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Preface

The main focus in econometrics is to provide an explanation of various observed out-

comes. Structural econometricians obtain reliable estimates of parameters that describe

an economic system to provide an understanding of the underlying processes that deter-

mine equilibrium outcomes. The estimation process is based on conditions implied by

economic theory.

On the other hand, the main focus in machine learning is to provide accurate predic-

tions of the variables of interest. While these techniques are extremely powerful for

forecasting, it can be very hard to interpret the underlying structure implied by them.

As machine learning techniques become more popular and computers become capable

of storing and processing large quantities of data, there have been some recent efforts

to incorporate such techniques into structural econometric models. My research aims to

extend this literature.

In my thesis I investigate whether it is possible to incorporate machine learning tech-

niques in econometric models in a meaningful way. I explore two different approaches

for doing so – first, I generalize the idea of regularization from machine learning to the

Generalized Method of Moments framework; second, I apply pre-existing classification

techniques from machine learning to the Propensity Score framework. Finally, I em-

ploy the empirical techniques developed in the second chapter to address a public policy

question – that of the effectiveness of India’s Safe Motherhood Scheme.
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Chapter 1: Regularization Paths in Generalized Method of Moments

In the GMM framework, the objective function to be minimized is a weighted sum of

squares of m moment conditions implied by economic theory. The derivative of the

objective function with respect to the vector of parameters (θ) provides a system of k

equations in k unknowns that is used to obtain parameter estimates. However if this ma-

trix is nearly singular at the true parameter values, then the system of equations becomes

highly unstable. This results in high standard errors of the parameter estimates. This

is analogous to the problem of multicollinearity in linear regression. In the linear regres-

sion framework the problem is somewhat overcome by regularization. Ridge and spectral

cut-off regularization are commonly used. However, due to the highly non-linear nature

of the GMM objective function, ridge and spectral cut-off are not readily generalizable

to the GMM framework.

In the first chapter (co-authored with Fallaw Sowell), we re-interpret regularization as

a set of possible solutions that lie along a path between the unconstrained minimum of

the objective function and the mean of a pre-defined prior. Using this interpretation, we

propose algorithms for finding the ‘regularized’ parameter estimates. We use a holdout

sample in GMM for parameter selection. We also show via simulations that our method

performs very well when the system of equations is unstable. We discuss how to extend

the techniques in higher dimensions and point to relevant algorithms in the Computer Sci-

ence literature. As an empirical application we employ this method on the Consumption

based Capital Asset Pricing Model.

Chapter 2: Propensity Score Model Selection using Machine Learning Classi-

fiers

The basic issue in estimating the effect of a particular treatment using observational data

is that the data suffers from selection bias. In other words those who receive treatment

(the treatment group) are inherently different from those who don’t (the control group).
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Heckman (in his seminal 1978 paper) shows that a naive estimate of the regression pa-

rameter on a treatment dummy (say W = 1 if an individual is treated and W = 0 if the

individual is a control) suffers from an omitted variable bias. The problem arises because

we only observe outcomes under a single state (either treatment or control)– thus we

have to control for factors which simultaneously affect both outcome and selection into

the treatment group. Rubin and Rosenbaum (1983) pioneered the work on causal infer-

ence in the presence of selection bias. They suggest a two-step estimation procedure. In

the first step the probability that an individual belongs to the treatment group is esti-

mated. This is referred to as the individual’s Propensity Score. The second step involves

using the Propensity Score for pre-processing the data before estimating the Average

Treatment Effect (ATE).

The use of Inverse Propensity Score Weighting (IPW) is now ubiquitous in the Causal In-

ference literature, however the estimation of propensity scores remains an open question.

While many authors use logistic regression because of its interpretability, others argue in

favor of non-parametric methods. We propose the use of machine learning classifiers (like

Naive Bayes, Regression Trees and Support Vector Machines) for obtaining propensity

scores. We also propose using a holdout sample to choose between different propensity

score models. We show via theoretical arguments and simulation studies why its useful

to consider a variety of propensity score models in the first step. We compare propen-

sity scores estimates obtained from Linear Probit model as well as from semi-parametric

classifiers like Naive Bayes, Random Forests and Support Vector Machines. We show via

two sets of simulation studies why it’s useful to choose from a variety of propensity score

models. In particular we find that propensity score estimates with Minimum Covariate

Imbalance perform very well in terms of Mean Squared Error of Average Treatment Effect

estimates across all simulations.
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Chapter 3: Evaluating India’s Safe Motherhood Scheme using Inverse Propen-

sity Score Weighting

Conditional Cash Transfers (CCT) programs are becoming an increasingly popular pol-

icy tool in developing countries to incentivize certain behavior such as school enrollment,

vaccination and health check ups amongst a targetted section of the population. The

beneficiaries of CCTs are typically from poorer communities and the final aim of such

programs is to help such communities get out of poverty. India’s Safe Motherhood scheme

or Janani Suraksha Yojana, launched in 2005, incentivizes eligible women to give birth in

health care facilities. With more than 9 million beneficiaries, it is the world’s largest CCT

program in terms of the number of beneficiaries. Eligibility criteria involves posession of

Below-the-Poverty-Line (BPL) cards, belonging to a scheduled caste or tribe and order of

birth. The financial assistance amounts range from Rs. 600 ($9.76) to Rs. 1400 ($22.78)

depending on locality and focus. These incentives are communicated to the women locally

by female health volunteers or Accredited Social Health Activists (ASHAs) who receive

performance based compensation

We use estimation techniques developed in Chapter 2 (IPW using Minimum Covariate

Imbalance criteria) to evaluate the effectiveness of the scheme. In particular we estimate

the Average Treatment Effect (ATE) of receiving financial assistance via JSY on two

health outcomes – number of stillbirths and infant mortality. We also estimate ATE on

three behavioural outcomes – whether the mother had 3 or more ante-natal checkups,

whether any post-natal check up was conducted within 2 weeks of delivery and the fre-

quency of child check-ups within 10 days of delivery. We are not aware of any other paper

that uses Propensity Score methods to evaluate JSY at the national level and therefore

we consider this attempt as a substantial contribution towards the literature on the as-

sessment of JSY. We are not aware of other studies which anayzed the effect of JSY on

the frequency of child check-ups. Finally, our results indicate that in certain geographical

regions propensity scores obtained via machine learning techniques were picked leading to

results that are qualitatively different from those obtained by the standard linear probit.
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Chapter 1

Regularization Paths in Generalized Method

of Moments

1.1 Introduction

While most statistical and econometric estimation routines have traditionally focussed

on obtaining unbiased parameter estimates with the lowest possible variance, over the

last few decades the focus in statistics and machine learning has shifted to parameter

estimates with the best predictive properties. In obtaining these estimates the estima-

tion procedure is tweaked, often by augmenting the objective function with a penalty

term resulting in ‘regularized’ estimates. These estimates tend to have significantly lower

variance which usually comes at the price of sacrificing the unbiasedness of estimates

obtained by more traditional methods. This trade-off is popularly known as the ‘bias-

variance tradeoff’.

Bickel and Li (2006) provide an excellent overview of the properties of various regu-

larization procedures in statistics. They loosely define regularization as “the class of

methods needed to modify maximum likelihood to give reasonable answers in unstable sit-

uations” where by unstable they refer to estimation problems containing an ill-posed

inverse. These methods go beyond just maximum likelihood estimation. In linear regres-
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sion especially methods like ridge, LASSO, elastic net and spectral cut-off regularization

have become quite standard. Non-parametric density estimation methods are also based

on the idea of regularization. Most recently the LASSO has been extended to the class

of generalized linear models (GLM). For a review of methods currently in use refer to

Hastie, Tibshirani and Friedman (2008).

Although regularization concepts have been extended to some non-linear parametric mod-

els the field of regularization in Generalized Method of Moments (GMM) in Econometrics

is still largely open. Some of the notable exceptions being the work by Carrasco et all

(2000, 2007, 2012), Caner (2009) and Liao (2010). The first set of papers (Carrasco et

all) extend the m moment conditions to a continuum of moment conditions. The authors

use ridge regularization in order to find the inverse of the optimal weighting kernel (in-

stead of optimal weighting matrix in traditional GMM). Caner attaches a linear penalty

term like in the LASSO framework to the usual GMM objective function and argues that

this helps in variable selection by forcing variables whose co-efficients are not significant

down to zero. Finally Liao augments the m moment conditions with another k moment

conditions where the second set of augmented moment conditions is constructed from the

subset of the original m moment conditions which may be misspecified. Using the new

set of m + k moment conditions and a LASSO-type penalty the author simultaneously

performs estimation as well as moment selection.

This paper aims to take the current literature forward by using regularization to solve

a GMM identification problem. In particular we deal with the case where the matrix of

first derivatives comes close to losing rank – resulting in an unstable system and therefore

an identification problem. The system is unstable in the sense that a minor change in the

input variables can lead to disproportionately large changes in the parameter estimates.

An example of such a situation is an exactly identified GMM estimation where some

moments are nearly collinear i.e. some moments contain highly overlapping information.

The analogous problem in linear regression is the problem of multicollinearity wherein

2



some covariates are nealy collinear resulting in parameter estimates which, though unbi-

ased, are associated with very high standard errors.

We re-interpret regularization techniques in linear regression as a search for the ‘best’

parameter estimate over a unidimensional path in the parameter space between the global

minimum and a prior. We define such a path as a ‘Regularized Solution Path’. The global

minimum is associated with zero bias and high variance whereas the prior is associated

with high bias and zero variance. The tradeoff between bias and variance is exploited to

find the ‘best’ estimate where ‘best’ refers to the estimate which minimizes Mean Squared

Error (MSE). Practically this is achieved by using a hold out sample, a procedure which

is ubiquitous in machine learning algorithms. We randomly divide the data into testing

and training sets, and then pick the point on the regularization path which minimizes

GMM error on the testing set.

The rest of the paper is organized as follows: Section 2 sets up the theoretical GMM

model and formally describes the identification problem we address. Section 3 revisits

some commonly used regularization techniques in the linear regression framework and

introduces the notion of regularized solution paths. Section 4 describes three procedures

that generalize to GMM. Simulation results on a modified version of the Hall-Horowitz

model as well as a linear GMM model are presented in Section 5. An application on the

Consumption based Capital Asset Pricing Model in Section 6 is followed by a discussion

on Possible Extensions in Section 7. Section 8 concludes.

1.2 The GMM Identification Problem

In this section we first set up the theoretical GMM Model and then describe the identi-

fication problem along with the conditions under which it occurs.

3



1.2.1 GMM Recap

Assumption 1: The data x = {x}ni=1 is assumed to be independently and identically

distributed.

Parameters are represented by θ, which is a vector of dimension (k × 1). Economic

theory implies m moment conditions (m ≥ k). For each of these m moment conditions

at the true parameter value θ0:

gi,j(x, θ) = gi,j(θ); E(gi,j(θ0)) = 0; ∀j = 1, · · · ,m.

We represent the (m × 1) vector of moment conditions as g(θ) and its sample analogue

(corresponding to the ith data point) as gi(θ).

The GMM objective function is:

Qn(θ) = Gn(θ)′WnGn(θ)

⇒ θ̂ = argmin
θ

[Gn(θ)′WnGn(θ)]

where Wn is a positive definite weighting matrix of dimension m×m and

Gn(θ) =
1

n

n∑
i=1

gi(θ).

The Central Limit Theorem applicable here is
√
nGn(θ0) ∼A N(0,Σg).

Assumption 2: The optimal choice of Wn → Σ−1
g , where;

Σg = E(gi(θ0)gi(θ0)′). (1.1)

4



The first order condition obtained by taking the derivative of the objective Qn(θ) with

respect to the vector of parameters θ is

Mn(θ̂)′WnGn(θ̂) = 0. (1.2)

where Mn(θ) = ∂Gn(θ)
∂θ′

which is a matrix of dimension (m × k). In the remainder of the

discussion we drop the n subscript from all the terms for notational convenience.

Define M̄(θ̂) = W 1/2M(θ̂) and Ḡ(θ̂) = W 1/2G(θ̂) respectively as standardized versions of

M(θ̂) and G(θ̂). Then the first order condition can be rewritten as

M(θ̂)′WG(θ̂) = 0

⇒M(θ̂)′[W 1/2]′[W 1/2]G(θ̂) = 0

⇒ [W 1/2M(θ̂)]′[W 1/2G(θ̂)] = 0

⇒ M̄(θ̂)′Ḡ(θ̂) = 0

Written like this we note that M̄(θ̂) controls the k linear combinations of the m stan-

dardized moment conditions Ḡ(θ̂) that are being set to zero in order to estimate the k

parameters.

1.2.2 The identification problem

This paper focuses on the identification problem caused by loss of rank in M̄(θ̂). From

the previous discussion this implies that if rank(M̄(θ̂)) < k then we cannot identify the

k parameters in θ exactly and independently.

Another way of looking at this is by considering the asymptotic distribution of the pa-

5



rameter estimates under all the assumptions of GMM:

(
θ̂ − θ0

)
∼a N

(
0,
(
M(θ)′Σ−1

g (θ)M(θ)
)−1
)

Note that if rank(M̄(θ̂)) < k then rank
(
M(θ)′Σ−1

g (θ)M(θ)
)
< k. This implies that

the covariance matrix is singular and that variance is unbounded along some of the k

dimensions. In other words all k parameters are not identified. This type of an identifi-

cation problem can occur even if there are finite moment conditions (in contrast to the

case considered by Carrasco et al who deal mainly with problems with infinitely many

moments).

Consider the following stylized example with m = 2 moments and k = 2 parameters:

1.

G(θ1, θ2) =


g1(θ1, θ2)

g2(θ1, θ2)


where g2(θ1, θ2) = τg1(θ1, θ2) + ε, ε ⊥ (θ1, θ2) and τ is some constant.

2.

M(θ1, θ2)′ =


∂g1(θ1,θ2)

∂θ1

∂g2(θ1,θ2)
∂θ1

∂g1(θ1,θ2)
∂θ2

∂g2(θ1,θ2)
∂θ2

 =


∂g1(θ1,θ2)

∂θ1
τ ∂g1(θ1,θ2)

∂θ1

∂g1(θ1,θ2)
∂θ2

τ ∂g1(θ1,θ2)
∂θ2


3. While rank (G(θ1, θ2)) = 2 = m, we note that since the columns of M(θ1, θ2)′ are

linearly related therefore rank (M(θ1, θ2)′) = 1 < k, ∀(θ1, θ2). This implies that the

first order condition cannot be used to estimate both θ1 and θ2 independently.

1.2.3 The link with Multicolinearity in linear regression

Recall the problem of multicolinearity in linear regression where Y is the n× 1 vector of

the dependent variable and X is the n× k matrix of covariates. The model that is being

6



estimated is

Y = βX + ε, ε ⊥ X, ε ∼ N(0, σ2
ε)

where β =


β1

...

βk

 . The associated least squares objective function is

Q(β) =
1

n
(Y −Xβ)′(Y −Xβ)

The closed form solution for the parameter estimates (obtained by setting the derivative

of Q(β) wrt to β to zero) is:

β̂ = (X ′X)−1X ′Y.

The asymptotic distribution of the parameter estimates is

(
β̂ − β

)
∼a N

(
0, σ2

ε(X
′X)−1

)
Now, consider what happens if rank(X) < k in small samples.

1 The matrix X ′X is nearly singular or (X ′X)−1 is an unstable inverse.

2 The closed form solution (which depends on (X ′X)−1) is also unstable.

3 The variance of the parameter estimates σ2
ε(X

′X)−1 blows up.

The method of moments formulation of linear regression has the following moment con-

dition

E(X ′ε) = 0 ⇒ g(β) = X ′ (ε(β)) = X ′(Y −Xβ)

where the X matrix controls the k linear combination of the n residual equations that

are being set to zero in order to estimate the parameters. If rank(X) < k then all k

parameters in a linear regression cannot be identified simulatenously. Note that this is

analogous to the GMM identification problem described in Section 2.2.
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In such situations many statisticians and econometricians choose to lose some of the

unbiasedness of the OLS estimates in exchange for gains in the stability of estimates.

The common regularization procedures used to tackle the problem of multicolinearity are

Ridge Regularization, Spectral Cutoff Regularization and Iterative Landweber Regulariza-

tion. In the next section we discuss these three commonly used regularization procedures

in detail in terms of the solution concepts and the geometry of the solutions. We then

re-interpret regularization as a search for the ‘best’ parameter estimate over a unidimen-

sional path in the parameter space between the global minimum and a prior, where ‘best’

refers to the estimate which minimizes Mean Squared Error (MSE).

1.3 Regularization Paths in Ordinary Least Squares

In this section we discuss some regularization techniques applied to linear regression in

greater detail. We then discuss the interpretation of regularized estimates in terms of

regularized solution paths which presents a natural generalization to GMM.

1.3.1 Geometry of Least Squares

Start with the usual least squares objective function

Q(β) =
1

n
(Y −Xβ)′(Y −Xβ)

=
1

n
[Y ′Y − 2β′X ′Y + β′X ′Xβ]

⇒ ∂Q(β)

∂β′
=

2

n
[X ′Xβ −X ′Y ]

⇒ ∂2Q(β)

∂β∂β′
=

2

n
X ′X.

The curvature of the objective function is governed by the positive definite (k × k) co-

variance matrix of the regressors X′X
n

which is independent of parameter values and has

the following eigen-decomposition
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X ′X

n
=

(
C1 C2 · · · Ck

)


λ1 0 · · · 0

0 λ2 · · · 0

0 0
. . . 0

0 · · · 0 λk





C ′1

C ′2
...

C ′k


= CΛC ′

where the eigenvectors C1, C2 · · ·Ck form an orthonormal basis and correspond to the

eigenvalues λ1, λ2 · · ·λk arranged in descending order. λj represents how much varia-

tion in X is explained by the dimension spanned by eigenvector Cj. Also note that

C ′C = CC ′ = Ik.

The identification problem occurs when some of the eigenvectors (say Cj,∀j > r) ex-

plain very little variation in X, as represented by the magnitude of the corresponding

eigenvalues λj < ε, ∀j > r where ε > 0 is a ‘very small’ positive real number. Geometri-

cally, this implies that the objective function is very flat along these dimensions leading

to multiple points along these dimensions at which the objective function value takes a

value that is very close to its global minimum.

Mathematically,

β̂ =

(
X ′X

n

)−1
X ′Y

n
, V ar(β̂) ∝

(
X ′X

n

)−1

where (
X ′X

n

)−1

= (CΛC ′)
−1

= CΛ−1C ′

which blows up if the eigenvalues λj < ε,∀j > r where ε > 0 is a ‘very small’ positive real

number. This implies that β̂ is unstable as its closed form solution and variance both

depend on the unstable inverse
(
X′X
n

)−1
.

Recall, however that the OLS solution is still unbiased and has the minimum variance

amongst all unbiased estimators. This is a source of tension, especially if the main aim
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of the estimation procedure is to obtain stable estimates. Ridge, spectral cutoff and iter-

ative Landweber regularization techniques are often used in such contexts and work on

the principal of introducing some bias in the estimation in order to reduce the dispropor-

tionately high associated variance.

1.3.2 Ridge Regularization

The Ridge regularization method augments the usual OLS objective with a well-defined

parabola at a prior value (in most common cases the origin), weighted by a regularization

parameter α as follows

Q(β) =
1

n
(Y −Xβ)′(Y −Xβ) + αβ′β

=
1

n
[Y ′Y − 2β′X ′Y + β′X ′Xβ] + αβ′β

⇒ ∂Q(β)

∂β′
=

2

n
[X ′Xβ −X ′Y ] + 2αβ

⇒ ∂2Q(β)

∂β∂β′
= 2

(
X ′X

n
+ αIk

)
.

Note that the curvature of this augmented objective function is defined by

(
X ′X

n
+ αIk

)
= CΛC ′+αCC ′ =

(
C1 C2 · · · Ck

)


λ1 + α 0 · · · 0

0 λ2 + α · · · 0

0 0
. . . 0

0 · · · 0 λk + α





C ′1

C ′2
...

C ′k


The addition of the scalar regularization parameter to each eigenvalue injects stability

into the system since

β̂α =

(
X ′X

n
+ αIk

)−1
X ′Y

n
, V ar(β̂) ∝

(
X ′X

n
+ αIk

)−1

and (
X ′X

n
+ αIk

)−1

= (C[Λ + αIk]C
′)
−1

= C [Λ + αIk]
−1C ′

10



which is stable for some value of the regularization parameter α ≥ 0.

Infact the ridge regression solution gives us a path between the low bias high variance

OLS estimate (when α = 0) to the high bias low variance prior (when α ≈ ∞). In

other words we can think of the solution to the ridge regularization regression as a path

parametereized by α.

Define the ridge solution given α as β̂α :

β̂α =

(
X ′X

n
+ αIk

)−1
X ′Y

n

= (CΛC ′ + αCC ′)
−1 X

′Y

n

= C (Λ + αI)−1C ′ ·
[
CΛC ′ · CΛ−1C ′

] X ′Y
n

= C (Λ + αI)−1C ′ · CΛC ′
(
X ′X

n

)−1
X ′Y

n

= C (Λ + αI)−1 ΛC ′β̂ols.

Consider the case where the number of regressors k = 2. We can rewrite the expression

above as:

β̂α =

(
C1C

′
1

λ1

λ1 + α
+ C2C

′
2

λ2

λ2 + α

)
β̂ols. (1.3)

Note that C1C
′
1 and C2C

′
2 are projections onto dimensions spanned by the eigenvectors

C1 and C2 respectively. Let λ2 < λ1. This implies that λ2

λ2+α
< λ1

λ1+α
. In words, ridge

regression shrinks both dimensions towards the prior (the origin here), while penalizing

the dimension associated with the smallest eigenvalue (C2) more.

The following figure shows ridge paths for OLS problems corresponding to different λ1/λ2

ratios. Each path in the figure corresponds to a range of α values going from 0 to ∞
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Figure 1.1: Ridge path in OLS for different values of λ1/λ2

We also present next the ridge path for a particular data sample which we will use

throughout this section to describe the other two regularization paths too. The OLS

estimate corresponds to α = 0 and the origin corresponds to α ≈ ∞.

Figure 1.2: Ridge path in OLS characterized by tuning parameter α
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1.3.3 Spectral Cutoff Regularization

The spectral cutoff regularization solution takes the OLS solution and removes all eigen-

vectors corresponding to eigenvalues less than some cut-off paramater γ (or the ‘bad’

dimensions). Mathematically,

β̂ols =

(
X ′X

n

)−1
X ′Y

n
= CΛ−1C ′

X ′Y

n
.

If λj < γ, ∀j > r then

β̂spectral = (CΛrC
′)
−1 X

′Y

n
=
(
CΛ+

r C
′) X ′Y

n

where

Λr =



λ1 0 0 · · · 0

0
. . . 0 · · · 0

0 0 λr · · · 0

...
...

...
. . . 0

0 0 0 0 0


ignores all (k − r) eigenvalues below the threshold γ and

Λ+
r =



1/λ1 0 0 · · · 0

0
. . . 0 · · · 0

0 0 1/λr · · · 0

...
...

...
. . . 0

0 0 0 0 0


is the Moore-Penrose Inverse (MPI) of the singular matrix Λr.

Consider the case with k = 2 regressors where eigenvalue λ2 < γ i.e. the ‘good’ and
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‘bad’ dimension corresponds to eigenvectors C1 and C2 respectively.

β̂spectral =

(C1 C2

)λ1 0

0 0


C1

C2



−1

X ′Y

N

=

(
C1 C2

)1/λ1 0

0 0


C1

C2

 X ′Y

N

=
C1C

′
1

λ1

· X
′Y

N

=
C1C

′
1

λ1

[
CΛC ′ (CΛC ′)

−1
] X ′Y
N

=
C1C

′
1

λ1

[λ1C1C
′
1 + λ2C2C

′
2] β̂ols

= C1C
′
1β̂ols.

From this expression it can be seen that the spectral cutoff regularization solution is the

projection of the OLS estimate onto the ‘good’ dimension. Note that unlike ridge regu-

larization, where all dimensions are simultaneously penalized (and the magnitude of the

penalty is inversely proportional to the magnitude of the corresponding eigenvalue), in

spectral cut-off regularization only the ‘bad’ dimension is penalized by ignoring it com-

pletely.

Like ridge regularization, spectral cutoff regularization too is associated with a path

between the prior and the OLS estimate. Here we go from the high bias low variance

prior to the low bias high variance OLS estimate in a discrete 2-step path. The first step

is the point on the ‘bad dimension’ closest to the prior and the second step is along the

‘bad dimension’ to the OLS estimate.
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Figure 1.3: Spectral Path in GMM consisting of two discrete steps

1.3.4 Iterative Landweber Regularization

The Landweber Regularization algorithm belongs to the class of iterative algorithms for

solving ill-posed inverse problems. Start with,

Y = Xβ ⇒ X ′Y = X ′Xβ

which leads to the fixed point equation

β = β − (X ′Xβ −X ′Y )

and the following iteration rule with a damping parameter τ

β(k+1) = β(k) − τ
(
X ′Xβ(k) −X ′Y

)
.

The standard initial value is the origin, i.e. β(0) = 0 and we can show that

lim
k→∞

β(k) = β̂ols ∀ 0 < τ < 2/σ2
max

15



where σmax is the largest eigenvalue associated with the matrix X ′X.

β(k+1) = β(k) − τ
(
X ′Xβ(k) −X ′Y

)
= (I − τ (X ′X)) β(k) + τX ′Y

(Recursively replace terms from previous iteration)

= (I − τ (X ′X))
[
(1− τ (X ′X)) β(k−1) + τX ′Y

]
+ τX ′Y

= (I − τ (X ′X))
2
β(k−1) + τ [I + (I − τ (X ′X))]

...

= (I − τ (X ′X))
k
β(0) + τ

[
I + (I − τ (X ′X)) + (I − τ (X ′X))

2
+ · · · (I − τ (X ′X))

k
]
X ′Y

(Since the prior β(0) = 0,)

= τ
[
I + (I − τ (X ′X)) + (I − τ (X ′X))

2
+ · · · (I − τ (X ′X))

k
]
X ′Y

(If, (0 < ||τ || < σ2
max/2), then in the limit)

lim
k→∞

[
β(k+1)

]
= τ [I − (I − τ (X ′X))]

−1
X ′Y

= (X ′X)
−1
X ′Y

= β̂ols.

Some of the popular stopping criteria are the Discrepancy Principle, the Monotone error

Rule and Generalized crossvalidation. Note that here too the eigenvalues play an impor-

tant role. Further, this regularization technique too can be viewed as a path between the

prior at the origin and the OLS estimate.
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Figure 1.4: Landweber iteration path in GMM characterized by number of interations k

From the preceding discussion we note that all the above methods utilize the property

that eigenvectors are fixed over the entire parameter space in linear optimization prob-

lems. However in non-linear optimization problems eigenvectors vary with the parameter

space. Thus generalizations based on eigenvectors are non-trivial.

There exists another common property shared by the techniques discussed above – they

are all characterized by a path between the high bias-low variance prior and the low

bias-high variance OLS estimate.
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Figure 1.5: Regularization paths in OLS

We define these paths as ‘regularized solution paths’ Figure (1.3) presents the different

regularized solution paths corresponding to Ridge Regularization, Spectral Cutoff Reg-

ularization, Landweber Iterative Regularization. We propose three regularized solution

paths for GMM:

• Ridge-type solution path,

• Geodesic solution path,

• Local spectral cutoff path.

In the next section we describe these in greater detail.
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1.4 Regularized Solution Paths in GMM

1.4.1 Detecting the Identification Problem

Before describing the regularization procedures, we provide guidance on how to detect

the identication problem described in Section 1.2.2. Regularized GMM estimates should

be calculated alongside traditional GMM estimates for samples that display these char-

acteristcs.

• Very high condition number associated with M(θ̂).

• Unstable solution i.e. small changes in the sample (taking out some data points

randomly) lead to disproportionately large changes in parameter estimate values.

• Very large asymptotic confidence intervals associated with the parameter estimates.

The next figure present what an identification problem in GMM looks like – note the

curved ridge in the objective which contains on a number of local minima.

1.4.2 Hold out Sample in GMM

The three procedures described next all require using a hold out sample. The use of this

method is ubiquitous in machine learning and involves randomly picking some of the data

out of the full sample for testing. This is known as the testing data. The remaining data

is known as the training data. A set of candidate parameter values is obtained from the

training data. The parameter value from the candidate set that minimizes the objective

function over the testing data is selected as the final regularized estimate.

Keeping with our notation in Section 1.2.1, we define the full data set as {x} and the

randomly selected training and testing data as {xtrn} and {xtst} respectively. Candidate

parameter values θset(xtrn) are obtained using {xtrn} and the loss function is:

Loss(θ, xtst) = G (xtst, θ)
′WG (xtst, θ) .
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Figure 1.6: Nonlinear objective function with multiple local minima
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The final regularized estimate is:

θ̂reg = min
θ∈θset(xtrn)

CV (θ, xtst).

It should be noted here that throughout this chapter we use the identity matrix for

weighting i.e. W = Im.

1.4.3 Ridge-type solution path

The first of the three procedures is an implementation of ridge regularization type al-

gorithm. The implementation of the technique in the GMM setting is straight forward

and involves appending the traditional GMM objective on the training data with a term

that penalizes euclidian distance from the prior. Setting the prior θprior, the ridge type

objective is:

Q(θ, α) = G(θ)′ ·W ·G(θ) + α · (θ − θprior)′(θ − θprior).

where α is known as a tuning parameter and θp is the prior which can be thought of as

the starting point forthe regularization path. The solutions corresponding to different

values of α are characterized by:

θ̂α = min
θ

Q(θ, α, xtrn)

When α = 0 the objective function corresponds to traditional GMM and the solution is

the traditional GMM estimate. When α ≈ ∞ the optimal estimate is the prior. The

path between the GMM estimate and the prior is characterized by values of 0 < α <∞.

To pick the optimal tuning parameter α∗, a hold out sample is employed. The value

of the (traditional) objective is computed on the testing set (plugging in θ̂α, α ∈ (0 ≤

α1 < α2 < · · ·αl)).

CV (θ̂α, xtst) = G
(
xtst, θ̂α

)′
·W ·G

(
xtst, θ̂α

)
.
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The parameter estimate corresponding to the value of α that minimizes the loss function

on the hold out sample is the regularized estimate.

θ̂ridge = min
θ̂α(xtrn)

CV (θ̂α, xtst).

As discussed in Section 1.3.2, ridge regression utilizes the constant eigenvectors and eigen-

values associated with OLS. Therefore we expect this technique to perform especially well

in GMM problems with moment conditions that are linear in parameters and thus asso-

ciated with nonvarying eigenvalues and eigenvectors. However in general for non-linear

GMM problems with varying eigendecompositions, its not necessary that this is the best

regularization technique. We expect the next two techniques to perform better in such

cases.

1.4.4 Geodesic solution path

Since most OLS regularization techniques can be characterized as unidimensional paths

between a prior and the traditional OLS estimate, the natural generalization to non-linear

GMM is the use of geodesics. The geodesic is defined as the shortest path between two

points along a curved surface.

The second regularization procedure we propose is to compute the geodesic along the

non-linear objective function surface between the prior and the GMM estimate on the

training data. This forms the candidate set of parameter values which are then plugged

into the loss function computed from the testing data. The point on the geodesic that

minimizes the loss function is chosen as the regularized parameter estimate. Thus if

p = (0, θ1, θ2, · · · θl, θ̂gmm) is a vector of l + 2 discrete points on the geodesic, then the

regularized estimate is

θ̂g = min
θ∈p

CV (θ, xtst).
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Implementation in cases where k = 2

The most rigorous way to compute geodesics is via differential equations. However the dif-

ferential equation approach may not be feasible for highly non-linear surfaces. Computer

scientists calculate approximate geodesics on a surface using weighted graphs. Dijkstra’s

Algorithm is one of the most popular algorithm’s to find geodesics between two nodes on

a weighted graph with non-negative weights. We apply the Dijkstra’s Algorithm to com-

pute the approximate geodesic between the prior at the origin and the GMM estimate.

This requires computation of the objective function over a grid of parameter values. Next

we describe how the appropriate graph nodes, edges and weights are computed.

• Nodes: The nodes of the graph correspond to all the different pairs of parameter

values over the grid. The finer the grid, the closer we will get to the true geodesic.

Each node i is associated with parameter value θ(i) and value of the objective

function Q(i) = Q(θ(i)).

• Edges: Each node shares edges only with its closest neighbors.

• Weights: The weight on the edge between two connected nodes i and j is:

wij =
√

(Q(i)−Q(j))2 + s2
g

where sg is the grid size used in computation. Once these parameters have been computed,

most statistical and computational packages include in-built commands to obtain the

geodesic. The next figure shows a sample geodesic for the nonlinear objective in Figure

1.7.
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Figure 1.7: Numerical Geodesic on Nonlinear objective function
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1.4.5 Local spectral cutoff path

The third regularization procedure we propose is based on finding a path that connects

the prior and the GMM estimate via the ‘ill-defined manifold’. We refer to it as the

‘ill-defined manifold’ because it is the dimension along which the solution varies the

most – in other words this is the dimension associated with the smallest eigenvalue at

each point in the parameter space. Note the similarity with spectral cutoff regularization

where the solution is the projection of the OLS estimate onto the dimension(s) with the

highest eigenvalue(s). The difference in non-linear GMM is that since the eigenvectors and

eigenvalues vary with the parameters, therefore we need to search along the ‘ill-defined

manifold’ too.

Implementation in cases where k = 2

In order to implement this regularization technique we follow these steps:

1. Using the training data find the global minimum as well as all the local minima.

This gives us the ‘ill-defined manifold’.

2. Now find θ∗, the point on the manifold that is closest to the prior. The points on

the manifold between θ∗ and θ̂gmm is the local spectral cutoff path, p.

3. For all parameter values on the local spectral cutoff path evaluate the loss function

on the testing data.

4. The parameter value that minimizes the loss function is the regularized parameter

estimate.

θ̂s = min
θ∈p

CV (θ, xtst).

A point to note here – this path can also be thought of as one that minimizes total value

of the objective function along the path. In order to find this path on the training set we

suggest the following alternative algorithm:
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Algorithm for finding ‘ill-defined manifold’:

Step 1: Find the unconstrained minimum of the objective function. Denote this

as θstep, where step = 0.

Step 2: Evaluate the value of the objective function in an ε-hemisphere of θstep (to

do this evaluate the objective using polar coordinates where ρ = ε and φ ∈ {0, π}

or φ ∈ {π, 2π}).

Step 3: Find the parameter values corresponding to the lowest value of the objec-

tive in the ε-hemisphere. Denote as θstep,ε

Step 4: step = step+ 1 and θstep ← θstep−1,ε.

Step 5: Repeat Step 2 to Step 4 for S number of steps for the hemispheres in

two directions.

For the case where k = 2, a simple way around is to fix one parameter and find the value

of the other parameter that minimizes the objective function.

The local spectral cutoff path for the non linear objective in Figure 1.7 is depicted here.

Figure 1.8: Local Spectral Cutoff path example with prior at the origin
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1.5 Simulation Results

In order to carry out a simulation study that is appropriate for the non-linear GMM

identification problem that we described in Section 1.2.2 any candidate model should

satisy the following requirements:

• the model should be non-linear in at least k = 2 parameters;

• it should be possible to tweak the data in a way that gives rise to an identification

problem via loss of rank of the first derivative of the vector of moments, M(θ) ;

• the true values of the parameter should lie away from the origin (since the origin is

the conventional prior in regularization studies).

We chose to work with a modified version of the Hall and Horowitz (HH) model. The

two modifications that we make are shifting the parameters away from the origin and

allowing the ratio of standard deviations of the two data vectors to change.

The base model that we use in our experiments is the HH model with the following

moment conditions:

E(exp(µ0 + θ0(x+ z)− 3z)− 1) = 0

E(z · (exp(µ0 + θ0(x+ z)− 3z)− 1)) = 0

where θ0 = 3, µ0 = −0.72 and x ∼ N(0, σx), z ∼ N(0, σz). Further σx = σz = 0.4.

Note that if σz < σx the moment conditions above still hold but the one of them starts

getting redundant as σz falls. Using this property we ran a number of simulations on

models with small values of σz and noted that the estimated values were not clustered

around the true parameter values but lay on a ‘curved manifold’.
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Figure 1.9: Curved ‘Bad’ Manifold obtained in Hall and Horowitz model with an identi-
fication problem

Moment Conditions with ‘Shifted’ Population Parameters

Since the true parameter values are close to the origin (which is our prior) we shifted

them away from the origin. The moment conditions with the ‘shifted’ parameter values

are:

E(exp(µ̃0 + 3 + (θ̃0 − 4)(x+ z)− 3z)− 1) = 0

E(z ·
(
exp(µ̃0 + 3 + (θ̃0 − 4)(x+ z)− 3z)− 1

)
) = 0

where θ̃0 = 7, µ̃0 = −3.72, x ∼ N(0, σx), z ∼ N(0, σz) and σx = 0.4. The value of σz is

allowed to vary.

We present simulation results for a set of four experiments. The only paramater that
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we change in the four sets of simulations is σz. In particular,

• Number of simulations in each set N = 1, 000; number of datapoints in the full

sample, in the training data and in the testing data is n = 100, ntrain = 70 and

ntest = 30 respectively.

• True values of the paramters θ0 = 7 and µ0 = −3.72.

• The X data is drawn from the distribution N(0, σ2
x) and the Z data is drawn from

the distribution N(0, σ2
z). σx = 0.4 is fixed and σz = ρσx varies in the four sets

(ρ = 1, 0.1, 0.01, 0.001).

For each of the four sets of simulations, we estimate the traditional GMM model as well

as the three regularization procedures developed in this paper. The evaluation criteria

for the results is the value of the Mean Squared Error.

MSE(θ) =
[
θ − θ0

]2
,

MSE(µ) = [µ− µ0]2 ,

MSE(θ, µ) = MSE(θ) +MSE(µ).

We find that except in the case where the assumption (σz = σx = 0.4) holds, all three reg-

ularization techniques perform better in terms of MSE than traditional GMM estimation.

The three regularization techniques also perform well in terms of MSE when the given

GMM estimation problem is linear in parameters.
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Case 1 : σz = σx

Figure 1.10: Scatterplots of GMM estimates and Regularized estimates

Table 1.1: Bias, Variance, MSE comparison of regularized estimates with GMM estimates

Bias Variance MSE
µ̂gmm -0.084 0.380 0.386

GMM θ̂gmm 0.146 0.511 0.532

(µ̂gmm, θ̂gmm) 0.918
µ̂r 0.135 0.177 0.195

Ridge-type θ̂r -0.846 1.377 2.091

(µ̂r, θ̂r) 2.286
µ̂g 0.275 0.101 0.176

Geodesic θ̂g -0.697 0.442 0.927

(µ̂g, θ̂g) 1.103
µ̂s 0.176 0.072 0.103

Local Spectral θ̂s -0.789 0.783 1.405

(µ̂s, θ̂s) 1.509
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Case 2 : σz = (0.1) σx

Figure 1.11: Scatterplots of GMM estimates and Regularized estimates

Table 1.2: Bias, Variance, MSE comparison of regularized estimates with GMM estimates

Bias Variance MSE
µ̂gmm -0.743 4.484 5.032

GMM θ̂gmm -2.947 24.577 33.240

(µ̂gmm, θ̂gmm) 38.272
µ̂r 0.296 0.255 0.343

Ridge-type θ̂r -4.671 4.211 26.025

(µ̂r, θ̂r) 26.368
µ̂g 0.420 0.463 0.639

Geodesic θ̂g -3.834 4.505 19.197

(µ̂g, θ̂g) 19.836
µ̂s 0.550 0.047 0.349

Local Spectral θ̂s -3.792 1.930 16.305

(µ̂s, θ̂s) 16.654
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Case 3 : σz = (0.01) σx

Figure 1.12: Scatterplots of GMM estimates and Regularized estimates

Table 1.3: Bias, Variance, MSE comparison of regularized estimates with GMM estimates

Bias Variance MSE
µ̂gmm 0.102 2.696 2.703

GMM θ̂gmm -3.420 10.333 22.018

(µ̂gmm, θ̂gmm) 24.722
µ̂r 0.450 0.117 0.320

Ridge-type θ̂r -4.507 2.538 22.845

(µ̂r, θ̂r) 23.164
µ̂g 0.559 0.279 0.591

Geodesic θ̂g -3.739 2.520 16.501

(µ̂g, θ̂g) 17.092
µ̂s 0.622 0.028 0.414

Local Spectral θ̂s -3.788 1.111 15.459

(µ̂s, θ̂s) 15.874
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Case 4 : σz = (0.001) σx

Figure 1.13: Scatterplots of GMM estimates and Regularized estimates

Table 1.4: Bias, Variance, MSE comparison of regularized estimates with GMM estimates

Bias Variance MSE
µ̂gmm -0.201 3.818 3.855

GMM θ̂gmm -3.467 15.604 27.606

(µ̂gmm, θ̂gmm) 31.461
µ̂r 0.436 0.257 0.447

Ridge-type θ̂r -4.384 3.011 22.229

(µ̂r, θ̂r) 22.676
µ̂g 0.487 0.402 0.639

Geodesic θ̂g -3.895 3.382 18.553

(µ̂g, θ̂g) 19.192
µ̂s 0.598 0.037 0.394

Local Spectral θ̂s -3.836 1.341 16.052

(µ̂s, θ̂s) 16.447
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1.6 Application

One of the leading application of the GMM technique is inferences on the consumption

based capital asset pricing model. The model and the statistical properties of its GMM

estimates have been widely studied in the literature including by Tauchen (1986), Kocher-

lakota (1990), Tauchen and Hussey (1991), Wright (2003) and most recently Inoue and

Rossi (2010). In particular Kocherlakota (1990), Wright (2003) and Inoue and Rossi

(2010) study the model in the context of identification issues.

In this section we apply the regularization techniques discussed in this paper on spec-

ifications of the consumption based capital asset pricing model that have been widely

studied. We find that in cases where the model is not well-defined, regularization usually

leads to estimates with lower MSE values. As in the first set of simulation results, when

the model is poorly identified as well as when sample sizes are small, regularization leads

to lower MSE values in general. However, the benefits decrease and eventually vanish

as sample sizes become larger as well as when the prior moves very far from the true values.

Next we describe the consumption based asset pricing model in greater detail. We then

discuss how the simulation data is generated using finite state markov chain approxima-

tions. This is followed by a discussion on the simulation setup and results.

1.6.1 Consumption Based Capital Asset Pricing Model

The consumption based capital asset pricing model using time separable preferences and

constant relative risk coefficient (γ) is discussed in this section. The consumer’s utility

function is

u(c) =
c1−γ

(1− γ)
.

The consumer is modeled as maximizing expected lifetime discounted utility

max
{ct}∞t=0

E

[
∞∑
t=0

βtu(ct)

]
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subject to the constraint

ct + ΣM
i=1qi,tpi,t =

M∑
i=1

qi,t−1(pi,t + di,t)

where di,t is dividends, qi,t is the holding of asset i at time period t and pi,t is asset i’s

price at time period t.

The first order conditions for this problem are

pi,tu
′(ct) = E[βu′(ct+1)(pi,t+1 + di,t+1)], i = 1, · · ·M.

Since the consumption and dividend series might exhibit nonstationarity, the transformed

stationary series vi,t =
pi,t
di,t

is used. The first order condition then becomes

pi,t
di,t

= E

[
β
u′(ct+1)

u′(ct)

(
pi,t+1

di,t+1

+
di,t+1

di,t+1

)
di,t+1

di,t

]

⇒ vi,t = E

[
β
u′(ct+1)

u′(ct)
(vi,t+1 + 1)

di,t+1

di,t

]
, i = 1, · · ·M.

Define

xi,t =
di,t
di,t−1

wt =
ct
ct−1

and use the functional form of the utility function to get

u′(ct+1)

u′(ct)
= (wt+1)−γ

to rewrite the first order condition as

vi,t = E[β(wt+1)−γ(vi,t+1 + 1)xi,t+1].
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Alternatively the first order condition can be written as

1 = E
[
βRi,t+1(wt+1)−γ

]
where

Ri,t+1 =
(vi,t+1 + 1)xi,t+1

vi,t

is the rate of return on asset i held from time period t to t+1. Consider a single dividend

paying asset. Then the first order conditions imply the moment conditions:

E[gt(β, γ)] = E[βRt+1w
−γ
t − 1|It] = 0

where It is the information set available at time period t and includes lagged values

of wt and Rt. Following Wright (2003) we will use three instruments [1 wt Rt] with

corresponding moment conditions

gt(β, γ) = (βRt+1w
−γ
t − 1)


1

wt

Rt

 .

These are the moment conditions that we use for estimation in the simulation exercises.

1.6.2 Data Generation using Finite State Markov Chain Approximations

The data for carrying out the estimation exercise described above is obtained via simu-

lations. The state variables for this system are wt and xt. Their stochastic behavior is

captured with a VAR(1):

ln(wt)

ln(xt)

 = µ+ Φ

ln(wt−1)

ln(xt−1)

+ ut (1.4)

where ut ∼ iidN(0,Ω). In order to simulate the VAR(1) data we use the Finite State

Markov Chain Approximation method outlined in Tauchen (1986). The VAR(1) in eq
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(1.4) is of the form

Yt = µ+ ΦYt−1 + ut; ut ∼ N(0,Ω).

Decompose Ω = B′ΣεB where BB′ = B′B = Im and Σε is diagonal. Premultiply by B

BYt = Bµ+BΦB′BYt−1 +But

⇒ Wt = Bµ+DWt−1 + εt

where Wt = BYt, D = BΦB′ and εt = But ∼ (0,Σε). This is of the form of Tauchen

(1986) and can be approximated by a discrete markov chain.

Unconditional Mean and Variance of Wt

The unconditional mean µ̃ is calculated as

E(Wt) = E(Bµ+DWt−1 + εt)

⇒ µ̃ = Bµ+Dµ̃

⇒ µ̃ = (Im −D)−1Bµ.

For obtaining the unconditional variance ΣW , use Wt = βµ + DWt−1 + εt, µ̃ = (Im −

D)−1βµ and βµ = (Im −D)(Im −D)−1βµ to obtain

(Wt − µ̃) = D(Wt−1 − µ̃) + εt

⇒ ΣW = DΣWD
′ + Σε

which is calculated using recursive substitution (assuming stationarity of the system).

Markov Chain States and Transition Matrix

In order to simulate the values using markov chains, we first discretize W i
t (where i refers

to the item corresponding to the ith element of W ) with a grid of values three standard
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deviations σiW on either side of zero. These N i values (si1, s
i
2, · · · siN i) are the discrete

values for the state of the Markov process for W i
t . This grid is calculated for each of the

elements i = 1, 2 · · ·m. The state of the system will be denoted by St and will contain

the values Sj,t = (s1
j1,t, s

2
j2,t, · · · smjm,t) where ji is one of the N i states for W i

t . Note that

this implies N∗ = N1 ·N2 · · · ·Nm total different states for the markov chain.

In our simulations m = 2, grid size N1 = N2 = 9 and total number of states N∗ =

9× 9 = 81.

Because the εt are independent, the transition probability of each series can be calcu-

lated individually and multiplied to get the joint density.

Π(j, k) =P [Sk,t+1|Sj,t]

=P [(s1
k1,t+1, s

2
k2,t+1, · · · smkm,t+1)|(s1

j1,t, s
2
j2,t, · · · smjm,t)]

=
m∏
i=1

P [siki,t+1|(s1
j1,t, s

2
j2,t, · · · smjm,t)]

=
m∏
i=1

P

[
Wt+1 ∈

[
siki ±

6σW i

2(N i − 1)

]
|(s1

j1,t, s
2
j2,t, · · · smjm,t)

]
...

(algebra)

...

=
m∏
i=1

[
F

(
siki − (DSj,t)

i +
6σWi

2(N i−1)

σiε

)
−

(
siki − (DSj,t)

i − 6σWi

2(N i−1)

σiε

)]
.

Given the transition density matrix the stationary transition density matrix can be found

by repeated multiplication

Π∗ = lim
k→∞

Πk.

38



GMM Data

We have described above how to simulate values for xt and wt using discrete markov

chains. In order to obtain values for vt use the first order condition for the single dividend

paying asset case

vt = E[β(wt+1)−γ(vt+1 + 1)xt+1].

Using the transition matrix and states from themarkov chain approximation, this can be

rewritten as

v(s) = βΠ(s, s′)[w(s′)−γ(v(s′) + 1)x(s′)].

Let Q be the N∗×1 vector with individual elements w(s)−γx(s). The system of equations

that defines the value of v(s) for the different states can be written

v = βΠ[diag(Q)]v + βΠQ

= (IN∗ − βΠ[diag(Q)])−1 βΠQ

Therefore given values of µ, Φ and Ω we simulate corresponding samples of


xt

wt

vt

 =


dt
dt−1

ct
ct−1

pt
dt

 .

We can now calculate the rate of return Rt = 1+vt
vt−1

xt. This data is used to obtain the

GMM moment conditions

gt(β, γ) = (βRt+1w
−γ
t − 1)


1

wt

Rt

 .

to estimate the parameters of interest β and γ .
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1.6.3 Simulation Setup and Results

We simulate three sets of data which correspond to three different GMM settings:

• Full Rank (FR) of M(β, γ) matrix– in this case GMM estimation is well-defined

and identification is not an issue. The parameter values are the same as those

proposed in Tauchen (1986).

• Near Rank Failure (NRF) of M(β, γ) matrix– in this case GMM estimation is

poorly-defined and identification issues arise. The parameter values are the same

as those proposed in Kocherlakota (1990).

• Rank Failure (RF) of M(β, γ) matrix– in this case GMM estimation is unstable

and identification of both parameters simultaneously is not possible. The parameter

values are the same as those proposed in Wright (2003).

The three sets of parameters are presented in the Table below. Throughout the simula-

tions the true values of the parameters of interest β0 = 0.97 and γ0 = 2. Also, throughout

the simulations the first 75% of the data is used as training data and the remaining 25%

is used as testing data.

Table 1.5: Parametrizations used in Consumption based CAPM simulations

Model µ Φ Ω

FR

(
0
0

) (
−0.5 0

0 −0.5

) (
0.01 0

0 0.01

)

NRF

(
0.021
0.004

) (
−0.161 0.017
0.414 0.117

) (
0.0012 0.00177
0.00177 0.014

)

RF

(
0.018
0.013

) (
0 0
0 0

) (
0.0012 0.0017
0.0017 0.0146

)

We compare simulation results (on sets of N = 1, 000 simulations) by MSE values. The

effect of following initial conditions is studied:
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• Time periods T = {60, 100, 200} (sample size of T = 100 corresponds to the

available US annual data sample size).

• Discount rate prior β = {0.95, 0.99} (an annual discount rate of β = 0.97 is

standard in the literature).

• CRRA constant prior γ = {1, 2, 6} (a standard value of γ remains an open

question in the literature, with authors proposing values in the range of 1 to 10).

• Cases where the origin is used as the prior βprior = 0, γprior = 0 are also studied.

Simulation Results – Broad Insights

1. GMM using an identity matrix performs better than GMM using optimal weighting

matrix whenever the derivative of objective functions is not well-defined (i.e. in RF

and NRF). This lends support to the practice by many authors who prefer using

one-step GMM in asset pricing applications.

2. Both one-step and two-step GMM performance improves significantly when the

sample size increases. In smaller samples both (particularly two-step GMM) per-

form poorly in the RF and NRF cases but their performance improves in larger

samples. 1

3. The prior used for regularization does matter – particularly for the local spectral

cutoff path.

4. Of the three regularization techniques the Geodesic Solution performed the best.

It had the lowest MSE values in most cases where regularization was useful as well

as the lowest MSE values out of the regularization techniques in the cases where

GMM estimates dominated the regularized solutions.

Selected graphs and tables are presented next.

1Apart from using the FMINUNC technique in MATLAB we implemented two alternative minimiza-
tion techniques – Pattern Search and Genetic Algorithm. We found that Pattern Search led to dramatic
improvements to the GMM minimization. However the broad insights of the simulations stayed the
same.
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Rank Failure: T = 60 , βprior = 0.99, γprior = 2

Figure 1.14: Scatterplots of GMM estimates and Regularized estimates

Table 1.6: Bias, Variance, MSE comparison of regularized estimates with GMM estimates

Bias Variance MSE

β̂gmm,1 -0.0014 0.0021 0.0021
GMM (Single Step) γ̂gmm,1 -0.0230 5.1917 5.1870

(β̂gmm,1, γ̂gmm,1) – – 5.1891

β̂gmm,2 -0.0117 0.0052 0.0053
GMM (Two Step) γ̂gmm,2 -0.3366 18.1341 18.2293

(β̂gmm,2, γgmm,2) – – 18.2346

β̂r 0.0012 0.0008 0.0008
Ridge-type γ̂r -0.0402 1.7072 1.7071

(β̂r, γr) – – 1.7079

β̂g 0.0130 0.0006 0.0008
Geodesic γ̂g 0.1797 1.0186 1.0499

(β̂g, γg) – – 1.0507

β̂s 0.0184 0.0002 0.0005
Local Spectral γ̂s 0.2911 0.6914 0.7754

(β̂s, γs) – – 0.7760
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Rank Failure: T = 100 , βprior = 0.99, γprior = 2

Figure 1.15: Scatterplots of GMM estimates and Regularized estimates

Table 1.7: Bias, Variance, MSE comparison of regularized estimates with GMM estimates

Bias Variance MSE

β̂gmm,1 0.0019 0.0008 0.0008
GMM (Single Step) γ̂gmm,1 0.1575 1.9674 1.9903

(β̂gmm,1, γ̂gmm,1) – – 1.9910

β̂gmm,2 -0.0145 0.0041 0.0043
GMM (Two Step) γ̂gmm,2 -0.4776 15.7662 15.9786

(β̂gmm,2, γgmm,2) – – 15.9829

β̂r 0.0020 0.0004 0.0004
Ridge-type γ̂r 0.0057 0.7939 0.7931

(β̂r, γr) – – 0.7935

β̂g 0.0125 0.0005 0.0007
Geodesic γ̂g 0.2370 0.7424 0.7978

(β̂g, γg) – – 0.7985

β̂s 0.0180 0.0002 0.0005
Local Spectral γ̂s 0.2752 0.5478 0.6230

(β̂s, γs) – – 0.6235
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Rank Failure: T = 200 , βprior = 0.99, γprior = 2

Figure 1.16: Scatterplots of GMM estimates and Regularized estimates

Table 1.8: Bias, Variance, MSE comparison of regularized estimates with GMM estimates

Bias Variance MSE

β̂gmm,1 0.0062 0.0002 0.0003
GMM (Single Step) γ̂gmm,1 0.3797 0.5464 0.6900

(β̂gmm,1, γ̂gmm,1) – – 0.6903

β̂gmm,2 -0.0145 0.0039 0.0041
GMM (Two Step) γ̂gmm,2 -0.4984 13.8784 14.1130

(β̂gmm,2, γgmm,2) – – 14.1170

β̂r 0.0033 0.0002 0.0002
Ridge-type γ̂r 0.0660 0.3167 0.3208

(β̂r, γr) – – 0.3209

β̂g 0.0132 0.0003 0.0005
Geodesic γ̂g 0.3744 0.2691 0.4090

(β̂g, γg) – – 0.4095

β̂s 0.0183 0.0002 0.0005
Local Spectral γ̂s 0.3448 0.7839 0.9020

(β̂s, γs) – – 0.9025
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Near Rank Failure: T = 60 , βprior = 0.99, γprior = 2

Figure 1.17: Scatterplots of GMM estimates and Regularized estimates

Table 1.9: Bias, Variance, MSE comparison of regularized estimates with GMM estimates

Bias Variance MSE

β̂gmm,1 0.0015 0.0030 0.0030
GMM (Single Step) γ̂gmm,1 0.3003 8.5979 8.6795

(β̂gmm,1, γ̂gmm,1) – – 8.6825

β̂gmm,2 -0.0024 0.0041 0.0041
GMM (Two Step) γ̂gmm,2 0.1251 12.9954 12.9981

(β̂gmm,2, γgmm,2) – – 13.0022

β̂r 0.0041 0.0013 0.0013
Ridge-type γ̂r 0.2026 3.1318 3.1697

(β̂r, γr) – – 3.1711

β̂g 0.0149 0.0010 0.0012
Geodesic γ̂g 0.3872 1.9674 2.1154

(β̂g, γg) – – 2.1166

β̂s 0.0204 0.0004 0.0008
Local Spectral γ̂s 0.4695 1.2903 1.5095

(β̂s, γs) – – 1.5103
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Near Rank Failure: T = 100 , βprior = 0.99, γprior = 2

Figure 1.18: Scatterplots of GMM estimates and Regularized estimates

Table 1.10: Bias, Variance, MSE comparison of regularized estimates with GMM esti-
mates

Bias Variance MSE

β̂gmm,1 0.0044 0.0017 0.0017
GMM (Single Step) γ̂gmm,1 0.4142 4.9965 5.1631

(β̂gmm,1, γ̂gmm,1) – – 5.1648

β̂gmm,2 -0.0051 0.0036 0.0036
GMM (Two Step) γ̂gmm,2 -0.0590 10.0520 10.0454

(β̂gmm,2, γgmm,2) – – 10.0490

β̂r 0.0037 0.0006 0.0006
Ridge-type γ̂r 0.1444 1.3475 1.3670

(β̂r, γr) – – 1.3676

β̂g 0.0142 0.0005 0.0007
Geodesic γ̂g 0.4028 0.9608 1.1221

(β̂g, γg) – – 1.1228

β̂s 0.0191 0.0002 0.0006
Local Spectral γ̂s 0.4797 0.9565 1.1857

(β̂s, γs) – – 1.1862
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Near Rank Failure: T = 200 , βprior = 0.99, γprior = 2

Figure 1.19: Scatterplots of GMM estimates and Regularized estimates

Table 1.11: Bias, Variance, MSE comparison of regularized estimates with GMM esti-
mates

Bias Variance MSE

β̂gmm,1 0.0080 0.0004 0.0004
GMM (Single Step) γ̂gmm,1 0.4817 1.0493 1.2803

(β̂gmm,1, γ̂gmm,1) – – 1.2807

β̂gmm,2 -0.0022 0.0017 0.0017
GMM (Two Step) γ̂gmm,2 -0.0313 4.6720 4.6683

(β̂gmm,2, γgmm,2) – – 4.6700

β̂r 0.0052 0.0002 0.0002
Ridge-type γ̂r 0.1776 0.4949 0.5259

(β̂r, γr) – – 0.5261

β̂g 0.0139 0.0003 0.0005
Geodesic γ̂g 0.4693 0.4261 0.6459

(β̂g, γg) – – 0.6464

β̂s 0.0185 0.0002 0.0005
Local Spectral γ̂s 0.4448 0.8706 1.0677

(β̂s, γs) – – 1.0682
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Full Rank: T = 60 , βprior = 0.99, γprior = 2

Figure 1.20: Scatterplots of GMM estimates and Regularized estimates

Table 1.12: Bias, Variance, MSE comparison of regularized estimates with GMM esti-
mates

Bias Variance MSE

β̂gmm,1 -0.0013 0.0004 0.0004
GMM (Single Step) γ̂gmm,1 0.0593 0.1635 0.1669

(β̂gmm,1, γ̂gmm,1) – – 0.1673

β̂gmm,2 -0.0002 0.0004 0.0004
GMM (Two Step) γ̂gmm,2 0.0123 0.1625 0.1625

(β̂gmm,2, γgmm,2) – – 0.1629

β̂r 0.0036 0.0004 0.0004
Ridge-type γ̂r -0.0650 0.0399 0.0441

(β̂r, γr) – – 0.0445

β̂g 0.0132 0.0004 0.0005
Geodesic γ̂g -0.0926 0.0532 0.0617

(β̂g, γg) – – 0.0622

β̂s 0.0119 0.0002 0.0004
Local Spectral γ̂s 0.0561 0.0277 0.0309

(β̂s, γs) – – 0.0313
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Full Rank: T = 100 , βprior = 0.99, γprior = 2

Figure 1.21: Scatterplots of GMM estimates and Regularized estimates

Table 1.13: Bias, Variance, MSE comparison of regularized estimates with GMM esti-
mates

Bias Variance MSE

β̂gmm,1 -0.0012 0.0003 0.0003
GMM (Single Step) γ̂gmm,1 0.0369 0.0987 0.1000

(β̂gmm,1, γ̂gmm,1) – – 0.1003

β̂gmm,2 -0.0004 0.0003 0.0003
GMM (Two Step) γ̂gmm,2 0.0041 0.0895 0.0895

(β̂gmm,2, γgmm,2) – – 0.0897

β̂r 0.0026 0.0002 0.0002
Ridge-type γ̂r -0.0340 0.0417 0.0428

(β̂r, γr) – – 0.0431

β̂g 0.0142 0.0005 0.0007
Geodesic γ̂g 0.4028 0.9608 1.1221

(β̂g, γg) – – 0.0408

β̂s 0.0111 0.0003 0.0004
Local Spectral γ̂s -0.0657 0.0361 0.0404

(β̂s, γs) – – 0.0280
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Full Rank: T = 200 , βprior = 0.99, γprior = 2

Figure 1.22: Scatterplots of GMM estimates and Regularized estimates

Table 1.14: Bias, Variance, MSE comparison of regularized estimates with GMM esti-
mates

Bias Variance MSE

β̂gmm,1 -0.0002 0.0001 0.0001
GMM (Single Step) γ̂gmm,1 0.0213 0.0453 0.0457

(β̂gmm,1, γ̂gmm,1) – – 0.0458

β̂gmm,2 0.0002 0.0001 0.0001
GMM (Two Step) γ̂gmm,2 0.0014 0.0405 0.0404

(β̂gmm,2, γgmm,2) – – 0.0405

β̂r 0.0030 0.0001 0.0001
Ridge-type γ̂r -0.0248 0.0124 0.0130

(β̂r, γr) – – 0.0132

β̂g 0.0095 0.0002 0.0003
Geodesic γ̂g -0.0470 0.0235 0.0257

(β̂g, γg) – – 0.0260

β̂s 0.0099 0.0002 0.0003
Local Spectral γ̂s 0.0684 0.0262 0.0309

(β̂s, γs) – – 0.0312
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Rank Failure Estimates for different priors and sample sizes

Table 1.15: MSE Comparison– Model: RF,
Sample Size: T = 60, Prior: γ = 1, β = 0.99

Bias Var MSE

β̂1 −0.001 0.002 0.002
GMM 1 γ̂1 −0.023 5.192 5.187

(β̂1, γ̂1) 5.189

β̂r −0.008 0.001 0.001
Ridge γ̂r −0.656 1.730 2.158

(β̂r, γr) 2.159

β̂g 0.012 0.001 0.001
Geodesic γ̂g −0.024 1.177 1.176

(β̂g, γg) 1.177

β̂s 0.011 0.000 0.001
Spectral γ̂s −0.519 1.077 1.345

(β̂s, γs) 1.346

Table 1.16: MSE Comparison– Model: RF,
Sample Size: T = 100, Prior: γ = 1, β = 0.99

Bias Var MSE

β̂1 0.002 0.001 0.001
GMM 1 γ̂1 0.158 1.967 1.990

(β̂1, γ̂1) 1.991

β̂r −0.008 0.000 0.000
Ridge γ̂r −0.638 0.925 1.331

(β̂r, γr) 1.332

β̂g 0.011 0.001 0.001
Geodesic γ̂g 0.101 0.964 0.973

(β̂g, γg) 0.974

β̂s 0.011 0.000 0.001
Spectral γ̂s −0.521 1.014 1.284

(β̂s, γs) 1.285

Table 1.17: MSE Comparison– Model: RF,
Sample Size: T = 60, Prior: γ = 1, β = 0.95

Bias Var MSE

β̂1 −0.001 0.002 0.002
GMM 1 γ̂1 −0.023 5.192 5.187

(β̂1, γ̂1) 5.189

β̂r −0.011 0.001 0.001
Ridge γ̂r −0.590 2.145 2.490

(β̂r, γr) 2.491

β̂g −0.011 0.001 0.001
Geodesic γ̂g −0.616 1.081 1.459

(β̂g, γg) 1.460

β̂s −0.011 0.000 0.001
Spectral γ̂s −0.549 1.056 1.357

(β̂s, γs) 1.357

Table 1.18: MSE Comparison– Model: RF,
Sample Size: T = 100, Prior: γ = 1, β = 0.95

Bias Var MSE

β̂1 0.002 0.001 0.001
GMM 1 γ̂1 0.158 1.967 1.990

(β̂1, γ̂1) 1.991

β̂r −0.010 0.001 0.001
Ridge γ̂r −0.539 1.118 1.407

(β̂r, γr) 1.407

β̂g −0.011 0.000 0.001
Geodesic γ̂g −0.582 0.781 1.119

(β̂g, γg) 1.120

β̂s −0.011 0.000 0.001
Spectral γ̂s −0.530 1.036 1.316

(β̂s, γs) 1.316
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Rank Failure Estimates for different priors and sample sizes

Table 1.19: MSE Comparison– Model: RF,
Sample Size: T = 200, Prior: γ = 1, β = 0.99

Bias Var MSE

β̂1 0.006 0.000 0.000
GMM 1 γ̂1 0.380 0.546 0.690

(β̂1, γ̂1) 0.690

β̂r −0.008 0.000 0.000
Ridge γ̂r −0.621 0.600 0.984

(β̂r, γr) 0.985

β̂g 0.013 0.000 0.001
Geodesic γ̂g 0.322 0.389 0.492

(β̂g, γg) 0.493

β̂s 0.011 0.000 0.001
Spectral γ̂s −0.457 1.250 1.458

(β̂s, γs) 1.458

Table 1.20: MSE Comparison– Model: RF,
Sample Size: T = 60, Prior: γ = 6, β = 0.99

Bias Var MSE

β̂1 −0.001 0.002 0.002
GMM 1 γ̂1 −0.023 5.192 5.187

(β̂1, γ̂1) 5.189

β̂r 0.021 0.002 0.003
Ridge γ̂r 1.580 5.976 8.466

(β̂r, γr) 8.468

β̂g 0.017 0.001 0.001
Geodesic γ̂g 1.505 3.222 5.485

(β̂g, γg) 5.486

β̂s 0.024 0.000 0.001
Spectral γ̂s 4.062 0.253 16.756

(β̂s, γs) 16.757

Table 1.21: MSE Comparison– Model: RF,
Sample Size: T = 200, Prior: γ = 1, β = 0.95

Bias Var MSE

β̂1 0.006 0.000 0.000
GMM 1 γ̂1 0.380 0.546 0.690

(β̂1, γ̂1) 0.690

β̂r −0.009 0.000 0.000
Ridge γ̂r −0.483 0.731 0.964

(β̂r, γr) 0.964

β̂g −0.007 0.000 0.000
Geodesic γ̂g −0.415 0.426 0.598

(β̂g, γg) 0.598

β̂s −0.010 0.000 0.001
Spectral γ̂s −0.469 1.196 1.415

(β̂s, γs) 1.416

Table 1.22: MSE Comparison– Model: RF,
Sample Size: T = 60, Prior: γ = 0, β = 0

Bias Var MSE

β̂1 −0.001 0.002 0.002
GMM 1 γ̂1 −0.023 5.192 5.187

(β̂1, γ̂1) 5.189

β̂r −0.038 0.001 0.003
Ridge γ̂r −1.434 2.075 4.128

(β̂r, γr) 4.131

β̂g −0.018 0.003 0.003
Geodesic γ̂g 0.009 7.564 7.556

(β̂g, γg) 7.560

β̂s −0.353 0.211 0.336
Spectral γ̂s −1.152 1.819 3.145

(β̂s, γs) 3.480
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Rank Failure Estimates for different priors and sample sizes

Table 1.23: MSE Comparison– Model: RF,
Sample Size: T = 100, Prior: γ = 6, β = 0.99

Bias Var MSE

β̂1 0.002 0.001 0.001
GMM 1 γ̂1 0.158 1.967 1.990

(β̂1, γ̂1) 1.991

β̂r 0.021 0.001 0.002
Ridge γ̂r 1.556 4.565 6.981

(β̂r, γr) 6.983

β̂g 0.017 0.001 0.001
Geodesic γ̂g 1.472 2.481 4.645

(β̂g, γg) 4.646

β̂s 0.024 0.000 0.001
Spectral γ̂s 4.063 0.197 16.708

(β̂s, γs) 16.709

Table 1.24: MSE Comparison– Model: RF,
Sample Size: T = 200, Prior: γ = 6, β = 0.99

Bias Var MSE

β̂1 0.006 0.000 0.000
GMM 1 γ̂1 0.380 0.546 0.690

(β̂1, γ̂1) 0.690

β̂g 0.025 0.001 0.002
Ridge γ̂g 1.809 3.620 6.890

(β̂g, γg) 6.891

β̂r 0.021 0.000 0.001
Geodesic γ̂r 1.521 1.404 3.715

(β̂r, γr) 3.715

β̂s 0.026 0.000 0.001
Spectral γ̂s 4.086 0.192 16.884

(β̂s, γs) 16.885

Table 1.25: MSE Comparison– Model: RF,
Sample Size: T = 100, Prior: γ = 0, β = 0

Bias Var MSE

β̂1 0.002 0.001 0.001
GMM 1 γ̂1 0.158 1.967 1.990

(β̂1, γ̂1) 1.991

β̂r −0.034 0.001 0.002
Ridge γ̂r −1.387 1.690 3.613

(β̂r, γr) 3.615

β̂g −0.012 0.002 0.002
Geodesic γ̂g 0.035 3.562 3.560

(β̂g, γg) 3.561

β̂s −0.370 0.216 0.352
Spectral γ̂s −1.188 1.788 3.198

(β̂s, γs) 3.551

Table 1.26: MSE Comparison– Model: RF,
Sample Size: T = 200, Prior: γ = 0, β = 0

Bias Var MSE

β̂1 0.006 0.000 0.000
GMM 1 γ̂1 0.380 0.546 0.690

(β̂1, γ̂1) 0.690

β̂r −0.031 0.001 0.002
Ridge γ̂r −1.324 1.445 3.197

(β̂r, γr) 3.199

β̂g −0.003 0.001 0.001
Geodesic γ̂g 0.281 1.113 1.191

(β̂g, γg) 1.192

β̂s −0.341 0.208 0.324
Spectral γ̂s −1.129 2.042 3.315

(β̂s, γs) 3.639
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Near Rank Failure Estimates for different priors and sample sizes

Table 1.27: MSE Comparison– Model: NRF,
Sample Size: T = 60, Prior: γ = 1, β = 0.99

Bias Var MSE

β̂1 0.001 0.003 0.003
GMM 1 γ̂1 0.207 8.023 8.058

(β̂1, γ̂1) 8.061

β̂r −0.006 0.001 0.001
Ridge γ̂r −0.457 2.307 2.514

(β̂r, γr) 2.515

β̂g 0.013 0.001 0.001
Geodesic γ̂g 0.122 1.743 1.756

(β̂g, γg) 1.757

β̂s 0.011 0.001 0.001
Spectral γ̂s −0.330 1.702 1.809

(β̂s, γs) 1.810

Table 1.28: MSE Comparison– Model: NRF,
Sample Size: T = 100, Prior: γ = 1, β = 0.99

Bias Var MSE

β̂1 0.005 0.001 0.001
GMM 1 γ̂1 0.360 3.869 3.995

(β̂1, γ̂1) 3.996

β̂r −0.007 0.001 0.001
Ridge γ̂r −0.509 1.637 1.895

(β̂r, γr) 1.896

β̂g 0.014 0.001 0.001
Geodesic γ̂g 0.226 1.179 1.228

(β̂g, γg) 1.229

β̂s 0.011 0.000 0.001
Spectral γ̂s −0.310 1.439 1.534

(β̂s, γs) 1.534

Table 1.29: MSE Comparison– Model: NRF,
Sample Size: T = 60, Prior: γ = 1, β = 0.95

Bias Var MSE

β̂1 0.001 0.003 0.003
GMM 1 γ̂1 0.207 8.023 8.058

(β̂1, γ̂1) 8.061

β̂r −0.009 0.001 0.001
Ridge γ̂r −0.401 2.681 2.840

(β̂r, γr) 2.841

β̂g −0.010 0.001 0.001
Geodesic γ̂g −0.474 1.579 1.802

(β̂g, γg) 1.802

β̂s −0.008 0.001 0.001
Spectral γ̂s −0.323 1.807 1.909

(β̂s, γs) 1.910

Table 1.30: MSE Comparison– Model: NRF,
Sample Size: T = 100, Prior: γ = 1, β = 0.95

Bias Var MSE

β̂1 0.005 0.001 0.001
GMM 1 γ̂1 0.360 3.869 3.995

(β̂1, γ̂1) 3.996

β̂r −0.008 0.001 0.001
Ridge γ̂r −0.404 1.769 1.930

(β̂r, γr) 1.931

β̂g −0.008 0.001 0.001
Geodesic γ̂g −0.410 1.147 1.315

(β̂g, γg) 1.315

β̂s −0.007 0.001 0.001
Spectral γ̂s −0.334 1.490 1.600

(β̂s, γs) 1.601
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Near Rank Failure Estimates for different priors and sample sizes

Table 1.31: MSE Comparison– Model: NRF,
Sample Size: T = 200, Prior: γ = 1, β = 0.99

Bias Var MSE

β̂1 0.008 0.000 0.000
GMM 1 γ̂1 0.446 0.935 1.134

(β̂1, γ̂1) 1.134

β̂r −0.006 0.000 0.000
Ridge γ̂r −0.490 0.970 1.209

(β̂r, γr) 1.209

β̂g 0.014 0.000 0.001
Geodesic γ̂g 0.368 0.476 0.611

(β̂g, γg) 0.612

β̂s 0.011 0.001 0.001
Spectral γ̂s −0.185 1.559 1.592

(β̂s, γs) 1.592

Table 1.32: MSE Comparison– Model: NRF,
Sample Size: T = 200, Prior: γ = 1, β = 0.95

Bias Var MSE

β̂1 0.008 0.000 0.000
GMM 1 γ̂1 0.446 0.935 1.134

(β̂1, γ̂1) 1.134

β̂r −0.006 0.000 0.000
Ridge γ̂r −0.281 1.073 1.151

(β̂r, γr) 1.151

β̂g −0.006 0.000 0.000
Geodesic γ̂g −0.335 0.536 0.648

(β̂g, γg) 0.648

β̂s −0.004 0.001 0.001
Spectral γ̂s −0.199 1.480 1.518

(β̂s, γs) 1.519

Full Rank Estimates for different priors and sample sizes

Table 1.33: MSE Comparison– Model: FR,
Sample Size: T = 60, Prior: γ = 1, β = 0.99

Bias Var MSE

β̂1 −0.001 0.001 0.001
GMM 1 γ̂1 0.078 0.217 0.223

(β̂1, γ̂1) 0.223

β̂r 0.010 0.000 0.000
Ridge γ̂r −0.774 0.229 0.828

(β̂r, γr) 0.828

β̂g 0.015 0.000 0.001
Geodesic γ̂g −0.714 0.182 0.692

(β̂g, γg) 0.692

β̂s 0.011 0.000 0.000
Spectral γ̂s −0.734 0.200 0.738

(β̂s, γs) 0.738

Table 1.34: MSE Comparison– Model: FR,
Sample Size: T = 60, Prior: γ = 1, β = 0.95

Bias Var MSE

β̂1 −0.001 0.001 0.001
GMM 1 γ̂1 0.078 0.217 0.223

(β̂1, γ̂1) 0.223

β̂r 0.006 0.000 0.000
Ridge γ̂r −0.819 0.190 0.861

(β̂r, γr) 0.861

β̂g −0.009 0.000 0.000
Geodesic γ̂g −0.386 0.317 0.466

(β̂g, γg) 0.466

β̂s −0.001 0.000 0.000
Spectral γ̂s −0.646 0.247 0.665

(β̂s, γs) 0.665
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Full Rank Estimates for different priors and sample sizes

Table 1.35: MSE Comparison– Model: FR,
Sample Size: T = 100, Prior: γ = 1, β = 0.99

Bias Var MSE

β̂1 −0.001 0.000 0.000
GMM 1 γ̂1 0.057 0.103 0.106

(β̂1, γ̂1) 0.107

β̂r 0.011 0.000 0.000
Ridge γ̂r −0.813 0.170 0.832

(β̂r, γr) 0.832

β̂g 0.014 0.000 0.000
Geodesic γ̂g −0.710 0.150 0.653

(β̂g, γg) 0.654

β̂s 0.010 0.000 0.000
Spectral γ̂s −0.726 0.175 0.702

(β̂s, γs) 0.702

Table 1.36: MSE Comparison– Model: FR,
Sample Size: T = 200, Prior: γ = 1, β = 0.99

Bias Var MSE

β̂1 −0.001 0.000 0.000
GMM 1 γ̂1 0.032 0.046 0.047

(β̂1, γ̂1) 0.047

β̂r 0.010 0.000 0.000
Ridge γ̂r −0.786 0.186 0.804

(β̂r, γr) 0.804

β̂g 0.011 0.000 0.000
Geodesic γ̂g −0.593 0.183 0.535

(β̂g, γg) 0.536

β̂s 0.009 0.000 0.000
Spectral γ̂s −0.636 0.210 0.614

(β̂s, γs) 0.614

Table 1.37: MSE Comparison– Model: FR,
Sample Size: T = 100, Prior: γ = 1, β = 0.95

Bias Var MSE

β̂1 −0.001 0.000 0.000
GMM 1 γ̂1 0.057 0.103 0.106

(β̂1, γ̂1) 0.107

β̂r 0.006 0.000 0.000
Ridge γ̂r −0.848 0.140 0.858

(β̂r, γr) 0.858

β̂g −0.009 0.000 0.000
Geodesic γ̂g −0.249 0.228 0.290

(β̂g, γg) 0.290

β̂s 0.001 0.000 0.000
Spectral γ̂s −0.628 0.218 0.612

(β̂s, γs) 0.612

Table 1.38: MSE Comparison– Model: FR,
Sample Size: T = 200, Prior: γ = 1, β = 0.95

Bias Var MSE

β̂1 −0.001 0.000 0.000
GMM 1 γ̂1 0.032 0.046 0.047

(β̂1, γ̂1) 0.047

β̂r 0.006 0.000 0.000
Ridge γ̂r −0.815 0.167 0.831

(β̂r, γr) 0.832

β̂g −0.008 0.000 0.000
Geodesic γ̂g −0.081 0.122 0.129

(β̂g, γg) 0.129

β̂s 0.002 0.000 0.000
Spectral γ̂s −0.472 0.219 0.442

(β̂s, γs) 0.442
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1.6.4 The Long Run Risk Model

The simulations in this section were based on the standard Consumption based Capital

Asset Pricing model (CCAPM). While this is the standard starting point for asset prices,

most empirical studies that assessed the empirical validity of CCAPM reject the model.

In particular reasonable values for the parameters are unable to explain levels of risk

premia, consumption growth rates and asset returns observed in practice.

One of the most influential recent papers in the literature is by Bansal and Yaron’s

(2004) Long Run Risk Model for Asset prices. In this model there exists a representative

agent with Epstein and Zin (1989) type recursive preferences who maximizes her expeted

lifetime utility,

Vt =
[
(1− β)C

1−γ
θ

t + β
(
Et[V

1−γ
t+1 ]

) 1
θ

] θ
1−γ

subject to the budget constraint,

Wt+1 = (Wt − Ct)Rc,t+1

where Ct is consumption at time t, Wt is the wealth of the agent and Rc,t is the return on

all invested wealth. β and γ are respectively the discount rate and CRRA as described

before. θ = 1−γ
1− 1

Ψ

and Ψ is the elasticity of intertemporal substitution.

The following joint dynamics describe consumption and dividends

∆ct+1 = µc + xt + σtεc,t+1

xt+1 = ρxt + σx,cσtεx,t+1

σ2
t+1 = σ̄2 + µ(σ2

t − σ̄2) + σwwt+1

∆dt+1 = µd + φxxt + σdσcεd,t+1

where ∆ct+1 and ∆dt+1 are the consumption and dividend growth rates respectively.

Some of the important implications of these dynamica are:
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1. the presence of a small but persistent component in the consumption growth equa-

tion, xt which is referred to as the long run risk.

2. εc,t+1 represents the i.i.d. innovation which is referred to as short run risk

3. The conditional mean of dividend growth is proportional to the conditional mean

of consumption growth.

The asset pricing Euler condition for asset i from the Epstein and Zin (1989) recursive

preferences model is

Et [exp(mt+1 + rj,t+1)] = 1

where rj,t+1 is the return on asset j and mt+1 is the log of the intertemporal marginal

rate of substitution which is given by

mt+1 = θ log β − θ

Ψ
∆ct+1 + (θ − 1)rc,t+1

where rc,t+1 is the continuous return on the consumption asset. Thus the relevant moment

condition from this model is

Et

[
exp(θ log β − θ

Ψ
∆ct+1 + (θ − 1)rc,t+1 + rj,t+1)

]
− 1 = 0.

Such Long Run Risk (LRR) models have important implications on asset prices and show

promise in explaining the time series and cross-sectional properties of financial assets

which traditional CCAPM have been unsuccessful in doing. Therefore any econometric

exercise on asset prices should have an eye on ways to improve estimation of the LRR

models. That being said, such an econometric exercise is out of the scope of this thesis

for the following reasons:

1. Econometric estimation of LRR models is still in a somewhat nascent stage.

2. The empirical plausibilty for assessing these LRR models is hampered by the pres-

ence of many unobservable state variables.
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3. The implied moment condition has k = 3 parameters to be estimated (θ, β,Ψ)

and the practical scope of the current project is limited to models with k = 2

parameters.

We hope that we are able to extend our work to LRR models in the future as the

econometrics for estimating LRR becomes more standard and as we improve techniques

for GMM regularization in higher dimensions.

1.7 Notes on Extensions in Higher Dimensions

So far we have presented three possible algorithms for regularization in the GMM frame-

work when the dimension of the parameter space k = 2. In this section we briefly discuss

whether these techniques can be extending to higher dimensional parameter spaces. We

investigate the possibility of extending each of the three techniques to a particular class

of identification problems where rank(M(θ̂)) → k − 1. In other words we restrict our

attention to those cases where only one of the k dimensions is poorly identified.

Ridge-type solution path

Recall that the GMM objective function for this form of regularization requires augment-

ing the usual GMM objective with a term that penalizes the objective for moving away

from the origin:

Q(θ, α) = G(θ)′ ·W ·G(θ) + α · (θ − θprior)′(θ − θprior).

where α is known as a tuning parameter. The solutions corresponding to different values

of α are characterized by:

θ̂α = min
θ

Q(θ, α)

Extending this type of solution to k > 2 dimensions is straightforward and computation-

ally feasible. The penalty term α ·(θ−θprior)′(θ−θprior) is simply the scalar product of the

parameter vector θ multiplied with the tuning parameter α. In fact, ridge regularization
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in linear regression is especially used in cases where the parameter vector is of very high

dimension (including cases where n > k).

However, as we noted in the discussion in Section 1.3.2 and Section 1.4.3 as well as

in the simulation results in Section 1.5 the ridge-type penalty may not be the best choice

of regularization technique in the GMM framework because it does not consider the pos-

sible non-linearities of the GMM objective.

Next we consider extensions of the two techniques that take account of the non-linear

geometry of the GMM objective.

Geodesic solution path

Recall that a geodesic is defined as the shortest path between two points along a curved

surface. In order to find a regularized GMM parameter estimate, we suggested choosing

from points on the geodesic between a prior (for instance the origin) and the uncon-

strained GMM estimate on the training set.

As discussed in Section 1.4.4, while the most rigorous way to obtain the geodesic between

two points is via a solution to a differential equation problem, most practical applications

(for e.g. computer science applications) obtain approximate geodesics using algorithms

like the ‘Djikstra’s algorithm’. However, these algorithms slow down considerably as the

dimension of the parameter space increases.

One of the ways to extend this regularization technique is by using the differential equa-

tion approach to obtain geodesics on the GMM objective function surface, which is out

of the scope of the current paper.

Another possible direction is to borrow the intuition behind ISOMAP – an algorithm

developed to map points on a high-dimensional non-linear manifold to a lower dimen-
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sional set of coordinates. The intuition is to randomly sample a large number of points

(in our case compute the objective at random parameter values a large number of times),

denote the K nearest neighbors of each point as connected by an edge and then apply

‘Djikstra’s Theorem’ to compute the geodesic. The geodesic approximation improves as

the number of sampled datapoints increases.

We expect that as advances are made in computer science which enable greater stor-

age capabilities and faster computation, more algorithms for computing geodesics on

higher dimensional surfaces will become available.

Local spectral cutoff path

Recall from Section 1.4.5 the steps to obtain the regularized estimate using the Local

Spectral cutoff involved 1) finding a possibly nonlinear dimension in the parameter space

where the GMM objective function is poorly defined (on the training set); 2) finding the

point on this manifold which is closest to the origin, say θ∗; 3) the path between θ∗ to the

global minimum on the training set θ̂gmm make up the spectral cutoff path; 4) picking

the parameter value on the path, which minimizes the loss function on the testing set, as

the regularized parameter estimate.

From the steps we note that main difficulty in extending this method to higher dimensions

is in finding the ‘ill-defined manifold’ as the dimension of the parameter space increases.

A suggested algorithm proceeds as follows:

Step 1: Find the unconstrained global minimum denote it θstep where step = 0

Step 2: At the parameter value θstep, compute the Hessian of the objective function

H(θstep). Find the eigen vector vstep corresponding to the smallest eigen value λ1.

Step 3: The next parameter value on the path is an ε-step in the direction of vstep

ie θstep+1 = θstep + ε · vstep. Also let step = step+ 1.
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Step 4: Repeat Steps 2 and 3 S number of times. Let step = 0

Step 5: At the parameter value θstep, compute the Hessian of the objective function

H(θstep). Find the eigen vector vstep corresponding to the smallest eigen value λ1.

Step 6: The next parameter value on the path is an ε-step in the direction of −vstep

ie θstep−1 = θstep − ε · vstep. Also let step = step− 1.

Step 7: Repeat Steps 5 and 6 S number of times.

Step 8: The ill-defined manifold consists of the points θ−S, θ−S+1, · · · θ0, θ1, · · · θS.

1.8 Summary and Possible Extensions

In this paper we have introduced the application of regularization techniques in GMM

to solve a particular type of identification problem. We have shown via simulations that

when the matrix of first order conditions is close to losing rank, traditional GMM esti-

mates become unstable. We also show that the regularization techniques developed here

perform well in terms of the Mean Squared Error of the estimates. This paper is the first

step towards developing regularization techniques for GMM. There are a lot of possible

extensions to this work.

First, since the regularization techniques developed here perform some form of grid search,

the curse of dimensionality cannot be ignored. As the number of dimensions increase, the

grid search method will take longer to complete and at some point will become infeasible.

It is important to think of alternative characterizations of the regularized solution path

which are less computationally intensive. One possible alternative may be to characterize

the regularized solution paths in terms of differential equations.

Second, we have dealt only with exactly identified GMM systems. The effect of a poorly

identified GMM system on overidentifying restrictions and the J-stat have not been ad-

dressed. Further the effect of regularized estimates on the J-stat also remains to be
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explored.

Finally, there are a number of algorithms developed by Computer Scientists to find paths,

modes, minima and maxima on irregular surfaces. GMM objective functions are typically

associated with highly non-linear surfaces and algorithms and techniques from fields like

Computer Science and Statistics should be utilized in order to improve the quality of

those GMM problems that suffer from instability.
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Appendix

A1: Results from a Linear System

As discussed in Section 1.5 of the paper we found that GMM estimation problems where

the moment conditions are linear in paramaters, the three regularization techniques pro-

posed in the paper perform well. In this section we present simulation results on GMM

estimation of an OLS problem.

Suppose the n × 1 vector Y is the outcome of interest, X = [X1 X2] is the n × 2

matrix of covariates and the true model the data follows is:

Y = β1X1 + β2X2 + ε, ε ⊥ X.

X′X
n

has the eigenvalue decomposition:

X ′X

n
=

(
C1 C2

)λ1 0

0 λ2


C ′1
C ′2


If λ2 → 0 then both parameters β1 and β2 cannot be estimated exactly. In our simulations

we set β1 = β2 = 2, λ1 = 0.1 and allow λ2

λ1
→ 0. From the independence assumption on

the error term the moment conditions for the exactly identified GMM problem are:

g(β1, β2) = X ′(ε(β1, β2)) = X ′(Y − β1X1 − β2X2).

The graphs and tables for different values of λ2

λ1
are presented next. Note that when

λ2

λ1
≤ 0.01 then all three regularization techniques lead to an improvement in MSE values

of the parameter estimates.
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Results from a Linear System

Table 1.39: MSE Comparison λ2 = λ1

Bias Var MSE
µ̂ −0.01 0.11 0.11

GMM θ̂ −0.01 0.10 0.10

(µ̂, θ̂) 0.21
µ̂r −0.22 0.16 0.21

Ridge-type θ̂r −0.24 0.16 0.22

(µ̂r, θ̂r) 0.43
µ̂g −0.21 0.20 0.24

Geodesic θ̂g −0.22 0.18 0.23

(µ̂g, θ̂g) 0.47
µ̂s −0.35 0.24 0.36

Spectral θ̂s −0.05 0.16 0.16

(µ̂s, θ̂s) 0.53

Table 1.40: MSE Comparison λ2 = (0.1) λ1

Bias Var MSE
µ̂ −0.01 0.82 0.82

GMM θ̂ 0.00 0.34 0.33

(µ̂, θ̂) 1.15
µ̂r −0.42 0.70 0.87

Ridge-type θ̂r −0.10 0.28 0.29

(µ̂r, θ̂r) 1.16
µ̂g 0.01 1.07 1.06

Geodesic θ̂g −0.35 0.52 0.64

(µ̂g, θ̂g) 1.70
µ̂s −0.51 0.40 0.66

Spectral θ̂s −0.35 0.20 0.20

(µ̂s, θ̂s) 0.85

Table 1.41: MSE Comparison λ2 = (0.01) λ1

Bias Var MSE
µ̂ −0.01 7.92 7.92

GMM θ̂ 0.01 2.70 2.69

(µ̂, θ̂) 10.61
µ̂r −0.33 5.81 5.91

Ridge-type θ̂r −0.15 1.97 1.99

(µ̂r, θ̂r) 7.90
µ̂g 0.22 5.34 5.38

Geodesic θ̂g −0.46 1.91 2.12

(µ̂g, θ̂g) 7.50
µ̂s −0.25 2.05 2.12

Spectral θ̂s −0.46 0.70 0.74

(µ̂s, θ̂s) 2.85

Table 1.42: MSE Comparison λ2 = (0.001) λ1

Bias Var MSE
µ̂ −0.20 63.03 63.00

GMM θ̂ 0.11 21.07 21.06

(µ̂, θ̂) 84.06
µ̂r −0.34 42.04 42.12

Ridge-type θ̂r −0.14 14.12 14.12

(µ̂r, θ̂r) 56.24
µ̂g 0.30 21.64 21.70

Geodesic θ̂g −0.50 7.33 7.57

(µ̂g, θ̂g) 29.27
µ̂s 0.40 9.76 9.91

Spectral θ̂s −0.50 3.15 3.46

(µ̂s, θ̂s) 13.37
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Chapter 2

Propensity Score Model Selection using

Machine Learning Classifiers

2.1 Introduction

The basic issue in estimating the average effect of a particular economic policy or program

using observational data is that the data suffers from selection bias. In other words those

who receive treatment (the treatment group) are inherently different from those who don’t

(the control group). Heckman (in his seminal 1978 paper) shows that a naive estimate of

the regression parameter on a treatment dummy (say W = 1 if an individual is treated

and W = 0 if the individual is a control) suffers from an omitted variable bias. Technically

suppose we have a dataset with sample size n, the outcome of interest is Y and we are

interested in the Average Treatment Effect

ATE = E[Y (W = 1)− Y (W = 0)]

which is the difference between the unconditional means of outcomes under treatment

(W = 1) and under control (W = 0). If the data were truly random then a naive es-

timator which compares the mean outcomes of the two groups does indeed provide an

unbiased estimate of the average treatment effect (ATE). The problem arises because we

only observe outcomes under a single state (either treatment or control). In this situation
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it becomes necessary to control for factors which simultaneously affect both outcome and

selection into the treatment group.

In the Econometrics literature, Heckman was the first to explicitly model selection is-

sues. Heckman’s model includes a two-step estimation procedure, where the first step

describes a selection equation and the second step involves the outcome equation. Un-

der certain assumptions (notably bivariate normality of error terms) the paper provides

estimation procedures that control for the omitted variable bias. However the model has

come under scrutiny, mainly due to evidence of poorer performance in terms of Mean

Squared Error (MSE) in cases where the rather strong distributional assumption on the

error terms does not hold.

In the Statistics literature Rubin and Rosenbaum (1983) pioneered the work on causal

inference in the presence of selection bias. The core idea here is also a two-step estimation

procedure. In the first step the probability that an individual belongs to the treatment

group is estimated. This is referred to the individual’s Propensity Score. The second

step involves using the Propensity Score for pre-processing of the data before running re-

gression models to estimate the ATE. This is technically referred to as balancing the data.

A way of checking for selection bias a priori is by considering the distribution over covari-

ates for the two groups. If the two groups have similar distribution across the different

covariates then the dataset is said to have covariate balance and thus can be considered as

an approximately random sample. By weighting the observations by Inverse Propensity

Score in an intermediate step, we aims to mimic a random sample.

The use of Inverse Propensity Score Weighting (IPW) is now ubiquitous in the Causal

Inference literature, however the procedure has come under recent scrutiny. Kang and

Schafer (2007) argue that the method is sensitive to misspecification of the propensity

score model. The method is also affected by extreme values of estimated propensity
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scores which then leads some experimenters to trim the data points corresponding to the

extreme values resulting in loss of data. Freedman and Berk (2008) show via simulation

studies that weighting is likely to increase random error of the estimates except under

three specific cases (1. participants are i.i.d., 2. selection is exogenous, 3. the selection

equation is correctly specified).

Other authors have proposed the use of non-parametric and semi-parameteric methods

to estimate propensity scores to minimize model misspecification errors. In particular,

Hirano et al (2001) use a series logistic regression, Linton (2001) uses kernel density es-

timation and McCaffrey et al (2004) use Generalized Boosted Regresion. Recently Lee

et al (2010) considered tree based classifiers like CART, Boosting and Random forests in

the IPW framework. Diamond and Sekhon (2012) introduce the application of Genetic

Matching algorithms for causal inference. Imbens (2004) provides an excellent overview

of the Propensity Score Analysis framework, including methodological advances as well

as future research directions for the applied econometrician.

We extend the literature by comparing estimates of propensity scores from logistic regres-

sion with estimates obtained from three popular classifiers from the statistics literature

– Naive Bayes, Random Forests and Support Vector Machines (SVMs). We then eval-

uate four measures that can be used to choose between the different propensity score

estimates– Covariate Imbalance, Calibration Error, Likelihood and Classification Error

Rate. We are not aware of any other paper in the literature that considers a variety of

propensity score models to pick the ‘best’ one which will be used for IPW.

Overall we present two sets of results – methodological and empirical. This chapter

deals with the set of methodological results which are obtained via two simulation stud-

ies. The first is based on artificial data where we introduce non-linearities in the true

Propensity Score equation. The second is based on a real-world dataset – the Dahejia

and Wahba (1999) sample of the LaLonde (1986) data from a randomized job training
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experiment. We find that propensity score estimates with Minimum Covariate Imbalance

perform very well in terms of Mean Squared Error of Average Treatment Effect estimates

across all our simulations. We also find that the best classifier (with the lowest Clas-

sification Error Rate) is not necessarily the best choice for propensity score estimation.

The Minimum Covariate Imbalance measure picks probit estimates in a number of cases,

implying that in many cases the probit does perform well even under model misspecifica-

tion. The unweighted estimate is also picked by the measure in some cases, implying that

sometimes the naive estimator has better balance than any of the weighted estimators, in

which case IPW should not be used. The set of empirical results are from an application

of the Minimum Covariate Imbalance estimator on a large public health dataset from

India. These are presented in the last chapter of this document.

Our analysis deals only with the Inverse Propensity-Score Weighting (IPW) framework.

There exist a number of alternative frameworks which utilize Propensity Scores such as

Matching, Stratification and Difference in Difference estimators. While the current paper

does not deal with these frameworks, we hope to extend our research to these frameworks

in the future. Our method can be naturally extended to the Doubly Robust framework

since it corresponds to reducing the effects of model mis-specification in the first step of

the Doubly Robust framework.

The rest of the chapter is organized as follows. The Inverse Propensity Score Weight-

ing framework is described in the next section. Section 3 presents a background on the

classifiers we use in this paper. Section 4 outlines three data-driven measures to select

between the candidate propensity score models. Section 5 follows with Simulation Re-

sults. Directions for Future Research are discussed in Section 7. Section 8 concludes.

Some technical notes are presented in the Appendix.
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2.2 Inverse Propensity Score Weighting Framework

2.2.1 Background

In this section we decribe the Inverse Propensity Score Weighting framework in greater

detail. The discussion largely follows Guo and Fraser (2010).

Let the total number of individuals in the dataset be given by n, the number of in-

dividuals in the treatment and control groups are given by n1 and n0 respectively. For

ease of exposition we consider a single treatment, a binary dummy variable W . Let

Wi = 1 if individual i received treatment and Wi = 0 otherwise. For every individual in

the sample, we observe Wi (the state the individual i is in), the outcome of interest Yi

as well as a vector of observed characteristics Xi, where Xi is a row vector of dimension

(K × 1). The observed outcome variable Yi can be expressed as

Yi = Yi0(1−Wi) + Yi1Wi

where Yi0 and Yi1 are the outcomes for individual i under control and treatment states

respectively. Note that when Wi = 0 we only observe Yi0 and vice versa. Membership in

the Treatment and Control groups is denoted by i ∈ T and j ∈ C respectively.

The selection bias issue arises when the process determining the value of the outcome

variable, i.e. the outcome equation is described by

Y = f(W,X,Z1, U)

and the process determining selection into the treatment group, i.e. the selection equation

is described by

W = g(X,Z2, V ).
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where covariates Z1 and Z2 affect outcome and selection independently, covariates X

affect both outcome and selection simulataneously and U and V represent white noise

error terms. This specification implies that a simple comparison of mean outcomes of

the treatment and control group will be biased since outcome Y and selection W are not

independent. To make meaningful comparisons we have to control for the confounding

covariates X.

A possible method to correct for this bias is to balance on covariates X i.e. compare

only those individuals who have similar covariate values. However, when the number of

covariates in X becomes large, the curse of dimensionality kicks in and balancing over all

K dimensions becomes computationally difficult. Propensity scores (also known as the

coarsest score) address this problem by summarizing the information of vector Xi (also

known as the finest score). “The most important property is that a coarsest score can

sufficiently balance differences observed in the finest scores between treated and control

participants” (Guo and Fraser (2010)).

Mathematically, define the true propensity score as:

e(Xi) = Pr(Wi = 1|Xi = Xi).

It can be shown1 (under the Rubin, Rosenbaum (1983) framework) that given propensity

scores, the treatment state and observed covariates are conditionally independent,

Xi ⊥ Wi|e(Xi).

If the true propensity score is known then an unbiased estimate of the ATE is provided by.

τ̂ =
1

n1

Σn1
i=1

[
WiYi
e(Xi)

]
− 1

n0

Σn0
i=1

[
(1−Wi)Yi
1− e(Xi)

]
.

1under standard assumption of unconfoundedness/ignorability i.e. Yio, Yi1 ⊥Wi|Xi.
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Alternatively, we can re-write this estimator as a weighted least squares regression func-

tion with weights λi

Yi = α + τWi + εi, λi =

√
Wi

e(Xi)
+

(1−Wi)

1− e(Xi)
. (2.1)

Equation (2.1) forms the basis for the IPW method. The aim is to reweight the given

sample of treated and control participants to create a sample that is representative of the

entire population.

2.2.2 Understanding Inverse Propensity Score Weighting

Let ê(Xi) denote the estimated propensity score. Then the IPW weighting scheme for

ATE is given by:

ωi(Wi, Xi) =
Wi

ê(Xi)
+

1−Wi

1− ê(Xi)
.

Consider the weighting scheme for observations in the treatment group,

ωi(Wi = 1, Xi) = [ê(Xi)]
−1.

Since 1 ≤ [ê(Xi)]
−1 ≤ ∞, therefore each observation gets a weight between 1 and +∞,

with those observations which are most likely to be treated getting the least weight and

those most unlikely to be treated getting the maximum weight. Similarly, the weighting

scheme for observations in the control group,

ωi(Wi = 0, Xi) = [1− ê(Xi)]
−1.

implies that each observation gets a weight between 1 and +∞, with those observations

which are most likely to be in the control group getting the least weight and those most

unlikely to be in the control group getting the maximum weight.
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Two properties of IPW deserve mention. First that the weighting scheme gives higher

(lower) weights to those individuals who have low (high) probabilities of belonging to

their actual group. Thus the weighting scheme aims to mimic a random distribution by

giving greater weightage to those individuals in the treatment (control) group that were

most likely to belong to the control (treatment) group.

Figure 2.1: Propensity Score Densities for Treatment and Control Groups – observations
in the treatment group corresponding to higher values of propensity scores get lower
weights and vice versa.

Second, extreme values of ê(Xi) can lead to disproportionately large weights (≈ ∞). This

leads some researchers to only use those observations that satisfy (1 − ρ) < ê(Xi) < ρ,

where ρ is a threshold probability value. In other words they trim the data, excluding

those observations that are associated with extreme values of ê(Xi).
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2.2.3 Estimation of Propensity Scores

Next we discuss the standard method used for the estimation of propensity scores. Recall

that Wi = 1 if individual i received treatment and Wi = 0 otherwise. Therefore,

E(Wi) = Pr(Wi = 1|Xi = xi)× 1 + Pr(Wi = 0|Xi = xi)× 0

= Pr(Wi = 1|Xi = xi).

Binary Logit and Probit regression are the standard estimation techniques used for this

class of problems. E(Wi) is modeled as:

E(Wi) = Pr(Wi = 1|Xi = xi) =


ex
′
iβ

1+ex
′
i
β

if using logit

Φ(x′iβ) if using probit

.

The parameter vector β is estimated using Maximum Likelihood Estimation (MLE).

Typically MLE problems are solved numerically. Once the β̂ estimates are obtained,

these can be plugged into the Logit or Probit regression equation to obtain the estimated

propensity score as:

ê(xi) = P̂ r(Wi = 1|Xi = xi) =


ex
′
iβ̂

1+ex
′
i
β̂

if using logit

Φ(x′iβ̂) if using probit

.

However as discussed before the IPW method is sensitive to misspecification of the

propensity score model. This has led some authors to propose non-parametric and semi-

parametric techniques to estimate propensity scores.

The emphasis of this paper is on being indifferent between the different propensity score

models. The aim is to pick the model which optimizes some desirable criteria. In Section

2.4 we discuss three criteria that may potentially be used to choose between the different

candidate propensity score models. Next we introduce the candidate propensity score
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models that we will be considering in this paper.

2.3 Classification Techniques and Class Probablities

The problem of predicting a discrete random variable Y from a set of random variable

X is known as classification. Logistic regression itself is a traditional parametric method

for classification. In the last few decades, classification techniques like ‘Naive Bayes’,

‘Random Forests’ and ‘Support Vector Machines (SVM)’ in particular have become very

popular. These methods can also provide classification probabilities which are essentially

propensity scores. We estimate propensity scores using these methods in the first stage

and then select the best model by a data-driven procedure.

In the past other authors have proposed the use of non-parametric and semi-parameteric

methods to estimate propensity score to minimize model mis-specification errors. In par-

ticular, Hirano, Imbens, Ridder (2003) propose the use a series logit estimator, Linton

(2001) uses kernel density estimation and McCaffrey et al (2004) use Generalized Boosted

Regresion. Recently Lee et al (2010) considered tree based classifiers like CART, Boosting

and Random forests on the IPW framework. In this paper we work with Random Forests

as well as two new possible candidates – Naive Bayes and SVMs. However, our main

contribution is not to single out one particular estimation technique a priori. Instead we

propose picking one of the many candidate models using a suitable selection criteria.

Machine learning alogorithms have proved to be very successful in providing good classi-

fiers. The methods tend to be semi-parametric and data-driven. Next we briefly describe

the different classifiers that we use in this paper. For a more detailed discussion refer to

Hastie, Tibshirani and Friedman (2008).

Consider iid data (X1,W1), · · · , (Xn,Wn) where Wi = {0, 1} and Xi that takes values

Xi1, · · ·Xid ∈ <d. A classification rule is a function h : X→ {0, 1}. When we observe a
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new X, we predict W to be h(X).

2.3.1 Logit and Probit Models

As discussed previously, the traditional method for estimating propensity score is via

logit and probit models which correspond to the classification rule:

ĥ(x) =

 1 if r̂(x) > 1/2

0 otherwise

where

r(x) = P (W = 1|X = x) =


eX
′β

1+eX′β
if using logit

Φ(X ′β) if using probit

Despite the strong distributional and linearity assumptions involved, Logit and Probit

models are popular because of their ease of interpretability and implementation. Typ-

ically, both Logit and Probit models lead to very similar probability estimates. In the

rest of the paper, we work with the Probit model.

2.3.2 Naive Bayes

The Naive Baye’s classifier is derived from the application of Baye’s theorem.

Let π = Pr(Wi = 1), then by Baye’s theorem:

P (Wi = 1|X = Xi) =
f(Xi|Wi = 1)π

f(Xi|Wi = 1)π + f(Xi|Wi = 0)(1− π)
=

f1(Xi)π

f1(Xi)π + f0(Xi)(1− π)
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where f(Xi|Wi = c) = fc(Xi) is the probability density function of X conditional on

Wi = c evaluated at Xi. This leads to the classification rule:

ĥ(x) =


1 if f̂1(x)

f̂0(x)
>
(

1−π̂
π̂

)

0 otherwise

where π̂ = 1
N

ΣN
i Yi. Under the assumption that X1, · · · , Xd are independent;

f̂0(x) = f̂0(x1, · · · , xd) =
d

Π
j=1
f̂0j(xj)

f̂1(x) = f̂1(x1, · · · , xd) =
d

Π
j=1
f̂1j(xj)

and f̂kj, k = {0, 1}, j = {1 · · · d} are estimated using either a functional form for the

distribution (e.g. Gaussian, Multinomial) or by non-parametric one-dimensional density

estimators.

This method has proved to be very successful and is relatively easy to estimate. How-

ever, the underlying independence assumption may not be applicable to many real world

settings.

2.3.3 Trees and Random Forests

Trees are classification methods that partition the covariate space into disjoint partitions.

Observations are then classified according to which partition element they fall in. Typi-

cally such algorithms minimize the probability of miscategorizing an item. The ‘size’ of

tree is chosen via a process known as pruning.

Since trees are typically very noisy, most statisticians use methods like bootstrapped bag-

ging, boosting and random forests. These are ensemble methods that average predictions

from a set of trees. In this paper we work with Random Forests.
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2.3.4 Support Vector Machines

For convenience relabel the treatment and control outcomes (corresponding to Wi) as 1

and −1 instead of 1 and 0 respectively. A hard margin linear support vector machine

classifier can be written as

h(x) = sign(H(x))

where x = (x1, · · · , xd) and H(x) = α0 + Σd
j=1αjxj. Note that if the classifier is correct

then WiH(Xi) ≥ 0 and if the classifier is incorrect then WiH(Xi) ≤ 0.

Suppose that the data are linearly separable then there exists a a hyperplane that per-

fectly separates the two classes. Support Vector Machines choose the hyperplane that

maximizes the margin or the distance of the separating hyperplane to the closest points.

Points on the boundary of the margin are called support vectors.

In more realistic settings where the data is not linearly separable, non-negative slack

variables ζ are introduced in H(x). The resulting classifier is known as the soft margin

linear support vector machine. In this paper we work with soft margin linear support

vector machines.

2.4 Choosing between Propensity Score Estimators

Given the many potential propensity score models, the choice of final model becomes

important. We examine four measures to choose between different propensity score esti-

mates.

• Minimum Covariate Imbalance Propensity Scores.

• Minimum Error Rate Propensity Scores.

• Minimum Calibration Error Propensity Scores.

• Maximum Predicted Likelihood Propensity Scores.
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2.4.1 Minimum Covariate Imbalance Propensity Scores

Recall that the central problem in the estimation of average treatment effect is that the

distribution of covariates may differ significantly between the treatment and the control

groups. As a result a naive comparison of average outcomes across the two groups captures

the effect of confounding covariates along with the effect of the treatment. In their seminal

paper Rubin and Rosenbaum (1983) show that the propensity score is a balancing score

i.e. the covariates are independent of the treatment variable conditional on the propensity

score. Mathematically,

Xi ⊥ Wi|e(Xi), i ∈ (1, 2, · · ·n)

For checking covariate imbalance in practice, we use the Imbalance statistic presented in

Imai and Ratkovic (2007), which is the multivariate version of standardized difference of

means statistic previously proposed by Rubin and Rosenbaum (1985):

d(h(X)) = (Γ′X) (cov(X))−1 (X ′Γ) ,

where X = Xn×k is the matrix of covariates, h(.) refers to the classifier and Γ =

[γ1, γ2, · · · γn] is a vector of observation weights,

γi =
Wi

n[ê(h(xi))]
− 1−Wi

n[1− ê(h(xi)]
.

Γ′X is the mean weighted difference between covariates in the treatment and control

groups. The weights correspond to the propensity score estimates corresponding to clas-

sifier h.

For the unweighted estimator,

γi =
Wi

n
− 1−Wi

n

in which case Γ′X corresponds to the mean difference between covariates of the two

groups. The Covariate Imbalance score in this case is denoted by d0(X)

79



The procedure for picking the Minimum Covariate Imbalance Propensity Score is de-

scribed next.

1. Define outcome of interest Y , treatment W and covariates X.

2. Using W and X estimate propensity scores ê(h1(xi)), ê(h2(xi)) · · · ê(hm(xi)) for each

of the m classifiers h1(.), h2(.), · · ·hm(.).

3. Calculate the covariate balance statistic dj(h(.)), j ∈ [1, 2, · · ·m] for each of the

m classifiers h1(.), h2(.), · · ·hm(.) and d0(.) for the naive estimator.

4. Pick the classifier that minimizes dj(h(.)), j ∈ [0, 1, · · ·m].

i. If d0(.) is selected then propensity score weighting should not be used.

ii. If not then denote the selected classifier as h∗(.) and the asociated estimated

propensity scores as êh∗(.). The ATE estimate is given by τ̂imb from the fol-

lowing weighted least squares regression with weights λi:

Yi = α + τimbWi + εi, λi =

√
Wi

êh∗(Xi)
+

(1−Wi)

1− êh∗(Xi)
. (2.2)

2.4.2 Minimum Classification Error Propensity Scores

This measure mirrors the Minimum Classification Error statistic used in many Machine

Learning applications. In order to get an unbiased estimate of the prediction error, the

data is randomly divided into a training and a testing set. The classifier is run on the

training set. Class predictions are made on the testing set and denoted ŵ(h, tst). The

error rate corresponding to classifier h, is given by:

errorh =
Σntst
i I{ŵi,tst(h) 6= wi,tst}

ntst
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which simply calculates the number of observations that were mis-classified by classifier

h divided by the total number of datapoints in the testing set (ntst). This criteria is

only applicable when we choose between different propensity score estimates (i.e. the

unweighted estimator is not a candidate). Suppose classifier h∗ minimizes the error rate,

then the ATE estimate is given by τ̂err from the following weighted least squares regression

with weights λi:

Yi = α + τerrWi + εi, λi =

√
Wi

êh∗(Xi)
+

(1−Wi)

1− êh∗(Xi)
. (2.3)

where the propensity score estimates come from running the best classifier on the full

dataset. In this paper, we randomly pick a third of the total sample to make up the

testing set.

2.4.3 Minimum Calibration Error Propensity Scores

Calibration error is used to measure how well the estimated probabilities match the data.

The method is used to create ‘reliability diagrams’ which are often used to provide a

visual aid to check whether estimated proabilities are well calibrated.

For a given classifier h,

1. Sort the sample in ascending order of estimated propensity scores êh(Xi)

2. Pick a bin size, s. This corresponds to a total number of bins B = n/s. 2

3. Within each bin b, compute

pb = êh(Xi), fb =
Σiwi
s

; i ∈ b

.

2For ease of exposition we assume that sample size n is a multiple of bin size.
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4. Calibration Error corresponding to classifier h is given by

CALh = ΣB
b (pb − fb)2.

.

Suppose classifier h∗ minimizes the Calibration Error, then the ATE estimate is given by

τ̂cal from the following weighted least squares regression with weights λi:

Yi = α + τcalWi + εi, λi =

√
Wi

êh∗(Xi)
+

(1−Wi)

1− êh∗(Xi)
. (2.4)

In case any of these measures leads to a tie between two candidate models, then the

corresponding ATE estimate is obtained by taking the mean of the estimates coming

from the tied models.

2.4.4 Maximum Likelihood Propensity Scores

The Maximum Likelihood Propensity Score measures the probability of observing the

data in the testing set conditional on a given propensity score model. The likelihood

function and the log likelihood function corresponding to classifier h are given by

L(Wtst|êh) =
ntst∏
i=1

êh(Xi)
Wi(1− êh(Xi))

(1−Wi)

l(Wtst|êh) = log (L(Wtst|êh))

=
ntst∑
i=1

Wi log (êh(Xi)) + (1−Wi) log (1− êh(Xi))

where observations i belong to the testing data and the propensity score model êh is

obtained by fitting classifier h on the training data.

Suppose classifier h∗ maximizes the predicted likelihood function, then the ATE esti-

mate is given by τ̂lhd from the following weighted least squares regression run on the
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entire dataset with weights λi:

Yi = α + τlhdWi + εi, λi =

√
Wi

êh∗(Xi)
+

(1−Wi)

1− êh∗(Xi)
. (2.5)

The Maximum Predicted Likelihood criteria is related to both the Minimum Classifica-

tion Error and Minimum Calibration Error criteria – first it uses the training set to model

propensity scores and then predicts propensity scores on the testing set, second it mea-

sures the likelihood that the testing set data is generated by these predicted propensity

scores.

Out of the four measures, we expect the first to perform the best since it is most closely

associated with the aim of IPW i.e. to achieve maximum covariate balance. The second

measure may not perform so well, since its possible that an estimator which pushes es-

timated probabilities towards extreme values does a good job of classifying observations

into their correct groups but not of balancing the data. Further, the measure may be sen-

sitive to the relative sizes of the testing and training sets. The third measure is promising

since it is based on how well the models estimate probabilities. However, the measure

may be sensitive to the choice of bin size and thus should be treated with caution. The

fourth measure is also promisings ince it combines the objectives of the second and third

criteria and does not have binning issues like the Minimum Calibration error criteria.

2.5 Simulation Experiments

In this section we present results from two sets of simulation experiments. The first simu-

lation experiment is based on artificial data, whereas the second uses real world data. In

both sets of experiments we introduce non-linearites in the outcome and selection equa-

tions. We then estimate propensity scores using the classification techniques described

in Section 2.3 and select the propensity scores that minimize the criteria described in

Section 2.4.
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We use the R Statistical Package to run our simulations. A more detailed description of

the implementation is presented in Appendix A1.

2.5.1 Evaluation Strategy

In the simulation setting we know the true value of ATE, therefore we are able to compare

the ATE estimates based on the value of their Mean Squared Errors (MSE).

MSE(τ̂) = E
[
(τ̂ − τ)2

]
= b(τ̂)2 + V ar(τ̂)

where b(τ̂) and V ar(τ̂) refer to the bias and variance of the estimator τ̂ respectively.

The MSE incorporates a trade-off between the bias and variance of an estimator and is

a measure of the predictive ability of an estimator.

A major critique of the IPW framework is that the standard errors associated with

the ATE estimates can be so large that they offset the gains from bias reduction. In

our simulaton experiments we compare MSE values from the ATE estimates obtained

from 1) the naive unweighted estimator, 2) IPW estimator using a linear probit model,

3) IPW with estimator selection via Minimum Covariate Imbalance criteria and 4) IPW

with estimator selection via Minimum Classification Error criteria 5) IPW with estimator

selection via Minimum Calibration Error criteria and 6) IPW with estimator selection

via Maximum Predicted Likelihood criteria.

2.5.2 Simulation Experiment I – Artificial Data

In the first set of experiments, we simulate scenarios where a linear probit propensity

score model may not be appropriate. We then choose from the four parametric and semi-

parametric propensity score models described in Section 2.3. We investigate if selecting

one of these model can lead to better performance in terms of MSE values. In particular,

we consider the following five selection equations:

– Selection Equation 1: w = 1 ∗ {−1 + x1 + x2 + v > 0}
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– Selection Equation 2: w = 1 ∗ {−1 + x1 + x2
2 + v > 0}

– Selection Equation 3: w = 1 ∗ {−1 + x1 + x3
3 + v > 0}

– Selection Equation 4: w = 1 ∗ {−1 + x1 + x2
2 + x3

3 + v > 0}

– Selection Equation 5: w = 1 ∗ {−1 + x1 + exp(x3) + v > 0}

For each of the selection equations, we consider two outcome equations:

– Linear Outcome Equation: y = 1 + 10w + 2x1 + 2x2 + 2x3 + u

– (Mildly) Nonlinear Outcome Equation: y = 1 + 10w + 2x1 + 2x2
2 + 2x3 + u

The simulations are designed so that,

– all covariates are standard normal: x1, x2, x3 ∼ N(0, 1),

– error terms are standard normal: u, v ∼ N(0, 1),

– covariates and error terms are mutually independent: x1 ⊥ x2 ⊥ x3 ⊥ u ⊥ v.

We runN = 1000 simulations for each of these models for sample sizes n = {100, 250, 500, 1000}.

We find that for the smallest sample size of n = 100, IPW using the linear probit model

estimates performed better than any of the other methods in most cases (7 out of 10).

However for almost all cases (28 out of 30) with n ≥ 250 and all cases (20 out of 20)

with n ≥ 500, the IPW estimator based on the Minimum Covariate Imbalance criteria

performed better in terms of MSE than IPW using the linear probit model. Further the

IPW estimator based on the Minimum Covariate Imbalance criteria had the lowest MSE

values in most cases (27 out of the 30) with n ≥ 250. The naive unweighted estimator

consistently had the poorest MSE values of all methods considered. The performance of

IPW estimator based on the other three criteria was mixed – in a large proportion of

cases inferior to IPW using Linear Probit. A detailed discussion of the insights from the

simulations is presented at the end of this Section.

85



Simulation I: Selection Equation 1

Selection Equation w = 1 ∗ {−1 + x1 + x2 + v > 0}

– Linear Outcome Equation y = 1 + 10w + 2x1 + 2x2 + 2x3 + u

Table 2.1: MSE Comparison n = 100

Bias SD MSE
Unweighted 3.83 0.69 3.89
IPW: Probit 1.20 1.09 1.62

IPW: Min Imbalance 1.59 1.03 1.90
IPW: Min Error 1.93 1.14 2.24
IPW: Min Cal 1.71 1.15 2.06

IPW: Max Likelhd 1.73 1.14 2.07

Table 2.2: MSE Comparison n = 250

Bias SD MSE
Unweighted 3.87 0.42 3.89
IPW: Probit 0.81 1.05 1.32

IPW: Min Imbalance 1.13 0.71 1.34
IPW: Min Error 1.61 1.14 1.97
IPW: Min Cal 1.21 0.92 1.52

IPW: Max Likelhd 1.23 1.03 1.61

Table 2.3: MSE Comparison n = 500

Bias SD MSE
Unweighted 3.86 0.31 3.88
IPW: Probit 0.67 0.88 1.10

IPW: Min Imbalance 0.91 0.57 1.07
IPW: Min Error 1.38 0.96 1.68
IPW: Min Cal 0.91 0.84 1.24

IPW: Max Likelhd 0.97 0.83 1.27

Table 2.4: MSE Comparison n = 1000

Bias SD MSE
Unweighted 3.86 0.21 3.87
IPW: Probit 0.52 0.84 0.99

IPW: Min Imbalance 0.74 0.45 0.86
IPW: Min Error 1.20 0.96 1.54
IPW: Min Cal 0.73 0.68 1.00

IPW: Max Likelhd 0.74 0.67 1.00

– Nonlinear Outcome Equation y = 1 + 10w + 2x1 + 2x2
2 + 2x3 + u

Table 2.5: MSE Comparison n = 100

Bias SD MSE
Unweighted 2.55 0.93 2.71
IPW: Probit 0.41 1.31 1.38

IPW: Min Imbalance 0.70 1.15 1.35
IPW: Min Error 1.00 1.15 1.52
IPW: Min Cal 0.88 1.27 1.54

IPW: Max Likelhd 0.83 1.24 1.49

Table 2.6: MSE Comparison n = 250

Bias SD MSE
Unweighted 2.56 0.56 2.62
IPW: Probit 0.22 1.16 1.19

IPW: Min Imbalance 0.39 0.84 0.92
IPW: Min Error 0.79 1.04 1.31
IPW: Min Cal 0.50 1.08 1.19

IPW: Max Likelhd 0.54 1.07 1.20

Table 2.7: MSE Comparison n = 500

Bias SD MSE
Unweighted 2.57 0.39 2.60
IPW: Probit 0.12 1.03 1.03

IPW: Min Imbalance 0.26 0.77 0.81
IPW: Min Error 0.70 0.93 1.16
IPW: Min Cal 0.28 0.93 0.97

IPW: Max Likelhd 0.32 0.96 1.01

Table 2.8: MSE Comparison n = 1000

Bias SD MSE
Unweighted 2.57 0.29 2.58
IPW: Probit 0.15 0.98 0.99

IPW: Min Imbalance 0.23 0.61 0.65
IPW: Min Error 0.62 0.92 1.11
IPW: Min Cal 0.25 0.82 0.86

IPW: Max Likelhd 0.26 0.84 0.88
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Simulation I: Selection Equation 2

Selection Equation w = 1 ∗ {−1 + x1 + x2
2 + v > 0}

– Linear Outcome Equation y = 1 + 10w + 2x1 + 2x2 + 2x3 + u

Table 2.9: MSE Comparison n = 100

Bias SD MSE
Unweighted 1.80 0.73 1.95
IPW: Probit 0.10 0.58 0.59

IPW: Min Imbalance 0.24 0.51 0.57
IPW: Min Error 0.99 0.71 1.22
IPW: Min Cal 0.48 0.66 0.82

IPW: Max Likelhd 0.97 0.67 1.17

Table 2.10: MSE Comparison n = 250

Bias SD MSE
Unweighted 1.78 0.45 1.84
IPW: Probit −0.02 0.49 0.49

IPW: Min Imbalance 0.11 0.34 0.36
IPW: Min Error 0.99 0.48 1.10
IPW: Min Cal 0.18 0.52 0.55

IPW: Max Likelhd 0.88 0.43 0.98

Table 2.11: MSE Comparison n = 500

Bias SD MSE
Unweighted 1.81 0.33 1.84
IPW: Probit −0.05 0.34 0.34

IPW: Min Imbalance 0.04 0.26 0.26
IPW: Min Error 0.98 0.42 1.07
IPW: Min Cal 0.05 0.37 0.37

IPW: Max Likelhd 0.89 0.36 0.96

Table 2.12: MSE Comparison n = 1000

Bias SD MSE
Unweighted 1.81 0.23 1.83
IPW: Probit −0.10 0.31 0.33

IPW: Min Imbalance −0.01 0.22 0.22
IPW: Min Error 0.94 0.37 1.01
IPW: Min Cal −0.03 0.28 0.28

IPW: Max Likelhd 0.89 0.35 0.96

– Nonlinear Outcome Equation y = 1 + 10w + 2x1 + 2x2
2 + 2x3 + u

Table 2.13: MSE Comparison n = 100

Bias SD MSE
Unweighted 4.25 0.73 4.31
IPW: Probit 3.35 0.92 3.47

IPW: Min Imbalance 3.30 0.87 3.41
IPW: Min Error 2.99 0.90 3.12
IPW: Min Cal 3.19 0.95 3.33

IPW: Max Likelhd 2.76 0.89 2.90

Table 2.14: MSE Comparison n = 250

Bias SD MSE
Unweighted 4.27 0.47 4.29
IPW: Probit 3.33 0.56 3.38

IPW: Min Imbalance 3.31 0.54 3.36
IPW: Min Error 2.81 0.75 2.91
IPW: Min Cal 3.28 0.63 3.34

IPW: Max Likelhd 2.61 0.66 2.69

Table 2.15: MSE Comparison n = 500

Bias SD MSE
Unweighted 4.27 0.34 4.28
IPW: Probit 3.36 0.47 3.39

IPW: Min Imbalance 3.34 0.43 3.36
IPW: Min Error 2.69 0.66 2.77
IPW: Min Cal 3.38 0.45 3.41

IPW: Max Likelhd 2.58 0.59 2.64

Table 2.16: MSE Comparison n = 1000

Bias SD MSE
Unweighted 4.26 0.22 4.27
IPW: Probit 3.34 0.30 3.35

IPW: Min Imbalance 3.34 0.30 3.35
IPW: Min Error 2.64 0.57 2.70
IPW: Min Cal 3.36 0.31 3.38

IPW: Max Likelhd 2.55 0.51 2.60
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Simulation I: Selection Equation 3

Selection Equation w = 1 ∗ {−1 + x1 + x3
3 + v > 0}

– Linear Outcome Equation y = 1 + 10w + 2x1 + 2x2 + 2x3 + u

Table 2.17: MSE Comparison n = 100

Bias SD MSE
Unweighted 3.84 0.68 3.90
IPW: Probit 1.26 1.03 1.62

IPW: Min Imbalance 1.49 1.01 1.79
IPW: Min Error 2.18 1.18 2.47
IPW: Min Cal 1.87 1.11 2.17

IPW: Max Likelhd 1.92 1.18 2.25

Table 2.18: MSE Comparison n = 250

Bias SD MSE
Unweighted 3.82 0.43 3.84
IPW: Probit 0.89 0.92 1.28

IPW: Min Imbalance 1.08 0.69 1.28
IPW: Min Error 2.03 1.17 2.35
IPW: Min Cal 1.22 0.88 1.50

IPW: Max Likelhd 1.61 1.16 1.99

Table 2.19: MSE Comparison n = 500

Bias SD MSE
Unweighted 3.84 0.29 3.85
IPW: Probit 0.74 0.85 1.12

IPW: Min Imbalance 0.90 0.55 1.05
IPW: Min Error 2.16 1.14 2.45
IPW: Min Cal 0.99 0.77 1.25

IPW: Max Likelhd 1.62 1.33 2.10

Table 2.20: MSE Comparison n = 1000

Bias SD MSE
Unweighted 3.85 0.22 3.85
IPW: Probit 0.68 0.78 1.03

IPW: Min Imbalance 0.82 0.45 0.93
IPW: Min Error 2.25 1.19 2.54
IPW: Min Cal 0.89 0.62 1.08

IPW: Max Likelhd 1.69 1.41 2.20

– Nonlinear Outcome Equation y = 1 + 10w + 2x1 + 2x2
2 + 2x3 + u

Table 2.21: MSE Comparison n = 100

Bias SD MSE
Unweighted 3.84 0.81 3.93
IPW: Probit 1.13 1.40 1.80

IPW: Min Imbalance 1.39 1.33 1.92
IPW: Min Error 2.11 1.38 2.52
IPW: Min Cal 1.77 1.34 2.22

IPW: Max Likelhd 1.82 1.43 2.31

Table 2.22: MSE Comparison n = 250

Bias SD MSE
Unweighted 3.85 0.50 3.88
IPW: Probit 0.92 1.09 1.42

IPW: Min Imbalance 1.08 0.91 1.41
IPW: Min Error 2.16 1.17 2.45
IPW: Min Cal 1.28 1.04 1.65

IPW: Max Likelhd 1.71 1.28 2.13

Table 2.23: MSE Comparison n = 500

Bias SD MSE
Unweighted 3.86 0.34 3.88
IPW: Probit 0.74 0.96 1.21

IPW: Min Imbalance 0.89 0.72 1.14
IPW: Min Error 2.15 1.19 2.46
IPW: Min Cal 0.99 0.86 1.31

IPW: Max Likelhd 1.57 1.28 2.02

Table 2.24: MSE Comparison n = 1000

Bias SD MSE
Unweighted 3.84 0.25 3.85
IPW:Probit 0.73 0.87 1.14

IPW: Min Imbalance 0.83 0.60 1.02
IPW: Min Error 2.28 1.11 2.54
IPW: Min Cal 0.92 0.70 1.15

IPW: Max Pred Lhd 1.69 1.36 2.17
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Simulation I: Selection Equation 4

Selection Equation w = 1 ∗ {−1 + x1 + x2
2 + x3

3 + v > 0}

– Linear Outcome Equation y = 1 + 10w + 2x1 + 2x2 + 2x3 + u

Table 2.25: MSE Comparison n = 100

Bias SD MSE
Unweighted 3.21 0.65 3.27
IPW: Probit 0.51 0.92 1.05

IPW: Min Imbalance 0.79 0.73 1.07
IPW: Min Error 2.05 0.93 2.25
IPW: Min Cal 1.09 1.11 1.56

IPW: Max Likelhd 2.01 0.92 2.21

Table 2.26: MSE Comparison n = 250

Bias SD MSE
Unweighted 3.25 0.40 3.28
IPW: Probit 0.29 0.85 0.90

IPW: Min Imbalance 0.55 0.60 0.82
IPW: Min Error 2.32 0.70 2.42
IPW: Min Cal 0.52 0.89 1.03

IPW: Max Likelhd 2.37 0.63 2.45

Table 2.27: MSE Comparison n = 500

Bias SD MSE
Unweighted 3.24 0.29 3.25
IPW: Probit 0.18 0.73 0.75

IPW: Min Imbalance 0.38 0.50 0.63
IPW: Min Error 2.42 0.60 2.49
IPW: Min Cal 0.33 0.65 0.73

IPW: Max Likelhd 2.56 0.58 2.62

Table 2.28: MSE Comparison n = 1000

Bias SD MSE
Unweighted 3.25 0.20 3.25
IPW: Probit 0.11 0.68 0.69

IPW: Min Imbalance 0.28 0.40 0.49
IPW: Min Error 2.55 0.53 2.61
IPW: Min Cal 0.24 0.61 0.66

IPW: Max Likelhd 2.81 0.42 2.84

– Nonlinear Outcome Equation y = 1 + 10w + 2x1 + 2x2
2 + 2x3 + u

Table 2.29: MSE Comparison n = 100

Bias SD MSE
Unweighted 5.25 0.65 5.29
IPW: Probit 3.71 1.07 3.86

IPW: Min Imbalance 3.73 0.95 3.85
IPW: Min Error 3.94 0.94 4.05
IPW: Min Cal 3.84 1.03 3.97

IPW: Max Likelhd 3.82 0.96 3.94

Table 2.30: MSE Comparison n = 250

Bias SD MSE
Unweighted 5.25 0.42 5.27
IPW: Probit 3.78 0.77 3.86

IPW: Min Imbalance 3.78 0.67 3.83
IPW: Min Error 4.07 0.78 4.14
IPW: Min Cal 3.83 0.72 3.90

IPW: Max Likelhd 4.03 0.83 4.12

Table 2.31: MSE Comparison n = 500

Bias SD MSE
Unweighted 5.26 0.28 5.27
IPW: Probit 3.80 0.60 3.85

IPW: Min Imbalance 3.79 0.54 3.82
IPW: Min Error 4.14 0.75 4.21
IPW: Min Cal 3.82 0.55 3.86

IPW: Max Likelhd 4.30 0.76 4.37

Table 2.32: MSE Comparison n = 1000

Bias SD MSE
Unweighted 5.24 0.20 5.25
IPW: Probit 3.84 0.69 3.90

IPW: Min Imbalance 3.79 0.40 3.81
IPW: Min Error 4.21 1.09 4.35
IPW: Min Cal 3.82 0.50 3.86

IPW: Max Likelhd 4.63 0.53 4.66
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Simulation I: Selection Equation 5

Selection Equation w = 1 ∗ {−1 + x1 + exp(x3) + v > 0}

– Linear Outcome Equation y = 1 + 10w + 2x1 + 2x2 + 2x3 + u

Table 2.33: MSE Comparison n = 100

Bias SD MSE
Unweighted 3.59 0.64 3.64
IPW: Probit 0.76 1.03 1.28

IPW: Min Imbalance 1.04 0.76 1.29
IPW: Min Error 1.72 1.13 2.06
IPW: Min Cal 1.35 1.10 1.74

IPW: Max Likelhd 1.56 1.16 1.94

Table 2.34: MSE Comparison n = 250

Bias SD MSE
Unweighted 3.63 0.41 3.65
IPW: Probit 0.30 1.16 1.19

IPW: Min Imbalance 0.74 0.59 0.94
IPW: Min Error 1.53 1.14 1.91
IPW: Min Cal 0.71 1.05 1.27

IPW: Max Likelhd 1.21 1.20 1.71

Table 2.35: MSE Comparison n = 500

Bias SD MSE
Unweighted 3.63 0.29 3.64
IPW: Probit 0.07 1.19 1.19

IPW: Min Imbalance 0.58 0.56 0.80
IPW: Min Error 1.48 1.22 1.92
IPW: Min Cal 0.39 1.05 1.12

IPW: Max Likelhd 1.13 1.22 1.67

Table 2.36: MSE Comparison n = 1000

Bias SD MSE
Unweighted 3.62 0.20 3.63
IPW: Probit −0.20 1.26 1.28

IPW: Min Imbalance 0.42 0.50 0.65
IPW: Min Error 1.41 1.23 1.87
IPW: Min Cal 0.10 0.97 0.98

IPW: Max Likelhd 1.10 1.28 1.69

– Nonlinear Outcome Equation y = 1 + 10w + 2x1 + 2x2
2 + 2x3 + u

Table 2.37: MSE Comparison n = 100

Bias SD MSE
Unweighted 3.62 0.77 3.70
IPW: Probit 0.71 1.30 1.48

IPW: Min Imbalance 1.04 1.07 1.49
IPW: Min Error 1.74 1.28 2.16
IPW: Min Cal 1.32 1.28 1.84

IPW: Max Likelhd 1.56 1.37 2.07

Table 2.38: MSE Comparison n = 250

Bias SD MSE
Unweighted 3.62 0.48 3.65
IPW: Probit 0.28 1.29 1.32

IPW: Min Imbalance 0.74 0.81 1.10
IPW: Min Error 1.52 1.29 2.00
IPW: Min Cal 0.71 1.16 1.36

IPW: Max Likelhd 1.22 1.27 1.76

Table 2.39: MSE Comparison n = 500

Bias SD MSE
Unweighted 3.61 0.35 3.63
IPW: Probit 0.03 1.26 1.26

IPW: Min Imbalance 0.56 0.67 0.87
IPW: Min Error 1.40 1.24 1.88
IPW: Min Cal 0.36 1.04 1.10

IPW: Max Likelhd 1.08 1.30 1.69

Table 2.40: MSE Comparison n = 1000

Bias SD MSE
Unweighted 3.62 0.23 3.63
IPW: Probit −0.17 1.41 1.42

IPW: Min Imbalance 0.46 0.58 0.74
IPW: Min Error 1.46 1.23 1.91
IPW: Min Cal 0.12 1.11 1.12

IPW: Max Likelhd 1.08 1.28 1.68
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Simulation I – Model Selection

Figure 2.2: Propensity Score Models selected via Minimum Covariate Imbalance criteria,
Minimum Classification Error criteria, Minimum Calibration Error criteria and Maximum
Predicted Likelihood criteria corresponding to linear outcome equation and sample size
n = 1000. Frequencies for the other cases are similar.

Selection Equation 1

Selection Equation 2

Selection Equation 3
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Selection Equation 4

Selection Equation 5

2.5.3 Simulation Experiment II – Real-World Data

The data from the second simulation experiment is the Dahejia and Wahba (1999) sam-

ple of LaLonde’s (1986) data from a randomized job training experiment. This is a more

challenging scenario because unlike the previous experiment, the distribution of most

covariates here is non-standard and many of the covariates are discrete. The maximum

sample size is also limited to the 445 (260 control and 185 treatment) observations in

the sample.The sample contains data on the following participant characteristics: age,

education, whether black, whether hispanic, whether married, possession of a degree, real

earnings in 1974, real earnings in 1975. The treatment variable is whether the individual

was enrolled in the job training program. The outcome of interest is real earnings in 1978.

Our simulation design largely follows a simulation study outlined in Diamond and Sekhon

(2012). The steps of the simulation are described next.
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Step 1: We pick a random subsample of the data of size n after dropping the vari-

ables corresponding to treatment and outcome.

Step 2: For each individual in the random subsample we assign a probability of se-

lection into the job training program (true propensity score) according to

πi = logit−1
[
1 + 0.5µ̂+ 0.01 age2 − 0.0675 edu2 − 0.01 log( re74 + 0.01)2 + 0.01 log( re75 + 0.01)2

]
(2.6)

where µ̂ corresponds to the estimated propensity score model in the Dahejia and Wahba

sample and is characterized by

µ̂ = 1 + 1.428× 10−4 age2 − 2.918× 10−3 edu2 − 0.2275 black− 0.8276 hisp + 0.2071 married

− 0.8232 nodegree− 1.236× 10−9 re742 + 5.865× 10−10 re752 − 0.04328 u74− 0.3804 u75.

where u74 and u75 are indicator variables for no real earnings in 1974 and 1975 respec-

tively. The four extra terms in equation (2.6) added to µ̂ ensure that the linear probit is

badly misspecified. In our setup the only change we make to the experiment in Diamond

and Sekhon is to change the coefficient of the education variable in the extra terms in

equation (2.6). We make this change to calibrate the proportion of treated observations

in the sample to approximately 40%, as is the case in the true sample.

Step 3: For each observation a Bernoulli trial with parameter πi determines entry into

the treatment group corresponding to Wi = 1.

Step 4: We fix the true value of ATE at 1, 000. For each observation the outcome

is determined by

Y = 1000W + 0.1 exp [0.7 log(re74 + 0.01) + 0.7 log(re75 + 0.01)] + ε.
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where ε ∼ N(0, 10) is a white noise error term.

Step 5: ATE estimates are obtained for this dataset using the different measures dis-

cussed in Section 2.3 and estimates corresponding to propensity score models selected

via the three criteria discussed in Section 2.4. This is repeated for N = 1, 000 random

subsamples of size n, for n = {100, 150, 200, 250, 300, 350}

Step 6: We compare MSE values from the ATE estimates obtained from 1) the naive

unweighted estimator, 2) IPW estimator using a linear probit model, 3) IPW with esti-

mator selected using Minimum Covariate Imbalance criteria and 4) IPW with estimator

selected using Minimum Classification Error criteria 5) IPW with estimator selected using

Minimum Calibration Error criteria and 6) IPW with estimator selection via Maximum

Predicted Likelihood criteria.

We find that the estimator based on IPW using the linear probit model had the low-

est MSE values only for the smallest sample size of n = 100. In all other cases (n ≥ 150)

the IPW estimator with Minimum Covariate Imbalance had the lowest value of MSE.

Interestingly the MSE values from the unweighted naive estimator are lower than those

from IPW with the linear probit model for sample sizes of n ≥ 300. However, this does

not imply that IPW should not have been carried out – IPW using Minimum Covariate

Imbalance criteria led to lower MSE values than the naive unweighted estimator. The

results are discussed in greater detail in the next subsection.
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Simulation II Results: Real-World Data

Table 2.41: MSE Comparison of different Selection Criteria. Sample size n = 100

Bias Std Dev RMSE
Unweighted 1323.074 3060.429 3334.179
IPW:Probit 21.758 2703.193 2703.281

IPW: Min Imbalance 594.483 2531.254 2600.126
IPW: Min Error 272.230 3073.874 3085.905
IPW: Min Cal 300.052 2559.729 2577.255

IPW: Max Pred Lhd 382.014 2541.475 2570.025

Figure 2.4: Models selected via different Selection Criteria. Sample size n = 100

Table 2.42: MSE Comparison of different Selection Criteria. Sample size n = 150

Bias Std Dev RMSE
Unweighted 1018.047 2452.824 2655.704
IPW:Probit -84.357 2518.630 2520.042

IPW: Min Imbalance 239.168 2127.358 2140.760
IPW: Min Error 17.700 2573.285 2573.346
IPW: Min Cal 10.020 2594.955 2594.974

IPW: Max Pred Lhd 75.740 2564.426 2565.545

Figure 2.5: Models selected via different Selection Criteria. Sample size n = 150
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Table 2.43: MSE Comparison of different Selection Criteria. Sample size n = 200

Bias Std Dev RMSE
Unweighted 1188.798 2042.307 2363.103
IPW:Probit -157.001 2126.479 2132.267

IPW: Min Imbalance 214.026 1832.599 1845.054
IPW: Min Error -146.113 2056.627 2061.811
IPW: Min Cal -224.094 2443.016 2453.273

IPW: Max Pred Lhd -120.755 2154.139 2157.521

Figure 2.6: Models selected via different Selection Criteria. Sample size n = 200

Table 2.44: MSE Comparison of different Selection Criteria. Sample size n = 250

Bias Std Dev RMSE
Unweighted 1154.970 1695.977 2051.900
IPW:Probit -136.612 2203.581 2207.811

IPW: Min Imbalance 192.308 1801.890 1812.124
IPW: Min Error -194.114 1993.985 2003.411
IPW: Min Cal -218.828 2321.352 2331.644

IPW: Max Pred Lhd -215.283 2190.569 2201.122

Figure 2.7: Models selected via different Selection Criteria. Sample size n = 250
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Table 2.45: MSE Comparison of different Selection Criteria. Sample size n = 300

Bias Std Dev RMSE
Unweighted 1188.754 1526.210 1934.542
IPW:Probit -192.041 2015.745 2024.872

IPW: Min Imbalance 223.211 1615.824 1631.168
IPW: Min Error -274.553 1958.884 1978.031
IPW: Min Cal -253.114 2004.573 2020.490

IPW: Max Pred Lhd -244.354 2101.978 2116.133

Figure 2.8: Models selected via different Selection Criteria. Sample size n = 300

Table 2.46: MSE Comparison of different Selection Criteria. Sample size n = 350

Bias Std Dev RMSE
Unweighted 1177.179 1364.867 1802.391
IPW:Probit -228.027 2004.155 2017.086

IPW: Min Imbalance 338.219 1660.867 1694.955
IPW: Min Error -413.370 2082.864 2123.487
IPW: Min Cal -322.249 2123.254 2147.569

IPW: Max Pred Lhd -281.865 1954.040 1974.264

Figure 2.9: Models selected via different Selection Criteria. Sample size n = 350
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2.5.4 Insights from Simulation Experiments

Next, we discuss in greater detail the broad insights from the two simulation experiments

described in Section 2.5.2 and Section 2.5.3. As in the case of all simulation studies,

the results in this section come with the caveat of not being general. Further work is

necessary to consolidate and advance this research direction.

Minimum Covariate Imbalance Selection Creiteria

We find throughout our simulations that for sample sizes of n ≥ 250 observations, the

IPW estimator using propensity score models selected via the Minimum Covariate Bal-

ance Criteria consistently dominates the IPW estimator using the linear probit model in

terms of MSE. The Minimum Covariate Imbalance criteria picks a combination of the dif-

ferent estimation techniques. We note that in some cases, the balance of the data is made

worse by weighting. In such cases the Minimum Covariate Imbalance measure picks the

naive unweighted estimate of ATE. We also note that when there are non-linearities in the

true selection equations IPW using linear probit can have very high associated standard

errors. Techniques like Random Forest, Naive Bayes and Support Vector Machines may

be very useful in these cases since they are associated with much lower standard errors.

This implies that for the applied econometrician it makes sense to consider a variety of

parametric and non-parametric propensity score estimation models and pick the models

that best serve the objective of IPW – i.e. to obtain better covariate balance between the

treatment and control group. We recommend using the Minimum Covariate Imbalance

criteria to select propensity score models for IPW.

Minimum Classification Error Selection Creiteria

The results on the IPW estimator using propensity score models selected via the Min-

imum Classification Error criteria is poor. In both sets of simulations the criteria has

higher MSE values than IPW using linear probit in most cases. The poor performance

of the selection criteria implies that the ‘best classifier’ may not necessarily be the best

98



propensity score model for IPW.

Minimum Calibration Error Selection Creiteria

From the simulation results we note that IPW models selected via the Minimum Cali-

bration Error criteria perform poorly in both sets of experiments. The MSE values are

higher than those from IPW with linear probit in a majority of the cases in both experi-

ments. Moreover this selection criteria is sensitive to bin sizes. Thus there may be room

for manipulation of results. Based on the simulation results and potential issues with bin

sizes we recommend not using this selection criteria for applied research.

Maximum Predicted Likelihood Selection Criteria

From the simulation results we note that IPW models selected via the Maximum Pre-

dicted Likelihood criteria is poor. Whereas in a handful of cases the criteria has the

lowest MSE values, in majority of the cases it performs worse than IPW using linear

probit.

Linear Probit Model

There has been a lot of criticism of the linear probit model in the propensity score litera-

ture. In the second set of simulations we find evidence that the criticism is valid. In cases

where the sample size n ≥ 300, the naive unweighted estimator has lower MSE values

than IPW with linear probit, despite the significantly lower values of bias associated with

IPW with linear probit.

However, the MSE values of IPW using Minimum Covariate Imbalance criteria are lower

than the unweighted naive estimator across all the simulations that we studied. And the

linear probit propensity score model is picked very often by this criteria in all simulations.

Moreover a study of the models picked by Minimum Calibration Error indicates that in

many cases the linear probit does a good job of approximating the true probabilites,

despite the non-linearities introduced into the model. Therefore we recommend keeping
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the linear probit as one of the candidate IPW models when selecting a propensity score

model, rather than avoiding it completely.

Naive Unweighted Estimator

In both sets of experiments, the unweighted estimator is picked by the Minimum Covariate

Imbalance criteria in some of the simulations. This is consistent with the recommendation

of many authors, who caution against IPW when covariate balance is not improved by

weighting. By incorporating a check for covariate balance improvement into the selection

procedure, the Minimum Covariate Imbalance criteria guards against careless use of IPW.

Bias Variance Trade-off

IPW using linear probit led to consistently lower bias than the unweighted naive estimator

in all our simulations – therefore we find that IPW with linear probit leads to a more

unbiased estimate of ATE, even with a poorly specified propensity score model. On the

other hand, the unweighted naive estimator consistently had much lower standard errors,

leading to lower MSE in some cases. Typically, estimates from IPW using the Minimum

Covariate Imbalance criteria had higher bias than IPW with linear probit, but the lower

standard error values lead to lower MSE values. This indicates that there may be a Bias

Variance Trade-off embedded in the selection criteria.

2.6 Summary and Possible Extensions

The use of Propensity Score techniques for causal inference in social science has gained a

lot of popularity in the last decade. However the most common models for the estimation

of Propensity Scores i.e. Logit and Probit have come under a lot of scrutiny. The main

criticism being that when these models are poorly specified, then the low bias property of

propensity score techniques comes at the cost of extremely high values standard errors.

Given this issue, the availability of large datasets, greater computing power as well as the

many advances made in statistics and machine learning, it is natural that some authors
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have recently introduced non-paramateric and machine learning techniques to replace

Logit/Probit for the estimation of Propensity Scores. There is no reason why a single

type of Propensity Score model should be the best choice in all scenarios, but there is

a paucity of papers on choosing between different Propensity Score models. This paper

aims to fill this gap in the literature.

We considered four criteria for selecting the ‘best’ propensity score model for estimating

ATE in the IPW framework – Minimum Covariate Imbalance criteria, Minimum Classifi-

cation Error criteria, Minimum Calibration Error criteria and Maximum Predicted Like-

lihood criteria. We found via two sets of simulations (using artificial data and real-world

data) that ATE estimates from IPW using Minimum Covariate Imbalance propensity

scores had lower MSE values than Linear Probit in all cases with sample size n ≥ 250.

We also found that the best classifier (with Minimum Classisfication Error) did not nec-

essarily lead to lower MSE values than the Linear Probit, while the Minimum Calibration

Error and Maximum Predicted Likelihood criteria performed poorly in general. Based on

our results, we recommend estimating a number of propensity score models and picking

the one with Minimum Covariate Imbalance before conducting IPW. We also found that

while the Linear Probit estimates of ATE were in fact associated with large standard

errors, in a large proportion of our simulations the model was selected via the Minimum

Covariate Imbalance criteria. Similarly, the model was also selected frequently by the

other three criteria. Therefore, in many cases the Linear Probit performs quite well in

comparison to the other semiparametric models, despite being misspecified.

Future research directions include introducing model selection techniques and new propen-

sity score estimation algorithms within the structural estimation framework.
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Appendix

A1: Implementation in R

We used the R statistical package to run our simulations experiments and empirical

estimation. R is an open source programming language which is becoming extremely

popular among computer scientists and statisticians. There are a number of competing

packages that can be used to perform Machine Learning estimation, including some we

used in our analysis as well.

Estimation of Propensity Scores

• Logit/ Probit: These are in-built into R. They can be run using the ‘glm’ com-

mand with an option of family = ”binomial” / family = ”normal”. Probability

values are automatically returned with the predict command.

• Naive Bayes: We used the command ‘naiveBayes’ from the package ‘e1071’.

Probability values are automatically returned with the predict command.

• Random Forest: We used the command ‘randomForest’ from the package ‘ran-

domForest’. Class probabilities can be retrieved using the option prob = T in the

prediction step.

• Support Vector Machines: We used the command ‘LiblineaR’ with the option

type = 1, from the package ‘LiblineaR’ to classify the observations. To compute

probabilities we refered to the source code of package ‘ksvm’ and fit a sigmoid

function to the predicted classes.

Miscellaneous

• Trimming: It is common practice to ‘trim’ datasets by dropping observations

associated with extreme probability values when using propensity score techniques.

Critics of trimming point out that this may lead to loss of important information.
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In our code, we do allow for trimming by dropping observations with: êh ≥ trim

and W = 0 or êh ≤ (1 − trim) and W = 1. However we only used trim values

of 1, so that only those observations which corresponding to infinite weights were

dropped.

• Naive Bayes for Continuous Covariates: We used the Naive Bayes classifier

only when all covariates are continuous (Simulation Set I).

• Random Forest with Large Dataset:The only place where we did not use

default package settings was in the Random Forest component of the empirical

investigation due to the large sizes of the datasets (> 100, 000). We set the option

nodesize =5 instead of the default nodesize =1.

The release of a package in R that runs the propensity score models as well as selection

techniques described in this is being planned. Codes are available on request.
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A2: Technical Notes

This section provides detailed analytical results that show that in the presence of selection

bias, IPW leads to unbiased estimates of the treatment effect (in the linear reggression

framework). These results are not new, however since we were unable to locate a detailed

proof we attempted to reproduce the result independently.

2.7 Framework and Assumptions

• Selection Equation: An underlying process which determines which units get

treatment. In our analysis this is:

xi = zi + vi, i ∈ (i, · · · , N).

where zi is a scalar covariate (for example some individual characteristic) vi is an

error term. The rule determining whether a unit gets selected into the treatment

group is:

wi =

 1 if xi ≥ 0 i ∈ (i, · · · , N)

0 if xi < 0

• Outcome Equation: The true process that links the outcome of interest with the

treatment. In our analysis this is:

yi = α0 + b0wi + γ0zi + ui, i ∈ (i, · · · , N).

where ui is an error term. Note that the coefficient of wi in this equation, b0 is the

true average treatment effect.

• Source of bias: If the correctly specified outcome equation is estimated, then the

estimate of the treatment effect is unbiased. However if some variables that affect

both the selection and outcome equation are unobserved (or ommited), then the

estimate of the treatment effect is biased upwards, i.e. the effect of the treatment
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is overestimated. In our analysis, the source of bias comes from a mis-specified

outcome equation:

yi = τ + ρwi + εi, εi = γ0zi + ui, i ∈ (i, · · · , N).

This equation suffers from an omitted variable bias because the error term εi is

correlated with regressor wi via the unobserved varible zi.

• Assumptions: For the above to hold true, we need some independence assump-

tions.

vi ⊥ zi, ui ⊥ zi, vi ⊥ ui.

In addition we make some distributional assumptions which we use in the proof

(however we relax these assumptions towards the end).

vi ∼ N(0, 1), ui ∼ N(0, 1), zi ∼ N(µ, 1)

• Bias Correction by Propensity Score Weighting: In order to correct the bias

in the estimate of the treatment effect, literature suggests running Weighted Least

Squares (WLS) by weighting treated units with the inverse of probability of being

treated and weighting control units with the inverse of probability of being control.

si =


(Pr(xi ≥ 0|zi))−1 if wi = 1 i ∈ (i, · · · , N)

(1− Pr(xi ≥ 0|zi))−1 if wi = 0
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2.8 Some Useful Calculations

Here we calculate the values of some useful terms that will show up in subsequent deriva-

tions. We start with a figure that represents Pr(xi ≥ 0).

In this figure the two axes map the values of the vi and zi. Recall that vi ⊥ zi and

xi = f(vi, zi) = vi + zi. Thus the relevant probability distribution for xi is fx(x) =

fvz(v, z) = fv(v) · fz(z). Further recall that v ∼ N(0, 1), thus the pdf and cdf of v

respectively are

fv(v) =
1√
2π

exp

(
−v2

2

)
= φv(v),

∫ a

−∞
fv(v)dv =

∫ a

−∞

1√
2π

exp

(
−v2

2

)
dv = Φv(a), −∞ < a <∞

where φ(·) and Φ(·) represent the pdf and cdf corresponding to the standard normal

distribution respectively. Similarly since z ∼ N(µ, 1), the pdf and cdf of z respectively

are

fz(z) =
1√
2π

exp

(
−(z − µ)2

2

)
,

∫ a

−∞
fz(z)dz =

∫ a

−∞

1√
2π

exp

(
−(z − µ)2

2

)
dz, , −∞ < a <∞.

Thus the pdf of xi is:

fx(x) = fv(v) · fz(z) = φv(v)
1√
2π

exp

(
−(z − µ)2

2

)
. (2.7)
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The shaded area represents the region where xi ≥ 0. Note that since xi = zi+vi, therefore

xi ≥ 0⇒ zi + vi ≥ 0⇒ vi ≥ −zi.

Thus the shaded region also represents the region where vi ≥ −zi.

• Pr(xi ≥ 0) : From (2.7) the relevant pdf is:

fx(x) = fv(v) · fz(z) = φv(v)
1√
2π

exp

(
−(z − µ)2

2

)
.

In order to find the area of the shaded region (vi ≥ −zi), integrate over the entire

range of zi and over the range of vi greater than −zi. We drop the i subscript for

now.

Pr(x ≥ 0) =

∫ ∞
−∞

∫ ∞
−z

φv(v)dv
1√
2π

exp

(
−(z − µ)2

2

)
dz

This double integral is easier to solve if we make the following transformation:

. x = v + z,

. y = v − z.

Notice that the ranges of integration in the new system are:

. x from 0 to ∞,

. y from −∞ to ∞.
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Using the Jacobian transformation we have:

 x

y

 =

 1 1

1 −1


 v

z



⇒

 v

z

 =
1

(−2)

 −1 −1

−1 1


 x

y



⇒

 v

z

 =

 (x+ y)/2

(x− y)/2


Finally,

dxdy =
1

2
dvdz

where dvdz = |J | · dxdy and J =

 1 1

1 −1

 .
Use the above to evaluate:

Pr(x ≥ 0) =

∫ ∞
−∞

∫ ∞
−z

φv(v)dv
1√
2π

exp

(
−(z − µ)2

2

)
dz

=

∫ ∞
−∞

∫ ∞
−z

1√
2π

exp

(
−v

2

2

)
dv

1√
2π

exp

(
−(z − µ)2

2

)
dz

=
1

2

∫ ∞
−∞

∫ ∞
0

1√
2π

exp

(
−((x+ y)/2)2

2

)
1√
2π

exp

(
−((x− y)/2− µ)2

2

)
dxdy

=
1

2

∫ ∞
−∞

∫ ∞
0

1

2π
exp

(
−((x+ y)/2)2 + ((x− y)/2− µ)2

2

)
dxdy

...

(algebra – complete the squares in the exponential term)
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...

=
1

2

∫ ∞
−∞

∫ ∞
0

1

2π
exp

(
−(x− µ)2

2× 2
− (y + µ)2

2× 2

)
dxdy

=
1√
2

∫ ∞
−∞

1√
4π

exp

(
−(y + µ)2

2× 2

)
dy

∫ ∞
0

1√
2π

exp

(
−(x− µ)2

2× 2

)
dx

(the first integral is the normal pdf N(−µ, 2) evaluated over R)

=
1√
2
· 1 ·

∫ ∞
0

1√
2π

exp

(
−(x− µ)2

2× 2

)
dx

...

(change of variable) t =
x− µ√

2
...

=

∫ ∞
−µ/
√

2

φt(t)dt

= Φ(µ/
√

2)

Therefore,

Pr(x ≥ 0) = Φ(µ/
√

2).

• Pr(xi ≥ 0|zi) : Using the rules of probability and the distribution of v ∼ N(0, 1),

Pr(x ≥ 0|z) = Pr(v ≥ −z) = Φ(−z)

• E(zi) : This is simply the unconditional mean of z which is µ. (Recall z ∼ N(µ, 1).)

Thus,

E(z) = µ.
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• E(zi|xi ≥ 0) :

E(z|x ≥ 0) =

∫ ∞
−∞

z

∫ ∞
−z

φv(v)dv
1√
2π

exp

(
−(z − µ)2

2

)
dz

(change of variables t = z − µ)

=

∫ ∞
−∞

(t+ µ)

∫ ∞
−(t+µ)

φv(v)dv
1√
2π

exp

(
−t

2

2

)
dt

=

∫ ∞
−∞

t

∫ ∞
−(t+µ)

φv(v)dv · φt(t)dt+

∫ ∞
−∞

µ

∫ ∞
−(t+µ)

φv(v)dv · φt(t)dt

= Integral 1 + Integral 2.

Solve the two integrals separately,

Integral 1 =

∫ ∞
−∞

t

∫ ∞
−(t+µ)

φv(v)dv · φt(t)dt

=

∫ ∞
−∞

t · Φv(t+ µ)φt(t)dt

(
∫
udv = uv| −

∫
vdu where u = Φ(t+ µ), dv = tφ(t)

= [Φ(t+ µ)(−φ(t))]∞−∞ +

∫ ∞
−∞

φ(t)φ(t+ µ)dt
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(∵ Φ(−∞) = 0,Φ(∞) = 0 and φ(∞) = 0)

= 0 +

∫ ∞
−∞

1

2π
exp

(
−w

2 + w2 + µ2 + 2wµ

2

)

(complete the square in the exponent to get)

=
1

2
√
π

exp
{
−µ2/4

}

=
1√
2
· φ(µ/

√
2).

In order to solve Integral 2, consider the following graphical representation of the

problem.

Note that this is (almost) identical to solving for Pr(xi ≥ 0) (refer to (2.8)). Using

similar calculations,

Integral 2 = µ · Φ(µ/
√

2).

Add the two integrals,

∴ E(z|x ≥ 0) =
1√
2
· φ(µ/

√
2) + µ · Φ(µ/

√
2). (2.8)
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• E(si) : Recall that,

si =


(Pr(xi ≥ 0|zi))−1 if wi = 1 i ∈ (i, · · · , N)

(1− Pr(xi ≥ 0|zi))−1 if wi = 0

E(s) =

∫ ∞
−∞

1

1− Pr(xi ≥ 0|z)

∫ −z
−∞

φ(v)dv · 1√
2π

exp

(
−(z − µ)2

2

)
dv

+

∫ ∞
−∞

1

Pr(xi ≥ 0|z)

∫ ∞
−z

φ(v)dv · 1√
2π

exp

(
−(z − µ)2

2

)
dv

=

∫ ∞
−∞

1

1− Pr(vi ≥ −z)
Φ(−z) · 1√

2π
exp

(
−(z − µ)2

2

)
dv

+

∫ ∞
−∞

1

Pr(vi ≥ −z)
(1− Φ(−z)) · 1√

2π
exp

(
−(z − µ)2

2

)
dv

(∵ Pr(vi ≥ −z) = 1− Φ(−z) and the integration of a pdf over its support = 1)

= 1 · 1 + 1 · 1

= 2.

∴ E(s) = 2.

• E(si|xi ≥ 0) : We repeat the same calculations as above with the modification that

the support of v is only from −z to ∞ to get:

E(s|x ≥ 0) = 1. (2.9)
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• E(sizi) : Using calculations similar to (2.8)

E(sz) =

∫ ∞
−∞

z

1− Pr(xi ≥ 0|z)

∫ −z
−∞

φ(v)dv · 1√
2π

exp

(
−(z − µ)2

2

)
dv

+

∫ ∞
−∞

z

Pr(xi ≥ 0|z)

∫ ∞
−z

φ(v)dv · 1√
2π

exp

(
−(z − µ)2

2

)
dv

=

∫ ∞
−∞

z

1− Pr(vi ≥ −z)
Φ(−z) · 1√

2π
exp

(
−(z − µ)2

2

)
dv

+

∫ ∞
−∞

z

Pr(vi ≥ −z)
(1− Φ(−z)) · 1√

2π
exp

(
−(z − µ)2

2

)
dv

(∵ Pr(vi ≥ −z) = 1− Φ(−z) and E(z) = µ)

= 1 · µ+ 1 · µ

= 2µ.

∴ E(sz) = 2µ. (2.10)

• E(sizi|xi ≥ 0) : We repeat the same calculations as above with the modification

that the support of v is only from −z to ∞ to get:

E(sz|x ≥ 0) = µ. (2.11)
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Bias Calculation for Fully Specified Model

• True Outcome Equation: yi = α0 + b0wi + γ0zi + ui,

• Estimated Outcome Equation: yi = τ + ρwi + θzi + ui.

OLS Estimates



τ̂

ρ̂

θ̂


=



ΣN
i 1 ΣN

i wi ΣN
i zi

ΣN
i wi ΣN

i (wi · wi) ΣN
i (zi · wi)

ΣN
i zi ΣN

i (wi · zi) ΣN
i (zi · zi)



−1 

ΣN
i yi

ΣN
i (wi · yi)

ΣN
i (zi · yi)



=



ΣNi 1

N

ΣNi wi
N

ΣNi zi
N

ΣNi wi
N

ΣNi (wi)

N

ΣNi (zi·wi)
N

ΣNi zi
N

ΣNi (wi·zi)
N

ΣNi (zi·zi)
N



−1 

ΣNi yi
N

ΣNi (wi·yi)
N

ΣNi (zi·yi)
N



(note that w2
i = wi since wi is a vector of zeros (control units ) and ones (treated units))

(replacing with true model yi = α0 + b0wi + γ0zi + ui)

=



ΣNi 1

N

ΣNi wi
N

ΣNi zi
N

ΣNi wi
N

ΣNi (wi)

N

ΣNi (zi·wi)
N

ΣNi zi
N

ΣNi (wi·zi)
N

ΣNi (zi·zi)
N



−1 

ΣNi ·(α0+b0wi+γ0zi+ui)

N

ΣNi (wi·(α0+b0wi+γ0zi+ui))

N

ΣNi (zi·(α0+b0wi+γ0zi+ui))

N


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(since wi is a vector of ones, the dot product picks up values corresponding

only to the treated units (units with wi = 1 ie xi ≥ 0))

→
p



1 Pr(xi ≥ 0) E(zi)

Pr(xi ≥ 0) Pr(xi ≥ 0) E(zi|xi ≥ 0)

E(zi) E(zi|xi ≥ 0) E(z2
i )



−1

×



α0 + b0Pr(xi ≥ 0) + γ0E(zi) + E(ui)

α0Pr(xi ≥ 0) + b0Pr(xi ≥ 0) + γ0E(zi|xi ≥ 0) + E(ui|xi ≥ 0)

α0E(zi) + b0E(zi|xi ≥ 0) + γ0E(z2
i ) + E(ui|zi)



=



1 Pr(xi ≥ 0) E(zi)

Pr(xi ≥ 0) Pr(xi ≥ 0) E(zi|xi ≥ 0)

E(zi) E(zi|xi ≥ 0) E(z2
i )



−1

×



1 Pr(xi ≥ 0) E(zi)

Pr(xi ≥ 0) Pr(xi ≥ 0) E(zi|xi ≥ 0)

E(zi) E(zi|xi ≥ 0) E(z2
i )





α0

b0

γ0


=



α0

b0

γ0


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Bias Calculation for Mis-specified Model

• True Outcome Equation: yi = α0 + b0wi + γ0zi + ui,

• Estimated Outcome Equation: yi = τ + ρwi + εi, (∴ εi = γ0zi + ui.)

OLS estimates


τ̂

ρ̂

 =


ΣN
i 1 ΣN

i wi

ΣN
i wi ΣN

i (wi · wi)


−1 

ΣN
i yi

ΣN
i (wi · yi)



=


ΣNi 1

N

ΣNi wi
N

ΣNi wi
N

ΣNi (wi)

N


−1 

ΣNi yi
N

ΣNi (wi·yi)
N



(replacing with true model yi = α0 + b0wi + γ0zi + ui)

=


ΣNi 1

N

ΣNi wi
N

ΣNi wi
N

ΣNi (wi)

N


−1 

ΣNi (α0+b0wi+γ0zi+ui)

N

ΣNi (wi·(α0+b0wi+γ0zi+ui))

N



→
p


1 Pr(xi ≥ 0)

Pr(xi ≥ 0) Pr(xi ≥ 0)


−1

×


α0 + b0Pr(xi ≥ 0) + γ0E(zi) + E(ui)

α0Pr(xi ≥ 0) + b0Pr(xi ≥ 0) + γ0E(zi|xi ≥ 0) + E(ui|xi ≥ 0)


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=


1 Pr(xi ≥ 0)

Pr(xi ≥ 0) Pr(xi ≥ 0)


−1 

1 Pr(xi ≥ 0)

Pr(xi ≥ 0) Pr(xi ≥ 0)



α0

b0



+


1 Pr(xi ≥ 0)

Pr(xi ≥ 0) Pr(xi ≥ 0)


−1 

γ0E(zi) + E(ui)

γ0E(zi|xi ≥ 0) + E(ui|xi ≥ 0)



=


α0

b0

+ γ0


1 Pr(xi ≥ 0)

Pr(xi ≥ 0) Pr(xi ≥ 0)


−1 

E(zi)

E(zi|xi ≥ 0)



∴ bias→
p
γ0


1 Pr(xi ≥ 0)

Pr(xi ≥ 0) Pr(xi ≥ 0)


−1 

E(zi)

E(zi|xi ≥ 0)



=
γ0

Pr(xi ≥ 0) (1− Pr(xi ≥ 0))


Pr(xi ≥ 0) −Pr(xi ≥ 0)

−Pr(xi ≥ 0) 1




E(zi)

E(zi|xi ≥ 0)



=
γ0

Pr(xi ≥ 0) (1− Pr(xi ≥ 0))


Pr(xi ≥ 0)E(zi)− Pr(xi ≥ 0)E(zi|xi ≥ 0)

−Pr(xi ≥ 0)E(zi) + E(zi|xi ≥ 0)



= γ0


E(zi)
(1−pi) −

E(zi|xi≥0)
(1−pi)

E(zi|xi≥0)
pi(1−pi) −

E(zi)
(1−pi)


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(Based on our assumptions of normality and using (2.8), (2.8) and (2.8)) and

where pi = Pr(xi ≥ 0))

= γ0


µ

1−Φ(µ/
√

2)
−

1√
2
·φ(µ/

√
2)+µ·Φ(µ/

√
2)

1−Φ(µ/
√

2)

1√
2
·φ(µ/

√
2)+µ·Φ(µ/

√
2)

Φ(µ/
√

2)(1−Φ(µ/
√

2))
− µ

1−Φ(µ/
√

2)



= γ0


µ− 1√

2

φ(µ/
√

2)

Φ(µ/
√

2)(1−Φ(µ/
√

2))

1√
2

φ(µ/
√

2)

Φ(µ/
√

2)(1−Φ(µ/
√

2))


Note that the coefficient measuring the average treatment effect, ρ̂ is biased upwards

∀µ ∈ R.

2.9 Bias Calculation for Mis-specied Model with Weighting

• True Outcome Equation: yi = α0 + b0wi + γ0zi + ui,

• Estimated Outcome Equation: yi = τ + ρwi + εi, (∴ εi = γ0zi + ui) weighted

by si:

si =


(Pr(xi ≥ 0|zi))−1 if wi = 1 i ∈ (i, · · · , N)

(1− Pr(xi ≥ 0|zi))−1 if wi = 0

118



WLS estimates


τ̂

ρ̂

 =


ΣN
i 1 · si ΣN

i (wi · si)

ΣN
i (wi · si) ΣN

i (wi · si · wi)


−1 

ΣN
i (si · yi)

ΣN
i (wi · si · yi)



=


ΣNi si
N

ΣNi (wi·si)
N

ΣNi (wi·si)
N

ΣNi (wi·si)
N


−1 

ΣNi (si·yi)
N

ΣNi (wi·si·yi)
N



(replacing with true model yi = α0 + b0wi + γ0zi + ui)

=


ΣNi si
N

ΣNi (wi·si)
N

ΣNi (wi·si)
N

ΣNi (wi·si)
N


−1 

ΣNi si(α0+b0wi+γ0zi+ui)

N

ΣNi (wi·si(α0+b0wi+γ0zi+ui))

N



→
p


E(si) E(si|xi ≥ 0)

E(si|xi ≥ 0) E(si|xi ≥ 0)


−1

×


α0E(si) + b0E(si|xi ≥ 0) + γ0E(sizi) + E(uisi)

α0E(si|xi ≥ 0) + b0E(si|xi ≥ 0) + γ0E(sizi|xi ≥ 0) + E(uisi|xi ≥ 0)



=


E(si) E(si|xi ≥ 0)

E(si|xi ≥ 0) E(si|xi ≥ 0)


−1 

E(si) E(si|xi ≥ 0)

E(si|xi ≥ 0) E(si|xi ≥ 0)



α0

b0


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+


E(si) E(si|xi ≥ 0)

E(si|xi ≥ 0) E(si|xi ≥ 0)


−1 

γ0E(si · zi) + E(ui · si)

γ0E(si · zi|xi ≥ 0) + E(ui · si|xi ≥ 0)



=


α0

b0

+ γ0


E(si) E(si|xi ≥ 0)

E(si|xi ≥ 0) E(si|xi ≥ 0)


−1 

E(si · zi)

E(si · zi|xi ≥ 0)



∴ asymp. bias = γ0


E(si) E(si|xi ≥ 0)

E(si|xi ≥ 0) E(si|xi ≥ 0)


−1 

E(si · zi)

E(si · zi|xi ≥ 0)

 (2.12)

Based on our normality assumptions and using (2.8), (2.9), (2.11)

asymp. bias = γ0


2 1

1 1


−1 

2µ

µ



=
γ0

2− 1


1 −1

−1 2




2µ

µ



= γ0


2µ− µ

−2µ+ 2µ

 =


γ0 · µ

0


Notice that the coefficient estimate associated with the treatment effect is now unbiased.
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Coming up with the weights

Here we try to independently develop the appropriate weighting scheme to get an unbiased

estimate of the treatment effect. We drop all distributional assumptions on v and z. Start

with (2.12) and simplify to obtain the asymptotic bias:

γ0


E(si) E(si|xi ≥ 0)

E(si|xi ≥ 0) E(si|xi ≥ 0)


−1 

E(si · zi)

E(si · zi|xi ≥ 0)



=
γ0

E(si|xi ≥ 0) (E(si)− E(si|xi ≥ 0))


E(si|xi ≥ 0) −E(si|xi ≥ 0)

−E(si|xi ≥ 0) E(si)




E(sizi)

E(sizi|xi ≥ 0)



=
γ0

E(si|xi ≥ 0) (E(si)− E(si|xi ≥ 0))


E(si|xi ≥ 0) (E(sizi)− E(sizi|xi ≥ 0))

−E(si|xi ≥ 0)E(sizi) + E(si)E(sizi|xi ≥ 0).

 .

In order to get unbiased treatment effect estimate the numerator associated with ρ̂ should

have no contribution. Therefore for an unbiased estimator,

E(si)E(sizi|xi ≥ 0)− E(si|xi ≥ 0)E(sizi) = 0 (2.13)

Let’s define:

si =


h(zi) if xi ≥ 0 i.e. vi ≥ −zi

r(zi) if xi < 0 i.e. vi < −zi
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E(si) =

∫ ∞
−∞

si

∫ ∞
−∞

fv(v)dvfz(z)dz

=

∫ ∞
−∞

r(zi)

∫ −zi
−∞

fv(v)dvfz(z)dz +

∫ ∞
−∞

h(zi)

∫ ∞
−zi

fv(v)dvfz(z)dz

= E(si|xi < 0) + E(si|xi > 0).

E(sizi) =

∫ ∞
−∞

zisi

∫ ∞
−∞

fv(v)dvfz(z)dz

=

∫ ∞
−∞

zir(zi)

∫ −zi
−∞

fv(v)dvfz(z)dz +

∫ ∞
−∞

zih(zi)

∫ ∞
−zi

fv(v)dvfz(z)dz

= E(sizi|xi < 0) + E(sizi|xi > 0).

E(si)E(sizi|xi ≥ 0)− E(si|xi ≥ 0)E(sizi)

= (E(si|xi < 0) + E(si|xi > 0))E(sizi|xi ≥ 0)

− E(si|xi ≥ 0) (E(sizi|xi < 0) + E(sizi|xi > 0))

= E(si|xi < 0)E(sizi|xi ≥ 0)− E(si|xi ≥ 0)E(sizi|xi < 0)

=

[∫ ∞
−∞

r(zi)

∫ −zi
−∞

fv(v)dvfz(z)dz

]
·
[∫ ∞
−∞

zih(zi)

∫ ∞
−zi

fv(v)dvfz(z)dz

]
−
[∫ ∞
−∞

h(zi)

∫ ∞
−zi

fv(v)dvfz(z)dz

]
·
[∫ ∞
−∞

zir(zi)

∫ −zi
−∞

fv(v)dvfz(z)dz

]
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=

[∫ ∞
−∞

r(zi)Fv(−zi)fz(z)dz

]
·
[∫ ∞
−∞

h(zi)(1− Fv(−zi))zifz(z)dz

]
−
[∫ ∞
−∞

h(zi)(1− Fv(−zi))fz(z)dz

]
·
[∫ ∞
−∞

r(zi)Fv(−zi)zifz(z)dz

]

The last term suggests the weighting scheme:

h(zi) =
1

1− Fv(−zi)
=

1

Pr(xi ≥ 0|zi)
, r(zi) =

1

Fv(−zi)
=

1

Pr(xi < 0|zi)

Using these the expression in (2.13) to evaluate E(si)E(sizi|xi ≥ 0)−E(si|xi ≥ 0)E(sizi)

=

[∫ ∞
−∞

r(zi)Fv(−zi)fz(z)dz

]
·
[∫ ∞
−∞

h(zi)(1− Fv(−zi))zifz(z)dz

]
−
[∫ ∞
−∞

h(zi)(1− Fv(−zi))fz(z)dz

]
·
[∫ ∞
−∞

r(zi)Fv(−zi)zifz(z)dz

]

=

[∫ ∞
−∞

Fv(−zi)

Fv(−zi)
fz(z)dz

]
·
[∫ ∞
−∞

1− Fv(−zi)

1− Fv(−zi)
zifz(z)dz

]
−
[∫ ∞
−∞

1− Fv(−zi)

1− Fv(−zi)
fz(z)dz

]
·
[∫ ∞
−∞

Fv(−zi)

Fv(−zi)
zifz(z)dz

]

= 1 · µ− 1 · µ = 0

Thus the weighting scheme,

si =


(Pr(xi ≥ 0|zi))−1 if wi = 1 i ∈ (i, · · · , N)

(1− Pr(xi ≥ 0|zi))−1 if wi = 0

leads to an unbiased estimate of the average treatment effect and this holds true generally

in a linear setup with no distributional assumptions on v and z.
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Chapter 3

Evaluating India’s Safe Motherhood Scheme

using Inverse Propensity Score Weighting

3.1 Introduction

In this chapter we apply Inverse Propensity Weighting using the Minimum Covariate

Imbalance criteria to evaluate a large public health dataset from India. The aim of

the study is to analyze the effectiveness of India’s Safe Motherhood Scheme or Janani

Suraksha Yojna (JSY) wherein eligible women receive monetary compensation from the

government when they give birth in a health care facility. As per 2010 statistics, the

perinatal mortality rate (number of stillbirths and deaths within first week of birth) and

infant mortality rate (number of infants dying before reaching one year of age) in India

were 491 and 462 per 1000 livebirths respectively. Maternal mortality rates were also

very high at 220 3 per 100, 000 livebirths. The longterm aim of JSY is to bring about a

reduction in the incidence of neonatal deaths as well as maternal mortality rate in the

country.

Previous analysis of the scheme includes mainly qualitative studies or quantitative evalu-

ation on a geographical subset of the data. Notable exceptions include Lim et al (2010),

1National Health Survey, India.
2World Development Indicators, World Bank.
3World Development Indicators, World Bank.
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Dongre and Kapur (2012) and Joshi and Sivaram (2014). However to our knowledge

there has been no application of propensity score estimation techniques at the national

level, a gap which this paper aims to fill.

The Safe Motherhood Scheme is not randomized – individuals self select into the program.

This implies that there maybe selection bias in the data, making it suitable as an applica-

tion of Inverse Propensity Score Weighting. Further the number of relevant observations

exceeds 200, 000 – the large dataset is ideal for applying the Machine Learning techniques

described in this paper. Previous evaluations of JSY have involved methods like Exact

Matching, Difference in Difference and Regression Analysis. As per our knowledge, there

has not been any work using Propensity Scores to evaluate JSY at the national level. In

our empirical investigation we find that the Safe Motherhood Scheme has had a largely

positive impact on health indicators like infant mortality, number of still births as well as

behavioral indicators like the frequency of check ups for both mother and child. We also

notice regional variations in the effects. In the datasets corresponding to the northeastern

states our criteria picks propensity score estimates from the SVM model (whose results

are substantially different from the linear probit).

The chapter is organized as follows. Section 2 describes the scheme and the data in

greater detail. This is followed by a brief literature review in Section 3, the Empirical

Design in Section 4 and a discussion of the results in Section 5. Section 6 concludes.

3.2 About the Scheme and the data

JSY which was launched by the Central Goverment of India in 2005 is the world’s largest

conditional cash transfer scheme in terms of the number of beneficiaries (over 9 million).

As per the scheme, eligible women receive financial assistance from the government when

they give birth in a health care facility . Eligibility criteria involves posession of Below-

the-Poverty-Line (BPL) cards, belonging to a scheduled caste or tribe and order of birth.
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The financial assistance amounts are Rs. 600 ($9.76) in urban areas and Rs.700 ($11.39)

in rural areas. Further in 10 government identified high focus states where in-facility

birth coverage is low – in these states all women are eligible for the cash benefit. The

financial assistance amounts in these states are Rs. 1000 ($16.27) in urban areas and Rs.

1400 ($22.78) in rural areas. Also in these states, women aged 19 years and above with

BPL cards also receive Rs 500 ($8.14) for births at home for the first two births.

These incentives are communicated to the women locally by female health volunteers

or Accredited Social Health Activists (ASHA – which literally translates to HOPE in

Hindi). ASHA volunteers receive performance based compensation for the promotion of

universal immunization and raising awareness of health care delivery programmes and

family planning initiatives. They earn monetary compensation for every beneficiary they

escort to and accompany until discharge at a pre-determined healthcare facility accord-

ing to a two-part disbursement scheme – first after the delivery, second after a post-natal

check up and child vaccination visits. The following table summarizes the broad financial

incentives of the scheme.

Table 3.1: Details of financial incentives (Rs.)

Rural Areas
Mother ASHA

High Focus State 1400 600
Non High Focus State 700 –

Urban Areas
Mother ASHA

High Focus State 1000 200
Non High Focus State 600 –

In this paper we estimate the Average Treatment Effect (ATE) of receiving financial

assistance via JSY on two health outcomes – number of stillbirths and infant mortal-

ity. We also estimate ATE on three behavioural outcomes – whether the mother had 3

or more ante-natal checkups, whether any post-natal check up was conducted within 2

weeks of delivery and the frequency of child check-ups within 10 days of delivery. We are

not aware of any other paper that uses Propensity Score methods to evaluate JSY and

therefore we consider this attempt as a substantial contribution towards the literature on

the assessment of JSY. Further, we are not aware of any other authors who have studied
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the effect of JSY on infant mortality and frequency of child check-ups within 10 days of

delivery.

Monitoring of the ongoing health and family welfare programs is carried out via the

District Level Household and Facility Survey (DLHS). The International Institute for

Population Sciences (IIPS) is the nodal agency for carrying out the survey. Three rounds

of the survey data have been collected. The first round was collected between 1998 and

1999, the second between 2002 and 2004 and the third round between 2007 and 2008.

We use the third round of the survey, DLHS-3 which was conducted between 2008 and

2009. The survey is one of the largest ever demographic and health surveys carried out

in India. All districts of the country have been covered in the survey. The number of

households covered by the survey is 720, 320. There is also individual level data on ever-

married women aged 15-49 years – the sample size of the individual level data is 643, 944,

The survey contains information on household socio-economic characteristics as well as

individual level characteristics, fertility data and maternal health indicators.

Besides this, DLHS-3 also contains data on awareness and utilization of immunization

services as well as family planning initiatives. An individual level dataset of unmarried

women aged 15-24 years is also included. Finally we note that receipt of assistance via

JSY was not implemented as a randomized experiment. This implies that any evaluation

of the impact of JSY has to take into account selection issues.

3.3 Existing Literature

The first national-level analysis of the impact of JSY was carried out by Lim et al. (2010)

where the authors used three strategies: Exact Matching, With Versus Without analy-

sis and district-level Difference in Differences estimation. They found a largely positive

impact of the scheme, particularly in the reduction of neonatal deaths and increase in

in-facility births. Dongre and Kapur (2012) use a Difference in Differences specification
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to study the impact of JSY on in-facility births with special focus on the gap between

the high focus states with the rest of the states. Finally, Joshi and Sivaram (2014) also

use a Difference in Differences specification to study the impact of JSY on ante-natal

care, post-natal care and in-facility births. They control for Eligibility Criteria in their

evaluation design. They find overall significant and positive impact of the scheme on

all three outcomes but modest positive effects on those eligible to receive compensation

under its guidelines.

Since the DLHS-3 differed in many significant ways with DLHS-2 (for example differ-

ent sets of questions were asked in round 2 and round 3 to assess utilization of post natal

care; the second round only includes married women uptil the age of 45 whereas the

second includes both married and unmarried women up till age 50), we treat the pooling

of the datasets required for Difference in Differences estimation with caution. In this

paper we utilize only the most recent round of the longitudnal data, namely the DLHS-3

dataset. The only other work on estimating treatment effects using the single dataset

was carried out by Lim et al (2010). In order to control for selection issues the authors

implemented Exact Matching. The authors worked with a small subset of characteristics

for matching, due to difficulty in finding exact matches with a large number of covariates.

By using IPW, we overcome this problem by working with a larger number of covari-

ates which may contain important information about the selection process. We are not

aware of any previous attempts to use Propensity Score related methods in the evaluation

of JSY at the national level. Further, we use the insights from Chapter 2 to control for

selection bias by choosing from a set of different propensity score estimation techniques.

The empirical design and estimation strategy employed for the analysis are described

next.
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3.4 Empirical Design

3.4.1 Variables of Interest

We estimate the Average Treatment Effect (ATE) of receiving financial assistance via

JSY on number of stillbirths, infant mortality, frequency of ante-natal care (ANC) visits,

whether any post-natal check (PNC) was conducted and frequency of child check ups

after delivery. Since the JSY scheme was introduced in 2005, we focus on the outcome

of the last pregnancy which occured after 2004. This reduces the sample size to 227, 039

observations.

The treatment variable is

Wi =

 1 individual i reported receipt of JSY assistance

0 otherwise.

The health outcomes of interest are

Yi1 =

 1 individual i’s last pregnancy resulted in stillbirth

0 otherwise,

Yi2 =

 1 individual i’s child died within 1 year

0 otherwise.
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The behavioral outcomes of interest are

Yi3 =

 1 individual i reported at least 3 ANC visits

0 otherwise,

Yi4 =

 1 individual i reported receipt of PNC within 2 weeks

0 otherwise,

Yi5 = {number of child checkups within 10 days: individual i.}

3.4.2 Estimation Techniques

In the first stage of the analysis we estimate propensity scores using Linear Probit, Ran-

dom Forest and Support Vector Machines. The Covariate Imbalance scores from these

techniques are then compared. If the unweighted estimator is picked then the the ATE is

given by the naive difference of mean outcomes for the two groups. If one of the propen-

sity score techniques is picked, then the Minimum Covariate Imbalance propensity score

estimates êh∗ , corresponding to classifier h∗ imply the ATE estimate is given by τ̂imb from

the following weighting least squares regression with weights λi:

Yij = α + τimbWi + εi, λi =

√
Wi

êh∗(Xi)
+

(1−Wi)

1− êh∗(Xi)
, j ∈ {1, 2, 3, 4, 5}

where Xi is the vector of covariates corresponding to individual i.

We also extend our method to the Doubly Robust framework by using IPW weights

from the model picked by Minimum Covariate Imbalance criteria. In the Doubly Robust

framework, weighted least squares (using IPW weights) is run on the outcome equation,
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which includes control covariates along with the treatment variable.

Yij = α + τdrWi + βzZ + εi, λi =

√
Wi

ê(Xi)
+

(1−Wi)

1− ê(Xi)
, j ∈ {1, 2, 3, 4, 5}.

where λi is the wieghting scheme, Xi and Zi are the covariates in the selection and out-

come equations respectively and ê(Xi) corresponds to the estimated propensity scores.

The Doubly Robust ATE estimate is given by τ̂dr. The covariates included in X and Z

are described in the following table.

When presenting our results, we report the change in numbers per 1000 births for the

first two outcomes. For the last three we report the percentage change from the baseline(
τ̂
α̂
× 100%

)
.

Table 3.2: States listed by subgroups

High Focus States Northeast States Other States

Assam Arunachal Pradesh Andhra Pradesh
Bihar Manipur Goa
Chattisgarh Meghalaya Gujarat
Jammu and Kashmir Mizoram Haryana
Jharkhand Sikkim Himachal Pradesh
Madhya Pradesh Tripura Karnataka
Orissa Kerala
Rajasthan Maharashtra
Uttar Pradesh Punjab
Uttarakhand Tamil Nadu

West Bengal

The ‘Other States ’ list does not list Union Territories which were included in the sample.

We create five separate datasets where missing/faulty observations corresponding to dif-

ferent covariates and outcome variables are dropped. We also slice the dataset into 12

smaller groups based on focus levels, geographical remoteness and type of locality. We

conduct separate estimations at the National level, for High Focus States, Non-High Fo-

cus States and Northeast States. Data for each of these groups is further divided into

Rural and Urban localities.
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Table 3.3: List of Covariates Used in Empirical Analysis

Propensity Score Model Doubly Robust Estimation
(X: Selection Equation) (Z: Outcome Equation)

High Focus State, Whether child is a girl,
Northeast State, Number of sons at home,
Urban, Number of children at home,
Rural: with healthcare facility, Number of previous still-births,
Whether Hindu, Number of previous spontaneous abortions,
Whether Muslim, High Focus State,
Whether Christian, Northeast State,
Whether Sikh Urban,
Whether Schedule Caste, Rural: with healthcare facility,
Whether Schedule Tribe, Whether Hindu,
Whether Other Backward Caste Whether Muslim,
Ratio of Men to Women in Household, Whether Christian,
Wealth Quintie Whether Schedule Caste,
Possession of Below Poverty Line Card Whether Schedule Tribe,
Whether any health insurance Whether Other Backward Caste
Type of House, Ratio of Men to Women in Household,
Lack of toilet, Wealth Quintie
Water treatment Possession of Below Poverty Line Card
Years of Education: Respondent (0), Years of Education: Respondent (0),
Years of Education: Respondent (1− 5), Years of Education: Respondent (1− 5),
Years of Education: Respondent (6− 12), Years of Education: Respondent (6− 12),
Years of Education: Spouse (0), Years of Education: Spouse (0),
Years of Education: Spouse (1− 5), Years of Education: Spouse (1− 5),
Years of Education: Spouse (6− 12), Years of Education: Spouse (6− 12),
Number of livebirths, Age at delivery,
Age of living with husband,
Age at delivery,
Whether Pregnancy was known within 3 months.

Table 3.4: Number of observations in datasets corresponding to different outcomes and regions

Y1 Y2 Y3 Y4 Y5

National 205,390 205,394 202,845 195,399 198,205

High Focus 128,051 126,681 127,074 128,034 123,786

Northeast 14,667 14,581 13,962 14,662 13,738

Non-High Focus 77,339 76,713 75,771 67,365 74,419
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3.5 Results

3.5.1 Sample Characteristics

A perusal of the household characteristics of the JSY beneficiaries in our sample indicates

that a greater proportion of the sample comes from high focus states and rural areas.

We also note that women in rural areas with no healthcare facility are under-represented.

Similarly women from minority religions are under-represented. All wealth quintiles are

well-represented. The individual characteristics of the beneficiaries indicates that in a

large proportion of the sample both the woman and her spouse had less than 12 years

of schooling (and over 30% women had no schooling). Most women in the sample are

between the ages of 20 and 30 years and most reported 2 or fewer number of livebirths.

Figure 3.1: JSY Beneficieries grouped by Household Characteristics
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Empirical Analysis: Individual Characteristics

Figure 3.2: JSY Beneficieries grouped by Individual Characteristics

Household Characteristics used for estimation of Propensity Scores – High Focus State, North-

east State, Urban, Rural: with healthcare facility, Whether Hindu, Whether Muslim, Whether

Christian, Whether Schedule Caste, Whether Schedule Tribe, ratio of Men to Women in House-

hold, Type of House, Lack of toilet, Water treatment.

Individual Characteristics used for estimation of Propensity Scores– Years of Education: Re-

spondent (0, 1− 5, 6− 12,≥ 12) Years of Education: Spouse (0, 1− 5, 6− 12,≥ 12) , Number of

livebirths, Age of living with husband, Age at delivery, Whether Pregnancy was known within

3 months.

Overall, we find encouraging results on the effect of JSY on both health and behavioural out-

comes. However the effects are not uniform across different states, we note a large amount of
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regional disparities.

The Linear Probit Model is picked by the Minimum Covariate Imbalance criteria in most of the

regionally sliced datasets (49 out of 60). SVM is picked in the remaining 11 datasets. In the

cases where SVM is picked, the corresponding results with Linear Probit are substantially dif-

ferent. For instance, weighting by Linear Probit imply larger health outcome effects and smaller

behavioral outcome effects. In fact IPW using SVM implies no significant ATE of the scheme

on infant mortality in the Northeast states, whereas IPW using Linear Probit implies large and

significant reductions in infant mortality caused by the program in the same states. Therefore

in this situation, relying on Linear Probit would lead to very different policy prescription inputs.

3.5.2 ATE estimates: Health Outcomes

The ATE estimate of JSY on the number of stillbirths per 1000 deliveries is −4.46 at the na-

tional level using IPW. Northeast States follow the national level effect. However we find that

High focus states lag behind the Non-High Focus states. We also note that ATE estimates in

urban areas is generally much higher than in the rural areas. The ATE estimate of JSY on

infant mortalilty is −3.25 at the national level. Northeast States do not report any significant

effect of JSY on infant mortality. Rural areas in High focus states lag behind rural areas in

Non-High Focus states. ATE of JSY on infant mortality in urban areas is not significant for any

of the study regions. The results from the Doubly Robust framework show the same general

trends, albeit with slightly smaller effects.

There can be a number of explanations for the regional variations in the ATE estimates in

terma of these health outcomes. In the High Focus states there were no eligibility requirements

for being a beneficiary of JSY. On the other hand in the Non-High Focus states only those

women who were at higher risk were targetted. Thus health outcome effects in High focus

states is expected to be more modest in comparison to the Non-High focus states, since women

who are less vulnerable are also present in the High focus states sample. Further the lack of

eligibilty requirements in High focus states may have led to much greater participation in these

regions leading to greater pressure on healthcare services and poorer quality of service. Finally

better healthcare facilities in urban areas may help explain the larger negative effect of JSY on
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number of stillbirths and better standards of living may help explain the smaller negative effect

of JSY on infant mortality.

3.5.3 ATE Estimates: Behavioral Outcomes

In terms of behavioral outcomes we find increases in whether the mother had at least 3 ante-

natal check ups across the datasets. Much larger increases are estimated for whether the woman

had any post-natal check up (60.9% at the national level) and number of child check-ups within

10 days of delivery (41.8% at the national level). The percentage increase is larger in High Focus

states and Northeast states than in the Non-High Focus States. The increase is also generally

found to be higher in rural areas (more than 100%) than urban areas. The results from the

Doubly Robust framework show similar trends with one clear exception. The Doubly Robust

estimates show smaller positive ATE of the scheme on whether the mother went for at least

3 ante-natal checks. However, unlike the IPW estimates there is very little regional variation

between the High Focus and Non-High Focus States.

The regional differences in financial incentives of the ASHA volunteers may help explain dif-

ferences in estimated ATE of the scheme on behavioural outcomes. ASHA volunteers receive

payment in two stages, the first is escorting women to healthcare facilities for childbirth and

the second is escorting them for post-natal check up and child vaccination visits. This factor

coupled with low bases corresponding to PNC and child check-ups can explain why rural ar-

eas, particularly in High focus states experienced large positive effects of JSY on behavioural

outcomes.

136



Table 3.5: Estimates of ATE of JSY on Number of Stillbirths: IPW 1

All Rural Urban

National ATE -0.00456 -0.00388 -0.00748
0.95 C.I. (-0.005 -0.004) (-0.005 -0.003) (-0.009 -0.006)
Imbalance 0.117 0.179 0.006
IPW Model Probit Probit Probit
per 1000 -4.56 -3.88 -7.48

High Focus ATE -0.00391 -0.00313 -0.00787
0.95 C.I. (-0.005 -0.003) (-0.004 -0.002) (-0.01 -0.006)
Imbalance 0.075 0.156 0.006
IPW Model Probit Probit Probit
per 1000 -3.91 -3.13 -7.87

Northeast ATE -0.00527 -0.00517 -0.00481
0.95 C.I. (-0.007 -0.003) (-0.008 -0.003) (-0.009 -0.001)
Imbalance 1.169 1.318 0.213
IPW Model SVM SVM Probit
per 1000 -5.27 (-5.9)† -5.17 (-6.1)† -4.81

Non-High Focus ATE -0.00585 -0.00548 -0.00761
0.95 C.I. (-0.007 -0.005) (-0.007 -0.004) (-0.009 -0.006)
Imbalance 0.267 0.662 0.131
IPW Model Probit Probit Probit
per 1000 -5.85 -5.48 -7.61

Table 3.6: Estimates of ATE of JSY on Number of Stillbirths: Doubly Robust 2

All Rural Urban

National ATE -0.00425 -0.00363 -0.00692
0.95 C.I. (-0.005 -0.004) (-0.005 -0.003) (-0.008 -0.006)
IPW Model Probit Probit Probit
per 1000 -4.25 - 3.63 -6.92

High Focus ATE -0.00352 -0.00277 -0.00718
0.95 C.I. (-0.005 -0.003) (-0.004 -0.002) (-0.009 -0.005)
IPW Model Probit Probit Probit
per 1000 -3.52 -2.77 -7.12

Northeast ATE -0.00495 -0.00536 -0.00355
0.95 C.I. (-0.007 -0.003) (-0.008 -0.003) (-0.007 -3e−5)
IPW Model SVM SVM Probit
per 1000 -4.95 (-5.5)† -5.36 (-5.9)† -3.55

Non-High Focus ATE -0.00511 -0.00482 -0.00698
0.95 C.I. (-0.006 -0.004) (-0.006 -0.004) (-0.009 -0.005)
IPW Model Probit Probit Probit
per 1000 -5.11 -4.82 -6.98

1 Confidence Intervals reported are from Weighted Least Squares (WLS) Regression of outcome of interest

Y on treatment W ( 2 and control variables Z). † IPW with probit results in parantheses.
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Table 3.7: Estimates of ATE of JSY on Survival of Child for a Year: IPW 1

All Rural Urban

National ATE -0.00288 -0.00319 0.00135
0.95 C.I. ( -0.004 -0.002) ( -0.005 -0.002) (-0.002 0.004)
Imbalance 0.135 0.204 0.007
IPW Model Probit Probit Probit
per 1000 -2.88 -3.19 –

High Focus ATE -0.00258 -0.00219 -0.00304
0.95 C.I. (-0.005 -0.001) (-0.004 -0.0001) (-0.008 0.002)
Imbalance 0.084 0.17 0.007
IPW Model Probit Probit Probit
per 1000 -2.58 -2.19 –

Northeast ATE -0.00276 -0.00256 -0.00699
0.95 C.I. (-0.007 0.001) (-0.007 0.002) (-0.015 0.001)
Imbalance 1.145 1.271 0.236
IPW Model SVM SVM Probit
per 1000 – (-5.29)† – (-5.2)† –

Non-High Focus ATE -0.00434 -0.00709 0.00253
0.95 C.I. (-0.006 -0.002) (-0.009 -0.005) (-0.001 0.006)
Imbalance 0.351 0.902 0.148
IPW Model Probit Probit Probit
per 1000 -4.34 -7.09 –

Table 3.8: Estimates of ATE of JSY on Survival of Child for a Year: Doubly Robust2

All Rural Urban

National ATE -0.00261 -0.00287 0.00152
0.95 C.I. (-0.004 -0.001) (-0.005 -0.001) (-0.001 0.004)
IPW Model Probit Probit Probit
per 1000 -2.61 -2.87 –

High Focus ATE -0.0016 -0.0013 -0.00155
0.95 C.I. (-0.004 0.000) ( -0.003 0.001) (-0.006 0.003)
IPW Model Probit Probit Probit
per 1000 – – –

Northeast ATE -0.00648 -0.00623 -0.00517
0.95 C.I. (-0.011 -0.002) (-0.011 -0.001) (-0.013 0.003)
IPW Model SVM SVM Probit
per 1000 -6.48 (-3.0)† -6.23 (-2.8)† –

Non-High Focus ATE -0.00359 -0.00571 0.003
0.95 C.I. (-0.006 -0.002) ( -0.008 -0.003) (-0.001 0.007)
IPW Model Probit Probit Probit
per 1000 -3.59 -5.71 –

1 Confidence Intervals reported are from Weighted Least Squares (WLS) Regression of outcome of interest

Y on treatment W ( 2 and control variables Z). † IPW with probit results in parantheses.
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Table 3.9: Estimates of ATE of JSY on Whether at least 3 Ante-Natal Checks: IPW1

All Rural Urban

National ATE 0.113 0.096 0.067
0.95 C.I. (0.109 0.117) (0.0911 0.101) (0.058 0.077)
Imbalance 0.047 0.183 0.006
IPW Model SVM Probit Probit
% change 24.9 % (20 %)† 23.7 % 9.9 %

High Focus ATE 0.081 0.080 0.065
0.95 C.I. (0.076 0.086) (0.074 0.0853) (0.050 0.080)
Imbalance 0.075 0.155 0.006
IPW Model Probit Probit Probit
% change 25.6 % 27.6 % 13 %

Northeast ATE 0.275 0.293 0.091
0.95 C.I. (0.260 0.290) (0.276 0.310) (0.062 0.121)
Imbalance 1.33 0.815 0.374
IPW Model SVM SVM Probit
% change 52.7 % (34.9 %)† 62.4 % (45.6 %)† 11.8 %

Non-High Focus ATE 0.097 0.111 0.074
0.95 C.I. (0.09120.104) (0.103 0.118) (0.065 0.083)
Imbalance 0.331 0.791 0.146
IPW Model Probit Probit Probit
% change 14.1% 17.4% 9%

Table 3.10: Estimates of ATE of JSY on Whether at least 3 Ante-Natal Checks: Doubly
Robust 2

All Rural Urban

National ATE 0.109 0.105 0.076
0.95 C.I. (0.105 0.113) (0.101 0.109) (0.068 0.084)
IPW Model SVM Probit Probit
% change 18.4 % (17.7 %)† 17.7 % 12 %

High Focus ATE 0.083 0.084 0.065
0.95 C.I. (0.078 0.088) (0.079 0.09) (0.051 0.079)
IPW Model Probit Probit Probit
% change 20.9 % 20.5 % 18.8 %

Northeast ATE 0.175 0.201 0.06
0.95 C.I. (0.16 0.19) (0.184 0.219) (0.031 0.09)
IPW Model SVM SVM Probit
% change 34.1 % (60.2 %)† 35.5 % (60.5 %)† 11 %

Non-High Focus ATE 0.112 0.127 0.079
0.95 C.I. (0.106 0.118) (0.12 0.134) (0.07 0.088)
IPW Model Probit Probit Probit
% change 21.3 % 25.6 % 11.6 %

1 Confidence Intervals reported are from Weighted Least Squares (WLS) Regression of outcome of interest

Y on treatment W ( 2 and control variables Z). † IPW with probit results in parantheses.
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Table 3.11: IPW: ATE of JSY on Any Post-Natal Check within 2 weeks of delivery 1

All Rural Urban

National ATE 0.251 0.281 0.121
0.95 C.I. (0.247 0.256) (0.277 0.286) (0.112 0.130)
Imbalance 0.123 0.183 0.006
IPW Model Probit Probit Probit
% change 60.6% 78.3% 18.3%

High Focus ATE 0.302 0.320 0.168
0.95 C.I. (0.297 0.307) (0.315 0.326) (0.154 0.182)
Imbalance 0.075 0.155 0.006
IPW Model Probit Probit Probit
% change 98.2% 117.4 % 31.9%

Northeast ATE 0.348 0.373 0.212
0.95 C.I. (0.333 0.363) (0.357 0.390) (0.179 0.244)
Imbalance 1.101 1.003 0.213
IPW Model SVM SVM Probit
% change 95.9 % (56.8 %)† 120 % (75.1 %)† 34.3 %

Non-High Focus ATE 0.142 0.154 0.080
0.95 C.I. (0.135 0.149) (0.145 0.162) (0.069 0.091)
Imbalance 0.424 1.226 0.116
IPW Model Probit Probit Probit
% change 22.9 % 27.6 % 10.1 %

Table 3.12: Doubly Robust: ATE of JSY on Any Post-Natal Check within 2 weeks of
delivery 2

All Rural Urban

National ATE 0.256 0.285 0.127
0.95 C.I. (0.252 0.26) (0.28 0.289) (0.119 0.136)
IPW Model Probit Probit Probit
% change 54.3 % 62.1% 22.2%

High Focus ATE 0.301 0.321 0.168
0.95 C.I. (0.296 0.306) (0.316 0.327) (0.154 0.182)
IPW Model Probit Probit Probit
% change 92.2% 114.8% 29.3%

Northeast ATE 0.272 0.306 0.178
0.95 C.I. (0.257 0.288) (0.289 0.324) (0.146 0.211)
IPW Model SVM SVM Probit
% change 74.3% (65.6 %)† 69.6% (61.9 %)† 82.5%

Non-High Focus ATE 0.156 0.18 0.083
0.95 C.I. (0.15 0.163) (0.172 0.188) (0.073 0.094)
IPW Model Probit Probit Probit
% change 36.5% 38.1% 17.2%

1 Confidence Intervals reported are from Weighted Least Squares (WLS) Regression of outcome of interest

Y on treatment W ( 2 and control variables Z). † IPW with probit results in parantheses.
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Table 3.13: IPW: ATE of JSY on Number of Child Checkups within 10 days of delivery1

All Rural Urban

National ATE 0.429 0.493 0.224
0.95 C.I. (0.416 0.443) (0.479 0.507) (0.188 0.259)
Imbalance 0.139 0.209 0.007
IPW Model Probit Probit Probit
% change 41.08 % 57.7 % 11.97 %

High Focus ATE 0.478 0.514 0.216
0.95 C.I. (0.465 0.491) (0.501 0.527) (0.174 0.258)
Imbalance 0.081 0.166 0.007
IPW Model Probit Probit Probit
% change 82.73% 104.68 % 19.13 %

Northeast ATE 0.641 0.825 0.390
0.95 C,I, (0.597 0.686) (0.778 0.872) (0.268 0.513)
Imbalance 0.241 0.903 0.162
IPW Model SVM SVM Probit
% change 88.1% (50.2 %)† 141 % (73.6 %)† 28.2 %

Non-High Focus ATE 0.315 0.328 0.277
0.95 C.I. (0.289 0.341) (0.298 0.357) (0.228 0.327)
Imbalance 0.438 1.181 0.21
IPW Model Probit Probit Probit
% change 17.28% 20.72% 11.22 %

Table 3.14: Doubly Robust:ATE of JSY on Child Checkups within 10 days of delivery2

All Rural Urban

National ATE 0.458 0.514 0.261
0.95 C.I. (0.446 0.47) (0.502 0.527) (0.229 0.292)
IPW Model Probit Probit Probit
% change 35.6% 40.7% 18.1%

High Focus ATE 0.479 0.521 0.21
0.95 C.I. (0.467 0.491) (0.508 0.534) (0.170 0.250)
IPW Model Probit Probit Probit
% change 81.9 % 98.2% 24.3%

Northeast ATE 0.541 0.641 0.276
0.95 C.I. (0.498 0.583) (0.592 0.691) (0.158 0.393)
IPW Model SVM SVM Probit
% change 275 % (209 %)† 134 % (154%)† -49.5%

Non-High Focus ATE 0.379 0.421 0.301
0.95 C.I. (0.356 0.402) (0.394 0.448) (0.255 0.347)
IPW Model Probit Probit Probit
% change 63% 57.6 % 42.4%

1 Confidence Intervals reported are from Weighted Least Squares (WLS) Regression of outcome of interest

Y on treatment W ( 2 and control variables Z). † IPW with probit results in parantheses.
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3.5.4 Discussion

At this point, we note that many of the covariates that we used in the outcome regression in the Doubly

Robust framework had significant impacts on the outcomes of interest. Since the main concern of this

paper is the estimation of ATE, the full regression results for the Doubly Robust estimates are not pre-

sented here.

Our results are on health outcomes are broadly consistent with the findings of Lim et al (2010)’s exact

matching analysis. They found that JSY led to a reduction in perinatal and neonatal deaths and that

the reduction was of a lower magnitude in High Focus states. We studied one related health outcome

(number of still births) and found similar effects. We also studied a different health outcome – infant

mortality and found that the general trends (encouraging results, lower effects in High Focus areas) are

similar for this outcome too.

On the other hand our results differ with Lim et al’s exact matching analysis on behavioral outcomes.

They found an increase in the probability of at least 3 ANC visits caused by JSY and that the increase

was of a greater magnitude in High focus states. While we found that while there is in fact a positive

effect of the scheme on ANC visits, the effects are of similar magnitude across the High focus and the

Non-High focus states4. We also studied two new behavioral outcomes – post-natal care and frequency

of child check-ups.

Although the findings of our analysis are encouraging, this empirical investigation comes with a number

of caveats. First, the validity of our results depends on the quality of the dataset. Since we did not

collect the data firsthand, there may be data quality issues that we cannot account for. Second, the

survey only reports information on the receipt of financial assistance via JSY. It is possible that due

to corruption or inefficiencies, some women who took part in JSY did not receive compensation. Such

a situation would lead us to underestimate the effect of the scheme. Third, despite the large list of

covariates that we considered to control for selection effects, its possible that we missed some unobserved

effects and that we couldn’t control for selection all the way. There are several other possible Propensity

Score related methods that we can use to evaluate the data such as Propensity Score Matching and

Difference in Difference estimation using Propensity Scores that are out of the scope of this paper but

warrant investigation. Finally, all the work on the effect of JSY has been based on the reduced form

approach – a structural estimation model would be a very valuable contribution to the literature.

4Doubly Robust Estimates.
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3.6 Summary and Directions for Future Research

In this chapter we evaluated the effect of one of the world’s largest conditional cash transfer schemes,

India’s Safe Motherhood Scheme on certain health and behavioral outcomes using the Minimum Co-

variate Imbalance criteria in the IPW framework. As per our knowledge this is the first attempt to use

Propensity Score techniques to evaluate the effectiveness of JSY using national level data. We found

that in general JSY had positive effects on both health and behavioral outcomes. The effects varied

a lot across different regions. Health outcome effects were typically smaller in High focus states while

behavioral outcome effects were typically larger in High focus states. We attempted to explain these

regional differences based on the incentive structure of the JSY.

We would like to extend the work in this paper to other techniques that rely on Propensity Scores

for example Matching and Difference in Difference techniques. The work in this paper deals with a

reduced form approach for the estimation of ATE. In the future, we would be very interested in intro-

ducing Machine Learning techniques in structural models of causal inference (for instance the Covariate

Balancing propensity Score framework (Imai and Ratkovic (2013)). We would also like to build results

on the consistency of the estimators introduced in this paper.

On the empirical side, we only covered a small subset of variables from the DLHS dataset. The survey

also recorded a large amount of data on health policy, vaccinations, female reproductive health and

awareness – all of which are critical from a Public Health point of view. We would like to continue

working with the dataset to evaluate the status of health reforms in India. Finally, a structural model

to evaluate the JSY can potentially be a very insightful exercise and we plan to work on developing such

a model in the future.
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