point constraints. The x axis is the start-goal tuple, and the
y axis is the rest of the trajectory. M warps the space, transforming
(hyper)spheres into (hyper)ellipsoids. The space of all adaptations
of ξD is a linear subspace of Ξ. 69

5.4 Minimum jerk. 74

5.5 Reweighing time. 74

5.6 Coupling timepoints. 74

5.7 The different changes to the norm structure result in different adap-
tation effects. 75

final words 155

5.8 Left: an ideal adapted trajectory (gray), a noisy adapted trajectory
(red) that we use for training, and the reproduction using the learned
norm (green), with a 6-fold average reduction in noise. Center: the
error on a test set as a function of the number of training examples.
Right: the error on a test set as a function of the amount of noise, com-
pared to the magnitude of the noise (red). Error bars show standard
error on the mean — when not visible, the error bars are smaller than
the marker size. 77

5.9 The average waypoint error on a holdout set of pointing gesture demon-
strations on the HERB robot, for the adaptations obtained using the
learned norm, compared to error when using the default A. 79

5.10 A comparison between adapting trajectories with the default A met-
ric (c) and adapting using a learned metric (d) on a holdout set of
demonstrated pointing gestures (shown in black). The trajectory ξD

used for adaptation is in gray. Note that the adaption happens in the
full configuration space of the robot, but here we plot the end effec-
tor traces for visualization. The learned norm more closely repro-
duces two of the trajectories, and has higher error in the third. Over-
all, the error decreases significantly (see Fig. 5.9). 80

5.11 (Top) One of our users getting more comfortable with working/standing
next to the robot after familiarization, as he can better predict how
the robot will move. (Bottom) Users identify the robot’s actual tra-
jectory (we plot here its end effector trace only, in green, but show
users the robot actually moving along it) as the one they expect more
often after familiarization. 81

5.12 For the same situation, the trajectories for the more natural motion
in Section 5.3.2 (top, green), and for the less natural motion in Sec-
tion 5.3.3 (bottom, orange). 83

5.13 The overall experimental procedure, consisting of a familiarization
phase (b), and a pre- and post-test for predictability (a and c). The
tests involve three types of examples (Levels 1-3), each with two
instances to aid robustness. For each example, we show users three
trajectories and ask them to identify which one they expect the robot
to perform, as well as rate each on a predictability scale. The grid
in (d) depicts target object placements on the table (shown in Fig. 8.12

and Fig. 5.12) to produce the familiarization examples. The ones we
re-use for testing (Level 1) are highlighted in blue, and the ones we
set aside for testing-only (Level 3) are highlighted in brown. The
crosses represent additional example locations we use in the follow
up study with more examples. 84

5.14 Example of the three distance levels. 86

156 legible robot motion planning

5.15 Overall, familiarization significantly improves the accuracy in rec-
ognizing the robot’s motion (left). Different test situations, however,
show different improvements (right). Error bars show standard er-
ror. 88

5.16 Results for familiarization to a less natural motion, as compared to
the more natural CHOMP motion from Fig. 5.15. The error bars rep-
resent standard error on the mean. Familiarization does improve pre-
dictability, but not to the level of the more natural C motions. 90

5.17 The limitation of familiarization on less natural motion is not due
to the number of examples, since more examples fail to improve per-
formance. 92

5.18 Markers measuring distance to the robot are spaced 5 inches apart.
Familiarization brought users 7.35 inches closer to the robot. 93

6.1 The legibility optimization process for a task with two candidate goals.
By moving the trajectory to the right, the robot is more clear about
its intent to reach the object on the right. 98

6.2 Legible trajectories on a robot manipulator assuming C, computed
by optimizing Legibility in the full dimensional space. The figure
shows trajectories after 0 (gray), 10, 20, and 40 iterations. 99

6.3 A full-arm depiction of the optimized trajectories at 0 and 20 iter-
ations. 99

6.4 More ambiguity (right) leads to the need for greater departure from
predictability. 100

6.5 Smaller scales (left) lead to the need for greater departure from pre-
dictability. 100

6.6 Effects of the weighting function f (t). 100

6.7 Legible trajectories for multiple goals. 100

6.8 Legibility given a C that accounts for obstacle avoidance. The gray
trajectory is the predictable trajectory (minimizing C), and the or-
ange trajectories are obtained via legibility optimization for 10, 102,
103, 104, and 105 iterations. 101

6.9 Legibility is dependent on the initialization. 101

6.10 The expected (or predictable) trajectory in gray, and the legible tra-
jectories for different trust region sizes in orange. On the right, the
cost C over the iterations in the unconstrained case (red) and con-
strained case (green). 102

6.11 We measure legibility by measuring at what time point along the tra-
jectory users feel confident enough to provide a goal prediction, as
well as whether the prediction is correct. 104

final words 157

6.12 Left: The legibility score for all 7 conditions in our main experiment:
as the trust region grows, the trajectory becomes more legible. How-
ever, beyond a certain trust region size (β = 40), we see no added
benefit of legibility. Right: In a follow-up study, we showed users the
entire first half of the trajectories, and asked them to predict the goal,
rate their confidence, as well as their belief that the robot is heading
towards neither goal. The results reinforce the need for a trust re-
gion. 105

6.13 The distribution of scores for three of the conditions. With a very large
trust region, even though the legibility score does not significantly
decrease, the users either infer the goal very quickly, or they wait un-
til the end of the trajectory, suggesting a legibility issue with the mid-
dle portion of the trajectory. 106

7.1 Snapshots from the three types of motion at the same time point along
the trajectory. The robot is reaching for the dark blue cup. The func-
tional motion is erratic and somewhat deceptive, and the participant
leans back and waits before committing to a color. The predictable
motion is efficient, but ambiguous, and the participant is still not will-
ing to commit. The legible motion makes the intent more clear, and
the participant is confident enough to start the task. 110

7.2 The end effector traces of the three types of motion for one part of
the task. 110

7.3 For each tea order, the robot starts reaching for one of the cups. The
participant infers the robot’s goal and starts gathering the correspond-
ing ingredients. Both place their items on the tray, and move on to
the next order. For order #3, the cups are further away from the robot,
and closer to each other, making the situation ambiguous. 112

7.4 Findings for objective measures. 117

7.5 Some of the participants kept a larger distance to the robot during
the functional condition. However, most participants were surpris-
ingly comfortable with the robot during this condition. 117

7.6 Findings for subjective measures. Closeness was on a 5-point scale. 118

8.1 The red trajectory works in viewpoint 1, but is not as legible in view-
point 2. The robot finds a different way to exaggerate when the ob-
server has a different viewpoint (green trajectory). From viewpoint
2, it looks like the robot is exaggerating more, but that is not the case
(see green trajectory in viewpoint 1). The two trajectories have the
same cost C, but exaggerate in different directions (see viewpoint 3). 123

8.2 The robot does not exaggerate in the occluded region, so that it can
exaggerate more outside of it. 124

8.3 The robot uses a smaller than needed hand aperture to convey that
it will grasp the smaller object. 124

158 legible robot motion planning

8.4 The robot uses a larger than needed hand aperture to convey that
it will grasp the larger object. 124

8.5 Strategies replicated by the model: the typical exaggeration towards
another goal, as well as the switching and ambiguous trajectories.
The trajectories in gray show the optimization trace, starting from
the predictable trajectory. 125

8.6 The probability of the actual goal along each model trajectory. 126

8.7 A comparison among the three deception strategies: ambiguous, ex-
aggerated and switching. 127

8.8 The correctness rate for the three strategies as evaluated with users.
128

8.9 Optimization trace for deception. 128

8.10 Top: The deceptive trajectory planned by the model. Bottom: a com-
parison between this trajectory and the predictable baseline. 129

8.11 A snapshot of the deception game, along with the adversary and trust
ratings: after deception, users rate the robot’s skill as an adversary
higher, and trust in the robot decreases. The difference is larger when
they perceive the deception as intentional. 131

8.12 Top: An efficient pointing configuration that fails to clearly convey
to an observer that the goal is the further bottle. Bottom: Its less ef-
ficient, but more legible counterpart, which makes the goal clear. 133

8.13 The ray model only takes into account rays that hit the object, weigh-
ing them more when they are more aligned with the pointer. 134

8.14 Surface plot for CG. 134

8.15 Surface plot for Legibility. 134

8.16 Legibility is different from the ray model because it accounts for the
probability that will be assigned to the other objects. In this exam-
ple, both pointers are equally good according to the ray model, be-
cause the other object does not occlude either pointer. However, the
pointer in right the right image is more legible. We put this to the
test in practice in our last experiment. 135

8.17 The four experimental conditions for our main study, which manip-
ulates legibility and observer viewpoint. From top to bottom: Cost
View 1, Legibility View 1, Cost View 2, and Legibility View 2. 136

8.18 Effects of legibility (top) and viewpoint (bottom) on correctness of
predictions (left), and correct prediction confidence (right). 137

8.19 (Top) The user provides an input U. The robot predicts their intent,
and assists them in achieving the task. (Middle) Policy blending ar-
bitrates user input and robot prediction of user intent. (Bottom) Pol-
icy blending increases the range of feasible user inputs (here, α =

0.5). 139

8.20 Hard and Right Task 144

8.21 Hard and Wrong Task 144

final words 159

8.22 The arbitration function for the timid and the aggressive assistance
modes. The aggressive mode reaches a higher maximum value ear-
lier. 144

8.23 The results of the assistive teleoperation user study. 145

List of Tables

3.1 Legibility and predictability as enabling inferences in opposing di-
rection. 24

4.1 Comparison of CHOMP and RRT for different time budgets. 43

5.1 The predictability scale. 87

5.2 The utility of familiarization ratings. 89

5.3 The motion ratings. 89

7.1 Subjective measures. 115

8.1 Assistive teleoperation and intent prediction methods. 141

10
Bibliography

[1] D. Aarno, S. Ekvall, and D. Kragic. Adaptive virtual fixtures for machine-assisted teleoperation tasks.
In IEEE ICRA, 2005.

[2] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In ICML, 2004.

[3] Henny Admoni, Caroline Bank, Joshua Tan, Mariya Toneva, and Brian Scassellati. Robot gaze does
not reflexively cue human attention. In Proceedings of the 33rd Annual Conference of the Cognitive Sci-
ence Society, Boston, MA, USA, pages 1983–1988, 2011.

[4] P. Aigner and B. McCarragher. Human integration into robot control utilising potential fields. In
ICRA, 1997.

[5] K. Akachi, K. Kaneko, N. Kanehira, S. Ota, G. Miyamori, M. Hirata, S. Kajita, and F. Kanehiro. Devel-
opment of humanoid robot HRP-3P. In Humanoid Robots, 2005 5th IEEE-RAS International Conference
on, pages 50–55. IEEE, 2005.

[6] Baris Akgun, Maya Cakmak, Jae Wook Yoo, and Andrea Lockerd Thomaz. Trajectories and
keyframes for kinesthetic teaching: a human-robot interaction perspective. In HRI, 2012.

[7] R. Alami, L. Aguilar, H. Bullata, S. Fleury, M. Herrb, F. Ingrand, M. Khatib, and F. Robert. A gen-
eral framework for multi-robot cooperation and its implementation on a set of three hilare robots.
Experimental Robotics IV, pages 26–39, 1997.

[8] R. Alami, A. Albu-Schaeffer, A. Bicchi, R. Bischoff, R. Chatila, A. De Luca, A. De Santis, G. Giralt,
J. Guiochet, G. Hirzinger, F. Ingrand, V. Lippiello, R. Mattone, D. Powell, S. Sen, B. Siciliano, G. Toni-
etti, and L. Villani. Safe and Dependable Physical Human-Robot Interaction in Anthropic Domains:
State of the Art and Challenges. In IROS Workshop on pHRI, 2006.

[9] Rachid Alami, AurÃl’lie Clodic, Vincent Montreuil, Emrah Akin Sisbot, and Raja Chatila. Toward
human-aware robot task planning. In AAAI Spring Symposium, pages 39–46, 2006.

[10] A. Albu-Schäffer, S. Haddadin, C. Ott, A. Stemmer, T. Wimböck, and G. Hirzinger. The DLR
lightweight robot: design and control concepts for robots in human environments. Industrial Robot:
An International Journal, 34(5):376–385, 2007.

[11] A. P. Ambler, H. G. Barrow, C. M. Brown, R. M. Burstall, and R. J. Popplestone. A versatile computer-
controlled assembly system. In Proceedings of the 3rd Int. Joint Conference on Artificial Intelligence, pages
298–307, 1973.

[12] S. J. Anderson, S. C. Peters, K. Iagnemma, and J. Overholt. Semi-autonomous stability control and
hazard avoidance for manned and unmanned ground vehicles. In MIT, Dept. of Mechanical Eng., 2010.

164 legible robot motion planning

[13] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning
from demonstration. Robotics and autonomous systems, 57(5):469–483, 2009.

[14] Akiko Arita, Kazuo Hiraki, Takayuki Kanda, and Hiroshi Ishiguro. Can we talk to robots? ten-
month-old infants expected interactive humanoid robots to be talked to by persons. Cognition, 95,
2005.

[15] Ronald C Arkin. The ethics of robotic deception. The Computational Turn: Past, Present, Futures?, 2011.

[16] Chris L. Baker, Rebecca Saxe, and Joshua B. Tenenbaum. Action understanding as inverse planning
appendix. Cognition, 2009.

[17] Dare A. Baldwin, Jodie A. Baird, Megan M. Saylor, and M. Angela Clark. Infants parse dynamic
action. Child Development, 72(3):708–717, 2001.

[18] Jérôme Barraquand and Jean-Claude Latombe. A Monte-Carlo algorithm for path planning with
many degrees of freedom. Proc. of the IEEE International Conference on Robotics and Automation, pages
1712–1717, 1990.

[19] M. Beetz, L. Mos̈enlechner, and M. Tenorth. CRAM: A cognitive robot abstract machine for every-
day manipulation in human environments. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on, pages 1012–1017. IEEE, 2010.

[20] Michael Beetz, Freek Stulp, Piotr Esden-Tempski, Andreas Fedrizzi, Ulrich Klank, Ingo Kresse, Alexis
Maldonado, and Federico Ruiz. Generality and legibility in mobile manipulation. Autonomous Robots,
28:21–44, 2010.

[21] Tanya Behne, Malinda Carpenter, Josep Call, and Michael Tomasello. Unwilling Versus Unable:
Infants’ Understanding of Intentional Action. Developmental Psychology, 41:328–337, 2005.

[22] D. Berenson, S. S. Srinivasa, D. Ferguson, A. Collet, and J. J. Kuffner. Manipulation planning with
workspace goal regions. In IEEE International Conference on Robotics and Automation, 2009.

[23] Dmitry Berenson, Siddhartha Srinivasa, David Ferguson, Alvaro Collet Romea, and James Kuffner.
Manipulation planning with workspace goal regions. In IEEE International Conference on Robotics and
Automation, May 2009.

[24] G.R. Bergersen, J.E. Hannay, D.I.K. Sjoberg, T. Dyba, and A. Karahasanovic. Inferring skill from tests
of programming performance: Combining time and quality. In ESEM, 2011.

[25] D. Bertram, J. Kuffner, R. Dillmann, and T. Asfour. An integrated approach to inverse kinematics
and path planning for redundant manipulators. In Proc. IEEE International Conference on Robotics and
Automation (ICRA), 2006.

[26] Dominik Bertram, James Kuffner, Ruediger Dillmann, and Tamim Asfour. An integrated approach to
inverse kinematics and path planning for redundant manipulators. In ICRA, 2006.

[27] Celeste Biever. Deceptive robots show theory of mind. New Scientist, 207(2779):24–25, 2010.

[28] John Blitzer and H Daume. Icml tutorial on domain adaptation, 2010.

[29] Michael S Branicky, Ross A Knepper, and James J Kuffner. Path and trajectory diversity: Theory
and algorithms. In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pages
1359–1364. IEEE, 2008.

[30] M. Bratman. Shared cooperative activity. Philosophical Review, 1992.

bibliography 165

[31] Bambi R Brewer, Roberta L Klatzky, and Yoky Matsuoka. Visual-feedback distortion in a robotic
rehabilitation environment. Proceedings of the IEEE, 94(9):1739–1751, 2006.

[32] O. Brock and O. Khatib. Elastic strips: A framework for motion generation in human environments.
The International Journal of Robotics Research, 21(12):1031, 2002.

[33] Sylvain Calinon, Florent Guenter, and Aude Billard. On learning, representing, and generalizing
a task in a humanoid robot. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on,
37(2):286–298, 2007.

[34] M. Carpenter, Nagell K., Tomasello, G. M., Butterworth, and C. Moore. Social cognition, joint at-
tention, and communcative competence from 9 to 15 months of age. Monographs of the Society for
Research in Child Development, 63(4):1–174.

[35] Arancha Casal. Reconfiguration planning for modular self-reconfigurable robots. PhD thesis, Aeronautics
and Astronautics Dept., Stanford U., 2001.

[36] Jinxiang Chai and Jessica K. Hodgins. Constraint-based motion optimization using a statistical
dynamic model. ACM Trans. Graph., 26(3), July 2007.

[37] Eugene Charniak and Robert P. Goldman. A bayesian model of plan recognition. Artificial Intelligence,
64(1):53 – 79, 1993.

[38] M. Ciocarlie, K. Hsiao, E.G. Jones, S. Chitta, R.B. Rusu, and I.A. Sucan. Towards reliable grasping
and manipulation in household environments. In Proceedings of RSS 2010 Workshop on Strategies and
Evaluation for Mobile Manipulation in Household Environments, 2010.

[39] Roberto Cipolla and Nicholas J Hollinghurst. Human-robot interface by pointing with uncalibrated
stereo vision. Image and Vision Computing, 14(3):171–178, 1996.

[40] Alvaro Collet, Dmitry Berenson, Siddhartha S. Srinivasa, and Dave Ferguson. Object recognition and
full pose registration from a single image for robotic manipulation. In IEEE International Conference
on Robotics and Automation, pages 48–55, Kobe, May 2009.

[41] Alvaro Collet, Manuel Martinez, and Siddhartha S. Srinivasa. The moped framework: Object recog-
nition and pose estimation for manipulation. International Journal of Robotics Research, 30(10):1284–
1306, 2011.

[42] Alvaro Collet and Siddhartha S. Srinivasa. Efficient multi-view object recognition and full pose
estimation. In IEEE International Conference on Robotics and Automation, Anchorage, May 2010.

[43] Alvaro Collet, Siddhartha S. Srinivasa, and Martial Hebert. Structure discovery in multi-modal data:
a region-based approach. In IEEE International Conference on Robotics and Automation, Shanghai, May
2011.

[44] J. Cortes and T Simeon. Sampling-based motion planning under kinematic loop-closure constraints.
In Proc. Workshop on the Algorithmic Foundations of Robotics (WAFR), 2004.

[45] J.W. Crandall and M.A. Goodrich. Characterizing efficiency of human robot interaction: a case study
of shared-control teleoperation. In IROS, 2002.

[46] G. Csibra and Gy. Gergely. The teleological origins of mentalistic action explanations: A develop-
mental hypothesis. Developmental Science, 1:255–259, 1998.

[47] Gergely Csibra and GyÃűrgy Gergely. Obsessed with goals: Functions and mechanisms of teleologi-
cal interpretation of actions in humans. Acta Psychologica, 124(1):60 – 78, 2007.

166 legible robot motion planning

[48] RALPH B D’AGOSTINO. A second look at analysis of variance on dichotomous data. Journal of
Educational Measurement, 8(4):327–333, 1971.

[49] T. Debus, J. Stoll, R.D. Howe, and P. Dupont. Cooperative human and machine perception in teleop-
erated assembly. In ISER, 2000.

[50] Robin Deits, Stefanie Tellex, Pratiksha Thaker, Dimitar Simeonov, Thomas Kollar, and Nicholas Roy.
Clarifying commands with information-theoretic human-robot dialog. Journal of Human-Robot Interac-
tion, 2013.

[51] Y. Demiris and G. Hayes. Imitation as a dual-route process featuring predictive and learning compo-
nents: a biologically plausible computational model. In Imitation in animals and artifacts, 2002.

[52] Munjal Desai, Mikhail Medvedev, Marynel Vázquez, Sean McSheehy, Sofia Gadea-Omelchenko,
Christian Bruggeman, Aaron Steinfeld, and Holly Yanco. Effects of changing reliability on trust of
robot systems. In HRI, 2012.

[53] Michael Dewar. The art of deception in warfare. David & Charles Publishers, 1989.

[54] Debadeepta Dey, Tian Y Liu, Boris Sofman, and Drew Bagnell. Efficient optimization of control
libraries. Technical report, DTIC Document, 2011.

[55] Rosen Diankov. Automated Construction of Robotics Manipulation Programs. PhD thesis, Robotics
Institute, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, 10 2010.

[56] A.D. Dragan, S. Bauman, J. Forlizzi, and S.S. Srinivasa. Effects of robot motion on human-robot
collaboration. In International Conference on Human-Robot Interaction (HRI), 2015.

[57] A.D. Dragan, G. Gordon, and S. Srinivasa. Learning from experience in manipulation planning:
Setting the right goals. In ISRR, 2011.

[58] A.D. Dragan, R. Holladay, and S.S. Srinivasa. An analysis of deceptive robot motion. In Robotics:
Science and Systems (R:SS), 2014.

[59] A.D. Dragan, R. Holladay, and S.S. Srinivasa. From legibility to deception. Autonomous Robotics, 2015.

[60] A.D. Dragan, K.T. Lee, and S.S. Srinivasa. Legibility and predictability of robot motion. In Interna-
tional Conference on Human-Robot Interaction (HRI), 2013.

[61] A.D. Dragan, K. Muelling, J.A. Bagnell, and S.S. Srinivasa. Movement primitives via optimization. In
International Conference on Robotics and Automation (ICRA), 2015.

[62] A.D. Dragan, N. Ratliff, and S.S. Srinivasa. Manipulation planning with goal sets using constrained
trajectory optimization. In ICRA, May 2011.

[63] A.D. Dragan and S.S. Srinivasa. Formalizing assistive teleoperation. In Robotics: Science and Systems
(R:SS), Sydney, Australia, July 2012.

[64] A.D. Dragan and S.S. Srinivasa. Generating legible motion. In Robotics: Science and Systems (R:SS),
Berlin, Australia, June 2013.

[65] A.D. Dragan and S.S. Srinivasa. Familiarization to robot motion. In International Conference on
Human-Robot Interaction (HRI), 2014.

[66] Anca Dragan and Siddhartha Srinivasa. Generating legible motion. In Robotics: Science and Systems,
2013.

[67] Anca D Dragan, Kenton CT Lee, and Siddhartha S Srinivasa. Legibility and predictability of robot
motion. In HRI, 2013.

bibliography 167

[68] E. Drumwright and V. Ng-Thow-Hing. Toward interactive reaching in static environments for hu-
manoid robots. In Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2006.

[69] A. H. Fagg, M. Rosenstein, R. Platt, and R. A. Grupen. Extracting user intent in mixed initiative
teleoperator control. In AIAA, 2004.

[70] Jing Fan, Jiping He, and Stephen Tillery. Control of hand orientation and arm movement during
reach and grasp. Experimental Brain Research, 171:283–296, 2006.

[71] Ali Farhadi, Ian Endres, Derek Hoiem, and David Forsyth. Describing objects by their attributes. In
Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 1778–1785. IEEE,
2009.

[72] Paolo Fiorini and Zvi Shiller. Motion planning in dynamic environments using velocity obstacles.
The International Journal of Robotics Research, 17(7):760–772, 1998.

[73] T. Flash and N. Hogan. The coordination of arm movements: an experimentally confirmed mathe-
matical model. J Neurosci., 5:1688–1703, July 1985.

[74] Roger Flynn. Anticipation and deception in squash. In 9th Squash Australia/PSCAA National Coaching
conference, 1996.

[75] Mike Fraser, Steve Benford, Jon Hindmarsh, and Christian Heath. Supporting awareness and interac-
tion through collaborative virtual interfaces. In Proceedings of the 12th annual ACM symposium on User
interface software and technology, pages 27–36. ACM, 1999.

[76] Andrea Frome, Yoram Singer, and Jitendra Malik. Image retrieval and classification using local
distance functions. In Advances in Neural Information Processing Systems 19: Proceedings of the 2006
Conference, volume 19, page 417. Mit Press, 2007.

[77] G. Gergely, H. Bekkering, and I. Kiraly. Rational imitation in preverbal infants. Nature, 415(6873),
2002.

[78] GyÃűrgy Gergely, Zoltan Nadasdy, Gergely Csibra, and Szilvia Biro. Taking the intentional stance at
12 months of age. Cognition, 56(2):165 – 193, 1995.

[79] M. Gielniak, K. Liu, and A. L. Thomaz. Secondary action in robot motion. In Proceedings of the IEEE
International Symposium on Robot and Human Interactive Communication (RO-MAN 2010), 2010.

[80] M. Gielniak, K. Liu, and A. L. Thomaz. Task aware variance for robot motion. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA 2011), 2011.

[81] M. Gielniak and A. L. Thomaz. Enhancing interaction through exaggerated motion synthesis. In
ACM/IEEE HRI.

[82] M. Gielniak and A. L. Thomaz. Spatiotemporal correspondence as a metric for human-like robot
motion. In ACM/IEEE HRI, 2011.

[83] Michael J Gielniak and Andrea Lockerd Thomaz. Generating anticipation in robot motion. In RO-
MAN, 2011.

[84] M.J. Gielniak and A.L. Thomaz. Generating anticipation in robot motion. In RO-MAN, pages 449

–454, 31 2011-aug. 3 2011.

[85] Michael Gleicher. Retargeting motion to new characters. In Proceedings of ACM SIGGRAPH 98,
Annual Conference Series, pages 33–42. ACM SIGGRAPH, jul 1998.

168 legible robot motion planning

[86] Steven J Glynn and Robert A Henning. Can teams outperform individuals in a simulated dynamic
control task. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 44(33):141–144,
2000.

[87] Rachel Gockley, Jodi Forlizzi, and Reid Simmons. Natural person-following behavior for social
robots. In Proceedings of the ACM/IEEE international conference on Human-robot interaction, HRI ’07,
pages 17–24, New York, NY, USA, 2007. ACM.

[88] R.C. Goertz. Manipulators used for handling radioactive materials. Human factors in technology, 1963.

[89] Mehmet Gokturk and John L Sibert. An analysis of the index finger as a pointing device. In CHI’99
Extended Abstracts on Human Factors in Computing Systems, pages 286–287. ACM, 1999.

[90] Noah D Goodman and Andreas Stuhlmüller. Knowledge and implicature: Modeling language
understanding as social cognition. Topics in Cognitive Science, 5(1):173–184, 2013.

[91] Sami Haddadin, A Albu-Schaffer, Alessandro De Luca, and Gerd Hirzinger. Collision detection and
reaction: A contribution to safe physical human-robot interaction. In Intelligent Robots and Systems,
2008. IROS 2008. IEEE/RSJ International Conference on, pages 3356–3363. IEEE, 2008.

[92] J. H. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-
dimensional integrals. Numerische Mathematik, 2:84–90, 1960.

[93] J. M. Hammersley. Monte-Carlo methods for solving multivariable problems. Annals of the New York
Academy of Science, 86:844–874, 1960.

[94] PA Hancock, DR Billings, and KE Schaefer. Can you trust your robot? Ergonomics in Design: The
Quarterly of Human Factors Applications, 19(3):24–29, 2011.

[95] J. Heinzmann and A. Zelinsky. The safe control of human-friendly robots. In IEEE/RSJ IROS, 1999.

[96] Martin Herrmann and Siddhartha S. Srinivasa. Exploiting passthrough information for multi-view
object reconstruction with sparse and noisy laser data. Technical Report CMU-RI-TR-10-07, Robotics
Institute, Pittsburgh, PA, February 2010.

[97] Jon Hindmarsh, Mike Fraser, Christian Heath, Steve Benford, and Chris Greenhalgh. Fragmented
interaction: establishing mutual orientation in virtual environments. In Proceedings of the 1998 ACM
conference on Computer supported cooperative work, pages 217–226. ACM, 1998.

[98] G Hoffman. Evaluating fluency in human-robot collaboration. In HRI Workshop on Human Robot
Collaboration, 2013.

[99] R. Holladay, A.D. Dragan, and S.S. Srinivasa. Legible robot pointing. In International Symposium on
Human and Robot Communication (Ro-Man), 2014.

[100] David Hsu. Randomized single-query motion planning in expansive spaces. PhD thesis, Computer Science
Dept., Stanford University, 2000.

[101] David Hsu, Jean-Claude Latombe, and Rajeev Motwani. Path planning in expansive configuration
spaces. In Proc. Conf. IEEE Int Robotics and Automation, volume 3, pages 2719–2726, 1997.

[102] Tian Huang, Zhanxian Li, Meng Li, Derek G Chetwynd, and Clement M Gosselin. Conceptual de-
sign and dimensional synthesis of a novel 2-dof translational parallel robot for pick-and-place opera-
tions. Journal of Mechanical Design, 126:449, 2004.

[103] C. Igel, M. Toussaint, and W. Weishui. Rprop using the natural gradient. Trends and Applications in
Constructive Approximation, pages 259–272, 2005.

bibliography 169

[104] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan Schaal. Dynamical
movement primitives: learning attractor models for motor behaviors. Neural computation, 25(2):328–
373, 2013.

[105] Auke Jan Ijspeert, Jun Nakanishi, and Stefan Schaal. Learning attractor landscapes for learning
motor primitives. In NIPS, 2003.

[106] Robin C Jackson, Simon Warren, and Bruce Abernethy. Anticipation skill and susceptibility to decep-
tive movement. Acta psychologica, 123(3):355–371, 2006.

[107] A. Jain and C.C. Kemp. EL-E: an assistive mobile manipulator that autonomously fetches objects
from flat surfaces. Autonomous Robots, 28(1):45–64, 2010.

[108] Nikolay Jetchev and Marc Toussaint. Trajectory prediction: learning to map situations to robot
trajectories. In Proceedings of the 26th annual international conference on machine learning, pages 449–456.
ACM, 2009.

[109] Nikolay Jetchev and Marc Toussaint. Trajectory prediction in cluttered voxel environments. In
Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages 2523–2528. IEEE, 2010.

[110] Thierry Simeon Jim Mainprice, E. Akin Sisbot and Rachid Alami. Planning safe and legible hand-
over motions for human-robot interaction. In IARP Workshop on Technical Challenges for Dependable
Robots in Human Environments, 2010.

[111] Kwang jin Choi and Hyeong seok Ko. On-line motion retargetting. Journal of Visualization and Com-
puter Animation, 11:223–235, 1999.

[112] S. Kagami, K. Nishiwaki, J.J. Kuffner Jr, Y. Kuniyoshi, M. Inaba, and H. Inoue. Online 3d vision, mo-
tion planning and bipedal locomotion control coupling system of humanoid robot: H7. In Intelligent
Robots and Systems, 2002. IEEE/RSJ International Conference on, volume 3, pages 2557–2562. IEEE, 2002.

[113] Peter H Kahn Jr, Takayuki Kanda, Hiroshi Ishiguro, Brian T Gill, Jolina H Ruckert, Solace Shen,
Heather E Gary, Aimee L Reichert, Nathan G Freier, and Rachel L Severson. Do people hold a hu-
manoid robot morally accountable for the harm it causes? In International conference on Human-Robot
Interaction, pages 33–40, 2012.

[114] Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and Stefan Schaal. STOMP:
Stochastic trajectory optimization for motion planning. In Proc. IEEE Int Robotics and Automation
(ICRA) Conf, pages 4569–4574, 2011.

[115] Kazunori Kamewari, Masaharu Kato, Takayuki Kanda, Hiroshi Ishiguro, and Kazuo Hiraki. Six-and-
a-half-month-old children positively attribute goals to human action and to humanoid-robot motion.
Cognitive Development, 20(2):303 – 320, 2005.

[116] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hirata, K. Akachi, and T. Isozumi.
Humanoid robot HRP-2. In Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE Interna-
tional Conference on, volume 2, pages 1083–1090. IEEE, 2004.

[117] K. Kaneko, F. Kanehiro, M. Morisawa, K. Miura, S. Nakaoka, and S. Kajita. Cybernetic human HRP-
4C. In Humanoid Robots, 2009. Humanoids 2009. 9th IEEE-RAS International Conference on, pages 7–14.
IEEE, 2009.

[118] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion planning.
International Journal of Robotics Research, 30(7):846–894, June 2011.

170 legible robot motion planning

[119] Lydia E. Kavraki, Petr Švestka, Jean-Claude Latombe, and Mark H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics
and Automation, 12(4):566–580, 1996.

[120] O. Khatib, K. Yokoi, K. Chang, D. Ruspini, R. Holmberg, and A. Casal. Coordination and decentral-
ized cooperation of multiple mobile manipulators. Journal of Robotic Systems, 13(11):755–764, 1996.

[121] Cory D Kidd and Cynthia Breazeal. Human-robot interaction experiments: Lessons learned. In
Proceeding of AISB, volume 5, pages 141–142, 2005.

[122] D.-J. Kim, R. Hazlett-Knudsen, H. Culver-Godfrey, G. Rucks, T. Cunningham, D. PortÃl’ ande,
J. Bricout, Z. Wang, and A. Behal. How autonomy impacts performance and satisfaction: Results
from a study with spinal cord injured subjects using an assistive robot. IEEE Trans. on Systems, Man
and Cybernetics, Part A: Systems and Humans, 2011.

[123] Robert Kindel. Motion planning for free-flying robots in dynamic and uncertain environments. PhD thesis,
Aeronaut. & Astr. Dept., Stanford University, 2001.

[124] Sotaro Kita. Pointing: Where language, culture, and cognition meet. Psychology Press, 2003.

[125] G. Klien, D.D. Woods, J.M. Bradshaw, R.R. Hoffman, and P.J. Feltovich. Ten challenges for making
automation a "team player" in joint human-agent activity. Intelligent Systems, 19(6):91 – 95, nov.-dec.
2004.

[126] Ross Knepper, Siddhartha S. Srinivasa, and Matthew Mason. Hierarchical Planning Architectures for
Mobile Manipulation Tasks in Indoor Environments. In IEEE International Conference on Robotics and
Automation, Anchorage, 2010. IEEE.

[127] Jens Kober, Erhan Oztop, and Jan Peters. Reinforcement learning to adjust robot movements to new
situations. In IJCAI, 2011.

[128] Jens Kober and Jan Peters. Learning motor primitives for robotics. In ICRA, 2009.

[129] J. Kofman, X. Wu, T.J. Luu, and S. Verma. Teleoperation of a robot manipulator using a vision-based
human-robot interface. IEEE Trans. on Industrial Electronics, 2005.

[130] Yoshihito Koga, Koichi Kondo, James Kuffner, and Jean claude Latombe. Planning motions with
intentions. In SIGGRAPH, 1994.

[131] Takanori Komatsu and Seiji Yamada. Adaptation gap hypothesis: How differences between users’
expected and perceived agent functions affect their subjective impression. Journal of Systemics, Cyber-
netics and Informatics, 9(1):67–74, 2011.

[132] George Konidaris and Andrew Barto. Autonomous shaping: Knowledge transfer in reinforcement
learning. In Proceedings of the 23rd international conference on Machine learning, pages 489–496. ACM,
2006.

[133] Petar Kormushev, Sylvain Calinon, and Darwin G Caldwell. Robot motor skill coordination with
em-based reinforcement learning. In IROS, 2010.

[134] James J. Kuffner. Autonomous agents for real-time animation. PhD thesis, Computer Science Dept.,
Stanford University, 1999.

[135] James J Kuffner and Steven M LaValle. Rrt-connect: An efficient approach to single-query path
planning. In ICRA, 2000.

bibliography 171

[136] J.J. Kuffner and S.M. LaValle. RRT-Connect: An efficient approach to single-query path planning.
In IEEE International Conference on Robotics and Automation, pages 995–1001, San Francisco, CA, April
2000.

[137] Dana Kulić and Elizabeth A Croft. Safe planning for human-robot interaction. Journal of Robotic
Systems, 22(7):383–396, 2005.

[138] F Lacquaniti and JF. Soechting. Coordination of arm and wrist motion during a reaching task. J
Neurosci., 2:399–408, April 1982.

[139] Christoph H Lampert, Hannes Nickisch, and Stefan Harmeling. Learning to detect unseen object
classes by between-class attribute transfer. In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pages 951–958. IEEE, 2009.

[140] John Lasseter. Principles of traditional animation applied to 3d computer animation. In Proceedings of
the 14th annual conference on Computer graphics and interactive techniques, SIGGRAPH ’87, pages 35–44,
New York, NY, USA, 1987. ACM.

[141] Steven M. LaValle and James J. Kuffner. Rapidly-exploring random trees: Progress and prospects.
Algorithmic and Computational Robotics: New Directions, pages 293–308, 2001.

[142] Jehee Lee and Sung Yong Shin. A hierarchical approach to interactive motion editing for human-
like figures. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’99, pages 39–48, New York, NY, USA, 1999. ACM Press/Addison-Wesley Publishing Co.

[143] Min Kyung Lee, Sara Kiesler, Jodi Forlizzi, Siddhartha Srinivasa, and Paul Rybski. Gracefully miti-
gating breakdowns in robotic services. In HRI, 2010.

[144] A. E. Leeper, K. Hsiao, M. Ciocarlie, L. Takayama, and D. Gossow. Strategies for human-in-the-loop
robotic grasping. In HRI, 2012.

[145] M. Li and A.M. Okamura. Recognition of operator motions for real-time assistance using virtual
fixtures. In HAPTICS, 2003.

[146] Christina Lichtenthäler, Tamara Lorenz, and Alexandra Kirsch. Towards a legibility metric: How to
measure the perceived value of a robot. In ICSR Work-In-Progress-Track, 2011.

[147] C. Karen Liu, Aaron Hertzmann, and Zoran Popović. Learning physics-based motion style with
nonlinear inverse optimization. In ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05, pages 1071–1081,
New York, NY, USA, 2005. ACM.

[148] S.G. Loizou and V. Kumar. Mixed initiative control of autonomous vehicles. In ICRA, 2007.

[149] T. Lozano-Perez, J. Jones, E. Mazer, P. O’Donnell, W. Grimson, P. Tournassoud, and A. Lanusse.
Handey: A robot system that recognizes, plans, and manipulates. In Robotics and Automation. Pro-
ceedings. 1987 IEEE International Conference on, volume 4, pages 843–849. IEEE, 1987.

[150] T. Lozano-Perez, J.L. Jones, E. Mazer, and P.A. O’Donnell. Handey: a robot task planner. 1992.

[151] P Maes, M Mataric, J Meyer, J Pollack, and S Wilson. Self-taught visually-guided pointing for a
humanoid robot.

[152] Jim Mainprice and Dmitry Berenson. Human-robot collaborative manipulation planning using early
prediction of human motion. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International
Conference on, pages 299–306. IEEE, 2013.

172 legible robot motion planning

[153] Jim Mainprice, E Akin Sisbot, Thierry Siméon, and Rachid Alami. Planning safe and legible hand-
over motions for human-robot interaction. In IARP workshop on technical challenges for dependable robots
in human environments, volume 2, page 7, 2010.

[154] P. Marayong, Ming Li, A.M. Okamura, and G.D. Hager. Spatial motion constraints: theory and
demonstrations for robot guidance using virtual fixtures. In ICRA, 2003.

[155] P. Marayong, A. M. Okamura, and A. Bettini. Effect of virtual fixture compliance on human-machine
cooperative manipulation. In IROS, 2002.

[156] Michelle A Marks, Mark J Sabella, C Shawn Burke, and Stephen J Zaccaro. The impact of cross-
training on team effectiveness. Journal of Applied Psychology, 87(1):3, 2002.

[157] Sean R Martin, Steve E Wright, and John W Sheppard. Offline and online evolutionary bi-directional
rrt algorithms for efficient re-planning in dynamic environments. In Automation Science and Engineer-
ing, 2007. CASE 2007. IEEE International Conference on, pages 1131–1136. IEEE, 2007.

[158] Manuel Martinez, Alvaro Collet, and Siddhartha S. Srinivasa. MOPED: A scalable and low latency
object recognition and pose estimation system. In IEEE International Conference on Robotics and Au-
tomation, Anchorage, 2010.

[159] David H. Mayne and David Q. Jacobson. Differential dynamic programming. New York: American
Elsevier Pub. Co., 1970.

[160] A. N. Meltzoff. Understanding the intentions of others: Re-enactment of intended acts by 18-month-
old children. Developmental Psychology, 31(5):838–850, 1995.

[161] David P Miller. Assistive robotics: an overview. In Assistive Technology and Artificial Intelligence, pages
126–136. 1998.

[162] Rosamond Mitchell and Florence Myles. Second language learning theories. 2004.

[163] B. Mutlu, J. Forlizzi, and J. Hodgins. A storytelling robot: Modeling and evaluation of human-like
gaze behavior. In Humanoid Robots, 2006.

[164] Bilge Mutlu and Jodi Forlizzi. Robots in organizations: the role of workflow, social, and environmen-
tal factors in human-robot interaction. In HRI, 2008.

[165] Bilge Mutlu, Jodi Forlizzi, and Jessica Hodgins. A storytelling robot: Modeling and evaluation of
human-like gaze behavior. In Humanoid Robots, 2006 6th IEEE-RAS International Conference on, pages
518–523. IEEE, 2006.

[166] Jun Nakanishi, Jun Morimoto, Gen Endo, Gordon Cheng, Stefan Schaal, and Mitsuo Kawato. Learn-
ing from demonstration and adaptation of biped locomotion. Robotics and Autonomous Systems,
47(2):79–91, 2004.

[167] Stefanos Nikolaidis and Julie Shah. Human-robot teaming using shared mental models. In
ACM/IEEE HRI, 2012.

[168] NJ Nilsson. A mobile automation: An application of artificial intelligence techniques. In Proceedings
of the 1st Int. Joint Conference on Artificial Intelligence, pages 509–520, 1969.

[169] K. Nishiwaki, T. Sugihara, S. Kagami, F. Kanehiro, M. Inaba, and H. Inoue. Design and development
of research platform for perception-action integration in humanoid robot: H6. In Intelligent Robots
and Systems, 2000.(IROS 2000). Proceedings. 2000 IEEE/RSJ International Conference on, volume 3, pages
1559–1564. IEEE, 2000.

bibliography 173

[170] Mark Palatucci, Dean Pomerleau, Geoffrey E Hinton, and Tom M Mitchell. Zero-shot learning with
semantic output codes. In Advances in neural information processing systems, pages 1410–1418, 2009.

[171] Jia Pan, Sachin Chitta, and Dinesh Manocha. FCL: A general purpose library for proximity and
collision queries. In ICRA, 2012.

[172] Peter Pastor, Heiko Hoffmann, Tamim Asfour, and Stefan Schaal. Learning and generalization of
motor skills by learning from demonstration. In ICRA, 2009.

[173] Peter Pastor, Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, and Stefan Schaal. Skill
learning and task outcome prediction for manipulation. In ICRA, 2011.

[174] Peter Pastor, Ludovic Righetti, Mrinal Kalakrishnan, and Stefan Schaal. Online movement adaptation
based on previous sensor experiences. In IROS, 2011.

[175] Stéphane Petti and Thierry Fraichard. Safe motion planning in dynamic environments. In Intelligent
Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International Conference on, pages 2210–2215.
IEEE, 2005.

[176] Giovanni Pezzulo, Francesco Donnarumma, and Haris Dindo. Human sensorimotor communication:
a theory of signaling in online social interactions. PloS one, 8(11):e79876, 2013.

[177] John C. Platt. Probabilistic outputs for support vector machines and comparisons to regularized
likelihood methods. In Advances in Large Margin Classifiers, 1999.

[178] L.S. Pontryagin. The mathematical theory of optimal processes. Interscience New York, 1962.

[179] Miguel Prada, Anthony Remazeilles, Ansgar Koene, and Satoshi Endo. Dynamic movement primi-
tives for human-robot interaction: comparison with human behavioral observation. In IROS, 2013.

[180] Samuel Prentice and Nicholas Roy. The belief roadmap: Efficient planning in belief space by factor-
ing the covariance. The International Journal of Robotics Research, 2009.

[181] M. Quigley, E. Berger, and A.Y. Ng. Stair: Hardware and software architecture. In AAAI 2007 Robotics
Workshop, Vancouver, BC, 2007.

[182] Sean Quinlan. The Real-Time Modification of Collision-Free Paths. PhD thesis, Stanford University, 1994.

[183] N. Ratliff, J. A. Bagnell, and M. Zinkevich. Maximum margin planning. In International Conference on
Machine Learning (ICML), 2006.

[184] Nathan Ratliff, Matthew Zucker, J. Andrew (Drew) Bagnell, and Siddhartha Srinivasa. Chomp:
Gradient optimization techniques for efficient motion planning. In ICRA, May 2009.

[185] Nathan D. Ratliff, Matthew Zucker, J. Andrew Bagnell, and Siddhartha S. Srinivasa. Chomp: Gradi-
ent optimization techniques for efficient motion planning. In IEEE International Conference on Robotics
and Automation, pages 489–494. IEEE, 2009.

[186] Monica Reggiani, Mirko Mazzoli, and Stefano Caselli. An experimental evaluation of collision detec-
tion packages for robot motion planning, 2002.

[187] L.B. Rosenberg. Virtual fixtures: Perceptual tools for telerobotic manipulation. In Virtual Reality
Annual International Symposium, 1993.

[188] Alla Safonova, Jessica K. Hodgins, and Nancy S. Pollard. Synthesizing physically realistic human
motion in low-dimensional, behavior-specific spaces. In ACM SIGGRAPH 2004 Papers, SIGGRAPH
’04, pages 514–521, New York, NY, USA, 2004. ACM.

174 legible robot motion planning

[189] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K. Fujimura. The intelligent
ASIMO: System overview and integration. In Intelligent Robots and Systems, 2002. IEEE/RSJ Interna-
tional Conference on, volume 3, pages 2478–2483. Ieee, 2002.

[190] Eri Sato, Toru Yamaguchi, and Fumio Harashima. Natural interface using pointing behavior for
human–robot gestural interaction. Industrial Electronics, IEEE Transactions on, 54(2):1105–1112, 2007.

[191] Allison Sauppé and Bilge Mutlu. Robot deictics: How gesture and context shape referential commu-
nication. 2014.

[192] C. F. Schmidt and J. D’Addamio. A model of the common-sense theory of intention and personal
causation. In IJCAI, 1973.

[193] John Schulman, Jonathan Ho, Cameron Lee, and Pieter Abbeel. Learning from demonstrations
through the use of non-rigid registration. In ISRR, 2013.

[194] J. Shen, J. Ibanez-Guzman, T. C. Ng, and B. S. Chew. A collaborative-shared control system with safe
obstacle avoidance capability. In RAM, 2004.

[195] Jaeeun Shim and Ronald C Arkin. A taxonomy of robot deception and its benefits in hri. 2013.

[196] E. Short, J. Hart, M. Vu, and B. Scassellati. No fair!! an interaction with a cheating robot. 2010.

[197] Elaine Short, Justin Hart, Michelle Vu, and Brian Scassellati. No fair!! an interaction with a cheating
robot. In International Conference on Human-Robot Interaction (HRI), pages 219–226, 2010.

[198] Rosanne M Siino and Pamela J Hinds. Robots, gender & sensemaking: Sex segregation’s impact on
workers making sense of a mobile autonomous robot. In ICRA, 2005.

[199] Thierry Siméon, Jean-Paul Laumond, Juan Cortés, and Anis Sahbani. Manipulation planning with
probabilistic roadmaps. International Journal of Robotics Research, 23(7–8):729–746, July-August 2004.

[200] Emrah Akin Sisbot, Luis Felipe Marin-Urias, Rachid Alami, and Thierry Simeon. A human aware
mobile robot motion planner. Robotics, IEEE Transactions on, 23(5):874–883, 2007.

[201] NJ Smeeton and AM Williams. The role of movement exaggeration in the anticipation of deceptive
soccer penalty kicks. British Journal of Psychology, 103(4):539–555, 2012.

[202] C. Smith, M. Bratt, and H.I. Christensen. Teleoperation for a ball-catching task with significant
dynamics. Neural Networks, 21(4):604 – 620, 2008.

[203] Beate Sodian, Barbara Schoeppner, and Ulrike Metz. Do infants apply the principle of rational action
to human agents? Infant Behavior and Development, 27(1):31 – 41, 2004.

[204] S.S. Srinivasa, D. Berenson, M. Cakmak, A. Collet, M.R. Dogar, A.D. Dragan, R.A. Knepper,
T. Niemueller, K. Strabala, M. Vande Weghe, and J. Ziegler. Herb 2.0: Lessons learned from devel-
oping a mobile manipulator for the home. Proc. of the IEEE, Special Issue on Quality of Life Technology,
2012.

[205] M. Stilman. Task constrained motion planning in robot joint space. In Proc. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2007.

[206] Martin Stolle and Christopher G Atkeson. Policies based on trajectory libraries. In Robotics and
Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, pages 3344–3349. IEEE,
2006.

bibliography 175

[207] Martin Stolle, Hanns Tappeiner, Joel Chestnutt, and Christopher G Atkeson. Transfer of policies
based on trajectory libraries. In Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International
Conference on, pages 2981–2986. IEEE, 2007.

[208] Kristen Stubbs, David Wettergreen, and Illah Nourbakhsh. Using a robot proxy to create common
ground in exploration tasks. In HRI, 2008.

[209] Karin Sundin, Lilian Jansson, and Astrid Norberg. Communicating with people with stroke and
aphasia: understanding through sensation without words. Journal of clinical nursing, 9(4):481–488,
2000.

[210] Leila Takayama, Doug Dooley, and Wendy Ju. Expressing thought: improving robot readability with
animation principles. In HRI, 2011.

[211] Leila Takayama, Doug Dooley, and Wendy Ju. Expressing thought: improving robot readability with
animation principles. In Proceedings of the 6th international conference on Human-robot interaction, pages
69–76. ACM, 2011.

[212] Stefanie Tellex, Ross Knepper, Adrian Li, Daniela Rus, and Nicholas Roy. Asking for help using
inverse semantics.

[213] Kazunori Terada and Akira Ito. Can a robot deceive humans? In Human-Robot Interaction (HRI), 2010
5th ACM/IEEE International Conference on, pages 191–192. IEEE, 2010.

[214] A. L. Thomaz and M. Cakmak. Learning about objects with human teachers. In HRI, 2009.

[215] A. M. Thompson. The navigation system of the JPL robot. In Proceedings of the 5th Int. Joint Conference
on Artificial Intelligence, pages 749–757, 1977.

[216] E. Todorov and Weiwei Li. A generalized iterative lqg method for locally-optimal feedback control of
constrained nonlinear stochastic systems. In American Control Conference, 2005. Proceedings of the 2005,
pages 300 – 306 vol. 1, june 2005.

[217] Deepak Tolani, Ambarish Goswami, and Norman I Badler. Real-time inverse kinematics techniques
for anthropomorphic limbs. Graphical models, 62(5):353–388, 2000.

[218] M. Tomasello, M. Carptenter, J. Call, T. Behne, and H. Moll. Understanding and sharing intentions:
the origins of cultural cognition. Behavioral and Brain Sciences, 2004.

[219] M. Toussaint. Robot trajectory optimization using approximate inference. In Proceedings of the 26th
Annual International Conference on Machine Learning, pages 1049–1056. ACM, 2009.

[220] Sandra Upson. tongue vision. Spectrum, IEEE, 44(1):44–45, 2007.

[221] Jur Van Den Berg, Dave Ferguson, and James Kuffner. Anytime path planning and replanning in dy-
namic environments. In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International
Conference on, pages 2366–2371. IEEE, 2006.

[222] D. Vasquez, T. Fraichard, O. Aycard, and C. Laugier. Intentional motion on-line learning and predic-
tion. Machine Vision and Applications, 2005.

[223] Marynel Vázquez, Alexander May, Aaron Steinfeld, and Wei-Hsuan Chen. A deceptive robot referee
in a multiplayer gaming environment. In Collaboration Technologies and Systems (CTS), 2011 Interna-
tional Conference on, pages 204–211. IEEE, 2011.

[224] Manuela M Veloso. Learning by analogical reasoning in general problem solving. Technical report,
1992. Doctoral Dissertation.

176 legible robot motion planning

[225] Cordula Vesper, Stephen Butterfill, Günther Knoblich, and Natalie Sebanz. 2010 special issue: A
minimal architecture for joint action. Neural Netw., 23(8-9):998–1003, October 2010.

[226] Adam Vogel, Christopher Potts, and Dan Jurafsky. Implicatures and nested beliefs in approximate
Decentralized-POMDPs. In Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics, Sofia, Bulgaria, August 2013. Association for Computational Linguistics.

[227] Karl E Weick. Sensemaking in organizations, volume 3. 1995.

[228] R. Weinstock. Calculus of variations. Dover publications, 1974.

[229] Andrew Witkin and Michael Kass. Spacetime constraints. In Proceedings of the 15th annual conference
on Computer graphics and interactive techniques, SIGGRAPH ’88, pages 159–168, New York, NY, USA,
1988. ACM.

[230] Nelson Wong and Carl Gutwin. Where are you pointing?: the accuracy of deictic pointing in cves. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 1029–1038. ACM,
2010.

[231] J. H. Yakey, S. M. LaValle, and L. E. Kavraki. Randomized path planning for linkages with closed
kinematic chains. IEEE Transactions on Robotics and Automation, 17(6):951–958, 2001.

[232] K. Yamane, J.J. Kuffner, and J.K. Hodgins. Synthesizing animations of human manipulation tasks. In
SIGGRAPH, 2004.

[233] Zhenwang Yao and K. Gupta. Path planning with general end-effector constraints: using task space
to guide configuration space search. In Proc. IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2005.

[234] Gu Ye and Ron Alterovitz. Demonstration-guided motion planning. In ISRR, 2011.

[235] E. You and K. Hauser. Assisted teleoperation strategies for aggressively controlling a robot arm with
2d input. In R:SS, 2011.

[236] Wentao Yu, R. Alqasemi, R. Dubey, and N. Pernalete. Telemanipulation assistance based on motion
intention recognition. In ICRA, 2005.

[237] M. Zefran and V. Kumar. A variational calculus framework for motion planning. In IEEE Conference
on Advanced Robotics, pages 415–420, Monterey, CA, 1997.

[238] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. Dey. Maximum entropy inverse reinforcement learning.
In AAAI, 2008.

[239] B. D. Ziebart, N. Ratliff, G. Gallagher, C. Mertz, K. Peterson, J. A. Bagnell, M. Hebert, A. K. Dey, and
S. Srinivasa. Planning-based prediction for pedestrians. In IROS, 2009.

[240] M. Zucker, N. Ratliff, A.D. Dragan, M. Pivtoraiko, M. Klingensmith, C. Dellin, J. Bagnell, and S.S.
Srinivasa. Covariant hamiltonian optimization for motion planning. International Journal of Robotics
Research (IJRR), 2013.

	Introduction
	Related Work
	Autonomously Generating Motion around Humans
	Non-Autonomous Motion around Humans
	Human Inferences

	Formalizing Motion Planning with Observer Inferences
	Formalizing Predictability and Legibility
	Modeling Predictable Motion via Optimization
	Modeling Legible Motion via Optimization
	From Theory to Real Users
	Chapter Summary

	Trajectory Optimization
	Functional Gradient Trajectory Optimization
	Optimizing with Constraints
	Learning from Experience
	Chapter Summary

	Generating Predictable Motion
	The Predictability Gradient
	Learning from Demonstration
	Familiarization to Robot Motion
	Chapter Summary

	Generating Legible Motion
	The Legibility Gradient
	Trust Region Constraint
	From Theory to Users
	Chapter Summary

	User Study on Physical Collaboration
	Motions
	Hypotheses
	Experimental Design
	Analysis
	Chapter Summary

	Generalizations of Legibility
	Viewpoint, Occlusion, Other DOFs
	Deception
	Pointing Gestures
	Assistive Teleoperation
	Relation to Language

	Final Words
	Bibliography

