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Abstract

We theoretically investigate the fluid mechanics of self-propelled (or swim-

ming) bodies. An important factor concerning the hydrodynamics of locomo-

tion concerns the relative strength of inertial to viscous forces experienced by

the swimmer, the ratio of which is quantified by the Reynolds number, Re.

Particular attention is given to the regime where Re is intermediate, where

viscous and inertial forces are both relevant to fluid motion. We study two

broad classes of swimmers: ‘pushers’ and ‘pullers’. Pushers produce thrust

from the rear of their body, while pullers generate thrust from the front. We

first investigate the near-field flow due to pushers and pullers by numerically

solving the Navier-Stokes equations for Re of 0.01–1000. We show that, al-

though the locomotion of pushers and pullers is similar at small Re, drastic

differences due to fluid inertia arise as Re is increased. Most remarkably, flow

instabilities develop at much smaller Re for a puller than a pusher.

Further, we investigate the large scale fluid transport induced by a swim-

mer as a function of Re in the context of the induced ‘drift volume’. The drift

volume quantifies the volume of fluid swept out by a ‘dyed’ fluid plane that

is initially perpendicular to the body’s path. However, we first address the

previously unsolved problem of the drift volume due to a body that is towed

by an external force at finite Re. While the drift volume is comparable to the

body volume in inviscid flow (Re → ∞), it is much larger when Re is finite

due to viscous effects. The drift volume due to a swimmer is smaller than

that due to a towed body because swimmers generate a weaker far-field flow.

However, it is still potentially large compared to the volume of the swimmer’s

body in the viscously dominated small-Re regime. However, the drift volume

of a swimmer quickly diminishes as Re is increased.
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Chapter 1

Introduction

In this thesis, we theoretically investigate the locomotion of swimmers across

a range of Reynolds numbers and the fluid transport that they induce. The

hydrodynamics of swimming organisms has long captured the interest of bi-

ologists, physicists, and engineers alike. A striking observation is that these

organisms span seven orders of magnitude from the smallest motile bacteria

to the largest marine mammals [1]. If a Newtonian fluid is assumed, the un-

derlying physics of the flow are primarily dictated by the Reynolds number,

Re = %Uclc
µ

, (1.1)

where lc is the characteristic length of the swimmer, Uc is the characteristic

speed, % is the fluid density, and µ is the viscosity. Thus, Re quantifies the

ratio of inertial to viscous forces in the fluid.

Microscopic swimmers have Re � 1, and their locomotion is dominated

by viscous forces. On the other hand, macroscopic organisms swim at Re� 1,

and the forces governing the fluid motion are largely inertial. The physics of

locomotion in these inertial and viscous regimes are entirely different. In

fact, microscopic swimmers must utilize completely different mechanisms of

locomotion than their macroscopic counterparts in order to swim effectively [2].

1
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Owing to the linear nature of the Stokes equations, which govern small-Re flow,

analysis of swimming microorganisms in this regime has been quite extensive,

and excellent reviews of small-Re self-propulsion are given by Brennen and

Winnet [3], Lauga and Powers [4], and Pak and Lauga [5]. Similarly, the

analysis of large-Re macroscopic swimmers such as fish and marine mammals

is simplified by the use of potential flow theory, and investigation of locomotion

in this regime has also been considerable [6, 7, 8, 9].

The analysis of locomotion when Re is intermediate has not been nearly

as broad and is considerably less well understood [3, 10]. This is due in no

small part to the fact that the physics of self-propulsion at intermediate Re are

inherently more complex than at small or large Re. Viscous and inertial forces

are comparable in strength, and the resulting equations of flow are nonlinear,

making analysis more difficult. This represents a substantial knowledge gap

considering that the biomass of zooplankton communities in the oceans is often

dominated by millimeter-sized intermediate-Re swimmers such as copepods

[11] and krill [12]. One approach taken by previous investigators is to focus on

a particular organism or mechanism of swimming [e.g., 13, 14, 15]. However,

there is some risk of masking the basic features common to all swimmers by

considering only specific cases. Thus, we take the alternative approach of

considering reduced-order models that capture the essential fluid mechanics of

self-propulsion in the simplest manner possible.

In chapter 2, the self-propulsion of a spherical squirmer — a model swim-

ming organism that achieves locomotion via steady tangential movement of

its surface — is quantified across the transition from viscously to inertially

dominated flow. Specifically, the flow around a squirmer is computed for

Reynolds numbers (Re) between 0.01 and 1000 by numerical solution of the

Navier-Stokes equations. A squirmer with a fixed swimming stroke and fixed

swimming direction is considered. We find that fluid inertia leads to profound
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differences in the locomotion of pusher (propelled from the rear) versus puller

(propelled from the front) squirmers. Specifically, pushers have a swimming

speed that increases monotonically with Re, and efficient convection of vortic-

ity past their surface leads to steady, axisymmetric flow that remains stable up

to at least Re = 1000. In contrast, pullers have a swimming speed that is non-

monotonic with Re. Moreover, they trap vorticity within within their wake,

which leads to flow instabilities that cause a decrease in the time-averaged

swimming speed at large Re. The power expenditure and swimming efficiency

are also computed. We show that pushers are more efficient at large Re,

mainly because the flow around them can remain stable to Re much greater

than that of a puller. Interestingly, if unstable axisymmetric flows at large Re

are considered, pullers are more efficient due to the development of a Hill’s

vortex-like wake structure.

In chapters 3 and 4, we shift our attention from the dynamics of a model

swimmer to quantifying fluid transport by both towed and self-propelled bod-

ies as a function of Re. By ‘towed’, we mean that the body moves under the

influence of an external force (e.g., gravity) rather than under its own power.

Motivation for investigating this problem is provided by the recent suggestion

that small- and intermediate-Re swimmers may be relevant to large scale bio-

mixing of the oceans, which has been a topic of considerable debate [e.g., 16,

17, 18, 19, 20, 21]. In particular, we adopt the concept of the drift volume,

introduced by Darwin [22], in order to build a simple framework for quanti-

fying the net fluid motion induced a translating body. The drift volume D

refers to the volume of fluid enclosed between the initial and final profiles of

an initially flat marked sheet of fluid that deforms due to the passage of the

body. Although the drift volume has been used to quantify fluid transport

in inviscid flows (Re → ∞) [23, 24, 25, 26] and Stokes flows (Re → 0) [27,

19, 28], the nature of the drift volume at finite Re has not been previously
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quantified.

Indeed, this is the topic of chapter 3, where we first address the case of a

towed body. Classic investigations of the drift volume in an inviscid fluid show

that D is comparable in magnitude to the volume of the translating body [22].

The situation is fundamentally different for a viscous fluid. For instance, if the

Reynolds number Re is zero, then D diverges with the distance traveled by

the body and may be orders of magnitude larger than the body volume [27].

In chapter 3, we interpret the drift volume as the flux through a stationary

plane bounded by a stream tube, thus allowing D to be computed without

explicit reference to the trajectories of the marked fluid elements, which greatly

simplifies our analysis. We focus our analysis on a rigid sphere of radius a

that is steadily towed through a viscous fluid by an external force. The initial

profile of the marked fluid is taken to be a disc of finite height h, which is

assumed to be much larger than a. A two-term asymptotic expansion of D

for a/h→ 0 is computed for Re = 0 and compared to the analogous result for

inviscid flow in order to illustrate the fundamental differences between these

two cases. Next, a leading order approximation toD for a sphere translating at

small Re is computed using Oseen’s approximation to the flow. These results

are extended to Re ≥ O(1) by taking advantage of the fact that, at distances

greatly exceeding its radius, the flow around a sphere is described by the point

force solution to Oseen’s equations [29]. Therefore, it is found universally for

finite Re that D diverges as the distance traveled by the sphere becomes large.

However, the exact nature of this divergence depends upon the ratio of the

distance traveled by the sphere to the radius of the initially marked disc of

fluid (h).

Having developed a methodology for computing the drift volume of towed

bodies as a function of Re, we apply a similar analysis to swimming bodies at

both zero and finite Re in chapter 4. In particular, we discuss the ability of a
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steadily translating low Reynolds number (Re) swimmer to displace a volume

of fluid that is large compared to the volume of the swimmer itself, which

is necessary for the swimmer to induce large scale mixing. The swimmer is

modeled simply as a force dipole aligned with the swimming direction. It is

found the drift volume induced by a swimmer is large if Re � 1. In fact,

it diverges as the extent of the marked fluid is made large for a swimmer at

Re = 0. However, we show that D does not diverge if Re is finite. Inertia

screens the far-field flow, and hence the volume transported by the swimmer

decreases as 1/Re. For swimmers at Re ≥ O(1), we demonstrate theD quickly

reduces to an amount that is of the same order of magnitude as the volume

of fluid physically displaced by the body. Hence, D depends largely upon the

nature of the near field-flow that is not associated with large-scale fluid motion

in this case. That an intermediate-Re swimmer does not induce large-scale

fluid transport via its drift volume suggests that the amount of fluid mixing

achievable by such a swimmer individually is limited.

Chapters 2 to 4 are intended to be self-contained and may be read as

such. More detailed introductions to their respective subject matters are given

within. In chapter 5, we conclude by summarizing the key results and findings

of the work presented in this thesis, and we consider possible directions for

future research.



Chapter 2

Inertial locomotion of a squirmer

2.1 Introduction

Swimming organisms span seven orders of magnitude in length [1]: a motile

bacterium may be only a few microns across whereas a large marine animal

may be several meters in length. Completely different fluid flow regimes are

observed at either end of this scale [7]. The underlying flow physics are dictated

by the relative strength of inertial to viscous forces within the fluid. The

Reynolds number, Re = %V L/µ, represents the ratio of these forces, where %

is the fluid density, µ is the viscosity, V is a characteristic speed, and L is a

characteristic length.

Locomotion at macroscopic length scales is associated with large Re flows

dominated by inertial forces. Roughly all swimmers between the size of a small

fish (Re ∼ 103) and a blue whale (Re ∼ 108) fall into this Eulerian realm.

Self-propulsion is primarily generated by reactionary forces arising from the

acceleration of fluid opposite the swimming direction [7]. This is accomplished,

for instance, by the motion of a fish’s tail fin. The effects of viscosity are
The content in this chapter is from an article published in the Journal of Fluid Mechan-

ics that is co-authored by Dominique Legendre and Eric Lauga [30]. Explicit permission
from the co-authors has been obtained to include the content in this thesis.

6
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confined to thin boundary layers so long as the swimmer is streamlined in

shape [31]. Thus, fluid-mechanical analysis may be carried out using inviscid

flow theory [32].

In contrast, microscopic organisms fall into the Stokesian realm, where

viscous forces dominate and Re is small, ranging from 10−4 for bacteria to

10−2 for mammalian spermatozoa [3]. Here, inertial mechanisms of thrust

generation are unavailable; the swimming mechanics of these organisms are

governed by resistive forces, where viscous thrust is balanced by viscous drag

[4].

Lighthill [33] and Blake [34] introduced the spherical squirmer as simple

model for self-propulsion at small Re, intended to mimic the locomotion of

organisms possessing dense arrays of motile cilia. A squirmer of radius a

achieves locomotion through small, axisymmetric deformations of its surface,

such that the radial and tangential velocity components on its surface in a

co-moving frame are

vr|r=a =
∞∑

n=0
An(t)Pn(cos θ), and vθ|r=a =

∞∑

n=1

−2
n(n+ 1)Bn(t)P 1

n(cos θ),

(2.1)

respectively. Here, r is the distance from the origin, located at the center of

the squirmer’s body, θ is the polar coordinate measured from the direction of

locomotion, An and Bn are time dependent amplitudes (with units of velocity),

and Pn (P 1
n) are (associated) Legendre polynomials of order n. The direction

of locomotion remains constant (at small Re) due to the axisymmetry of the

swimming “stroke” represented by (2.1), and thus the swimming velocity is

U = Uez, where ez is the unit vector along the swimming direction. From

the requirement that the net hydrodynamic force must vanish on a steadily

translating, neutrally buoyant body, the swimming speed of a squirmer in

Stokes flow is U = (2B1 −A1)/3 [33]. This depends only upon the first mode
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of each surface velocity component in (2.1) and is independent of viscosity,

since thrust and drag scale linearly with viscosity at Re = 0.

A reduced-order squirmer may be conceived by assuming that the surface

deforms steadily and only in the tangential direction (An = 0, and Bn =

constant). Furthermore, one may retain only the first two Bn coefficients, so

that

vθ|r=a = vs(θ) = B1 sin θ +B2 sin θ cos θ. (2.2)

(2.2) is a slip flow along the squirmer surface that vanishes at the poles (θ =

0 and θ = π). The first term in (2.2) is solely responsible for propulsion,

U |Re=0 = 2B1/3, and generates an irrotational velocity field decaying as 1/r3,

characteristic of a potential dipole. The second term is associated with the

stresslet exerted by the squirmer, S|Re=0 = 4πµa2B2(3ezez − I)/3, where

I is the identity tensor [35, 36]. The flow field due to this term decays as

1/r2 in Stokes flow. There is no Stokeslet contribution to the velocity field

because the squirmer is force-free: there is no net hydrodynamic force; drag

balances thrust. Defining β = B2/B1 and with B1 > 0, squirmers are divided

into pullers having β > 0 and pushers having β < 0 [37] (figure 2.1). If

|β| > 1, there exists an intermediate point within 0 < θ < π at which vs(θ)

vanishes, leading to recirculating flow behind (in front of) a puller (pusher)

[38]. The magnitude of β determines the amount of vorticity generation. If

β = 0, the squirmer is “neutral” and generates a potential flow, which, in

fact, is a solution to the Navier-Stokes equations (NSE) at any Re. In this

sense, β quantifies the amount of fluid mixing by a squirmer. Importantly, the

swimming speed is independent of β at Re = 0; there is no coupling between

vorticity generation and propulsion in Stokes flow.

Clearly, this reduced-order squirmer is a simplistic model for the loco-

motion of actual organisms. Nevertheless, it has been employed to examine
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(a)

a

n r

ρ

θ
z

ϕ

vs(θ)

−Uez

Puller
β > 0

Pusher
β < 0

Chlamydamonas (puller)
E. coli (pusher)

−Uez

(b)

thrust drag

thrustdrag

Figure 2.1: (a) Illustration of the flow pattern around a pusher and puller
squirmer in a co-moving frame. (b) Typical examples of pusher and puller
squirmers. Arrows represent the force exerted by the fluid on the swimmer
body. Pullers generate thrust from the front, e.g., the breast-stroke-like motion
performed by Chlamydamonas (a green algae). Pushers generate thrust from
the rear, e.g., E. coli which propel themselves by rearward facing flagella.

various facets of self-propulsion in Stokes flow, including swimming in non-

Newtonian fluids [39, 40], mixing by swimmers [41, 20, 28], feeding and nu-

trient transport [38, 42, 43], and hydrodynamic interactions of swimmers [36,

44, 45]. A detailed summary is provided by Pak and Lauga [5].

Recently, the locomotion of a squirmer with stroke (2.2) was studied at

non-zero Re. In particular, matched asymptotic expansions were used to com-

pute U to O(Re) by Wang and Ardekani [46] and to O(Re2) by Khair and

Chisholm [47]. It was found that U depends on β at non-zero Re: pushers

(β < 0) swim faster than pullers (β > 0). Here, the Reynolds number is

Re ≡ 2%B1a/(3µ). This is a result of vorticity generation, or mixing, be-

ing coupled to propulsion at finite Re. Note that the vorticity distribution

around a Stokesian squirmer evolves purely via diffusion and is thus fore-aft

anti-symmetric. This anti-symmetry precludes the generation of a net force

and hence propulsion. The anti-symmetry is broken at finite Re as vorticity is

advected past the squirmer into a far-field inertial wake. Khair and Chisholm

[47] demonstrate that the wake structure around a squirmer is consistent with

previous work on steady, self-propelled bodies at non-zero Re [29, 18], under-

scoring the squirmer as a suitable reduced-order model for inertial locomotion.
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Additionally, Li and Ardekani [48] and Khair and Chisholm [47] report nu-

merical results for the swimming speed of a squirmer for Re ≤ 1, which show

that the asymptotic results are of practical value in the rather limited range

of Re . 0.2.

The goal of the present chapter is to quantify the locomotion of a spher-

ical squirmer in the transition from viscously to inertially dominated flow.

Self-propulsion in this regime has not been fully explored, especially in com-

parison to the Stokesian and Eulerian limits. Here, viscous and inertial forces

may be simultaneously responsible for thrust and drag on a swimmer mak-

ing analysis more difficult. Specifically, we focus on intermediate values of

Re that lie between 0.1 and 1000, thus bridging the gap between viscous and

inertial swimming. A multitude of aquatic organisms, such as zooplankton

that are on the millimeter to centimeter length scale, fall into this range and

utilize a wide variety of swimming motions. The majority of past work has

focused on the swimming of particular species of organisms [13, 10, 14, 49,

15]. Such work undoubtedly provides valuable information on the specific lo-

comotive strategies of these organisms. However, in contrast to past work, our

objective is to quantify finite Re locomotion from a broad perspective using

the simple (reduced-order) squirmer model. Specifically, through the numeri-

cal solution of the NSE, we will determine the flow fields around pusher and

puller squirmers for 0.01 < Re < 1000 and −5 ≤ β ≤ 5, along with their

swimming speeds, power expenditure, and hydrodynamic efficiency. Further-

more, we will determine the stability of the steady axisymmetric flow about a

squirmer and compute the critical values of Re at which transitions to three-

dimensional (3D) and transient flow occur. A prime outcome of our work is to

demonstrate that the fluid mechanics of pusher and puller squirmers are dra-

matically distinct at intermediate Re, in contrast to their similar locomotions

at small Re.
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It must be noted that the squirmer model is indeed simple in that it

only considers propulsion via generation of a surface velocity, and it may

not well capture the detailed flows arising from the complex geometries and

locomotions of many biological swimmers. Nonetheless, its simple geometry

allows examination of the essential fluid mechanics of a self-propelling body.

Moreover, our results are easily compared to the classic problems of flow past

a no-slip sphere and flow past an inviscid spherical bubble, which are well

studied at all Re. Nonetheless, there also exist certain biological swimmers

that provide reasonably close realizations of a finite Re squirmer. Paramecium,

a ciliate 0.2 mm in size, can reach speeds of 10 mm/s while evading threats,

corresponding to Re ≈ 2 [50]. Ctenophores, the largest organisms known

to use ciliary propulsion, are a few millimeters to a few centimeters in size

and swim about one body-length per second when foraging (and faster when

evading threats). Thus, the Reynolds number of the flow ranges from roughly

100 to 6000 [51]. Moreover, some species of Ctenophores, such as Pleurobrachia

bachei have bodies that exhibit strong axial symmetry and are approximately

spherical in shape [52]. Such examples provide additional biological motivation

for studying the squirmer model outside the small Re limit.

The remainder of this chapter is organized as follows. In section 2.2, we

present the governing equations for a self-propelled squirmer. In section 2.3

we detail two numerical methods used for performing steady, axisymmetric

and transient, three-dimensional (3D) simulation of flows about a squirmer,

respectively. The subsequent results are presented and discussed in section 2.4.

Finally, we conclude and suggest directions for future work in section 2.5.
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2.2 Governing equations

Consider a single squirmer with a steady swimming stroke (2.2) in an un-

bounded incompressible Newtonian fluid (figure 2.1a). We normalize length

by the squirmer radius a, velocity by the speed of a neutral squirmer in poten-

tial flow (2B1/3), time by 3a/(2B1), and pressure and viscous stresses by

2B1µ/(3a). Thus, the Reynolds number is defined as Re ≡ 2%B1a/(3µ).

Henceforth, all quantities are dimensionless unless indicated otherwise. The

fluid motion is governed by the NSE,

∇ · v = 0, and Re
Dv

Dt
= ∇2v −∇p, (2.3)

where v is the velocity vector, p is the pressure, t is time, and D/Dt represents

the material derivative.

We assume that the squirmer body has a constant mass density %b, equal

to %, and is thus neutrally buoyant. If the flow about the squirmer is ax-

isymmetric, the net hydrodynamic force perpendicular to the squirmer’s axis

(taken as the z-axis of an attached Cartesian frame) and the net hydrody-

namic torque vanish. Thus, the squirmer does not rotate and maintains a

straight-line path. The remaining z-component of the hydrodynamic force Fz

is equal to the mass times acceleration of the squirmer body in the z-direction,

Sk
dU

dt
= Fz =

∫

S
(n · σ · ez) dS, (2.4)

where U is the swimming speed, S represents the spherical squirmer surface

with outer unit normal n, and σ = −pI +∇v + (∇v)> is the stress tensor.

The Stokes number, Sk = Re %b/%, is equal to Re because % = %b. This force

will vanish when the flow is at steady state and the squirmer translates with

a steady velocity. Therefore, a steady squirmer in steady, axisymmetric flow

is force-free and torque-free.
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However, the spherical squirmer is a bluff object; the steady, axisymmetric

flow around it may become unstable beyond a critical value of Re, yielding to

3D and/or unsteady flow. This leads to the production of instantaneous lift

forces perpendicular to the squirmer’s axis and instantaneous hydrodynamic

torques that result in lateral motion and rotation of the squirmer’s body,

respectively. Here, for simplicity, forces and torques are externally applied to

the squirmer to keep its direction and orientation constant and along the z-

axis during our computations, although the speed is allowed to vary according

to (2.4). Thus, the squirmer is not fully free-swimming but rather constrained

to follow a straight-line path. This is a logical first step before considering the

more complicated paths of motion that would arise if the squirmer trajectory

were to be unconstrained. For instance, the transitions in flow that occur for

a freely rising or sinking body, and the values of Re at which they occur, are

closely related to the those that take place in the flow past an analogous fixed

body [53, 54]. Thus, we expect that our study of a squirmer constrained to a

single direction of swimming will be relevant to a fully free-swimming squirmer.

Indeed, the two problems are identical in the regime of axisymmetric flow and

only differ when such flow destabilizes. Although it is not considered here, note

that the path of motion of a fully free squirmer could be computed via a force

balance (in all directions) and an angular momentum balance on the squirmer

body, similar to the computation of the paths of freely rising or falling bodies

[54].

2.3 Numerical methods

Two numerical schemes were employed to compute the flow field around a

squirmer for −5 ≤ β ≤ 5 and 0.01 ≤ Re ≤ 1000. One assumes steady,

axisymmetric flow where the steady-state swimming speed U is that at which
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Fz in (2.4) vanishes. The other considers fully 3D, transient flow, in which

case U = U(t) is given by integrating (2.4) via a time stepping procedure.

2.3.1 Computation of steady, axisymmetric flow

We convert the NSE into a stream function–vorticity form. From (2.3), the

steady vorticity transport equation is

Re[(v · ∇)ω − (ω · ∇)v] = ∇2ω, (2.5)

where ω = ∇ × v is the vorticity vector. A stream function ψ is defined in

cylindrical coordinates, such that

vρ = −1
ρ

∂ψ

∂z
, and vz = 1

ρ

∂ψ

∂ρ
, (2.6)

where ρ is the distance from the z-axis, and vρ and vz represent the fluid

velocity components.

Combining (2.6) with (2.5) gives

Re

(∣∣∣∣∣
∂(ψ, ω)
∂(r, z)

∣∣∣∣∣+
ω

r2
∂ψ

∂z

)
= ∇2ω − ω

r2 , (2.7)

where ω is the component of ω in the azimuthal direction ϕ about the z-axis;

the other (ρ and z) components of ω vanish by symmetry. Expressing ω in

terms of ψ gives

ωρ = −E2ψ, where E2 ≡ ρ
∂

∂ρ

(
1
ρ

∂

∂ρ

)
+ ∂2

∂z2 . (2.8)

Equations (2.7) and (2.8) are coupled partial differential equations, with the

former being nonlinear. These may be simultaneously solved for the scalar

quantities ψ and ω to give the flow field given appropriate boundary conditions.

In a co-moving frame, the squirmer surface (r = 1) is a streamline with

tangential velocity given by (2.2). Thus, ψ|r=1 = 0, and [∇ψ · n]r=1 = vs =

3 sin θ(1 + β cos θ)/2. The values of β and Re are specified constants, so the
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R∞

(a) (b)
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Figure 2.2: Structured polar grids (a) were used for both axisymmetric and
3D (by revolving them azimuthally) computations of the flow. For axisym-
metric computations with Re > 10, a different mesh (b) was used with greater
resolution in the wake of the squirmer to more accurately resolve the details
of the flow in this region.

swimming stroke is represented as a fixed boundary condition. By axisymme-

try, ψ|ρ=0 = 0, and ω|ρ=0 = 0 on the z-axis. Finally, the flow is uniform in the

far-field, so ψ|r→∞ = −Uρ2/2, and ω|r→∞ = 0.

A spectral element method [55] was used to spatially discretize (2.7),

(2.8), and the boundary conditions. The shape functions were defined as a

tensor product of Nth order Lagrange polynomials supported at the N + 1

Gauss-Lobatto integration points over the square [−1, 1]2 parametric space

of each quadrilateral element. Integration over each element was carried out

using the corresponding Gauss-Lobatto quadrature rule to produce a system

of non-linear algebraic equations. This system was solved iteratively using

Newton-Raphson iteration. Iteration was terminated when the L2-norm of

the relative errors in ψ and ω over all discretization points was reduced below

10−6.

The spatial domain was discretized into high-order computational grids

using the software package “Gmsh” [56]. Three different grids were used de-

pending on the value of Re. For Re ≤ 0.1, a polar grid extending to R∞ = 1000

and consisting of 9-by-9 node quadrilateral elements was used. The elements

were distributed evenly in the θ-direction (Nθ = 10) and progressed geomet-

rically outward in the r-direction (Nr = 20). A similar grid was used for
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0.1 ≤ Re ≤ 10, with R∞ = 100 (figure 2.2a). For Re > 10, a different mesh

was used to provide better resolution in the squirmer wake. Here, a boundary

layer grid was used along the squirmer surface, with Nr = 10 and Nθ = 51,

extending RBL = 0.25 radii from the squirmer surface. The radial grid size

grows geometrically with r, and is initially ∆r0 = 0.01 at the squirmer sur-

face. The remainder of the grid was unstructured, with upstream boundaries

extending to R∞ = 32, and a rectangular wake region extending a distance of

100 radii behind the squirmer (figure 2.2b). The far-field boundary conditions

were enforced at the exterior boundary of the mesh. We refer the reader to

appendix A for details on grid convergence.

The far-field boundary condition of uniform, oncoming flow cannot be di-

rectly applied because the steady-state swimming speed U is unknown a priori.

Since the flow is assumed to be steady and axisymmetric, we instead enforce

that Fz is equal to zero. Expressing (2.4) in terms of ω for an axisymmetric

flow field gives [47]

Fz = Re
π

2

∫ π

0
v2
s sin (2θ) dθ + π

∫ π

0

(
∂(rω)
∂r

− 2ω
)

sin2 θ dθ. (2.9)

A secant method was used to iteratively compute the value of U at which (2.9)

vanishes. At each iteration, the flow is solved with U = U 〈n〉, where n is the

iteration number, and (2.9) is evaluated to give F 〈n〉z . An improved estimate for

U is given by linear interpolation: U 〈n+1〉 = (U 〈n〉F 〈n−1〉
z −U 〈n−1〉F 〈n〉z )/(F 〈n−1〉

z −

F 〈n〉z ). Iteration was terminated when |U 〈n〉−U 〈n−1〉| was reduced below 10−5.

Computations for each value of β were started initially with Re = 0.01.

Two initial guesses of the swimming speed are required, which were made as

U 〈0〉 = 0.99 and U 〈1〉 = 1.01, since U is close to unity at small Re. An initial

guess for the stream function and vorticity fields of uniformly zero was suffi-

cient for convergence of the computed flow in this case. A simple continuation

strategy was employed by incrementally increasing Re. Initial guesses for U
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and the flow field at a given Re were supplied by using the values computed

at the last largest values of Re for which a converged solution was successfully

reached.

2.3.2 Computation of unsteady, three-dimensional

flows

Unsteady, 3D flows were explored using the JADIM code described in detail

in Legendre and Magnaudet [57] and Magnaudet, Rivero, and Fabre [58].

The JADIM code has been extensively used and validated in previous studies

concerning the 3D flow dynamics of spheroidal and disk-shaped bodies with

no-slip (solid) or slip (bubble) surfaces in uniform, shear or turbulent flows

[see, e.g., 57, 59, 60, 61]. In particular, the wake transition from axisymmetric

to 3D flow for a fixed body has been considered in Mougin and Magnaudet [62]

and Magnaudet and Mougin [63]; and Fabre, Auguste, and Magnaudet [64].

In the case of a sphere, a first bifurcation resulting in loss of axial symmetry

in the flow is detected at a critical Reynolds number (based on the sphere

radius and speed of translation U) of Re(c1)
U = 105, in agreement with linear

stability analysis [65] and previous numerical studies [66, 67]. A second (Hopf)

bifurcation is observed at Re(c2)
U = 135, leading to time-dependent flow, which

is also in good agreement with previous numerical findings [66, 67], according

to which the Hopf bifurcation lies in within the range 135 < Re
(c2)
U < 137.

In Magnaudet and Mougin [63], the vortex shedding process for a sphere at

ReU = 150 corresponds to a Strouhal number of SrU = fa/U = 0.0665, where

f is the dimensional frequency of vortex shedding. This falls within 2 to 3%

of that reported by Johnson and Patel [66] and Tomboulides and Orszag [67]

for the same Re.

Briefly, the JADIM code solves the incompressible NSE (2.3) in terms
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of velocity and pressure variables. The spatial discretization employs a stag-

gered grid on which the equations are integrated using a second-order accurate

finite-volume method. Fluid incompressibility is satisfied after each time step

by solving a Poisson equation for an auxiliary potential. Time advancement is

achieved through a second-order accurate Runge-Kutta/Crank-Nicholson al-

gorithm. At each time step, the swimming speed U is updated by integrating

(2.4). For each simulation, the squirmer was started from rest with swimming

stroke (2.2) and allowed to accelerate. Simulations were terminated after a

steady time-averaged value of the swimming speed was reached.

A polar grid extending to R∞ = 150 and rotated around the z-axis was

used for computation (figure 2.2a). Nodes were distributed uniformly in the

θ-direction and in a geometric progression in the r-direction. The effect of the

number of nodes (Nr = 150 along the radial direction, Nθ = 250 along the

polar direction, and Nϕ = 64 along the azimuthal direction), as well as R∞

and the radial grid size ∆r0 = 0.001 at the body surface, were checked in order

to ensure grid independence of the results (see appendix A).

The transition from steady, axisymmetric to unsteady, 3D flow was in-

vestigated by running the simulation for a given period of time while allowing

numerical error to perturb the initially axisymmetric flow profile. If the flow

is unstable for a given β and Re, such perturbations are expected to grow over

time, resulting in a flow field that is potentially 3D and/or unsteady. Such

is the case for a no-slip sphere in uniform flow, where distinct axisymmetric;

steady, 3D; and unsteady, 3D flow regimes are respectively encountered as

Re is increased [65, 67]. Specifically, simulations were performed with Re in-

creased in coarse increments until a transition, if one occurred, was identified.

Then, Re was increased in finer increments within the interval in which the

transition occurred. This process was repeated until a satisfactory estimate

of the critical transition Reynolds number was procured. The simulation time
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Figure 2.3: Swimming speed, normalized by 2B1/3, for β = ±0.5 and ±5. The
“5” markers represent pushers and the “4” markers represent pullers. Hollow
markers represent steady, axisymmetric solutions, and filled markers represent
unsteady, 3D solutions. We follow these conventions for the remainder of the
chapter. The dashed line represents the speed of a neutral (β = 0) squirmer.
For a β = +5 puller, the steady, axisymmetric flow destabilizes at Re ≈ 20,
and hence the steady, axisymmetric and unsteady, 3D solutions diverge. Time
averages of U are taken in the case of unsteady flow. Dotted lines show the
asymptotic result of Khair and Chisholm [47] for U to O(Re2).

was increased as the critical Reynolds number of transition was approached,

as it generally required longer times for perturbations to grow and hence for

the flow to reach a final transitioned state.

2.4 Results and discussion

2.4.1 Swimming speed of a squirmer

The calculated swimming speed U versus Re of a squirmer with β = ±0.5

and ±5 is shown in figure 2.3. There, U is normalized by 2B1/3, which is

the swimming speed at Re = 0 for all β, or the swimming speed of a neutral

squirmer at arbitrary Re. At Re = 0, U is independent of β because the

equations governing the flow are linear. Thus, the two terms in the swimming

stroke (2.2) contribute to the flow field independently; only the first (treading)

term generates propulsion, while the second only produces vorticity. This is
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not the case as Re is increased from zero: pushers (pullers) monotonically

increase (decrease) in speed if Re . O(1), in agreement with results from

asymptotic analyses [46, 47]. The increase or decrease in swimming speed is

amplified as |β| increases. However, as Re is increased beyond an O(1) value,

significantly different behavior of pushers versus pullers is observed. For all

pushers and pullers with β < 1, U continues to vary monotonically with

increasing Re, eventually reaching a terminal value. The computed swimming

speed is nearly identical for axisymmetric and 3D computations, suggesting

that there is no departure from steady, axisymmetric flow. In contrast, a non-

monotonic trend is observed for pullers with β > 1, and no limiting value

for U is apparent through Re = 1000. Moreover, the axisymmetric and 3D

computations give drastically different results, suggesting the destabilization of

the axisymmetric, steady flow (see section 2.4.3 for more detail). We remind

the reader that Re for a squirmer is defined as 2%B1a/(3µ), in contrast to

the Reynolds number based on the translational speed U , which we denote

ReU = %Ua/µ. Note that Re and ReU are the same order of magnitude since

U ∼ O(1).

Distinct contributions to the thrust and drag on a squirmer are provided

by the two terms on the right-hand-side of (2.9). The first term, which equals

8π Re β/15 after integration, depends solely on the swimming stroke and van-

ishes when Re = 0. The second term also vanishes if Re = 0 due to the

antisymmetric, purely diffusive, distribution of the vorticity, and it is hence

associated with forces arising from the flow asymmetry produced by inertia

at finite Re. Thus, (2.9) is satisfied identically in Stokes flow, and a squirmer

propels itself at the same speed regardless of β. However, pushers increase

in speed with Re while pullers decrease at finite Re . O(1). In the former

case, the first term represents a drag force because it is negative when β < 0.

Thus, the redistribution of vorticity caused by inertia is responsible for the
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Re = 0.1

U →

Re = 0.1
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Re = 100 Re = 100

Re = 1000 Re = 1000

(a) Pusher: β = −5 (b) Puller: β = 5

Figure 2.4: Streamlines of axisymmetric flow past a squirmer with β = ±5.
Dashed streamlines represent negative values of the stream function. The tick
marks in (a) at Re = 1000 follow along streamlines of irrotational flow past a
sphere.

extra thrust that increases the swimming speed with Re. The opposite occurs

for a puller, where β > 0: the contribution of the first term is a thrust, but

it is outweighed by drag produced by the inertial redistribution of vorticity.

As Re is increased beyond an O(1) value, the monotonic trend continues for a

pusher until a limiting speed is reached. In contrast, the swimming speed of a

puller becomes non-monotonic. A fuller explanation of these trends, especially

when Re is large, requires a closer examination of the flow fields generated by

squirmers and how they differ for pushers versus pullers.
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U →

Pusher: β = −0.5, Re = 1000(a)

U →

Puller: β = 0.5, Re = 1000(b)

Figure 2.5: Similar to figure 2.4 except with β = ±0.5.

U →

Re = 0.1

U →

Re = 0.1

Re = 10 Re = 10

Re = 100 Re = 100

Re = 1000 Re = 1000

(a) Pusher: β = −5 (b) Puller: β = 5

Figure 2.6: Vorticity contours for axisymmetric flow with ω = ± {0.1, 0.2,
0.5, 1, 2, 5, . . . , 200}. Dashed lines represent negative values. The dotted
line in (b) at Re = 1000 encircles the region where there is an approximately
constant value of ω/ρ = 2.9± 0.05, indicating that the wake bubble behind a
β = 5 puller has a structure resembling a Hill’s vortex.

U →

Pusher: β = −0.5, Re = 1000(a)

U →

Puller: β = 0.5, Re = 1000(b)

Figure 2.7: Similar to figure 2.6 except with β = ±0.5.
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Figure 2.8: The maximum value of |ω|, normalized by |β|, from axisymmetric
computations at β = ±0.5 and ±5 and from 3D computations for β = +5.
In Stokes flow, max |ω/β| = 9|β|/4, as indicated by the dashed line to which
the data collapses as Re → 0. The dotted line indicates a slope of one-half,
revealing that ω ∼

√
Re at large Re.

2.4.2 Flows generated by pushers and pullers

Streamlines illustrating the steady, axisymmetric flow around a pusher and

puller are shown in figures 2.4 and 2.5, and contours of constant vorticity are

shown in figures 2.6 and 2.7. At Re = 0.1, symmetries in the near-field flow are

apparent due to the dominance of viscous forces over inertial forces: reversing

the sign of β causes the streamlines to be mirrored along the ρ-axis. Also, the

vorticity is fore-aft anti-symmetric. Pushers generate positive vorticity ahead

of their direction of travel and negative vorticity behind, while pullers do the

opposite. Closed-streamline recirculatory regions appear in front of pushers

and behind pullers if |β| > 1. Streamlines separate from the squirmer surface

at the point where the stroke vs(θ) changes sign [38].

The flow patterns and swimming speed observed as Re is increased de-

pend critically on β. For pushers at Re � 1, the majority of the vorticity,

along with the upstream closed-streamline region that is present if β < −1,

is concentrated into a laminar boundary layer of thickness O(1/
√
Re). This

vorticity is then transported into a narrow downstream wake due to the mo-
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tion of the swimming stroke (figures 2.6a and 2.7a). The streamlines outside

the boundary layer and wake tend toward a potential flow profile, and no

standing wake eddy is present (figures 2.4a and 2.5a). Thus, the flow around

a pusher apparently resembles that past an inviscid spherical bubble at large

ReU , which exhibits the same characteristics [68, 69]. The key similarity is

that the mobile surfaces of a bubble and a pusher squirmer cause advection of

vorticity downstream, thus preventing it from accumulating into a recirculat-

ing wake. However, for a bubble, the shear-free surface produces ω ∼ O(1),

whereas for a squirmer, ω ∼ O(
√
Re) in the boundary layer (figure 2.8) due

to the fixed nature of the surface velocity profile (swimming stroke). This is

akin to a towed, rigid sphere with a no-slip surface, where the greater amount

of boundary layer vorticity results in flow separation and the appearance of a

wake eddy if ReU & 10, which grows with ReU [70, 71]. These phenomena are

avoided by a streamlined no-slip body, but for a pusher, the strong vorticity

advection due to the propulsive surface motion interestingly achieves a similar

effect. Despite the bluff body shape and O(
√
Re) surface vorticity of a pusher,

no wake eddy is produced.

The flow around pullers with 0 < β < 1 may be described likewise. As

Re is increased, the boundary layer and wake become smaller in extent, and

the majority of the flow domain becomes irrotational (figures 2.5b and 2.7b).

Again, vorticity is efficiently swept downstream by the mobile surface with a

(monotonic) swimming stroke vs(θ) that is directed along the path of the flow.

Consequently, pushers and pullers with β < 1 reach a terminal (dimensionless)

swimming speed (i.e., a dimensional swimming speed that is proportional to

B1).

The axisymmetric flow that is observed around pullers with β > 1 as Re

increases is very different. A trailing vortical wake bubble is indeed present

and grows with Re (figure 2.4b). Thus, for pullers with β > 1, the flow
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does not become irrotational within the majority of the flow domain as Re

becomes large. As a result, the swimming speed of a β > 1 squirmer does

not attain a terminal value. The wake eddy is caused by the reversal of

vs along the rear half of the squirmer surface, which hinders the advection

of vorticity downstream, and causes its accumulation behind the squirmer.

This resembles flow past a rigid bluff body towed by an external force, where

fluid deceleration along the no-slip surface has the same effect. Indeed, if

the flow is restricted to be axisymmetric, the wake bubble resembles a Hill’s

spherical vortex at Re = 1000, where ω/ρ is constant in the region of closed

streamlines and ω = 0 elsewhere (figure 2.6b). Batchelor [72] proposed that

such flow structures exist in the wake of bluff bodies in steady, axisymmetric

flow at large Reynolds numbers. The computations of Fornberg [71] show the

presence of a Hill’s vortex-like wake structure behind a sphere held fixed in

a uniform flow, within which ω/ρ is nearly constant once ReU is sufficiently

large. Moreover, it is shown that such large Reynolds number axisymmetric

flows result in very low drag forces relative to that observed in 3D flows beyond

the onset of flow instabilities. The observation that U increases with Re for

an axisymmetric β = 5 pusher when Re & O(1) (figure 2.3) indicates that

the trailing vortex behind a β > 1 puller is analogous to that behind a towed

sphere; the wake eddy acts to decrease the overall drag. Note that the point

of flow separation along the surface of a squirmer always occurs where vs(θ)

changes sign regardless of Re (figure 2.4), whereas it depends on ReU for a

no-slip sphere.

2.4.3 Transition to 3D and unsteady flow

Figure 2.9 and table 2.1 detail the transition of the flow around a squirmer from

steady and axisymmetric to unsteady and 3D and are derived from unsteady,
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3D flow simulations. The critical values ofRe at which the axisymmetry breaks

(Re(c1)) and at which the flow becomes unsteady (Re(c2)) are shown. For β > 1

pullers, Re(c1) < Re(c2), and a monotonic decrease of Re(c1) and Re(c2) with β

is observed. Moreover, Re(c1) and Re(c2) both increase rapidly as β is decreased

toward unity such that β = 1 appears to be an asymptote; pushers and pullers

with β < 1 produce steady, axisymmetric flows that remain stable up to at

least Re = 1000.

This highlights another apparent similarity between the flow past a β < 1

squirmer and an inviscid spherical bubble. For the latter, the asymptotic

analysis of Moore [68] suggested that a potential flow is recovered asReU →∞.

Specific studies have also been carried out to determine how the wake structure

and flow stability vary with aspect ratio for oblate spheroidal bubbles [73, 74,

63]. It was revealed that only bubbles with an aspect ratio larger than 1.65

and 2.21 exhibit a standing wake eddy and an unstable wake, respectively.

The reason is that a sufficient amount of vorticity (produced at the bubble

surface in an amount proportional to the surface curvature) must accumulate

in its wake for these transitions to occur. For a squirmer, a comparatively large

O(
√
Re) amount of boundary layer vorticity is generated, whereas it is O(1) for

a spherical bubble, so the stability of the flow past pushers and β < 1 pullers

despite this fact is an intriguing result. Again, vorticity is strongly advected

downstream by the propulsive surface velocity, preventing its accumulation in

the wake, and the stability of the steady, axisymmetric flow is preserved.

However, this does not imply stability at all Re. For no-slip objects where

the vorticity is similarly O(
√
Re), turbulent boundary layers develop when Re

is very large, even for streamlined objects such as airfoils or flat plates where

there is no instability caused by a wake eddy. For example, the boundary

layer of a no-slip sphere becomes turbulent at ReU ≈ 105 [75, p. 512]. For this

reason, it is very possible that the laminar boundary layer of a squirmer will
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Figure 2.9: Flow state as a function of β and Re. The points of transi-
tion, marked with an “×” and interpolated by the solid lines, were obtained
numerically (see also table 2.1).

β 1.1 1.2 1.5 2.0 3.0 5.0

Re(c1) 725 432 170 83.0 40.3 21.0
Re(c2) 818 528 210 95.3 47.8 24.2
Re(c2)−Re(c1) 93 96 40 12.3 7.5 3.2

Table 2.1: Numerically obtained critical values of Re where the flow becomes
3D (Re(c1)) and unsteady (Re(c2)) (see also figure 2.9).

also become turbulent at sufficiently large Re, except, perhaps, in the singular

β = 0 case where potential flow results identically. Such a phenomenon likely

occurs well above the maximum Re = 1000 considered in this work, and hence

is not further discussed here.

Given the previously noted similarities of the steady, axisymmetric flows

around a β > 1 puller to that past a no-slip sphere, one might also expect

that the transitions to 3D and unsteady flows that occur will also be analo-

gous. This indeed appears to be the case. For a no-slip sphere, the flow first

bifurcates at Re(c1)
U ≈ 105 [65, 67], resulting in a steady, 3D flow that exhibits

planar symmetry and two counter-rotating vorticies in the wake. The symme-

try plane passes through the axis of translation, but its orientation is arbitrary

due to the initial axisymmetry of the flow. The scenario is the same for β > 1

pullers, and planar flow symmetry is apparent in figure 2.10a. The only differ-



CHAPTER 2. INERTIAL LOCOMOTION OF A SQUIRMER 28

ence is that Re(c1) depends on β in the latter case. A second transition from

steady to unsteady flow takes place at ReU Crit2 ≈ 140 in the case of a no-slip

sphere [65, 67], and the same happens for a β > 1 puller at Re(c2) = Re(c2)(β).

In both cases, the planar flow symmetry persists, and as Re (or ReU) is fur-

ther increased, shedding of the wake vorticies begins to occur (figure 2.10b).

Table 2.1 reveals that the quantity Re(c2)−Re(c1) decreases significantly as β

is increased; the difference is about 40 at β = 1.5 and decreases to only 3.2

at β = 5. The flow is more quickly destabilized when the value of β is larger,

and hence there is only a narrow range of Re where it exhibits a steady, 3D

state.

Once the flow enters a unsteady and/or 3D state, the squirmer will no

longer be force-free or torque-free in general. Examining the hydrodynamic

forces and torques which arise in the vicinity of Re(c1) and Re(c2) yields some

interesting observations. Figure 2.11 shows the lift, defined as the force per-

pendicular to the direction of translation, for a β = 5 puller started from rest,

in which case Re(c1) = 21.0 and Re(c2) = 24.2. If Re(c1) < Re < Re(c2), as

in parts (a) and (b), a constant lift force is generated once the flow reaches

a steady-state. Some small oscillations that eventually die out are observed

at Re = 24.0 but not at Re = 21.7. If Re > Re(c2), the flow is unsteady,

and hence the lift does not reach a constant value in parts (c) and (d) of fig-

ure 2.11. At Re = 25.3, the lift is oscillatory but always acts along the same

direction, while at Re = 26.7, the lift periodically reverses direction. The

torque generated on the squirmer, plotted in figure 2.12, clearly follows the

same pattern as the lift, although it is offset by 90◦. The lift and torque are

perpendicular due to the planar flow symmetry; the lift is in the symmetry

plane, while the torque is normal to it (the symmetry can be seen visually in

figure 2.10a figure 2.10b).

Hydrodynamic forces acting parallel to the direction of swimming also
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(a) Re = 22.6 (b) Re = 100 (c) Re = 158

Figure 2.10: The streamwise component of the vorticity for a β = 5 puller at
an isocontour of ωz = ±1.05. In (a), the flow is planar symmetric and steady
(Re(c1) < Re < Re(c2)). Two counter rotating vorticies are present in the
wake. In (b), the flow is also planar symmetric but unsteady (Re > Re(c2)),
and the wake structure is more complicated; a pair of vorticies is being shed
downstream from the wake. Finally in (c), the planar symmetry is broken and
the flow appears to be almost chaotic in nature.
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Figure 2.11: Magnitude of the lift force F⊥ normalized by 2B1aµ/3 (solid) and
the azimuthal angle ϕF − ϕF0 at which it acts (dashed) for a β = 5 squirmer
accelerating from rest at time t = 0. Time is normalized by 3a/(2B1). Here,
ϕF0 represents the (arbitrary) initial angle of the lift when it first becomes
nonzero. In (a) and (b), Re(c1) < Re < Re(c2), and a constant steady-state lift
force is observed. In (c) and (d), Re > Re(c2), and the lift force is oscillatory.
In (c), the direction of the lift remains constant, while in (d) it periodically
reverses direction.
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hydrodynamic torque T (normalized by 2B1a

2µ/3) is plotted along with the
angle ϕT − ϕF0 that the torque forms with the initial lift force. For all Re
shown, the torque is perpendicular to both the direction of translation and
the lift.
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Figure 2.13: (a) Swimming speed vs. time for a β = 5 puller accelerating
from rest (3D simulation). Time is normalized by 3a/(2B1). (b) The Strouhal
number Sr vs. Re for a β = 5 puller.
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cause oscillations in the swimming speed when Re > Re(c2). The time-

dependent speed of a β = 5 puller accelerating from rest is shown in fig-

ure 2.13a. Note that these oscillations have double the frequency of that in

the lift and torque. It is also apparent that the average normalized swimming

speed decreases significantly with increasing Re. This can be ascribed to vor-

tex shedding; the drag-reducing effect of the vorticity-trapping wake bubble

observed in (unstable) axisymmetric flows is lost as the vorticity is instead

shed downstream. This explains the deviation of the unsteady, 3D simula-

tions from the axisymmetric ones seen in figure 2.3 at approximately the same

point at which the flow becomes unsteady.

From the dominant dimensional frequency f of the oscillations in the lift

force, we define the Strouhal number as Sr = 3fa/(2B1), which is plotted for

a β = 5 puller in figure 2.13b. A rapid initial decrease of Sr occurs just as

Re exceeds Re(c2) and unsteady flow is established. At slightly higher Re, Sr

rebounds and maintains a value between 0.024 and 0.029 between Re = 60

and Re = 160. This can be roughly compared to flow past a no-slip sphere

where SrU = fa/U = 0.067 at ReU = 150 [65, 67].

It is also apparent from figure 2.13a that the flow at β = 5 transitions

from having just a single frequency at Re = 63 to appearing nearly chaotic at

Re = 158. Also, the planar symmetry observed at Re = 100 (figure 2.10b) is

clearly broken at Re = 158 (figure 2.10c). Similar transitions occur for flow

past a no-slip sphere in the range 300 < ReU < 500, and the fluctuations in

the flow become increasingly irregular as Re is further increased, signifying

the beginnings of turbulence [67]. This is also observed for a β = 5 puller at

Re = 1000, as the increasingly chaotic nature of the flow causes increasingly

broadband fluctuations in the swimming speed.
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2.4.4 Power expenditure and hydrodynamic efficiency

The dimensionless power P expended by a squirmer versus Re for β = 0, ±0.5,

and ±5 is shown in figure 2.14a. This is calculated as the rate of work done

on the fluid by the tangential motion of the squirmer surface,

P = −
∫

S
n · σ · (vseθ) dS, (2.10)

where P is normalized by 4B2
1aµ/9. In axisymmetric flow, (2.10) simplifies to

P = 2π
∫ π

0
(2vs − ω|r=1)vs sin θ dθ. (2.11)

Additionally, power expended by the squirmer is dissipated viscously by

the fluid. The dimensionless rate of viscous dissipation Φ in the flow around

a tangentially deforming spherical body can be given in terms of the vorticity

and surface velocity [76, 77],

Φ =
∫

V
σ : ∇v dV =

∫

V
ω · ω dV + 2

∫

S
v2
s dS, (2.12)

and at steady-state, Φ = P . This implies that a squirmer that minimizes the

amount of vorticity that it generates in the fluid will also minimize its power

expenditure.

In fact, a neutral (β = 0) squirmer expends the least amount of energy

at all Re since it generates no vorticity. In this case, integrating (2.11) gives

P|β=0 = 12π for all Re. We may also integrate (2.11) to give the power ex-

penditure in Stokes flow, P|Re=0 = 12π(2 + β2)/2 [46], which gives the limits

approached by the data in figure 2.14a as Re → 0. As Re is increased, P in-

creases (if β 6= 0) due to increased vorticity generation. As shown in figure 2.8,

|ω|max increases monotonically, scaling with
√
Re within the boundary layer

at large Re. From (2.11) and (2.12), we expect the same scaling for P , which

is indeed observed in figure 2.14a. We also observe that P(β,Re) > P(β, 0)
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Figure 2.14: Power P expended by a squirmer versus Re (a), and the Lighthill
efficiency ηL versus the translational Reynolds number ReU = %Ua/µ (b).
Here, P∗ is the power necessary to tow a sphere in steady, axisymmetric flow.
A neutral (β = 0) squirmer is indicated by the solid green line (with no
markers) and has P = 12π at all Re.

for all Re > 0. One might conjecture that this behavior is predicted by the

Helmholtz minimum dissipation theorem [78], which guarantees that a Stokes

flow field dissipates less energy than any other incompressible flow field with

the same boundary velocities. However, the far-field boundary velocity for a

squirmer is given by its swimming speed U , which generally depends on Re,

so the theorem does not apply. Nonetheless, the observation that P is min-

imized at Re = 0 for a given value of β is intriguing. Moreover, we observe

that P increases monotonically with Re. This finding may be compared to

the monotonic increase of the extensional viscosity of a dilute suspension of

rigid spheres with Re in uniaxial extensional flow. Specifically, the extensional

viscosity also increases monotonically and scales with
√
Re at large Re due

to intense O(
√
Re) boundary layer vorticity [79]. The extensional viscosity is

proportional to the viscous dissipation rate in the flow. Thus, it is an inter-

esting observation that the power expended by a squirmer, which is viscously

dissipated, behaves similarly to the extensional viscosity of a dilute suspension

of spheres.
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The Lighthill [33] efficiency ηL of a squirmer is defined as the ratio of

the power P∗ required to tow a no-slip sphere at a speed U to the power P

expended by a squirmer to swim at that same speed. This quantity is plotted

in figure 2.14b. Here, the horizontal axis is the Reynolds number based on

the translational swimming speed, ReU = ReU = %Ua/µ. Note that we take

P∗ as the power required to tow a sphere in steady, axisymmetric flow at the

same ReU . At Re = 0, ηL = 1/(2 + β2): pushers and pullers have the same

efficiency. At small Re, asymptotic theory shows that pushers are slightly

more efficient than pullers [46]. Thus, it would be reasonable to expect that

larger differences in efficiency might be observed at larger Re. Interestingly,

our results reveal that the difference in efficiency between a β = ±0.5 pusher

and puller is very slight, even up to Re = 1000. This is somewhat surprising

considering that a β = −0.5 pusher moves nearly 10% faster than a β = 0.5

puller at Re = 1000. Thus, in this case, a puller and pusher exert about

the same amount of power once differences in speed are taken into account.

Similarly, a β = ±5 puller and pusher have nearly the same efficiency up to

the point where the steady, axisymmetric flow destabilizes at ReU ≈ 20, with

that of a pusher being only slightly greater. If one considers the unstable

axisymmetric flow that arises beyond ReU ≈ 20, pullers interestingly become

more efficient than pushers. The drag reducing effect of the Hill’s vortex-like

wake is responsible. However, if the flow is allowed to be unsteady and 3D,

pushers continue to be more efficient by a margin that increases with ReU .

The vortex shedding that takes place in the wake of a high Re puller reduces

the amount of swimming work that goes into forward propulsion and causes

a subsequent loss of efficiency. This suggests that “pushing” may be more

efficient than “pulling” at larger Reynolds numbers due to the increased flow

stability.

One may notice that ηL increases above unity in some cases, indicating
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that the power required to tow a sphere exceeds that expended by a squirmer

swimming at the same speed. In Stokes flow, ηL ≤ 3/4 for any spherical

swimmer moving only by tangential surface deformations [77]. For a neutral

squirmer at Re = 0, ηL = 1/2. However, this bound does not apply when

Re > 0. Indeed, ηL|β=0 increases above unity at ReU ≈ 7, and the same is

true for β = ±0.5 squirmers at ReU ≈ 10. This highlights the difficulty of

swimming against wholly resistive viscous forces [2]. For a squirmer, swimming

is always less efficient than being towed by an external force in the absence of

fluid inertia, but may be more efficient when inertia is present.

Finally, we note that the propulsion of a squirmer via tangential surface

motion is drag based. This is in contrast to the flapping and undulatory

mechanisms of propulsion employed by some (usually large Re) swimmers

such as fishes, which are lift based. The efficiency of lift based propulsion

can very high in inertial flows where Re is large. However, this efficiency

decreases drastically withRe, and drag based propulsion has superior efficiency

when fluid viscosity is a strong factor [80]. Thus, without rigorous calculation,

we surmise that the efficiency of a squirmer improves compared to lift based

propulsion as Re is decreased, likely being comparable at moderate Re. This

clearly makes sense from a biological perspective; the ciliated organisms most

closely described by the squirmer model are often microorganisms that swim

at small Re, although ctenophores provide an interesting example of moderate

to large Re squirmers.

2.5 Conclusion

We have demonstrated fundamental differences between the locomotions of

pusher and puller squirmers with a fixed swimming stroke when inertia is

important to the flow. Specifically, it is shown that a pusher, as well as
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a β < 1 puller, does not generate a standing wake eddy, and also that it

produces steady, axisymmetric flow that remains stable to at least Re = 1000.

The vorticity is confined to a laminar boundary layer of thickness O(
√
Re),

and the flow becomes largely irrotational as Re increases. This is due to the

strong downstream advection of vorticity by the propulsive surface velocity

profile. Before, such behavior has only been demonstrated for bubbles, which

produce O(1) vorticity. That this also holds for a β < 1 squirmer is a key

result, as squirmers produce a much larger O(
√
Re) vorticity (similar to a

no-slip body).

In contrast, a β > 1 puller is ineffective at transporting vorticity from

its wake, similar to a towed, rigid sphere. Thus, it exhibits a recirculating

wake region that triggers a transition to unsteady, 3D flow at a critical Re.

A progression of flow patterns is observed as Re is further increased, which

strongly resemble those which occur for a rigid sphere, until weakly turbulent

flow develops when Re ∼ O(1000).

Finally, we show that squirmers that minimize vorticity generation gener-

ally maximize their efficiency. In the range of Re where steady, axisymmetric

flow is stable, the swimming efficiency of pushers and pullers is surprisingly

similar. However, the vortex shedding that occurs for β > 1 pullers in un-

steady, 3D flow at larger Re reduces their overall efficiency below that of a

pusher where the axisymmetric flow remains stable.

Future work will entail further quantification of squirmers in unsteady,

3D flows; at sufficiently large Re, the flow around β > 1 pullers is expected to

become fully turbulent, similar to flow around a no-slip body. Furthermore, it

would be worthwhile to consider the motion of squirmers that are not bound

to move along a single axis of translation. In this case, the motion of the

squirmer would be fully coupled to the flow, and different swimming paths

would be observed depending upon the values of Re and β. The present results
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will be useful in quantifying fluid mixing, production of feeding currents, and

hydrodynamic signaling by the abundance of aquatic swimmers living at Re

up to 1000.



Chapter 3

Drift volume due to towed bodies

3.1 Introduction

‘Drift’ refers to the permanent displacement of fluid elements disturbed by

the passage of a body through a bulk fluid. Drift is an important heat and

mass transport mechanism in natural and industrial processes. For example,

heat transfer in pool-boiling is greatly enhanced by the drift induced by rising

bubbles that nucleate at the source of heat [81]. In gas-fluidized beds, drift

induced by bubbles (or voids) moving through a particulate medium is an

important source of mixing [82]. Drift is also relevant to froth floatation,

a process used in the mining industry in which rising air bubbles separate

minerals from an aqueous slurry. Water carried upward with the bubbles

induces recirculation within froth floatation columns, negatively impacting

performance [83].

Classic investigations of the trajectories traced out by fluid elements as

a result of a passing body date back to Rankine [84] and Maxwell [85], who

considered the case of a circular cylinder steadily translating through an invis-

cid fluid. Fluid elements follow along streamlines in the reference frame that
The content in this chapter has been submitted for publication as a journal article in

Physical Review Fluids and is currently under review.
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moves with the cylinder. However, a simple Galilean change of reference frame

into that in which the fluid far from the cylinder is at rest reveals that, in this

frame, fluid elements follow complex, looping paths. Moreover, they are per-

manently displaced some distance forward after the body is made to travel a

long distance. This phenomenon was further investigated by Darwin [22], who

referred to it as ‘drift.’ Darwin introduced the concept of the ‘drift volume’ to

conveniently quantify the net displacement of the entire fluid without the need

to explicitly assess the path of each individual fluid element. This concept will

be discussed further in what follows below.

Recent interest in drift (and the drift volume) was sparked by the sugges-

tion of Katija and Dabiri [17] that drift is an important mechanism in biogenic

ocean mixing. They show drift to be ‘viscosity enhanced,’ meaning that the

total fluid displacement due to a translating body increases with the viscosity

of the fluid. This lends support to the possibility that small, millimeter-scale,

swimming organisms (such as krill or copepods, which make up the dominant

fraction of the oceanic animal biomass) may induce large scale mixing pro-

cesses [86]. Their work prompted a number of theoretical and experimental

investigations into the drift induced by swimmers at small and intermediate

Reynolds numbers and its possible impact on ocean stirring [18, 19, 28, 21].

Drift has also been investigated in the context of vortex motion [87, 26], re-

circulatory wakes behind bluff bodies [88, 89], multi-body problems [90, 91],

and protein transport in cellular membranes [92].

The drift volume D is defined as the volume enclosed between the initial

and final profiles of a marked (as in with dye) material surface, as the body

translates from an infinite distance behind to an infinite distance in front of

the plane on which the fluid was initially marked. The initial material plane is

infinite in extent and perpendicular to the body’s path of motion. Thus,D may

be interpreted as the volume of fluid eventually entrained by the passing body.
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Darwin’s analysis of the drift volume in inviscid flow revealed the remarkable

result that D = ma/%, where ma is the added mass of the body and % is

the fluid density. This relation is often referred to as ‘Darwin’s theorem’ or

‘Darwin’s proposition.’ Further proofs of Darwin’s theorem were put forth by

Yih [93]. The result of the theorem is unexpected in at least two respects.

First, the sphere must displace a volume of fluid equal to its own volume as

it translates, suggesting there should be a net reflux of fluid opposite to the

direction of travel. However, the positive sign of D indicates a net forward

flux instead. Second, it is not immediately obvious why D should be so closely

tied to ma, although Yih [93] provides a clever geometrical explanation. The

added mass describes the apparent additional mass of an accelerating body

due to the increasing kinetic energy of the surrounding fluid. The drift volume,

in contrast, has no inherent association with such acceleration.

However, caution must be exercised in the application of Darwin’s ‘the-

orem,’ causing some debate about whether it is more appropriately referred

to as a ‘proposition’ [94, 23, 95]. As pointed out by Darwin himself, the pro-

curement of the relation D = ma/% is dependent upon the ordering of nested

improper integrals involved in computing D, which are taken over all space.

Evaluating D amounts to evaluating the total momentum of the fluid (divided

by %), which is itself indeterminate [94]. The physical origins of this inde-

terminacy were elucidated by Eames, Belcher, and Hunt [23], who extended

Darwin’s concept by introducing the partial drift volume Dp(x0, h), where the

body is placed at a finite initial distance x0 from the marked plane, which is

a disc of finite height h. Assuming that h far exceeds the dimensions of the

body (h → ∞), one expects to recover Dp(x0, h) → ma/% as the distance of

the body behind the marked plane is made infinite (x0 → −∞). However,

this is only true if x0/h → −∞. In fact, Dp depends critically on the ratio

x0/h, although it is always finite and comparable in magnitude to the volume
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of the body Vb. For instance, if x0/h → 0−, then Dp(x0, h) → −Vb. In this

case, one finds that the drift volume represents a net backward reflux of fluid,

itself equal in magnitude to the volume of the body.

A limitation of Darwin’s theorem is that it formally applies only to inviscid

fluids. Let Re ≡ 2%Ulc/µ be the Reynolds number, where U is the speed of

the body and µ is the fluid viscosity, and lc is the characteristic length of

the body. Darwin’s theorem is of practical value only in cases where Re is

sufficiently large for the effects of viscosity to be negligible. In such scenarios,

where the majority flow is approximately irrotational, experimental results for

D indeed exhibit reasonable agreement with the prediction D = ma/% [96, 97,

87, 26]. However, any body moving through an unbounded fluid by the action

of an external force at a finite Re carries with it a viscous wake of nonzero

vorticity. The velocity disturbance in the wake decays as v ∼ 1/r, where v

is the magnitude of the velocity disturbance and r is the radial distance from

the body [78]. This slow decay suggests that the displacement of any fluid

element entrained by the wake diverges logarithmically as the body translates

an infinite distance, and thus D is unbounded [18]. Disagreement between

Darwin’s theorem and experiments on rising bubbles at Re ≈ 100 can be

attributed to this fact [98].

The nature of the drift volume in viscous flows has not been studied to the

same extent as in the inviscid case, although there are some theoretical pre-

dictions for Stokes flow (Re = 0). Eames, Gobby, and Dalziel [27] computed a

leading order approximation to Dp induced by a translating spherical droplet

of radius a in Stokes flow as a/h→∞, which is found to diverge with time t

(i.e., as the distance traveled by the droplet, Ut, becomes large). This is due

to the slow velocity decay of the Stokeslet (force monopole) contribution to

the flow, which has v ∼ 1/r everywhere. However, it is also found that, if the

fluid is bounded by a wall, Dp is instead convergent because v decays faster
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than 1/r in the far-field, and hence marked fluid elements translate only a

finite distance as t→∞. For a wall parallel to the travel direction, v ∼ 1/r2,

and for a perpendicular wall, v ∼ 1/r3. The drift volume induced by a disc

translating through a two-dimensional porous medium has also been consid-

ered [92]. Here, D and Dp are also bounded because v ∼ 1/r2 at distances

greater than the Brinkman screening length, upon which D is shown to be

quadratically dependent.

The drift volume induced by a spherical microswimmer (a ‘squirmer’) of

radius a at Re = 0 has been investigated by Leshansky and Pismen [19] and

Pushkin, Shum, and Yeomans [28]. The flow generated by such a swimmer can

be described by a combination of a stresslet (symmetric force dipole) contri-

bution and a potential dipole contribution. Whether the swimmer generates

thrust from the front or rear (i.e., is a ‘pusher’ or ‘puller’, respectively) is

dictated by the sign of the stresslet, while the potential dipole can be inter-

preted as an irrotational ‘treading’ of the fluid past the swimmer. There is

no Stokeslet contribution to the flow because the swimmer is assumed to be

free of external forces and translating steadily. Thus, the stresslet, which has

v ∼ 1/r2, makes the dominant contribution to the far-field flow. However, its

fore-aft symmetric velocity distribution mean that its net contribution to D

cancels as the swimmer translates from far behind to far ahead of the initially

marked fluid plane. The potential dipole component of the flow (v ∼ 1/r3) is

left to determine D, and it is found that D = Vb/2 = 2πa3/3. The same result

is coincidentally recovered for a sphere moving through an inviscid fluid.

The drift volume induced by a body moving through a viscous fluid at

finite Re has yet to be quantified in detail. The central goal of the present

chapter is to address this knowledge gap. A reasonable suggestion is that Dp

should be tied to the volumetric flux Q through the viscous wake downstream

of the body. This flux is constant at distances far downstream and is related
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to the drag F on the body as Q = F/%U [78]. Therefore, one may surmise

that Dp diverges linearly with time as t→∞, at a rate that is proportional to

F [23, 19]. However, this argument assumes that h is always large compared

to the traverse size of the wake, which also diverges with the downstream

distance. It also neglects the source-like flow emanating from the sphere that

compensates the flux through the wake. As we will show, the behavior of Dp

at finite Re is more complex than has been previously suggested. Moreover,

although Dp always diverges as t→∞, the nature of this divergence depends

critically on assumptions regarding the ratio of the total distance traversed

by the sphere to the extent of the marked plane as these quantities are made

unboundedly large. This behavior is analogous to the conditional nature of

Darwin’s theorem, D = ma/%, in inviscid flow.

In the sections to follow, we address the problem of the partial drift volume

of a rigid sphere of radius a translating at a steady speed U as a function of

Re = 2%Ua/µ. We restrict ourselves to the case where h � a, since this is

typically of greatest interest, and because it allows us to make asymptotic

approximations to Dp. In section 3.2, we generalize the partial drift volume

concept to finite travel times by introducing a definition that we show to have

two distinct geometrical interpretations. Another way of doing so is given by

Camassa et al. [99], but their argument requires v to decay faster than 1/r

in the far-field. The flux argument that we develop has no such limitation,

and thus we may readily apply it to unbounded Stokes flows and flows at

finite Re (where the velocity in the wake decays as 1/r). We first review the

classic inviscid flow problem in section 3.3, where we validate our method of

computing Dp(t) against previous analytical results. From there, we consider

Stokes flow in section 3.4, where a two-term asymptotic expansion for Dp(t)

is derived for h/a � 1. In section 3.5, we obtain an approximation to Dp

at small Re using Oseen’s approximation of the flow. Finally, we consider
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h
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x0(1)t

D(t;x0, h)
q∗(t)

Figure 3.1: An illustration of the drift volume in the co-moving frame, in
which a uniform flow approaches a sphere of unit radius from the right at unit
velocity. At t = 0, the fluid is marked at x = 0 for y < y∗(0), as indicated by
the solid line to the right of the sphere. The sphere is at an initial distance x0
from the x = 0 plane. At time t > 0, the sphere translates a distance of (1)t
toward and eventually past x = 0, causing the marked fluid to deform. The
volume swept out by the marked fluid at time t is indicated by the shaded
area to the left of the sphere and is defined to be the drift volume, D(t;x0, h).
The fluid volume between y = h and the streamline ψ̂ = −h2/2, represented
by the shaded area above the sphere, is also equal to D. The rate at which
D increases with t is equal to the volumetric flux, q∗(t), through x = 0 for
y < y∗(t).

the drift volume associated with the point force solution to Oseen’s equations,

which gives a general estimate of Dp for a body translating in steady, laminar

flow. A brief discussion of the overall results is presented in section 3.7, which

are finally summarized in section 3.8. For brevity, we will henceforth use the

term ‘drift volume’ to refer to the partial drift volume Dp as a general function

of t, x0, and h, and we will omit the subscripted ‘p’.

3.2 Definition of the drift volume

Consider an impermeable sphere of radius a translating steadily through an un-

bounded fluid at speed U in the positive direction along the x-axis (figure 3.1).

We will normalize distance by a and time t by a/U , and all quantities defined

henceforth will be dimensionless unless stated otherwise. Let the y-coordinate
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measure the distance from the x-axis, such that (x, y) specifies a position in a

cylindrical coordinate system in which the fluid far from the sphere is at rest

(the fixed frame). The flow is assumed to be axisymmetric about the x-axis

so that there is no dependence on the azimuthal angle. At t = 0, let the initial

position of the sphere be (x0, 0). Also, in the frame that is co-moving with

the sphere, let x̂ and ŷ be the coordinates centered on the sphere such that

x̂ = x−(x0 +t) and ŷ = y. The flow is assumed to be steady in this frame, and

thus it may be described by a stream function ψ̂(x̂, ŷ), which is normalized by

Ua2 and tends toward −ŷ2/2 in the far-field. At t = 0, the fluid on the x = 0

plane is marked (as in with dye) for y < y∗(0), where the point (0, y∗(t)) is

the intersection of the x = 0 plane with the streamline, ψ̂ = −h2/2, that ap-

proaches y = h as x→ ±∞. Driven by the motion of the sphere, the marked

fluid deforms as time progresses from t = 0. Now, consider the fluid enclosed

by the x = 0 plane, the marked material surface of fluid, and the fluid lying on

ψ̂ = −h2/2, which also constitutes a material surface. Let the (dimensionless)

drift volume D = D(t;x0, h) be defined as the volume of fluid, normalized by

a3, contained within this region at a particular time t > 0, which is depicted as

the shaded area trailing the sphere in figure 3.1. The partial drift volume, as

defined by Eames, Belcher, and Hunt [23], is reproduced in the limit t → ∞,

as the streamlines become flat at an infinite downstream distance from the

sphere. Darwin’s drift volume is also reproduced upon letting x0 → −∞,

t → ∞, and h → ∞ (although the ordering of these limits requires care, as

we will discuss later).

This definition of the drift volume is particularly useful because it reveals

that D may be interpreted as the time-integrated flux through a kinematic

surface within the fluid domain. Let A = A(t) represent such a surface lying

on x = 0 for y < y∗(t) (with area πy2
∗), and let q∗ = q∗(t) represent the

volumetric flux through A. All boundaries of the region defining the drift
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volume are material surfaces except A, including the surface of the sphere

itself. Therefore, a material balance dictates that D =
∫ t

0 q∗(t) dt. Our flux

interpretation of D is similar to that of Benjamin [94]; it only differs in that

we bound A by a streamline (or, more accurately, a stream tube), rather

than by an arbitrary time-independent circle of constant radius (> a). Our

modification ensures that D(t → ∞;x0, h) is consistent with the partial drift

volume considered by Eames, Belcher, and Hunt [23].

Let ψ(x, y, t) = ψ̂(x̂, ŷ)+ŷ2/2 represent the instantaneous stream function

of the flow in the fixed frame. The difference in ψ between any two points

is equivalent to (2π times) the flux through any instantaneous axisymmetric

surface connecting those points. Thus, we may evaluate the flux through

A(t) as q∗(t) = 2π[ψ∗(t) − ψb(t)], where ψ∗(t) = ψ(0, y∗(t), t), and ψb(t) is

ψ evaluated at the intersection of the x = 0 plane with the sphere’s surface.

When there is no intersection, ψb = 0. Integrating q∗(t) over time yields

D = 2π
∫ t

0
[ψ∗(t′)− ψb(t′)] dt′ = 2π

∫ t

0
ψ∗(t′) dt′ −

[
V̄b(t)− V̄b(0)

]
, (3.1)

where V̄b(t) is the volume of the sphere (normalized by a3) that has passed

through x = 0 at time t. The second equality in (3.1) holds as long as the

sphere is impermeable.

There is a second possible interpretation of the drift volume. An implicit

relation between ψ∗ and y∗ is given by

ψ∗ = 1
2y

2
∗ −

1
2h

2. (3.2)

Inserting (3.2) into (3.1) gives

D = π
∫ t

0
y2
∗(t′) dt′ − πh2t−

[
V̄b(t)− V̄b(0)

]
. (3.3)

The first two terms on the right hand side of (3.3) evidently describe a volume

of revolution about the x-axis that is bounded above by ψ̂ = −h2/2 and
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below by y = h, as highlighted in figure 3.1. The equivalence of D to the

volume between this streamline and its unperturbed (free-stream) position

can be realized by a direct geometrical argument [93] that has been utilized

by others [27, 19, 28]. However, the flux interpretation that we outlined here

has not been previously emphasized, and thus it is worth pointing out the

mathematical equivalence between these two interpretations of D.

Solving (3.2) for ψ∗ as an explicit function of time in the interest of eval-

uating (3.1) is complicated by the fact that ψ(x, y, t) is generally a nonlinear

function of space and time. To ameliorate this issue, and because we are pri-

marily concerned with the motion of the entirety of the bulk fluid as the sphere

translates, we will restrict our attention to the case where h � 1, i.e., where

the radius of the marked disc of fluid is large compared to that of the sphere.

Then, y∗/h ∼ 1 for all t since the departure from the uniform stream is small

far from the sphere. In this case, it is convenient to define τ = (x0 + t)/h and

ρ = y∗/h. We may rearrange and express (3.2) in terms of these variables as

ρ2 = 1 + 2ψ∗
h2 . (3.4)

The integral for the drift volume from (3.1) then becomes

D = 2πh
∫ τ

τ0
ψ∗(τ ′) dτ ′ −

[
V̄b(τ)− V̄b(τ0)

]
, (3.5)

where τ0 = τ |t=0 = x0/h. For brevity, we will make use of the function

∆(τ ;h) = D(τ, τ0 = 0, h), from which D(τ) = ∆(τ)−∆(τ0). We may interpret

∆(τ) as the ‘downstream’ drift volume, occurring after the center of the sphere

has crossed x = 0. Conversely, −∆(τ0) is the ‘upstream’ drift volume occurring

before the center of the sphere crosses x = 0.
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3.3 Inviscid flow

The flow due to a sphere passing through an inviscid fluid is described by a

potential dipole at the center of the sphere. Thus, the instantaneous stream

function in the fixed frame evaluated at (0, y∗(t)) is given by

ψ∗ = ρ2

2h(τ 2 + ρ2)3/2 . (3.6)

Inserting (3.6) into (3.4) yields a nonlinear equation for ρ(τ),

ρ2 = 1 + ρ2

h3(τ 2 + ρ2)3/2 . (3.7)

For h � 1, (3.7) makes apparent that there is only a very small, O(1/h3),

deflection from the free-stream flow. This suggests that we may make a leading

order approximation to D by setting ρ = 1 in (3.6). Hence, from (3.5), an

approximation to the drift volume is

D ∼ D0 = 2π
∫ τ

τ0

ds
s2 + 1 −

[
V̄b(τ)− V̄b(τ0)

]
. (3.8)

Evaluating (3.8) gives

∆ ∼ ∆0 = πτ√
τ 2 + 1

− V̄b(τ). (3.9)

This approximation to the drift volume is essentially the same as that

considered by Benjamin [94]. We may physically interpret D0 as the volume

of fluid through a disc of radius h at x = 0, since we have effectively neglected

the deflection of streamlines far from the sphere. Interestingly, the drift volume

only depends on x0, h, and t through τ (and τ0) at this level of approximation.

The fact that h does not appear in (3.9) indicates that D converges to an O(1)

value as the height of the marked plane is made large. Also, we observe that

∆0(τ) = −∆0(τ0) due to the fore-aft symmetry of the flow.

If an unbounded marked plane (h → ∞) is considered, corresponding to

Darwin’s original calculation, then the error incurred by setting ρ = 1 in (3.6)
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approaches zero, and D → D0. However, this places no restriction on the

values of x0 or t, which may be unboundedly large. The ratios τ and τ0 are in

this case indeterminate and must be specified for D(τ) to be well defined [94,

23]. In order to recover the equivalence of the drift volume (multiplied by the

fluid density) to the added mass, as originally done by Darwin, the distance

traveled by the sphere must be assumed to be infinitely large compared to the

marked plane. This corresponds to letting τ0 → −∞ and τ → ∞ in (3.9).

From this, we obtain the expected result that D = 2π − Vb = 2π/3, where

Vb is the total (nondimensional) volume of the sphere, 4π/3. If instead the

path traversed by the sphere is infinitesimal compared to h (although large

compared to a), then τ → 0 for all t. The first term in (3.9) consequently

vanishes, and D = −Vb = −4π/3 (a result that was also obtained by Darwin).

Finally, τ or τ0 may be taken as finite, in which case intermediate values of D

are obtained. However, despite its conditional nature, D is always comparable

in magnitude to Vb.

We may obtain corrections to D(τ ; τ0, h) for large (but finite) h by an

asymptotic expansion in terms of the small parameter ε = 1/h. In this manner,

the effect of the small deflection of the streamline ψ̂ = −h2/2 may be accounted

for. (3.6) suggests an expansion for ρ(τ ; ε) of the form ρ2 = 1 + ε3ρ2
3(τ) +

ε6ρ2
6(τ) + O(ε9). After substituting this series into (3.7) and expanding each

term as a Taylor series about ε = 0, matching like powers of ε gives

ρ2 = 1 + ε3

u3 + ε6
( 1
u6 −

3
2u8

)
+O

(
ε9
)
, (3.10)

where u =
√
τ 2 + 1. We may directly obtain a corresponding expansion for ψ∗

using (3.4); namely,

ψ∗ = ε

2u3 + ε4
( 1

2u6 −
3

4u8

)
+O

(
ε7
)
. (3.11)

This may be substituted into (3.5) and integrated by making the hyperbolic

substitution τ = sinh θ and applying the reduction formula (n−1)
∫

sechn θ dθ =
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Figure 3.2: The drift volume D (normalized by a3) for a rigid sphere in
inviscid flow (a) and in Stokes flow (b). The solid lines represent the leading
order approximations to D from Equation (3.9) and (3.15), respectively, and
the dashed lines represent the asymptotic corrections given by Equation (3.12)
and (3.16), respectively. In (a), h = 2.5 and τ0 → −∞. The sharp drop in D
at τ = 0 is the result of the sphere displacing fluid as it passes through the
x = 0 plane. Darwin’s result that D = 2π/3 is approached as τ becomes large.
In (b), we have taken h = 10 and τ0 = 15. Note that the magnitude of D in
Stokes flow is orders of magnitude greater than that in inviscid flow.

sechn−2 θ tanh θ + (n − 2)
∫

sechn−2 θ dθ. The expansion ∆(τ ; ε) = ∆0(τ) +

ε3∆3(τ) +O(ε6) is thereby obtained, where

∆3(τ) = − π

32

[
3 tan−1 τ + 3τ

(τ 2 + 1) + 2τ
(τ 2 + 1)2 + 8τ

(τ 2 + 1)3

]
. (3.12)

From (3.12), we observe that ∆3 decreases (very nearly) monotonically

with τ (the last bracketed term produces weak non-monotonicity). Therefore,

∆3 represents a reflux of fluid opposite to the direction of travel. Taking the

limit of D as τ →∞ and τ0 → −∞, all of the bracketed terms in (3.12) vanish

except for the monotonic tan−1 τ term. Thus, D = 2π/3− 3π2ε3/32 + O(ε6).

The results for D(τ ; τ0, h) given by (3.9) and (3.12) are plotted in figure 3.2(a).

They are consistent with other asymptotic analyses of the drift volume in

inviscid flow [23, 99] and serve to validate our method for computing D.
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3.4 Stokes flow

Repeating the analysis for Stokes flow (Re = 0) past a rigid spherical particle

with a no-slip surface is straightforward; the procedure requires little modifi-

cation from the inviscid flow case considered in section 3.3. Here, the stream

function at (0, y∗(t)) is

ψ∗ = 3h
4

ρ2

(τ 2 + ρ2)1/2 −
1

4h
ρ2

(τ 2 + ρ2)3/2 . (3.13)

The large, O(h) term in (3.13) is contributed by the Stokeslet, which dom-

inates the flow far from the sphere. The much weaker O(1/h) term is due

to a potential dipole contribution to the flow, required to satisfy the no-slip

condition at the sphere surface (it is of the same form that appears in (3.6)).

Inserting (3.13) into (3.4) gives

ρ2 = 1 + 3
2h

ρ2

(τ 2 + ρ2)1/2 −
1

2h3
ρ2

(τ 2 + ρ2)3/2 . (3.14)

Compared to the inviscid case, where the deflection from the uniform stream

is only O(h−3) (see (3.7)), (3.14) shows a more significant O(h−1) deflection.

Nonetheless, the flow is approximately uniform far from the sphere, and a

leading order approximation toD(τ ; τ0, h) may again be obtained by neglecting

the vertical deflection of streamlines for h � 1. Setting ρ = 1 in (3.13) and

evaluating the resulting integral in (3.5) yields

∆ ∼ ∆0 = 3π
2 h2 sinh−1 τ, (3.15)

which we plot with h = 10 in figure 3.2(b). Note that Eames, Gobby, and

Dalziel [27] obtain a similar result, which can be verified to be in agreement

with (3.15) after rewriting τ in terms of the angle θ, with reference to the

center of the sphere, subtended by the x-axis and the point (0, y∗) at time t.

Namely, it can be shown that sinh−1 τ = sinh−1 (− cot θ) = ln
(
tan 1

2θ
)
.



CHAPTER 3. DRIFT VOLUME DUE TO TOWED BODIES 52

The sole term in (3.15) is contributed by the Stokeslet and is O(h2). Other

contributions to ∆(τ ;h) coming from the second term in (3.13) and V̄b(τ) are

only O(1). Hence, they are omitted from (3.15), which, as we will formally

show below, has O(h) error. From this leading order result, we find that

∆(τ) = −∆(τ0), which is due to the fore-aft flow symmetry and is a property

that is shared with the inviscid flow case. However, we also observe that D

diverges linearly with the area, projected onto a plane perpendicular to the

x-axis, of the marked fluid as τ → ∞, πh2, and hence quadratically with h.

It also diverges logarithmically with τ as τ → ∞ (since sinh−1 τ ∼ ln τ for

τ � 1), and there is a similar divergence as τ0 → −∞ (as the initial distance

of the sphere from the marked fluid is made large). This behavior contrasts

drastically with that found for inviscid flow, where D converges to an O(1)

value as h → ∞ and t → ∞. The divergent nature of D in Stokes flow can

be attributed to the slow 1/r decay of the velocity disturbance. The total

horizontal displacement of marked fluid elements X(t) (in the fixed frame)

scales as X ∼ ∫ t dt/t = ln t as t → ∞. This can be compared with the

far weaker v ∼ 1/r3 decay in inviscid flow, which leads to a bounded fluid

displacement; X ∼ 1/t2 as t→∞.

Recall the indeterminant nature of D(t;x0, h) in inviscid flow, which is

in turn due to assumptions made regarding τ as x0 → ∞, t → ∞ and h →

∞. The same issue must be addressed for Stokes flow. If we allow that

τ = (x0 + t)/h� 1, so that the path of travel far exceeds h, then D diverges

logarithmically with t according to (3.15). However, if the path of travel is not

large compared to h, such that τ = (x0 + t)/h� 1 for all t, then (3.13) gives

ψ∗ ∼ 3h/4, which is interestingly independent of τ . This implies a constant

volumetric flux through all planes perpendicular to the x-axis, and hence that

D ∼ 3πht/2. Thus, D diverges linearly, rather than logarithmically, with t at

long times in this case. This behavior is also contained within (3.15), which
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can be verified by evaluating the Taylor expansion of ∆0(τ ;h) about τ = 0 to

leading order in τ .

Corrections to ∆0 for small but finite ε = 1/h may be obtained in the

same manner as for the inviscid flow case, with the exception that ρ2 must be

expanded in powers of ε instead of ε3, as indicated by the presence of an O(ε)

term in (3.14). Performing the expansion yields

∆ = 3π
2 h2 sinh−1 τ + h

(
27π
16 tan−1 s− 9πs

16(s2 + 1)

)
+O(1). (3.16)

The second term in (3.16) represents an O(h) correction to the leading order

result, ∆0, from (3.15). It increases monotonically, therefore representing a

net drift of fluid in the same direction as the sphere, rather than a reflux,

as was found for the analogous correction in inviscid flow (3.12). This may

be attributed to the fact that, in Stokes flow, the velocity in the fixed frame

is everywhere in the direction of travel, and the corresponding streamlines

are therefore open. In inviscid flow, the streamlines are closed in loops, and

the flow moves opposite to the direction of travel for ŷ2 > 2x̂2. Note that the

correction to ∆(τ ;h) in (3.16) is more significant compared to that for inviscid

flow in the sense that its magnitude differs from the leading order term by a

factor of 1/h, as compared to 1/h3.

3.5 Small Reynolds numbers

To quantify the effect of inertia on the drift volume, we first consider Oseen’s

approximation to the flow for Re� 1 [100]. In this approximation, the stream

function for the flow produced by a steadily translating rigid sphere with a

no-slip surface evaluated at (0, y∗(t)) is

ψ∗ = 3
Re

(
1 + τ√

τ 2 + ρ2

){
1− exp

[
−Reh4

(√
τ 2 + ρ2 − τ

)]}
− 1

4h
τ 2

(τ 2 + ρ2)3/2 .

(3.17)
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We anticipate that the ‘Oseenlet’ (i.e., the solution to Oseen’s equations for a

point force), represented by the first term in (3.17), will make the dominant

contribution to D. Hence, the O(1) contribution of the remaining potential

dipole term is neglected, and the V̄b(τ) contribution from (3.5) is omitted for

the same reason. Finally, the deflection of the ψ̂ = −h2/2 streamline, which

we expect to have a relatively small effect on D, is neglected by setting ρ = 1.

With these approximations, (3.17) in (3.5) gives

D0 = 6πh
Re

∫ τ

τ0

(
s√
s2 + 1

+ 1
){

1− exp
[
−Reh4

(√
s2 + 1− s

)]}
ds, (3.18)

which represents a first approximation to D for h � 1 and Re � 1. By

making the substitution u(τ) =
√
τ 2 + 1− τ , (3.18) may be simplified to

D0 = 6πh2

Reh

∫ u(τ)

u(τ0)

[
1− exp

(
−1

4 Reh u
)]

d
(1
u

)
, (3.19)

where Reh = Reh is the Reynolds number based on h. Evaluating (3.19) in

terms of the exponential integral, E1(z) ≡ ∫∞z exp (−x)/x dx, gives

∆0(u) = 3πh2

2




1− exp
(
−1

4 Reh u
)

1
4 Reh u

+ E1
(

1
4 Reh u

)

− C, (3.20)

where

C = 3πh2

2




1− exp
(
−1

4 Reh
)

1
4 Reh

+ E1
(

1
4 Reh

)

 .

The magnitude of Reh, which (3.20) suggests is centrally important to

the behavior of D0(τ), quantifies how much the motion of the marked fluid

is influenced by inertial versus viscous forces. It may be interpreted as the

ratio of the height of the marked fluid h to the distance from the sphere,

r ∼ 1/Re � 1, at which inertial and viscous forces balance. The general

pattern of flow around the sphere is illustrated in figure 3.3. Viscous forces

dominate where r � 1/Re, in the ‘Stokes’ region, but are balanced by inertial

forces at r = O(1/Re), in the ‘Oseen’ region. At distances far into the Oseen

region, where r � 1/Re, inertia dominates, and the majority of the flow is
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Figure 3.3: A sketch of the flow pattern produced by a rigid sphere translating
steadily at Re � 1. Here, r is the radial distance from the sphere, v is the
magnitude of the velocity disturbance, and w is the transverse dimension of
the parabolic wake. There is a constant volumetric flux Q through the wake
that is compensated by the source-like flow in remainder of the Oseen region.
The solid vertical lines to the right of the sphere represent the vertical extent
of the initially marked fluid.

irrotational with a source-like character. However, the Oseen region features a

parabolic wake downstream of the sphere where viscous forces remain relevant,

even far outside of the Stokes region. The width of the wake as a function

of the distance downstream of the sphere is described by w ∼
√
−x̂/Re, and

hence w|x=0 ∼ h
√
τ/Reh. It follows that the size of the wake is comparable

to the height of the marked fluid (w ∼ h) when τ ∼ Reh. Therefore, Reh has

the second interpretation of being the dimensionless distance downstream of

the sphere beyond which the majority of the marked fluid becomes entrained

by the viscous wake.

The result from (3.20) is shown in figure 3.4, where we have normalized

D0 by h2 in order to collapse (3.20) to a single curve for each value of Reh.

Here, Reh = 0 corresponds to the leading order result for Stokes flow. Indeed,

(3.15) is recovered asymptotically from (3.20) as Reh → 0 because the Stokes

region grows unboundedly large in this limit. To show this formally, we see

that if Reh u � 1, then the first bracketed term in (3.20) approaches unity

while the second term yields E1(Reh u/4) ∼ − ln u(τ) = sinh−1 τ . Thus,

D0(τ) → − ln u(τ) = sinh−1 τ as Reh → 0. When Reh is nonzero but much
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Figure 3.4: The leading order drift volume D0(τ ; τ0, Reh) normalized by h2

for Re� 1, as given by (3.20), where we have set τ0 = −10. The value of Reh
is indicated to the right of each curve.

less than unity, the Stokes region is finite in size but still large compared to

h, and the majority of the marked fluid is completely contained by the Stokes

region as long as |τ | < 1/Reh. Hence, D0 is only marginally different than the

Stokes flow prediction in this case, as is observed in figure 3.4 for Reh = 0.1.

As Reh increases, the Stokes region becomes smaller compared to the

height of the marked fluid, and inertia has an increasing effect on D0. From

figure 3.4, it is apparent that there is an overall decrease in D0/h
2 with in-

creasing Reh, or, equivalently, a decrease in D0 with increasing Re given a

fixed value of h. The reason is that the regions of flow that are dominated

by viscous forces shrink in extent as Re is increased; the radius of the Stokes

region decreases as 1/Re, and the wake narrows as 1/
√
Re. These regions

are of utmost importance to generating drift because they are characterized

by a velocity disturbance that exhibits a slow 1/r decay and moves fluid in

the same general direction as the sphere, even at large distances (figure 3.3).

In the part of the Oseen region outside of the wake, inertia causes the veloc-

ity to drop off more rapidly as 1/r2, and this much weaker flow contributes

comparatively little to the drift volume.

Important differences between the nature of the drift volume at finite Re
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and that at Re = 0 arise from the breaking of the fore-aft flow symmetry

by fluid inertia. The asymmetry is greatest in the Oseen region due to the

presence of the wake, and thus the influence of inertia is felt most when the

majority of the marked fluid resides here, i.e, when Reh ≥ O(1). In contrast,

the Stokes region makes a symmetric contribution to the drift volume that

fades away as Reh is made large. (3.20) reveals that ∆(τ) 6= −∆(τ0), whereas

this inequality is an equality for inviscid and Stokes flows due to their fore-

aft symmetry. Because the flow disturbance inside the wake is significantly

stronger than that in the remainder of the Oseen region, the drift volume

accumulated for τ > 0 (i.e., after the sphere has passed through x = 0) is

significantly greater than that for τ < 0, and it becomes increasingly so as

Reh is increased (figure 3.4).

Furthermore, the slowly decaying velocity disturbance in the wake (v ∼

1/r) causes the marked fluid to be displaced an infinite distance, X ∼ ln(τ),

as τ → ∞. The height of the wake diverges with the distance downstream,

albeit slowly, as w ∼
√
|x̂|/Re. As a result, all of the marked fluid is eventually

entrained by the wake as τ → ∞, regardless of the value of Reh. Therefore,

the logarithmic divergence of D as τ →∞, found also for Stokes flow, persists

at finite Re as the sphere passes far ahead of the x = 0 plane. Assuming

that Reh ≥ O(1), the majority of the marked fluid is outside of the Stokes

region and entrained by wake once τ ≥ O(Reh). Thus, we find from (3.20)

that D0 ∼ ln τ for τ � Reh, since u(τ) ∼ 1/2τ for τ � 1.

However, D converges as τ0 → −∞ at finite Re, unlike at Re = 0, where

it is divergent. In Stokes flow, the ‘symmetric’ logarithmic divergence of D

as τ → ∞ and as τ0 → −∞ is due to the fore-aft flow symmetry. Viscous

forces dominate everywhere if Re = 0, and hence v ∼ 1/r everywhere far

downstream and upstream of the sphere. Such symmetry is not present if

Re is finite. Although viscous forces remain important far downstream in



CHAPTER 3. DRIFT VOLUME DUE TO TOWED BODIES 58

the wake, they become negligible everywhere else in the Oseen region, where v

drops more rapidly as 1/r2. Consequently, fluid elements upstream of the wake

are not displaced nearly as far, and D0 converges as τ0 → ∞. For τ0 � −1,

u(τ) ∼ −2τ , and thus (3.20) shows that ∆0(τ0) ∼ −2/(Reh τ0)− C → −C as

τ0 → −∞. Interestingly, this reveals that the constant C represents D(τ =

0; τ0 → −∞, h), which is finite.

3.6 Point sources of momentum and wakes

At distances much greater than its radius, the sphere appears as a steady,

translating point source of momentum (or vorticity) in an otherwise quiescent

fluid, even if Re ≥ O(1), granted that Re is not so large as to render the steady,

axisymmetric flow unstable. In this case, the far-field flow is described by a

steady Oseenlet of strength proportional to the external force F = F (Re)

required to tow the sphere [29], where F is normalized by %U2a2. This ig-

nores the details of the flow in the immediate neighborhood of the sphere,

but they are evidently unimportant for making a leading order approxima-

tion to D(τ ; τ0, h) when h � 1, since doing so only requires knowledge of ψ

at r ≥ O(h). At these far distances, the streamlines are nearly straight and

parallel (ρ ≈ 1). Therefore, for h� 1,

ψ∗ ∼
F

4π

(
1 + τ√

τ 2 + 1

){
1− exp

[
−Reh4

(√
τ 2 + 1− τ

)]}
. (3.21)

Inserting (3.21) into (3.5), making the substitution u =
√
τ 2 + 1− τ , and

integrating (omitting the O(1) contribution by V̄b(τ)) gives

∆0 = F Reh2

8




1− exp
(
−1

4 Reh u
)

1
4 Reh u

+ E1
(

1
4 Reh u

)

− C, (3.22)

where C = D(τ = 0; τ0 → −∞, h) and is given by

C = F Reh2

8




1− exp
(
−1

4 Reh
)

1
4 Reh

+ E1
(

1
4 Reh

)

.
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The Re � 1 result (3.20) is readily recovered from (3.22) upon setting F

to the Stokes drag, 12π/Re. However, we also expect (3.22) to be valid for

Re ≥ O(1). Moreover, (3.22) apparently describes the leading order drift

volume induced by an arbitrarily shaped body as long as the far-field flow can

be described by a steady Oseenlet. This will be the case as long as the body

is towed by a steady external force acting along the direction of translation

(i.e., there is a drag force but no lift force acting on the body). In describing

the body as a point force, its dimensions are assumed to be small enough

compared to the extent of the marked fluid that its exact geometry does not

matter.

It follows that many of the details concerning the behavior of D for Re�

1 discussed in section 3.5 remain pertinent for Re ≥ O(1), except that now

we must have Reh � 1, since (3.22) only applies if h � 1. The Stokes

region existing at Re � 1 is thus irrelevant; it disappears into the region

near the sphere where the Oseenlet does not offer a valid description of the

flow. In reality, viscous forces and the vorticity they generate are confined

to a thin boundary layer adjacent to the sphere surface, of thickness 1/
√
Re,

as Re becomes large. The only exception is the viscous wake, into which the

vorticity is eventually shed and convected downstream by the bulk flow. Far

from the sphere, the velocity disturbance in the wake decays as 1/r, which we

have already found to cause D to diverge logarithmically with τ as τ →∞.

It is possible to employ a boundary layer analysis to provide an additional

description of the flow in the wake alone [78]. The sphere is again treated as

a momentum point source, but streamwise vorticity diffusion is neglected in

favor of the much stronger streamwise convection. Again assuming that h is

sufficiently large such that ρ ≈ 1, this approximation to the flow yields

ψ∗ ∼
F

2π

[
1− exp

(
−Reh8τ

)]
. (3.23)
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Figure 3.5: The drift volume D, normalized by F Reh2, for Reh � 1 as a
function of τ , where we have taken τ0 → −∞. The solid lines indicate the
result from (3.22) for the full Oseenlet and the dashed lines correspond to the
drift due only to the wake Dw from (3.24).

Putting (3.23) in (3.5), the contribution of the wake to the drift volume is

Dw(τ) = F Reh2

8

[
1− exp (−Reh /8τ)

Reh /8τ
+ E1

(
Reh
8τ

)]
, (3.24)

where we have taken τ0 → 0 since (3.23) applies only to the downstream far-

field flow. Normalizing the results from (3.22) and (3.24) by F Reh2 collapses

them onto single curves for a given a value of Reh, and such curves are plotted

in figure 3.5.

Comparing (3.24) to (3.22), it is readily verified that D ∼ Dw for τ �

1 (recall that u ∼ 1/2τ), reaffirming our earlier statement that the wake

dominates the drift whenever Reh � 1. Figure 3.5 accordingly reveals good

agreement between the full Oseen approximation to D and Dw, even though

(3.24) makes no prediction of the drift due to the flow outside of the wake.

This is due to the fact that the flow outside the wake is relatively weak, and

becomes increasingly so as Reh increases. Indeed, the agreement between D

and Dw improves as Reh is made larger. Additionally, it is apparent from

figure 3.5 that there exists a regime in which D increases linearly with τ

given that Reh is sufficiently large. Specifically, this regime occurs when 1�

τ � Reh /8. Here, the exponential term in (3.23) may be neglected, giving
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ψ∗ ∼ F/2π. It follows that Dw ∼ Ft; the drift volume due to the wake

increases approximately linearly with time at a rate equal to F . The reason is

that the momentum imparted on the fluid by the sphere must equal the total

momentum deficit in the wake, independently of the distance downstream.

Thus, F = Q, where Q is the total flux through any plane traversing the

wake normalized by Ua2 [78]. When 0 < τ � Reh /8, the marked fluid fully

spans the wake; w|x=0 � h. Therefore, D(t) ∼ Dw(t) ∼ ∫ tQ dt = Ft. When

τ = O(Reh /8), w|x=0 = O(h), and the rate at which D increases with t is no

longer constant. Once τ � Reh /8, the logarithmic divergence of D with τ is

recovered.

However, the reason why D 6∼ Dw when 0 < τ ≤ O(1) is not immedi-

ately obvious, since the velocity profiles in the wake provided by the Oseenlet

and the boundary layer approximation closely coincide [29]. Importantly, the

Oseenlet describes the entire far-field flow, rather than just that in the wake.

Considering more carefully the flow due to the full Oseenlet, we gather from

(3.21) that ψ∗ ∼ F/4π when |τ | � 1, and hence D ∼ Ft/2 = Dw/2. This

astonishingly suggests that D increases at the same constant rate before and

after the sphere crosses x = 0, despite the asymmetric nature of the flow field

at finite Re due to the strong inward flux through the wake. Evidently, the

wake does not make the only important contribution to D when |τ | � 1. The

wake alone increases D at a rate of approximately F when τ ≤ O(Reh /8).

However, conservation of mass dictates that the flux through the wake Q

must be compensated by a source flow of equal strength emanating from the

sphere [78] (figure 3.3). Since w|x=0 � h when τ � 1 � Reh, only a very

small amount of fluid actually resides in the wake in this case. The rest is

well outside the wake, where the flow is indeed source-like [100]. After the

sphere crosses x = 0 (τ > 0), half of the source flow is directed backward

toward x = 0. Since any fluid crossing backward though the x = 0 plane (for
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0 < y < y∗ ≈ h) contributes negatively to D, the source flow decreases D

at a rate of about F/2. It follows that D ∼ Dw − Ft/2 = Ft/2. Before the

sphere crosses x = 0 (τ < 0), the half of the source flow that is directed ahead

of the sphere (toward x = 0) similarly increases D at a rate of about F/2.

Here, the wake obviously does not contribute to D, and thus it is again found

that D ∼ Ft/2. Thus, despite its faster 1/r2 velocity decay, the source-like

flow outside of the wake still makes an appreciable contribution to D when

|τ | � 1. As τ becomes larger, the effect of the source flow fades away, and

only the drift induced by the wake remains important.

Yet again, the behavior of D(τ ; τ0, h) critically depends on what values

that τ and τ0 are assumed to have. If the length traveled by the sphere is large

compared to h such that the sphere passes far beyond the x = 0 plane and

τ � 1, then D is almost entirely accounted for by the forward flux of fluid

through the wake. However, if one takes h to be comparable to or smaller than

the travel length, such that τ ≤ O(1), both the flux through the wake and the

compensating source flow must be considered. Of course, the non-convergent

properties of D are nothing new, and are analogous to the similar happenings

in inviscid flow and Stokes flow that have already been discussed. However,

the (far-field) flow pattern at finite Re is more intricate than the simple fore-

aft symmetric flow in these other cases, and the more complicated behavior of

D reflects this.

3.7 Discussion

The preceding results for the drift volume are derived assuming that the flow

in the co-moving frame is steady everywhere. However, if the sphere is initially

started from rest at t = 0, consideration must be given to the time it takes

for the steady flow to fully develop. If Re � 1 and we are only concerned
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with the flow up to the Oseen distance r = O(1/Re), then the transient flow

is governed by the unsteady Stokes equations. The dimensionless time scale

td for the momentum (or vorticity) to diffuse a distance r from the sphere is

td ∼ Re r2. Thus, we expect the flow to be quasi-steady for r �
√
td/Re,

and steady flow is approached as t−1/2 [101]. For the prediction of the drift

volume in steady Stokes flow given by (3.16) to apply, the time required for

momentum to diffuse far past the marked fluid must be much shorter than the

total travel time t of the sphere. At t = 0, the distance to the furthest marked

fluid element is approximately
√
x2

0 + h2. Thus, we have the condition that

t� Re(x2
0 + h2).

As vorticity surpasses the Oseen length, it is transported via convection

into the viscous wake (the remainder of the Oseen region remains irrotational).

The wake grows diffusively in the transverse direction, but grows convectively

(linearly) in the streamwise direction [102]. Therefore, the wake is bounded

by an ‘edge’ at an O(t) distance downstream of the sphere. Similar dynamics

apply to laminar wakes at larger Re. Thus, we expect that Equation (3.22)

and (3.24) accurately represent D(t;x0, h) only when the marked fluid is suffi-

ciently far in front of the edge of the wake such that the flow there is approx-

imately steady, i.e., the wake must be well developed.

A second source of unsteadiness occurs due to flow destabilization when

Re is increased beyond a critical value. For a rigid sphere, unsteadiness first

develops at Re ≈ 210 [65], inducing a time-dependent drag and lift force on

the sphere. Further increases in Re lead to more complex temporal behav-

ior, eventually triggering the transition to turbulent flow [67]. This clearly

limits the applicability of the drift volume estimate given by Equation (3.22)

and (3.24), which strictly applies only if Re is sufficiently small for the flow to

be steady and axisymmetric. However, if the time-averaged drag on the body

is nonzero, it follows that there must also be a time-averaged momentum (and
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thus mass) deficit in the wake. Moreover, for three-dimensional flows, turbu-

lent wakes eventually transition back to a laminar state at very far distances

downstream [78]. This implies that the drift volume will still diverge with

time (eventually logarithmically), even in the unsteady case, as long as there

is a finite drag on the body.

It is interesting to consider the idealized case of a non-deformable spherical

bubble with a perfect-slip surface translating steadily at Re � 1. Due to

the fact that only an O(1) amount of vorticity is generated in the boundary

layer adjacent to the bubble, the flow remains steady and laminar, becoming

irrotational as Re → ∞ [69]. The leading order drag on the bubble is found

to be F ∼ 48π/Re [68]. As Re → ∞, it is reasonable to expect that the

inviscid flow result for D given by (3.9) should be recovered. However, as

Reh →∞ in (3.22), the coefficient in front of the bracketed terms approaches

a constant equal to 6π while the bracketed terms themselves vanish. Thus, we

find instead that D → 0 as Re→∞. This (lack of) prediction of D by (3.22)

is simply due to its leading order nature. Treating the sphere as a point source

of momentum neglects the fact that the body occupies a nonzero volume (Vb).

As is shown in section 3.3, D is O(Vb) in inviscid flow.

The divergence of D with t in viscous flows is tied to the existence of re-

gions where the velocity decays slowly, as 1/r, far from the translating body.

Thus, any scenario where this velocity disturbance is weakened can be expected

to have an important impact on the drift and drift volume. For example, we

have not considered the potentially important effect of external boundaries

or neighboring bodies, which generally cause v to decay faster than 1/r and

hence lead to a bounded drift volume [24, 90, 27]. At finite Re, the presence

of boundaries or other bodies in the fluid triggers the process of vorticity anni-

hilation, which cuts off the flux through the wake. This produces irrotational

flow far downstream of the translating body [103, 90], and it is thus reason-
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able to expect a greatly decreased and bounded drift volume in this case, in

contrast to the case of a fully unbounded fluid. There are, of course, other

possible situations which cause the velocity to decay more quickly than 1/r in

the far-field, such as density stratification of the fluid.

Finally, it is important to mention that we have only examined the drift

volume in the case that the body is towed steadily through the surrounding

fluid by an external force (e.g., sedimenting particles or rising bubbles). If

the body is self-propelled and free of acceleration and external forces, i.e., a

neutrally buoyant swimmer, there are important differences in the far-field flow

pattern that will greatly affect the induced drift volume. Within the Stokes

region of a swimmer at Re� 1, the flow is described by a stresslet (v ∼ 1/r2)

rather than a Stokeslet (v ∼ 1/r), and thus the far-field flow disturbance is

much weaker compared to a towed body. At distances larger than the Oseen

length, the flow disturbance in the wake behind a swimmer is also weaker than

that of a towed body, having v ∼ 1/r2 and v ∼ 1/r3 inside and outside of the

parabolic wake, respectively [47]. Moreover, it carries no net momentum (or

mass) deficit because the swimmer is force-free (F = 0) [18]. Clearly, the drift

volume induced by a steady swimmer is essentially different compared to that

due to an object translating under an external force.

3.8 Summary

We have conducted a detailed analysis of the drift volume D(t;x0, h) induced

by a spherical body being steadily towed through a viscous fluid, where the

flow around the sphere assumed to be steady and axisymmetric in the co-

moving frame. For simplicity, we only examined the case where the radius

of the sphere is small compared to the extent of the marked fluid (h � 1).

Our analysis was carried out by interpreting D as the time-integrated flux
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through a kinematic plane that is stationary in the fixed frame and bounded

by a stream tube in the co-moving frame. A two-term asymptotic expansion

of D for h � 1 computed for Stokes flow (Re = 0) revealed a positive O(h)

correction to D. This contrasts with the analogous result for inviscid flow,

where this correction is O(1/h3) and negative. In addition, a leading order

result for D at finite Re is computed, and its behavior as a function of travel

time t is shown to parametrically depend on Reh = Reh.

A bounded drift volume for t → ∞ and h → ∞ is obtained only for the

inviscid case, although the exact value of D depends on the ordering of these

limits. Otherwise, the drift volume generally diverges with both t and h as

these quantities become large. However, the exact nature of this divergence

critically depends upon the assumed ratio of the total distance travelled by

the sphere to h, which is encapsulated by τ and τ0. The fact that evaluating

D(τ ; τ0, h → ∞) amounts to evaluating the total momentum of the fluid (di-

vided by %) is responsible for this conditional behavior. Thus, if one wishes

to experimentally measure D for a body traveling in an effectively unbounded

bulk fluid, the observed behavior may be expected to depend heavily on the

values of τ and τ0.

The drift volume induced by a body translating through a semi-infinite or

fully bounded fluid domain at finite Re remains to be considered. The pres-

ence of boundaries is expected to have a profound impact on the induced drift

volume, as is true for Stokes flow and inviscid flow. Furthermore, the drift vol-

ume induced by self-propelled bodies, especially at finite Re, remains an area

that is largely unexplored. The lack of a net external force on such swimmers

will drastically alter the behavior of D(t;x0, h) compared to the result for a

towed body. Finally, the drift volume due to unsteadily translating bodies

appears to be another important area for future investigation. With regard

to swimmers, most propel themselves in an unsteady manner. Examining this
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case therefore seems critical to understanding the physics of fluid transport by

swimmers.



Chapter 4

Drift volume due to swimming bodies

4.1 Introduction

A convenient way of quantifying the net fluid displacement caused by a trans-

lating body is via the so-called ‘drift volume,’ which measures of the amount

of fluid entrained by the body as it moves a given distance. Specifically, D

is the volume enclosed between the initial and final profiles of a marked (as

in with dye) material sheet of fluid that is initially flat and perpendicular to

the body’s direction of travel. This concept was first introduced by Darwin

[22], who considered the drift volume of a body translating an infinite distance

through an inviscid fluid. Along with the travel time of the body, the extent

of marked fluid is also taken to be infinite. As noted by Darwin and discussed

further by Benjamin [94], a subtlety arises concerning the well-posedness of

the drift volume having to do with the ordering these infinities. To resolve

this issue, it is useful to generalize the drift volume to a finite travel time and

a marked plane of a finite size [23, 99, 104]. This is referred to the ‘partial

drift volume’ Dp, which is a well-defined quantity. For brevity, we will refer

to the partial drift volume simply as the ‘drift volume’ in this chapter.

The drift volume depends on the ratio of inertial to viscous forces in

68
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the fluid, which is quantified by the Reynolds number, defined here as Re =

2%Ua/µ, where a is the characteristic size of the body, U is its speed, and

the fluid density and viscosity are given by % and µ, respectively. In the limit

of inviscid flow (Re → ∞), the magnitude of the fluid velocity v at large

distances decays rapidly as 1/r3, where r is the distance from the body. As a

result, the drift volume of the body is of the same order of magnitude as the

body’s volume [22, 23]. This may be contrasted with Stokes flow (Re = 0),

where inertial forces are irrelevant, and the dominance of longer-ranged viscous

forces lead to a much slower v ∼ 1/r velocity decay for a body that is passively

towed by an external force. In this case, D diverges linearly with the area of the

marked plane (∼ πh2) and logarithmically with the travel time t after the body

has passed sufficiently far from the initially marked plane [27]. Therefore, D

may be orders of magnitude larger than the body volume, becoming infinite

as t → ∞. The reason is that the marked fluid elements are displaced a

logarithmically divergent distance, as can be shown by integrating the v ∼ 1/r

far-field velocity disturbance. If Re is finite, the presence of fluid inertia causes

the majority of the flow at sufficiently large distances from the body to appear

source-like and decay more quickly as v ∼ 1/r2. As a result, D is decreased

compared to the Re = 0 case. However, this source-like flow is supplied by a

viscous wake through which there is a net fluid flux. The wake flux remains

constant at all distances into the wake, being proportional to the rate at which

the body imparts momentum onto the fluid (via the drag force). As a result,

D is still potentially much larger than the body volume, especially in the case

that Re is small to intermediate [104].

Quantifying the amount of fluid volume that is transported by a self-

propelled body is relevant to estimating the extent to which biogenic mixing

is achieved by swimming organisms, especially small ones. The idea that swim-

mers might contribute to large-scale mixing processes, especially in the world’s
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oceans, originates with Munk [86]. Support to this idea, on an energetic basis,

is given by Dewar et al. [16]. A critical issue with this hypothesis concerns the

mixing efficiency of these organisms. The majority of the biomass of oceanic

swimmers comprises millimeter-scale zooplankton, such as copepods and krill.

If it is assumed that these organisms transport no more fluid than they physi-

cally displace, then the mixing efficiency achieved is very low, suggesting little

contribution to ocean stirring [105]. Large organisms have a higher mixing

efficiency, but their low abundance suggests that they make little contribution

to mixing. However, as argued by Katija and Dabiri [17], the drift volume

(relative to the body volume) increases drastically as Re is decreased, provid-

ing a potentially important, ‘viscosity-enhanced’, mechanism for swimmers to

induce large-scale flows that can lead to large-scale fluid mixing.

An issue with this viscosity-enhanced drift volume argument is that the

velocity field produced by a swimmer is fundamentally different than that

produced by a towed body (e.g., a sedimenting particle). For a steadily trans-

lating neutrally buoyant swimmer (that is otherwise free of external forces) at

Re = 0, there is no ‘Stokeslet’ contribution to the flow, which is responsible for

the slow 1/r velocity decay. Instead, the far-field velocity of the swimmer is

dominated by the ‘stresslet’ (or symmetric force dipole) component of the flow

that is associated with the equal and opposite thrust and drag forces acting

on the swimmer. The flow disturbance due to a force dipole has a more rapid

v ∼ 1/r2 decay, and thus fluid elements are displaced a finite distance, placing

a limitation on the drift volume induced by a swimmer [18]. Moreover, if one

considers a swimmer that passes from far behind to far ahead of a passive

tracer particle in the fluid, the tracer moves in a nearly closed loop due to

the fore-aft mirror-image symmetry of the Stresslet velocity field (unless the

tracer is very near to the direct path of the swimmer) [20, 28]. In this case,

the swimmer induces D ∼ O(Vb), where Vb is the swimmer’s volume [19, 28],
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as is obtained for a body in potential flow.

This seems to directly suggest that the drift volume due to a Stokesian

swimmer does not lead to the displacement of fluid volumes greater thanO(Vb),

and thus small swimmers should be ineffective mixers. However, simulations

conducted by Lin, Thiffeault, and Childress [20] have demonstrated that the

effective diffusivity of a passive tracer particle is significantly enhanced in a

dilute suspension of swimmers that have a far-field stresslet flow over a similar

suspension of ‘potential flow’ swimmers. Experiments show a similar effect

[106, 107, 108]. The reason is that swimmers need not follow an infinitely long

or straight-line path, leading to symmetry breaking of the tracer path [109].

The drift volume induced by a swimmer in Stokes flow is addressed by

Leshansky and Pismen [19] and Pushkin, Shum, and Yeomans [28]. These

authors consider the case where the swimmer passes symmetrically from far

behind to far ahead of the initially marked plane. However, the largest con-

tribution to the (partial) drift volume arises when the path traveled by the

swimmer is asymmetric, which is the case we focus on here. We adopt a simple

description of a swimmer as a translating symmetric force dipole. Thus, the

near-field flows that depend on the specific geometric details and swimming

kinematics of a swimmer are ignored in favor of the more universal far-field

flow expected of most typical swimmers. We show that the drift volume of

a swimmer at Re = 0 is maximized when the swimmer starts or ends its

swimming path close to its nearest approach to the marked plane. In fact,

D diverges with h in this case, although it is convergent with respect to the

travel time t, in contrast to a towed body.

The second scenario that we focus on is the drift volume due to a steady

swimmer at finite Re, of which there are currently no detailed analysis. Our

motivation is that zooplankton communities throughout the oceans are of-

ten dominated by intermediate-Re swimmers such as copepods and krill [11,
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x = 0
(t = 0)

x = 0
(t = t)

ψ̂ = const

U = 1ψ̂ = −h2/2

a = 1

x0

x̂

ŷ

h

y∗(0)y∗(t)

x0(1)t

D(t;x0, h)
2πψ∗(t)

Figure 4.1: An illustration of the drift volume D in the co-moving frame,
where a uniform flow approaches the swimmer’s body (depicted as a sphere
for simplicity) at unit velocity. At t = 0, the fluid is marked at x = 0 for
y < y∗(0), as indicated by the solid line to the right of the swimmer. The
swimmer is at an initial distance x0 from the x = 0 plane. At time t > 0,
the swimmer translates a distance of (1)t toward and eventually past x = 0,
causing the marked fluid to deform. The volume swept out by the marked
fluid at time t is indicated by the shaded area to the left of the swimmer and
is defined to be the drift volume, D(t;x0, h). The rate at which D increases
with t is equal to the volumetric flux, 2πψ∗(t), through x = 0 for y < y∗(t).
Note that, in general, the marked fluid need not be to the right of x = 0 at
time t, and fluid to the left of x = 0 is counted as a negative contribution to
D.

12], which have Re = O(0.1) to O(100) [110]. Thus, the fluid transport in-

duced by such organisms is of interest. We describe the finite-Re swimmer

as a steadily translating Oseen force dipole. The drift volume induced by

this model swimmer is predicted to be O(b/Re) for Re � 1, where b is the

force dipole strength. It is shown that the drift volume diminishes rapidly as

Re increases, suggesting that the amount of fluid transport (and hence fluid

mixing) induced by a steady intermediate-Re swimmer is limited.

4.2 Calculation of the drift volume

Consider a solitary swimmer of characteristic length a translating steadily

through an unbounded, incompressible Newtonian fluid of viscosity µ and
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density % at speed U . We will normalize length by a, time t by a/U , and force

by µaU (a viscous scaling). All quantities hereafter will be dimensionless unless

otherwise stated. We will utilize both the frame of reference that is fixed with

respect to the bulk fluid far from the swimmer and the reference frame that is

co-moving with the swimmer. Thus, let r = xex+yey and r̂ = x̂ex+ŷey define

the position vectors in these two frames, respectively. Here, ex and ey are the

axial and radial unit vectors of a cylindrical coordinate system, respectively,

where the swimmer translates in the ex direction. The co-moving coordinates

are related to their fixed-frame analogs as x̂(x, t) = x−(x0 +t) and ŷ(y, t) = y,

where x0 is the x position of the swimmer at time t = 0.

We assume that the swimmer generates a flow that is axisymmetric about

the x axis, free of azimuthal rotation, and steady in the co-moving frame.

Therefore, the flow in the co-moving frame may be described in terms of the

stream function

ψ̂(x̂, ŷ) =
∫
ŷû · (ex dŷ − ey dx̂) , (4.1)

which has been normalized by Ua2 and where û = ûxex + ûyey is the (co-

moving) fluid velocity vector. By satisfying (4.1), û automatically satisfies

continuity (∇·û = 0). In order to uniquely determine ψ̂, we set ψ̂(x̂(x, t), 0) =

0. Similarly, an instantaneous stream function ψ giving the fixed-frame veloc-

ity u = uxex + uyey may be defined by subtracting the bulk uniform flow in

the co-moving frame, which has unit velocity in the −ex direction, from ψ̂,

giving ψ(x, y, t) = ψ̂(x̂(t), ŷ) + ŷ2/2.

Now, consider a material sheet of fluid that is marked (as in with dye) at

t = 0 on the x = 0 plane and whose outer edge is initially on the intersection

of the x = 0 plane with the co-moving streamline ψ̂ = −h2/2 (figure 4.1). At

t = 0, the swimmer is at position r = x0ex relative to the center of the initially

marked fluid, which forms a flat circular disc perpendicular to the swimmer’s
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path of travel. The radius of this disc approaches h as x0 → −∞. The marked

material surface deforms as time progresses due to the flow generated by the

swimmer. From this, the (partial) drift volume D induced by the swimmer

may be defined as the volume of fluid bounded by the x = 0 plane, the marked

material sheet, and the streamline approaching y = h as x→ ±∞ [104, 23, 22]

(figure 4.1). The stream function ψ (times a factor of 2π) can be interpreted

as the instantaneous volumetric flux through a surface of revolution about the

x axis formed by an arbitrary path connecting any two points on the xy plane.

Let y∗(t)ey be the point (in the fixed frame) where the streamline bounding

the marked fluid intersects the x = 0 plane, and let ψ∗(t) = ψ(0, y∗, t). Then,

the drift volume, normalized by a3, is given by [104]

D(t;x0, h) =
∫ t

0
ψ∗(t′;x0, h) dt′ − [Vb(t)− Vb(0)], (4.2)

where Vb(t) is the volume of the swimmer that has passed through the x = 0

plane at time t. The Vb contribution to D is the simple result of the swim-

mer’s body physically displacing fluid, as it passes through x = 0, into the

geometric fluid volume that defines D. Note that this method for obtaining

D conveniently circumvents the need to explicitly compute the paths of the

marked fluid elements.

We are primarily interested in the possibility of the swimmer transporting

a volume of fluid that is large compared to its own volume via drift. Thus,

we limit our attention to the h� 1 scenario, where the extent of the marked

fluid is much larger than that of the swimmer, so that we may quantify such

large-scale fluid motion. Let τ = (x0 + t)/h and ρ(τ) = y∗(t)/h. Far from the

swimmer, for r̂ = |r̂| � 1, the deviation of the streamline ψ̂ = −h2/2 (that

intersects the edge of the marked fluid) from its free-stream position ŷ = h

becomes asymptotically small. Implicitly relating ρ(t) and ψ∗(t) as

ρ2 = 1 + 2ψ∗
h2 (4.3)
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makes this clear. Thus, ρ(τ) ∼ 1 for h� 1, and we will take advantage of this

fact in order to compute asymptotic approximations to D. Rewriting (4.2) in

terms of the rescaled variables τ and ρ∗ gives

D(τf , τi, h) = 2πh
∫ τf

τi
ψ∗(τ, ρ(τ);h) dτ − [Vb(τf )− Vb(τi)], (4.4)

where τi and τf are the initial and final values of τ .

4.3 A Stokesian swimmer

First, we address the drift volume due to a swimmer in Stokes flow (Re = 0).

We will consider a steadily translating ‘dipolar’ swimmer, whose effect is to

exert a symmetric force dipole, or ‘stresslet,’ on the fluid. Due to our assump-

tion that the swimmer moves along a straight path, there is no antisymmetric

‘rotlet’ component to flow. We assume that the swimmer is neutrally buoyant

and otherwise free of external forces so that there is also no Stokeslet (point-

force) component to the flow. Note that this is a far-field model only; it does

not consider the specifics of the swimmer’s exact geometry and swimming

kinematics. However, doing so is not necessary for quantifying the large-scale

fluid transport due to an individual swimmer. If the detailed flow around

the swimmer is expressed in a multipole expansion, the leading-order stresslet

term has û = |û| ∼ 1/r̂2 and dominates the far-field flow. The ‘quadrupolar’

terms at the next order have û ∼ 1/r̂3, and they are thus mainly important in

describing the near-field flow (along with even higher order terms). It has been

shown that these quadrupolar terms only make an O(1) contribution to D [28,

19]. Therefore, they are irrelevant to the possibility of an individual swimmer

transporting a volume of fluid that is larger than that of the swimmer’s body,

justifying our neglect of the near-field flow details.

Concerning our assumption of steady swimming kinematics, most mi-
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croorganisms propel themselves in an unsteady manner, inducing a time de-

pendent flow that is oscillatory over a stroke cycle. However, because we are

concerned with large-scale transport of fluid, it is appropriate to assume that

the total distance traveled by the swimmer is large compared to that traveled

over a single stroke cycle. In this case, a steady swimming model is sufficient

to accurately describe the time-averaged far-field flow [111, 112].

It will prove useful to express the flow due to the swimmer in terms of

that generated by a point force, i.e., a ‘Stokeslet’, in the ex direction. The

Stokeslet velocity field can be expressed as ûS = ex ·J , where J = I/r̂+ r̂r̂/r̂3

is the Oseen tensor and I is the identity tensor. Let ψ̂S be the stream function

obtained by integrating ûS according to (4.1), yielding

ψ̂S(x̂, ŷ) = ŷ2

8πr̂ . (4.5)

The steady, axisymmetric flow generated by the swimmer may be expressed

in terms of ψ̂S as

ψ̂(x̂, ŷ) = −1
2 ŷ

2 − b∂ψ̂S
∂x̂

, (4.6)

where the first term accounts for the uniform bulk flow and the second term

represents the flow due to a symmetric force dipole (stresslet) of strength b.

Swimmers producing the flow field given by (4.6) may be divided into

two categories: b < 0 gives a ‘puller’, whose center of thrust is in front of its

center of drag, and b > 0 gives a ‘pusher’, whose center of thrust is behind

its center of drag (figure 4.2). Microorganisms such as the bacteria E. coli,

which use flagella to push themselves through their surrounding fluid, exem-

plify pusher-type swimmers. On the other hand, an example of a puller is

given by Chlamydomonas, which possesses two flagella that perform a ‘breast

stroke,’ pulling the organism along. Due to the symmetry of the force-dipole,

the centers of thrust and drag on the swimmer lie on, and are aligned with,

the x axis.
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Puller: b < 0
Pusher: b > 0

−ex

Fthrust Fdrag

Fthrust

Fdrag

a

a

Figure 4.2: An illustration puller and pusher type swimmers translating at
unit velocity, such that the oncoming flow (in the co-moving frame) is in the
−ex direction. Pullers (b < 0) are propelled from the front, and hence the
center of thrust is in front of the center of drag. Pushers (b > 0) are propelled
from the rear, where the opposite is true. Note that Fthrust and Fdrag, which are
equal and opposite, represent the force exerted by the swimmer on the fluid,
and hence Fthrust is shown to be directed opposite to the swimming direction.

From (4.6), the instantaneous fixed-frame stream function representing

the stresslet generated by the swimmer, evaluated at x = 0 and y = y∗(t),

may be expressed as

ψ∗(τ) = −b∂ψ̂S
∂ẑ

∣∣∣∣∣x̂=−hτ
ŷ=hρ(τ)

∼ b

h

d
dτ ψ̂S(−hτ, h) = b

h

d
dτ ψhS(τ), (4.7)

where we invoked the fact that ρ(τ) ∼ 1 for h� 1. Here, ψhS(τ) is the instan-

taneous fixed-frame stream function of a Stokeslet centered at the swimmer’s

location and evaluated at r = 0ex + hey, which, from (4.5), is

ψhS(τ) = h

8π
√
τ 2 + 1

. (4.8)

Thus, from (4.7) in (4.4), we see that we may obtain a leading-order asymp-

totic approximation to D(τ ;h) for h � 1 for a dipolar swimmer using the

particularly simple formula

D ∼ 2πh
∫ τf

τi

b

h

d
dτ ψhS(τ) dτ = 2πb

(
ψhS(τf )− ψhS(τi)

)
. (4.9)

By inserting (4.8) into (4.9), we obtain

D = bh

4


 1√

τ 2
f + 1

− 1√
τ 2
i + 1


+O(1) (4.10)
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as the leading-order drift volume induced by a dipolar swimmer atRe = 0. The

O(1) term represents error from two sources. The first is the [Vb(τf )− Vb(τi)]

term from (4.4), which comes from the physical displacement of fluid to the

right of the x = 0 plane by the swimmer’s body. The second comes from the

quadrupolar (and higher order) flows generated by the swimmer that we have

neglected. Neither of these factors are important to large scale fluid transport.

There is some additional error due to setting ρ = 1, but it can be shown that

this is only O(1/h).

Turning our attention to the first term in (4.10), which represents the

contribution of the stresslet to D, we see that D ∼ O(bh), and thus the drift

volume is potentially large. However, there is an important limitation on the

drift volume induced by a dipolar swimmer; the path traveled must not be

symmetric with respect to the position of the initially marked plane at x = 0.

If it is, i.e., if τf = −τi, (4.10) makes apparent that the stresslet makes no net

contribution to D, and hence D = O(1). Furthermore, D is also O(1) if the

swimmer moves from sufficiently far behind to sufficiently far in front of the

x = 0 plane, corresponding to the limits τf → ∞ and τi → −∞. In these

cases, the swimmer only transports a net volume of fluid that is comparable

to its own body volume. This may be attributed to the fore-aft mirror-image

symmetry of the stresslet flow. A given fluid element undergoes significant

displacement as the swimmer makes its closest approach to it, but it is then

returned to its original position as the swimmer continues onward [28]; the

fluid element essentially traverses a closed-loop path.

From this, it is reasonable to conclude that large scale transport of fluid

by a Stokesian swimmer is not possible because the stresslet flow, which pro-

duces the strongest far-field fluid motion, produces little net displacement of

fluid elements. Interestingly, and in contradiction to this notion, computa-

tions performed by Lin, Thiffeault, and Childress [20] have demonstrated that
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a dilute suspension of stresslet swimmers significantly enhance the effective dif-

fusivity of passive tracer particles in comparison to an analogous suspension

of quadrupolar (potential dipole) swimmers (which lack a stresslet). Clearly,

stresslet-producing swimmers must generate greater fluid displacement than

their quadrupolar counterparts for this to be possible. The key reason is that

swimmers generally travel a finite distance before stopping or changing direc-

tion (e.g., the run-and-tumble motion of E. coli), and hence need not travel

in a symmetric path relative to all fluid elements. In this case, the stresslet

flow may induce a large, O(hb), drift volume.

Indeed, we see from (4.10) that D is maximized when the path traveled

by the swimmer is maximally asymmetric with respect to the marked plane.

This refers to the scenario where the swimmer starts much nearer to the x = 0

plane where the fluid is initially marked (τi � 1) than where it eventually

stops or changes direction (τf � 1). Letting τi → 0 and τf � 1 in (4.10)

yields Dmax ∼ bh/4� 1. The same result is obtained if −τi � 1 and τf � 1,

corresponding to the opposite case where the swimmer starts far away but

stops (or turns) near x = 0.

Experimental measurements [112] and numerical predictions [113] of the

flow produced by E. coli allow us to estimate Dmax for this swimmer. In

particular, Fd ≈ 1 pN, ld ≈ a ≈ 2 µm, and U ≈ 20 µm/s, where Fd and

ld are the magnitude and separation distance of the centers of thrust and

drag, respectively. Assuming the viscosity of water (µ ≈ 10−3 Pa s) gives a

(dimensionless) dipole strength of b = Fdld/µUa ≈ 25. Hence, we obtain

Dmax ≈ 6.25h, which is clearly many times the physical volume of an E. Coli

bacterium for h� 1.

At this point, it is possible to raise the objection that D and Dmax are

ill-defined; they do not converge to a specific value (for a given swimmer) as h

is made large. Letting h→∞ seems to suggest that the swimmer transports
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an infinite volume of fluid from wherever it starts it’s motion. In fact, this

is similar to the case of a towed body for which D also diverges as h → ∞

[104]. This behavior is due to our assumption of an unbounded fluid housing

a single swimmer. In reality, the swimmers will be surrounded by physical

boundaries and other passive or actively moving objects in the flow, which

will eventually cut off the drift due to the individual swimmer [90]. As we will

see in section 4.4, the presence of any amount of fluid inertia will also cause

D to be bounded as h → ∞. The key point is that the drift volume due to

a Stokesian swimmer may be large compared to the volume of the swimmer

itself, enabling large scale fluid transport by a microswimmer.

4.4 Finite Reynolds number swimmers

The drift volume due to a swimmer moving at a finite Re may be computed

by utilizing Oseen’s approximation to the flow [see, e.g., 78, p. 241]. The

Oseen equations yield a uniformly valid solution to the flow for Re � 1,

and we first focus on this case. We again make the assumption that the

swimmer exerts a symmetric force dipole of strength b along the ex direction.

Proceeding similarly to the Stokes flow case, we may write the flow due to the

dipolar swimmer in terms of the point-force solution to the Oseen equations,

ψ̂O(x̂, ŷ;Re). This is possible because, akin to the Stokes equations, the Oseen

equations are linear in ψ̂. The flow induced by the dipolar swimmer is given

by

ψ̂(x̂, ŷ) = −1
2 ŷ

2 − b∂ψ̂O
∂x̂

, (4.11)

where b is the effective force dipole strength and

ψ̂O(x̂, ŷ) = 1
2π Re

(
1− x̂

r̂

){
1− exp

[
−Re4 (r̂ + x̂)

]}
(4.12)
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is the flow due to a translating ‘Oseenlet’ (point force). Note that we use

the term ‘effective’ here because b will not, in general, be equal to the actual

force dipole exerted by the swimmer on the fluid [18]; the force dipole is not

conserved across arbitrary fluid surfaces enclosing the swimmer. However,

for Re � 1, the two quantities are of the same order of magnitude [47].

(4.11) is analogous to (4.6), with ψ̂S replaced with ψ̂O. To obtain the drift

volume, we may simply replace ψhS with ψhO in (4.9) to give the leading-order

approximation

D ∼ 2πb
(
ψhO(τf )− ψhO(τi)

)
, (4.13)

for h� 1, where ψhO = ψ̂O(−hτ, h). This yields, from (4.12) in (4.13),

D ∼ b

Re

[(
τ√
τ 2 + 1

+ 1
){

1− exp
[
−Reh4

(
−τ +

√
τ 2 + 1

)]}]τf

τi

, (4.14)

where Reh = Reh is the Reynolds number based on the radius of the initially

marked fluid disc.

The value of Reh quantifies how strongly fluid inertia affects the motion

of the marked fluid elements. Thus, it also quantifies the strength of the

effect of inertia on D. Indeed, Reh may be interpreted as the ratio of the

height of the marked plane h to the ‘Oseen length’, 1/Re, at which inertia

becomes appreciable [104]. The flow pattern generated by the swimmer at

Re � 1 is illustrated in figure 4.3. The impact of inertia on the flow is

significant at distances of r̂ ≥ O(1/Re) from the swimmer, in the ‘Oseen

region,’ whereas this effect is small for r̂ � 1/Re, in the ‘Stokes region,’ where

the flow approaches that of a stresslet.

Figure 4.4 plots the drift volume for a dipolar swimmer as a function of

Reh. In order to obtain a universal curve for each value of Reh, we plot D/bh,

letting τi → −∞ and τ = τf on the horizontal axis. As detailed in the caption

of figure 4.4, it is straightforward to obtain values of D/bh for arbitrary τf and

τi by taking the difference of the corresponding values of D/bh on any given
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û ∼ r̂−2
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√

x̂
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Figure 4.3: The streamlines, in the fixed frame, generated by a pusher-type
(b > 0), dipolar swimmer translating at constant speed (U = 1) at Re �
1. Here, r̂ is the radial distance from the swimmer and û is the magnitude
of the velocity disturbance. Dashed lines indicate positive isocontours of ψ̂,
while solid lines indicate negative isocontours, and the arrows indicate the
flow direction. The flow pattern at distances r̂ > O(1/Re) from the swimmer,
in the Oseen region, is affected appreciably by inertia (a). For illustrative
purposes, the initial position of the dyed sheet of fluid is shown to the right of
the swimmer. A viscous wake of height w grows parabolically with distance
downstream of the swimmer. At distances r̂ � 1/Re, in the Stokes region,
inertial effects are relatively weak and the flow pattern approaches the Re = 0
stresslet (b). Equivalent plots for a puller (b < 0) may be visualized from the
above illustration by simply negating the flow directions and the sign of ψ
(but not the swimming direction). In this case, the ‘positions’ of Fthrust and
Fdrag are swapped as illustrated by figure 4.2.
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Figure 4.4: The (partial) drift volume D, normalized bh, versus dimensionless
time τ , as given by (4.14), where we have taken τi → −∞ and let τ = τf .
The dashed line represents Reh = 0, while the solid lines represent Reh =
{0.1, 1, 10} as the curves descend, respectively. For arbitrary values of τf and
τi, one may obtain D/bh by picking τf and τi off of the τ axis and subtracting
the respective corresponding values of D/bh.
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curve. At Reh = 0, corresponding to a Stokesian swimmer, D/bh is completely

symmetric about τ . Thus, there is no net drift volume for a symmetric path

where τf = −τi, which is an affect of the fore-aft flow symmetry.

As Reh increases, two major effects are observed. First, the overall value

of D/bh decreases, meaning that fluid inertia causes an overall decrease in the

drift volume. This is also apparent from (4.14), where the outermost bracketed

term is at most O(1), and hence D ∼ O(b/Re). This is readily explained by

the fact that inertial forces act to cause the magnitude of the fluid velocity

û = |û| to decay more rapidly with r̂. The stresslet-like flow in the Stokes

region decays as û ∼ r̂−2, whereas the majority of the flow in the Oseen

region decays as û ∼ 1/r̂−3 (figure 4.3). As Re increases, the distance from

the swimmer at which the Stokes region ends and the Oseen regions begins

shrinks (as 1/Re), and the slower fluid velocities in the Oseen region cause less

overall fluid displacement. However, D is still potentially large as long as Re

is small. The second major effect of inertia is that it causes D/bh to become

asymmetric about τ = 0 due to breaking of the fore-aft flow symmetry. Thus,

in contrast to Stokes flow, the drift volume induced by a dipolar swimmer

moving along a symmetric path (τf = −τi) no longer vanishes, especially if

Reh is large. The drift occurring for τ < 0, before the swimmer has crossed

the x = 0 plane, is markedly less than that occurring for τ > 0, after x = 0

has been crossed.

In contrast to Stokes flow, (4.14) interestingly reveals that D does not

diverge with h when Re is finite. If we assume that τf and τi remain finite,

taking the limit h→∞ in (4.14) amounts to letting Reh →∞, such that the

marked plane is large compared to the Oseen length. The result is

lim
Reh→∞

D = b

Re

[
τ√
τ 2 + 1

]τf

τi

. (4.15)

The drift volume given by (4.15) is maximized when τf → ∞ and τi → −∞,
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giving D = 2b/Re. (4.15) is of the same form (up to a constant) as the drift

volume due to a body in inviscid flow [104], which reflects the fact that we

have taken the Reynolds number on the scale of the marked fluid (Reh) to be

infinite. The far-field flow due to the swimmer approaches that of a potential

dipole for r̂ � 1/Re, which is the same flow pattern that is generated by a

sphere translating through an inviscid fluid. The only region where the flow

does not eventually approach the potential dipole form as r̂ becomes large is

in a parabolic wake behind the swimmer (figure 4.3). For a towed body, this

wake is important to the generating drift due to the mass deficit that it caries

[104], which is due to the presence of a net force on the towed body. Due to

the force-free nature of the swimmer, however, there the wake carries no net

mass deficit. Thus, if the marked fluid spans the entire wake, the wake makes

no net contribution to D. However, fluid is exchanged in the wake itself, and

this topic is discussed in section 4.5.

If an intermediate-Re swimmer (Re ≥ O(1)) is considered, the flow suffi-

ciently far from the swimmer is still described by the Oseen flow (4.11) because

the perturbation to the uniform stream remains small [29]. In fact, the pertur-

bation from the free stream far from the swimmer generally becomes smaller

as Re increases. We assume that Re is not so large as to induce turbulence,

so that a laminar description of the flow is adequate. Of course, the Oseen de-

scription does not capture the near-field flows that are significantly perturbed

by the swimmer’s geometry, but these flows are generally unimportant to the

generation of a large scale drift due to their short-ranged nature. Therefore,

Equation (4.14) and (4.15) suggest that, at most, D ∼ O(b/Re) for a finite Re

swimmer. This implies that a potentially large drift volume can be induced by

a swimmer at Re � 1, but not by a swimmer having Re ≥ O(1), suggesting

that the capability of such a swimmer to individually transport large fluid

volumes is severely limited.
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4.5 Fluid transport in the wake

There is one potential caveat to our conclusion that an individual intermediate-

Re swimmer is generally incapable of generating large scale fluid transport.

This concerns the extent to which fluid is exchanged in the wake. Inertia has

the effect of breaking the far-field flow into two distinct regions (figure 4.3).

The majority of the flow assumes a potential dipole character, having û ∼ 1/r̂3;

viscous forces are mostly irrelevant here, and the drift volume induced by this

flow is accounted for by (4.15). However, viscous forces do remain relevant

within the wake region, as evidenced by the slower 1/r̂2 velocity decay. This is

the same rate of velocity decay that is found for Stokesian swimmers that, as

shown in section 4.3, can transport fluid volumes on a large scale. For a towed

body, the wake makes a substantial contribution to the drift volume because

it contains a net mass deficit that is constant with the longitudinal distance

into the wake. Hence, the wake causes a linear divergence of D with time

if the entire flux through the wake is counted [18, 104]. However, due to the

force-free nature of a neutrally buoyant swimmer, there is zero net mass deficit

in the wake, and hence the total drift volume due to the wake is also zero.

However, the bidirectional flow pattern in the wake, shown in figure 4.3, seems

to suggest that the wake still causes fluid exchange, which may be significant.

It is thus of interest to quantify the total exchange of fluid volume in the wake.

The asymptotic form of the flow in the wake of due to a translating

Oseenlet (point force) for ŷ � x̂ is

ψ̂Ow(x̂, ŷ) = 1
π Re

(
1− exp

[
Re ŷ2

8x̂

])
, (4.16)

which can be obtained from (4.12). This is also the flow obtained upon con-

ducting a boundary layer analysis of the wake behind a towed body [78, p. 349].

Inserting ψ̂Ow in place of ψ̂O in (4.11) then yields for the stream function of
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the wake behind a dipolar swimmer

ψ̂w(x̂, ŷ) = − bŷ2

8πx̂2 exp
(
Re ŷ2

8x̂

)
. (4.17)

The descriptions of the flow given by Equation (4.16) and (4.17) apply at

distances sufficiently far downstream of the swimmer such that the streamlines

are approximately straight and parallel.

From (4.17), the x-direction velocity in the wake is

ûx = 1
ŷ

∂ψ̂w
∂ŷ

= −b(Re ŷ
2 + 8x̂)
x̂3 exp

(
Re ŷ2

8x̂

)
. (4.18)

Assuming a pusher (b > 0), it is apparent from (4.18) that ûx < 0 when ŷ2 <

−8x̂/Re and ûx > 0 when ŷ2 > −8x̂/Re. Therefore, the wake contributes a

time-integrated flux of fluid in the direction opposite to the swimming direction

that is given by

D− = 2πbh
∫ τf

τi
ψw0 dτ = −2πbh

∫ τf

τi

dτ
eπ Rehτ = −b 2

eRe ln
(
τf
τi

)
. (4.19)

Here, ψw0 = ψ̂w
(
−hτ,

√
8hτ/Re

)
is the fixed-frame stream function evaluated

at the point where the ûx = 0 surface intersects the initially marked plane (x =

0). We may interpret D− as the backward (thrust) contribution from the wake

to the drift volume. Because the wake is mass-deficit-free, the compensating

forward (drag) contribution to drift volume D+ is equal and opposite to D−,

i.e., D+ = −D−. Note that because the description of the flow (4.17) only

applies to the wake, τf and τi should be chosen to be positive values (with

τf > τi).

It is perhaps tempting to conclude from (4.19) that the fluid transport

through the wake is large. The amount of fluid exchanged in the wake diverges

as τf →∞, or equivalently, as t→∞, and this eventually leads to an infinite

volume of transported fluid. However, the logarithmic nature of this divergence

makes it quite slow. Moreover, it is multiplied by a factor of 1/Re, suggesting
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that the amount of fluid exchanged in the wake diminishes quickly as Re is

increased. Therefore, the bidirectional wake flow is likely not a mechanism

whereby intermediate Re swimmers may induce significant large-scale fluid

transport or mixing.

4.6 Summary

We have estimated the drift volume induced by a self-propelled swimmer by

using a translating symmetric force-dipole description of the induced (far-field)

flow. We have shown that the drift volume due to a Stokesian swimmer (Re =

0), while less than that of a towed body, is still potentially large compared to

the volume of the swimmer’s body if the swimmer traverses an asymmetric

path. The ability of Stokesian swimmers to transport large fluid volumes

via the drift volume mechanism explains their ability to effectively mix their

surroundings [20]. We have also shown that the drift volume quickly decreases

as Re is increased, suggesting that intermediate-Re swimmers are much less

effective at mixing at scales large than their own body size.

Throughout the chapter, we have assumed that strength of the force dipole

b is O(1) and dominates the far-field flow. However, some swimmers lack a

strong force-dipole and are instead ‘quadrupolar’ swimmers; Volvox are an

example of this [111]. A neutrally buoyant quadrupolar swimmer is expected

to produce a small, O(1), drift volume because the far-field flow disturbance

it produces decays more rapidly, as 1/r̂3, than for a dipolar swimmer. Fur-

thermore, swimmers that are not neutrally buoyant may have a significant

Stokeslet flow component, which can contribute significantly to the drift vol-

ume. Finally, we have only considered the case of a steady swimmer. In-

terestingly, unsteady finite-Re swimmers, unlike their Stokesian counterparts,

may impart a non-zero net amount of momentum onto the fluid over a stroke
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cycle. This is due to the non-linear nature of finite-Re flows; the momentum

imparted on the fluid during the propulsive phase of the stroke cycle does not

necessarily equal the amount reabsorbed during the recovery phase [19, 31].

This topic deserves further investigation, since a total net momentum deficit

caused by the swimmer may lead to much larger drift volumes than would

be predicted for an equivalent steady swimmer. Furthermore, we have not ac-

counted for the collective effects of dense aggregations of swimmers, which may

induce a large collective drift volume when migrating as a group. This topic is

another interesting direction of future study, as abundant marine species such

as Antarctic krill are known for their swarming behavior [114].



Chapter 5

Summary and Conclusions

5.1 Summary of research accomplishments

We have paired simple mathematical models of swimmers with analytical and

numerical tools in order to make important general predictions about the fluid

mechanics of self-propelled bodies. In particular, we have considered the effect

of fluid inertia on a ‘squirmer’ and we were able to quantify the flows produced

by this model swimmer as a function of the Reynolds number, Re. This work

is motivated by a critical and long-standing knowledge gap in the physics of

finite Re self-propulsion. Moreover, we have quantified the amount of fluid

fluid transported by towed bodies and self-propelled swimmers as a function

of Re. We have utilized the concept of the drift volume in order to do so,

which has the advantage of being easily computed for model swimmers that

capture the relevant physics. We focus on swimmers that move at small to

moderate Re, since such organisms have been implicated in large-scale mixing

of the oceans [21, 115, 17]. It is hoped that our work may aid in the intense

and ongoing debate concerning the extent to which swimmers transport fluid

mass [18, 19, 105, 16].

In chapter 2, we considered the spherical ‘squirmer’ model of self-propulsion.

89
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The ‘swimming stroke’ of this model swimmer is described by a steady, fixed

velocity profile. A combination of spectral-element and finite-volume methods

is used to numerically compute the steady, axisymmetric and unsteady, three-

dimensional flows, respectively, around a force-free squirmer for 0.01 ≤ Re ≤

1000. Despite its great simplicity (or perhaps owing to it), the squirmer model

reveals a great deal about finite Re swimming, with fundamental differences

arising between ‘pusher’ and ‘puller’ type squirmers. Pushers, which generate

thrust from the rear, efficiently shed vorticity away from their body and into

to their wake, leading to the preservation of steady, laminar flow at large Re.

This is a remarkable observation, considering the bluff, spherical shape of the

squirmer and the large O(1/
√
Re) amount of vorticity generated within the

boundary layer at the squirmer’s surface. Similar characteristics are shared

by the near-field flow around a shear-free, spherical bubble, where the mobile

surface achieves a similar effect, although the boundary layer vorticity is only

O(1) in this case.

In contrast, the steady, axisymmetric flow around pullers destabilizes at a

critical value of Re, yielding to unsteady, three-dimensional flow. This critical

Re drops rapidly as the magnitude of the parameter β, which roughly describes

the ‘strength’ of the pusher (β < 0) or puller (β > 0), increases beyond unity.

The behavior of the near-field flow around a puller is quite analogous to a

towed sphere; in both cases the recirculatory eddies attached to the rear of

the body are shed into the wake in an unsteady manner that is regular at first

but becomes increasingly chaotic as Re is increased [67].

Finally, we show that the swimming efficiency of pushers and pullers is

nearly equal up until the point where the axisymmetric flow around the puller

destabilizes. This is also remarkable considering that pushers swim consid-

erably faster than pullers for a given value of |β| for moderate to large Re.

Essentially, pullers expend less energy per unit swimming speed. However,
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pullers suffer from reduced efficiency compared to a pusher due to the vortex

shedding that occurs above the critical Re.

In chapters 3 and 4, our focus shifts from studying the detailed near-

field flows produced by a model swimmer to analyzing the net fluid transport

induced by towed and self-propelled bodies in an unbounded fluid domain.

Specifically, we consider the drift volume, which quantifies the net volume of

fluid entrained by the body as it translates. The drift volume D is defined

as the fluid volume swept out by a marked material surface that is initially

flat and perpendicular to the direction of the body’s translation. Specifically,

we compute the drift volume D induced by towed and swimming bodies as a

function of Re to investigate the effect of inertia on fluid transport.

In chapter 3, we construct a geometric definition of the drift volume that

can be applied to finite travel times t and a marked plane of a finite radius

h. This generalizes Darwin’s original definition, which requires h and t to

both be infinite, and the partial drift volume concept introduced by Eames,

Belcher, and Hunt [23], which applies to finite h but infinite t. This generalized

definition is necessary because D potentially diverges as h → ∞ and/or t →

∞ if the surrounding fluid has a finite viscosity [104, 27]. An interesting

dual-interpretation of of the drift volume is revealed; D is equal to both the

time-integrated flux under a streamline and the volume or revolution between

that same streamline and its free-stream position. The latter interpretation

was discussed by Yih [93], but its mathematical equivalence to the former

interpretation has not been previously demonstrated in the literature.

Armed with this generalized definition of D, asymptotic analysis for large

h/a, where a is the characteristic size of the translating body, is employed

to compute a leading order approximation to D as a function of Re. In our

analysis, the critical parameter Reh = Reh/a arises, which quantifies the

relative effect of inertial versus viscous forces on the motion of the marked fluid
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(and hence D). We demonstrate that fluid inertia generally acts to decrease

D, relative to the body volume (∼ a3), due to the weakening of the far-field

flow beyond the Oseen distance, a/Re. However, there exists a viscous wake

behind the towed body, through which there is a constant fluid flux Q = F/%U ,

where F is the force on the body, U is the speed of the body, and % is the fluid

density [78]. This ultimately results in a logarithmic divergence of the drift

volume with time as D/a3 ∼ Q(h/a)2 ln (tU/ahReh). This can be contrasted

with the case of an inviscid fluid, where the complete lack of viscous forces

lead to D/a3 being no larger than O(1). Clearly, the presence of viscous forces

is key to the generation of a large drift volume.

In chapter 4, we perform a similar analysis to compute the drift volume

induced by a steadily translating self-propelled swimmer that is assumed to be

free of external forces (e.g, it is neutrally buoyant). The swimmer is modeled

as a simple force dipole, which captures the universal large-scale flow char-

acteristics that are common to most force-free swimmers [111, 29]. Although

the drift volume of a Stokesian Re = 0 swimmer traversing a symmetric path

with respect to the marked fluid is only D/a3 = O(1) [19, 28], a much more

significant, O(h/a) ‘partial’ drift volume is found if the path is asymmetric.

Such non-symmetric paths occur when the swimmer starts and then stops or

changes direction after some amount of time. This indicates that Stokesian

swimmers are indeed capable of transporting large volumes of fluid. This is

reflected by experimental [106, 107, 108] and theoretical [20, 109] observations

of markedly enhanced fluid tracer diffusion due to a suspension of dipolar

Stokesian swimmers over ‘potential flow’ swimmers.

We also estimate the drift volume due to a finite Re swimmer by using

the expected form of the far-field velocity, which is given by the Oseen doublet

[29]. We discover that D dies off as 1/Re, placing a severe limitation on the

potential fluid transport by steady, force-free swimmers at Re ≥ O(1). One
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may surmise from our results that such a swimmer has at most D/a3 ∼ O(1),

which is of the same order of magnitude as a swimmer in an inviscid fluid.

This is of potential consequence to the amount of fluid transport induced by

the diel-vertical migrations of moderate Re swimmers in the oceans, which

have been suggested to be of possible importance in ocean mixing [17, 115,

21]. Our results suggest that such swimmers may be quite limited in their

ability to mix their surrounding fluid via the mechanism of Darwinian drift.

However, it is important to note that this is based on estimates for steady

individual swimmers, and it is possible for collective or unsteady effects at

finite Re to induce a net drift that is possibly larger than predicted for a

steady swimmer [19]. This is a topic for future investigation that is discussed

further in section 5.2.

5.2 Future work

In our discussion of fluid transport by swimmers via the drift volume mech-

anism in chapter 4, we assumed that locomotion was steady, with the thrust

exactly balancing the drag at all times. However, real swimmers often utilize

unsteady mechanisms of propulsion. For example, a jellyfish swims by rapidly

contracting its bell-shaped body from an initially extended position during the

propulsive stage of its swimming stroke, where the jellyfish accelerates rapidly.

This is followed by a recovery phase where the jellyfish coasts some distance

while slowly decelerating. This mechanism of swimming is often referred to

as ‘jet propulsion’ [116, 31]. Copepods utilize a similar mechanism during

escape swimming, in which long swimming legs are rapidly contracted from

an extended position to a position folded along the copepod’s body during

propulsion [117, 110].

At small Re, the flow is unaffected by unsteadiness in a time-averaged
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sense over many stroke cycles. An unsteady Stokesian swimmer undergoes

accelerations due to alternating periods of the thrust exceeding the drag and

vice versa over a single stroke period. Due to these unbalanced forces, there

exists an unsteady Stokeslet component to the flow. However, owing to the

linearity of the Stokes equations, there will be no time-averaged Stokeslet

flow as long as the swimmer does not have an average acceleration over many

stroke cycles. This explains why steady models are adequate to describe the

time-average flow of unsteady swimmers [111, 112].

The situation at finite Re is fundamentally different due to the nonlinear

nature of the flow. Mathematically, this is a consequence of the nonlinear

(convective) inertia term in the Navier-Stokes equations. Here, the momentum

imparted on the fluid during the fast propulsive phase of a swimming stroke

does not necessarily equal the momentum that is reabsorbed by the swimmer

during the recovery phase. This implies that an unsteady inertial swimmer

may impart some net amount of momentum on the fluid, which may have

important consequences for the induced drift volume [19].

Far from the swimmer, the net momentum imparted on the fluid (per

unit time) will appear as an effective point force exerted on the fluid at the

swimmer’s location. This force will be unsteady in general but may be aver-

aged over a swimming cycle to give the average net momentum deficit in the

wake. Remarkably, this suggests that an unsteady swimmer may be treated

as a steadily towed body moving under a effective force Feff for the purposes

of estimating the drift volume. The theory presented in chapter 3 for towed

bodies at finite Re may therefore be applied to estimate the drift volume of an

unsteady swimmer based on Feff. Unfortunately, we are not aware of any esti-

mates, experimental or theoretical, of the rate at which an unsteady swimmer

imparts momentum on its surrounding fluid. Thus, the proposed work would

involve obtaining such estimates of Feff as a function of Re.
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This could conceivably be accomplished by performing numerical simula-

tions of an unsteady swimmer and then analyzing the strength of the average

net momentum deficit that is generated in the swimmer’s wake. From this,

it could be determined whether or not an unsteady swimmer is capable of

transporting significantly more fluid than steady swimmer at finite Re, which

ultimately depends on whether Feff may be sufficiently large for a realistic

swimmer. It would be interesting to examine different unsteady swimming

mechanisms in this context. For example, organisms that use a jet propulsion

mechanism, e.g., jellyfish or scallops, often propel themselves forward several

body lengths over a single powerful stroke cycle, and the inherent unsteadiness

of this mechanism could be expected to produce more drift in comparison to

that due to steadier swimmers.



Appendix A

Validation of numerical solutions

Convergence of the flow computations with respect to the grid parameters

was tested empirically. First, it was ensured that the distance R∞ from the

squirmer at which uniform flow was imposed was large enough as to not affect

the computed swimming speed U . Computations were relatively insensitive

to this parameter due to the fast velocity decay from the squirmer surface

(∼ 1/r2) at Re = 0 and ∼ 1/r3 at large Re, outside the wake) [18], provided

that the domain was not so small as to restrict flow near the squirmer body. For
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Figure A.1: Convergence of the swimming speed U (a) and max |ω| (b) for
a β = 5 puller at Re = 1000 computed via a spectral element method for
steady, axisymmetric flow. The horizontal axis represents the degree of the
shape functions within each element. The element thickness in the boundary
layer was ∆r0 = 0.01.

96



APPENDIX A. VALIDATION OF NUMERICAL SOLUTIONS 97

10−3 10−2

∆r0

0.692

0.694

0.696

0.698

0.700

0.702

0.704

U

(a)

10−3 10−2

∆r0

0.870

0.875

0.880

0.885

0.890

m
a
x
|ω
|

(b)

Figure A.2: Convergence of the swimming speed U (a) and max |ω| (b) with
respect to the grid resolution at the squirmer surface for 3D, unsteady flow
computed via a second-order accurate finite-volume method. Here, β = −0.5
and Re = 1.

the axisymmetric computations, the polynomial orderN of the shape functions

within each element was incrementally increased to convergence (figure A.1).

In order to fully resolve the boundary layer, it was ensured that the condition

∆r0/δ . N2/9 [118] was satisfied, where ∆r0 is the element size (perpendicular

to the boundary layer) and δ is the boundary layer thickness. The thickness

of the boundary layer was estimated as δ = O(1/
√
Re) since the boundary

layer is expected to be laminar. For the second-order accurate finite-volume

method used for 3D computations, a higher mesh resolution is required due to

the lower order approximation, and a satisfactorily converged solutions were

reached with ∆r0 = 0.001 (figure A.2).

Additional validation of our computational methods was carried out by

computing the drag coefficient of a no-slip sphere in uniform flow and compar-

ing to previously known results (figure A.3). The drag coefficient is defined

as CD = 2FD/(π%a2U2), where FD is the drag force and U is the far-field

velocity of the oncoming flow. Known values are provided by the correlation

CD = (
√

12/ReU + 0.5407)2 [119]. Additionally, values in (potentially unsta-

ble) steady, axisymmetric flow up to ReU = 2500 are provided by Fornberg
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Figure A.3: The drag coefficient CD of a no-slip sphere in uniform flow com-
puted using the numerical methods described in section 2.3. Comparison is
made to the results of Fornberg [71] (for steady, axisymmetric flow) and the
correlation given by Abraham [119].

[71]. The computational meshes used for our computations were the same as

those used for the squirmer computations at Re = 1000. The results of the

comparison show good agreement. Note that when ReU & 500, CD becomes

nearly constant, and the reported computations reproduce this feature.
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