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Abstract 

This thesis examines life cycle cost, greenhouse gas (GHG) emissions, petroleum use, 

and policy implications of scenarios for electrified vehicles and charging infrastructure in 

the U.S., addressing several questions: What mix of vehicles minimizes life cycle cost? 

GHG emissions? What are the implications of workplace charging in addition to home 

charging? How much current and potential U.S. residential charging exists? What are the 

costs and GHG emissions of fast-charging and battery swapping service stations? How 

sensitive are these results to uncertain parameters? What factors are most critical? and 

What are the policy implications? 

Results indicate that without sufficiently clean electricity, plug-in vehicles (PEVs) 

with home and workplace charging do not offer substantial reductions in GHG emissions 

compared to hybrid electric vehicles (HEVs). Benefits improve with low-emission 

electricity generation. High gas prices ($6/gal) cause PEVs to appear in minimum cost 

solutions and combined with low vehicle and battery costs (DOE 2030 targets) cause 

PEVs to dominate. 

Currently 79% of households but only 56% of vehicles have home parking where 

charging could be installed. Excluding renters, who face additional barriers, less than half 

of U.S. vehicles have reliable access to off-street parking where charging could be 

installed. This places a major limit on potential penetration of PEVs for the foreseeable 

future. 

Battery swapping stations cost 40% more per vehicle served than fast charging 

stations without the cost of waiting time during service, but 50% less when it is included. 

Battery swapping’s cost advantage requires vehicle and battery standardization. 
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Several policy implications are identified. Gas prices and vehicle and battery prices 

are identified as price levers to encourage adoption and reduce petroleum consumption, 

but clean electricity is also needed for GHG emissions reductions. Lack of residential 

charging could curb adoption and needs attention since parking infrastructure turns over 

more slowly than the vehicle fleet. With clean electricity, dedicated workplace charging 

further reduces GHGs. Battery electric vehicle (BEV) adoption is restricted by limited 

range. Rapid BEV refueling options include fast charging, which incurs costly waiting 

times during service, or battery swapping, which is faster and potentially less costly but 

requires vehicle and battery standardization. 
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1 Introduction and Motivation 

Electrified vehicles (xEVs), including hybrid electric vehicles (HEVs), plug-in hybrid 

electric vehicles (PHEVs), and battery electric vehicles (BEVs), are currently of interest 

both to the U.S. government and to industry as a potential way to reduce greenhouse gas 

(GHG) emissions and petroleum use of the U.S. personal vehicle fleet, thus helping to 

alleviate national and global concerns about energy security and climate change (Office 

of the Press Secretary, 2009). In the U.S., the transportation sector accounted for 27% of 

GHG emissions in 2009 and 63% of petroleum consumption in 2010 (US EIA, 2011a). 

Passenger vehicles accounted for 9.5% of 2009 U.S. GHG emissions (US EPA, 2011). 

Reducing GHG emissions and petroleum consumption in the personal transportation 

sector is crucial to achieving climate and energy goals. 

Electrified transportation helps with both of those goals by shifting transportation 

energy use from gasoline to electricity, and eventually to low-carbon electricity (Samaras 

and Meisterling, 2008). xEVs are vehicles that use electric motors for propulsion, either 

instead of or in addition to traditional internal combustion engines (ICEs). Plug-in 

vehicles (PEVs) are a subset of xEVs that can be powered by grid electricity and include 

PHEVs (which use both grid electricity and gasoline) and BEVs (which use only grid 

electricity). PEVs currently represent well less than 1% of U.S. new vehicle sales 

(Ohnsman, 2011). The hierarchy of vehicle types and acronyms is shown in Figure 1.1. 

There are two main xEVs operating modes: charge sustaining mode and charge 

depleting mode. Charge depleting mode further consists of either all-electric mode or a 

blended mode. In charge sustaining mode, the gasoline engine provides all net propulsion 

energy and the battery is used as a buffer, with battery charge level remaining roughly 

constant. HEVs always operate in  



 

4 

 
Figure 1.1 Hierarchy of vehicle types with acronyms 

charge sustaining mode. In all-electric charge depleting mode, the main power source is 

the battery. BEVs always operate in all-electric charge depleting mode. In blended charge 

depleting mode, both the engine and the battery are providing power. PHEVs can operate 

in any of these modes. PHEVs that only operate in all-electric charge depleting mode or 

charge sustaining mode, without blending, are also known as extended range electric 

vehicles (EREVs). The distance that a PHEV can drive in all-electric charge depleting 

mode before switching to charge sustaining mode, or that a BEV can drive before it needs 

to stop and charge, is called the all-electric range (AER). 

xEVs can have several different powertrain configurations. In conventional vehicles 

(CVs) with ICEs and without electric motors, the engine provides the propulsion to the 

wheels. In BEVs with motors and without ICEs, the electric motors provide the 

Vehicle Types

Conventional  ICE 
Vehicle (CV)

Electric Vehicle or
Electrified Vehicle 

(xEV)

Hybrid Electric

Vehicle (HEV)
Plug-In Vehicle (PEV)

Plug-In Hybrid

Electric Vehicle 
(PHEV)

Extended Range 
Electric Vehicle 

(EREV)

Battery Electric

Vehicle (BEV)
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propulsion. PHEVs have both an engine and motor(s) and can have several powertrain 

configurations broadly categorized as series, parallel, and split (or series-parallel). In a 

series powertrain, the motor provides propulsion and the engine provides power either to 

the motor or the battery. This is the usual configuration for an EREV, since they usually 

do not operate in blended mode, and as the name implies, the battery and motor provide 

the main propulsion (as in a BEV) and the engine provides “extended range” by charging 

the battery. In a parallel powertrain, the motor and engine both provide propulsion 

simultaneously. A split powertrain can operate either in series mode or in parallel mode. 

Subsequent sections of this thesis will refer to xEVs, CV, HEVs, PEVs, PHEVs, and 

BEVs. Unless otherwise noted, this thesis will assume that PHEVs have a split 

powertrain and EREV operation and do not operate in blended mode, but instead operate 

in charge depleting mode until the battery reaches the lower target SOC and in charge 

sustaining mode beyond that. This thesis will indicate the AER of a PHEV or BEV by 

appending the AER in miles to the acronym, so that, for example, a PHEV20 is a PHEV 

with a 20-mile AER. 

The main charging method for PEVs is likely to be slow overnight residential 

charging. Three levels of charging speeds have been defined by SAE standard J1772 and 

are shown in Table 1.1 (SAE, 2010). This thesis will refer to AC Level 1 as “Level 1”, 

AC Level 2 as “Level 2”, and DC Level 3 as “Level 3”. This thesis will also refer to 

Levels 1 and 2 as “slow charging” and Level 3 as “fast charging”. Another type of DC 

fast charging is also defined by the Japanese CHAdeMO standard (“CHAdeMO 

Association,” n.d.). Unless otherwise noted, the terms “Level 3” and “fast charging” can 

also apply to CHAdeMO standards. Most PHEV or BEV owners will have Level 1 or 
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Level 2 charging at their home and maybe also at work. Level 2 charging is also likely to 

be available at some commercial destinations such as retail locations. However, faster 

charging methods will be needed to allow BEVs to be driven longer distances without 

stopping for a slow charge, thus addressing consumer “range anxiety” and mitigating a 

barrier to BEV purchase. With only slow Level 1-2 charging, a drive of 300 miles 

between two major cities would require a BEV with a typical range of 100 miles to stop 

at least twice, and for several hours each time. 

Table 1.1 Vehicle charging levels defined by SAE J1772, with the time to charge a Nissan LEAF at that 
level (Roper, 2013). 

Charge 
Method 

Nominal Supply 
Voltage 

Max. Current Max. Power Time to Charge 
Nissan LEAF 

AC Level 1 120 V AC, 1-phase 12 A 
(15A breaker) 

1.44 kW 20 hours 

 120 V AC, 1-phase 16 A 
(20A breaker) 

1.92 kW  

AC Level 2 208 to 240 V AC, 1-
phase 

≤ 80 A 19.2 kW 7 hours 

DC Level 3 200 – 600 V ≤ 400 A 240 kW (more commonly 
50-100kW) 

30 min (to 80%) 

PEV charging can also be divided into three types depending on location and how it 

is used, as shown in Table 1.2. Dedicated charging is charging with guaranteed access so 

that travel can be planned around it. The most common types will be Level 1 and 2 

charging at home or at work, and BEVs and PHEVs will use it every day. Public use 

charging such as Level 1 or 2 charging at street parking or in shopping center parking lots 

will be for occasional use when convenient, but drivers would not be able to count on 

having access. BEVs and PHEVs would use public charging as “opportunity charging”. 

Service station charging will be the most similar to what we are currently used to with 

gasoline service stations. They will be available for relatively fast refueling during trips 

and the two main options are Level 3 fast charging or battery swapping. These are 
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unlikely to be used by PHEVs because those drivers can continue using gasoline; they 

will not need to wait 30 minutes to charge and their batteries are unlikely to be 

swappable. The customers for PEV service station charging will mostly be BEVs, and 

since drivers will purchase BEVs with enough range for most of their travel, they will 

stop only on the exceptional days when the usual range is exceeded. 

Table 1.2 Types of PEV charging by location and use 

 Dedicated Public Use Service Station 

Location Home, work with 
dedicated parking 
spot 

Parking meters, 
commercial, retail 

Service station 

Speed Slow: Level 1-2 
120V-240V, 1.4-3.3 
kW 

Slow: Level 2 
240V, 2.5-19.2 kW 

Fast: Level 3 charging 
Or: Battery swapping with 
Level 1-3 inventory 
charging 

Customers BEV, PHEV BEV, PHEV Primarily BEV 
Use Daily “Opportunity 

charging” as 
convenient 

Exceptional days 

Chapters Chapters 2 and 3  Chapter 4 

Options for rapid recharging of BEVs include Level 3 fast charging at specialized 

service stations – which has issues with efficiency, safety, cost, and increased battery 

degradation, and impacts the electricity grid – or battery swapping service stations – 

which physically switch a depleted battery for a charged battery but have challenges in 

cost, battery inventory requirements, standardization, wear, location, and operations. 

Fast-charging or battery swapping stations may offer refueling speeds of anywhere from 

2 minutes to 30 minutes and are likely to be used mainly by BEVs on days when normal 

driving ranges are exceeded or normal overnight charging methods are unavailable. Since 

PHEVs can achieve longer daily driving ranges using gasoline, they will not need to stop 

for a fast charge, although they may still choose to do so if the opportunity is available. 
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A problem with BEVs is that in order to match the range of a conventional gasoline-

powered vehicle they require very large, heavy battery packs. The weight of the battery 

packs reduces the vehicle efficiency, and the size reduces useable vehicle space for 

passengers and cargo. A vehicle with a smaller battery pack can be more efficient and 

versatile, but it needs to charge more often (Shiau et al., 2009).  

A barrier to widespread adoption of xEVs is the “chicken and egg” problem: 

manufacturers do not want to make vehicles that have no market, consumers do not want 

vehicles that have no refueling infrastructure, and no one wants to invest in refueling 

infrastructure for vehicles that do not exist (Melaina and Bremson, 2008). Policy 

incentives can help speed market adoption of xEVs, but we would like to know which 

scenarios of xEV designs and charging infrastructure should be incentivized to meet cost, 

energy, or environmental goals. Engineering tradeoffs between xEV design, fleet 

penetration, and charging infrastructure deployment also need to be understood. 

Engineering tradeoffs in xEV design include the tradeoff between battery size and 

charging frequency and the tradeoff between different charging infrastructure types and 

scenarios. Outcomes depend on additional factors including vehicle adoption (market 

penetration), vehicle charging patterns, charging infrastructure availability, and public 

policy. Implementation of appropriate public policy (taxes, incentives, regulations) 

regarding xEVs can potentially decrease GHG emissions, petroleum use, and the cost of 

personal transportation by incentivizing desired scenarios. However, it is critical to 

understand which scenarios should be incentivized. An important part of analyzing those 

scenarios is modeling the cost and environmental effects of the vehicles and different 

types of vehicle charging infrastructure. Since many of the engineering tradeoffs just 
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discussed have significant costs and emissions implications not just for vehicle operation 

but also upfront (purchase price, production emissions), it is important to consider both 

cost and GHG emissions on a life cycle basis. Throughout this thesis I will refer to life 

cycle cost as including both the production cost and the operation cost. Production cost 

includes the cost of the vehicle, batteries including replacement batteries if applicable, 

and charging infrastructure. Operation cost is the fuel price (gasoline or electricity). To 

combine production and operation costs into life cycle cost, they will both be annualized. 

Similarly, life cycle GHG emissions includes production emissions, which are from 

vehicle production, battery production, and charging infrastructure production, and 

operation GHGs, which include the production and combustion of gasoline and the 

production, transmission, and distribution of electricity. 

This thesis examines potential and optimal scenarios for sustainable personal 

transportation through electrified personal vehicles, with a focus on the life cycle cost and 

GHG emissions of different types of charging infrastructure. I examine the cost, GHG 

emissions, petroleum use, and policy implications of future scenarios for xEVs and 

charging infrastructure in the U.S., addressing several sets of research questions: 

(1) What mix of vehicles can minimize life cycle cost or GHG emissions of the 

midsize vehicle fleet, assuming availability of overnight slow charging? What is 

the cost or GHG reduction potential with and without daytime workplace 

charging infrastructure? What effect does workplace charging have on optimal 

vehicle allocation and battery sizing? What effect does carbon-intensity of the 

electricity grid have on these results? Under what conditions are PEVs part of the 

cost-optimized fleet? 
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(2) What opportunities exist for PEVs to be charged in U.S. residential areas, and 

what are the implications for potential and optimal fleet penetration of those 

vehicles? 

(3) What are the cost, energy, and environmental effects of fast-charging? How 

sensitive are these results to parameters such as vehicle AER, driving patterns, 

fuel costs, charging efficiency, and carbon intensity of the electric grid, and what 

factors and uncertainties are most critical? 

(4) What are the cost and environmental impacts of battery swapping service stations 

in comparison to fast-charging? How sensitive are these results to parameters 

such as vehicle AER, driving patterns, fuel costs, charging efficiency, and carbon 

intensity of the electric grid, and what factors and uncertainties are most critical? 

and 

(5) What are the implications for policy related to xEVs and charging infrastructure? 

Studies have addressed the effects of vehicle charging on the grid (Kelly et al., 2012; 

Parks et al., 2007; Peterson et al., 2011; Sioshansi et al., 2010; Weiller, 2011) and have 

studied the overall cost and emissions of PEVs (Bandivadekar et al., 2008; EPRI, 2001; 

Kammen et al., 2008; Michalek et al., 2011; Peterson et al., 2011; Samaras and 

Meisterling, 2008; Shiau et al., 2010, 2009), although most have focused on slow-

charging and excluded costs and production emissions of charging infrastructure 

(Bandivadekar et al., 2008; Parks et al., 2007; Peterson et al., 2011; Samaras and 

Meisterling, 2008; Shiau et al., 2010, 2009; Sioshansi et al., 2010), and most also 

compare and select among a small set of fixed vehicle configurations which may not be 

optimal and therefore may not allow fair comparison between powertrains (Bandivadekar 



 

11 

et al., 2008; EPRI, 2001; Kammen et al., 2008; Parks et al., 2007; Peterson et al., 2011; 

Samaras and Meisterling, 2008; Shiau et al., 2009; Sioshansi et al., 2010; Weiller, 2011). 

Three studies do include slow charging infrastructure costs: an EPRI study includes costs 

for onboard vehicle chargers, household circuit upgrades, and charging cords (EPRI, 

2001); and two other studies include costs of offboard chargers (Delucchi and Lipman, 

2001; Michalek et al., 2011). All three of these studies that include slow charging 

infrastructure costs include only a small set of fixed vehicle configurations (Delucchi and 

Lipman, 2001; EPRI, 2001; Michalek et al., 2011), and one considered only PHEVs, not 

HEVs or BEVs (Delucchi and Lipman, 2001). Some studies in the literature also make 

simplifying assumptions about driving patterns or about electricity consumption that may 

make their results less realistic, such as assuming vehicles drive the same distance every 

day (Shiau et al., 2010, 2009) or consume the same amount of electricity every day 

(Schroeder and Traber, 2012). Studies in the literature have also addressed a business 

plan for fast charging (Schroeder and Traber, 2012), business plans for combining slow-

charging with battery swapping (Avci et al., 2012; Lidicker et al., 2011), operation and 

inventory of a battery swapping station (Worley and Klabjan, 2011), and forecasted 

potential consumer adoption of BEVs under a battery subscription model with battery 

swapping (Becker et al., 2009), but these studies do not directly compare the costs or 

emissions of fast charging with battery swapping and have simplistic assumptions about 

the amount of fast charging or battery swapping infrastructure needed to support a fleet of 

vehicles (Lidicker et al., 2011; Worley and Klabjan, 2011). The presented work examines 

the impacts of availability of daytime charging on optimal vehicle designs for cost and 

GHG emissions objectives and will compare fast-charging to battery swapping for BEVs 
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on cost and GHG emissions metrics. Necessary amounts of fast charging and battery 

swapping infrastructure will be informed by driving pattern models including variability 

across vehicles and across days, incorporating some geography-related bounds, and the 

sensitivity analysis will examine the effects of these parameters on the cost and emissions 

of a fleet including PEVs. Further literature relevant to each individual topic will be 

discussed in subsequent sections. 

I present three studies to address the five sets of research questions posed above. 

Chapters 2 through 4 of this thesis discuss these three studies in more detail. Chapter 2, 

Optimal Design and Allocation of Electrified Vehicles and Dedicated Charging 

Infrastructure for Minimum Life Cycle Cost and GHG Emissions, discusses the first 

study, which addresses the research questions in (1) above by analyzing what vehicles 

should be assigned (perhaps by a benevolent dictator) to what drivers in the U.S. midsize 

personal vehicle fleet to meet cost and GHG emissions goals. Chapter 3, U.S. Residential 

Charging Potential for PEVs, presents a study to address the research question in (2) 

above by using multiple imputation to combine parking availability data from two 

publicly available datasets and by performing sensitivity analysis on the necessary 

assumptions where data is not available. Chapter 4, Comparative Implications of Electric 

Vehicle Fast Charging and Battery Swapping Stations for Life Cycle GHG Emissions and 

Cost, presents a study addressing the research questions in (3) and (4) above by modeling 

life cycle costs, GHG emissions, and station operation of fast charging and battery 

swapping service stations along a highway. Chapter 5 summarizes these studies and their 

implications for question (5) above.  
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2 Optimal Design and Allocation of Electrified Vehicles and Dedicated 
Charging Infrastructure for Minimum Life Cycle Cost and GHG Emissions 

Electrified vehicles can reduce greenhouse gas (GHG) emissions by shifting energy 

demand from gasoline to electricity. GHG reduction potential depends on vehicle design, 

adoption, driving and charging patterns, charging infrastructure, and electricity 

generation mix. We construct an optimization model to study these factors by 

determining optimal design of CVs, HEVs, PHEVs, and BEVs with optimal allocation of 

vehicle designs and dedicated workplace charging infrastructure in the fleet for minimum 

life cycle cost or GHG emissions over a range of scenarios. We focus on vehicles with 

similar body size and acceleration to a Toyota Prius under government 5-cycle driving 

conditions. We find that under the current U.S. grid mix, PHEVs offer only small GHG 

emissions reductions compared to HEVs, and workplace charging is insignificant. With 

grid decarbonization, PHEVs and BEVs offer substantial GHG emissions reductions, and 

workplace charging provides additional benefits. HEVs are optimal or near-optimal for 

minimum cost in most scenarios. High gas prices and low vehicle and battery costs are 

the major drivers for PHEVs and BEVs to enter and dominate the cost-optimal fleet. 

Carbon prices have little effect. Cost and range restrictions limit penetration of BEVs. 

The study presented in this chapter has been completed and has appeared in Energy 

Policy (Traut et al., 2012). 

2.1 Introduction 

Climate change and energy security are among the most pressing issues faced by the 

world and by the U.S. In the U.S., the transportation sector accounted for 28% of GHG 

emissions in 2009 (US EIA, 2011b) and 71% of petroleum consumption in 2010 (US 

EIA, 2011a). Passenger vehicles accounted for 9.5% of 2010 U.S. carbon dioxide 
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emissions (US EPA, 2011) and 19% of 2009 nitrous oxide emissions (US EIA, 2011b). 

Reducing GHG emissions and petroleum consumption in the personal transportation 

sector is crucial to achieving climate and energy goals. Electrified transportation can help 

to address both of those issues by shifting transportation energy use from gasoline to 

electricity, especially when that electricity comes from low-carbon generation sources 

(Samaras and Meisterling, 2008).  

A barrier to widespread adoption of personal electrified vehicles, especially BEVs, is 

the “chicken and egg” problem: manufacturers do not want to make vehicles that have no 

market, consumers do not want vehicles that have no refueling infrastructure, and no one 

wants to invest in refueling infrastructure for vehicles that do not exist (Melaina and 

Bremson, 2008). Policymakers can help break this cycle by putting incentives, taxes, and 

regulations in place. For instance, the Obama administration has set a target of one 

million plug-in electric vehicles (PEVs: including PHEVs and BEVs) on the road by 

2015 and has provided incentives to manufacturers and consumers as well as support for 

research and development (Office of the Press Secretary, 2009). However, to promote 

cost effective GHG reductions, it is important to understand which outcomes should be 

incentivized, and this chapter is a step towards addressing this issue by analyzing best 

possible outcomes. 

The Electric Power Research Institute and the National Resources Defense Council 

found in a 2007 study that PHEVs have substantial potential for reducing GHG emissions 

and air pollution (Duvall and Knipping, 2007). However, a 2009 Argonne National 

Laboratory report finds that PEVs are likely to have “little or no” market penetration by 

2050 without government subsidies (Plotkin and Singh, 2009). They estimate that 
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government subsidies of $7,500/vehicle (a level matched by current policy (American 

Recovery and Reinvestment Act of 2009, 2009)) could increase penetration of PHEVs, 

leading to a 22% reduction in GHG emissions by 2050 compared to their base case. Other 

studies have concluded that GHG reductions from PEVs are not likely to be cost effective 

in the near term and that PEVs represent an expensive approach to reducing GHG 

emissions (Delucchi and Lipman, 2001; Kammen et al., 2009; Plotkin and Singh, 2009; 

Shiau et al., 2010). 

Several trade-offs must be considered to determine the best scenarios to meet cost or 

GHG emissions goals for electrified vehicles (which include HEVs, PHEVs, and BEVs). 

One of the major design decisions for PHEVs and BEVs is selecting the battery size. A 

larger battery pack enables the vehicle to travel a longer distance on electricity alone (the 

all-electric range, or AER) without the use of gasoline, which reduces use phase GHG 

emissions (also called operating emissions) over the vehicle life under today's average 

grid mix. However, a larger battery pack costs more initially, has production implications 

including additional GHG emissions, and may reduce vehicle efficiency due to its weight 

(Delucchi and Lipman, 2001; Shiau et al., 2009). Availability of charging infrastructure 

at the workplace and/or in public locations can enable a longer effective AER with a 

smaller battery pack. Availability of such infrastructure also affects charge timing, which 

has implications for marginal electricity generation and resulting emissions (Ferdowsi, 

2007; Parks et al., 2007; Samaras and Meisterling, 2008; Sioshansi et al., 2010). In this 

chapter, we take a limited scope, ignoring charge timing and focusing on the effect of 

dedicated workplace charging availability on vehicle mix and on battery sizing in vehicle 

design. 
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Prior studies compare and select among a small set of fixed vehicle configurations 

based on selected commercially available vehicles or a small set of simulated vehicle 

alternatives (EPRI, 2001; Kammen et al., 2008; Parks et al., 2007; Peterson et al., 2011; 

Samaras and Meisterling, 2008; Shiau et al., 2009; Sioshansi et al., 2010). However, 

interactions among engine sizing, motor sizing, and battery sizing can be important in 

comparing vehicle characteristics, and optimal battery sizing represents a compromise 

among drivers with different travel patterns. We follow Shiau et al. (2010) and pose a 

mixed-integer nonlinear programming (MINLP) formulation to determine the best 

configuration of vehicles in the design space in order to compare the best design of each 

CV, HEV, PHEV, and BEV model under acceleration performance constraints that 

ensure vehicles are comparable. We further incorporate charging infrastructure decisions 

that determine which of the PEVs should be only charged at home versus charged both at 

home and at the workplace, given charging infrastructure costs and production emissions, 

and we use driving pattern data to model required BEV ranges and PHEV electricity and 

gasoline usage. We then address three questions: (1) What mix of vehicles can minimize 

cost or GHG emissions? (2) What is the cost or GHG reduction potential with and 

without workplace charging infrastructure? and (3) What effect does workplace charging 

have on optimal vehicle allocation and battery sizing? We describe our approach in 

Section 2.2, present results for a base case and alternative scenarios in Section 2.3, 

address model limitations and future work in Section 2.4, and provide discussion and 

conclusions in Section 2.5. 
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2.2 Approach 

We pose an optimization problem to minimize life cycle cost or GHG emissions over 

the personal vehicle fleet by jointly determining (1) the optimal design of each CV, HEV, 

PHEV, and BEV; (2) the optimal allocation of each vehicle design in the fleet based on 

annual vehicle miles traveled (VMT); and (3) the optimal allocation of workplace 

charging infrastructure to PEVs in the fleet. Within the fleet, we consider only vehicles of 

similar size and acceleration performance to the Toyota Prius. We also incorporate 

vehicle design constraints to ensure comparable acceleration performance and vehicle 

allocation constraints to ensure BEVs are assigned only if they have sufficient range to 

accommodate the vehicle’s driving distance on most days (base case 95% of days, as 

discussed in Section 2.2.4). This formulation represents a best-case scenario for 

minimizing cost or GHG emissions with these vehicle technologies; market outcomes 

would likely deviate. 

The general form of the optimization problem that we would like to solve is 
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(2.1) 

where S is the annual VMT for a specific vehicle in the fleet; fS(S) is the probability 

density function of annual VMT over the fleet; J={1,2,…,n} is the set of indices for all 

vehicle alternatives; fOj(xj,S) is the equivalent annualized life cycle cost or annualized life 

cycle GHG emissions of vehicle j defined by the vehicle design vector xj when driven S 
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miles per year (daily variation is discussed later); gD
j(xj) is the vector of vehicle design 

constraints; gA
j(xj,S) is the vector of allocation constraints; and pj is the size of vector xj. 

This formulation presents two key difficulties for mathematical optimization: (1) the 

objective function contains an integral, and (2) the objective function contains a min 

function, which has derivative discontinuities. To avoid these difficulties, we reformulate 

the problem using numerical integration and binary selection variables. First, we select a 

finite upper limit for the integral SMAX (73,000 mi.) and partition [0,SMAX] into m equal 

adjacent bins i∈{1,2,...,m}, each of size SMAX/m. We introduce binary selection variables, 

αij∈{0,1}, for each bin i and vehicle alternative j that define which vehicle is assigned to 

each bin (Σjαij = 1: only one vehicle alternative can be selected for each bin), and we 

further partition each bin into K = SMAX/m∆ segments of size ∆ for numerical integration 

using the midpoints of fO and FS in each segment, where FS is the cumulative distribution 

function (CDF) of fS. The resulting formulation is 

 

{ }

( )
( )( )

( )( )
( )

( ) { }

{ }

( )

O
S

1 1 O S

, , ,
1 ( 1)

1,..,

D

A

, 1

, 1
minimize

2

subject to 1, , , 0,1 ,

1,.., ,

, , 1

j ij

j

n
j j

ij
m iK j

j j

j J
i k K i

i m

p

ij j j j ij

j J

ij j ij

f k F k

f k F k

i m j J

i

α

α

α α

α

− =

∀ ∈
= = −

∀ ∈

∈

  ∆  + ∆      + + ∆ − ∆   ∆  ∆      

= ≤ ∈ℜ ∈

∀ ∈ ∀ ∈

≤ ∀ ∈

∑
∑ ∑

∑

x

x

x

g x 0 x

g x 0 { } BEV

MAX

,..., ,

where

 

m j J

S

mK

∀ ∈

∆ =

 (2.2) 

We relax the binary allocation variables αij into the continuous domain, αij∈ℜ, 0 ≤ αij ≤ 

1, making this into a nonlinear programming problem to ease computation. For any set of 
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fixed designs x* = [x1, ..., xn]
*, the optimization formulation in (2) is linear in αij and 

totally unimodular, so we expect that the optimal solution set will always contain a corner 

solution with integer values for the allocation variables αij (Nemhauser and Wolsey, 

1999). 

In our application, the set of vehicle alternatives J is partitioned into CVs, HEVs, 

PHEVs and BEVs, so that J = JCV ∪ JHEV ∪ JPHEV ∪ JBEV. The decision variable vector xj 

= [xEj, xMj, xBj, xSWj]
T for each vehicle j∈J includes xE = gasoline internal combustion 

engine peak power (kW), xM = electric motor peak power (kW), xB = battery size 

(number of cells), and xSW= battery swing window (portion of total energy capacity) for 

each vehicle j, where xM = xB = xSW = 0 ∀ j∈JCV and xE = 0 ∀ j∈JBEV. The function 

fOj(xj,S) in the objective function of Eq. (2.2) is replaced by either fCj(xj,S), equivalent 

annualized life cycle cost in 2010 U.S. dollars (USD2010) per vehicle-year, discussed in 

Section 2.2.1.1, or fGj(xj,S), annualized life cycle GHG emissions in kilograms of CO2-

equivalent (kgCO2e) per vehicle-year, discussed in Section 2.2.1.2. Appendix 7.1 

summarizes model variables, functions, and parameters and defines base case and 

sensitivity values. 

The design constraint vector gD
j(xj)={g1

D
j(xj),g2

D
j(xj)} ensures that each vehicle 

satisfies comparable acceleration performance criteria. These include a maximum 0-60 

miles per hour (mph) acceleration time tMAX = 11 seconds for all vehicles, in both 

gasoline and electric mode: g1
D

j(xj) = tG(xj) – tMAX ≤ 0 ∀ j ∈ JCV ∪ JHEV ∪ JPHEV, g1
D

j(xj) 

= 0 ∀ j ∈ JBEV, g2
D

j(xj) = tE(xj) – tMAX ≤ 0 ∀ j ∈ JPHEV ∪ JBEV, and g2
D

j(xj) = 0 ∀ j ∈ JCV 

∪ JHEV, where tG(xj) and tE(xj) are the 0-60 mph acceleration time of vehicle xj in gasoline 

and electric mode, respectively, as discussed in Section 2.2.2. We also incorporate simple 
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bounds 30kW ≤ xEj ≤ 60kW, 50kW ≤ xMj ≤ 110kW, and 200 cells ≤ xBj ≤ 1000 cells ∀ j ∈ 

JPHEV and xEj = 0 kW, 70 kW ≤ xMj ≤ 250 kW, and 200 cells ≤ xBj ≤ 9000 cells ∀ j ∈ JBEV 

to avoid extrapolation beyond our simulation data. The battery swing window constraints 

are 0.1 ≤ xSWj ≤ 0.8 ∀ j∈J\JCV to ensure safe battery operation and avoid excessive 

degradation. Finally, the allocation constraints gA
ij(xj,αij) = αijfAij(xj) ≤ 0 where fAij(xj) = 

sφ((k+1)∆) – sAER(xj) ∀ i ∈ {1,…,m} ∀ j ∈ JBEV, and fAij(xj) = 0 ∀ i ∈ {1,…,m} ∀ j ∈ 

J\JBEV ensure that BEVs are only allocated to vehicles if φ percent of days have VMT 

lower than the vehicle's range. We discuss the sAER(xj) function in Appendix 7.1 and the 

sφ function in Section 2.2.4. 

2.2.1 Objective Functions 

The function fOj(xj,S) in the objective function of Eq. (2.2) is replaced by either 

fCj(xj,S), equivalent annualized life cycle cost (USD2010/vehicle-year), or fGj(xj,S), 

annualized life cycle GHG emissions (kgCO2e/vehicle-year), depending on the case. 

2.2.1.1 Equivalent Annualized Life Cycle Cost 

When the goal is to minimize equivalent annualized life cycle cost, the function 

fOj(xj,S) in the objective function of Eq. (2.2) is replaced with fCj(xj,S) (USD2010/vehicle-

year), defined as 
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(2.3) 

where cVj is the cost of producing the base vehicle excluding engine, motor, and batteries; 

ρ is the carbon price in dollars per kgCO2e (zero in the base case); vVj is the GHG 

emissions from production of the base vehicle excluding engine, motor, and batteries; 

cE(xEj) is the cost of engine production; vE(xEj) is the GHG emissions from engine 

production; cM(xMj) is the cost of motor production; vM(xMj) is the GHG emissions from 

production of the motor; fA|P(r,n) = r(1+r)n((1+r)n – 1)-1 is the capital recovery factor; rN 

is the nominal discount rate; lV(S) = SLIFE/S is the life of the vehicle, including the engine 

and motor (and, for simplicity, the battery), in miles; SLIFE is 150,000 miles; cB(xBj) is the 

cost per kWh of battery production; vB is the GHG emissions per kWh of battery 

production; κB is the battery cell energy capacity (0.0216 kWh/cell for the lithium ion 
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batteries in the PHEVs and BEVs and 0.00774 kWh/cell for the nickel metal hydride 

pack (NiMH) in the HEV); cC is the cost of charger production; vC is the GHG emissions 

of charger production; qCj is the number of chargers allocated to vehicle j (treated as 

separate design types to avoid adding a binary vehicle design decision variable); lc is the 

charger life in years, which we assume is equal to the life of the vehicle; pG is the 

gasoline price in dollars per gallon; vG is the life cycle GHG emissions from gasoline 

consumption per gallon, including both production and combustion; SG(xj,s) is the annual 

distance for which the vehicle is powered by gasoline (charge sustaining mode); ηG(xj) is 

the vehicle 5-cycle combined gasoline efficiency in miles per gallon (mpg); pELEC is the 

electricity price per kWh; vELEC is the life cycle GHG emissions from electricity 

consumption per kW; SE(xj,s) is the annual distance for which the vehicle is powered by 

electricity (charge depleting mode); ηE(xj) is the vehicle 5-cycle combined electrical 

efficiency in mi./kWh; rAG = (1+rN)(1+rNG)-1 – 1 is the adjusted gasoline price growth 

rate, where rNG is the nominal gasoline price growth rate, accounting for inflation and 

other factors affecting gasoline prices; rAE = (1+rN)(1+rNE)-1 – 1 is the adjusted electricity 

price growth rate, where rNE is the nominal electricity price growth rate, accounting for 

inflation and other factors affecting gasoline prices (see Appendix 7.1 for a description of 

the adjusted growth rates). We focus on the all-electric control strategy (in which PHEVs 

travel the entire AER distance in charge depleting mode without using gasoline), and we 

ignore PHEVs with blended control strategies. In Eq. (2.3), the motor, battery, charger, 

and electricity terms drop out for CVs; the charger and electricity terms drop out for 

HEVs; and the engine and gasoline terms drop out for BEVs. We also ignore battery 

degradation and replacement. We discuss cost functions and parameters below in this 
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section and GHG functions and parameters in Section 2.1.2. We discuss vehicle fuel 

efficiency functions ηG(xj) and ηE(xj) in Section 2.2.2 and driving pattern functions fS(s), 

SE(xj,s), and SG(xj,s) in Section 2.2.4. 

Vehicle production costs and equations are derived from a 2009 Argonne National 

Laboratories report (Plotkin and Singh, 2009). Base case values come from their 

literature review predictions for 2015 and other cases are used for sensitivity analysis. All 

costs have been converted to USD 2010 using the Consumer Price Index (US DOL, 

2010). Resulting battery costs are in the range of $380-570/kWh rated capacity. Other 

details of vehicle cost parameter values appear in Appendix 7.1. Charger production cost 

cC is $1500 in the base case. This represents the approximate average cost of a Level 2 

charger including installation (120 or 240 volts AC, up to 3.3 kW (Morrow et al., 2008)). 

Gasoline and electricity prices and price growth rates come from the EIA Annual 

Energy Outlook 2011 (US EIA, 2011c). We use EIA’s high oil price case as our base 

case because their reference case is generally optimistic. The base case gasoline price pG 

is $2.22 per gallon, the 2009 U.S. sales-weighted average price for all grades. The 

nominal gasoline price growth rate, rNG, including inflation and other factors, is 5.2%. 

Details of other cost parameters appear in Appendix 7.1. 

2.2.1.2 Annualized Life Cycle GHG Emissions 

When the goal is to minimize annualized life cycle GHG emissions, the function 

fOj(xj,S) in the objective function of Eq. (2.2) is replaced with fGj(xj,S) (kgCO2e/vehicle-

year), defined as 
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where all parameters have been previously defined. In Eq. (2.4), the motor, battery, 

charger, and electricity terms drop out for CVs; the charger and electricity terms drop out 

for HEVs; and the engine and gasoline terms drop out for BEVs. Parameter values appear 

in Appendix 7.1. 

This equation represents a hybrid life cycle assessment (LCA) approach to calculating 

the annualized life cycle GHG emissions of personal vehicles. Values for the GHG 

emission parameters come both from Economic Input-Output LCA (EIO-LCA) and from 

process-based LCAs. The hybrid approach to LCA for applications such as emissions 

from personal vehicles is supported in the literature (Suh et al., 2004) and in standards 

(BSI, 2011). The scope of this LCA is cradle-to-gate GHG emissions plus the use phase, 

but excluding end-of-life. 

2.2.2 Vehicle Performance Models 

To estimate the electrical ηE(xj) and gasoline ηG(xj) efficiencies and the acceleration 

performances tG(xj) and tE(xj) of vehicle j defined by design variables xj, we utilize 

Argonne National Laboratory’s Powertrain System Analysis Toolkit (PSAT) vehicle 

simulation software (ANL, 2008) and construct a metamodel fit to a discrete set of 

simulation points in the design space xj to find the U.S. Environmental Protection Agency 

(EPA) 5-cycle combined highway and city efficiency and 0-60 mph acceleration time for 

a range of vehicle designs. We use the 2004 Toyota Prius model (with a power-split or 
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series-parallel HEV powertrain) as the baseline vehicle and our HEV model. We 

construct our PHEV model by substituting Li-ion batteries for the Prius NiMH batteries, 

increasing the pack size, and increasing the SOC range for regenerative braking. One 

kilogram of structural weight is added to the vehicle per kilogram of battery, engine, and 

motor to support the weight of those components (Shiau et al., 2009). We base our CV 

model on a scaled Honda Civic powertrain (engine, gearbox, and final drive), adjusted to 

have a Toyota Prius vehicle body for fair comparison to the HEV, PHEV, and BEV 

(Shiau et al., 2010). Our BEV model has a generic BEV drive train modified to use the 

same body, motor, and batteries as the PHEV. We ignore the possibility of using different 

battery designs on BEVs vs. PHEVs. The error for all metamodels is within 0.5 seconds, 

0.03 miles per gallon equivalent (mpge), and 0.06 mi./kWh over the set of data points 

used for fitting. Further details of the vehicle designs, vehicle simulation models, 

metamodel construction, and AER calculations appear in Appendix 7.1. 

2.2.3 Charging Infrastructure Scenarios 

We consider the following two charging scenarios: (1) only Level 2 home charging 

(240 volts AC, up to 3.3 kW (Morrow et al., 2008)), and (2) Level 2 home charging with 

additional dedicated workplace Level 2 charging: we do not consider additional charging 

methods such as DC fast charging, battery swapping, smart charging, or vehicle to grid 

power. The Level 2 charger is represented by a single cost parameter that includes 

equipment and installation and by a single production emissions factor (see Appendix 7.1 

for details). 

We implement these two charging scenarios in the model by partitioning JPHEV and 

JBEV each into two subsets JPHEV = JPHEV(1) ∪ JPHEV(2) and JBEV = JBEV(1) ∪ JBEV(2), where 
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the numbers indicate 1 charger (home) or 2 chargers (home + work). Each 2-charger 

partition is identical to the corresponding 1-charger partition (equal design variables) 

except that qC = 2 instead of 1. This allows each vehicle design to be assigned to some 

drivers with one charger and also to other drivers with two chargers. Allocation of 

charging infrastructure in this model refers to whether each PEV is allocated with or 

without workplace charging. 

2.2.4 Driving Patterns 

To find the CDF FS(S) for annual VMT, we use data on the weighted average daily 

distance traveled (based on odometer readings) of each vehicle in the U.S. from the 2001 

National Household Travel Survey (NHTS) (US DOT, 2003). The resulting histogram is 

shown in Figure 2.1. This distribution accounts for the variability in average daily VMT 

across the U.S. vehicle fleet (across vehicles), but does not account for variability in 

VMT of each vehicle across days (within vehicle). NHTS data do not contain information 

on within-vehicle variability, since each household was only surveyed on one day. We 

use detailed trip data collected for 133 vehicles in Minnesota in 2004-2005 to estimate 

this variability across days (Sierra Research, 2005). Since the average annual VMT is 

similar across the two data sets (11,800 miles in NHTS odometer readings (US DOT, 

2003) and 11,900 miles in the Minnesota data set (Sierra Research, 2005)), we believe 

the Minnesota data set is reasonably representative for providing an estimate of U.S. 

within-vehicle variability. 

We represent the variability in daily driving distance for each vehicle in two separate 

ways. In both cases we remove days in which the vehicle was not driven, leaving an  
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.  
Figure 2.1 Histogram of odometer-based annual VMT from NHTS 2001 data (US DOT, 2003) 

average of D = 243.8 driving days per year (we observed no clear trend in D vs. annual 

VMT S, so D is assumed constant across S) (Sierra Research, 2005). 

First, we enforce a BEV range allocation requirement for each bin on S by computing 

the length of the 95th percentile longest driving-day distance traveled for each vehicle in 

the Minnesota data set. We fit a curve to these data to produce s95%(S) = 2.62(S/d) + 40.3 

miles, where d = 365 days per year, and we permit BEV allocation to a bin only if the 

AER is greater than the greatest 95th percentile distance for that bin (implying that 

driving and charging behavior or household vehicle allocation would need to change on 

the remaining 5% of driving days to avoid full battery depletion, which we ignore). We 

also perform sensitivity analysis by instead constraining allocation of BEVs to satisfy 

only the average driving distances of each bin µ(S). 

Secondly, to estimate the portion of VMT that a PHEV is driven using gasoline vs. 

electric power, we require an estimate of the distribution of daily driving distances for 
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each bin of vehicles. The shape of the distribution of daily distance driven in the 

Minnesota data set varies from vehicle to vehicle, including unimodal and multimodal 

distributions. However, for simplicity and tractability, we assume a family of exponential 

distributions. This model specification provides a useful approximation of the general 

trend in daily variability while offering a closed form CDF to facilitate estimation of the 

portion of miles driven beyond a PHEV’s all-electric range. To estimate this relation, we 

fit a curve through the mean driving-day distance: µ(S) = 1.110(S/d) + 13.33 and define a 

family of exponential distributions that follow µ(S), with CDF of 

( ) ( )( )V

σ
, 1 expF S Sσ σ µ= − − , where σ is a random variable indicating distance driven 

on a particular day. 

Figure 2.2 shows both of these functions, along with the 95th percentile of the family 

of exponential distributions, for comparison. The 95th percentile found from the 

exponential assumption deviates somewhat from the linear fit, and our use of the linear fit 

as the BEV allocation constraint is more optimistic toward electrification. The 95th 

percentile found from the exponential distribution is shown only for comparison. 

Using the exponential fit, we calculate SG(xj,S), the annual distance powered by 

gasoline, and SE(xj,S), the annual distance powered by electricity as 
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We assume here that the presence of workplace charging will provide a charging 

opportunity sufficient to effectively double the AER. In this sense, “workplace charging”  
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Figure 2.2 Mean and 95th percentile driving-day distances for 133 vehicles versus annual VMT, with linear 
fits and with 95th percentile implied by the family of exponential distributions calibrated to match a linear 
fit to the mean. The linear fit to the 95th percentile data is used as the BEV range constraint. 

can represent any dedicated (guaranteed) daytime charging opportunity away from home 

(since it requires a second charger) that occurs at a distance between the AER and the 

halfway point of the day’s driving distance. This assumption is optimistic for estimating 

the benefits of PHEVs and of workplace charging, since daily distance variability 

typically reflects trips taken to locations other than the workplace, rather than variable 

distance to the workplace, so it is likely that a workplace charging opportunity may not 

occur in the specified distance range. We ignore workplace charging for the purpose of 

calculating the BEV range constraint, since the 5% of longest days that make the 

allocation constraint binding are unlikely to be normal commute days with dedicated 

charging available. Because we use the same driving cycle for all drivers, we also do not 

account for the correlation between driving distance and driving style (and therefore 

efficiency). 
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2.2.5 Allocation Method 

Figure 2.3(a) shows an example plot of fOj(xj,S)/S (either GHG emissions or cost per 

mile) versus annual VMT (S) for two hypothetical vehicles. At any point along the S-axis, 

the lowest vehicle curve represents the best vehicle for a driver with annual VMT of S. 

Figure 2.3(b) shows fOj(xj,S)fS(S), the fleet-weighted value per vehicle-year and the 

integrand of the objective function in Eq. (2.1). The area under each vehicle curve in 

Figure 2.3(b) represents the total objective function value if all vehicles in the fleet were 

of the corresponding design and charging scenario. In each graph, the horizontal axis is 

divided into two bins, and the best vehicle is allocated in each bin. The area under the 

resulting piecewise smooth curve defined by the thicker lines represents the total 

objective function value if the two vehicles are allocated optimally. 

 
 (a) (b) 

Figure 2.3 Example illustrative plots of (a) cost or GHGs per VMT vs. annual VMT and (b) fleet-weighted 
cost or GHGs vs. annual VMT. The area under the curve in (b) is the objective function value. 
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2.2.6 Scenarios and Sensitivity Analysis 

We solved the optimization model for several scenarios and performed sensitivity 

analysis on the key model parameters. For each objective function (cost or GHGs), the 

base case is the least restricted scenario, in which all vehicle types are included for a total 

of 6 designs (CV, HEV, 2 PHEV designs, and 2 BEV designs) with both home and 

workplace charging available. We also considered scenarios with fewer vehicle designs 

(such as PHEVs only) and scenarios restricted to home charging only. 

We performed sensitivity analysis on several major parameters in both the cost and 

GHG objective functions. For all parameters, we identify a base case representing a 

reasonable current value, based either on recent historical values or near-future 

projections. For most parameters we also identify a low and high value representing 

bounds on the likely variation of that parameter in the next several decades. For some 

parameters, such as gas price, we also examine a range of values to identify critical 

points. Table 2.1 summarizes assumptions for our base case and sensitivity cases, and 

details of sensitivity cases can be found in Appendix 7.1. 

Finally, we also ran some additional cases for sensitivity analysis where the PHEV 

and BEV metamodels had higher efficiency. These updated metamodels were calculated 

(1) with the PHEV PSAT model used to model BEVs, since the BEV model was less 

efficient and (2) with the method of calculating 5-cycle efficiency updated so that both 

PHEVs and BEVs are more efficient. See Appendix 7.1 Section 7.1.1.3.1 for details. 
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Table 2.1 Summary of base case and sensitivity cases 
 Base case Sensitivity cases 

Electricity grid mix U.S. average Nuclear, natural gas, integrated gasification 

combined cycle plant with carbon capture and 

sequestration (IGCC-CCS), coal 

Potential vehicle fleet Fleet of CV, HEV, 2 

PHEVs, 2 BEVs 

CV only, HEV only, 2 PHEVs only, 2 BEVs only 

Charging potential Home, home + work Home charging only 

BEV range constraint Range > 95% of daily 

VMT 

Range > average daily VMT 

Gas price $2.22/gal + 5.2%/year $3, $3.25, $4, $5, $6, $7, $8/gal + 5.2%/year 

Electricity prices $0.12/kWh + 1.9%/year $0.06, $.30/kWh + 1.9%/year 

Vehicle and battery costs Plotkin and Singh 2015 

literature review 

(LR2015) estimates 

($380 - $570/kWh rated 

capacity for batteries) 

Plotkin and Singh 2045 lit review (LR2045) 

estimates ($190 - $350/kWh for batteries), 2030 

program goals (PG2030) ($130 - $180/kWh for 

batteries) 

Charger costs $1500 installed $0, $475, $500, $2500 

Discount rate 5% 0%, 10% 

CV efficiency 25 mpg 32 mpg 

CO2 price $0/kgCO2e $0.02, $0.1/kgCO2e ($20, $100 per metric ton CO2 

equivalent (tCO2e)) 

2.3 Results 

In this section, we describe the results obtained from the optimization formulation 

defined in Eq. (2.2). First in Section 2.3.1, we show lifecycle cost and GHG emission 

results for several example vehicle designs, disaggregated to illustrate the contributing 

factors. Then in Section 2.3.2, we present lifecycle cost and GHG emissions results for 

several scenarios in which vehicles are optimally designed and allocated, including 

sensitivity analysis. Further results are available in Appendix 7.1. 
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2.3.1 Cost and GHG Emissions Breakdown 

Figure 2.4 shows a breakdown of the contributing factors to (a) life cycle cost and (b) 

GHG emissions for example vehicles of each type. These factors also correspond to terms 

in Eq. (2.3) and (2.4). For illustration purposes, the example vehicle designs shown in 

Figure 2.4 have been optimized for minimum cost when that vehicle design is allocated 

across the entire fleet. Further details on these vehicles are shown in Table 7.9 scenarios 

25 and 26 and Table 7.10 scenarios 33 and 34. In order to obtain a feasible solution with 

a BEV allocated to the entire fleet, the range constraint was reduced to mean travel 

distances instead of 95th percentile longest distances. The PHEV and BEV are shown 

with one charger allocated. Results will vary for different vehicle designs. 

  
 (a) (b) 

Figure 2.4 Breakdown of (a) equivalent annualized life cycle cost and (b) life cycle GHG emissions for 
four independently cost-optimized vehicle designs. 

As shown in Figure 2.4(a), allocating BEVs (with a 235 mile AER) to the entire 

population is significantly more costly than any of the other vehicle types, mainly due to 

battery costs. The large battery pack used here is needed to provide enough range for the 
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average daily travel of all driving bins, but smaller battery packs could be used when 

allocating vehicles to a subset of driving bins, as will be shown in the following sections. 

CVs have the largest gasoline cost, but the gasoline cost savings from switching to HEVs 

or PHEVs (with a 13 mile AER) are partially offset by motor, battery and charger costs. 

HEVs are least expensive overall. Although base vehicle, engine, and motor costs vary 

across vehicle types, differences in gasoline and battery costs drive comparisons. Figure 

2.4(b) shows that more GHG emissions occur when CVs are allocated across the entire 

fleet than when HEVs or PHEV13s are allocated, and most emissions are from gasoline 

production and combustion. HEVs have significantly lower emissions from gasoline, and 

some additional emissions from motor and battery production. Our results agree with the 

literature both on the range of overall emissions from CVs and HEVs and on their 

relation to each other: in this chapter HEVs produce 37% less life cycle GHG emissions 

than CVs. Samaras & Meisterling (2008) find that HEVs produces 30% less life cycle 

GHGs than CVs, and Shiau et al. (2010) find that HEVs produce 44% less. PHEVs 

provide further reductions in GHG emissions from gasoline, but they are offset by an 

increase in emissions from electricity. BEVs have more GHG emissions than the other 

vehicle types. Most BEV emissions are from electricity and battery production. Although 

both the cost and GHG emissions of the chargers are small, including them allows us to 

model tradeoffs between producing additional chargers and electrifying additional miles. 

2.3.2 Optimal Design and Allocation 

Results are summarized in two figures: Figure 2.5 shows selected results for 

minimizing annualized life cycle GHG emissions, and Figure 2.6 shows selected results 

for minimizing equivalent annualized life cycle cost. Further results, including more 
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details for each of the cases shown, are included in Appendix 7.1. For both objective 

functions, the base case is shown first. The base case is the least restrictive scenario, 

allowing the CV design, the HEV design, up to 2 PHEV designs, and up to 2 BEV 

designs to be allocated with home charging only or with home and workplace charging. 

The base case uses the base case parameter estimates defined in the Section 2.2 and 

tabulated in Appendix 7.1, including average U.S. grid mix and energy prices. Following 

the base case, each sensitivity analysis scenario is defined by the major differences from 

the base case. 

Figure 2.5 and Figure 2.6 show the vehicle allocations at each optimal scenario. The 

lower x-axis indicates the cumulative percentage of vehicles, and the upper x-axis 

indicates the corresponding annual VMT of that portion of the fleet. The upper and lower  

 
Figure 2.5 Optimal vehicle allocations for minimizing annualized life cycle GHG emissions in selected 
scenarios. “P” indicates PHEV and “B” indicates BEV. Numbers after vehicle abbreviations indicate the 
AER in miles, and “(2)” indicates workplace charging in addition to home charging. Asterisks indicate 
vehicle designs with battery sizes (and AERs) at the bounds of our model. Base case details appear in Table 
2.1. 
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Figure 2.6 Optimal vehicle allocations for minimizing equivalent annualized life cycle cost in selected 
scenarios. “C” indicates CV, “H” indicates HEV, “P” indicates PHEV, and “B” indicates BEV. Numbers 
after vehicle abbreviations indicate the AER in miles, and “(2)” indicates workplace charging in addition to 
home charging. Asterisks indicate vehicle designs with battery sizes (and AERs) at the bounds of our 
model. Base case details appear in Table 2.1. 
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allocated in addition to home charging. So, for example, the first bar in Figure 2.5 shows 

that in the base case for GHG minimization, a PHEV with an AER of 26 miles is 

allocated to the first 60% of vehicles that drive up to 14,600 miles per year, and a PHEV 

with an AER of 23 miles is allocated to the remaining 40% of vehicles with longer annual 

VMTs. Since this scenario allows workplace charging to be allocated and it is not 

allocated, we know that the GHG reduction from a second charge (and therefore more 

electrified miles) is not enough to offset the production GHGs of the second charger. The 

PHEV with the smaller range is allocated to the vehicles with longer distances because 

for those vehicles the charge-sustaining mode efficiency matters more, and larger battery 

packs increase production emissions and reduce efficiency due to weight. 

The other cases shown in Figure 2.5 are as follows: forcing all vehicles to be BEVs 

requires large battery packs to satisfy range constraints (even when we require BEV 

range to satisfy only the average trip, shown here, rather than the 95th percentile trip), and 

net GHGs are increased. When charged with coal electricity, GHG benefits of PEVs 

disappear, and a PHEV3 minimizes GHGs for the fleet. This is practically an HEV, but 

our model selects a PHEV with the shortest possible range (smallest permitted PHEV 

battery pack size and swing) because the PHEV is slightly more efficient in charge 

sustaining mode than our HEV model. Optimizing the HEV design is beyond the scope 

of this chapter, but if it were allowed, it is likely that an optimized HEV would exist that 

is more efficient than this PHEV3, and coal electricity would therefore remove PEVs 

from the GHG-optimal fleet. When charging with natural gas or from an integrated 

gasification combined cycle plant with carbon capture and sequestration (IGCC-CCS), 

we observe allocation of larger capacity PHEVs with workplace charging. Marginal 
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dispatch electricity associated with PEV charging will vary by location and charge 

timing, but the grid scenarios examined here provide a bounding analysis over a wide 

range of grid GHG intensities. 

Further details for each case, such as the overall cost and GHG emissions, as well as 

additional cases appear in Appendix 7.1. These cases show that (1) workplace charging 

offers no GHG benefits under the average U.S. grid mix, but under decarbonized grid 

scenarios workplace charging is allocated, providing optimistically up to 21% additional 

GHG reductions when the workplace charge occurs at the halfway point of daily distance 

for each vehicle each day. Under more realistic conditions, the benefit of workplace 

charging would be lower, suggesting that availability of dedicated workplace charging is 

not a significant factor in reducing overall life cycle GHG emissions unless combined 

with significant levels of grid decarbonization; (2) under decarbonized grid scenarios, 

greater penetration of vehicles with larger battery packs are observed in GHG-minimized 

solutions, including BEVs, and GHG emissions are reduced substantially; however, costs 

increase; (3) availability of workplace charging in decarbonized grid scenarios affects the 

vehicle design by allowing some PHEVs to have smaller AERs and by reducing the 

allocation of larger capacity BEVs in favor of smaller capacity BEVs and more large 

capacity PHEVs; and (4) even when charged with zero-emission electricity, BEVs are not 

GHG-minimizers for the entire fleet; minimizing GHGs, even if the grid were entirely 

decarbonized and cost were not a factor, would involve continued use of gasoline (and/or 

other liquid fuels not studied here). 

Figure 2.6 shows that in the base case, the cost-minimizing solution is to assign HEVs 

to all vehicles. When restricted to allocating PHEVs, they are low capacity, with 12-14 
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mile AER. When restricted to allocating BEVs, battery packs are large, even when 

constraining their range to meet only average trip requirements rather than 95th percentile, 

and costs increase substantially. Gas prices above $3.25/gal (with 5.2% growth rate) are 

required to bring PHEVs into the minimum cost solution, and prices as high as $7/gal 

(with 5.2% growth rate) are required for PHEVs to almost entirely replace HEVs, and 

these prices are still not high enough for BEV penetration. Lower vehicle and battery 

costs that meet DOE 2030 program goals (including optimistic battery costs of $134-

176/kWh) are sufficient for a small penetration of PHEVs but must be combined with 

$4.5/gal gasoline (with 5.2% growth rate) to trigger allocation of PHEVs predominately. 

Charger costs below $475 are needed to encourage PHEV penetration, and if chargers are 

free, PHEVs (with workplace charging) are allocated to about 40% of vehicles. While 

some households can charge a vehicle at 120 V with little or no installation cost, most 

households will incur at least some equipment, installation, and/or inspection cost before 

being able to charge at Level 2 (240 V), and Level 2 charging is necessary to charge large 

battery pack vehicles overnight. Low discount rates drive greater adoption of PHEVs, 

although consumers are known to use high discount rates in practice (Horne et al., 2005; 

Mau et al., 2008). Carbon taxes do little to encourage adoption of PHEVs unless high 

carbon prices ($100 per metric ton CO2 equivalent (tCO2e)) are combined with 

decarbonized electricity. Studies have indicated that a reasonable range for a carbon price 

is $20/tCO2e to $100/tCO2e (Interagency Working Group on Social Cost of Carbon, 

United States Government, 2010; IPCC, 2007), although some have argued that higher 

prices are justified (Kopp and Mignone, 2011). Prices on the order of $100/tCO2e would 
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induce major changes in the electricity sector before doing much to promote vehicle 

electrification. 

Further details for each case, such as the overall cost and GHG emissions, as well as 

additional cases appear in Appendix 7.1. These cases show that (1) HEVs are an optimal 

or near-optimal solution for minimizing cost across many scenarios, including our 

sensitivity analysis cases with low or base case gas prices, high discount rates, high 

charger costs, and reduced vehicle and battery prices to the LR2045 levels; (2) cases that 

lead PEVs to dominate the fleet include $7/gal gasoline (with 5.2% growth rate), $6/gal 

gasoline (with 5.2% growth rate) combined with $100/tCO2e carbon prices, or $4.50/gal 

gasoline (with 5.2% growth rate) combined with DOE 2030 targets for low vehicle and 

battery costs. 

This analysis finds the fleet with the minimum equivalent annualized life cycle cost 

overall, not the minimum cost to consumers, so no government incentives such as tax 

credits are considered. Tax credits are still costs incurred by the government and the tax 

payer if not by the consumer. 

These findings are robust to the definition of the CV and HEV models. We find 

similar results when the CV efficiency increases to as high as 32 mpg, as shown in 

scenario 19. In the base case the HEV is 58% more efficient than the CV (43 mpg and 25 

mpg, respectively), and when the CV reaches 32 mpg the HEV is only 34% more 

efficient. Real-world HEVs tend to be around 48% more efficient than the same model 

CV, which falls within the range of our sensitivity analysis and does not change our base 

case results (Ford Motor Company, 2011). 
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In a future with low-emission electricity, low vehicle and battery costs, and higher 

gasoline prices, we may expect high penetration of BEVs for lower-distance vehicles and 

PHEVs for higher-distance vehicles. However, in near-term scenarios, HEVs and low-

range PHEVs are preferable for both cost and GHG reduction. Because HEVs are the 

cost-minimizing solution, and because GHGs from HEVs are also within 3% of the 

GHG-minimizing solution under today’s U.S. grid energy mix, we find that the cost-

minimized base case solution has only 3% more GHG emissions than the GHG-

minimized base case solution and costs 12% less (see Table 7.9 and Table 7.10). 

Relative to the base case solution for minimizing GHGs, GHG emissions would 

increase by 63% if all vehicles were CVs of comparable size and acceleration 

performance, by 3% if all vehicles were HEVs, by 0% if all vehicles were PHEVs (see 

Table 7.9), and by 36% if all vehicles were BEVs with only enough range to support the 

average trip (BEVs with enough range to support the 95th percentile trip require battery 

capacity larger than our model permits for long distance vehicles). In practice, range 

anxiety may cause consumers to demand even greater range from BEVs than the 95th 

percentile distance (and almost certainly more than the mean) in the absence of 

widespread, convenient, rapid public charging infrastructure, since accommodation of the 

95th percentile longest daily driving range still leaves 18-19 days each year where daily 

driving distance exceeds vehicle range. It is also possible that consumers will change 

their driving patterns to accommodate BEVs with shorter ranges than we have assumed, 

especially since the majority of U.S. households have multiple vehicles (US DOT, 2003), 

but it would take significantly reduced range requirements to make BEVs competitive 
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across the entire fleet. Neubauer et al. (2012) present one alternate method of treating 

BEV range restrictions based on adapting driving patterns. 

2.3.3 Additional Sensitivity Analysis Cases with Improved PHEV and BEV Efficiency 

Since our BEV metamodel derived from PSAT resulted in BEVs that were less 

efficient than the PHEVs, we ran sensitivity analysis cases with improved BEVs 

efficiency. PHEV efficiency is also improved in these cases due to a change in the 5-

cycle calculation method (described in Appendix 7.1) and BEV efficiencies are 

comparable to PHEV efficiencies with the same AER. Results are shown in Figure 2.7 

and Table 7.11. As shown, BEVs now appear in the base case solution for minimizing 

GHGs. However, their allocation is still limited by range requirements to only the 22% of 

vehicles with the shortest average driving distances. Their AERs are the same as BEVs 

allocated in previous cases because these are the minimum required AERs to meet range 

requirements, but since these vehicles are more efficient, their batteries can be smaller. 

The allocated PHEV changes only slightly in design but its rated AER is higher due to its 

increased efficiency. HEVs still dominate the minimum cost solution. Additional 

sensitivity cases with these more efficient PHEV and BEV metamodels are left for future 

work. 
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Figure 2.7 Optimal vehicle allocations for minimizing equivalent annualized life cycle cost and annualized 
life cycle GHG emissions in cases with improved efficiency of PHEV and BEV models and all other 
parameters at base case values. “H” indicates HEV, “P” indicates PHEV, and “B” indicates BEV. Numbers 
after vehicle abbreviations indicate the AER in miles, and “(2)” indicates workplace charging in addition to 
home charging. Detailed results appear in Table 7.11. 

2.4 Limitations and Future Work 

Several important assumptions and model limitations should be understood to support 

appropriate interpretation of results. Key assumptions include vehicle driving and 

charging patterns, vehicle design options and size class considered, and electricity 

generation mix. We discuss each in turn. 

First, assuming that workplace charging is available for all vehicles and allows a 

charge exactly halfway through daily travel is optimistic for PHEVs, although GHG 

reduction potential is marginal even under this optimistic assumption except in 

decarbonized grid scenarios. Assuming that home charging is available for all vehicles 

may also be optimistic. Additionally, we use the EPA 5-cycle combined city and highway 

drive cycle to calculate efficiency for all vehicles and do not account for the correlation 

between driving distance and driving cycle characteristics. Benefits of electrified vehicles 

can be substantially larger in city traffic conditions than in highway conditions 
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(Karabasoglu and Michalek, 2013), and longer driving distances are likely to involve a 

greater portion of highway travel, where conventional vehicles are more competitive. We 

also do not account for other factors such as heating and air conditioning use that can 

affect vehicle energy use differently for electrified vehicles. We would expect these 

factors to make PHEVs and BEVs somewhat less attractive. We also do not account for 

any changes in driving behavior that occur alongside electrification, such as households 

with multiple vehicles adjusting their driving habits to accommodate short-range BEVs in 

their household fleets.  

A second important set of assumptions is the space of design options, such as the use 

of a single scaled engine design, similar to the Toyota Prius to model each electrified 

powertrain alternative. In particular, we do not examine advancements to ICEs that 

improve fuel economy, such as direct injection, low friction lubricants, variable valve 

timing, etc. (NHTSA, 2008), and we do not optimize the design of the PHEV control 

strategy or include PHEVs with blended control strategies due to complexity in modeling 

the control variable space (Bradley and Frank, 2009). Additionally, we do not account for 

degradation requiring replacement of batteries and chargers prior to the end of vehicle 

life. Battery degradation will tend to affect smaller battery packs more severely than large 

packs because processed energy is spread over a larger number of cells in a larger pack, 

although the thin-electrode design of high-energy cells used in small battery packs may 

counteract this tendency (Fuller et al., 1994; Li et al., 2011; Wang et al., 2011). If battery 

life is shorter than vehicle life, it will make PHEVs and BEVs less competitive on both 

cost and GHGs than this analysis suggests. We do not include vehicle maintenance costs, 

which may differ by vehicle type. We also consider only vehicles similar in body size to 
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the 2004 Toyota Prius – vehicles well-suited for electrification. The full fleet includes 

many larger vehicles that are less likely to be electrified in the near term due to cost, 

range, and technical issues. We account for possible higher PHEV and BEV efficiencies 

in a small number of sensitivity analysis cases, but the impacts of improved PEV 

efficiency on other cases, especially the decarbonized grid scenarios, is left for future 

work. 

Third, while we do consider a wide range of possible electricity generation scenarios, 

we vary these independently in the sensitivity analysis and do not consider the effect that 

vehicle allocation might have on marginal grid mix. If assigning vehicles with larger 

battery packs leads to greater charging demand, it may have systematic effects on 

electricity grid mix that vary by region and time and would be expected to change in 

future scenarios with high penetration of electrified vehicles (Duvall and Knipping, 2007; 

Parks et al., 2007; Sioshansi et al., 2010). Marginal electricity associated with charging 

PHEVs at night may often be more coal-heavy than regional averages, although night 

charging, and the use of smart chargers that control charge timing, may also support 

integration of renewables. The impacts of carbon prices on the electric grid are 

exogenous to our model, so electricity generation scenarios and carbon prices are also 

varied independently. Across regions and assumptions, grid implications should be 

bounded by our sensitivity scenarios. 

This formulation represents a best-case scenario for minimizing cost or GHG 

emissions with these vehicle technologies; market outcomes would likely deviate, and we 

do not attempt to predict firm or consumer behavior. 
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2.5 Conclusions 

We pose an optimization model to minimize annual life cycle GHG emissions and 

cost from the personal vehicle fleet by selecting (1) engine, motor, battery size, and 

battery swing window for mid-size conventional, hybrid, plug-in hybrid, and battery 

electric vehicles and (2) allocation of those vehicles and of home and workplace charging 

stations to the vehicle fleet based on annual VMT. Results indicate best-possible 

scenarios for cost and GHG reductions given existing driving patterns, rather than likely 

market outcomes. 

We find, in agreement with the literature, that without sufficient grid decarbonization 

plug-in vehicles do not offer substantial GHG emissions reductions compared to HEVs 

(Bandivadekar et al., 2008; Samaras and Meisterling, 2008). GHG reductions improve 

with low-carbon electricity. Thus, grid decarbonization is needed to make plug-in 

vehicles a relevant means of reducing GHG emissions beyond grid-independent HEVs. 

Compared to CVs, HEVs offer cost and emissions reductions in almost all scenarios and 

are an optimal or near-optimal solution for minimizing cost across many scenarios. 

We further find that under the current U.S. electricity generation mix, workplace 

charging availability provides no GHG emissions benefit in the optimized solution, but 

workplace charging does provide additional benefits of optimistically up to 21% in 

combination with low-carbon electricity. Workplace charging availability changes the 

GHG-minimized vehicle allocation slightly, allocating smaller capacity PHEVs and 

BEVs. Gas prices above $3.25/gal (plus 5.2% per year) cause PHEVs to appear in the 

minimum cost solution, but for plug-in vehicles to dominate over HEVs, either gas prices 

of $7/gal (plus 5.2% per year) or gas prices of $4.5/gal gasoline (plus 5.2% per year) in 

combination with low vehicle and battery costs (DOE 2030 program goal levels, 
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including battery costs under $200/kWh) are needed. High carbon prices (over 

$100/tCO2e) do little to drive plug-in vehicles to appear in the cost-minimizing solution. 

We find that BEVs are restricted by range requirements from being a significant part 

of the minimum cost or GHG solutions. Even when range requirements are dramatically 

reduced, requiring BEV range adequate for only the average trip rather than the 95th 

percentile trip, a fleet of entirely BEVs is much more expensive and GHG-intensive than 

the other vehicle types, and BEVs are not GHG-minimizers for the full fleet even when 

charged with zero-emissions electricity. BEVs enter the GHG-optimal fleet only for 

short-range vehicles and only in cases with grid decarbonization. 
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3 U.S. Residential Charging Potential for PEVs 

Availability of residential charging infrastructure could be a limiting factor for fleet 

penetration of plug-in vehicles in the U.S. We assess existing and potential charging 

infrastructure for plug-in electric vehicles in U.S. households using data from the 

American Housing Survey (AHS) and the Residential Energy Consumption Survey 

(RECS). We estimate that about 38% of households and 22% of vehicles have access to a 

dedicated home parking spot within reach of an outlet (at least Level 1, 120V) sufficient 

to recharge a small plug-in vehicle battery pack overnight. Access to faster (Level 2, 

240V) charging, required for vehicles with longer electric range, will usually require 

infrastructure investment (costing from several hundred dollars up to $10,000 depending 

on electrical panel and construction requirements). Installing multiple vehicle chargers at 

the same household increases the cost and the likelihood of requiring a costly breaker 

panel upgrade. We estimate that 79% of households but only 56% of vehicles have access 

to a dedicated home parking spot where charging infrastructure could be installed. The 

percentage of vehicles with access is lower than for households due to multi-vehicle 

households and limited garage/driveway space. Urban areas have the lowest charging and 

parking availability. Additionally, 33% of U.S. households (38% in urban areas) are 

rentals, where regular tenant turnover and split incentives between landlords and tenants 

create additional barriers to infrastructure investment. We discuss sensitivity of results to 

uncertain factors. Future scenarios of plug-in vehicle penetration that ignore the limited 

availability of U.S. residential charging infrastructure opportunities are likely to 

overestimate the potential market for plug-in vehicles. 
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3.1 Introduction 

In the current new light duty vehicle market, CVs have the vast majority of market 

share. HEVs represent less than 4% of the market (EDTA, 2012; HybridCars.com, 2012). 

PEVs have been available since 2010 and have received up to 0.3% of the market through 

October 2012 (EDTA, 2012; HybridCars.com, 2012). PEVs available in the marketplace 

include PHEVs (e.g. the Chevy Volt and the plug-in Prius) and BEVs (e.g. the Nissan 

Leaf and the Ford Focus Electric). Several studies have forecast potential future market 

share of PEVs. For example, the Electric Power Research Institute (EPRI) suggests that 

PHEVs may have a market share of 60% by 2050 (Duvall and Knipping, 2007), and the 

Pacific Northwest National Laboratory estimates that PHEVs could reach as much as 

70% market share by 2045 (Balducci, 2008). The Center for Entrepreneurial & 

Technology (CET) forecasts that BEVs may have more than 80% of market share by 

2030 (Becker et al., 2009). These and other PEV penetration forecasts are shown in 

Figure 3.1 (Heckmann et al., 2013; US EIA, 2011c). Factors influencing market 

penetration of plug-in vehicles are varied, including gasoline prices, battery costs and 

life, charging infrastructure availability, government incentives, vehicle design, and 

vehicle availability (Axsen and Kurani, 2008). One potentially significant limiting factor 

for PEV market penetration is the ability of U.S. households to charge vehicles at home. 

This chapter uses available housing stock data to quantify current and potential future 

home charging opportunities in the U.S. 

Although HEVs, PHEVs, and BEVs are all electrified vehicles (xEVs), BEVs and 

PHEVs have different battery charging mechanisms than HEVs. An HEV combines a 

conventional internal combustion engine (ICE) propulsion system with an electric 

propulsion system; a PHEV has additional battery storage capacity to support a range  
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Figure 3.1 PEV Market Penetration Forecasts (Heckmann et al., 2013). Error bars indicate range of 
forecasted scenarios. 

(typically 10 to 40 miles) of driving in electric mode (Li, 2007), while longer distance 

can be achieved by using an ICE; a BEV is an electric vehicle that is propelled only by 

electricity. PHEVs can charge their batteries directly from a wall outlet, and BEVs must 

charge this way, while HEVs charge their batteries only from power generated onboard 

by the ICE. Therefore PHEVs and BEVs require charging infrastructure that HEVs do 

not. 

While both BEVs and PHEVs both benefit from electric propulsion, BEVs require 

relatively frequent charging (Electrification Coalition, 2009). Residential charging is 

likely to be important for adoption of both PHEVs and BEVs, not only because 

consumers without home charging may be less likely to purchase them, but also because 

off-peak electric load times are overnight. Research from Oak Ridge National Laboratory 

(ORNL) and National Renewable Energy Laboratory (NREL) indicates that a large 

penetration of PHEVs would require additional generation capacity to be built unless 

most charging happens in off-peak periods (Hadley, 2006; Parks et al., 2007; Shao et al., 
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2009). According to Dominion Virginia Power (DOM) (Virginia Electric and Power 

Company, 2011), the off-peak hours during summer months are from 10pm to 10am, and 

off-peak hours during winter months are from 10pm to 1am and 11am to 5pm. Moreover, 

Samaras et al. suggest that the existence of several different types of charging 

connections and the tendency of each vehicle to have only 1-2 specific connection types 

may limit utility of public charging and require users to have a specific home charger 

(Samaras et al., 2009). In addition, a survey from EV Customer Strategy Research 

Council and Electric Vehicle Program Summit indicates that 81% of consumers prefer to 

charge at home (EV Customer Strategy Research Council and Electric Vehicle Programs 

Summit, 2011). Thus, residential charging opportunities could be a significant limiting 

factor for PHEV market penetration.  

Electric vehicle charging, whether at home or in public places, can include Level 1, 

Level 2, or Level 3 charging. According to the SAE J1772 standard for charge couplers, 

Level 1 charging is at 120 V and 12 A or 16 A, and Level 2 charging is the preferred 

method for BEV charging using 240 V outlet at 16 to 80 A (NPC, 2012; SAE, 2010). For 

example, the Chevy Volt charges in about 10 hours using Level 1 charging and 4 hours 

using Level 2 (Chevrolet, 2010). SAE's Level 3 DC charging standard was approved in 

October 2012 (Ponticel, 2012). It is the fastest charging method, but it requires high 

voltage power and will not be an option for residential charging, so we address only 

Level 1 and Level 2 residential charging in this chapter. 

Many studies in the literature have addressed xEV related topics, such as battery pack 

evaluation for PHEVs, electric grid impacts of PEVs, energy and environmental impacts 

(Michalek et al., 2011; Peterson et al., 2011), and xEV technology trends (Duvall, 2011; 
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Mahalik et al., 2010; Tuttle and Kockelman, 2011). Some studies have assessed how 

much public or workplace vehicle charging might be needed (Capar et al., 2011; Peterson 

and Michalek, 2013; Traut et al., 2012). However, little has been done to quantify current 

and future residential charging opportunities. The Electrification Coalition 

(Electrification Coalition, 2009) estimates availability of residential charging based on 

residential parking availability, with data from the American Housing Survey (AHS) (US 

Census Bureau, 2009). Axsen and Kurani have taken steps towards quantifying home 

charging opportunities in the U.S., especially in the San Diego area (Axsen and Kurani, 

2012a). They conducted a nationwide survey of 2373 new car buyers, asking questions 

about PEVs in general and home charging specifically (Axsen and Kurani, 2008), and 

they have two published studies that characterize access to Level 1 and Level 2 

residential charging (Axsen and Kurani, 2012a, 2012b). The first study shows that around 

half of the respondents can park a vehicle within 25 feet of a Level 1 outlet in the U.S. 

and the second study shows that about two thirds of respondents currently have Level 1 

charging access in the San Diego area (Axsen and Kurani, 2012a, 2012b). All of these 

studies in the literature address charging opportunities on a per household basis, and none 

compare urban versus rural access to parking and charging. 

In this chapter, we examine several questions by analyzing data from AHS and 

combining it with data from the Residential Energy Consumption Survey (RECS) (US 

EIA, 2011d): 

(1) How many U.S. households currently have Level 1 charging access for at least 

one vehicle? 
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(2) How many U.S. households have dedicated parking for at least one vehicle, and 

could therefore charge that vehicle in the future, after some investment in 

charging infrastructure? 

(3) How many U.S. personal vehicles currently have access to Level 1 charging when 

they are parked at home? 

(4) How many U.S. personal vehicles have a dedicated parking space at home and 

could therefore charge at home in the future, after some investment in charging 

infrastructure? 

(5) How sensitive are these results to the assumptions? 

(6) What are the demographics of households that can potentially charge a PEV? 

(7) How much do charging and parking opportunities vary between urban and rural 

areas? and 

(8) What implications does the availability of home charging opportunities have for 

future market penetration of BEVs and for studies that assume universal 

residential charging access? 

3.2 Data, Assumptions, and Sensitivity Analysis 

Data are drawn from two main sources: the Residential Energy Consumption Survey 

(RECS) (US EIA, 2011d) and the American Housing Survey (AHS) (US Census Bureau, 

2009). Since each of these data sets contains some but not all of the data needed for this 

analysis, we combine them to obtain the most complete data possible. For some 

parameters, data are unavailable. In those cases we make assumptions and perform 

sensitivity analysis to determine the impact of those assumptions. 
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RECS is a U.S. nationwide household energy consumption survey conducted every 4 

years by the U.S. Energy Information Administration. The 2009 RECS survey is the most 

recent one available at the time of this analysis. The 2009 RECS survey has data on over 

12,000 U.S. households and is designed to be a representative sample, including 

weighting factors to account for sampling bias and nonresponse bias.  

AHS is a U.S. nationwide housing stock survey conducted every 2 years by the U.S. 

Census Bureau. Although some 2011 AHS data are available at the time of this analysis, 

2009 data were used for consistency with the 2009 RECS data. The 2009 AHS survey has 

data on over 73,000 U.S. households and is designed to be a representative sample of 

housing stock, although the large number of non-responses may affect the 

representativeness. AHS includes weighting factors that attempt to adjust for both 

sampling bias and nonresponse bias, but nonresponses could still have a significant effect 

on estimates if the nonresponses were systematic in ways that could not be corrected for 

in determining the weighting factors (e.g.: if respondents who would have given certain 

answers systematically refrained from answering the questions). Our analysis uses 

multiple imputation (MI), a Monte-Carlo analysis method, to account for the potential 

impact of these non-responses (see Section 3.3.1 Data Preparation). 

Some of the variables used in this chapter appear in both AHS and RECS. These 

include housing unit type (single family detached home, single family attached home, 

apartment, or mobile home), occupancy status (owned, rent, or occupied without rent), 

population density (urban or rural), year the home was built, household gross annual 

income, number of household members age 20 or older, presence of a garage or carport, 

and number of rooms in the home. Variables used in this chapter that are only available 
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in RECS include presence and size (up to 3 spots) of an attached garage, presence and 

size (up to 3 spots) of a detached garage, presence of a carport, and presence of an outlet 

within 20 feet of vehicle parking, Variables used in this chapter that are only available in 

AHS include presence of off-street parking if there is no garage or carport, number of 

cars owned by the household, and number of light trucks owned by the household.  

Figure 3.2 summarizes available data from AHS 2009 and RECS 2009 on the number 

of light duty vehicles (cars and light trucks) per U.S. household, the number of parking 

spots available in garages at households, and the portion of households that have an outlet 

within 20 feet of vehicle parking. Since the maximum number of reported spots per 

garage is three and each household has at most one garage reported, the maximum 

number of garage spots per household is also three. Figure 3.2 shows that more U.S. 

households have vehicles than have garages, and most of those have multiple vehicles. 

Further details of the AHS and RECS data are provided in Appendix 7.2. 

 
Figure 3.2 Vehicles per household, garage spots per household, and outlet availability from AHS 2009 and 
RECS 2009 data sets. “Missing Data” indicates uncertainty from non-responses. Zero parking spots 
indicates no garage. 
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Each of these data sets has some limitations that we took into consideration in this 

analysis. In AHS, households were only asked whether they have off-street parking if 

they stated they did not have a garage or carport. Similarly, in RECs, households were 

only asked whether they have a detached garage if they stated they did not have an 

attached garage. Therefore, we have no data on households that have multiple types of 

garage or that have both a garage and other off-street parking such as a driveway. Also, 

although RECS households were asked the size of their attached or detached garage (up 

to 3 spots) they were not asked the size of their carport. Aside from parking, another 

problematic area was the population density data. Although both data sets contain details 

beyond simple urban vs. rural designations, RECS uses Office of Budget and 

Management definitions (Metropolitan Statistical Areas versus Micropolitan Statistical 

Areas) and AHS uses Census definitions (Central cities, urban and rural areas inside or 

outside Metropolitan Statistical Areas). It should be possible to match these two types of 

data in more detail than only urban versus rural (US Census Bureau, Geography Division, 

2012), but the numbers show that the two data sets do not appear to be consistent (see 

Figure 7.16). Therefore we have used only the urban versus rural designations and not the 

more detailed categories. 

Since not all the data we would like to have for this analysis are available, we also 

needed to make some assumptions. We performed a sensitivity analysis to account for 

both the uncertainty in the data (through multiple imputation) and the uncertainty in our 

assumptions (through defining optimistic and pessimistic cases). Our assumptions for the 

base case, optimistic case, and pessimistic case are shown in Table 3.1. The major 

assumptions influencing charging opportunities are the size and presence of driveways 
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(or other non-garage off-street parking), usability of outlets (such as whether the circuit 

would be overloaded by plugging in a vehicle), and the portion of parking spaces that are 

available for parking (i.e. not used for storage, boats, or other non-parking use). Some of 

these assumptions, such as that households have only one type of garage or that 

households with garages do not have driveways in the base case, are based on the 

structure of the data available in RECS and AHS. For example we lack data on whether 

any household has more than one garage or whether any household with a garage has a 

driveway. However, since having a driveway in front of a garage is somewhat common, 

we included the possibility of additional off-street parking with a garage in the optimistic 

case. Other assumptions are based on data that are entirely missing from these data sets. 

The portion of outlets that will actually support vehicle charging is not asked, probably 

because respondents are unlikely to know the answer. Outlets need to be on a dedicated 

circuit to charge a vehicle. The portion of parking that has access to outlets to charge 

multiple vehicles (meaning outlets on multiple dedicated circuits) is not known for the 

same reason. The portion of parking spaces that are actually available for parking is also 

not asked in these surveys. According to one study, the portion of garages that are used 

for storage and entirely unavailable for parking cars may be as high as 75% (Arnold and 

Lang, 2006). Since the sample in that study is not representative of the entire U.S. and the 

number seems pessimistic, we have chosen less pessimistic assumptions in our analysis. 
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Table 3.1 Assumptions in each sensitivity analysis case. 
 Base Case Optimistic Case Pessimistic Case 

Parking • Carport parking spots: 1 
 
 
 

• Off-street parking spots: 
1-3, drawn from 
distribution of garage 
sizes 

• 10% of parking spaces 
are unavailable for 
parking (due to being 
used for storage or other 
non-parking use) 

• Each household has 
only one type of parking 
(or none) 

• Carport parking spots: 
1-3, drawn from 
distribution of garage 
sizes 

• Off-street parking spots: 
1-3, drawn from 
distribution of garage 
sizes 

• All parking spaces are 
available for parking 
(none used for storage) 

 
 

• Homes with garages 
may also have 
driveways (off-street 
parking), in the same 
proportion as garage-
less homes have them 

• Carport parking spots: 1 
 
 
 

• Off-street parking spots: 
1-2, drawn from 
distribution of 1-2 car 
garages 

• 50% of parking spaces 
are unavailable for 
parking (used for 
storage or other non-
parking use) 

• Each household has 
only one type of parking 
(or none) 

Charging • Only 1 vehicle can 
access each outlet 
(capacity is limited 
since it has only one 
circuit) 

• 50% of outlets could be 
shared by two vehicles 
(perhaps charging at 
different times, and 
assuming household has 
2 vehicles with parking) 
resulting in up to 1.5 
vehicles per outlet on 
average 

• Only 50% of outlets 
near parking can charge 
a vehicle (because some 
of the circuits are 
already in use and 
would be overloaded) 

3.3 Method 

We preprocess and combine the data sets and then use several equations to address 

the research questions. The quantities of interest are the portion of households with 

parking, the portion of households with vehicle charging, the portion of vehicles with 

parking at home, and the portion of vehicles with charging at home. It is worthwhile to 

compare the results on a household basis to the results on a vehicle basis, especially since 

fleet penetration is usually expressed as a percentage of vehicles, not households, and a 

large percentage of U.S. households have multiple vehicles (US Census Bureau, 2009). 

We expect that household-level results may be informative when discussing potential 

penetration of PEVs amongst primary vehicles only or when comparing to other studies 
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that only consider primary vehicles, but that the per-vehicle results will be more 

informative for discussing potential penetration of PEVs in the entire personal vehicle 

fleet. 

3.3.1 Data Preparation 

We first combine RECS and AHS with our assumptions to create one data set that has 

no missing data and contains all the variables needed for the analysis. These include 

variables that will be used directly in the calculations and variables, such as demographic 

information, that will be used to match up the two data sets or to interpret the results. We 

use RECS as the base for this new data set, and we use multiple imputation with hot-deck 

imputation (Little and Rubin, 2008) both to fill in variables that are only available in 

AHS and to fill in individual values that are missing from the other variables. This 

method involves dividing the households into segments or bins and then using each bin as 

the “deck” from which to draw replacements for any missing variable values for 

households in that bin. By doing multiple imputations with different sets of random 

draws from the weighted distribution of households in the bins, we account for 

uncertainty in the values of the missing data using by a weighted probability distribution 

of the existing values. We use 10 imputations in this analysis. 

Since we need to take draws from households in AHS to fill in the variables that are 

missing from RECS, the bin definitions need to be consistent in both data sets. Therefore 

we base the bins on 8 variables that both data sets have in common: housing unit type, 

occupancy status, population density, year the home was built, household gross annual 

income, number of household members age 20 or older, presence of a garage or carport, 

and number of rooms in the home. Where possible we use all 8 variables to segment, but 
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where these bins result in no available data from which to take draws, we use a coarser 

set of bins. The coarser bins use a subset of the binning variables chosen based on their 

correlation with number of vehicles, since that is the variable most affected by bin 

definitions. Details of the levels used for bin definitions are shown in Appendix 7.2. 

Where there are still no data to draw from in these coarser bins (less than 6% of data) we 

drew missing values from all households with valid data for the variable with the missing 

value. 

Two of our assumptions are defined as percentages or probabilities of availability: 

portion of parking spaces that are available for parking (not used for storage), and portion 

of outlets that are available to be used or shared. We implement these assumptions by 

creating two new variables: available parking spots and available outlets. The number of 

available parking spots for each household in the base case is determined by making each 

individual parking space available with a 90% probability, or unavailable with a 10% 

probability, and in the pessimistic case by making each spot available with a 50% 

probability. The portion of outlets available is calculated similarly: each outlet is made 

available with a 50% probability in the pessimistic case and made doubly available with a 

50% probability in the optimistic case. These draws are taken separately for each 

imputation so that the multiple imputations include some uncertainty in which specific 

spots and outlets are available or unavailable. 

3.3.2 Calculations 

Once the data are prepared by having missing values filled in, all variables combined 

into one data set, and probabilistic assumptions accounted for, we use several equations 

to calculate the quantities of interest. The first quantity of interest in this chapter is how 
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many U.S. households have dedicated parking for at least one vehicle and could therefore 

charge that vehicle in the future. That is, we assume any household with a designated 

parking space for their vehicle has the potential to charge a BEV or PHEV in the future 

with some additional installation of charging infrastructure at that parking spot. 

Households without dedicated parking we assume are not able to install charging 

infrastructure. The equation for portion of households with parking, PHP, is 
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∑

∑
 (3.1) 

where i is the index for each household, SAi is the number of parking spaces available at 

household i, and Wi is the weighting factor for household i. The number of available 

parking spaces is calculated as described in Section 3.3.1 Data Preparation using Si, the 

number of parking spots at household i, as the starting point. Si = SAGi + SDGi + SCi + SOi 

where SAGi is the number of attached garage parking spaces at household i, SDGi is the 

number of detached garage parking spaces at household i, SCi is the number of carport 

parking spaces at household i, and SOi is the number of off-street parking spaces at 

household i. 

The second quantity of interest is how many U.S. households have Level 1 charging 

for at least one vehicle. We assume in the base case that a household that can park their 

vehicle daily at home within 20 feet of a 120V outlet has the opportunity to plug in their 

vehicle immediately without additional installation required. The portion of households 

with charging access, PHC, is 
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where OAi is the number of outlets available at household i and is calculated as described 

in Section 3.3.1 Data Preparation using Oi, the number of outlets at household i, as the 

starting point. 

The third quantity of interest is how many personal vehicles at U.S. households have 

dedicated parking spaces. The portion of vehicles with parking, PVP, is 
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where Vi is the number of vehicles at household i, and is the sum of the number of cars 

and the number of light trucks. 

The fourth quantity of interest is how many personal vehicles have Level 1 charging 

access at home. The portion of vehicles with charging, PVC, is 
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where all parameters have been previously defined. 

3.4 Results 

Table 3.2 shows results from all four calculations (Eq. (3.1)-(3.4)) for the base case, 

the optimistic case, and the pessimistic case. The results are averaged across 10 

imputations, and as indicated by the very small standard deviations, uncertainty from 

missing data and from randomness in matching up the data from AHS and RECS turned 

out to be very small, especially compared to the range of sensitivity analysis case results.  
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Table 3.2 Results for each calculation in the base case, optimistic case, and pessimistic case, averaged 
across 10 imputations and with standard deviation shown in parentheses. 

National, All Households Base Case Optimistic 
Case 

Pessimistic 
Case 

Households with Dedicated 
Parking 

79% (0.3%) 92% (0.2%) 56% (0.3%) 

Households with Charging 38% (0.3%) 41% (0.2%) 14% (0.2%) 
Vehicles with Dedicated Parking 56% (0.4%) 84% (0.4%) 33% (0.5%) 
Vehicles with Charging 22% (0.2%) 30% (0.4%) 8% (0.2%) 
 

As shown, in the base case 79% of households have parking but only 56% of vehicles 

have parking at home. Although 38% of households have charging, it reaches only 22% 

of vehicles. In the optimistic case, in which we assume that households with garages also 

have driveways (where charging infrastructure can be installed in both locations and 

vehicles can routinely be shuffled into their dedicated spaces) and that all parking is 

available (none is unavailable due to being used for storage), at most 92% of households 

and 84% of vehicles have parking. However, in the pessimistic case where 50% of 

parking may be unavailable for vehicles, as few as 56% of households and 33% of 

vehicles may have parking. 

Figure 3.3 displays the same base case results and further disaggregates them for 

urban and rural areas and by occupancy status, with error bars indicating the optimistic 

and pessimistic case results. As shown, all four measures of charging opportunities are 

lower in urban areas and higher in rural areas than the national average. If renters are 

ignored (due to the increased barriers to vehicle charging in that situation), the lower 

portions of each bar in Figure 3.3 can be read to show the results including only 

homeowners. In this case, only 61% of homes and only 47% of vehicles have parking. 

Thus, increasing PEV penetration beyond 47% of the fleet will require vehicle charging 

at rental units. Also, when renters are excluded from analysis the differences between  
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Figure 3.3 Comparison of residential parking and charging availability nationally and in urban and rural 
areas, disaggregated by occupancy status (rented or owned) of the home. Error bars indicate range of 
estimates for optimistic and pessimistic scenarios. 

urban and rural areas are exacerbated. In urban areas, only 44% of vehicles have home 

parking. A detailed table of the data in Figure 3.3 appears in Table 7.13. 

Figure 3.4 shows the one-way (changing one parameter at a time) sensitivity of the 

portion of vehicles with parking to two parameters that are based on assumptions due to 

lack of data. The portion of parking that is unavailable due to storage or other obstacles is 

an influential parameter. A range of parking availability from 0% to 50% results in a 

range of portion of vehicles with parking from 34% to 61%. Since the pessimistic case 

for PVP is 33%, this sensitivity analysis indicates that portion of parking spaces available 

(not used for storage) is the major explanatory factor for the difference between the 

results in the base case and the pessimistic case. 

In the base case, the maximum number of vehicles that could have parking per 

household is not explicitly limited but is effectively 3 due to the lack of data on garages 

larger than that or on other available parking. Limiting the maximum number of vehicles 

per household that are considered to 1 reduces the portion of vehicles with charging to 
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Figure 3.4 Sensitivity of portion of vehicles with home parking (PVP, Eq. (3.3)) to assumptions, with all 
other parameters at base case values. 

39%. This is an interesting case because while some households can charge one vehicle 

with little or no infrastructure cost, charging a second vehicle simultaneously is very 

likely to require an investment not only in the charger but also in circuit upgrades and 

possibly panel upgrades. Thus increasing PEV penetration beyond 39% of the fleet will 

require higher infrastructure investments. Further, if only homeowners are included and a 

maximum of one vehicle per household, then the portion of vehicles with residential 

parking that are also primary vehicles at owned homes is only 32%. Similar sensitivity 

analyses for the other 3 calculations appear in Appendix 7.2. 

The income distribution of households with parking and charging are shown in Figure 

3.5 and compared to the income distribution of all RECS 2009 households. Households 

with parking have a higher income profile than the sample in general, and households 

with charging have higher incomes still. The median income of all households is about 

$42,500, of households with parking is about $50,000, and of households with charging 

is about $60,000. 
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Figure 3.5 Cumulative distributions of households gross annual income for all RECS 2009 households, 
households with parking, and households with charging. Error bars indicate the range of incomes in the 
optimistic and pessimistic cases.  

3.5 Discussion 

Few data points exist in the literature for comparison to our results, and all of them 

quantify residential charging opportunities for households, not per vehicle. The EIA 

study, also based on RECS 2009 data, estimates that 49% of households that own a 

vehicle can park within 20 feet of an outlet, and that this is higher (55%) in rural areas 

and lower (47%) in urban areas (US EIA, 2012). Since RECS does not contain vehicle 

ownership information and since about 7-21% of U.S. households do not own a vehicle 

(based on AHS 2009 data and including uncertainty due to non-responses), the EIA 

estimates are consistent with our results that 38% of households overall (including those 

without vehicles) can park within 20 feet of an outlet, although the EIA estimates appear 

to be optimistic due to assuming that the portion of U.S. households without vehicles is at 

the high end of the uncertainty range. Another comparison point is Axsen and Kurani’s 

survey results (2012a) that 36% of U.S. households have a Level 1 outlet within 10 feet 

of parking, 52% within 25 feet, and 61% within 50 feet. This is consistent with our base 
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case result that 38% of homes have an outlet within 20 feet of parking, although we 

would expect their result to be slightly higher than ours since they do not require that 

parking spot to be available for a vehicle (i.e. not used for storage). Also their data 

include not only households with dedicated off-street parking but also a few households 

with street parking, so it is not clear whether the presence of an outlet indicates that the 

outlet (or the parking) would be consistently available for a PEV belonging to that 

household. 

As mentioned in the Introduction, illustrated in Figure 3.1, and reiterated in Figure 

3.6, several institutions have forecasted future market penetration of PEVs. A study from 

the Electric Power Research Institute (EPRI) suggests that PHEVs may have a market 

share of 60% by 2050 (Duvall, 2011), and a study by the Pacific Northwest National 

Laboratory says that PHEVs could reach as much as 70% market share by 2045 

(Balducci, 2008). A study from the Center for Entrepreneurial & Technology (CET) 

forecasts that BEVs may have more than 80% of market share by 2030 (Becker et al., 

2009). Based on our results for availability of residential charging infrastructure, without 

widespread addition of both residential (where residential parking exists) and public 

charging infrastructure, those PEV adoption rate forecasts could be too optimistic, 

especially in urban areas. As indicated in Figure 3.6, fleet penetration of PEVs beyond 

22% will require residential infrastructure investment to increase access to outlets near 

home parking, and fleet penetration beyond 39% may require significant residential 

infrastructure investment because households will likely need to upgrade their electrical 

infrastructure to charge multiple vehicles. Fleet penetrations beyond 47% will require 

residential charging to be available for renters, and fleet penetration beyond 56% may  
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Figure 3.6 U.S. PEV sales forecasts (Heckmann et al., 2013) with barriers to fleet penetration from lack of 
residential charging infrastructure superimposed. 

require not only chargers but also additional residential parking, with associated 

environmental impacts (Chester et al., 2010), to be installed. All of these limitations on 

PEV penetration will be more severe in urban areas, where there are fewer charging and 

parking opportunities. Although street parking and charging may be an option for PHEVs 

in residential areas since they don’t need to charge every night, dedicated parking with 

guaranteed access to charging is necessary for BEVs and desired for PHEVs, and public 

charging infrastructure for street parking is likely only realistic for dense urban areas, 

where parking needs and charging needs will compete. Further, Peterson and Michalek 

(2013) note that more public charging infrastructure is needed when it is not dedicated. 

The optimistic and pessimistic sensitivity case results show that the uncertainty from 

assumptions that were required due to lack of data could be significant. For example, the 

portion of vehicles with parking is 56% in the base case but could range from 33% to 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2010 2020 2030 2040 2050 2060

F
o

re
ca

st
 S

a
le

s 
S

h
a

re

Forecast Year

BEVs: CET 2009

BEVs: EIA 2011

PHEVs: EIA 2011

PHEVs: EPRI and NRDC
2007
PHEVs: PNNL 2008

Exceeding 56% may 
require major changes 
in residential parking

Exceeding 47% 
requires residential 

charging to be 
available for renters

Exceeding 39% requires 
investment to charge 
multiple vehicles per 

household

Exceeding 22% (at 
Level 1) requires

investment in outlets 
near parking



 

69 

84%. Table 3.1 describes the differences between these cases and Figure 3.4 shows the 

effect of some of the individual parameters on this calculation. The parameter with the 

most influence on the pessimistic case is the portion of parking spaces that are actually 

available for parking vehicles, as opposed to being used for storing other things (boxes, 

boats, etc.) or for extra living space (workshops, permanently converted offices or dens, 

etc.). Some of this parking could be reclaimed by clearing out unnecessarily stored 

clutter, but some may be permanently unavailable. In some or all cases these unavailable 

parking spots, especially in garages, may be offset by other available parking spaces, 

such as driveways outside garages. The prevalence of driveways at households that also 

have garages is also the most influential parameter for the optimistic case. However, 

available data only include the size of garages and the presence of off-street parking if a 

garage is not available. Data on the exact size of off-street parking and data on whether 

homes with garages also have driveways where additional vehicles could routinely park 

(with or without assuming vehicle owners will be willing to juggle vehicles daily to get 

them all charged) are not available. Having these data available for a representative 

sample of the population, as well as having more representative data on unavailable 

parking spaces, would help reduce the uncertainty range in our parking availability 

calculations. 

This chapter also has implications for assumptions about PEV penetration and home 

charging availability in the academic literature. Availability of universal home charging 

is a common assumption for studies of the US (Peterson and Michalek, 2013; Traut et al., 

2012), although subsequent assumptions or calculations of PEV fleet penetration vary. 

For example, Lemoine et al. (2008) include sensitivity analysis cases up to 100% PEV 
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fleet penetration, Peterson et al. (2011) include sensitivity analysis from 10-50% PHEV 

fleet penetration, Williams (2008) includes sensitivity analysis from 2%-56% PHEV fleet 

penetration, and Kang and Recker (2009) assume 50% fleet penetration of PHEVs. 

Karplus et al. (2010) model PHEV penetration based on economic assumptions with an 

upper bound of 100% of the fleet, and Traut et al. (2012) model PEV penetration for 

minimum cost and GHG emissions with an upper bound of 100% of the fleet. 

We show that universal home charging is not a valid assumption nationally, as the 

percentage of vehicles that even have parking at home is 56% in the base case, may be as 

low as 33% in the pessimistic case, and even in the most optimistic case is still only 84%. 

While it is reasonable for studies to include higher PEV penetration cases for sensitivity 

analysis purposes, using high PEV penetrations for base case analyses may be optimistic, 

especially where infrastructure costs are ignored since, as previously mentioned, PEV 

penetration beyond 39% (in the base case) will require some households to charge 

multiple vehicles. Even for studies that assume lower PEV penetrations, they may still be 

optimistic if they do not take into account potential correlations between parking 

availability, whatever criteria have been used to calculate which households will have 

one or more PEVs, and other household characteristics (such as driving patterns) that are 

used in the analysis. 

Our analysis has some limitations. For example, we assume that households that can 

park their vehicle within 20 feet of a 120V outlet have Level 1 access to charge a vehicle. 

This assumption is based on availability of survey data, and it could be unrealistic since 

there could be obstacles between the vehicle and the outlet, or there could be insufficient 

spare electric capacity in that circuit. We also assume that households with dedicated 
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parking could install charging equipment. This is also an optimistic assumption, 

especially in the near term, because although home owners can install charging 

infrastructure, renters will need cooperation from landlords. Also, some older homes will 

need significant and costly investment (such as wiring upgrades, larger electrical panels, 

and carpentry or concrete work) to support vehicle charging, which makes it less likely 

that these households would purchase a PEV. Even homes with sufficient capacity at 

their electric panels may need to install additional equipment such as separate meters: an 

online report indicates that some condo managements refuse to let owners charge their 

PEVs due to the lack of a way to measure the power consumed (Korzeniewski, 2012). In 

addition, our research focuses on Level 1 charging, which is sufficient for small PHEVs 

with smaller battery packs; however, most BEVs will require Level 2 charging and it 

currently has much lower availability than Level 1 charging (Axsen and Kurani, 2012a, 

2012b). 

Additional data that, if available, would decrease the uncertainty ranges of our results 

include data quantifying the presence of driveways at households that have garages, the 

portion of residential parking that is available for use by vehicles, the size of off-street 

parking areas other than garages (such as driveways), the correlation between residential 

parking availability and vehicle ownership, and the portion of households that have spare 

electrical capacity for charging a vehicle without a costly panel upgrade. 

3.6 Conclusions 

Additionally, 33% of U.S. households (38% in urban areas) are rentals, where regular 

tenant turnover and split incentives between landlords and tenants create additional 

barriers to infrastructure investment. We discuss sensitivity of results to uncertain factors. 
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Future scenarios of plug-in vehicle penetration that ignore the limited availability of U.S. 

residential charging infrastructure opportunities are likely to overestimate the potential 

market for plug-in vehicles. 

We assess existing and potential charging infrastructure for electric vehicles in U.S. 

households using data from the American Housing Survey (AHS) and the Residential 

Energy Consumption Survey (RECS). We find that in the U.S., although 38% of 

households currently have Level 1 access, only 22% of vehicles currently have access to 

Level 1 charging sufficient to recharge a small plug-in vehicle battery pack overnight. 

Access to faster (Level 2, 240V) charging, required for vehicles with longer electric 

range, will usually require infrastructure investment (costing from several hundred 

dollars up to $10,000 depending on electrical panel and construction requirements). 

Installing multiple vehicle chargers at the same household increases the cost and the 

likelihood of requiring a costly breaker panel upgrade. We find that 79% of households 

but only 56% of vehicles have access to a dedicated home parking spot where charging 

infrastructure could be installed. The percentage of vehicles with access is lower than for 

households due to multi-vehicle households and limited garage/driveway space. Fewer 

homes and vehicles have charging opportunities in urban areas, where 35% of households 

and 21% of vehicles currently have Level 1 outlets and 75% of households and 55% of 

vehicles have parking. Additionally, 33% of U.S. households (38% in urban areas) are 

rentals, where regular tenant turnover and split incentives between landlords and tenants 

create additional barriers to infrastructure investment. The results are lower if renters are 

excluded. 



 

73 

In order to achieve high adoption rates for plug-in vehicles, charging opportunities 

must be identified and addressed per vehicle, not just per household. Urban areas and 

renters may need specific attention due to limited residential charging opportunities; 

residential parking infrastructure changes at a much slower rate than vehicle fleet 

turnover. Moreover, some outstanding issues should also be addressed such as 

determining the availability of unused electric circuit and panel capacity (Korzeniewski, 

2012). Given these limits on residential charging potential, several recent PEV 

penetration forecasts appear too optimistic even under optimistic cost scenarios. 
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4 Comparative Implications of Electric Vehicle Fast Charging and Battery 
Swapping Stations for Life Cycle GHG Emissions and Cost 

Battery electric vehicles need some sort of rapid refueling solution for the occasional 

driving days that exceed the all-electric range of the vehicle. We examine potential 

scenarios for fast charging and battery swapping of BEVs at service stations along a 

highway. We construct infrastructure cost models, conduct life cycle GHG assessments, 

address fast charging efficiency, model vehicle queuing at stations, model inventory 

control and battery charging strategies for battery swapping stations, and perform 

sensitivity analysis on key parameters. We first use simple cost estimates, then increase 

model detail and accuracy by using analytical queuing models and finally numerical 

queuing simulations. Results suggest that a battery swapping station (with fast charging 

of battery inventory) costs 41% more than a fast charging station when the value of time 

spent waiting during service is excluded but 50% less when the $30/hour value of travel 

time for highway drivers is included. However, battery swapping’s cost advantage due to 

decreased service time requires vehicles and swappable batteries to be standardized. 

When separate swapping stations and battery inventories are needed to serve the same 

number of customers driving four incompatible vehicle designs, the cost benefits 

disappear and battery swapping becomes 31% more expensive than fast charging. 

Economies of scale also matter, as very small stations, such as would be appropriate for 

early adopters, are much more expensive per vehicle arrival. Costs of both BEV rapid 

refueling technologies are in the range where depending on gasoline prices and 

economies of scale, they could be cost competitive with refueling a gasoline CV or HEV. 

A single battery swapping station (with fast charging of battery inventory) emits 1% 
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more GHGs than a fast charging station under today’s US electricity grid mix due to 

battery inventory production emissions.  

4.1 Introduction and Motivation 

In order for BEVs to gain large-scale consumer acceptance, they will need to be 

practical for long-distance travel, which means some sort of solution for quickly 

recharging them will be needed. Options for rapid recharging of BEVs include fast-

charging – which has issues with efficiency, safety, cost, and increased battery 

degradation, and impacts the electricity grid – or battery swapping service stations – 

which physically switch a depleted battery for a charged battery but have challenges in 

cost, battery inventory requirements, standardization, wear, location, and operations. In 

order to compare these options and thoroughly understand their implications for the 

overall lifecycle cost and environmental impacts of BEVs, models to determine the life 

cycle cost and GHG emissions of fast-charging and battery swapping are needed. Once 

available, these models can be used to evaluate policy decisions (such as purchase 

incentives) and design decisions (such as battery size and AER) for BEVs. This chapter 

poses comparable life cycle cost and GHG emissions models for fast-charging and 

battery swapping. 

Fast-charging or battery swapping stations may offer refueling speeds of anywhere 

from 2 minutes to 30 minutes and are likely to be used mainly by BEVs on days when 

normal driving ranges are exceeded or normal overnight charging methods are 

unavailable. For example, as shown in Figure 4.1, the Nissan LEAF’s all-electric range of 

73 miles meets range requirements for 90% of vehicle driving days in the NHTS 2009 

survey, but is exceeded on 10% of driving days. Eighty percent of that range, or 58.4  
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Figure 4.1 Distribution of daily driving distances from NHTS 2009 (US DOT, 2011). 90% of daily driving 
distances can be met with one overnight charge by the 73 mile range of the Nissan LEAF, and 85% of daily 
driving distances can be met with only 80% of that range. 

miles, the amount that can be refueled with a 30 minute fast-charge, meets the 

requirements of 85% of vehicle driving days but is exceeded on 15% of driving days. 

Since PHEVs can achieve longer daily driving ranges using gasoline, they will not need 

to stop for a fast charge, although they may still choose to do so if the opportunity is 

available. This type of “opportunity charging” by PHEVs is out of scope for this analysis. 

This chapter examines potential scenarios for sustainable personal transportation 

through electrified personal vehicles, with a focus on the life cycle cost and GHG 

emissions of different types of rapid recharging infrastructure for BEVs in the U.S., 

addressing several research questions: 

(1) What are the life cycle costs and environmental impacts (GHGs) of fast charging 

(Level 3) for BEVs? What are the largest contributors to the costs? How sensitive 

are the costs and impacts to factors such as fast charging efficiency? 

(2) What are the life cycle costs and environmental impacts (GHGs) of battery 

swapping? What are the largest contributors to the costs? How large does the 
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battery inventory need to be? How sensitive are the costs and impacts to factors 

such as the power level chosen to charge the battery inventory? 

(3) How do the station equipment requirements and costs vary with increasing 

customer traffic, and what are the implications for fast charging and battery 

swapping as BEV penetration levels increase? 

(4) Under what conditions does battery swapping make economic and environmental 

sense in comparison to fast charging (Level 3)? Is battery swapping significantly 

more expensive than fast charging even in a scenario that is optimistic about 

swapping costs? 

4.2 Literature Review 

Studies have addressed the effects of vehicle charging on the grid (Kelly et al., 2012; 

Parks et al., 2007; Peterson et al., 2011; Sioshansi et al., 2010; Weiller, 2011) and have 

studied the overall cost and emissions of PEVs (Bandivadekar et al., 2008; EPRI, 2001; 

Kammen et al., 2008; Michalek et al., 2011; Peterson et al., 2011; Samaras and 

Meisterling, 2008; Shiau et al., 2010, 2009), although most have focused on slow-

charging and excluded costs and production emissions of charging infrastructure 

(Bandivadekar et al., 2008; Parks et al., 2007; Peterson et al., 2011; Samaras and 

Meisterling, 2008; Shiau et al., 2010, 2009; Sioshansi et al., 2010). Three studies do 

include slow charging infrastructure costs: an EPRI study includes costs for onboard 

vehicle chargers, household circuit upgrades, and charging cords (EPRI, 2001); and two 

other studies include costs of offboard chargers (Delucchi and Lipman, 2001; Michalek et 

al., 2011). 
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Fast charging has not been thoroughly treated in the literature. Some studies have 

focused on methods to optimally locate or utilize fast-charging or battery swapping 

stations, with minimal discussion of cost and environmental impacts (Capar et al., 2011; 

Johnson et al., 2012; Mirchandani, 2011). Schroeder and Traber (Schroeder and Traber, 

2012) explore potential business models for fast charging in Germany, including some 

simple costs for charging equipment. They evaluate the effect on the electric grid from a 

combination of slow and fast charging, assuming that a fixed amount of power is needed 

per vehicle per day and that up to 20% of power may come from fast charging. However, 

they do not consider any specific driving patterns, and they assume that charging 

efficiencies are the same for fast and slow charging. Other studies ignore fast charging 

(Axsen and Kurani, 2010, 2008; Axsen et al., 2011; Bandivadekar et al., 2008; 

Elgowainy et al., 2010; Kang and Recker, 2009; Karplus et al., 2010; Lemoine et al., 

2008; Lin et al., 2012; Michalek et al., 2011; Parks et al., 2007; Shiau et al., 2010, 2009; 

Simpson, 2006; Traut et al., 2012, 2011; Turker et al., 2010; Williams, 2008). Although 

some studies that exclude fast charging only discuss PHEVs and not BEVs (Axsen and 

Kurani, 2010, 2008; Axsen et al., 2011; Elgowainy et al., 2010; Kammen et al., 2008; 

Kang and Recker, 2009; Karplus et al., 2010; Lemoine et al., 2008; Lin et al., 2012; Parks 

et al., 2007; Simpson, 2006; Turker et al., 2010; Williams, 2008), some that include 

BEVs assume for simplicity that all charging will be slow charging, or at least do not 

discuss that vehicle charging may occur at varying speeds and with varying efficiencies 

and equipment costs (Bandivadekar et al., 2008; Michalek et al., 2011; Shiau et al., 2010, 

2009; Traut et al., 2012, 2011). A complicating factor is that fast charging can be done on 

an as-needed basis (just enough charge to get to the next destination, which could be a 
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full charge or not) or on an opportunity basis (charging whenever it is available, even 

though it is not needed). 

Differences in charging efficiencies may affect how fast charging and slow charging 

compare in terms of GHG emissions. This difference may also affect the comparison with 

battery swapping because the battery swapping inventory may be charged at either Level 

2 or Level 3. Level 1 charging is often cited as having a wall to battery efficiency of 87-

88% (EPRI, 2001; Michalek et al., 2011; Traut et al., 2012) and Level 2 as having a wall 

to battery efficiency of 83% (Elgowainy et al., 2010; EPRI, 2001). Charging efficiency 

numbers for fast charging are less readily available, but fast charging based on high 

currents of 150-400A “offers relatively low charging efficiency” (Chan, 2002). Two 

studies cite fast-charging efficiency as 75% but with no supporting details (MacCarley, 

1999; Neubauer and Pesaran, 2013). Charging efficiency also depends on C-rate, or the 

relationship between charging speed and battery capacity, with higher relative charging 

speeds leading to lower round-trip efficiencies for lithium-ion batteries (Lam, 2011). 

Differences in charging efficiency also may affect how fast charging and slow charging 

compare in terms of cost, since lower charging efficiencies will require more electricity 

to be purchased to drive the same distance. However, other differences between fast 

charging and slow charging will almost certainly have larger cost impacts. As Boulanger 

et al. (Boulanger et al., 2011) point out, fast chargers are more expensive than slow 

chargers, making vehicles and batteries compatible with fast charging more expensive, 

and use of fast charging may degrade batteries more than slow charging, thus reducing 

their lifespan. The electricity itself for fast charging may also be more expensive than for 

slow charging since it is more likely to be drawn at peak load times (Botsford and 
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Szczepanek, 2009). Fast charging batteries may also require them to have active thermal 

management to deal with the excess heat generated during charging, and the power used 

by the active thermal management system would further reduce efficiency. 

Battery swapping is currently being deployed by the company Better Place (“Better 

Place | The Global Provider of EV Networks and Services.,” n.d.; LaMonica, 2013). It is 

not in use by consumers yet, but prototype switching stations have been used by several 

Tokyo taxis (O’Dell, 2010a). Due to Better Place’s aggressive plans to deploy networks 

of vehicles, charging stations, and battery swapping stations, studies on business models 

and operating models for battery swapping have appeared in the literature (Avci et al., 

2012; Becker et al., 2009; Lidicker et al., 2011; MacCarley, 1999; Mak et al., 2012; 

Neubauer and Pesaran, 2013; Worley and Klabjan, 2011). One of these papers focuses on 

using dynamic programming to simulate battery inventory charging and optimally size 

battery inventories (Worley and Klabjan, 2011), one focuses on planning station locations 

and inventories given uncertain demand (Mak et al., 2012), two treat battery swapping 

stations as only part of a BEV battery-leasing business model and also use very simple 

assumptions for the number of stations and batteries needed to support the fleet (Becker 

et al., 2009; Lidicker et al., 2011), one uses simple estimates for battery swapping costs 

for small fleets (MacCarley, 1999), and one, Avci et al. 2012, addresses the GHG 

emissions of battery swapping by modeling it as a supply chain problem using a 

“classical repairable items inventory system” model (Avci et al., 2012). The conclusion 

from Avci et al. 2012 is that battery swapping may not always be good for the 

environment due to a rebound effect that will increase total miles driven, thus negating 

GHG savings from reduced emissions per mile. However, this conclusion is based on 
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economic assumptions including pricing structures and consumer utilities and is driven 

by the battery lease vs. own assumptions. In contrast, this chapter avoids making 

potentially problematic assumptions about consumer utility or pricing and focuses the 

analysis on life cycle cost and GHG emissions of BEVs with battery swapping as 

compared to BEVs with fast charging. Neubauer and Pesaran (2013) also treat battery 

swapping stations as part of a BEV battery-leasing business model, and select the amount 

of equipment and batteries based on simulated demand to ensure a given maximum wait 

time between vehicles. However, they consider only the case where batteries in the 

swapping inventory are fast charged and focus on the costs seen by a battery swapping 

service provider. None of these studies in the literature directly compare the costs or 

emissions of fast charging with battery swapping. This chapter compares fast-charging to 

battery swapping for BEVs on life cycle cost and GHG emissions metrics by constructing 

models of the life cycle cost and environmental implications of fast charging and battery 

swapping for BEVs, taking charging efficiency and equipment and battery inventory 

requirements into account. This chapter uses simple cost and life cycle GHG estimates 

and then updates them using analytical queuing models and numerical queuing 

simulation to model station operation. 

4.3 Methods 

We address the research questions by constructing infrastructure cost models, 

conducting life cycle GHG assessments, modeling fast charging efficiency, modeling 

vehicle queuing at stations, modeling inventory control and battery charging strategies for 

battery swapping stations, and performing sensitivity analysis on key parameters. We 

first use simple cost estimates, then increase model detail and accuracy by using 
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analytical queuing models and finally numerical queuing simulations to model station 

operation. 

4.3.1 Model Framework 

We examine potential scenarios for fast charging and battery swapping for BEVs at 

service stations along a highway. In both cases, the scenario is based on the assumption 

that these technologies will be used by BEV drivers. A consumer drives a BEV for their 

daily driving needs and charges the vehicle at their home overnight. Occasionally, on 

days with long driving distances when they are likely driving on a highway, during the 

day they notice that they might not have enough stored electricity in their battery. They 

stop at either at a fast charging station or a battery swapping station along the highway 

and pull into an empty parking spot or swapping bay, possibly waiting in line briefly. 

The fast charging station is assumed to be similar to a current gas station or parking 

lot, where vehicles drive up to a charger, plug in their vehicle, wait for it to be charged to 

80% of usable capacity, pay either before or after the charging period, and then leave so 

the next vehicle can charge. The reason it charges only to 80% is that the initial 80% 

charge can be achieved relatively quickly (30 minutes for the Nissan LEAF (Roper, 

2013)), but the remaining 20% will be slower. 

The battery swapping station operates as follows. As the vehicle drives into the 

swapping bay, it is automatically aligned with the battery swapping equipment. A robot 

removes their depleted (or partially depleted) battery and replaces it with a fully charged 

battery, taking about 5 minutes (2-10 in the sensitivity analysis) to complete the 

replacement. The consumer is now ready to drive away. In the meantime, the depleted (or 

partially depleted) battery is taken by forklift to an empty charging bay in an inventory 
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charging and storage warehouse. The battery will stay in the charging bay until it is 

needed again, but the amount of time it will take to be charged to the 80% level that is 

necessary for it to be given to another customer is a function of the overall battery 

capacity, the battery depletion, the charging speed, and the charging efficiency. Once the 

battery has charged to 80%, it is available to be given to another customer. If not needed, 

it will continue charging, and some batteries may therefore be charged above 80%, 

although that situation is out of scope for this model. 

We pose life cycle cost and GHG emissions models for each of these stations, as 

annualized cost or GHGs per station per vehicle arrival. The cost of these infrastructure 

types can then be compared to the cost per vehicle arrival (charge or swap) for other 

types of charging infrastructure. We first use simple cost estimates, then increase model 

detail and accuracy by using analytical queuing models and finally numerical queuing 

simulations. In order to compare these two technologies, we keep the model forms as 

similar as possible. Table 4.1 summarizes the major modeling assumptions. We assume 

all BEVs have the same size and type of battery and that they are standardized so that all 

batteries are interchangeable. We assume both types of stations have the same steady-

state vehicle arrival distribution and battery depletion distribution, so that we are 

comparing which type of station is least costly to meet identical demand. The range of 

vehicle arrival rates considered is informed by highway traffic flows and the percentage 

of vehicles that are likely to be BEVs that would need to stop. We determine the number 

of individual swapping or charging points and the battery inventory size that are needed 

to meet that demand at minimum cost and include upfront costs of equipment (charging 

equipment, swapping equipment, and battery inventory including replacements), site  
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Table 4.1 Summary of major modeling assumptions. 

Summary of Major Modeling Assumptions 

• All BEVs have the same interchangeable batteries, so only one type of battery is 

needed in the inventory 

• Vehicle arrivals are steady state and follow a Poisson distribution 

• Vehicle charging times and battery swapping times are constant in the simple model 

and follow an exponential distribution in the analytical and numerical models 

o Average battery depletion corresponds to the average charging time 

• In both station types, batteries charge to 80% of the usable SOC 

• In the numerical model, a charged battery needs to be available at the beginning of 

the swapping time and a depleted battery is available at the end of the swapping time 

• Batteries in the inventory have lifetimes and need occasional replacement. As a first 

estimate, battery lifetimes are approximated as a fixed number of years. Battery life is 

varied in the sensitivity analysis to account for potential effects of fast charging and 

swapping on battery degradation. 

• Batteries in the battery charging inventory charge at a constant speed at one of the 

following constant power levels (SAE, 2010) 

o Level I slow charging: 120VAC, 15A, 1.8kW  

o Level II slow charging: 240VAC, 15A, 3.6kW 

o Level III fast charging: 480V, 50kW 

• No buffer above the minimum required battery inventory size is included 

 

preparation (including administrative and permitting costs and high voltage connection to 

the electric grid (Blanco, 2011)), and equipment installation. The high voltage connection 

is required for both types of stations, because even when the battery swapping does not 

fast charge the inventory, the large number of batteries that need to charge 

simultaneously at low voltage result in a high voltage load. Operating costs, mostly 

employees, are another fixed cost (does not vary with vehicle arrivals). The variable costs 

include electricity and value of time spent in service (charging or swapping) and waiting 
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for a service point to be available. For the life cycle GHG model, we include production 

emissions from batteries in the swapping inventory and from electricity. We omit 

charging and swapping equipment production emissions because they are less certain and 

likely smaller contributors to overall GHG emissions. 

Finally we perform sensitivity analysis on key model parameters to determine 

whether one technology is less costly in all scenarios, or if not, in which scenarios each 

technology is most competitive. Battery inventory size is expected to be a significant 

factor in battery swapping cost because the battery is the most expensive part of electric 

vehicles. However, there is a tradeoff between inventory size and inventory charging 

speed, which will be examined in the sensitivity analysis. 

Batteries in the inventory have lifetimes and need occasional replacement. As a first 

estimate, battery lifetimes are approximated as a fixed number of years. Battery life is 

varied in the sensitivity analysis to account for potential effects of fast charging and 

swapping on battery degradation. However, the relative impacts of the two technologies 

on battery life are unclear. Fast charging degrades batteries faster than slow charging 

when used frequently. Battery swapping stations may or may not also have those 

degradation effects depending on whether they fast charge the batteries. Battery swapping 

stations also may extend battery life because more batteries will be in circulation and 

each battery will therefore see a lower usage rate. Finally, battery swapping may impact 

battery life by causing wear on battery contacts. The cumulative effect of these factors on 

battery life is uncertain. 

Fast charging and battery swapping are compared as functional equivalents for 

rapidly refueling a BEV during a trip. Other alternatives are available for addressing BEV 
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range issues, such as converting them to EREVs a small onboard gas generator or 

changing driving behaviors (switching to another household vehicle or renting a car for 

long trips), but these are less functionally equivalent from the consumer perspective. 

4.3.2 Simple Cost and GHG Estimation Models 

The simple model to estimate long-term annualized fast charging station cost per 

vehicle arrival, AFC/V, is based on the average electricity cost per charge and is 
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(4.1) 

where dA is the average depletion level of arriving vehicle batteries (0.75), sC is the 

portion of the battery that will be recharged (0.8), xB is the usable energy storage capacity 

of each battery in kWh (base case 19.2 kWh from approximately 80% usable portion of 

the 24 kWh Nissan LEAF battery (Roper, 2013)), pE is the electricity price in $/kWh 

(base case $0.11/kWh), ψPDFC is a multiplier for electricity cost that represents peak 

demand charges (base case 1.2), ηFC is the wall-to-stored-energy efficiency of fast 

charging including both the charger efficiency and the battery charging efficiency (base 

case 78%), tC is the time spent charging (base case 30 minutes), tP is the time spent on 

paying and other related activities (base case 3 minutes), cT is the cost of travel time for 

highway drivers (base case $32/hr (Perk et al., 2011)), and pGHG is the carbon price 

(base case $0.02 per kilogram carbon dioxide equivalent kgCO2e). Because this is a 

simple long-term estimate, the upfront costs and other fixed costs drop out, and only the 

per-vehicle-arrival variable costs are included. Table 4.2 summarizes these parameters. 

This simple formulation yields a cost that is not a function of the vehicle arrival rate or  
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Table 4.2 Parameters in simple cost estimation models for fast charging and battery swapping. 

Notation Description Units Base 

Case 

Value 

Fast 

Charging 

Optimistic 

Case 

Value 

Battery 

Swapping 

Optimistic 

Case 

Value 

Source 

cT Value of 
travel time 
for highway 
drivers 

$/min 0.5333 0.3 0.6667 (Perk et al., 2011) from 
mean, 25th percentile, 
and 75th percentile of 
distribution of value of 
travel time savings 

dA Average 
depletion of 
arriving 
vehicle 
batteries 

 0.75 0.75 0.75 As a percentage of the 
80% of usable swing 
that is replenished in 
each charge or swap 

dO Station 
operating 
days per year 

days 365 365 365  

lB Battery life years 10 8 15 Based on being slightly 
longer than typical 
warranty (Roper, 2013) 

pB Battery price 
per usable 
kWh energy 
capacity 

$/kWh 600 600 200 From (Plotkin and 
Singh, 2009) lit review 
2015 and DOE program 
goals 2030 cases. 
Converted to price per 
usable kWh by 
assuming 80% is 
usable. See Figure 7.1 

pE Electricity 
price 

$/kWh 0.11 0.06 0.15 (Traut et al., 2012) See 
Chapter 2 

pGHG Carbon price $/kgCO2e 0.02 0.02 0.02 (Traut et al., 2012) See 
Chapter 2 

sC Portion of 
battery 
usable 
capacity that 
is recharged 

 0.8 0.8 0.8 (Roper, 2013) 

tC Average time 
spent 
charging 

minutes 22.5 22.5 22.5 (Nguyen, 2012) Based 
on 30 minutes to charge 
to 80%, and assuming 
customers arrive with 
an average of 75% of 
that 80% of range 
depleted 
Level 1: 720 min 
Level 2: 252 min 

tP Average time 
spent on 
paying and 
other 
activities 

minutes 3 3 3 (Neubauer and Pesaran, 
2013) 

tS Average time 
spent 
swapping 

minutes 5 10 2 (Neubauer and Pesaran, 
2013; O’Dell, 2010b) 
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Notation Description Units Base 

Case 

Value 

Fast 

Charging 

Optimistic 

Case 

Value 

Battery 

Swapping 

Optimistic 

Case 

Value 

Source 

xB Usable 
energy 
storage 
capacity of 
battery 

kWh 19.2 19.2 19.2 (Nguyen, 2012; Roper, 
2013) Based on 80% of 
the 24kWh Nissan 
LEAF battery 

ηBS Battery 
swapping 
inventory 
charging 
efficiency 

 0.83 0.83 0.83 See Section 4.3.4 
Assumes Level 2 
inventory charging 

ηFC Fast charging 
efficiency 

 0.78 0.83 0.75 See Section 4.3.4 
Assumes Level 3 
charging 
For Level 2 cases: 0.83 
For Level 1 cases: 0.88 

νB Battery 
production 
emissions 

kgCO2e/usable 
kWh 

150 180 120 Base value from 
(Samaras and 
Meisterling, 2008) 
adjusted to be per 
usable kWh when 80% 
is usable. Sensitivity 
analysis +/- 20% 

νE Electricity 
production 
emissions 

kgCO2e/kWh 0.752 0.066 0.9 (Traut et al., 2012) See 
Chapter 2 

ψPDBS Multiplier 
representing 
peak demand 
charges for 
battery 
swapping 

 1.2 1.2 1.1 This is a simplification 
of the wide variety of 
rate structures. 
Example: 
$15.70/kW/month for 
Southern California 
Edison customers in the 
200kW-500kW (4-10 
fast chargers) range 
(“Southern California 
Edison Schedule TOU-
GS-SOP,” n.d.). See 
Section 4.3.6.2 

ψPDFC Multiplier 
representing 
peak demand 
charges for 
fast charging 

 1.2 1.1 3 

 

the overall station size. This formulation also contains the simple model for GHGs from 

fast charging, which considers GHGs from electricity production and is 
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where all parameters have been previously defined. 

The simplest model to estimate long-term annualized cost of a battery swapping 

station per vehicle arrival, ABS/V, is based on the average amount of electricity needed to 

recharge one battery plus a portion of the battery inventory, with the size of the battery 

inventory estimated as the number of vehicle arrivals per day, since all the batteries will 

have time to fully charge overnight, and is 
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(4.3) 

where ψPDBS is a multiplier for electricity cost that represents peak demand charges (base 

case 1.2), ηBS is the wall-to-stored-energy efficiency of charging the battery inventory 

including both the charger efficiency and the battery charging efficiency (base case 83%), 

pB is the cost per usable kWh energy storage capacity of the batteries (base case 

$625/kWh usable), lB is the battery life in years (base case 10 years), dO is the number of 

days per year that the station operates (base case 365), tS is the time spent swapping the 

battery (base case 5 minutes), νB is the emissions from lithium ion battery production per 

usable kilowatt hour (base case 150 kgCO2e/kWh, (Samaras and Meisterling, 2008)), and 

all other parameters have been previously defined. Table 4.2 summarizes these 

parameters. This simple formulation also yields a cost that is not a function of the vehicle 

arrival rate or the overall station size. This formulation contains the simple model for 

GHGs from battery swapping, which considers GHGs from electricity production and 

from battery production and is 
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where all parameters have been previously defined. 

Simple cost models for a conventional gasoline vehicle and for a hybrid electric 

vehicle are used for comparison purposes to the fast charging and battery swapping costs. 

The cost per vehicle of filling a conventional gasoline vehicle with an amount of gasoline 

equivalent to the BEV’s range is 
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(4.5) 

for conventional vehicles where pG is the price of gasoline in $/gallon, r is the desired 

vehicle range (58.4 to be equivalent to fueling a 73 mile range BEV to 80%), ηCV is the 

CV fuel economy in miles per gallon (25 in the base case), tG is the rate of gasoline 

refueling (0.1 minutes per gallon), νG is the production and combustion emissions from 

gasoline (11.34 kgCO2e/gal in the base case), and all other parameters have been 

previously defined. The cost per vehicle of filling an HEV with an amount of gasoline 

equivalent to the BEV’s range is 
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(4.6) 

where ηHEV is the HEV fuel economy in miles per gallon (43 in the base case), and all 

other parameters have been previously defined. The parameter values for both of these 

equations that have not been previously defined in Table 4.2 are shown in Table 4.3. 
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Table 4.3 Parameters in simple cost estimation models for refueling CVs and HEVs. 

Notation Description Units Base 

Case 

Value 

Optimistic 

Case 

Value 

Pessimistic 

Case Value 

Source 

pG Gasoline price $/gal 3.5 3 4.5 Based on the maximum and 

minimum costs projected in 

the EIA’s 2013 Annual 

Energy Outlook reference 

case, with conversion factors 

as explained in Chapter 2 

(US EIA, 2013) 

r Refuel range miles 58.4 58.4 58.4 To be equivalent to charging 

a 73 mile range BEV to 80% 

tG Rate of 

gasoline 

refueling 

min/gal 0.1 0.1 0.1 (Neubauer and Pesaran, 

2013) 

ηCV CV fuel 

economy 

mpg 27 35 25 Base cases are GREET 2 

Gasoline CV and Grid-

Independent HEV default 

values for 2015 (ANL, 2012). 

Sensitivity analysis is based 

on the 2010 estimates and 

taking a slightly more 

optimistic value than the 

2020 estimates. 

ηHEV HEV fuel 

economy 

mpg 38 49 35 

νG Gasoline 

production 

and 

combustion 

emissions 

kgCO2e 

/gal 

11.34 11.34 11.34 See Chapter 2 

 

These simple models are useful for a first approximation of the impact that battery 

price and demand charge have on which technology is least expensive. However, these 

simple models do not take into account the value of time spent waiting for either a charge 

or a swap, the upfront costs of charging and swapping equipment and high voltage grid 

connections, and the potential for the swapping station battery inventory size to be 

smaller than the number of daily vehicle arrivals since not all of the arriving batteries will 

be fully depleted and the batteries can also charge during the day. Therefore, models with 
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more detail, including queuing of vehicles at the stations and queuing of batteries in the 

swapping inventory, are needed. 

4.3.3 Detailed Cost Models 

These detailed cost models extend the above simple estimates to include fixed and 

capital costs including site preparation, charging and swapping equipment and 

installation, and operating expenses (employees) and to include the time spent waiting in 

line for service. Two methods, analytical queuing models and queuing simulations, are 

used to calculate the required amount of equipment and the queuing times based on the 

vehicle arrival rates, but the cost equations are the same for both of those methods and 

are presented first. 

4.3.3.1 Fast Charging Cost Model 

Annualized fast charging station cost per vehicle that arrives to charge is 
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 (4.7) 

where all parameters that have not been previously defined appear in Table 4.4. Some 

parameters are calculated from analytical or numerical queuing models, which are 

described in Sections 4.3.4 and 4.3.5. Although Level 1 and Level 2 are not fast charging 

and are not likely to be deployed in this station format, their costs are calculated using the 
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same equation for comparison purposes, so their relevant parameter values are also 

shown in Table 4.4. 

Table 4.4 Additional cost parameters for fast charging. 

Notation Description Units Base 

Case 

Value 

Source 

cA Administrative/legal/permitting 

fees per site 

$ 20000 (Morrow et al., 2008) based on a 

Level 2 station 

cHV High voltage access point $ 15000 WDOT (Parsons Brinckerhoff, 2009) 

Assuming station close to high 

voltage transmission line 

cI Site installation $ 25000 (Morrow et al., 2008) 

Includes meters, panel upgrades, 

concrete work, etc. 

cOFC Operating cost per year $ 80000 Based on one employee, WDOT 

(Parsons Brinckerhoff, 2009) 

lC Charging equipment life years 25 For chargers and battery swapping 

equipment 

nCP Number of charge points/bays 

at the station 

  Value selected for minimum cost at 

each value of lambda (so far by 

exhaustive search since only integers 

are valid and there are derivative 

discontinuities) 

pCP Charging equipment price $ Level 3: 

50000 

Level 2: 

2000 

Level 1: 

1000 

Includes installation of the individual 

charge points, estimates for Level 3 

range from 10000-90000+ 

(McKinsey & Company, 2009; 

Motavalli, 2011; Parsons 

Brinckerhoff, 2009) 

Level 1 and Level 2 costs from 

(Morrow et al., 2008) 

pE Electricity price per kWh $/kWh 0.075 (“Southern California Edison 

Schedule TOU-GS-SOP,” n.d.) 

Averaging over the year and 

assuming constant demand 

pEB Base electricity price per 

customer 

$/yr 5050 (“Southern California Edison 

Schedule TOU-GS-SOP,” n.d.) 
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Notation Description Units Base 

Case 

Value 

Source 

pED(nCP) Electricity demand charge $/yr Level 1: 

370 nCP 

Level 2: 

940 nCP 

Level 3: 

13000nCP 

(“Southern California Edison 

Schedule TOU-GS-SOP,” n.d.) 

Based on peak power demand which 

is a function of the number of 

chargers, averaging over the year 

and assuming constant demand. Cost 

is $21.60/kW/month. Each Level 1 

charger is 1.44 kW, Level 2 charger 

is 3.6 kW, and Level 3 charger is 50 

kW 

r Discount rate  0.1  

tO Station operating time per year minutes 525,600 Equivalent to 365 days 

ηFC Fast charging efficiency  Level 1: 

0.88 

Level 2: 

0.83 

Level 3: 

0.78 

Depends on charging speed. See 

Section 4.3.4 

λ Mean vehicle arrival rate veh/min 0-2.5 Based on highway traffic volumes of 

20-40 veh/min with up to 12.5% of 

vehicles stopping to charge or swap 
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4.3.3.2 Battery Swapping Cost Model 

Annualize battery swapping station cost per vehicle that arrives to swap is 
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where 
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 (4.9) 

and where all other parameters that have not been previously defined are defined in Table 

4.5. Operating cost is higher than for fast charging because employees need to use 

forklifts to move the batteries to and from charging bays. The swapping equipment only 

moves batteries in and out of the vehicles. Some parameters are calculated from 

analytical or numerical queuing models, which are described in Sections 4.3.4 and 4.3.5. 
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Table 4.5 Additional cost parameters for battery swapping. 

Notation Description Units Base Case 

Value 

Source 

aB Warehouse area 

per battery 

charging stack 

ft.2 36 Based on 2 times the footprint of a battery (from 

(Nguyen, 2012)), to allow for aisle space 

bB Number of 

batteries per 

battery charging 

stack 

batteries 4 Number of batteries that can be stacked vertically 

in the charging warehouse 

cW(LB) Warehouse cost 

as a function of 

battery 

inventory size 

$ Eq. (4.9) Cost of warehouse to protect charging bays, based 

on size factor for warehouses (adjusts price per 

square foot based on the price at the typical square 

footage of 25,000 square feet) (Balboni, 2007) 

(equation fit to graph using Eureqa Formulize 

software, (Schmidt and Lipson, 2009)) 

LB Inventory 

queuing system 

size 

batteries  Number of batteries needed in inventory 

lC Charging 

equipment life 

years 25 For chargers 

lS Swapping 

equipment life 

years 10 For battery swapping equipment, based on usable 

life of industrial robots (Bard, 1986; Fryman, 2002; 

Nof, 1999; Yusuf and Nabeshima, 2006) 

nICP Number of 

charge bays at 

the warehouse 

  Value selected for minimum cost at each value of 

lambda (so far by exhaustive search since only 

integers are valid and there are derivative 

discontinuities) 

Values for both calculated as the maximum of the 

number of charge points and the number of 

batteries assigned by the queuing model, so that 

batteries can stay in a single bay and not need to be 

moved between separate queues 

nS Number of 

swapping bays 

  

cOBC Operating cost 

per swapping 

point per year 

$ 80000 Based on one employee, WDOT (Parsons 

Brinckerhoff, 2009) 

pB Battery price 

per usable kWh 

energy capacity 

$/kWh 600 From (Plotkin and Singh, 2009) lit review 2015 

case. Converted to price per usable kWh by 

assuming 80% is usable. See Figure 7.1 
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Notation Description Units Base Case 

Value 

Source 

pEDI(nICP) Electricity 

demand charge 

for charging the 

inventory 

$/yr Level 1: 

370 nICP 

Level 2: 

940nICP 

Level 3: 

13000nICP 

(“Southern California Edison Schedule TOU-GS-

SOP,” n.d.) Based on peak power demand which is 

a function of the number of chargers, averaging 

over the year and assuming constant demand. Cost 

is $21.60/kW/month. Each Level 1 charger is 1.44 

kW, Level 2 charger is 3.6 kW, and Level 3 

charger is 50 kW 

pICP Price per 

inventory 

charging bay 

$ Level 3: 

50000 

Level 2: 

2000 

Level 1: 

1000 

Includes installation of the individual charge 

points, estimates for Level 3 range from 10000-

90000+ (McKinsey & Company, 2009; Motavalli, 

2011; Parsons Brinckerhoff, 2009) 

Level 1 and Level 2 costs from (Morrow et al., 

2008) 

pS Price per 

swapping bay 

equipment 

$ 500,000 Preliminary cost ranges for battery swapping 

stations are very rough point estimates and range 

from $40,000 (McKinsey & Company, 2009) to 

$500,000 (O’Dell, 2010a)  

pW Warehouse 

price per square 

foot 

$/ft.2 56 (Balboni, 2007) Median cost of warehouses is $56 

per square foot at typical size of 25,000 sq. feet  

tO Station 

operating time 

per year 

minutes 525,600 Based on 365 days per year 

ηBS Battery 

inventory 

charging 

efficiency 

 Level 1: 

0.88 

Level 2: 

0.83 

Level 3: 

0.78 

Depends on inventory charging speed. See Section 

4.3.4 

 

4.3.4 Analytical Queuing Models 

Analytical queuing models are used for a first approximation of the amount of 

equipment (charging, swapping, and battery inventory) needed and the wait times 

involved in the two station types. By calculating wait times and battery inventory needs 

as closed form functions of amount of swapping and charging equipment, they allow the 
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stations to be designed for minimum cost with much less computational effort than the 

more complex numerical simulations that are needed for the highest level of detail. To 

obtain closed form solutions, we use M/M/c queuing models (also sometimes called 

M/M/m) (Kleinrock, 1975). In M/M/c (or M/M/m) queuing models, vehicle arrivals are 

steady state Poisson distributions, charging or swapping times are exponentially 

distributed, there is a fixed number of service (charging or swapping) points, and there is 

infinite space for lines to form (Kleinrock, 1975). (We find that the infinite waiting space 

assumption is reasonable, because in the minimum-cost station designs the waits are short 

and the lines are not very long.) 

As illustrated in Figure 4.2, we model the vehicles arriving at the fast charging 

station, charging, and then leaving as one M/M/c model. We model vehicles arriving at 

the swapping station, swapping, and then leaving as another M/M/c model and batteries 

arriving, being charged in the inventory, and then leaving as a third M/M/c model. This 

method ensures that the battery inventory is large enough that batteries will be ready to 

swap at the same rate as vehicles need them (Gross et al., 2008), but it underestimates 

battery inventory size because some additional batteries will be needed to ensure that 

batteries are ready not only at the same rate, but at the same times. Thus, the numerical 

simulations are used later to quantify this portion of the battery inventory that is missing 

from the analytical models. The parameters and equations for the M/M/c queuing models 

are presented in Table 4.6 (Baron, 2007; Gross et al., 2008; Kleinrock, 1975). Code for 

the numerical simulations is included in Appendix 7.3. 
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Figure 4.2 Diagram of M/M/c analytical queuing simulation of battery swapping station. The vehicle 
queue with swapping process and the battery queue with charging process are modeled separately but have 
the same arrival and departure rates. 

Table 4.6 Parameters and calculations for M/M/c (also known as M/M/m) queuing models (Baron, 2007; 
Gross et al., 2008; Kleinrock, 1975). 

Parameter 

or Variable 

Description Value and 

Units 

Formula Notes 

c 
Number of 
service bays 

  

For fast swapping, the 
number of charging points 
nCP. For swapping, the 
number of swapping bays 
nS. For battery inventory, 
the number of charging 
bays, nICP. 

µ Mean service rate 

0.0444 
veh/min for 
fast 
charging 
0.2 veh/min 
for 
swapping 

1/tC 

Equivalent to 22.5 
min/veh mean fast 
charging time, 5 min/veh 
mean swapping time, etc. 

ρ 

Traffic intensity 
of charging 
station 

 
c

λ

µ  

 

pO 

probability of 
zero vehicles in 
system, or portion 
of time it is idle 
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Lq 
expected (mean) 
queue size 

vehicles or 
batteries ( )

0

2
! 1  

cp r

c

ρ

ρ−
  

Wq 
expected (mean) 
waiting time in 

minutes Lq/λ  
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queue 

W 

expected waiting 
time in system 
(queue time + 
charging time) 

minutes Wq+1/µ  

L 

expected system 
size (queue length 
+ number 
charging) 

vehicles or 
batteries 

Wλ 

For the battery inventory 
queue, this gives the 
number of batteries 
required 

Wq0 

probability that an 
arriving customer 
does not have to 
wait in the queue 

 
( )

01
! 1  

c
r p

c ρ
−

−
  

λ 
Mean vehicle 

arrival rate 
veh/min 0-2.5 

Based on highway traffic 

volumes of 20-40 veh/min 

with up to 12.5% of 

vehicles stopping to 

charge or swap 

4.3.5 Numerical Queuing Simulations 

The most detailed models we consider are numerical queuing simulations for 

determining station equipment and inventory requirements and waiting times. The 

numerical simulations are developed based on an approach presented in Baron 2007 that 

calculates the times of each event in the queuing system. For fast charging, the numerical 

simulation is a basic G/G/c queue, allowing the arrival times and the arrival battery 

depletions to follow any distribution but still with a fixed number of charging points and 

infinite waiting space. We perform sensitivity analysis on the arrival battery depletion 

distribution, since the exponentially distributed charging times were the least realistic 

aspect of the M/M/c queuing model for fast charging. We compare the exponentially 

distributed battery depletions to uniformly distributed battery depletion levels where 

batteries arrive with between 50% and 100% of their 80% (of useable SOC) charge 

depleted. 

For battery swapping, the numerical model allows arrival times and battery depletions 

to follow any distribution. As shown in Figure 4.3, the battery inventory queue and the 
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vehicle inventory queue are combined into one numerical simulation model. It connects 

the vehicle queue with the battery inventory charging queue by requiring a charged 

battery to be available before each vehicle can start swapping. Extra time is added to the 

vehicle’s queue wait when a charged battery is not yet available. Instead of modeling 

separate queues for depleted and charged batteries, the inventory is modeled with an 

equal number of charging points and batteries. This assumption makes sense because not 

having separate queues for depleted and charged batteries means the batteries will need to 

be moved around the warehouse less frequently, and moving the batteries around the 

warehouse more than necessary could cause delays. The code used for numerical 

simulation is presented in Appendix 7.3. 

 
Figure 4.3 Diagram of numerical queuing simulation of battery swapping station. 
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4.3.6 Parameter Values and Sensitivity Analysis 

Further details for some parameter values are provided here. 

4.3.6.1 Fast Charging Efficiency 

Level 1 charging is often cited as having a wall to battery efficiency of 87-88% 

(EPRI, 2001; Michalek et al., 2011; Traut et al., 2012). This accounts for a charger 

efficiency of 90% and a charging efficiency in the battery itself of 97% (Elgowainy et al., 

2010). Similarly, Level 2 charging has an overall wall to battery efficiency of 83%, with 

a charger efficiency of 87% and battery charging efficiency of 95% (Elgowainy et al., 

2010; EPRI, 2001). Charging efficiency numbers for fast charging are less readily 

available, but fast charging based on high currents of 150-400A “offers relatively low 

charging efficiency” (Chan, 2002) and two studies use 75% for fast-charging efficiency 

(MacCarley, 1999; Neubauer and Pesaran, 2013).  

We calculate fast-charging efficiency as a combination of charger efficiency and 

battery charging efficiency, based on manufacturer specs and points in the literature 

(MacCarley, 1999; Neubauer and Pesaran, 2013). We find that fast charging can achieve 

a wall to battery efficiency of 75% to 83% and that the efficiency from “well” to wall is 

the same for fast and slow charging. The wall to battery efficiency of 83% is calculated 

from an assumed charger efficiency of 92% and battery charging efficiency of 90%, and 

the 75% is calculated from a charger efficiency of 83% and a battery charging efficiency 

of 90%. A charger efficiency of 87% and a battery charging efficiency of 90% result in a 

wall to battery efficiency of 78%, which is the base case for this analysis. Based on the 

limited information available on fast charging efficiency (“E-station - CHAdeMO Fast 
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Charge E-Bowsers,” n.d.; St. John, 2012), these numbers are plausible, but may be 

reduced by up to 20% if the ambient temperature is not ideal (Pesaran, 2011). 

4.3.6.2 Electricity Rate Structures 

 
 (a) (b) 

Figure 4.4 Comparison of detailed and simple electricity rate structures for Level 2 charging (a) and Level 
3 charging (b). 

The detailed rate structure is based on Southern California Edison’s 200kW-500kW 

schedule: $420/month + $0.07/kWh + $22/kW/month. The simple rate structure is 

$0.11/kWh plus 20% extra to account for demand charges. As shown in Figure 4.4, for 

the cases relevant to these charging technologies, these two rate structures end up being 

approximately equivalent. Since this rate structure is only for 200kW-500kW it actually 

only applies to a subset of the points on this graph (4-10 fast chargers or 55-138 Level 2 

chargers), and I have extrapolated in both directions. Since real electricity rates and rate 

structures vary widely, these rate structures are used as an approximation for the base 

case (simple rate structure for the simple estimate models, detailed rate structure for the 

detailed cost models) and sensitivity analysis is conducted. The impact of changing the 
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rate structure is expected to be less significant than the impact of changing the magnitude 

of the rate. This is especially the case since the high value of time spent waiting in line 

means that the electricity peak demand charge would need to be extremely high to justify 

reducing the number of charge points and thereby increasing wait time. 

4.3.6.3 Sensitivity Analysis 

The sensitivity analysis approach is to define an optimistic case for fast charging and 

an optimistic case for battery swapping. This approach allows us to determine whether it 

is clear which of the two technologies is less expensive or whether the uncertainty means 

that we are unsure which is least expensive. Sensitivity analysis values for the simple 

estimate models are given in Table 4.2 and Table 4.3. Further sensitivity analysis values 

for the more detailed models are given in Table 4.7. Sensitivity analysis values used in 

the one-way sensitivity analysis but not included in the optimistic/pessimistic cases are 

shown in Table 4.8. Additional sensitivity analysis, such as battery size/vehicle range, is 

left for future work. 

Table 4.7 Parameter values for optimistic sensitivity analysis case for each station type. Each station type’s 

optimistic case is also the pessimistic case for the other station type. 

Description Units Base 

Case 

Value 

Fast 

Charging 

Optimistic 

Case Value 

Battery 

Swapping 

Optimistic 

Case Value 

Source 

Charging 

equipment life 

years 25 15 25 For chargers including battery 

inventory charging equipment 

Swapping 

equipment life 

years 10 10 8 For battery swapping equipment, 

based on usable life of industrial 

robots (Bard, 1986; Fryman, 2002; 

Nof, 1999; Yusuf and Nabeshima, 

2006) 

Charging 

equipment 

$ Level 3: 

50000 

Level 3: 

10000 

Level 3: 

90000 

Also battery inventory charging price 

per bay. Includes installation of the 
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Description Units Base 

Case 

Value 

Fast 

Charging 

Optimistic 

Case Value 

Battery 

Swapping 

Optimistic 

Case Value 

Source 

price Level 2: 

2000 

Level 1: 

1000 

individual charge points, estimates 

for Level 3 range from 10000-

90000+ (McKinsey & Company, 

2009; Motavalli, 2011; Parsons 

Brinckerhoff, 2009). Level 1 and 

Level 2 costs from (Morrow et al., 

2008) 

Electricity 

price per kWh 

$/kWh 0.075 -20% +20% (“Southern California Edison 

Schedule TOU-GS-SOP,” n.d.) 

Averaging over the year and 

assuming constant demand 

Base 

electricity 

price per 

customer 

$/yr 5050 -20% +20% (“Southern California Edison 

Schedule TOU-GS-SOP,” n.d.) 

Electricity 

demand 

charge 

$/yr Level 1: 

370 nCP 

Level 2: 

940 nCP 

Level 3: 

13000nCP 

-20% +20% (“Southern California Edison 

Schedule TOU-GS-SOP,” n.d.) 

Based on peak power demand which 

is a function of the number of 

chargers, averaging over the year and 

assuming constant demand. Cost is 

$21.60/kW/month. Each Level 1 

charger is 1.44 kW, Level 2 charger 

is 3.6 kW, and Level 3 charger is 50 

kW 

Fast charging 

or battery 

inventory 

charging 

efficiency 

 Level 1: 

0.88 

Level 2: 

0.83 

Level 3: 

0.78 

Level 3: 

83% 

Level 3: 

75% 

Depends on charging speed. See 

Section 4.3.4 

Battery price 

per usable 

kWh energy 

capacity 

$/kWh 600 600 200 From (Plotkin and Singh, 2009) lit 

review 2015 and DOE program goals 

2030 cases. Converted to price per 

usable kWh by assuming 80% is 

usable. See Figure 7.1 

Battery life years 10 15 8 Based on being slightly longer than 

typical warranty (Roper, 2013) 
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Description Units Base 

Case 

Value 

Fast 

Charging 

Optimistic 

Case Value 

Battery 

Swapping 

Optimistic 

Case Value 

Source 

Price per 

swapping bay 

equipment 

$ 500,000 750,000 40,000 Preliminary cost ranges for battery 

swapping stations are very rough and 

range from $40,000 (McKinsey & 

Company, 2009) to $500,000 

(O’Dell, 2010a). 

Value of 

travel time for 

highway 

drivers 

$.min 0.5333 0.3 0.6667 (Perk et al., 2011) from mean, 25th 

percentile, and 75th percentile of 

distribution of value of travel time 

savings 

 

Table 4.8 Parameter values used in one-way sensitivity analysis 

Description Units Base 

Case 

Value 

Sensitivity 

Values 

Source 

Operating cost 

per year 

$ 80000 +/-20% Also per swapping point. Based on one employee, 

WDOT (Parsons Brinckerhoff, 2009) 

Charging 

equipment life 

years 25 15 For chargers including battery inventory charging 

equipment 

Swapping 

equipment life 

years 10 8 For battery swapping equipment, based on usable 

life of industrial robots (Bard, 1986; Fryman, 

2002; Nof, 1999; Yusuf and Nabeshima, 2006) 

Charging 

equipment price 

$ Level 3: 

50000 

Level 2: 

2000 

Level 1: 

1000 

Level 3: 

10000, 

90000 

Also battery inventory charging price per bay. 

Includes installation of the individual charge 

points, estimates for Level 3 range from 10000-

90000+ (McKinsey & Company, 2009; Motavalli, 

2011; Parsons Brinckerhoff, 2009). Level 1 and 

Level 2 costs from (Morrow et al., 2008) 

Electricity price 

per kWh 

$/kWh 0.075 +/-20% (“Southern California Edison Schedule TOU-GS-

SOP,” n.d.) Averaging over the year and assuming 

constant demand 

Base electricity 

price per 

customer 

$/yr 5050 +/-20% (“Southern California Edison Schedule TOU-GS-

SOP,” n.d.) 
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Description Units Base 

Case 

Value 

Sensitivity 

Values 

Source 

Electricity 

demand charge 

$/yr Level 1: 

370 nCP 

Level 2: 

940 nCP 

Level 3: 

13000nCP 

+/-20% (“Southern California Edison Schedule TOU-GS-

SOP,” n.d.) Based on peak power demand which is 

a function of the number of chargers, averaging 

over the year and assuming constant demand. Cost 

is $21.60/kW/month. Each Level 1 charger is 1.44 

kW, Level 2 charger is 3.6 kW, and Level 3 

charger is 50 kW 

Fast charging or 

battery 

inventory 

charging 

efficiency 

 Level 1: 

0.88 

Level 2: 

0.83 

Level 3: 

0.78 

Level 3: 

75%, 83% 

Depends on charging speed. See Section 4.3.4 

Battery price 

per usable kWh 

energy capacity 

$/kWh 600 200 From (Plotkin and Singh, 2009) lit review 2015 

and DOE program goals 2030 cases. Converted to 

price per usable kWh by assuming 80% is usable. 

See Figure 7.1 

Battery life years 10 8, 15 Based on being slightly longer than typical 

warranty (Roper, 2013) 

Price per 

swapping bay 

equipment 

$ 500,000 40000, 

750000 

Preliminary cost ranges for battery swapping 

stations are very rough and range from $40,000 

(McKinsey & Company, 2009) to $500,000 

(O’Dell, 2010a). 

Value of travel 

time for 

highway drivers 

$.min 0.5333 0.3, 0.6667 (Perk et al., 2011) from mean, 25th percentile, and 

75th percentile of distribution of value of travel 

time savings 

Average 

depletion of 

arriving vehicle 

batteries 

 0.75 0.6, 0.9 As a percentage of the 80% of usable swing that is 

replenished in each charge or swap 

4.4 Results 

4.4.1 Simple Estimation Models 

Figure 4.5 shows results from the simple estimate models for annual station cost per 

vehicle arrival for 8 types of stations: Level 1 charging, Level 2 charging, Level 3 fast 

charging, battery swapping where the inventory is charged at Level 1, battery swapping 
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where the inventory is charged at Level 2, battery swapping where the inventory is 

charged at Level 3, a gasoline station serving CVs, and a gasoline station serving HEVs. 

The cost is broken down by contributions from electricity; gasoline; batteries in the 

swapping inventory; service time, including swapping, charging, or gas pumping time 

plus some time to get in and out of the station and pay; and a carbon cost on GHG 

emissions from electricity and battery production. Error bars indicate optimistic and 

pessimistic sensitivity analysis cases for each technology, and parameter values for the 

base case and sensitivity analysis cases are given in Table 4.2 and Table 4.3. As shown, 

the major cost contributor for all of the BEV refueling stations is service time. The 

majority of this time is spent actively charging the vehicle or swapping the battery. When 

the cost of service time is considered, battery swapping costs less than charging, and 

battery  

 
 (a) (b) 

Figure 4.5 Annual station cost per vehicle arrival calculated from simple cost estimate models. Results are 
shown on two sets of axes (a) and (b) due to order of magnitude. Error bars indicate the range of optimistic 
and pessimistic cost scenarios for each technology. Chg=Charging, Lvl=Level. Swap w/ Lvl 1 indicates 
that the battery inventory at the swapping station is charged at Level 1. 
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swapping while fast-charging the inventory is least expensive due to the combination of 

low service time and a small battery inventory. However, when service time is ignored, 

the charging stations are competitive with the swapping station that charged inventory at 

Level 3 and less expensive than the swapping stations that charge batteries more slowly. 

To determine what effect capital equipment costs and waiting (in line) times will have on 

these costs, more detailed cost models including queuing models are needed. These are 

presented in Section 4.4.2. 

The GHG emissions results that were used to calculate the carbon costs are shown in 

Figure 4.6. The carbon cost turns out to be a small contributor to the overall station cost, 

and also turns out to be similar for each BEV refueling technology because the GHG 

emissions levels are similar for all of the charging and swapping scenarios. The slight 

differences are due to the differences in charging efficiency and number of batteries  

 
Figure 4.6 Annual station GHG emissions per vehicle arrival calculated from simple estimate models. 
Error bars indicate the range of optimistic and pessimistic cost scenarios for each technology. 
Chg=Charging, Lvl=Level. Swap w/ Lvl 1 indicates that the battery inventory at the swapping station is 
charged at Level 1. 
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required in inventory. Since this cost is a so small it has been left out of subsequent 

modeling for simplicity. 

4.4.2 Detailed Cost Models 

Figure 4.7 compares detailed cost results from analytical queuing models for the least 

costly type of charging station (Level 3) and the 2 least costly battery swapping stations 

(Level 2 and 3 inventory charging) to serve a customer arrival rate of one vehicle arrival 

per minute. This vehicle arrival rate is equivalent to about 2% of vehicles stopping on a 

busy highway. As shown, the annual station costs per vehicle as calculated from the 

detailed cost models with analytical queuing are somewhat higher for fast charging and 

lower for battery swapping than those found from the simple models. These detailed 

results include all of the costs from the simple model except carbon costs, for simplicity 

since the carbon costs turned out to be very small. In addition, the detailed cost models 

include waiting time (in line waiting for service), a more detailed calculation of the 

number of batteries in the inventory (which turns out to be lower than the initial 

estimates), operating costs (employees), capital equipment costs (charging and swapping 

equipment), and site preparation costs (including battery storage warehouses). Waiting 

time has a very small impact on overall cost. However, it is important to note that this is a 

result of the stations having been designed for minimum cost and therefore for short wait 

times due to the high cost of waiting. If stations are not designed for short wait times, 

wait times could become a significant cost. These results suggest that if vehicles and 

batteries are standardized for swapping, it may be worthwhile to fast charge the batteries 

used for swapping instead of slow charging them. This would combine the benefits of 

fast charging (no battery inventory) with the benefits of battery swapping (less time).  
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Figure 4.7 Annual station cost per vehicle arrival calculated from detailed cost models with analytical 
queuing, comparing Level 3 fast charging, battery swapping with the battery inventory charged at Level 2, 
and battery swapping with the battery inventory charged at Level 3. Error bars indicate optimistic and 
pessimistic sensitivity analysis cases results. Lvl=Level, Swap w/ Lvl 2 indicates that the battery inventory 
at the swapping station is charged at Level 2. 

Drawbacks would include the combined effects of fast charging and swapping on battery 

life, as well as the other drawbacks of battery swapping, mainly needing to have large 

numbers of vehicles with compatible swappable batteries. The Level 3 charging station 

shown has 32 charging points. The swapping station with Level 2 inventory charging has 

8 swapping points, 253 charging points, and 253 batteries. The swapping station with 

Level 3 inventory charging has 7 swapping points, 26 charging points, and 26 batteries. 

Details of the results presented in Figure 4.7 are given in Table 7.15. 

Figure 4.8 shows the same results as Figure 4.7, with the addition of three station 

scenarios representing battery swapping with less vehicle and battery standardization and 

CV and HEV refueling stations for comparison. Details of the results presented in Figure 

4.8 are given in Table 7.15. The fourth and fifth bars in Figure 4.8 represent cases 3 

smaller stations are built, each serving one third of the traffic. This represents a situation 

in which there are three vehicle designs with swappable batteries, but they have not been  
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Figure 4.8 Annual station cost per vehicle arrival for a station serving an arrival rate of 1 vehicle per 
minute calculated from detailed cost models with analytical queuing and comparing Level 3 fast charging; 
battery swapping with the battery inventory charged at Level 2 or Level 3; and battery swapping with the 
battery inventory charged at Level 2 or 3 but with demand divided between 3 or 4 smaller swapping 
stations each serving an equal portion of the customers due to non-standardized battery and vehicle designs. 
Error bars indicate optimistic and pessimistic sensitivity analysis cases results. Lvl=Level, Swap w/ Lvl 2 
indicates that the battery inventory at the swapping station is charged at Level 2. 

standardized to use the same batteries or swapping equipment. In this situation, each 

battery swapping station can have fewer swapping points (3) and a smaller battery 

inventory (90 for Level 2 inventory charging, 11 for Level 3 inventory charging), but the 

3 stations considered together have more equipment and a larger battery inventory than 

the single station serving all vehicles. (The fixed costs for the smaller stations are 

multiplied by 3 and the variable costs per vehicle (electricity, service time, and waiting 

time) are not.) The battery swapping cost savings seen in Figure 4.7 due to lower service 

time than Level 3 charging are lost due to the additional equipment and battery costs. 

Considering more than 3 incompatible vehicle types, as shown in the sixth bar in Figure 

4.8, exacerbates these issues, since the smaller the stations are the more the upfront and 

capital costs are per vehicle. This scale issue is shown in Figure 4.9, and may be a 

particular issue early adopter scenarios and other situation with low traffic volumes. The 
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cost decreases as the station size increases due to economies of scale for the equipment 

and other fixed costs. Discontinuities in the slopes of the cost curves in Figure 4.9 

indicate increases in the number of swapping or charging points, as in process-based cost 

modeling. The results shown in Figure 4.8 for cases without vehicle standardization 

indicate that battery swapping may be cost competitive with fast charging only when 

vehicles and batteries are standardized. The cost of standardizing vehicles and batteries is 

out of scope for this analysis, but the investment cost and other challenges of vehicle and 

swappable battery standardization should be considered in any policy decisions regarding 

battery swapping. 

 
 (a) (b) 

Figure 4.9 Annual station costs for fast charging (left) and battery swapping (right) as a function of vehicle 
arrival rate. 

Updating the GHG emission estimates from Section 4.4.1 using the number of 

batteries calculated for each case from the analytical models results in GHG emissions 

for battery swapping that are only 1% higher than for fast charging. 
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To find the incremental cost that fast charging or battery swapping adds to BEV cost 

each time it is used, the direct cost (excluding service time and waiting time) for a Level 

1 or Level 2 charging station can be subtracted from the results shown in Figure 4.8. 

Direct cost is appropriate for this calculation because we assume that the default charging 

method is home-based overnight charging, when cost of time is not relevant. (These 

results are not shown in Figure 4.8 due to the order of magnitude when time is included.) 

The direct cost of Level 1 charging is found to be $1.8 per charge and the total cost 

including time is $390 per charge. For Level 2 charging the direct cost is $1.77 per 

charge and the total cost is $140 per charge. (Level 2 costs are lower than for Level 1 

because less equipment is required to operate a station at the assumed capacities; costs for 

home charging will likely vary slightly from these station charging cost estimates.) The 

incremental cost of Level 3 charging compared to Level 2 charging is $0.64 per charge 

when value of time is not included but $14 per charge when value of time is included. 

The incremental cost of battery swapping compared to Level 2 charging is $2.50 when 

value of time is not included and $7.25 when value of time is included. Thus the added 

cost per vehicle for Level 3 charging or battery swapping can be estimated based on how 

often each refueling method will be utilized. 

Results from numerical queuing simulations indicate that the battery inventory size 

for battery swapping is about 10% larger than found from the analytical models when the 

inventory is charged at Level 2 and about 50% larger than found from the analytical 

models when the inventory is charged at Level 3. The updated base case results are 

shown in Figure 4.10. Because the battery cost is the main difference, the cases most  
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Figure 4.10 Annual station cost per vehicle arrival for a station serving an arrival rate of 1 vehicle per 
minute calculated from detailed cost models with numerical queuing simulations and comparing Level 3 
fast charging; battery swapping with the battery inventory charged at Level 2 or Level 3; and battery 
swapping with the battery inventory charged at Level 2 or 3 but with demand divided between 3 or 4 
smaller swapping stations each serving an equal portion of the customers due to non-standardized battery 
and vehicle designs. Lvl=Level, Swap w/ Lvl 2 indicates that the battery inventory at the swapping station 
is charged at Level 2. 

affected are the cases with the most batteries, which are the cases where the swapping 

inventory is charged at Level 2. 

The sensitivity analysis results in the previous figures included only an optimistic 

case for fast charging and an optimistic case for battery swapping (equivalent to also a 

pessimistic case for each technology). We also performed a one-way sensitivity analysis 

by varying individual parameters to determine which have the largest effect. These 

results are shown for fast charging in Figure 4.11 and for battery swapping in Figure 

4.12. As shown the most sensitive parameter for both models is value of time. Since the 

value of time varies widely across the population, this indicates that the choice of which 

type of refueling is least costly would also vary across the population. Fast charging cost 

is somewhat sensitive to electricity cost, charger cost, and average depletion of arriving 

batteries. Battery swapping is sensitive to those parameters as well as swapping  
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Figure 4.11 Sensitivity of fast charging station cost to individual parameters. Parameter input values are 
shown next to their resulting costs. 

 
Figure 4.12 Sensitivity of battery swapping (with Level 3 inventory charging) station cost to individual 
parameters. Parameter input values are shown next to their resulting costs. 

equipment cost and operating costs. Both of these costs are very uncertain for swapping 

stations and improved information about them could reduce the uncertainty in decisions 

about which technology is less costly. 
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4.5 Discussion and Limitations 

We find that the conclusion as to whether fast charging or battery swapping is less 

costly depends on whether the value of waiting time during service is included and 

whether vehicles are standardized to use interchangeable swappable batteries. If the value 

of time is not included, fast charging is less expensive. If the value of time is included 

and vehicles and batteries are standardized, battery swapping with Level 2 or Level 3 

inventory is less expensive, and battery swapping with Level 3 charging is least 

expensive. However, if vehicles and batteries are not standardized, depending on how 

many different battery types and swapping equipment types need to be available, battery 

swapping costs can exceed fast charging costs even with value of waiting time included. 

This indicates that the barriers to standardizing vehicles and swappable batteries and the 

costs of doing so merit further investigation. Battery swapping may deliver significant 

value to consumers by way of eliminating costly waiting time, but this may or may not 

offset the required investment in and challenges of standardization. Policies aimed at 

subsidizing fast charging, battery swapping, or vehicle standardization should be based 

on an understanding of the tradeoffs involving the direct costs of these technologies but 

also involving consumers’ travel time. 

The largest contributor to uncertainty in the analysis is the value of travel time. Value 

of time spent charging or swapping batteries is a major contributor to which station type 

is less expensive, and the main reason that the uncertainty ranges overlap. Thus it will be 

important to consider when and how this cost should be considered in comparing these 

technologies. From the perspective of service providers, the value of the customers’ time 

is not a direct cost. However, it may indicate a significant difference in customers; 

willingness to pay for these different types of refueling services. Also, customers’ value 
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of time varies widely by customer (Perk et al., 2011) and may also vary widely for the 

same customer depending on other circumstances, such as the overall length of the trip, 

whether they are in a hurry, whether they need to stop for lunch anyway, etc. Therefore 

there may be significant heterogeneity in the market for these refueling technologies, 

with some customers who are willing to pay a significant premium for the faster refueling 

technology, but others who are not. This may have implications for where and when 

customers would be willing to pay higher prices for battery swapping than for fast 

charging due to the time savings. Another uncertain factor that we have not addressed is 

the arrival pattern. We assume steady state and look at traffic flows that may represent 

peak times. Running the numerical simulations using an appropriate daily arrival pattern 

may change the results, but care must be taken in identifying the distribution since it will 

likely be very different from gasoline station arrivals. 

We also find that the overall costs per station arrival for both fast charging and 

battery swapping are lower than gasoline refueling costs, even for HEVs, when value of 

service time is excluded, but higher when value of service time is included. The major 

contributors to whether gasoline refueling or BEV rapid refueling is less expensive are 

value of time and gasoline prices. This indicates that for some consumers (with low value 

of travel time) BEV rapid refueling is already less expensive, and that BEV rapid 

refueling may be less expensive for many more consumers if gasoline prices rise. 

Station cost per vehicle arrival for both fast charging and battery swapping is much 

higher at small station sizes, drops off quickly, and then remains flat. These models 

become less accurate as station size increases due to requiring increasingly large amounts 

of equipment that may become impractical, due to omitting certain costs such as land cost 
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and upgrades to regional power systems, and due to neglecting some potential economies 

of scale at larger sizes such as in warehouse costs, operating expenses, and electricity rate 

structures. However, the shape of the cost curve at low and moderate arrival rates indicate 

that there are significant economies of scale from ensuring that stations receive at least 

some minimum level of traffic. This point is about 0.5 veh/min in the base case. 

Achieving this traffic rate will be a function of station location, but perhaps more 

importantly a function of BEV penetration in the fleet and an accurate understanding of 

when individual BEV drivers will use these services. These results indicate that although 

rapid refueling may be prohibitively expensive for very small stations while BEV fleet 

penetrations remain low and usage is mostly for shorter trips, once some sufficient level 

of fleet penetration is reached and consumers become comfortable using BEVs for longer 

trips and recharging on the way, the costs per station arrival drop significantly and the 

refueling cost becomes potentially competitive with CVs or HEVs, depending on 

gasoline prices, as shown in the sensitivity analysis. This also indicates that PHEV 

opportunity fast charging, if it occurs, may be of benefit to fast charging by allowing 

further economies of scale in station design, as long as the demand has been accurately 

predicted so that stations are large enough not to have long wait times. 

Limitations of this work include the assumption that vehicles and batteries are 

standardized, and the lack of any cost estimates for achieving this standardization. Since 

battery swapping requires standardization and fast charging does not, this cost could 

change the technology comparison results. We also assume that batteries consist of a 

single large swappable pack that must be swapped by a robot (it weighs about 700 

pounds). We do not consider cases where smaller battery modules can be swapped by a 
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human, which may reduce cost by not requiring swapping equipment, by allowing a 

smaller number of modules to be swapped (enough to get to your next destination with 

charging), and by reducing barriers to standardization. 

4.6 Conclusions 

Results suggest that a battery swapping station (with fast charging of battery 

inventory) costs 40% more than a fast charging station when the value of time spent 

waiting during service is excluded, but 50% less when the $30/hour value of travel time 

for highway drivers is included. However, battery swapping’s cost advantage due to 

decreased service time requires vehicles and swappable batteries to be standardized. 

When four separate swapping stations and battery inventories are needed to serve the 

same number of customers driving four incompatible vehicle designs, the cost benefits 

disappear and battery swapping becomes 30% more expensive than fast charging. A 

single battery swapping station (with fast charging of battery inventory) emits only 1% 

more GHGs than a fast charging station under today’s US electricity grid mix due to 

battery production. This indicates that the barriers to standardizing vehicles and 

swappable batteries and the costs of doing so merit further investigation. Battery 

swapping may deliver significant value to consumers by way of eliminating costly 

waiting time, but this may or may not offset the required investment in standardization 

and the slightly higher GHG emissions. 

Aside from standardization costs, the major contributors to cost uncertainty are value 

of travel time, which also varies widely among consumers, and station size. Very small 

stations such as those appropriate for early adoption scenarios are much more expensive 

per vehicle arrival. The combination of wide ranging values of travel time and 
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uncertainty in gas prices indicates that BEV rapid refueling by either fast charging or 

battery swapping could already be cost effective for some consumers compared to 

gasoline refueling of a CV or HEV if sufficient economies of scale are achieved, and 

rising gas prices would make BEV rapid refueling cost effective for even more 

consumers. 

Important limitations include that we are looking at life cycle station cost, which is 

equivalent to refueling cost, not cost of ownership. Also, we assume steady state arrival 

patterns. More research is needed to determine actual demand patterns and their effect on 

these results. Finally, we include only one vehicle design. Determining impact of vehicle 

range on the relative attractiveness of these two refueling technologies is also left for 

future work. 
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5 Summary, Conclusions, and Policy Implications 

This thesis examines life cycle cost, greenhouse gas (GHG) emissions, petroleum use, 

and policy implications of scenarios for electrified vehicles and charging infrastructure in 

the U.S., addressing several questions: What mix of vehicles minimizes life cycle cost? 

GHG emissions? What are the implications of workplace charging in addition to home 

charging? How much current and potential U.S. residential charging exists? What are the 

costs and GHG emissions of fast-charging and battery swapping service stations? How 

sensitive are these results to uncertain parameters? What factors are most critical? and 

What are the policy implications? 

We identify gas prices ($6/gal) as a price lever to make PEVs cost competitive, and 

we find that relatively high gas prices ($4.5/gal) combined with low vehicle and battery 

prices (DOE 2030 program goals) create a price lever that can make PEVs dominate 

HEVs for minimum cost. PEV adoption reduces petroleum consumption, but grid 

decarbonization is also needed for GHG emissions reductions. With cleaner electricity, 

GHG emissions benefits of PEVs can be substantial. 

Lack of residential charging potential could curb adoption if not addressed, since 

parking and housing infrastructure turn over more slowly than the vehicle fleet, and 

several key home charging infrastructure barriers are identified. Excluding renters, who 

face additional barriers to charging infrastructure installation, we find that less than half 

of U.S. vehicles have reliable access to off-street parking where charging could be 

installed. To achieve even that much PEV adoption, some of the households who do have 

parking will need to charge multiple vehicles, requiring electrical upgrades. Thus a policy 

encouraging the installation of vehicle charging circuits in residential garage new 

construction (and renovation) may be a relatively inexpensive way to mitigate a barrier to 
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PEV adoption. Further, incentivizing the installation of multiple vehicle charging circuits, 

or at least of household electricity panels that have space for additional vehicle charging 

circuits, will be more costly but will also mitigate the more expensive (and therefore 

larger) barrier to charging multiple vehicles per household, which is needed to achieve 

PEV penetration above 40%. To achieve PEV penetration above 56%, additional 

dedicated home parking is needed, but policymakers should consider whether the benefits 

of PEVs in comparison to grid-independent HEVs or other alternative vehicle 

technologies are worth the potential negative impacts of adding parking, which include 

land cost and production/construction emissions as well as other impacts (Chester et al., 

2010; Shoup, 2005). Since housing and parking infrastructure turn over more slowly than 

the vehicle fleet, these policies should be considered proactively in advance of desired 

future PEV adoption. 

For drivers who do have home charging and a PEV, additional dedicated workplace 

charging increases the effective AER of the vehicle on commuting days but has little 

GHG emissions benefit under the current U.S. grid mix. Workplace charging could have 

substantial additional GHG emissions benefits in combination with cleaner electricity. 

BEV adoption is restricted by limited range. Range requirements to meet 95% of 

driving day distances mean that for some drivers a BEV with a long enough range does 

not exist, and for other drivers a BEV with a long enough range has such a large battery 

that it is more expensive and emits more life cycle GHGs (from battery production and 

reduced vehicle efficiency) than an appropriately sized PHEV. BEVs only appear in the 

minimum cost solution for the 6% of drivers with the shortest driving distances, and only 
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in the case with high gas prices ($4.5/gal) and low vehicle and battery prices (DOE 2030 

program goals). 

The issue of what BEV owners should do on the 5% of days when range is exceeded 

also needs to be addressed. Although some BEV drivers have the option of using another 

household vehicle, that would mean at most one vehicle per household could be a BEV, 

and only in multi-vehicle households. Renting a car on those days is also an option, but 

inventory would be strained major holidays. Both of those options also require advance 

planning. 

To allow BEVs to meet driving requirements on long driving days, including 

unexpected ones, rapid BEV refueling options include fast charging, which incurs costly 

waiting times during service, or battery swapping, which is potentially faster and less 

costly but requires vehicle and battery standardization. Since there are many challenges 

to vehicle and battery standardization, policymakers should consider whether it would be 

worthwhile to incentivize standardization in order to reduce BEV rapid refueling time 

and make it a more attractive option for customers. It is possible that the costs and design 

tradeoffs necessary for vehicle and swappable battery standardization may outweigh the 

time savings, or the increased attractiveness to consumers of BEVs with wide availability 

of very fast refueling may be the dominant factor. This also needs to be considered in 

combination with BEV adoption goals since a sufficiently high traffic level, and therefore 

a sufficiently high BEV adoption level, is needed for battery swapping stations to reach 

economies of scale for utilizing expensive swapping equipment. Economies of scale 

mean that both types of rapid refueling stations are very costly (on a per refuel event 

basis) for early adopters due to low utilization rates. 
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All of these results are discussed for the entire U.S. Since several of the factors 

affecting PEV scenario outcomes vary by region, including electricity generation mix, 

home parking availability, vehicle efficiency and performance (especially due to 

temperature effects and terrain), and driving patterns, all of these policy implications can 

be considered on smaller geographic scales as well. 

5.1 Contributions 

5.1.1 Methodological contributions 

Methodological contributions from the optimization study described in Chapter 2 

include an MINLP optimization formulation to minimize life cycle cost or greenhouse 

gas emissions over the midsize personal vehicle fleet by jointly determining (1) the 

optimal design of each CV, HEV, PHEV, and BEV; (2) the optimal allocation of each 

vehicle design to vehicles in the fleet based on annual VMT; and (3) the optimal 

allocation of home and workplace charging infrastructure to xEVs vehicles in the fleet. A 

model for estimating driving patterns was also constructed for use in the optimization 

model, taking variability in driving distances across days and across vehicles into 

account. 

Methodological contributions from the home charging study presented in Chapter 3 

include applying multiple imputation with hot deck imputation, a Monte Carlo method, to 

combine two parking availability datasets and some assumptions to estimate vehicle-level 

parking availability. 

Methodological contributions from the fast charging and battery swapping study 

presented in Chapter 4 include life cycle cost and GHG emissions models of fast charging 

stations and battery swapping stations as a function of demand (vehicle arrival patterns). 
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Detailed cost estimates are developed that can be solved analytically with simple queuing 

models or can be solved in more detail using the developed numerical queuing 

simulations. The models enable comparison of the two rapid refueling technologies, 

including in cases where multiple smaller battery swapping stations supporting 

incompatible vehicle designs are to be compared to a larger fast charging station. 

5.1.2 Applicative contributions 

Applicative contributions from the optimization study described in Chapter 2 include 

identifying scenarios in which PEVs may become optimal for life cycle cost or GHG 

emissions of the U.S. midsize personal vehicle fleet, as well as an analysis of the impact 

workplace charging availability has on optimal vehicle designs and allocations. 

The applicative contribution of the study on home charging opportunities, presented 

in Chapter 3, is quantification of the current and future availability of home charging in 

the U.S. on a per vehicle basis and in urban and rural areas, including disaggregation by 

rented or owned status of the home, and quantification of how many vehicles would gain 

access to home charging if all homeowners with dedicated parking installed charging, or 

if all homes (rented and owned) with residential parking installed charging. Implications 

of these results on some PEV market share forecasts are also identified. 

Applicative contributions from the fast charging and battery swapping study 

presented in Chapter 4 include a comparison of fast charging to battery swapping to 

determine which method of managing limited BEV range is best for cost or GHG 

emissions objectives, and under what scenarios. Results show that battery swapping 

stations are least expensive when the battery inventory is fast charged. Battery swapping 

stations cost 41% more than fast charging stations when the value of time spent waiting 
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during service is excluded, but 50% less when the $30/hour value of travel time for 

highway drivers is included. However, battery swapping’s cost advantage due to 

decreased service time requires vehicles and swappable batteries to be standardized. 

When separate swapping stations and battery inventories are needed to serve the same 

number of customers driving four incompatible vehicle designs, the cost benefits 

disappear and battery swapping becomes 31% more expensive than fast charging. 

Economies of scale also matter, as very small stations, such as would be appropriate for 

early adopters, are much more expensive per vehicle arrival. Costs of both BEV rapid 

refueling technologies are in the range where, depending on gasoline prices and 

economies of scale, they could be cost competitive with refueling a gasoline CV or HEV. 

A single battery swapping station (with fast charging of battery inventory) emits 8% 

more GHGs than a fast charging station under today’s US electricity grid mix. 

5.2 Recommendations for Future Work 

Future work for the study presented in Chapter 2 includes incorporating the home 

charging infrastructure limitations found in Chapter 3 into the model as constraints on 

PEV adoption and determining effects, especially on the mix of vehicle designs in the 

fleet. 

Future work for the home charging study in Chapter 3 includes determining cost of 

infrastructure improvements by gaining information on the electrical capacity of home 

wiring. Although a survey of consumers is unlikely to obtain information such as 

electrical circuit panel capacity, an expert elicitation from electricians across the country 

could approximate existing home electrical infrastructure. Other opportunities for future 

work include disaggregating the results by region or into smaller geographic areas to 
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determine where PEVs will face more or fewer barriers to penetration and which 

geographic areas might need more investment in home charging infrastructure. Finally, 

the uncertainty ranges can be further reduced by conducting surveys of parking 

availability, especially driveway presence and the number of cars that can comfortably be 

parked in each driveway but also the amount of parking space that is available for cars as 

opposed to being used as living space or for storage. 

Future work suggested by the fast charging and battery swapping study presented in 

Chapter 4 includes extending the sensitivity analysis to the detailed cost model and to 

include additional vehicle designs (battery size and vehicle range). The presented single-

station models can also be scaled to define scenarios of infrastructure needed to support a 

regional fleet. This would involve defining station locations and calculating the arrival 

patterns of depleted BEVs at each station. The analytical models developed can be used 

for arrival patterns that are steady-state or close to steady-state, and the numerical 

simulations developed in this chapter can be used in cases where the arrival pattern is not 

steady state, so determining a better model for expected BEV refueling arrival patterns in 

a high adoption scenario is also an area for future work. The scope of the life cycle GHG 

assessment presented can be expanded to include additional sources of GHG emissions, 

such as equipment manufacturing and end-of-life considerations. The scope can also be 

expanded to include other environmental impacts besides GHG emissions, for example 

toxic releases from battery production. 

In addition to future work directly indicated by each study, some overall areas for 

future work include further investigation of driver behavior, such as impact of electrified 

vehicle adoption on driving patterns and VMT. Some studies have theorized that a 



 

129 

rebound effect will exist from the reduced cost per mile of driving when powered by 

electricity, but further investigation of this and other impacts on driving behavior are 

needed, especially to determine how the average driver would respond, not just early 

adopters. 

Interactions between driver behavior with PEVs and price structure for public vehicle 

charging also merits attention. This work has focused on cost, not price structure. In 

particular, pricing structures may wish to incentivize the use of public charging early on 

to encourage adoption and provide economies of scale, but then deter use of public 

charging later on as it reaches capacity. There may be interesting implications for the 

attractiveness to consumers of PEVs versus other vehicle technologies. Pricing may also 

affect whether there is a rebound effect from electrifying travel (Avci et al., 2012). 

Owning versus leasing batteries is another key feature of PEV pricing structures that 

merits further attention. Leasing batteries makes vehicles more attractive to consumers by 

lowering the upfront cost, but it also will most likely lock them in to a service provider 

for battery swapping and maybe also for charging (such as with prices that are structured 

per mile and include all driving) which may make this model less attractive to consumers. 
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7.1 Appendix A: Supplemental Information for Optimal Design and Allocation of 
Electrified Vehicles and Dedicated Charging Infrastructure for Minimum Life Cycle 
GHG Emissions and Cost 

This supporting information document provides additional details including a 

description of the adjusted growth rates used for future fuel prices; tables of variables, 

functions, and parameters; parameter values for the base case and sensitivity analysis; 

details of the vehicle performance simulations and metamodels; AER calculations; and 

additional results. 

7.1.1 Approach 

7.1.1.1 Description of adjusted growth rates for future fuel prices 

To compute the equivalent annualized cost of future fuel purchases when the discount 

rate and the rate of increase of fuel prices are not equal, one must account for increases in 

the nominal price of fuel and discounting of those prices paid in future years. To make 

the formula compact, we introduce adjusted growth rates for gasoline rAG and electricity 

rAE. The formulas are given in the main body of the paper, and a brief explanation of their 

origin is shown below for the example of gasoline prices. 
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7.1.1.2 Model Notation and Parameter Values 

Model notation with descriptions, units, and ranges are shown in Table 7.1 for design 

variables, in Table 7.2 for functions, and in Table 7.3 for parameters. Table 7.4 provides 

further details for the distribution of annual vehicle miles traveled (VMT) and Table 7.5 

and Table 7.6 provide further details for the vehicle performance metamodels. 

Table 7.1 Model notation, descriptions, units, and ranges for decision variables. 

Notation Description Units Range of Values 

xB Number of battery cells - CV: 0; HEV: 168; PHEV: 200–1000; 

BEV: 200–9000 

xE Peak engine power kW CV: 126; HEV: 57; PHEV: 30–60; 

BEV: 0 

xM Peak motor power kW CV: 0; HEV: 52; PHEV: 50–110; 

BEV: 70–250 

xSW Battery swing window - CV & HEV: 0; PHEV & BEV: 0.1–

0.8 

αij Binary selection variable for each bin i and 

vehicle alternative j 

 {0,1} 

 

The cost, cVj, of producing the base vehicle excluding engine, motor, and batteries in 

the base case is $12,970 for a CV, $13,860 for an HEV, $14,140 for a PHEV, and $13,010 

for a BEV. The cost of engine production as a function of peak engine power is cE(xEj) = 

acE1xEj+acE2 where acE1 = $2.785/kW and acE2 = $1626. The cost of motor production as a 

function of peak motor power is cM(xMj) = acMxMj where acM = $8.102/kW. The cost per 

kWh (rated energy capacity) of battery production is constructed as a least-squares fit to 

the data reported by Plotkin and Singh (2009), as a function of the number of battery cells 

(equivalent to a scaled function of kWh): cB(xBj) = acB1ln(xBj) + acB2, where acB1 = -

$50.17 and acB2 = $832.5. This function results in a range of costs from$376/kWh for 
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Table 7.2 Model notation, descriptions, units, and ranges for functions. Dollars are 2010 dollars. 

Notation Descrip- 
tion 

Units Function Range Ref Notes 

cB(xBj) Battery 
production 
cost for li-
ion batteries 

$/ 
kWh 
rated 

energy 
capacity 

acB1ln(xBj) + acB2 PHEV: 
486 – 
567; 

BEV: 376 
– 567 

(Plotkin 
and 

Singh, 
2009) 

Functional form 
chosen for its fit 
through battery 
price data for 

several different 
energy capacities 
(see Figure 7.1) 

cE(xEj) Engine 
production 
cost 

$ acE1xEj+acE2 CV: 
1977; 
HEV: 
1785; 

PHEV: 
1710 – 
1793 

(Plotkin 
and 

Singh, 
2009) 

Functional form 
from the 
literature 

cM(xMj) Motor 
production 
cost 

$ acMxMj HEV: 
421.3; 
PHEV: 
405.1 – 
891.2; 
BEV: 

567.1 – 
2026 

(Plotkin 
and 

Singh, 
2009) 

Functional form 
from the 
literature 

fA|P(r,n)  Capital 
recovery 
factor 

 ( )
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1

1 1

n
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r r
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FS(S) CDF of 
annual VMT 
over the fleet 

 data table lookup; 
see Table 7.4 

 §2.4  

( )V

σ
,F Sσ  family of 

exponential 
distributions 
describing 
variation in 
daily driving 
distance 

 1 – exp(-σ/µ(S))   §2.4  

lV(S) Vehicle (and 
battery) life 
given annual 
VMT S 

years SLIFE/S  §2.1.1 Based only on 
miles driven; not 
capped in terms 
of years 

rAE Real 
discount rate 

 
N
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1
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-0.019 – 
0.079 

§2.1.1  

rAG   
N

NG

1
1

1

r

r

+
−

+
 

-0.049 – 
0.046 

§2.1.1  

sAER(xj) All-electric 
range of 
vehicle 
alternative j 

mi. ( )E

C

j j j j
x xη κ

η

B B SWx

 

PHEV: 12 
– 88; 
BEV 11 – 
354 
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Notation Descrip- 
tion 

Units Function Range Ref Notes 

SE(xj,S) Annual 
distance 
powered by 
electricity 
for vehicle j 
given annual 
VMT S 

mi. §2.4  §2.4  

SG(xj,S) Annual 
distance 
powered by 
gasoline for 
vehicle j 

given annual 
VMT S 

mi. §2.4  §2.4  

sφ(S) Driving 
distance of 

φth percentile 
day for a 
vehicle 
given annual 
VMT S 

mi. §2.4 s99%(S) = 
3.61(S/d) 
+ 108 
s95%(S) = 
2.62(S/d) 
+ 40.3 
sMEAN(S) 
= 
1.11(S/d) 
+ 13.3 

§2.4 
(Sierra 

Research
, 2005) 

 

tE(xj) 0-60 mph 
acceleration 
time on 
electric 
power for 
vehicle j 

sec. §2.2 PHEV: 
6.5 – 
14.7; 

BEV: 6 – 
36.5 

§2.2  

tG(xj) 0-60 mph 
acceleration 
time on 
gasoline 
power for 
vehicle j 

sec. §2.2 PHEV: 
6.0 – 34.8 

§2.2  

vE(xEj) Engine 
production 
GHGs for 
vehicle 
alternative j 

kgCO2e avEcE(xEj) CV: 
2620; 
HEV 
1510; 
PHEV: 
1070 – 
1560 

 Based on engine 
production cost 
equation and 
tCO2e/USD2002 
multiplier from 
EIO-LCA Sector 
#336300: Motor 
vehicle parts 
manufacturing 
(Carnegie 
Mellon 
University Green 
Design Institute, 
2008) 
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Notation Descrip- 
tion 

Units Function Range Ref Notes 

vM(xMj) Motor 
production 
GHGs for 
vehicle j 

kgCO2e avMcM(xM) CV: 0; 
HEV: 
1500; 
PHEV: 
1460 – 
2720; 
BEV: 
1880 – 
5660 

 Based on motor 
production cost 
equation and 
tCO2e/USD2002 
multiplier from 
EIO-LCA Sector 
#335312: Motor 
and generator 
manufacturing 
(Carnegie 
Mellon 
University Green 
Design Institute, 
2008) 

∆ Integration 
step size 

mi. SMAX/mK  §2  

ηE(xj) 5-cycle 
combined 
electrical 
efficiency of 
vehicle j 

mi./kWh §2.2 PHEV: 
3.02 – 
3.23; 
BEV 1.54 
– 2.88 

§2.2  

ηG(xj) 5-cycle 
combined 
gasoline 
efficiency of 
vehicle j 

mpge §2.2 CV: 25; 
HEV: 43; 
PHEV: 
40.3 – 
75.7 

§2.2  

µ(S) Mean 
driving-day 
distance 

mi./day 1.110(S/d) + 
13.33 

 §2.4 
(Sierra 

Research
, 2005) 

Functional form 
chosen for its fit 
through data (see 
Figure 2.) 

Table 7.3 Model notation, descriptions, units, and parameter values for the base case and the sensitivity 
analysis. 

Nota- 
tion 

Description Units Base 
Value 

Range Ref. Notes 

acB1 First 
coefficient 
of battery 
cost function 

 LR2015:  
-50.17 

LR2030:  
-42.07 

LR2045:  
-42.91 

PG2030: 
 -10.94 

(Plotkin and 
Singh, 2009) 

Coefficients from 
natural log function 
fit to values in the 
literature, scaled to 
USD2010 using the 

CPI (US DOL, 
2010) (see Figure 

7.1) 
acB2 Second 

coefficient 
of battery 
cost function 

 LR2015: 
832.5 

LR2030: 647.8 
LR2045: 577.9 
PG2030: 233.8 

(Plotkin and 
Singh, 2009) 

acE1 First 
coefficient 
of engine 
cost function 

$/kW LR2015: 
2.785 

LR2030, 
LR2045, & 

PG2030: 2.735 

(Plotkin and 
Singh, 2009) 

From function in 
the literature for 4-

cylinder engine, 
scaled to USD2010 
using the CPI (US 

DOL, 2010) 
acE2 Second 

coefficient 
of engine 
cost function 

$ LR2015: 
1626 

LR2030 & 
LR2045: 1777 
PG2030: 1701 

(Plotkin and 
Singh, 2009) 
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Nota- 
tion 

Description Units Base 
Value 

Range Ref. Notes 

acM Coefficient 
of motor 
cost function 

$/kW LR2015: 
8.102 

LR2030 & 
LR2045: 7.090 
PG2030: 3.342 

(Plotkin and 
Singh, 2009) 

Scaled to 
USD2010 using the 

CPI (US DOL, 
2010) 

avE Coefficient 
of engine 
GHG 
function 

 0.6245   Based on 
tCO2e/USD2002 
multiplier from 

EIO-LCA Sector 
#336300: Motor 

vehicle parts 
manufacturing 

(Carnegie Mellon 
University Green 
Design Institute, 

2008) and 
USD2010 to USD 
2002 conversion 

factor from the CPI 
(US DOL, 2010) 

avM Coefficient 
of motor 
GHG 
function 

 0.5445   Based on 
tCO2e/USD2002 
multiplier from 

EIO-LCA Sector 
#335312: Motor 

and generator 
manufacturing 

(Carnegie Mellon 
University Green 
Design Institute, 

2008) and 
USD2010 to 

USD2002 
conversion factor 
from the CPI (US 

DOL, 2010) 

avV Coefficient 
of base 
vehicle 
GHG 
function 

 0.4645   Based on 
tCO2e/USD2002 
multiplier from 

EIO-LCA Sector 
#336111: 

Automobile 
Manufacturing 

(Carnegie Mellon 
University Green 
Design Institute, 

2008) and 
USD2010 to 

USD2002 
conversion factor 

from CPI (US 
DOL, 2010) 
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Nota- 
tion 

Description Units Base 
Value 

Range Ref. Notes 

bB Scaling 
factor for 
number of 
battery cells 

- 1/1000  (Shiau et al., 
2010) 

 

bE Scaling 
factor for 
peak engine 
power 

- 1/57  (Shiau et al., 
2010) 

 

bM Scaling 
factor for 
peak motor 
power 

- 1/52  (Shiau et al., 
2010) 

 

cBj Battery cost 
for NiMH 

battery ∀ 

j∈JHEV 

$ LR2015: 
1438 

LR2030: 1093 
LR2045: 1007 
PG2030: 517.7 

(Plotkin and 
Singh, 2009) 

Scaled to 
USD2010 using the 

CPI (US DOL, 
2010) 

cC Charger cost $ 1500 0, 1500, 2500 (Morrow et 
al., 2008) 

Including 
installation, 

excluding home 
wiring 

upgrade 

cVj Base vehicle 
cost 

$ LR2015: 
CV 

12970; 
HEV 

13860; 
PHEV 
14140; 
BEV 
13010 

LR2030: CV 
12970; HEV 

14440; PHEV 
14670; BEV 

13410 
LR2045: CV 
12970; HEV 

14280; PHEV 
14510; BEV 

13320 
PG2030: CV 
12970; HEV 

14220; PHEV 
14380; BEV 

13120 

(Plotkin and 
Singh, 2009) 

Scaled to 
USD2010 using the 

CPI (US DOL, 
2010) 

d Days per 
year 

days/year 365    

D Driving days 
per year 

days/year 243.8  (Sierra 
Research, 

2005) 

 

i Index of 
bins 

     

j Index of 
vehicle 
designs 

     

k Index of 
numerical 
integration 
segments 
within each 
bin 
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Nota- 
tion 

Description Units Base 
Value 

Range Ref. Notes 

K Number of 
integration 
segments per 
bin 

- 1    

m Number of 
bins for 
vehicle 
allocation 

- 20    

n Size of set J 
(number of 
vehicles in 
choice set) 

- 10 1 – 10   

pELEC Electricity 
price 

$/kWh 0.12 0.06 – 0.30 (US EIA, 
2011e) 

2009 average U.S. 
residential 

electricity cost 

pG Gasoline 
price 

$/gal 2.26 1.5 – 8 (US EIA, 
2011f) 

2009 average U.S. 
gasoline price, all 

grades 

qCj Number of 
chargers 
allocated to 
vehicle j  

chargers {1,2}
 

   

rNE Nominal 
gasoline 
price growth 
rate 

 1.9%  (US EIA, 
2011c) 

Projected growth 
rate from 2009 to 

2035 

rNG Inflation rate  5.2%  (US EIA, 
2011c) 

Projected growth 
rate from 2009 to 

2035 

rN Nominal 
discount rate 

 0.05 0.0 – 0.1   

SLIFE Vehicle life mi. 150,000    

SMAX Maximum 
annual VMT 
considered 
in the model 

mi. 73,000    

tMAX Maximum 
allowed 0-
60mph 
acceleration 
time 

sec. 11    

vBj GHG 
emissions 
from li-ion 
battery 
production 

∀ j ∈ JPHEV 

∪ JBEV 

kgCO2e / 
kWh 

120  (Samaras and 
Meisterling, 

2008) 
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Nota- 
tion 

Description Units Base 
Value 

Range Ref. Notes 

GHG 
emissions 
from NiMH 
battery 
production 

∀ j ∈ JHEV 

kgCO2e / 
kWh 

230  (Samaras and 
Meisterling, 

2008) 

 

vC GHG 
emissions 
from 
producing a 
charger 

kgCO2e 753.6 0.5024cC  Based on charger 
production cost 

values, 
tCO2e/USD2002 
multiplier from 

EIO-LCA Sector 
#33441A: 
Electronic 

capacitor, resistor, 
coil, transformer, 
and other inductor 

manufacturing 
(Carnegie Mellon 
University Green 
Design Institute, 

2008), and 
USD2010 to 

USD2002 
conversion factor 
from the CPI (US 

DOL, 2010) 

vELEC GHG 
emissions 
from 
electricity 
generation 

kgCO2e / 
kWh 

0.752 0.066 – 0.9 (Shiau et al., 
2010) 

U.S. average 
electric grid 

emissions in 2005 

vG GHG 
emissions 
from 
gasoline 

kgCO2e/ 
gal 

11.34  (Shiau et al., 
2010) 
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Nota- 
tion 

Description Units Base 
Value 

Range Ref. Notes 

vVj GHG 
emissions 
from vehicle 
production 
excluding 
batteries 

kgCO2e CV: 
6026; 
HEV: 
6437; 

PHEV: 
6566; 
BEV 
6044 

0.4645cV  Based on vehicle 
production cost 

values, 
tCO2e/USD2002 
multiplier from 

EIO-LCA Sector 
#336111: 

Automobile 
Manufacturing 

(Carnegie Mellon 
University Green 
Design Institute, 

2008), and 
USD2010 to 

USD2002 
conversion 

factor from the CPI 
(US DOL, 2010) 

βabc PSAT 
metamodel 
coefficients 

- See 
Table 7.5 

 (ANL, 2008) Coefficients fit to 
PSAT data points 

ηC Vehicle 
charging 
efficiency 

% 88%  (Shiau et al., 
2010) 

 

κBj 
 

Energy 
capacity of 
one li-ion 
battery cell 

∀ j∈JPHEV ∪ 
JBEV 

kWh/cell 0.0216  (Shiau et al., 
2010) 

 

Energy 
capacity of 
one NiMH 
battery cell 

∀ j∈JHEV 

kWh/cell 0.00774  (Shiau et al., 
2010) 

 

ρ Carbon tax $/ kgCO2e 0 0, 0.02 
($20/tCO2e), 

0.1 
($100/tCO2e) 

(Interagency 
Working 
Group on 

Social Cost 
of Carbon, 

United States 
Government, 
2010; IPCC, 

2007) 

 

σ Random 
variable 
representing 
driving 
distance on a 
particular 
day 

mi./day     
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Table 7.4 Probability distribution of annual VMT over the fleet, from lookup table for FS(S). 

Bin Annual VMT 

Range (mi./yr) 

% of Vehicles Cumulative 

% of Vehicles 

1 0 – 3,650 6.29 6.29 

2 3,650 – 7,300 15.5 21.8 

3 7,300 – 10,950 19.1 40.9 

4 10,950 – 14,600 18.5 59.4 

5 14,600 – 18,250 14.4 73.8 

6 18,250 – 21,900 9.48 83.3 

7 21,900 – 25,550 5.85 89.1 

8 25,550 – 29,200 3.62 92.8 

9 29,200 – 32,850 2.25 95.0 

10 32,850 – 36,500 1.45 96.5 

11 36,500 – 40,150 0.98 97.4 

12 40,150 – 43,800 0.70 98.1 

13 43,800 – 47,450 0.50 98.6 

14 47,450 – 51,100 0.36 99.0 

15 51,100 – 54,750 0.27 99.3 

16 54,750 – 58,400 0.20 99.5 

17 58,400 – 62,050 0.17 99.6 

18 62,050 – 65,700 0.14 99.8 

19 65,700 – 69,350 0.12 99.9 

20 69,350 – 73,000 0.09 100 

 

larger battery packs to $567/kWh for smaller battery packs. The natural log form of this 

function was chosen for its fit through individual battery prices provided in the Argonne 

report for batteries of several different energy capacities, as illustrated in Figure 7.1. 

The electricity price pELEC is $0.12 per kWh, the 2009 average U.S. electricity cost to 

the transportation and residential sectors. The nominal electricity price growth rate, rNE, 

including inflation and other factors, is 1.9%. For simplicity, we ignore differences in 

electricity price between nighttime, residential charging and daytime, workplace 

charging. We use a nominal discount rate of rN = 5% in the base case. Although the cost 

function includes a carbon tax ρ, the base case value is $0 per metric ton CO2 equivalent 

(tCO2e). Other values are considered in the sensitivity analysis. 
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Figure 7.1 Battery cost functions for base case (LR2015) and sensitivity analysis cases, constructed to fit 
data reported by Plotkin and Singh (2009) 

Vehicle production GHGs vVj excluding engine, motor, and batteries are 6026 

kgCO2e for a CV, 6437 kgCO2e for an HEV, 6566 kgCO2e for a PHEV, and 6044 

kgCO2e for an EV. These values are based on the vehicles production cost values cVj for 

each vehicle type, adjusted to 2002 dollars using the Consumer Price Index (CPI) (US 

DOL, 2010), and then converted to GHG emissions (including supply chain) using a 

metric tons CO2 equivalent (tCO2e) per USD2002 multiplier from the EIO-LCA 2002 

U.S. producer price model, Sector #336111: Automobile Manufacturing (Carnegie 

Mellon University Green Design Institute, 2008). GHG emissions from production of the 

engine, vE(xEj) = avEcE(xEj) where avE = 0.6245, are calculated in the same manner from 

the engine cost equation, using Sector #336300: Motor vehicle parts manufacturing, 

which includes NAICS sector 33631: Motor Vehicle Gasoline Engine and Engine Parts 

Manufacturing. GHG emissions from production of the motor, vM(xMj) = avMcM(xM) 

where avM = 0.5445, are calculated in the same manner from the motor cost equation, 

using Sector #335312: Motor and generator manufacturing. Charger production GHG 
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emissions vC = 753.6 kgCO2e per charger are calculated in the same manner from the 

base case charger production cost and Sector #33441A: Electronic capacitor, resistor, 

coil, transformer, and other inductor manufacturing. 

Battery production GHG emissions vBj are 120 kgCO2e/kWh for li-ion battery 

production ∀ j ∈ JPHEV ∪ JBEV and 230 kgCO2e/kWh from NiMH battery production ∀ j 

∈ JHEV (Samaras and Meisterling, 2008; Shiau et al., 2010). Gasoline production and 

combustion GHG emissions vG are 11.34 kgCO2e/gal (Shiau et al., 2010) and GHG 

emissions from electricity production in the base case are 0.752 kgCO2e/kWh, 

representing the average U.S. grid mix in the year 2005 and including transmission and 

distribution losses (Shiau et al., 2010). 

Charger production emissions, vC = 753.6 kgCO2e, are found by using the EIO-LCA 

2002 U.S. producer price model (Carnegie Mellon University Green Design Institute, 

2008) and assuming that a charger is reasonably represented by $1500 (2010 dollars, 

adjust to 2002 dollars for use in the 2002 EIO-LCA model using the CPI (US DOL, 

2010)) of purchases from Sector #33441A: Electronic capacitor, resistor, coil, 

transformer, and other inductor manufacturing. 

7.1.1.3 Vehicle Performance Models 

To estimate the electrical and gasoline efficiencies and the acceleration performances 

and of vehicle j defined by design variables xj, we utilize Argonne National Laboratory’s 

Powertrain System Analysis Toolkit (PSAT) vehicle simulation software (ANL, 2008) 

and construct a metamodel fit to a discrete set of simulation points in the design space xj 

to find the U.S. Environmental Protection Agency (EPA) 5-cycle combined highway and 

city efficiency and 0-60 mph acceleration time for a range of vehicle designs. 
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We use the 2004 Toyota Prius model (with a power-split or series-parallel HEV 

powertrain) as the baseline vehicle and our HEV model. This configuration file is 

available as “gui_split_compact_MY04_US_prius_HEV_in” in PSAT V6.2. 

We base our CV model on a scaled Honda Civic powertrain (engine, gearbox, and 

final drive), adjusted to have a Toyota Prius vehicle body for fair comparison to the HEV, 

PHEV, and BEV (Shiau et al., 2010). The powertrain configuration used in PSAT is 

based on the “gui_conv_compact_civic_85kW_in.m” configuration file available in 

PSAT V6.2. To make this vehicle more comparable to the HEV model, the wheel model 

was changed to wh_0291_P175_65_R14, the lead-acid battery model was changed to 

match the one in the HEV model, and the electrical accessory load was changed to 800 

kW. Finally, the engine size was optimized for best 5-cycle combined fuel economy, 

resulting in engine peak power of 126 kW. One kilogram of structural weight is added to 

the vehicle per kilogram of additional engine weight (Shiau et al., 2009). 

We construct our PHEV model based on the HEV model by substituting Li-ion 

batteries (ess_li_6_75_saft) for the Prius NiMH batteries, increasing the pack size, and 

increasing the SOC range for regenerative braking. One kilogram of structural weight is 

added to the vehicle per kilogram of battery, engine, and motor to support the weight of 

those components (Shiau et al., 2009). Finally, since the battery size range includes 

batteries significantly larger than the HEV battery, we adjust the control strategy to take 

better advantage of these larger batteries by increasing the regenerative braking on-off 

points to 100% of the battery SOC. We also turn on the EV mode flag in PSAT for the 

CD mode efficiency runs. We focus on the all-electric control strategy (in which PHEVs 

travel the entire AER distance in charge depleting mode without using gasoline), and we 
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ignore PHEVs with blended control strategies. For this reason, the vehicles that we refer 

to here as PHEVs might sometimes be referred to as extended range electric vehicles 

(EREVs) (although that term can also have powertrain implications).  

Our BEV model is based on a generic BEV drive train (gui_elec_midsize_in.m in 

PSAT V6.2) modified to use the same body (veh_824_225_026_US04prius), final drive 

(fd_4113_prius), motor (the same by default), electrical accessory load (800 kw), and 

batteries (lithium ion, ess_li_6_75_saft; also same lead acid battery) as the PHEV, and 

also with one kilogram of structural weight added to the vehicle per kilogram of battery, 

engine, and motor to support the weight of those components. We ignore the possibility 

of using different battery designs on BEVs vs. PHEVs.  

Since PSAT does not directly simulate the effects of cold starts, ambient temperature, 

or AC loads, the 5-cycle test cannot be simulated directly in PSAT, but only 

approximated. Instead of using PSAT’s built-in approximations for the 5-cycle test, we 

used the EPA’s MPG-based estimation approach (US EPA, 2006) to calculate the 5-cycle 

efficiency from the results of running 2 cycles that PSAT can simulate directly: the Urban 

Dynamometer Driving Schedule (UDDS) driving cycle and the Highway Fuel Economy 

Driving Schedule (HWFET) driving cycle (US EPA, 1996). The 5-cycle testing 

procedures have been developed for CVs, HEVs, PHEVs, and BEVs, but the MPG-based 

approximations have been developed only for CVs and HEVs. This is because they are 

calculated from production vehicles, and no production PHEVs or BEVs were available 

for testing at the time of development. We assume for now that the same approximations 

developed to estimate 5-cycle gasoline efficiency for CVs and HEVs can also be used to 

estimate 5-cycle gasoline and electrical efficiency for PHEVs and BEVs. 
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Following EPA procedures, all gasoline and electricity (measured at the wall) 

consumed during each simulated cycle is accounted for, using a conversion factor of 

33.705 kWh of electricity per gallon of gasoline to calculate the equivalent miles per 

gallon (mpge) (US EPA, 2006). We then use the MPG-based conversions from the EPA 

procedures (US EPA, 2006): 5-cycle city fuel economy = 1 / (0.003259 + 1.18053 / 

UDDS fuel economy) and 5-cycle highway fuel economy = 1 / (0.001376 + 1.3466 / 

HWFET fuel economy). Finally we weight these city and highway fuel economies 

together to find the 5-cycle combined fuel economy (US EPA, 2006): combined fuel 

economy = 1 / ((0.45/ city fuel economy) + (0.55 / highway fuel economy)).  

Because the performance of CVs and HEVs are independent of variations in driving 

patterns (represented by annual VMT S), we identify the optimal designs for these 

vehicles a priori (Shiau et al., 2010). For the CV, xj = [126 kW, 0 kW, 0 cells, 0], ηG(xj) 

= 25.0 mpg and tG(xj) = 11 seconds. For the HEV, xj = [57 kW, 52 kW, 168 cells, 0.8] 

with ηG(xj) = 43.0 mpg, and tG(xj) = 11 seconds. 

For the PHEV and BEV cases, we construct metamodels fit to an array of points 

tested within the bounds of the design space to calculate PHEV CS-mode 0-60 mph 

acceleration time, PHEV CD-mode 0-60 mph acceleration time (sec), PHEV CS-mode 5-

cycle combined efficiency (mpge), PHEV CD-mode 5-cycle efficiency (mi./kWh), BEV 

0-60 mph acceleration time (sec) and BEV 5-cycle efficiency (mi./kWh). We require 

PHEVs to use strict all-electric mode for the efficiency tests, but not for the acceleration 

tests: since the PHEVs are able to meet the acceleration requirements of the UDDS and 

HWFET cycles in all-electric mode, we do not require them to meet the extreme test of 

hitting 0-60 mph in 11 seconds without using the engine. (The only difference between 
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the CS mode and CD mode acceleration time tests for the PHEV is the initial battery 

SOC.) 

Most of the metamodels are cubic, of the form Σa,b,c∈{0,1,2,3}|a+b+c<3 βabc (bExE)a (bMxM)b 

(bBxB)c, where bE = 1/57, bM = 1/52, and bB = 1/1000 are scaling factors. The coefficients 

are fit using least squares regression and are listed in Table 7.5 (for BEVs, the terms 

involving xE drop out). The exceptions to the cubic form are the BEV acceleration time 

metamodel and the PHEV CS mode acceleration metamodel, for which the cubic form 

did not fit well. For these two models, Cornell’s Eureqa Formulize software was used to 

find appropriate functional forms (Schmidt and Lipson, 2012, 2009). These two resulting 

metamodels are, for the PHEV CD mode acceleration time 
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and for the BEV acceleration time 
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The error for all metamodels is within 0.5 seconds, 0.03 mpge, and 0.06 mi./kWh over 

the set of data points used for fitting. To avoid optimization algorithm failures caused by 

function calls to the metamodels returning infinity or negative infinity when the design 

variables were out of range, we modified the functions to avoid extrapolation by 

returning the metamodel value at the nearest valid design variable values. 
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Table 7.5 Metamodel coefficients for PSAT models of PHEV and BEV designs. Coefficient for tE(xj) ∀ 

j∈JPHEV and for tE(xj) ∀ j∈JBEV are instead provided as part of Eq. (7.1) and Eq. (7.2), respectively. 

 ηE(xj) 

∀ j∈JPHEV  

ηG(xj) 

∀ j∈JPHEV 

tE(xj) 

∀ j∈JPHEV 

ηE(xj) 

∀ j∈JBEV 

β300 4.487 5.30 8.54  

β030 1.02 0.274 -1.54 0.0435 

β003 19.3 1.21 -4.60 0.0387 

β210 0.0137 -1.44 -2.52  

β120 -0.189 0.588 -1.99  

β201 -0.0300 -0.312 0.181  

β102 -0.0578 0.599 -2.37  

β021 -1.02 -0.339 -1.04 -0.0465 

β012 -0.0726 -0.0209 4.25 -0.0242 

β111 -0.00816 0.0168 2.17  

β200 -10.7 -11.6 -14.9  

β020 -4.50 -1.65 12.8 -0.299 

β002 -48.1 -3.46 5.26 -0.298 

β110 0.736 0.0855 10.5  

β101 0.482 1.42 -0.589  

β011 4.25 1.35 -6.40 0.870 

β100 5.88 -0.0891 -0.501  

β010 3.77 1.92 -31.6 -2.98 

β001 34.8 -1.07 5.51 -6.53 

β000 97.9 48.3 31.2 105 

 

Figure 7.2 shows the vehicle design metamodel for PHEVs graphically, illustrating 

that it is highly nonlinear. Figure 7.3 similarly shows the vehicle design metamodel for 

BEVs. Although both the PHEV metamodel plots and the BEV metamodel plots show 

fits extrapolated beyond the range of the PSAT data points, in practice this caused issues 

with the optimization formulation because some metamodel function calls with design 

variables outside the permitted range resulted in infinity or negative infinity. As 

previously mentioned, to fix this issue the metamodels were changed to return the result 

at the nearest valid boundary value of any invalid design variable. In Figure 7.2 and  
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Figure 7.2 PHEV design metamodel. Dots indicate PSAT runs and lines indicate metamodel fits. 

Figure 7.3 as shown, this would have the effect of making all lines flat and horizontal 

outside the range of the PSAT data points. 

Based on the metamodel for electrical efficiency ηE(xj) for PHEVs and BEVs, we 

calculate the AER sAER(xj) = ηE(xj)κBjxBjxSWj / ηC, where ηC = 88% is the charging  
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Figure 7.3 BEV design metamodel. Dots indicate PSAT runs and lines indicate metamodel fits. 

efficiency. The AER calculation involves dividing by charging efficiency because the 5-

cycle combined electrical efficiency includes electrical losses in battery charging, which 

should not be included when calculating how many miles the vehicle can drive using the 

energy stored in the battery. The effective AER is the AER multiplied by the number of 

chargers, qCj (i.e. number of charges per day), assuming optimistically that (1) a second 

charge takes place at half of the daily distance traveled, and (2) the battery is always 

charged fully when it is parked either at home (for nighttime charge) or at work (for 

daytime charge). Results of the metamodels for each vehicle type are summarized in 

Table 7.6. 
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Table 7.6 Metamodel results for PHEV and BEV designs (including only PSAT data points, not 

interpolated designs, and including only designs with valid acceleration times) 

Property CV HEV PHEV BEV 

Efficiency 25 

mpg 

43 

mpg 

CD mode: 102-109 mpge 

(3.03-3.22 mi./kWh, 0.31-0.33 

kWh/mi.) 

CS mode: 40.3-46.1 mpge 

55-94 mpge (1.6-2.8 

mi./kWh, 0.36-0.61 

kWh/mi.) 

0-60 mph 

Acceleration 

Time (sec) 

11 11 CD mode: 6.5-11 

CS mode: 6.9-11 

6-11 

AER (mi.)   3.1-62.8 1.4-256 

7.1.1.3.1 BEV and PHEV Metamodels with Improved Efficiency for Sensitivity Analysis 

As shown in Table 7.6, our BEV metamodels is less efficient than our PHEV 

metamodels. In the sensitivity analysis we also consider a case where the BEV efficiency 

is comparable to PHEV efficiency. We find this metamodels by using the PSAT PHEV 

model in CD mode to model the BEV. This way the efficiency is comparable for vehicles 

with the same battery size and range. For this version of the metamodels we also cap the 

5-cycle adjustments at a 30% efficiency reduction, because that corresponds to the level 

for the most efficient vehicle that was tested when the equations were developed and the 

EPA uses that calculation method. As a result both the PHEV CD mode metamodels and 

the BEV metamodels are more efficient than the previous PHEV CD mode metamodels. 

The new range of PHEV efficiency becomes 3.5-3.8 mi/kWh (instead of 3.03-3.22 

mi/kWh as shown in Table 7.6) and the new range of BEV efficiency becomes 2.6-3.8 

mi/kWh (instead of 1.6-2.8 mi/kWh as shown in Table 7.6). The updated efficiency 

metamodels coefficients are shown in Table 7.7. Figure 7.4 and Figure 7.5 show the 

metamodels graphically. 
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Table 7.7 Updated efficiency metamodel coefficients for PSAT models of PHEV and BEV designs 

 ηE(xj) 

∀ j∈JPHEV  

ηG(xj) 

∀ j∈JPHEV 

ηE(xj) 

∀ j∈JBEV 

β300 4.487 5.30  

β030 1.02 0.274 0.0435 

β003 19.3 1.21 0.0387 

β210 0.0137 -1.44  

β120 -0.189 0.588  

β201 -0.0300 -0.312  

β102 -0.0578 0.599  

β021 -1.02 -0.339 -0.0465 

β012 -0.0726 -0.0209 -0.0242 

β111 -0.00816 0.0168  

β200 -10.7 -11.6  

β020 -4.50 -1.65 -0.299 

β002 -48.1 -3.46 -0.298 

β110 0.736 0.0855  

β101 0.482 1.42  

β011 4.25 1.35 0.870 

β100 5.88 -0.0891  

β010 3.77 1.92 -2.98 

β001 34.8 -1.07 -6.53 

β000 97.9 48.3 105 
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Figure 7.4 PHEV design metamodels with improved efficiency from capping 5-cycle adjustment at 30% 
reduction. Dots indicate PSAT runs and lines indicate metamodel fits. 
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Figure 7.5 BEV design metamodels with improved efficiency from capping 5-cycle adjustment at 30% 
reduction and from using the PSAT PHEV model in CD mode to represent the BEV. Dots indicate PSAT 
runs and lines indicate metamodel fits. 

7.1.1.4 Driving Patterns 

Based in part on the summary statistics shown in Table 7.8, we determined that the 

Minnesota data (Sierra Research, 2005) is a sufficiently representative source of driving 

distance variability across days. 
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Table 7.8 Comparison of summary statistics for NHTS (US DOT, 2003) and Minnesota (Sierra Research, 

2005) driving data. Zeros refer to days on which a vehicle did not drive (i.e. drove zero miles). 

Data Source for 

Daily VMT 

Mean Daily 

VMT (excl. 

zeros) 

Median Daily 

VMT (excl. 

zeros) 

Std. Dev. 

VMT (excl. 

zeros) 

% 

Zeros 

Annual VMT per 

Vehicle 

(calculated from 

mean and % of 

zeros) 

NHTS 2001 total 

survey day VMT 

33.0 22.0 33.4 31.8% 8,200 

NHTS 2001 average 

daily odometer VMT 

33.3 27.8 27.1 3.0% 11,800 

Minnesota total VMT 

for each driving day 

47.0 35.8 49.3 34.5% 11,300 

Minnesota average 

daily VMT for each 

vehicle 

32.5 30.5 14.2 0% 11,900 

7.1.1.5 Sensitivity Analysis 

As discussed in Section 2.2.1.1, base case cost estimates for vehicles and 

components, including batteries, are taken from Plotkin and Singh (2009) literature 

review estimates of costs in the year 2015. Sensitivity analysis vehicle and battery cost 

values are the literature review estimates for 2045 (LR2045) and Department of Energy 

program goals for 2030 (PG2030) (Plotkin and Singh, 2009). For each of these cases, the 

report provides functions for engine and motor costs as a function of peak power. To 

estimate battery costs as a smooth function of battery pack size in each sensitivity case, 

we fit a natural log function to the $/kWh estimates cited in the report, as presented in 

Section 2.2.1.1. The battery cost function for the LR2045 case results in a range of costs 

from $187/kWh for larger battery packs to $351/kWh for smaller battery packs, and the 

PG2030 case has costs from $134/kWh for larger battery packs to $176/kWh for smaller 

battery packs. Detailed coefficient values for the sensitivity analysis cost cases are 

provided in the Supplemental Information. In cases where GHG emissions are calculated 

based on cost using EIO-LCA factors, we used the base case cost to calculate GHG 
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emissions. This means that the EIO-LCA-based GHG emissions remain constant when 

the cost parameters change, though they are still a function of component size. Charger 

costs are assumed $1500 for Level 2 charging equipment and installation, with sensitivity 

cases ranging from $0 to $2500. The $0 charger cost case was chosen to represent an 

analysis in which charger costs are disregarded. Electricity prices are $0.12 ($0.06 – 

$0.30) and gasoline prices are $2.22 ($1.50 – $8.00), with the base case representing 

average prices in 2009. Greenhouse gas emissions from electricity production for vehicle 

charging are 0.752 (0.066 – 0.9) kgCO2e/kWh, with the base case representing an 

average U.S. electricity mix in 2005. Sensitivity analysis cases are chosen to represent 

mid-range numbers from the literature for current-technology plants of four types 

(nuclear, natural gas, IGCC-CCS, and coal). Although IGCC-CCS may not be viable in 

the near future due to costs and nuclear may not be used for vehicles due to not being 

dispatchable, these plants are chosen as examples that bound the likely range of GHG 

emissions levels from the power grid. For example, the nuclear case could also represent 

power from hydro, wind, or other low-emissions sources. Electricity used in the rest of 

the supply chain does not vary in the sensitivity analysis. Nominal discount rate is 5% 

(0% – 5% – 10%) and inflation is included in nominal price growth rates for electricity 

and gasoline. 

In addition to cases with one-way and multi-way sensitivity analysis on the above 

parameters, we also ran cases that combine the two objectives (cost and GHGs) by 

including a carbon tax. Carbon price is $0 ($0 – $20 – $100)/tCO2e. The $20/tCO2e and 

$100/tCO2e levels are chosen based on the IPCC fourth assessment on social cost of 

carbon (Interagency Working Group on Social Cost of Carbon, United States 
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Government, 2010; IPCC, 2007). The effects of the carbon tax on the electric grid and 

other parts of the economy besides vehicle design, vehicle allocation, and charging 

infrastructure allocation are exogenous to this model. 

The reference scenario representing the current U.S. car fleet most closely is the case 

in which CVs are allocated universally, with all parameters at their base case values. 

However, it is worth noting that the CV was designed to be comparable in performance 

and design to the reference HEV, the 2004 Toyota Prius, and not to represent the range of 

cars, trucks, and SUVs in today’s market. We have also included a sensitivity analysis 

case in which the CV achieves better fuel economy. 

7.1.2 Results 

For each scenario, Table 7.9 and Table 7.10 report equivalent annual life cycle cost 

per vehicle, annual life cycle GHG emissions per vehicle, annual gasoline consumption 

per vehicle, annual electricity consumption per vehicle, and the percentage of vehicle 

miles traveled that are powered by electricity at the optimal solution for that scenario. 

Finally the composition of the fleet is reported as percentage of the fleet that are CVs, 

HEVs, PHEVs with home charging only, PHEVs with home and work charging, BEVs 

with home charging only, and BEVs with home and workplace charging. 

The GHG-minimized results in Table 7.9 and Figure 7.6 have implications for the 

impact of grid decarbonization and workplace charging availability on the GHG-optimal 

fleet. Scenarios 3, 1, and 4-6 as well as scenarios 28, 24, and 29-31 can be compared in 

increasing order of grid decarbonization. The first set includes both home and workplace 

charging availability, and the second set has only home charging available. It turns out 

that under the current U.S. average grid mix (Scenarios 1 and 24), workplace charging is  
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Figure 7.6 Optimal vehicle allocations for scenarios with the objective of minimizing annualized life cycle 
GHG emissions. “P” indicates PHEV and “B” indicates BEV. Numbers after vehicle abbreviations indicate 
the AER in miles, and “(2)” indicates with workplace charging in addition to home charging. Asterisks 
indicate vehicle designs with battery sizes (and AERs) at the bounds of our model.  

not allocated even when it is available. Under decarbonized grid scenarios, greater 

penetration of vehicles with larger battery packs are observed, including BEVs, and GHG 

emissions are reduced substantially; however, costs increase. In these cases, all PHEVs 

utilize workplace charging, providing (optimistically) up to 21% additional GHG 

reductions compared to having only home charging, as shown in Table 7.9. Availability 

of workplace charging in the decarbonized grid scenarios 4-6 affects the vehicle design 

by allowing some PHEVs to have smaller AERs and by reducing the allocation of larger 

capacity BEVs in favor of smaller capacity BEVs and more large capacity PHEVs. 
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Table 7.9 GHG-minimized results. Dollars are 2010 dollars. 

     
Allocations in Fleet of Each Vehicle 

and Charging Type 

Scenario 
Cost 

($/veh-
yr) 

GHGs 
(tCO2e/ 
veh-yr) 

Fuel 
(gal/veh-yr, 
kWh/veh-

yr) 

% of 
VMT 
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1: Base case, U.S. 
average grid mix 
0.752 kgCO2e/ 

kWh 

3350 3.95 186, 1310 33%   100%    

23: Home charging 
only 

3350 3.95 186, 1310 33%   100%    

24: CVs only 3310 6.44 511, 0 0% 100%      

25: HEVs only 2960 4.08 297, 0 0%  100%     

26: PHEVs only 3350 3.95 186, 1310 33%   100%    

2: BEVs only, mean 

range constraint 
5600 5.36 0, 5410 100%     100%  

3: Coal electricity 
0.9 kgCO2e/kWh 

3400 4.01 265, 180 4%   100%    

4: Natural gas 
electricity 
0.47 kgCO2e/kWh 

4030 3.15 51, 3260 82%    100%   

5: IGCC-CCS 
electricity 
0.252 kgCO2e/kWh 

4050 2.44 50, 3270 82%    100%   

27: Nuclear 
electricity 
0.066 kgCO2e/kWh 

4130 1.83 49, 3350 83%    84% 16%  

28: Coal electricity, 
home charging only 
0.9 kgCO2e/kWh 

3400 4.01 265, 180 4%   100%    

29: Natural gas 
electricity, home 
charging only 
0.47 kgCO2e/kWh 

3960 3.38 110, 2430 61%   100%    

30: IGCC-CCS 
electricity, home 
charging only 
0.252 kgCO2e/kWh 

3970 2.84 110, 2440 61%   100%    

31: Nuclear 
electricity, home 
charging only 
0.066 kgCO2e/kWh 

5180 2.22 67, 3890 76%   32%  68%  
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Table 7.10 Cost-minimized results. Dollars are 2010 dollars. 

     
Allocations in Fleet of Each Vehicle 

and Charging Type 

Scenario 
Cost 

($/veh-
yr) 

GHGs 
(tCO2e/ 
veh-yr) 

Fuel 
(gal/veh-yr, 
kWh/veh-

yr) 

% of 
VMT 
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d 
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6: Base case 2960 4.08 297, 0 0%  100%     

32: Home charging 
only 

2960 4.08 297, 0 0%  100%     

7: PHEVs only 3240 4.19 246, 780 19%   100%    

33: One PHEV only, 
home charging only or 
home & work charging 

3240 4.19 246, 770 19%   100%    

8: BEVs only, mean 

range constraint 

5520 5.36 0, 5420 100%     100%  

34: One BEV only, 
home charging only or 
home & work 
charging, mean range 

constraint 

9690 7.75 0, 7370 100%     100%  

35:Gas price 
$3/gal+5.2%/yr 

3260 4.08 297, 0 0%  100%     

9. Gas price 
$3.25/gal+5.2%/yr 

3350 4.08 280, 220 6%  84%  16%   

36: Gas price 
$4/gal+5.2%/yr 

3610 4.06 250, 620 15%  65%  35%   

37: Gas price 
$5/gal+5.2%/yr 

3870 4.01 163, 1740 44%  17%  83%   

10: Gas price 
$6/gal+5.2%/yr 

4040 3.99 123, 2250 57%  5%  95%   

11: Gas price 
$7/gal+5.2%/yr 

4180 4.00 99, 2570 65%  1%  99%   

38: Gas price 
$8/gal+5.2%/yr 

4290 4.01 84, 2780 70%    100%   

39: Low vehicle and 
battery costs (LR2045) 

2970 4.08 297, 0 0%  100%     

12: Low vehicle and 
battery costs (PG2030) 

2870 4.07 283, 190 5%  84% 16%    

13: Low charger cost 
($500) 

2960 4.08 297, 0 0%  100%     

14: Lower charger cost 
($475) 

2960 4.08 283, 190 5%  84%  16%   

15: Charger cost 
disregarded 

2940 4.09 260, 510 12%  59%  41%   
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Allocations in Fleet of Each Vehicle 

and Charging Type 

Scenario 
Cost 

($/veh-
yr) 

GHGs 
(tCO2e/ 
veh-yr) 

Fuel 
(gal/veh-

yr, 
kWh/veh-

yr) 

% of 
VMT 

Electrifie
d 
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40: High electricity cost 2960 4.08 297, 0 0%  100%     

41: Low electricity cost 2960 4.08 297, 0 0%  100%     

16: High discount rate 
rN = 10% 

3550 4.12 301, 0 0% 6% 94%     

17: No discount rate rN 

= 0% 
2420 4.07 274, 310 8%  78%  22%   

18: High CV efficiency 
32 mpg 

2950 4.10 299, 0 0% 6% 94%     

42: HEV only with 
$3.25/gal+5.2%/yr gas 

3360 4.08 297, 0 0%  100%     

43: HEV only with 
$6/gal+5.2%/yr gas 

4460 4.08 297, 0 0%  100%     

44: Gas price 
$6/gal+5.2%/yr, home 
charging only 

4230 3.98 194, 1270 32%  11% 89%    

19: Low vehicle & 
battery costs (PG2030), 
gas price 
$4.5/gal+5.2%/yr 

3340 4.05 68, 3030 76%  1%  92% 6%  

45: Low vehicle & 
battery costs (PG2030), 
gas price 
$6/gal+5.2%/yr 

3460 4.07 53, 3230 81%   6% 94%   

46: Gas price 
$6/gal+5.2%/yr, 
Nuclear electricity 
0.066 kgCO2e/kWh 

4040 2.45 123, 2250 57%  5%  95%   

47: Low veh. & batt. 
costs (PG2030), gas 
$4/gal+5.2%/yr, charger 
cost disregarded ($0) 

3100 4.08 52, 3250 82%    94% 6%  

20: CO2 tax of 
$100/tCO2e 

3510 4.08 297, 0 0%  100%      

48: CO2 tax of 
$20/tCO2e, gas price 
$6/gal+5.2%/yr 

4050 
(4140 w/ 

tax) 

3.99 122, 2260 57%  5%  95%   

49: CO2 tax of 
$100/tCO2e, gas 
$6/gal+5.2%/yr 

 

4090 
(4530 w/ 

tax) 

3.99 117, 2320 59%  4%  96%   
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Allocations in Fleet of Each Vehicle 

and Charging Type 

Scenario 
Cost 

($/veh-
yr) 

GHGs 
(tCO2e/ 
veh-yr) 

Fuel 
(gal/veh-yr, 
kWh/veh-

yr) 

% of 
VMT 

Electrified 
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21: CO2 tax of 
$20/tCO2e, Nuclear 
electricity 
0.066 kgCO2e/kWh 

3070 4.08 297, 0 0%  100%     

22: CO2 tax of 
$100/tCO2e, Nuclear 
electricity 
0.066 kgCO2e/kWh 

3480 
(3510 
w/ tax) 

3.92 280, 220 6%  84%  16%   

50: CO2 tax of 
$20/tCO2e, gas price 
$6/gal+5.2%/yr, 
Nuclear electricity 
0.066 kgCO2e/kWh 

4050 
(4100 
w/ tax) 

2.39 116, 2340 59%  4%  96%   

51: CO2 tax of 
$100/tCO2e, gas 
$6/gal+5.2%/yr, 
Nuclear electricity 
0.066 kgCO2e/kWh 

4080 
(4340 
w/ tax) 

2.27 102, 2520 64%  2%  98%   

52: CO2 tax of 
$100/tCO2e, gas 
$6/gal+5.2%/yr, 
Nuclear electricity, 
PG2045 veh. & batt. 
costs 

3460 
(3700 
w/ tax) 

1.84 51, 3250 82%   6% 94%   

 

These results are calculated under the optimistic assumption that workplace charging 

occurs at the halfway point of daily distance for each vehicle. Under more realistic 

assumptions, the benefit of workplace charging would be lower, suggesting that 

availability of dedicated workplace charging is not a significant factor in reducing overall 

life cycle GHG emissions unless combined with significant levels of grid 

decarbonization. 

In the GHG-minimized nuclear electricity cases (27 and 31 in Table 7.9), we might 

expect BEVs to dominate the solutions. However, there are still a significant number of 

PHEVs appearing. No BEVs are allocated for vehicles exceeding 18,250 miles per year, 
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except when BEVs are required. In order to show a case for comparison purposes that has 

all BEVs, we had to relax the range constraint to the mean daily driving distance. The 

base case range constraint of 95th percentile longest daily driving distances means that for 

vehicles exceeding about 27,000 miles per year, none of the BEV design in scope are 

sufficient. Even for vehicle below that annual AER, the range constraint is always active 

and the large battery packs required to meet the range constraint make the BEVs emit 

more life cycle GHGs than PHEVs for many drivers. Note that all PHEVs and BEVs 

except the PHEV3s in cases 3 and 28 have the maximum allowed battery swing window 

of 80%. 

Table 7.11 shows the results for the sensitivity analysis cases with improved PHEV 

and BEV efficiency, shown in the same style as Table 7.9 and Table 7.10. Allocations for 

each case may not sum to exactly 100% due to rounding. 

Table 7.11 Results for cases with improved PHEV and BEV efficiency. Allocation percentages may not 
add to 100% due to rounding. 

   Allocations in Fleet of Each Vehicle and Charging Type 

Scenario 
Cost 

($/veh-yr) 

GHGs 
(tCO2e/ 
veh-yr) 
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Min GHGs, improved 
PHEV and BEV efficiency, 
U.S. average grid mix 
0.752 kgCO2e/ 

kWh 

3670 3.66    PHEV 51: 78% BEV 67: 6% 
BEV 93: 16% 

 

Min cost, improved PHEV 
and BEV efficiency 

2960 4.08  100%     

 

From the cost-minimization results shown in Figure 7.7 and Table 7.10, especially 

scenarios 7, 10, 13-15, 17, 19, 21-23, 32, 35, and 39-41, we see that HEVs are an optimal 

or near-optimal solution for minimizing cost across many scenarios, including our 



 

174 

sensitivity analysis cases with low or base case gas prices, high discount rates, high 

charger costs, and reduced vehicle and battery prices to the LR2045 levels. PHEVs 

appear in the no discount rate case (18) and the no charger cost case (16), but neither of 

these is a real-world case. A discount rate of 5% and a charger cost of at least $500 

remove PHEVs from the cost-optimal solution. 

The cost-minimization results in Figure 7.7 indicate that there are several sensitivity 

analysis cases that cause plug-in vehicles (PEVs, including PHEVs and BEVs) to enter 

the cost-optimal fleet. The sensitivity analysis cases where PHEVs enter the cost-optimal 

fleet include scenario 13, in which vehicle and battery costs are at DOE program goal 

2030 level. Battery costs in this scenario are $134-176/kWh. Another scenario in which 

PEVs enter the cost-optimized fleet is scenario 10, when gas prices reach $3.25/gal (with 

5.2% growth rate) ($3/gal is not sufficient). At this gas price, Table 7.10 shows that 16% 

of vehicles are PHEVs with home and workplace charging, and Figure 7.7 shows that 

they are PHEV19s allocated to the range of 3650-7300 miles per year. At this point when 

PHEVs are just entering the cost-optimal fleet, they are very similar in cost to allocating 

an HEV to the entire fleet. The cost benefits of PHEVs increase as the gas price moves 

further from this critical point, as shown by comparing scenarios 10 to 42 and 11 to 43 in 

Table 7.10. PHEVs appear in the cost-minimized solution when charger costs drop below 

$500, as previously mentioned, and when the nominal discount rate is 0%. 

Figure 7.7 also reports several sensitivity analysis cases in which PEVs dominate the 

cost-optimized fleet. These include when gas prices reach $7/gal (with 5.2% growth rate) 

(scenario  
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Figure 7.7 Optimal vehicle allocations for scenarios with the objective of minimizing equivalent 
annualized life cycle cost. “C” indicated CV, “H” indicated HEV, “P” indicates PHEV, and “B” indicates 
BEV. Numbers after vehicle abbreviations indicate the AER in miles, and “(2)” indicates with workplace 
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charging in addition to home charging. Asterisks indicate vehicle designs with battery sizes (and AERs) at 
the bounds of our model. 

12, in which PHEVs comprise 99% of the fleet), when low vehicle and battery costs 

(PG2030 levels) are combined with gas at $4.50/gal (with 5.2% growth rate) (scenario 

20, in which PHEVs comprise 92% of the fleet and BEVs 6%), and when CO2 taxes of 

$100/tCO2e are combined with $6/gal gas (with 5.2% growth rate) (scenario 49, in which 

PEVs comprise 96% of the fleet). In scenarios 49-52, although the CO2 tax is present, the 

gas price is a more significant factor, since the $6/gal gas price without the CO2 tax 

already causes 95% of the fleet to shift to PHEVs, as shown in scenario 11. The 

decarbonized grid in scenario 51 has very little impact compared to scenario 49, since its 

only impact on cost is through the CO2 tax. Thus we can conclude that high gas prices 

and low vehicle and battery costs are the main drivers for PHEVs to enter and dominate 

the cost-optimized fleet. 

Figure 7.8 and Figure 7.9 display the results for the GHG-minimized base case and 

the cost-minimized base case, respectively, with all vehicle types shown, in the style of 

Figure 2.. Note that since only some of the vehicles were allocated, the ones not allocated 

may not meet the design and allocation constraints. 
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Figure 7.8 Vehicle objective function curves for all 10 combinations of vehicle and charging infrastructure 
for the base case for minimum GHG emissions. “C” indicated CV, “H” indicated HEV, “P” indicates 
PHEV, and “B” indicates BEV. Numbers after vehicle abbreviations indicate the AER in miles, and “(2)” 
indicates with workplace charging in addition to home charging. Note that since BEVs were not allocated 
in the optimal solution, these BEV designs may not be feasible for allocation to any VMT bin. 

 
Figure 7.9 Vehicle objective function curves for all 10 combinations of vehicle and charging infrastructure 
for the base case for minimum cost. “C” indicated CV, “H” indicated HEV, “P” indicates PHEV, and “B” 
indicates BEV. Numbers after vehicle abbreviations indicate the AER in miles, and “(2)” indicates with 
workplace charging in addition to home charging. Note that since BEVs were not allocated in the optimal 
solution, these BEV designs may not be feasible for allocation to any VMT bin. 
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7.2 Appendix B: Supplemental Information for U.S. Residential Charging Potential 
for PEVs 

7.2.1 Details of Major Variables 

Table 7.12 lists the major variables we take from RECS 2009 (US EIA, 2011d) and 

AHS 2009 (US Census Bureau, 2009) along with details on how the analysis is divided 

into bins for each variable and what sensitivity analysis is performed on each variable. 

Table 7.12 Variables with their sources, binning method details, and sensitivity analysis details. “No” for 
binning method indicates that this variable was not used to match up the two data sets, in some cases 
because it appeared in only one of the data sets. 

Variable Source Bins Sensitivity 
Analysis 

Notes 

Housing 
type 

AHS 2009, 
RECS 2009 

Yes, 4 bins: 
Detached 
home, 
attached 
home, 
apartment, 
and mobile 
home 

MI (multiple 
imputation) 
accounts for the 
(very small) 
uncertainty from 
missing data in 
AHS (see Figure 
7.14) 

 

Density 
(urban vs. 
rural) 

AHS 2009, 
RECS 2009 

Yes, 2 bins: 
Urban and 
rural 

MI accounts for 
the (very small) 
uncertainty from 
missing data in 
AHS (see Figure 
7.16) 

The urban/rural split in AHS 
and RECS is not the same, 
and uncertainty does not 
explain the difference. We are 
not sure of the reason for this 
inconsistency (see Figure 
7.17). Additional density 
breakdowns are available in 
each data set but the 
definitions do not match up 
enough for more detailed bin 
designations. When coarser 
bins are used, density is 
disregarded. 

Occupancy 
status 
(owned vs. 
rented) 

AHS 2009, 
RECS 2009 

Yes, 2 bins: 
owned, or 
rented or 
occupied 
without rent 

MI accounts for 
uncertainty from 
missing data (see 
Figure 7.15) 

Occupied without rent has 
been combined with rented 
because it is such a small 
category 
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Variable Source Bins Sensitivity 
Analysis 

Notes 

Parking type AHS 2009, 
RECS 2009 

Yes, 2 bins: 
Garage and 
no garage 

MI accounts for 
uncertainty from 
missing data 
Sensitivity 
analysis accounts 
for further 
assumptions 
(whether 
households with 
garages also have 
additional off-
street parking) 

Since RECS and AHS 
provide different types of 
parking data, the only parking 
data that could be matched 
between the two data sets was 
garage or no garage. 

Number of 
parking 
spaces 

Garage: 
RECS 2009 
Off-street: 
assumption 
Portion that 
are usable: 
assumption 

No MI accounts for 
uncertainty in 
RECS data and in 
matching RECS 
households to 
AHS households 
Sensitivity 
analysis accounts 
for assumptions 
(number of off-
street spots, 
portion of spots 
that are usable) 

 

Number of 
vehicles per 
household 

AHS 2009 No MI accounts for 
uncertainty in 
AHS data and in 
matching AHS 
households to 
RECS 
households 

 

Household 
gross 
income 

AHS 2009, 
RECS 2009 

Yes, 4 bins: 
Less than 
$20,000, 
$20,000 to 
$45,000, 
$45,00 to 
$75,000, 
$75,000 or 
more 

MI accounts for 
uncertainty in 
data 

When coarser bins are used, 
the 2 income bins are above 
or below $45,000 

Number of 
adults age 
20 and older 
per 
household 

AHS 2009, 
RECS 2009 

Yes, 2 bins: 
0-1, 2 or more 

MI accounts for 
uncertainty in 
data 

We use adults 20 years and 
older instead of total number 
of people or total number of 
adults 18 and older because 
this is the most inclusive set 
that can be determined for 
both AHS and RECS. 
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Variable Source Bins Sensitivity 
Analysis 

Notes 

Household 
weighting 
factor 

AHS 2009, 
RECS 2009 

No No  

Number of 
rooms in 
unit 

AHS 2009, 
RECS 2009 

Yes, 2 bins: 
1-5, 6 or more 

MI accounts for 
uncertainty in 
data 
 

When coarser bins are used, 
number of rooms is 
disregarded 

Year unit 
built 

 Yes: 2 bins, 
before or after 
1970 

MI accounts for 
uncertainty in 
data  

When coarser bins are used, 
year built is disregarded 

Outlet near 
parking 

RECS No MI accounts for 
uncertainty in 
RECS data 

 

7.2.2 Details of Results 

Table 7.13 provides details of the results shown in Figure 3.3 of the paper.
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Table 7.13 Results for each calculation in the base case, optimistic case, and pessimistic case, averaged 
across 10 imputations and with standard deviation shown in parentheses. 

National, All Households Base Case Optimistic 
Case 

Pessimistic 
Case 

Households with Dedicated Parking 79% (0.3%) 92% (0.2%) 56% (0.3%) 
Households with Charging 38% (0.3%) 41% (0.2%) 14% (0.2%) 
Vehicles with Dedicated Parking 56% (0.4%) 84% (0.4%) 33% (0.5%) 
Vehicles with Charging 22% (0.2%) 30% (0.4%) 8% (0.2%) 
    
National, Homeowners Only Base Case Optimistic 

Case 
Pessimistic 
Case 

Households with Dedicated Parking 61% (0.2%) 65% (0.2%) 44% (0.3%) 
Households with Charging 34% (0.4%) 36% (0.3%) 12% (0.2%) 
Vehicles with Dedicated Parking 32% (0.2%) 34% (0.2%) 23% (0.2%) 
Vehicles with Charging 19% (0.2%) 20% (0.2%) 7% (0.1%) 
    
Urban, All Households Base Case Optimistic 

Case 
Pessimistic 
Case 

Households with Dedicated Parking 75% (0.3%) 91% (0.2%) 53% (0.5%) 
Households with Charging 35% (0.4%) 38% (0.2%) 13% (0.3%) 
Vehicles with Dedicated Parking 39% (0.4%) 46% (0.3%) 28% (0.4%) 
Vehicles with Charging 21% (0.3%) 23% (0.2%) 8% (0.2%) 
    
Urban, Homeowners Only Base Case Optimistic 

Case 
Pessimistic 
Case 

Households with Dedicated Parking 55% (0.2%) 59% (0.1%) 39% (0.4%) 
Households with Charging 31% (0.4%) 33% (0.3%) 11% (0.2%) 
Vehicles with Dedicated Parking 31% (0.3%) 33% (0.3%) 22% (0.2%) 
Vehicles with Charging 19% (0.3%) 20% (0.2%) 7% (0.2%) 
    
Rural, All Households Base Case Optimistic 

Case 
Pessimistic 
Case 

Households with Dedicated Parking 91% (0.4%) 97% (0.3%) 66% (0.9%) 
Households with Charging 48% (0.8%) 50% (0.5%) 17% (0.8%) 
Vehicles with Dedicated Parking 40% (0.3%) 42% (0.5%) 29% (0.6%) 
Vehicles with Charging 23% (0.3%) 24% (0.2%) 8% (0.4%) 
    
Rural, Homeowners Only Base Case Optimistic 

Case 
Pessimistic 
Case 

Households with Dedicated Parking 80% (0.4%) 83% (0.3%) 58% (1.1%) 
Households with Charging 45% (0.6%) 46% (0.4%) 16% (0.7%) 
Vehicles with Dedicated Parking 35% (0.3%) 37% (0.3%) 26% (0.6%) 
Vehicles with Charging 21% (0.2%) 22% (0.2%) 8% (0.4%) 
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7.2.3 Comparison with Literature Results 

 
Figure 7.10 Comparison of estimates of percentage of U.S. households with an outlet near parking. Error 
bars for Chapter 3 represent range of optimistic and pessimistic cases. Error bars for EIA study (US EIA, 
2012) are based on nonresponses to outlet question in RECS (US EIA, 2011d); error range will be larger 
when uncertainty in vehicle ownership (not available in RECS) is taken into account. Error ranges for 
Axsen and Kurani’s results are not given (Axsen and Kurani, 2012b). 

7.2.4 Comparison of Demographics in AHS and RECS 

Unless otherwise stated, all data have been weighted using the weighting factors 

available in AHS 2009 or RECS 2009 as appropriate. 

 
Figure 7.11 Comparison of number of adults age 20 and older per household in RECS 2009 and AHS 
2009. Occupants aged 18-19 are aggregated with teenagers aged 15-17 in RECS 2009 and so are not be 
included here. 
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Figure 7.12 Income distributions in RECS 2009 and AHS 2009. 

 
Figure 7.13 Comparison of parking type data from RECS 2009 and AHS 2009. 

7.2.5 Occupancy Analysis 

In our analysis, we mention that the owner/renter status of a housing unit can affect 

future PEV charging opportunities due to the principal-agent problem of renters having to 

cooperate with landlords to have charging infrastructure installed (Murtishaw and 

Sathaye, 2006). Here we analyze RECS and AHS data on percentage of owners and 
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Figure 7.14 Comparison of housing type in RECS 2009 and AHS 2009. 

 
Figure 7.15 Comparison of occupancy status in RECS 2009 and AHS 2009. 

Figure 7.16 indicates that the urban and rural designations in RECS and AHS may not 

be entirely consistent, since the uncertainty from missing data (0%) is less than the 

difference between the results from the two data sets (9%). 
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Figure 7.16 Comparison of density in RECS 2009 and AHS 2009. 

 
Figure 7.17 Comparison of occupancy status by density. 
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households having parking. Since the pessimistic case also has a result of 56% for PHP, 

this one-way sensitivity analysis demonstrates that the portion of parking unavailable 

accounts for almost all of that reduction from the base case result. For both of the 

charging cases, the availability of outlets is a more influential parameter than the 

availability of parking. In Figure 7.20, the reason the maximum number of vehicles 

considered does not affect PVC is because in the base case each household has only one 

outlet that can be used by only one vehicle, so it does not matter whether a household has 

multiple vehicles. 

 
Figure 7.18 Sensitivity of portion of households with parking (PHP, Eq. (3.1)) to the assumed portion of 
parking that is unavailable due to being used for storage, with all other parameters at base case values. 
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Figure 7.19 Sensitivity of portion of households with Level 1 vehicle charging (PHC, Eq. (3.2)) to 
assumptions, with all other parameters at base case values. 

 
Figure 7.20 Sensitivity of portion of vehicles with Level 1 charging at home (PVC Eq. (3.4)) to 
assumptions, with all other parameters at base case values. 
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existing Level 2 residential charging opportunities. Axsen and Kurani (Axsen and 

Kurani, 2012a, 2012b) conducted a survey asking about Level 2 outlets available within 

25 feet of vehicle parking, for respondents in the San Diego area only. They found that 

72% of respondents in the San Diego area had Level 1 charging and 35% had Level 2. It 

is not clear whether these outlets are actually available to charge a vehicle in all cases or 

whether in some cases other household appliances might already be using the circuits. 

Since this data set is only for the San Diego area it is likely not representative of the U.S. 

as a whole. 
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7.3 Appendix C: Supplemental Information for Comparative Implications of 
Electric Vehicle Fast Charging and Battery Swapping Stations for Life Cycle GHG 
Emissions and Cost 

7.3.1 Numerical Simulation Code 

MATLAB code for the numerical simulations. Algorithm partly based on examples in 

Baron (2007) and Gross et al. (2008). 

7.3.1.1 Fast Charging 

function [mu,r,rho,L_q,W_q,W,L,W_q_0,d_A] = 

func_numerical_queue_fast_charge(lambda, charging_bays,charge_time) 

 

n_runs=1; % for multiple Monte Carlo runs 

number_of_vehicles=5000; 

mu=1/charge_time; 

r=lambda/mu; 

rho = lambda/(c*mu); % traffic intensity 

if rho>=1 

 disp('Rho must be less than 1 for a steady state solution to 

exist'); 

 L_q=Inf; W_q=Inf; W=Inf; L=Inf; W_q_0=0; d_A=0; return 

end 

 

max_in_charging_bays=zeros([1,n_runs]); 

max_queue_wait=zeros(1,n_runs); 

mean_queue_wait=zeros(1,n_runs); 

mean_charging_time=zeros(1,n_runs); 

median_nonzero_queue_wait=zeros(1,n_runs); 

mean_queue_size=zeros(1,n_runs); 

max_queue_size=zeros(1,n_runs); 

 

for r=1:n_runs 

 veh_id=[1:number_of_vehicles]'; 

 uniform_random_draws_for_interarrival_times=rand(number_of_vehicles,

1); 

 interarrival_times=-log(uniform_random_draws_for_interarrival_times) 

/ lambda; % minutes, random draws from an exponential distributions 

 uniform_random_draws_for_charging_times=rand(number_of_vehicles,1); 

 charging_times=-log(uniform_random_draws_for_charging_times)/mu; 

 arrival_times=zeros(size(veh_id)); 

 queue_wait=zeros(size(veh_id)); 

 start_times=zeros(size(veh_id)); 

 departure_times=zeros(size(veh_id)); 

 bay_available_times=zeros(1,charging_bays); 

 bay_assigned=zeros(size(veh_id)); 

 number_charging_just_before_arrival=zeros(size(veh_id)); 

 number_charging_just_after_arrival=zeros(size(veh_id)); 

 number_in_queue_just_before_arrival=zeros(size(veh_id)); 

 number_in_queue_just_after_arrival=zeros(size(veh_id)); 

 for i=1:number_of_vehicles 

  if i==1 
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   arrival_times(i)=0; 

  else 

   arrival_times(i)=arrival_times(i-1)+interarrival_times(i); 

  end 

  bays_available=sum(bay_available_times<=arrival_times(i)); 

  if bays_available==0 

   [time,bay_index]=min(bay_available_times); 

   bay_assigned(i)=bay_index; 

   start_times(i)=time; 

   queue_wait(i)=start_times(i)-arrival_times(i); 

   departure_times(i)=start_times(i)+charging_times(i); 

   bay_available_times(bay_index)=departure_times(i); 

  else 

   [time,bay_index]=min(bay_available_times); % will return an 

available bay but the time will be either equal to the arrival time 

or in the past 

   bay_assigned(i)=bay_index; 

   start_times(i)=arrival_times(i); 

   queue_wait(i)=0; 

   departure_times(i)=start_times(i)+charging_times(i); 

   bay_available_times(bay_index)=departure_times(i); 

  end 

  number_charging_just_before_arrival(i)=sum(start_times(1:i-

1)<arrival_times(i))-sum(departure_times(1:i-1)<arrival_times(i)); 

  number_charging_just_after_arrival(i) = 

sum(start_times(1:i)<=arrival_times(i))-sum(departure_times(1:i-

1)<=arrival_times(i)); 

  number_in_queue_just_before_arrival(i) = veh_id(i)-1-

sum(start_times(1:i-1)<arrival_times(i)); 

 end 

 mean_queue_wait(r)=mean(queue_wait); 

 mean_charging_time(r)=mean(charging_times); 

 median_nonzero_queue_wait(r)=median(queue_wait(queue_wait>0)); 

 max_queue_wait(r)=max(queue_wait); 

 mean_queue_size(r)=mean_queue_wait(r)*number_of_vehicles/start_times

(number_of_vehicles); 

 max_queue_size(r)=max(max(number_in_queue_just_before_arrival),max(n

umber_in_queue_just_after_arrival)); 

 max_in_charging_bays(r)=max(max(number_charging_just_before_arrival)

,max(number_charging_just_after_arrival)); 

end 

L_q=mean(mean_queue_size); 

W_q=mean(mean_queue_wait); 

W=W_q+charge_time; 

L=L_q+charging_bays; 

W_q_0=sum(queue_wait==0)/(sum(queue_wait~=0)+sum(queue_wait==0)); 

d_A=mean(charging_times)/(charge_time/.75); % note: because charge_time 

is based on 75% of the max 

7.3.1.2 Battery Swapping 

function 

[mu_V,r_V,rho_V,L_q_V,W_q_V,W_V,L_V,W_q_0_V,mu_B,r_B,rho_B,L_q_B,W_q

_B,W_B,L_B,W_q_0_B,d_A] = 

func_numerical_queue_swap(lambda,c_V,c_B,swap_time,charge_time) 
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n_runs=1; % for multiple Monte Carlo runs 

number_of_vehicles=5000; 

mu_V=1/swap_time; % mean swapping rate, veh/min 

r_V=lambda/mu_V; 

rho_V=lambda/(c_V*mu_V); 

if rho_V>=1 

 disp('Rho_V must be less than 1 for a steady state solution to 

exist'); 

 L_q_V=Inf; W_q_V=Inf; W_V=Inf; L_V=Inf; W_q_0_V=0; mu_B=0; r_B=0; 

rho_B=0; L_q_B=Inf; W_q_B=Inf; W_B=Inf; L_B=Inf; W_q_0_B=0; d_A=0; 

return 

end 

mu_B=1/charge_time; % mean charging rate, veh/min 

r_B=lambda/mu_B; 

rho_B=lambda/(c_B*mu_B); 

if rho_B>=1 

 disp('Rho_B must be less than 1 for a steady state solution to 

exist'); 

 L_q_V=Inf; W_q_V=Inf; W_V=Inf; L_V=Inf; W_q_0_V=0; L_q_B=Inf; 

W_q_B=Inf; W_B=Inf; L_B=Inf; W_q_0_B=0; d_A=0; return 

end 

 

swapping_bays=c_V; 

charging_bays=c_B; 

max_in_swapping_bays=zeros([1,n_runs]); 

max_veh_queue_wait=zeros(1,n_runs); 

mean_veh_queue_wait=zeros(1,n_runs); 

mean_veh_queue_size=zeros(1,n_runs); 

max_veh_queue_size=zeros(1,n_runs); 

 

for r=1:n_runs 

 veh_id=[1:number_of_vehicles]'; 

 uniform_random_draws_for_interarrival_times=rand(number_of_vehicles,

1); 

 interarrival_times=-

log(uniform_random_draws_for_interarrival_times)/lambda; % minutes, 

random draws from an exponential distributions 

 uniform_random_draws_for_swapping_times=rand(number_of_vehicles,1); 

 swapping_times=-

log(uniform_random_draws_for_swapping_times)/mu_swap; 

 uniform_random_draws_for_charging_times=rand(number_of_vehicles,1); 

 charging_times=-

log(uniform_random_draws_for_charging_times)/mu_charge; 

 arrival_times=zeros(size(veh_id)); % initializations 

 veh_queue_wait=zeros(size(veh_id)); 

 swap_start_times=zeros(size(veh_id)); 

 veh_departure_times=zeros(size(veh_id)); 

 swap_bay_available_times=zeros(1,swapping_bays); 

 swap_bay_assigned=zeros(size(veh_id)); 

 charge_start_times=zeros(size(veh_id)); 

 charge_departure_times=zeros(size(veh_id)); 

 charge_bay_available_times=zeros(1,charging_bays); 

 charge_bay_assigned=zeros(size(veh_id)); 

 number_swapping_just_before_arrival=zeros(size(veh_id)); 

 number_swapping_just_after_arrival=zeros(size(veh_id)); 

 number_in_veh_queue_just_before_arrival=zeros(size(veh_id)); 

 number_in_veh_queue_just_after_arrival=zeros(size(veh_id)); 
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 for i=1:number_of_vehicles 

  if i==1 

   arrival_times(i)=0; 

  else 

   arrival_times(i)=arrival_times(i-1)+interarrival_times(i); 

  end 

  [time_s,swap_bay_index]=min(swap_bay_available_times); % time may 

be in the past 

  [time_c,charge_bay_index]=min(charge_bay_available_times); % time 

may be in the past 

  swap_bay_assigned(i)=swap_bay_index; 

  charge_bay_assigned(i)=charge_bay_index; 

  swap_start_times(i)=max([time_s,time_c,arrival_times(i)]); 

  veh_queue_wait(i)=swap_start_times(i)-arrival_times(i); 

  veh_departure_times(i)=swap_start_times(i)+swapping_times(i); 

  swap_bay_available_times(swap_bay_index)=veh_departure_times(i); 

  charge_bay_available_times(charge_bay_index) = 

veh_departure_times(i)+charging_times(i); 

  number_swapping_just_before_arrival(i)=sum(swap_start_times(1:i-

1)<arrival_times(i))-sum(veh_departure_times(1:i-

1)<arrival_times(i)); 

 

 number_swapping_just_after_arrival(i)=sum(swap_start_times(1:i)<=

arrival_times(i))-sum(veh_departure_times(1:i-1)<=arrival_times(i)); 

  number_in_veh_queue_just_before_arrival(i)=veh_id(i)-1-

sum(swap_start_times(1:i-1)<arrival_times(i)); 

 end 

 mean_veh_queue_wait(r)=mean(veh_queue_wait); 

 max_veh_queue_wait(r)=max(veh_queue_wait); 

 mean_veh_queue_size(r)=mean_veh_queue_wait(r)*number_of_vehicles/swa

p_start_times(number_of_vehicles);

 max_veh_queue_size(r)=max(max(number_in_veh_queue_just_before_arr

ival),max(number_in_veh_queue_just_after_arrival)); 

 max_in_swapping_bays(r)=max(max(number_swapping_just_before_arrival)

,max(number_swapping_just_after_arrival)); 

  

end 

L_q_V=mean(mean_veh_queue_size); 

W_q_V=mean(mean_veh_queue_wait); 

W_V=W_q_V+swap_time; 

L_V=L_q_V+swapping_bays; 

W_q_0_V=sum(veh_queue_wait==0)/(sum(veh_queue_wait~=0)+sum(veh_queue_wa

it==0)); 

L_q_B=0; % there is no battery queue because the number of batteries 

equals the number of charging bays and the vehicles just wait extra 

time for one to be available 

W_q_B=0; W_q_0_B=0; 

W_B=W_q_B+charge_time; 

L_B=L_q_B+charging_bays; 

d_A=mean(charging_times)/(charge_time/.75); % note: because charge_time 

is based on 75% of the max 
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7.3.2 Fast Charge Results Details 

Details of the intermediate analytical queuing model calculations for fast charging, using 

base case parameter values. As shown, number of charging bays needed increases fairly 

linearly with vehicle arrival rate, and average vehicle queue wait time for the minimum 

cost cases is short, less than 3.5 minutes. 

 
Figure 7.21 Number of charging points 

 
Figure 7.22 Cost per vehicle arrival 
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Figure 7.23 Wait time in queue 

7.3.3 Agreement of Numerical Queuing Simulation with Analytical Model 

Results for M/M/c numerical queuing simulation have good agreement with the 

analytical solution, and agreement improves with number of vehicle arrivals simulated 

and number of Monte Carlo runs. The results shown in Table 7.14 are based on 4000 

vehicle arrivals and 20000 Monte Carlo runs. 

Table 7.14 Comparison of analytical and numerical queuing results. 

Parameter Analytical Model Numerical Simulation % Error 

λ 1.02 veh/min  

µ 0.05 veh/min  
r 20.4  
ρ 0.85  
n 24  

Wq 1.92 min 1.87 min 3% 
Lq 1.96 vehicles 1.91 vehicles 3% 
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7.3.4 Results Details 

Table 7.15 Results table for Figure 4.7 and Figure 4.8 

Case 

G
a

so
li

n
e 

S
it

e 
P

re
p
 

E
q

u
ip

m
en

t 

O
p

er
a

ti
o

n
 

E
le

ct
ri

ci
ty

 

B
a

tt
er

ie
s 

S
er

vi
ce

 T
im

e 

W
a

it
in

g
 T
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Level 1 Chg 

(721 chargers) 

- 0.01 0.15 0.15 1.50 - 385.60 0 390 

Level 2 Chg 

(253 chargers) 

- 0.01 0.11 0.15 1.50 - 136.00 0 140 

Lvl 3 Charge 

(32 chargers) 

- 0.01 0.34 0.15 1.91 - 13.60 0.05 16 

Swap w/ Lvl 2 

(8 swapping points, 

253 chargers and batteries) 

- 0.28 1.19 1.07 1.50 0.90 4.27 0.43 10 

Swap w/ Lvl 3 

(7 swapping points, 

26 chargers and batteries) 

- 0.04 1.36 1.07 1.76 0.09 4.27 0.43 9 

3 Swap w/ Lvl 2 

(9 swapping points, 

270 chargers and batteries) 

- 0.96 4.52 4.11 1.55 2.72 4.27 0.60 19 

3 Swap w/ Lvl 3 

(9 swapping points, 

33 chargers and batteries) 

- 0.21 5.22 4.11 1.80 0.35 4.27 0.60 17 

4 Swap w/ Lvl 3 

(12 swapping points, 

32 chargers and batteries) 

- 0.24 6.58 5.48 1.84 0.34 4.27 0.24 19 

CV 5.68 - - - - - 1.69 0 7.4 

HEV 4.03 - - - - - 1.66 0 5.7 

7.3.5 References 

Baron, M., 2007. Probability and Statistics for Computer Scientists. Chapman & 
Hall/CRC, New York. 

Gross, D., Shortle, J.F., Thompson, J.M., Harris, C.M., 2008. Fundamentals of Queueing 
Theory, 4th ed. Wiley-Interscience, Hoboken, NJ. 


