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Abstract

Capture-recapture (CRC) models use two or more samples,

or lists, to estimate the size of a population. In the canonical

example, a researcher captures, marks, and releases several sam-

ples of fish in a lake. When the fish that are captured more than

once are few compared to the total number that are captured,

one suspects that the lake contains many more uncaptured fish.

This basic intuition motivates CRC models in fields as diverse

as epidemiology, entomology, and computer science.

We use simulations to study the performance of conventional

log-linear models for CRC. Specifically, we evaluate model selec-

tion criteria, model averaging, an asymptotic variance formula,

and several small-sample data adjustments. Next, we argue that

interpretable models are essential for credible inference, since

sets of models that fit the data equally well can imply vastly dif-

ferent estimates of the population size. A secondary analysis of

data on survivors of the World Trade Center attacks illustrates
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this issue.

Our main chapter develops local log-linear models. Heteroge-

neous populations tend to bias conventional log-linear models.

Post-stratification can reduce the effects of heterogeneity by us-

ing covariates, such as the age or size of each observed unit, to

partition the data into relatively homogeneous post-strata. One

can fit a model to each post-stratum and aggregate the resulting

estimates across post-strata. We extend post-stratification to its

logical extreme by selecting a local log-linear model for each ob-

served point in the covariate space, while smoothing to achieve

stability.

Local log-linear models serve a dual purpose. Besides estimat-

ing the population size, they estimate the rate of missingness as

a function of covariates. Simulations demonstrate the superiority

of local log-linear models for estimating local rates of missingness

for special cases in which the generating model varies over the

covariate space. We apply the method to estimate bird species

richness in continental North America and to estimate the preva-

lence of multiple sclerosis in a region of France.
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Chapter 1

Introduction

1.1 Background and Summary

Capture-recapture (CRC) is the science of estimating the size of a population

by using multiple incomplete lists. A list is a collection of units from some

population, and we refer to the act of generating a list as a capture. Examples

of populations studied using CRC include various animal species (Odum and

Pontin, 1961; Pollock et al., 1984), human populations (Chen et al., 2010),

the set of websites on a given topic (Fienberg et al., 1999), and the set of

computer coding errors in a body of code (Runeson and Wohlin, 1998), to

name just a few. Table 2.1 in Chapter 2 gives a much larger list of CRC

applications.

This thesis introduces new methods for the underlying statistical prob-

lem: How to estimate the unknown size n of some population from k dif-

ferent incomplete lists L1, ..., Lk of the population units. We review some

basic background on CRC before introducing our methods. In the simplest
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2 CHAPTER 1. INTRODUCTION

setting, we are given two lists of units, List 1 and List 2. Assume that units

captured on each list can be perfectly identified across lists, such that the

exact number of distinct observed units is known. Then it is possible to

construct the cross-classification of units according to list membership as

displayed in Table 1.1.

Table 1.1: Contingency table for a two-list experiment

List 2
yes no

List 1 yes c11 c10

no c01 c00

Each term cij denotes the count of units that have capture pattern (i, j).

For example, c10 is the number of units that appear on List 1 but do not

appear on List 2. The number of units that are not observed on either list,

c00, is not observable, so estimating the population size is the same as esti-

mating c00. With three lists, the task is to estimate c000. This problem has

many challenging variations that involve additional lists, auxiliary covari-

ates, population dynamics, measurement error, and inter-list dependence

structure.

For the two list case, the Petersen estimator is

ĉ00 =
c10c01

c11
, (1.1)

which can be formalized as a maximum-likelihood estimator under certain

assumptions (Feller, 1968; Pollock, 1976). Perhaps the strongest of these as-

sumptions is that the lists are independent; the event that a unit is captured
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on the first list is independent of the event that a unit is captured on the

second list. However, two kinds of dependence between lists have been thor-

oughly examined. The first is unit-level list dependence, in which previous

capture directly affects the probability of subsequent capture. The second

kind of dependence arises indirectly as a consequence of heterogeneity, or

variability in capture probabilities across units (Fienberg et al., 1999).

Both sources of dependence may depend on covariates such as age, and

much of the CRC literature in the last three decades addresses this fact.

Sekar and Deming (1949) described post-stratification, one of the earliest

methods of using auxiliary covariates to account for heterogeneity. Huggins

(1989) and Alho (1990) derived logistic regression models for heterogeneity

for the two-list scenario, and Yip et al. (2001) extended the logistic model

to include k lists and a simple respondent fatigue effect. Chen and Lloyd

(2002) introduced nonparametric regression into CRC models for two lists.

Chapter 2 reviews several more models that allow for smooth dependence

on continuous covariates.

Broadly, the CRC literature can be divided into two categories. The first

category of models considers only the cross-classification of population units

according to list membership as in Table 1.1. The second category of models

considers – in addition to the cross-classification array – auxiliary covariates

such as age, size, or gender. This thesis addresses both types of models, in

Chapter 4 and Chapter 5, respectively. Throughout, we restrict attention to

closed populations, ignoring births, deaths, and migration.

Chapter 4 addresses the problem of model selection when no auxiliary

covariates are available. We connect recent literature on nonidentifiability of
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CRC models to the relatively well-known nonidentifiability of the highest-

order interaction in log-linear models, and we argue that interpretable mod-

els (in contrast to algorithmic, black-box methods) are essential for credible

inference.

Chapter 5 describes our main work, a local conditional likelihood ap-

proach that allows both heterogeneity-induced and unit-level list dependence

to depend on unit-level covariates (such as age) in a very general way. Specif-

ically, we estimate the relative frequency of the unobserved capture pattern

(no captures) by applying log-linear models locally. We project the fitted lo-

cal log-linear models onto the missing cell to produce unit-level estimates of

the “rate of missingness.” Summing the rate of missingness across all units

gives an estimate of the total number of undetected units. The fact that we

select a different model at each point in the covariate space distinguishes

our method from similar previous methods.

Chapter 6 illustrates local log-linear models on real data. Our first exam-

ple uses data from the North American Breeding Bird Survey to estimate

the number of different bird species that can be observed in continental

North America. To our knowledge, this is the first instance of using CRC to

estimate bird species richness over a large region. Our second example uses

the data of El Adssi et al. (2012) to estimate the prevalence of multiple scle-

rosis in the Lorraine region of France. Finally, we discuss the possible future

application of our method to estimate the coverage of the U.S. Census.

Chapter 7 explores the consequences of record linkage error for CRC

estimation. We define several possible kinds of record linkage error, and

suggest simulation methods for incorporating uncertainty of record linkage
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in the final CRC estimates.

The remainder of this introduction provides notation and terminology

to be used throughout the thesis.

1.2 Notation

Notation for CRC varies widely across the literature. We propose a new

system of notation to facilitate a clear and consistent discussion throughout

our literature review and subsequent analyses. Part of the notation may seem

bulky at first, but later proves useful for a rigorous statement of assumptions.

1.2.1 Notation for Describing Data

A CRC experiment produces k different lists L1, ..., Lk of units from a pop-

ulation of size n. Let i = 1, ..., nc index the set of units that are cap-

tured at least one time, ∪jLj . Let N = {1, ..., n}. For each i ∈ N , let

mi := I(i ∈ ∪jLj) so that nc =
∑n

i=1mi. We do not distinguish units from

their indices when discussing the lists; the ith unit is in list Lj if and only

if i ∈ Lj .

For each unit i and list Lj , let yij = I(i ∈ Lj). Then yi· = (yi1, ..., yik),

and y·· is the n × k matrix with ith row yi·. The vector yi· is called the

capture pattern of the ith unit. Let xi· denote a 1 × q vector of covariates

associated with the ith unit, and x·· is the n × q matrix with ith row xi·.

For each i > nc, the pair (xi·, yi·) is not observed. If xc·· is the matrix formed

by the first nc rows of x··, and yc·· is the matrix formed by the first nc rows

of y··, then the [observable] data consist of the pair of matrices (xc··, y
c
··). We
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will refer to the pair (x··, y··) as the extended data.

Let Y denote the set of binary row vectors of length k. For example,

with two lists, Y = {(1, 1), (1, 0), (0, 1), (0, 0)}. Note that each row yi· is

an element of Y. For every y ∈ Y, define cy := |{i : yi· = y}|. Then the

array c := {cy}y∈Y is the contingency table of counts of units in the lists

L1, ..., Lk. In particular, c0 = n−nc, the unknown number of units that are

not observed, and any estimate n̂ of n implies a prediction ĉ0 of c0 such that

n̂ = ĉ0 + nc.

1.2.2 Subscripting by ω

Let K = {1, ..., k}. Let Ω denote the power set of K, excluding

the empty set. For example, if there are k = 3 lists, then Ω =

{{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. Let ω ∈ Ω, and suppose |ω| de-

notes the size of ω. Let (ω(1), ..., ω(|ω|)) denote the vector of elements of ω

arranged in increasing order. Pick arbitrary i ∈ {1, ..., n} and ω ∈ Ω. Define

yiω := (yiω(1)
, ..., yiω(|ω|)). To be clear, yiω is a vector with elements taken

from the ith row of the matrix y·· as specified by ω. More generally, for any

vector y = (y1, ..., yk) ∈ Y, let yω := (yω(1)
, ..., yω(|ω|)). For the special case in

which ω is a singleton {j}, we write yi{j} = yij and y{j} = yj . Take ωc to be

the complement of ω. For example, let y = (1, 1, 0) ∈ Y. Then y{2,3} = (1, 0),

y1 = y{1} = y{2,3}c = 1, and y{1,2,3} = y.

1.2.3 Notation for Probability Models

Each capture pattern yi· is a realization of a random vector Yi·. Then, the

matrix y·· is a realization of a random matrix Y··. The corresponding statis-
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tics c and mi are realizations of the implied random quantities C and Mi.

Subscripting for each of the random quantities works exactly analogously

to subscripting for the fixed realizations. For the remainder of this thesis,

unless specified otherwise, let k > 1, and let j ∈ K, i ∈ N , y ∈ Y, and ω ∈ Ω

be arbitrary.

Let p(i, y) = P (Yi· = y), the probability that unit i has capture pattern

y. Then p(i, yi·) = P (Yi· = yi·). Similarly, let pω(i, y) = P (Yiω = yω). De-

fine p(i,Y) := {p(i, y)}y∈Y . Hence, we may regard the the capture pattern

Yi· as a multinomial random variable with a single trial and multinomial

probabilities p(i,Y), so Yi· ∼ Multi(1,p(i,Y)).

Let pω(y) = n−1
∑

i∈N pω(i, y). If ω = K, then we have pω(y) = p(y),

the average probability that a unit has the capture pattern y. Define

p(Y) := {p(y)}y∈Y .

Let 0ω denote the zero vector of length |ω|. Let φω(i) = 1−P (Yiω = 0ω),

the probability that the ith unit is on at least one of the lists indexed

by ω. For brevity, define φ(i) := φK(i), and note that φ(i) = E(Mi), the

probability that the ith unit appears on at least one list. Finally, if ω = {j}

is a singleton, we have φj(i) := φ{j}(i), the probability that the ith unit

appears on the jth list, and let φj := n−1
∑

i∈N φj(i).

1.2.4 Regression Notation

Let X denote the covariate space, and let x ∈ X be arbitrary. A func-

tion r(y|x) is called a regression model for (x··, y··) if it is assumed that

p(i, yi·) = r(yi·|xi·) holds for all i ∈ N . For any function r(y|x), define

rω(y|x) :=
∑

z∈Y:zω=yω
r(z|x).
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Given a function r(y|x), define the detection function

ψω(x) = 1− rω(0|x), which can be interpreted as the probability that a unit

with covariates x will appear in at least one of the lists indexed by ω. Notice

that ψ is to φ as r is to p. In particular, if r(y|x) is a regression model, then

ψ(xi·) = φ(i), ψω(xi·) = φω(i), and ψj(xi·) = φj(i).

1.3 General Terminology

We call a population closed if the population is fixed during the generation of

the lists L1, ..., Lk. This excludes births, deaths, and migration. Populations

which are not closed are open. This thesis considers only closed population

models.

It is often unclear whether a record on one list refers to the same unit

as a record on another list, due to typographical errors or other anomalies.

The field of record linkage addresses the problem of matching units between

lists (Fellegi and Sunter, 1969). Most of the CRC literature assumes that

the lists are linked perfectly, so that the cross-classification counts c are all

observable except for c0. This is called the perfect record linkage assumption.

A CRC experiment is called homogeneous if the capture probabilities

are constant across units. To be precise, an experiment is homogeneous if

p(i1, y) = p(i2, y) for every pair of units i1, i2 and every y ∈ Yk. Many CRC

papers seem to use heterogeneity to mean the absence of this specific kind

of homogeneity, even though some related aspects of population units can

be “heterogeneous” in a more general sense.

The term “independence” describes – rather ambiguously – the relation-
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ships between population units or between captures across lists. We clarify

matters by precisely stating four distinct notions of independence. The lists

are independent at the unit level if

p(i, y) = pω(i, y)pωc(i, y). (1.2)

Marginally (i.e., when ω = {j}, a specific list), list independence at the unit

level implies that the event that unit i is on a specific list is independent of

the event that unit i is on any combination of the other lists. In the context

of a regression model r(y|x), list independence at the unit level is equivalent

to conditional independence:

r(y|x) = rω(y|x)rωc(y|x) (1.3)

For example, suppose k = 2 with y = (y1, y2) and ω = {1}. Then ωc = {2},

and conditional independence implies

r(y|x) =
[
ψ1(x)y1(1− ψ1(x))1−y1] [ψ2(x)y2(1− ψ2(x))1−y2] . (1.4)

The lists are independent if

p(y) = pω(y)pωc(y). (1.5)

It is important to understand the difference between the assumptions 1.5 and

1.2: Heterogeneity can cause list dependence even if the lists are independent

at the unit-level (Fienberg et al., 1999). Finally, independence of units (or
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independence between units) means that the capture pattern of a unit does

not depend on the capture pattern of other units.

The basic multinomial sampling model assumes homogeneity (at least

formally) and independence between units to get

P (C = c) =
n!∏

y∈Y cy!

∏
y∈Y

p(y)cy . (1.6)

A unit-level or regression multinomial sampling model uses a regression

model to relax the homogeneity assumption, so that the sampling distribu-

tion is multinomial at the unit level:

P (Y·· = y··|x··) =
∏

i∈(1,...,n)

r(yi·|xi·). (1.7)

Note that both of these multinomial sampling models require the as-

sumption that units are independent. Both models fail if, for example, the

inclusion of a child on a list of people depends on the inclusion of that

child’s caretaker. (However, it could be argued that a child-parent depen-

dence matters less if the regression model r accounts for age.) A few authors

have studied dependence between units in a CRC setting. Cowan and Malec

(1986) modeled household-induced dependence in a two-list census. Ander-

son et al. (1994) estimated an overdispersion parameter to reflect dependence

between units.

A commonly used convention, perhaps originated by Otis et al. (1978),

is to denote a model as Msubscripts, where the possible subscripts are t,

b, and h. Models that allow capture probabilities to vary between lists (for
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a fixed population unit) are indexed by t, which stands for time; models

that include unit-level list dependence (also known as a behavioral effect)

are indexed by b; and models that allow for heterogeneity are indexed by h.

In this paradigm, the most general model is Mtbh, and various submodels

Mtb,Mbh, etc., result from imposing constraints. In particular, let M0 denote

the model in which a single capture probability applies to every unit and

every list. This notation qualitatively defines a hierarchy of eight different

kinds of CRC models.
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Chapter 2

Literature Review

2.1 A Reviewer’s Review

A journal-article length review could not hope to adequately summarize the

full CRC literature. For most work prior to the year 2000, we defer to previ-

ous reviewers, allowing the present review to focus on recent developments.

Our exposition relies heavily on the notation and terminology presented in

Sections 1.2 and 1.3. We discuss only closed populations, although many of

our sources include extensions to open populations.

Schaefer (1951) reviewed the early history of CRC, tracing the theory of

the Petersen estimator (1.1) as far back as Laplace in 1783. Cormack (1968)

published a major synthesis, followed by a more technical review (Cormack,

1979). Otis et al. (1978) is a highly-cited monograph. Seber (1982) and Seber

(1986) gave two additional reviews.

At least five full-length review articles appeared in 1990’s alone. Pollock

(1991) was remarkably broad in scope. Fienberg (1992) provided a rather

13
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exhaustive bibliography of CRC papers with minimal commentary. Seber

(1992) reviewed methods from the animal populations setting. The Inter-

national Working Group for Disease Monitoring and Forecasting (1995a,b)

reviewed CRC models with an emphasis on applications to epidemiology.

Schwarz and Seber (1999) updated previous reviews by Seber on CRC meth-

ods for animal populations. Fienberg et al. (1999) briefly summarized the

Bayesian developments up to that time.

Chao (2001) reviewed closed population models including continuous-

time CRC models, which treat every record as a new list. Pollock (2000)

gave a brief literature review, followed by a second review on the use of

auxiliary covariates to model heterogeneity (Pollock, 2002). Pledger and

Phillpot (2008) summarized models for heterogeneity that do not rely on

observable covariates. Huggins and Hwang (2011) reviewed conditional like-

lihood estimation, including models with covariates. Finally, a dissertation

by Stoklosa (2012) thoroughly references most of the recent sources relevant

for our work, including approaches that use covariates to model unit-level

list dependence and heterogeneity.

We structure the remainder of this review as follows. Section 2.2 gives a

brief history of models which do not directly incorporate covariate informa-

tion. Section 2.3 describes some basic regression models. Section 2.4 traces

the development of the likelihood function as it parallels the emergence of

models that regress capture probabilities as functions of covariates. Section

2.5 broadly reviews a selection of the data sets and simulation environments

which have been used to test estimators. Throughout, we characterize mod-

els by using the “Mtbh” notation introduced at the end of Section 1.3.
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2.2 Models without Covariates

2.2.1 The Petersen Estimator (Mt)

In the 1890’s, Petersen re-discovered and popularized an estimator that pro-

vides the fundamental inspiration for most modern models (Pollock, 1991;

Petersen, 1895). We illustrate the Petersen estimator with an initial capture

list L1 and a single recapture list L2. Let c1+ = c10 +c11 and c+1 = c01 +c11.

The Petersen estimator takes the form n̂ = c1+c+1

c11
and relies on the assump-

tion of independence between lists as in equation 1.5. Independence implies

that p((1, 1)) = φ1φ2, and one may hypothesize that

n̂ :=
c1+c+1

c11
≈ E(C1+)E(C+1)

E(C11)
=

nφ1nφ1

np((1, 1))
= n

φ1φ1

p((1, 1))
= n.

Heterogeneity and behavioral effects cause the failure of the independence

assumption, so the Petersen estimate is rarely optimal. In applications with

more than two lists, individual Petersen estimates that are computed from

selected pairs of lists may produce estimates that are drastically less than

nc, the number of observed units (Fienberg et al., 1999).

The expectation of the Petersen estimator is not defined since it can

happen that c11 = 0. Conditioning on c11 6= 0, the Petersen estimator is

biased upwards for small sample sizes, even when all the standard assump-

tions hold. The Chapman estimator is a slight modification of the Petersen

estimator that reduces the bias by adding a small positive number to each

element of the cross-classification c (Chapman, 1951). Evans and Bonett

(1994), Hook and Regal (1997), and Rivest and Lévesque (2001) proposed
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generalizations of Chapman’s modification for k > 2 lists.

2.2.2 Some Early Models (Mt, M0, Mh)

Sequels to the Petersen estimator sought to generalize its applicability to

scenarios with more than two lists. Schnabel (1938) presented some of these

methods in the form Mt. Several other models, described in the following

paragraphs, assume that the probability of capture for each unit is constant

across lists.

The basic removal method (M0), introduced by Moran (1951), requires

that captured units are either literally removed, or are marked before re-

lease back into the population and are not counted in subsequent captures.

Given a finite population, the sequence of counts of new units identified in

each capture should converge towards zero in a roughly geometric fashion.

Removal methods attempt to fit parameters to the observed terms of the

sequence, and consequently infer the population size.

Chapter 3 reviews log-linear models (Fienberg, 1972; Cormack, 1989),

which are of primary interest for this thesis. Here we merely note that log-

linear modeling remains one of the most popular CRC techniques, especially

for experiments involving 3-6 capture occasions (see Table 2.1).

Burnham and Overton (1978) derived an estimator of type Mh based on

the generalized jackknife method. In an experiment with k captures, let zj

denote the number of units that are captured exactly j times, j = 1, ..., k.

The idea of the jackknife estimator is express the estimate n̂ as a linear

combination of the quantities zj . Note that nc =
∑

j zj . For some constant

α1, the first order jackknife estimator is n̂ = nc + α1z1, the second order
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estimator takes the form n̂ = nc + α1z1 + α2z2, and so on. The jackknife

model is designed to function well under some types of heterogeneity.

Chao (1987) derived the “Chao’s lower bound” estimator (Mh), which is

closely related to the jackknife estimator for populations with heterogeneous

capture probabilities. Chao showed that her estimator may perform better

than the jackknife estimator when the number of capture events k is large

and the capture probabilities are “severely” heterogeneous such that many

units are captured substantially less frequently than the rest of the popula-

tion. Later, Chao et al. (1992) relaxed the requirement that the probability

of capture for each unit is constant across lists.

2.2.3 Recent Methods without Covariates

In the 1980’s and early 1990’s, several authors developed a model (Mth) that

uses martingales (Pollock, 2002). Lloyd (1992) observed that the sampling

distribution of martingale estimators can be somewhat unstable, and we

observe that the use of martingales in CRC has not become mainstream.

However, Huggins (2006) used a theory of martingales for new results in

modeling open populations.

Chao et al. (1992) used a series of approximations and mathematical

identities to produce an estimator of type Mth with heterogeneity in the

form of random effects. This estimator is nonparametric in the sense that it

makes no explicit assumption about the distribution of the random effects.

To our knowledge, no one has synthesized Chao’s approach with models for

which assumptions about the distribution of capture probabilities are easily

made explicit, such as the quasi-symmetry model in Darroch et al. (1993),
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and it is difficult to characterize the populations for which Chao’s estimator

performs well without resorting to simulation.

Following in a flavor similar to the Rasch quasi-symmetry model, Norris

and Pollock (1995, 1996a) assumed that capture probabilities are drawn

from some unknown mixing distribution and developed a nonparametric

maximum-likelihood estimator for that distribution. Related mixture models

and latent class models have also seen recent interest (Pledger and Phillpot,

2008). Notably, Link (2003) showed a lack of identifiability for many of these

kinds of models. We further address identifiability issues in Chapter 4.

Several Bayesian CRC models incorporate heterogeneity. Fienberg et al.

(1999) compared a Bayesian hierarchical model against quasi-symmetry

models and other log-linear models. Basu and Ebrahimi (2001) chose prior

distributions to Bayesianize a log-linear model that accounts for heterogene-

ity and unit-level list dependence (Mtbh). Manrique-Vallier and Fienberg

(2008) modeled heterogeneity with a Bayesian grade of membership model

(based on a latent membership covariate) in conjunction with the assump-

tion of conditional independence between lists (Mth).

2.3 Models with Covariates

The idea of incorporating unit-level covariates in CRC appeared as early as

Howard (1948) in the form of post-stratification, which partitions observed

units into a collection of post-strata according to some set of categorical

covariates. One may construct the cross-classification array c separately on

each post-stratum, and estimate of the number of units for each post-stratum
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before aggregating across post-strata to estimate the total number of miss-

ing units. Perhaps the earliest systematic treatment of post-stratification is

in Sekar and Deming (1949). The official 1970, 1980, and 2000 U.S. Cen-

sus coverage evaluations represent some of the largest applications of post-

stratification (Citro et al., 2004). The methods in the following subsections

incorporate covariates in increasingly nuanced ways; Chen et al. (2010) com-

pared the performance of some of these methods against the relatively simple

post-stratification approach.

2.3.1 Logistic Regression (Mth)

Pollock et al. (1984) was the first to apply logistic regression for CRC, by

allowing the probability of capture on each list to vary as a logistic function

of list features or unit-level covariates. Several years later, Huggins (1989)

and Alho (1990) used a slightly different – and ultimately more popular –

version of logistic regression to estimate the unit-level detection function

ψ(x) by assuming that the probability of capture of each unit on each list

is a logistic function of unit features x, such as age or sex in a human popu-

lation. Alho et al. (1993) applied logistic regression for an informal Census

coverage evaluation. The 2010 Census Coverage Measurement relied on lo-

gistic regression, unlike the previous coverage measurement programs which

incorporated covariates via post-stratification (Olson and Griffin, 2012).

The Huggins-Alho procedure relies on the Horvitz-Thompson (HT) es-
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timator of the population size n, which takes the form

ñ =
∑

i:Mi=1

Mi

ψ(xi·)
=

∑
i:Mi=1

1

ψ(xi·)
(2.1)

The HT estimator uses the detection probabilities ψ(xi·) only for the units

that are observed. If ψ is known, the HT estimator has some nice asymptotic

properties. It is easy to verify that Eñ = n. Moreover, ñ is consistent and

asymptotically normal if ψ(xi·) is uniformly bounded away from 0 and 1 for

all i ∈ N (Alho, 1990).

In some study designs (not in CRC), ψ(xi·) is known. However, to use

(2.1) for CRC, we must estimate the detection function ψ. The expression

that results from replacing ψ with an estimate ψ̂ in (2.1) is technically not

a HT estimator; some CRC authors refer instead to (2.1) as a “Horvitz-

Thompson style” estimator. We continue to refer to both forms with “HT”

for brevity.

Alho estimated ψ(xi·) only for the two-list case. For j = 1, 2, let θj be

a q × 1 vector of parameters, and θ := (θ1, θ2). Assume that the condi-

tional probability P (Yi· = yi·|xi·, θ,Mi = 1) is a logistic function of xi· and

parameters θ. Alho estimated θ by maximizing the conditional likelihood

function

L(θ|(xc··, yc··)) =
∏

i:mi=1

P (Yi· = yi·|xi·, θ,Mi = 1).

The probabilities in this likelihood become identifiable under the conditional
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independence structure of (1.4), which implies the following regression model

r(y|x) :=
[
logit−1(xθ1y1)y1(1− logit−1(xθ1y1))1−y1]×[
logit−1(xθ2y2)y2(1− logit−1(xθ2y2))1−y2] .

The detection probability is then ψj(x) = logit−1(xθj), for j = 1, 2, and

the assumption of conditional independence gives r((1, 1)|x) = ψ1(x)ψ2(x)

so that ψ(x) = ψ1(x) + ψ2(x) − ψ1(x)ψ2(x). Therefore, Alho’s maximum

likelihood estimator θ̂ leads directly to an HT estimator (2.1).

2.3.2 Nonparametric Regression Methods (Mth)

Logistic regression may require high polynomial orders in the covariates to

fit the data. For example, as a function of age, capture probabilities for the

Census tend to be very nonlinear, with a dip around ages 18 to 29 as children

leave their parents’ residences for school or work (Chen et al., 2010). In such

cases, a nonparametric approach might be more fitting [sic].

Chen and Lloyd (2000) developed a two-list method that is centered

around estimating the “dependence parameter” α satisfying αφ1φ2 =

p((1, 1)). Note that taking α = 1 is the same as assuming list indepen-

dence (1.5), and α > 1 is consistent with positive list dependence. If α is

known, a simple maximum likelihood estimation leads directly to a popu-

lation estimate. Specifically, with c0 = n − nc, one can reparameterize the



22 CHAPTER 2. LITERATURE REVIEW

multinomial likelihood implied by (1.6) as

L(φ1, φ2, n|c, α) ∝ n!

(n− nc)!
(1− φ1 − φ2 + αφ1φ2)n−nc ×

(αφ1φ2)c11(φ1 − αφ1φ2)c10(φ2 − αφ1φ2)c01 .

Chen and Lloyd estimated α externally (prior to performing maximum like-

lihood for the remaining parameters) using a rather bulky nonparametric

kernel density estimation framework that relied on the assumption of con-

ditional independence (1.3). Note that conditional independence does not

imply general independence between lists (1.5), and the parameter α quan-

tifies dependence only in the latter sense.

Chen and Lloyd (2002) also proposed a simpler nonparametric approach

with two lists. Suppose that r(y|x) is a regression model for (x··, y··), and

let ψ(x) be the detection function. Let ω(j) = K \ {j}. Assume conditional

independence (1.3). Then ψj(xi·) = P (Yij = 1|xi·) = P (Yij = 1|Yiω(j), xi·).

In particular, if I(−j) = ∪`=1,...,k:`6=jL` is the set of units that appear on

at least one list excluding the jth list, then ψj(xi·) = E(Yij |i ∈ I(−j), xi·).

Therefore, regressing Yij on xi· for only the observed units i ∈ I(−j) provides

an estimate ψ̂j(x) for j = 1, 2. Finally, conditional independence implies an

estimate ψ̂(x), and an HT estimator (2.1) is immediate.

2.3.3 Recent Methods with Covariates

Baker (1990), followed by Evans et al. (1994), incorporated covariates in

a log-linear model. Yip et al. (2001) extended the Huggins-Alho regression

framework to build a parametric regression model with time effects, hetero-
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geneity effects, and a simple behavioral effect (Mtbh). In a series of papers,

Hwang and Huggins developed a partially nonparametric generalization of

Yip’s model for closed populations by allowing capture probabilities and

behavioral effects to vary as nonparametric functions of auxiliary covari-

ates (Huggins and Hwang, 2007; Hwang and Huggins, 2007, 2011). The next

section references several additional ways of treating covariates.

2.4 Evolution of the Likelihood Function

This section reviews a few of the many ways that likelihood functions have

appeared in the CRC literature. We devote a whole section to the likelihood

function because of its usefulness for understanding how authors successively

developed CRC models to reflect increasingly nuanced assumptions.

Most probability models for the counts c of capture patterns fall into one

of three categories: hypergeometric, multinomial, or Poisson. A generalized

hypergeometric distribution was popular early on because of its obvious

similarity to performing a sequence of capture events in a finite population.

Darroch (1958) proposed applying the multinomial distribution for CRC,

noting that it seems more appropriate than the hypergeometric distribution

when the capture probabilities for each capture occasion (and not the sample

sizes) are reasonably assumed to be fixed a priori.

Finally, Sandland and Cormack (1984) treated c as set of independent

Poisson draws. Here, the model is definitively incorrect, by assigning nonzero

probability to the event that the sum of the counts adds up to more than the

population size n. Despite this potential pedagogical twist, parameter esti-
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mates are equivalent under the Poisson and multinomial likelihoods, while

certain asymptotic expansions of the variance lead to slightly more conserva-

tive prediction intervals under the Poisson model (Sandland and Cormack,

1984). The Poisson model in this setting could be a good example of a model

that is wrong and yet useful, in accordance with the mantra.

The remainder of this section will build on the multinomial framework.

For any population with independence between units (i.e., where the capture

of one unit does not depend on the event of capture of any other unit), a

fully general multinomial likelihood function is

P (Y·· = y··) =
∏

i∈(1,...,n)

p(i, yi·). (2.2)

Note that (2.2) assumes nothing regarding list-independence or indepen-

dence of lists at the unit-level. If r(y|x) is a regression model for p(i, yi·),

then (2.2) becomes (1.7). If r(y|x) is constant in x, the equation (2.2) be-

comes

P (Y·· = y··|x··) =
∏

i∈(1,...,n)

p(yi·) =
∏
y∈Yk

p(y)cy = P (Y·· = y··|p(Yk)). (2.3)

Hence, the likelihood of the multinomial parameters p := p(Yk), given the

extended data, is

L∗(p|Y·· = y··) ∝ P (C = c|p) =
n!∏

y∈Yk cy!

∏
y∈Yk

p(y)cy .

In applications, the extended data (y··, x··) are not observed. However, the
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full likelihood function can be written in terms of the observed data (yc··, x
c
··)

by taking n to be a parameter of the likelihood:

L(n,p|c \ c0) =
n!

(n− nc)
∏
y 6=0 cy!

p(0)n−nc
∏
y 6=0

p(y)cy . (2.4)

Estimating n by maximizing L results in a consistent estimator if the cap-

ture probabilities for unobserved units are the same as for observed units.

Although such homogeneity may seem improbable, the bulk of CRC work

rests on some version of this assumption, for lack of a better alternative. See

Chapter 4 for a deeper discussion on this point.

Since L has too many parameters to be identifiable (see Chapter 4), it

is common to replace p with a parameterization p(θ) of a dimension that

is small enough to allow identifiability. Hence p(y) = p(y|θ). Let π(y|θ) =

p(y|θ)/(1− p(0|θ)). Following Sanathanan (1972a), let

L1(θ|c \ c0) =
nc!∏
y 6=0 cy!

∏
y 6=0

π(y|θ)cy ,

and

L2(n|nc, θ) =
n!

nc!(n− nc)!
p(0|θ)n−nc(1− p(0|θ))nc . (2.5)

Here, L1 is called the conditional likelihood function because it conditions

on the observed part of the data cross-classification c \ c0, and L2 is called

the marginal likelihood. Note that

L(n, θ|C = c) = L1(θ|c \ c0)L2(n|nc, θ). (2.6)
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Let nL denote the estimate of n obtained by jointly maximizing L(n, θ|C =

c). Solving this optimization is not always easy, and a common method of

approximating nL is to maximize L1 and L2 in sequence, as follows: Let θL1

denote the maximizer of L1, and let nL1L2 denote the estimate of n that

is obtained by plugging θL1 into L2 and maximizing over n. Sanathanan

(1972a) showed that, under mild conditions, the asymptotic distributions of

nL and nL1L2 are equal. Thus,

nL1L2 ≈ nL (2.7)

when the true population size n is large, and several authors cited this

result to justify the use of nL1L2 in the context of log-linear models. We

refer to (2.7) simply as Sanathanan’s Theorem, although her original result

was considerably more nuanced.

Beginning with equation (2.3), we developed the equations above with

the assumption of homogeneity (i.e., r(y|x) is a regression model that is

constant in the covariates x). Of course, the point of having a regression

model is to allow r(y|x) to vary in x, thereby modeling heterogeneity. In

this vein, several recent authors proposed maximum-likelihood estimation

for parametric regression models, such as the logistic model of Huggins/Alho.

These approaches require a more nuanced look at the likelihood function.

Returning to (2.2), assume that r(y|x) = r(y|x, θ) is a parametric regression

model. The analogue of (2.4) for the regression context is

L(n, θ|(xc··, yc··)) =
∏

i∈(1,...,n)

r(yi·|xi·, θ). (2.8)
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Note that L(n, θ|(xc··, yc··)) cannot be evaluated, since xi· is not observed for

all i > nc. Nevertheless, let π(yi·|xi·, θ) := r(yi·|xi·, θ)/(1 − r(0|xi·, θ)), and

define

L1(θ|(xc··, yc··)) =
∏

i∈(1,...,nc)

π(yi·|xi·, θ)

and

L2(n|nc, θ) =

 ∏
i∈(1,...,nc)

(1− r(0|xi·, θ))

 ∏
i∈(nc+1,...,n)

r(0|xi·, θ)

 .

It is easy to verify that (2.8) decomposes as the product L1L2. Having ob-

tained θL1 as the MLE of L1, there is no clear role of L2 in estimating n,

since xi· is not observed for all i > nc. (This situation differs from the previ-

ous L1L2 decomposition in that p(i,0) may now vary over i, via dependence

on covariates xi, instead of being fixed at p(0|θ).)

Since L2 is not directly estimable, we seek a method of estimation that

relies only on the conditional likelihood L1 and its corresponding maximum

likelihood estimate θ̂. The most common solution is to plug 1 − r(0|xi·, θ)

in for ψ(xi·) in the HT estimator (2.1). Huggins and Hwang (2011) charac-

terized the conditional likelihood in terms of a generalized linear model, for

computational convenience in likelihood maximization. A related approach

is to estimate θ based on the partial likelihood instead of the conditional

likelihood, as proposed by Stoklosa et al. (2011) and Stoklosa (2012).

Whereas most HT estimators assume that each xi· is fixed, some non-

HT models treat xi· as a random variable. Following the Bayesian data

augmentation scheme of Royle et al. (2007) and Royle (2009), let the θ



28 CHAPTER 2. LITERATURE REVIEW

in (2.8) be renamed as θ1, and assume that the rows of x·· come from a

sequence of I.I.D. random variables from some distribution g(x, θ2), for some

parameter vector θ2. Then (2.8) becomes

L(n, θ|(xc··, yc··)) =
∏

i∈(1,...,n)

r(yi·|xi·, θ1)g(xi·|θ2). (2.9)

Pledger (2000) maximized (2.9) directly, treating x·· as a latent covariate

indicating random assignment to one of several possible probability models

in a mixture.

2.5 Application and Simulation

Table 2.1 summarizes a selection of previously analyzed data sets. Far from

being exhaustive, the table provides only a sample from the wide range of

settings in which CRC is relevant. In fact, if another author publishes a

similar list of applications independently, the resulting pair of lists could be

amenable to a CRC study.

Table 2.2 summarizes a large fraction of the simulation experiments that

have been published to date. (Recall that φj(i) denotes the probability of

the ith unit being captured on the jth list; the column with this heading

gives approximate ranges of φj(i) over all i, j when this can be easily de-

duced from the source.) Assuming that we did not miss a large chunk of the

literature, it is clear from the table that simulations have not been partic-

ularly broad in scope. Few simulations have incorporated covariates, only

one simulation involved a population larger than 2000, and few simulations
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Table 2.2: A selection of simulation experiments

Reference k n (≈) φj(i) Covariates Type
Chao (1987) 5-10 200-400 0.05-0.10 NA Mth

Yip (1991) 5 150 0.2-0.4 NA Mt

Chao et al. (1992) 5-10 100-400 0.2-0.5 NA Mth

Lloyd (1992) 5-10 50-500 - NA -
Evans and Bonett
(1994)

2-4 25-100 0.3-0.9 NA Mtb

Norris and Pollock
(1995)

10 50 0.6 NA Mbh

Norris and Pollock
(1996a)

10-20 50-100 - NA Mbh

Chao and Tsay (1998) 3 200 0.7 NA Mtbh

Fienberg et al. (1999) 6 2000 0.7 NA Mth

Pledger (2000) 10-20 50-100 0.1-0.5 NA Mh

Chen and Lloyd (2000) 2 500-1000 0.2-0.6 norm. mix. Mth

Yip et al. (2001) 5 100 0.5 normal Mbh

Basu and Ebrahimi
(2001)

4 1000 - - -

Dorazio and Royle
(2003)

5-10 50-2000 0.6 NA Mh

Pledger (2005) 6 100 0.1-0.9 NA Mh

Manrique-Vallier and
Fienberg (2008)

4 2000 0.035-0.7 mix. memb. Mth

Chen et al. (2010) 2 281× 106 0.95 many Mth

Stoklosa et al. (2011) 7-10 100-400 - unif., bern. Mh

Hwang and Huggins
(2011)

6 200 - unif., bern. Mtbh

have used exactly three lists.

Of particular note is the simulation by Chen et al. (2010) which at-

tempted to reflect the population of the United States on April 1, 2000,

based on population characteristics that were consistent with the 2000 cen-

sus count. The simulation is large and complex, involving 281,421,906 per-

sons, 51 subregions, and 5 covariates.



Chapter 3

Log-linear Models

This chapter introduces traditional log-linear models that do not include

auxiliary covariates. Our method of extending traditional log-linear models

to incorporate auxiliary covariates does not appear until Chapter 5.

3.1 Brief Review

Given any function from the set of capture patterns into the real numbers,

f : Y → R, with
∑

y exp f(y) = 1, one can model the multinomial capture

probabilities in terms of the capture pattern: log p(y) = f(y). If f is a

linear function of a vector of parameters u, then exp(f(y|u)) is a log-linear

parameterization. A log-linear model exists to exactly fit any multinomial

probability array p(Y). Given a vector of parameters u = (u0, u1, u2, u12), a

simple log-linear model is

log p(y|u) = u0 + u1y1 + u2y2 + u12y1y2 (y ∈ Y), (3.1)

31
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where yj denotes the jth element of the vector y (j = 1, ..., k). The param-

eters u1, u2 describe list effects, and u12 represents the interaction between

the first and second list. If there are more than two lists, additional parame-

ters may describe the other list interactions. For example, with k lists, u1···k

denotes the highest-order list interaction.

One way to estimate parameters is to maximize the likelihood function

corresponding to the assumption that c is a realization of a multinomial

random variable with n trials from the probability array {p(y|u)}y∈Y . The

multinomial conditional likelihood (2.4) with the dependence on the log-

linear parameters made explicit (and switching notation by replacing θ with

u) is

Lc(u|c \ c0) =
nc!∏
y 6=0 cy!

∏
y 6=0

π(y|u)cy ,

where

π(y|u) := p(y|u)/(1− p(0|u)). (3.2)

Maximizing Lc gives parameter estimates û which we plug into the marginal

likelihood (2.5) and maximize over n, following Sanathanan’s Theorem (2.7).

The result is approximately equal (within a rounding error) to

n̂ := nc + ncπ(0|û). (3.3)

As an alternative to using the multinomial distribution, one may as-

sume that c is a realization of a collection of independent Poisson distribu-
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tions. The parameter estimates following Sanathanan’s Theorem (2.7) using

a multinomial likelihood are the same as the estimates under the Poisson

model, but asymptotic variance expressions differ substantially (Sandland

and Cormack, 1984). Our discussion of log-linear models for the remain-

der of this chapter relates only the conditional multinomial approach unless

stated otherwise, and accordingly we build models conditionally, in terms of

π(·) instead of p(·) as in (3.2). Cormack and Jupp (1991) elaborate on the

generally minor differences between conditional multinomial, unconditional

multinomial, and Poisson modes of inference.

The cross-classification c has only 2k − 1 observable cells, and a unique

maximizer of the likelihood can exist only if the model contains at most 2k−1

parameters. Thus, an identifiable model with exactly 2k − 1 parameters is

called saturated, providing a perfect fit for the observed relative frequencies

in the cells of c. With only two lists, one may take u12 := 0 in (3.1) to get a

saturated hierarchical log-linear model, and maximizing the conditional and

marginal likelihoods leads to the Petersen estimator for the missing cell,

ĉ00 := n̂− nc = c10c01/c11.

For three lists, the most general log-linear model presented in Fienberg

(1972), in our notation, is

log π(y|u) =u0 + u1y1 + u2y2 + u3y3 + u12y1y2

+ u13y1y3 + u23y2y3 + u123y1y2y3 (y ∈ Y).

(3.4)

For any capture pattern y ∈ Y and ω ∈ Ω, define the product indicator

Iω(y) =
∏
j∈ω yj , where I∅(y) := 1. We succinctly generalize the log-linear
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models (3.1) and (3.4) for any number of lists as

log π(y|u) =
∑
ω∈Ω

uωIω(y). (3.5)

Like model (3.1) for two lists, model (3.4) for three lists has one too

many parameters; it is necessary to fix one of the u-terms as constant

prior to estimating the remaining terms to have a unique maximum con-

ditional likelihood solution. The standard choice (when k = 3) is to take

u123 := 0 in model (3.4) and allow the other seven parameters to vary

subject only to the probability constraint
∑

y p(y|u) = 1, or, equivalently,∑
y 6=0 π(y|u) = 1. Then (3.4) is saturated in the sense that a vector

u = (u0, u1, u2, u3, u12, u23, u13) exists with π(y|u) being exactly equal to

π(y) := p(y)/(1− p(0)) (y 6= 0) for every possible choice of multinomial cell

probabilities {p(y)}y∈Y .

The classification of log-linear models into the form Mtbh or one of its

sub-forms is partially a matter of interpretation and context. When k = 2,

the saturated hierarchical model has only enough terms for a separate effect

for each list (Mt). When k ≥ 3, we can include interaction terms. The

interpretation of the interaction terms is ambiguous because interactions

may result from list dependence induced by heterogeneity or from unit-level

list dependence. It is impossible to distinguish between these two causes of

interaction without additional assumptions or information.
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3.2 Several Important Log-linear Models

Removing terms from (3.5) gives several submodels. For example, removing

all interaction terms results in an independence model for k lists, so that

the probability of capture on each list is independent of the event of capture

on any other list:

log π(y|u) =u0 + u1y1 + · · ·+ ukyk. (3.6)

Requiring that the list effects are all equal to a single parameter,

uΣ := u1 = · · · = uk, further constrains the independence model (3.6) to get

a model of independence with equal catch-ability across lists, an extremely

sparse model with only one free parameter:

log π(y|u) = u0 + uΣ

k∑
j=1

yj . (3.7)

A version of (3.7) appeared in Moran (1951), and perhaps most recently as

model M0 in Rivest and Lévesque (2001).

For any submodel of (3.5) with the highest-order interaction term set to

zero (i.e., u1···k := 0), eliminating all of the explicit u-terms from the model

equations leads to the identity

π(0|u) =

∏
y∈O π(y|u)∏
z∈E π(z|u)

, (3.8)

where O is the set of capture patterns with entries summing to an odd num-

ber, and E is the set of nonzero capture patterns summing to an even number
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(Fienberg, 1972). To use (3.8) to estimate the missing cell, we substitute the

maximum likelihood estimate û in for u. Section 3.6 gives a simple proof of

(3.8).

The saturated model (3.5) is particularly convenient because the model

always fits the observable data exactly, removing the need to estimate nui-

sance parameters. Combined with (3.3), the formula (3.8) becomes

ĉ0 =

∏
y∈O cy∏
z∈E cz

. (3.9)

(An early variant of this formula appears in Bartlett (1935)). Unfortunately,

the resulting estimate of the population size can be extremely unstable due

to overfitting, since any of the denominator terms approaching zero causes

the estimator to blow up.

To obtain stability in a heuristic way that does not require selection of a

specific parsimonious submodel, we propose mixing the saturated model

(3.5) with the two-parameter independence model (3.7), as follows. Let

Π(û) = [π{y|û} : y 6= 0] denote the array of conditional multinomial proba-

bilities implied by model (3.7) given parameter estimates û = (û0, ûΣ). Let

ν = miny 6=0cy. Define a mixing constant α ∈ (0, 1) as

α =
ν

1 + ν
,

and define a weighted average

Π(û, α) := (1− α)Π(û) + αΠ̂, (3.10)
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where the linear combination of arrays is evaluated element-wise, and Π̂ =

c/nc the empirical frequencies of the capture patterns. Plugging Π(û, α)

into the right-hand side of (3.8) gives an estimate for π(0|u). Note that the

constant α is small, putting greater weight on the sparse fit Π(û), when

sample size nc is not large enough to stabilize the smallest element of the

saturated fit Π̂. We call (3.10) the adjusted saturated model. We do not

study this model in detail in this thesis, suggesting it only as a topic for

future study. It may be fruitful to experiment with modified definitions of

α, and to contrast results with the comparably ad-hoc “robust” estimation

adjustment presented in Stoklosa and Huggins (2012).

Finally, we mention a log-linear treatment of heterogeneity that arises

from the educational testing model of Rasch (1960). Sanathanan (1972b)

applied the Rasch model in a CRC setting in which the lists are assumed

to be independent at the unit level but dependent in the aggregate due to

heterogeneity. The model is built around the equation

logit(pij) = ti + βj , (3.11)

where pij is the probability that the ith unit is captured on the jth list, ti is

an individual effect, and βj is a list effect. Treating the individual effects and

list effects as fixed or as random in various ways leads to diverse log-linear

models that are all grounded in (3.11). Fienberg and Meyer (1983) gives a

good introduction to these approaches, and Fienberg et al. (1999) develops

the Rasch model from a Bayesian perspective.
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3.3 Variance

Extensive derivations of asymptotic variance formulas pertaining to log-

linear estimates of population size are in Darroch (1958), Fienberg (1972),

Sanathanan (1972a), and Sandland and Cormack (1984), to name a just

few. This section does not contain any new formulas. Instead, we examine

an existing formula for insights into the causes of high variance, and we test

this formula with a simulation experiment.

To be clear, the variance that we wish to estimate is conditional on n

but not conditional on nc. Specifically,

V ar(n̂) := V ar(n̂|n) = E(V ar(n̂|nc, n)) + V ar(E(n̂|nc, n)),

where n is fixed and nc is random. Fienberg (1972) used the delta method

to derive several asymptotic variance formulas for specific hierarchical log-

linear models. In our notation, his approximation for the variance in the

saturated model is

V̂ ar(n̂) = V̂ ar(nc + ĉ0) ≈ ĉ2
0

 1

ĉ0
+
∑
y 6=0

1

cy

 (3.12)

Formulas for the variances of the estimators corresponding to the various

hierarchical submodels of the saturated log-linear model are similar except

for having different sets of denominators. Fienberg’s derivation of (3.12)

relies on the assumption that the estimate of the population size is correct,

i.e., n = nc + ĉ0.

The variance approximation (3.12) is undefined when the observed count
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cy for any of the capture patterns is zero. In fact, due to the potential for

zeros in the denominator of (3.9), the expectation and variance of the esti-

mator n̂ is technically not defined. Thus, in all of our variance computations,

we implicitly condition on the event that there is at least one observation of

every capture pattern. This condition is not of much importance when each

of the multinomial probabilities p(y) is not close to zero and n is large.

We use (3.12) to deduce several qualitative statements regarding V ar(n̂).

First, it is clear that the size of the variance depends strongly upon the esti-

mate of the missing cell ĉ0. A smaller missing cell is associated with a smaller

variance. Second, holding ĉ0 fixed, the count cy in any cell approaching 0

causes the variance to explode. Third, let z denote a nonzero capture pat-

tern, and hold cy fixed for every other nonzero capture pattern y 6= z. Then,

the effect on V ar(n̂) (and on ĉ0) of letting cz approach zero depends upon

whether z is an “even” or “odd” capture pattern, through the formula (3.9).

Specifically, V ar(n̂) and ĉ0 both explode if z is an even capture pattern, and

they tend toward zero if z is an odd capture pattern.

The variance approximation (3.12) is only a first order Taylor approxima-

tion, and so we are interested in evaluating its performance via simulation.

We study the variance of the saturated-model estimator n̂ for the three-

list case when certain multinomial probabilities approach zero under several
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basic constraints:

∑
y

p(y) = 1 (3.13)

p(000) =
p(111)p(100)p(010)p(001)

p(110)p(101)p(011)
(3.14)

p(000) = 0.2 (3.15)

The first constraint (3.13) is the basic probability constraint. We require

(3.14) so that the saturated log-linear model is appropriate for our simulation

as in (3.8). We chose the size of p(000) in (3.15) arbitrarily; the decision

to hold p(000) constant across simulations is so that no variability in the

overall detection rate 1−p(000) can confound the effect of varying the other

multinomial probabilities.

For a “base case”, let p(111) = p(000), and take p(y) = 0.1 for all

other capture patterns, and observe that these choices satisfy the constraints

(3.13)-(3.15). If we set p(110) = a with 0 < a < 0.1, the constraints are

no longer satisfied, unless we also shift probability mass across the other

possible capture patterns in ways that satisfy the constraints. Doing this in

a general way analytically turns out to be hard, as the constraints are both

additive (3.13) and multiplicative (3.14). However, noting that 0.1 + (0.1−

a)/2 = 0.15 − a/2, it easy to verify that the following simple modification

scheme satisfies the constraints:

p(000) = p(111)
a(0.15− a/2)(0.15− a/2)

a(0.15− a/2)(0.15− a/2)
. (3.16)

That is, we can set p(110) = a, a small number, if we also take p(100) = a
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and set the remaining probabilities equal to 0.1 + (0.1− a)/2.

Our simulation looks at every combination of the following sets of spec-

ifications:

1. Let n equal 500 or 1000.

2. a ranges over 0.005 to 0.07 in intervals of 0.005.

For each combination of n and a, we simulate a three list CRC experiment

according to the multinomial probabilities determined by the constraints

and (3.16). For each simulation, we use the saturated log-linear model to

estimate c0 and the corresponding variance approximation (3.12). We run

10000 replications of the experiment, generating estimates n̂(1)...n̂(10000) and

V̂ ar(n̂)(1)...V̂ ar(n̂)(10000). We compute the sample variance of the popula-

tion size estimates to obtain a simulation estimate of V ar(n̂); the dashed

curve in each panel of Figure 3.1 indicates the square root of this estimate,

for the various values of the small cell probability a. The smoothness of this

curve hints that the simulation result is rather accurate at 10000 replica-

tions.

To evaluate the usefulness of (3.12), we compute the 25th and 75th

percentiles of the 10000 simulation draws from the sampling distribution

of V̂ ar(n̂), and subsequently take square roots to convert to the standard

deviation scale. The vertical bar in each panel of Figure 3.1 indicates the

interquartile range of the estimates V̂ ar(n̂)(1)...V̂ ar(n̂)(10000) for each small

cell probability. Based on the proximities of the dashed curved to the centers

of the vertical bars, the distribution of the square root of (3.12) appears

to be centered near the truth when p(100) = p(110) is moderately small,
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but less well-centered for extremely small values of p(100) = p(110). By

comparing the second panel against the first panel, it appears that a large

population size (i.e., n = 1000 versus n = 500) improves the centered-

ness of the distribution of (3.12) around our simulation estimate of the true

variance.
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Figure 3.1: The vertical line segments indicate the interquartile range
of the square root of the variance approximation (3.12) over 10000
simulations at each selected small cell probability. The dashed curve
reflects the empirical standard deviation of n̂ as estimated from the
saturated log-linear formula (3.9).

One oddity in the simulation results is in the left-most endpoint of the

first panel of Figure 3.1, where there appears to be an “elbow” in the em-

pirical variance. We attribute this to the occurrence of zero-cell outcomes.

Specifically, we discarded every experiment that had cy = 0 for any nonzero

capture pattern y, since (3.12) is undefined. These discards were most fre-

quent for the smaller population size (n = 500) and when p100 = p110 were

particularly small. Here, the discard rate was on the order of 15%.
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3.4 Automated Model Selection

An appropriately parsimonious model provides degrees of freedom for testing

model fit and reduces the variance of the corresponding population size

estimate n̂. Selecting the best model from the set of submodels of (3.5) is

challenging when the number of lists k is large, as there is a very large

number of candidate models. Even worse, the “best” log-linear model is not

necessarily identifiable in the most general setting, as we discuss in Chapter

4. We proceed in this section by assuming that the highest-order interaction

u1···k is zero.

We adopt two common conventions for simplifying the model selection

problem. The first is to restrict attention to hierarchical models. The second

is to put a lower bound on model complexity by considering only models

which include all main effects u1, ..., uk.

This section focuses on automated model selection methods because of

their necessity in our subsequent work in Chapter 5. In contrast with auto-

mated methods, Fienberg (1972) outlined a model selection strategy based

on likelihood-ratio tests, restricting attention to hierarchical models. Fien-

berg’s approach was nuanced and contained subjective elements that were

not necessarily amenable to automated model search. Nevertheless, Burn-

ham et al. (1995) automated a likelihood-ratio test model selection strategy

and compared it, using different critical levels, against several information-

theoretic strategies, concluding that information criteria are generally prefer-

able to likelihood ratio tests for model selection.
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3.4.1 Akaike Information Criterion

Model scoring criteria, such as the Akaike Information Criterion (AIC), pro-

vide an especially simple way automate model selection among [potentially

non-nested] log-linear models. Several recent CRC studies, such as Aaron

et al. (2003), Murphy (2009), and El Adssi et al. (2012), used the AIC. De-

spite its common use, some papers have argued that the AIC tends to overfit.

Burnham and Anderson (2004) reviews the AICc, a “corrected” version of

the AIC that is intended to avoid overfitting; they seem to state that the

AICc is always at least as good as the original AIC, and therefore should be

used by default.

It is easy to err in the implementation of the AIC or AICc, due to

some confusing notation in the literature. We will review the formulas for

both criteria here while attempting to clarify the confusing points. Let K

denote “the number of estimable parameters in the approximating model”

(Burnham and Anderson, 2002). Then we have

AIC = −2 logL+ 2K, (3.17)

where L is the likelihood function, and

AICc = −2 logL+ 2K +
2K(K + 1)

N −K − 1
, (3.18)

where N is the number of data points (i.e., N = nc for our CRC context).

Akaike formally derived the AIC as an estimate of the Kullback-Leibler dis-

tance between the approximating model and a hypothetical true generating
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model. Intuitively, a model is good when the negative log-likelihood is small,

and so we prefer models with a small AIC score. The +2K term in the AIC

acts as a penalty on overfitting, and the additional term in the AICc is a

extra penalty that disappears as N becomes large relative to K.

The first potential source of confusion is that, although the independence

model (3.6) formally has k + 1 parameters, only k of these parameters are

“estimable” because the first parameter is entirely determined by the con-

straint that the multinomial sampling probabilities must sum to 1. Thus,

we have K = k for model (3.6).

The second potential source of confusion stems from a change in nota-

tion that occurred around 1997. Early discussions of the AICc followed the

original development by Hurvich and Tsai (1989), which was in the context

of a linear regression. Here, m was introduced as the “dimensionality of the

approximating model,” but (to the surprise of this author) m 6= K. The

reason is that the variance of the residuals was included by default as an

estimated parameter, but not counted in m, so that K = m + 1. Thus, for

the reader that is not alerted to the difference between K and m, the final

penalty term in the AICc can [incorrectly] seem to be

2(K + 1)(K + 2)

N −K − 2

in many sources prior to 1997.

The AIC/AICc is only one of a large number of model scoring criteria,

including the criteria known as the QAICc, TIC, BIC, MDL, and HQ (An-

derson et al., 1994; Anderson and Burnham, 1999). This thesis primarily
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applies the AICc, as it seems to improve upon the AIC, which is already

prevalent in the literature. More importantly, the AICc performed well in

the studies of Burnham and Anderson and in our simulations in Section

3.4.4.

3.4.2 Bayesian Information Criterion

The Schwarz information criterion (Schwarz, 1978), or Bayesian information

criterion (BIC), is similar in form to the AIC:

BIC = −2 logL+K log nc (3.19)

Section 4 of Burnham and Anderson (2004) argues that the AIC and BIC

are fundmentally similar, with the key difference being that the BIC uses

a flat prior over the candidate models, while the AIC uses an informative

prior. Hook and Regal (1997) used “internal validity analysis” to compare

the usefulness of the AIC (evidently not the AICc) versus the BIC in a CRC

setting, finding the AIC to be slightly preferable.

Draper (1995) suggested, on the basis of a technical point in the deriva-

tion of the BIC, that another reasonable criterion is

BICπ = −2 logL+K log
nc
2π
. (3.20)

We hypothesize that no simple criterion will be optimal for all situations;

the performance of each criterion depends on the simulation design. Section

3.4.4 contrasts the AICc, BIC, and BICπ with the goal of characterizing the
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scenarios in which each criterion performs best.

3.4.3 Model Averaging

Model selection as a discrete process, either including or excluding each

parameter, is somewhat unsatisfying. It intuitively seems preferable to in-

clude model selection uncertainty in the population estimate by somehow

weighting the estimates of all reasonable models according to their informa-

tion criterion scores, instead of picking a single best model. A simple model

averaging method using the AICc, BIC, or BICπ appears in Hook and Re-

gal (1997), Burnham and Anderson (2002), and Wagenmakers and Farrell

(2004). We briefly state the basic method.

Suppose m models are under consideration. Let s(IC) denote the vec-

tor of length m that contains the model scores based on some information

criterion. Let ∇s(IC) = s(IC)−min s(IC) denote the vector of differences

between each entry of s(IC) and its least entry. In ordinary use of the in-

formation criterion, the entry of ∇s(IC) that is equal to 0 corresponds to

the preferred model. To generalize beyond this to an average across models,

define a vector of model weights with ith entry

Wi =
exp(−1

2∇s(IC)i)∑m
i′=1 exp(−

1
2∇s(IC)i′)

(i = 1, ...,m)

The weights clearly sum to 1. If ĉ0(i) is the estimate of the missing popula-

tion size for the ith model, then the model average estimate of the population
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size is

ĉ0(IC) =
m∑
i=1

Wiĉ0(i). (3.21)

3.4.4 Information Criterion Performance

The performance of model selection methods is difficult to measure because

any specific method tends to perform well in certain situations but not oth-

ers, and there are infinitely many situations to consider. We use simulation

to assess the performance of the AICc, BIC, and the BICπ across a carefully

chosen set of generating models with k = 3 lists.

We define several generating models in terms of a vector of six log-linear

coefficients u = (u1, u2, u3, u12, u13, u23), as in (3.4), omitting the highest-

order interaction term u123. Given u, we typically leave unstated the inter-

cept term u0 in (3.4). For example, the vector u = (1,−0.5,−1, 2, 0,−2)

represents the model

log p(y|u) = u0 + y1 − 0.5y2 − y3 + 2y1y2 − 2y2y3,

where the intercept is uniquely determined by the constraint that the multi-

nomial probabilities sum to 1 (here, we found u0 ≈ −2.92).

Figure 3.2 explores the performance of information criterion in terms of

the sampling distribution of the ratio R := ĉ0/c0, the estimated number of

missing units to the actual number of missing units. We use each of several

generating models, indicated by u at the top of each panel, to conduct 1000

CRC experiments. For the data generated in each experiment, we select and
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fit the best model from the eight hierarchical submodels of (3.4) that con-

tain all main effects (i.e., u1, u2, u3) and no highest-order interaction term.

We do the model selection and estimation in six ways for each experiment,

corresponding to the AICc, BICπ, BIC, weighted AICc, weighted BICπ, and

weighted BIC respectively, where each weighted version is a model average

(3.21). Figure 3.2 shows the mean and interquartile range of R for each

model selection method and each of several population sizes.

We chose the set of generating models to “span” a large subspace of

the set of feasible generating models. The first column of panels in Fig-

ure 3.2 looks at several different sets of interaction terms: no interactions,

one interaction, two interactions, all interactions, and a mix of positive

and negative interactions. In each of these cases, the main effects satisfy

u1 = u2 = u3 = a1, and we used numerical techniques to pick the value of

a1 such that p(0|u) = 0.2, or equivalently, u0 = log(0.2). The second column

of panels is the same except that the main effects are no longer constant;

(u1, u2, u3) = (a2, 2a2, 3a2), where again we chose a2 to satisfy p(0|u) = 0.2.

Figure 3.2 contains important lessons. The first is that the quality of

estimates typically improves with increasing population size. For small pop-

ulations, the estimates are extremely right skewed, with the median value of

R often well below 1 even as the bias is substantially positive in some cases.

The second lesson is that the performance of each model selection criterion

depends strongly upon the generating model. The median of the ratio R is

closest to 1 for the AICc (first vertical line) with small populations in the

panels that are second and third from the top. The BIC is the clear winner

in terms of having an average value of R that is closest to 1 in the panels
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Figure 3.2: Each panel illustrates aspects of model selection perfor-
mance for a specific generating model. The analyses is done at each of
several population sizes; n = 100, ..., 800. Each vertical axis indicates
the ratio ĉ0/c0, so that a “perfect” estimate would fall on the hori-
zontal dashed line at 1 in each panel. For a given generating model
u and population size n, the analysis is summarized with a cluster of
six vertical lines with corresponding dots. Each vertical line represents
the interquartile range for a population estimate across 1000 CRC ex-
periments. Similarly, the black dot corresponding to each vertical line
marks the mean ratio ĉ0/c0 over 1000 experiments. The six vertical
lines for each n within each panel correspond to the AICc, BICπ, BIC,
weighted AICc, weighted BICπ, and weighted BIC respectively.
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that are first and second from the top. The BICπ typically produces esti-

mates between the AICc and BIC. The bottom panels show seriously biased

estimates for every model selection method, with R ≈ 2 even for large n;

note here that the vertical axis is on a larger scale to allow space to display

the estimates.

The third lesson of Figure 3.2 is potentially surprising. Model averaging

typically produces only a slight improvement over the estimate from the best

model. We see this by comparing the 4th - 6th vertical lines in each group

against the 1st - 3rd. This finding is somewhat consistent with the findings

of Hook and Regal (1997).

The results in the bottom panels of Figure 3.2 are alarmingly poor. Upon

closer study, it turns out that the multinomial probabilities that correspond

to this model include two especially small values corresponding to “even”

capture patterns. We speculate that variation in the estimates of these small

values tends to inflate the population size estimates, since these are denom-

inator terms in (3.8).

To explore the importance of small entries of c, Figure 3.3 illustrates the

performance of the AICc for three different generating models, with popu-

lation sizes ranging from exp(5) ≈ 150 to exp(10) ≈ 22000. From the first to

third panel of Figure 3.3, the generating models have progressively more ex-

treme values of log-linear coefficients, such that the set of multinomial prob-

abilities includes entries of diminishing size. The third panel corresponds to

the most extreme generating model. Here, the smallest multinomial prob-

abilities are so small that there were no occurrences of at least one of the

capture patterns for most of the simulation experiments with n < exp(8).
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We discarded all simulations that resulted in a zero in c, because the maxi-

mum likelihood estimates for the saturated log-linear model do not exist in

these cases.

A fascinating observation from Figure 3.3 is that the selection of an

incorrect model (i.e., a model that does not match the generating model as

far as the choice of nonzero u-terms) is not related in an obvious way with

the quality of the resulting estimates, as the red points are mixed evenly

with the black points in the figure. This observation must be interpreted

carefully, however, as we do not see the counter-factual. We expect that the

estimates based on the generating model will, on average, be better than

the estimates corresponding to red dots.

As a case study, we examine a particular data set that was generated

according to the model in the third panel of Figure 3.3. With a population

size n = 1709, there were observed 703 units, with capture patterns sum-

marized in Table 3.1. This case is troubling because every model selection

method that we test (and, in addition, the AIC, uncorrected) points to the

model with only the interaction term u23 (in addition to the main effects),

corresponding to the estimate ĉ0 = 10088, approximately 10 times bigger

than the truth. Upon careful examination, we find that the u23 model is

indeed nearly a perfect fit to the data, with goodness of fit test statistic

∑
y 6=0

(cy − ĉy)2

ĉy
≈ 0.1.

The true model, u12 + u13, has a slightly better fit, but one cannot “blame”

the information criterion for opting for the more parsimonious model, given
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Figure 3.3: The title of each panel indicates the coefficients of the log-
linear model that we used to generate the simulated data. Each point
in each plot corresponds to one entire simulated capture-recapture
experiment with subsequent model selection. The vertical axis shows
the ratio ĉ0/c0. With increasing population size (horizontal axis), the
accuracy of both model selection and estimation of the missing cell
increases. However, notice that the volatility depends not only on the
population size, but also on the size of the smallest frequencies in the
set {π(y|u)}y 6=0 corresponding to the generating model. These smallest
values are especially small for the center plot, and still smaller in the
bottom plot, resulting in the extreme volatility. This hints that the
AICc is vulnerable to overfitting or misfitting in special circumstances.
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its excellent fit.

Any shock value of the preceding example must be tempered with the

observation that it is an extreme case. Under the assumed generating model,

an outcome with a nonzero c111 cell occurs only about 7 percent of the time

(see parenthetical numbers in Table 3.1). For the other 93% of the time,

c111 = 0, removing the option of using maximum likelihood to estimate the

entire standard set of log-linear models.

Table 3.1: Simulated data from a single replication of the experiment
in the third panel of Figure 3.3. The values in parentheses reflect the
expected values for each cell according to the generating model, given
that the true population size was 1709.

In List 3 Not in List 3

In List 2
In List 1 1 (0.074) 5 (6.7)

Not in List 1 55 (49) 215 (221)

Not in List 2
In List 1 4 (2.5) 208 (221)

Not in List 1 215 (221) 1006 (989)

3.4.5 The AICc Gets Rasch

A major potential weakness of log-linear models is that they assume a ho-

mogeneous population. In practice, it is often reasonable to suppose that

the probabilities of capture vary widely across population units. The Rasch

model (3.11) offers a mechanism for including certain types of heterogeneity

within a log-linear framework. This section deals with a very specific de-

velopment of the basic Rasch framework. Specifically, Darroch et al. (1993)
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derived the model

log π(y|u) = u+ u1y1 + u2y2 + u3y3 + uΣ

 k∑
j=1

yj

2

. (3.22)

If uΣ is constrained to be greater than zero in accordance with basic log-

moment inequalities, then (3.22) can be interpreted as the intersection of

the Rasch model with the assumption of no highest-order interaction. In

Darroch et al. (1993), the no highest-order interaction assumption is valid

if the distribution of unit-level effects {ti} in (3.11), conditional on the cor-

responding units not being captured, is Gaussian. Although other Rasch

models exist, we use “Rasch” to refer only the specific model described

above for the remainder of this section.

We wish to explore (a) the utility of the Rasch model, above and beyond

basic log-linear models, and (b) the ability of the AICc to detect when the

Rasch model is appropriate. To do this, we simulate data in a way that is

approximately consistent with the Rasch model, and subsequently apply the

AICc to select the “best” model from the standard set of eight log-linear

models plus the Rasch model.

Simulating data that is exactly consistent with the Rasch model depends

on knowing a probability distribution F that satisfies the following relation-

ship: If the unit-level effects {ti} are draws from the distribution F , then,

conditional on avoiding capture on all three lists, their distribution is Gaus-

sian. Unfortunately we do not know of any such F (although we conjecture

that one would be derived easily by a relatively competent theoretician).

Fortunately, it turn out that the Gaussian distribution is a good approxi-
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sd = 1 sd = 2 sd = 4 sd = 8

Figure 3.4: We simulate four CRC experiments, each having three lists
drawn independently from a population of size n = 100000. In the first
experiment, the probability of capture for each unit (a constant across
the three lists) is the inverse logit of a draw from the N(0, sd = 1)
distribution. The left histogram shows the distribution of the logits of
the capture probabilities for those units that remain uncaptured. The
subsequent histograms are the same except that the standard devia-
tion (sd) of the generating normal distribution is increased, leading to
greater skewness in the distribution of individual effects among units
that are never captured.

mation to a solution F as long as the standard deviation of the Gaussian is

not large, and Figure 3.4 illustrates this fact. When the distribution of {ti}

is the standard normal, the distribution of the set of capture probabilities

associated with units that were never captured is visually indistinguishable

from a normal distribution. The non-normality is pronounced only when

the standard deviation of the Gaussian distribution is large. Even then, the

skewed bell shape in the right-side panels of Figure 3.4 is arguably as close

to the normal distribution as one should reasonably expect in practical ap-

plications.

We simulate a three-list CRC experiment according to (3.11), with the

{ti} drawn as standard normal random variables and list effects {βj} that are

identically equal to 0. We replicate the simulation 2000 times for populations

of size 100, 200, 400, 800, and 1600. At each replication, we perform model

selection using the AICc on two different sets of feasible models. The first
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set is the eight standard log-linear models. The second set is the union of

the first set and the Rasch model. For each resulting estimate, we compute

the percentage error as 100(ĉ0 − c0)/c0.

(An important constraint in the Rasch model for three lists (3.22) is that

the parameter uΣ must be greater than zero. For these simulations, we did

not explicitly enforce this constraint. However, with n ≥ 400, we found that

the maximum likelihood estimate ûΣ > 0 with extremely high probability.)

Figure 3.5 shows the results. Interestingly, the Rasch model is not sub-

stantially less-biased than the saturated log-linear model for large popula-

tions. In principle, a key advantage may be that the Rasch model has two

fewer parameters than the saturated model, which presumably reduces the

variance of the estimates. However, we computed the root mean square error

for the case n = 1600, obtaining 66.0 when the Rasch model is allowed and

66.5 when the Rasch model is not allowed, a rather trivial improvement.

The second panel of Figure 3.5 shows that the AICc is “smart enough to

know” when the data are consistent with the Rasch model most of the time

for large populations. We find intriguing that the AICc consistently chooses

the Rasch model even as the Rasch model affords minimal improvement in

estimates.
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Figure 3.5: For the simulations defined in Section 3.4.5, theory suggests
that the Rasch-inspired model (3.22) is a superior candidate model. In
fact, the left panel suggests that the Rasch model is not substantially
better than the next-best standard log-linear model, at least for larger
populations. Despite the lack of substantial superiority in the Rasch
estimates, the second panel shows that the AICc is somehow “smart
enough” to know that the Rasch model is in fact the true generating
model as much as 90% of the time for large populations.

3.5 Small Sample Adjustments

The analyses illustrated in Figures 3.2 and 3.3 show that population size es-

timates are often biased, particularly when there are capture pattern proba-

bilities that approach zero and when the population size is small. A common

way to address this problem is to adjust the data c before fitting a model.

The estimator of Chapman (1951) for k = 2 lists is a variation of the

Petersen estimate, ĉ0 = c01c10/c11. The Chapman estimator is c01c10/(c11 +

1), which we view simply as applying the Petersen estimator to adjusted

data, where the adjustment consists of adding 1 the c11 cell. The Chapman

estimator often outperforms the Petersen estimator both in terms of bias
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and variance for small populations (Evans and Bonett, 1994).

For log-linear models with at least three lists, several data adjustments

have been proposed. Evans and Bonett (1994) suggested adding (0.5)k−1

to each cell in c; we call this the EB adjustment. Hook and Regal (1997)

suggested adding 1 to each element of c that appears in the denominator of

(3.9); we call this the HR adjustment. Rivest and Lévesque (2001) derived

first-order bias corrections for several specific log-linear models, but it is not

clear how to apply these in automated model selection of general log-linear

models.

The EB and HR adjustments seem to be ad hoc. We propose our own

ad hoc data adjustment for comparison with the existing adjustments. Let ĉ

denote the fitted values corresponding to the maximum likelihood estimates

for the single-parameter independence model (3.7), and let

α =
1

1 + nc/(2k − 1)
.

Note that α is large only if the average number of observations per cell,

nc/(2
k − 1), is small. Define the adjusted data as

c′ := (1− α)c + αĉ. (3.23)

We call this the ZK adjustment, using the initials of the current author.

We compare the EB, HR, and ZK adjustments by using the same CRC

experiments that are described in Section 3.4.4 and the corresponding fig-

ure 3.2. Figure 3.6 shows that the performance of each adjustment varies
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Figure 3.6: The basic interpretation of the lines and dots is the same
as in Figure 3.2. The four vertical lines for each n within each panel
correspond to no adjustment, HR, EB, and ZK, respectively.
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with the generating model and the population size. In general, the effect of

using an adjustment is not dramatic. However, using a data adjustment is

convenient because it allows us to apply automated log-linear model search

to arbitrary data sets without first establishing special rules to handle data

that contains zeros.

3.6 Proof of the “Odd-Even” Formula

We state and prove a generalization of the formulas (3.8) and (3.9), which

are equivalent to a formula in Fienberg (1972). Let odd(Y) = {y ∈ Y :∑
i yi is odd} and define even(Y) analogously. Following the notation in

Section 1.2.2, let Ω′ = Ω \ K.

Theorem 1. For any collection of real-valued u-terms, u = {uω}, define

an arbitrary function f of the capture pattern y ∈ Y as in 3.5 with no

highest-order term, i.e.,

log f(y) =
∑
ω∈Ω′

uωIω(y). (3.24)

Then

f(0) =

∏
y∈odd(Y) f(y)∏

z∈even(Y)\{0} f(z)
.

Proof. Let n(uω, odd) denote the number of elements y ∈ Y such that

Iω(y) = 1 and y ∈ odd(Y). Define n(uω, even) analogously. For each ω ∈ Ω′,

it is easy to verify that n(uω, odd) = n(uω, even). Note that this equality

occurs only for ω ∈ Ω′; if ω = K, then n(uω, odd) = 0 6= 1 = n(uω, even) if
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k is even, and n(uω, odd) = 1 6= 0 = n(uω, even) if k is odd. Thus,

∑
y∈odd(Y)

log f(y) =
∑

y∈odd(Y)

∑
ω∈Ω′

uωIω(y)

=
∑
ω∈Ω′

uω
∑

y∈odd(Y)

Iω(y)

=
∑
ω∈Ω′

n(uω, odd)uω

=
∑
ω∈Ω′

n(uω, even)uω

=
∑

y∈even(Y)

log f(y).

The first and last terms of this equation can easily be re-arranged to obtain

the desired result.

Note that setting any of the u−terms in (3.24) equal to zero has no

effect in the argument. Therefore, the theorem applies equally well for both

hierarchical and non-hierarchical models.



Chapter 4

Identifiability

4.1 Overview

Link (2003) showed that the population size is nonidentifiable across certain

types of CRC models. To address the general problem, we argue that (a)

one must use information that is external to the data to narrow the set of

feasible models, and that (b) interpretable models are essential for making

use of such auxiliary information. A secondary analysis of data on survivors

of the World Trade Center attacks illustrates the central issues.

The sampling mechanism in CRC is an extreme case of convenience

sampling; each list represents an exhaustive enumeration of all population

units that are detectable by some observer. Thus, detectability defines the

sample, potentially causing the prediction set (all of the unobserved units)

to have a substantially different character than the training set (all of the

observed units). The implication is that inference depends profoundly on

the assumptions that relate the observable data to the unobservable data.

63
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This exaggerated model dependency makes CRC a prime case study

for an infamous debate on statistical modeling cultures. Breiman (2001)

argued that algorithmic methods with no obvious interpretation are often

superior to models which explicitly incorporate various scientific features

in an interpretable way. In a response, Cox (2001) included the following

comment:

Often the prediction is under quite different conditions from the

data ... That is, it may be desired to predict the consequences

of something only indirectly addressed by the data available for

analysis. As we move toward such more ambitious tasks, pre-

diction, always hazardous, without some understanding of un-

derlying process and linking with other sources of information,

becomes more and more tentative.

Indeed, the observed cells in Table 1.1 address only indirectly the unob-

served cell, making estimation especially hazardous. Although we support

Breiman’s thesis in many other settings, CRC is a special case that requires

careful attention to the underlying processes and alternative information

sources.

We discuss general principles of model selection before returning to CRC.

Suppose M is the set of all available models, and consider the following

general model selection strategies.

S1: Choose the best model in M according to a data-driven criterion that

includes both a measure of goodness of fit and a penalty on model

complexity to avoid overfitting, such as the AIC.
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S2: Define a subsetM′ ⊂M consisting of models that are especially plau-

sible based on prior scientific beliefs about the mechanisms that gen-

erated the data, independent of the actual data values. Use a scoring

criterion as in S1 to select a model from M′.

S3: Use a data-driven criterion to score the models in M as in S1, but

augment these scores to favor plausible or intuitive models, i.e., the

kinds of models that are inM′. Normalize the augmented scores, and

use them as weights in an average of the models in M. This average

is not necessarily a standard Bayesian model average.

This chapter advocates the use of S2 or S3 as a necessary alternative to

S1. Both of these strategies incorporate information external to the data,

including researcher expertise and basic facts about how the data was col-

lected. We refer to these external sources of information collectively as the

data context. A modern emphasis on automated model selection has per-

haps led many researchers to undervalue the data context. In advocating

attention to data context, we provide an insightful discussion rather than

a fundamentally new result. Indeed, attention to data context is as old as

model selection itself.

These issues become more concrete in thinking about specific things

that one might desire in a model selection strategy. One prerequisite for

successful model selection is thatM must contain at least one good model.

For a high-level discussion of model goodness, we defer to Kass (2011). A

second prerequisite is the ability to rank the goodness of the models in

M. We will review mathematical results that show that the data values
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alone, without consideration of the data context, are not always sufficient to

discriminate between competing models that imply vastly different inference.

When this inability to discriminate persists asymptotically, we say that the

model selection problem is nonidentifiable, or that M is nonidentifiable.

The strategy S2 may succeed as an alternative to S1 if M′ is identifi-

able. Further, we propose S3 as a refinement of S2 that incorporates model

selection uncertainty into the final estimates. Both S2 and S3 suffer from

their dependence on the subjectivity of researcher expertise (an element of

the data context). On the other hand, dependence on researcher expertise

is fundamentally unavoidable when M is nonidentifiable. Explicitly repre-

senting a researcher’s biases in the modeling process is the most honest

approach.

Nonidentifiability of model selection is closely related to the ordinary

nonidentifiability of parameters that we occasionally observe in likelihood

function maximization. To view nonidentifiability of model selection in a

parametric way, somewhat analogous to nonidentifiability in likelihood maxi-

mization, we parameterize the model selection problem within a supermodel,

as follows. For simplicity, assume that the set of modelsM is finite, and in-

dex these models using the integers 1, ...,m. Define a supermodel by using a

list of parameter vectors (θ1, ..., θm, q), where each θi (i = 1, ...,m) denotes

the parameter vector of the ith model in M, and q denotes the integer-

valued parameter whose unknown true value is the index of the best model

in M. The problem of model selection is now a problem of estimating the

parameter q. We discuss the nonidentifiability of q for a family of log-linear

models in Section 4.3.
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The remainder of this chapter proceeds as follows: Section 4.2 reviews

previous work on model selection for CRC, Section 4.3 discusses several

aspects of nonidentifiability, particularly from the perspective of log-linear

models; Section 4.4 explores ways to structure log-linear models to reflect the

data context; and Section 4.5 concludes with an example on the population

of survivors of the World Trade Center attacks.

4.2 The Rise of Nonidentifiability in CRC

Fienberg (1972) considered only hierarchical models to preserve the inter-

pretability of model parameters. The focus on interpretability could have

begun to seem antiquated as a steady stream of newer and relatively com-

plex models promised improvements in prediction accuracy. Newer models

include the jackknife estimator (Burnham and Overton, 1978), the estima-

tors of Chao et al. (1992), the martingale-inspired estimators (Lloyd, 1992),

a nonparametric mixture model by Norris and Pollock (1996a), and several

parametric mixture models summarized by Pledger and Phillpot (2008).

As the number of models grew, the use of S1 – also known as “model

fishing” – became increasingly common; authors would fit several different

models to the data, and pick the model with the best fit by some model

scoring tool such as the Akaike information criterion (AIC). For a recent

example of this, see Table 1 and Table 3 in Dorazio and Royle (2003).

Link (2003) summarily rejected the uncritical use of S1 by showing that

the population size is not identifiable across the space of several popular

families of models. Link stated that “it is likely that an analyst will be
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unable to distinguish between reasonable descriptions of the heterogeneity,

even when these alternative descriptions lead to vastly different inferences

about population sizes” and that this problem is “inherent to all attempts

to model heterogeneity in detection probability.” Link went on to contrive

fake data sets for which several heterogeneity models lead to substantially

different inferences despite fitting the data equally well. Heated discussion

ensued. Link (2006) addressed counterpoints by Pledger (2005) and Holz-

mann et al. (2006). Mao (2007, 2008) bolstered Link’s findings on theoretical

grounds, with the caveat that a lower bound on the population size may be

identifiable.

The specific form of nonidentifiability discussed by Link and Mao arises

in binomial mixture models. Consider an experiment that involves k lists,

and let Zi denote the number of lists that include the ith population unit.

Let pi denote the probability of capture of the ith unit on each list, and

assume unit-level list independence such that the probability of the ith unit

appearing on all of the lists is pki . In a binomial mixture model, Zi is a bino-

mial random variable with k trials and success probability pi, where pi comes

from some common mixing distribution F . The choice of mixing distribution

F can have a large effect on the resulting population estimates. Link (2003)

showed that F is nonidentifiable among several popular parametric models,

and Mao (2007) showed that F is nonidentifiable nonparametrically.

Oddly, the nonidentifiability explored by Link and Mao has never (to our

knowledge) been explicitly tied to the nonidentifiability in log-linear models

for CRC that has been understood ever since Fienberg (1972). Section 4.3

unifies these two forms of nonidentifiability.
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4.3 Nonidentifiability in Log-linear Models

4.3.1 Log-linear Expression of Binomial Mixture Models

Log-linear models (Chapter 3) are substantially more general than the bi-

nomial mixture models of Link and Mao. These binomial mixture models

assume that, for a fixed population unit, the probability of capture on each

list is equal to a single number pi, and there are no explicit interaction ef-

fects between lists. By contrast, log-linear models can include individual list

effects (u2 6= u3, for example) or interactions between lists (u12 6= 0, for

example).

In one sense, log-linear models are more restrictive than binomial mix-

ture models, since log-linear models formally assume homogeneity of capture

probabilities across units. We emphasize the term “formally” here because

log-linear models can perfectly fit any multinomial capture pattern array

(such as Table 1.1) despite the homogeneity assumption. The form (3.5) is

fully general in the sense that u-terms must exist that satisfy p(y) ≡ p(y|u).

This means that the log-linear model is compatible with any configuration

of relative expected cell-count frequencies for the cross-classification array

c, regardless of any underlying heterogeneity or dependency structures. Ap-

pendix A of Darroch et al. (1993) provides several details on the precise

implications of assuming a homogeneous multinomial distribution for data

that arise from heterogeneous capture probabilities.

We can express any binomial mixture model as a log-linear model. Con-

sider the assumptions common to binomial mixture models: For each unit,

the probability of capture is constant across the lists, and the event of cap-



70 CHAPTER 4. IDENTIFIABILITY

ture on each list is independent of capture on the other lists. These two

assumptions induce symmetries in (3.5) that lead to a reparameterization

with only k + 1 parameters v = (v0, ..., vk),

log p(y|v) =
k∑
j=0

vjSj(y), (4.1)

where Sj(y) := I(
∑k

t=1 yt ≥ j) is the indicator that the capture pattern

includes at least j captures. Since k + 1 ≤ 2k − 1 for k ≥ 2, one might hope

that v is identifiable. However, consistent with the notion that a supermodel

of binomial mixture models can be nonidentifiable, the log-linear generaliza-

tion (4.1) is also nonidentifiable, because the columns of the design matrix

that correspond to v0 and v1 are identical for the observable data.

With S′j(y) := I(
∑k

t=1 yt = j), a simple alternative parameterization

w = (w0, ..., wk) of (4.1) is

log p(y|w) =
k∑
j=0

wjS
′
j(y). (4.2)

Parameter vectors w (or v) exist such that (4.2) (or (4.1)) does not corre-

spond to any binomial mixture model. Cressie and Holland (1983) provide a

set of constraints on w that must hold in order for (4.2) to reflect a binomial

mixture model (in fact, their setting is slightly more general).

4.3.2 Relevance of the Highest-Order Interaction

For notational simplicity, denote the highest-order interaction as q := u1···k.

Aside from the objective of maintaining interpretability of lower-order pa-



4.3. NONIDENTIFIABILITY IN LOG-LINEAR MODELS 71

rameters in models such as (3.1) and (3.4), the choice of zero for q is rather

arbitrary, as we may fix q to be any real number. Thus, the highest order

interaction q can be viewed as an index on an infinite class of saturated mod-

els M = {Mq}q∈R, where R is the set of real numbers. The parameters in

each of the models inM are internally identifiable, and yet there is no sense

in mathematically trying to distinguish between Mq1 and Mq2 for q1 6= q2

because both models fit the observable data perfectly, with equal degrees

of freedom. Thus, log-linear models for CRC suffer from nonidentifiability

within a supermodel as defined at the end of Section 7.1.

Our strong interest in the highest-order interaction may seem odd to

anyone who is versed in the traditional application of linear models. A long

history of model selection builds around the notion that setting high-order

interactions to zero is a good way to manage the bias-variance tradeoff,

consistent with Occam’s razor. In fitting a linear model to estimate the

various treatment effects, interactions that are higher than second-order

are not commonly used, and inclusion of the highest-order interaction may

be out of the question. This approach is not always appropriate for CRC,

however. We will discuss the issues in terms of the following two examples:

Example A (Traditional): The cells of a contingency table contain crop

yields under a variety of conditions, averaged across several growing

seasons. The goal is to predict crop yields for future replications of a

specific combination of conditions that appeared in the data.

Example B (CRC): The cells of a contingency table provide the counts

of the population units having each capture pattern. The goal is to
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estimate c0, which is missing by design.

Leaving out useful explanatory variables in a linear model for example

(A) does not typically degrade the coverage probabilities of prediction inter-

vals, provided that the distribution of errors is well-behaved, although the

prediction intervals may widen. In fact, beyond the assumption that future

crop yields have the same distribution as past yields, one need not assume

a linear (or any other specific) relationship between variables whatsoever.

One can take as the starting point the average crop yield within each cell.

These averages are unbiased predictors of future crop yields.

In Example B differs sharply from Example A in that no direct estimate

exists for the quantity of interest since there are no data from the unobserv-

able cell. The only way to obtain an estimate – besides simply guessing –

is to assume some set of relationships among the capture patterns. As we

discussed above in the language of identifiability, no purely data-driven argu-

ment can motivate a particular set of assumptions. But one must start with

something. If the data are not sufficient, what may qualify as a reasonable

basis for a model?

One answer appears as though handed down from statistical tradition.

Borrowing from classical problems such as Example A, we can begin with

the assumption that u1···k = 0, and then build on this assumption to pro-

ceed with estimation as usual. Whether a practitioner is satisfied with this

approach depends in part on the kinds of data sets that she has studied. We

will demonstrate how the assumption u1···k = 0 works well in some cases,

but leads to bizarre results in others.
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Section 4.4 interprets the highest-order interaction u1···k, and Section

4.5 gives an example of using the data context to create a sort of prior

distribution for u1···k. The use of a prior distribution on u1···k deviates from

the existing literature. Although Madigan and York (1997) and others have

proposed Bayesian ways of including prior information or allowed for model

selection uncertainty in other ways, all of these (to our knowledge) invoke

the assumption that the highest-order interaction is zero, in contrast to our

proposal.

4.4 Interpretable Models

The ability to interpret a model allows us to incorporate data context into a

model selection criterion as in S2 or S3. Interpretability is itself a term that

is open to interpretation. For our purposes, broadly speaking, a model is in-

terpretable to the extent that simple relationships exist to connect the model

and the data context. Although many different types of models are inter-

pretable, we restrict attention to log-linear models, for simplicity. We begin

by reviewing several observations on interpretation by Fienberg (1972), and

conclude with a discussion of log-linear models with less-obvious interpreta-

tions.

Hierarchical models are often easy to interpret. A submodel of (3.5) is

called hierarchical if uω := 0 implies that uω′ := 0 whenever ω ⊂ ω′. One of

the simplest hierarchical log-linear models is the independence model,

log p(y|u) = u0 + u1y1 + · · ·+ ukyk. (4.3)
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Exponentiating (4.3) reveals a direct correspondence to the product rule for

independent events,

p(y|u) = eu0eu1y1 · · · eukyk

= e
u0
k

+u1y1 · · · e
u0
k

+ukyk

= pr(Y1 = y1) · · · pr(Yk = yk).

Thus, under the independence assumption, each of the coefficients uj (j =

1, ..., k) in (4.3) controls the marginal probability that a random unit appears

on the jth list.

Conditional on the inclusion of the lower order terms u1y1, u2y2, an addi-

tional term u12y1y2 is the interaction between the first and second list. This

interaction at face value represents, for each population unit, an association

between being captured on the first list and being captured on the second

list. Alternatively, when the model is fitted to data from a heterogeneous

population (in contradiction to the homogeneity assumption) the interaction

may represent an association between the events of capture on the first and

second lists, mixed across units (not for each unit individually). Higher-order

interactions have similar interpretations in hierarchical models.

Nonhierarchical models may also have interesting interpretations. The

model

log p(y|u) = u0 + u12y1y2 (4.4)

straightforwardly encodes the situation in which the expected values in Table
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1.1 must all take on the same value except for the (1, 1) cell, which has its own

parameter. On the other hand, while the preceding sentence “interprets” the

model into English, there is still no explicit connection to a data context.

Thus, it may be said that (4.4) is “usefully interpreted” only when some

scientific reason exists to support that units are equally alloted to each of

the capture patterns except for the (1, 1) cell.

For every log-linear model with the highest order term u1···k set equal to

zero, eliminating all of the explicit u-terms from the model equations leads

to

∏
y∈O p(y|u)∏
z∈E p(z|u)

= 1, (4.5)

where O is the set of capture patterns with entries summing to an odd

number, and E is the set of capture patterns summing to an even number.

For k = 3 lists, (4.5) is equivalent to there being a constant odds radio for

the expected values in any two disjoint 2× 2 half-arrays of the full 2× 2× 2

cross-classification array. This formula is in essence the same as (3.9).

Formula (4.5) holds for nonhierarchical log-linear models, and can also

hold with u1···k 6= 0 in conjunction with certain constraints. For example,

Darroch et al. (1993) explored a non-hierarchical log-linear representation

for a heterogeneity model of a form similar to (4.2). The corresponding

general parameterization (3.5) has u1···k 6= 0. Aside from this example, we

know of no further effort to interpret models with u1···k not equal to zero.

Indeed, u1···k is identifiable only if we set a lower-order term equal to zero,

in which case the meaning of u1···k is perhaps too subtle.
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Interesting interpretations exist, however, if we pick a value for u1···k,

perhaps as a draw from some prior distribution, before estimating the lower-

order parameters. Some algebra clarifies this point: Add log n to both sides

of (3.5) to get

logE(Cy) =
∑
ω∈Ωk

uωIω(y), (4.6)

where log n has been absorbed into u0 on the right-hand side, and observe

that E(Cy) = np(y|u), where Cy is the assumed random variable corre-

sponding to the observed cross-classification count cy. Next, rearrange (4.6)

slightly by moving the u1···k term to the left-hand side:

logE(Cy)− u1···kI1···k(y) =
∑

ω∈Ωk\{1,...,k}

uωIω(y). (4.7)

Let 1 ∈ Yk denote the capture pattern indicating capture on every list. Let

C ′ denote the cross-classification array C with a modification to the 1 cell

as C ′1 := eu1···kC1. Then (4.7) becomes

logE(C ′y) =
∑

ω∈Ωk\{1,...,k}

uωIω(y), (4.8)

a model that is hierarchical with respect to C ′. Thus, the prescribed value

for u1···k is an adjustment to the 1 cell of the cross-classification data array

c. The data context could justify a negative adjustment (i.e., u1···k > 0) if

the analyst believes that some number of population units are structurally

(i.e., with probability one) included in all of the lists, since structurally
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included units typically do not belong in any probability model that is used

to impute c0. Conversely, a positive adjustment to c1 may be appropriate

if some number of units are structurally excluded from appearing on all of

the lists simultaneously. We experiment with this type of data adjustment

in the example in Section 4.5.

4.5 Example: World Trade Center Survivors

4.5.1 Background

Murphy (2009) estimated the number of people who were in the World

Trade Centers (WTC) and survived after the first attack on September 11,

2001, by using three separate lists. Table 4.1 shows Murphy’s estimate of

the patterns of overlap between the three lists. The lists included nc = 8965

distinct people in total. We begin by exposing some problems in Murphy’s

analysis and try to improve upon it by using S3 to motivate the model

selection approach.

Table 4.1: Cross-classification by WTC list membership

In List 3 Not in List 3

In List 2
In List 1 174 88

Not in List 1 750 270

Not in List 2
In List 1 1658 1702

Not in List 1 4323 c0

The World Trade Center Health Registry (WTCHR) gathered the three

lists from their respective sources. The lists originally included covariates

such as age and sex. Such auxiliary covariates can inform estimates of the
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population size (Pollock, 2002). However, in personal correspondence, ad-

ministrators at the WTCHR said that their detailed data sets were expunged

at the conclusion of Murphy’s study. This restricts us to a relatively basic

CRC analysis based on Table 4.1. We build on Murphy’s analysis of the

data, first by considering only the numbers of Table 4.1, and subsequently

by incorporating elements of the data context.

4.5.2 Analysis of Table 4.1

Murphy considered the seven hierarchical models that include an intercept

term, a coefficient for each list, and any combination of the pairwise list

interactions, but excluding the saturated model. Murphy fitted each of these

seven models and compared them using the AIC (3.17) to pick a winner:

logE(Cy) = u0 + u1y1 + u2y2 + u3y3 + u12y1y2 + u23y2y3.

Using a shorthand model notation, we assume the presence of all individ-

ual list effects, and write only the interaction terms; the above model is

then “u12+u23.” Murphy’s resulting estimate was n̂ = 13400 with a 95%

confidence interval (13064, 13745).

Murphy’s confidence interval computation appears to rest on the as-

sumption that model u12+u23 is the correct model. Unfortunately, this as-

sumption may produce a confidence interval that is too narrow by ignoring

the variability in the model selection algorithm. Norris and Pollock (1996b)

presented three bootstrap variance estimates that include model selection

uncertainty. We use the method referred to in their paper as “Method 2,”
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as follows.

Bootstrap estimates, excluding the saturated model
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Figure 4.1: The top panel displays a histogram of 5000 bootstrap esti-
mates based on consideration of Murphy’s seven models with the best
model selected by AIC. The model u12+u13 was selected roughly 5%
of the time, resulting in a much lower 95% confidence interval bound.
The bottom panel replicates the top panel, but with the addition of
the saturated model u12+u13+u23. The vertical bold line at the left
side in each plot indicates the observed number of people, nc = 8965.

Assume that the true population is n = 13400, the estimate ob-

tained under model u12 + u23. Hence the number of units not observed is

c0 = 13400− 8965 = 4435. Simulate a multinomial with 13400 trials based

on direct estimates p̂(y) := cy/n (y ∈ Y) of the probabilities for the eight

multinomial outcomes. Treating the resulting nonzero capture pattern out-
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comes as a bootstrap data set, select a new model (possibly not the same

as u12 + u23) using the AIC, and use the selected model to estimate the

population.

The top panel of Figure 4.1 illustrates 5000 replications of the bootstrap

procedure. This procedure selects a different model, u12+u23, roughly 5% of

the time. The result is a drastically wider confidence interval, with a lower

bound of about 10500, in contrast with Murphy’s 13064. Oddly, Murphy

excluded the saturated model u12+u13+u23 in his analysis, even though

this model attains the best AIC score for the original data set as well as

most of the simulated data sets. In the second panel of Figure 4.1, we repeat

the bootstrap simulation experiment with the saturated model included,

and find a somewhat narrower confidence interval. This demonstrates the

importance of including a sufficiently broad class of models in the model

selection procedure.

In fact, many more log-linear models exist that are not in our set M

of eight models considered here. One way to expand M is to pick several

nonzero values of the highest-order interaction term u123 instead of only

using zero, the default value. The fundamental problem with this proposal

is that u123 is nonidentifiable (see Section 4.3.2). We suggest that appealing

to the data context to set a prior on u123 is a good way to acknowledge the

uncertainty of our model selection procedure.

4.5.3 Incorporating the Data Context

The concept of data context is vague, as one could philosophize that the

entire universe is part of any context. Our goal in appealing to context
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is fortunately somewhat less ambitious; if we can merely gather a bit of

evidence from the context – even something so small or vague as the opinion

of an “expert” – then there is hope to salvage a credible estimate from an

otherwise-nonidentifiabe set of models.

We begin by simply listing several facts surrounding the data, with quo-

tations taken from Murphy (2009):

• List 1 consisted of “individuals who volunteered by Web site or tele-

phone” to complete a WTCHR study.

• List 2 was “supplied by businesses ... with office space in the [WTC]

towers identifying employees who were present.”

• List 3 was obtained from local government institutions and “included

individuals with security access to the towers.”

• Each individual on each list was confirmed in follow up communication

to have been in the WTC at the time of the attacks.

These simple descriptions of the data context seem rather unhelpful. How

can we connect the context to the model to hint at the best value for u123? If

it were known (or even likely) that only a fraction of employees could have

security access, or conversely that only a fraction of those with security

access could be employees, such information would suggest that c1 = 174

is the result of a structurally constrained process, and that adjusting this

cell upwards before fitting a model could improve inference. We give little

weight to this possibility here, mentioning it only as an example of how
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additional information on the data context (i.e., the policies that were in

place for security access) could be relevant.

A more general point is that heterogeneity of capture probabilities seems

to induce a positive highest-order interaction u123, provided that the form of

the heterogeneity is approximately the same for each list. We base this claim

on the positive highest-order interaction in the quasi-symmetric log-linear

model for heterogeneity in Darroch et al. (1993). Further, it is plausible

that such a pattern of heterogeneity is in the WTC lists. Without knowing

many details, it seems that individuals may have been required to personally

verify their presence in the towers to qualify to be on each list. Different

types of people have varying interest in cooperating with survey studies,

and such variation of interest may plausibly persist across the three lists to

a small degree. Therefore, we speculate that u123 = 0.1. This corresponds

to multiplying c1 by e−0.1, a downward adjustment by approximately 10%,

as in equation (4.7).

The thoughts in the previous paragraph are almost – but not quite –

pure speculation. The crucial point, however, is that failing to take such

thoughts into account is perhaps an even worse form of speculation, since

no clear justification exists for concluding that u123 = 0. Equally important

is our ability to indicate uncertainty in our proposed value of u123. Thus,

we take u123 as a draw from a N(0.1, 0.32) normal distribution. The choice

of distributional form (and the variance) is again speculation, and should

be interpreted only as a starting point. Others who follow this analysis may

find justification for a completely different distribution for u123.

Adjusting c1 based on u123 = 0.1 as in equation (4.7) and proceeding
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with model selection by AIC using the adjusted data, we obtain the point

estimate n̂ = 11815. To estimate the sampling distribution of this point

estimate, including the assumption that u123 ∼ N(0.1, 0.32), we again follow

“Method 2” of Norris and Pollock (1996a) as in Section (4.5.2). Specifically,

we treat the point estimate as truth to simulate Table 4.1 as a multinomial.

Next, we adjust the simulated table by multiplying the c1 cell by eu123 ,

where u123 is drawn as a N(0.1, 0.32) random variable. For the resulting

table, we use the AIC to select a hierarchical log-linear model (with highest-

order interaction nominally equal to zero) and generate a new estimate of

the missing cell ĉ0, which we add to nc = 8965 to get a simulated estimate.

Figure 4.2 shows the simulated sampling distribution of the estimator.

The multi-modality of the histogram reflects that several different models

were frequently selected over the 5000 replications. Since this simulation in-

corporates a probability distribution in a flavor similar to a Bayesian prior,

but is otherwise frequentist, we blend the words confidence and credible to

describe the empirical 95% interval in the first panel of Figure 4.2 as a con-

fidible interval. The 95% confidible interval is (10610, 15855). Compared to

Murphy’s confidence interval, our confidible interval is somewhat more com-

patible with previous estimates by USA Today and the National Institutes

of Standards and Technology that used completely different methodologies,

resulting in estimates ranging from about 9800 to 16500 (Murphy, 2009).
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Figure 4.2: The histogram summarizes 5000 simulated population es-
timates based on model selection by AIC after fixing the highest-order
interaction u123 as a draw from the N(0.1, 0.32) distribution.

4.6 Simulation Example

A simple simulation experiment demonstrates how an important highest-

order interaction can, in principle, arise as a side-effect of heterogeneity.

Suppose that a population contains two types of units. Each list contains

Type A units with probability 1, and each list contains Type B units with

probability 0.2. Let n = 1000 be the size of the population. Assume that

200 units are of Type A, and 800 units are of Type B. We generate three

lists according to the probabilities stated above, with independence between

units as well as unit-level independence across lists. We cross-tabulate the

results to get a CRC array c.

From our omniscient position as the designers of the simulation, it is

straightforward to compute the probability of every capture pattern includ-

ing 0. We solve the system of 8 log-linear equations to determine the unique

set of 8 log-linear parameters in (3.4) for the true generating model, obtain-
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ing (approximately) the non-hierarchical model

log p(y) = −0.89− 1.39y1 − 1.39y2 − 1.39y3 + 3.47y1y2y3.

In this totally rigged simulation, the highest order interaction is clearly

important. Whether the conditions described above are likely to occur in

practice is a valid question.

Despite the enormity of u123, one might hope that log-linear models with

no highest-order interaction might still perform satisfactorily. For instance,

it seems possible that the collection of interaction terms u12, u13, u23 in the

saturated hierarchical model (which excludes u123) may be able to indirectly

compensate for the absence of u123. Alternatively, the Rasch heterogeneity

log-linear model (3.22) is specifically designed to account for certain types

of heterogeneity within the log-linear structure (although the authors warn

that the Rasch model does not account well for bimodal heterogeneity, as we

have in the present simulation). To explore these possibilities, we simulate

the population estimates for the saturated log-linear model and the Rasch

model, and compare these against the true generating model in Figure 4.3.

Both of the alternative models typically overestimate the population size by

more than a factor of 10, demonstrating that an unacknowledged highest-

order interaction can cause major problems.
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Figure 4.3: The histograms summarize 500 simulation experiments.
The non-hierarchical model that includes u123 in the third panel per-
forms well, while both alternative models (first and second panels)
produce estimates that err by an order of magnitude.

4.7 Discussion

Our approach to model selection addresses two problems. The first problem

is that of identifiability: How should a researcher proceed when confronted

with a nonidentifiable likelihood function? The second problem is in the

sampling design: How can a researcher build a model that is useful for pre-

diction when the training data set is not a representative random sample?

For both problems, we find it self-evident that the solution (if one exists) is

to incorporate the data context – information that is external to the data.

The problems of identifiability and data representativeness seem closely

related. We conjecture that nonidentifiability (within a likelihood, or across

a class of modelsM) tends to arise most frequently when the training data

are not directly representative of the prediction set. In fact, any model can

be made nonidentifiable by including a coefficient β for the indicator that a
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data point has been observed. Including such a term is preposterous from

the point of view of using the data to make an extrapolation, as the data

contain zero information regarding β. On the other hand, a researcher who

believes that the prediction set is systematically different from the training

set would be irresponsible not to propose an adjustment to the predictions

of the model. As the data are irrelevant for estimating β, the only way that

this could be done is to appeal to the data context.

One common reaction to nonidentifiability in a likelihood function is

to fuss with the model until identifiability is restored. Our study of CRC

suggests that this response is not always optimal, since a nonidentifiable pa-

rameter (such as u1···k) can be used to model a systematic difference between

the observed data and the unobserved data. Thus, a model search that auto-

matically disqualifies nonidentifiable models may introduce a major source

of error.

Even if we use frequentist methods to fit and assess the goodness-of-

fit of each model, the strategy S3 is Bayesian in spirit, since the inclusion

of the data context in the model selection criterion is a lot like putting a

prior on the model index q. Unlike a standard Bayesian prior, the impor-

tance of the data context does not necessarily diminish as the sample size

grows. In a nonidentifiable comparison of two models M1,M2 ∈ M, the

likelihood function evaluations may be equal, providing no update to the

relative prior probabilities of the two models, necessitating continued re-

liance on the data context. Important properties of Bayesian inference with

nonidentifiable likelihood functions are not yet completely understood; see

Gustafson (2005) and the large number of comments that followed. See also



88 CHAPTER 4. IDENTIFIABILITY

Neath and Samaniego (1997).

We consider S3 to be an ideal approach, but a difficult one, and we

did not fully attain this ideal in our example (Section 4.5). We used the

data context in a rather weak way to include u123, and we used the AIC to

perform sub-model selection conditional on u123. Ideally, we would like to use

the data context also to augment the AIC-based comparison of submodels,

potentially modifying the distribution displayed in Figure 4.2.



Chapter 5

Local Log-linear Models

This chapter presents our main work, a method of building log-linear models

locally, or fitting a separate model for each observed point in the covariate

space. Throughout, we assume that the population is closed and that there

are no errors of record linkage.

5.1 Introduction

Heterogeneity of capture probabilities can cause bias in log-linear models

(Darroch et al., 1993; Fienberg et al., 1999). One way to reduce heterogene-

ity bias is to post-stratify on auxiliary covariates. In a human population,

individuals may be grouped by age, such as 0-10 years, 11-20 years, etc. Af-

ter fitting a model to each age group, we sum the resulting estimates across

groups to estimate the population size. For instance, the coverage evalua-

tion of the United States 2000 Census used more than 400 post-strata (Citro

et al., 2004).

89
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A fundamental challenge in post-stratification is to determine the opti-

mal number of strata. To remove within-stratum heterogeneity, it is desirable

to have as many strata as possible. At the same time, we must maintain a

minimum stratum size to control the variance of estimates. We address this

trade-off by applying log-linear models to individuals, the smallest possible

strata, while “borrowing strength” to maintain adequate effective sample

size.

Specifically, we select and fit a local log-linear model for the capture

pattern associated with each individual. To illustrate this with a human

population, suppose that we observe exactly one person of age 19. This

person constitutes a post-stratum of size 1. A single observation is, of course,

not enough to select a log-linear model, but we can get an adequate effective

sample size by using a locally weighted average of the capture patterns of

people with ages close to 19. Thus, we fit each local log-linear model to a

local average.

Our approach is closely related to several existing methods. Huggins

(1989) and Alho (1990) developed logistic regression models that allow cap-

ture probabilities to vary with auxiliary covariates when there are only two

lists. Yip et al. (2001) extended their method to include certain list interac-

tions when there are more than two lists. Chen and Lloyd (2002) used “local

post-stratification,” which essentially replaces the Alho-Huggins logistic re-

gression with a nonparametric regression. Zwane and van der Heijden (2004)

fit log-linear models that used penalized splines to express dependence on

a continuous covariate. With less of an emphasis on interactions between

lists, Hwang and Huggins (2011) used a semi-parametric logistic regression
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involving local polynomials to model the effect of a continuous covariate, and

Stoklosa and Huggins (2012) took a similar approach with penalized splines

instead of local polynomials. Our treatment differs from those above by al-

lowing the form – and not only the fitted values – of the model to vary over

the covariate space. This generality can meaningfully improve estimates, as

we demonstrate via simulation.

Many models treat heterogeneity as a latent feature, without using co-

variates (Darroch et al., 1993; Manrique-Vallier and Fienberg, 2008; Pledger

and Phillpot, 2008). Such models are especially important when the auxil-

iary covariates are noninformative or unavailable. However, when informa-

tive covariates are available, their inclusion adds a significant dimension to

the value of a capture-recapture study by enabling estimation of the rate of

missingness, or the number of unobserved units divided by the number of

observed units, at each point in the covariate space. Thus we learn about not

only the population size, but also its composition. Many existing methods

relate covariates to the detection probabilities, but our approach is excep-

tionally specialized to this task, since we build a full log-linear model at each

observed covariate vector.

5.2 Basic Framework

We make a key assumption that the literature on auxiliary-covariate mod-

els of heterogeneity often leaves unstated. Namely, we assume the exis-

tence of a function r(y|x) that is piecewise smooth in x and satisfies

p(i, yi·) = r(yi·|xi·) (i = 1, ..., n). This is a strong assumption, requiring
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that the covariates x fully explain any variation in the capture probabilities.

Recall that 0 denotes the row vector of k zeros. Define the detection

function ψ(x) = 1− r(0|x), which is the probability that a unit with covari-

ates x appears in at least one of the lists. The [pseudo] HT estimator (2.1

is a convenient way to relate the regression function r to the population

size. In practice, using (2.1) requires us to estimate the detection function

ψ. Our estimator will join several existing capture-recapture estimators that

take this route in essence, including those of Alho (1990), Chen and Lloyd

(2002), and Zwane and van der Heijden (2004). We begin by putting (2.1)

into a different form. Define a function

π(y|x) :=
r(y|x)∑
z 6=0 r(z|x)

=
r(y|x)

ψ(x)
. (5.1)

For each nonzero y ∈ Y, π(y|x) is the conditional probability that a unit

with covariates x has capture pattern y, given that the unit appears on at

least one list.

Plugging an estimate π̂(0|x) of π(0|x) into (5.1) and expanding (2.1) in

terms of (5.1) leads us to an estimator involving the sum of the unit-level

estimates:

n̂ := nc + ĉ0, where ĉ0 :=

nc∑
i=1

π̂(0|xi·). (5.2)

Thus, our challenge is to derive useful estimates π̂(0|xi·) (i = 1, ..., nc), which

will be done in Section 5.3.

We propose the use of local as well as global measures of model per-
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formance. Specifically, let nc(x) denote the number of units observed at

covariate x, let c0(x) denote the corresponding number of missing units,

and let ĉ0(x) denote the corresponding estimate, computed as nc(x)π̂(0|x).

Define the local root-mean-square error as

RMSE(x) =
√
E[{ĉ0(x)− c0(x)}2]. (5.3)

Similarly, we use the root-mean-square error
√
E(ĉ0 − c0)2 as a global mea-

sure of model performance. These measures can be estimated only in simu-

lations, as validation data typically do not exist in real applications.

Define an (arbitrary) ordering of the capture patterns Y so that Yj de-

notes the jth nonzero capture pattern (j = 1, ..., 2k − 1). Let Π and A

be matrices of dimension nc × (2k − 1) with elements Πij = π(Yj |xi·) and

Aij = I(yi· = Yj). Thus, the ith row Ai of A indicates the multinomial

outcome corresponding to the multinomial probabilities given in the ith row

Πi of Π.

The vector average
∑nc

i=1Ai/nc contains the empirical relative frequen-

cies of the nonzero capture patterns. This average, together with nc, contains

the same information as c, and so is sufficient for a traditional log-linear

model, as in Fienberg (1972). To include heterogeneity that is associated

with covariates, we fit local log-linear models to local averages of the form

Π̂i =

nc∑
t=1

witAt (i = 1, ..., nc), (5.4)

where each wi is a normalized vector of nonnegative weights of length nc. For
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example, any basic kernel smoother or weighted k-nearest-neighbors regres-

sion can be expressed as (5.4). Although a local average Π̂i is an estimator

of Πi in its own right (hence, the notational similarity), we use Π̂i only as

the “data” for building a local log-linear model. The ith fitted local model,

in turn, implies an estimate π̂(0|xi·) as needed for (5.2).

One can specify a vector of weights wi(i = 1, ..., nc) by stating a standard

kernel and picking a smoothing bandwidth based on subjective researcher

expertise. Although data-driven methods exist for bandwidth selection in

local regression, we caution against the careless use of such methods in our

specific context for reasons that we discuss in Section 5.3.3. We take the

weights as known and fixed.

For each local average Π̂i, we define the effective sample size of the ith

row as

ηi :=

(∑nc
t=1w

i
t

)2∑nc
t=1(wit)

2
=

1∑nc
t=1(wit)

2
(i = 1, ..., nc). (5.5)

Section 5.3.3 motivates this definition, which may have originated with Kish

(1965), page 259.

5.3 Estimating π(0, x)

We use a local log-linear model Mi for each ith row Π̂i to estimate the

missing cell π(0|xi·) (i = 1, ..., nc). While having as many as nc models

for nc points looks like overfitting in the extreme, it is important to notice

that the models are highly correlated across the covariate space, since Π̂i is
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continuous in xi·. If the difference between xi1· and xi2· is small, than the

difference between the local averages Π̂i1 and Π̂i2 is also small, effectively

constraining Mi1 to be similar to Mi2 . Specifically, xi1· = xi2· implies that

Mi1 =Mi2 .

5.3.1 Local Log-linear Models, a Special Case

Refer to Chapter 3 for a review of log-linear models.

Fix i in 1, ..., nc. LetWi denote the set of indices of all nonzero entries of

the vector of weights wi, and let ni = |Wi|, the number of nonzero entries. We

describe a local log-linear modelMi for the smoothed data Π̂i. Throughout

this section we consider only the special case that is defined by the following

two assumptions:

• Boxcar assumption: wit = 1/ni for all t ∈ Wi.

• Local homogeneity: r(y|xt1·) = r(y|xt2·) for all indices t1, t2 ∈ Wi and

y ∈ Y.

The boxcar assumption says simply that the nonzero weights are uni-

form, which holds for any boxcar kernel smoother or k-nearest-neighbors re-

gression with uniform weights. The local homogeneity assumption requires

that the capture probabilities are constant over Wi. Homogeneity is a stan-

dard assumption (at least formally) for classical log-linear models.

By the definition (5.5), the boxcar assumption gives ηi = ni, and the
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vector

ηiΠ̂i = ηi
∑
t∈Wi

1

ni
At =

∑
t∈Wi

At (5.6)

is a sum of multinomials. Local homogeneity implies that the ηi terms in

the sum are identically distributed. We have already assumed independence

between units, and it follows that ηiΠ̂i is a multinomial random variable

with ηi trials and probabilities Πi. With k = 3, we apply the saturated local

log-linear model (3.5) to ηiΠ̂i, replacing the parameter vector u with a local

parameter vector ui. Since the entries of ηiΠ̂i are the elements of the set

{ηiπ̂(y|xi·)}y 6=~0, the local likelihood function is

Li(u
i|ηiΠ̂i) =

ηi!∏
y 6=~0{ηiπ̂(y|xi·)}!

∏
y 6=~0

π(y|ui)ηiπ̂(y|xi·). (5.7)

Let ûi denote the parameter estimates found by maximizing (5.7). An im-

portant special case is when the kernel is infinite, or when all the units have

equal weight so that each local average (5.4) coincides with the global av-

erage. Then ηi = ni = nc, and the local likelihood (5.7) coincides with the

global likelihood (3.2).

We obtain various submodels of the saturated model (3.5) by removing

terms. The independence model for three lists encodes the assumption that

the probability of capture on each list is independent of the event of capture

on any other list:

log π(y|ui) = ui0 + ui1y1 + ui2y2 + ui3y3. (5.8)
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We emphasize that one can do model selection locally. If i1 6= i2, the mod-

els Mi1 and Mi2 may be of completely different forms. For example, the

parameter vector ui1 need not be of the same dimension as ui2 .

Given estimated log-linear parameters ûi, we estimate π(~0|xi·) by pro-

jecting the corresponding log-linear model onto the missing cell,

π̂(~0|xi·) := π(~0|ûi) = exp(ûi0), (5.9)

and this is all that is needed to construct the population size estimate (5.2).

5.3.2 Local Log-linear Models, the General Case

We derived the likelihood (5.7) from the boxcar and local homogeneity as-

sumptions. Removing either of these assumptions makes ηiΠ̂i a nontrivial

mixture of multinomials, such that (5.7) need not be exactly equal to the

probability of the data ηiΠ̂i given the parameters ui. Relaxing the boxcar

assumption means that the local effective sample size ηi does not equal

the number of nonzero weights ni. If ηi is not integer-valued, exact evalu-

ation of (5.7) requires a continuous generalization of the factorial function,

the Gamma function. Relaxing local homogeneity means that some local

heterogeneity in capture probabilities may occur. Then Π̂i is a mixture of

not-identically distributed multinomials. Provided that the true regression

function r(y|x) is sufficiently smooth in the covariates x, and provided that

the bandwidth of the smoother is sufficiently narrow, the corrupting effects

of local heterogeneity may be limited.

Conditional on having selected a modelMi, maximizing Li is equivalent
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to maximizing

∑
y 6=~0

π̂(y|xi·) log π(y|ui) =
∑
j

π̂(Yj |xi·) log π(Yj |ui)

=

nc∑
t=1

∑
j

wit log{π(Yj |ui)I(yt·=Yj)},

where the final term is a weighted likelihood function, much like the standard

weighted likelihood functions for local polynomial regression (Loader, 1999).

That is, the approximations involved in relaxing the boxcar and local ho-

mogeneity assumptions to use Li for parameter estimation are analogous to

the approximations involved in the use of standard of weighted likelihoods.

5.3.3 Local Model Selection

Although the Bayesian model averaging approach of Madigan and York

(1997) is attractive, building the model separately for each observed unit

requires superior computational speed for even a dataset of moderate size.

Saving a Bayesian implementation for future work, we adapt the AICc (3.18)

as a practical way to facilitate fast automated local model selection. For the

ith unit, define the local AICc,

AICci := −2 logLi(û(xi·)) + 2Ki +
2Ki(Ki + 1)

ηi −Ki − 1
, (5.10)

where û is the local maximum likelihood estimate, Ki is the number of free

parameters in the local log-linear model for the ith unit, and ηi is defined

in (5.5).



5.3. ESTIMATING π(0, X) 99

For the special case in which Π̂ is generated from a boxcar kernel, ηiΠ̂i

is integer-valued, and the AICci corresponds to the usual AICc. For other

kinds of kernels, with non-uniform weights, we wish to continue to work with

the AICc and the pseudo-likelihood Li for model selection and parameter

estimation, even though (as we mentioned previously), the vector of locally

smoothed capture pattern frequencies ηiΠ̂i is not exactly multinomial. In

this sense, the use of the AICci for local model selection is intrinsically ad

hoc when the weights come from any kernel (not only a boxcar kernel). Our

intent is for the AICci to serve as an approximate generalization of the AICc

to the case of nonuniform weights.

We motivate the definition (5.5) of ηi in terms of the AICci. Heuristically,

the importance of ηi is clear. If ηi is too large, the AICci will tend to select

models with too many parameters, and if ηi is too small, the AICci may

select models with too few parameters.

The definition (5.5) is a consequence of the following conditions:

• C1: When the kernel is a boxcar kernel, ηi must equal ni, the number

of units with nonzero weights.

• C2: Up to rounding error, the element-wise variances of ηiΠ̂i should be

the same as the corresponding variances of a multinomial random vari-

able with ηi trials and conditional outcome probabilities Πi. (Rounding

error does not corrupt this comparison in the special case in which all

of the elements of ηiΠ̂i are integer-valued.)

We now derive (5.5) by applying the conditions C1 and C2. We begin

with C2. Suppose that Π̂i(y) is the entry of the vector Π̂i that corresponds
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to the capture pattern y. Then

V ar(ηiΠ̂i(y)) = V ar

(
ηi

nc∑
t=1

witI(Yt· = y)

)

= η2
i π(y|xi)(1− π(y|xi))

nc∑
t=1

(wit)
2

Next, if ηi is an integer, let By(i) denote a binomial random variable

with ηi trials and success probability π(y|xi). Then

V ar(By(i)) = ηiπ(y|xi)(1− π(y|xi)).

To satisfy condition C2, the equality V ar(By(i)) = V ar(ηiΠ̂i(y)) must

hold. That is, we need

ηiπ(y, xi)(1− π(y, xi)) = η2
i π(y, xi)(1− π(y, xi))

nc∑
t=1

(wit)
2,

and the definition (5.5) merely states the nonzero solution.

Finally, it is easy to see that the definition (5.5) also satisfies condition

C1. If we construct Π̂i from a boxcar kernel, there exist ni nonzero weights

wi(1), ..., w
i
(ni)

that are each equal to 1/ni, and all other weights are zero, and

ηi :=
1∑nc

t=1(wit)
2

=
1

ni(1/ni)2
= ni.

The choice of kernel bandwidth for the weights in the local average Π̂i

is intimately related to the selection of local log-linear models. If the band-

width for Π̂i is too small, then ηi is small, and the criterion ICi tends to



5.4. BOOTSTRAP VARIANCE ESTIMATION 101

favor an extremely sparse local model even if important high-order interac-

tions are present. When the bandwidth is large, the criterion ICi tends

to favor a local model with many parameters. The fact that increasing

the bandwidth can correspond to increasing [local] model complexity, the

usual bias-variance tradeoff that traditionally guides bandwidth selection is

of questionable value. In addition to bias and variance, one must consider

the tradeoff between a bandwith that is small enough to reduce hetero-

geneity and yet large enough to facilitate the selection of local log-linear

models with enough parameters to capture dependencies between lists. This

intuition guides our ad-hoc choices of bandwidth, and we leave data-driven

bandwidth selection methods for future work.

One aspect of our criterion (5.10) bears sharp contrast with previous uses

of information criteria for problems involving data smoothing. In a typical

nonparametric regression problem, the sample size is unambiguous, and the

trace of the “hat” matrix approximates the number of parameters in the

model. Our emphasis on local model selection leads to the converse: we can

count the number of parameters directly, but we compute ηi using the ith

row of the “hat” matrix to approximate the sample size.

5.4 Bootstrap Variance Estimation

Treating ηiΠ̂i as an approximately multinomial random variable, the asymp-

totic variance formulas of Fienberg (1972) could be relevant for specific lo-

cal log-linear models. However, Norris and Pollock (1996b) emphasized the

importance of including model uncertainty in the variance estimate. Norris
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and Pollock (1996b) proposed several bootstrap methods that include model

uncertainty in capture-recapture settings; we adopt their “Method 2” to es-

timate the unconditional variance of the population size estimate ĉ0 defined

in (5.2). We describe the method in detail, including modifications to deal

with the auxiliary covariates.

The first step is to simulate covariate vectors of the unobserved units.

Together with the observed covariates xc··, these new covariate vectors de-

fine a population that is consistent with the model. The second step is to

randomly assign a capture pattern for each unit, discarding all units that

are assigned the 0 capture pattern. The third step is to select and fit local

log-linear models to the simulated data to obtain a bootstrap estimate ĉboot0 .

Replicating the bootstrap B times gives a set {ĉboot0 (1), ..., ĉboot0 (B)}, and

the variance of this set is the bootstrap estimate of V ar(ĉ0). The following

subsections provide details on the first two steps.

5.4.1 Simulating Unobserved Units for the Bootstrap

The covariate matrix xc·· contains a row for the covariate vector of each

observed unit. We simulate approximately ĉ0 additional covariate vectors to

represent the unobserved units. According the fitted local model, π̂(0|xi·) is

the number of unobserved units with covariate vector xi·.

However, π̂(0|xi·) is not generally an integer, and it is not clear how to

interpret non-integer numbers of units. Much like Zwane and van der Heijden

(2003), we use random rounding to replace π̂(0|xi·) with a whole number, as

follows. Decompose each π̂(0|xi·) into its integer and decimal parts, π̂inti and

π̂deci , such that π̂(0|xi·) = π̂inti + π̂deci . Let π̃i denote the result of randomly
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rounding π̂(0|xi·), where one rounds up to the next larger integer π̂inti + 1

with probability π̂deci , and rounds down to the next smaller integer πinti with

probability 1− π̂deci .

Let csim0 =
∑

i π̃i, noting that E(csim0 ) = ĉ0. Let xsim·· denote a csim0 × q

matrix of covariate row vectors that are copied from xc·· according to the

nonzero elements of {π̃i : i = 1, ..., nc}. For example, if π̃7 = 2, then xsim··

contains two rows which are replicates of the 7th observed covariate vector

x7·. Finally, let xc+sim·· denote the (nc+csim0 )×q matrix of covariates formed

by appending xsim·· to the bottom of xc··. The matrix xc+sim·· represents the full

population to be used for the bootstrap. The number of new units csim0 tends

to be close, but not generally equal, to ĉ0. Thus, random rounding introduces

some variability that is not part of the modeling process, and this may

slightly inflate the bootstrap variance, leading to conservative confidence

intervals.

5.4.2 Assigning Capture Patterns for the Bootstrap

Building on the definition (5.1), define estimates for r(y|xi·) as

r̂(y|xi·) := π̂(y|xi·)ψ̂(xi·) =
π̂(y|xi·)

1 + π̂(0|xi·)
(i = 1, ..., nc + csim0 ; y ∈ Y),

where π̂(y|xi·) is an element of Π̂i if y 6= 0, and π̂(0|xi·) is defined in (5.9).

Draw the capture pattern for the ith unit from the set Y of possible capture

patterns according to the multinomial probabilities {r̂(y|xi·) : y ∈ Y}.
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5.5 Performance Evaluation

5.5.1 Simulation I

We used simulation to compare local log-linear models against the additive

multinomial logit model (Zwane and van der Heijden, 2004) when the form

of the generating model varies over a single continuous covariate. In each

simulation, we assign a population of size n = 5000 uniformly over the inte-

gers x = 1, ..., 100. Assigning many (i.e, 50) units to each unique covariate

lightens the computational burden for local log-linear models, since it suf-

fices to select a single local model at each of the 100 possible values of x

instead of selecting a model for each of several thousand observed units. We

define the generating model for simulating the capture patterns in terms of

two log-linear models for three lists,

log pv(y) = v0 + v1y1 + v2y2 + v3y3 + v12y1y2 + v13y1y3 + v23y2y3

log pw(y) = w0 + w1y1 + w2y2 + w3y3 + w12y1y2 + w13y1y3 + w23y2y3.

Let

v = (v1, v2, v3, v12, v13, v23) = (1, 1, 1, 0, 0, 0)

w = (w1, w2, w3, w12, w13, w23) = (−1.5,−1.5, 1, 1.5, 2)

Note that the first log-linear model has no list interactions, and the second

model has interactions between every pair of lists. We define the generating

model for the simulation in terms of v and w, beginning with model v and



5.5. PERFORMANCE EVALUATION 105

transitioning smoothly to model w, as displayed in the first panel of Figure

5.1. The figure shows the relative frequencies {π(y|x)}y∈Y , defined in terms

of p(y|x) as in (5.1), in a stacked form.

To obtain the smooth transition shown in the first panel of Figure 5.1, let

Φ denote the cumulative distribution function of a standard normal random

variable, and (somewhat arbitrarily) let

T (x) =
Φ{5(x− 10)/20} − Φ(−5 ∗ 9/20)

Φ(2.5)− Φ(−2.25)
(x = 1, ..., 20).

Thus, T (x) is an s-shaped “transition” curve that is 0 at

x = 1 and is 1 at x = 20. For the generating model we take

u(x) = {u1(x), u2(x), u3(x), u12(x), u13(x), u23(x)} as

u(x) =


v (x = 1, ..., 40)

{1− T (x)}v + T (x)w (x = 41, ..., 60)

w (x = 61, ..., 100).

We define the multinomial capture probabilities at each x according to the

saturated log-linear model of the same form as w or v but with parameter

values of u. The requirement that the multinomial probabilities must sum

to 1 uniquely determines the value of u0(x) .

We simulated 2000 replications of the capture-recapture experiment,

with the capture patterns drawn as independent multinomials according

to the relative capture pattern frequencies illustrated in the first panel of

Figure 5.1. On each replication of the experiment, we performed local log-

linear modeling, with weights defined using the Epanechnikov kernel with a
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bandwidth of 12, producing local effective sample sizes on the order of 600.

The exact choice of bandwidth was arbitrary, but the order of magnitude

was motivated by relatively basic (i.e., without covariates) simulation ex-

periments that seemed to suggest that sample sizes of several hundred are

needed to produce reasonably stable model selection results for log-linear

models with three lists. In a post-hoc analysis, we repeated the simulations

with the kernel bandwidth set to 10 and 14, resulting in slightly worse and

significantly better performance, respectively.

For comparison, we replicated the implementation of the additive multi-

nomial logit model as in Zwane and van der Heijden (2004), who used the

VGAM package (Yee, 2010) in R. In addition, we partitioned the data into post-

strata of approximately equal size and selected a log-linear model on each

stratum using the Akaike information criterion with the small sample cor-

rection of Hurvich and Tsai (1989). Table 5.1 summarizes the performance

of each model for the task of estimating c0, the number c0 of units that were

not captured in each simulation. The post-stratification with 5 post-strata

had the best results among several numbers of strata that we tried. Table

5.1 shows all three methods performing comparably well. To put the biases

into perspective, c0 was typically around 1300 in these experiments.

Table 5.1: Simulation on the performance of local log-linear models

Model RMSE bias s. dev 95% interval width

Local log-linear 149 -8 149 579
Additive multinomial logit 152 -62 139 547

Log-linear, 5 post-strata 153 14 152 593
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Figure 5.1: The first panel illustrates the probability structure of
the generating model. The relative frequencies of the capture pat-
terns (i.e., “111”, “011”, ...) are plotted as functions of x in a
stacked form. For example, the curve labeled “011” represents the
sum π{111|x}+ π{011|x}. The relative frequencies of observable cap-
ture patterns sum to 1, the horizontal line, labeled “100”. Above this
horizontal line, the estimates π̂(~0|xi) are plotted as π̂(~0|x) + 1. The
dotted curve, labeled “000” indicates the rate of missingness at each
value of x for the generating model. For example, when x < 40, the
rate of missingness is less than 0.05, and for x > 60 the rate of miss-
ingness is approximately 0.45. The second panel shows the local root-
mean-square error (5.3) for local log-linear models and for the additive
multinomial logit model for 2000 simulation replications.
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The local root-mean-square error (5.3) is an important aspect of model

performance that is not reflected in Table 5.1. We compute the empirical

local root-mean-square error at each x across the 2000 simulation replica-

tions and plot the result in the second panel of Figure 5.1. We conclude that

local log-linear models can outperform the additive multinomial logit model

in terms of the local error in certain settings.

5.5.2 Simulation II

The simulation in the previous section describes an extremely unique sce-

nario. To broaden our understanding of model performance, we devise yet

another probability structure on which to run a new set of simulations. The

first panel of Figure 5.2 shows the generating model, and the second panel

shows the local RMSE curves for the local log-linear and additive multi-

nomial logit approaches. The generating model is defined in terms of three

different log-linear models, with transitions between the models guided by

a function that is analogous to the “transition” curve T (x) in the previous

section. We omit the details. The second panel of Figure 5.2 shows that,

in this instance, the additive multinomial logit model performs better than

local log-linear models in terms of the local RMSE (5.3).
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Figure 5.2: The structure and interpretation of this figure is exactly
analogous to that of Figure 5.1, but with the new generating model in
the left panel.

5.6 Sampling Distribution of Estimate

This section performs a sanity check to ensure that the sampling distribution

of the population size estimate from local log-linear models is similar to the

sampling distribution for ordinary log-linear models if we hold the effective

sample size (5.5) constant and enforce homogeneity.

For k = 3, we apply the saturated hierarchical log-linear maximum

likelihood estimator (3.8) for two separate cases. In both cases, we draw

a fixed number of units according to the conditional cell probabilities

π(y|x) = π(y) = 1/(2k − 1) = 1/7 for all y 6= 0. That is, the data gen-

erating process is homogeneous with respect to both the units and the lists.

In case (a), we take nc = 50 and define π̂(y) = (1/50)
∑50

t=1 I(yt· = y). In

case (b), we take nc = 141 and define π̂(y) =
∑200

t=1wtI(yt· = y), where
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we define the vector of weights w as the standard normal density evaluated

over 141 evenly-spaced points in the interval (−5, 5). We choose nc = 141

because the resulting effective sample size turns out to be approximately

equal to 50, so that cases (a) and (b) are, in some sense, comparable (see

Section 5.3.3).
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Figure 5.3: Simulated sampling distributions (truncated at 0.5) are
displayed for three modeling scenarios when the true conditional dis-
tribution of capture patterns is uniform across units and lists. The
dashed vertical line represents the true (expected) rate of missingness,
which is π(0) = 1/7. The solid vertical line marks the empirical mean
of the sampling distribution for the corresponding estimator. In the
first case (a), we use (3.8) on ordinary multinomial data Π̂ = c/nc to
estimate the missing cell π̂(0). The second case (b) differs from (a)
only in that Π̂ is obtained as a multinomial mixture with Gaussian
weights as in (5.4). Finally, (c) shows the estimates from the adjusted
saturated model as specified by (3.10).

Panels (a) and (b) of Figure 5.3 summarize 10000 replications of this

simulation. The solid vertical lines mark the empirical mean of each sampling

distribution, and the dashed vertical lines mark the true relative frequency

of the missing cell, which is 1/7 according to the saturated hierarchical

log-linear model. As desired, the sampling distribution of the estimate using

Gaussian weights (b) is similar to the distribution of the traditional estimates
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which implicitly use uniform weights as in a boxcar kernel (a). Although this

is only a special case, the result is consistent with the notion that removing

the boxcar assumption (Section 5.3.1) does not cause substantial bias.

The estimates in both (a) and (b) are notably biased upwards. This is

related to the small effective sample sizes in conjunction with use of the

most complex model. In the third panel (c), we examine the performance

of the adjusted saturated model (3.10). The reduced bias is encouraging,

although much more work is needed to fully understand the properties of

that proposed adjustment.

5.7 Alternative Weighting Schemes

There are many ways to estimate the columns of Π, i.e., the functions π(y|x)

as functions of x. We have discussed only estimators of the form (5.4), which

are local averages with non-negative weights, because these averages are par-

ticularly convenient for the subsequent discussion of the likelihood function

and local model selection criterion. In principle, it may be possible to use

relatively sophisticated methods to estimate Π in conjunction with local

log-linear models.

One such advanced method is the additive multinomial logit model em-

ployed by Zwane and van der Heijden (2004), which used vector splines to

model the effects of continuous variables. Another is the nonparametric con-

ditional density estimator by Hall et al. (2004), which we briefly describe

here. Let mi = 1 if the ith unit is captured at least once, and mi = 0

otherwise. Assume that each mi is the outcome of a Bernoulli variable Mi.
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From (5.1), we have π(y|xi·) = P (Yi· = y|Mi = 1, xi·) for each y 6= 0. Sup-

pose that each vector xi· is a realization of some random variable X. Let

fM (xi·) := P (X = xi·|Mi = 1) and gM (y, x) := π(y|x)fM (x). Then,

gM (yi·, xi·) = P (Yi· = yi·|X = xi·,Mi = 1)P (X = xi·|Mi = 1)

= P (yi·, xi·|Mi = 1).

One can estimate gM and fM directly from the observable data (i.e., units

with mi = 1), and the conditional density of any nonzero capture pattern y

given X = x is

π(y|x) =
gM (y, x)

fM (x)
.

The np package (Hayfield and Racine, 2008) in the R statistical software (R

Core Team, 2012) implements this approach. Note that although a nonpara-

metric estimator of gM uses smoothing parameters for both x and for the

multinomial outcome y, we recommend setting the y bandwidth to zero (no

smoothing), since the local log-linear model effectively smooths over y.

Whenever a multinomial regression method can be written in the form

Π̂ = HA, where H is an nc×nc projection matrix, also known as the “hat”

matrix, one can read off the weights wi for the ith unit from the ith row of

H so that projection by H is equivalent to (5.4). These weights are often

negative, with absolute values that do not sum to unity. Thus, building local

log-linear models on top of such smoothers would require, at minimum, a

slight generalization of the effective sample size 5.5.
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5.8 Discussion

Local log-linear models point to several avenues of future work. First, in

Section 5.3.3 we identified the desirability of a data-driven model selection

criterion that simultaneously optimizes the local averaging bandwidth and

the complexity of the local models. Second, the information criterion (5.10)

needs a more detailed theoretical basis. In particular, one could explore

alternative definitions for the effective local sample size. Third, one could

improve our approach by using the variations and refinements to traditional

log-linear models that have been suggested by Cormack (1989), Darroch

et al. (1993), and Rivest and Lévesque (2001). Fourth, it is straightforward

to apply local log-linear model averaging (Section 3.4.3), and Section 6.2

does exactly this.

Our simulations to compare local log-linear models against the additive

multinomial logit model suggests that the two approaches are similar, with

each model performing better than the other in special circumstances. Local

models may have unique ability to accurately estimate rates of missingness

in a large and diverse population, such as the human population of a na-

tion, in which the basic relationships between lists may vary across age and

socioeconomic group. Reliably estimating a large set of unique local models

obviously requires large sample sizes. However, even when the sample size

is large, there may be scientific reasons to believe that a single log-linear

relationship should hold across all strata, and in this case we expect the

additive multinomial logit to be superior.

Computing local averages of the form (5.4) and subsequently selecting a
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local log-linear model at each observed unit is computationally demanding.

We discuss this problem in the section on multiple sclerosis data in the next

chapter.



Chapter 6

Applications

6.1 Bird Species Richness

We estimate the number of bird species using the North American Breeding

Bird Survey for continental North America north of Mexico (Sauer et al.,

2011). The purpose of this section is to illustrate; we take the liberty to

make several modeling choices that lead to pedagogically useful behavior

while potentially compromising the validity of our inference.

Table 6.1: Cross-classification of species observed over three years

In 2011 Not in 2011

In 2010
In 2009 581 13

Not in 2009 10 10

Not in 2010
In 2009 11 18

Not in 2009 21 c0

Table 6.1 displays c, the cross-classification of species observed in the

years 2009 - 2011, treating each year as a separate list. For example, exactly

115
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581 species were observed in all three years, and 18 species were observed

only in 2009. Define a covariate x as the reverse of the rank ordering of the

observed species based on the total number of times that each species was

observed. For example, the species that was observed most often over the

three years has covariate x = 664, as 664 distinct species were observed. The

obvious interpretation of x is that species with a high value of x are easy to

observe. Compared to covariates used previously to model heterogeneity in

the detectability of birds, such as wingspan, our covariate appears to be a

relatively direct proxy for species detectability.

We estimate the π(~0|xi) only for i = 1, ..., 150, corresponding to the 150

least-observed species, since the species that are difficult to observe are the

only ones for which significant numbers of species can have gone missing.

Weights from a Gaussian kernel define the local averages (5.4). We set the

bandwidth at 45, but increase it near the boundary such that the number of

nonzero weights is constant across units. Figure 6.1 shows the local averages

{π̂(y|x)}y 6=0 in a stacked form as seven smooth functions of x.

We minimize the information criterion (5.10) to select a local log-linear

model for each observed species. We plot the resulting log-linear estimates for

π(~0|x) as individual points above the horizontal line at 1 in Figure 6.1. These

estimates appear to follow a curve that has discontinuities at the points at

which a different model is selected. It is trivial to replace the point estimates

with model averages as in Section 3.4.3 to smooth the discontinuities in

Figure 6.1.

We interpret each estimate π̂(~0|xi) as a rate of missingness. For exam-

ple, at x = 1, corresponding to the least frequently observed species, the
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Figure 6.1: Our proxy for species detectibility, x, is on the horizon-
tal axis. The relative frequencies of the capture patterns (i.e., “111”,
“001”, ...) are plotted as functions of x in a stacked form. For example,
the curve labeled “001” represents the sum π{111|x}+ π{001|x}. The
relative frequencies of observable capture patterns sum to 1, the hor-
izontal line, labeled “010”. Above this horizontal line, the estimates
π̂(~0|xi) are plotted as π̂(~0|xi) + 1 (i = 1, ..., 150). Each continuous
section of that curve corresponds to a specific log-linear model, as in-
dicated by the labels a - f. The “independence” model is (3.6), and
“u23” is shorthand for the log-linear model that includes the interac-
tion coefficient u23 in addition to the main effects.

distance between the uppermost point (labelled “000”) and the horizontal

line below it is approximately 0.7, indicating an estimated rate of missing-

ness π̂(~0|x = 1) ≈ 0.7. For all units with x ≥ 100, the rate of missingness is

nearly zero.

Applying (5.2) gives ĉ0 = 28.8, or n̂ = 692.8. The bootstrapped 95%

confidence interval for ĉ0, based on 500 replications is (12.4, 30986). Two
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issues contribute to the large right tail of the confidence interval. The first is

numerical instability: When the resampled data in the bootstrap leads to a

zero in some row of the local average Π̂, the MLE for the corresponding local

log-linear model does not always exist. (A data adjustment as in Section 3.5

may be a quick fix.) The second issue is a point made by Alho (1990):

the Horvitz-Thompson sum is unstable when the detection probability ψ(x)

approaches 0, even if ψ(x) were known. Indeed, the detection probabilities in

the left tail of the distribution of x in Figure 6.1 may be too low to estimate

accurately. We suspect that the latter issue deserves more attention in many

capture-recapture studies, including previous studies using Breeding Bird

Survey data such as Boulinier et al. (1998) and Dorazio and Royle (2003).

The Breeding Bird Survey data exists for many years prior to 2009,

and so our use of only three years of data raises an obvious question: Why

not extend the model to incorporate all available years? However, the as-

sumption of a closed population may fail over long spans of time, as certain

species go extinct, and new species evolve or change their geographic region

of preference. Population size estimation on a 3-year moving window could,

in principle, reveal changes in species richness over time. A separate consid-

eration is that not using data earlier than 2009 allows us to use the previous

years of data as a partial validation of our method. The data from 1997 to

2008 includes 40 additional species, which is on a similar order of magnitude

as our point estimate.
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6.2 Prevalence of Multiple Sclerosis in France

6.2.1 Background

El Adssi et al. (2012), hereafter referred to simply as “El Adssi”, estimated

the prevalence of multiple sclerosis (MS) in the Lorraine region of France

by analyzing three separate lists of subjects that were believed to suffer

from MS. We briefly review their analysis before applying local log-linear

models. Table 6.2 displays the number of people with each capture pattern.

Here, “LR” stands for the Lorraine registry of MS, which is the largest list

of subjects. “RHIS” refers to records from the Regional Health Insurance

System, the second-largest source of subjects. Finally, “MRD” refers to the

aggregated results of contacting the medical records departments in 119

hospitals, identifying 64 subjects that were not already identified on at least

one other source. Altogether, the data contains records on 4001 distinct

subjects.

Table 6.2: Cross-classification of subjects by list membership

In LR Not in LR

In RHIS
In MRD 474 42

Not in MRD 1343 199

Not in RHIS
In MRD 393 64

Not in MRD 1486 c0

El Adssi fitted every hierarchical log-linear model that includes all main

effects to the data in Table 6.2, and chose the saturated model based on

the [uncorrected] AIC. The resulting point estimate of the number of un-

detected MS cases is 404.7, and a 95% confidence interval of (260.5, 628.7)
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follows from the assumption that the estimated intercept term û0 has a

N(u0, se(û0)2) sampling distribution. Alternatively, we obtain the slightly

wider interval (195.0, 645.0) by the nonparametric bootstrap procedure of

Norris and Pollock (1996b) (see also Section 4.5.2 for a detailed example of

this bootstrap).

6.2.2 Applying Local Log-linear Models

We use local log-linear models to reanalyze the MS data, taking advantage

of the several variables: Age, sex, and zip code. All of our local log-linear

methods in this section incorporate the “EB” adjustment as in Section 3.5

and use the AICc (5.10) for local model selection.

Age follows a bell-shaped distribution with a peak near 50 years and a

minimum and maximum of 16 and 89 years, respectively. The zip code has

four possible values. The first column of Table 6.3 contains the counts of

individuals for each combination of sex and zip code, aggregated over age.

For example, 1174 females were observed with zip code 57.

Fix x as one of the observed covariates vectors. To define the weights for

the rows of the local average Π̂ that correspond to x, we proceed as follows:

1. Choose a smoothing parameter λ in the interval (0, 1], which repre-

sents the approximate fraction of the data that will be included in the

support of a kernel smoother.

2. Define a metric on the covariate space. We use a kind of Euclidean

distance, where differences in age are scaled by 0.2, while differences

in the categorical variables, sex and zip code, are scaled by
√

2. For
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example, if x′ = (age, sex, zip) = (35, 1, 57) and x′′ = (50, 0, 88), then

the square of the distance between x′ and x′′ is

(0.2 ∗ 15)2 + (
√

2 ∗ 1)2 + (
√

2 ∗ 1)2.

The scaling factors (0.2,
√

2,
√

2) are subjective, reflecting the author’s

prior belief about the relative usefulness of the variables for explaining

heterogeneity of capture probabilities. To encode the belief that age

is not a useful predictor, one might set the scale factor for age to be

much smaller than 0.2.

3. Identify the minimum distance, say md(x), for which the set of units

that lie no further than md(x) away from x makes up at least 100× λ

percent of the data. Let D(x) denote the set of units that lie in the

closed ball of radius md(x) centered at x.

4. For all units in D(x), scale the set of distances by 1/(md(x)
√

1.01),

and compute the Epanechnikov kernel weights as (1− distance2). For

all units not in D(x), define the corresponding weights to be zero.

Finally, normalize the full vector of weights corresponding to x. The
√

1.01 in the denominator of the previous expression is an ad hoc way

to give nonzero weight to units on the boundary of the support D(x)

of the kernel.

Let lll.yy denote our local log-linear method with the smoothing parame-

ter λ set to 0.yy. For example, the “lll.20” method uses λ = 0.20. For several

values of λ, Table 6.3 shows the average estimated rates of missingness for
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units in each of the sex/zip code categories. The lll.20.av method implements

model averaging as in Section 3.4.3 locally.

Table 6.3: Percentage rates of missingness by sex and zip code for
various estimation methods. Rates are averaged across age within each
class. The reference categories are sex = female and zip code = 57.
The leftmost column shows the number of observed units in each class.
The rightmost column shows the rates of missingness as estimated by
the additive multinomial logit (AML) model. The columns beginning
with “lll” show the rates of missingness for various local log-linear
models.

count male zip54 zip88 zip55 lll.20 lll.20.av lll.30 lll.15 lll.05 AML
394 1 1 0 0 5.2 4.9 5.4 5.2 4.5 3.2
1043 0 1 0 0 5.6 5.7 6.0 5.4 4.3 3.2
78 1 0 0 1 5.9 5.6 5.8 5.9 4.7 3.1
156 1 0 1 0 6.3 5.8 5.9 6.3 4.9 4.7
427 0 0 1 0 6.7 6.7 6.9 6.3 4.4 4.9
505 1 0 0 0 6.7 7.1 6.7 7.1 6.9 10.0
219 0 0 0 1 8.3 7.6 7.7 9.4 4.8 2.9
1174 0 0 0 0 8.7 8.3 8.5 8.7 8.5 9.2

Fitting a local log-linear model for each of the 4001 population units

is computationally demanding. When fitting n models, the time to fit the

models is only of order n, but the time required for our [admittedly prima-

tive] method of generating the underlying local modeling weights, described

above in this section, is of order n2 log n. Variance estimation following the

method in Section 5.4 further multiplies the required computation time by

the number of bootstrap replications.

To reduce computation time, we simplify the covariate space by rounding

ages to the nearest whole number. The result is that there are only 473

distinct points in the covariate space (age×sex×zip, with some cells empty),

and so it suffices to fit only 473 distinct models, a task which takes less than

a minute (or several hours, including replications for variance estimation)
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on a typical laptop computer manufactured circa the year 2010.

The question of choosing the optimal smoothing parameter λ is perhaps

more complicated than it may first appear, as we discussed near the end

of Section 5.3.3. Based on the simulation studies illustrated in Figures 3.2

and 3.6, we want to choose λ to be large enough so that the effective sample

sizes at each of the 473 models typically falls between 400 and 800. Combined

with this criterion, Figure 6.2 suggests that λ = 0.2 is a reasonable choice.

Tables 6.3 and 6.4 suggest that the estimated rates of missingness are not

extremely sensitive to the choice of smoothing parameter.
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Figure 6.2: The distribution of effective sample size for several values
of the smoothing parameter λ.

The model lll.05, with the extremely small smoothing parameter

λ = 0.05, illustrates the consequences of choosing a λ that is almost cer-

tainly too small. Table 6.4 shows that the upper end of the 95% confidence

interval for lll.05 is lower than for the other local log-linear models. This is

potentially counterintuitive because undersmoothing tends to produce wider
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confidence intervals in a typical nonparametric regression.

Table 6.4

Model ĉ0 95% confidence interval

AML 241 (209, 281)
lll.20 276 (204, 486)
lll.20.av 271 (204, 465)
lll.30 277 (190, 496)
lll.15 276 (206, 518)
lll.05 238 (204, 413)
basic.AICc 410 (207, 631)
basic.BICpi 206 (183, 618)
basic.BIC 206 (176, 628)

Table 6.5, which shows the frequency of each local log-linear model at

each of several values of λ, provides insight into the narrowness of the con-

fidence interval corresponding to model lll.05. Specifically, the AICc selects

the independence model, the most parsimonious model, relatively often when

λ is small. Naturally, the AICc tends to disfavor complex models when the

effective sample size is extremely small, regardless of the complexity of the

“true” model.

6.2.3 Comparison with Other Methods

In addition to the local log-linear models (“lll.xx”) and additive multinomial

logistic (AML) model referenced in Table 6.3, we used the information crite-

ria AICc, BICπ, and BIC to select ordinary log-linear models (“basic.xIC”)

globally, i.e., without including any of the covariates. Table 6.4 shows point

estimates of c0 and bootstrapped 95% confidence intervals for each model.

Our local log-linear estimates of c0 are substantially more conservative than
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Table 6.5: Frequency table for sets of interaction terms appearing in
the lll.30 , lll.20, and lll.05 local log-linear models for the multiple
sclerosis data.

lll.30 lll.20 lll.05

independence 905 945 1906
u23 1442 1539 1213
u12 203 342 289
u13 165 233 345

u13 + u23 490 481 124
u12 + u23 304 227 87
u12 + u13 325 176 12

u12 + u13 + u23 162 53 20

El Adssi’s results (the basic.AICc model, in essence).

The AML model stands out in Table 6.4 and in Figure 6.3 for its ex-

ceptionally narrow confidence bands. This is enticing for the researcher in

search of certainty. Unfortunately, the narrowness may reflect a lack of flex-

ibility, since the AML model uses only a single set of log-linear interaction

terms for the entire covariate space. The AICc selected only the interaction

term u23 in addition to main effects for the AML model, while local-log lin-

ear models can vary. Interestingly, the u23 model is also the most frequently

selected local log-linear model (see Table 6.5).

A second – and likely more important – reason for the narrowness of the

AML confidence interval is that we created it using the parametric bootstrap

of Zwane and van der Heijden (2003). The confidence intervals for all of the

other models in Figure 6.3 rely on the nonparametric bootstrap in Section

5.4. The parametric bootstrap assumes that the chosen log-linear model is

the correct one, leading to narrower confidence intervals.
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Figure 6.3: The top panels describe the set of females with MS in zip
code 57, and the bottom panels describe the set of males with MS in
zip code 55. In each panel, the solid curve represents the estimated
rate of missingness as a function of age. The dashed curves mark the
edges of a 95% confidence interval obtained by the bootstrap. The
estimates in the left-side panels come from local log-linear models
with smoothing parameter λ = 0.20, while the right-side panels use
the additive multinomial logit (AML) model.

The curves in Figure 6.3 are smoother for the AML model (right-side

panels) than for log-linear models (left-side panels). One can (and should)
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easily improve both the smoothness and the local root-mean-square error

for the local log-linear models by using model averaging as in Section 3.4.3.

In Chapter 4, we emphasized the importance of including contextual in-

formation when putting weights on the various models. The present analysis

does less of this than we would like, as we were not directly involved in the

collection of the data. However, it is interesting to speculate on possible

reasons for the potentially high rates of missingness for subjects in the age

range 40-55 as suggested in our local log-linear analysis in Figure 6.3.

The incidence (appearance of new cases) of MS depends on age. Suppose

that x denotes a specific age for which the incidence rate is elevated. Next,

suppose that there is, on average, a t-year time lag before incident cases

of MS are diagnosed. In such a scenario, the rate of missingness in the

age interval (x, x + t) could be also elevated. Thus, it is plausible that the

highest rates of missingness should approximately coincide with the highest

incidence rates, with perhaps a delay of between 0 and t years. The second

panel of Figure 1 in Ligouri et al. (2000) shows incidence rates as a function

of age based on data from Italy. The incidence appears to peak around the

ages of 25-30 years, at least 10 years ahead of the midlife peak in the rate

of missingness that is suggested in Figure 6.3. We find it unlikely that the

time until diagnosis is typically as large as 10 years, and so our speculative

theory does not seem to be valid, unless the average age of MS incidence in

France is several greater than the average for Italy.
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6.3 Census Coverage

Assessing the accuracy – or coverage – of the U.S. Census (hereafter the

Census) is one of largest and most significant applications of CRC in terms

of the size of the target population (over 300 million U.S. residents), the

complexity of the estimation problem, and the amount of research funding.

Relevant data were not available to us, so this section only identifies ways

in which one could apply local log-linear models to the coverage estimation

problem.

The U.S. Census Bureau used CRC theory in formal census coverage

evaluations after every decennial census starting no later than 1980. The

name of these formal evaluations changed with each new census; for the

2010 Census, the evaluation was called the Census Coverage Measurement

(CCM). Several sources of error affect the accuracy of a census. We cate-

gorize most of these error sources as a contribution to either an overcount

or an undercount. An example of an overcount is when the census counts a

college student both at college and at the parents’ home. On the other hand,

an undercount occurs when the census misses people. The CCM estiimated

both the overcount and the undercount rates of around 5% for 2010, and the

CCM concluded that the 2010 census was in error by less than 0.1% over-

all, although the error rate was higher for specific demographic subgroups

(Mule, 2012).

Census data are organized into the following hierarchy: Person, Housing

Unit, Census Block, Block Group, Census Tract, County, State, Division,

Region, Nation. Sampling of persons for the CCM is complex, but can be
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understood approximately as a geographic cluster sample using clusters of

Census blocks. Census blocks are the smallest geographic unit in the hier-

archy, corresponding approximately with physical city blocks.

6.3.1 The Census/P-sample Dual System

The CCM used two lists – or a dual system – to generate an estimate of

the population size. The two lists are called the Census and the P-sample.

The Census is the collection of all Census enumerations, as you might expect

from its name. The P-sample is an independent census on a small region. The

P-sample region is a random sample of housing segments, or geographically

connected groups of houses, within selected census blocks (Hogan, 2003).

Separate from the Census and P-sample, the E-sample is a geographically

clustered subset of Census enumerations that coverage evaluations use to

estimate certain error rates associated with the Census and P-sample. In

the context of duals system estimation, some authors, such as Chen et al.

(2010), unfortunately do not clearly distinguish the roles of the Census and

E-sample. In particular, the E-sample is not one of the two lists that comprise

the “dual system”.

The CCM matches individuals from the P-sample to the Census enu-

merations. Let NP denote the size of the P-sample and let NCP denote the

number of P-sample individuals that are matched to a Census enumeration.

Nationally, the CCM estimates the rate of undercount as r̂u = 1−NCP /NP .

This rate can also be computed locally. If x is a covariate vector that defines

a post-stratum, then r̂u(x) = 1 −NCP (x)/NP (x) is a post-stratum-specific

estimate of the undercount rate. If the Census and P-sample are indepen-
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dent, then 1− r̂u(xi) is a good estimator of the detection function ψ(xi) for

the ith recorded individual, and the CCM constructs the national population

size estimate as an HT estimate (2.1).

To minimize the bias of r̂u, the CCM designs the P-sample to be inde-

pendent from the Census. Within the block clusters that are selected for

the P-sample, a list of all housing units is generated independently of the

main Census housing unit list. Interviewers visit each listed housing unit

in the selected block clusters, generating the P-sample as an all-new cen-

sus. The desire for independence between the Census and P-sample means

that the timing of the two samples is a sensitive matter. Collecting the P-

sample too soon risks introducing interaction effects between the Census and

the P-sample. Waiting too long increases the effects of an open population,

as people migrate, reproduce, and die between the two samples. The 2010

Census targeted April 1 as the Census survey date, and the 2010 P-sample

survey took place some months afterwards, from August to October.

A major shift in the Census’ methodology for coverage evaluation oc-

curred between 2000 and 2010. Prior to 2010, the primary tool was the Pe-

tersen estimator in conjunction with post-stratification. The 2010 CCM was

the first formal coverage evaluation to apply logistic regression as inspired

by Alho (1990). Olson and Griffin (2012) describes how the CCM applied

logistic regression. In an independent analysis, Chen et al. (2010) applied

kernel regression as “local post-stratification” to estimate the coverage of

the 2000 census.
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6.3.2 Local Log-linear Models for Census Coverage

Local log-linear models are potentially relevant for measuring Census cover-

age if three or more lists are available that all have auxiliary covariates such

as age and sex. Taking the Census as the main list, there are many possible

candidates for a second and third list. These include the American Commu-

nity Survey (ACS), records from the Internal Revenue Service (IRS), and

drivers license records for each state. Auxiliary covariates that are typically

available with such lists include race, age, sex, and geographic location.

Several practical challenges stand in the way of the “easy” application

of local log-linear models for Census coverage estimation:

1. The P-sample, traditionally used as the second list for dual system es-

timation, employs a sampling frame without clear geographic bound-

aries. Although census blocks are clearly defined geographically, the P-

sample involves sub-sampling within census blocks. The sub-sampling

scheme is a function of the P-sample housing list, and does not rely on

explicit geographic boundaries. The result is that it is difficult (if not

impossible) to characterize the geographic region of overlap between

the Census and P-sample. Thus, there is no obvious way to count (or

even to estimate) the number c10 in Table 1.1, i.e., the number of per-

sons captured in the Census but missed by the P-sample within the

P-sample target region.

2. Apart from the Census itself, no available list represents a credible

attempt to survey the entire nation. The ACS covers only a small

fraction of the population. IRS records omit much of the population
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that does not earn enough income to file taxes. Drivers license records

omit most of the population that does not drive, and are not currently

available in a centralized database for all states. The P-sample includes

only about 0.1% of the population.

3. The various lists are collected across a span of time, introducing open-

population effects. The matching between the Census and P-sample

dual system estimates involves an elaborate set of criteria to keep track

of people who move between the Census date and the P-sample person

interviews. Implementing comparable criteria at a national level with

a third list is sure to be difficult.

4. Record linkage across three or more lists is a hard problem (see Chapter

7), and especially hard on the scale of the Census, where there are more

than 100 million records. (In dual system estimation, it is desirable to

match every P-sample record against the entire set of about 300 million

Census enumerations. However, in practice, the P-sample records are

matched against only a subset of Census enumerations where there

is prior reason to believe that a match could exist. Restricting the

matching process in this way reduces the computational burden of the

matching as well as reducing the potential for “false positive” linkage

errors.)

Despite these obvious challenges, the experimental use of a third list in

Census coverage evaluation has precedent. The Census Bureau conducted

a “dress-rehearsal” study in St. Louis in 1988 to prepare for the 1990 Cen-

sus coverage evaluation. This study supplemented the P-sample with the



6.3. CENSUS COVERAGE 133

A-sample, a compilation of records based on Employment Security, driver’s

license, Internal Revenue Service, Selective Service, and Veteran’s Adminis-

tration registrants (Wolfgang, 1989). Several authors throughout the 1990’s

explored triple system estimation, viewing the A-sample as a list in its own

right (Zaslavsky and Wolfgang, 1993; Darroch et al., 1993; Chao and Tsay,

1998).

None of the studies mentioned above used auxiliary covariates in any

way more sophisticated than post-stratification. Supposing that a coherent

triple system can be assembled with (a) minimal open-population activity

between samplings, (b) minimal record linkage error, and (c) high-quality

auxiliary covariates exist for all individuals that are included on each list, it

should then be reasonably straightforward to apply local-log linear models

as illustrated on the multiple sclerosis dataset in Section 6.2.

As Chapter 4 emphasized, CRC models are most reliable when grounded

in a detailed knowledge of the data sources and auxiliary information. Chap-

ter 10 in Alho and Spencer (2005) analyzes census data while giving quite

a lot of attention to these practical matters. For instance, they adjust the

dual-system estimates when the ratio of males to females differs substantially

from prior beliefs about this ratio based on alternative data sources.

6.3.3 Political Context of Census Estimation

The quality of the Census is political charged because the allocation of

governmental resources to various geopolitical bodies (such as states, coun-

ties, and municipalities) often depends directly on population estimates. In

addition, the constitution requires the allocation of Congressional seats to
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reflect Census counts. The overall fraction of people missed in the Census,

the undercount rate, is of some importance, but the crucial question of how

Census errors may affect the distribution of power across the nation rests

on the differential undercount, or differences in the undercount rate across

various demographic groups. The CCM typically estimates the undercount

rate to be highest among certain minority groups, contributing to real or

perceived injustices.

The Census Bureau studied the issue of differential undercount as early

as the 1940’s, and gradually acquired the knowledge and infrastructure for a

careful Census coverage evaluation. Leading up the 1990 Census, plans were

in place to statistically adjust the official 1990 Census count, but the Secre-

tary of Commerce prevented the adjustments from being used for legislative

redistricting. A coalition of political groups including New York City filed a

lawsuit to compel the Census Bureau to use its statistical adjustments. In

1996 the Supreme Court ruled that the original decision of the Commerce

Department to exclude the adjustments was not illegal. Thus, the official

1990 Census counts did not include the adjustments. Similar legal battles

preceded the 2000 Census, and in 1999 the Supreme Court ruled that us-

ing statistical adjustments for legislative redistricting is unconstitutional.

Despite restrictions on using statistical adjustments for Congressional re-

districting, the Census Bureau continues to publish statistically adjusted

counts for other purposes.

The Census adjustment controversy is largely a political story, involv-

ing a great deal of miscommunication and misunderstanding woven together

with bits of truth. Rather than trudge through the details, we refer the in-
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terested reader to a handful of key sources which document much of the

substance and tone of the debate. Freedman et al. (1993) argued that the

assumptions underlying the Census coverage evaluation are too strong, ren-

dering the coverage evaluation project more a source of confusion than a

source of clarity. Wachter and Freedman (2000) discussed how a hypothetical

extreme form of heterogeneity could cause bias in standard Census coverage

estimation methodology. Anderson and Fienberg (2000) documented sev-

eral rebuttals to these kinds of negative findings. In a terse follow-up article,

Brunell (2002) accused Andersen and Fienberg of using “twisted language.”

Full disclosure: The Fienberg referenced above is on the committee over-

seeing the present thesis.
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Chapter 7

Record-linkage Error

7.1 Introduction

Estimates of population size from CRC models rely on accurate record link-

age across multiple lists. Any attempt to estimate the correct record linkage

structure is likely to include errors when the records contain errors. We use

simulation and theory to explore how various types of record linkage errors

can propagate into CRC estimates.

One source of motivation to pursue this topic comes from the Census

coverage evaluation problem. A specific criticism of CRC in the Census con-

text is that record linkage errors tend to propagate through CRC estimates.

To our knowledge, no major Census study has specifically addressed the

propagation of linkage error, and, in general, this problem has not been ex-

tensively studied. In personal correspondence, Richard A. Griffin of the U.S.

Census Bureau reported preliminary simulation results which suggest that

even modest error rates in record linkage can lead to a situation in which

137
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triple system estimates of population size are less accurate than dual system

estimates.

Record linkage errors come in two kinds: false matches and false non-

matches. A false nonmatch is the absence of a link between two records

that refer to the same population unit. A false match a link between two

records that do not refer to the same population unit. Both false matches

and false nonmatches may occur when matching records across lists or when

deduplicating records within a list.

The classic Petersen formula estimates few unobserved records if the

overlap between lists is large and estimates many unobserved records if the

overlap between lists is small. This basic intuition of how the population

estimate must depend on the overlap between lists is relevant for all CRC

models and for any number of lists. The record linkage completely determines

the relative sizes of the various patterns of overlap. This motivates us to

investigate how different kinds of record linkage error influence estimates of

population size.

The field of record linkage is large. Fellegi and Sunter (1969) provided

one of the first probabilistic theories for record linkage. Herzog et al. (2010)

discuss practical aspects of the Fellegi-Sunter approach in modern applica-

tions. Sadinle and Fienberg (2012) recently extended two-list record linkage

to a joint model for more than two lists. Previous work at the intersection of

CRC and record linkage includes a Bayesian CRC model that incorporates

record linkage uncertainty for two lists (Tancredi and Liseo, 2011).
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7.2 Foundations

7.2.1 Truth

The notation in this chapter differs slightly from the other chapters in this

thesis. Suppose k lists of records L1, ..., Lk come from some population of

unknown size n. Let mj denote the number of records on list Lj . Let rji

denote the ith record on the jth list, so that Lj = {rj1, ..., rjmj}. In a

typical application with a population of people, a specific record rji may

consist of a vector of name, age, and date of birth, for example.

Index the population units by the numbers 1, ..., n so that “the ith unit”

has a clear physical meaning. Assume that every record is generated in a co-

herent way, in the sense that each record – at least in principle – corresponds

to exactly one unit of the population. Define the “truth index assignment”

function A∗ : ∪jLj → {1, ..., n} as an oracle function that assigns each record

to the index for the unit that the record describes. Thus A∗(rji) = t if the

record rji “belongs to” the tth unit.

We assume that each list is nominally deduplicated. That is, i1 6= i2

implies that rji1 6= rji2 (j = 1, ..., k). Note, however, that distinct records

may refer to the same unit; it is possible to have rji1 6= rji2 with A∗(rji1) =

A∗(rji2). If the truth assignment function A∗ were known, one could con-

struct a “truth table” to show the relationship between the population and

the lists. Table 7.1 is a hypothetical example of a truth table for three lists

drawn from a population with only 7 units:

In Table 7.1, records r11, r21, and r13 all belong to unit 1. The record r15

is the only record that belongs to unit 5. Records r13 and r14 are duplicates,
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Table 7.1: Example of a truth table for record linkage

Population index L1 L2 L3

1 r11 r21 r31

2 r12 r22 -
3 - r23 (r32, r33)
4 (r13, r14) - -
5 r15 - -
6 - - -
7 - - -

as both belong to unit 4. Similarly, r32 and r33 are duplicates. Units 6 and

7 are not recorded on any of the lists.

7.2.2 Discrete Linkage

We define a discrete linker function, or simply a linker, as any function from

the set of records ∪jLj into the set of positive integers. The truth index

assignment function is an example of a linker. Given an arbitrary discrete

linker A, any two records r, r′ are said to be A-linked (or simply linked if the

linker is clear from the context) if A(r) = A(r′).

If a linker Â is an estimate of the truth index assignment function, then

we call Â a linkage estimator. For our purposes, Â is a perfect estimate of A∗

if the set of Â-linked record pairs {(r, r′)|r, r′ ∈ ∪jLj with Â(r) = Â(r′)} is

equal to the set of A∗-linked record pairs {(r, r′)|r, r′ ∈ ∪jLj with A∗(r) =

A∗(r′)}.

All linkers are transitive: Given any three records r, r′, r′′ ∈ ∪jLj and

a linker A, the statements A(r) = A(r′) and A(r′) = A(r′′) together imply

that A(r) = A(r′′). Transitivity has strong implications. If D is a metric on

the space of records and t > 0 is some threshhold, the statements D(r, r′) < t
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and D(r′, r′′) < t do not, in general, imply that D(r, r′′) < t. Thus, transi-

tivity requires careful attention when designing a linkage estimator.

7.2.3 Discrete Linkage Errors

The truth assignment function is typically not observable, and so we must

estimate a linker. To illustrate some of the ways in which record linkage

errors may arise, we give Table 7.2 as a hypothetical example of an estimated

linker Â for the lists in Table 7.1.

Table 7.2: A hypothetical estimated record linkage structure

Linkage index (Population index) L1 L2 L3

1 1 - r21 r31

2 1 r11 - -
3 2,3 r12 (r22, r23) (r32, r33)
4 4 r13 - -
5 5 (r14, r15) - -

Table 7.2 demonstrates several record linkage errors. The first error is

the failure to recognize that r11 belongs to the same unit as r21 and r31.

This failure to link records is called a false nonmatch. The second error is

false match, merging the records of unit 2 and unit 3. The final error is

simultaneously a false match and a false nonmatch, as record r13 is unlinked

from r14 and linked to r15.

A false match or nonmatch may be caused by (a) a generically subopti-

mal feature in the design of the estimator Â, or by (b) recording error, or

by some mix of (a) and (b). These two sources of error have an interesting

relationship. Even a low-quality record linkage algorithm may produce the

truth table when no recording error exists. Conversely, a linker Â that is
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based on an extremely coherent and well-designed linkage algorithm may

contain many errors if substantial recording error exists. That is, trusting

an estimated linker Â requires some degree of confidence in both the record

linkage algorithm and the quality of the underlying records.

7.3 Linkage uncertainty

7.3.1 A Distribution Over Linkers

Linkage uncertainty propagates into CRC estimates through the sufficient

statistics c of the CRC model. To be more explicit, let c(A) denote the result

of using the linker A to construct the array c of capture pattern counts.

Let A(∪jLj), or simply A, denote the set of linkers. Let nL = |L1| +

· · ·+ |Lk|, the sum of the number of records on the lists. Since a linker is a

partition of the set {1, ..., nL}, the number of linkers is the Bell number of

the set, an astronomical number even for small nL.

Let F be some probability distribution over A. Suppose that A is a

random draw from the distribution F so that
∑

α∈A P (A = α) = 1. Then

the expectation of the cross-classification of capture patterns is

E(c(A)) =
∑
α∈A

P (A = α) ∗ c(A).

The expectation is with respect the the distribution of A, and assumes that

the lists L1, ..., Lk are fixed.

Let n̂(A) denote the estimate (7.1) of n that results from using linker A.

An estimate of n that takes into account the uncertainly in record linkage
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is

n̂(A) =
∑
α∈A

P (A = α) ∗ n̂(A).

The variability of this estimate depends on (a) the variability of the multino-

mial capture pattern counts c and (b) the variability in the estimate of the

distribution F over linkers, which may be substantial if the record-generating

process is noisy.

The discrete set A is extremely large, and difficult to handle analytically.

In a working paper, Steorts et al. propose a Bayesian approach that uses a

Gibbs sampler to simulate draws from F . This sampler produces a sequence

of linkers A1, ..., Aq from a posterior distribution F̂ . From these draws, one

could estimate the expected capture-pattern counts c as

E(c(A)) ≈ 1

q

q∑
i=1

c(Ai).

7.3.2 Dissection of a Simple Case

Suppose there are just two lists. Let r ∈ L1 and r′ ∈ L2. Consider the

contribution of the two records to the true capture pattern counts. There

are two possibilities. If the records belong to different units, then each record

contributes a ‘1’ to the count of observed units as in Table 7.3.

Table 7.3: Contribution of two records of two units to the true capture
pattern counts

In L2 Not in L2

In L1 0 1
Not in L1 1 0

Table 7.4 illustrates the result if the records belong to the same unit:
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The two records are merged into one.

Table 7.4: Contribution of two records of one unit to the true capture
pattern counts

In L2 Not in L2

In L1 1 0
Not in L1 0 0

Let p denote the probability that both records belong to the same unit,

i.e., p = P (A∗(r) = A∗(r′)). Table 7.5 shows the weighted element-wise

average of the tables 7.3 and 7.4.

Table 7.5: Contribution of two records with undetermined linkage sta-
tus

In L2 Not in L2

In L1 p 1− p
Not in L1 1− p 0

An alternative way to think about Table 7.5 is in terms of the individual

contribution of each record to the table. Table 7.5 is the elementwise sum of

Tables 7.6 and 7.7. In the case that both records refer to the same unit, the

contribution p to the (1, 1) cell of the table is shared between two records –

hence the division by two.

Table 7.6: Expected contribution of a record from L1

In L2 Not in L2

In L1 p/2 1− p
Not in L1 0 0
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Table 7.7: Expected contribution of a record from L2

In L2 Not in L2

In L1 p/2 0
Not in L1 1− p 0

7.4 Simulation

7.4.1 A CRC Model

We use the simplest CRC independence model (3.7) for a brief study on how

record linkage errors may propagate into n̂, the estimate of the population

size. We use the model twice – once for simulating fake lists (in conjunction

with an additional simulation step to provoke linkage errors), and once for

estimating the number of units that are missing on all of the simulated lists.

Let i = 1, ..., nc be some estimated linkage index as in Table 7.2. With n the

true population size, assume that n ≥ nc (this assumption could be violated

if the estimated linkage is particularly erroneous).

The conditional maximum likelihood estimate of the parameter û0 gives

an estimate of the population size as

n̂ = nc + π(~0|û0) = nc + exp(û0). (7.1)

CRC models of greater complexity are of interest for specific applications,

but it would be difficult to simulate across the a representative set of models

for even three lists. The simplicity of model (3.7) is a reasonable base case,

or reference scenario.
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7.4.2 Single-linkage Clustering

Single-linkage clustering provides a relatively straightforward method of

record linkage:

1. Define a metric d on the space of records. The metric may or may not

include special conditions to treat inter-list comparisons differently

than intra-list comparisons.

2. Build the minimal spanning tree (MST) over the full set of records

∪jLj using the metric d.

3. Declare a threshold t, and delete all edges from the MST which corre-

spond to distances greater than t.

4. Index the connected components of the graph, and define ASL(d,t) to

be the linker that assigns each record to the index of the connected

component to which it belongs.

We refer to this algorithm as the SL(d, t) linker. Samuel L. Ventura

briefly described the SL(d, t) linker in his Carnegie Mellon University doc-

toral thesis proposal, but this linker does not yet seem to be well known in

the record linkage literature.

7.4.3 Effects of Linkage Error

We perform the following simulation for various values of the threshold t:

1. Define a population of size n = 1000.
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2. Define covariates for each unit. The “continuous” covariate x1 is sim-

ply twice the population index. The “categorical” covariate x2 is a

random draw from {0, 1}, i.e., a separate draw for each unit, such that

approximately half of the units end up in category 0 and the rest end

up in category 1.

3. Generate three lists L1, L2, L3 using uniform capture probability p =

0.6. Let L = ∪jLj .

4. For each record r ∈ L, generate a duplicate record with probility 0.5.

5. Let x1(r) denote the value of x1 for record r. For each record r, replace

x1(r) with a draw from the normal distribution with mean x1(r) and

variance 0.42.

6. Let x2(r) denote the value of x2 for record r. For each record r, replace

x2(r) with 1− x2(r) with probability 0.04.

7. Apply the ASL(d,t) linker with d taken as the Euclidean distance.

8. Compute the capture pattern counts ĉ = c(ASL(d,t)), and use (7.1) to

estimate the population size.

Note that the purpose of steps (4)-(6) is to introduce ambiguity that leads

to errors in the record linkage step (7). The duplication introduced in step

(4) creates the potential for a false nonmatch in the linked data, while the

covariate errors introduced in (5) and (6) directly cause some amount of false

matches and false nonmatches. Figure 7.1 shows the results, which seem to

indicate that the population estimate n̂ can be sensitive to the record linkage
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approach. In terms of population size estimation, the conservative linker is

the linker that errs with more false matches than with false nonmatches.
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Figure 7.1: The CRC estimate of c0 divided by the true value c0 is
ideally equal to one. In this simulation with three lists, it is clear that
the choice of threshold t in the SL(d, t) linker underlying the capture-
pattern counts c is of great importance. Using a low threshold leads to
many false nonmatches, shrinking the overlap between lists, increasing
the number of evidently distinct records on each list, and, ultimately,
inflating the population size estimate. The opposite occurs when t is
too large.

We conclude with several remarks. The CRC model that we selected for

this section is clearly only a simple case. Similarly, the record linker we chose

is only one of many possible linkage algorithms. Many more combinations

exist to be tested. In particular, one could look at what happens with more

than three lists. We suspect that the same basic intuition will hold in the

many-list case, but it could be worthwhile to test this.
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Conclusion

8.1 Overview

The CRC problem is on one level a missing data problem. The missing

quantity of interest is c0, the number of missing units, but, perhaps equally

relevantly, the covariate values xi· are missing for i > nc. The nature of this

missingness is of the worst possible kind when it is reasonable to suppose

that the units which are not observed are not observed precisely because

they are different from the observed units, not only in the distribution of

covariates but also in how capture probabilities depend on covariates. This

difficulty sets apart CRC as an exceptionally risky enterprise. Chapter 4

discussed these issues in depth, and argued that setting the highest-order

interaction equal to zero a priori is potentially unwise, as this choice may

gloss over biases in the sampling mechanism.

Chapter 5 used auxiliary covariates to build local log-linear models, mo-

tivated by the idea that local models are less vulnerable to heterogeneity
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bias. While the use of covariates to model heterogeneity is not new, local

models give a unique way to model exceptionally complex CRC data in

which the form of the generating model varies over the covariate space. Co-

variates are useful when they explain much of the heterogeneity in capture

probabilities. Unfortunately, we have no way to ensure that the observable

covariates have good explanatory power; strong forms of heterogeneity may

exist and simply not be significantly associated with observed covariates.

Even if the observable covariates have excellent explanatory power, the

ability to extract useful information from a covariate depends on the size of

the sample. The required sample size grows quickly in the number of lists.

In an experiment with only two lists, only three conditional probabilities

(one for each capture pattern) must be estimated over the covariate space.

With k lists, we must model 2k − 1 conditional multinomial probabilities.

When the number of cells is large relative to the local effective sample size,

a standard log-linear analysis may not be appropriate, and much less a

local log-linear analysis. In these situations, we suggest consideration of the

relatively parsimonious model of Stoklosa and Huggins (2012), or the class

of models applied by Dorazio and Royle (2003).

Regardless of whether covariates are included, an important theme

emerging from Alho (1990), Link (2003), and Mao (2008) is that estimating

n becomes increasingly difficult when the detection probability ψ(x) is close

to zero for much of the covariate space. Mao suggested that units captured

moderately frequently give enough information to imply the existence of a

least a few unobserved units with high probability, but not enough informa-

tion to deny the existence of a large set of unobserved units with capture
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probabilities very close to zero (Mao, 2008).

8.2 Review of Assumptions

This thesis developed tools for CRC analyses that may work well under

several strong assumptions. We paraphrase the assumptions here, with brief

commentary:

1. No record linkage error: Units can be identified in the sense that they

can be properly linked across lists. Chapter 7 considered the perfor-

mance of a simple CRC model under the failure of this assumption.

The results were consistent with the intuitive notion that false matches

(nonmatches) tend to lead to under- (over-) estimates of n.

2. Independence between units: The probability that a unit is on a list

does not depend on whether a different unit is on the lists. We sus-

pect that failure of this assumption is common, leading to confidence

intervals that are too narrow, while having a relatively small effect in

terms of bias.

3. Multinomial sampling distribution: The capture pattern of a unit is a

realization of a draw from a multinomial distribution. For this assump-

tion, the question of correctness is potentially irrelevant for those who

accept the notion that “all models are wrong, but some are useful.”

4. Homogeneity: The multinomial capture pattern probabilities are con-

stant across units, at least for units within the same post-stratum.

This assumption certainly fails almost always, to varying degrees. The
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effect of the assumption’s failure depends importantly on whether the

pattern of heterogeneity for capture probabilities on one list is cor-

related with the pattern of heterogeneity on another list. The Rasch

model (3.22) is especially interesting when the set of capture proba-

bilities of units on each list is positively correlated between every pair

of lists.

5. Closed populations: No births, deaths, or migration of units.

Population closure is a subtle problem when the target population is not

defined with perfect clarity. In the species richness example (Section 6.1), is

a species that tends to live in Mexico, but that occasionally ventures north of

the border, part of the target population? In the multiple sclerosis example,

is the diagnosis of multiple sclerosis always a clear-cut outcome (certainly

not!). When the population is not clearly defined, one must ask whether

estimated rates of missingness reflect (a) units that are undetected due to

random sampling or (b) units that lie in the gray area, at the fringes of the

set of units that qualify to be part of the target population.

One way to address this question in future studies would be to include

a covariate that indicates the certainty with which – or, degree to which –

an observed unit belongs to the target population. For example, multiple

sclerosis is a disease with varying sub-diagnoses and degrees of severity.

Suppose a covariate were available that provided a physician’s rating of the

severity of each case. If this covariate were used in post-stratification, or

in local log-linear modeling, one might observe a relationship between the

estimated rate of missingness and the severity of cases. A high estimated rate
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of missingness in a group with extremely low severity could be an indication

of indecisiveness in diagnosis instead of an indication of missing cases, while

a high estimated rate of missingness in high-severity group might be a more

trustworthy indication of unobserved cases.

The sheer number and strength of the various assumptions is worth

lengthly contemplation. In short, any CRC analysis deserves careful scrutiny,

as the failure of any of the assumptions can cause substantial bias.

In addition, our development of local log-linear models rests crucially on

log-linear models. Chapter 3 reviewed log-linear models and explored their

usefulness through simulation. We found that log-linear models perform well

much of the time, but also have the potential to be substantially biased in

special cases (see the bottom panels of Figures 3.2 and 3.3), even when all of

the basic assumptions (above) are satisfied. A key unknown is the frequency

with which applications tend to fall into the “special” cases.

8.3 Future work

Future work may improve upon our presentation of local log-linear models

in countless ways. Here are several:

• A key problem is to devise data-driven methods for selecting the best

smoothing parameter for the local weights. This is a multi-dimensional

problem when multiple auxiliary covariates are available. The cross-

validation method of Hall et al. (2004) holds promise, but we found

the existing implementation in the np software package (Hayfield and

Racine, 2008) to be unacceptably slow for populations greater than a
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couple of thousand.

• The smoothing parameter that minimizes prediction risk over observ-

able capture-patterns does not necessarily minimize the risk involved

in extrapolation to the unobservable cell under local model selection.

As starting point to explore this issue, see Theorem 2.9 in Stoklosa

(2012).

• Scalability of local log-linear models is a problem because the comput-

ing time grows quickly in the number of lists and the number of distinct

points in the covariate space. With three lists, there are eight basic hi-

erarchical log-linear models to choose from; with four lists, there are

113 such models, and with 5 lists, there are nearly 7000 models. To

reduce the number of model selection procedures, one could emulate

Loader (1999) by fitting local models only on a course grid of points,

and use interpolation to derive estimates for all observations that lie

between the points of the grid.

• One may incorporate into local log-linear models some of the various

devices that exist for modeling open populations. Important work on

open populations appears in Cormack (1964), Jolly (1965), and Seber

(1965). See also the recent frequentist analysis of Pledger et al. (2010)

and a Bayesian adaptation by Royle and Dorazio (2012).

A final area of future work is in building a simulation package for CRC

studies. Several software packages exist for applying specific CRC estimators,

but we are not aware of a package that is dedicated to simulating realistic
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populations for testing arbitrary estimators. If Table 2.2 is any indication,

simulation studies to date have been rather limited. An important use of

simulation in CRC is to test the sensitivity of models to their strongest

assumptions. The simulations described in this thesis are a starting point

for such an endeavor.
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