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2.2 Proposed implementation of Lifelong Robotic Object Perception. (a) Input is

sent to both discovery and recognition. (b) The Candidate Generation step com-

putes objectness-based candidates, color coded from white (highest objectness)

to black (lowest objectness). (c) Output of Local Object Discovery: partial ob-

ject models. (d) Output of Global Object Discovery: groups of partial object

models. (e) Recognition. (f) Robot Interaction. . . . . . . . . . . . . . . . . . . 9

2.3 Recognition of real-world scenes. (Left) High-complexity scene. MOPED finds

27 objects, including partially-occluded, repeated and non-planar objects. Using

a database of 91 models and an image resolution of 1600× 1200, MOPED pro-

cesses this image in 2.1 seconds. (Right) Medium complexity scene. MOPED

processes this 640 × 360 image in 187 ms and finds all known objects (The

undetected green soup can is not in the database). . . . . . . . . . . . . . . . . 11

2.4 Example of scene with severe depth fading. (left) Input depth map, with black

pixels indicating missing depth measurements. (right) Input image. . . . . . . . 12

2.5 Object candidates generated for RGBD images using our objectness-based seg-

mentation, Structure Discovery. (Left) Input images (range data is also an input,

not shown). (Right) Ranked scene segmentation using Structure Discovery, color

coded from white (highest objectness) to black (lowest objectness). . . . . . . 14
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2.6 Robotic Object Discovery with Metadata (figure best viewed in color). (Top)
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are segmented to generate object candidates. (c) Object Discovery with Meta-

data: the different sequence subsets are processed independently for efficiency,

using robot localization, object size/shape constraints and external knowledge

to find (d) individual object instances. (e) Global Object Discovery performed

on discovered object instances (d) to obtain a global representation of objects. 17

3.1 Main components in Robotic Object Discovery. (left) the robot HERB moves

through a kitchen searching for novel objects. (center) The three physical com-

ponents of Robotics Object Discovery are: the world Ω, the robotic agent A, and

the sensors S. (right) The sensors capture data samples x to be processed by a

candidate generator H to produce object candidates. The Discoverer D groups
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sources ΦΩ (e.g., assumption “objects lie on tables”), ΦA (e.g., robot localiza-
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Abstract

In this thesis, we study the topic of Lifelong Robotic Object Perception. We propose, as a

long-term goal, a framework to recognize known objects and to discover unknown objects

in the environment as the robot operates, for as long as the robot operates. We build the

foundations for Lifelong Robotic Object Perception by focusing our study on the two critical

components of this framework: 1) how to recognize and register known objects for robotic

manipulation, and 2) how to automatically discover novel objects in the environment so

that we can recognize them in the future.

Our work on Object Recognition and Pose Estimation addresses two main challenges

in computer vision for robotics: robust performance in complex scenes, and low latency

for real-time operation. We present MOPED, a framework for Multiple Object Pose Esti-

mation and Detection that integrates single-image and multi-image object recognition and

pose estimation in one optimized, robust, and scalable framework. We extend MOPED to

leverage RGBD images using an adaptive image-depth fusion model based on maximum

likelihood estimates. We incorporate this model to each stage of MOPED to achieve object

recognition robust to imperfect depth data.

In Robotic Object Discovery, we address the challenges of scalability and robustness for

long-term operation. As a first step towards Lifelong Robotic Object Perception, we aim to

automatically process the raw video stream of an entire workday of a robotic agent to dis-

cover novel objects. The key to achieve this goal is to incorporate non-visual information—

robotic metadata—in the discovery process. We encode the natural constraints and non-

visual sensory information in service robotics to make long-term object discovery feasible.

We introduce an optimized implementation, HerbDisc, that processes a video stream of 6 h

20 min of challenging human environments in under 19 min and discovers 206 novel objects.

We tailor our solutions to the sensing capabilities and requirements in service robotics,

with the goal of enabling our service robot, HERB, to operate autonomously in human

environments.
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Chapter 1

Introduction

Object. [n. ob·ject. ŏb- jĕkt]: Something material

that may be perceived by the senses.

Merriam-Webster.com (2012)

Objects play an important role in our daily lives; we interact with hundreds of them ev-

ery day—clothes, food items, keys, computers, etc. We take the concept of object for

granted. But what, exactly, is an object? Merriam-Webster.com (2012) defines an ob-

ject as “something material that may be perceived by the senses.” Humans are particularly

adroit at perceiving objects: we easily identify known and unknown objects around us, and

instinctively understand how to interact with them to serve our purposes.

We want robots to interact with objects, too, and to work alongside us in human environ-

ments. We consider the case of a service robot in a home or office, operating autonomously.

Most tasks in service robotics require interaction with objects, ranging from obstacle avoid-

ance (e.g., the Roomba) to fetching drinks, unloading the dishwasher, or cooking a meal.

The more complex the task, the better robots need to perceive the objects with which they

interact. In this thesis, we explore how to make robots understand what objects are, so

that they can perceive objects—known and unknown—as well as we do.

Object perception for robotics offers both opportunities and challenges unique to the

robotics field. We can use additional sensing modalities and external information (robotic

metadata) to leverage the natural constraints and structure in service robotics. Examples

of metadata include robot localization, odometry, prior knowledge, and restrictions about

the environment, robot, or task, among others. We use the term robotic metadata—or

just metadata—very broadly in this work: visual information is the primary data source

in computer vision, so we refer to any non-visual information as metadata. Using robotic

metadata, we can tackle perception problems that would be too complex using visual in-

formation alone. After all, the data gathered by a service robot is not just an unordered

collection of anonymous images: we may know where and/or when the images are captured,
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as well as their ordering; we may know where interesting objects usually appear for a par-

ticular environment, such as in tables or cabinets; we may have multiple sensing modalities

(e.g., range measurements, localization, odometry) for some or all the images, or we may

only be interested in objects of certain sizes or shapes relevant to the robot.

The extra challenges in service robotics derive from a trade-off between system latency

and robustness. Service robots require fast perception, real-time or near real-time; latency

of more than a few seconds in recognizing an object is rarely acceptable in on-line tasks.

In addition, algorithms must be robust for safety reasons: mistakes in robotic perception

have consequences ranging from broken mugs (in personal robotics) to human casualties (in

autonomous cars).

In this thesis, we study the topic of Lifelong Robotic Object Perception. We propose,

as a long-term goal, a framework to recognize known objects and discover unknown ob-

jects in the environment as the robot operates, for as long as the robot operates. In this

framework (described in detail in Chapter 2), we recognize known objects and register their

position so that the robot can interact with them. We automatically analyze sensor data

to learn new information about the objects with which the robot interacts. We also auto-

matically discover novel objects and feed their models back to the recognition component,

and incorporate grasping feedback to validate and refine the discovered objects. We envi-

sion Lifelong Robotic Object Perception as a coupled process of learning, recognition and

interaction with objects, in which information feeds back from each component to improve

the overall system performance.

We build the foundations for Lifelong Robotic Object Perception by focusing our study

on the two critical components of this framework: 1) how to recognize and register known

objects for robotic manipulation, and 2) how to automatically discover novel objects in the

environment so that we can recognize them in the future. We tailor our solutions to the sens-

ing capabilities and requirements in service robotics, with the goal of enabling our service

robot, HERB (Srinivasa et al., 2012), to operate autonomously in human environments.

1.1 Summary of Contributions

The main contribution in this thesis is a common formulation to represent visual information

and metadata as graph constraints for object discovery, which we introduce in Section 2.3

and explore in depth in Chapter 7. In addition to this common formulation, we propose

a number of key contributions for object recognition and object discovery. We provide a

list of our key contributions in this section, and discuss each contribution in more detail in

Chapter 2.

• A real-time object recognition system, MOPED (originally reported in Collet et al.
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(2011a)), and its extension to images and depth, MOPED-RGBD (originally reported

in Fouhey et al. (2012)). Our contributions in MOPED include:

– Iterative Clustering-Estimation (ICE) to iteratively partition the scene and effi-

ciently estimate object poses in complex scenes (Collet et al., 2011a).

– Projection Clustering and M-estimator-based score to merge duplicate object

detections (Collet et al., 2011a).

– Scalable, low latency recognition via architectural optimizations and hybrid

CPU/GPU computing to exploit parallelism (Collet et al., 2011a).

– An image-depth fusion model based on maximum likelihood estimates for both

available and missing depth data (Fouhey et al., 2012).

• A framework for Robotic Object Discovery (originally reported in Collet et al. (2012)),

including:

– An objectness-based scene segmentation for RGBD images, to compute object

candidates for Object Discovery (Collet et al., 2011b).

– A common formulation to represent visual information and robotic metadata as

generic graph constraints for object discovery (Collet et al., 2012).

– HerbDisc: an optimized system for Robotic Object Discovery based on graph

constraints and use of robotic metadata (Collet et al., 2012).

– A dataset of 6 h 20 min of RGBD video (and 521 234 RGBD images) of real

offices and labs to evaluate HerbDisc, gathered with HERB (Collet et al., 2012).

1.2 Roadmap

Chapter 2 introduces the general framework for Lifelong Robotic Object Perception, which

is our high-level guide for this thesis. We introduce the subproblems of Object Recognition

and Pose Estimation in Section 2.2 and Robotic Object Discovery in Section 2.3. We study

Object Recognition and Pose Estimation in Part II. In Chapter 4, we develop MOPED,

a framework for Object Recognition and Pose Estimation. We extend Chapter 4 to ro-

bustly combine images and depth in Chapter 5, MOPED-RGBD. We study Robotic Object

Discovery in Part III. In Chapter 6, we introduce our objectness-based scene segmentation

algorithm to compute object candidates for Robotic Object Discovery. In Chapter 7, we

introduce a unified graph-based formulation for Robotic Object Discovery and describe our

optimized implementation, HerbDisc. In Part IV we conclude this thesis with a discussion

of our contributions and future work.
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1.3 Publication note

Earlier versions of our work on MOPED (Chapter 4) appear in Collet et al. (2009), Collet

and Srinivasa (2010), Martinez et al. (2010), Collet et al. (2011a), and is joint work with

Manuel Martinez. An initial version of our work on MOPED-RGBD (Chapter 5) was

published in Fouhey et al. (2012) and is joint work with David Fouhey. An initial version

of our work on scene segmentation (Chapter 6) was published in Collet et al. (2011b). Our

work on Robotic Object Discovery and HerbDisc appears in (Collet et al., 2012) and is joint

work with Bo Xiong and Corina Gurau.



Chapter 2

Lifelong Robotic Object Perception

Perceive. [v. per·ceive. p@r- sēv]: To become

aware of through the senses.

Merriam-Webster.com (2012)

The typical object perception pipeline in a current state-of-the-art service robot (e.g., Srini-

vasa et al. (2012), WillowGarage (2008)) follows a similar implementation to the flowchart

shown in Fig. 2.1. In Fig. 2.1, we identify four clearly separated components. First, an off-

line training stage generates a set of object models, via supervised or semi-supervised meth-

ods (Fig. 2.1(a)). Each new object model created is stored in a model database (Fig. 2.1(b)).

In the on-line stage, an object recognition algorithm identifies objects (from the database)

in the sensor data and registers their position (Fig. 2.1(c)). Finally, the robot interacts

with the identified objects if it is necessary for the task (Fig. 2.1(d)).

In the pipeline of Fig. 2.1, learning new objects and adding them to the database requires

manual supervision. In addition, each component is isolated: there is no mechanism for

object models to improve over time; the experience from robot interaction is not used

for improvement; and the knowledge of the current set of objects does not help for the

task of learning new objects. In contrast, the framework we propose defines a completely

autonomous perception system that learns over time, both to learn new objects, and to

improve the performance of each task. A global diagram of our proposed framework is

given in Fig. 2.2, and discussed in Section 2.1.

2.1 A Framework for Lifelong Robotic Object Perception

We propose the framework for Lifelong Robotic Object Perception shown in Fig. 2.2. Com-

paring this framework to Fig. 2.1, the main differences are the introduction of a Robotic
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Sunday, Figure 2.1: Uncoupled object perception pipeline. The training stage requires manual
supervision, and each component is independent. (a) Object modeling, (b) object database,
(c) object recognition, and (d) robot interaction. For each object in (b), we show (left) a
sample image of the object, (center) its 3D model, and (right) its mesh-based model used
for robotic manipulation.



2.1. A FRAMEWORK FOR LIFELONG ROBOTIC OBJECT PERCEPTION 9

1

R
ob

ot
ic

 O
bj

ec
t 

D
isc

ov
er

y

Object
Recognition

Robot
Interaction

Object 
Representation

Object 
Database

Candidate
Generation Metadata

Local Obj.
Discovery

Global Obj. 
Discovery

Input(a)

(b)

(c)

(c),(d)
(e)

(f)

(b) (a) 

(c) 

(d) 

(e) (f) 

Figure 2.2: Proposed implementation of Lifelong Robotic Object Perception. (a) Input
is sent to both discovery and recognition. (b) The Candidate Generation step computes
objectness-based candidates, color coded from white (highest objectness) to black (lowest
objectness). (c) Output of Local Object Discovery: partial object models. (d) Output
of Global Object Discovery: groups of partial object models. (e) Recognition. (f) Robot
Interaction.
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Object Discovery component, and the inclusion of feedback loops among components to

learn from experience.

In the Object Recognition step, our goal is to identify objects and estimate their poses

so that a service robot can manipulate them. It is critical that the algorithm performs well

in real-world data (i.e., cluttered scenes and possibly repeated objects) and with minimal

latency. The object models for recognition are automatically computed by the Robotic

Object Discovery and Object Representation steps. We discuss the requirements for the

Object Recognition problem and our implementation in Section 2.2.

The Robotic Object Discovery (Fig. 2.2(b-d)) comprises three components: Candidate

Generation, Local Object Discovery, and Global Object Discovery. The difference between

the three components lies in the spatial and temporal scope that each component processes.

In the Candidate Generation step (Fig. 2.2(b)), we process individual data samples to

generate object candidates. The Local Object Discovery step uses robotic metadata

(e.g., spatiotemporal constraints) to focus the search for objects to only a few seconds

in the past. Consistent groups of candidates are used to compute partial object models

(Fig. 2.2(c)). The Global Object Discovery step groups the partial object models from

the last few Local Object Discovery steps, as well as from the current set of object models,

to create full object models (Fig. 2.2(d)) that contain all the information about a given

object. We discuss the requirements for the Robotic Object Discovery problem and our

implementation in Section 2.3.

After Global Object Discovery, we have a 3D model for each object, alongside a set

of data fragments in which each object was discovered. In the Object Representation

step, we produce compact object models usable for object recognition. We can assess the

importance of each fragment using the output of Robotic Object Discovery and the feedback

from Object Recognition and Robot Interaction. In order to always keep accurate and up-

to-date object models, old data fragments in object models should be replaced by new data

fragments with higher importance. We discuss methods to consolidate and improve object

models over time in the future work (Chapter 9.2).

The availability of Robotic Metadata is very helpful to make this framework feasible.

We may want, for example, to only discover graspable objects, to be able to impose restric-

tions on the location of objects (e.g., on tables and cabinets), to use the robot’s additional

sensing in the search, or to use datasets of precomputed common objects.

In the Robot Interaction step, we manipulate some of the objects we have recognized

(depending on the task). In addition, the interaction provides the necessary feedback to

filter invalid discovered objects if the robot fails repeatedly to grasp them. We discuss about

the interaction feedback to filter objects in the future work (Chapter 9).



2.2. OBJECT RECOGNITION AND POSE ESTIMATION FOR MANIPULATION 11

2.2 Object Recognition and Pose Estimation for

Manipulation

Figure 2.3: Recognition of real-world scenes. (Left) High-complexity scene. MOPED finds
27 objects, including partially-occluded, repeated and non-planar objects. Using a database
of 91 models and an image resolution of 1600× 1200, MOPED processes this image in 2.1
seconds. (Right) Medium complexity scene. MOPED processes this 640×360 image in 187
ms and finds all known objects (The undetected green soup can is not in the database).

The end goal of our Lifelong Robotic Object Perception framework is to recognize

objects and estimate their pose for robotic manipulation. For Object Recognition, we

choose the general paradigm of rigid objects and local invariant features, because these

factors currently offer the best trade-off between minimal latency, reliability, and accuracy

in pose estimation. We present MOPED, a framework for Multiple Object Pose Estimation

and Detection that seamlessly integrates single-image and multi-image object recognition

and pose estimation in one optimized, robust, and scalable framework. We address two

main challenges in Object Recognition for robotics: robust performance in complex scenes,

and low latency for real-time operation. We extend MOPED to robustly combine images

and range data to improve its performance under heavy clutter.

Excessive scene complexity can arise due to scene clutter, with large numbers of ob-

jects in the scene, occlusions, and shadows significantly decreasing the recognition rate.

Repeated objects, very common in service robotics scenarios, also contribute to increased

scene complexity: the matching ambiguity introduced by repeated instances of an object

presents an enormous challenge for pose estimation, because the matched features might

belong to different object instances despite being correct. False positives often arise from

algorithms not being able to handle unexpected scene complexity. Fig. 2.3 shows an ex-

ample of an image of high complexity and multiple repeated objects correctly processed by

MOPED.
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Figure 2.4: Example of scene with severe depth fading. (left) Input depth map, with black
pixels indicating missing depth measurements. (right) Input image.

The second problem we analyze is that of scalability and system latency. In systems that

operate online, a trade-off between recognition performance and latency must be reached,

depending on the requirements for each specific task. In robotics, the reaction time of

robots operating in dynamic environments is often limited by the latency of their perception.

Increasing the volume of input data to process (e.g., increasing the image resolution, using

multiple cameras) results in increased processing time. Yet, with cameras getting better,

cheaper, and smaller, multiple high resolution views of a scene are often easily available.

For example, our robot HERB has, at various times, been outfitted with cameras on its

shoulder, in the palm, on its ankle-high laser, as well as with a stereo pair. Multiple views

of a scene are often desirable, because they provide better depth estimation, robustness

against line-of-sight occlusions, and an increased effective field of view. Higher resolution

cameras can potentially improve the recognition of complicated objects and the accuracy of

pose estimation algorithms. However, the penalty for using high resolution images can be

steep. The increased number of features in high resolution images often degrades both the

overall latency and the algorithm’s precision: more features can lead to longer processing,

more matching confusion, and more false positives.

A key contribution in MOPED is the Iterative Clustering-Estimation (ICE) algorithm

to handle scenes with high complexity while keeping latency low. With ICE, we jointly

solve the correspondence and pose estimation problems through an iterative procedure. We

estimate groups of features that are likely to belong to the same object through clustering,

and then search for object candidates within each of the groups. Each candidate is used

to refine the feature groups that are likely to belong to the same object, which in turn

helps finding more accurate candidates. The iteration of this procedure focuses the object
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search only in the regions with potential objects, avoiding the waste of processing power in

unlikely regions. We also developed a novel object candidate scoring function based on M-

estimator theory and a novel pose clustering algorithm, Projection Clustering, to detect and

filter recognition outliers. We address scalability and low latency with an improved feature

matching algorithm for large databases, a GPU/CPU hybrid architecture that exploits

parallelism at all levels, and an optimized resource scheduler.

We extend MOPED to combine one or multiple images with depth data (from e.g.,

RGBD cameras) in MOPED-RGBD. Depth data can be very useful for increased precision

in clutter, but we should not rely on the availability of dense depth maps for recognition.

Dense depth estimation has fundamental limitations which must be addressed for robust

recognition. In realistic scenes, depth sensors may fail to compute depth measurements

on large portions of the associated color data (as shown in Fig. 2.4). We refer to this

phenomenon as depth fading. Surfaces seen at oblique angles, poor lighting conditions,

objects close to the camera, and reflective or specular surfaces often suffer from depth

fading. These issues arise from fundamental physical limitations in depth perception, and

affect all depth estimation approaches to varying degrees. In Chapter 5, we show that relying

on the availability of depth data can actually decrease the overall recognition performance

if depth fading is not considered.

2.3 Robotic Object Discovery

In the Robotic Object Discovery component of (Fig. 2.2(b-d)), our long-term goal is to

develop a general solution to the problem of discovering new objects in the environment

while the robot operates, for as long as the robot operates. We term this problem as

the Lifelong Robotic Object Discovery (LROD) problem. LROD is a specialization of the

generic Unsupervised Object Discovery problem that focuses on massive datasets of dynamic

human environments gathered by a robotic agent. As a first step towards LROD, we aim

to automatically process the raw video stream of an entire workday of a robotic agent.

Considering the autonomy and charging times of current service robots, a robotic workday

amounts to approximately 6-8 hours of raw sensor data (e.g., RGBD video feed) and over

half a million data samples (e.g., RGBD images).

The framework shown in Fig. 2.6 summarizes our implementation for Robotic Object

Discovery. We first describe the Candidate Generation step in Section 2.3.1, and the Local

and Global Object Discovery steps in Section 2.3.2.
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Figure 2.5: Object candidates generated for RGBD images using our objectness-based seg-
mentation, Structure Discovery. (Left) Input images (range data is also an input, not
shown). (Right) Ranked scene segmentation using Structure Discovery, color coded from
white (highest objectness) to black (lowest objectness).

2.3.1 Candidate Generation

Our goal in the Candidate Generation step is to separate a scene into a few physically

meaningful parts (objects) and discard background clutter. In particular, we aim to generate

a scene segmentation, together with a ranking mechanism, such that the highest-ranking

segments correspond to objects in the scene. We call this process Structure Discovery.

Hoiem et al. (2007) reason about occlusions as a way to segment a scene while preserving

its 3D surfaces. We aim to solve a similar problem, but using a different approach. In (Hoiem

et al., 2007), most of the effort is spent in reconstructing qualitative 3D interpretations of

the scene. Adding range data and performing multi-modal segmentation, we can recover

more information from more complex scenes, using much simpler algorithms. In particular,

we combine image and range data to compute perceptual cues such as concavities and

discontinuities. These cues are then used to generate scene segmentations that preserve
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objects.

Our main contribution in this step is a scene segmentation algorithm that exploits the

availability of multi-modal (image and range) data. We generate multiple segmentations

(Hoiem et al., 2005, Sivic et al., 2005) of image and range data by varying the parameters

of a standard segmentation algorithm (in our case, the graph-based segmentation from

Felzenszwalb and Huttenlocher (2004)). While no single segmentation is completely correct,

we hope that some segments in some of the segmentations are correct and contain a whole

object. We define a linkage step to relate segments in an image to the corresponding

range measurements, and vice versa, to create multi-modal data regions. We term these

multi-modal regions regionlets. We then compute region-wide features for each region, and

aggregate them in a single energy function that measures the objectness of each region. We

show how simple features such as color consistency, continuity, alignment, and concavity

work very well to identify potential objects. We show examples of Structure Discovery

candidate generation in Fig. 2.5.

We define regionlets as semantically equivalent regions in both image and range data.

The smallest regionlet possible is a correspondence between one pixel and one 3D point,

equivalent to low-level sensor fusion. By using larger image and range data regions, we can

compute more powerful features for the different data sources and merge information at a

higher level. An additional advantage is that we can work with the native resolution of each

data source; the data sources may have different resolutions and even non-linear densities

(e.g., a rotating laser range finder) with no extra overhead.

2.3.2 Local/Global Object Discovery

The framework shown in Fig. 2.6 summarizes our implementation for Robotic Object Dis-

covery. In Fig. 2.6, a robotic agent navigates through an office environment recording an

RGBD video stream (Fig. 2.6(a)). Unsupervised Object Discovery techniques (e.g., Kang

et al. (2011)) create a pool of object candidates (Fig. 2.6(b)), which are represented as

nodes in a pairwise graph (Fig. 2.6(c)). The graph edges are computed by comparing the

visual similarity between every pair of object candidates. Then, clustering techniques are

used to group similar object candidates—recurring patterns—as in Fig. 2.6(d-e). Building

the pairwise graph requires O(n2) similarity comparisons; as the length of the video stream

grows, this cost becomes prohibitively expensive. Most of the computation time is spent

comparing candidates with very low likelihood of being grouped together (the candidates

in the corridor in Fig. 2.6(b)(left) and the kitchen in Fig. 2.6(b)(right)). If we analyze the

input data stream based on the visual information alone, we are forced to evaluate every

pair of object candidates. However, we know intuitively that objects in the kitchen and

objects in the corridor have little in common. We also know that two data samples acquired
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within a few seconds of each other are more likely to contain the same objects than data

samples acquired in different years. We can use this external information, this metadata, to

drastically reduce the computation time and improve the quality of the discovered objects.

We claim that the key to make LROD feasible is to incorporate robotic metadata. Con-

sider the example in Fig. 2.6, now using metadata. A robotic agent navigates through

an office environment recording an RGBD video stream, using the robot’s location and

data acquisition timestamps to separate the data stream (the red-blue-green subsets in

Fig. 2.6(a)). The object candidates for each subset (Fig. 2.6(b)) are compared only within

the same subset. The pairwise graphs in Fig. 2.6(c) encode the visual similarity between

candidates, as well as other cues such as if candidates overlap in space, or object priors based

on the robot’s grasping capabilities. In the clustering step (Fig. 2.6(d)), we group together

object candidates with similar visual information and metadata. The metadata-augmented

similarity graphs encode local information to discover individual object instances. We may

discover multiple instances of the same objects in different data subsets. We perform a

global clustering step (Fig. 2.6(e)) to join the multiple object instances as single object

models.

The main theoretical contribution of this work is a general framework for object discov-

ery that leverages any form of metadata, and in particular the natural constraints that arise

in service robotics scenarios. Multiple works in the robotics literature use specific types of

metadata, often by imposing restrictions on the environment, data acquisition, or agent

motion, to improve performance at the cost of limited applicability when the assumptions

are violated. Specific solutions could be implemented to use particular sources of meta-

data, but the solutions would lack adaptability, degrading with any environment changes

during the lifetime of the robotic agent. For LROD, we need instead a general architecture

to opportunistically leverage and adapt to the available metadata, and incorporate new

metadata as it becomes available.

In our formulation, we do not distinguish between visual similarity and robotic meta-

data. We encode all similarities and metadata sources as an intermediate representation

that we term a constraint. The definition of a constraint is very simple: a measurable

yes/no question about an object candidate or a relationship between candidates, with some

p—a probability of success—about the answer. For example, a visual similarity function

s(·, ·) is encoded as the constraint “are candidates hi and hj similar in appearance?”. The

answer would be yes/no, with confidence p = s(hi, hj). Metadata can be similarly encoded

as constraints, as we describe in detail in Section 7.3 and Section 7.5.

With this intermediate representation of constraints, we can seamlessly combine mul-

tiple similarities and other metadata sources. We define a set of logic operations over

constraints to form complex constraint expressions that encode all our knowledge relevant

to discover objects. We formulate the general LROD problem as a distributed partitioning
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Figure 2.6: Robotic Object Discovery with Metadata (figure best viewed in color). (Top)
Robotic agent navigates through office environment storing an RGBD video stream and
localization information. (a) Spatial/temporal constraints separate video stream in disjoint
subsets red, green and blue. (b) Images in the sequence are segmented to generate object
candidates. (c) Object Discovery with Metadata: the different sequence subsets are pro-
cessed independently for efficiency, using robot localization, object size/shape constraints
and external knowledge to find (d) individual object instances. (e) Global Object Discovery
performed on discovered object instances (d) to obtain a global representation of objects.
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of graphs built over constraints, which we term Constrained Similarity Graphs (CSGs). Our

distributed graph partitioning formulation is shown in Fig. 2.6, and the CSGs are illustrated

in Fig. 2.6(c).

These CSGs, when coupled with natural service robotics constraints, are by construction

much sparser than regular visual similarity graphs, and produce many disjoint components.

This intentional graph sparsity effectively reduces the overall computational complexity for

object discovery from O(n2) (with respect to the number of images n) to O(n), as well

as greatly improving the performance of the graph partitioning algorithm. In addition,

our constraints-based formulation is general, in the sense that it covers both generic Unsu-

pervised Object Discovery algorithms (e.g., Russell et al. (2006), Kang et al. (2011)) and

purpose-specific algorithms (e.g., Morwald et al. (2010)).

Our main applied contribution is HerbDisc, an optimized implementation of this frame-

work for HERB. In HerbDisc, we incorporate the natural constraints in service robotics.

Our framework seamlessly integrates visual and 3D shape similarity with spatial and tempo-

ral constraints, size/shape object priors, and motion information in a flexible and extensible

way. We drove HERB to over 200 offices from 4 floors of a university building, recording 6

h 20 min of continuous RGBD video of real human environments. HerbDisc processed this

dataset in 18 min 34 s using a single quad-core machine and discovered 206 novel objects

(44.5% precision, 28.6% recall), showcasing both the efficiency of this framework and the

robustness of its results.



Chapter 3

Literature Review

Metadata. [n. meta·da·ta. me-t@- dā-t@]: Data

that provides information about other data.

Merriam-Webster.com (2012)

3.1 Object Recognition and Pose Estimation

Recognition and pose estimation of object instances in cluttered environments is a problem

that has received attention from multiple research fields, and particularly Augmented Re-

ality, Computer Vision, and Robotics. Since the literature in this area is vast, we provide

only references to the research most related to our work.

3.1.1 Image-based methods

The dominant paradigm of object recognition and pose estimation in robotics is using rigid

objects and local invariant features, because this combination currently offers the best trade-

off between minimal latency, reliability, and accuracy in pose estimation. When using point-

based features as input, the task of recognizing a single object and determining its pose from

a single image requires solving two sub-problems: finding enough correct correspondences

between image features and model features (data association), and estimating the model

pose that best agrees with that set of correspondences (pose registration).

Estimating the pose of a rigid object model from a single image is a well studied problem

in the literature. In the case of point-based features, this is known as the Perspective-n-

Point (PnP) problem (Fischler and Bolles, 1981), for which many solutions are available,

both closed-form (Lepetit et al., 2008) and iterative (Dementhon and Davis, 1995). Assum-

ing that enough perfect correspondences between 2D image features and 3D model features

are known, one only needs to use the PnP solver of choice to obtain an estimation of an
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object’s pose. When noisy measurements are considered, non-linear least-squares minimiza-

tion techniques (e.g., Levenberg-Marquardt (Marquardt, 1963)) often provide estimates of

the perspective projection error. Given that such techniques require good initialization, a

closed-form PnP solver is often used to initialize the non-linear minimizer.

The pose estimation problem has also been studied extensively in augmented reality re-

search. In this area, the focus is in smooth tracking, i.e., obtaining the camera position and

orientation with respect to an object or scene, and accurately registering the camera move-

ment from one frame to the next. The well known AR toolkit from Kato and Billinghurst

(1999) provides robust, accurate registration data from an object without any manual ini-

tialization. However, it requires artificial markers for tracking, which make it unsuitable

for robotics applications—and particularly household robotics—as it would require placing

markers on each and every object in the household. Vacchetti et al. (2004) overcome the

marker limitation by using CAD models of the tracked objects/scenes, and precomputing

keyframes from the most informative views of each scene. Gordon and Lowe (2006) pro-

pose a method for accurate camera tracking using a metric reconstruction of a scene from

invariant local descriptors, and minimize camera jitter and drift in frame transitions with

regularized non-linear minimization on the camera locations, in a work that serves as a base

for our own object recognition and pose estimation system, MOPED (Chapter 4).

The data association problem, which is extremely challenging in cluttered scenes, was

greatly simplified with the advent of discriminative local invariant features (Lowe, 2004, Bay

et al., 2008, Mikolajczyk and Schmid, 2005). However, even with highly discriminative lo-

cally invariant features, such as SIFT (Lowe, 2004) or SURF (Bay et al., 2008), mismatched

correspondences are inevitable, forcing us to utilize robust estimation techniques such as

M-estimators or RANSAC (Fischler and Bolles, 1981) in most modern object recognition

systems. A common problem in object recognition is degraded performance due to scene

complexity. This problem can arise due to scene clutter, where large numbers of objects,

occlusions, and poor lighting conditions significantly decrease the recognition rate.

Related is the issue of repeated objects: the matching ambiguity introduced by repeated

instances of an object presents an enormous challenge for robust estimators, as the matched

features might belong to different object instances despite being correct. Solutions such as

perceptual grouping (Lowe, 1987), interpretation trees (Grimson, 1991), Hough clustering

(Ballard, 1980, Grimson and Huttenlocher, 1990) or image space clustering (Collet et al.,

2009) are often used to mitigate false positives due to excessive scene complexity.

Lowe (1987) propose to group line features using perceptual cues such as proximity,

parallelism, and collinearity, to limit the object search space, and estimates of the object

viewpoint are performed via least-squares optimization of the reprojected object model in

the image.

Grimson and Lozano-Perez (1987) introduce the concept of interpretation trees for ob-
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ject recognition and exploit local geometric constraints to efficiently explore the trees. Inter-

pretation trees agglomerate information from multiple image segments into plausible object

candidates: the first tree level contains individual object features, the second level pairs

of features, and the N-th level contains only those candidates that agree with N object

features.

Viksten et al. (2009) use Hough voting for object recognition and pose estimation of

repeated objects, by solving the PnP problem with triplets of point features to compute

pose candidates, and filtering them with an averaging voting mechanism on the Hough pose

space. The most voted triplets are then considered objects.

The work of Hinterstoisser et al. (2010) in Dominant Orientation Templates for real-

time Object Recognition, and its more recent extension to RGBD images in Hinterstoisser

et al. (2011), propose an alternative to the recognition and pose estimation based on point

features. Hinterstoisser et al. (2010) propose to use a large set of templates and fast indexing

based on a variant of HoG (Dalal and Triggs, 2005) tuned for real time operation. New

images are explored with a branch-and-bound technique to match them against existing

templates, which provide instant localization and visually reasonable, albeit discrete, pose

estimation. However, this technique is very sensitive to partial occlusions, and it remains

to be seen how accurate the pose estimation is for robotic manipulation tasks.

A comprehensive overview of single-image, model-based 3D object recognition/tracking

techniques is available at Lepetit and Fua (2005).

3.1.2 3D-based methods

The use of range data for object recognition and pose estimation has also been extensively

studied in the literature. The main criticism of 3D-only techniques is that geometry alone is

not discriminative enough for the small, “boring” shapes often found in man-made objects,

in which simple boxes and bottles are very common. Products such as refined sugar and

rat poison, which come in similarly-shaped boxes, are examples of items that we certainly

do not want our service robot to confuse. We refer the reader to Jain and Dorai (2000),

Tangelder and Veltkamp (2004), Bimbo and Pala (2006) for comprehensive surveys on 3D-

based recognition and shape retrieval, which fall outside the scope of this thesis.

3.1.3 RGBD-based methods

There has been much recent interest in the study of algorithms for RGBD cameras, such as

the Microsoft Kinect. RGBD cameras compute dense depth maps registered to images, in

which each depth measurement is registered to one pixel. RGBD cameras are inexpensive

and retrieve dense depth maps in real time (at 30fps), which make them a very interest-

ing alternative to alternative sources of depth measurements (e.g., laser, passive stereo).
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Hinterstoisser et al. (2011) improve their earlier work in Hinterstoisser et al. (2010) to

use multi-modal templates of objects from RGBD images. The addition of depth to the

DOT templates filters out many spurious contours and avoids the scale ambiguity from the

image-only approach, and enables recognition in cluttered scenes with moderate occlusion.

Lai et al. (2011b) propose Instance Distance Learning (IDL) to perform object category

and instance classification in RGBD images. In this work, Lai et al.define a view-to-object

distance where novel images are compared simultaneously to a set of templates of a previous

object. The view-to-object distance is based on a weighted combination of feature differ-

ences between views. This is a classification method, i.e., it evaluates previously segmented

patches to compute object identities. The authors use a sliding window approach to do for

RGBD recognition.

Bo et al. (2011) introduce Hierarchical Kernel Descriptors (HKDES) to learn region-

based features from point-based attributes, such as color or depth. The HKDES descriptors

are applied to RGBD object recognition in Lai and Fox (2011). In Lai and Fox (2011), the

authors describe a tree-based approach to perform simultaneously category, instance and

pose classification from a large dataset of categories, instances and object poses. The

authors also introduce a recognition system, OASIS, which uses a tabletop detector to

segment a set of candidate regions that are then classified with the tree-based approach.

The use of a tabletop detector limits the applicability of OASIS to uncluttered scenes.

An important question that often arises in RGBD recognition is what to do with miss-

ing data (depth fading). It is standard practice in the RGBD literature (e.g., Lai and

Fox (2011), Silberman et al. (2012), Janoch et al. (2011)) to assume dense depth maps

with one to one correspondences to image pixels. To address depth fading, researchers

resort to interpolating depth data and then propagating the interpolated values. Common

interpolation methods include the recursive median filter (Lai and Fox, 2011), inpainting

(Silberman et al., 2012), or optimization techniques that minimize curvature (Janoch et al.,

2011). These methods are effective when used for interpolation (e.g., the small holes in

Fig. 5.1(left)), but produce severely inaccurate results when used for extrapolation (e.g.,

the moderate fading in Fig. 5.1(right)). We explore how to robustly address depth fading

in object recognition in Chapter 5 of this thesis, MOPED-RGBD.

3.2 Robotic Object Discovery

Consider the example of Robotic Object Discovery shown in Fig. 3.1. We identify five

major components. The World Ω represents the underlying physical phenomenon (i.e., the

environment) where we discover objects. A physical agent A (e.g., a robot) gathers data

through observation or interaction with the world Ω. The physical agent uses sensors S
(e.g., a camera) to gather data samples I (e.g., images). A candidate generator H produces
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World (Ω) 
Agent (A) 

Sensing (S) 
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Figure 3.1: Main components in Robotic Object Discovery. (left) the robot HERB moves
through a kitchen searching for novel objects. (center) The three physical components of
Robotics Object Discovery are: the world Ω, the robotic agent A, and the sensors S. (right)
The sensors capture data samples x to be processed by a candidate generator H to produce
object candidates. The Discoverer D groups recurring object candidates into objects, using
candidate data and metadata sources ΦΩ (e.g., assumption “objects lie on tables”), ΦA
(e.g., robot localization data), ΦS (e.g., image ordering and timestamps).

object candidates h (RGBD image regions) from data samples. Finally, the discoverer D
groups recurring object candidates into objects.

In this section, we perform a literature review of techniques for Candidate Generation

H and Object Discovery D.

3.2.1 Candidate Generation

The search for generic objects (of unknown classes) in a single image or range scan has

received recent attention from both Computer Vision (e.g., Endres and Hoiem (2010), Alexe

et al. (2010), Carreira and Sminchisescu (2010)) and Robotics communities (e.g., Rusu et al.

(2009b, 2010), Bjorkman and Kragic (2010)). Our area of research is most related to the

field of objectness segmentation, in which algorithms find regions that are the most likely

to be objects (in images and/or range data).

Alexe et al. (2010) propose a measure of objectness that attempts to quantify how likely

an image window is to contain an object of any class. They use a Bayesian framework to

combine features based on foreground/background comparisons, including a novel superpixel

straddling feature that measures how many superpixels cross the estimated object boundary,

which reportedly works very well on natural images. This technique assumes that objects

are reasonably large (at least a few superpixels), so it is unclear how it would perform in
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scenes with small objects, typical of household environments.

Endres and Hoiem (2010) propose a method to produce a ranked set of regions from a

single image, such that the top-ranked regions are the most likely to be good segmentations

of objects. They encourage spatial diversity via structured learning to segment objects

placed in different image locations, minimizing overlap. Their region ranking is based on

features such as boundary probabilities (the globalPb detector of Maire et al. (2008)) and

difference of color histograms between foreground and background.

Carreira and Sminchisescu (2010) generate multiple binary segmentations of objects

and rank them according to their ”object plausibility” using a random forest regressor.

The multiple binary segmentations are generated using a min-cuts/max-flow framework,

choosing foreground/background seeds from a grid. The objectness measure of Carreira

and Sminchisescu (2010) learns a ranking for the different segments, using features from

graph partitioning, region-based, intra-region texture/brightness comparisons, and bound-

ary probabilities (Maire et al., 2008).

In the range sensing community, Rusu and Cousins (2011) implement in PCL an ap-

proach to find novel objects in domestic environments. The authors make the assumption

that all interesting objects in their scenes lie on top of horizontal planes (e.g., tables), and

proceed to search for planes prior to any object search. Detected planes are segmented out,

and the 3D points on top of the planes are clustered according to their pairwise distances

to find a small subset of object candidates. This approach has been very popular in the

robotics community, with many authors restricting their input to tabletop scenes and im-

plementing some form of horizontal plane segmentation (e.g., Rusu et al. (2009b), Bjorkman

and Kragic (2010), Marton et al. (2010), Lai and Fox (2011), Kootstra and Kragic (2011),

Mishra et al. (2012)).

Bjorkman and Kragic (2010) combine an image with stereo data to automatically de-

tect and segment unknown objects. The authors use a probabilistic framework to jointly

optimize the detection and segmentation processes. In order to do that, strong assumptions

are made, particularly on the location and scale of objects (large, near the image center)

and on the detection of a planar supporting surface, which limit the applicability of their

approach.

Kootstra and Kragic (2011) formalize the work of Bjorkman and Kragic (2010) as a

probabilistic framework based on Gestalt principles, which have been shown to be very

useful in early segmentation in humans (Wertheimer, 1938). The approach of Kootstra and

Kragic implements very similar cues to our own Structure Discovery algorithm, described

in Chapter 6, such as concavity, continuity, contour compactness, etc.

As a key part of Structure Discovery, we develop a novel region-based image and range

data fusion. Most of the literature on RGBD perception focuses on low-level fusion with

one-to-one correspondences to merge image and range data (e.g., Bjorkman and Kragic
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(2010), Posner et al. (2008), Gould et al. (2008)), either at the pixel level. Pixel level

fusion assumes depth measurements for every pixel, that is, dense depth images (Bjorkman

and Kragic, 2010, Gould et al., 2008). Dense depth estimation, however, has fundamental

limitations that must be considered. As we discuss in Chapter 2.2, RGBD images may

suffer from depth fading in large portions of the image. If the range data source is a laser

range finder, these algorithms often require super-resolution techniques (Diebel and Thrun,

2005) because images usually have higher resolution than their corresponding point clouds.

3.2.2 Object Discovery

The aim of Unsupervised Object Discovery (Weber et al., 2000, Russell et al., 2006) is to

jointly segment and learn the appearance of unknown objects in the environment. Unsu-

pervised Object Discovery is very challenging, in part because the definition of object is

subjective, as it depends on the observer. Furthermore, different works use different input

sources (e.g., unorganized collections of images (Weber et al., 2000, Kang et al., 2011),

image sequences (Morwald et al., 2010), images with disparity (Somanath et al., 2009),

laser data (Ruhnke et al., 2009)) to produce different data outputs (e.g., clusters of im-

ages (Weber et al., 2000), clusters of bounding boxes (Lee and Grauman, 2011), clusters

of image segments (Russell et al., 2006, Kang et al., 2011), 3D models (Somanath et al.,

2009)), and using different assumptions (e.g., one object per image (Weber et al., 2000),

only tabletop scenes (Kootstra and Kragic, 2011), multiple views of the same scene (Herbst

et al., 2011)) depending on the application. Comparing the performance between methods

is very challenging due to this disparity in inputs, definition of objects, assumptions, and

outputs.

Methods in Unsupervised Object Discovery that assume an unorganized collection of

images as input are very common in Computer Vision research (e.g., Weber et al. (2000),

Russell et al. (2006), Lee and Grauman (2011), Kang et al. (2011, 2012), Philbin et al.

(2010), Sivic et al. (2005), and the general survey of Tuytelaars et al. (2009)). Using an

unorganized collection of images as input implies, in terms of Fig. 3.1, that we assume no

knowledge about the world, the physical agent, or the sensing. Some of these methods,

such as Weber et al. (2000), Tuytelaars et al. (2009), focus only on grouping entire images

in categories (i.e., assuming that each image mostly contains a single, large object), which

is equivalent to not using a candidate generator H.

The key difference between Unsupervised Object Discovery and LROD is the amount

and variety of information sources. Most methods in Unsupervised Object Discovery assume

that no information is available about the world Ω, the physical agent A, or the sensors

S. As datasets grow larger, visual information becomes less discriminative and recurring

visual patterns appear everywhere. In addition, algorithms often require pairwise operations
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over all pairs of candidates, which makes them computationally expensive. In LROD,

metadata—non-visual information from Ω, A, and S—is not only available, but necessary;

we need a general architecture to leverage both visual information and metadata to discover

objects and adapt as conditions change.

Prior work in robotics has widely used metadata to limit computational costs and im-

prove robustness in perception. The metadata is mostly incorporated by imposing restric-

tions restrictions on the environment, data acquisition, or agent motion, which often result

in single-purpose solutions of limited applicability. Common assumptions include partial

knowledge of the world Ω, usually about the scene configuration or the appearance or shape

of objects. Marton et al. (2010) assumes that interesting objects lie on tables to segment

novel objects in 3D point clouds. A horizontal plane detector is used to pre-segment the

scene and enforce the tabletop assumption. This same assumption is shared by other works

in the robotics literature, such as Bjorkman and Kragic (2010), Kootstra and Kragic (2011).

Mishra and Aloimonos (2011) use 3-frame sequences, motion cues, and assume that images

contain a table with known color distribution to discover and accurately segment objects

in cluttered scenes. Morwald et al. (2010) assume that relevant objects may be modeled by

simple shapes (such as boxes or cylinders) and that images come in sequences to perform

automated modeling of household objects, enforcing temporal consistency with tracking.

Both Mishra and Aloimonos (2011) and Morwald et al. (2010) assume some knowledge on

constraints about the sensors S (image ordering and sequencing). Herbst et al. (2011) use

datasets consisting of multiple sequences of images collected in the same locations, in or-

der to compute per-sequence environment maps and perform scene differencing to discover

movable objects. The implicit assumptions include the knowledge of the robot location,

recording time, and that the robotic agent A visits the same locations multiple times.

Rusu et al. (2008) assume strong prior shape and location knowledge to segment cabinets,

drawers and shelves in kitchen environments, which are in turn used as cues for the most

likely locations of objects. Other works assume an active robotic agent A that interacts

with Ω, S and H to modify the environment and improve the object discovery process; for

example, Fitzpatrick (2003) track movable objects through random interactions with the

environment.

All these works use metadata and assumptions to improve performance and efficiency

for their particular setups, at the cost of underperforming (and, often, not working at all)

in alternative types of scenes. Our general architecture addresses these shortcomings with

a common formulation for metadata, thus allowing us to opportunistically take advantage

of different sources of information as conditions change.

In our framework, we combine multiple sources of information (visual similarity and

metadata) in CSGs, and cluster the CSGs to obtain groups of object candidates. In the

clustering literature, this area is known as multi-similarity (or multi-source) clustering.
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While multi-similarity clustering applied to Unsupervised Object Discovery is a novelty

of this work, other fields (e.g., bioinformatics) commonly use multi-similarity clustering

to combine multiple heterogeneous data sources. Zeng et al. (2010) combine gene expres-

sion data, text, and clustering constraints induced by the text data, to identify closely

related genes. Zeng et al.use a variant of EM in which parameter estimation and cluster

reassignment are performed over a single data source picked at random at each iteration.

Troyanskaya et al. (2003) introduce a Bayesian framework to cluster protein-protein in-

teraction patterns based on multiple sources of protein relations. The Bayesian network

combines multiple clusterings (one for each data source) using human expert knowledge to

estimate the prior probabilities of the interaction patterns.

Other fields such as machine learning and data mining have also shown interest in multi-

similarity clustering. Bouvrie (2004) considers the problem of multi-similarity clustering

with partially missing data, where not all data sources are available for all points. Bouvrie

optimizes an information-theoretic objective function over pairs of co-occurrence matrices,

which requires
(
n
2

)
clustering steps (for n data sources). Tang et al. (2009) propose Link

Matrix Factorization, in which multiple graphs for different data sources are approximated

by a graph-specific factor and a factor common to all graphs, where the common factor is

the consensus partition. Strehl and Ghosh (2002) combine multiple clusterings as a com-

binatorial optimization problem over the shared mutual information between clusterings.

This method performs clusterings for individual data sources first, and a clustering over the

co-occurrences of data labels, which the authors term a cluster ensemble. Hore et al. (2006)

modify the cluster ensembles of Strehl and Ghosh (2002) to use clustering centroids instead

of clustering labels. This change enables the combination of disjoint datasets into the same

cluster ensemble, with centroids acting as representatives for the data in their clusters.

All previously mentioned methods for multi-similarity clustering except Hore et al.

(2006) suffer from poor scalability, as they all require computing and storing multiple clus-

terings of the full dataset for each individual data source. In object discovery, some data

sources (in particular, visual similarity) are very expensive to compute; therefore, clustering

each individual data source can be very costly. Some cases, such as Tang et al. (2009), also

require multiple full adjacency matrices in memory, which is infeasible for large datasets.

In our work, we take the route of Hore et al. (2006) of computing consensus clusters over

disjoint datasets. The key differences between Hore et al. (2006) and our work arise from

our clustering method being tailored for object discovery. First, we compute disjoint sub-

sets of data samples dynamically from metadata, and not random splits. Second, we use

partial 3D object models as intermediate representations, and not centroids. The partial

3D models encode more information than centroids or individual candidates hi, so our

clustering method is asymmetric: the similarity functions that create the disjoint subsets

(visual features and metadata) are different than the similarity functions in the consensus
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clustering (more complex visual and 3D features).



Part II

Object Recognition and Pose

Estimation





Overview of Part II

In Lifelong Robotic Object Perception, the end goal is to perceive objects for robotic ma-

nipulation. In the Object Recognition and Pose Estimation chapters of this thesis, we

pursue the goal of identifying objects and estimating their poses so that a service robot

can manipulate them. A key requirement for the algorithms we present is that they must

perform well in real-world data (i.e., cluttered scenes and possibly repeated objects) and

with minimal latency.

We introduce two systems for Object Recognition and Pose Estimation: MOPED (Sec-

tion 4), and its extension MOPED-RGBD (Section 5). Both systems use the same approach

of using rigidity constraints and local invariant features, because this combination currently

offers the best trade-off between minimal latency, reliability, and accuracy in pose estima-

tion.

MOPED is a framework for Multiple Object Pose Estimation and Detection that inte-

grates single-image and multi-image object recognition and pose estimation. In MOPED,

we address two main challenges in computer vision for robotics: robust performance in

complex scenes, and low latency for real-time operation. We achieve robust performance

with multiple algorithmic contributions, including Iterative Clustering-Estimation (ICE),

a novel object hypothesis scoring function based on M-estimator theory, and Projection

Clustering a novel pose clustering algorithm that robustly handles recognition outliers. We

achieve scalability and low latency with an improved feature matching algorithm for large

databases, a GPU/CPU hybrid architecture that exploits parallelism at all levels, and an

optimized resource scheduler.

We extend MOPED to leverage RGBD images using an adaptive image-depth fusion

model based on maximum likelihood estimates. We incorporate this model to each stage of

MOPED to achieve object recognition robust to imperfect depth data. The resulting system,

MOPED-RGBD, leverages adaptive pose estimation, adaptive object priors, and adaptive

feature matching to opportunistically use depth information when available and seamlessly

transition to the performance of the image-only MOPED when depth measurements are

not available.





Chapter 4

The MOPED Framework

Recognize. [v. rec·og·nize.  re-k@g-n̄iz]: To

perceive to be something or someone previously

known.

Merriam-Webster.com (2012)

In this chapter we present MOPED, a framework for Multiple Object Pose Estimation and

Detection that seamlessly integrates single-image and multi-image object recognition and

pose estimation in one optimized, robust, and scalable framework. We address two main

challenges in computer vision for robotics: robust performance in complex scenes, and low

latency for real-time operation.

We achieve robust performance with Iterative Clustering-Estimation (ICE), a novel

algorithm that iteratively combines feature clustering with robust pose estimation. Feature

clustering quickly partitions the scene and produces object hypotheses. The hypotheses

are used to further refine the feature clusters, and the two steps iterate until convergence.

ICE is easy to parallelize, and easily integrates single- and multi-camera object recognition

and pose estimation. We also introduce a novel object hypothesis scoring function based on

M-estimator theory, and a novel pose clustering algorithm that robustly handles recognition

outliers.

We achieve scalability and low latency with an improved feature matching algorithm for

large databases, a GPU/CPU hybrid architecture that exploits parallelism at all levels, and

an optimized resource scheduler. We provide extensive experimental results demonstrating

state-of-the-art performance in terms of recognition, scalability, and latency in real-world

robotic applications.

This chapter, as well as the earlier publications of MOPED in Martinez et al. (2010),

Collet et al. (2011b), are joint work with Manuel Martinez.
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4.1 Problem formulation

The goal of MOPED is the recognition of objects from images given a database of object

models, and the estimation of the pose of each recognized object. In this section, we

formalize these inputs and outputs and introduce the relevant terminology for this chapter.

4.1.1 Input: images

The input to MOPED is a set I of M images

I = {I1, . . . , Im, . . . , IM} Im = {Km, Tm,gm}. (4.1)

In the general case, each image is captured with a different calibrated camera. Therefore,

each image Im is defined by a 3×3 matrix of intrinsic camera parameters Km, a 4×4 matrix

of extrinsic camera parameters Tm with respect to a known world reference frame, and a

matrix of pixel values gm.

MOPED is agnostic to the number of images M . In other words, it is equally valid in

both an extrinsically calibrated multi-camera setup, and in the simplified case of a single

image (M = 1) and a camera-centric world (T1 = I4, where I4 is a 4× 4 identity matrix).

4.1.2 Input: object models

Each object to be recognized by MOPED first goes through an off-line learning stage, in

which a sparse 3D model of the object is created. First, a set of images is taken with

the object in various poses. Reliable local descriptors are extracted from natural features

using SIFT (Lowe, 2004), which have proven to be one of the most distinctive and robust

local descriptors across a wide range of transformations (Mikolajczyk and Schmid, 2005).

Alternative descriptors (e.g., SURF (Bay et al., 2008), ferns (Ozuysal et al., 2010)) can

also be used. Using structure from motion (Szeliski and Kang, 1994) on the matched

SIFT keypoints, we merge the information from each training image into a sparse 3D

model. Each 3D point is linked to a descriptor that is produced from clustering individual

matched descriptors in different views. Finally, proper alignment and scale for each model

are computed to match the real object dimensions and define an appropriate coordinate

frame, which for simplicity is defined at the object’s center.

Let O be a set of object models. Each object model is defined by its object identity o

and a set of features Fo

O = {o,Fo} Fo = {F1;o, . . . , Fi;o, . . . , FN ;o}. (4.2)

Each feature is represented by a 3D point location P = [X, Y, Z]T in the object’s

coordinate frame and a feature descriptor D, whose dimensionality depends on the type of

descriptor used, e.g., k = 128 if using SIFT or k = 64 if using SURF. That is,
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Fi;o = {Pi;o, Di;o} Pi;o ∈ R3, Di;o ∈ Rk. (4.3)

The union of all features from all objects in O is defined as F =
⋃
o∈O Fo.

4.1.3 Output: recognized objects

The output of MOPED is a set of object hypotheses H. Each object hypothesisHh = {o, Th}
is represented by an object identity o and a 4 × 4 matrix Th that corresponds to the pose

of the object with respect to the world reference frame.

4.2 Iterative Clustering-Estimation

Figure 4.1: Illustration of two ICE iterations. Colored outlines represent estimated poses.
(a) Feature extraction and matching. (b) Feature clustering. (c) Hypothesis generation.
(d-e) Cluster Clustering. (f) Pose refinement. (g) Final result.

The task of recognizing objects from local features in images requires solving two sub-

problems: the correspondence problem and the pose estimation problem. The correspon-

dence problem refers to the accurate matching of image features to features that belong to

a particular object. The pose estimation problem refers to the generation of object poses

that are geometrically consistent with the found correspondences.

The inevitable presence of mismatched correspondences forces us to utilize robust esti-

mation techniques, such as M-estimators or RANSAC (Fischler and Bolles, 1981). In the

presence of repeated objects in a scene, the correspondence problem cannot be solved in

isolation, as even perfect image-to-model correspondences need to be linked to a particular

object instance. Robust estimation techniques often fail as well in the presence of this

increased complexity. Solutions such as grouping (Lowe, 1987), interpretation trees (Grim-
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son, 1991) or image space clustering (Collet et al., 2009) alleviate the problem of repeated

objects by reducing the search space for object hypotheses.

The Iterative Clustering-Estimation (ICE) algorithm at the heart of MOPED aims to

jointly solve the correspondence and pose estimation problems in a principled way. Given

initial image-to-model correspondences, ICE iteratively executes clustering and pose esti-

mation to progressively refine which features belong to each object instance, and to compute

the object poses that best fit each object instance. The algorithm is illustrated in Fig. 4.1.

Given a scene with a set of matched features, (Fig. 4.1(a)), the Clustering step generates

groups of image features that are likely to belong to a single object instance (Fig. 4.1(b)). If

prior object pose hypotheses are available, features consistent with each object hypothesis

are used to initialize distinct clusters. Numerous object hypotheses are generated for each

cluster (Fig. 4.1(c)). Then, object hypotheses are merged together if their poses are similar

(Fig. 4.1(d)), thus uniting their feature clusters into larger clusters that potentially contain

all information about a single object instance (Fig. 4.1(e)). With multiple images, the

use of a common reference frame allows us to link object hypotheses recognized in different

images, and thus create multi-image feature clusters. If prior object pose hypotheses are not

available (i.e., at the first iteration of ICE), we use the density of local features matched

to an object model as a prior, with the intuition that groups of features spatially close

together are more likely to belong to the same object instance than features spread across

all images. Thus, we initialize ICE with clusters of features in image space (x, y), as seen

in Fig. 4.1(b).

The Estimation step computes object hypotheses given clusters of features (as shown

in Fig. 4.1(c) and Fig. 4.1(f)). Each cluster can potentially generate one or multiple object

hypotheses, and also contain outliers that cannot be used for any hypothesis. A common

approach for hypothesis generation is the use of RANSAC along with a pose estimation

algorithm, although other approaches are equally valid. In RANSAC, we choose subsets of

features at random within the cluster, then hypothesize an object pose that best fits the

subset of features, and finally check how many features in the cluster are consistent with the

pose hypothesis. This process is repeated multiple times and a set of object hypotheses is

generated for each cluster. The advantage of restricting the search space to that of feature

clusters is the higher likelihood that features from only one object instance are present,

or at most a very limited number of them. This process can be performed regardless of

whether the features belong to one or multiple images.

The set of hypotheses from the Estimation step are then utilized to further refine the

membership of each feature to each cluster (Fig. 4.1(d-e)). The whole process is iterated un-

til convergence, which is reached when no features change their membership in a Clustering

step (Fig. 4.1(f)).

In practice, ICE requires very few iterations until convergence, usually as little as 2
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for setups with one or a few simultaneous images. Parallelization is easy, since the initial

steps are independent for each cluster in each image and object type. Therefore, large sets

of images can be potentially integrated into ICE with very little impact on overall system

latency. Two ICE iterations are required for increased robustness and speed in setups

ranging from one to a few simultaneous images, while further iterations of ICE might

potentially be necessary if tens or hundreds of simultaneous images are to be processed. In

Section 4.3, we describe how to apply ICE for robust object recognition in cluttered scenes.

4.2.1 ICE as Expectation-Maximization

It is interesting to note the conceptual similarity between ICE and the well-known Expectation-

Maximization (EM) (Dempster et al., 1977) algorithm, particularly in the learning of Gaus-

sian Mixture Models (GMM) (Redner and Walker, 1984). EM is an iterative method for

finding parameter estimates in statistical models than contain unobserved latent variables,

alternating between expectation (E) and maximization (M) steps. The expectation (E)

step computes the expected value of the log-likelihood using the current estimate for the

latent variables. The maximization (M) step computes the parameters that maximize the

expected log-likelihood found on the E step. These parameter values determine the latent

variable distribution in the next E step. In Gaussian Mixture Models, the EM algorithm is

applied to find a set of Gaussian distributions that best fits a set of data points. The E step

computes the expected membership of each data point to one of the Gaussian distributions,

while the M step computes the parameters for each distribution given the memberships

computed in the E step. Then, the E step is repeated with the updated parameters to re-

compute new membership values. The entire procedure is repeated until model parameters

converge.

Despite the mathematical differences, the concept behind ICE is essentially the same.

The problem of object recognition in the presence of severe clutter and/or repeated objects

can be interpreted as one of estimation of model parameters—the pose of a set of objects—

where the model depends on unobserved latent variables—the correspondences of image

features to particular object instances. Under this perspective, the Clustering step of ICE

computes the expected membership of each local feature to one of the object instances,

while the Estimation step computes the best object poses given the feature memberships

computed in the Clustering step. Then, the entire procedure is repeated until convergence.

If our object models were Gaussian distributions, ICE and GMMs would be virtually equiv-

alent.
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4.3 The MOPED Framework

This section contains a brief summary of the MOPED framework and its components. Each

individual component is explored in depth in subsequent sections.

The steps itemized below compose the basic MOPED framework for the typical re-

quirements of a robotics application. In essence, MOPED is composed of a single feature

extraction and matching step per image, and multiple iterations of Iterative Clustering-

Estimation (ICE) that efficiently perform object recognition and pose estimation per ob-

ject in a bottom-up approach. Assuming the most common setup of object recognition,

utilizing a single or a small set of images (i.e., less than 10), we fix ICE to compute two full

Clustering-Estimation iterations plus a final cluster merging to remove potential multiple

detections that might have not yet converged. This way, we ensure a good trade-off between

high recognition rate and reduced system latency, but a greater number of iterations should

be considered if working with a larger set of simultaneous images. We show the effect of

each MOPED step in Fig. 4.2.

1. Feature Extraction. Salient features are extracted from each image. We represent

images I as sets of local features fm. Each image Im ∈ I is processed independently, so that

Im = {Km, Tm, fm} fm = FeatExtract(gm). (4.4)

Each individual local feature fj;m from image m is defined by a 2D point location

pj;m = [x, y]T and its corresponding feature descriptor dj;m; that is,

fm = {f1;m, . . . , fj;m, . . . , fJ ;m} fj;m = {pj;m, dj;m}. (4.5)

We define the union of all extracted local features from all images m as f =
⋃M
m=1 fm.

2. Feature Matching. One-to-one correspondences are created between extracted

features in the image set and object features stored in the database. For efficiency, approx-

imate matching techniques can be used, at the cost of a decreased recognition rate. Let C

be a correspondence between an image feature fj;m and a model feature Fi;o, such that

Coj,m =

(fj;m, Fi;o) , if fj;m ↔ Fi;o

∅, otherwise
. (4.6)

The set of correspondences for a given object o and image m is represented as Co
m =⋃

∀j C
o
j;m. The sets of correspondences Cm and Co are defined equivalently as Cm =⋃

∀j,oC
o
j;m and Co =

⋃
∀j,mC

o
j;m.

3. Feature Clustering. Features matched to a particular object are clustered in

image space (x, y), independently for each image. Given that spatially close features are

more likely to belong to the same object instance, we cluster the sets of feature locations
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1. Feature Extraction 2. Feature Matching 

3. Feature Clustering 4. Hypothesis Generation 

5. Cluster Clustering 6. Pose Reƒinement 

7. Pose Recombination 

Figure 4.2: Effect of each MOPED step (best viewed in color). Each color in steps 2-7
represents a different object ID in the database.
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pom ∈ Co
m, producing a set of clusters that group features spatially close together. We

describe this step in detail in Section 4.4.1.

Each cluster Kk is defined by an object identity o, an image index m, and a subset of

the correspondences to object O in image Im, that is,

Kk = {o,m,Ck ⊂ Co
m}. (4.7)

The set of all clusters is expressed as K.

4. Estimation #1: Hypothesis Generation. Each cluster is processed in each

image independently in search of objects. RANSAC and Levenberg-Marquardt (LM) are

used to find object instances that are loosely consistent with each object’s geometry in spite

of outliers. The number of RANSAC iterations is high and the number of LM iterations is

kept low, so that we discover multiple object hypotheses with coarse pose estimation. At

this step, each hypothesis h consists of

h = {o, k, Th,Ch ⊂ Ck}, (4.8)

where o is the object identity of hypothesis h, k is a cluster index, Th is a 4×4 transformation

matrix that defines the object hypothesis pose with respect to the world reference frame,

and Ch is the subset of correspondences that are consistent with hypothesis h. We describe

this step in detail in Section 4.4.2.

5. Cluster Clustering. As the same object might be present in multiple clusters

and images, poses are projected from the image set onto a common coordinate frame, and

features consistent with a pose are re-clustered. New, larger clusters are created, that often

contain all consistent features for a whole object across the entire image set. These new

clusters contain

KK = {o,CK ⊂ Co}. (4.9)

We describe this step in detail in Section 4.4.3 and Section 4.4.4.

6. Estimation #2: Pose Refinement. After Steps 4 and 5, most outliers have been

removed, and each of the new clusters is very likely to contain features corresponding to

only one instance of an object, spanned across multiple images. The RANSAC procedure

is repeated for a low number of iterations, and poses are estimated using LM with a larger

number of iterations to obtain the final poses from each cluster that are consistent with the

multi-view geometry.

Each multi-view hypothesis H is defined by

H = {o, TH ,CH ⊂ CK}, (4.10)
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where o is the object identity of hypothesis H, TH is a 4 × 4 transformation matrix that

defines the object hypothesis pose with respect to the world reference frame, and CH is the

subset of correspondences that are consistent with hypothesis H. We describe this step in

detail in Section 4.4.5.

7. Pose Recombination. A final merging step removes any multiple detections that

might have survived, by merging together object instances that have similar poses. A set

of hypotheses H, with Hh = {o, TH}, is the final output of MOPED. We describe this step

in detail in Section 4.4.6.

4.4 Addressing Complexity

In this section, we provide an in-depth explanation of our contributions to address com-

plexity that have been integrated in the MOPED object recognition framework, and how

each of our contributions relate to the Iterative Clustering-Estimation procedure.

4.4.1 Image Space Clustering

The goal of Image Space Clustering in the context of object recognition is the creation of

object priors based solely on image features. In a generic unstructured scene, it is infeasible

to attempt the recognition of objects with no higher-level reasoning than the image-model

correspondences Coj,m = (fj;m, Fi;o). Correspondences for a single object type o may belong

to different object instances, or may be matching outliers. Multi-camera setups are even

more uncertain, since the amount of image features increases dramatically, and so does

the probability of finding multiple repeated objects in the combined set of images. Under

these circumstances, the ability to compute a prior over the image features is of utmost

importance, in order to evaluate which of the features are likely to belong to the same

object instance, and which of them are likely to be outliers.

RANSAC (Fischler and Bolles, 1981) and M-estimators are often the methods of choice

to find models in the presence of outliers. However, both of them fail in the presence of

heavy clutter and multiple objects, in which only a small percentage of the matched cor-

respondences belong to the same object instance. To overcome this limitation, we propose

the creation of object priors based on the density of correspondences across the image, by

exploiting the assumption that areas with a higher concentration of correspondences for a

given model are more likely to contain an object than areas with very few features. There-

fore, we aim to create subsets of correspondences within each image that are reasonably

close together and assume they are likely to belong to the same object instance, avoiding

the waste of computation time in trying to relate features spread all across the image. We

can accomplish this goal by seeking the modes of the density distribution of features in
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image space. A well-known technique for this task is Mean Shift clustering (Cheng, 1995),

which is a particularly good choice for MOPED because no fixed number of clusters needs

to be specified. Instead, a radius parameter needs to be chosen, that selects how close

two features must in order to be part of the same cluster. Thus, for each object in each

image independently, we cluster the set of feature locations p ∈ Co
m (i.e., pixel positions

p = (x, y)), producing a set of clusters K that contain groups of features spatially close to-

gether. Clusters that contain very few features, those in which no object can be recognized,

are discarded, thus considering the features as outliers and discarding them as well.

Figure 4.3: Example of highly cluttered scene and the importance of clustering. (Top-left)
Scene with 9 overlapping notebooks. (Bottom-left) Recovered poses for notebooks with
MOPED. (Right) Clusters of features in image space.

The advantage of using Mean Shift clusters as object priors is illustrated in Fig. 4.3. In

Fig. 4.3(top-left) we see an image with 9 notebooks. As a simple example, let us imagine

that all notebooks have the same number of correspondences, and that 70% of those corre-

spondences are correct, i.e., that the global inlier ratio w = # inliers
# points = 0.7. The inlier ratio

for a particular notebook is then wobj = w
# obj = 0.0778. The number of iterations k theo-

retically required (Fischler and Bolles, 1981) to find one particular instance of a notebook

with probability p is

k =
log(1− p)

log(1− (wobj)n)
, (4.11)

where n is the number of inliers for a successful detection. If we require n = 5 inliers
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and a probability p = 0.95 of finding a particular notebook, then we should perform k =

1.05 million iterations of RANSAC. On the other hand, clustering the correspondences in

smaller sets as in Fig. 4.3(right) means that fewer notebooks (at most 3) are present in

a given cluster. In such a scenario, finding one particular instance of a notebook with

95% probability requires 16, 586 and 4386 iterations when 1, 2 and 3 notebooks, resp., are

present in a cluster, at least three orders of magnitude lower than the previous case.

4.4.2 Estimation #1: Hypothesis generation

In the first Estimation step of ICE, our goal is to generate coarse object hypotheses from

clusters of features, so that the object poses can be used to refine the cluster associations.

In general, each cluster Kk = {o,m,Ck ⊂ Co
m} may contain features from multiple object

hypotheses as well as matching outliers. In order to handle the inevitable presence of

matching outliers, we use the robust estimation procedure RANSAC. For a given cluster

Kk, we choose a subset of correspondences C ⊂ Ck and estimate an object hypothesis

with the best pose that minimizes the sum of reprojection errors (see Eq. (A.1)). We

minimize the sum of reprojection errors via a standard Levenberg-Marquardt (LM) non-

linear least squares minimization. If the amount of correspondences in Ck consistent with

the hypothesis is higher than a threshold ε, we create a new object instance and refine the

estimated pose using all consistent correspondences in the optimization. We then repeat

this procedure until the amount of unallocated points is lower than a threshold, or the

maximum number of iterations has been exceeded. By repeating this procedure for all

clusters in all images and objects, we produce a set of hypotheses h, where each hypothesis

h = {o, k, Th,Ch ⊂ Ck}.
At this stage, we wish to obtain a set of coarse pose hypotheses to work with, as fast

as possible. We require a large number of RANSAC iterations to detect as many object

hypotheses as possible, but we can use a low maximum number of LM iterations and loose

threshold ε when minimizing the sum of reprojection errors. Accurate pose will be achieved

in later stages of MOPED. The initialization of LM for pose estimation can be implemented

with either fast PnP solvers such as the ones proposed in Collet et al. (2009), Lepetit et al.

(2008) or even completely at random within the space of possible poses (e.g., some distance

in front of the camera). Random initialization is the default choice for MOPED, as we

found it to be more robust to the pose ambiguities that sometimes confuse PnP solvers

(particularly in planar objects, as described in Schweighofer and Pinz (2006)).

4.4.3 Hypothesis Quality Score

It is useful at this point to introduce a robust metric to quantitatively compare the goodness

of multiple object hypotheses. The desired object hypothesis metric should favor hypotheses
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with:

• The most amount of consistent correspondences.

• The minimum distance error in each of the correspondences.

The sum of reprojection errors in Eq. (A.2) is not a good evaluation metric according

to these requirements, as this error is bound to increase whenever an extra correspondence

is added. Therefore, the sum of reprojection errors favors hypotheses with the minimum

amount of correspondences, which can lead to choosing spurious hypotheses over more

desirable ones.

The average reprojection error exhibits similar issues, as it does not consider the amount

of consistent correspondences in the objective function. As a result, there is no incentive to

detect entire objects, as local patches within an object can always be detected with lower

reprojection error than the entire objects. This effect is particularly evident in large objects,

or in objects in which the rigidity assumption is compromised (e.g., that have been slightly

bent or deformed over time). Table 4.1 compares these error metrics in MOPED.

In contrast, we define a robust estimator based on the Cauchy distribution that balances

the two criteria stated above. Consider the set of consistent correspondences Ch for a given

object hypothesis, where each correspondence Cj = (fj;m, Fi;o). Assume the corresponding

features in Cj have locations in an image pj and in an object model Pj . Let dj = d(pj , ThPj)

be an error metric that measures the distance between a 2D point in an image and a 3D

point from hypothesis h with pose Th (e.g., reprojection, backprojection errors). Then, the

Cauchy distribution ψ(dj) is defined by

ψ(dj) =
1

1 +
(
dj
σ

)2 , (4.12)

where σ2 parameterizes the cut-off distance at which ψ(dj) = 0.5. In our case, the distance

metric dj is the reprojection error measured in pixels. This distribution is maximal when

dj = 0, i.e., ψ(0) = 1, and monotonically decreases to zero when a pair of correspondences

are infinitely away from each other, i.e., ψ(∞) = 0. The Quality Score Q for a given

object hypothesis h is then defined as a summation over the Cauchy scores ψ(dj) for all

correspondences:

Q(h) =
∑

∀j:Cj∈Ch

ψ(dj) =
∑
∀Cj∈Ch

1

1 +
d2(pj ,ThPj)

σ2

. (4.13)

The Q-Score has a lower bound at 0, if a given hypothesis has no correspondences or

if all its correspondences have infinite error, and has an upper bound at |O|, which is the
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total number of correspondences for model O. This score allows us to reliably rank our

object hypotheses and evaluate their strength.

The cut-off distance σ may be either a fixed value, or adjusted at each iteration via ro-

bust estimation techniques (Zhang, 1997), depending on the application. Robust estimation

techniques require a certain minimum outlier/inlier ratio to work properly (# outliers
# inliers < 1 in

all cases), known as the breaking point of a robust estimator (Huber, 1981). In the case of

MOPED, the outlier/inlier ratio is often well over the breaking point of any robust estima-

tor, especially when multiple instances of an object are present; as a consequence, robust

estimators might result in unrealistically large values of σ in complex scenes. Therefore,

we choose to set a fixed value for the cut-off parameter, σ = 2 pixels, for a good balance

between encouraging a large number of correspondences while keeping their reprojection

error low.

4.4.4 Cluster Clustering

The disadvantage of separating the image search space into a set of clusters is that the

produced pose hypotheses may be generated with only partial information from the scene,

given that information from other clusters and other views is not considered in the initial

Estimation step of ICE. However, once a rough estimate of the object poses is known,

we can merge the information from multiple clusters and multiple views to obtain sets of

correspondences that contain all features from a single object instance (see Fig. 4.1).

Multiple alternatives are available to group similar hypotheses into clusters. In this

section, we propose a novel hypothesis clustering algorithm called Projection Clustering,

in which we perform correspondence-level grouping from a set of object hypotheses h and

provide a mechanism to robustly filter any pose outliers.

For comparison, we introduce a simpler Cluster Clustering scheme based on Mean Shift,

and analyze the computational complexity of both schemes to conclude in which cases we

might prefer one over the other.

Mean Shift clustering on pose space

A straightforward hypothesis clustering scheme is to perform Mean Shift clustering on all

hypotheses h = {o, k, Th,Ch ⊂ Ck} for a given object type o. In particular, we cluster the

pose hypotheses Th in pose space. In order to properly measure distances between poses,

it is convenient to parameterize rotations in terms of quaternions and project them in the

same half of the quaternion hypersphere prior to clustering, using then Mean Shift on the

resulting 7-dimensional poses. After this procedure, we merge the correspondence clusters
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Ch of those poses that belong to the same pose cluster TK ,

CK =
⋃

Th∈TK

Ch. (4.14)

This produces clusters KK = {o,CK ⊂ Co} whose correspondence clusters span over

multiple images. In addition, the centroid of each pose cluster TK can be used as ini-

tialization for the following Estimation iteration of ICE. At this point, we can discard all

correspondences not consistent with any pose hypothesis, thus filtering many outliers and

reducing the search space for future iterations of ICE. The computational complexity of

Mean Shift is O(dN2t), where d = 7 is the dimensionality of the clustered data, N = |h|
is the total number of hypotheses to cluster, and t is the number of iterations that Mean

Shift requires. In practice, the number of hypotheses is often fairly small, and t ≤ 100 in

our implementation.

Projection Clustering

Mean Shift provides basic clustering in pose space, and works well when multiple correct

detections of an object are present. However, it is possible that spurious false positives

are detected in the hypothesis generation step. It is important to realize that these false

positives are very rarely exclusively due to random outliers in the feature matching process.

To the contrary, most outlier detections are artifacts of the projection of a 3D scene into

a 2D image when captured by a perspective camera. In particular, we can distinguish two

different cases:

• A group of correct matches whose 3D configuration is degenerate or near-degenerate

(e.g., a group of 3D points that are almost collinear), incorrectly grouped with one

single matching outlier. In this case, the output pose is largely determined by the

location of the matching outlier, which causes arbitrarily erroneous hypotheses to be

accepted as correct.

• Pose ambiguities in objects with planar surfaces. The sum of reprojection errors in

planar surfaces may contain two complementary local minima in some configurations

of pose space (Schweighofer and Pinz, 2006), which often causes the appearance of two

distinct and partially overlapping object hypotheses. These hypotheses are usually

too distant in pose space to be grouped together.

The false positives output in the pose hypothesis generation are often too distant from

any correct hypothesis in the scene, and cannot be merged using regular clustering tech-

niques (e.g., Mean Shift). However, the point features that generated those false positives

are usually correct, and they can provide valuable information to some of the correct object
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hypotheses. In Projection Clustering, we process each point feature individually, and assign

them to the strongest pose hypothesis to which they might belong. Usually, spurious poses

only contain a limited number of consistent point features, thus resulting in lower Q-scores

(Section 4.4.3) than correct object hypotheses. By transferring most of the point features

to the strongest object hypotheses, we not only utilize the extra information available in the

scene for increased accuracy, but also filter most false positives by lowering their number of

consistent points below the required minimum.

The first step in Projection Clustering is the computation of Q-Scores for all object

hypotheses h. We generate a pool of potential correspondences Co that contains all corre-

spondences for a given object type that are consistent with at least one pose hypothesis.

Correspondences from all images are included in Co. We compute the Quality score for

each hypothesis h from all correspondences Cj = (fj , Fj) such that Cj ∈ Co.

Q(h) =
∑

∀j:Cj∈Co

ψ(dj) =
∑
∀Cj∈Co

1

1 +
d2(pj ,ThPj)

σ2

(4.15)

For each potential correspondence Cj in Co, we define a set of likely hypotheses hj

as the set of those hypotheses h whose reprojection error is lower than a threshold γ.

This threshold can be interpreted as an attraction coefficient; large values of γ lead to

heavy transference of correspondence to strong hypotheses, while small values cause few

correspondences to transfer from one hypothesis to another. In our experiments, a large

threshold γ of 64 pixels is used.

h ∈ hj⇐⇒d2(pj , ThPj) < γ (4.16)

At this point, the relation between correspondences Cj and hypotheses h is broken. In

other words, we empty the set of correspondences Ch for each hypothesis h, so that Ch = ∅.
Then, we re-assign each correspondence Cj ∈ Co to the pose hypothesis h within hj with

stronger overall Q-Score:

Ch ← Cj : h = arg max
h∈hj

Q(h) (4.17)

Finally, it is important to check the remaining number of correspondences that each

object hypothesis has after Projection Clustering. Pose hypotheses that retain less than

a minimum number of consistent correspondences are considered outliers and therefore

discarded.

The Projection Clustering algorithm we propose has a computational complexityO(MNI),

where M = |C| is the total number of correspondences to process, N = |h| is the number

of pose hypotheses and I = |I| is the total number of images. Comparing this with the

complexity O(dN2t) of Mean Shift, we see that the only advantage of Mean Shift in terms
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of computational complexity would be in the case of object models with enormous numbers

of features and many high resolution images, so that O(MNI)� O(dN2t). While offering

a similar computational complexity, the advantage of Projection Clustering with respect

to Mean Shift is in terms of improved robustness and outlier detection, both of which are

essential for handling increased complexity in MOPED.

Performance Comparison

In this experiment, we compare the recognition performance of MOPED when using the

two Cluster-Clustering approaches explained in this section. In addition, and given that

Projection Clustering depends on the behavior of a hypothesis ranking mechanism, we

implement four different ranking mechanisms and compare their performance. The first

ranking mechanism is our own Q-Score introduced in Section 4.4.3, while the other ap-

proaches considered are the sum of reprojection errors, the average reprojection error, and

the number of consistent correspondences. The performance of MOPED when using the

different Cluster-Clustering and hypothesis-ranking algorithms is shown in Table 4.1, on a

subset of 100 images from the Simple Movie Benchmark (Section 4.5.2) that contain a total

of 1289 object instances.

An object hypothesis is considered a true positive if its pose estimate is within 5 cm

and 10 degrees of the ground truth pose. Object hypotheses whose pose is outside this

error range are considered false positives. Ground truth objects without an associated

true positive are considered false negatives. According to these performance metrics, the

appearance of pose ambiguities and misdetections is particularly critical, since they often

produce both a false positive –the rotational error is greater than the threshold– and a false

negative –no pose agrees with the ground truth–.

The overall best-performer is Projection Clustering when using Q-Score as its hypoth-

esis ranking metric, which correctly recognizes and estimates the pose of 87.6% of the

objects in the dataset. Mean Shift is the second best performer, but the increased false

positive rate is mainly due to pose ambiguities that cannot be resolved and produce spu-

rious detections. The different hypothesis ranking schemes critically impact the overall

performance of Projection Clustering, as multiple poses often need to be merged after the

first Clustering-Estimation iteration. Ranking spurious poses over correct poses results in

an increased number of false positives, as Projection Clustering is unable to merge object

hypothesis properly. While Q-Score is able to estimate the best pose out a set of multi-

ple detections, Reprojection and Avg. Reprojection select sub-optimal poses that contain

just a few points, often including outliers. This behavior severely impacts the performance

of Projection Clustering, which barely merges any pose hypotheses and produces an in-

creased number of false positives. The Num. Correspondences metric prefers hypotheses
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True Pos. False Pos. False Neg.

Mean Shift 10.92 3.32 1.97
P.Clust. (Q-Score) 11.3 2.29 1.59
P.Clust. (Reproj) 11.05 7.4 1.84

P.Clust. (Avg Reproj) 10.88 7.81 2.01
P.Clust. (# Corresp) 3.6 9.82 9.29

Table 4.1: Mean Recognition per Image: Mean Shift vs Projection Clustering, in the Simple
Movie Benchmark (see Section 4.5.2 for details).

with many consistent matches in the scene, and Projection Clustering merges hypotheses

correctly. Unfortunately, the chosen best hypotheses are in most cases incorrect due to am-

biguities, estimating only 28% of the poses correctly. It must be noted that in simple scenes

with a few unoccluded objects all the evaluated metrics perform similarly well. Projection

Clustering and Q-Score, however, showcase increased robustness when working with the

most complex scenes.

4.4.5 Estimation #2: Pose Refinement

At the second iteration of ICE, we use the information from initial object hypotheses to

obtain clusters that are most likely to belong to a single object instance, with very few

outliers. For this reason, the Estimation step at the second iteration of ICE requires only

a low number of RANSAC iterations to find object hypotheses. In addition, we use a high

number of LM iterations to estimate object poses accurately.

This procedure is equivalent to that of the first Estimation step, being the objective

function to minimize the only difference between the two. For a given multi-view feature

cluster KK , we perform RANSAC on subsets of correspondences C ⊂ CK and obtain pose

hypotheses H = {o, TH ,CH ⊂ CK} with consistent correspondences CH ⊂ CK . The

objective function to minimize can be either the sum of reprojection errors (Eq. (A.2)) or

the sum of backprojection errors (Eq. (A.7)). In MOPED, we choose the backprojection

error because it is simpler to extend to multiple images and depth measurements (as in

Chapter 5) than the reprojection error. See Appendix A for a discussion on these two

objective functions.

We initialize the non-linear minimization of the chosen objective function using the

highest-ranked pose in CK according to their Q-Scores. This non-linear minimization is

performed, again, with a standard Levenberg-Marquardt non-linear least squares minimiza-

tion algorithm.
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4.4.6 Truncating ICE: Pose Recombination

An optional final step should be applied in case ICE has not converged after two iterations,

in order to remove multiple detections of objects. In this case, we perform a full Clustering

step as in Section 4.4.4, and if any hypothesis H ∈ H is updated with transferred correspon-

dences, we perform a final LM optimization that minimizes Eq. (A.7) on all correspondences

CH .

4.5 Addressing Scalability and Latency

In this section, we present multiple contributions to optimize MOPED in terms of scalability

and latency. We first introduce a set of four Benchmarks designed to stress test every

component of MOPED. Each of our contributions is evaluated and verified on this set of

benchmarks.

4.5.1 Baseline system

For comparison purposes, we provide results for a Baseline system that implements the

MOPED framework with none of the optimizations described in Section 4.5. In each case,

we have tried to choose the most widespread publicly available code libraries for each

task. In particular, the following configuration is used as the baseline for our performance

experiments:

Feature Extraction with an OpenMP-enabled, CPU-optimized version of SIFT we

have developed.

Feature matching with a publicly available implementation of ANN by Arya et al.

(1998) and 2-NN Per Object (described in Section 4.5.3).

Image Space clustering with a publicly available C implementation of Mean Shift

(Dollár and Rabaud, 2010).

Estimation #1 with 500 iterations of RANSAC and up to 100 iterations of the

Levenberg-Marquardt (LM) implementation from Lourakis (2004), optimizing the sum of

reprojection errors in Eq. (A.1).

Cluster Clustering with Mean Shift, as described in Section 4.4.4.

Estimation #2 with 24 iterations of RANSAC and up to 500 iterations of LM, opti-

mizing the sum of backprojection errors in Eq. (A.7). The particular number of iterations of

RANSAC in this step is not a critical factor, as most objects are successfully recognized in

the first 10-15 iterations. It is useful, however, to use a multiple of the number of concurrent

threads (see Section 4.5.4) for performance reasons.

Pose Recombination with Mean Shift and up to 500 iterations of LM.
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4.5.2 Benchmarks

Figure 4.4: MOPED Benchmarks. For the sake of clarity, only half of the detected objects
are marked. (a) The Rotation Benchmark: MOPED processes this scene 36.4x faster than
the Baseline. (b) The Zoom Benchmark: MOPED processes this scene 23.4x faster than
the Baseline. (c) The Simple Movie Benchmark. (d) The Complex Movie Benchmark.

We present four benchmarks (Fig. 4.4) designed to stress test every component of our

system. All benchmarks, both synthetic and real-world, provide exclusively a set of images

and ground truth object poses (i.e., no synthetically computed feature locations or cor-

respondences). We performed all experiments on a 2.33GHz quad-core Intel(R) Xeon(R)

E5345 CPU, 4 GB of RAM and a nVidia GeForce GTX 260 GPU running Ubuntu 8.04 (32

bits).

The Rotation Benchmark

The Rotation Benchmark is a set of synthetic images that contains highly cluttered scenes

with up to 400 cards in different sizes and orientations. This benchmark is designed to test

MOPED’s scalability with respect to the database size, while keeping a constant number

of features and objects. We have generated a total of 100 independent images for different
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resolutions (1400 × 1050, 1000 × 750, 700 × 525, 500 × 375 and 350 × 262). Each image

contains from 5 to 80 different objects and up to 400 simultaneous object instances.

The Zoom Benchmark

The Zoom Benchmark is a set of synthetic images that progressively zooms in on 160 cards

until only 12 cards are visible. This benchmark is designed to check the scalability of

MOPED with respect to the total number of detected objects in a scene. We generated a

total of 145 independent images for different resolutions (1400×1050, 1000×750, 700×525,

500×375 and 350×262). Each image contains from 12 to 80 different objects and up to 160

simultaneous object instances. This benchmark simulates a board with 160 cards seen by a

60◦ FOV camera at distances ranging from 280 mm to 1050 mm. The objects were chosen

to have the same number of features at each scale. Each image has over 25000 features.

The Simple Movie Benchmark

Synthetic benchmarks are useful to test a system in controlled conditions, but are a poor

estimator of the performance of a system in the real world. Therefore, we provide two

real-world scenarios for algorithm comparison. The Simple Movie Benchmark consists of a

1900-frame movie at 1280 x 720 resolution, each image containing up to 18 simultaneous

object instances.

The Complex Movie Benchmark

The Complex Movie Benchmark consists of a 3542-frame movie at 1600 x 1200 resolution,

each image containing up to 60 simultaneous object instances. The database contains 91

models and 47342 SIFT features when running this benchmark. It is noteworthy that the

scenes in this video present particularly complex situations, including: several objects of

the same model contiguous to each other, which stresses the clustering step; overlapping

partially-occluded objects, which stresses RANSAC; and objects in particularly ambigu-

ous poses, which stresses both LM and the merging algorithm, that encounter difficulties

determining which pose is preferable.

4.5.3 Feature Matching

Once a set of features have been extracted from input image(s), we must find correspon-

dences between the image features and our object database. Matching is done as a nearest

neighbor search in the 128-dimensional space of SIFT features. An average database of 100

objects can contain over 60,000 features. Each input image, depending on the resolution

and complexity of the scene, can contain over 10,000 features.
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The feature matching step aims to create one-to-one correspondences between model and

image features. The feature matching step is, in general, the most important bottleneck for

model-based object recognition to scale to large object databases. In this section, we propose

and evaluate different alternatives to maximize scalability with respect to the number of

objects in the database, without sacrificing accuracy. The extension of the matching search

space is, in this case, the balancing factor between accuracy and speed when finding nearest

neighbors.

There are no known exact algorithms for solving the matching problem that are faster

than linear search. Approximate algorithms, on the other hand, can provide massive

speedups at the cost of a decreased matching accuracy, and are often used wherever speed is

an issue. Many approximate approaches for finding the nearest neighbors to a given feature

are based on kd-trees (e.g., ANN (Arya et al., 1998), randomized kd-trees (Silpa-Anan and

Hartley, 2008), FLANN (Muja and Lowe, 2009)) or hashing (e.g., LSH (Andoni and Indyk,

2006)). A ratio test between the first two nearest neighbors is often performed for outlier

rejection. We analyze the different alternatives in which these techniques are often applied

to feature matching, and propose an intermediate solution that achieves a good balance

between recognition rate and system latency.

2-NN per Object

On the one end, we can compare the image features against each model independently. If

using e.g., ANN, we build a kd-tree for each model in the database once (off-line), and

we match each of them against every new image. This process entails a complexity of

O(|fm||O| log(|F̄o|)), where |fm| is the number of features on the image, |O| the number of

models in the database, and |F̄o| the mean number of features for each model. When |O|
is large, this approach is vastly inefficient as the cost of accessing each kd-tree dominates

the overall search cost. The search space is in this case very limited, and there is no

degradation in performance when new models are added to the database. We refer to it as

OBJ MATCH.

2-NN per Database

On the other end, we can compare the image features against the whole object database.

This alternative, which we term DB MATCH, builds just one kd-tree containing the features

from all models. This solution has a complexity of O(|fm| log(|O||F̄o|)). The search space

is in this case the whole database. While this approach is orders of magnitude faster than

the previous one, every new object added to the database degrades the overall recognition

performance of the system due to the presence of similar features in different objects. We

provide it as a baseline because it is the fastest matching approach for large object databases.
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# Corresp: After Matching After clustering Final

GPU 3893.7 853.2 562.1
OBJ MATCH 3893.6 712.0 449.2
DB MATCH 1778.4 508.8 394.7
MOPED-90 3624.9 713.6 428.9

Matching Time(ms) Objects Found

GPU 253.34 8.8
OBJ MATCH 498.586 8.0
DB MATCH 129.85 7.5
MOPED-90 140.36 8.2

Table 4.2: Feature matching algorithms in the Simple Movie Benchmark. GPU used as
performance baseline, as it computes exact nearest neighbors.

k-NN per Database

Alternatively, one can consider the closest k nearest neighbors instead (with k > 2). k-ANN

implementations using kd-trees can provide more neighbors without significantly increasing

their computational cost, as they are often a byproduct of the process of obtaining the

nearest neighbor. An intermediate approach to the ones presented before is the search for

k multiple neighbors in the whole database. If two neighbors from the same model are

found, the distance ratio is then applied to the 2 nearest neighbors from the same model.

If the nearest neighbor is the only neighbor for a given model, we apply the distance ratio

with the second nearest neighbor to avoid spurious correspondences. This algorithm (with

k = 90) is the default choice for MOPED.

Brute Force on GPU

The advent of GPUs and their many-core architecture allows the efficient implementation

of an exact feature matching algorithm. The parallel nature of the brute force matching

algorithm suits the GPU, and allows it to be faster than the ANN approach when |O| is

not too large. Given that this algorithm scales linearly with the number of features instead

of logarithmically, we can match each model independently without performance loss.

Performance comparison

Fig. 4.5 compares the cost of the different alternatives on the Rotation Benchmark. OBJ MATCH

and GPU scale linearly with respect to |O|, while DB MATCH and MOPED-k scale almost

logarithmically. We show MOPED-k using k = 90 and k = 30. The value of k adjusts the
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speed and quality behavior of MOPED between OBJ MATCH (k =∞) and DB MATCH

(k = 2). The recognition performance of MOPED-k when using the different strategies

is shown in Table 4.2. GPU provides an upper bound for the object recognition, as it

is an exact search method. OBJ MATCH comes closest in raw matching accuracy with

MOPED-90 a close second. However, the number of objects detected are nearly the same.

The matching speed of MOPED-90 is, however, significantly better than OBJ MATCH.

Feature matching in MOPED-90 thus provides a significant performance increase without

sacrificing much accuracy.
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Figure 4.5: Scalability of feature matching algorithms with respect to the database size, in
the Rotation Benchmark at 1400× 1050 resolution.

4.5.4 Architecture Optimizations

Our algorithmic improvements were focused mainly on boosting the scalability and robust-

ness of the system. The architectural improvements of MOPED are obtained as a result of

an implementation designed to make the best use of all the processing resources of standard

compute hardware. In particular, we use GPU-based processing, intra-core parallelization

using SIMD instructions, and multi-core parallelization. We have also carefully optimized

the memory subsystem, including bandwidth transfer and cache management.
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All optimizations have been devised to reduce the latency between the acquisition of

an image and the output of the pose estimates, to enable faster response times from our

robotic platform.

GPU and Embarrassingly Parallel Problems

State-of-the-art CPUs, such as the Intel Core i7 975 Extreme, can achieve a peak perfor-

mance of 55.36 GFLOPS, according to the manufacturer (Intel Corp., 2010). State-of-the-

art GPUs, such as the ATI Radeon HD 5900, can achieve a peak performance of 4640 SP

GFLOPS (AMD, 2010).

To use GPU resources efficiently, input data needs to be transferred to the GPU memory.

Then, algorithms are executed simultaneously on all shaders, and finally recover the results

from the GPU memory. As communication between shaders is expensive, the best GPU-

performing algorithms are those that can be divided evenly into a large number of simple

tasks. This class of easily separable problems is called Embarrassingly Parallel Problems

(EPP) (Wilkinson and Allen, 2004).

GPU-Based Feature Extraction. Most feature extraction algorithms consist of an

initial keypoint detection step followed by a descriptor calculation for each keypoint, both

of which are EPP. Keypoint detection algorithms can process each pixel from the image

independently. They may need information about neighboring pixels, but they do not

typically need results from them. After obtaining the list of keypoints, the respective

descriptors can also be calculated independently.

In MOPED, we consider two of the most popular locally invariant features: SIFT (Lowe,

2004) and SURF (Bay et al., 2008). SIFT features have proven to be among the best-

performing invariant descriptors in the literature (Mikolajczyk and Schmid, 2005), while

SURF features are considered to be a fast alternative to SIFT. MOPED uses SIFT-GPU

(Wu, 2007) as its main feature extraction algorithm. If compatible graphics hardware is

not detected MOPED automatically reverts back to performing SIFT extraction on the

CPU, which is an OpenMP-enabled, CPU-optimized version of SIFT we have developed.

A GPU-enabled version of SURF, GPU-SURF (Cornelis and Van Gool, 2008), is used for

comparison purposes.

We evaluate the latency of the three implementations in Fig. 4.6. The comparison is as

expected: GPU versions of both SIFT and SURF provide tremendous improvements over

their non-GPU counterparts. Table 4.3 compares the object recognition performance of

SIFT and SURF: SURF proves to be 2.59x faster than SIFT at the cost of detecting 54%

less objects. In addition, the performance gap between both methods decreases significantly

as image resolution increases, as shown in Fig. 4.6. For MOPED, we consider SIFT to be
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almost always the better alternative when balancing recognition performance and system

latency.

Latency (ms) Recognized Objects

SIFT 223.072 13.83
SURF 86.136 6.27

Table 4.3: SIFT vs. SURF: Mean Recognition Performance per Image in Zoom Benchmark.
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Figure 4.6: SIFT-CPU vs. SIFT-GPU vs. SURF-GPU, in the Rotation Benchmark at
different resolutions. (left) SIFT-CPU vs. SIFT-GPU: 658% speed increase in SIFT ex-
traction on GPU. (right) SIFT-GPU vs. SURF-GPU: 91% speed increase in SURF over
SIFT at the cost of lower matching performance.

GPU Matching. Performing feature matching in the GPU requires a different approach

than the standard Approximate Nearest Neighbor techniques. Using ANN, each match

involves searching in a kd-tree, which requires fast local storage and a heavy use of branching

that are not suitable for GPUs.

Instead of using ANN, Wu (2007) suggests the use of brute force nearest neighbor search

on the GPU, which scales quite well as vector processing matches the GPU structure quite

well. In Fig. 4.5, brute force GPU matching is shown to be faster than per-object ANN

and provide better quality matches because it is not approximate. As graphics hardware

becomes cheaper and more powerful, brute-force feature matching in large databases might

become the most sensible choice in the near future.
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Intra-core optimizations

SSE instructions allow MOPED to perform 12 floating point instructions per cycle instead

of just one. The 3D to 2D projection function, critical in the pose estimation steps, is

massively improved by using SSE-specific algorithms from Van Weveren (2005) and Conte

et al. (2000).

The memory footprint of MOPED is very lightweight for current computers. In the case

of a database of 100 models and a total of 102.400 SIFT features, the required memory is

less than 13MB. Runtime memory footprint is also small: a scene with 100 different objects

with 100 matched features each would require less than 10 MB of memory to be processed.

This is possible thanks to using dynamic and compact structures, such as lists and sets,

and removing unused data as soon as possible. In addition, SIFT descriptors are stored as

integer numbers in a 128-byte array instead of a 512-byte array. Cache performance has

been greatly improved due to the heavy use of memory-aligned and compact data structures

(Dysart et al., 2004).

The main data structures are kept constant throughout the algorithm, so that no data

needs to be copied or translated between steps. k-ANN feature matching benefits from

compact structures in the kd-tree storage, as smaller structures increase the probability of

staying in the cache for faster processing. In image space clustering, the performance of

Mean Shift is boosted 250 times through the use of compact data structures.

The overall performance increase is over 67% in CPU processing tasks (see Fig. 4.7).

0 500 1000 1500 2000 2500 3000

Latency (ms)

without SSEwith SSE

Figure 4.7: SSE performance improvement in the Complex Movie Benchmark. Time per
frame without counting SIFT extraction.
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Symmetric Multiprocessing

Symmetric Multiprocessing (SMP) is a multiprocessor computer architecture with identical

processors and shared memory space. Most multi-core based computers are SMP systems.

OpenMP is a standard framework for multi-processing in SMP systems that we implement

in MOPED.

We use Best Fit Decreasing (Johnson, 1974) to balance the load between cores using

the size of a cluster as an estimate of its processing time, given that each cluster of features

can be processed independently. Tests on a subset of 10 images from the Complex Movie

Benchmark show performance improvements of 55% and 174% on dual and quad core CPUs

respectively, as seen in Fig. 4.8.
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Figure 4.8: Performance improvement of Pose Estimation step in multi-core CPUs, in the
Complex Movie Benchmark.

Multi-Frame Scheduling

In order to maximize the system throughput, MOPED can benefit from GPU-CPU pipeline

scheduling (Chatha and Vemuri, 2002). In order to use all available computing resources, a

second execution thread can be added, as shown in Fig. 4.9. However, the GPU and CPU

execution times are not equal in real scenes, and one of the execution threads often needs

to wait for the other (see Fig. 4.10). The impact of pipeline scheduling depends heavily on

image resolution, as shown in Fig. 4.11, because the GPU and CPU loads do not increase

at the same rate when increasing the number of features but keeping the same number of

objects in each scene. In MOPED, pipeline scheduling may increase latency significantly,
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FPS Latency Latency Sd

Sched. MOPED 3.49 368.45 92.34
Non-Sched. MOPED 2.70 303.23 69.26

Baseline 0.47 2124.30 286.54

Table 4.4: Impact of pipeline scheduling, in the Simple Movie Benchmark. Latency mea-
surements in ms.

especially if using high resolution images, but also increases throughput almost two-fold.

Since GPU processing is the bottleneck on very small resolutions, these are the best scenarios

for pipeline scheduling. For example, as seen in Fig. 4.11, at a lower resolution of 500×380,

throughput is increased by 95.6% and latency is increased by 9%.

We further test the impact of pipeline scheduling in a real sequence in the Simple

Movie Benchmark, in Table 4.4. The average throughput of the overall system is increased

by 25% when using pipeline scheduling, at the cost of 21.5% more latency. In addition,

we see the average system latency fluctuates 33.2% more when using pipeline scheduling.

In our particular application, latency is a more critical factor than throughput, as our

robot HERB (Srinivasa et al., 2010) must interact with the world in real time. Therefore,

we choose not to use pipeline scheduling in our default implementation of MOPED (and

in the experiments displayed in this chapter). In general, pipeline scheduling should be

implemented in any kind of off-line process, or whenever latency is not a critical factor in

object recognition.

Figure 4.9: (top) Standard MOPED uses the GPU to obtain the SIFT features, then the
CPU to process them. (bottom) Addition of a second execution thread does not substan-
tially increase the system latency.

4.5.5 Performance evaluation

In this section, we evaluate the impact of our combined optimizations on the overall perfor-

mance of MOPED, compared to the Baseline system in Section 4.5.1, and we analyze how
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Figure 4.10: (top) Limiting factor: CPU. GPU thread processing frame N+1 must wait for
CPU processing frame N to finish, increasing latency. (bottom) Limiting factor: GPU. No
substantial increase in latency.
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Figure 4.11: Impact of image resolution in Pipeline Scheduling, in the Rotation Benchmark.
(left) Latency comparison (ms). (right) Throughput comparison (FPS).

the application of our optimizations improves system latency and scalability.

Testing both systems on the Simple Movie Benchmark (Table 4.4), MOPED outperforms

the baseline with a 5.74x increase in throughput and a 7.01x decrease in latency. These

improvements become more acute the greater the scene complexity is, Our architectural

optimizations offer improvement even with the simple scenes, but the overhead of managing

the SMP and GPU processing is large enough to limit the improvement. However, in

scenes with high complexity (and, therefore, with high number of features and objects)

this overhead is negligible, resulting in massive performance boosts. In the Complex Movie

Benchmark, MOPED shows an average throughput of 0.44 frames per second and latency

of 2173.83 ms, a 30.1x performance increase over the 0.015 frames per second and 65568.20

ms of average latency of the Baseline system.

It is also interesting to compare the Baseline and MOPED in terms of system scalability.

We are most interested in the scalability with respect to image resolution, number of objects

in a scene and number of objects in the database. Our synthetic benchmarks allow for a

controlled comparison of these different parameters without affecting the others.
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The Rotation Benchmark contains images with a constant number of object instances

at 5 different resolutions. Fig. 4.12(left) shows that both MOPED and the Baseline system

scale linearly in execution time with respect to image resolution, i.e., quadratically with

respect to image width. To be more accurate, the implementation of ICE in both systems

allows their performance to increase linearly with the number of feature clusters. The

number of SIFT features and feature clusters also increase linearly with respect to image

resolution in this Benchmark.

To test the scalability with respect to the number of objects in the database, images

from the Rotation Benchmark are generated to have a fixed number of object instances

and poses, and change the identity of the object instances from a minimum of 5 different

objects to a maximum of 80. The use of a database-wide feature matching technique (k-NN

Per Database, Section 4.5.3) allows MOPED to perform almost constantly with respect to

the number of objects in the database. The latency of the Baseline system, which performs

independent feature matching per object, increases roughly linearly. Fig. 4.12 shows the

latency of each system relative to their best scores, to see how latency increments when each

of the parameters change. Therefore, it is important to note that the latency of MOPED

and the Baseline are in different scales in Fig. 4.12, and one should only compare the relative

differences when changing the image resolution and the size of the object database.

The number of objects in a scene is another factor that can greatly affect the performance

of MOPED. The Zoom Benchmark aims to show a relatively constant number of image

features (Fig. 4.13), despite being only 12 (large) objects visible at 280 mm and 160 (smaller)

objects visible at 1050 mm. It is interesting to notice that the required time is inversely

proportional to the number of objects in the image, i.e., a small number of large objects

are more demanding than large numbers of small objects. The explanation for this fact is

that the smaller objects in this benchmark are more likely to fit in a single object prior

in the first iteration of ICE. Clusters that converge after the first iteration of ICE (i.e.,

with no correspondences transferred to or from them) require very little processing time in

the second iteration of ICE. On the other hand, bigger objects require more effort in the

second iteration of ICE due to the cluster merging process. It is also worth noting that

this experiment pushes the limits of our graphics card, causing an inevitable degradation

in performance when the GPU memory limit is reached. In the 850mm-1050mm range, the

number of SIFT features to compute is slightly lower than in the 280mm-850mm range.

In the latter case, the memory limit of the GPU is reached, causing a two-fold increase in

feature extraction latency when this happens. Despite this effect, the average latency for

MOPED in the Zoom Benchmark is 2.4 seconds, compared to 65.5 seconds in the Baseline

system.
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Figure 4.12: Scalability experiments in the Rotation Benchmark. (left) Latency with respect
to image resolution. (right) Latency with respect to database size.
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Figure 4.13: Scalability with respect to the number of objects in the scene in the Zoom
Benchmark. The scale of the left chart is 22.5 times less than that of the right chart for
better visibility. (left) Latency of MOPED. (right) Latency of the Baseline system.

4.6 Recognition and Accuracy

In this section, we evaluate the recognition rate, pose estimation accuracy and robustness of

MOPED in the case of a single-view setup (MOPED-1V) and a three-view setup (MOPED-

3V, shown in Fig. 4.15), and compare their results to other well-known multi-view object

recognition strategies.

We have conducted two sets of experiments to prove MOPED’s suitability for robotic

manipulation. The first set evaluates the accuracy of MOPED in estimating the position

and orientation of a given object in a set of images. The second set of experiments evaluates

the robustness of MOPED against modeling errors, which can greatly influence the accuracy

of pose estimation. In all experiments, we estimate the full 6-DOF pose of objects, and

no assumptions are made on their orientation or position. In all cases, we perform the
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Figure 4.14: Examples scenes captured by our camera setup with Cam 1 (top), Cam 2
(middle), and Cam 3 (bottom). (Col 1) Rice box at 50 cm. (Col 2) Notebook at 60 cm.
(Col 3) Coke can at 80 cm. (Col 4) Juice bottle at 1 m. (Col 5) Pasta box at 1.2 m.

image space clustering step with a Mean Shift radius of 100 pixels, and we use RANSAC

with subsets of 5 correspondences to compute each hypothesis. The maximum number

of RANSAC iterations is set to 500 in both Pose Estimation steps. In MOPED-3V, we

enforce the requirement that a pose must be seen by at least two views, and that at least

50% of the points from the different hypotheses are consistent with the final pose. We add

this requirement in order to prove that MOPED-3V takes full advantage of the multi-view

geometry to improve its estimation results.

The experimental setup is a static three-camera setup with approximately 10 cm baseline

between each two cameras (see Fig. 4.15). Both intrinsic and extrinsic parameters for each

camera have been computed, considering camera 1 as the coordinate origin.

4.6.1 Alternatives for multi-view recognition and estimation

We consider two well-known techniques for object recognition and pose estimation in multi-

ple simultaneous views. The techniques we consider are the Generalized Camera (Grossberg

and Nayar, 2001) and the pose averaging (Viksten et al., 2006) techniques.

Generalized Camera

The Generalized Camera approach parameterizes a network of cameras as sets of rays that

project from each camera center to each image pixel, thus expressing the network of cameras

a single non-perspective camera with multiple projection centers and focal planes. Then, the
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Figure 4.15: Three-camera setup used for accuracy tests with coordinate frame indicated
on bottom left corner.

camera pose is optimized in this generalized space by solving the resulting non-perspective

PnP (i.e., nPnP) problem (Chen and Chang, 2004). While such an approach is perfectly

valid, it might not be entirely feasible in real-time if the correspondence problem needs to be

addressed as well, as the search space increases dramatically with each extra image added

to the system. This process takes full advantage of the multi-view geometry constraints

imposed by the camera setup, and its accuracy results can be considered a theoretical limit

for multi-view model-based pose estimation. In our experiments, we implement this tech-

nique and use 1000 RANSAC iterations to robustly find correspondences in the generalized

space.

Pose averaging

One of the simplest and most used alternatives for multi-view recognition is to combine

multiple single-image algorithms via pose verification (Selinger and Nelson, 2001), robust

averaging, or weighted voting (Viksten et al., 2006). These methods avoid the larger search

space that may cause difficulties in the Generalized Image approach, but they fail to extract

information from the multi-view geometry to provide a globally optimized pose estimate.

In our experiments, we use the output of MOPED-1V and perform pose robust averaging

using the Q-Scores of the MOPED-1V hypotheses as a weighting factor.
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Figure 4.16: Performance of MOPED-3V in complex scenes. (Cols 1-3) depict the recog-
nized poses overlaid on each image. (Col 4) shows a reconstruction of the given scenes in
our virtual environment.

4.6.2 Pose estimation accuracy

In this set of experiments, we evaluate MOPED’s accuracy over the range most useful in

robotic manipulation. The three-camera setup was mounted and calibrated on a flat table

(see Fig. 4.15). Our pose accuracy database is composed of five common household objects

of various shapes and appearances. A set of 27 different positions and orientations for each

object were gathered, with depths (i.e., distances from the central camera) ranging from

0.4 m to 1.2 m in 10 cm increments, lateral movements of up to 20 cm and out-of-plane

rotations of up to 45 degrees. 10 images were taken with each camera at each position to

account for possible image noise and artifacts, producing 810 images per object and a total

of 4050 images. Some example images from this dataset are shown in Fig. 4.14.

It is important to mention that the choice of camera and lens can greatly affect pose

estimation accuracy. The cameras we use in these experiments are low-cost cameras of

640× 480 pixels with a 73◦ field of view. The usage of a higher resolution image and a lens

with a smaller field of view would greatly improve these results.

In all these experiments, the distance-normalized translation error refers to the absolute

translation error divided by the distance with respect to the closest camera. Rotation error

is measured as the quaternion angle α = 2cos−1(qT qgt). The correct detection rate counts

all pose hypotheses that lie within 5 cm and 10 degrees of the true pose. It is important

to note that the correct detection, false positive and false negative rates do not necessarily

need to add up to 100%, because an algorithm might output a correct and an incorrect

pose in the same image.

Table 4.5 compares the accuracy of MOPED-1V, robust pose averaging over MOPED-
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(1) (2) (3) (4)

TX error (cm) 1.45 1.36 0.47 0.46
TX error/dist. 1.80% 1.71% 0.61% 0.60%

Rot. error (deg) 6.27 8.11 5.69 3.48
Correct det. rate 85.0% 88.3% 88.3% 71.9%

False pos. rate 2.78% 0% 0% 0%
False neg. rate 13.61% 11.67% 11.67% 28.15%
Num iter./view 96.71 96.71 98.69 259.05

Table 4.5: Average accuracy test. (1) MOPED-1V (2) Pose averaging. (3) MOPED-3V (4)
Generalized Image.

1V, MOPED-3V and the Generalized Image approach. MOPED-1V results show the aver-

age performance over the three cameras in our setup.

As we can see in Table 4.5, accuracy is increased threefold using MOPED-3V with

respect to pose averaging, while requiring little overhead with respect to MOPED-1V. It is

noteworthy that MOPED-3V and Generalized Image, considered a theoretical limit, perform

very similarly in terms of accuracy, with a difference lower than 0.01%. The low detection

rate of the Generalized Image approach is due to its enormous computational cost, as it

often exceeds the maximum number of iterations with no correct detection. The average

number of iterations required to detect a single object with a Generalized Image approach

is three times greater than MOPED, and its computational complexity grows exponentially

with respect to the number of objects in a scene.

4.6.3 Robustness against modeling noise

In this set of experiments, we evaluate MOPED’s robustness against modeling inaccuracies.

Successful pose estimation in MOPED-1V is heavily dependent on a good model calibration,

especially in terms of scaling, because depth is estimated entirely based on the scale of each

model. Therefore, extreme care needs to be taken when generating models to set a proper

scale, and we often require several tests before a new object model can be incorporated into

the robot’s object database. For example, a modeling error of 1 mm in a coke can (i.e., 1

mm larger than its real size), translates into a depth estimation error of up to 3 cm at a

distance of 1 m, large enough to cause problems to the robotic manipulator. On the other

hand, having multiple views of the same object enables the use of further constraints in its

pose. In MOPED-3V, an “implicit triangulation” takes place during the optimization, with

the object drifting to its true position to minimize the global backprojection error imposed

by the multi-view geometry, despite the larger error when MOPED-1V processes each view
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Model scale (1) (2) (3) (4)

0.95 4.11% 4.20% 0.81% 0.81%
0.97 2.56% 2.65% 0.68% 0.62%
0.99 1.86% 1.76% 0.61% 0.54%
1.01 2.12% 1.95% 0.74% 0.69%
1.03 3.14% 2.90% 0.98% 0.94%
1.05 4.72% 4.43% 1.29% 1.18%

Table 4.6: Average distance-normalized translation error with varying model scale. See
Table 4.5 for (1),(2),(3),(4)

Model scale (1) (2) (3) (4)

0.95 69.7% 71.7% 80.8% 59.3%
0.97 82.2% 85.0% 85.8% 66.7%
0.99 84.4% 86.7% 86.7% 71.1%
1.01 84.2% 88.3% 88.3% 70.4%
1.03 74.4% 77.5% 87.5% 65.2%
1.05 55.8% 58.3% 85.0% 54.1%

Table 4.7: Average Correct detection rate with varying model scale. See Table 4.5 for
(1),(2),(3),(4)

individually.

Table 4.6 and Table 4.7 showcase the effect of scaling errors during the object modeling

stage. MOPED-3V outperforms every other approach in terms of recognition rate, while

achieving similar accuracy results than the Generalized Image approach. The Generalized

Image approach suffers from a major performance drop when modeling errors appear, since

it is often not able to find subsets of correspondences that are consistent enough to gen-

erate good hypotheses. MOPED-1V correctly finds object hypotheses in each image, but

modeling noise causes a drop in the correct detection rate, as the estimated poses are often

outside the 5 cm threshold. MOPED-3V, on the other hand, finds object hypotheses in

each image, and then uses the inherent multi-view constraints to correctly estimate the final

object poses.

4.7 Summary

We have presented and validated MOPED, an optimized framework for the recognition

and registration of objects that addresses the problems of high scene complexity, scalability
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and latency that hamper object recognition systems when working in real-world scenes.

The use of Iterative Clustering-Estimation (ICE) integrates single- and multi-view object

recognition in an efficient, robust, and easy to parallelize manner. The Hypothesis Quality

Score and Projection Clustering work together to minimize the number of false positives and

to re-utilize all available information in the accurate pose estimation of true positives. The

multiple architectural improvements in MOPED provide over 30x improvement in latency

and throughput, allowing MOPED to perform in real-time robotic applications.

The different accuracy and recognition experiments we performed in this chapter gives

us a quantitative evaluation of MOPED’s capabilities. However, the most stringent perfor-

mance test of an object recognition system for manipulation is to actually integrate it in

a robotic platform and use it to interact with objects in real time. MOPED (and its ex-

tension, MOPED-RGBD) have been an active part of HERB since 2008, and the output of

MOPED has been used to grasp over 2000 objects. In a controlled experiment, HERB and

MOPED achieved a 91% grasping success rate using a single-image setup (MOPED-1V)

and 98% success rate using a three-camera setup and MOPED-3V.

MOPED, however, is not without limitations. The recognition performance of MOPED

is ultimately tied to the ability of finding enough local features in a given object. If an

object is not textured enough, too far away, or has large specular reflections on its surface,

the feature extraction/matching steps might not find enough correspondences in the object

to perform any kind of recognition. In our experience, we have found that a minimum of

8 to 10 correspondences are necessary to successfully recognize an object and estimate its

pose. Hsiao et al. (2010) showed that the ability to generate more features in a scene can

result in enormous boosts in recognition rate for objects with little texture. It would be

interesting to evaluate the performance of such an algorithm integrated in MOPED.

An additional issue that often arises in the model-based object recognition literature is

the model building stage. The model building procedure we used in MOPED (described

in Collet et al. (2009)) requires a certain amount of human supervision, and we have to

manually scale our object models to achieve proper pose estimation from a single view. In

Chapter 7, we describe our system HerbDisc, an integrated system that learns objects and

3D models autonomously in human environments. HerbDisc can be used as the core for

Lifelong Robotic Object Perception, where the learned 3D models are used by MOPED

without human supervision.





Chapter 5

An RGBD Fusion Model for

MOPED-RGBD

Fade. [v. fade.  fād]: To vanish, disappear; to pass

completely from existence.

Merriam-Webster.com (2012)

The use of dense depth measurements in combination with images has become popular in

many areas such as object recognition (Lai et al., 2011a), scene segmentation (our own

Structure Discovery in Chapter 6), SLAM (Henry et al., 2011), 3D reconstruction (Izadi

et al., 2011), and Object Discovery (our own HerbDisc in Chapter 7). Dense depth measure-

ments can be computed using a variety of sensors and techniques, such as passive stereo,

active stereo (structured light), time-of-flight cameras, etc.

Despite its tremendous potential, dense depth estimation has fundamental limitations

that must be addressed for robust performance. In many realistic scenes, depth sensors

fail to compute depth measurements on portions of the associated color data (as shown in

Fig. 5.1). We refer to this phenomenon of missing depth data as depth fading. Objects

close to the camera, reflective or specular surfaces, poor lighting conditions, and surfaces

seen at oblique angles often suffer from depth fading. These issues arise from fundamental

physical limitations in depth perception, and affect all depth estimation approaches to

varying degrees.

We propose to address the limitations of depth sensors at an algorithmic level instead

of as a pre-processing step, and we introduce a general model to adaptively combine depth

and image measurements. We derive joint image-depth measurements as the maximum

likelihood estimate given the independent image and depth measurements in Section 5.1.

We combine a depth-filling technique with per-pixel confidences to extend depth measure-

ments to areas with depth fading. In this way, we adaptively combine image and depth
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measurements for every pixel. To demonstrate the flexibility and effectiveness of our model,

we integrate it into each of the components of MOPED (Chapter 4). We use our adap-

tive model to derive an adaptive distance metric for feature-based pose estimation in Sec-

tion 5.4; a prior generation technique based on adaptive 2D/3D similarity in Section 5.5;

and a depth-adaptive feature matching scheme in Section 5.6. On our tests in Section 5.7,

MOPED-RGBD yields performance gains of up to 10.4% in recall over MOPED with mod-

erate depth fading, and a seamless transition to the image-only MOPED performance with

severe depth fading. In contrast, non-adaptive data fusion models perform equally well in

favorable conditions, but can detect up to 15.3% fewer objects than the image-only MOPED

in the presence of depth fading.

The research described in this chapter and its original publication (Fouhey et al., 2012)

are joint work with David Fouhey.

5.1 Adaptive 2D/3D Measurement Model

We propose a general model to adaptively combine image and depth measurements into

a joint image-depth function. Given partial observations x2D ∈ X2D (image only) and

x3D ∈ X3D (depth only), let φ2D : X2D → R be an image-only function, and φ3D : X3D → R
a depth-only function. Defining the full observation x = {x2D, x3D} ∈ X = {X2D,X3D},
the joint image-depth function φ : X → R is a combination of the partial functions φ2D,

φ3D.

The functions φ, φ2D and φ3D are general functions which can model a wide array of

processes, as we show in Sections 5.4, 5.5, and 5.6. For the remainder of this chapter, we

assume that φ2D(x2D) and φ3D(x3D) are measured in the same units. We also assume that

φ2D(x2D) and φ3D(x3D) are noisy observations of the true values φ̄2D(x2D), φ̄3D(x3D), cor-

rupted with i.i.d. noise with distributions N (0, σ2D(x2D)) and N (0, σ3D(x3D)) respectively.

Our goal is to find φ(x) that maximizes the probability P (φ(x)|φ2D(x2D), φ3D(x3D)).

Using Bayes’ Rule, and assuming no prior knowledge of the function distributions, the opti-

mal image-depth function φ∗(x) corresponds to the Maximum Likelihood Estimate (MLE)

φ∗(x) = arg max
φ(x)

P (φ2D(x2D), φ3D(x3D)|φ(x)). (5.1)

Following the work of Hackett and Shah (1990), the MLE φ∗(x) is computed as

φ∗(x) =
σ2

2D(x2D)

σ2
2D(x2D) + σ2

3D(x3D)
φ3D(x3D) +

σ2
3D(x3D)

σ2
2D(x2D) + σ2

3D(x3D)
φ2D(x2D). (5.2)

We parameterize Eq. (5.2) in terms of a depth confidence function

c(x) =
1

1 + γ2(x)
(5.3)
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Figure 5.1: Recursive median filter and nearest neighbor succeed at removing small depth
fading (left), but fail in scenes with stronger depth fading (right). Our adaptive model
yields robust performance under both conditions.
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Figure 5.2: The role of confidence parameter γ. c(x) vs d(x,N(x)) for two values of γ and
varying b.

dependent on the ratio of variances

γ2(x) =
σ2

3D(x3D)

σ2
2D(x2D)

, (5.4)

such that

φ̂(x) = c(x)φ3D(x3D) + [1− c(x)]φ2D(x2D). (5.5)

In this formulation, c(x) reflects the confidence of the depth function relative to the

image function. The value of c(x), and thus φ∗(x), depends only on the ratio of variances

γ2 of the noise distributions of φ2D(x2D), φ3D(x3D).

We extend the model in Eq. (5.5) to include depth-filling methods (e.g., nearest neighbor,

recursive median filter) by estimating the ratio of variances γ2(x) in areas with depth

fading. Let INT be an interpolation method which computes depth zx for a point x with

missing depth from a set of support datapoints N(x) with depth measurements, such that

zx = INT(N(x)). We assume that the variance σ2
3D(x) for an interpolated datapoint x is

higher than for its support datapoints N(x), i.e., σ2
3D(x) > σ2

3D(N(x)). Then, given that

the variance σ2
2D(x) remains constant, the ratio of variances γ2(x) > γ2(N(x)), and thus

c(x) < c(N(x)). The resulting dense depth map contains depth values and confidences for

every datapoint, with decreasing confidences c(x) for areas with depth fading.

We estimate the ratio of variances γ2 of interpolated datapoints from the ratio of vari-
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b = 16 b = 32

b = 64 b = 128

Figure 5.3: The role of confidence parapmeter b. c(x) plotted for Fig. 5.1(bottom) with
γ = 1 and varying b.

ances of datapoints with measured depth, γ̄2. For an interpolated datapoint x,

γ2(x) ≈ γ̄2(N(x)) +
d(x,N(x))2

b2
, (5.6)

where d(x,N(x)) is a distance function between the interpolated datapoint x and its data-

points of support N(x) in image space (i.e., pixel positions). The scalar parameter b encodes

the trust in interpolated values with respect to measured values.

The confidence model c(x) for dense depth depends exclusively on the interpolator INT,

on the scalar b, and on γ2(x) for known datapoints. For the remainder of this chapter, we

use a simple Nearest Neighbor as our interpolator INT(x) = NN(x), but other alternatives

(e.g. recursive median filter) are also possible. The ratio of variances γ2 depends on the

particular task and sensor. γ2 can be estimated empirically in some cases, but it is hard in

the general case. The alternative, when there is no further information, is to set a global
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prior on γ2. A trivial, yet useful, prior is to assume that both noise distributions have equal

variances, so γ2 = 1 for all known datapoints. In this case, c(x) = 0.5 for all datapoints

with known depth, weighing equally both image and depth functions. An alternative prior,

useful when the depth function is more informative than the image function, is γ2 = 0. In

this case, c(x) = 1 for all datapoints with known depth, thus using exclusively the depth

function when depth is available, and adaptively reverting to image when depth is not

available.

We illustrate common values of parameters γ2 and b in Fig. 5.2 and Fig. 5.3. In

Fig. 5.2, we show c(x) for a range of values of b as the interpolation distance increases.

The scalar b parameterizes the confidence decrease rate as a function of interpolation dis-

tance; analytically, for a fixed γ2, a point b pixels away from the known value has confidence

(γ2 + 1)/(γ2 + 2). Fig. 5.3 shows maps of c(x) plotted for Fig. 5.1(right) for b ranging from

0.5 to 128 pixels.

Setting γ and b for a new algorithm is straightforward. Sensible values of γ are γ = 1 (for

balanced image and depth measurements), γ = 0 (for less informative image measurements),

or values from a depth sensor model. To find a suitable b we perform a logarithmic grid

search over the validation set for a fixed γ. We establish the stability of b in extensive

experiments detailed in Section 5.7.

5.2 Problem Formulation

We demonstrate the application of our model to each step of MOPED (see Section 4.1

for details). The system input is a calibrated RGBD image I = {Rgb, z} such that each

color pixel value has a corresponding depth zi. The output of the system is a set of object

hypotheses H represented by an object identity and the pose of the object in the camera’s

reference frame. Each object model to be recognized is represented as a set of features Fo;

each feature is represented by a 3D point location P = [X, Y, Z]T in the object’s reference

frame and a feature descriptor D, (e.g., SIFT (Lowe, 2004)).

In the image-only system, matching is performed with the standard 2-nearest neighbors

distance ratio test (Lowe, 2004), clustering with mean-shift in the image plane, and the

pose estimation optimizes the reprojection error (Szeliski, 2011) with Levenberg-Marquardt

minimization. We extend these techniques to adaptively use depth: we propose a depth-

aware matching technique that adapts the match acceptance threshold; a prior generation

approach that exploits depth for generating highly effective object proposals and fast outlier

rejection; and a pose estimation technique that adaptively incorporates depth evidence to

improve its objective function.
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Figure 5.4: Example RGB (top) and depth images (bottom) with depth fading, from the
Offices (left), validation (center) and Tables (right) datasets.

5.3 Datasets

We aim to enable perception robust to imperfect depth data. As has been articulated

in Chiu et al. (2011), data in many applications (e.g., service robotics) naturally spans a

wide spectrum of depth quality, including severe depth fading. We replicate this fact with

two datasets with varying depth quality: the Offices Dataset and the Tables Dataset. We

captured all scenes using a Microsoft Kinect RGBD sensor with registered 1280×1024 RGB

data and 640 × 480 depth data which we upsample. Additionally, we gathered a smaller

validation set that contains the same objects in 79 scenes of various household environments.

Fig. 5.4 shows examples from the Offices and Tables Datasets, as well as from our validation

set.

Offices Dataset: In this first set, we aim to represent optimal operating conditions for

RGBD sensors; most scenes show little or no depth fading. These scenes only depict small

gaps due to partial occlusion or shadowing, with an average depth coverage of 66% of the

image; most fading is due to registering the depth and color images and does not fall on

the objects. We captured 350 scenes with an average of 4.4 objects per scene.

Tables Dataset: In the second set, we captured 200 scenes with large sections of depth

fading. These scenes show, among other anomalies, missing surfaces due to steep viewing

angles and objects at short distances away from the sensor which cause heavy depth fading.
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Translation Error (%) Rotation Error (◦)
Offices Tables Offices Tables

Reproj. Error 3.699 3.253 7.547 6.575
Adaptive Backproj. 1.460 2.314 5.577 6.919

Table 5.1: Avg. errors with adaptive backprojection and reprojection errors.

These 200 scenes contain an average of 5.2 objects and have 35% average depth coverage.

5.4 Depth-Adaptive Pose Estimation

In the first demonstration of the model, we derive an adaptive algorithm for feature-

alignment-based pose estimation. In general, the estimation of an object pose given a set of

2D/3D correspondences between image features and a known model is the well-known PnP

problem. The most accurate solutions are usually found by non-linear least squares mini-

mization of pose parameters using the reprojection or backprojection errors. To adaptively

use depth information, we introduce a 2D/3D distance metric, or φ.

Given a set of features F with 2D positions pi and 3D positions P i, we parameterize Pi

as a line Li through pi and the camera center, as well as a depth zi. Given a pose hypothesis

with transformation T , we define PT ;i as the position of the corresponding feature of the

hypothesis that matches Pi. Let P̂T ;i be the projection of PT ;i onto L. Using P̂T ;i we derive

two common image-only errors: the backprojection error is the 3D distance ||P̂T ;i − PT ;i||2
and the reprojection error is the distance when projected on the image plane.

To formulate our adaptive model φ, we select the backprojection error as φ2D, and

introduce an orthogonal penalty in depth ||Pi − P̂T ;i||2 to serve as φ3D. We minimize the

objective function

arg min
T

∑
i

φ∗(i) = arg min
T

∑
i

c(i)φ3D(i) + [1− c(i)]φ2D(i). (5.7)

We set γ(i) = 1 and use our validation set to determine b = 0.1, which is held constant

throughout the experiments.

We compare the effectiveness of our adaptive backprojection objective function with the

2D reprojection error. We present the relative translation and rotation errors in Table 5.1.

Compared to the baseline, the recovered translation error is over 2.5× more accurate when

using the adaptive backprojection error on images with high depth quality, and 28.8% more

accurate even in scenes with low depth quality. The rotational error also improves when

using data with high depth quality. The higher rotational error on low quality depth quality
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is due to the increased recall in detections of small, cylindrical objects. These additional

detected objects have correct translation, but less accurate rotation.

5.5 Depth-Adaptive Priors for Object Recognition

Model-based object recognition and pose estimation from local features requires solving two

sub-problems: data association and pose optimization. In simple scenes, RANSAC and a

PnP solver are sufficient to address these two sub-problems. However, realistic scenarios

may contain large numbers of outliers and multiple instances of the same object. In this

case, it is vital to compute object priors to limit the otherwise overwhelming search space

of potential hypotheses. A number of approaches have been used to generate priors, both

from depth and image data. Collet et al. (2009) propose to estimate spatial feature density

with Mean Shift to find plausible regions for objects, which is also the technique used in

MOPED. Other approaches, such as the methods of Lai and Fox (2011), Kootstra and

Kragic (2011), use horizontal plane information to generate priors.

In MOPED-RGBD, we use clustering for prior generation, as we do in MOPED. We

partition the set of matches for a object into clusters and search only within the poses

supported by these clusters. An ideal cluster contains only matches supporting one object

instance and no outliers.

To provide a prior generation algorithm robust to depth fading, we propose an agglom-

erative clustering scheme based on 2D/3D feature similarity. Here, we extend our model

to pairs of measurements and fuse a 2D-similarity function φ2D : X × X → R with a 3D-

similarity function φ3D : X × X → R. To model the confidence of a pair of points, we

assume their independence and set c({i, j}) = c(i)c(j). Our similarity function is then:

φ∗(i, j) = c(i)c(j)φ3D(i, j) + [1− c(i)c(j)]φ2D(i, j) (5.8)

We build each term of our similarity function using simple features. W denote pi and

Pi as the 2D and 3D positions of image feature Fi, respectively; P̂i is the 3D position of

the corresponding feature in the model; and d(·, ·) is the Euclidean distance between two

vectors.

Spatial Proximity. Objects are generally continuous; we model this assumption using

the feature

S2E(i, j) = exp

(−d(pi, pj)
2

σ2D

)
, (5.9)

and equivalently S3E in 3D using Pi and Pj .

Depth Discontinuity. Two matches are unlikely to belong to the same object if there

is a significant depth discontinuity between them. We formalize this intuition by sampling

N points along the line through pi and pj in the image plane, and measuring the change in
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MS 2D Ag-2D MS 3D A-C Opt. 2D

Cluster Precision (%) 27.7 60.8 17.9 81.6 80.0

Cluster Recall (%) 99.9 81.5 100.0 97.3 100.0

End-to-End Recall @0.9P (%) 53.3 55.0 46.0 62.3 56.9

Table 5.2: Comparing the effectiveness of Adaptive Clustering (A-C) to other approaches.

depth as an angle over each segment compared to the global change in depth θ of line pipj .

This yields a penalty on strong changes in depth:

SD(i, j) = exp

− max
1≤k≤N

{(θk − θ)}

σdisc

 . (5.10)

Distance Consistency. The availability of depth measurements enables us to check

the consistency of the distance between points in the world and their locations in the model

coordinate frame: we can prevent the clustering of two matches if they are at inconsistent

distances and thus cannot support the same pose. The consistency similarity function is

defined as:

SC(i, j) = exp

(
−|d(Pi, Pj)− d(P̂i, P̂j)|

d(P̂i, P̂j)σcons

)
. (5.11)

To combine these features into similarity functions, we choose φ2D(i, j) = S2E(i, j) and

φ3D(i, j) = 1
2SC(i, j)(SD(i, j) + S3E(i, j)). We enforce the SC feature more strongly as it

is a hard requirement for clustering, rather than a preference (such as spatial proximity).

We set γ(i) = 1 and use our validation set to determine b = 25, which is held constant

throughout for all experiments. Our formulation has no predefined number of clusters,

and similarity is defined with a general function. We use Agglomerative Clustering (Hastie

et al., 2003) with group-average linkage as our clustering function.

We evaluate the output of a number of clustering approaches. We define inlier matches as

matches for which there is a correctly detected pose under which the match has reprojection

error 2 pixels or less. We define cluster precision as the fraction of matches in any clusters

that are inliers and cluster recall is the fraction of inlier matches appearing in any cluster.

In Table 5.2, we evaluate a number of clustering approaches on the Offices 66% data

set: Mean Shift in 2D (MS 2D); agglomerative clustering using 2D proximity (Ag-2D);

Mean Shift in 3D (MS 3D); and our proposed approach, Adaptive Clustering, (A-C). We

additionally manually label the outlines of the objects in the scene to produce the optimal

clustering possible using only 2D information (Opt. 2D). Our results demonstrate the ef-

fectiveness of our proposed approach. While retaining almost all inlier matches, we achieve

slightly higher precision than the 2D optimal clustering; this is possible since SC filters out

feature mismatches, even on ground-truth outline models. Additionally, we obtain a 53%
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gain compared to MS-2D. Further, in comparison to Ag-2D, which uses the same features

as Mean Shift and the same clustering algorithm as our approach, we achieve gains in both

precision (20.8%) and recall (15.8%). These performance gains have meaningful impact

on the object recognition performance of the system: at a 90% precision level, we achieve

between a 5.3% (vs. Opt. 2D) and 16.2% (vs. MS 3D) object recall gain.

5.6 Adaptive Feature Matching

In this section, we demonstrate the application of our method to situations in which the

function depends only on 3D. For instance, depth can constrain the scale at which one

searches for objects (e.g., Helmer and Lowe (2010)). However, such techniques cannot

be used when depth data is entirely or largely absent. In contrast, our model transitions

between aggressive scale constraining during optimal conditions and more cautious behavior

when depth data is unavailable. To achieve this, we let φ2D be a constant function and set

γ(i) = 0.

One way to constrain the scale of the search for objects is to adjust the number of

feature matches that are accepted by adjusting the threshold used in the ratio test. The

ratio test (Lowe, 2004) is a common criterion to evaluate whether a pair of local features

are sufficiently similar to be considered a match. A match between a local feature Fi and

its nearest neighbor N(Fi) in a database is only made if the ratio between the distance

d(Fi, N(Fi)) and the distance to the second nearest neighbor d(Fi, N2(Fi)) is less than a

threshold τ . The only parameter in the ratio test is the threshold τ . In the absence of

a priori information, an educated guess is used. With RGBD sensors, however, we have

depth measurements for each local feature, and we know the scale of the objects in the

database. Thus, we can use the working ranges at which we expect to detect our objects

based on the object’s size and density of features.

To maximize recognition and speed performance, our goal is to find just enough matches

for an object to be detected throughout the object’s entire working range (determined

by physical size), and no matches outside this range. We approximate this behavior by

replacing the fixed τ with a function φ∗ that depends on the depth measurement zi and the

confidence score c(i). When depth information is present, a function θ(z) maps depth z to

a threshold. The form of θ(z) is illustrated in Fig. 5.5(a). To make this approach robust to

imperfect depth data, we set φ3D(i) to θ(zi) and φ2D(i) to a default ratio θ(z0), where z0

is a default depth. In our experiments, z0 is fixed at 1m. Since φ3D completely determines

φ with known depth, we set γ(i) = 0; we use our validation set to determine b = 75, which

is held constant throughout the experiments. Parameters l, u are fixed using grid search to

maximize recall on a validation set; they are not sensitive to particular values, and are in

the vicinity of usually used values.
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((a)) The threshold function θ(z) for a given object
as a function of depth. The feature density and size
of each object determine each threshold function.

((b)) For a given total number of matches in-
side objects (relevant matches), Adaptive match-
ing achieves significantly higher percentage of rel-
evant matches (i.e., lower error rate) than fixed
thresholds.

(2)

(1)
Fixed (0.6)

Fixed (0.85) Fixed (0.85)

Adaptive Adaptive

Fixed (0.6)

(1)                (2)
((c)) Qualitative illustration of Adaptive Matching: more matches in relevant regions and limited matches in
the background.

Figure 5.5: Illustration of Adaptive Matching. (i) Using Adaptive Matching instead of a
fixed threshold, we (ii) achieve a higher percentage of matches inside objects. (iii) Qualita-
tive example of Adaptive Matching.
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We evaluate the matching performance by counting the fraction of relevant matches; we

define a feature as relevant if it falls on any ground-truth object. Higher thresholds yield

more relevant features at the cost of more irrelevant ones. Since our approach reverts to

a per-object fixed threshold in the absence of depth data, we only consider matches with

sufficiently high confidence (above 0.5) to focus the evaluation on the depth-dependent

scheme. Fig. 5.5(b) demonstrates that we can replace a fixed ratio with an adaptive ratio

that yields the same number of relevant matches, but fewer irrelevant matches. We show a

qualitative example of this behavior in Fig. 5.5(c).

5.7 Integrated Testing

In this section, we evaluate the impact of our adaptive model for the integrated system

MOPED-RGBD, which uses all of the proposed algorithms. To evaluate the adaptive

model, we compare performance with two non-adaptive baselines as well as the image-only

MOPED: the first, 3D Only, uses only data points for which there is depth data; the

second, Non-Adaptive, trusts all depth values (interpolated and measured) equally. In

addition, we evaluate the effect of introducing individual components to MOPED.

We process each image 5 times to account for the non-determinisc nature of RANSAC.

We consider an object hypothesis as correct if its translational distance to the ground truth

is less than 10 cm and its rotational distance is less than 20◦. Precision is the fraction of

correct object hypotheses among the detected objects, and recall is the fraction of ground-

truth objects with a correctly detected hypothesis.

The precision-recall curves in Fig. 5.6 demonstrate the importance of an adaptive ap-

proach to address depth fading in object recognition. With small depth fading (Fig. 5.6(top)),

the adaptive and non-adaptive models perform similarly well, and all approaches outperform

the baseline (MOPED). However, with moderate to severe depth fading, both non-adaptive

models perform significantly worse than using image data alone (Fig. 5.6(bottom)). In

contrast, the adaptive model leverages depth when available to boost performance, while

seamlessly transitioning to image-only performance when depth fading is present. Further

analysis shows that non-adaptive approaches yield 10.3% and 15.3% decreases in recall un-

der moderate depth fading compared to using image data alone, as shown in Fig. 5.7. An

illustration of a non-adaptive failure mode is presented in Fig. 5.9.

To distinguish the changes in performance due to depth quality from those due to scene

composition, we perform additional experiments with synthetically degraded data. We

remove data within circles with varying radii (5-30 pixels) to produce scenes with 35%

depth coverage (the average depth coverage of the Tables data set) and 15% depth coverage

(the lowest naturally-occurring depth coverage in our dataset) for each RGBD image in

each dataset. In Fig. 5.7, we present the area under the precision-recall curve (AUPRC) for
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Figure 5.6: Precision-recall curves comparing adaptive vs. non-adaptive approaches on the
Offices (top) and Tables (bottom) dataset.
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Figure 5.7: Average area under the precision-recall curve (AUPRC) for adaptive vs non-
adaptive approaches, relative to the image-only. The Adaptive approach boosts perfor-
mance when range data is present, and seamlessly transitions to image-only performance
(black dashed lines) as range data degrades. The black dashed lines show the performance
range of the image-only approach over 10 runs.

each approach. Again, only the adaptive approach performs similarly or better than the

image-only approach across all data sets.

We evaluate the impact of each individual component (Adaptive Priors, Adaptive Match-

ing, Adaptive Pose Estimation) in MOPED-RGBD in Fig. 5.8(top). The best performing

individual algorithm is the Adaptive Pose Estimation, which achieves similar precision as

MOPED-RGBD throughout the P-R curve. MOPED-RGBD leverages the increased per-

centage of relevant matches from Adaptive Matching, and the more accurate object priors

from Adaptive Priors, to boost the maximum recall 9% higher than any of the independent

algorithms at similar precision.

The timing comparison in Fig. 5.8(bottom) shows that we do not incur in any extra

latency in MOPED-RGBD with respect to MOPED. The increased time spent computing

more accurate priors (Step 3 in Fig. 5.8(bottom)) is compensated by the time saved in

estimating poses (Step 5 in Fig. 5.8(bottom)) for only the most likely priors.

We show the stability of the parameter b of our model for each individual algorithm in

Fig. 5.10. In particular, we show the AUPRC for increasing values of b with fixed γ(i). We

see that b is not very sensitive to specific values, and it is only the order of magnitude that

is relevant. For tasks which require high precision in depth measurements (such as pose

estimation) the best-performing values of b are small, b < 1. In contrast, tasks requiring

only rough depth measurements (such as clustering) perform better with larger values of b.
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Figure 5.8: (top) Precision-recall curves evaluating the individual contributions of Adaptive
Priors, Adaptive Matching, and Adaptive Pose Estimation, on the Offices Dataset.
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Color Image Depth Interpolated Depth

Confidence (b = 1) Adaptive Non-Adaptive

Figure 5.9: The adaptive model is able to correctly estimate object poses, even with in-
accurate interpolated depth; in contrast, relying on depth filling methods results in both
poorly localized objects and missed detections.

Figure 5.10: Average AUPRC for the individual algorithms, for fixed γ2 and varying b (log
scale) on the validation set.
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5.8 Summary

We have introduced an adaptive model to robustly integrate depth data into image-only

preception and we have applied it to each stage of MOPED. The resulting system, MOPED-

RGBD, yields significant performance gains over MOPED with moderate depth fading, and

a seamless transition to the performance of the image-only MOPED in the presence of

severe depth fading. MOPED-RGBD is the object recognition system used in HERB since

September 2011.

The limitations of MOPED-RGBD are the essentially the same as those from MOPED.

Namely, the problem of finding enough correspondences in a given object. If the object

contains enough texture, then MOPED-RGBD will most likely identify the object and

estimate its pose. If the object is untextured, it will not be recognized with any local feature-

based approach, including MOPED. For such cases, there exist promising approaches such

as Hinterstoisser et al. (2011), but the pose estimation capabilities for such algorithms are

not yet nearly as accurate and robust as those from MOPED or MOPED-RGBD. A line of

research for our future work is to add 3D-based features to MOPED-RGBD for recognition

of textured and untextured objects based on combined appearance and geometry.



Part III

Robotic Object Discovery





Overview of Part III

A critical part of our Lifelong Robotic Object Perception framework is Robotic Object

Discovery. In the following chapters of this thesis, we study the problem of discovering novel

objects in the environment while the robot operates, for as long as the robot operates. We

term this problem as the Lifelong Robotic Object Discovery (LROD) problem. As a first

step towards LROD, we aim to automatically discover objects during one workday of a

service robot, which amounts to 6-8 hours of raw RGBD video.

Our work in Robotic Object Discovery is separated in two chapters: first, we describe

how to compute generic object candidates from single RGBD images in Chapter 6, using

our Structure Discovery algorithm. Then, we describe how to combine the generic object

candidates with graph-based clustering methods to discover objects in Chapter 7.

We argue that leveraging the non-visual information (metadata) from natural robotics

constraints is crucial for speed and robustness. We introduce the concept of constraint as

an intermediate representation to encode information, both metadata and visual similarity.

We use these constraints to compute Constrained Similarity Graphs (CSGs). To evaluate

our Robotic Object Discovery implementation, HerbDisc, we gathered 6 h 20 min of raw

RGBD video stream from HERB exploring an university building. Our Object Discovery

system, HerbDisc, discovers 206 novel objects in this dataset in 18 min 34 s.





Chapter 6

RGBD Scene Segmentation:

Structure Discovery

Structure. [n. struc·ture. str@k-ch@r]: Something

arranged in a definite pattern of organization.

Merriam-Webster.com (2012)

In this chapter, our goal is to compute object candidates for Robotic Object Discovery

(Section 7). In particular, we aim to generate a scene segmentation, together with a ranking

mechanism, such that the highest-ranking segments correspond to objects in the scene (e.g.,

Fig. 6.1). We call this process Structure Discovery. We combine range and image data to

compute perceptual cues such as concavities and discontinuities. These cues are then used

to generate scene segmentations that preserve objects.

Our main contribution in this work is a structure discovery algorithm that exploits the

availability of RGBD data, as illustrated in Fig. 6.1 and Fig. 6.2. We generate multiple

segmentations, as in Hoiem et al. (2005), Sivic et al. (2005), of image and range data by vary-

ing the parameters of a standard segmentation algorithm (in our case, the FH graph-based

segmentation of Felzenszwalb and Huttenlocher (2004)). While no single segmentation is

completely correct, we assume that some segments in some of the segmentations are correct

and contain a whole object. We relate segments in an image to the corresponding range

measurements, and vice versa, to create RGBD data regions. We term these RGBD regions

regionlets. We then compute region-wide features for each regionlet, and aggregate them in

a single objective function that measures the structure of each region. We show how simple

features such as color consistency, continuity, alignment, and concavity work very well to

identify potential structures.

We apply our Structure Discovery algorithm to discover objects in indoor environments.

The current state of the art in this area is to use range data, tuned to exploit domain knowl-
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Figure 6.1: Results of our algorithm for structure discovery applied to household items.
(Top-left) Input image. (Top-right) Input depth image. (Bottom) Objectness RGBD Seg-
mentation, color-coded to show the highest-ranked segments in white and the lowest-ranked
segments in black.
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Figure 6.2: Example scene segmentations with Structure Discovery, color-coded as in
Fig. 6.1. Note that the whiter sections of the images correspond to objects.

edge of the geometry of the scene, such as the plane-based 3D segmentation of Rusu and

Cousins (2011). The use of multiple assumptions simplifies the solution, but also limits

its application to finding objects on top of a nearby table. Image-based object discovery

techniques are more focused on larger objects and natural scenes (Endres and Hoiem, 2010,

Alexe et al., 2010), and are outperformed by the range-based approach in indoor environ-

ments. In the experiments section, we show that Structure Discovery performs as well as

the state of the art in finding objects in tabletop scenes, without any limiting assumptions

about the scene. Algorithms optimized for particular scene geometries work poorly when

their assumptions about the scene are violated (e.g., Fig. 6.1, in which the table is not

visible enough). The greater generality of our algorithm is showcased in a second set of

experiments, in which we discover objects in generic indoor scenes that the current state

of the art is unable to process. We provide further experiments in Chapter 7 showing that

using Structure Discovery for candidate generation in Robotic Object Discovery, we achieve

13% higher recall at the same precision than using the tabletop segmentation of Rusu and

Cousins (2011).

6.1 Method overview

Given a single image and a single range scan of a scene, our goal is to automatically discover

objects, mainly in terms of appearance, shape smoothness and continuity. Our algorithm is
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Figure 6.3: Method overview. (a) Input data, image + range data. (b) Initial segmentations
on each data source. Segmentations are projected to second data source. (c) Regionlets
and sub-regionlets are generated from image, range data segmentations. Structure-ness
score is computed from features on regionlets. (d) Output: structure discovery and scene
segmentation.
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summarized in Fig. 6.3. The result is a scene segmentation of the different structures that

compose a scene, ranked from most to least structured.

We organize our method in four different steps, which we describe in detail in the

following sections. Fig. 6.3(a) shows an example of the input we receive from our sensors for

a particular scene: an image, and a point cloud or depth image. Fig. 6.3(b) shows example

segmentations from each data source. Each of the segments in each of the segmentations

is considered a candidate for a potential structure; our work, therefore, is to analyze each

of the segments and rank them in terms of their structure-ness, according to the features

defined below.

Once the initial segmentations in each data source are generated, we need to compute

a RGBD region, a regionlet, from each segment in each segmentation. Segments from each

data source are associated with data points from the other data source through a projection

scheme. Each resulting regionlet contains a set of pixels and a set of 3D points, but no

individual pixel to 3D point association is made. In order to rank the different candidates,

we develop a hierarchical scheme: each regionlet is split into sub-regionlets to evaluate

both local (at the sub-regionlet level) and global (at the regionlet level) consistency, in a

multi-resolution grid similar to segmentation trees of Borenstein et al. (2004), Sharon et al.

(2001). Example sub-regionlets are shown in Fig. 6.3(c). We then calculate each regionlet

score by evaluating image features, range features and mixed features at each level, and

produce a ranking of regionlets based on their score . Finally, we assign each pixel and 3D

point to the highest-ranked regionlet that contains it, thus producing a segmentation of the

scene based on structure-ness, as shown in Fig. 6.3(d). If we wish to retrieve only the most

structured regionlets, we only need to choose the few highest ranked regionlets.

6.2 Candidate generation

Generating likely candidates to evaluate their structure-ness is a hard problem. Ideally, we

would like to try all possible segmentations from a scene and rank them, keeping only those

with highest score. Unfortunately, such a procedure is infeasible. Following Hoiem et al.

(2005), Sivic et al. (2005), we generate a small number of segmentations with the well-known

segmentation algorithm of Felzenszwalb and Huttenlocher (2004) as a representative sample

of the set of all possible segmentations. Our assumption is that none of the segmentations

are correct as a whole, but that some segments in some segmentations will be correct and

contain objects. It is important to note that, since we do not rely on the full segmentation

to be correct, the particular choice of a segmentation algorithm is not that critical. We

choose the method of Felzenszwalb and Huttenlocher (2004) because it is fast and produces

reasonable results. We perform this procedure independently for the image and range data.

For the image segmentations, we use the difference between pixel colors in RGB space as
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a similarity measure, and generate multiple segmentations by progressively increasing the

threshold k, typically from k = 50 to k = 500 in increments of 50. For the range data

segmentations, we define similarity as the Euclidean distance between the eigenvalue-based

features in Lalonde et al. (2006), computed in a neighborhood of up to 20 nearest neighbors.

To generate multiple segmentations, we progressively increase the threshold k from k = 1

to k = 10 in increments of 1.

6.3 Generating Regionlets

One of the main contributions of our work is the mid-level fusion of image and range data.

We use regionlets as our elementary processing units, which we create from image and range

segments. Each regionlet

Ri = {Ii,pi,Pi,A(Ri)} (6.1)

is defined by a set of N image pixels Ii and their corresponding pixel positions pi, a set

of M 3D points Pi, and a set of adjacencies A(Ri). Hierarchies of regionlets are denoted

by R
(k)
i for regionlet Ri in the k-th level of the hierarchy. In this case, the adjacencies

of a regionlet R(k) can be parents, neighbors and children of R(k) depending on whether

they are from level k − 1, k or k + 1 in the hierarchy, respectively. In this work, we use

a two-layer hierarchical scheme. For simplicity, we refer to the top-level regionlets R(0) as

simply regionlets R, and the bottom-level regionlets R(1) as sub-regionlets r.

6.3.1 Associating 3D to image segments

Given an image segmentation, we must compute the 3D range measurements associated

with each segment in the image. Assuming that camera and 3D sensor are calibrated, the

3D data are projected into the image and associated with the image segments into which

they are projected.

6.3.2 Associating image pixels to 3D segments

To generate a regionlet given 3D segments, we must associate a set of pixels in the image

with each 3D segment. We compute which image pixels correspond to a range data segment

via Z-buffering (Wand et al., 2001). We sort all range measurements according to their

depth with respect to the camera. Starting with the points that are furthest away, each 3D

point Pj paints a circle of pixels around its image projection p̂j with the regionlet ID that

corresponds to Pj . 3D points closer to the camera paint over 3D points further away. As

a result, we obtain a set of image pixels associated with a range data segment. In order
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Unary Pairwise Regionlet Sub-regionlet

Appearance Model X 7 X 7

Shape Model X 7 X 7

Self-Continuity X 7 X X
Contour Compactness X 7 X X

Pair-Continuity 7 X 7 X
Verticality X 7 X X
Concavity 7 X 7 X
Projection 7 X 7 X
Alignment 7 X 7 X

Color histogram 7 X 7 X
Surface compatibility 7 X 7 X

Table 6.1: Unary and pairwise terms, and application to regionlets and sub-regionlets.

to account for differences in range data density, we adapt the radii of the circles painted

according to the density of each region.

6.3.3 Generating sub-regionlets

In order to calculate a score for each regionlet and keep computations tractable, we separate

each top-level regionlet into sub-regionlets, akin to the use of super-pixels from an image

over-segmentation as elementary units of processing. In our work, we consider three choices

to generate sub-regionlets: super-pixels (over-segmentation in image space), super-points

(over-segmentation in 3D space), and fixed shape and size sub-regionlets. One important

drawback of both super-pixels and super-points is that their shapes are often elongated

and contain many twists and turns. This effect often results in very narrow sub-regionlets,

with a width of only a few data points. Computing any kind of 3D features (e.g., surface

normals) is unreliable in such data, so we choose instead the safer approach of sub-regionlets

of non-overlapping shapes that maximize the visible surface area, in order to compute both

2D and 3D features reliably. In particular, we use squares of side 1/12 of the vertical

resolution of the image (e.g., 40× 40 pixels in a 640× 480 pixels image).

To generate sub-regionlets rij , we first compute a bounding box around a given regionlet

Ri in the image domain. We then separate the bounding box in squares and compute the

range measurements associated with them using the method described in Section 6.3.2. Sub-

regionlets with less than a certain number of pixels and range measurements are considered

insufficient and discarded.
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Figure 6.4: Illustration of Regionlet and sub-regionlet scoring. (Top) Example Regionlet
(R) and its division in sub-regionlets (r). (Bottom) Computing St scores for R given its
sub-regionlets, and for a sub-regionlet r given its neighbors.

6.4 Structure Discovery as Regionlet Scoring

Once the multiple segmentations are computed and regionlets generated, we assume we

have populated our candidate space with all potential objects we want to discover. We

need now to score all regionlets in terms of their structure-ness and rank them from best to

worst. In this section, we develop a framework to evaluate the structure-ness of regionlets,

and define the different features we use in each data modality.

We evaluate regionlets at both the global level, i.e., considering each region as a whole,

and at the local level via sub-regionlets. Therefore, the objective function we define is

composed of unary terms at both the local and global level, and of pairwise terms at the

local level.

Each regionlet Ri is composed of sub-regionlets rij . The set r of all sub-regionlets within

a regionlet R is expressed as the children C of R, i.e., r = C(R). Each sub-regionlet rij

is characterized by a set of RGB values Iij , a set of 3D points Pij and a set of neighbors

N(rij). In particular, each sub-regionlet rij is 4-connected to the adjacent sub-regionlets.

The final structure-ness score St(·) for regionlet R is

St(R; Θ) = φ(R; Θ)
∏

r∈C(R)

St(r; Θ), (6.2)

where

St(r; Θ) = φ(r; Θ)
∏

rj∈N(r)

Φ(r, ri; Θ). (6.3)
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The structure of this objective function is similar to a MRF (Huang and Ogata, 2002),

although for the task of region scoring we do not need to perform any inference on this

function. It is important to mention that, for stability purposes, the log-linear version

log(St(·)) is preferred over the score St(·). Fig. 6.4 illustrates the process of scoring a

regionlet and a sub-regionlet.

The features we explain in this section are inspired from previous work from Chu and

Aggarwal (1993), Katz and Tal (2003), Lalonde et al. (2006), Hoiem et al. (2007), Tu and

Zhu (2002). It is important to mention that, while the features we present work well

in practice, they are just an example for the implementation of our structure discovery

framework. Any other image-based, 3D-based, or mixed feature f to be computed in a

group of data points such that f(Ri) ∈ [0, 1] is a potential feature to be used in our

framework.

6.4.1 Unary terms

The unary terms of regionlets φ(R) and sub-regionlets φ(r) are computed as the interaction

between the different features described in Table 6.1. For a given set of features f and

parameters Θ, the unary term

φ(·; Θ) =
1∑
iwi

∑
fi∈f

wifi(·; Θ), (6.4)

where the weights wi account for the different importance of individual features when

searching for particular types of structure. In order to be able to compare the different

terms, we normalize all features (unless otherwise noted) to have a range [0, 1], where 0 is

the worst and 1 the best score a feature can achieve.

Appearance model

An appearance model is used to search for structure with particular visual properties.

The appearance model App(·) can be any image-based likelihood function that returns the

confidence value in the range [0, 1] of an image segment given model parameters Θ. For

an extensive discussion and more details on appearance models for color and grayscale

segmentation, see Tu and Zhu (2002). Examples of useful appearance models are:

• Single color distribution, to model non-textured, smooth regions.

• Mixture of gaussians, useful to model textured color regions.

• Global color or intensity histograms.
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3D shape model

A 3D shape model is defined equivalently to the image-based appearance model in Sec-

tion 6.4.1. The shape model Sh(·) specifies which types of structures are desired. Useful

shape priors include:

• Planar shape. A planar approximation P̂ of a set of 3D points P can be easily

computed via PCA analysis or RANSAC. Then Sh(R; Θ) ∈ [0, 1] is a confidence

measure of how planar R is.

• Size. It is not uncommon for structures within the same scene to have vastly different

scales, and we can specify surface or volume priors on structures to prioritize which

ones should be preferred.

• Scale. An alternative to a fixed size prior is to define a size dependent on distance.

This way, we can discover small structures near the camera, and larger structures

further away from the camera.

Self-continuity

The self-continuity feature measures abrupt changes in depth within a regionlet or sub-

regionlet, which are often representative of discontinuities and boundaries between objects.

Finding discontinuities in unstructured point clouds is a hard problem and multiple algo-

rithms have been developed for this purpose, e.g., Tang et al. (2007). In our framework,

we simplify this problem by accounting for the implicit ordering given by the image data.

We construct a grid of control points in the image domain, and these control points are

associated with the 3D points in the regionlet with minimal reprojection error.

In a sub-regionlet, the control points are equally spaced to form a grid of 64 control

points. In a regionlet Ri, the control points are the centers of each sub-regionlet rij , and

their connectivity maps that of the sub-regionlets. Once the Euclidean distances dk between

connected 3D control points have been computed, we define the continuity score Cont(·; Θ)

as

Cont(·; Θ) = exp

(
− 1

w2
cont

1

|P̄ | max
k

dk

)
, (6.5)

where |P̄ | is the average distance from regionlet R to the camera, which is necessary in

order to reliably compare regionlet scores from different depths.

Verticality

Structures facing the camera and range sensor, i.e., parallel to the image plane, are more

desirable than structures almost perpendicular to the image plane, as it is less reliable to
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estimate shape and appearance parameters on structures under heavy projective distortion.

In addition, it is more complicated to use discovered structures under heavy projective

distortion in further tasks, such as object modeling or object recognition. Therefore, we

implement verticality as a feature in our regionlet-scoring framework.

We compute the verticality score as a ratio between the area projected in the image and

the maximum area spanned by the set of 3D points P of regionlet R. We approximate the

computation of the area of a regionlet by the area of its bounding box along the directions

of maximum variation.

Contour compactness

Object boundaries in the real world are usually smooth and contain few jagged edges.

This fact has been used in the image segmentation and sensor fusion literature to produce

smoother segmentations of objects (e.g., Chu and Aggarwal (1993)). We use the same defi-

nition as Chu and Aggarwal (1993) for a Contour Compactness CC(·) feature to encourage

smooth edges. In particular, we measure the ratio of regionlet area to perimeter length,

both in the image domain, normalized so that CC(·) ∈ [0, 1].

6.4.2 Pairwise terms

Pairwise terms Φ(·, ·) measure the interactions between neighboring sub-regionlets, in order

to compute the likelihood that two sub-regionlets belong to the same structure.

For a given set of features f and parameters Θ, the pairwise term

Φ(rj , rk; Θ) =
1∑
iwi

∑
fi∈f

wifi(rj , rk; Θ), (6.6)

where the weights wi account for the different importance of individual features when

searching for particular types of structure. As with the Unary terms, we normalize all

features (unless otherwise noted) to Φ(rj , rk; Θ) ∈ [0, 1].

Pairwise continuity

The pairwise continuity feature measures abrupt changes in depth and discontinuities be-

tween two sub-regionlets. We follow a similar approach to Section 6.4.1, and reuse the same

set of control points Pc
i ∈ ri and Pc

j ∈ rj . We compute the pairwise continuity score as the

average between the M minimal distances between Pc
i and Pc

j , normalized as in Eq. (6.5).

Concavity

Studies in human perception have shown that concavities are one of the major cues in the

human visual system to segment a scene into parts (Hoffman and Richards, 1984), and
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have been used successfully in 3D segmentation and mesh decomposition, as in Katz and

Tal (2003). In our work, we compute the concavity between two sub-regionlets as the

difference in orientation αij between their surface normals pointing towards the camera.

Given the importance of concavities in 3D segmentation, we can enforce a strong penalty

on concave unions and reward convex unions by using

Cv(ri, rj) = sinαij . (6.7)

In this case, Cv(·, ·) ∈ [−1, 1].

Figure 6.5: Examples of our structure discovery algorithm applied to household objects, in
the Objects Pan-tilt Database. (Top row) Input images. (Bottom row) Top 10% ranked
regionlets for each scene, color-coded from white to black, being white the highest ranked
regionlet.

Projection

The Projection feature captures information about the smoothness of a surface, by com-

puting the projection error of a planar approximation of a sub-regionlet onto its neighbor.

This way, surfaces with small variation score high, since both sub-regionlets have similar

global properties, while different shapes and orientations achieve a low score. Let P̂j
i be

the projection of the 3D points Pi ∈ ri onto rj . The projection score Proj(·, ·; Θ) is then

Proj(ri, rj ; Θ) = exp

(
− 1

wproj

1

N

N∑
k=1

||Ek||2
)

(6.8)

E = min(Pi − P̂j
i ,Pj − P̂i

j) (6.9)

Alignment

The Alignment feature grades the depth alignment of parallel surfaces. Despite this fact

being partially captured by the pairwise continuity feature, we enforce the alignment of
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Single Single, Non-transp. Multiple Total

Structure Discovery 52.7% 76% 61.2% 59.9%
Rusu and Cousins (2011) 38.8% 56% 66.8% 62.5%

Table 6.2: Object Discovery and number of objects per scene.

surfaces with a more robust feature that operates on average range measurements from

regionlets, and not individual distances between points. For this task we re-use the Projec-

tion score from Section 6.4.2, but we measure the projection error of the vector difference of

means, i.e., E = µi−µj , where µi, µj are the average of the sets of 3D points Pi ∈ ri,Pj ∈ rj .

Color histogram

This image-only feature captures the similarity in terms of appearance between sub-regionlets.

Following Hoiem et al. (2007), we compute the distance between the color histogram (in

8× 8× 8 bins) of each individual sub-regionlet compared to the histogram union of the two

sub-regionlets, normalized so that ColorHist(ri, rj ; Θ) ∈ [0, 1].

Surface compatibility

The surface compatibility feature is based on the 3D features described in Lalonde et al.

(2006) of linear-ness l, planar-ness p and scatter-ness s, computed from the relative weights

of the eigenvalues of the range data. We hypothesize that physical objects do not have

abrupt changes in their surface properties. In other words, we assume that two planar

surfaces are more likely to be parts of the same object than a planar and a spherical

surface, or that two curvy surfaces are more likely to be the same object than a curvy

surface and a plane. A simple way of encode this information is to compute the Euclidean

distance between the two vectors Vi = [li, pi, si] and Vj = [lj , pj , sj ] from ri and rj .

6.5 Experiments

Our goal in the experiments section is to compare our algorithm to the state of the art in

object discovery in indoor scenes. We want to show that our algorithm performs as well as

a specialized algorithm carefully optimized for the particular scene geometry of objects on

top of a table. We also want to show that that our algorithm generalizes better to generic

indoor scenes, because we do not enforce any limiting assumptions on the scene geometry.

To that end, the first set of experiments focuses on the discovery of common household

objects on top of a table, while the second one focuses on the discovery of larger structures



106 CHAPTER 6. RGBD SCENE SEGMENTATION: STRUCTURE DISCOVERY

such as people, tables or walls. Each dataset has been gathered with a different source

of depth information (the Projected Textured Stereo of Konolige (2010), and an RGBD

camera) to test the performance of our algorithm with different data sources.

6.5.1 Our implementation

In our implementation of the Structure Discovery algorithm, we use the following constants:

• Appearance/shape model: we use a simple maximality prior instead of a full ap-

pearance/shape model, in which we encourage the creation of large regionlets. In

particular, we use App(R; Θ) = log(|I|), where |I| is the total number of pixels of

regionlet R. We use a logarithm to avoid this feature from overpowering all others.

• Normalization weights: all weights used for normalization purposes, i.e., inside the

exponentials, are set according to the uncertainty/noise characteristics of each sensor.

For the stereo data, these are set so an average error of 1.5 cm at 1 m outputs a

feature score of 0.5. The RGBD camera has an average uncertainty of 3%, so we

set the weights so that an average error of 3% outputs a feature score of 0.5. This

normalization scheme is described in more detail in Section 4.4.3.

• Feature weights: We learn a set of weights for each feature using grid search on a

100-image training dataset.

All our parameters are kept constant throughout our experiments to demonstrate the gen-

erality of our algorithm in discovering structure.

6.5.2 Baseline algorithm

The baseline algorithm we compare against is the plane-based 3D object segmentation al-

gorithm from Radu Rusu’s Point Cloud Library (Rusu and Cousins, 2011). This algorithm

exploits domain knowledge of the geometry of common household environments; it is spe-

cialized in finding objects on planar surfaces, by first performing a plane-fitting procedure

and then clustering groups of 3D points that lie on top of the plane. It is a simple method

that performs remarkably well as long as the plane-fitting procedure is able to find valid

planes, and it has been showcased on multiple occasions in most demonstrations of the PR2

Personal Robot.

6.5.3 Results

In this first experiment, we use a subset of 90 scenes extracted from Willow Garage’s

”Objects Pan-tilt Database” (WillowGarage, 2010) (some examples shown in Fig. 6.5).
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Figure 6.6: Examples of our structure discovery algorithm applied to household scenes, in
the Household Dataset. (Top row) Input images. (Bottom row) Top 10% ranked regionlets
for each scene.

This dataset contains different sets of household objects attached to a pan-tilt unit that is

moved around, so that multiple views of the objects are available. Images from this dataset

are grayscale, with a resolution of 640×480 pixels. The depth information is computed using

the Projected Textured Stereo of Konolige (2010), a technique that extracts dense depth

maps from images through the projection of a structured texture on the scene. The objects

used in our evaluation have different shapes and appearances, and include a Gillette Shaving

Cream, a Kleenex Cube, Mop’n’Glow floor cleaner, a soda can and a milk carton, among

others. Some scenes contain multiple objects (up to 5) in different levels of occlusion and

some contain single objects, for a total of 223 object instances in 90 scenes. Some examples

of scenes and our segmentations are shown in Fig. 6.5.

In our evaluation, we ground truth each scene with a bounding box around each object,

and use the PASCAL criteria (Everingham et al., 2010) bounding box evaluation to identify

which objects are correctly discovered.

Our results are shown in Table 6.2. Both our algorithm (Structure Discovery, in Ta-

ble 6.2) and the baseline from Rusu and Cousins (2011) perform similarly well, despite using

vastly different approaches. It is interesting to note that our algorithm tends to discover

objects more reliably in scenes with little clutter. The explanation for this tendency is that

our algorithm is designed to detect prominent structures in the scene, which is very often

correlated to the size of the structures in the image. In some of the highly cluttered scenes,

the objects seldom span more than a single sub-regionlet, and contain little 3D information.

Under these circumstances, the algorithm of Rusu and Cousins (2011) is a more convenient

choice.

For the single object experiments, we split our results between “Single” and “Single,
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Walls Person Person (torso) Furniture Other

Total Present 12 14 14 11 13
Found (%) 100% 35.7% 78.5% 63.6% 61.5%

Table 6.3: Structure Discovery on indoors scenes. Results from Rusu et al. show no
detections and are omitted from the table.

non-transparent” because neither algorithm is able to discover a transparent wine glass

in the dataset, mainly because of a lack of consistent range data in its surface, as the

Projected Texture Stereo algorithm fails to recover stereo data from it. In the single object

experiments, our algorithm outperforms the baseline by 20%. This difference, however, is

a bit misleading, since both algorithms perform equally well on all objects but one (the

Mop’n’Glow bottle). In a general setting, we believe that these two algorithms perform

very similarly, as long as there is a planar surface for the baseline algorithm to detect.

The second experiment we conduct is the discovery of larger objects in indoor environ-

ments, such as walls, furniture and people. In order to do so, we gathered a dataset of 15

indoor scenes, which we call the Household Dataset. The image/range sensor is an RGBD

camera that outputs 640× 480 resolution images with associated depth for every pixel. We

downsample the range data to one third of the original resolution to verify that we do not

require a pixel-level fusion of data sources. We have annotated and produced bounding

boxes for four types of structure: wall, person, furniture, and “other”. The label “other” is

for other prominent objects in the scene, such as a backpack, a painting, a cardboard box

or a suitcase.

For this experiment we are unfortunately unable to provide any results from the baseline

system, as it is optimized for a much shorter range than these scenes, and does not return

any detections in these scenarios.

Results from this dataset are shown on Table 6.3, and example scenes and their highest

ranked regionlets are shown in Fig. 6.6. Analyzing the results, we see that large, simple

structures such as walls are discovered very reliably, while more complex objects such as

people are often missed, in particular their legs. If we focus on the upper body of a person,

we find a twofold increase in performance, as a person’s upper body is often larger and has

less variability.

6.6 Summary

We have presented and validated an algorithm to perform structure discovery from RGBD

data using a novel region-based approach. We have demonstrated that our algorithm is
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able to discover common household objects with similar accuracy than specialized 3D object

segmentation algorithms, without the need to rely on any rigid assumptions about the scene

structure, such as the presence of a visible planar surface in which objects are placed.

Interestingly, the results from both algorithms are almost complementary in the kind of

scenes they perform best. Our algorithm discovers objects best when the objects’ largest

faces are parallel to the image plane, as the image and range sensors capture more infor-

mation about them. On the other hand, the plane-based 3D segmentation of Rusu and

Cousins (2011) performs best when the table is the most prominent part of the scene, e.g.,

seen from a high viewpoint.

An interesting follow-up work to this algorithm would be a higher-level reasoning about

the interpretation of a scene; in the case of an overhead picture, the detection of a planar

surface could lead to a closer inspection of objects on top of it.

A close analysis on the limitations of our algorithm shows some important conclusions

and areas of improvement. We have found that a bad performance of our algorithm is often

tied to the bad performance of the initial segmentations. On multiple occasions where an

object is missed, the reason is that none of the initial segmentations was able to capture

that object in its entirety in a single segment. When this happens, our assumptions do not

hold and thus our algorithm cannot generate the expected results. In addition, while we

discover structures such as walls with high accuracy, our structure model is sometimes not

flexible enough to handle the large variations of more complex structures such as people or

some furniture, as they are seldom segmented in their entirety.

We are confident that the introduction of regionlets as the minimal processing units is an

important step in image-range data sensor fusion. Regionlets supersede and integrate low-

and mid-level fusion in one framework, extracting the advantages from both approaches.

Regionlets are compatible with existing algorithms that require one-to-one correspondences,

while adding an extra layer of abstraction that may lead to more sophisticated perception

tasks using mixed image and range data.

In the next chapter, Section 7, we describe how the Structure Discovery algorithm we

propose can be used for Robotic Object Discovery.





Chapter 7

Robotic Object Discovery

Discover. [v. dis·cov·er. dis- k@-v@r]: To obtain

sight or knowledge of for the first time.

Merriam-Webster Dictionary

In this chapter, we consider the problem of Lifelong Robotic Object Discovery (LROD) as

the long-term goal of discovering novel objects in the environment while the robot operates,

for as long as the robot operates. As a first step towards LROD, we automatically process

the raw video stream of an entire workday of a robotic agent and discover hundreds of

objects.

We claim that the key to achieve this goal is to incorporate metadata whenever available,

in order to detect and adapt to changes in the environment. We propose a general graph-

based formulation for LROD in which generic metadata is encoded as constraints. Our

formulation enables the introduction of new sources of metadata to be added dynamically

to the system, as they become available or as conditions change. We describe an optimized

implementation of this framework in HERB, which we term HerbDisc, to discover objects

in a raw RGBD video stream of over 6 hours of duration. With HerbDisc, we process 6 h

20 min of RGBD video of real human environments in 18 min 34 s, and discover 206 novel

objects with their 3D models.

The research presented in this chapter is joint work with Bo Xiong and Corina Gurau.

7.1 Problem Formulation

Consider the example of Robotic Object Discovery shown in Fig. 7.1. We identify five

major components. The World Ω represents the underlying physical phenomenon (i.e., the

environment) in which we discover objects. A physical agent A (e.g., a robot) gathers data

through observation of the world Ω. The physical agent uses sensors S (e.g., a camera) to
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World (Ω) 
Agent (A) 

Sensing (S) 
Sensing (S)     Data Samples (I) 

Candidate Gen. (H)     Candidates(h)    

Discovery (D)    Objects(M) 

ΦS 
ΦA 

�⌦

Metadata (Φ) 

Figure 7.1: Main components in Robotic Object Discovery. (left) the robot HERB moves
through a kitchen searching for novel objects. (center) The three physical components of
Robotics Object Discovery are: the world Ω, the robotic agent A, and the sensors S. (right)
The sensors capture data samples x to be processed by a candidate generator H to produce
object candidates. The Discoverer D groups recurring object candidates into objects, using
candidate data and metadata sources ΦΩ (e.g., assumption “objects lie on tables”), ΦA
(e.g., robot localization data), ΦS (e.g., image ordering and timestamps).

gather data samples I (e.g., images). A candidate generator H produces object candidates

h from data samples. Finally, the discoverer D groups recurring object candidates into

objects.

In this chapter, we describe a general architecture for an object discoverer D that uses

metadata from the world Ω, the physical agent A and the sensors S, alongside visual

information from the object candidates h, to discover objects robustly and efficiently.

7.1.1 Inputs and Outputs

The visual input to HerbDisc is a set I of N images with associated range data:

I = {I1, . . . , In, . . . , IN} In = {Irgbn , IPn }, (7.1)

where Irgbn is the set of color RGB values in image n, and IPn is the set of 3D points available

from the viewpoint of image n.

A candidate generator H generates a set of data fragments h from image and range

data in I, which we consider the object candidates. Each object candidate

hi = {hrgbi , hPi , h
Φ
i } (7.2)

is defined by a set of image pixels hrgbi , a set of 3D points hPi , and a set of metadata

attributes hΦ
i .
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The output of this framework is a set of 3D object models M . Each object Mk =

{Mrgb
k ,MP

k ,M
h
k } is defined by a set of 3D points MP

k with associated color Mrgb
k and the

set of object candidates Mh
k = {h1,k, . . . , hi,k, . . .} used to create object Mk.

7.1.2 Constraints

Constraints encode generic information about an object candidate hi or a relationship be-

tween candidates hi, hj . There are two types of constraints: node constraints Θn (which

encode information about a single candidate) and edge constraints Θe (which encode infor-

mation about the relationship between a pair of candidates). Table 7.1 shows a list of the

constraints we use in this work. We model each constraint Θ as a Bernoulli distribution

with probability of success p (and, conversely, a probability of failure q = 1 − p). Node

constraints Θn modify a single object candidate hi,

Θn : hi 7→ {0, 1} (7.3)

P (Θn(hi) = 1|hi) = p. (7.4)

Analogously, edge constraints Θe modify the edge between a pair of object candidates hi, hj ,

such that

Θe : hi, hj 7→ {0, 1} (7.5)

P (Θe(hi, hj) = 1|hi, hj) = p. (7.6)

In a slight abuse of notation, we use the forms PΘn(h) ≡ P (Θn(h) = 1|h) and PΘe(hi, hj) ≡
P (Θe(hi, hj) = 1|hi, hj) in the remainder of this chapter.

7.2 Framework overview

This section contains a brief summary of the discovery framework and its components,

alongside a description of how each component is implemented in HerbDisc. We explore

each component in detail in the following sections.

We describe the general flowchart of our framework in the following itemized list. In

the following sections, we focus on the novel elements of this work: defining constraints

(Section 7.3), generating CSGs (Section 7.3.3), and the implementation of constraints and

CSGs in HerbDisc (Section 7.5). We provide a list of the constraints implemented in

HerbDisc in Table 7.1.

1. Candidate Generation. We compute object candidates hi from each data sam-

ple In ∈ I. We use the objectness-based segmentation algorithm described in Chapter 6

(Structure Discovery).
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Constraint Type Information Source Description Section

Θmotion node
Relative camera
motion

ΦA
Acquire data samples only if there is
motion (no repeated frames).

7.5.2

Θseq edge
“data comes in se-
quences”

ΦS

Split data stream in short sequences
based on camera motion and maxi-
mum sequence length.

7.5.2

Θsupport node
“objects have sur-
faces of support”

ΦΩ

Reject candidates not supported by
horizontal or vertical planes (tables
or walls).

7.5.1

Θstatic edge
“scene is static for
a few seconds”

ΦΩ
Measure 3D overlap between candi-
dates.

7.5.3

Θsize node Object size ΦΩ
Compare candidate’s size with ob-
ject prior.

7.5.4

Θshape node Object shape ΦΩ
Compare candidate’s shape with ob-
ject prior.

7.5.4

Θapp edge Visual Similarity V
Compare visual similarity between
candidates using color histograms.

7.5.5

Θ3D edge Shape Similarity V
Compare shape similarity between
candidates using FPFH features.

7.5.5

Table 7.1: Constraints used in HerbDisc. For each constraint Θi, we provide: the type
of information encoded in Θi; whether Θi is applied on a single object candidate (node)
or a relation between a pair of candidates (edge); the information source(s) encoded in
Θi; a short description of the meaning of Θi; and the section in which Θi is described in
detail. The possible sources of information are: ΦΩ (metadata about the environment), ΦA
(metadata about the robot), ΦS (metadata about the sensors), or V (visual information).

2. CSG Generation. We create a graph of relationships between object candidates

using constraints Θ. We define the CSG built by constraint Θ as GΘ = (EΘ, V Θ) (Sec-

tion 7.3.3).

If the constraint Θ encodes visual similarity, then the CSG GΘ is equivalent to regular

pairwise similarity graphs in Unsupervised Object Discovery (e.g., Kang et al. (2011)).

Applying the constraints in Table 7.1 to create GΘ produces multiple connected components

GΘ
g .

3. CSG Clustering. We compute groups of candidates for each GΘ
g ∈ GΘ with the

graph partitioning algorithm of Brandes (2001). This algorithm is a greedy community

discovery method based on the Betweenness Centrality metric, which is very efficient for

sparse graphs and works well for our problem.

Each cluster Ci contains a set of object candidates hi, which are registered together

and merged to compute partial 3D models mi. The set of all partial models discovered is
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Candidate Generation Fully unconstrained graph 

“Objects lie on tables” 

“Scene is static” (3D overlap) 

“Objects are planar” 

“Scene is static” AND  
(“Objects lie on tables” 

OR “Objects are planar”) 

Figure 7.2: Metadata induces constraints on pairwise similarity graphs. We illustrate this
effect on a pair of manually segmented images for simplicity. The fully unconstrained
graph is seldom computed in practice, as techniques such as inverted indexes are used
to preselect potential matches (Philbin et al., 2010). Our formulation generalizes such
techniques, constraining a graph based on any source of metadata (columns 2-3). Most
importantly, our formulation facilitates the creation of complex rules from the combination
of multiple sources of metadata (column 4).

denoted as m.

Each object mi = {mrgb
i ,mP

i ,m
h
i } is defined by a set of 3D points mP

i with associated

color mrgb
i and the set of object candidates mh

i used to create object mi.

4. Object CSG Graph Generation. We compute a CSG graph Gm = (Em, V m) over

partial object models mi ∈ m. The number of nodes in this graph is orders of magnitude

smaller than GΘ, so we can afford to compute more complex constraints if needed. Only

a subset of the constraints from Table 7.1 are available for partial object models mi. In

particular, we use Θsize, Θshape, Θapp, and Θ3D, as the others require local information that

is not relevant for the partial objects.

5. Object Clustering. We compute clusters of partial 3D models using the graph

partitioning algorithm of Brandes (2001) on the graph Gm. Each cluster Ci contains a set

of partial object models mi.

6. 3D model generation. We generate full object models Mi from clusters of partial

object models Ci. We globally register the partial models with the Global Alignment

algorithm of Borrmann et al. (2008) to produce full 3D models.

7.3 Information as Constraints

In the introduction, we defined a constraint Θ as a measurable yes/no question about a

node or edge, with probability of success p about the answer. In Section 7.1, we modeled
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each constraint Θ as a Bernoulli distribution. In this section, we describe how to encode

information as constraints; we define logic operations of constraints that allow us to create

complex constraint expressions; and how to compute CSGs from constraints.

7.3.1 Defining Constraints

Consider the pair of scenes illustrated in Fig. 7.2, in which we encode as constraints

the assumptions Θn
planar = “objects are planar”, Θe

static = “scene is static”, and Θn
tables =

“objects lie on tables”. Encoding Θplanar requires answering the question “is candidate hi

planar?”. If we can measure whether an object is planar or not (e.g., by computing the

reconstruction error of a planar approximation of hi’s 3D points), then we can encode the

assumption as a constraint, with the result shown in Fig. 7.2(row 2, col 2). Similarly, to

encode Θtables we must answer the question “is candidate hi on a table?” for which we need

to 1) detect a table, and 2) determine if candidate hi is on it. If we can measure these two

factors, then the assumption can be encoded as a node constraint, with the result shown

in Fig. 7.2(row 2, col 3). Finally, the assumption “the scene is static” implies to answer

affirmatively that “Do candidates hi at time t and hj at time t+1 occupy the same location

in space?” If we can register the two scenes and hi and hj occupy the same 3D location,

then Θstatic would be satisfied with p proportional to the overlap between hi and hj . The

result of Θstatic is shown in Fig. 7.2(row 1, col 3).

Some sources of metadata may also operate over both nodes and edges. For example,

object tracking can be encoded as a union of an edge constraint Θe = “are candidates hi

at time t and hj at time t+ 1 the same object?,” and a node constraint Θn = “is candidate

hi being tracked?” To incorporate such constraints, we redefine the constraint Θ as a pair

Θ ≡ (Θn,Θe). Constraints that operate only on nodes or edges should implement a default

operator for nodes (Θn = 1) or edges (Θe = 1) which satisfies the constraint with p = 1 for

any input.

Pairwise similarity functions also induce constraints Θ. In particular, a normalized sim-

ilarity function s(hi, hj) ∈ [0, 1] induces an edge constraint Θe with PΘe(hi, hj) = s(hi, hj).

In HerbDisc, we do not distinguish between visual similarity and metadata: they are all

encoded as constraints Θi. This unification is very useful to combine multiple constraints

(Section 7.3.2) and build CSGs (Section 7.3.3).

7.3.2 The Logic of Constraints

A key consequence of our generic constraint formulation is that we can seamlessly combine

multiple sources of metadata using logic statements. In order to take full advantage of

Boolean algebra, we define the logic operations of conjunction ∧, disjunction ∨ and nega-

tion ¬ over node and edge constraints induced by metadata. Let Θn
i , Θn

j be independent
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node constraints induced by metadata, and PΘ(h) the probability of candidate h satisfying

constraint Θn. Then, the negation operator ¬Θn
i is computed as

P¬Θn
i
(h) = 1− PΘn

i
(h), (7.7)

which represents the probability of h not satisfying constraint Θn. The conjunction operator

Θn
i ∧Θn

j is then computed as

PΘn
i ∧Θn

j
(h) = PΘn

i
(h)PΘn

j
(h). (7.8)

Finally, the disjunction operator Θn
i ∨Θn

j is computed as

PΘn
i ∨Θn

j
(h) = 1− P¬Θn

i ∧¬Θn
j
(h). (7.9)

We analogously define the conjunction ∧, disjunction ∨ and negation ¬ operators for

edge constraints, by substituting PΘn(·) for PΘe(·, ·) in Eq. (7.7), Eq. (7.8) and Eq. (7.9).

Logic operations over constraint pairs Θ = (Θn,Θe) operate on Θn and Θe indepen-

dently, so that

¬Θi = (¬Θn
i ,¬Θe

i ) (7.10)

Θi ∨Θj = (Θn
i ∨Θn

j ,Θ
e
i ∨Θe

j) (7.11)

Θi ∧Θj = (Θn
i ∧Θn

j ,Θ
e
i ∧Θe

j) (7.12)

Any logic operation can be derived from the conjunction, disjunction and negation

operators. We can now define arbitrarily complex constraint expressions based on logic

operations over primitive constraints. In Fig. 7.2(row 1, col 4), we illustrate this behavior

with the three hard constraints: Θstatic, Θtables, Θplanar. To search for objects assuming

that “the scene is static” AND that “objects that lie on tables” OR “objects are planar”,

we simply define the constraint

Θ = Θstatic ∧ (Θtables ∨Θplanar). (7.13)

A generic constraint Θ can be composed of multiple constraints Θi using the logic

operators defined above,

Θ = Θ1 ◦Θ2 ◦ . . . ◦Θi ◦ . . . , (7.14)

where the composition operator ◦ denotes any logic operation using Boolean algebra.

7.3.3 Constrained Similarity Graphs

CSGs are undirected graphs which encode information from constraints into nodes, edges,

node weights and edge weights. Let GΘ = (EΘ, V Θ) be an undirected pairwise graph. GΘ

is a CSG of constraint Θ if and only if:
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1. Every node hi ∈ V Θ satisfies Θn,

2. every edge ei,j ∈ EΘ satisfies Θe, and

3. has node weights w(hi) = PΘn(hi), and edge weights w(hi, hj) = PΘe(hi, hj).

We generate the CSG GΘ for constraint Θ following Algorithm 1.

Algorithm 1 Building a Constrained Similarity Graph

1: V Θ = ∅
2: EΘ = ∅
3: for hi in h do . Add nodes that satisfy Θ
4: if PΘn(hi) > pmin then
5: V Θ ← V Θ

⋃{hi}
6: w(hi)← PΘn(hi)

7: for hi in V Θ do . Add edges that satisfy Θ
8: for hj in h with j > i do
9: if PΘe(hi, hj) > pmin then

10: EΘ ← EΘ
⋃{ei,j}

11: w(ei,j)← PΘe(hi, hj)

In Algorithm 1, pmin denotes the threshold probability for nodes and edges (in normal

conditions, pmin = 0.5). The CSG construction and the entire framework are independent of

the particular choice of Θ. Θ can be any arbitrarily complex constraint expression, ranging

from visual similarity only (in which case, the CSG becomes a regular pairwise similarity

graph) to multiple sources of metadata and visual similarity, as we implement in HerbDisc.

Building a generic CSG has necessarily a worst-case complexity of O(n2), where n = |h|,
since the CSG must be able to build any graph including pairwise similarity graphs, or even

complete graphs, which areO(n2). In addition, evaluating a constraint expression for a node

or edge can be expensive, especially if computing complex visual similarities.

In practice, we can simplify the construction of a CSG by using conjunctive constraint

expressions (as in Eq. (7.8)), and positioning the most restrictive constraints first. Evalu-

ating a conjunctive constraint expression is much faster than evaluating generic constraint

expressions, as we only need to evaluate a constraint in the constraint expression if all

previous constraints are successful.

Consider a constraint Θ0 that generates the CSG GΘ0 = (EΘ0 , V Θ0). We can compute

the CSG GΘ from GΘ0 using conjunctive constraints as in Algorithm 2.

The complexity of Algorithm 2 for a given Θ and GΘ0 is O(|EΘ0 |). The size of the

graph GΘ0 determines the complexity of building GΘ. Therefore, an appropriate choice of

Θ0 to build a sparse CSG very quickly can greatly improve the performance of the overall
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Algorithm 2 Building a CSG with conjunctive constraints

1: V Θ = V Θ0

2: EΘ = EΘ0

3: for hi in V Θ do
4: for Θk in Θ do . Erase nodes that do not satisfy Θk

5: if PΘn
k
(hi) < pmin then

6: V Θ ← V Θ − {hi}
7: break
8: else
9: w(hi)← w(hi)PΘn

k
(hi)

10: for hi in V Θ do
11: for Θk in Θ do . Erase edges that do not satisfy Θk

12: for hj in NΘ(hi) do
13: if PΘe

k
(hi, hj) < pmin then

14: EΘ ← EΘ − {ei,j}
15: break
16: else
17: w(ei,j)← w(ei,j)PΘe

k
(hi, hj)

algorithm. Some of the natural constraints in service robotics are excellent for this purpose,

such as spatiotemporal constraints. The motion and sequencing constraints Θmotion ∧Θseq

from Table 7.1 that we define in HerbDisc (see Section 7.5.2 for details) split the data stream

into subsets of samples with limited motion and at most m samples per subset. Using

Θ0 = Θmotion∧Θseq yields a CSG GΘ0 with |EΘ0 | = O(nm) ≈ O(n) edges, considering that

m is fixed and n� m in realistic situations (in the NSH Dataset, m = 50 and n = 521234).

Under these conditions, the CSG construction, given GΘ0 , has a complexity of O(n) for the

remaining constraints Θk ∈ Θ. Given that the visual similarities are the most expensive

constraints, it is crucial to perform this optimization to only compute O(n) similarities.

See Table 7.2 for a quantitative evaluation of the reduced complexity of this method.

The constraints Θ and the generic CSG construction of Algorithm 1 are designed for

both soft constraints (i.e., Θ such that PΘ ∈ [0, 1]) and hard constraints (i.e., Θ such that

PΘ ∈ 0, 1). In HerbDisc, we use Algorithm 2 with a mix of soft and hard constraints.

The hard constraints are positioned first in the constraint expression to purposefully split

the CSG into many small connected components as quickly as possible. We then use soft

constraints to better evaluate the nuances of appearance and shape similarity for those

candidates with real potential of being part of the same object.
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Figure 7.3: The Kitchen Dataset (top row) and the NSH Dataset (bottom three rows). Each
row depicts the Kinect 3D point clouds (top) and their corresponding images with ground
truth annotations (bottom) for some of the environments we visited. The Kitchen Dataset
captures a low-clutter environment with 20 objects of interest. The NSH Dataset captures
office and lab environments, ranging from moderate to extreme clutter. Some scenes were
so challenging (e.g., row 2, col 3-5) that the annotators could not separate the objects in
the scene.
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7.4 Datasets

We present two datasets of real human environments in which we evaluate HerbDisc: the

Kitchen Dataset and the NSH Dataset (see Fig. 7.3). We recorded both datasets by driving

HERB around the environment and capturing data with a pair of extrinsically calibrated

cameras: a Kinect RGBD camera at 640×480 resolution and a Point Grey Flea2 at 1024×
768 resolution. The framerate is set to 30 fps on both cameras, but due to throughput

limitations the effective framerate is approximately 22 fps. For the remainder of this chapter,

we refer to the synchronized Kinect image, depth image, and Flea2 image, as a data sample.

We manually annotated both datasets to obtain ground truth, with the following labeling

procedure. Our goal is to obtain the list of objects that HERB could potentially grasp.

Since it is infeasible to annotate every single data sample—there are over half a million—

we process each data stream with a motion filter to eliminate redundant samples (the same

motion filter used in HerbDisc, described in Section 7.5.2). Then, we select between 1 and

10 samples from each office, lab, kitchen, etc., we visited, showing the maximum amount

of different objects, and label all objects with the LabelMe tool Russell et al. (2008). As a

rough estimate of the objects that HERB can grasp, we consider valid any object that:

• is at least 10× 5 cm in its two largest dimensions (e.g., a smartphone),

• is at most 60 cm long in its longest dimension (e.g., a monitor),

• appears unoccluded in at least one data sample, and

• is movable, with free space around it to be grasped (e.g., a stack of books in a bookshelf

is not labeled).

Fig. 7.3 shows examples of data samples from the Kitchen (top row) and NSH dataset

(bottom 3 rows), alongside the annotated data.

The Kitchen Dataset captures four 3-minute recordings of HERB in a kitchen en-

vironment, with relatively clean scenarios and 20 ground truth objects that HERB must

discover. We refer to the four individual recordings as Kitchen-1 to Kitchen-4, and their

union (a 12-minute recording with 14282 data samples) as the Kitchen Dataset.

The NSH Dataset is a stream of 6 hours and 20 minutes of HERB exploring the NSH

building of Carnegie Mellon University, comprising 521234 data samples. We divided the

recording in four fragments lasting between 1 h and 1 h 50 min each, one per building floor.

We refer to the four individual recordings as NSH-1 to NSH-4, and the full-length stream

as the NSH Dataset. For this dataset, we visited over 200 real offices and laboratories to

capture the real conditions in which people work, with scenes ranging from moderate to

extreme clutter. This dataset also captures the wide differences in lighting conditions in
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human environments (from dim light to bright sunlight), which degrade the data acquisition

and to which a lifelong agent must be robust. We labeled a total of 423 unique ground truth

objects.

7.5 Implementation of HerbDisc

In this section, we describe the novel components of HerbDisc, focusing on how to formulate

similarities, assumptions, and other metadata from Table 7.1 as constraints. The advantage

of formulating the different components as constraints is the adaptability of the system. We

can completely control and modify the behavior of HerbDisc (e.g., to adapt it a particular

task) without modifying a single line of code, as HerbDisc only depends on the constraint

expression Θ to construct the CSGs. For example, we could measure if the assumptions for

specific algorithms hold before using them, and revert to safer algorithms if they do not,

modifying only the constraint expression. By modifying Θ when environmental conditions

change, we can adapt and opportunistically select the best constraints for each task.

We show experimental results on the impact of each component in the different subsec-

tions. See Section 7.6 for a description of the baseline and the evaluation procedure.

7.5.1 Constrained Candidate Generation

The candidates h produced by a candidate generator H can be refined with constraints

to adapt to the particular algorithm assumptions, either by entirely enabling/disabling a

candidate generator based on metadata, or by rejecting unnecessary candidates for the

particular task. An example of such a constraint would be the requirement that “objects

lie on tables”.

Candidate generators that rely on metadata are common in the robotics literature.

For example, algorithms that track objects (Morwald et al., 2010), that assume tabletop

scenes (Bjorkman and Kragic, 2010), or that perform scene differencing (Herbst et al., 2011)

usually compute better candidates than generic objectness segmentation algorithms. These

“specialized” candidate generators all have one thing in common: they impose restrictions

on the environment to simplify the task and improve performance, at the cost of limited

applicability in alternative types of scenes. In our framework, we can include multiple

candidate generators and use them when their assumptions are met, and revert to more

generic candidate generators otherwise.

In HerbDisc, we combine our generic objectness segmentation algorithm (Structure Dis-

covery) from Chapter 6 with the assumption that objects have surfaces of support in floors,

tables and walls. The constraint Θsupport = (Θn
support, 1) is defined as
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21 1 10 

24 3 12 

29 0 0 

Structure Discovery Rusu and Cousins (2011) Structure Discovery 
+ Θsupport 

Figure 7.4: Examples of Constrained Candidate Generation in the NSH-1 Dataset (figure
best viewed in color). The number of candidates in each data sample is shown at the
top right corner of each image. (left) Objectness-based segmentation (Structure Discovery,
Chapter 6). (center) Rejected areas according to Θsupport are shown in red; the connected
components of accepted 3D points are shown in green/yellow/blue. In cluttered scenes,
multiple objects are sometimes grouped together. Scenes with no visible support are rejected
(e.g., row 3). (right) Combining Structure Discovery and Θsupport limits the number of
candidates but does not result in undersegmentation.

Θn
support(hi) =

{
1,with p = 1 if supported(hi, Ij)

0,with q = 1 otherwise,
(7.15)

where q = 1− p is the probability of failure of Θn
support, the supported(·) function searches

for large planes in the data sample Ij that generated candidate hi, and accepts hi if it lies

within a certain distance above the planes found. In simple scenes, Θsupport can be used as

a standalone candidate generator, by clustering the point clouds above the detected planes
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Figure 7.5: Impact of Θsupport (Rusu and Cousins (2011), Baseline Segm.) vs. HerbDisc’s
Structure Discovery + Θsupport in the NSH-1 Dataset. Rusu and Cousins (2011) achieves
higher precision (80% precision at 20% recall, compared to 78% precision of HerbDisc) at
the cost of 14% lower maximum recall.

into a few connected components. For the standalone Θsupport, we use the implementation

of Rusu and Cousins (2011).

In Fig. 7.5, we compare the performance of Rusu and Cousins (2011) and Structure

Discovery with Θsupport used in HerbDisc. We see in Fig. 7.5 that the standalone Θsupport

achieves better precision as it accurately segments simple scenes better. However, the

performance degrades in complex scenes (see Fig. 7.4 for examples), as the connected com-

ponents may include large groups of objects. Combining Structure Discovery with Θsupport

yields a good trade-off between generating enough candidates for complex scenes, and fil-

tering unlikely candidates for efficiency. In Section 7.4, we show examples of our Structure

Discovery applied to office scenes, and compare it with the standalone candidate generator

from Rusu and Cousins (2011) and the combination of Structure Discovery and Θsupport.
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Time (min) Θmotion ∧Θseq Θmotion Raw data

58.0 0.7M 29.1M 2.9B
102.7 1.2M 83.9M 10.4B
186.9 2.5M 263M 30.4B
262.2 3.3M 517M 59.9B
319.9 4.0M 803M 89.2B
380.6 4.9M 1.2B 126.0B

Table 7.2: Effect of motion and sequencing in computational cost, for the NSH Dataset.
Number of edges to evaluate if using 1) the motion and sequencing constraints, 2) only the
motion constraint, and 3) the raw data stream.

7.5.2 Motion and Sequencing

In LROD, we receive a never-ending data stream of information from the robot sensing.

We assume that the data stream is:

1. an ordered sequence of data samples, and

2. recorded at a frame rate high enough so that there is spatial overlap between data

samples.

During the data acquisition, the motion of HERB influences the amount of spatial

overlap between data samples. In particular, HERB may a) not be in motion and acquiring

repeated data samples, b) be in motion and fulfilling assumption 2, or c) be in motion and

violating assumption 2 (i.e., moving too fast). We address these issues with constraints

Θmotion and Θseq.

In particular, we sample the input data stream at a dynamic framerate depending on

HERB’s motion, and split the subsampled data stream into small subsets that we term

sequences. Using Θmotion and Θseq, we do not process repeated samples, and we do not

consider any edges between data samples that violate assumption 2. We enforce a maximum

sequence length m to limit the order |V Θseq | of any connected component in the CSG.

Let Tk,k−1 ∈ R4×4 be the transformation between sample Ik and the previous sample

in the data stream Ik−1, and M : T 7→ R the magnitude of the motion T . We model the

motion constraint Θmotion = (Θn
motion, 1) for hi ∈ Ik, as

Θn
motion(hi) =

{
1,with p = 1 if M(Tk,k−1) > γmin

0,with q = 1 otherwise.
(7.16)

Θmotion only samples the data stream when there is enough motion γmin between data

samples.
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The sequencing constraint Θseq = (1,Θe
seq), where

Θe
seq(hi, hj) =

{
1,with p = 1 if seq(hi) = seq(hj)

0,with q = 1 otherwise,
(7.17)

limits the potential edges to candidates hi ∈ Ik, hj ∈ Il which belong to the same sequence.

We compute seq(·) during the data acquisition. For data sample Ik, the sequence identifier

seq(Ik) =

{
seq(Ik−1) + 1 if M(Tn,n−1) > γmax

seq(Ik−1) otherwise
(7.18)

is incremented if there is too much motion (γmax) between the current sample Ik and Ik−1

(or if we reach the maximum sequence length m).

We use M(T ) = ‖T‖F as an estimate of the relative motion T . γmin and γmax are

calibrated so that we capture m data samples in 20 seconds moving in a straight line at

HERB’s slowest and fastest speed. In practice, sequences are finished because γmax is

exceeded in approximately 73% of the sequences (often due to sharp turns), and reaching

our limit of m = 50 in 27% of the cases, mainly in long, straight corridors. HerbDisc is not

very sensitive to particular choices of the maximum sequence length; halving or doubling

the maximum sequence length (m = 25 and m = 100, respectively) yields a decrease of less

than 3% in maximum recall with respect to our default choice of m = 50.

Table 7.2 shows the effect of using the motion and sequencing constraints Θseq to com-

putational complexity for the NSH dataset. We calculate the total number of potential

edges remaining in the CSG, which is a measure of the computational cost, in the cases

of 1) Using Θmotion ∧ Θseq to generate connected components; 2) Only using Θmotion to

downsample the input data stream; and 3) the raw data stream. Our implementation in

HerbDisc, which uses Θmotion ∧ Θseq as the initial constraint (using Algorithm 2), yields

equivalent computational cost after processing 6 h 20 min as Θmotion after approximately

18 min, or as the raw data stream after 2 min 24 s. Fig. 7.6 compares the trend in com-

putational cost with respect to the data stream length. While using Θmotion is two orders

of magnitude more efficient than the raw data stream, it still yields a squared cost with

respect to the data stream length, compared to the linear cost of Θmotion ∧Θseq.

For the actual implementation, we considered two alternatives: 1) to track the robot

motion using the robot’s odometry, or 2) to track the camera motion using real-time tech-

niques such as Kinect Fusion (Izadi et al., 2011). We decided to implement the Kinect

Fusion approach, because the odometry does not track the camera tilt and shake while

HERB drives. These artifacts can be pretty significant depending on the surface (e.g., cam-

era shake on floor tiles, and tilt on thick carpeting). To implement this motion filter, we

modify the Kinect Fusion 6DoF tracker available in PCL (Rusu and Cousins, 2011). Our

implementation of Θmotion and Θseq in HerbDisc, including the PCL Kinect Fusion tracking,
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Figure 7.6: Comparing the computational cost of HerbDisc when using Θmotion ∧Θseq and
Θmotion for the NSH Dataset, with respect to the data stream length. Using Θmotion ∧Θseq

results in linear cost in the number of samples, compared to the squared cost of Θmotion.

runs in real time (up to 30 fps) during the data acquisition process to compute the initial

CSG GΘ0 = GΘmotion∧Θseq from Algorithm 2.

7.5.3 Spatial Overlap

Many objects in human environments are only moved occasionally, and remain static across

most observations. The constraint Θstatic encodes our assumption that objects remain static

for at least a few seconds at a time. To encode this assumption in our framework, we

consider the question “do candidates hi and hj overlap in space at a within a sequence?”

Relationships between candidates that do not overlap in space should not be considered

any further, as they most likely belong to different objects.

The constraint Θstatic = (1,Θe
static), where

Θe
static(hi, hj) =

{
1,with p = soverlap

i,j if soverlap
i,j > soverlap

min

0,with q = 1 otherwise,
(7.19)

is a soft constraint that measures the amount of 3D overlap soverlap
i,j = soverlap(hi, hj) between

candidates hi, hj , and returns true with probability soverlap
i,j if the overlap is above a threshold

soverlap
min .
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This constraint is designed to operate in unison with the sequencing constraint Θseq.

Θseq splits the data stream into small subsets of samples close in time (sequences), and

Θstatic ensures that, within the same sequence, we only evaluate groups of candidates in a

similar position in space.

To measure the overlap between hypotheses, we use the incremental registration pro-

vided by PCL Kinect Fusion to register all data samples within a sequence with respect to

some common coordinate frame T s (the first sample in that sequence). We transform all

object candidates h to the common coordinate frame, and measure the 3D overlap soverlap
i,j

between 3D point clouds hPi , h
P
j by comparing their voxel grids.

In Fig. 7.7, we compare the impact of using the 3D overlap constraint Θstatic in HerbDisc.

We see that Θstatic is a crucial metadata constraint in HerbDisc, as disabling Θstatic yields

a maximum recall of 8% at 47% precision in the NSH-1 Dataset, a difference of 27% recall

at the same precision when enabled. Furthermore, disabling the visual similarity features

and using only Θstatic as an edge constraint results in a drop of only 7% recall and 12% in

precision (at maximum recall). These results reinforce our claim that visual features alone

are not descriptive enough for large-scale datasets, and that metadata plays a key role in

LROD.

7.5.4 Size/shape priors

Part of the reason why there is no clear definition of object is because its meaning is

subjective: it depends on the observer. In service robotics, different robots might have

different definitions of objects depending on their capabilities. For HerbDisc, we consider

a definition of object based on the manipulation capabilities of HERB. In particular, we

define a prior based on the sizes and shapes of known objects that HERB can grasp.

In order to build an object prior for our framework, we define it as a constraint Θprior =

Θsize∧Θshape composed of size and shape components. Let Θsize = (Θn
size, 1) be a constraint

on an object candidate’s size, such that

Θn
size(hi) =

{
1,with p = ssize

i if ssize
i > ssize

min

0,with q = 1 otherwise.
(7.20)

The function ssize
i = ssize(hi, hprior) estimates the likelihood that the longest dimension of

hi could be sampled from a Gaussian distribution centered at the size given by hprior.

Analogously, Θshape = (Θn
shape, 1) is a constraint on the candidate’s shape, such that

Θn
shape(hi) =

{
1,with p = sshape

i if sshape
i > sshape

min

0,with q = 1 otherwise.
(7.21)

The measure sshape
i = sshape(hi, hprior) estimates the similarity between hi and hprior ac-

cording to the PCA-based shape features of Lalonde et al. (2006) (linearity, planarity, and
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Figure 7.7: Impact of Θstatic in HerbDisc for the NSH-1 Dataset. Not using the 3D overlap
similarity of Θstatic yields a 27% drop in recall compared to HerbDisc. Comparatively, using
the 3D overlap similarity Θstatic alone with no visual features in HerbDisc only results in a
decrease of 7% recall and 12% precision at maximum recall with respect to HerbDisc.

scatterness). The effect of this constraint is to essentially require that object candidates

have some volume and are not purely planes or lines.

In Fig. 7.8, we evaluate the impact of size and shape priors in HerbDisc for the NSH-1

Dataset. The main effect of Θprior is to limit the amount of candidates to cluster, with Θprior

rejecting 63% of the original pool of candidates. The increased number of candidates when

Θprior is disabled yields a 301% increase in the number of objects discovered, most of which

are just repetitions due to cluster fragmentation. The final output without Θprior yields a

decrease of 7% recall and 10% in precision (at maximum recall), compared to HerbDisc.

7.5.5 Visual and 3D shape similarity

We describe and compare candidates with features based on 3D shape and appearance.

Using these features alone to compute a CSG would result in a pairwise similarity graph

as in Kang et al. (2011). For appearance features, we compute the color histogram of each

candidate in LAB color space, as in Hoiem et al. (2007), and compare a pair of candidates
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Figure 7.8: Impact of Θprior in HerbDisc for the NSH-1 Dataset. Not using Θprior yields a
decrease of 7% recall and 10% in precision (at maximum recall).

hi, hj with the χ2 distance between normalized color histograms. For 3D shape, we use the

FPFH features of Rusu et al. (2009a), which compute a histogram of the local geometry

around each 3D point. We compare the FPFH features of a pair of candidates hi, hj by

estimating the average χ2 distance among the nearest neighbor 3D points between hi, hj .

Both similarity metrics sapp(·, ·) and s3D(·, ·) are normalized so that s(·, ·) ∈ [0, 1].

In order to use these similarities in our framework, we reformulate them as constraints

Θapp and Θ3D. In particular, we define Θapp = (1,Θe
app) as a soft constraint such that

Θe
app(hi, hj) =

{
1,with p = sapp

i,j if sapp
i,j > sapp

min

0,with q = 1 otherwise,
(7.22)

where sapp
i,j = sapp(hi, hj). Analogously, we define Θ3D = (1,Θe

3D) as a soft constraint such

that

Θe
3D(hi, hj) =

{
1,with p = s3D

i,j if s3D
i,j > s3D

min

0,with q = 1 otherwise,
(7.23)

where s3D
i,j = s3D(hi, hj).

In Fig. 7.9, we compare the impact of Θapp and Θ3D in HerbDisc. Disabling the 3D shape

similarity Θ3D yields a decrease of 7% recall and 15% precision at maximum recall, compared
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to HerbDisc, as well as a more significant drop in precision at low recalls (e.g., a 28%

decrease in precision at 20% recall). The contribution of Θapp is less noticeable: disabling

Θapp results in an decrease of 1% in maximum recall at only 3% lower precision, although

it is significant at lower recall (e.g., disabling Θapp yields a 19% decrease in precision at

20% recall).

Figure 7.9: Impact of Θ3D and Θapp in HerbDisc for the NSH-1 Dataset. Disabling Θ3D in
HerbDisc decreases 7% recall and 15% precision at maximum recall, as well as 20% lower
precision at 20% recall. Disabling Θapp yields a decrease of 1% recall and 3% precision at
maximum recall, and 19% lower precision at 20% recall.

7.6 Experiments

In this section, we evaluate the impact of using metadata to discover objects. We first com-

pare the performance of HerbDisc with and without any metadata on the Kitchen Dataset

in Section 7.6.3. Using metadata, we evaluate the ability of HerbDisc to discover novel ob-

jects during a whole workday of operating in challenging human environments. We perform

an ablative analysis to assess the impact of each constraint in the constraint expression Θ.

Thanks to our framework, performing such an analysis only requires modifying the defini-

tion of the constraint expression Θ, but not any change in the source code. This feature is
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critical for our goal to develop a system that can adapt its behavior as conditions change,

using metadata opportunistically.

Our main testbed is the NSH Dataset (Section 7.4), with 6 h 20 min of HERB driving

into over 200 offices and engineering labs, and containing 423 annotated ground truth ob-

jects. We use the smaller Kitchen Dataset in Section 7.6.3 to evaluate the visual similarity-

only baseline, as it is too computationally expensive to execute in the NSH Dataset.

� � � =E⇥
casc =

� � � =E⇥
ind =

⇥motion ^⇥seq ⇥static ⇥app ⇥

� =E⇥
visual =

⇥3D

Figure 7.10: CSG graphs for the edge constraints in HerbDisc, displayed as adjacency
matrices (where a black dot indicates an edge between candidates), in the Kitchen Dataset.
The overall graph EΘ (rightmost column) is the product of each adjacency matrix. (top)
Cascaded CSGs using conjunctive constraints, as implemented in HerbDisc. (center) CSGs
computed for each constraint independently. The overall CSG EΘ is the same for the
cascaded and independent CSGs. (bottom) CSGs for the visual similarity constraints Θapp

and Θ3D. The overall CSG EΘ for this case is a regular pairwise similarity graph. The
CSGs using metadata (top/center cols) are much more discriminative than the CSG for
visual similarity only.

7.6.1 Baseline and training

The baseline for all our experiments is the full system HerbDisc, with all constraints en-

abled. The default candidate generator is the Structure Discovery from Chapter 6 with

Θsupport. In each experiment, we enable/disable individual components (through the con-

straint expression) and analyze the resulting behavior.

The constraint expression Θlocal we use in the CSG construction step of HerbDisc is
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Θlocal =Θmotion∧Θseq ∧Θsupport∧Θstatic∧
Θsize ∧Θshape∧Θapp ∧Θ3D.

(7.24)

In the Object CSG Clustering, we cluster the CSG built with

Θglobal =Θsize∧Θshape∧Θapp∧Θ3D. (7.25)

We design the constraints Θapp and Θ3D to be more exhaustive for Θglobal than Θlocal.

In Θlocal, we compute the histograms in Θapp with 6 bins per channel, and compute the

FPFH features of Θ3D only for the centers of a 1 cm voxel grid. In Θglobal, the partial

objects contain significantly more information than individual hypotheses. We use 10 bins

for the histograms in Θapp and compute FPFH features for Θ3D for the centers of a 3 mm

voxel grid. In our experience, the choice of Θlocal has significantly more impact in the overall

performance than Θglobal for Object CSG Clustering. We therefore focus our experiments

on the local step and modify only Θlocal, while we keep Θglobal constant throughout the

experiments.

We use the first 20% of the NSH-1 Dataset (not included in the evaluation) to train the

parameters and thresholds in HerbDisc, by maximizing the average F1-measure (defined

in Section 7.6.2). To do so, we discretize each parameter in 5 settings in the range [0, 1]

and choose the best-performer configuration according to a grid search. We do not modify

any parameter in any experiment after the initial training phase. All experiments were

performed on a computer with an Intel Core i7-920 CPU, 16GB of RAM, a nVidia GTX

580 GPU, and runninng 64-bit Ubuntu Linux 10.04.

7.6.2 Evaluation Procedure

In this section, we describe the metrics to evaluate the ability of HerbDisc to discover

objects during HERB’s workday. For a given object model Mk, we define the metrics of

Candidate purity, Group purity, and 3D purity, as:

Candidate purity. We describe an object candidate hi as pure if over 80% of the area

in hi,k overlaps with a ground truth object.

Group purity. Following Tuytelaars et al. (2009), we measure the group purity of

model M as the largest percentage of pure object candidates in Mh
k = {h1,k, . . . , hi,k} that

belong to the same object.

3D purity. We require that the 3D models reconstruct the partial viewpoints seen by

HERB. Therefore, we define an object’s 3D point cloud MP
k as pure if the 3D points in

MP
k cover over 80% of the area visible in the data samples for that particular object.

Given the open and unsupervised nature of LROD, we often discover objects that do

not appear in the ground truth set, despite being real objects. Following Kang et al. (2011),

we distinguish between three categories of objects: correct, valid, and invalid.
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We define an object model Mk as correct if 1) it is an object annotated in the ground

truth, 2) its 3D point cloud is pure, and 3) every object candidate hi,k associated to Mk

is pure, i.e., if the set Mh
k is 100% pure. Other works in the literature commonly define

correct objects as clusters with some minimum percentage of purity (e.g., 80% in Kang

et al. (2011)), but we believe that object models need to be 100% correct to be of any use

for robotics. Fig. 7.14 shows multiple examples of correct objects.

We define an object model Mk as valid if 1) its 3D point cloud is pure, 2) the set of

candidates Mh
k is 100% pure (as with correct objects), but 3) it has not been labeled as a

ground truth object. We rely on an “oracle” evaluation, as in Tuytelaars et al. (2009). The

“oracle” evaluation is a human annotator who answers the questions “Is Mk an object?”,

and “Does Mk have a name?” when faced with the set of candidates for object model Mk.

The category valid mainly contains objects too big or too small to be grasped (e.g., chairs),

immovable objects (e.g., attached to a wall), or parts of complex objects (which could be

objects themselves, such as a bicycle’s seat). Fig. 7.15(top) shows multiple examples of

valid objects.

We define an object model Mk as invalid if it is neither correct nor valid. The category

invalid mainly includes models Mk of groups of objects erroneously segmented, of a single

object but < 100% group purity, or a mix of multiple objects erroneously clustered together.

Fig. 7.15(bottom) shows multiple examples of invalid objects.

We define Precision and Recall as in Tuytelaars et al. (2009) and Kang et al. (2011).

In Kang et al. (2011), Precision is the ratio between the number of correct+valid object

models and the total number of discovered models:

Precision =
#correct + #valid

#correct + #valid + #invalid
(7.26)

We measure Recall as the ratio between the number of unique correct objects and the

total number of ground truth objects.

Recall =
#unique correct obj.

#unique ground truth obj.
(7.27)

We use the cluster size to estimate the quality of an object, and use it as the variable

to threshold to compute the P-R curves. To summarize the P-R curves in a single number,

we use the average F1-measure, which balances Precision and Recall for each sample i in

the P-R curve:

F1 =
1

N

N∑
i

2PrecisioniRecalli
Precisioni + Recalli

(7.28)

7.6.3 Results

In this section, we evaluate the impact of metadata to discover objects. We evaluate the use

of metadata compared to using visual similarity alone in Section 7.6.3, and then we show
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Figure 7.11: Impact of using metadata in HerbDisc for the Kitchen Dataset, compared to
visual and 3D similarity alone. HerbDisc achieves with a maximum recall of 65% at 62%
precision, compared to 24% maximum recall at 77% precision. For the same recall of 24%,
HerbDisc achieves 90% precision (13% higher than the visual similarity Θvisual alone).

Component HerbDisc Θvisual

CSG Construction 35.9 s 18981.8 s
CSG Clustering 61.3 s 394.0 s
Object CSG Clustering 4.4 s 2.8 s
Total processing time 101.6 s 19378.6 s

Table 7.3: Running times of HerbDisc vs. Θvisual in the Kitchen Dataset. Using no metadata
(Θvisual) is 190× slower than using metadata in this dataset, mainly due to the extra cost
of constructing the graph. The Θvisual needs to evaluate 1.6M pairwise visual similarities
from 1806 object candidates, compared to the 16271 pairwise visual similarities to evaluate
when using metadata in HerbDisc.
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that we can leverage metadata to process very large datasets such as the NSH Dataset in

Section 7.6.3.

HerbDisc vs. Visual Similarity

Fig. 7.11 shows the performance of using a CSG with visual similarity only (Θvisual =

ΘmotionΘ3D ∧ Θapp), compared to the full HerbDisc, in the Kitchen Dataset. We include

the motion filter Θmotion in the evaluation of Θvisual so that both systems have the same

initial pool of object candidates.

HerbDisc is the clear winner in the Kitchen Dataset, with a maximum recall of 65% at

62% precision, compared to 24% maximum recall at 77% precision. For the same recall of

24%, HerbDisc achieves 90% precision (13% higher than the visual similarity Θvisual alone).

The additional constraints provided by the metadata (and especially Θseq) allow HerbDisc

to process the Kitchen Dataset 190× faster than if using visual similarity alone, as shown in

Table 7.3. The main reason for this speedup is the limited number of pairwise similarities to

evaluate in the CSG (mainly due to Θseq) compared to the regular pairwise similarity graph

from Θvisual. Namely, HerbDisc evaluates 16271 pairwise visual similarities, compared to

1.6M in Θvisual.

To illustrate the impact of different constraints on the CSG, we show in Fig. 7.10 the

graphs (displayed as adjacency matrices) generated by each edge constraint Θmotion ∧Θseq,

Θstatic, Θ3D, and Θapp, for the Kitchen Dataset. Fig. 7.10(top) displays the CSG after each

constraint as evaluated in HerbDisc, cascading the multiple conjunctive constraints for effi-

ciency. Fig. 7.10(middle) shows the CSG for each constraint independently. The product of

all adjacency matrices (rightmost column) is the same for both approaches, but HerbDisc is

more efficient. The metadata-based constraints Θseq, Θstatic are significantly more discrimi-

native than the visual features Θ3D and Θapp. The adjacency matrix for Θmotion∧Θseq also

illustrates the behavior of the dynamic motion filter, generating sequences of different length

(i.e., squares of different size) depending on HERB’s motion. Fig. 7.10(bottom) shows the

result of using visual similarity constraints with no metadata. In this case, the product of

all adjacency matrices (rightmost column) is significantly denser than in HerbDisc, which

accounts for the increased computation time shown in Table 7.3.

HerbDisc in the NSH Dataset

In Section 7.5, we explored the impact of each individual component of HerbDisc. We

provide a summary plot in Fig. 7.13 that combines the P-R curves of all components.

The attempt to evaluate Θvisual on the NSH Dataset was unsuccessful, after the testing

machine had made barely any progress after a week of processing. HerbDisc processes the

NSH Dataset in 18 min 34 s. We show an itemized list of running times for the different steps
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Component time (s)

Data acquisition 22836
Read sequence/candidate data Θseq 25.9
CSG Construction 710.1
CSG Clustering 211.9
Object CSG Clustering 54.6
Model Registration 111.4
Total processing time 1113.9

Table 7.4: Running times of HerbDisc in the NSH Dataset. The motion and sequencing
constraint and the candidate generation are executed in parallel with the data acquisition
and are not included. The overall running time is 1113.9 seconds (18 min 34 s), to discover
121 correct and 85 valid objects from an RGBD video feed of 6 h 20 min (521234 samples).

Component Output Quantity

S Input samples I 521234
Θmotion Samples I 19614
Θseq Disjoint Sequences Is 732
H ∧Θsupport Object Candidates h 58682
Θsize ∧Θshape CSG nodes V Θ 49230
Θstatic ∧Θ3D ∧Θapp CSG edges EΘ 431121
CSG Clustering Partial objects mk 2215
Object CSG Clustering Full Objects Mk 464

Table 7.5: Impact of each component and quantities generated for the NSH Dataset, from
521234 input images to 464 output models (with 121 correct and 85 valid objects).

in Table 7.4, and the statistics for images, candidates, edges, etc., in Table 7.5. The overall

running time does not include data acquisition time (and motion filtering and candidate

generation, which we execute in parallel with the data acquisition). The most expensive step

is the CSG construction, which processes 732 connected components in the CSG, for a total

of 49230 nodes and 4.9M edges—with 431121 edges satisfying all constraints—in 11 min

49 s. The CSG Clustering step is the second most expensive step, separating 2215 clusters

(i.e., partial objects) in 3 min 31 s. The Object CSG Clustering and model registration are

the most expensive per-unit steps. However, they leverage the filtered information from the

CSGs to cluster and register 464 objects in 2 min 45 s.

We discover a total of 464 object models in the NSH Dataset, where 121 unique objects

are correct (28.6% recall) and 85 are valid (44.4% precision). In Fig. 7.12, we show the

P-R curves for the NSH Dataset, as well as a floor-by-floor analysis (NSH-1 to NSH-4). We
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Figure 7.12: Floor-by-floor evaluation of HerbDisc on the NSH Dataset. HerbDisc achieves
a 28% higher recall in regular office environments (NSH-1) compared to laboratory and
machine shop environments (NSH-3). Mixed environments containing both laboratories
and offices (NSH-2 and NSH-4) achieve similar recall. HerbDisc achieves a maximum recall
of 28.6% in the overall NSH Dataset at 44.4% precision, compared to 43.9% maximum recall
in office environments (NSH-1) and 15% in laboratories and machine shops (NSH-3).

see a clear difference in performance as we move from regular office environments (NSH-1)

to laboratories and machine shops (NSH-3). In office environments, HerbDisc displays a

maximum recall of 43.9% at 52% precision, and 78% precision at 20% recall. In contrast,

we only achieve a maximum recall of 15% at 41% precision in the laboratories of NSH-3

(e.g., Fig. 7.3(2, 3-5)), which include multiple shiny metallic objects, specular reflections,

and extreme clutter.

We can also modify the configuration of HerbDisc on the fly to achieve different behav-

iors. For example, if we are more interested in precision than recall, we can use Θsupport as

a standalone candidate generator and achieve 82% precision at 25% recall (on NSH-1), or

reject the lowest-ranked models and achieve 60% precision at 40% recall. We show examples

of correct objects in Fig. 7.14 and of valid and invalid objects in Fig. 7.15.

The correct objects discovered by HerbDisc are predominantly objects we would expect

in an office environment, such as laptops, books, phones, monitors, keyboards, and mice.
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Other objects, such as basketball balls, watering cans, plants, and food items, showcase the

object diversity—and therefore difficulty—from the NSH Dataset. We require objects to

be 100% pure to be considered correct, which assures a high quality for potential robotics

applications.

In an open task such as object discovery, it is nearly impossible to obtain comprehen-

sive ground truth. HerbDisc discovers objects that the annotators considered outside the

guidelines for ground truth in Section 7.4, such as chairs, trashcans, or wall-mounted pa-

per holders (see Fig. 7.15). The discovery of such objects can be due to several reasons.

First, the object priors specified in HerbDisc may not be specific enough, accepting objects

that HERB cannot manipulate (e.g., chairs and people). Other objects are not considered

correct due to semantic meaning (e.g., the object is a part of a more complex object, such

as a bike seat or a chair’s armrest), because the object is immovable (e.g., a wall-mounted

paper holder), or because the annotators did not notice or recognize the object (e.g., paper

folders, cables). We believe that the only way to disambiguate between theses cases is to

interact with the objects during the discovery process, which is a future direction. Our

framework can be used to leverage interaction information if available, as well as any other

source of metadata, when formulated as constraints.

Among the invalid objects, we identify three main categories: 1) correct but impure

objects; 2) groups of objects; and 3) mixtures of fragments. The first case refers to correctly

discovered objects that contain a few (or sometimes only one) misplaced candidates, such as

the red cup or the plastic bag in Fig. 7.15. Objects in the second case are usually compound

of multiple objects very close to each other or touching each other, such as groups monitor-

keyboard-mouse or stapler-stapler-table. The third case comprises unrecognizable groups

of object candidates from multiple objects. Invalid objects in cases 1) and 3) are mostly

due to clustering errors, which improperly unite candidates from different objects. Objects

in case 2) are mostly due to candidate generation/segmentation errors, failing to separate

the individual objects in complex scenes.

7.7 Summary

In this chapter we have introduced Lifelong Robotic Object Discovery, the problem of

discovering new objects in the environment during an entire robot’s lifetime: while the

robot operates, for as long as the robot operates. As a first step towards LROD, we have

proposed a solution to process the raw video stream of an entire workday of a robotic agent.

We claim that the key to make LROD feasible is to incorporate metadata. We have

described a graph-based framework to integrate any source of metadata and similarity

functions as graph constraints, and to combine multiple constraints using boolean logic

expressions. With these graph constraints, we provide a common formulation to encode any
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Figure 7.13: Summary of P-R curves for the ablative analysis. HerbDisc is the best-
performing method, combining the results of all constraints for improved object discovery
in the NSH-1 Dataset.

source of information, both visual data and metadata, as metadata-augmented graphs—

Constrained Similarity Graphs (CSGs)—for object discovery.

We have introduced HerbDisc, an optimized implementation of our framework which

leverages metadata about the environment, the robotic agent, and the sensors, as well

as visual information, to efficiently discover objects in large datasets. To evaluate the

performance of HerbDisc, we have gathered a dataset of over half a million RGBD images

(6 h 20 min of raw RGBD video) of office and lab environments, ranging from moderately

to extremely cluttered, and containing 423 ground truth objects. HerbDisc processed this

dataset in under 19 minutes and discovered 206 novel objects, such as monitors, keyboards,

plants, and food items, with a maximum recall of 28.6% at 44.4% precision, and 68%

precision at 15% recall (and, for regular office environments, maximum recall of 43.9% at

52% precision, and 78% precision at 20% recall). More importantly, we showed that our

framework can opportunistically leverage different sources of information adaptively, as

conditions change, which is a necessary feature to make LROD feasible in the long term.
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Laptop (Correct)

Plant (Correct)

Book (Correct)

Basketball ball (Correct)

Watering Can (Correct)

Apple Charger (Correct)

Monitor (Correct)

Printer (Correct)

Keyboard (Correct)

Mouse (Correct)

Phone (Correct)

Speaker (Correct)

Pineapple (Correct)

Bag (Correct)

Paper Bag (Correct)

Figure 7.14: Examples of Correct objects. For each object, we display its object label (text
box); its 3D model (left/right); and 10 randomly selected images from the set of object
candidates hi (center), with the 3D point clouds hPi overlaid in red or blue over each image.
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Person (Valid)

Cable (Valid)

Chair (Valid)

Bike Seat (Valid)

Folders (Valid)

Paper Holder (Valid)

Trash Bin (Valid)

Cup (Invalid)

Speakers (Invalid)

Plastic Bag (Invalid)

Monitor and Keyboard (Invalid)

Multiple Segments (Invalid)

Partial Part (Invalid)

Folder (Invalid)

Mixture of Fragments (Invalid)

Figure 7.15: Examples of Valid and Invalid objects. For each object, we display its object
label (text box); its 3D model (left/right); and 10 randomly selected images from the set
of object candidates hi (center), with the 3D point clouds hPi overlaid in red or blue over
each image.
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And yet, despite discovering hundreds of novel objects, HerbDisc failed to discover over

half of the total number of objects. We believe that, in order to truly solve the LROD

problem, it will be necessary to transform the robot from an observer to an active agent,

interacting with objects and leveraging that information to discover and validate discovered

objects. With our framework, we can encode the information coming from interaction as

more effective graph constraints, to discover objects resulting from that interaction. A

future direction for our research is to develop effective interaction strategies to discover

novel objects, to disambiguate when uncertain, and to validate the discovered objects by

interacting with them.

Another related future direction is to explore online techniques for object discovery. The

framework described here is essentially a batch process, so that it can be processed during

the robot’s downtime. However, online processing could be performed using the sequences

provided by the motion filter. Once the motion filter generates a new sequence—of up to 20

seconds—we can cluster and generate partial objects for that sequence. We would perform

an Object CSG Clustering step every few hours, to join the most recent partial objects with

the full objects found during previous Object CSG Clusterings.





Part IV

Conclusion





Chapter 8

Contributions

Similarity. [n. sim·i·lar·i·ty. si-m@- la-r@-tē]:

Correspondence in appearance or superficial

qualities.

Merriam-Webster Dictionary

In this thesis, we have explored the problem of Lifelong Robotic Object Perception. Our

work has focused on the two core components of this problem: Object Recognition, and

Robotic Object Discovery. We have presented two systems, MOPED and HerbDisc, to

perceive known and unknown objects in challenging human environments, respectively. In

this chapter, we summarize our findings in these two areas, and we describe interesting

future directions that we need to address to solve the Lifelong Object Perception problem.

Our main contributions are as follows:

• MOPED: We address the problems of high scene complexity, scalability, and latency

that hamper object recognition systems in service robotics. With Iterative Clustering-

Estimation (ICE), we solve the pose estimation and data association problems, and

integrate single- and multi-view object recognition. The Projection Clustering method

and the Q-Scores detect false positives and reuse that information to accurately esti-

mate the poses of true positives. The multiple architectural improvements in MOPED

provide over 30x improvement in latency and throughput, allowing MOPED to per-

form in real-time robotic applications.

• MOPED-RGBD: We derive a data fusion model based on maximum likelihood esti-

mates to integrate RGBD and image-only object recognition. We use depth oppor-

tunistically, when it is available, and seamlessly transition to image-only performance

in the presence of depth fading. We incorporate our data fusion model to each stage of

MOPED to create an object recognition system, MOPED-RGBD, robust to imperfect

depth data.
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• Structure Discovery: We introduce an objectness-based scene segmentation algorithm

for RGBD images to generate object candidates for Object Discovery. We exploit the

availability of RGBD data using a novel region-based approach. We use Structure

Discovery to discover objects in human environments, and we yield a 13% increase in

recall over specialized 3D object segmentation algorithms.

• Robotic Object Discovery with Metadata: We introduce a common formulation to

represent visual information (RGBD images) and robotic metadata as constraints.

We compute Constrained Similarity Graphs (CSGs) from these constraints. The use

of CSGs, coupled with the natural constraints in service robotics, enables efficient

object discovery in large-scale datasets. We introduce an optimized implementation,

HerbDisc, that processes an entire workday of HERB (6 h 20 min of raw RGBD

video) in under 19 min, to discover 206 novel objects. We show that, by using robotic

metadata in object discovery, we discover over 2.7× more correct objects, and we

process the data 190× faster than using visual information alone.
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Future Directions

Manipulate. [v. ma·nip·u·late. ma- ni-py@-vlāt]:

To operate with the hands or by mechanical means

especially in a skillful manner.

Merriam-Webster Dictionary

Despite our contributions to Object Recognition and Robotic Object Discovery, we cannot

say that the problem of Lifelong Robotic Object Perception is solved. Neither MOPED

nor HerbDisc are perfect; both systems make mistakes, and their performance is still not

comparable to human perception.

There are multiple areas that should be explored as follow-up works to this thesis, which

we briefly describe in the following sections.

9.1 Model improvement through robot interaction

The performance of HerbDisc exemplifies the formidable challenge of Lifelong Robotic Ob-

ject Perception in human environments. Despite efficiently processing an entire robotic

workday and discovering hundreds of novel objects, HerbDisc still failed to discover over

half of the total number of objects. Object Discovery in human environments is so chal-

lenging that sometimes even our annotators failed to provide accurate ground truth due to

extreme scene clutter. We believe that it is necessary for a robot to interact with objects

as part of the learning process, if we want to solve this problem. An important future

direction is to implement the interaction-perception feedback loop discussed in Section 2.1,

to transform the robot from a passive observer to an active agent that can interact with

objects. We can leverage the interaction information to validate discovered objects and to

improve the segmentation of movable objects.

It is possible to use the recognition output from MOPED and the successful/unsuccessful

robot interactions with objects as a feedback loop to validate and improve the quality



150 CHAPTER 9. FUTURE DIRECTIONS

of object models. We can execute MOPED and HerbDisc simultaneously to associate

recognized objects with partial object models. A recognized object associated repeatedly

with the same partial object model is a strong indication that the association is correct.

We can use this cue to refine the recognition models with the additional data from partial

object models.

An object recognized by MOPED and successfully grasped by the robot is an even

stronger cue that the recognition was successful, and that the partial object model from the

data stream is valid. Such examples should therefore be used to validate and improve the

recognized object models. Similarly, repeatedly failing to grasp an object should be a cue

that the object model is invalid. Ultimately, we should analyze which information within

each model is more prone to result in an unsuccessful grasp, and weight down the relative

importance of different features to prevent errors from happening again. Objects that are

never successfully recognized or grasped should be forgotten.

9.2 Scalable object representation

Gathering sensor data—and discovering objects—every time the robot is in operation is

important to always maintain up-to-date knowledge. However, common everyday objects

are seen in thousands of images since their discovery, which can unnecessary burden the

object modeling. We want to generate models for recognition, not any other task. Unlike

model building for accurate 3D reconstruction (e.g., Snavely et al. (2006)), we do not need

every single image and every single feature available in the input data. Detailed models

with hundreds of thousands of features are in general not that useful for recognition, as

the overabundance of features makes recognition both slower (there are more features to

match) and potentially less precise (increased false positives, due to more confusion between

features), which are also critical factors in robotics applications. In addition, the model

building stage alone might take several days when thousands of images are present (Snavely

et al., 2008).

Considering these constraints, an important follow-up work to this thesis is to develop a

strategy to generate compact object models and maximize recognition performance, given

a very large number of observations from an object. A proper object representation should

consider, among others, the following aspects:

• Efficient processing of potentially large amounts of observations

• Easy to merge multiple partial models of an object into a single structure

• Easy to update a given model with new observations

• Optimize models for recognition
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Recent works in Structure from Motion, such as Snavely et al. (2008), Havlena et al.

(2010), sample a set of observations using a minimum Connected Dominating Set (CDS)

algorithm to speed up model reconstruction. In Snavely et al. (2008), CDS is used to find

a suitable subgraph of a pairwise similarity graph. The reconstruction of a CDS subgraph

instead of the whole graph results in speedups of over an order of magnitude for large image

sets. Given the additional constraints in service robotics, we could consider to compute a

CDS for Constrained Similarity Graphs. As we showed in Chapter 7, CSGs can encode

not only visual similarity but also other generic information. In particular, information

about image sequencing and similar constraints, such as frame decimation (Nister, 2000) or

keyframe extraction (Thormahlen et al., 2004), could be very useful to reduce the number

of input data samples. Alternatively, feature resampling techniques (e.g., Fang and Quan

(2010)) can also be considered to produce more compact object models for recognition.

Another important consideration to develop a scalable object representation is how to

feed back information from recognition and robot interaction. A potential solution would

be to incorporate the information as constraints in a CSG as well. Given that CSGs encode

node and edge weights, we can exploit similar tools to those in Structure from Motion, such

as CDS subgraphs for node- and edge-weighted graphs. In particular, Guha and Khuller

(1998) developed a Weighted CDS (WCDS) technique to compute CDS subgraphs on graphs

with node and edge weights, which we could use for our problem.

To update object models with new partial object models, we can devise a training

method that uses cross-validation to maximize the recognition performance given the ob-

served data. Every new observation of an object should be used to improve the object

model. A potential solution would be to build several potential object models containing

the new observation and a subset of previous observations. We would evaluate the mod-

els on multiple validation sets, randomly chosen among the images not used in the model

building, and choose the best-performing one for recognition.

9.3 Databases of common objects

A key feature of our framework is its ability to discover objects in a completely unsupervised

fashion, based on the output of Structure Discovery and the available robotic metadata.

The availability of a large-scale database of common objects poses interesting challenges for

a number of areas, both for Object Recognition and for Object Discovery.

In particular, we can assume that every object is similar to some object we already know.

A similar approach was shown in the work of Kang et al. (2012). Using this rationale, we

can combine our current Object Discovery with an exemplar-based search.

This exemplar-based approach can be integrated into Structure Discovery. In the can-

didate generation step, we are not interested in perfectly identifying every single object,
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but rather in finding which parts of the scene are the most likely to be objects. Therefore,

the distance to a nearest neighbor may be used as a way of ranking a scene in terms of

structure. The more similar a candidate is to an object in the database, the higher the

confidence that the candidate is a real object. This approach, using image data only, is

explored in Hongwen Kang’s forthcoming doctoral dissertation. We can exploit the addi-

tional information from range data, and use 3D shape as well as appearance to search for

the most likely objects in a scene.

An additional benefit of a large-scale database of objects is the ability to generalize

robotic grasping to virtually any object in the environment. Assuming that we know a

set of possible actions and interactions for all objects in the database, we can potentially

transfer the set of actions to the novel objects in a scene based on their similarity to known

objects. For example, if we know how to grasp boxes, and we see something whose nearest

neighbor is a box, we can try to generalize the current grasping knowledge to this new

object, without needing to accurately know the identity of that object. In this way, we may

potentially transfer knowledge about more complex interactions for specific types of objects,

e.g., with handles, dangerous, or fragile, which we might want our robot to manipulate in

specific ways. This transfer of knowledge could be extended to use affordances. We could

exploit the metadata provided by the database about the potential uses of a given type

of object to empower service robots with more complex manipulation capabilities inferred

autonomously from object perception.

9.4 Physics and Context Information

An interesting follow-up to this work is to extend our constraints to incorporate new infor-

mation, especially physics laws and context information to interpret the scenes and provide

better discovery. Our additional constraints should encode both generic reasoning (e.g.,

occlusions, object stability, or volumetric constraints) and domain knowledge (e.g., config-

uration of indoor scenes, prior locations of objects). In essence, we want to 1) enhance the

HerbDisc with a generic set of physics rules, and 2) use specific domain knowledge to infer

objects that may not be visible but that are necessary to fully explain a scene.

The outcome of this process should be a physically-plausible scene interpretation that

segments the visual input into whole, stable objects, alongside some relational information

about how the objects interact with each other. Gupta et al. (2010) combine volumetric and

stability constraints to compute high-level qualitative interpretations of natural scenes from

image data, by reasoning which of the possible segmentations are physically plausible. We

hypothesize that, by combining visual information and robotic metadata in the reasoning

process, we can compute high-quality, detailed scene segmentations that preserve individual

objects in cluttered indoors scenes, rather than the simpler natural scenes analyzed by
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Gupta et al. (2010). In the case of human environments, surfaces of support play a crucial

role in scene interpretation. Learning the location of commonly used surfaces of support

in an environment allows us to focus future object discovery searches in the more relevant

areas of the scene. These high-level scene interpretations could be used alongside an active

robotic agent to guide the search for objects to the areas with higher likelihood of containing

objects. This information should also be given to the object recognition step in subsequent

visits to this scene, to provide faster recognition in the areas where objects are expected.





Chapter 10

Closing thoughts

Autonomous operation in the real world is the challenge for service robotics. In order to

succeed in that challenge, robots need to perceive and understand their surroundings. The

work I have presented in this thesis is a step in the right direction for object perception,

but the overall problem is still formidable.

After five years of research in this area, I strongly believe that we cannot teach robots

to see using visual information alone; robotic metadata and interactive perception are the

key for robust perception in human environments. Robotic metadata grounds the visual

information in the context of the real world, while interactive perception modifies the en-

vironment to disambiguate between perceptual cues. Every area of Object Perception

should benefit from such additional information. In HerbDisc, we have shown that robotic

metadata makes feasible the problem of Robotic Object Discovery. Our intermediate rep-

resentation in terms of constraints offers an extensible method to encode visual information

and robotic metadata in the same framework. The next step is to incorporate robotic in-

teraction strategies to provide additional cues for long-term autonomy in perception, with

the hope that one day service robots reach the necessary levels of reliability to operate in

our homes.
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Appendix A

Pose Estimation from Point

Correspondences

There are two main error metrics to recover the pose of a 3D model from point correspon-

dences, the reprojection and backprojection errors. Both error functions perform equiv-

alently when estimating object poses in Euclidean space, so one may choose either one.

The reprojection error is usually preferred in the computer vision community because it

is invariant to projective transformations, while the backprojection error is meaningless

in projective space (Hartley and Sturm, 1997). In our particular case, working with cali-

brated cameras in an Euclidean space, we have chosen the backprojection error because it

makes our framework more easily extensible to other types of multi-modal data, such as

3D point clouds or RGBD cameras, which we plan to incorporate in the near future. This

section contains a brief derivation of the error functions we use in MOPED, both for the

reprojection and backprojection errors.

A.1 Reprojection Error

Consider a set of correspondences Cm in image m, where each correspondence Coj;m =

(fj;m, Fi;o). Assume the corresponding features in Coj;m have locations pj;m in an image

and Pi;o in an object model. For a given transformation T and an image m with extrinsic

parameters Tm
1, the sum of reprojection errors is defined by

ReprojectionErr(T,m) =
∑

Co
j;m∈Cm

[pj;m − proj (TmTPi;o)]
2 (A.1)

1Reminder: in tensor notation, Tm = (Tm)−1



160 APPENDIX A. POSE ESTIMATION FROM POINT CORRESPONDENCES

The optimal single hypothesis h∗ for a given set of correspondences C is one that

minimizes the sum of reprojection errors of the correspondences across all images. The

pose T ∗h for h∗ is then defined as:

T ∗h = arg min
T

M∑
m=1

ReprojectionErr(T,m) (A.2)

A.2 Backprojection Error

Alternatively, one can define an analogous optimization in terms of the backprojection error,

by tracing the line Lj;m from the camera center to each 2D point pj;m, and computing the

distance from Lj;m to the corresponding 3D point Pi;o. We parameterize a line as L = (c, v),

where v is a unit vector indicating the line direction and c is an arbitrary point on that

line, (e.g., the camera center). Using projective geometry, we obtain

v̄j;m =
K−1
m pj;m

‖K−1
m pj;m‖

(A.3)

where Km is a 3 × 3 intrinsic camera matrix for image m. Each line Lj;m in the world

reference frame is then given by

vj;m = (Rm)T v̄j;m cj;m = − (Rm)T tm (A.4)

The distance between a point Pi;o and Lj;m is given by

d(Pi;o, Lj;m) = ‖
(
I3×3 − vj;mvj;mT

)
(Pi;o − cj;m)‖ (A.5)

The analogous equation to Eq. (A.2) that minimizes the sum of backprojection errors

of a set of correspondences C with Cj = (Pi;o, Lj;m) is given by

T ∗h = arg min
T

M∑
i=1

∑
Cj∈C

[d (TmTPi;o, Lj;m)]2 (A.6)

Additionally, we found it useful to constrain the objects to lie in front of the cameras.

Given that vj;m are vectors from the camera center pointing towards the image plane,

vj;m
T (Pi;o−cj;m) > 0 for all points Pi;o in front of camera m. We incorporate this constraint

as a regularizer (with weight ξ > 0) in the minimization

T ∗h = arg min
T

M∑
i=1

∑
Cj∈C

[
d (TmTPi;o, Lj;m) + ξ

(
1− vj;mT

(Pi;o − cj;m)

‖Pi;o − cj;m‖

)]2

(A.7)
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