
Limits, Regularity and Removal for Relational

and Weighted Structures

by

Ashwini Aroskar

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
at

Carnegie Mellon University
Department of Mathematical Sciences

Pittsburgh, Pennsylvania 15213

Thesis Committee:
James Cummings (Chair)

Jeremy Avigad
Steven Awodey
Simcha Haber

May 2012





Abstract

The Szemerédi Regularity Lemma states that any graph can be well-approximated by

graphs that are almost random. A well-known application of the Szemerédi Regularity

Lemma is in the proof of the Removal Lemma for graphs. There are several extensions of

the Regularity Lemma to hypergraphs. Our work builds on known results for k-uniform

hypergraphs including the existence of limits, a Regularity Lemma and a Removal Lemma.

Our main tool here is a theory of measures on ultraproduct spaces which establishes a

correspondence between ultraproduct spaces and Euclidean spaces. We show the existence

of a limit object for sequences of relational structures and as a special case, we retrieve

the known limits for graphs and digraphs. We also state and prove a Regularity Lemma,

a Removal Lemma and a Strong Removal Lemma for relational structures. The Strong

Removal Lemma deals with the removal of a family of relational structures and has appli-

cations in property testing.

We have also extended the above correspondence to measurable functions on the ul-

traproduct and Euclidean spaces. This enabled us to find limit objects for sequences of

weighted structures and these can be seen as generalizations of the limits we have obtained

for relational structures. We also formulate and prove Regularity and Removal Lemmas

for weighted structures.
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Chapter 1

Introduction

The Szemerédi Regularity Lemma [15] is an important tool in graph theory. It states

that all large graphs can be well-approximated, in a precise sense, by random graphs. It is

extremely useful in proving theorems for large graphs when the corresponding statement

for random graphs can be easily verified. Szemerédi first invented this result as a lemma

in his proof of a famous conjecture of Erdös and Turán involving arithmetic progressions.

A well-known application of this Regularity Lemma is in the proof of the Triangle

Removal Lemma, and more generally the Graph Removal Lemma. The Triangle Removal

Lemma states that if a large graph is nearly triangle-free, then we can delete a small number

of edges to remove all triangles. Similarly, the Graph Removal Lemma asserts that given a

fixed graph F, any large graph that has very few copies of F can be made F-free by deleting

a small number of edges.

Many variants of the Regularity Lemma as well as generalizations have since been

proved. The most prominent of these is the Hypergraph Regularity Lemma proved inde-

pendently by Rödl-Skokan [14] and Gowers [7].

The Hypergraph Regularity Lemma can also be used to prove a removal lemma for
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1. Introduction

hypergraphs, first proved by Nagle, Rödl and Schacht [11].

Benjamini and Schramm [2] constructed limit objects for sequences of graphs with

bounded degree. This was extended to sequences of graphs with bounded average degree

by Lyons [10].

Lovász and Szegedy [9] showed that a “limit” exists for any convergent sequence of

graphs. A sequence of finite graphs Gn is convergent if |V (Gn)| → ∞ and for every finite

graph F , the density of homomorphic copies of F in Gn, denoted as t(F,Gn), converges. A

limit object for a convergent sequence of graphs is such that it determines all the limits of

subgraph densities in the sequence. Lovász and Szegedy showed that a natural limit in the

case of graphs is a graphon, which is a symmetric measurable function W : [0, 1]2 → [0, 1].

For instance, a limit of a sequence of random graphs with density p, p ∈ [0, 1], is the

constant function W = p.

In general, given n ∈ N and any finite graph F on [n],

t(F,W ) =

∫
· · ·
∫

[0,1]n

∏
(i,j)∈E(F )

W (xi, xj) d(x1, . . . , xn)

and limn→∞ t(F,Gn) = t(F,W ).

Conversely, they show that every graphon arises as a limit of some convergent sequence

of graphs. Their work introduces a random graph construction by sampling from the

graphon W which is quite useful.

Non-standard analysts have developed measures on ultraproducts. Given a sequence

of finite sets of increasing size, equipped with the normalized counting measure, we can

obtain an ultraproduct measure space using the Loeb measure construction [8].

2



1. Introduction

Elek and Szegedy [6, 5] built separable algebras on ultraproducts and using an instance

of Maharam’s theorem, they showed these separable spaces are equivalent to the standard

Lebesgue measure space. This established an equivalence between ultraproduct spaces with

Loeb measure and Euclidean spaces with the familiar Lebesgue measure. They used this

to prove a correspondence between sequences of k-uniform hypergraphs on finite sets, a

measurable k-uniform hypergraph on the ultraproduct and a Euclidean hypergraph, which

is an S[k] symmetric Lebesgue-measurable subset of [0, 1]2
k−1. In this context, a graph

limit is a Lebesgue-measurable subset of [0, 1]3. However, we can use this new graph limit

to recover the graphons we mentioned above.

We can convert theorems of finite combinatorics to measure-theoretic statements on the

ultraproduct spaces. Using separable realizations, we can translate these measure-theoretic

statements to well-known facts about the Lebesgue measure. Elek and Szegedy used this

correspondence to prove a Regularity Lemma, a Removal Lemma and a Strong Removal

Lemma for k-uniform hypergraphs. The Strong Removal Lemma has applications in prop-

erty testing and has been used to show that hereditary properties are testable [1] [13].

Our work builds on the results of Elek and Szegedy that we have described above. In

Chapter 2, we introduce the theory of measures on ultraproduct spaces used by Elek and

Szegedy. We give alternate proofs of theorems involving the Loeb measure on the ultra-

product, using ℵ1 saturation. This gives us a cleaner look at the ultraproduct mechanism

behind the first piece of the Correspondence Principle we want to prove. Any measurable

subset of the ultraproduct differs from an internal set by a null set. In the case of func-

tions, a bounded measurable function on the ultraproduct differs on a null set from the

standard part of a bounded internal function. The standard part function is necessary in

this correspondence because the ultralimit of a sequence of bounded measurable functions

3



1. Introduction

on finite sets yields a function on the ultraproduct that takes values that are non-standard

reals. Each non-standard real is infinitesimally close to a real number that is returned by

the standard part function.

Section 2.4 presents the concept of separable realizations developed by Elek and Szegedy

that is critical to the second piece of the Correspondence Principle. The measure algebra

constructed on the ultraproduct in Section 2.1 is non-separable. Separable realizations

help to establish an equivalence between separable algebras on ultraproducts with the

Loeb measure and the familiar Euclidean spaces equipped with the Lebesgue measure.

Elek and Szegedy’s work studies k-uniform hypergraphs and the natural question to

ask is whether their results generalize to other structures, such as directed hypergraphs. In

Chapter 3, we examine many interesting combinatorial results in the more general setting

of relational structures. A relational structure consists of finitely many relations on an

underlying set. We first extend the Elek-Szegedy Correspondence Principle to relational

structures. For technical reasons, we represent relational structures by a system of directed

hypergraphs. Then we establish a correspondence between :

• A sequence of relational structures on finite sets that are increasing in size

• A relational structure on the ultraproduct such that each directed hypergraph in its

representation is a measurable set

• A system of Lebesgue-measurable subsets that we will refer to as a Euclidean structure

We define what it means to be a limit object for relational structures on finite sets and

using the above correspondence, we see that limits of convergent sequences of relational

structures are Euclidean structures as described above. We further show that any such

Euclidean structure is a limit of a sequence of relational structures on finite sets. These

limit objects generalize the Elek-Szegedy limits for k-uniform hypergraphs, so in particular

4



1. Introduction

we can retrieve graphons as graph limits. We also recover digraph limits in the style of

Offner and Pikhurko [12]. Their limit object for a sequence of finite digraphs is a set of

four graphon-like functions that satisfy certain conditions. In Section 3.1, we shall describe

these digraph limits further and show how we obtain the four measurable functions from

our limits. We also discuss uniqueness of our limits.

Elek and Szegedy used familiar facts about the Lebesgue measure to prove Regular-

ity and Removal Lemmas for k-uniform hypergraphs. In a similar manner, we use our

Correspondence Principle to extend these results to relational structures. The Regularity

Lemma that we formulate and prove for relational structures in Section 3.2 depends on

the fact that Lebesgue measurable sets can be well-approximated by a union of uniform

hypercubes. Our Removal Lemma relies on the Lebesgue Density theorem. We also prove

a Strong Removal Lemma that deals with simultaneously removing all copies of a family

of relational structures from a large relational structure by changing a small number of re-

lations. This is possible if the original large structure has only a few copies of some initial

subset of the family. We shall make this more precise in Section 3.3. We also describe the

applications of the Strong Removal Lemma in the area of property testing.

A more challenging question to answer is regarding the generalization of these tech-

niques and results to the case of weighted structures. A weighted structure consists of

finitely many bounded weight functions on an underlying set. The Correspondence Prin-

ciple above involved a correspondence between measurable sets on the three spaces. We

prove a similar correspondence between bounded measurable functions on these spaces.

This led to a Weighted Correspondence Principle relating

• A sequence of weighted structures on finite sets

• A weighted structure on the ultraproduct such that the bounded weight functions in

5



1. Introduction

its representation are measurable

• A system of Lebesgue-measurable bounded weight functions that we call a Euclidean

weighted structure

We can now use this correspondence in a similar manner as the previous correspondence

in the case of relational structures. In Chapter 4, we define the notion of homomorphisms

for weighted structures. We define a notion of limits for convergent sequences of weighted

structures on finite sets and show that Euclidean weighted structures are limits of such

sequences. We also formulate and prove a Regularity Lemma that states all weighted

structures on large sets are “close” to having a nice uniform structure. We make this

precise in Section 4.3. In Section 4.4, we also formulate and prove a Removal Lemma for

weighted structures. If we represent relational structures from Chapter 3 as 0 -1 weighted

structures, then our results for weighted structures in Chapter 4 can easily be seen as ex-

tensions of analogous results for relational structures.

Regularity Lemmas for graphs usually define regularity in terms of edge densities of

subgraphs. Csaba and Pluhár [4] proved a Weighted Regularity Lemma for weighted

digraphs where regularity is defined with respect to weighted edge densities. We prove

a similar result for weighted digraphs using our Weighted Correspondence Principle.

6



Chapter 2

Ultraproduct Spaces

In this chapter, we introduce the theory of measures on ultraproduct spaces used by

Elek and Szegedy. We give alternate proofs of theorems involving the Loeb measure on the

ultraproduct, using  Loś’ theorem and ℵ1-saturation. We present their main results on the

measure theory of ultraproducts here, most of them without proof, in order to develop the

key ideas necessary for the central correspondence.

2.1 Measure Algebras on Ultraproduct Spaces

Let {Xi}∞i=1 be a sequence of finite sets of increasing size and U be a non-principal

ultrafilter on ω. For the ease of proofs that follow, we will often work within the ultra-

power V of the universe V of set theory, modulo the ultrafilter U. Take the ultraproduct

X = (
∏
iXi)/U = [Xi] of this sequence modulo U. Given Ai ⊆ Xi for each i ∈ ω, [Ai] is

an internal subset of X. Internal sets form a Boolean algebra A over X.

It is useful to recall the following important theorem about ultraproducts.

Theorem 2.1.1 ( Loś’ theorem). Given a first-order language L and an ω-sequence of

7
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L-structures Mi, let M = (
∏
iMi)/U . Given a first-order L-formula φ(x1, . . . , xk) and

a1, . . . ,ak ∈ |M|,

M |= φ(a1, . . . ,ak) if and only if Mi |= φ(a1,i, . . . , ak,i) for U-almost every i, that is,

{i : Mi |= φ(a1,i, . . . , ak,i)} ∈ U .

Another useful fact is that as an ultrapower, V is ℵ1-saturated, that is, every countable

type of first-order formulae over |V| is realized in V.

If each Xi is equipped with the normalized counting measure µi, then for any internal

set A = [Ai], we can define ν(A) = [µi(Ai)]. ν takes values in [0, 1]V and ν is finitely

additive on the algebra of internal sets. In fact, using  Loś’ theorem we see that V thinks

X is finite and ν is the counting measure on X.

Given b ∈ R, let b∗ = [{b}∞i=1].

Define S =
⋃∞
m=1[−m,m]V =

⋃∞
m=1[−m∗,m∗] ( RV. Since [−m,m] is compact for

every m ∈ N, given any a ∈ S, there is a unique b ∈ R such that for all ε > 0, {i : |ai− b| <

ε} ∈ U . In other words, b = limU ai.

We define the standard part function by std(a) = b.

It is easy to see that std(b∗) = b and that the standard part function commutes with

mathematical operations, such as, addition, multiplication, absolute value. Given a1,a2 ∈

S such that a1 ≤ a2, std(a1) ≤ std(a2).

Let c, d ∈ R and let a ∈ S. If c ≤ std(a) ≤ d, then (c − 1
n)∗ ≤ a ≤ (d + 1

n)∗, that is,

{i : c− 1
n ≤ ai ≤ d+ 1

n} ∈ U , for each n ∈ N.

Define µ = std ◦ ν. Then for every internal set A = [Ai], µ(A) = limU µi(Ai). µ is

8



2.1. Measure Algebras on Ultraproduct Spaces

real-valued and finitely additive on the algebra of internal sets.

N ⊆ X is a null set if it can be covered by internal sets of arbitrarily small µ-measure.

Define B = {A∆N|A is an internal set, N is a null set}.

Lemma 2.1.2. B is a σ-algebra over X and µ extends as a σ-additive measure over B,

where µ(A∆N) = µ(A).

Proof. It is enough to prove that for a sequence of disjoint internal sets An,
⋃∞
n=1 An ∈ B

and µ(
⋃∞
n=1 An) =

∑∞
n=1 µ(An). Let a =

∑∞
n=1 µ(An). (Since the internal sets An are

disjoint, µ is finitely additive on internal sets and µ(X) = 1, the bounded partial sums

converge.)

We define for each n ∈ N, the first-order formula φn(B) as

(B ∈ A) ∧

(
n⋃
k=1

Ak ⊆ B

)
∧
(
ν(B) ≤

(
a+

1

n

)∗)

We claim that {φn(B) : n ∈ ω} is a countable type over |V|. Take any finite subset

and let n be the largest natural number such that φn(B) is in this subset. All formulae in

this subset are now easily satisfied by B =
⋃n
k=1Ak.

As the ultrapower is ℵ1-saturated, this type is satisfiable in V. There must exist B ∈ A

such that
⋃∞
n=1 An ⊆ B and ν(B) ≤ (a+ 1

n)∗ for each n.

So µ(B) = std ◦ ν(B) ≤ a+ 1
n for each n. Thus, µ(B) ≤ a.

Also,
⋃n
k=1 Ak ⊆ B implies

∑n
k=1 µ(Ak) ≤ µ(B), for each n. We can now conclude

µ(B) = a =
∑∞

n=1 µ(An).

9



2.1. Measure Algebras on Ultraproduct Spaces

Consider the sequence of internal sets Cn = B \ (
⋃n
k=1 Ak), n ∈ N. Then

µ(Cn) = a −
∑n

k=1 µ(Ak) → 0 as n → ∞. Each Cn covers B \
⋃∞
n=1 An. Since we can

now cover B \
⋃∞
n=1 An by internal sets of increasingly small measure, B \

⋃∞
n=1 An is a

null set and
⋃∞
n=1 An ∈ B. Also µ(

⋃∞
n=1 An) = µ(B) =

∑∞
n=1 µ(An).

This shows that B is closed under countable unions and B is a σ-algebra with the

countably additive measure µ.

Suppose fi : X → [−M,M ] for U-almost every i. We say f = [fi] : X → [−M∗,M∗] is

a bounded internal function. Then std◦f : X→ [−M,M ] is a bounded real-valued function.

Lemma 2.1.3. Let f = [fi] : X→ [−M∗,M∗] be a bounded internal function. Then std◦ f

is B-measurable, and

∫
X

(std ◦ f) dµ = std

(∫
X

f dν

)
= std

([∫
Xi

fi dµi

])

Proof.

(std ◦ f)−1([a, b]) =
∞⋂
n=1

f−1
([(

a− 1

n

)∗
,

(
b+

1

n

)∗])
The intersection of countably many internal subsets of X is in B, so std ◦ f is a B-

measurable function.

We can approximate std ◦ f using B-measurable simple functions gn =
∑mn

k=1 bk χBk
,

where each bk ∈ R and Bk ∈ B. There are internal sets Ak such that µ(Ak∆Bk) = 0.

Define internal functions hn =
∑mn

k=1 b
∗
k χ

V
Ak

. Then gn = std ◦ hn a.e. and we can

approximate std ◦ f a.e. using std ◦ hn. That is, for all ε > 0, there exists N ∈ N such

10



2.1. Measure Algebras on Ultraproduct Spaces

that for all n > N , |std ◦ f(x) − std ◦ hn(x)| < ε for almost every x and
∫
X(std ◦ f) dµ =

lim
n→∞

∫
X(std ◦ hn) dµ.

Also, if |std(f(x))− std(hn(x))| < ε, then for all m ∈ N, |f(x)− hn(x)| < (ε+ 1
m)∗.

Using properties of the standard part function, we see that

std

(∫
X

f dν

)
= lim

n→∞
std

(∫
X

hn dν

)
.

To prove the integral formula above for all bounded internal functions, it would now

be enough to prove it for simple internal functions like hn.

First let us prove the integral formula for χV
A

, where A is an internal set. Then std ◦

χV
A

= χA . ∫
X
χA dµ = µ(A) = std(ν(A)) = std

(∫
X
χV

A
dν

)
As every hn above is a finite linear combination of these internal characteristic functions,

we can use simple properties of the standard part function to extend the integral formula

to functions hn.

Lemma 2.1.4. Given any real-valued bounded B-measurable function g on X, there is a

bounded internal function f on X such that g = std ◦ f a.e.

Proof. We may assume that g : X → [0, 1]. For the purposes of this proof, it is easier

to identify [0, 1] with the space of binary sequences with the following topology : The

basic open sets are Ns = {y : ω → {0, 1} | y �l(s)= s} and the measure is defined by

λ(Ns) = 2−l(s) for any finite binary sequence s. Given y : ωV → {0, 1}, std(y) is simply

the restriction of y to its initial ω-segment.

Since g is measurable, for every finite binary sequence s, Bs = g−1(Ns) ∈ B. Note that

for any n, {Bs| l(s) = n} is a partition of X. Furthermore, for any sequence s with length

11



2.2. Fubini’s Theorem and Total Independence

n and given any m > n, {Bt | l(t) = m, t �n= s} is a partition of Bs. By definition of B,

there must exist internal sets As such that µ(As∆Bs) = 0. We may assume that the sets

As also form a system of nested partitions of X as above.

For every finite sequence s, define φs(f) as the first-order formula

∀x ∈ As, f(x) : ωV → {0, 1} ∧ f(x) �l(s) = s

Any finite subset of {φs(f)} is easily satisfiable. Take the index s of longest length and

build f(x) as the formulae ask, up to length l(s) (beyond that map to 0).

Since the ultraproduct is ℵ1-saturated and φs(f) is a countable type over |V|, there

exists an internal function f that satisfies each φs(f). We have ensured that f−1(NV
s ) = As.

Then (std ◦ f)−1(Ns) = As. Thus std ◦ f and g may differ only on
⋃
s(As∆Bs), which is a

null set. So g = std ◦ f a.e. and f is clearly a bounded internal function.

2.2 Fubini’s Theorem and Total Independence

Let Xj
i be copies of Xi for j ∈ [k] and for every A ⊆ [k], let XA

i =
∏
j∈AX

j
i with

counting measure µi,A. Let r ≤ k and let e be an ordered r-tuple of distinct elements from

[k], then Xe
i =

∏
j∈dom(e)X

j
i .

For every A ⊆ [k], we may take the ultraproduct XA of the sequence of finite sets

XA
i and define νA, BA and µA as before. We can repeat everything above for this ul-

traproduct and Lemmas 2.1.2, 2.1.3 and 2.1.4 hold. There are natural projection maps

πA : X[k] → XA, using which we define σA = π−1A (BA), the σ-algebra on X[k] depending

only on coordinates of A.

12



2.2. Fubini’s Theorem and Total Independence

Let f be a bounded internal function on X[k] that depends only on A-coordinates, it is

easy to see that std ◦ f is σA-measurable.

On the other hand, if g on X[k] is a bounded σA-measurable function, then there exists

a bounded internal function f on X[k] depending only on A coordinates such that g = std◦f

a.e.

Lemma 2.2.1. Let A,B ⊆ [k] and let g : X[k] → R be a bounded σB-measurable function.

Then for all y ∈ XAc, the function gy : XA → [−M∗,M∗], defined by gy(x) = g(x, y), is a

bounded πA[σA∩B]-measurable function.

Equivalently gy ◦ πA is a σA∩B-measurable function on X[k].

(Here, πA[σA∩B] = {πA[S] : S ∈ σA∩B} is the σ-algebra on XA.)

In the future, we will often treat XA as a subspace of X[k] and won’t make a distinction

between BA and σA or between gy and gy ◦ πA.

We define σ∗A as the σ-algebra generated by σB, for all B ( A such that |B| = |A| − 1.

σ∗A is, in general, a strictly smaller algebra than σA. For instance, if k = 2, the σ-algebra

on the 2-dimensional ultraproduct space X[2] is not the product of the two 1-dimensional

algebras on either coordinate. Theorem 2.4.1 states there are measurable 2-dimensional

sets independent of the σ-algebra of measurable rectangles.

However, a Fubini-like theorem is still true in this setting because Fubini’s theorem

holds trivially for the finite sets X
[k]
i .

Theorem 2.2.2. Let g be a bounded σ[k]-measurable real-valued function on X[k]. Then

13



2.2. Fubini’s Theorem and Total Independence

1. for a.e. y ∈ XAc, gy is a σA-measurable function on XA.

2. y →
∫
XA gy(x) dµA(x) is a σAc-measurable function on XAc.

3. Also
∫
X[k] g dµ[k] =

∫
XAc (

∫
XA gy(x) dµA(x)) dµAc(y)

Proof. Part 1 follows from Lemma 2.2.1.

From Lemma 2.1.4, we know that there is a bounded internal function f such that

g = std ◦ f a.e. Then gy = std ◦ fy a.e. and

∫
XA

fy(x) dνA(x) =

[∫
XA
i

fi,yi dµi,A

]
,

and y →
∫
XA fy(x) dνA(x) is a bounded internal function.

Using Lemma 2.1.3, we know
∫
XA gy dµA = std(

∫
XA fy dνA), hence proving part 2 above.

We remarked earlier that in V, XA appears to be finite and νA is the counting measure

on XA. So a Fubini-like statement is trivially true, that is,

∫
X[k]

f dν[k] =

∫
XAc

(∫
XA

fy dνA

)
dνAc

Now taking standard part and using the integral formula from Lemma 2.1.3, we prove part

3 of our theorem.

Let N ∈ σ[k]. For any y ∈ XAc , define Ny = {x ∈ XA : (x, y) ∈ N}.

Applying Fubini’s theorem to characteristic functions of null sets, in particular, we can

make the following observation.

Corollary 2.2.3. Almost every slice of a set is null if and only if the set is null, that is,

14



2.3. Random Partitions and Independent Complements

for all N ∈ σ[k], µ[k](N) = 0 if and only if µAc({y ∈ XAc : µA(Ny) = 0}) = 1.

We now state some important results from [6, 5], without proof, to illustrate the con-

struction of separable realizations that are critical to the second piece of the correspondence

we want to establish.

Let B ≤ A be σ-algebras and let µ be a countably additive measure on A. For every

A-measurable function f , E(f |B) is the conditional expectation of f over B. It is the unique

B-measurable function (within measure 0) such that
∫
Y E(f |B) dµ =

∫
Y f dµ, for all Y ∈ B.

The conditional expectation of a set A ∈ A over B is E(A|B) = E(χA |B), where χA

denotes the characteristic function of set A.

A ∈ A is independent of B if E(A|B) is a constant function. Then E(A|B) = µ(A) and

µ(A ∩B) = µ(A)µ(B) for every B ∈ B.

Sub-σ-algebras B and C of A are said to be independent σ-algebras if each B ∈ B is inde-

pendent of C and vice-versa. Equivalently, µ(B∩C) = µ(B)µ(C) for each B ∈ B and C ∈ C.

Theorem 2.2.4 (Total Independence Lemma). Let A1, . . . , Am be a list of distinct

subsets of [k] and Si ∈ σAi such that E(Si|σ∗Ai) is constant. Then µ(S1 ∩ . . . ∩ Sm) =

µ(S1) . . . µ(Sm).

2.3 Random Partitions and Independent Complements

Let B ≤ A be σ-algebras and let µ be a countably additive measure on A. A B-random

k-partition in A is a partition A1, ..., Ak of X into A-measurable sets such that E(Ai|B) = 1
k

15



2.3. Random Partitions and Independent Complements

for each i.

Theorem 2.3.1. Let A ⊆ [k] and n ∈ N. Then there exists a σ∗A-random n-partition of

XA in σA, that is, there is a partition of XA = S1 ∪ . . . ∪ Sn such that for each i, Si ∈ σA

and E(Si|σ∗A) = 1
n .

Let B ≤ A be σ-algebras and let µ be a countably additive measure on A. B is said to be

dense in A if for every A ∈ A, there exists a sequence {Bn} ⊆ B such that µ(A∆Bn)→ 0.

Sub-σ-algebras B and C of A are said to be independent complements of each other in

A if they are independent and the σ-algebra generated by B and C is dense in A.

Theorem 2.3.2. Suppose A ≥ B are separable σ-algebras on a set X, µ is a probability

measure on A and there exists a B-random k-partition A1,k, ..., Ak,k in A, for every k ∈ N.

Then there exists an independent complement C of B in A.

Let G be a group that acts on a set X. For any g ∈ G and S ⊆ X, let Sg denote the

image of S under the action of g. Let S be a subset of the powerset of X.

We say S is setwise G-invariant if for each g ∈ G and S ∈ S, Sg ∈ S.

S is elementwise G-invariant if for each g ∈ G and S ∈ S, Sg = S.

Let (X,A, µ) be a probability space and G be a finite group that acts on X such that A

is setwise G-invariant. We say the action of G on this space is independent if there exists

S ∈ A such that µ(S) = 1
|G| and Sg1 ∩ Sg2 = ∅ whenever g1 6= g2 ∈ G.

We need the following consequence of Theorem 2.3.2 and it plays a critical role in

obtaining separable realizations that will be defined in the following section. Separable

realizations are the key to the second piece of the correspondence we are trying to establish.
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2.4. Separable Realizations

Theorem 2.3.3. Let A ≥ B be separable σ-algebras with a probability measure µ. Let a

finite group G act on X such that A,B, µ are G-invariant and the action of G on (X,B, µ)

be independent. Let there also exist a B-random k-partition of X in A for all k.

Then there is an independent complement C of B in A and C is elementwise G-invariant.

2.4 Separable Realizations

The symmetric group S[k] acts on X[k] by permuting the coordinates.

(x1, . . . , xk)
π = (xπ−1(1), . . . , xπ−1(k))

S[k] also acts on the power set of [k]. We let Aπ denote the image of a set A ⊆ [k] under

π ∈ S[k]. (σA)π = σAπ .

For any set A and k ≤ |A|, let r(A, k) = {B ⊆ A : B 6= ∅, |B| ≤ k} and r(A) = r(A, |A|).

A separable system on X[k] is a system of atomless separable σ-algebras {lA : A ∈ r([k])}

such that

1. lA is a subalgebra of σA, independent of σ∗A.

2. lπA = lAπ for every permutation π ∈ S[k].

3. Y π = Y for every Y ∈ lA and π ∈ SA.

For instance, when k = 2, a separable system on X[2] consists of atomless separable

σ-algebras l{1}, l{2}, l{1,2} on X[2] such that

17



2.4. Separable Realizations

1. l{1} depends only on the first coordinate, l{2} depends only on the second and they

are essentially the same algebra on one coordinate.

2. l{1,2} ≤ σ{1,2} and it is independent from σ∗[2], the σ-algebra generated by measurable

rectangles.

3. l{1,2} contains symmetric sets.

Random partitions and independent complements play an important role in showing

the existence of separable systems. Elek and Szegedy used Theorem 2.3.1 and Theorem

2.3.3 to prove the following theorem about the existence of separable systems.

Theorem 2.4.1. Given J ∈ r([k]) and separable sub-σ-algebras Aj of σ[j] for all j ∈ J ,

there exists a separable system such that for every Aj-measurable set M, there is N in

〈lA : A ∈ r([j])〉 and µ[j](M∆N) = 0.

Let (X,A, µ) be a measure space. We say A,A′ ∈ A are equivalent if µ(A∆A′) = 0 and

µ([A]) = µ(A). The equivalence classes form a Boolean algebra, with a countably additive

measure µ, called the measure algebra M(X,A, µ).

Using a particular case of Maharam’s theorem, we know the following :

Lemma 2.4.2. Let (X,A, µ) be a separable, atomless probability measure space. Then

1. The measure algebra M(X,A, µ) is isomorphic to M([0, 1],B, λ), the measure algebra

of the standard Lebesgue space on the unit interval.

2. There exists a map f : X → [0, 1] that defines a measure algebra isomorphism between

the measure algebras, that is,
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2.4. Separable Realizations

(a) Given any Lebesgue-measurable set U ⊆ [0, 1], f−1(U) ∈ A and µ(f−1(U)) =

λ(U).

(b) For every A ∈ A, there exists a Lebesgue-measurable set B, such that A and

f−1(B) differ by a null set.

A separable realization is a measure-preserving map φ : X[k] → [0, 1]r([k]) such that

1. φ commutes with any permutation in S[k].

2. Given any Lebesgue-measurable set B ⊆ [0, 1] and any A ∈ r([k]), φ−1A (B) ∈ σA and

it is independent of σ∗A.

In the case that k = 2, a separable realization on X[2] is a measure-preserving map

φ = (φ{1}, φ{2}, φ[2]) : X[2] → [0, 1]r([2]) such that

• φA : X[2] → [0, 1] is a σA-measurable function.

• φ{1}(x,−) = φ{2}(−, x).

• φ[2](x, y) = φ[2](y, x).

• φ−1[2] (B) is independent of σ∗[2], for all Lebesgue measurable sets B ⊆ [0, 1].

It is easy to see that a separable realization on X[k] induces a separable system on X[k].

Elek and Szegedy used Theorem 2.4.1 and Theorem 2.4.2 to prove the existence of

separable realizations in the following theorem.

Theorem 2.4.3. For every J ∈ r([k]) and separable sub-σ-algebras Aj of σ[j] for j ∈ J ,

there exists a separable realization φ such that for every Aj-measurable set A, there exists
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2.4. Separable Realizations

a Lebesgue-measurable set B ⊆ [0, 1]r([j]) and µ[j](φ
−1(P−1r([j])(B))∆A) = 0, where Pr([j]) :

[0, 1]r([k]) → [0, 1]r([j]) is the projection map.

Let FA be the measurable functions obtained by using Theorem 2.4.2 on the separable

algebras from Theorem 2.4.1. Using the Total Independence Lemma, it can be verified

that φ defined on X[k] by φ(x) = (FA(x) : A ∈ r([n], k)) is a separable realization on X[k].

In the case that k = 2, φ(x, y) = (F{1}(x,−), F{2}(−, y), F{1,2}(x, y)).

It is useful to observe that given an S[j]-symmetric Aj-measurable set A, the symmetric

properties of the functions FS ensure that A differs on a null set from an S[j]-symmetric

subset of [0, 1]r([j]).

Remark 2.4.4. The restriction of any separable system on X[k] to X[j] for j < k, using the

projection map π[j], also yields a separable system on X[j] and a corresponding separable

realization φj = Pr([j]) ◦ φ ◦ π−1[j] : X[j] → [0, 1]r([j]). In this scheme, φ is in fact φk.

We can also extend or lift our separable realizations on X[k] to X[n] for n > k.

Given n ≥ k and φ : X[k] → [0, 1]r([k]), then a measure-preserving map ψ : X[n] →

[0, 1]r([n],k) is called a degree n lifting of φ if Pr([k]) ◦ ψ = φ ◦ π[k] and ψ(x)τ = ψ(xτ ) for all

x ∈ X[n] and all τ ∈ Sn.

Theorem 2.4.5. Let φ : X[k] → [0, 1]r([k]) be a separable realization and let n ≥ k be a

natural number. Then a degree n lifting ψ of φ exists.

Proof. Let A ⊆ [n] and |A| = j ≤ k and let τ ∈ S[n] such that Aτ = [j]. As one may

expect, we define ψA(x) = φ[j](π[k](x
τ )). Since the separable realization φ commutes with

every permutation in S[k], we find that ψA = φA ◦ π[k] for every A ⊆ [k].
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2.4. Separable Realizations

For τ ∈ S[n], the A-coordinate of ψ(x) is the Aτ
−1

-coordinate of ψ(x), which in turn is

the A-coordinate of ψ(xτ ). Thus we see ψ commutes with the action of S[n] on X[k].

To see that ψ is measure-preserving, we will need to use the Total Independence Lemma.

Each ψA is clearly measure-preserving. Consider a set W =
∏
A∈r([n],k) IA, where each

IA ⊆ [0, 1] is an interval. Since every measurable subset of [0, 1]r([n],k) can be approximated

by such hypercubes, it is enough to check that ψ−1 preserves the measure of such a set W .

Note that ψ−1(W ) =
⋂
A∈r([n],k) ψ

−1
A (IA) and each ψ−1A (IA) ∈ σA is independent of

σ∗A due to the nature of the separable realization. The Total Independence Lemma now

completes the proof.

Remark 2.4.6. ψj = Pr([j]) ◦ ψ is a degree n lifting of φj , for each j ∈ [k] and ψk = ψ.

We will need Theorem 2.4.5 and Remark 2.4.6 in the chapters to follow, most impor-

tantly to show the existence of limits.
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Chapter 3

Relational Structures

3.1 General Relational Structures and Limits

A relational type τ is a first-order signature that has finitely many relation symbols,

but no function symbols or constant symbols. Let ar be the function that assigns an arity

to each relation symbol in τ . A relational structure R of type τ on an underlying set X

interprets each relation symbol R ∈ τ with ar(R) = k as a k-ary relation RR on X.

An interesting problem arises when we deal with relations or relational structures on

an ultraproduct space. Consider a binary relation R on X. Then the set of loops {(x, x) :

(x, x) ∈ R} always has measure 0. This makes it difficult to say anything interesting about

the set of loops in the ultraproduct or to translate any property of loops in the sequence

of structures on finite sets to the ultraproduct setting in a meaningful way. However,

{x : (x, x) ∈ R} ⊆ X could be a set of appreciable measure.

Therefore, we need to address tuples with repetition separately in every relation.
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3.1. General Relational Structures and Limits

A hypergraph consists of a vertex set and a set of hyperedges. In a directed r-uniform

hypergraph, each hyperedge is an ordered r-tuple (no repeated elements). We will say that

an S[r]-symmetric directed r-uniform hypergraph is an r-uniform hypergraph.

We will represent any k-ary relation R on a set X as a system of directed r-uniform

hypergraphs, where r varies from 1 to k.

Let Pk be the set of all partitions of [k]. For any partition p ∈ Pk, let ‖p‖ denote the

number of parts in p. Given p1, p2 ∈ Pk, we say p1 ≤ p2 if p1 is a refinement of p2. p1 < p2

if and only if p1 6= p2 and p1 ≤ p2, that is, p1 is a strict refinement of p2.

Given any x̄ = (x1, . . . , xk) ∈ X [k], there is a unique p = p(x̄) ∈ Pk, such that xi = xj

if and only if i and j occur in the same part in p.

Let Rp = {x̄ ∈ R : p(x) = p}. Then R =
⋃
p∈Pk Rp.

For x̄ ∈ Rp, let ηp(x̄) be the tuple in X [‖p‖] obtained from x̄ by retaining only the first

occurrence of every element. ηp : Rp → X [‖p‖] is an injective function. Hp = Hp(R) =

ηp[Rp] is a directed ‖p‖-uniform hypergraph on X and R =
⋃
p∈Pk η

−1
p (Hp).

Thus, the relation R can be represented by the system of directed hypergraphs {Hp(R) :

p ∈ Pk}.

Every relational structure R of type τ can be represented by the system of hypergraphs

{Hp(R
R) : p ∈ Pk, k = ar(R), R ∈ τ}.

In the case that k = 2, a binary relation can be represented using H(1,2) ⊆ X and a

digraph H(1)(2) on X. H(1,2) = {x : (x, x) ∈ R} and H(1)(2) = {(x, y) : x 6= y, (x, y) ∈ R},

that is, a binary relation is essentially a digraph with loops.
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3.1. General Relational Structures and Limits

In the case that k = 3, a ternary relation R = R(1,2,3) ∪R(1,2)(3) ∪R(1,3)(2) ∪R(1)(2,3) ∪

R(1)(2)(3). R can now be represented by 5 directed hypergraphs : H(1,2,3) ⊆ X, 3 digraphs

H(1,2)(3), H(1,3)(2) and H(1)(2,3) on X, and a directed 3-uniform hypergraph H(1)(2)(3) on X.

As an example, consider (x, y, x) ∈ R and x 6= y. Then (x, y, x) ∈ R(1,3)(2) and η(1,3)(2)(x, y, x)

= (x, y). Note that η−1(1,3)(2)(x, y) = (x, y, x), however η−1(1)(2,3)(x, y) = (x, y, y).

Consider the relational type τ = {R,S, P} with ar(R) = ar(S) = 2 and ar(P ) = 1. A

relational structure R of type τ can be represented by the system {H(1,2)(R
R), H(1)(2)(R

R),

H(1,2)(S
R), H(1)(2)(S

R), H(1)(P
R)}.

Now let us consider an ω-sequence of finite sets Xi that are increasing in size and a

non-principal ultrafilter U on ω. Suppose we have k-ary relations Ri ⊆ X
[k]
i . We can now

take ultraproducts modulo U to obtain a k-ary relation R = [Ri] ⊆ X[k]. Clearly R is a

σ[k]-measurable set and we can now repeat the above procedure to obtain for each p ∈ Pk,

measurable sets Hp(R) = ηp[Rp] ⊆ X[‖p‖] such that R =
⋃
p∈Pk η

−1
p (Hp(R)).

In fact, Rp = [Ri,p], Hp(R) = [Hp(Ri)] and ηp = [ηi,p].

Fix a relational type τ . Consider an increasing sequence of finite sets Xi and relational

structures Ri of type τ on Xi. We will now define a relational structure R of type τ on X

as the ultraproduct of this sequence. For each R ∈ τ with k = ar(R), take the ultraprod-

uct of each sequence of relations RRi to obtain a k-ary relation RR on X. R can now be

represented by the system {Hp(R
R) = [Hp(R

Ri)] : p ∈ Pk, k = ar(R), R ∈ τ}.

Then as a consequence of Theorem 2.4.3, there exists a separable realization φ such
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3.1. General Relational Structures and Limits

that for each R ∈ τ and each p ∈ Pk where k = ar(R), there exist measurable sets

Wp(R
R) ⊆ [0, 1]r([‖p‖]) such that

µ[‖p‖](φ
−1
‖p‖(Wp(R

R))∆Hp(R
R)) = 0.

Let W (R) = {Wp(R
R) : p ∈ Pk, k = ar(R), R ∈ τ}. We call this the corresponding

Euclidean structure of type τ .

Let R and S be relational structures of type τ on underlying sets X and Y respectively.

A map φ : Y → X is a homomorphism from S to R if for each relation R ∈ τ with

k = ar(R) and for all y1, . . . , yk ∈ Y ,

(y1, . . . , yk) ∈ RS =⇒ (φ(y1), . . . , φ(yk)) ∈ RR.

Let T (S,R) denote the set of homomorphisms from S to R and let t(S,R) denote the

homomorphism density of S in R. If X and Y are finite sets, define t(S,R) = |T (S,R)|
|X||Y | .

Similarly, To(S,R) denotes the set of injective homomorphisms and the injective ho-

momorphism density to(S,R) = |To(S,R)|
(|X||Y |)

.

A map φ : Y → X is an induced homomorphism from S to R if for each relation R ∈ τ

with k = ar(R) and for all y1, . . . , yk ∈ Y ,

(y1, . . . , yk) ∈ RS ⇐⇒ (φ(y1), . . . , φ(yk)) ∈ RR.

We can also look at the sets Tind(S,R) and To,ind(S,R) of induced homomorphisms

and injective induced homomorphisms respectively, from S to R, and analogously define
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3.1. General Relational Structures and Limits

the induced homomorphism density tind(S,R) and the injective induced homomorphism

density to,ind(S,R).

Now a homomorphism need not be an injective map. Consider τ = {R} with ar(R) = 3.

Let Y = {y, z}, X = {x} and φ(y) = φ(z) = x. Suppose RS = (y, z, y). Since φ maps

(y, z, y) to (x, x, x), φ ∈ T (S,R) if and only if (x, x, x) ∈ RR. Note that, in the context

of the directed hypergraphs representing these relations, the homomorphism φ mapped

(y, z) ∈ H(1,3)(2)(R
S) to (x) ∈ H(1,2,3)(R

R). We must account for such cases when calcu-

lating the (induced) homomorphism density, especially when R is a relational structure on

a finite set. Interestingly, in the ultraproduct case the set of non-injective homomorphisms

into R has measure 0. This is what we would expect since the probability of two elements

from a finite set Y being mapped to the same point in the ultraproduct X is 0.

Let kmax = max{ar(R) : R ∈ τ} and let Er(X) denote the complete r-uniform hyper-

graph on X, for any r ∈ N. Recall that we have previously defined r-uniform hypergraphs

as S[r]-symmetric directed r-uniform hypergraphs.

Assume Y = [n]. We can represent a homomorphism φ : S → R as an n-tuple

(φ(1), . . . , φ(n)) ∈ X [n]. Then T (S,R), To(S,R), Tind(S,R) and To,ind(S,R) are subsets

of X [n]. For a relational structure R on the ultraproduct X that is represented by a sys-

tem of measurable directed hypergraphs, all homomorphism sets are measurable. Then

t(S,R) = µ[n](T (S,R)), to(S,R) = µ[n](To(S,R)), tind(S,R) = µ[n](Tind(S,R)) and

to,ind(S,R) = µ[n](To,ind(S,R)).

Since the copies of X in the product X [n] are indexed, we use the following maps
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3.1. General Relational Structures and Limits

to ensure that any r-tuple below lives in the appropriate isomorphic image of X [r]. For

every e ∈ Er([n]), let πe : X [n] → Xe be the natural projection which can be defined as

πe(x) = (xe(1), . . . , xe(r)). Let θe : X [r] → Xe be the natural bijection induced by the

ordered tuple e. Given x = (x1, . . . , xr) ∈ X [r] where each xi ∈ X{i}, θe maps x to a copy

of itself in Xe by sending each xi to a copy of itself in X{e(i)}.

For example, given Y = [3], e = (3, 2) and x = (x1, x2, x3) ∈ X [3], πe(x) = (x3, x2) ∈

X(3,2) and θ−1e (πe(x)) = (x3, x2) ∈ X [2].

Consider τ = {R} with ar(R) = 3. We need the set P3 of partitions of [3]. Let Y = [4]

and RS = {(4, 2, 2)}. This implies (4, 2) ∈ H(1)(2,3). Now x = (x1, x2, x3, x4) ∈ T (S,R)

if and only if (x4, x2, x2) ∈ RR. Let e = (4, 2) and p = (1)(2, 3). Then ‖p‖ = 2 and

θ−1e (πe(x)) = (x4, x2) ∈ X [2].

Either x4 6= x2 and x ∈ T (S,R) if and only if θ−1e (πe(x)) = (x4, x2) ∈ H(1)(2,3)(R
R),

or x4 = x2 and x ∈ T (S,R) if and only if (x4) ∈ H(1,2,3)(R
R). In the latter case, observe

that there is a unique partition q = p(θ−1e (πe(x))) = p(x4, x2) = (1, 2) ∈ P2 = P‖p‖ such

that ‖q‖ < ‖p‖ since x4 6= x2. Also there is a unique partition p′ = (1, 2, 3) ∈ P3 such that

ηq(θ
−1
e (πe(x))) = ηq(x4, x2) = (x4) ∈ Hp′(R

S) and ‖p′‖ = ‖q‖.

In general, given a tuple x ∈ X [n] and a directed hyperedge e ∈ Ek(X), θ−1e (πe(x)) =

(xe(1), . . . , xe(k)) ∈ X [k]. x represents a homomorphism from S to R, that is, x ∈ T (S,R)

if for all R ∈ τ with k = ar(R), all p ∈ Pk and all e ∈ Hp(R
S), either

Case 1 : θ−1e (πe(x)) ∈ RRp has ‖p‖ distinct elements. Then θ−1e (πe(x)) ∈ Hp(R
R).

or

Case 2 : There exists a unique partition q = p(θ−1e (πe(x))) ∈ P‖p‖ and ‖q‖ < ‖p‖. Then

there exists a unique partition p′ ∈ Pk such that ηq(θ
−1
e (πe(x))) ∈ Hp′(R

R). ‖p′‖ = ‖q‖
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3.1. General Relational Structures and Limits

and p ≤ p′.

Let Zp(R
R) = {y ∈ X [‖p‖] | q = p(y) ∈ P‖p‖ : ‖q‖ < ‖p‖ and ∃! p′ ∈ Pk : ηq(y) ∈

Hp′(R
R)}. Then

T (S,R) =
⋂
R∈τ

⋂
p∈Pk

⋂
e∈Hp(RS)

π−1e (θe(Hp(R
R) ∪ Zp(RR)))

If x ∈ X [n] represents an injective homomorphism, then each θ−1e (πe(x)) always has

distinct elements. Then the set of injective homomorphisms from S to R is

To(S,R) =
⋂
R∈τ

⋂
p∈Pk

⋂
e∈Hp(RS)

π−1e (θe(Hp(R
R)))

A sequence of relational structures Ri of type τ on finite sets Xi is said to be convergent

if for any finite set Y and a relational structure S of type τ on Y, limi→∞ t(S,Ri) exists.

The sequence is said to be increasingly convergent if it is convergent and |Xi| → ∞.

Given a sequence of relational structures Ri of type τ on finite sets Xi of increasing size,

we can take the ultraproduct R and obtain a system {Hp(R
R) : p ∈ Pk, k = ar(R), R ∈ τ}

that represents R and we can also obtain the corresponding Euclidean structure W (R) as

above.
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3.1. General Relational Structures and Limits

Let S be a relational structure of type τ on [n]. Then

T (S,R) =
⋂
R∈τ

⋂
p∈Pk

⋂
e∈Hp(RS)

π−1e (θe(Hp(R
R) ∪ Zp(RR))) = [T (S,Ri)].

Note that Zp(R
R) ⊆ X[‖p‖] and µ[‖p‖](Zp(R

R)) = 0.

T (S,R) ⊆ X[n] is σ[n]-measurable and

t(S,R) = µ[n](T (S,R)) = lim
U
t(S,Ri).

Further, if the sequence {Ri} is increasingly convergent, then t(S,R) = limi→∞ t(S,Ri).

Given a relational structure S of type τ on [n] and a Euclidean structure W = {Wp(R) :

p ∈ Pk, k = ar(R), R ∈ τ}, define the homomorphism density of S in W as :

t(S,W ) =

∫ 1

0
. . .

∫ 1

0

∏
R∈τ

∏
p∈Pk

∏
e∈Hp(RS)

Wp(R)(xe)
∏

A∈r([n],kmax)

dxA

whereWp(R) is the characteristic function of Wp(R) and for every e ∈ Ek([n]), xe = (xe[A] :

A ∈ r([k]).

Theorem 3.1.1. Let S be a relational structure of type τ on [n] and let Ri form a sequence

of relational structures of type τ on finite sets Xi of increasing size. Let R be the relational

structure obtained by taking ultraproducts and let W (R) be the corresponding Euclidean

structure. Then t(S,W (R)) = t(S,R).

Proof. For every e ∈ E‖p‖([n]), let Le : [0, 1]r([n],‖p‖) → [0, 1]r(e) be the natural measurable

projection induced by πe and let Fe : [0, 1]r[‖p‖] → [0, 1]r(e) be the measurable isomorphism
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3.1. General Relational Structures and Limits

induced by the bijection θe.

A separable realization φ on X[kmax] exists as in Theorem 2.4.3 and by Theorem 2.4.5,

a lifting ψ of φ to X[n] exists.

We know that µ[‖p‖](φ
−1
‖p‖(Wp(R

R)∆Hp(R
R)) = 0 and µ[‖p‖](Zp(R

R)) = 0, for each

R ∈ τ and p ∈ Pk where k = ar(R).

µ[n](T (S,R))

= µ[n]

⋂
R∈τ

⋂
p∈Pk

⋂
e∈Hp(RS)

π−1e (θe(Hp(R
R)))


= µ[n]

⋂
R∈τ

⋂
p∈Pk

⋂
e∈Hp(RS)

π−1e (θe(φ
−1
‖p‖(Wp(R

R))))


= µ[n]

⋂
R∈τ

⋂
p∈Pk

⋂
e∈Hp(RS)

ψ−1‖p‖(L
−1
e (Fe(Wp(R

R))))


= µ[n]

⋂
R∈τ

⋂
p∈Pk

ψ−1‖p‖

 ⋂
e∈Hp(RS)

L−1e (Fe(Wp(R
R)))


= µ[n]

⋂
R∈τ

⋂
p∈Pk

ψ−1

P−1r([‖p‖])

 ⋂
e∈Hp(RS)

L−1e (Fe(Wp(R
R)))


= µ[n]

ψ−1
⋂
R∈τ

⋂
p∈Pk

P−1r([‖p‖])

 ⋂
e∈Hp(RS)

L−1e (Fe(Wp(R
R)))


= V ol

⋂
R∈τ

⋂
p∈Pk

P−1r([‖p‖])

 ⋂
e∈Hp(RS)

L−1e (Fe(Wp(R
R)))


=

∫ 1

0
. . .

∫ 1

0

∏
R∈τ

∏
p∈Pk

∏
e∈Hp(RS)

Wp(R
R)(xe)

∏
A∈r([n],kmax)

dxA
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3.1. General Relational Structures and Limits

We have thus proved, t(S,R) = t(S,W (R)).

If the sequence {Ri} is increasingly convergent, then for each structure S on some finite

set, t(S,W (R)) = limi→∞ t(S,Ri) and the Euclidean structure W (R) is said to be a limit

for the sequence {Ri}.

Remark 3.1.2. In the course of the proof of Theorem 3.1.1, we have also proved to(S,R) =

t(S,W (R)).

We shall view graphs as digraphs with symmetric edge sets. Digraphs can be repre-

sented as relational structures of type τ = {E} such that ar(E) = 2. Given digraphs G,

H(1)(2)(E
G) = EG and H(1,2)(E

G) = ∅. Given a convergent sequence of finite digraphs Gn,

we can obtain, as a limit, a Euclidean structure W = {W(1)(2),W(1,2)}, where W(1)(2) is a

Lebesgue-measurable subset of [0, 1]3, while W(1,2) = ∅. Then t(F,W ) = limn→∞ t(F,Gn)

for all finite digraphs F. Essentially, the three-dimensional set W(1)(2) is our digraph limit.

Let G be a graph. Then W(1)(2) is S[2]-symmetric. How are these graph limits related

to graphons that were shown to be graph limits in [9] by Lovász and Szegedy?

Let W̃ : [0, 1]2 → [0, 1] be defined by

W̃ (x, y) =

∫ 1

0
W(1)(2)(x, y, z) dz.

Since W(1)(2) is S[2]-symmetric and measurable, W̃ is symmetric and measurable. So

W̃ is a graphon. Using the classical Fubini’s theorem, we can see that for every n ∈ N and
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3.1. General Relational Structures and Limits

every graph F on [n],

t(F,W ) =

∫ 1

0
. . .

∫ 1

0

∏
(i,j)∈EF

W̃ (xi, xj) dx1 . . . dxn

= t(F, W̃ )

as defined in [9]. Given any sequence of finite graphs Gn that converges to W, t(F, W̃ ) =

limn→∞ t(F,Gn) for all finite graphs F and W̃ is a limit for the sequence Gn. We have

recovered the traditional graph limit from our form of the limit object.

The advantage of the three-dimensional limit is perhaps more apparent in comparison

to the digraph limit, which Offner and Pikhurko showed to be a set of four measurable

functions {
←→
W ,
−→
W,
←−
W,W} from [0, 1]2 to [0, 1] such that for all x, y ∈ [0, 1]

1.
←→
W (x, y) +

−→
W (x, y) +

←−
W (x, y) +W (x, y) = 1,

2.
←→
W (x, y) =

←→
W (y, x), and

3.
−→
W (x, y) =

←−
W (y, x).

As the notation would indicate, the functions
←→
W ,
−→
W,
←−
W,W are intended to correspond

to the probability of edges going both ways, an edge from left to right only, an edge from

right to left only and no edges, respectively. Clearly
←→
W and

−→
W are enough.

Given a digraph F on a finite set, the set of directed edges E(F ) =
←→
F ∪
−→
F where

←→
F =

{(x, y) : (x, y) ∈ E(F ), (y, x) ∈ E(F )} and
−→
F = {(x, y) : (x, y) ∈ E(F ), (y, x) /∈ E(F )}.

t(F,
←→
W ,
−→
W ) =

∫ 1

0
. . .

∫ 1

0

∏
(i,j)∈

←→
F

←→
W (xi, xj)

∏
(i,j)∈

−→
F

(
−→
W (xi, xj) +

←→
W (xi, xj)) dx1 . . . dxn
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3.1. General Relational Structures and Limits

We can retrieve these functions from our digraph limit object W(1)(2). Recall that in

the case of digraphs, W(1)(2) need not be S[2]-symmetric. For all x, y ∈ [0, 1], define

←→
W (x, y) =

∫ 1

0
W(1)(2)(x, y, z)W(1)(2)(y, x, z) dz

−→
W (x, y) =

∫ 1

0
W(1)(2)(x, y, z)(1−W(1)(2)(y, x, z)) dz

←−
W (x, y) =

∫ 1

0
(1−W(1)(2)(x, y, z))W(1)(2)(y, x, z) dz

W (x, y) =

∫ 1

0
(1−W(1)(2)(x, y, z))(1−W(1)(2)(y, x, z)) dz

Using Fubini’s theorem, we can once again see that t(F,W(1)(2)) = t(F,
←→
W ,
−→
W ), for all

digraphs F on finite sets.

Let us look at the nature of the limit object for a few other simple relational types.

Let τ = {P,Q} such that ar(P ) = 1 and ar(Q) = 1. A limit object for two unary re-

lations is a Euclidean structure W of type τ that consists of Lebesgue-measurable subsets

W(1)(P ) and W(1)(Q) of [0, 1].

Let τ = {R} such that ar(R) = 2. This is the type for binary relations and we

have seen that our limit object for binary relations consists of Lebesgue-measurable sets

W(1)(2)(R) ⊆ [0, 1]3 and W(1,2)(R) ⊆ [0, 1].

Let τ = {R,S} such that ar(R) = 2 and ar(S) = 2. A limit object is a Eu-

clidean structure of type τ , represented by a system of Lebesgue-measurable subsets

{W(1)(2)(R),W(1,2)(R),W(1)(2)(S),W(1,2)(S)} such that W(1)(2)(R),W(1)(2)(S) ⊆ [0, 1]3 and
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3.1. General Relational Structures and Limits

W(1,2)(R),W(1,2)(S) ⊆ [0, 1].

These examples indicate how rapidly the complexity of the limit object increases with

the complexity of the relational type.

Let Hc
p(R

S) = {e ∈ E‖p‖([n]) : e /∈ Hp(R
S)}. Define the induced homomorphism

density of S in W (R) as

tind(S,W (R)) =

∫ 1

0
. . .

∫ 1

0

∏
R∈τ

∏
p∈Pk

∏
e∈Hp(RS)

Wp(R
R)(xe)

∏
e∈Hc

p(R
S)

(1−Wp(R
R)(xe))

∏
A∈r([n],kmax)

dxA.

Remark 3.1.3. We can repeat the proof of Theorem 3.1.1 to show that

tind(S,R) = to,ind(S,R) = tind(S,W (R)).

Let τ be a relational type. Let W = {Wp(R) : p ∈ Pk, k = ar(R)} be a Euclidean

structure of type τ . Each Wp(R) is a measurable subset of [0, 1]r([‖p‖]). We can generate

a random relational structure Rm = R(W,m) on [m] as follows. Choose xA uniformly at

random in [0, 1], for A ∈ r([m], kmax). Fix relation R ∈ τ and let k = ar(R). For each

p ∈ Pk, generate Hp(R) as follows :

e ∈ Hp(R) ⇐⇒ xe ∈Wp(R).

The following result is similar to Lemma 2.4 in [9] and the proof follows along the same
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3.1. General Relational Structures and Limits

lines.

Lemma 3.1.4. For every relational structure S on [n]

1. E(to(S,Rm)) = t(S,W ).

2. |E(t(S,Rm))− t(S,W )| ≤ n2

m .

3. V ar(t(S,Rm)) ≤ 3n2

m .

Remark 3.1.5. We can also prove an analog of Lemma 3.1.4 for tind and to,ind. For a future

result, we will use the first part : E(to,ind(S,Rm)) = tind(S,W ).

Theorem 3.1.6. The sequence {Rm2} is increasingly convergent and W is its limit with

probability 1.

Proof. Let ε > 0. Fix n and a relation S on [n]. Assume m is large enough that n2

m ≤
ε
2 .

Using Chebyshev’s inequality, Prob(|t(S,Rm2)− t(S,W )| ≥ ε) ≤ 4n2

3ε2
1
m2 .

Let Em,ε be the event that |t(S,Rm2) − t(S,W )| ≥ ε. Then
∑∞

m=1 Prob(Em,ε) < ∞.

By the Borel-Cantelli Lemma, Prob(lim supEm,ε) = 0.

Then Prob(∪ε∈Q+ lim supEm,ε) = 0, that is, Prob(∃ε > 0 : |t(S,Rm2) − t(S,W )| ≥

ε, i.o.) = 0.

Thus we have proved Prob(t(S,Rm2)→ t(S,W )) = 1 for each relational structure S on

a finite set. Since there are only countably many such S, {Rm2} is increasingly convergent

and W is a limit for the random sequence {Rm2} with probability 1.

We can repeat the above proof for tind to prove that tind(S,Rm2) → tind(S,W ) with

probability 1.
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3.2. Uniqueness

3.2 Uniqueness

In this section, we address the question of uniqueness of limits. It is known that

graphons are unique as graph limits up to measure preserving transformations [3]. Elek

and Szegedy found limits for k-uniform hypergraphs and showed they were unique up to

“structure preserving” maps. We extend their results to determine uniqueness of our lim-

its for relational structures and show that they are also, in fact, unique up to structure

preserving maps.

Let U and W be two Euclidean structures of type τ . Let

d1(U,W ) = max{Vol(Up(R)∆Wp(R)) : p ∈ Pk, k = ar(R), R ∈ τ}.

d1(U,W ) = 0 if and only if U and W are 0-close, that is, for all R ∈ τ with k = ar(R), for

all p ∈ Pk, Up(R)∆Wp(R) is a null set. d1 is clearly symmetric and satisfies the triangle

inequality.

Let S be a relational structure of type τ on a finite set. Let |S| =
∑
R∈τ

∑
p∈Pk

|Hp(R
S)|.

It is easy to verify that |t(S, U)− t(S,W )| ≤ |S| d1(U,W ).

Let δw(U,W ) = inf{δ : ∀S, |t(S, U)− t(S,W )| ≤ |S| δ}.

It is easy to see that δw(U,W ) ≤ d1(U,W ) and it satisfies the triangle inequality. If

δw(U,W ) = 0, then t(S, U) = t(S,W ) for all relational structures S of type τ on finite

sets. We are interested in the relation between U and W that ensures δw(U,W ) = 0.

Fix k ∈ N. For every S ∈ r([k]), let AS be the σ-algebra generated by the projection
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[0, 1]r([k]) → [0, 1]r(S). Let A∗S = 〈AT : T ( S〉.

A Lebesgue measurable function φ = (φS : S ∈ r([k])) : [0, 1]r([k]) → [0, 1]r([k]) is a

structure preserving map on [0, 1]r([k]) if

1. φ is measure preserving.

2. φ−1(AS) ⊆ AS , for each S ∈ r([k]).

3. Given a Lebesgue measurable set I ⊆ [0, 1] and S ∈ r([k]), φ−1S (I) is independent

from A∗S .

4. φ ◦ π = π ◦ φ for all π ∈ S[k].

Remark 3.2.1. Given m ≤ k, let φm : [0, 1]r([m]) → [0, 1]r([m]) be the natural restriction of

the structure preserving map φ. Then φm is also structure preserving.

Here, φ = φk.

Remark 3.2.2. Let φ, φ̃ be two structure preserving maps on [0, 1]r([k]). Then φ ◦ φ̃ and

φ−1 are also structure preserving maps on [0, 1]r([k]).

Let ψ be a separable realization on X[k]. Then φ ◦ ψ is also a separable realization on

X[k].

Let φ−1(W ) denote the Euclidean structure represented by {φ−1‖p‖(Wp(R)) : p ∈ Pk, k =

ar(R), R ∈ τ}.

Lemma 3.2.3. Given a Euclidean structure W of type τ and a structure preserving map

φ on [0, 1]kmax, δw(W,φ−1(W )) = 0.
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Proof. It is enough to show that t(S,W ) = t(S, φ−1(W ) for all relational structures S of

type τ on finite sets.

Just as in the proof of Theorem 2.4.5, we can lift structure preserving maps. We

can obtain a lifting ψ of φ such that ψ : [0, 1]r([n],k) → [0, 1]r([n],k) is measure-preserving,

ψ ◦ τ = τ ◦ ψ for all τ ∈ S[n] and φ ◦ Pr([k]) = Pr([k]) ◦ ψ.

Let ψm : [0, 1]r([n],m) → [0, 1]r([n],m) be the natural restriction of ψ. Then ψ = ψk and

we can verify that ψm is a lifting of φm using the properties of structure preserving maps.

In particular, each ψm is measure-preserving.

Let S be a relational structure of type τ on a finite set.

t(S, φ−1(W )) = V ol

⋂
R∈τ

⋂
p∈Pk

P−1r([‖p‖])

 ⋂
e∈Hp(RS)

L−1e (Fe(φ
−1
‖p‖(Wp(R

R))))


= V ol

⋂
R∈τ

⋂
p∈Pk

P−1r([‖p‖])

 ⋂
e∈Hp(RS)

ψ−1‖p‖(L
−1
e (Fe(Wp(R

R))))


= V ol

⋂
R∈τ

⋂
p∈Pk

P−1r([‖p‖]) ◦ ψ
−1
‖p‖

 ⋂
e∈Hp(RS)

L−1e (Fe(Wp(R
R)))


= V ol

ψ−1
⋂
R∈τ

⋂
p∈Pk

P−1r([‖p‖])

 ⋂
e∈Hp(RS)

L−1e (Fe(Wp(R
R)))


= V ol

⋂
R∈τ

⋂
p∈Pk

P−1r([‖p‖])

 ⋂
e∈Hp(RS)

L−1e (Fe(Wp(R
R)))


= t(S,W )

A random coordinate system ζn : Ek([n])→ [0, 1]r([n],k)) can be defined as follows : Let

xA, A ∈ r([n], k), be random variables chosen uniformly at random in [0, 1]. Then for any

(n1, . . . , nk) ∈ Ek([n]) and S = {i1, . . . , it) ∈ r([k]), ζn,S(n1, . . . , nk) = x{ni1 ,...,nit}.
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For any Euclidean structure W of type τ , (ζn)−1(W ) is a relational structure-valued

random variable that has the same distribution as R(W,n).

Let ζS = std ◦ [ζn,S ] for all S ∈ r([k]). Then ζ = (ζS : S ∈ r([k])) : X[k] → [0, 1]r([k]) is

a random coordinate system on X[k].

The random coordinate system ζ is a separable realization on X[k] with probability 1.

Lemma 3.2.4. Let W be a Euclidean structure of type τ . Let R be the ultraproduct of

the random sequence R(W,n). Then there exists a separable realization φ : Xkmax →

[0, 1]r([kmax]) such that R is 0-close to φ−1(W ), with probability 1.

The random relational structure R = [R(W,n)] = [ζ−1n (W )], since R(W,n) has the

same distribution as ζ−1n (W ). Then R and ζ−1(W ) are 0-close.

Theorem 3.2.5. Let U and W be Euclidean structures of type τ . δw(U,W ) = 0 if and

only if there exist structure-preserving maps ψU and ψW on [0, 1]r([kmax]) such that

d1(ψ
−1
U (U), ψ−1W (W )) = 0.

Proof. If there exist structure-preserving maps φ and ψ on [0, 1]r([kmax]) such that d1(φ
−1(U),

ψ−1(W )) = 0, then using Lemma 3.2.3 we can easily see that δw(U,W ) = 0.

For the converse, let δw(U,W ) = 0. Since t(S, U) = t(S,W ) for all relational structures

S on finite sets, tind(S, U) = tind(S,W ). Then R(U, n) and R(W,n) have the same distri-

bution, say, Zn. Let R = [Zn]. Then by Lemma 3.2.4, there exist separable realizations

φU and φW on Xkmax such that φ−1U (U), φ−1W (W ) and R are all 0-close, with probability

1. We can find the separable systems {lA,U : A ∈ r([kmax])} and {lA,W : A ∈ r([kmax])} in-

duced by φU and φW respectively. For each A, let lA be the separable σ-algebra generated
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by lA,U and lA,W . Using Theorem 2.4.3, we can find a separable realization φ on X[kmax]

that corresponds to the separable system {lA : A ∈ r([k])}. We can now find structure

preserving maps ψU and ψW on [0, 1]r([kmax]) such that for all m, all Lebesgue measurable

B ⊆ [0, 1]r([m]), φ−1m (ψ−1U,m(B)) and φ−1U,m(B) as well as φ−1m (ψ−1W,m(B)) and φ−1W,m(B) differ

on null sets. Then ψ−1U (U) and ψ−1W (W ) are 0-close.

3.3 Regularity for Relational Structures

In the discussions to follow, if X is a finite set, then the measure µ is the normalized

counting measure on X. In case of the ultraproduct X, µ is the Loeb measure we defined

in Section 2.

A k-level `-hyperpartition H on a set X is a family of partitions of Er(X) =
⋃`
j=1 P

r
j ,

where Er(X) is the complete r-uniform hypergraph on X and P rj is an r-uniform hyper-

graph on X, for each r ∈ [k] and j ∈ [`]. a,b ∈ Er(X) are in the same H -r-cell if for

each non-empty A ⊆ [r], πA(a) and πA(b) are in the same P
|A|
j . This induces a partition

of each Er(X) into H -r-cells.

H is a δ-equitable hyperpartition if for all r ∈ [k] and i, j ∈ [l],

|µ[r](P ri )− µ[r](P rj )| < δ.

A cylindric intersection set L in XA is a set L =
⋂
{B:B(A} π

−1
B (YB), where each

YB ⊆ XB is measurable. Recall that if X is finite, all subsets are measurable.

If L is a cylindric intersection in the ultraproduct X[r], L ∈ σ∗[r].

In the case that r = 2, every cylindric intersection in X [2] is a measurable rectangle,
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whether X is a finite set or the ultraproduct.

A directed r-uniform hypergraph H on X is ε-regular if for any cylindric intersection

set L in X [r] with µ[r](L) ≥ ε,

|µ[r](H ∩ L)− µ[r](H)µ[r](L)| < εµ[r](L).

Theorem 3.3.1. Let R be a relational structure of type τ on an ultraproduct X of an

increasing sequence of finite sets Xi. For every ε > 0, there exists ` ∈ N and a 0-equitable

kmax-level `-hyperpartition HHH such that

1. Each Pr
j ∈ σ[r] and it is independent of σ∗[r].

2. For all R ∈ τ , µ[‖p‖](Hp(R
R)∆Tp(R)) < ε, where Tp(R) is a union of some HHH -‖p‖-

cells.

Proof. Let φ be a separable realization and let W be the corresponding Euclidean struc-

ture such that R and φ−1(W ) are 0-close. Then there exist measurable Wp(R
R) ⊆

[0, 1]r([‖p‖]) such that µ[‖p‖](Hp(R
R)∆φ−1‖p‖(Wp(R

R))) = 0. An `-box in [0, 1]r([‖p‖]) is∏
A∈r([‖p‖])[

jA−1
` , jA` ) where each jA ∈ [`]. There exists ` ∈ N such that for each R ∈ τ

and each p ∈ Pk where k = ar(R), there exists W ′p(R), a union of `-boxes in [0, 1]r([‖p‖]),

and Vol(Wp(R
R)∆W ′p(R)) < ε. So µ[‖p‖](Hp(R

R)∆φ−1‖p‖(W
′
p(R))) < ε. Now consider the

hyperpartition HHH formed by Pr
j = φ−1r ([ j−1` , j` )), for each r ∈ [kmax] and j ∈ [`]. Clearly

each Pr
j is in the separable algebra l[r] ≤ σ[r] and thus it is independent of σ∗[r]. We may

assume Pr
j ⊆ Er(X). So Pr

j is an r-uniform hypergraph on X. Also µ[r](P
r
j ) = 1

` , so the

partition is 0-equitable.

Since W ′p(R) is a union of `-boxes, Tp(R) = φ−1‖p‖(W
′
p(R)) is a union of HHH -‖p‖-cells.
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Note that if E ∈ σ[r] is independent of σ∗[r], then E is, in fact, δ-regular for all δ > 0.

Theorem 3.3.2. Given ε > 0 and m ∈ N, there exist M,N ∈ N such that given any

relational structure R on a finite set X with |X| ≥ N , there exists an ε-equitable kmax-level

`-hyperpartition H on X for some ` such that m ≤ ` ≤M and

1. Each P rj is ε-regular.

2. For each Hp(R
R), there exists Tp(R), a union of some H -‖p‖-cells, such that

µ[‖p‖](Hp(R
R)∆Tp(R)) < ε

Proof. Suppose, for contradiction, there exist ε > 0, m ∈ N and relational structures Ri

on Xi such that |Xi| → ∞ and there is no ε-equitable `-hyperpartition, for m ≤ ` ≤ i

satisfying above conditions for any Ri.

Now take ultraproducts to obtain the relational structure R on X. There exists a

0-equitable `-hyperpartition HHH on X satisfying the conditions in Theorem 3.3.1 for ε
2 . Let

` ≥ m. Let P̃r
j = [P rj,i] be an internal set that differs from Pr

j by a null set. We may as-

sume each P rj,i is an r-uniform hypergraph on Xi. The hypergraphs P̃r
j form a 0-equitable

`-hyperpartition H̃̃H̃H .

For U-almost every i, the hypergraphs P rj,i form an `-hyperpartition Hi on Xi. Since

H̃̃H̃H is a 0-equitable hyperpartition, µ[r](P
r
j ) = µ[r](P

r
j′) for every j, j′ ∈ [`] and r ∈ [kmax].

Then limU |µi,[r](P rj,i)− µi,[r](P rj′,i)| = 0.

For each R ∈ τ , there must exist internal sets T ′p(R) = [Tp,i(R)], such that each Tp,i(R)

is a union of Hi-‖p‖-cells and µ[‖p‖](Hp(R
R)∆T ′p(R)) < ε

2 .
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Then limU µi,[‖p‖](Hp(R
Ri))∆Tp,i(R)) < ε

2 and µi,[‖p‖](Hp(R
Ri))∆Tp,i(R)) < ε for U-

almost every i.

For U-almost every i, for each r ∈ [kmax] and j, j′ ∈ [`], limU |µi,[r](P rj,i)−µi,[r](P rj′,i)| < ε,

that is, Hi is an ε-equitable `-hyperpartition, and for each R ∈ τ and p ∈ Pk where

k = ar(R), µi,[‖p‖](Hp(R
Ri))∆Tp,i(R)) < ε.

Now we show that for U-almost every i, P jr,i is ε-regular. Suppose there is r ∈ [kmax] and

j ∈ [`] such that for U-almost every i, there exists a cylindric intersection set Li ⊆ Er(Xi)

with µi,[r](Li) ≥ ε and |µi,[r](P rj,i ∩ Li)− µi,[r](P rj,i)µi,[r](Li)| ≥ ε µi,[r](Li).

Consider the cylindric intersection set L = [Li]. So L ∈ σ∗[r] and it is independent of

Pr
j . Therefore, P̃r

j and L are also independent. However µ[r](L) ≥ ε and |µ[r](P̃r
j ∩ L) −

µ[r](P̃
r
j )µ[r](L)| = limU |µi,[r](P rj,i ∩ Li) − µi,[r](P rj,i)µi,[r](Li)| ≥ ε µ[r](L). This implies P̃r

j

and L cannot be independent, leading to a contradiction. Thus, P rj,i is ε-regular, for each

r ∈ [kmax], j ∈ [`] and U-almost every i.

Let R′i be a new relational structure of type τ on Xi, where each RR
′
i is represented

by the system {Tp,i(R) : p ∈ Pk, k = ar(R)}. Since there are only finitely many pairs (r, j)

with r ∈ [kmax], j ∈ [`] and finitely many relations in the type τ , we have proved, for

U-almost every i :

1. for each r ∈ [kmax] and j ∈ [`], P rj,i is ε-regular,

2. Hi is an ε-equitable `-hyperpartition, and

3. for each R ∈ τ with k = ar(R) and each p ∈ Pk,

µi,[‖p‖](Hp(R
Ri))∆Tp,i(R)) < ε.
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Since |Xi| → ∞, there exists i such that |Xi| > ` and then R′i contradicts our initial

assumption.

Let us consider the type τ = {E} with ar(E) = 2 that we use for graphs and digraphs

to see how our results extend the familiar notions of regularity for graphs and digraphs. In

particular, let us examine how our regular edge cells imply the regularity conditions involv-

ing edge densities of pairs of sets. Theorem 3.3.2 transfers regularity from the ultraproduct

to the sequence, so let us consider G on the ultraproduct X. We know H(1,2)(E
G) = ∅.

By Theorem 3.3.1, there exists a partition {V1, . . . ,V`} of X and a partition {E1, . . . ,E`}

of X[2] such that

1. For each i ∈ [`], µ[1](Vi) = 1
` and µ[2](Ei) = 1

` .

2. Each Ek is independent of measurable rectangles, that is, for all measurable A,B ⊆

X,

µ[2](Ek ∩A×B) = µ[2](Ek)µ[2](A×B) =
1

`
µ[1](A)µ[1](B).

3. There exists C ⊆ [`]3 such that µ[2](E
G∆

⋃
(i,j,k)∈C(Vi ×Vj) ∩Ek) < ε.

Given A ⊆ Vi and B ⊆ Vj , let EG(A,B) = EG ∩ (A×B).

µ[2](E
G(A,B)∆

⋃
{k:(i,j,k)∈C}(A ×B) ∩ Ek) < ε, since all 2-cells also form a partition

of X[2]. If µ[2](A×B) > 0 and dG(A,B) =
µ[2](E

G(A,B))

µ[1](A)µ[1](B) , then

∣∣∣∣∣∣dG(A,B)−
∑

{k:(i,j,k)∈C}

1

`

∣∣∣∣∣∣ < ε.

This is true for all A ⊆ Vi and B ⊆ Vj , and in particular for Vi and Vj . So
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|dG(A,B)− dG(Vi,Vj)| < 2ε.

In particular for graphs, EG is symmetric, so we can assume C has S[2]-symmetry, that

is, in the approximation for EG using 2-cells of the partition, we include (Vi ×Vj) ∩ Ek

if and only if we include (Vj × Vi) ∩ Ek. This is similar to the usual graph regularity

condition involving edge densities.

In the case of digraphs, typically four edge densities are used. In general, EG need

not be symmetric. Let (EG)c denote the edge set that is the complement of EG. Let

π = (1 2) ∈ S[2].

←→
d G(A,B) =

µ[2](E
G(A,B) ∩ EG(B,A))

µ[1](A)µ[1](B)

=
µ[2]((E

G ∩ (EG)π)(A,B))

µ[1](A)µ[1](B)

−→
d G(A,B) =

µ[2](E
G(A,B) ∩ ((EG)c(B,A))π)

µ[1](A)µ[1](B)

=
µ[2]((E

G ∩ ((EG)c)π)(A,B))

µ[1](A)µ[1](B)

Similarly,

←−
d G(A,B) =

µ[2]((E
G)π ∩ (EG)c)(A,B))

µ[1](A)µ[1](B)

dG(A,B) =
µ[2](((E

G)c ∩ ((EG)c)π)(A,B))

µ[1](A)µ[1](B)
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Also

µ[2]((E
G)c ∆

⋃
(i,j,k)/∈C

(Vi ×Vj) ∩Ek) < ε

µ[2]((E
G)π ∆

⋃
(i,j,k)∈C

(Vj ×Vi) ∩Ek) < ε

Thus, all four edge sets (EG∩ (EG)π), (EG∩ ((EG)c)π), (EG)π ∩ (EG)c) and ((EG)c∩

((EG)c)π) can be approximated by unions of 2-cells. Once again using the fact that edge

cells are independent of measurable rectangles, we can show that given A ⊆ Vi, B ⊆ Vj

such that µ[2](A×B) > 0, |
←→
d G(A,B)−

←→
d G(Vi,Vj)| < 2ε, |

−→
d G(A,B)−

−→
d G(Vi,Vj)| <

2ε, |
←−
d G(A,B)−

←−
d G(Vi,Vj)| < 2ε and |dG(A,B)− dG(Vi,Vj)| < 2ε.

This yields a regularity condition for digraphs using four edge densities, similar to the

one commonly used for the Digraph Regularity lemma.

Of course if we are dealing with graphs, then EG are (EG)c are symmetric and

←→
d G(A,B) = dG(A,B) and

−→
d G(A,B) =

←−
d G(A,B) = 0 and dG(A,B) = 1− dG(A,B).

Thus we retrieve the regularity condition we examined above in the special case of graphs.

3.4 Removal Lemmas for Relational Structures

Let R and S be relational structures of type τ on a set X. R and S are ε-close if for

each R ∈ τ with k = ar(R), µ[‖p‖](Hp(R
R)∆Hp(R

S)) < ε for each p ∈ Pk.

S is a substructure of R if for each R ∈ τ , RS ⊆ RR. Equivalently, Hp(R
S) ⊆ Hp(R

R)

for each p ∈ Pk, where k = ar(R).

LetR\S denote the relational structure represented by {Hp(R
R)\Hp(R

S) : p ∈ Pk, k =

ar(R), R ∈ τ}.
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First we prove an infinite version of Removal for relational structures on an ultraproduct

space.

Theorem 3.4.1. Let R be a relational structure on X such that for each R ∈ τ , each

p ∈ Pk where k = ar(R), Hp(R
R) is a measurable subset of X‖p‖. Then there exists

a relational structure N on X such that for each R and each p ∈ Pk where k = ar(R),

µ[‖p‖](Hp(R
N )) = 0 and for every n and every relational structure S on [n], To(S,R\N ) =

∅ or µ[n](To(S,R \N )) > 0.

Proof. We know there exists a separable realization φ on X[kmax] and a corresponding Eu-

clidean structure W (R) such that µ[‖p‖](Hp(R
R)∆φ−1‖p‖(Wp(R

R))) = 0 for each R ∈ τ

and p ∈ Pk where k = ar(R). Let Dp(R) ⊆ [0, 1]r([‖p‖]) be the set of density points

of Wp(R
R). By Lebesgue’s density theorem, Vol(Wp(R

R)∆Dp(R)) = 0. There exists

a system of directed hypergraphs {H ′p(R) : p ∈ Pk, k = ar(R), R ∈ τ} such that each

H ′p(R) ⊆ φ−1‖p‖(Dp(R)) and µ[‖p‖](φ
−1
‖p‖(Dp(R)) \ H ′p(R)) = 0. Let R′ be the relational

structure on X represented by this system.

For any n, there exists a lifting ψ of φ to X[n], by Theorem 2.4.5. Let S be a relational

structure on [n]. Since every point ofDp(R) is a density point of the set, eitherDp(R) = ∅ or

Vol(Dp(R)) > 0. Then for each R, every p ∈ Pk and every e ∈ Hp(R
S), L−1e (Fe(Dp(R))) is

empty or has positive measure. As a result,
⋂
R∈τ

⋂
p∈Pk ψ

−1
‖p‖(

⋂
e∈Hp(RS) L

−1
e (Fe(Dp(R))))

is empty or has positive measure.

To(S,R′) ⊆
⋂
R∈τ

⋂
p∈Pk

ψ−1‖p‖

 ⋂
e∈Hp(RS)

L−1e (Fe(Dp(R)))


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and

µ[n](To(S,R′)) = µ[n]

⋂
R∈τ

⋂
p∈Pk

ψ−1‖p‖

 ⋂
e∈Hp(RS)

L−1e (Fe(Dp(R)))



Thus, To(S,R′) is either empty or has positive measure. Let N = R \ R′, so

RN = RR \ RR′ . Then Hp(R
N ) = Hp(R

R) \ Hp(R
R′) for each R ∈ τ and p ∈ Pk

and µ[‖p‖](Hp(R
N )) = 0.

Now To(S,R \ N ) = To(S,R ∩ R′). Note that To(S,R ∩ R′) ⊆ To(S,R′) and

µ[n](To(S,R ∩R′)) = µ[n](To(S,R′)).

Therefore, To(S,R \N ) = ∅ or µ[n](To(S,R \N )) > 0.

Theorem 3.4.2. Given n ∈ N, a relational structure S of type τ on [n] and given ε > 0,

there exists δ > 0, such that for any relational structure R of type τ on a finite set X with

t(S,R) < δ, there exists a substructure R′ of R such that to(S,R′) = 0 and R′ is ε-close

to R.

Proof. Suppose, for contradiction, there exists n ∈ N, a relational structure S on [n] and

ε > 0 such that for all i, there is a relational structureRi on a finite set Xi with t(S,Ri) < 1
i

but no such R′i exists. So limi→∞ t(S,Ri) = 0.

We may assume |Xi| → ∞. Then we can take the ultraproduct X and obtain the re-

lational structure R on X, represented by the system of directed hypergraphs {Hp(R
R) :

p ∈ Pk, k = ar(R), R ∈ τ}. There exists a relational structure N on X as described in

Theorem 3.4.1 .
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Now t(S,R) = limi→∞ to(S,Ri) = 0. This implies to(S,R \N ) = 0. By Theorem

3.4.1 , To(S,R \N ) = ∅ and each Hp(R
N ) is a null set in X[‖p‖]. By the definition of a

null set, for each δ > 0 there is an internal set Ip(R) = [Ip,i(R)] such that Hp(R
N ) ⊆ Ip(R)

and µ[‖p‖](Ip(R)) < δ. Let δ = ε
2 .

Now consider the structure R′i on Xi represented by {Hp(R
Ri) \ Ip,i(R) : p ∈ Pk, k =

ar(R), R ∈ τ}. Let R′ be the ultraproduct of the sequence {R′i}. Since Hp(R
R′) ⊆

(Hp(R
R)\Ip(R)) ⊆ (Hp(R

R)\Hp(R
N )), we have To(S,R′) ⊆ To(S,R\N ). This implies

To(S,R′) = [To(S,R′i)] = ∅. Thus, for U-almost every i, to(S,R′i) = 0.

Now for eachR ∈ τ with k = ar(R) and each p ∈ Pk, µ[‖p‖](Ip(R)) = std(ν[‖p‖](Ip(R))) <

δ. So for each m ∈ N, ν[‖p‖](Ip(R)) < (δ+ 1
m)∗. Choose m such that 1

m < ε
2 , then δ+ 1

m < ε.

For U-almost every i, µi,[‖p‖](Ip,i) ≤ ε. We know that Hp(R
Ri) \Hp(R

R′i) ⊆ Ip,i(R). Since

the type τ is finite and each Pk is finite, we can now prove for U-almost every i, for each

R ∈ τ and p ∈ Pk, µi,[‖p‖](Hp(R
Ri) \Hp(R

R′i)) ≤ µi,[‖p‖](Ip,i(R)) ≤ ε.

This contradicts our supposition, thus proving our result.

Let us apply Theorem 3.4.2 to the case of graphs using type τ = {E}. Recall that

H(1,2)(E
G) = ∅ for all graphs G. Given a graph F on [n] and a large finite graph G on

X, the condition t(F,G) < δ implies that there are fewer than δ|X|n copies of F in G.

Theorem 3.4.2 tells us there exists an F -free subgraph G′ of G that is ε-close to G. This

simply means G′ was obtained by deleting less than ε|X|2 edges from G. This is the famil-

iar Graph Removal Lemma.

Now we prove a Strong Removal Lemma for relational structures that allows us to
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simultaneously remove copies of a family of relational structures. This result also im-

plies the testability of hereditary properties of relational structures. We shall give a brief

introduction to these ideas from the area of property testing following the proof of the

theorem.

Theorem 3.4.3. Let F be a family of relational structures of type τ on finite sets. For

every ε > 0, there exists δ > 0 and n ∈ N such that for every relational structure R on

some finite set X satisfying tind(S,R) ≤ δ for each S ∈ F on some set Y with |Y | ≤ n,

there exists R′ on X such that to,ind(S,R′) = 0 for each S ∈ F and R′ is ε-close to R.

Proof. Suppose, for contradiction, there exists ε > 0 and a sequence {Ri} such that Ri is

a relational structure on Xi, |Xi| → ∞ and tind(S,Ri) → 0 for all S ∈ F , but no R′i as

described above exists. Then we can take the ultraproduct X and obtain the relational

structure R on X, represented by the system of directed hypergraphs {Hp(R
R) : p ∈

Pk, k = ar(R), R ∈ τ}. We know there exists a separable realization φ on X[kmax] and a

Euclidean structure W (R) such that

µ[‖p‖](φ
−1
‖p‖(Wp(R

R))∆Hp(R
R)) = 0.

Then tind(S,W ) = tind(S,R) = limU tind(S,Ri) = 0 for each S ∈ F .

For every R ∈ τ and p ∈ Pk where k = ar(R), Wp(R
R) ⊆ [0, 1]r[‖p‖] is measurable.

Given ε > 0, there exists ` ∈ N such that for each R ∈ τ and p ∈ Pk, there is W ′p(R), a

union of `-boxes in [0, 1]r([‖p‖]) such that Vol(Wp(R
R)∆W ′p(R)) < ε

4 . Let W ′ be the Eu-

clidean structure represented by {W ′p(R) : p ∈ Pk, k = ar(R), R ∈ τ}. Recall that an `-box

in [0, 1]r[‖p‖] is of the form
∏
A∈r([‖p‖])[

jA−1
` , jA` ) where each jA ∈ [`]. We can represent this

`-box by a function f : r([‖p‖]) → [`] where f(A) = jA. Let Cp(R) be the set containing
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functions that represent the `-boxes in W ′p(R).

Let Pr
j = φ−1[r] ([ j−1` , j` )). We may assume that every tuple in this set has distinct coor-

dinates. Then Pr
j is an r-uniform hypergraph on X. Pr

1, . . . ,P
r
`̀̀ form a partition of X[r],

within measure 0, for each r ∈ [kmax]. We call the resulting `-hyperpartition HHH .

Since each Pr
j is measurable, there is an internal set P̃r

j = [P rj,i] that differs from Pr
j by a

null set. These internal sets form an `-hyperpartition H̃̃H̃H . We may assume each P rj,i is an r-

uniform hypergraph on X
[r]
i . Let us call the resulting `-hyperpartition Hi. For convenience,

let us assume Xi = [ni]. Let Qi,p(R) be the union of Hi-r-cells indexed by Cp(R) and let

R̃i be the relational structure on [ni] represented by {Qi,p(R) : p ∈ Pk, k = ar(R), R ∈ τ}.

Consider a random relational structure R(W ′,Hi, ni) of type τ on Xi = [ni] gener-

ated using a hyperpartition sampling. It differs from R(W ′, ni) in that every xA, A ∈

r([ni], kmax), is chosen uniformly at random in [g(A)−1` , g(A)` ), where g(A) = j if A is in

P
|A|
j,i . Recall that each P rj,i is an r-uniform hypergraph. AlthoughR(W ′,Hi, ni) is a random

structure, it always takes the same value : R(W ′,Hi, ni) = R̃i. Let R̃ be the ultraproduct

of the sequence R̃i.

Let Qp(R) = φ−1‖p‖(W
′
p(R)) and let Q be the relational structure on X represented

by {Qp(R) : p ∈ Pk, k = ar(R), R ∈ τ}. Qp(R) is a union of H̃̃H̃H -‖p‖-cells indexed by

Cp(R). Then µ[‖p‖](Qp(R)∆Hp(R
R̃)) = 0. Since V ol(Wp(R

R)∆W ′p(R)) < ε
4 , we have

µ[‖p‖](Hp(R
R)∆Hp(R

R̃)) < ε
4 .

Finally, let us consider the random relation R′i = R(W,Hi, ni).
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We know E(to,ind(S,R(W,ni))) = tind(S,W ) = 0 for each S ∈ F , and this implies

to,ind(S,R(W,ni)) = 0 and To,ind(S,R(W,ni)) = ∅ with probability 1.

Since To,ind(S,R(W,Hi, ni)) ⊆ To,ind(S,R(W,ni)), we infer that to,ind(S,R′i) = 0 for

each S ∈ F with probability 1.

Now limU E(µi,[‖p‖](Qi,p(R)∆Hp(R
R′i))) = Vol(W ′p(R)∆Wp(R

R)) < ε
4 .

Also limU µi,[‖p‖](Hp(R
Ri)∆Qi,p(R)) = µ[‖p‖](Hp(R

R)∆Hp(R
R̃)) < ε

4 .

So limU µi,[‖p‖](Hp(R
Ri)∆Hp(R

R′i)) < ε
2 . Then for U-almost every i, for each R ∈ τ

and p ∈ Pk where k = ar(R), µi,[‖p‖](Hp(R
Ri)∆Hp(R

R′i)) < ε and to,ind(S,R′i) = 0 for

each S ∈ F with probability 1, which contradicts our initial assumption.

Fix a relational type τ . Let P be a property of relational structures of type τ on finite

sets. The property P is often identified with the family of relational structures on finite

sets, up to isomorphism, that satisfy P. A relational structure R of type τ is said to be

ε-far from satisfying P if there is no relational structure R̃ of type τ that satisfies P and

is ε-close to R.

We assume there exists an oracle that given n and a relational structure R on an un-

derlying set X such that |X| = n, tells us for every R ∈ τ with k = ar(R), whether any

k-tuple of vertices is in RR or not. An ε-test for P is a (randomized) algorithm which,

given the ability to query the oracle, distinguishes with high probability between the case

of R satisfying P and the case of R being ε-far from satisfying P.

A property P is said to be testable if for every ε > 0 there exists an ε-test for P whose
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total number of queries is bounded only by a function of ε and is independent of the size

of the input relational structure.

A property P of relational structures of type τ is said to be hereditary if it is closed

under the removal of vertices, that is, it is closed under taking induced substructures. If

a relational structure R does not satisfy some hereditary property P, then any super-

structure of R also fails to satisfy the property P. We say R is a forbidden induced

substructure for the property P. Any hereditary property is definable by its family of

forbidden induced substructures. Conversely, given any family of structures F , the prop-

erty of not containing any structure from F as an induced substructure is a hereditary

property. Thus, a hereditary property P can be characterized by its family of forbidden

induced substructures.

Given a hereditary property P, let F be the family of forbidden substructures for P.

If a relational structureR, on a large set X, is ε-far from satisfying P, thenR cannot satisfy

the conditions of Theorem 3.4.3 for the given ε. Otherwise, the conclusion of Theorem 3.4.3

would imply R is ε-close to satisfying P. So there exist δ > 0, n ∈ N and S ∈ F on an

underlying set Y such that |Y | ≤ n and tind(S,R) > δ. Then we can randomly sample N

vertices, for a large enough N, independent of |X|, and we expect to find an induced copy

of S with a high probability. This yields an ε-test for P. Thus, using the Strong Removal

Lemma we can easily show that hereditary properties are testable.
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Chapter 4

Weighted Structures

4.1 Weighted Structures and the Correspondence Principle

A weighted signature τ is a first-order signature with finitely many function symbols

and a function ar that assigns an arity to each function symbol.

R is a weighted structure of type τ on an underlying set X if each ρ ∈ τ is interpreted

in R as a bounded weight function as follows :

Let k = ar(ρ). Then ρR : Ek(X) → [0, 1] is a weight function. We may view ρR as a

weight function on X [k] by assuming it takes the value 0 outside Ek(X).

Recall that in the case of finite sets X, µ[k] is the counting measure on X [k]. In case X

is the ultraproduct X, µ[k] is the Loeb measure on the ultraproduct space X[k] defined in

Chapter 2.

Let ρR(A) =
∫
A

ρR(x) dµ[k](x), for any measurable A ⊆ X [k].
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Example : A digraph G = (V,E) can be viewed as a weighted structure of type {ρe, ρv},

where ar(ρe) = 2 and ar(ρv) = 1, if we interpret the function symbols as ρGe = χE and

ρGv = 1 on V.

If G is a graph, then E is a symmetric set of ordered tuples.

Example : Let G = (V, fe, fv) be a weighted graph with edge-weights and vertex-weights

given by weight functions fe, fv respectively. It is a weighted structure of type {ρe, ρv},

where ρGe = fe and ρGv = fv.

Consider a sequence of weighted structures Ri of type τ on finite sets Xi and let

|Xi| → ∞. For each ρ ∈ τ with k = ar(ρ), the functions ρRi are uniformly bounded

in [0, 1], so [ρRi ] is a bounded internal function on X[k] while std ◦ [ρRi ] is a real-valued

function that takes values in [0, 1]. Let R be the weighted structure of type τ on X that

interprets each ρ ∈ τ as ρR = std ◦ [ρRi ].

Given any measurable A ⊆ X[k] and Ai ⊆ X [k]
i for each i, such that, µ[k](A∆[Ai]) = 0,

Lemma 2.1.3 tells us

ρR(A) =

∫
A
ρR(x) dµ[k](x) =

∫
A
std([ρRi(x)]) dµ[k](x)

= std

([∫
Ai

ρRi(x) dµi,[k](x)

])
= std([ρRi(Ai)]).

Fix a weighted type τ and let kmax = max{ar(ρ) : ρ ∈ τ}.

Theorem 4.1.1. Let R be a weighted structure of type τ on the ultraproduct X. There

exists a separable realization φ on X[kmax] such that for each ρ ∈ τ with k = ar(ρ),
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4.1. Weighted Structures and the Correspondence Principle

1. ρR is 〈`A : A ∈ r([k])〉-measurable, and

2. there exists a Lebesgue-measurable function wρ : [0, 1]r([k]) → [0, 1] such that ρR =

wρ ◦ φk a.e. and

3.
∫
φ−1
k (B) ρ

R dµ[k] =
∫
B wρ dλ, that is, ρR(φ−1k (B)) = wρ(B) for all Lebesgue-measurable

subsets B of [0, 1]r([k]).

We say W (R) = {wρ : ρ ∈ τ}, is the corresponding weighted Euclidean structure of

type τ .

Proof. Given a binary sequence s ∈ 2n, let ms =
∑n−1

i=0 s(i)2
i and let Is = [ms2n ,

ms+1
2n ) ⊆

[0, 1]. For each k ∈ [kmax], let Ak be the σ-algebra on X[k] generated by {(ρR)−1(Is) : s ∈

2<ω, ρ ∈ τ, ar(ρ) = k}. Using Theorem 2.4.3 for these σ-algebras Ak, we know that there

exists a separable realization φ on X[kmax]. So each (ρR)−1(Is) ∈ 〈`A : A ∈ r([k])〉 where

k = ar(ρ). Therefore each ρR is measurable with respect to 〈`A : A ∈ r([k])〉.

Fix ρ ∈ τ and let k = ar(R). For each s ∈ 2<ω, there exists Lebesgue-measurable

Uρ,s ⊆ [0, 1]r([k]) such that µ[k](φ
−1
k (Uρ,s)∆(ρR)−1(Is)) = 0. We know that {Is : s ∈ 2n}

form a family of nested partitions of [0, 1]. Since φk is a measurable isomorphism, we may

assume {Uρ,s : s ∈ 2n} form a family of nested partitions of [0, 1]r([k]) modulo a null set N.

Given y ∈ [0, 1]r([k]), let wρ(y) = 0 if y ∈ N , otherwise let wρ(y) = z where {z} =⋂
{s:y∈Uρ,s} Is. Then wρ : [0, 1]r([k]) → [0, 1] is a Lebesgue-measurable function.
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4.2. Limits for Weighted Structures

N ′ =
⋃
s∈2<ω(φ−1k (Uρ,s)∆(ρR)−1(Is)) is a null set. For all x /∈ N ′,

{wρ ◦ φk(x)} = {wρ(φk(x))} =
⋂

{s:φk(x)∈Uρ,s}

Is =
⋂

{s:x∈φ−1
k (Uρ,s)}

Is

=
⋂

{s:x∈(ρR)−1(Is)}

=
⋂

{s:ρR(x)∈Is}

Is

= {ρR(x)}

So wρ ◦ φk = ρR a.e. on X[k]. W (R) = {wρ : ρ ∈ τ} is the corresponding Euclidean

structure.

Let A, B be any Lebesgue-measurable subsets of [0, 1]r([k]) and let w = χA . Then

w ◦ φk = χφ−1
k (A). Since φk is a measure-preserving measurable isomorphism, φ−1k (A) is

measurable in σ[k] and µ[k](φ
−1
k (A ∩B)) = λ(A ∩B).

So
∫
φ−1
k (B)w◦φk dµ[k] =

∫
B w dλ for all Lebesgue-measurable subsets A of [0, 1]r([k]). We

can now inductively prove the same for any Lebesgue-measurable function w : [0, 1]r([k]) →

[0, 1], in particular, for each wρ.

Since wρ ◦φk = ρR a.e., we have now proved
∫
φ−1
k (B) ρ

R dµ[k] =
∫
B wρ dλ for any B.

4.2 Limits for Weighted Structures

We now define homomorphisms between weighted structures that will help us define a

notion of limits for weighted structures.

Let R,S be weighted structures of type τ on sets X,Y respectively and let ε ≥ 0. A

map f : Y → X is an ε-homomorphism from S to R if for each ρ ∈ τ with k = ar(ρ) and
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4.2. Limits for Weighted Structures

for all y1, . . . , yk ∈ Y ,

ρS(y1, . . . , yk)− ε ≤ ρR(f(y1), . . . , f(yk)).

A homomorphism is a 0-homomorphism. We are mainly interested in 0-homomorphisms,

but we need ε-homomorphisms for technical reasons in the course of finding limit objects.

If we view a graph G as a weighted digraph with ρe = χ
E(G)

and ρv = 1, as described

in the previous section, then a weighted homomorphism is the same as a standard graph

homomorphism. Similarly, we can view a relational structure as a 0 -1 weighted structure

and the notion of weighted homomorphisms once again coincides with the notion of stan-

dard homomorphisms.

Let Tε(S,R) denote the set of ε-homomorphisms from S to R. Let tε(S,R) = |Tε(S,R)|
|X||Y |

denote the ε-homomorphism density of S in R. Then T (S,R) = T0(S,R) denotes the

set of homomorphisms from S to R and t(S,R) = t0(S,R) denotes the homomorphism

density of S in R.

Let us assume Y = [n]. Then for any ε ≥ 0, Tε(S,R) ⊆ X [n] for any weighted structure

R on a set X and tε(S,R) = µ[n](Tε(S,R)).

Recall that for every e ∈ Ek([n]), πe : X [n] → Xe is the natural projection defined

by πe(x) = (xe(1), . . . , xe(k)). Also θe : X [k] → Xe is the natural bijection induced by the

ordered tuple e. Given x = (x1, . . . , xk) ∈ X [k] where each xi ∈ X{i}, θe maps x to a copy

of itself in Xe by sending each xi to a copy of itself in X{e(i)}.

Also recall that given a tuple x ∈ X [n] and e ∈ Ek(X), θ−1e (πe(x)) = (xe(1), . . . , xe(k)) ∈
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4.2. Limits for Weighted Structures

X [k]. Given ε > 0, x represents an ε-homomorphism from S to R, that is, x ∈ T (S,R) if

for all ρ ∈ τ with k = ar(ρ), for all e ∈ Ek([n]), ρR(xe(1), . . . , xe(k)) = ρR(θ−1e (πe(x))) ≥

ρS(e)− ε, that is, ρR(θ−1e (πe(x))) ∈ [ρS(e)− ε, 1]. Therefore,

Tε(S,R) =
⋂
ρ∈τ

⋂
e∈Ek([n])

π−1e (θe((ρ
R)−1([ρS(e)− ε, 1])))

Remark 4.2.1. If 0 ≤ ε1 ≤ ε2, then Tε1(S,R) ⊆ Tε2(S,R) and tε1(S,R) ≤ tε2(S,R). In

fact for all ε ≥ 0, Tε(S,R) =
⋂

δ→0+
Tε+δ(S,R) and tε(S,R) = inf

δ→0+
tε+δ(S,R).

Consider the type τ = {ρ} such that ar(ρ) = 1. Let Ri be the weighted structure of

type τ on Xi = [i] such that ρRi = 1− 1
i . Since ρRi is constant, for any ε ≥ 0 and any S,

tε(S,Ri) = 1 or 0.

Take ultraproducts to obtain R on X. Since the weight functions in the sequence are

constant, so is the weight function on the ultraproduct. In this case, ρR = 1. Similarly,

for all ε ≥ 0, tε(S,R) = 1 or 0.

Let S be the weighted structure of type τ on [1] such that ρS(1) = 1. Then tε(S,Ri) = 1

if and only if i ≥ 1
ε for ε > 0 while t(S,Ri) = 0 for all i.

However, tε(S,R) = 1 for all ε ≥ 0. In this example we see that limi→∞ tε(S,Ri) exists

for all ε ≥ 0, but T (S,R) does not differ from [T (S,Ri)] on a null set and t(S,R) 6=

limi→∞ t(S,Ri). So we don’t always have the kind of correspondence between homomor-

phism sets and densities in the sequence and in the ultraproduct that we had obtained for

relational structures in Section 3.1.
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4.2. Limits for Weighted Structures

Pointwise convergence of the homomorphism densities in a finite sequence of weighted

structures does not appear to be a sufficient condition to help us find an analytic object

as a limit. If we hope to find a limit object for all convergent sequences, we must define a

stronger notion of convergence. We use a very natural strengthening that asks for uniform

convergence of the homomorphism densities.

A sequence of weighted structures Ri of type τ on finite sets Xi is said to be convergent

if for any weighted structure S of type τ on any finite set, for any δ > 0, there exists

N = N(δ) ∈ N, such that for all ε ≥ 0,

i, j ≥ N ⇒ |tε(S,Ri)− tε(S,Rj)| < δ.

For any S, define fSi : [0,∞) → [0, 1] as fSi (ε) = tε(S,Ri). Then we can restate the

above definition as follows :

A sequence of weighted structures Ri of type τ on finite sets Xi is said to be convergent

if for any weighted structure S of type τ on any finite set, the sequence of functions fSi is

uniformly Cauchy in ε, that is, for any δ > 0, there exists N = N(δ) ∈ N, such that for all

ε ≥ 0,

i, j ≥ N ⇒ |fSi (ε)− fSj (ε)| < δ.

Then the functions fSi form a uniformly convergent sequence. Furthermore, fSi is point-

wise convergent for all ε ≥ 0, that is, for any ε ≥ 0 and any relational structure S on any

finite set, limi→∞ tε(S,Ri) exists. Equivalently, for any relational structure S on any finite

set, limi→∞ t(S,Ri) exists.

The sequence Ri is said to be increasingly convergent if it is convergent and |Xi| → ∞.
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One of the key technical difficulties in proving the existence of limits in the case of

weighted structures is that the homomorphism set in the ultraproduct T (S,R) is not nec-

essarily an internal set. Unlike the case of relational structures, T (S,R) need not equal

[T (S,Ri)] and these sets may not differ by a null set, in general. However, given an

increasingly convergent sequence Ri , these two sets only differ by a null set . We use

ε-homomorphisms to prove this by showing t(S,R) = limi→∞ t(S,Ri) for any S on a finite

set.

Theorem 4.2.2. Let Ri be weighted structures of type τ on finite sets Xi of increasing size

and take ultraproducts to obtain the weighted structure R of type τ on X. Let n ∈ N and let

S be a weighted structure of type τ on [n]. Then for all ε ≥ 0 and δ > 0, Tε(S,R) ⊆ X[n]

is a σ[n]-measurable set and [Tε(S,Ri)] ⊆ Tε(S,R) ⊆ [Tε+δ(S,Ri)].

If the sequence Ri is also convergent, that is, the given sequence is increasingly conver-

gent, then tε(S,R) = limi→∞ tε(S,Ri).

Proof. Given a sequence of weighted structures Ri on finite sets Xi of increasing size, we

can take ultraproducts and obtain the relational structure R on X. Given ε ≥ 0, we know

that

Tε(S,R) =
⋂
ρ∈τ

⋂
e∈Ek([n])

π−1e (θe((ρ
R)−1([ρS(e)− ε, 1]))).

Since each ρR is a measurable function, each θe is a measurable bijection and each πe

is a measurable projection, Tε(S,R) is a σ[n]-measurable set.

Let x̄ = [x̄i] ∈ [Tε(S,Ri)]. Then for U-almost all i, for all ρ ∈ τ with k = ar(ρ), for

all e ∈ Ek([n]), ρS(e) − ε ≤ ρRi(θ−1e (πe(x̄i))). Therefore, for all ρ ∈ τ with k = ar(ρ), for
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all e ∈ Ek([n]), (ρS(e) − ε)∗ ≤ [ρRi ](θ−1e (πe(x̄))) and taking standard parts, ρS(e) − ε ≤

ρR(θ−1e (πe(x̄))).

Thus, we have proved [Tε(S,Ri)] ⊆ Tε(S,R) for all ε ≥ 0.

Given ε ≥ 0, let f = [fi] ∈ Tε(S,R). Then for all ρ ∈ τ with k = ar(ρ) and for all

e ∈ Ek([n]),

ρS(e)− ε ≤ ρR(θ−1e (πe(x̄)))

Recall that

ρR(θ−1e (πe(x̄))) = std([ρRi ]([θ−1e (πe(x̄i))]))

= std([ρRi(θ−1e (πe(x̄i)))])

Then for each δ > 0, each ρ ∈ τ , each e ∈ Ek([n]), {i : ρS(e)−ε−δ ≤ ρRi(θ−1e (πe(x̄i)))} ∈

U . There are only finitely many function symbols ρ in the type τ and Ek([n]) is finite for

all k ∈ [kmax]. Therefore, for all δ > 0, for U-almost every i, fi ∈ T(ε+δ)(S,Ri) and

f ∈ [T(ε+δ)(S,Ri)].

So [Tε(S,Ri)] ⊆ Tε(S,R) ⊆ [T(ε+δ)(S,Ri)], for all ε ≥ 0 and δ > 0.

Taking measures of these subsets of X[n], for all ε ≥ 0 and δ > 0,

lim
U
tε(S,Ri) ≤ tε(S,R) ≤ lim

U
t(ε+δ)(S,Ri).

If the given sequence Ri is convergent, then for all ε ≥ 0, tε(S,Ri) is convergent and
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limU tε(S,Ri) = limi→∞ tε(S,Ri). Therefore, for all ε ≥ 0 and δ > 0,

lim
i→∞

tε(S,Ri) ≤ tε(S,R) ≤ lim
i→∞

t(ε+δ)(S,Ri).

Also fSi as defined above is uniformly convergent. Therefore,

lim
i→∞

lim
δ→0+

fSi (ε+ δ) = lim
δ→0+

lim
i→∞

fSi (ε+ δ),

that is,

lim
i→∞

lim
δ→0+

t(ε+δ)(S,Ri) = lim
δ→0+

lim
i→∞

t(ε+δ)(S,Ri).

For all i, Tε(S,Ri) =
⋂
δ>0

T(ε+δ)(S,Ri) and tε(S,Ri) = lim
δ→0+

t(ε+δ)(S,Ri). Therefore,

lim
i→∞

tε(S,Ri) = lim
δ→0+

lim
i→∞

t(ε+δ)(S,Ri).

Thus we have proved for all ε ≥ 0, tε(S,R) = limi→∞ tε(S,Ri), if the given sequence

is increasingly convergent.

So, T (S,R) differs from [T (S,Ri)] by a null set and t(S,R) = limi→∞ t(S,Ri).

Given ε ≥ 0, we define the ε-homomorphism density of a weighted structure S on [n] in

a weighted Euclidean structure W as :

tε(S,W ) =

∫ 1

0
. . .

∫ 1

0

∏
ρ∈τ

∏
e∈Ek([n])

χw−1
ρ ([ρS(e)−ε,1])(xe)

∏
A∈r([n],kmax)

dxA

The homomorphism density of S in W is the 0-homomorphism density of S in W .

Theorem 4.2.3. Let R be a weighted structure of type τ on the ultraproduct X and let
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W (R) be the corresponding weighted Euclidean structure. Then for every n, every weighted

structure S of type τ on [n] and every ε > 0,

tε(S,W (R)) = tε(S,R).

Proof. Let n ∈ N and let S be a weighted structure of type τ on [n].

tε(S,R)

= µ[n](Tε(S,R))

= µ[n]

⋂
ρ∈τ

⋂
e∈Ek([n])

π−1e (θe((ρ
R)−1([ρS(e)− ε, 1])))


= µ[n]

⋂
ρ∈τ

⋂
e∈Ek([n])

π−1e (θe(φ
−1
k (w−1ρ ([ρS(e)− ε, 1]))))


= µ[n]

⋂
ρ∈τ

⋂
e∈Ek([n])

ψ−1k (L−1e (Fe(w
−1
ρ ([ρS(e)− ε, 1]))))


= µ[n]

⋂
ρ∈τ

ψ−1k

 ⋂
e∈Ek([n])

L−1e (Fe(w
−1
ρ ([ρS(e)− ε, 1])))


= µ[n]

⋂
ρ∈τ

ψ−1

P−1r([k])

 ⋂
e∈Ek([n])

L−1e (Fe(w
−1
ρ ([ρS(e)− ε, 1])))


= µ[n]

ψ−1
⋂
ρ∈τ

P−1r([k])

 ⋂
e∈Ek([n])

L−1e (Fe(w
−1
ρ ([ρS(e)− ε, 1])))


= V ol

⋂
ρ∈τ

P−1r([k])

 ⋂
e∈Ek([n])

L−1e (Fe(w
−1
ρ ([ρS(e)− ε, 1])))


=

∫ 1

0
. . .

∫ 1

0

∏
ρ∈τ

∏
e∈Ek([n])

χw−1
ρ ([ρS(e)−ε,1])(xe)

∏
A∈r([n],kmax)

dxA

= tε(S,W (R)).
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We say that a weighted Euclidean structure W = {wρ : ρ ∈ τ} is a limit of weighted

structures Ri on sets Xi if for any weighted structure S on any finite set and for any ε ≥ 0,

tε(S,W ) = limi→∞ tε(S,Ri).

Corollary 4.2.4. If Ri is an increasingly convergent sequence, then W (R) is a limit for

the sequence {Ri}.

Proof. We know from the second part of Theorem 4.2.2 that for any weighted structure

S on a finite set and any ε ≥ 0, tε(S,R) = limi→∞ tε(S,Ri). Theorem 4.2.3 implies

tε(S,W (R)) = limi→∞ tε(S,Ri) for all S and all ε ≥ 0. Then W is a limit for the increas-

ingly convergent sequence Ri.

Let τ be a weighted type. Let W = {wρ : ρ ∈ τ} be a weighted Euclidean structure of

type τ . Each wρ is a measurable function on [0, 1]r([‖p‖]). By a random sampling on W , we

can generate random weighted structures Rm = R(W,m) on [m] as follows : Choose xA

uniformly at random in [0, 1], for A ∈ r([m], kmax). For each ρ ∈ τ with k = ar(ρ) and for

each e ∈ Ek([m])

ρRm(e) = wρ(xe).

We believe we can show, similar to the case of relational structures, a subsequence of

this random sequence converges to W , with probability 1.

Remark 4.2.5. Given a weighted Euclidean structure W of type τ and a structure preserv-

ing map φ on [0, 1]r([kmax]), let φ−1(W ) denote the weighted Euclidean structure represented

by {wρ ◦ φk : k = ar(ρ), ρ ∈ τ}. Using a similar proof to that of Theorem 3.2.3, we can
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prove for all weighted structures S on finite sets, for all ε ≥ 0, tε(S, φ−1(W )) = tε(S,W ).

We believe we can use a proof similar to that of Theorem 3.2.5 to show that weighted

Euclidean structures are unique as limits up to structure preserving maps.

4.3 Regularity for Weighted Structures

Let f : X [k] → [0, 1] and g : X [k] → [0, 1] be measurable functions. We say f and g are

ε-close if

µ[k]({x ∈ X [k] : |f(x)− g(x)| > ε}) ≤ ε.

Let R and R′ be two weighted structures of type τ on a set X. They are said to be

ε-close to each other if for all ρ ∈ τ , ρR and ρR
′

are ε-close.

R and R′ are said to be 0-close if for all ρ ∈ τ , ρR = ρR
′

a.e.

Theorem 4.3.1. Let R be a weighted structure of type τ on an ultraproduct X of an

increasing sequence of finite sets Xi. For every ε > 0, there exists ` ∈ N and a 0-equitable

kmax-level `-hyperpartition HHH such that

1. Each Pr
j ∈ σ[r] and it is independent of σ∗[r].

2. There exists a weighted structure R̃ of type τ on X that is ε-close to R and for each

ρ ∈ τ with k = ar(ρ), ρR̃ takes constant values on each HHH -k-cell.
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Proof. We know there exists a separable realization φ on Xkmax and a weighted Euclidean

structure W (R) = {wρ : ρ ∈ τ} such that for every ρ ∈ τ with k = ar(ρ), ρR = wρ ◦ φk,

as proved by Theorem 4.1.1.

Fix ε > 0. Choose a natural number K such that 1
K < ε. Let intervals I1, . . . , IK form

a partition of [0, 1] such that |Ij | = 1
K < ε for each j ∈ [K]. Choose cj ∈ Ij for each j ∈ [K].

Let Aρ,j = w−1ρ (Ij), for each ρ ∈ τ and j ∈ [K]. Since wρ : [0, 1]r([k]) → [0, 1] is a

measurable function for each ρ ∈ τ with k = ar(ρ), each Aρ,j is a measurable subset of

[0, 1]r([k]). There exists a natural number ` large enough such that for each ρ ∈ τ and each

j ∈ [K], there is a union Bρ,j of `-boxes in [0, 1]r([k]) such that V ol(Aρ,j∆Bρ,j) <
ε
K . Note

that for each ρ, {Aρ,j : j ∈ [K]} is a partition of [0, 1]r([k]). We may assume ` is large

enough to ensure that each `-box in [0, 1]r([k]) appears in at most one Bρ,j .

Now consider the hyperpartition HHH formed by Pr
i = φ−1r ([ i−1` ,

i
`)), for each r ∈ [kmax]

and i ∈ [`]. Clearly each Pr
i is in the separable algebra l[r] ≤ σ[r] and is, therefore,

independent of σ∗[r]. We may assume Pr
i ⊆ Er(X). So Pr

i is an r-uniform hypergraph on

X. Also µ[r](P
r
i ) = 1

` for each i ∈ [`], so the partition is 0-equitable.

Since each Bρ,j is a union of `-boxes in [0, 1]r([k]), φ−1k (Bρ,j) is a union of HHH -k cells.

Fix ρ ∈ τ . Let k = ar(ρ). Define ρ̃ : X[k] → [0, 1] as follows :

For each x ∈ φ−1k (Bρ,j), ρ̃(x) = cj . For all x ∈ X[k] \
⋃
j∈[K] φ

−1
k (Bρ,j), ρ̃(x) = 0.

Clearly each ρ̃ is a measurable function that takes a constant value on every HHH -k-cell.
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For every ρ ∈ τ with k = ar(ρ), every j ∈ [K],

x ∈ φ−1k (Aρ,j) ∩ φ−1k (Bρ,j) ⇒ φk(x) ∈ Aρ,j ∩Bρ,j

⇒ ρ̃(x) = cj ∧ wρ(φk(x)) ∈ Ij

⇒ |wρ ◦ φk(x)− cj | < ε.

Recall that for each ρ ∈ τ with k = ar(ρ), µ[k]

(⋃
j∈[K](Aρ,j∆Bρ,j)

)
< ε and ρR =

wρ ◦ φk a.e. Therefore, ρR and ρ̃ are ε-close.

Let R̃ be the weighted structure of type τ represented by {ρ̃ : ρ ∈ τ}. Then R̃ is

ε-close to R.

Theorem 4.3.2. Given ε > 0 and m ∈ N, there exist M,N ∈ N such that for any

weighted structure R on a finite set X with |X| ≥ N , there exists an ε-equitable kmax-level

`-hyperpartition H on X for some ` such that m ≤ ` ≤M and

1. Each P rj is ε-regular.

2. There exists a weighted structure R̃ of type τ on X that is ε-close to R and for each

ρ ∈ τ with k = ar(ρ), ρR̃ takes constant values on each H -k-cell.

Proof. Suppose, for contradiction, there exist ε > 0, m ∈ N, weighted structures Ri of type

τ on Xi and |Xi| → ∞ such that no ε-equitable `-hyperpartition for m ≤ ` ≤ i satisfying

above conditions exists for any Ri.

We can take ultraproducts and obtain the weighted structure R on X as before. There

exists a 0-equitable `-hyperpartition HHH on X satisfying the conditions in Theorem 4.3.1.

We may assume ` ≥ m. For each r ∈ [kmax], each j ∈ [K], let P̃r
j = [P rj,i] be an internal set
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that differs from Pr
j by a null set. We may assume each P rj,i is an r-uniform hypergraph

on X
[r]
i . The hypergraphs P̃r

j form a 0-equitable `-hyperpartition H̃̃H̃H that also satisfies the

conditions in Theorem 4.3.1. So there is a weighted structure R̃ on X such that for each

ρ ∈ τ , ρR̃ is ε-close to ρR and takes constant values on each H̃̃H̃H -k-cell.

The hypergraphs P rj,i form an `-hyperpartition Hi on Xi for U-almost all i. Since

H̃̃H̃H is a 0-equitable hyperpartition, for every j, j′ ∈ [`] and r ∈ [kmax], limU |µi,[r](P rj,i) −

µi,[r](P
r
j′,i)| = 0. Then for U-almost all i, Hi is an ε-equitable `-hyperpartition on Xi.

We claim that for U-almost every i, P rj,i is ε-regular. Suppose not, that is, there exist

r ∈ [kmax] and j ∈ [`] such that for U-almost every i, there exists a cylindric intersection

set Li ⊆ Er(Xi) with µi,[r](Li) ≥ ε and |µi,[r](P rj,i ∩ Li)− µi,[r](P rj,i)µi,[r](Li)| ≥ ε µi,[r](Li).

Consider the cylindric intersection set L = [Li]. L ∈ σ∗[r] and it is independent of Pr
j .

Therefore, P̃r
j and L are also independent. However |µ[r](P̃r

j ∩ L) − µ[r](P̃
r
j )µ[r](L)| =

limU |µi,[r](P rj,i ∩ Li) − µi,[r](P rj,i)µi,[r](Li)| ≥ ε µ[r](L) and µ[r](L) ≥ ε, which contradicts

the fact that P̃r
j and L are independent. Thus, P rj,i is ε-regular, for each r ∈ [kmax], j ∈ [`]

and U-almost every i.

Let r ∈ [kmax] and let C be any H̃̃H̃H -r-cell. Note that C is an internal set. Then C = [Ci]

such that for U-almost all i, Ci is an Hi-r-cell. There are only finitely many r-cells for any

r ∈ [kmax]. Then for U-almost all i, for all r ∈ [kmax], for all H̃̃H̃H -r-cells C, there is an

Hi-r-cell Ci such that Ci is an Hi-r-cell. For all such i, define R̃i as follows :

For each ρ ∈ τ with k = ar(ρ), let ρR̃i be the weight function on X
[k]
i such that ρR̃i [Ci] =

ρR̃[C]. So ρR̃i takes constant values on each Hi-k-cell and ρR̃ = [ρR̃i ].
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Suppose for all i, there exists ρ ∈ τ with k = ar(ρ) such that

µi,[k]({x ∈ X
[k]
i : |ρRi(x)− ρR̃i(x)| > ε}) > ε.

Since there are only finitely many function symbols in τ , there exists ρ ∈ τ such that

for U-almost all i, µi,[k]({x ∈ X
[k]
i : |ρRi(x)− ρR̃i(x)| > ε}) > ε.

Then µ[k]({x ∈ X [k] : |ρR(x) − ρR̃(x)| ≥ ε}) ≥ ε, which contradicts the fact that R

and R̃ are ε-close.

4.4 Removal Lemma for Weighted Structures

Theorem 4.4.1. Given n ∈ N, let S be a weighted structure of type τ on [n]. Let R be

a weighted structure of type τ on the ultraproduct X of finite sets Xi that are increasing

in size. Then there exists a weighted structure R̃ of type τ on X that is 0-close to R and

T (S, R̃) = ∅ or t(S, R̃) > 0.

Proof. By Theorem 4.1.1, we know there exists a separable realization φ on X[kmax] and

a weighted Euclidean structure W (R) = {wρ : ρ ∈ τ} such that for every ρ ∈ τ with

k = ar(ρ), ρR = wρ ◦ φk a.e.

Fix ρ ∈ τ and let k = ar(ρ). Arrange the weights {ρS(e) : e ∈ Ek([n])} in increasing

order, without repetition, into a finite strictly increasing sequence c1 < c2 < . . . < cM .

For each i ∈ [M ], Ai = w−1ρ ([ci, 1]) is a Lebesgue-measurable subset of [0, 1]r([k]). Then

A1 ⊇ A2 ⊇ . . . ⊇ AM . For each i ∈ [M ], let Di be the set of density points of Ai. By

Lebesgue’s density theorem, Di is Lebesgue-measurable and V ol(Ai∆Di) = 0 for each

i ∈ [M ].
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Let S = Ac1 ∪ (D1 ∩Ac2) ∪ . . . ∪ (DM−1 ∩AcM ) ∪DM .

Since [0, 1]r([k]) = Ac1 ∪ (A1 ∩ Ac2) ∪ . . . ∪ (AM−1 ∩ AcM ) ∪ AM , clearly V ol(S) = 1. Let

w̃ρ = w ·χS . So wρ = w̃ρ a.e.

For each i ∈ [M ], x ∈ w̃−1ρ ([ci, 1]) if and only if x ∈ Ai ∩ S = Di ∩ S, that is,

w̃−1ρ ([ci, 1]) = Di ∩ S. Since Di ∩ S ⊆ Di, each point of Di ∩ S is a density point of Di.

Also V ol(Di \ (Di ∩ S)) = 0. Given any x ∈ Di ∩ S and ε > 0 let Bε(x) denote the ε-ball

centered at x in [0, 1]r([k]). Then for all ε > 0, V ol((Di ∩Bε(x))∆((Di ∩ S) ∩Bε(x))) = 0.

So

lim
ε→0

V ol((Di ∩ S) ∩Bε(x))

V ol(Bε(x)
= lim

ε→0

V ol(Di ∩Bε(x))

V ol(Bε(x))
= 1

Therefore, every point of Di ∩ S is a density point of the set.

Let R̃ be the weighted structure of type τ on X represented by the system of weight

functions {ρR̃ = w̃ρ ◦ φk : k = ar(ρ), ρ ∈ τ}. Then R and R̃ are 0-close.

T (S, R̃) =
⋂
ρ∈τ

ψ−1k

 ⋂
e∈Ek([n])

L−1e (Fe(w̃
−1
ρ ([ρS(e), 1])))

 .

We have just shown that every w̃−1ρ ([ρS(e), 1]) is the set of its density points, therefore

so is T (S, R̃). If t(S, R̃) = µ[n](T (S, R̃)) = 0, then T (S, R̃) = ∅.

Theorem 4.4.2. Given n ∈ N, a weighted structure S of type τ on [n] and given ε > 0,

there exist δ > 0 and N ∈ N such that for any weighted structure R of type τ on a finite

set X satisfying |X| ≥ N and tε(S,R) < δ, there exists a weighted structure R̃ of type τ

on X such that T0(S, R̃) = ∅ and R̃ is ε-close to R.
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Proof. Suppose, for contradiction, there exists n ∈ N, a weighted structure S on [n] and

ε > 0 such that there is a sequence of weighted structures Ri on finite sets Xi such that

|Xi| → ∞ and tε(S,Ri) < 1
i but no such R′i exists. So limi→∞ tε(S,Ri) = 0.

We can now take ultraproducts and obtain the weighted structure R on X. By Theo-

rem 4.2.2, T (S,R) ⊆ [Tε(S,Ri)]. Then t(S,R) = 0.

By Theorem 4.4.1, there exists a weighted structure R̃ on X that is 0-close to R

and T (S, R̃) = ∅ or t(S, R̃) > 0. Since R̃ is 0-close to R, t(S, R̃) = t(S,R). Then

µ[n](T (S,R)) = t(S,R) = 0 and (T (S,R)) = ∅.

For each ρ ∈ τ , there exists an internal function [ρ̃i] such that ρR̃ = std([ρ̃i]) a.e.

We may assume that for U-almost all i, ρ̃i : X
[k]
i → [0, 1] and ρ̃i takes the value 0 on

X
[k]
i \Ek(Xi). Let R̃i be the weighted structure of type τ represented by {ρR̃i = ρ̃i : ρ ∈ τ}.

Since [T (S, R̃i)] ⊆ T (S, R̃) = ∅, we know that for U-almost all i, T (S, R̃i) = ∅.

To contradict our original assumption and prove the theorem, it is enough to prove

that for U-almost all i, R̃i is ε-close to Ri. Suppose not, that is, for U-almost all i, there

exists ρ ∈ τ such that ρR̃i is not ε-close to ρR̃i . Therefore there exists ρ ∈ τ with k = ar(ρ)

such that for U-almost all i,

µi,[k]({x ∈ X
[k]
i : |ρRi(x)− ρR̃i(x)| ≥ ε}) ≥ ε.

Then µ[k]({x ∈ X [k] : |ρR(x) − ρR̃(x)| ≥ ε}) ≥ ε, which contradicts the fact that R

and R̃ are 0-close.
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4.5 Weighted Version of Regularity for Digraphs

In this section, we look for regular partitions where the condition for regularity de-

pends on a notion of weighted edge density, instead of the usual edge density. We shall

deal with the case of weighted digraphs where there is a natural notion of weighted edge

density. A weighted digraph is such that there are weights on the directed edges as well as

on the vertices. As discussed before, a weighted digraph G is a weighted structure of type

τ = {ρe, ρv} where ar(ρe) = 2 and ar(ρv) = 1.

Let H be a 2-level `-hyperpartition on X and let G be a weighted digraph on X with

strictly positive vertex weights. A weighted digraph G is weighted ε-regular with respect

to H if for any i, j ∈ [`], for all Ai ⊆ P 1
i , Aj ⊆ P 1

j such that ρGv (Ai) ≥ ερGv (X) and

ρGv (Aj) ≥ ερGv (X), we have

∣∣∣∣∣ ρGe (Ai ×Aj)
ρGv (Ai)ρGv (Aj)

−
ρGe (P 1

i × P 1
j )

ρGv (P 1
i )ρGv (P 1

j )

∣∣∣∣∣ < ε.

Theorem 4.5.1. Let G be a weighted digraph on the ultraproduct X of a sequence of finite

sets Xn such that |Xn| → ∞. Then for every ε > 0, there exists ` ∈ N and a 0-equitable

2-level `-hyperpartition HHH such that

1. Each P2
j ∈ σ[2] and it is independent of σ∗[2], that is, each edge cell is independent of

measurable rectangles.

2. There exists a weighted digraph G̃ ε-close to G such that ρG̃v > 0 and for all Ai ⊆ P 1
i

and Aj ⊆ P 1
j ,

ρG̃e (Ai ×Aj)
ρG̃v (Ai)ρG̃v (Aj)

=
ρG̃e (P 1

i × P 1
j )

ρG̃v (P 1
i )ρG̃v (P 1

j )
,

that is, G̃ is weighted δ-regular with respect to HHH , for all δ > 0.
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Proof. We can repeat the proof of Theorem 4.3.1 for the type τ = {ρe, ρv} and the weighted

digraph G. Then there exists ` ∈ N, a 0-equitable 2-level `-hyperpartition HHH and a

weighted digraph G̃ on X such that

• Each P2
j ∈ σ[2] and it is independent of σ∗[2].

• ρG̃v takes constant values on each HHH -1-cell, that is, each P1
i for i ∈ [`].

• ρG̃e takes constant values on each HHH -2-cell, which is of the form (P1
i ×P1

j ) ∩P2
k for

i, j, k ∈ [`].

• G̃ is ε-close to G.

In the course of the proof of Theorem 4.5.1, we choose the constant value that ρG̃v takes

on each vertex cell from an interval in [0, 1]. So we can further ensure that ρG̃v > 0.

Given i, j, k ∈ [`], let ρG̃v = ci > 0 on P1
i , ρG̃v = cj > 0 on P1

j and ρG̃e = di,j,k on

(P1
i ×P1

j ) ∩P2
k. Let Ai ⊆ P1

i , Aj ⊆ P1
j be any measurable sets.

Then ρG̃v (Ai) = ciµ[1](Ai) and ρG̃v (Aj) = cjµ[1](Aj).

Also ρG̃e ((Ai × Aj) ∩ P2
k) = di,j,k µ[2]((Ai × Aj) ∩ P2

k). Since P2
k is independent of

rectangles, ρG̃e ((Ai ×Aj) ∩P2
k) = di,j,k µ[1](Ai)µ[1](Aj)µ[2](P

2
k).

Since the `-hyperpartition H is 0-equitable, ρG̃v (Ai) = ciµ[1](Ai) and ρG̃v (Aj) =

cjµ[1](Aj), we have
ρG̃e ((Ai×Aj)∩P2

k)

ρG̃v (Ai)ρG̃v (Aj)
=

di,j,k
cicj`

. Since the edge cells form a partition of

X[2],

ρG̃e (Ai ×Aj)

ρG̃v (Ai)ρG̃v (Aj)
=

∑
k∈[`] di,j,k

cicj`
.

This proves our claim.

Let us consider the special case of digraphs represented as weighted structures, then

ρGe = χ
EG

and ρGv = 1 for each graph G. Theorem 4.5.1 extends Theorem 3.3.1 for the
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relational type τ = {E}.

In Section 3.2 we applied Theorem 3.3.1 to a digraph G on X and found a 0-equitable

2-level partition on X and C ⊆ [`]3 such that µ[2]

(
EG∆

⋃
(i,j,k)∈C(Vi ×Vj) ∩Ek

)
< ε.

We would obtain the same partition using Theorem 4.5.1. Also for all i ∈ [`], ci = 0 and

di,j,k = 1 for (i, j, k) ∈ C and di,j,k = 0 for (i, j, k) /∈ C. Thus, as a special case, we obtain

the familiar regularity condition for graphs involving edge densities.

Theorem 4.5.2. Given ε > 0 and m ∈ N, there exist M,N ∈ N such that for any weighted

digraph G on a finite set X with |X| ≥ N , there exists an ε-equitable 2-level `-hyperpartition

H on X for some ` such that m ≤ ` ≤M and

1. Each P 2
j is ε-regular, and

2. There exists a weighted digraph G̃ that is ε-close to G and is weighted ε-regular with

respect to H .

Proof. Suppose, for contradiction, there exist ε > 0, m ∈ N and weighted digraphs Gn on

finite sets Xn such that |Xn| → ∞ and no ε-equitable `-hyperpartition for m ≤ ` ≤ n and

no weighted digraph G̃n satisfying above conditions exist for any Gn. We can take ultra-

products and obtain the weighted digraph G on X as above. There exists a 0-equitable

`-hyperpartition HHH and a weighted digraph G̃ on X satisfying the conditions in Theorem

4.5.1.

We can repeat the proof of Theorem 4.3.2 to obtain an ε-equitable `-hyperpartition

Hn on Xn such that each P 2
k,n is ε-regular, for U-almost all n. We also obtain weighted

digraphs G̃n ε-close to Gn that satisfy the conditions in Theorem 4.3.2, for U-almost all n.
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Suppose for U-almost all n, G̃n is not weighted ε-regular in Hn. Since there are only

finitely many vertex cells, there exist i, j ∈ [`] such that for U-almost all n, there exist

An,i ⊆ P 1
n,i, An,j ⊆ P 1

n,j such that ρG̃nv (An,i) ≥ ερG̃nv (Xn), ρG̃nv (An,j) ≥ ερG̃nv (Xn) and

∣∣∣∣∣∣ ρG̃ne (An,i ×An,j)

ρG̃nv (An,i)ρ
G̃n
v (An,j)

−
ρG̃ne (P 1

n,i × P 1
n,j)

ρG̃nv (P 1
n,i)ρ

G̃n
v (P 1

n,j)

∣∣∣∣∣∣ ≥ ε.
Then Ai = [An,i] and Aj = [An,j ] are σ[2]-measurable sets such that ρG̃v (Ai) ≥ ερG̃n

v (X),

ρG̃v (Aj) ≥ ερG̃n
v (X) and

∣∣∣∣∣ ρG̃e (Ai ×Aj)

ρG̃v (Ai)ρG̃v (Aj)
−

ρG̃e (P1
i ×P1

j ))

ρG̃v (P1
i )ρG̃v (P1

j )

∣∣∣∣∣ ≥ ε.
This implies that P2

j is not weighted ε-regular in HHH relative to G̃, which contradicts

the conclusion from Theorem 4.5.1.

Thus we prove for U-almost all n, G̃n is weighted-ε-regular with respect to Hn, contra-

dicting our initial assumption.

Let D > 1 and β > 0. A weighted digraph G on X is (D,β)-quasi-random if ρGv (X) > 0

and for any A,B ⊆ X such that ρGv (A), ρGv (B) ≥ βρGv (X), we have

1

D

ρGe (X [2])

(ρGv (X))2
≤ ρGe (A×B)

ρGv (A)ρGv (B)
≤ D ρGe (X [2])

(ρGv (X))2
.

Csaba and Pluhár [4] proved a Weighted Regularity Lemma for (D,β)-quasi-random

weighted digraphs where regularity is defined in terms of the weighted edge density. Their
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result examines the condition for regularity of sparse sets of directed edges. Below, we see

how our methods and Theorems 4.5.1 and 4.5.2 yield a special case of their result.

Note that the ultraproduct of a sequence of weighted digraphs, on finite sets of increas-

ing size, with strictly positive vertex weights will be a weighted digraph, but the vertex

weight function need not be strictly positive. So the ultraproduct need not be (D,β)-quasi-

random even if the weighted digraphs in the sequence are (D,β)-quasi-random. However

Theorem 4.5.2 helps us prove the following result.

Theorem 4.5.3. Given D > 1, β, δ > 0 such that β << δ << 1
D and m ∈ N, there exist

M,N ∈ N such that for any (D,β)-quasi-random weighted digraph G on a finite set X with

|X| ≥ N , there exists a δ-equitable 2-level `-hyperpartition H on X for some ` such that

m ≤ ` ≤M and

1. Each P 2
j is δ-regular, and

2. G is weighted δ-regular with respect to H .

Proof. Let A,B ⊆ X such that ρGv (A), ρGv (B) ≥ δρGv (X). Let x = ρGe (A × B), y = ρGv (A)

and z = ρGv (B). Given a weighted digraph G̃, let x̃ = ρG̃e (A×B), ỹ = ρG̃v (A) and z̃ = ρG̃v (B).

If G and G̃ are ε
2 -close, then |x̃ − x| < ε, |ỹ − y| < ε and |z̃ − z| < ε. We would like to

estimate | x̃ỹz̃ −
x
yz |.

Let αG = ρGe (X
[2])

(ρGv (X))2
and βG = βρGv (X). Let f(x, y, z) = x

yz . Since y, z ≥ δρGv (X) >>

βρGv (X) and G is (D,β)-quasi-random, 1
DαG ≤

ρGe (A×B)
ρGv (A)ρ

G
v (B)

≤ DαG . fx = 1
yz , so 1 ≤

fx(x, y, z) ≤ 1
(β
G
)2

. fy = − x
y2z

, fz = − x
yz2

and
α
G
D ≤ |fy(x, y, z)|, |fz(x, y, z)| ≤

Dα
G

β
G

.

fxx = 0. fxy = − 1
y2z

and fxz = − 1
yz2

. Therefore, 1 ≤ |fxy(x, y, z)|, |fxz(x, y, z)| ≤ 1
(β
G
)3

.

fyy = 2x
y3z

and fzz = 2x
yz3

. Therefore
2α
G
D ≤ fyy, fzz ≤

2Dα
G

(β
G
)2

. Also fyz = x
y2z2

and
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α
G
D ≤ fyz ≤

Dα
G

(β
G
)2

. We have bound all first-order and second-order derivatives using D,

αG and βG . If δ ≥ ε >> β, then using a (first-order) Taylor expansion, we can bound the

difference | x̃ỹz̃ −
x
yz | ≤ εC, where C > 1 is a constant that does not depend on ε.

Then we can obtain H and G̃ satisfying the conditions in Theorem 4.5.2 for ε = δ
2C

and use the above estimate to observe G is weighted δ-regular with respect to H .

In a similar manner, we can formulate and prove extensions of these results for general

weighted structures that use an appropriate definition of weighted density and weighted

regularity.
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