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Abstract 

Sensitive and accurate detection methods are critical for monitoring and managing the spread of 

aquatic invasive species, such as invasive Silver Carp (SC; Hypophthalmichthys molitrix) and 

Bighead Carp (BH; Hypophthalmichthys nobilis) near the Great Lakes. A new detection tool called 

environmental DNA (eDNA) sampling, the collection and screening of water samples for the 

presence of the target species’ DNA, promises improved detection sensitivity compared to 

conventional surveillance methods. However, the application of eDNA sampling for invasive 

species management has been challenging due to the potential of false positives, from detecting 

species’ eDNA in the absence of live organisms. In this dissertation, I study the sources of error 

and uncertainty in eDNA sampling and develop statistical tools to show how eDNA sampling 

should be utilized for monitoring and managing invasive SC and BH in the United States. 

In chapter 2, I investigate the environmental and hydrologic variables, e.g. reverse flow, that may 

be contributing to positive eDNA sampling results upstream of the electric fish dispersal barrier in 

the Chicago Area Waterway System (CAWS), where live SC are not expected to be present. I used 

a beta-binomial regression model, which showed that reverse flow volume across the barrier has a 

statistically significant positive relationship with the probability of SC eDNA detection upstream 

of the barrier from 2009 to 2012 while other covariates, such as water temperature, season, 

chlorophyll concentration, do not. This is a potential alternative explanation for why SC eDNA 

has been detected upstream of the barrier but intact SC have not.  

In chapter 3, I develop and parameterize a statistical model to evaluate how changes made to the 

US Fish and Wildlife Service (USFWS)’s eDNA sampling protocols for invasive BH and SC 

monitoring from 2013 to 2015 have influenced their sensitivity. The model shows that changes to 
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the protocol have caused the sensitivity to fluctuate. Overall, when assuming that eDNA is 

randomly distributed, the sensitivity of the current protocol is higher for BH eDNA detection and 

similar for SC eDNA detection compared to the original protocol used from 2009-2012. When 

assuming that eDNA is clumped, the sensitivity of the current protocol is slightly higher for BH 

eDNA detection but worse for SC eDNA detection. 

In chapter 4, I apply the model developed in chapter 3 to estimate the BH and SC eDNA 

concentration distributions in two pools of the Illinois River where BH and SC are considered to 

be present, one pool where they are absent, and upstream of the electric barrier in the CAWS given 

eDNA sampling data and knowledge of the eDNA sampling protocol used in 2014. The results 

show that the estimated mean eDNA concentrations in the Illinois River are highest in the invaded 

pools (La Grange; Marseilles) and are lower in the uninvaded pool (Brandon Road). The estimated 

eDNA concentrations in the CAWS are much lower compared to the concentrations in the 

Marseilles pool, which indicates that the few eDNA detections in the CAWS (3% of samples 

positive for SC and 0.4% samples positive for BH) do not signal the presence of live BH or SC. 

The model shows that >50% samples positive for BH or SC eDNA are needed to infer AC presence 

in the CAWS, i.e., that the estimated concentrations are similar to what is found in the Marseilles 

pool. 

Finally, in chapter 5, I develop a decision tree model to evaluate the value of information that 

monitoring provides for making decisions about BH and SC prevention strategies near the Great 

Lakes. The optimal prevention strategy is dependent on prior beliefs about the expected damage 

of AC invasion, the probability of invasion, and whether or not BH and SC have already invaded 

the Great Lakes (which is informed by monitoring). Given no monitoring, the optimal strategy is 
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to stay with the status quo of operating electric barriers in the CAWS for low probabilities of 

invasion and low expected invasion costs. However, if the probability of invasion is greater than 

30% and the cost of invasion is greater than $100 million a year, the optimal strategy changes to 

installing an additional barrier in the Brandon Road pool. Greater risk-aversion (i.e., aversion to 

monetary losses) causes less prevention (e.g., status quo instead of additional barriers) to be 

preferred. Given monitoring, the model shows that monitoring provides value for making this 

decision, only if the monitoring tool has perfect specificity (false positive rate = 0%). 
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1 Introduction 

1.1 Motivation 

In the last decade, environmental scientists have been screening water samples from lakes, rivers 

and oceans testing for the DNA of invasive fish and other aquatic species.1–4 This process, known 

as environmental DNA (eDNA) sampling, is based on the premise that aquatic organisms leave 

traces of their DNA in the water as they move through a habitat, and the detection of DNA in a 

water sample should indicate the recent presence of the organism. This technology promises 

improved detection sensitivity and reduced cost compared to conventional monitoring methods, 

like netting and electrofishing.5–9 However, eDNA sampling has also been shown to be able to 

detect trace amounts of eDNA from secondary sources, like fish slime on boat hulls, in the absence 

of live organisms.10 This potential error in monitoring has caused considerable controversy, 

especially in the application of eDNA sampling for monitoring invasive Bighead Carp (BH; 

Hypophthalmichthy nobilis) and Silver Carp (SCC: Hypophthalmichthy molitrix) near the Great 

Lakes.  

BH and SC, both of which are referred to as Asian carp (AC), are voracious high-volume filter-

feeders that collect and consume plant and animal plankton.11 Because of this characteristic, BH 

and SC were imported from Southeast Asia to the southern United States in the 1970s to clean 

algae in commercial fish tanks and retention ponds in wastewater treatment facilities.12 They soon 

escaped via flooding into the Mississippi River, and are out-competing native planktivorous fish 

species.13,14 SC are also notorious for their ability to leap three meters out of the water when 

startled, which has caused injuries to boaters and other recreational water users.13,15 BH and SC 

are continuing to spread up the Illinois, Ohio and Upper Mississippi rivers and now threaten to 
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invade the Great Lakes, putting the region’s fishing, recreational and tourism industries at risk.15 

The primary pathway of invasion into the Great Lakes is the Chicago Area Waterway System 

(CAWS), a series of man-made canals, which connects the Illinois River to Lake Michigan. 

The current invasion status of Asian carp in the Illinois River is shown in Figure 1-1. 16 The Illinois 

River is broken up into a series of pools by lock and dam systems (L&D), which facilitate ship 

movement upstream (Figure 1-1b). In the lower Illinois River (Alton, La Grange and Peoria pools), 

Asian carp species are well-established with verified spawning. Further upstream, in the Starved 

Rock and Marseilles pools, small populations of adult Asian carp, juveniles and larvae have been 

caught. In the Dresden pool, about 47 miles downstream from Lake Michigan, adults have been 

caught, but no spawning has been spotted in this pool to-date. This is considered to be the leading 

edge of Asian carp invasion in the Illinois River, according to conventional monitoring methods. 

In 2002, the US Army Corps of Engineers (USACE) installed an electric fish dispersal barrier near 

the exit of the CAWS, about 37 miles downstream from Lake Michigan, to deter the upstream 

passage of AC, while maintaining the use of the CAWS for navigation and receipt of Chicago’s 

storm water and sewage flows. 
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Figure 1-1. (a) Plan view and (b) elevation profile of the Illinois River from the Mississippi River to Lake 

Michigan with the current invasion front of BH and SC. The Illinois River has been broken up into pools by a 

series of lock and dam (L&D) systems. Each pool of the Illinois River is colored to denote the current state of 

Asian carp invasion: (red) established population, (yellow) some spawning, (green) live adults but no 

spawning, (pink) positive eDNA results but no adults. 
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Then, in 2009, researchers at the University of Notre Dame (UND), in consultation with USACE, 

developed an eDNA sampling protocol to be used as a novel detection tool for AC monitoring. 

Alarmingly, UND found positive samples of BH and SC eDNA throughout the Brandon Road 

pool, the Lockport pool below the barrier and throughout the CAWS well upstream of the electric 

barrier and far upstream of the conventionally-held invasion front.17 The positive eDNA samples 

triggered intensive management efforts by USACE, most extremely, the repeated treatment of the 

CAWS with the fish toxin, rotenone. The first rotenone treatment in the CAWS near the electric 

barrier in December of 2009 found just one AC, an adult BH just downstream of the electric 

barrier.18  A second rotenone treatment, applied in a stretch of the canal just six miles from Lake 

Michigan in May of 2010, yielded 100,000 pounds of dead fish comprising 40 species, but found 

no AC.19  

In 2010, USACE took responsibility for eDNA sampling near the Great Lakes and continued to 

find positive samples of BH and SC eDNA upstream of the electric barrier in the CAWS, triggering 

multiple follow-up intensive capture efforts, which yielded zero AC (Table 1-1). To date, only one 

live AC (a 20-lb BH caught in Lake Calumet by commercial fisherman during regularly-scheduled 

conventional monitoring in June of 2010) has been seen or caught upstream of the barrier in the 

CAWS, despite thousands of hours of regular and triggered electrofishing and netting efforts.20 In 

2013, the U.S. Fish and Wildlife Service (USFWS) took responsibility for eDNA sampling from 

USACE and also continued to find positive samples of eDNA in the CAWS. However, positive 

eDNA sampling results in the CAWS no longer trigger follow-up management actions due to 

increased skepticism about the accuracy of the technique.21  
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Table 1-1. The frequency of positive Bighead Carp and Silver Carp eDNA samples found in the Chicago Area 

Waterway System (CAWS) from 2009 to 2016 

Year 

(Laboratory) 

eDNA samples from Chicago Area Waterway System (CAWS)  

[positive samples/total samples (%)] 

Bighead Carp Silver Carp 

2009 

(UND) 
32/562 (5.7%) 15/562 (2.7%) 

2010 

(UND/USACE) 
4/1182 (0.3%) 17/1182 (1.4%) 

2011 

(USACE) 
24/2362 (0.0%) 34/2362 (1.4%) 

2012 

(USACE) 
4/1194 (0.2%) 153/1194 (13.0%) 

2013 

(USFWS) 
0/398 (0.0%) 21/398 (5.3%) 

2014 

(USFWS) 
1/456 (0.2%) 30/456 (6.6%) 

2015 

(USFWS) 
0/228 (0.0%) 0/228 (0.0%) 

2016 

(USFWS) 
1/228 (0.4%) 1/228 (0.4%) 

The discrepancy between the positive eDNA sampling results and the lack of live Asian carp 

captures upstream of the barrier in the CAWS raised the question: Are the positive eDNA samples 

false positives due to the detection of eDNA in the absence of AC (i.e., detecting eDNA from 

secondary sources) or are the subsequent conventional monitoring methods too insensitive — 

compared to eDNA sampling — to locate a small number of the target species in the CAWS? 

Any effective invasive species monitoring tool requires both high species detection sensitivity and 

specificity. High sensitivity (the probability of detecting species given the species is present) is 

needed to be able to detect the invasive species when they are present at low densities. High 

specificity (the probability of not detecting species given the species is not present) is required to 

have high confidence in positive detections and reliably act upon that information. Conventional 
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monitoring methods, like electrofishing, suffer from poor detection sensitivity, especially for 

monitoring species at very low densities.8,22 In contrast, eDNA sampling has been shown to have 

much higher sensitivity, but may suffer from poor specificity, due to the potential of false positives 

from detecting target eDNA in the absence of the target species.7,8,10,23 The goal of this dissertation 

is to analyze the sources of error and uncertainty of eDNA sampling and evaluate the detection 

performance of eDNA sampling in order to help inform how this tool should be applied for 

invasive species monitoring. 

1.2 Sources of error and uncertainty in eDNA sampling 

1.2.1 Errors in eDNA sampling 

There are two types of errors for any monitoring method: Type I error (false positive) and Type II 

error (false negative). A conventional monitoring method, like fishing, tests the null hypothesis 

that the target species is not present and the alternative hypothesis that the target species is present. 

Here, a false negative is defined as not detecting the target species when present (i.e., falsely 

accepting the null hypothesis), and a false positive is detecting the target species, when it is not 

present (i.e., falsely rejecting the null hypothesis).  

However, eDNA sampling does not see or capture live organisms, but rather it detects their DNA, 

whose source is uncertain, e.g., excreta from live organisms, tissue from dead organisms, transfer 

from outside of system.10,24,25 Therefore, eDNA sampling does not detect the presence of the target 

species but rather the presence of the target species’ DNA. eDNA sampling tests the null 

hypothesis that the target species’ DNA is not present and the alternative hypothesis that the target 

species’ DNA is present. Thus, a false negative is a non-detection of target DNA when the DNA 

is present, and a false positive is a detection of target DNA when the DNA is not present. I define 
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these errors as the “methodological” errors of eDNA sampling. Further information is needed to 

infer whether or not a positive detection of target DNA indicates the presence of the target species. 

In certain scenarios, eDNA sampling is applied where the species is known to be present (e.g., in 

controlled laboratory settings or independent observation of species abundance). Here a correct 

positive detection of eDNA could be assumed to be a detection of the presence of the organism, 

and the methodological sensitivity is equivalent to the sensitivity of detecting the presence of the 

species. However, in most scenarios of aquatic invasive species monitoring, the presence of the 

species is unknown or highly uncertain. Therefore, even if eDNA sampling has high method 

sensitivity (i.e., high probability of detecting the DNA when the DNA is present), it may lead to 

erroneous inferences about species presence, if it detects DNA present in the system from 

secondary sources, but the species is not actually present 

The next section reviews what is currently known about the methodological errors in eDNA 

sampling and the relationship between eDNA presence and species presence in aquatic water 

bodies. 

1.2.2 Methodological errors in eDNA sampling 

1.2.2.1 Errors in sample collection, capture and extraction 

The first step in eDNA sampling is water sample collection and capture. Here, error is introduced 

from the heterogeneous dispersion of eDNA in the water. eDNA may not be collected or captured, 

though present at the sampling location.  

Typically, eDNA researchers have collected water at the sampling location using containers and 

transported them to the lab for capture of the DNA via filtration, centrifugation or precipitation. 

Each method has its own capture efficiency (i.e., the fraction of DNA in the sample that is 
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captured). Studies evaluating the methods differ significantly on which method is most efficient, 

which indicates that the methods may be influenced by the water and target species characteristics 

and thus the optimal method may be application dependent.26–28 

After collection and capture, the eDNA is then extracted and purified to recover as much of the 

eDNA as possible from the filtrate, while removing potential inhibitory materials. Field samples 

often contain substances, such as humic acids from the biodegradation of organic matter, which 

can inhibit the detectability of DNA and thus produce false negatives.29 To mitigate this risk, 

researchers have tested a variety of extraction kits and protocols, each of which has its own 

influence on the amount and quality of eDNA extracted for analysis.30–33 These studies show that 

choosing the optimal extraction kit may also be dependent on the monitoring location and so pilot 

studies are recommended before selecting an extraction method.24 

1.2.2.2 Errors in the detection of target eDNA sequence 

The final step is to screen the extracted eDNA from the water sample for the presence of the 

species-specific DNA sequence using polymerase chain reaction (PCR).17,34 Here, false negative 

errors can occur if there are too few initial molecules of target DNA present in the reaction, which 

lowers the likelihood for the designed primers to bind to the species-specific DNA sequence and 

amplify it. 

Primers are short, created DNA fragments that contain the sequence complementary to the 

beginning of a species-specific DNA sequence (marker). The primers must be designed to be 

species-specific or they will attach to any and all DNA in the sample, causing cross-amplification 

(the amplification of other species’ DNA) and thus false positives. One study showed that the 

presence of similar species’ DNA (bull trout, brook trout, lake trout) can cause cross-amplification 
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or interference due to the similarity in their gene sequences. This work suggests that primers must 

be carefully designed to maximize the number of differences with non-target species’ gene 

sequences.35 However, developing primers with more mismatches often means designing longer 

primers, which can have trouble attaching to the target DNA, especially in environmental samples 

where the DNA may be heavily degraded.  

As the reaction progresses, the copies of the target DNA sequence that are generated become the 

new templates for replication, which sets off an exponential amplification of the target sequence. 

This process has made PCR a very sensitive detection tool, able to amplify just a few molecules 

of the target DNA. However, this high sensitivity creates the risk of contamination and false 

positives, since PCR can react to very small concentrations of target DNA spread inadvertently 

throughout the lab. Lab contamination can be contained through strict clean-lab protocols, 

decontamination procedures and separate labs for DNA extraction and DNA amplification, but it 

is not fool-proof.36  

Currently, the most popular PCR method is real-time or quantitative PCR (qPCR). qPCR measures 

the exponential amplification throughout the PCR process, rather than just evaluating at the end 

via gel electrophoresis. This is done via the addition of sequence-specific DNA probes, which are 

small DNA molecules (like primers) that are complementary to the middle of the target sequence. 

They are labelled with a ‘tag’ that fluoresces (or lights up) only when the target sequence is 

assembled by DNA polymerase.  

One benefit of qPCR, compared to conventional PCR, is that the initial quantity of target DNA in 

the sample can be estimated. The ability to reliably and accurately quantify the amount of initial 

eDNA in the sample is key for providing scientifically rigorous quantitative analysis of eDNA 
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concentration, degradation rate and production rate. However, there is significant measurement 

uncertainty in qPCR. Studies show that for the same sample, the estimated DNA concentrations 

can diverge significantly for different laboratories.30,37 The authors of these studies suggest that 

the high variability is due to human error when developing standard curves and preparing the 

reactions (e.g., pipetting error). 

1.2.3 Uncertainty in the relationship between DNA and species’ presence 

The previous discussion of methodological errors helps evaluate whether or not the target DNA is 

present or not, given eDNA sampling results. However, in order to make correct inferences about 

target species’ presence from eDNA sampling results, i.e., whether a positive detection of the target 

species’ eDNA indicates the recent presence of the live organism at the sampling location, 

decision-makers must understand the relationship between the presence of the target species’ 

eDNA and the presence of the target species in a given water body. The next section reviews what 

is currently known about the manner and rate in which DNA enters the environment from aquatic 

organisms and how eDNA reacts to environmental conditions and variables.  

1.2.3.1 Origin and production of eDNA 

For macro-organisms, like fish, the primary source of eDNA is likely to be cells and tissues in the 

intestinal linings that are sloughed off and excreted with feces.38 eDNA can also be discharged 

through bodily excretions.17,34,39 Klymus found that increasing the amount of available food for 

Asian carp species in an aquarium increased the quantity of eDNA in the water, which suggests 

that eDNA production may be related with metabolism (i.e., fecal matter).40 These sources link the 

presence of target eDNA in the water to the recent presence of the live organism. Researchers have 

uncovered correlation between eDNA concentration and organism abundance for a variety of 
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species (bluegill sunfish, common carp, Idaho salamanders, silver carp and bighead carp) in the 

laboratory and some field settings.40–46 However, this relationship is not always found in the field.47 

Also, upon closer examination of the regression parameters, these are weak correlations with large 

variability.48 This relationship between eDNA concentration and species biomass is also 

complicated by potential alternative sources, such as carcasses, ship hulls carrying fish slime and 

the feces of predators that feed on the target species, which have all been shown to contribute 

enough eDNA for detection.10 

1.2.3.2 Temporal and spatial uncertainty 

Another area of uncertainty is the transport, settling and persistence of eDNA in the water after it 

is released. These processes may mean that target eDNA is not necessarily proximate in space or 

time to an organism. The assumption of proximity can also lead to errors in interpretation. In a 

field study of eDNA transport, Deiner observed that eDNA from two lake dwelling invertebrate 

species was detected approximately 12 kilometers downstream from its lake habitat.49 Another 

field study found that DNA from a caged trout was detected up to 2000 meters downstream.50 

These initial results show that eDNA can be transported significant distances and there is the 

possibility of ‘false’ positives from detecting transported eDNA far away from where the target 

organism is actually present. A recent study of eDNA transport in a mesocosm showed that eDNA 

does not follow the same transport dynamics as a conservative tracer and there is significant 

unexplained variability in how eDNA is transported downstream.51 

eDNA can also settle and accumulate in lake and stream sediments. When Turner took sediment 

and water samples from an artificial pond stocked with common carp, he found much higher 

concentrations of its eDNA in sediment samples, compared to the water samples.52 Also, eDNA 
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in the sediment was detected up to 130 days after the carp were removed, compared to 30 days in 

the water. Based on these results, he postulated that eDNA in the sediment may both degrade more 

slowly compared to eDNA in the water and accumulate. As a result, a release of eDNA from the 

sediment into the water could complicate inferences from eDNA sampling, since eDNA might be 

detected long after the organism has been present. 

Finally, eDNA can persist and accumulate in the water. In most aquatic environments, DNA will 

decay as soon as it is shed, due to ultraviolet (UV) radiation from sunlight that breaks the bonds in 

the DNA molecules or via uptake by microbes in the water.53 However, the speed of degradation 

is still not well understood. In recent freshwater laboratory experiments, researchers found that the 

degradation of eDNA to below the threshold of detectability occurred on a scale of days to 

months.39,54–56 Researchers are interested in knowing the eDNA degradation rate, because a fast 

rate might mean that a positive detection of eDNA is more likely to be associated with the recent 

presence of the species, and not from picking up persistent DNA in the water from past populations 

or downstream transport.53 Significant uncertainty still remains about the mechanisms and rate by 

which eDNA degrades in water bodies, which further complicates inferences from eDNA 

sampling.56–58  

There is considerable uncertainty in the link between eDNA presence and the recent presence of 

the live organism. Unlike conventional surveillance methods, like fishing, where a positive 

detection involves physical capture of a live organism, eDNA sampling cannot conclusively 

determine the presence, abundance, age, gender or size of the target organism. 
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1.3 Dissertation Overview 

In this dissertation, I describe the methods and results of four separate studies (Chapters 2 – 5) 

developing statistical and decision models to inform if and how eDNA sampling should be applied 

for BH and SC monitoring and management near the Great Lakes. 

In chapter 2, I evaluate the relationship of positive SC eDNA samples upstream of the electric 

barrier in the CAWS from 2009-2012 to hydrologic and environmental covariates using a beta-

binomial regression model. The purpose of this analysis is to evaluate if there are alternative factors 

that may be influencing or explaining the presence and detection of SC eDNA upstream of the 

electric barrier in the absence of live organisms.  

In chapter 3, I develop a model of the eDNA sampling process to evaluate the sensitivity of the 

USFWS’ eDNA sampling protocols from 2013 to 2015 as a function of the BH and SC eDNA 

concentration it can detect. This model is applied to determine if changes made to the eDNA 

sampling protocol from 2013 to 2015 impacted the sensitivity of the protocol over this time period, 

which protocol parameters are most influential on the sensitivity of the protocol, and how the 

statistical dispersion of eDNA in the water column influences the sensitivity of eDNA sampling. 

In chapter 4, I apply the model developed in chapter 3 to estimate the eDNA concentration 

distributions (mean and dispersion) of BH and SC in the Illinois River and upstream of the electric 

barrier in the CAWS, from eDNA sampling results collected in 2014. Then, given the estimated 

concentration distributions, I evaluate whether the eDNA concentration in the CAWS in 2014 

indicate BH and SC presence in the CAWS by calculating the similarity of these concentrations to 

concentrations where BH and SC are known to be present and absent in the Illinois River. My 
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model is then utilized to estimate the fraction of positive eDNA samples that is needed to infer BH 

and SC presence in the CAWS. 

In chapter 5, I develop a decision tree model to evaluate the optimal preventative strategy for AC 

invasion in the CAWS, given uncertainty about the expected cost of invasion, the probability of 

invasion and the current state of invasion. Then, the model is applied to evaluate the value of 

information from monitoring for the current state of invasion given a range of perfect to imperfect 

(sensitivity and specificity less than one) monitoring methods.  
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2 The Effect of Hydrology on Silver Carp eDNA Detection in the 

Chicago Area Waterway System  

2.1 Background 

The Chicago Area Waterway System (CAWS) is the primary waterway of concern for possible 

transfer of invasive BH and SC into the Great Lakes.59 The CAWS is a system of man-made canals 

that were built in the early 1900s for the purpose of carrying Chicago’s sewage away from Lake 

Michigan into the Illinois River and to enable boat and barge traffic between these two water 

bodies. Currently, the CAWS transports 1,200 million gallons per day of Chicago’s treated sewage 

effluent across the natural watershed boundary into the Mississippi River drainage system.60 Due 

to the growing risk of invasive species transfer, the USACE installed an electric fish dispersal 

barrier at the exit of the CAWS to prevent the upstream passage of invasive BH and SC, while still 

maintaining the use of the CAWS for Chicago’s water quality management and cargo shipping. 

However, from 2009 – 2012, eDNA sampling in the CAWS found positive samples of BH and SC 

eDNA throughout the CAWS, indicating that invasive BH and SC organisms may have bypassed 

the barrier and invaded the CAWS (Figure 2-1).3,23,61 These positive eDNA results triggered 

intensive management and monitoring upstream of the electric barrier; however, only one live BH 

adult (captured in June 2010) and no SC have been found to date. This raised the possibility that 

the positive samples of BH and SC eDNA in the CAWS may be due to the presence and detection 

of allochthonous eDNA, i.e., eDNA brought in from elsewhere by stream flow, predator feces, 

boats, fish carcasses, and/or sediment.10,24,62,63 
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Figure 2-1. Sites of positive Asian carp eDNA detection in the Chicago Area Waterway System (CAWS) 

connecting Lake Michigan to the Des Plaines River (a tributary of the Illinois River). The typical direction of 

flow is noted with black arrows. The location of the electric fish barrier, wastewater treatment plants, and 

three stream flow gages in the CAWS are also shown. The only live Asian carp observed upstream of the 

electric barrier was one bighead carp caught in Lake Calumet in 2010.  

One possible mode of transport of allochthonous eDNA from the Illinois river into the CAWS is 

simple advection during periods of "reverse flow". By reverse flow I mean water flowing from the 

Illinois River towards Lake Michigan, instead of away from it. This primarily occurs during dry 

weather conditions, when the flow of water out of the CAWS is slowed to meet water level 

regulations for the lake. This causes the water in the canal system to pond. Strong surface winds 

can then move the water in the lakeward direction. At these low flow periods, wastewater effluent 
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discharges (see Figure 2-1) can cause density currents, which can further contribute to the reverse 

flow phenomenon.60 In this chapter, I determine the influence of environmental variables in the 

CAWS, including reverse flow events, on AC eDNA detection in the CAWS, by regressing the 

probability of detection against these variables. 

A number of other environmental conditions have also been associated with the probability of 

detecting eDNA.42,57,64–66 Prior studies that have examined possible relationships between 

environmental variables and eDNA sampling results have used a binomial (logistic) regression 

model for the probability of a positive eDNA detection, which assumes that the eDNA samples 

are independent and identically distributed.9,67,68 I argue that the independence assumption 

probably does not hold for eDNA sampling, because eDNA is likely to be clumped in cells and 

tissues rather than randomly distributed in the environment.69 Therefore, correlation is likely to 

occur between the sampling results in a sampling event. Ignoring such correlation in logistic 

regression type models will underestimate the standard errors of the parameter estimates, and 

covariates may be falsely declared to be statistically significant. Therefore, I use a beta-binomial 

regression model to incorporate this additional correlation.70 

2.2 Methods 

2.2.1 Study Site and eDNA Sampling Results 

eDNA sampling for BH and SC detection was performed in the CAWS from 2009 to 2012. On 

average, 28 samples were collected per sampling event. Most of the eDNA sampling events were 

located near Lake Michigan in the North Shore Channel, the Chicago River, and Lake 

Calumet/Little Calumet River (Figure 2-1). From 2009 to 2012, there were 191 eDNA sampling 

events in these areas comprising 5281 total samples (Table A-1). The sampling was performed by 
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University of Notre Dame researchers from 2009 to May 2010 and then by an interagency group 

led by the US Army Corps of Engineers (USACE) from July 2010 to 2012. I selected the time 

frame of 2009-2012 for this analysis because changes to the eDNA sampling protocol after 2012 

affected its sensitivity and specificity 71 The samples were taken mainly during the months of April 

through October, because the CAWS often freezes in the winter. In total, from 2009 to 2012, 219 

out of 5281 (~4%) samples were positive for silver carp eDNA, and 72 of the 191 sampling events 

(38%) had at least one positive sample of silver carp eDNA. The majority of the positive SC eDNA 

sampling events occurred in 2012 (37 out of 58 events). I analyzed just the SC eDNA sampling 

results because there were too few positive BH eDNA sampling events (10/191, 5%). 

2.2.2 Reverse Flow Volume 

The reverse flow volume into the CAWS prior to each eDNA sampling event was calculated using 

the 10-minute flow data from the USGS stream gage at Lemont, IL (USGS 05536890), the closest 

gage upstream from the electric fish dispersal barrier near Romeoville, IL (see Figure 2-1). Figure 

2-2a shows the full hydrograph from 2009-2012 at Lemont, IL, while Figure 2-2b presents the 

hydrograph for only the reverse flow periods. The corresponding eDNA sampling results are 

shown in Figure 2-2c. In 2009, there were just 48 10-minute periods of reverse flow moving a total 

of 34 million gallons (MG) in the upstream direction. In 2010, there were 125 10-minute periods, 

accounting for 80 MG of reverse flow volume, and in 2011, 287 periods for a total of 239 MG of 

reverse flow volume. In 2012, there was a noticeable increase in reverse flow with a total of 1077 

periods corresponding to a total of 929 MG.  As shown in Figure 2-2c, 2012 was also the year with 

the most frequent SC eDNA detection. 
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Figure 2-2. (a) Hydrograph from USGS stream gage 05536890 at Lemont, IL, (b) a hydrograph of only the 

reverse flows (flow towards Lake Michigan), and (c) the fraction of positive Silver Carp and Bighead Carp 

eDNA samples for all 191 eDNA sampling events in the CAWS from July 2009 to December 2012. 

Because of the irregular nature of the flow reversals in the CAWS above the Lemont gage, I took 

a moving average of the reverse flow volume prior to each eDNA sampling event rather than just 

the reverse flow volume on the day of the sampling event. For each eDNA sampling event, I 

calculated the 30-day average of the daily reverse flow volume, which is the average daily reverse 

flow volume over the preceding 30 days from the sampling date. Other functional forms and 

averages were tested (e.g., 14-day, 60-day, 90-day, etc.), but the 30-day average provided the best 

fit (Table A-2).  

2.2.3 Additional Covariates 

Table 2-1 lists all of the regression variables, including reverse flow volume, that were analyzed 

for their relationship with eDNA detection in the CAWS. For the water level in the CAWS, I 
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obtained gage height data at the USGS stream gage in the Chicago River at Albany Rd (USGS 

05536105). This represents the influence of dilution due to stream volume. I obtained precipitation 

data from the USGS gage in the Little Calumet River at South Holland, IL (USGS 05536290). For 

these two hydrologic variables, I used the 30-day moving average to be consistent with the reverse 

flow variable. 

Table 2-1 Water quality and seasonal variables in the CAWS and their potential relationship with Asian 

Carp eDNA detection 

Variable Units 
Possible relationship with eDNA detection 

in CAWS 

Reverse Flow 

Volume 

30-day moving average of 

daily reverse flow volume 

[million gallons] 

Possible external source of genetic material 

into system. 

May also indicate less dilution of eDNA by 

Lake Michigan water. 

Gage Height 

30-day moving average  of 

daily average gage height 

[feet] 

Higher stream levels may dilute eDNA 

making it more difficult to detect. 

Precipitation 
30-day moving average  of 

daily precipitation [inches] 

Higher precipitation may dilute eDNA 

making it more difficult to detect. 

Season Spring, Summer, Fall 
AC spawning is triggered by high flow 

(typically in the Spring). 

Temperature 
Surface water temperature 

[°Celsius] 

Influences desirability of habitat and signals 

spawning time. 

Influences eDNA degradation rate. 57 

pH none 
Can stress fish if too high or low. 

Influences eDNA degradation rate. 65 

Dissolved 

Oxygen 

Dissolved oxygen 

concentration [mg/L] 
Can stress fish if too low. 

Chlorophyll 
Chlorophyll-a concentration 

[µg/L] 

Indicates presence of algae which is a food 

source. 

Influences eDNA degradation rate. 65 

Other water quality variables, such as pH, water temperature, dissolved oxygen  and chlorophyll-

a concentration, have been shown in past studies to influence eDNA concentration or degradation 

rate.42,57,65,66 To assess the influence of these variables, I obtained ambient water quality data in 

the CAWS from the Metropolitan Water Reclamation District of Greater Chicago’s Ambient 
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Water Quality Monitoring (AWQM) Program. For each eDNA sampling event, I selected the water 

quality data from the monitoring location that was closest in space and time to the location and 

date of the sampling event (Figure A-1). I also considered the season, which has been shown to 

influence Asian carp spawning timing and movement.72,73 Season was modeled using a categorical 

variable for spring, summer and fall. 

2.2.4 Beta-Binomial Regression Model  

Environmental DNA sampling results are typically reported as the number of positive and negative 

samples in a group of samples. The standard statistical model for such a collection of binary 

observations is the binomial regression (BR) model. For the BR model, mij is a binary random 

variable representing the result of sample j (j = 1,2, …. ni) in sampling event i, which has a value 

of 1 if positive, and 0 if negative. yi is the sum of the ni binary variables, mij, which represents the 

number of positive eDNA samples that occurred in sampling event i. If I assume that each of the 

samples is independent and identically distributed, then yi can be modeled with a binomial 

distribution with probability of a positive sample (pi) and the number of samples (ni). The mean of 

this distribution is nipi and the variance of the distribution is nipi(1-pi). 

 𝑦𝑖~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑖, 𝑝𝑖) ( 2-1 ) 

For each sampling event i, there is also a set of related covariates that may influence the probability 

of detection, pi. The probability of a positive sample, pi, can be modeled as a linear function of the 

explanatory variables using a logit link, as shown in equation 2-2. These covariate values are 

represented by the vector xi = (xi1,…xic) for the c covariates in the model. The coefficients in vector 

β represent the influence of each covariate on the log odds of a positive sample.  
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 𝑙𝑜𝑔 (
𝑝𝑖

1−𝑝𝑖
) = 𝒙𝒊 β ( 2-2 ) 

However, for modeling eDNA sampling, I may not want to assume that the samples are 

independent and identically distributed. Therefore, I need an additional parameter to account for 

the possible correlation between the individual samples in a given sampling event. The beta-

binomial (BB) regression model extends the BR model by including a scale parameter ρ, which 

accounts for this correlation. The distribution of the BB model is very similar to the BR model, 

where yi follows a binomial distribution, conditional on the probability of a positive sample (pi*) 

and the number of samples (ni) in each sampling event. However, the BB model gives added 

flexibility by considering pi* as a random variable that also varies between the individual samples 

in each of the sampling events. Equation 2-3 shows the model with yi distributed binomially 

conditional on pi
*, which follows a beta distribution including the parameter ρ to model the extra-

variation.  

 𝑦𝑖~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑖, 𝑝𝑖
∗) 

 𝑝𝑖
∗~𝐵𝑒𝑡𝑎 (

𝑝𝑖

𝜌
,

1−𝑝𝑖

𝜌
) (2-3) 

The mean of this distribution is nipi, as before, but the variance of the distribution is 

𝑛𝑖𝑝𝑖(1 − 𝑝𝑖) {1 + (𝑛𝑖 − 1)
𝜌

1+𝜌
} . The term {1 + (𝑛𝑖 − 1)

𝜌

1+𝜌
} acts as a multiplier for the 

binomial variance. The greater the value for ρ, the larger the variance. If the value is zero, then the 

multiplier value is 1 and the model will converge to a binomial model. I use a logit link for pi (see 

equation 2-2) and an additional log link for ρ (log(ρ)= γ0). I assumed that the ρ value was constant 

and independent of the variables.  
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The regression parameter values for each model were fit using maximum likelihood estimation to 

choose the parameters, β and γ0, for which the observed sampling results (yi’s and ni’s) and the 

covariate values, x, were most likely to occur.74 I also checked to see if a zero-inflated model (i.e., 

a distribution that allows for frequent zero-valued observatiosn) was a better fit for the data, due 

to the high number of sampling events with zero positive samples. The zero-inflated adjustment 

works via a mixture model and an additional parameter, p0, where yi is zero with probability p0 and 

yi is binomial or beta-binomial distributed with probability 1- p0. 
75 The beta-binomial regression 

model out-performed the zero-inflated beta-binomial regression model (Table A-3). 

2.2.5 Model and Covariate Selection  

I first fit the full BR model with all covariates, and then fit a final BR model using only the 

covariates that had a statistically significant relationship (p-value < 0.05) in the full BR model. I 

repeated this for the BB model to see if the BB model out-performed the BR model. I used 

Akaike’s Information Criterion (AIC) to compare the overall fits of all four models. AIC was 

calculated as 2k – 2ln(L), where k is the number of regression parameters including the intercept 

and L is the maximized value of the likelihood function.76 A lower AIC indicates a stronger fit. I 

also tested the covariates for co-linearity by evaluating their Variance Inflation Factor (VIF), 

which measures how much the variance of the estimated regression coefficient is inflated as 

compared to when the variables are not linearly related. There was no significant co-linearity 

identified. All of the models were analyzed using R 3.2.2.77 The R code and dataset used for 

running the analyses can be found in Appendix A. . 
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2.3 Results 

2.3.1 Binomial Regression Model 

Table 2-2 displays the coefficient estimates for the full and final binomial regression models. In 

the full binomial regression model, the variables Reverse Flow Volume (p-value = 5x10-20), 

Precipitation (p-value = 0.026), Temperature (p-value = 0.050), pH (p-value = 0.003) and 

Chlorophyll (p-value = 0.003) had a significant relationship with SC eDNA detection in the CAWS 

at a significance level of 0.05. The variables Gage Height, Season and Dissolved Oxygen were 

not statistically significant. The variables Reverse Flow Volume, Temperature and pH had a 

positive relationship with SC eDNA detection, while Chlorophyll and Precipitation had negative 

relationships. In the final binomial regression model, only these five variables were included, 

which slightly improved the overall fit of the model. 
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Table 2-2. Regression model estimates for the full and final binomial regression model to assess the effect of 

reverse flow volume and other factors on SC eDNA detection in the CAWS from 2009 to 2012. The significant 

covariates (p-value <0.05) are bolded for each model. 

Variable Category 

Results for the binomial regression model 

Full model Final model 

Coefficient SE p-value Coefficient SE p-value 

logit(p)        

Intercept  -10.1 1.31 7.7E-13 -8.91 1.11 1.42E-13 

Reverse Flow 

Volume 
 0.956 0.092 5.0E-20 0.832 0.067 3.1E-26 

Gage Height  0.449 0.324 0.168    

Precipitation  -5.15 2.29 0.026 -2.65 1.80 0.142 

Season Fall       

 Spring -0.243 0.217 0.265    

 Summer 0.389 0.222 0.082    

Dissolved 

Oxygen 
 0.084 0.084 0.322    

Temperature  0.050 0.025 0.050 0.057 0.018 0.002 

pH  0.579 0.196 0.003 0.574 0.160 0.004 

Chlorophyll  -0.116 0.039 0.003 -0.111 0.037 0.004 

Goodness of Fit       

Number of parameters (k) 10 6 

AIC  588 587 

2.3.2 Beta-Binomial Regression Model 

Table 2-3 shows the coefficient estimates for the full and final beta-binomial regression models. 

In contrast to the binomial regression models, only the variable Reverse Flow Volume (p-value = 

1.2x10-8) has a significant relationship with SC eDNA detection at a significance level of 0.05 in 

the full BB model. The variables Precipitation, Temperature, pH and Chlorophyll that were found 

to be significant in the binomial regression model are no longer significant in the beta-binomial 

regression model. The AIC of the full beta-binomial regression model is much lower than the AIC 

of the full binomial regression model (484 vs. 587), showing that the beta-binomial regression 
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model in general is a stronger fit for modeling the probability of SC eDNA detection. Also, the 

scale parameters of both the full and final beta-binomial regression models are statistically 

significant, which shows that there is extra-binomial variation in the data, which is captured in the 

beta-binomial regression model. 

Table 2-3. Regression model estimates for the full and final beta-binomial regression model to assess the effect 

of reverse flow volume and other factors on SC eDNA detection in the CAWS from 2009 to 2012. The 

significant covariates (p-value <0.05) are bolded for each model. 

Variable Category 

Results for the beta-binomial regression model 

Full model Final model 

Coefficient SE p-value Coefficient SE p-value 

logit(p)  
      

Intercept  -6.37 2.03 0.002 -3.67 0.176 5.9E-51 

Reverse Flow 

Volume 
 0.784 0.131 1.2E-8 0.764 0.097 2.9E-13 

Gage Height  0.230 0.494 0.643 
   

Precipitation  -2.94 3.19 0.357 
   

Season Fall 
      

 Spring -0.017 0.366 0.963 
   

 Summer 0.045 0.336 0.893 
   

Dissolved 

Oxygen 
 0.010 0.114 0.930 

   

Temperature  0.034 0.035 0.330 
   

pH  0.273 0.310 0.381 
   

Chlorophyll  -0.074 0.078 0.342 
   

ln(𝜌)  
      

Intercept  -2.27 0.162 4.5E-31 -2.03 0.156 5.5E-28 

Goodness of Fit 
      

Number of parameters (k) 11 3 

AIC  493 484 

For the final beta-binomial regression model, only Reverse Flow Volume (RevVol) is included. 

This model has the lowest AIC of the four tested models and is thus the strongest fit and preferred 
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model. The final beta-binomial regression model equation for the probability of a positive SC 

eDNA sample is logit(pi)= -3.7 + 0.76*RevVol. The shape parameter is ln(ρ) = -2.03 or ρ = 0.131. 

Figure 4 shows a scatter plot of the explanatory variable, RevVol, against the fraction of positive 

SC eDNA samples for all 191 sampling events with the final beta-binomial regression model 

equation plotted over it. The model shows that given that the 30-day average of reverse flow 

volume is zero, the mean probability of a positive sample is 0.025. (Figure 2-3) The 95% 

confidence interval of the probability estimate is from 0 to 0.131. For a 30-day average of reverse 

flow volume of 1 million gallons, the mean probability of a positive sample is 0.052 (CI: 0, 0.212). 

At 4 million gallons, the mean probability of a positive sample is 0.35 (CI: 0.107, 0.641). Thus, a 

positive detection should be less likely (though arguably more alarming) during periods of low 

reverse flow. 
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Figure 2-3. The 30-day moving average of reverse flow volume plotted against the fraction of positive Silver 

Carp eDNA samples for each sampling event from 2009 to 2012. The final beta-binomial regression model 

fitted to the data is also plotted along with its 95% confidence level (dotted lines) 

2.4 Discussion 

In this chapter, I found that reverse flow volume into the CAWS has a significantly positive 

relationship with silver carp eDNA detection from 2009-2012. One explanation for this 

relationship could be that flow reversals are carrying eDNA from below the barrier into the CAWS, 

increasing the likelihood of a positive eDNA detection. This possibility was considered by the 

experts of the Environmental DNA Calibration Study (ECALS), who concluded that flow reversals 

could bring eDNA into the CAWS, but would have an influence only in the half-mile above the 

electric barrier and not near Lake Michigan where the majority of eDNA samples are taken.78 I 

agree with this conclusion, as I found that the periods of flow reversals are infrequent and would 

be unlikely to carry eDNA from below the electric fish barrier 25 miles to the eDNA sampling 

locations near Lake Michigan. A more likely explanation of this relationship is that the amount of 
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reverse flow volume is negatively correlated with the amount of dilution by Lake Michigan water 

of eDNA already present in the CAWS. This implies that there is a minor, sporadic source of AC 

eDNA in the CAWS that is normally diluted to below detection levels by typical flows. 

The positive relationship of eDNA detection probability with reverse flow volume could provide 

an alternative explanation for the jump in positive eDNA samples in 2012 other than an increase 

in live carp presence, which was not corroborated by conventional monitoring and management 

efforts. In 2012, thousands of man-hours were devoted to electrofishing and netting in the CAWS, 

yielding no live SC or BH, despite the increase in eDNA detection.20 One reason for this could be 

that the increased reverse flow volume in the system could have made the small amounts of eDNA 

from external sources (e.g., boat hulls, sewage effluents, etc.) easier to detect in the absence of live 

SC organisms. My expectation is that a statistical model like this could help differentiate between 

a “signal” caused by an actual invasion of Asian carp into the CAWS and “noise” due to changes 

in the stream characteristics of the system. Specifically, a large spike in positive samples during 

periods with no flow reversals in the system is much more worrisome than a large number of 

positive samples during periods with high reverse flow volume.  

The beta-binomial regression model gave a superior fit compared to the binomial regression model 

for eDNA sampling results. This supports the assertion that eDNA sampling may not be an 

independent process and that correlation between the samples must be captured in any statistical 

model of eDNA sampling. The physical explanation of this correlation between the samples is that 

eDNA is most likely not distributed randomly in the environment, but in clumps, e.g. in cells and 

tissue fragments.69 Most statistical models of the probability of eDNA detection and the covariates 

that influence it utilize a binomial or logistic regression model framework. 9,68 In this chapter, I 
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found that covariates, like temperature and pH, which were determined to have a statistically 

significant relationship with eDNA detection probability using a binomial regression model, were 

not significant in the beta-binomial regression model. I recommend that future statistical models 

for eDNA sampling consider the beta-binomial regression model when calculating the probability 

of a positive sample, as a way to account for this clumping, and improve our understanding of 

covariate influence on eDNA detection.  



31 

3 Probabilistic Framework for Environmental DNA Sampling Design 

3.1 Background 

One of the advantages of eDNA sampling compared to conventional survey techniques, such as 

electrofishing and netting, is its high detection sensitivity.7,8,17,22,68,79–81 However, despite its high 

sensitivity, eDNA sampling can still suffer from false negative errors, which should be minimized 

when designing robust eDNA sampling protocols for aquatic invasive species detection and 

management.82,83 Furthermore, as eDNA analytical techniques are rapidly developing, it is not 

uncommon for analytical protocols to be modified during the course of a long-term study. Changes 

in analytical protocols can alter their sensitivity, though this is not typically corrected for or even 

acknowledged.  

As discussed in Chapter 1, eDNA sampling protocols involve multiple steps of analysis and false 

negative errors can arise at each of the steps.82 For example, during water sample collection, false 

negatives can occur if target DNA is not collected in the sample for subsequent laboratory 

analysis.84,85 During the capture and extraction processes, DNA can be lost or diluted.27,28,30,31,58,86 

During the polymerase chain reaction (PCR) DNA amplification process, a false negative can 

occur if the primers do not bind to the target DNA sequences in the sample.30,87,88 

Despite these potential sources of error, many eDNA sampling protocol design choices are made 

on an ad-hoc basis (i.e., ease of use, availability of equipment) rather than from the results of pilot 

studies or other prior analyses.24,89  I present a modeling framework to help eDNA practitioners 

understand how each step of a typical species-specific eDNA sampling protocol influences the 

protocol’s overall sensitivity. This model is composed of a series of mathematical and probabilistic 

equations that characterize an eDNA sampling protocol to estimate the protocol’s sensitivity given 
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a range of target eDNA concentrations. This model can then be applied to screen past or proposed 

changes to an eDNA sampling protocol for their influence on the protocol’s sensitivity.  

Unlike other survey methods, eDNA sampling does not see or capture live organisms, but rather 

it detects their DNA, whose origin is uncertain, e.g., excreta from live organisms, tissue from dead 

organisms, transfer from outside of the system.10,24,25 Therefore, though a positive sample of the 

target eDNA may indicate the presence of a living target organism, it is not conclusive. To compare 

and evaluate the sensitivity of eDNA sampling protocols in the absence of information about target 

species presence, I model the sensitivity of eDNA sampling protocols as a function of the 

concentration of target DNA it can detect, namely, the minimum amount of target DNA that is 

detectable by the eDNA sampling protocol with probability 95%.84  

The model developed in this chapter extends the model of eDNA sampling developed by Schultz 

and Lance and incorporates new understanding about eDNA and new developments in eDNA 

sampling technology.84 I model water sample collection using a negative binomial distribution 

instead of a Poisson distribution, which enables the modeling of a clumped or random distribution 

of eDNA in the water column. I use logistic normal distributions to model the variation in the 

likelihood of successful PCR and quantitative PCR (qPCR) amplification.69 I also include the 

eDNA capture step in this model, which has been shown to cause additional losses in DNA yield.27 

This model is then applied, retrospectively, to investigate the evolution of the US Fish and Wildlife 

Service (USFWS)’s BH and SC eDNA sampling protocols from 2013 to 2015 and evaluate how 

these changes may have influenced the protocol’s overall detection sensitivity. The model is also 

used to explore what changes to the current eDNA sampling protocol would have the most 

potential impact on the protocol’s detection sensitivity. 
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3.2 Methods and Data 

3.2.1 Modeling framework  

Figure 3-1 shows the five steps of a typical species-specific eDNA sampling protocol modeled in 

this paper: (1) collection of eDNA from the water sample; (2) capture, extraction and purification 

of the eDNA into a concentrated elution; (3) preparing the reaction wells for the PCR or qPCR 

assay; (4) amplification of the target DNA marker(s) and (5) the determination of a positive 

sample. The figure also details the key sampling protocol variables that parameterize each step of 

the model. Given the parameters of the eDNA sampling protocol and the concentration distribution 

of target eDNA in the water, the model simulates the probabilistic distribution of the number of 

copies of the target DNA present after each step of the eDNA sampling process and then calculates 

the probability that the DNA is detected in the PCR or qPCR replicates in order to confirm a 

positive sample. 
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Figure 3-1. A schematic of the eDNA sampling process from sample collection to the determination of a 

positive sample. The circles in the center denote the probabilistic representation of the amount of DNA at 

each step and the likelihood of detecting the target DNA. The squares on the right detail the parameters of 

the sampling protocol that influence each step of the process. 

3.2.1.1 Modeling the eDNA distribution in the collected water sample 

For most aquatic macroorganisms, eDNA is likely to be present in the water within cells and 

tissues, rather than as individual DNA molecules.38 I capture the possible distributions of eDNA 

from random to clumped using the two-parameter negative binomial distribution.90  Assuming that 

the target eDNA is distributed in the water body with mean concentration (µ) and dispersion 

parameter (r), I model the number of DNA molecules collected in a sample (Ns) with sample 

volume (vs) as a draw from a negative binomial distribution with mean µvs. 

 𝑁𝑠~ 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚(µ𝑣𝑠, 𝑟) ( 3-1 ) 
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The parameter, r, defines the statistical dispersion of the DNA in the water. As r approaches zero, 

the distribution of DNA becomes more clumped, while as r increases to infinity, the distribution 

converges to a Poisson distribution, indicating that the DNA is randomly distributed. 

3.2.1.2 Modeling the number of eDNA copies after capture and extraction steps 

The eDNA collected in the sample (Ns) is then captured and extracted to isolate the eDNA and 

remove potentially inhibitory substances before PCR analysis. Both steps can cause some losses 

in DNA yield. Different capture techniques (e.g., filtration or centrifugation) have different capture 

efficiencies (ϕc: the fraction of DNA captured from the sample) and different DNA extraction kits 

and protocols have different extraction efficiencies (ϕe: the fraction of DNA successfully extracted 

and isolated from the filtrate or centrifuged material).27,28,30,31,58 

Assuming that each DNA copy in Ns has the same independent probability ϕc of being captured, I 

model the number of DNA copies captured from the sample (Nc) as a binomial distribution with 

probability ϕc and Ns potential copies to be captured. 

 𝑁𝑐 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜙𝑐, 𝑁𝑠)  ( 3-2 ) 

Since Ns is a negative binomial distribution (see equation 3-2), Nc is a compound binomial-negative 

binomial distribution, which can be reduced to a negative binomial distribution with mean µvsϕc 

and dispersion parameter r.91 Using the same assumption for the subsequent extraction step, I 

model the amount of DNA in the eluate (Ne), after accounting for collection, capture and 

extraction, as a draw from a negative binomial distribution with mean µvsϕcϕe and dispersion 

parameter r. 

 𝑁𝑒 ~ 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚(µ𝑣𝑠𝜙𝑐𝜙𝑒 , 𝑟) ( 3-3 ) 
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The sensitivity of the protocol at this stage, i.e. the probability that DNA is successfully collected, 

captured and extracted (θ), is one minus the probability that no DNA is present in the eluate. This 

equation is used later to calculate the overall sensitivity of the protocol. 

 𝜃 = 1 − 𝑃[𝑁𝑒 = 0] = 1 − (
𝑟

𝑟+𝜇𝑣𝑠𝜙𝑐𝜙𝑒
)

𝑟

 ( 3-4 ) 

3.2.1.3 Modeling the number of eDNA copies per PCR well 

The DNA in the eluate (Ne) is diluted by an elution volume (ve) and analyzed using polymerase 

chain reaction (PCR) to detect for the presence of the species-specific DNA sequence or 

marker.17,34 This is done by placing aliquots of the eluate into multiple replicates or wells of the 

PCR-plates. Assuming that the eluate is well-mixed, the amount of DNA in each replicate (Nr) can 

be modeled using a Poisson distribution with mean Nef, where the variable f = vr/ve is the fraction 

of the elution volume (ve) used per reaction well (vr). 

 𝑁𝑟~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑁𝑒𝑓) ( 3-5 ) 

In this model, I assume that there is perfect specificity, i.e. there is zero chance of a positive PCR 

replicate if there is no target DNA present in the eluate. Therefore, I only need to model the 

probability of a positive amplification, assuming that target DNA is present in the eluate. 

Assuming that Ne > 0, the negative binomial distribution for Ne (Equation 3-3) can be approximated 

as a gamma distribution, where the shape term is r and the scale term is r/(µvsϕcϕe). Therefore, 

given that Ne >0, the amount of DNA in each replicate, Nr, is now a Poisson distribution with a 

gamma-distributed mean Nef, which reduces to a negative binomial distribution with mean 

µvsϕcϕef and dispersion parameter r.92 

 𝑁𝑟~ 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚(µ𝑣𝑠𝜙𝑐𝜙𝑒𝑓, 𝑟) ( 3-6 ) 
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3.2.1.4 Modeling the probability of amplification of eDNA in PCR replicates 

The probability of successful PCR amplification in each of the wells depends on the number of 

copies of the target marker present in the replicate for the reaction to successfully occur. Assuming 

that each target DNA copy in the replicate has an equal chance of amplification (ψ), I model the 

number of copies that amplify (Na) as a binomial distribution with probability (ψ) and Nr possible 

copies for amplification.  

 𝑁𝑎 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜓, 𝑁𝑟)  ( 3-7 ) 

Since Nr is a negative binomial distribution (Equation 3-6), Na can be modeled as a compound 

binomial-negative binomial distribution, which again is reduced to a negative binomial distribution 

with mean µvsϕcϕefψ and dispersion parameter r.  

 𝑁𝑎 ~ 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚(µ𝑣𝑠𝜙𝑐𝜙𝑒𝑓𝜓, 𝑟) ( 3-8 ) 

Then, I model the probability of successful amplification in the replicate (p[A]) as the probability 

that at least one copy amplifies or one minus the probability that zero copies amplify. 

 𝑝[𝐴] = 1 − 𝑝[𝑁𝑎 = 0] = 1 − (
𝑟

𝑟+𝜇𝑣𝑠𝜙𝑐𝜙𝑒𝑓𝜓
)

𝑟

 ( 3-9 ) 

3.2.1.5 Modeling the determination of a positive sample 

Given the probability of amplification in each replicate, the probability of a positive sample 

depends on the number of replicates (n) that are tested per sample and how many positive replicates 

are needed. Typically, a sample is determined to be positive, if at least one of the replicates 

successfully amplifies. For this case, the probability of a positive sample (π) would be one minus 

the probability that none of the replicates successfully amplify.  



38 

 𝜋 =  1 − (1 − 𝑝[𝐴])𝑛 ( 3-10 ) 

To calculate the overall detection sensitivity of the protocol (Ω), I combine the probability that the 

protocol successfully collects, captures and extracts the target DNA present in the water body (θ) 

and the probability that the target DNA is successfully amplified in at least one replicate given that 

the DNA is present in the eluate (π). 

 𝛺 =  𝜃 ∗ 𝜋 = [1 − (
𝑟

𝑟+𝜇𝑣𝑠𝜙𝑐𝜙𝑒
)

𝑟

] ∗ [1 − (
𝑟

𝑟+𝜇𝑣𝑠𝜙𝑐𝜙𝑒𝑓𝜓
)

𝑟𝑛

] ( 3-11 ) 

In summary, the model evaluates the detection sensitivity (Ω) conditioned on the parameters of 

the sampling protocol (vs, ϕc, ϕe, ve, vr, ψ, n) and the distribution of eDNA at the sampling location 

(μ, r). 

3.2.2 Evolution of the eDNA Sampling Protocol for Bighead and Silver Carp  

I use this model to evaluate how changes to the eDNA sampling protocol for BH and SC detection 

from 2013 to 2015 have impacted the protocol’s sensitivity. The original protocol (used from 2009 

to 2012), described in Jerde et al., was initially developed and used by the University of Notre 

Dame (UND) in 2009 and later applied by the US Army Corps of Engineers (USACE) for BH and 

SC eDNA sampling from 2010 to 2012.17 In 2013, the USFWS assumed responsibility for BH and 

SC eDNA monitoring and began modifying the protocol each year. The procedures and 

modifications of the BH and SC eDNA protocols for each year are found in Table 3-1.93  
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Table 3-1. The methods used in the Bighead and Silver Carp eDNA monitoring protocol as specified in the 

Quality Assurance Project Plan (QAPP) for the years 2009-2016. The major changes to the protocol each year 

are in bold text. 

Sampling 

protocol 

parameters 

Year (Lab) 

2009-2012 

(UND/ USACE) 

2013 

(USFWS) 

2014 

(USWFS) 

2015-2016 

(USFWS) 

Sample 

volume 
2-L bottle 2-L bottle 2-L bottle 

Five 50-mL 

bottle 

Capture 

method 

Filtration (1.5 µm 

glass filter) 

Filtration (1.5 µm 

glass filter) 

Filtration (1.5 µm 

glass filter) 
Centrifugation 

Extraction 

method 

MoBio® 

PowerWater 
Qiagen DNeasy 

Blood & Tissue 

Qiagen DNeasy 

Blood & Tissue  
IBI Scientific 

gMAX mini 

Elution 

volume 
100 µL 

If 8 or fewer 

filters, then 200 

µL for each filter 

Else 100 µL each 

If 8 or fewer  

filters, then 200 

µL for each filter 

Else 100 µL each 

200 µL 

Reaction 

volume 
1 µL 1 µL 3 µL 3 µL 

Type of 

assay and 

markers 

PCR 

 

SC-PCR 

BH-PCR 

PCR 

 

SC-PCR 

BH-PCR 

qPCR 

 

ACTM1/ACTM

3 

SCTM4/SCTM5 

BHTM1/BHTM

2 

qPCR 

 

ACTM1/ACTM3 

SCTM4/SCTM5 

BHTM1/BHTM2 

Number of 

replicates 
8 8 8 8 

Determining 

a positive 

sample 

The species-

specific marker 

amplifies and is 

successfully 

sequenced in at 

least one replicate 

The species-

specific marker 

amplifies and is 

successfully 

sequenced in at 

least one 

replicate. 

Two AC 

markers and at 

least one of the 

species-specific 

markers amplify 

in at least one 

replicate (does 

not have to be 

same one) 

Two AC  

markers and at 

least one of the 

species- specific 

markers amplify 

in at least one 

replicate (does 

not have to be 

same one) 

 

In the original protocol, UND and USACE took samples using a two-liter bottle, and filtered the 

water through a 1.5 µm glass filter. The DNA was extracted using the MoBio® PowerWater DNA 
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Isolation Kit (PW) and eluted into 100 µL. Then, 1 µL of the elution was placed into each of 8 

replicates test wells. A PCR assay with species-specific markers and primers was used to analyze 

the replicates for the presence of BH and/or SC DNA.17 If there was successful amplification, the 

amplified DNA was sequenced to ensure that the correct species-specific marker had been found.94  

In 2013, the USFWS modified both the extraction method and the elution volume. The change in 

extraction method was motivated by laboratory experiments showing that the Qiagen DNeasy 

Blood and Tissue Kit (DN) yielded more DNA than PW.30 I estimated the extraction efficiency of 

the DN kit and its analogous IBI Scientific gMAX mini kit (used in 2015-2016) from experimental 

data (see Appendix B.2   for more details) using a logistic normal distribution with a mean 

efficiency of 33% and standard deviation of 3%. For comparison, previous studies of protocol 

sensitivity represented the extraction efficiency of the previously-used PW kit using a triangular 

distribution with a median of 15% and a range of 0 to 30%.84 There was also an increase in the 

elution volume (ve), which was initially 100 µL for every sample. In 2013 and 2014, the elution 

volume varied depending on the number of filters used to process the sample. If 8 or fewer filters 

were used, then each of the filters was processed and eluted with 200 µL before being pooled, and 

if 9 or more filters were used, then each of the filters was eluted with 100 µL before being pooled.93 

The elution volume was modeled as a discrete probability distribution using this rule and actual 

records of the number of filters used per sample by USFWS (see Figure B-1). The distribution has 

a mean of 688 µL with a standard deviation of 340 µL. 

For the initial PCR assay and PCR markers (SC-PCR, BH-PCR) used from 2009 to 2013, a sample 

was determined to be positive if the species-specific marker amplified and was successfully 

sequenced in at least one replicate. The likelihood of amplifying or sequencing a single copy of 
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each PCR marker (ψ) was modeled as a logistic normal distribution and fit using experimental data 

(see Table B-3 and Table B-4). For the BH-PCR and SC-PCR markers, 100% mean amplification 

probability is achieved at around 10 target DNA copies in the replicate (Figure B-2). To achieve 

100% sequencing probability, ~100 copies are needed in the replicate for the BH-PCR marker and 

~10 copies are needed for the SC-PCR marker. 

To include the additional sequencing step in the PCR assay for BH and SC eDNA analysis, I 

adapted Equation 3-10 in the model to be the probability that at least one replicate amplifies the 

target species-specific marker (p[A]) and is successfully sequenced (p[S]), or one minus the 

probability that none of the replicates do both. Thus, the probability of a positive sample for the 

PCR assay given that target DNA is present in the eluate (π) is modeled as shown below in 

Equation 3-12. 

 𝜋 = 1 − (1 − 𝑝[𝐴𝑆𝐶𝑃𝐶𝑅] ∗ 𝑝[𝑆𝑆𝐶𝑃𝐶𝑅])𝑛 ( 3-12 ) 

In 2014, a qPCR assay was introduced along with a new suite of species-specific markers (primers 

and probes).87,95 Because of the genetic similarity between BH and SC, two markers were designed 

to detect both species (ACTM1, ACTM3) and four additional markers were designed to be species-

specific to BH (BHTM1, BHTM2) and SC (SCTM4, SCTM5). To model the likelihood of 

amplifying or sequencing a single copy (ψ) for the new markers, I fit new experimental data testing 

these new markers to logistic normal distributions (Table B-5).87 For the six qPCR markers, 100% 

mean amplification probability is achieved between 3-10 copies per replicate (Figure B-4). 

Along with the change to the qPCR assay, the reaction volume (vr) increased from 1 to 3 µL and 

the criterion for determining a positive sample changed. Subsequently, both Asian carp-specific 

markers and at least one of the two species-specific markers had to amplify in at least one of the 
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replicates. These did not have to occur in the same replicate. Equation 3-13 shows the probability 

of a positive sample for the qPCR assay given that target DNA is present in the eluate (π), 

modifying Equation 3-10 of the model. 

𝜋 = {1 − (1 −  𝑝[𝐴𝐴𝐶𝑇𝑀1])𝑛} ∗ {1 − (1 −  𝑝[𝐴𝐴𝐶𝑇𝑀3])𝑛} ∗ 

 {1 − [(1 −  𝑝[𝐴𝑆𝐶𝑇𝑀4]) ∗ (1 − 𝑝[𝐴𝑆𝐶𝑇𝑀5])]𝑛}  (3-13) 

In 2015, USFWS changed the DNA capture method and the sample volume (vs) from filtering a 

2-L water sample using a 1.5 μm filter to centrifuging and combining the pelleted material from 

five 50-mL tubes (250-mL total). Estimated capture efficiencies (ϕc) for the initial filtration 

method and current centrifugation method were modeled as logistic normal distributions using 

experimental data (see Appendix B.2  ). The estimated capture efficiency for filtration is 3.7% 

with a standard deviation of 1.1% and the estimated capture efficiency for centrifugation is 6.4% 

with a standard deviation of 1.8%. Also, the elution volume (ve) was decreased and standardized 

to 200 µL per sample.  

3.2.3 Analyzing the influence of changing eDNA sampling protocols over time on BH and SC 

detection sensitivity 

Given each year’s sampling protocol parameters, I used the model to simulate each step of the 

eDNA sampling process to calculate the protocol’s overall detection sensitivity (Ω = θ*π) over a 

range of mean eDNA concentrations (µ) for both species. Because of uncertainty in the r 

parameter, I varied the r parameter parametrically to simulate both a random and a clumped 

distribution of eDNA in the water column. The random distribution was simulated by specifying 

r = 100, which approximates a Poisson distribution. The clumped distribution was simulated by 

specifying r = 0.3, which is the value of r estimated by Furlan et al. for eDNA from the Oriental 
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weatherloach. I then used the model results to calculate and compare the minimum mean 

concentration that is detectable with probability 95% by each of the eDNA sampling protocols. A 

lower value of this number reflects a greater ability to detect lower concentrations and thus a higher 

overall detection sensitivity of the protocol. The model is also used to explore how future changes 

to different parameters of the sampling protocol, such as the sample volume, elution volume, 

capture and extraction efficiencies, the number of replicates, and reaction volume, would affect 

the detection sensitivity of USFWS’ current BH and SC protocol.  

I used Monte Carlo simulations to perform the sensitivity calculations with 10000 sample 

iterations. This was done to model the uncertainty in the overall sensitivity calculations resulting 

from uncertainties in the values of model parameters. All of the models were run using R 3.2.2.77 

3.3 Results 

3.3.1 Comparing the detection sensitivity of each year’s eDNA sampling protocols 

I compare the sensitivity of each protocol change to the original protocol in Figure 3-2. It shows 

the overall probability of a positive sample (Ω) for each year’s sampling protocol, as a function of 

the mean target eDNA concentration (µ) for both species, when the dispersion parameter r is set 

equal to 100 to simulate a random distribution of eDNA in the water column. The curves for the 

original 2009-2012 protocol are shown in gray. The curves show that the sensitivity of the 

sampling protocols fluctuated over the years. In 2013, there is a decrease in the sensitivity of the 

protocol, as seen by the shifting of the curves to the right. In 2014, the curves shift to the left 

showing a significant improvement in sensitivity compared to the original protocol. This shift is 

larger for BH compared to SC. Then, in 2015, the curves shift slightly back to the right for both 

species, indicating a loss of sensitivity. For BH, the sensitivity of the protocol in 2015 is better 
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than the original protocol, while for SC, the sensitivity is comparable. The protocol with the highest 

sensitivity was that used in 2014.  

 
Figure 3-2. The simulated per-sample detection sensitivity for (a) Bighead Carp and (b) Silver Carp eDNA as 

a function of mean eDNA concentration for each year’s sampling protocol. It is assumed that the eDNA was 

randomly distributed (r = 100). The sensitivity of the 2009-2012 protocol is shown in gray in the other plots 

for comparison. The solid line is the mean value and the dashed lines represent the 95% credible intervals of 

the estimated detection sensitivity. 

I also quantify the sensitivity of each year’s eDNA sampling protocols as the minimum mean 

eDNA concentration in the water body detectable with probability 95%. Table 3-2 shows this 

minimum concentration after each specific change made to the protocols in each year. From 2012 

to 2013, the overall loss of sensitivity (i.e., an increase in the minimum mean concentration 

detectable with probability 95%) from 47,900 to 110,000 copies/L for SC and 182,000 to 424,000 
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copies/L for BH was primarily due to the larger elution volume, which caused additional dilution 

of the eDNA. This overwhelmed the improvement in efficiency from the change in extraction kits. 

From 2013 to 2014, the qPCR assay and new markers improved the sensitivity for detecting BH 

to approach the sensitivity for detecting SC at 114,000 copies/L. However, there was very little 

improvement in the sensitivity for detecting SC with the new markers. The increase in reaction 

volume in 2014 also improved the sensitivity of both BH and SC to 38,000 copies/L. From 2014 

to 2015, the gains in sensitivity due to the reduction in elution volume (38,000 copies/L to 9,300 

copies/L) and the switch to centrifugation (9,300 copies/L to 5,400 copies/L) was not enough to 

compensate for the loss in sensitivity caused by the smaller sample volume (5,400 copies/L to 

43,500 copies/L). Comparing the detection sensitivity of each year’s eDNA sampling protocols 

assuming r = 0.3 
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Table 3-2. The minimum mean eDNA concentration in the water body detectable with probability 95% after 

each change in the sampling protocol for both carp species, assuming that the eDNA was randomly 

distributed and unclumped (r = 100). The point value is the mean value and the values in parentheses 

represent the 95% credible interval. 

 

 

Year 

Change in sampling protocol Minimum mean eDNA concentration detectable 

with probability 95% [copies/L] 

Bighead Carp Silver Carp 

2009-2012 Initial CAWS field sampling 

protocol 

182,000  47,900 

(44,000 – 527,000) (11,000 –120,000) 

2013 PowerWater® Kit replaced  

with DNEasy Kit 

51,800 12,900 

(25,000 – 89,000) (6,300 – 21,000) 

Elution volume increased  

from 100 µL to ~700 µL 

424,000 110,000 

(74,000 – 875,000) (18,000 – 198,000) 

2014 cPCR replaced with qPCR and 

introduced new markers 

114,000 114,000 

(12,000 – 296,000) (12,000 – 296,000) 

PCR reaction volume increased 

from 1 to 3 µL 

38,000 38,000 

(4,000– 99,000) (4,000– 99,000) 

2015-2016 Elution volume reduced  

from ~750 µL to 200 µL 

9,300 9,300 

(2,500– 20,000) (2,500– 20,000) 

Filtration replaced with 

centrifugation 

5,400 5,400 

(1,500 – 14,000) (1,640 – 14,000) 

Sample volume reduced  

from 2 L to 0.25 L 

43,500 43,500 

(12,000 – 112,000) (11,500 – 112,000) 

When I assume the DNA is clumped (r = 0.3), the fluctuation in the sensitivity of the protocol over 

time stays relatively the same (Figure 3-3). However, in comparison to the estimates of detection 

sensitivity when assuming the DNA is randomly distributed (r = 100), the curves are shifted and 

stretched to the right, meaning that larger mean concentrations of target DNA are needed to achieve 

the same detection probability when the DNA is assumed to be clumped.69 
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Figure 3-3. The simulated per-sample detection sensitivity for (a) Bighead Carp and (b) Silver Carp eDNA as 

a function of mean eDNA concentration for each year’s sampling protocol. It is assumed that the eDNA was 

clumped (r = 0.3). The solid line is the mean value and the dashed lines represent the 95% credible intervals 

of the estimated detection sensitivity. 

This can also be seen in the minimum mean eDNA concentration in the water body detectable with 

probability 95% after each specific change made to the protocols, shown in Table 3-3. The mean 

eDNA concentrations needed for detection are ~10x larger when assuming a clumped distribution 

rather than a random distribution of eDNA. There are a few more noticeable changes. The loss in 

sensitivity from 2014 to the current 2015-2016 protocol is much more severe, in fact, causing the 

sensitivity for SC detection to drop lower than the original 2009-2012 protocol. 
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Table 3-3. The minimum mean eDNA concentration in the water body detectable with probability 95% after 

each change in the sampling protocol for both carp species, assuming that the eDNA was clumped (r = 0.3). 

The point value is the mean value and the values in parentheses represent the 95% credible interval. 

 

 

Year 

Change in sampling protocol Minimum mean eDNA concentration detectable 

with probability 95% [copies/L] 

Bighead Carp Silver Carp 

2009-2012 Initial CAWS field sampling 

protocol 
1,770,000 935,000 

(531,000 – 6,200,000) (316,000 – 3,540,000) 

2013 PowerWater® Kit replaced  
with DNEasy Kit 

574,000 327,000 

(309,000 – 986,000) (186,000 – 566,000) 

Elution volume increased  
from 100 µL to ~700 µL 

2,650,000 948,000 

(676,000 – 5,700,000) (305,000 – 1,910,000) 

2014 cPCR replaced with qPCR and 

introduced new markers 
565,000 565,000 

(191,000 –1,220,000) (191,000 –1,220,000) 

PCR reaction volume 

increased from 1 to 3 µL 
341,000 341,000 

(171,000 – 650,000) (171,000 – 650,000) 

2015-2016 Elution volume reduced  
from ~750 µL to 200 µL 

281,000 281,000 

(161,000 – 486,000) (161,000 – 486,000) 

Filtration replaced with 

centrifugation 
163,000 163,000 

(89,000 – 288,000) (89,000 – 288,000) 

Sample volume reduced  
from 2 L to 0.25 L 

1,310,000 1,310,000 

(714,000 – 2,310,000) (714,000 – 2,310,000) 

3.3.2 Analysis of future changes to sampling protocol 

The model is also used to analyze how changes to the current BH and SC eDNA sampling protocol 

could improve the overall sensitivity for future eDNA sampling protocols. Figure 3-4 describes 

how modifications to six of the eDNA sampling protocol parameters (sample volume, capture 

efficiency, extraction efficiency, elution volume, reaction volume, and the number of replicates 

per sample) would change the per-sample detection sensitivity of the SC eDNA sampling protocol, 

assuming that the DNA is randomly dispersed (r = 100). The figure plots the mean SC eDNA 

concentration detectable with 95% probability using the current eDNA sampling protocol for a 

range of different values of each parameter holding all other values constant. The circles on each 
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plot mark the sensitivity of the current protocol for SC eDNA sampling at 41,700 copies/L, as 

shown in Table 3-2.  

 
Figure 3-4. The minimum mean Silver Carp eDNA concentration in a water body that is detectable with per-

sample detection sensitivity of 95% over a range of (a) sample volume, (b) capture efficiency, (c) extraction 

efficiency, (d) elution volume (e) reaction volume, and (f) number of replicates. The current sensitivity is 

noted with a circle at 41,700 copies/L for the 2015-2016 sampling protocol, which is a sample size of 0.25 

liters, capture efficiency of 6.4%, extraction efficiency of 33%, elution volume of 200 µL, a reaction volume of 

3 µL and 8 replicates. For each graph, only the parameter of interest was changed while the other parameters 

were kept constant. It is assumed that the eDNA was randomly distributed and unclumped (r = 100). The 

solid line denotes the mean value while the dashed lines represent the 95% credible interval. 

Larger sample volumes, higher capture and extraction efficiencies, larger reaction volumes, 

smaller elution volumes and higher number of replicates will improve overall sensitivity. The 

asymptotes of the plots capture the maximum potential improvement in sensitivity for each of the 

parameters for the current protocol. For extraction efficiency, reaction volume and the number of 

replicates, the maximum achievable sensitivity levels out at around 20,000 copies/L. By 
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comparison, for sample volume and capture efficiency, the curve levels out at around 2,000 

copies/L. When comparing percentage changes to each protocol parameter, the model shows that 

for most of the parameter values, the same percentage change will have the same impact on the 

overall sensitivity, e.g., a 10% increase in sample volume has the same mathematical effect as a 

10% increase in capture efficiency (Figure B-6). 

However, if the eDNA is assumed to be clumped (r = 0.3), the parameters that are upstream or 

earlier in the process (e.g., sample volume) have much greater effect than those parameters that 

are downstream or later in the process (e.g., reaction volume and elution volume), which have little 

effect (Figure 3-5). This is also seen when analyzing percentage changes to each of the parameters, 

which shows that sample volume, capture efficiency and extraction efficiency have far greater 

influence than reaction volume, elution volume or number of replicates on the sensitivity of the 

protocol, when the eDNA is assumed to be clumped (Figure B-7). 
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Figure 3-5. The minimum mean Silver Carp eDNA concentration in a water body that is detectable with per-

sample detection sensitivity of 95% over a range of (a) sample volume, (b) capture efficiency, (c) extraction 

efficiency, (d) elution volume (e) reaction volume, and (f) number of replicates. The current sensitivity is 

noted with a circle at 1,320,000 copies/L for the 2015-2016 sampling protocol, which is a sample size of 0.25 

liters, capture efficiency of 6.4%, extraction efficiency of 33%, elution volume of 200 µL, a reaction volume of 

3 µL and 8 replicates. For each graph, only the parameter of interest was changed while the other parameters 

were kept constant. It is assumed that the eDNA was clumped (r = 0.3). The solid line denotes the mean value 

while the dashed lines represent the 95% credible interval. 

3.4 Discussion 

This chapter describes a model that can be utilized to evaluate the sensitivity of an eDNA sampling 

protocol and to estimate the gains or losses in sensitivity from past and future modifications to the 

protocol. Applied to the example of invasive BH and SC eDNA sampling by USFWS near the 

Great Lakes, the model quantified how the changes made to the eDNA sampling protocols from 

2013 to 2015 have both improved and impaired the protocol’s overall sensitivity. Assuming that 

the eDNA is randomly distributed (r = 100), the changes to the protocol greatly improved the 

sensitivity for BH eDNA detection and slightly improved the sensitivity for SC eDNA detection 

relative to the original protocol. If the eDNA is clumped (r = 0.3), the sensitivity for BH eDNA 
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detection has improved, but the sensitivity for SC eDNA detection has worsened. The most 

sensitive protocol in either scenario was the one in effect in 2014. 

The overall loss in sensitivity for the current sampling protocol in comparison to the most sensitive 

2014 protocol was primarily caused by the decrease in sample volume from 2 L to 0.25 L. This 

model shows that the protocol parameters upstream of the eDNA sampling process will influence 

and limit the amount of target DNA that is available for the following PCR analysis step, especially 

if the eDNA is clumped. Most research in improving the sensitivity of eDNA sampling protocols 

has focused on the development of more sensitive PCR-based detection platforms, like droplet-

digital PCR (ddPCR) and laser transmission spectroscopy (LTS), which are potentially able to 

detect down to one copy of the target DNA.81,96–98 This model shows that these new PCR-based 

methods will be affected by the sampling protocol design choices earlier in the process.58  eDNA 

practitioners interested in maximizing the sensitivity of their eDNA survey should look at the 

entirety of their eDNA sampling protocol. 

Also, the model shows that the eDNA distribution impacts which parameters are most influential 

on the sensitivity of the protocol. In the model equations, the upstream protocol parameters 

(sample volume, capture efficiency, extraction efficiency) have influence on the probability of 

collecting, capturing and extracting eDNA (Equation 3-4) and the probability of amplification 

(Equation 3-9), while the parameters later in the process (reaction volume, elution volume, number 

of replicates) only influence the probability of amplification. However, when the eDNA is 

randomly distributed (r = 100), the probability of collecting eDNA is very likely to be one at high 

eDNA concentrations, regardless of the protocol parameter values. Thus, if eDNA is randomly 

distributed, the overall sensitivity is influenced solely by the probability of amplification, where 
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all of the protocol parameters have similar influence. In comparison, if the eDNA is clumped, θ is 

typically less than 1, even at high mean concentrations. For example, given the current protocol 

parameter values, when µ = 100,000 copies/L, the value of θ is 1 when r = 100, but 0.89 when r = 

0.3 Therefore, if eDNA is clumped, changes to the upstream protocol parameters have significantly 

more influence on the overall sensitivity of the protocol than changes to the downstream protocol 

parameters. 

This model also shows the importance of including the capture and extraction steps when 

quantifying and evaluating the sensitivity of eDNA surveys.27,31 In Schultz and Lance’s work 

evaluating the sensitivity of the original 2009-2012 BH and SC protocol, they estimate a minimum 

mean concentration of ~4,200 copies/L for BH and ~1,100 copies/L for SC to achieve a 95% per-

sample detection probability.84 In comparison, my updated model estimates the minimum mean 

concentration at ~176,000 copies/L for BH and 46,200 copies/L for SC. This large decrease in the 

sensitivity is caused by including the losses from the filtration step (capture efficiency = ~3.7%), 

which was not included in Schultz and Lance’s model. Another model in the literature (Furlan et 

al.’s for evaluating the sensitivity of eDNA sampling for Oriental weatherloach) does not include 

the losses from either the capture or extraction processes and thus estimates a minimum mean 

concentration of just ~60 copies/L to achieve a 95% per-sample detection probability.69 My model 

shows that the capture and extraction steps cause significant losses in eDNA yield, and thus must 

be included when evaluating and comparing the sensitivity of different eDNA sampling 

protocols.27,28,31  
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4 Estimation of surface water eDNA concentrations based on statistical 

models of eDNA sampling protocols 

4.1 Background 

Chapter 3 answered the question of how the sampling and analytical protocol for eDNA sampling 

affects the ability to detect the target eDNA when present. However, this does not address the 

question of whether positive BH or SC eDNA samples indicate the presence of Asian carp in the 

CAWS and other sampling locations near the Great Lakes. Unlike other surveillance tools, eDNA 

sampling does not capture or spot live organisms. Therefore, when species presence is unknown 

or unlikely, e.g. in most invasive species monitoring situations, it is difficult to interpret whether 

a positive detection of the target species’ DNA is due to live organismal presence or due to 

alternate vectors of target eDNA, e.g. boat hulls carrying fish slime, stream flow, etc., that are 

detectable in the absence of the species.99  

Currently, the most commonly-used statistical model for interpreting species presence from eDNA 

sampling data is the site occupancy model, which estimates the probability that the target species 

is present at the monitoring site (occupancy probability) based on the sensitivity of the eDNA 

sampling method and the eDNA sampling results.67,100–102  The most common version of this model 

is the three-stage site occupancy model for eDNA sampling, which estimates the probability of 

occupancy of the target species by accounting for both the probability the sample collects the 

eDNA when present at the sampling location (availability probability) and the probability it 

successfully detects the eDNA when collected (detection probability). 

However, this modeling framework implicitly assumes that if the target species’ DNA is present 

and detected at the sampling location, then the target species must then be present. I propose that 
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this is an incorrect assumption when interpreting eDNA sampling results, because of the 

aforementioned uncertainty about the origin of eDNA. In this chapter, I use the statistical model 

(from Chapter 3) to interpret eDNA sampling results not as a function of target species presence 

but as a function of the concentration of target species’ eDNA and the ability of the eDNA 

sampling protocol to detect that eDNA concentration.84,103 This model estimates the concentration 

distribution of the target species’ eDNA in the sampled water body from the eDNA sampling 

results, rather than species’ occupancy.103 

I use this model to analyze the U.S. Fish and Wildlife Service (USFWS)’s AC eDNA sampling in 

the Illinois River below the electric barrier and the CAWS upstream of the electric barrier in 2014. 

The model is used to estimate the AC eDNA concentration distributions in the Illinois River 

downstream of the electric barrier in the La Grange, Marseilles and Brandon Road pools and in 

the CAWS upstream of the electric barrier. BH and SC are known to be present in the La Grange 

and Marseilles pool but absent in the Brandon Road pool. Then, I estimate whether BH and SC 

are present or absent in the CAWS by calculating the similarity of the estimated eDNA 

concentration distributions in the CAWS to the eDNA concentration distributions in the pools 

below the barrier with known AC presence (Marseilles) and absence (Brandon Road).  

4.2 Methods 

4.2.1 eDNA Study Site and Sampling Results 

In Spring of 2014, US Fish and Wildlife Service (USFWS) collected water samples at three  

sampling locations below the barrier in the Illinois Waterway to test for the presence of AC eDNA: 

(1) La Grange pool (141 to 218 miles downstream from the electric barrier), (2) Marseilles pool 

(29 to 53 miles downstream from the electric barrier), where adult Asian carp have been caught 
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and some spawning has been observed; and (3) Brandon pool (7 to 12 miles downstream from the 

electric barrier) where there have been no live captures of either BH or SC.21  

At each location, USFWS collected 25 250-mL samples, which were processed using 

centrifugation, and 25 2-L samples, which were processed using filtration. The DNA captured 

from each sample by centrifugation or filtration was then extracted using the Qiagen DNEasy 

Blood & Tissue Kit and analyzed using quantitative PCR (qPCR) to quantify the total number of 

copies of the target eDNA in the sample. USFWS tested for the presence and quantity of six Asian 

carp-specific DNA sequences (markers) in each sample. Two of the markers are specific to both 

BH and SC (AC-TM1 and AC-TM3), two of the markers are specific to just BH (BH-TM1 and 

BH-TM2) and two markers are specific to just SC (SC-TM4 and SC-TM5. Details about the six 

species-specific markers and associated primers used for AC eDNA detection using qPCR can be 

found in Farrington et al.104 The average copy number of each marker per sample collected from 

these three pools are found in Table 4-1. 
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Table 4-1. The mean number of copies of each of the target markers in the eight qPCR replicates tested per 

sample (AC-TM1, AC-TM3, BH-TM1, BH-TM2, SC-TM4, SC-TM5) from each combination of sampling 

location (Marseilles pool, Brandon Road pool) and capture method (filtration or centrifugation). 25 samples 

were analyzed for each combination. 

Sampling 

location 

Capture 

method 

Mean number of copies of the target marker  

AC-

TM1 

AC-

TM3 

BH-

TM1 

BH-

TM2 

SC-

TM4 

SC-

TM5 

La Grange 

pool 

Filtration 180 71 17 35 41 224 

Centrifugation 600 470 20 28 330 590 

Marseilles 

pool 

Filtration 50 40 18 13 19 30 

Centrifugation 23 17 2.3 3.0 17 25 

Brandon 

Road pool 

Filtration 0.33 0.23 0 0 0 0 

Centrifugation 5.0 6.0 2.2 4.4 1.4 1.9 

In June 2014, USFWS collected and analyzed 228 samples from the CAWS to test for the presence 

of AC eDNA upstream of the electric barrier near Lake Michigan. These samples were processed 

via filtration and the DNA was extracted using the DN kit. Then, the extract was analyzed using 

qPCR. However, these samples taken in the CAWS are analyzed and reported only as the number 

of samples that are positive and negative for BH or SC eDNA, rather than the quantitative copy 

numbers of the six species-specific markers tested in the qPCR replicates. A sample is determined 

to be positive for BH, if both AC-specific markers and at least one BH-specific marker is present 

in the sample, and a sample is determined to be positive for SC, if both AC-specific markers and 

at least one SC-specific marker is present in the sample. One out of the 228 samples tested positive 

for BH and 7 out of 228 samples tested positive for SC. 

4.2.2 Bayesian Model Framework 

To estimate the concentration distributions of the six species-specific DNA markers at a given 

sampling location from the eDNA sampling data, I model the expected number of copies of each 
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marker that is present after each step of the eDNA sampling process (water sample collection, 

DNA capture and extraction into elution, preparation of qPCR reaction wells and amplification), 

given the initial eDNA concentration at the sampling location. The choice of sampling protocol 

variables (e.g., centrifugation or filtration) influence how much DNA is present after each step of 

the protocol and ultimately the amount of DNA that is detected and/or quantified in each of the 

qPCR replicate wells. The following model framework descriptions are based on the model 

described in Chapter 3. 

4.2.2.1 Estimating eDNA concentration distributions in the Illinois River using qPCR copy 

number data 

Let’s assume that for a given sampling location j, there is a concentration distribution of each target 

marker i with mean concentration, µij, and dispersion parameter, r. I assumed that the eDNA would 

be distributed similarly for each target marker and at each sampling location. I model the number 

of copies of each marker i collected in each sample k from sampling location j, as a two-parameter 

negative binomial random variable, which depends on the concentration distribution of the marker 

(µij, r) and the sample volume (vs). 

 𝑎𝑖𝑗𝑘 ~ 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚(µ𝑖𝑗𝑣𝑠, 𝑟) ( 4-1 ) 

Then, the DNA collected in each sample is captured and extracted and placed in an elution volume. 

This depends on the capture efficiency (ϕc) and the extraction efficiency (ϕe). The number of 

copies of each marker i collected in each sample k from sampling location j after capture and 

extraction (eijk) can also be modeled as a negative binomial random variable, with mean µijvsϕcϕe 

and dispersion parameter r (see section 3.2.1.2). 

 𝑒𝑖𝑗𝑘 ~ 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚(µ𝑖𝑗𝑣𝑠𝜙𝑐𝜙𝑒 , 𝑟) ( 4-2 ) 
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Then, qPCR replicates are prepared using the extracted DNA. I assume that the extracted DNA in 

the eluate is well-mixed, and so the number of copies of each marker i in sample k delivered to 

each qPCR replicate l (xijkl) can be modeled as a Poisson random variable with mean eijkvr/ve, where 

eijk is the number of copies in the eluate, ve is the elution volume and vr is the volume of elution 

used per replicate. 

 𝑥𝑖𝑗𝑘𝑙  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑒𝑖𝑗𝑘𝑣𝑟/𝑣𝑒) ( 4-3 ) 

For analyzing the quantitative copy number data from the eDNA sampling in the Illinois River, I 

am given the total number of copies of each marker in the sample across the eight replicates tested 

per sample (yijk). This is modeled as the sum of eight xijkl, which is a Poisson random variable with 

mean eijkvr/ve*8. 

 𝑦𝑖𝑗𝑘 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑒𝑖𝑗𝑘𝑣𝑟/𝑣𝑒 ∗ 8) ( 4-4 ) 

I use equations 4-2 and 4-4 to infer the mean concentration (µij) and dispersion (r) of each marker 

i at each sampling location j, given the sampling data (yijk ) for each marker i in sample j collected 

at sampling pool k and the sampling protocol parameters (sample volume (vs), capture efficiency 

(ϕc), extraction efficiency (ϕe), elution volume (ve), and reaction volume (vr)), 

4.2.2.2 Estimating eDNA concentration distributions in the CAWS from positive/negative data 

This modeling framework is then adapted to estimate the eDNA concentration distribution, if the 

eDNA sampling results are simply reported as either positive or negative for the target species’ 

DNA, like in the CAWS. 

First, I model the probability that target marker i from sampling location j in sample k is available 

for qPCR analysis (θijk). This probability (equation 4-2) is one minus the probability that no target 



60 

marker copies are present in the elution after capture and extraction, which is dependent on the 

concentration distribution of target marker i in sampling location j (µij, r), the sample volume (vs) 

and the capture (ϕc) and extraction efficiencies (ϕe). This is similar to the availability probability 

of DNA used in the site-occupancy modeling framework, but is modeled explicitly as a function 

of the concentration distribution of the target marker in the sampling location (µij, r) and the 

protocol parameter values (vs, ϕc, ϕe). 

 𝜃𝑖𝑗𝑘 = 1 − 𝑃[𝑒𝑖𝑗𝑘 = 0] = 1 − (
𝑟

𝑟+𝜇𝑖𝑗𝑣𝑠𝜙𝑐𝜙𝑒
)

𝑟

 ( 4-5 ) 

The next step of the eDNA process is the likelihood that the target species’ DNA is successfully 

detected using qPCR given that DNA is available for analysis. For this step, I model the amount 

of DNA that is delivered to each of the qPCR replicates. Assuming that DNA is present in the 

eluate (eijk > 0), I approximate eijk, a negative binomial random variable, as a gamma random 

variable. Then, given that the DNA in the eluate is well-mixed, the number of copies of each 

marker i collected at sampling pool j in sample k delivered to each replicate l (xijkl) is a Poisson 

random variable with a gamma-distributed mean (eijk), which reduces to a negative binomial 

distribution with mean µijvsϕcϕevr/ve.and dispersion parameter r.  

 𝑥𝑖𝑗𝑘𝑙  ~ 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚(µ𝑖𝑗𝑣𝑠𝜙𝑐𝜙𝑒𝑣𝑟/𝑣𝑒 , 𝑟) ( 4-6 ) 

Then, assuming that each copy of the target marker i in the replicate has an equal probability of 

amplification (ψi), I model the total number of copies that undergo amplification in each replicate 

as a binomial distribution with probability ψi and xijkl possible copies for amplification. Since xijkl 

is a negative binomial distribution, the number of copies of target marker i that amplify in each 
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replicate (nijkl) is again a compound binomial-negative binomial distribution, which reduces to a 

negative binomial distribution with mean µijvsϕcϕevrψi/ve and dispersion parameter r.  

 𝑛𝑖𝑗𝑘𝑙  ~ 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚(µ𝑖𝑗𝑣𝑠𝜙𝑐𝜙𝑒𝑣𝑟𝜓𝑖/𝑣𝑒 , 𝑟)  ( 4-7 ) 

Therefore, the probability of successful amplification of target marker i from sampling location j 

in each replicate l of sample k (pijkl) is the probability that at least one copy of the target marker 

amplifies or one minus the probability that zero copies amplify). 

 𝑝𝑖𝑗𝑘𝑙 = 1 − 𝑃[𝑛𝑖𝑗𝑘𝑙 = 0] = 1 − (
𝑟

𝑟+𝜇𝑖𝑗𝑣𝑠𝜙𝑐𝜙𝑒𝑣𝑟𝜓𝑖/𝑣𝑒
)

𝑟

 ( 4-8 ) 

For the AC eDNA sampling protocol in the CAWS, eight replicates are tested per sample and a 

sample is determined to be positive for the presence of the target marker if at least one of the 

replicates of the sample is positive for the target marker. Therefore, the probability of a positive 

detection of marker i of sample k collected from sampling location j (πijk) is one minus the 

probability that none of the eight replicates successfully detect the target marker.  

 𝜋𝑖𝑗𝑘 = 1 − (1 − 𝑝𝑖𝑗𝑘𝑙)
8

= 1 − ((
𝑟

𝑟+𝜇𝑖𝑗𝑣𝑠𝜙𝑐𝜙𝑒𝑣𝑟 𝑣𝑒𝜓𝑖⁄
)

𝑟

)
8

 ( 4-9 ) 

The overall probability of a positive sample (Ωijk) for the presence of target marker i given the 

eDNA concentration distribution (µij, r) and the sampling protocol parameters is the probability 

that eDNA is available in the elution (θijk) multiplied by the probability that the target marker is 

successfully detected in at least one replicate (πijk). 

 𝛺𝑖𝑗𝑘  =  𝜃𝑖𝑗𝑘 ∗ 𝜋𝑖𝑗𝑘 = [1 − (
𝑟

𝑟+𝜇𝑖𝑗𝑣𝑠𝜙𝑐𝜙𝑒
)

𝑟

] ∗ [1 − (
𝑟

𝑟+𝜇𝑖𝑗𝑣𝑠𝜙𝑐𝜙𝑒𝑣𝑟/𝑣𝑒𝜓𝑖
)

8𝑟

]  ( 4-10 ) 
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For AC eDNA sampling protocol in the CAWS, a sample is determined to be positive or negative 

for BH or SC based on the successful detection of multiple markers not just one species-specific 

marker. Specifically, a sample is positive for BH eDNA or SC eDNA if the sample amplifies both 

of the AC-TM1 and AC-TM3 markers, as well as at least one of the species-specific markers 

respectively, BH-TM1/BH-TM2and SC-TM4/SC-TM5, in at least one of the replicates. The 

amplifications do not need to occur in the same replicate. Assuming that the marker indices i are 

numbered as follows (1 – ACTM1, 2 – ACTM2, 3- BHTM1, 4 – BHTM2, 5 – SCTM4, 6 – 

SCTM5), the overall probability of a positive eDNA sample for each of the species (ΩBH,jk, ΩSC,jk) 

in sample k from sampling location j is: 

 𝛺𝐵𝐻,𝑗𝑘  =  𝛺1𝑗𝑘 ∗  𝛺2𝑗𝑘 ∗ (1 − (1 −  𝛺3𝑗𝑘) ∗ (1 −  𝛺4𝑗𝑘)) 

 𝛺𝑆𝐶,𝑗𝑘  =  𝛺1𝑗𝑘 ∗  𝛺2𝑗𝑘 ∗ (1 − (1 −  𝛺5𝑗𝑘) ∗ (1 −  𝛺6𝑗𝑘))  ( 4-11 ) 

Finally, these probabilities of a positive sample for BH and SC eDNA, ΩBH,jk, or ΩSC,jk, are realized 

as positive (y = 1) or negative (y = 0) samples using Bernoulli random variables. 

 𝑦𝐵𝐻,𝑗𝑘 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝛺𝐵𝐻,𝑗𝑘) 

 𝑦𝑆𝐶,𝑗𝑘 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝛺𝑆𝐶,𝑗𝑘) ( 4-12 ) 

Therefore, given the number of positive and negative samples of BH and SC eDNA at each 

sampling location j (yBH,jk, ySC,jk), the parameters of the sampling protocol (sample volume (vs), 

capture efficiency (ϕc), extraction efficiency (ϕe), elution volume (ve), and reaction volume (vr)) 

and amplification probabilities of each marker (ψi), I use equations 4-10 to 4-12 to calculate the 

mean concentration (µi) and dispersion (r) of each marker i in sampling location j given the eDNA 
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sampling results at each sampling location using a Markov Chain Monte Carlo (MCMC) 

simulation method.  

4.2.3 MCMC model parameterization 

MCMC is a Bayesian inference method for estimating the posterior probability distributions of 

model parameters, in this case, the mean eDNA concentration and dispersion at each sampling 

location and the sampling protocol parameters. MCMC works by simulating observations from 

the posterior probability distribution, obtained via Bayes’ rule, p(𝛉|x) =
p(x|𝛉)p(𝛉)

∫ p(x|𝛉)p(𝛉)d𝛉
 , where 

p(θ|x) is the posterior distribution of the model parameters θ given the data x, p(θ) is the prior 

distribution of the model parameters and p(x|θ) is the likelihood of the data. The idea behind 

MCMC is to estimate the probability of p(θ|x), assuming that generating a large random sample 

from the probability density function is similar to knowing the exact form of the distribution.105  

One MCMC method is the Gibbs sampling algorithm, which sequentially samples from each 

model variable conditional on the other variables p(θi| θj≠i,x) to produce a Markov chain, where 

the stationary distribution is the joint posterior distribution p(θ|x).106 Gibbs sampling is particularly 

helpful for sampling the posterior distribution of a Bayesian model that is defined by a collection 

of conditional distributions (which is the case for this model). Then, by running the Markov chain 

to equilibrium (after a “burn-in” period), the samples approximate the distribution of p(θ|x). 

The prior model parameter values for the eDNA sampling protocol variables applied in 2014 for 

sampling in the Illinois River and the CAWS are shown in Table 4-2. Estimates of these values 

were determined from analysis of the official protocol listed in the Quality Assurance Protection 

Plan (QAPP) and data from laboratory experiments performed by USFWS’ Whitney Genetics Lab, 
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as described in Chapter 3. The capture and extraction efficiencies are modeled using logit 

distributions in order to capture the uncertainty in these estimates. These estimated distributions 

for the efficiency parameters are included as priors in the model. The amplification probabilities 

for the six species-specific markers (ψi) can be found in Table B-6. 

Table 4-2. Priors for the sampling protocol parameters for the eDNA sampling performed in the Illinois River 

(La Grange, Marseilles and Brandon Road pool) and the CAWS in 2014 

Sampling protocol 

parameter 

Sampling Location  

(Capture technique) 

Illinois River 

(Filtration) 

Illinois River 

(Centrifugation) 

CAWS 

(Filtration) 

Sample volume, vs 2 L 0.25 L 2 L 

Capture efficiency, ϕc 

mean (95% CI) 
3.5% (2.0% - 6.2%) 6.1% (3.5% - 10%) 3.5% (2.0% - 6.2%) 

Extraction efficiency, ϕe 

mean (95% CI) 
33% (28% - 39%) 33% (28% - 39%) 33% (28% - 39%) 

Elution volume, ve ~700 μL 200 μL  ~700 μL 

Reaction volume, vr 3 μL  3 μL  3 μL  

For the model, I assumed that there would be a different mean concentration (µij) of each marker 

(i = 1,…, 6) at each of the four sampling locations (j = 1 (La Grange), 2 (Marseilles), 3 (Brandon 

Road), 4 (CAWS)) and an overall value for the dispersion parameter (r) for all markers and 

sampling locations, assuming that each marker is distributed similarly at all locations. 

The model was run using the Just Another Gibbs Sampler (JAGS) program in the R programming 

language.77 I specified an uninformative prior for estimating the mean concentration (µij) for each 

marker i, sampling location j, assuming that log(µij) values are drawn from the same normal 

distribution. The mean of this distribution was given a flat normal prior with mean 0 and variance 

10000, while the standard deviation was given a flat gamma prior with scale and shape both 0.001. 

The dispersion parameter (r) was given a flat gamma prior with scale and shape both 0.001. I used 
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three chains with 100,000 iterations, discarding the first 50,000 steps as burn-in, and checked for 

convergence using the Gelman-Rubin statistic.107 

4.2.4 Evaluating AC occupancy in the CAWS from eDNA sampling results 

The probability that AC are present in the CAWS (occupancy probability) is evaluated by 

calculating the probability that the estimated eDNA concentration of each marker in the CAWS 

are similar to the estimated eDNA concentration of each marker in the sampling locations where 

AC are present (Marseilles pool) or absent (Brandon Road pool). The occupancy probability 

defines the probability that both AC species are present in the CAWS (like in the Marseilles pool), 

and not each species individually. This is calculated via a classification algorithm described below. 

Let’s define ΦO as the probability of AC presence in the CAWS. The classification algorithm takes 

a random draw (xi) from each marker’s estimated mean concentration distribution in the CAWS 

(µi4) and determines the likelihood of that concentration value in the mean concentration 

distribution in Marseilles pool (P(xi|µi2)) and the concentration distribution in Brandon pool 

(P(xi|µi3)). The lognormal distribution is used to model the concentration distributions. Then, the 

product of the likelihoods of being in each of the pools is calculated to determine the total 

likelihood of presence (∏ 𝑃(𝑥𝑖|µ𝑖1)6
𝑖=1 ) and absence (∏ 𝑃(𝑥𝑖|µ𝑖2)6

𝑖=1 ). Finally, the probability that 

AC are present in the CAWS (ΦO) is determined by dividing the total likelihood of being present 

by the sum of the two likelihoods: 𝛷𝑂 =
∏ 𝑃(𝑥𝑖|µ𝑖1)6

𝑖=1

∏ 𝑃(𝑥𝑖|µ𝑖1)6
𝑖=1 +∏ 𝑃(𝑥𝑖|µ𝑖2)6

𝑖=1

 . This process is repeated for 

50,000 draws to get a distribution for the estimate of ΦO. 
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4.2.5 Using simulated eDNA sampling results to determine detection limits for inferring 

occupancy 

This algorithm is then applied given a range of hypothetical eDNA sampling results in the CAWS 

to determine the fraction of positive samples that are required to strongly indicate AC presence or 

occupancy in the CAWS. This is done by simulating eDNA sampling events (assuming there are 

228 samples per event) with a range of positive BH and SC eDNA samples from 0 to 100% positive 

samples. Then, the mean eDNA concentrations of each marker are estimated for each hypothetical 

sampling event given the 2014 sampling protocol and ‘classified’ using the algorithm described in 

4.2.4 to determine a probability that AC are present in the CAWS given each hypothetical sampling 

event.  

4.3 Results  

4.3.1 Posterior capture efficiency parameters 

The posterior distributions of the capture efficiency of filtration (Figure C-2) and centrifugation 

(Figure C-3) were updated based on the eDNA sampling results in the Illinois River. The estimated 

posterior distribution for the capture efficiency for centrifugation increased from 6.1% (3.5% - 

10%) to 10% (6.7% - 15%) and the posterior distribution for the capture efficiency for filtration 

decreases from the prior distribution of 3.5% (2.0% - 6.2%) to 2.1% (1.4% - 3.2%). 

4.3.2 eDNA concentrations in the Illinois River and CAWS 

The estimated posterior distributions of the mean concentration of each target marker (µij) at each 

of the sampling locations are shown in Figure 4-1. Overall, the estimated mean concentrations are 

largest in the La Grange pool and Marseilles pool, where AC are present, and are lower where AC 

are not present (Brandon Road pool and the CAWS). For the AC-TM1 marker, the mean 
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concentration in the La Grange pool is 4,030,000 (95% credible interval: 1,840,000 – 8.340,000) 

copies/L and in the Marseilles pool, it is 442,000 (215,000 – 870,000) copies/L. In the Brandon 

Road pool, this decreases to 19.800 (9,490 – 39,200) copies/L and it is 9,420 (1,020 – 78,900) 

copies/L in the CAWS. All of the estimated posterior distributions for the mean concentration 

values for the six target markers in the three locations can be found in Table C-2. The variability 

of the mean eDNA concentration of each target marker is much larger in the CAWS compared to 

the other pools.  

 
Figure 4-1. The estimated mean concentration (µij) of each marker (AC-TM1, AC-TM3, BH-TM1, BH-TM2, 

SC-TM4, SC-TM5) in the three pools of the Illinois River (La Grange, Marseilles, Brandon Road) sampled in 

Spring 2014 and in the CAWS, which was sampled in June 2014. The circles indicate the mean and the thick 

and thin lines show the 50% and 95% credible intervals, respectively. 

 

The posterior value for the dispersion parameter, r, for the three sampling locations and six markers 

was estimated to be 0.18 (0.16 – 0.20). The cumulative negative binomial density function of the 

number of copies of the AC-TM1 marker at each sampling location, given the mean concentration 
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values and the dispersion parameter in Figure 4-2. The figure shows that the estimated 

concentration distributions are highly dispersed and clumped, and so there is a likelihood of not 

collecting DNA in a sample (i.e., a false negative), even at high concentrations. The probability of 

not collecting the AC-TM1 marker in a given sample at each location can be seen where each 

curve meets the y-axis. For example, in the La Grange pool, where the mean concentration of the 

AC-TM1 marker is 4x106 copies/L, there is a 4.2% (3.0 to 5.5%) chance that no copies are 

collected in a 2-L sample. In the Marseilles pool, this probability is 6.2% (4.6 to 7.8%). %). In the 

Brandon Road pool, this probability decreases to 11% (95% CI: 8.5 to 13%), and in the CAWS, it 

is 15% (9.2 to 22%). 
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Figure 4-2. The cumulative negative binomial density function of the number of copies of the AC-TM1 

marker collected in a 2-L sample from the three pools of the Illinois River (La Grange, Marseilles, Brandon 

Road) and in the CAWS, given their respective means and the overall dispersion parameter, r, value of 0.18 

(0.17-0.20). The 95% credible intervals are shown as dotted lines. The x-axis for the number of copies is 

shown as log10(1 + copies) for interpretability 

4.3.3 Occupancy probability in the CAWS for 2014 

The posterior mean concentration distributions for each target marker of AC in the Marseilles pool, 

Brandon Road pool and the CAWS are applied to determine the likelihood of AC occupancy in 

the CAWS. I did this by using the algorithm described in 4.2.4 to calculate the similarity of the 

mean concentration distributions in the CAWS to the distributions in the Marseilles pool where 

AC have invaded. Using this method, the estimated occupancy probability in the CAWS given the 

June 2014 sampling results (7 out of 228 samples positive for SC eDNA and 1 out of 228 samples 

positive for BH eDNA) was 0%. 
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4.3.4 Determining detection limits for inferring AC occupancy in the CAWS using simulated 

eDNA sampling results 

I then evaluated the probability of inferring AC occupancy in the CAWS given a range of 

hypothetical BH and SC eDNA sampling results. The mean probability of AC occupancy as a 

function of the fraction of positive BH and SC eDNA samples in a hypothetical sampling event of 

228 total samples is shown in Figure 4-3. The figure shows that when the fraction of positive 

samples is between 0 and ~33% (76 positive sample out of 228 total samples) for BH or SC, the 

occupancy probability is ~ 0%, i.e. the estimated posterior distributions of the mean eDNA 

concentrations are very similar to the lower concentrations in Brandon Road pool where AC are 

absent compared to the higher concentrations in Marseilles pool where AC are present. As the 

fraction of positive samples for either species approaches one, the mean occupancy probability 

goes to one as well, since the estimated posterior distributions will be larger and more similar to 

the concentrations where AC are present. However, there is a transition zone (indicated by the 

orange on the figure), where it is uncertain whether the estimated distributions from the eDNA 

results indicate a strong signal of presence (i.e., similarity to concentrations in Marseilles pool) or 

noise (i.e., similarity to concentrations in Brandon Road pool). 
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Figure 4-3. The probability of Asian carp occupancy in the CAWS (red – 1; yellow – 0) given the fraction of 

positive Silver Carp and Bighead Carp samples for a simulated sampling event of 228 samples. The actual 

historical results of the sampling event performed in June (SC = 7/228, BH = 1/228) is shown as a black dot. 

4.4 Discussion 

In this chapter, I applied the statistical model from chapter 3 to estimate the mean concentration 

and dispersion of AC-specific DNA markers from both qPCR copy number data in the Illinois 

River and positive/absence data in the CAWS. In the Illinois River, the model shows that the 

concentration distributions are highest downstream in the Illinois River (La Grange and Marseilles 

pools) and decrease moving further upstream towards Lake Michigan (Brandon Road pool). The 

few positive detections of BH and SC eDNA upstream of the electric fish dispersal barrier in the 

CAWS (which should be preventing the upstream invasion of BH and SC) indicate eDNA 

concentration distributions that are very similar to the distributions found in the Brandon Road 

pool. 
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The model estimates a fairly high mean concentration of AC eDNA markers (~104
 copies/L) in the 

Brandon Road pool and the CAWS, which are both upstream of the conventionally-held invasion 

front. One interpretation for this is that eDNA sampling is more sensitive than the conventional 

methods, and thus the positive eDNA sampling results indicate that AC have invaded both Brandon 

Road and the CAWS. However, intensive fishing and capture efforts throughout the decade have 

found no AC in the Brandon Road pool and only one live BH carp in the CAWS upstream of the 

electric barrier. I conclude that the positive eDNA sampling results in the Brandon Road pool and 

the CAWS are detections of trace, background or ‘noisy’ eDNA brought into these systems, 

unrelated to the recent, live presence of the target species. The high sensitivity of eDNA sampling 

may actually be causing erroneous detections, due to the ability to detect small concentrations of 

target DNA. 

The results show that there is significant clumping (r = 0.18) of AC eDNA, which affirms the 

hypothesis that eDNA is most likely found in a clumped distribution in the water column rather 

than being randomly-distributed.103 Therefore, a negative binomial distribution should be used 

when modeling eDNA concentration compared to the Poisson distribution. The clumped 

distribution also helps explain why in the La Grange pool, there were a few negative samples, 

despite the large estimated mean concentrations for the AC markers (~106 to 107 copies/L) (Table 

C-1). 

The method of deriving AC eDNA concentrations described in this chapter differs from the method 

used by Schultz et al., which estimated that the AC eDNA concentrations in the CAWS are ~ 100 

copies/L.108 In comparison, my model estimates that the eDNA concentrations in the CAWS are 

1,000 to 10,000 copies/L, which is a 10 to 100 fold increase. The key differences are that my model 
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includes the additional losses due to the filtration step and the use of a negative binomial 

distribution rather than a Poisson distribution. Including the low capture efficiency of filtration 

(~4%) means that larger eDNA concentrations are estimated at the sampling location for similar 

numbers of positive eDNA samples. Also, modeling the eDNA concentration distribution as a 

negative binomial distribution with the additional dispersion parameter means that the estimated 

mean eDNA concentrations can be larger if eDNA is clumped. For example, when using a Poisson 

distribution (i.e., no r parameter) in my model rather than a negative binomial distribution, the 

estimated mean eDNA concentration values for BH and SC drop to 200 to 2,000 copies/L. 
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5 Value of Monitoring Information for Making Decisions about Asian 

Carp Prevention 

5.1 Background 

Since 2002, the U.S. Army Corps of Engineers (USACE) has been managing a series of electric 

fish dispersal barriers in the CAWS to prevent the upstream passage of invasive AC and other 

invasive fish species into the Great Lakes. The leading edge of AC invasion is currently in the 

Dresden Island pool, 18 miles south (downstream) of the barrier.109 In recent years, however, the 

efficacy of the electric barrier as the solution for long-term AC prevention has been called into 

question, due to the approaching invasion front and the detection of AC eDNA upstream of the 

electric barrier.110 

To improve the efficacy of their AC prevention efforts, the USACE is conducting a study to 

consider building additional prevention structures (e.g., another electric barrier) in the Brandon 

Road pool, just upstream of the invasion front. The decision of whether or not to invest in more 

preventative measures will be dependent on the prior belief about the current invasion status of 

AC (i.e., whether or not AC have invaded the CAWS), which is informed by the monitoring data. 

Studies show that early detection of invasive species allows for more cost-effective invasive 

species management decisions.111 Conventional monitoring tools, like electrofishing and netting, 

have poor sensitivity at low fish densities and thus may not be detecting the early invasion of AC 

past the barriers.112 In contrast, eDNA sampling is highly sensitive, able to detect trace amounts 

of DNA, but, as shown previously in this dissertation, may not be very specific, since a positive 

detection of DNA may occur in the absence of live organisms. In this chapter, I develop a decision 

tree model to help evaluate the optimal strategy for AC prevention from the available strategies, 
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and to determine if available monitoring tools (like eDNA sampling and electrofishing) offer any 

useful information for making this decision.  

Decision trees are a way of representing the alternatives available to the decision maker, the 

uncertainties involved in the decision and the measure of evaluating how well the decision will 

achieve the desire objective.113 For this decision-making scenario, the alternatives are the 

preventative options, the key uncertainties are the current and future probability of AC invasion 

and the decision rule is choosing the prevention strategy that minimizes the expected costs, which 

includes the prevention costs of the chosen strategy and the expected invasion damages that AC 

pose to the Great Lakes ecosystem and related industries given that prevention fails.  

The costs are measured using the net present value (NPV) formula to calculate the present value 

of the future cost flows over a specified timeframe at a given discount rate. I also consider the 

influence of risk aversion (i.e., aversion to monetary loss) on decision-making using an exponential 

utility function.114 Then, the decision tree model is applied to evaluate the value of information 

(VOI) provided by monitoring for the current invasion status of AC upstream of the electric barrier 

in the CAWS before making the decision. This analysis is done for a set of hypothetical monitoring 

methods with detection sensitivities and specificities ranging from zero to one to assess how false 

positives and false negatives influence the VOI of monitoring for AC invasion. 

5.2 Methods and Data 

5.2.1 Prevention strategies 

Table 5-1 shows a list of the possible prevention strategies in the CAWS that are assessed in this 

chapter. The strategies include (1) maintaining the status quo (electric barriers at Lockport pool), 

(2) building an additional prevention structure at Brandon Road Lock and Dam, (3) hydrologic 
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separation of the CAWS and (4) to stop operating the electric barriers. The estimated costs of each 

strategy comes from the Great Lakes Mississippi River Interbasin Report, which is a 

comprehensive study of the potential technologies that could be utilized to prevent aquatic invasive 

species transfer between the basins, and the current Asian Carp Action Plan.115,116 The preventative 

ability of each technology was determined from an expert elicitation study, which asked 11 experts 

on aquatic invasive species to estimate the “percent effectiveness of each prevention action to keep 

Asian carps from ever establishing in Lake Michigan or its tributaries if one and only one of the 

following actions is implemented.”117  

Table 5-1. Prevention strategies in the Illinois River and their cost, time frame, and preventative ability 

Prevention strategy Probability of 

prevention (pprev) 

Implementation time 

frame 

Annual 

Preventative Costs 

#1: Status quo 

(electric barriers in 

the CAWS) 

92%  Zero years $12 million a year 

(O&M)  

#2: Build additional 

barrier at Brandon 

Road pool 

95% Three years $52 million (capital) 

$12 million a year 

(O&M) 

#3: Lakeside 

hydrologic separation 

99%  25 years $18 billion (capital) 

$85 million a year 

(O&M) 

#4: Stop operating 

electric barriers 

0% Zero years $0 

5.2.1.1 Status Quo: Electric Barriers 

Currently, there are two electric barriers in operation in the CAWS: Barrier IIA and Barrier IIB, 

which were placed into operation in 2009 and 2011 respectively. The first demonstration barrier 

installed in 2002 is being replaced by Barrier I, which began construction in 2016 and will be 

complete by 2018. The electric barriers are steel electrodes secured to the bottom of the canal. 

These electrodes are connected to a control building, with generators which generate a DC pulse 
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through the electrodes which creates an electric filed in the water that discourages fish from 

crossing.118 

I set the prevention probability of the status quo strategy to 92%, which is the median estimate 

from the expert elicitation of the electric barrier’s preventative ability.117 There are multiple 

avenues of failure of the barriers. Studies have shown that boat passage through the system of 

electric barriers can disrupt the electric field and allow fish to pass through along with the barge.118 

The electric barriers must also be shut down occasionally for maintenance purposes, which could 

be opportunities for fish passage.119 Times of extreme flooding could cause the water level to rise 

above the electric field allowing for undeterred movement.119 The current cost of operating and 

maintaining the electric barriers is ~$12 million a year, which comes from the actual operating 

budget.116 

5.2.1.2 Install additional barrier at Brandon Road pool 

Brandon Road pool has been identified as a potential location for an additional barrier, because 

the pool is located downstream of the confluence of the CAWS and the Des Plaines River (a 

potential invasion pathway) and there is a 25-foot drop in water elevation from the downstream 

side of the lower dam to the pool level at the upstream side, which is expected to limit upstream 

transfer. This has been corroborated by ongoing monitoring efforts, which have found no AC in 

the Brandon Road pool.116 USACE is exploring the installation of a non-physical barrier, like 

electric, acoustic or CO2 barriers, in the pool.16,120 For the purpose of this analysis, it is assumed 

that this strategy will be an additional electric barrier. GLMRIS estimated that the initial capital 

cost of installing an electric barrier system at a new location would be $52 million, the operation 

and maintenance cost would be ~$12 million a year and that it would take 3 years to implement.121 
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The combined preventative ability of existing and proposed electric barriers is assumed to be 95%, 

which is the high estimate of the electric barriers’ preventative ability.117 

5.2.1.3 Full Hydrologic Separation 

Hydrologic separation is the complete closure of the CAWS, which effectively removes the canal 

system as a route for invasion by Asian carp or other aquatic invasive species. The lakeside 

hydrologic separation proposal described in GLMRIS involves building four physical barriers 

throughout the CAWS that would sever the aquatic connection. The barriers are designed to 

prevent any flooding over the barriers up to the 500-year storm.121 However, this also necessitates 

building additional reservoirs, water treatment plants and tunnel systems, to manage Chicago’s 

water supply, sewage effluent, water quality and flooding issues, which are currently managed 

using the CAWS.  

The capital cost of the barriers plus the additional infrastructure is $18 billion, over 25 years of 

implementation (Figure D-1). Once built, there is an estimated operation and maintenance cost of 

$85 million a year, which is primarily due to operating the additional infrastructure. The physical 

barriers are built at the end of the construction timeline, once all of the water quality and flood-

risk mitigation infrastructure is installed. Thus, the preventative ability of this strategy is not 

realized until year 25. I assume that the current status quo (electric barriers) persists until the 

physical barriers are complete. Experts estimate the median preventative ability of hydrologic 

separation to be 99%.117 Potential failures include flooding over the barriers as well as human-

mediated transfer of AC across the physical barriers. 
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5.2.1.4 Stop prevention 

The final proposed prevention strategy would be to cease operation of the electric barriers. The 

benefit of this plan would be the cost savings from not operating the barriers. However, the 

preventative ability would now be 0%. I assumed that this decision to turn off the barriers could 

be implemented immediately. 

5.2.2 Risk and Potential Impacts of Asian Carp 

For AC invasion to occur in the Great Lakes, AC must be introduced into the system (e.g., invade 

past the barriers) and be established in the region (i.e., survive and reproduce successfully). Studies 

have shown that Asian carp have a high likelihood of establishing in the Great Lakes, if they are 

introduced.122–125 Once established, Asian carp species are likely to cause negative economic 

impacts on the Great Lakes’ fishing industry by out-competing native aquatic sport fish 

species.13,125,126 AC could also modify the local food web, which could have harmful ecological 

effects, causing long-term economic damage due to the lack of ecological diversity and health of 

the Great Lakes. However, the severity of the economic and ecological impacts in the Great Lakes 

caused by AC is very uncertain. Studies have shown that Asian carp are likely to be established in 

the Great Lakes once invaded.122,123,125,127 However, their impact on native fish species could range 

from causing lower fitness due to competition or helping species that can feed on Asian carp 

larvae.125 For the purpose of this analysis, I consider a wide range of estimated damages from $0 

to $1 billion a year. 

5.2.3 Simulating potential invasion fronts 

The key uncertainty for this decision is whether or not the Great Lakes is already invaded by Asian 

carp and if not currently invaded, when the invasion will occur. In this chapter, I assume that the 
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probability of invasion is equivalent to the probability of AC being introduced and establishing 

successfully into the Great Lakes. 

I model the invasion status of the Great Lakes (It) at each time step from t = 0 to T years. The 

invasion status at each time step is either 0 (not invaded) or 1 (invaded). I assumed that at each 

time step t, if it is invaded in the previous time period, t – 1, (It-1 = 1), it will stay invaded in the 

following time period, i.e., the probability of moving from state 1 to state 1 equals one and the 

probability of moving from state 1 to state 0 is zero. If it is not invaded in the previous time period 

t – 1 (It-1 = 0), the probability it will be invaded in this time period t, depends on the base likelihood 

of invasion (pb) multiplied by the probability of the preventative measure failing to prevent the 

invasion that year (1 – pprev,t). The base probability of invasion (pb) is the probability of invasion 

each year given no prevention. The prevention probability (pprev,t) has a time index, because for 

some of the strategies (e.g., hydrologic separation and additional barrier), the preventative 

probability will change over time.  

Given the choice of prevention strategy, I generate a simulated invasion front It from t = 0 to T 

using the following steps: 

1. Assume an initial state of I0 

2. For t = 1 to T, 

 If It-1 = 0, generate It by drawing from a uniform random variable from 0 to 1 (U) and 

setting It = 1 if U<pt and 1 if U > pt, i.e. it becomes invaded with probability pt = (pb)*(1 

- pprev,t).  

 If It-1 = 1, then It = 1 
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The invasion front depends on the pprev,t of the chosen prevention strategy, the base probability of 

invasion, pb and the initial state of invasion I0. The equations for calculating the invasion front for 

each of the prevention strategies are shown in Table 5-2. 

Table 5-2. The equations to simulate the invasion front of AC from t = 0 to T for each of the four preventative 

strategies given the base probability of invasion, pb. 

Preventative 

Option 
It for t = 1 to T 

#1: Status Quo 

𝐼𝑓 𝐼𝑡−1 =  0,   𝐼𝑡 = {
1 𝑖𝑓 𝑈𝑡 ≤ 𝑝𝑏 ∗ .08
0 𝑖𝑓 𝑈𝑡 > 𝑝𝑏 ∗ .08

 

𝐼𝑓 𝐼𝑡−1 =  1,  𝐼𝑡 = 1 

#2: Additional 

control structures 

𝐼𝑓 𝐼𝑡−1 =  0, 

𝐼𝑡 = {
1 𝑖𝑓 𝑈𝑡 ≤ 𝑝𝑏 ∗ .08
0 𝑖𝑓 𝑈𝑡 > 𝑝𝑏 ∗ .08

 𝑓𝑜𝑟 𝑡 ≤ 3 

 

𝐼𝑡 = {
1 𝑖𝑓 𝑈𝑡 ≤ 𝑝𝑏 ∗ .05
0 𝑖𝑓 𝑈𝑡 > 𝑝𝑏 ∗ .05

 𝑓𝑜𝑟 𝑡 > 3 

𝐼𝑓 𝐼𝑡−1 =  1, 𝐼𝑡 = 1 

#3: Hydrologic 

separation 

𝐼𝑓 𝐼𝑡−1 =  0, 

𝐼𝑡 = {
1 𝑖𝑓 𝑈𝑡 ≤ 𝑝𝑏 ∗ .08
0 𝑖𝑓 𝑈𝑡 > 𝑝𝑏 ∗ .08

 𝑓𝑜𝑟 𝑡 ≤ 25 

 

𝐼𝑡 = {
1 𝑖𝑓 𝑈𝑡 ≤ 𝑝𝑏 ∗ .01
0 𝑖𝑓 𝑈𝑡 > 𝑝𝑏 ∗ .01

 𝑓𝑜𝑟 𝑡 > 25 

𝐼𝑓 𝐼𝑡−1 =  1, 𝐼𝑡 = 1 

#4: Stop 

prevention 

𝐼𝑓 𝐼𝑡−1 =  0, 𝐼𝑡 = {
1 𝑖𝑓 𝑈𝑡 ≤ 𝑝𝑏

0 𝑖𝑓 𝑈𝑡 ≤ 𝑝𝑏
 

𝐼𝑓 𝐼𝑡−1 =  1,  𝐼𝑡 = 1 

5.2.4 Calculating expected costs and utility given the simulated invasion fronts 

The optimal preventative strategy is chosen based on which strategy maximizes the expected net 

present value of benefits minus costs. In this analysis, I assume there are no benefits and just 

consider the prevention costs from implementing the strategy and the uncertain invasion costs, 

which depend on the simulated invasion fronts, and the expected cost of invasion, CI. I also assume 
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that the decision is made at t = 0 and the construction and operation costs of implementing the 

chosen prevention strategy is irreversible. The equations for calculating the NPV of each strategy 

given the simulated invasion forecast (It), the cost of invasion, CI, and the prevention costs for each 

strategy are shown in Table 5-3. In the NPV calculations, d represents the discount rate. As seen 

in the model equations, the annual invasion costs (CI) are not incurred unless the invasion has 

occurred (It = 1).  

Table 5-3. The net present value (NPVi) calculation for each of the preventative strategies given the annual 

cost of invasion, CI, the discount rate, d, and the invasion front It. 

Preventative 

Option 

Net Present Value of Expected Invasion Costs + Prevention Costs 

[$ million] (NPVi) 

#1: Status Quo 

∑
−CI ∗ 𝐼𝑡 − 12

(1 + 𝑑)𝑡

𝑇

𝑡=1

 

#2: Additional 

control 

structures 
−52 + ∑

−CI ∗ 𝐼𝑡 − 12

(1 + 𝑑)𝑡

3

𝑡=1

+ ∑
−CI ∗ 𝐼𝑡 − 24

(1 + 𝑑)𝑡

𝑇

𝑡=4

 

#3: Hydrologic 

separation 
∑

−CI ∗ 𝐼𝑡 − 12

(1 + 𝑑)𝑡

25

𝑡=1

+ ∑
−700

(1 + 𝑑)𝑡

20

𝑡=1

+ ∑
−800

(1 + 𝑑)𝑡

23

𝑡=21

+ ∑
−1100

(1 + 𝑑)𝑡

25

𝑡=24

+ ∑
−CI ∗ 𝐼𝑡 − 85

(1 + 𝑑)𝑡

𝑇

𝑡=26

 

#4: Stop 

prevention 
∑

−CI ∗ 𝐼𝑡

(1 + 𝑑)𝑡

𝑇

𝑡=1

 

The utility (U) of each strategy is also calculated using an exponential utility function, as shown 

in equation 5-1. This equation converts the NPV of the costs into a utility value. The optimal 

prevention strategy is the one that maximizes expected utility. In the exponential utility function, 
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R represents the risk tolerance of the decision-maker, which is defined as the decision maker’s 

willingness to accept risk.128 Lower values of R indicates greater risk aversion (i.e., less willing to 

accept risk) and is measured by valuing each unit loss of NPV to be exponentially worse (Figure 

D-2). 

 𝑈 = 1 − 𝑒−𝑁𝑃𝑉/𝑅 ( 5-1 ) 

This formulation of risk aversion is a monetary one in a decision-analytic framework. The 

decision-maker is averse to all monetary losses, whether it is due to money spent on prevention or 

due to damages from invasion. However, the decision-maker may be worried solely about the risk 

of damage caused by AC and is willing to take on the risk of prevention to avoid those damages. 

To evaluate this, I also consider an “environmental” risk averse decision-maker, who is averse to 

expected invasion damages but neutral about the prevention costs. 

5.2.5 Decision modeling framework 

The decision tree used to solve the decision problem is shown in Figure 5-1. The optimal strategy 

is the one that maximizes the expected NPV (or utility), which depends on the uncertainty about 

the initial state of invasion (I0). Given no additional information about the current state of invasion 

at time = 0, I assume that the prior probability of invasion that I0 = 1 is the probability of invasion 

given the current preventative probability and belief about the base probability of invasion: p0 = 

pb*(1 - .92). NPVi,I0=0 and NPVi,I0=1 are the NPV values for each of the four preventative strategies, 

assuming that the initial state is either I0 = 0 and I0 = 1, given a value of pb and CI. Equation 5-2 

shows the expected value of the optimal decision given no information.  

 𝐸𝑉𝑁 = max
𝑖

(. 08𝑝𝑏 ∗ 𝑁𝑃𝑉𝑖,𝐼0=1 + (1 − .08𝑝𝑏) ∗ 𝑁𝑃𝑉𝑖,𝐼0=0) ( 5-2 ) 
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Figure 5-1. Decision tree for analyzing the optimal preventative strategy (1. Status quo, 2. Additional barrier, 

3. Hydrologic separation and 4. Stop prevention) given the prior probability of invasion at time = 0, p0, and 

the NPV of each strategy for a simulated invasion front. 

5.2.6 Calculating the value of perfect information 

To calculate the expected value of perfect information (EVPI), I adapt the decision tree to show 

the monitoring event, which occurs before the decision is made. A figure of the decision tree with 

a perfect monitoring method is shown in Figure 5-2 
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Figure 5-2. Decision tree for evaluating the optimal preventative strategies (1. Status quo, 2. Additional 

barrier, 3. Hydrologic separation and 4. Stop prevention) given a perfect monitoring method, the prior 

probability of invasion at time = 0, p0, and the NPV of each strategy for a simulated invasion front. 

The expected value with perfect information is calculated by choosing the preventative strategy 

that maximizes NPV given that the decision-maker knows I0 = 1, and the preventative strategy that 

maximizes NPV given I0 = 0, and record the expected value of those ‘optimal’ decisions. In the 

scenario of perfect monitoring (i.e., 100% sensitivity and specificity, the probability that 

monitoring indicates invasion will be equal to the prior probability of invasion, p0 = .08pb. 
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 𝐸𝑉𝑃 = (1 − .08𝑝𝑏) ∗ max
𝑖

(𝑁𝑃𝑉𝑖,𝐼0=0) + (.08𝑝𝑏) ∗ max
𝑖

(𝑁𝑃𝑉𝑖,𝐼0=1) ( 5-3 ) 

To calculate the EVPI, I simulate 10,000 iterations of potential invasion fronts and get the EVN 

and EVP of each iteration. The EVPI is the expected value gained from conclusively knowing the 

initial invasion status (I0) before making the decision. EVPI is calculated by taking the average of 

the EVP values minus the average of the EVN values for the 10,000 iterations. The simulations and 

EVPI calculations are performed over a range of potential values for pb and CI. 

5.2.7 Calculating the value of imperfect information 

The expected value of imperfect information (EVII) is the expected value gained from imperfect 

monitoring about what I0 is before making the decision. A figure of the decision tree given 

imperfect monitoring information is shown in Figure 5-3. 
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Figure 5-3. Decision tree for evaluating the optimal preventative strategies (1. Status quo, 2. Additional 

barrier, 3. Hydrologic separation and 4. Stop prevention) given an imperfect monitoring method with 

sensitivity (sens), specificity (spec), the prior probability of invasion at time = 0, p0, and the NPV of each 

strategy for a simulated invasion front. 

Given a sensitivity (sens) and specificity (spec) value of a hypothetical monitoring method, the 

probability of indicating invasion (p’) is the true positive rate (sensitivity * prior probability of 

invasion) plus the false positive rate (1 – specificity)* (1 – prior probability of invasion).  

 𝑝′ = 𝑠𝑒𝑛𝑠 ∗ (. 08𝑝𝑏) + (1 − 𝑠𝑝𝑒𝑐) ∗ (1 − .08𝑝𝑏) ( 5-4 ) 
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Then, given that the monitoring method indicates either invasion or non-invasion for I0, the 

decision-maker makes the optimal decision. However, unlike the previous scenario, the updated 

likelihood of invasion or non-invasion given the monitoring information is not conclusive due to 

the errors in the monitoring method. The probability that it is actually invaded (I0 = 1) given that 

the monitoring method detected an invasion is: 

 𝑝𝐼0=1|"1" =
𝑠𝑒𝑛𝑠∗.08𝑝𝑏

𝑠𝑒𝑛𝑠∗.08𝑝𝑏+(1−𝑠𝑝𝑒𝑐)∗(1−.08𝑝𝑏)
 ( 5-5 ) 

The likelihood that it is actually invaded (I0 = 1) given that the method did not detect an invasion 

is 

 𝑝𝐼0=1|"0" =
(1−𝑠𝑝𝑒𝑐)∗(1−.08𝑝𝑏)

𝑠𝑒𝑛𝑠∗.08𝑝𝑏+(1−𝑠𝑝𝑒𝑐)∗(1−.08𝑝𝑏)
 ( 5-6 ) 

Therefore, the expected value of the decision given imperfect information is shown in Equation 5-

7, which is determined by the optimal decisions given the monitoring method yields 0 or 1 and 

uncertainty about that information at each decision point. 

 𝐸𝑉𝐼 = 𝑝′ ∗ max
𝑖

(𝑝𝐼0=1|"1" ∗ 𝑁𝑃𝑉𝑖,𝐼0=1 + (1 − 𝑝𝐼0=1|"1") ∗ 𝑁𝑃𝑉𝑖,𝐼0=0) + (1 − 𝑝′) ∗

max
𝑖

(𝑝𝐼0=1|"0" ∗ 𝑁𝑃𝑉𝑖,𝐼0=1 + (1 − 𝑝𝐼0=1|"0") ∗ 𝑁𝑃𝑉𝑖,𝐼0=0) ( 5-7 ) 

Similar to the EVPI calculation, the EVII is calculated by taking the average of the EVI minus the 

average of the EVN for the 10,000 iterations. 

All of the decision model calculations were analyzed using R 3.2.2.77 Other key assumptions for 

the analysis include a time frame, T, of 50 years and a discount rate of 4%. 
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5.3 Results 

5.3.1 Optimal prevention strategy given uncertainty about invasion 

The optimal prevention strategy given no monitoring information as a function of pb and CI, is 

shown in Figure 5-4. The base probability of invasion, pb, is on the y-axis from 0 to 1 and the 

annual cost of invasion, CI, is the x-axis from 0 to $1 billion. For pb greater than 0.30 and CI greater 

than $100 million, the optimal strategy is additional prevention. If pb is less than 0.30, then the 

optimal strategy is to stay with the status quo. Increasing probability of invasion leads to greater 

need for prevention. When either pb or CI is zero or near-zero, then the optimal strategy is to stop 

prevention, since the status quo prevention costs are unnecessary. Hydrologic separation is never 

chosen as an optimal decision under these assumptions. The optimal prevention strategies are 

similar when assuming a longer time frame of 100 years, except for that status quo is now 

preferable to stop prevention at very low invasion probabilities (Figure D-3). 
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Figure 5-4. Optimal prevention strategy as a function of the annual cost of invasion on the x-axis and the base 

probability of invasion on the y-axis, given risk neutrality, time frame of 50 years and a discount rate of 4%. 

The colors denote the optimal prevention strategy for each combination of invasion costs and base probability 

of invasion. Red is the status quo, blue is additional barrier, and green is discontinue existing barriers. 

5.3.2 Influence of risk aversion on decision-making 

Figure 5-5a shows that if the decision-maker is risk averse to monetary losses (R = $1 billion), 

then the status quo strategy becomes more preferred to additional prevention for many of the 

possible combinations of pb and CI, except for when annual invasion costs are $100 to $250 million 

a year and there is a high probability of invasion (>50%). Also, stopping prevention is now 

preferred at very high annual costs and low invasion probabilities. This trend continues for higher 

risk aversion (R = $500 million), where the status quo and stopping prevention are the dominant 

strategies (Figure 5-5b). If the decision-maker is only averse to the risk of damages from invasion, 

then the optimal prevention strategies look similar to the case of risk neutrality (Figure D-4). 
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Figure 5-5. Optimal prevention strategy as a function of the annual cost of invasion on the x-axis and the base 

probability of invasion on the y-axis, given risk tolerances of (a) $1 billion and (b) $500 million. Red is the 

status quo, blue is additional barrier, and green is discontinue existing barriers. 
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5.3.3 Value of information 

The expected value of perfect information (EVPI) as a function of pb and CI, is shown in Figure 

5-6. The figure shows that there is value of information for making this decision if the monitoring 

method is perfect (i.e., specificity and sensitivity equal to 1). The EVPI ranges from 0 to $71 

million over the 50 year time frame over the range of pb and CI. The value is highest at high 

invasion probability and invasion costs and goes to zero when the base probability is low. 

 
Figure 5-6. Expected value of perfect information in units of million dollars as a function of the annual cost of 

invasion and the base probability of invasion, given risk neutrality, time frame of 50 years and a discount rate 

of 4%. 

Then, the value of information was evaluated given an imperfect monitoring method (i.e., 

sensitivity and specificity less than 1). This was done for the scenario where pb is 0.50 and CI is 
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$500 million. The EVPI for this scenario is $16 million. Figure 5-7 shows the expected value of 

imperfect information (EVII) for this scenario, given information from a hypothetical imperfect 

monitoring method with specificity and sensitivity ranging from 0 to 1. The results show that the 

value of monitoring information is primarily due to perfect specificity. When specificity drops 

below 1, the value of monitoring information goes straight to 0. Even at perfect sensitivity, if the 

specificity is less than one, there is no added value of information. In comparison, at perfect 

specificity, the value of information decreases linearly from the EVPI of $17 million to $0, as the 

sensitivity decreases from 1 to 0. 

 
Figure 5-7. The expected value of imperfect information in units of million dollars as a function of (a) 

specificity assuming sensitivity is 100% and as a function of (b) sensitivity, assuming specificity is 100%. The 

calculation assumes risk neutrality, time frame of 50 years, a discount rate of 4%,  base invasion probability 

of 50% and an annual invasion cost of $500 million. 
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5.4 Discussion 

This chapter outlines a framework of a decision tree model to evaluate the optimal strategies for 

preventing Asian carp (AC) passage into the Great Lakes, given uncertainty about the probability 

of invasion and the annual cost of invasion. This model recommends that additional barriers be 

installed if there is a moderate baseline probability of invasion and annual invasion costs. At lower 

values, the status quo is preferred and hydrologic separation is never preferred. 

There are many advocates for hydrologic separation of the CAWS, who argue that separation is 

the only way to ensure that invasive species like AC do not invade the Great Lakes.59 However, 

this model shows that this option may not offer the benefits as publicized. If invasion is imminent 

(i.e., high pb), then the invasion is likely to occur during the 25-year implementation time before 

the stricter prevention can take place. However, if there is time to implement separation, (i.e., low 

pb), then the other less costly prevention options like staying at the status quo will offer very high 

levels of prevention at much lower cost. Also, there are additional indirect costs of hydrologic 

separation to other industries, like cargo shipping, that are not included in this analysis, which 

must be accounted for when choosing this strategy. This model suggests that hydrologic separation 

is unlikely to be the optimal strategy for AC prevention. 

Greater aversion to monetary risks makes the decision-maker prefer strategies with less prevention. 

This is because risk-averse decision-makers are averse to the ‘risky’ costs of additional prevention, 

which may fail. This has also been seen in studies showing that invasive species managers prefer 

the known costs of control over the risky costs of prevention, in the management of zebra mussels 

129 However, assuming that the decision maker is primarily averse to the risk of invasion and 

incurring environmental damages (and not the prevention costs), the decision maker will behave 
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much like a monetary risk-neutral decision maker. Here, the decision-maker is neutral to the cost 

of prevention and averse to environmental damages and therefore is willing to invest in more 

prevention in the form of an additional electric barrier. However, even under this scenario, 

hydrologic separation is not an optimal strategy. 

The model shows that there is added value from monitoring, but the VOI requires perfect 

specificity. If it is known conclusively that AC have invaded (Io= 1), then the decision-maker can 

switch to stop prevention and avoid the wasted preventative costs. However, if specificity is less 

than one, then there is a chance that there are false positives and thus the decision-maker cannot 

stop prevention with confidence given a positive detection and thus the decision-maker has to 

make the decision given uncertainty about whether or not it is actually invaded, like before.  
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6 Conclusions and Recommendations 

In this chapter, I summarize the findings from the four studies in this dissertation, discuss their 

policy implications and potential future work. 

6.1 Summary 

Chapter 2 describes a beta-binomial regression model which analyzed the SC eDNA detections 

upstream of the electric barrier from 2009-2012. The model found that the detection probability of 

SC eDNA had a significantly positive relationship with reverse flow into the CAWS, while other 

environmental covariates, such as water temperature, gage height, did not. This is significant 

because it provides a possible alternative explanation for why SC eDNA has been detected 

upstream of the barrier but intact silver carp have not, i.e., that during reverse flow events, existing 

background eDNA is diluted to a lesser degree than during normal flow conditions. It also found 

that the beta-binomial model was a much stronger fit for modeling the probability of eDNA 

detection than the binomial model, presumably because eDNA is not randomly dispersed 

In chapter 3, I developed a model to evaluate the sensitivity of eDNA sampling protocols and 

applied it to the example of BH and SC eDNA sampling by US Fish and Wildlife Service from 

2013 to 2015. The model shows that the sensitivity of the protocols has fluctuated from 2013 to 

2015 as changes were made to the protocol. Changes to a more efficient extraction method in 2013, 

a new qPCR platform in 2014 and a more efficient capture method in 2015 improved the 

sensitivity, while changes to a larger elution volume in 2013 and a smaller sample volume in 2015 

reduced the sensitivity. Overall, when assuming that eDNA is randomly distributed, the sensitivity 

of the current protocol is higher for BH eDNA detection and similar for SC eDNA detection 

compared to the original protocol used from 2009-2012. When assuming that eDNA is clumped, 
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the sensitivity of the current protocol is slightly higher for BH eDNA detection but worse for SC 

eDNA detection. The model shows that if the eDNA is clumped, an assumption supported by 

modeling results of the previous chapter, then the sampling protocol parameters earlier in the 

process have a greater influence on the sensitivity than the parameters later in the process. 

In chapter 4, I apply the model developed in chapter 3 to estimate the BH and SC eDNA 

concentrations in sampling locations in the Illinois River and the CAWS. The model shows that 

the concentrations are highest in the pools furthest downstream (La Grange and Marseilles) where 

AC are known to be invaded, and are lower in the locations further upstream (Brandon Road pool 

and the CAWS), where AC have not invaded. The model also shows that the BH and SC eDNA at 

these locations is highly clumped. These concentrations are used to show that the eDNA 

concentrations in the CAWS are much lower than the concentrations in Marseilles pool and are 

very similar to the concentrations in Brandon Road pool. This indicates that the likelihood of AC 

occupancy in the CAWS is currently zero. The model is then applied to determine what fraction 

of positive eDNA samples in the CAWS would indicate concentrations similar to Marseilles pool 

and thus indicate species presence. The model shows that >30% positive samples are needed to 

indicate presence and >50% are needed to infer 100% similarity to the Marseilles pool. 

In chapter 5, I develop a decision model to evaluate the value of information that monitoring 

provides for making decisions about BH and SC prevention into the Great Lakes. The optimal 

preventative strategy is dependent on prior beliefs about the expected damage of AC invasion, the 

probability of invasion, and whether or not BH and SC have already invaded the Great Lakes. 

Given no monitoring, the optimal strategy is to stay with the status quo of operating electric 

barriers in the CAWS for low probabilities of invasion and low expected invasion costs. However, 
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when the probability of invasion is greater than 30% and the cost of invasion is greater than $100 

million a year, the optimal strategy changes to installing an additional barrier in the Brandon Road 

pool. Greater risk-aversion causes less prevention (e.g., status quo instead of additional barriers) 

to be more preferred. Over a range of sensitivity and specificity values for a hypothetical 

monitoring method, the model shows that information provides value only if the method has 

perfect specificity (false positive rate = 0%). This condition is difficult to meet by eDNA sampling, 

which suffers from significant background noise. 

6.2 Recommendations 

6.2.1 Improving the method sensitivity of eDNA sampling protocols 

Chapters 4 shows that the AC eDNA in the CAWS and the Illinois River is highly clumped. Thus, 

the method sensitivity of the AC eDNA sampling protocol is more influenced by the protocol steps 

that are upstream in the process (e.g., sample volume) (Chapter 3). This suggests that maximizing 

the method sensitivity of eDNA sampling protocols should focus on higher sample volumes, 

higher capture efficiencies and extraction efficiencies when designing future protocols. The 

current sampling protocol (which began to be used in 2015), has the lowest sensitivity for SC 

eDNA detection out of all the protocols (when assuming a clumped distribution of eDNA), 

primarily because of the low sample volume (0.25 L). This is somewhat reflected in the BH and 

SC eDNA sampling results across the country, where SC eDNA detections dropped off from ~1% 

in 2013/2014 to <0.05% in 2015/2016 (Table B-7).  

6.2.2 Making accurate interpretations from eDNA sampling data 

This dissertation also suggests that there may be a low-level of background eDNA that is detectable 

in the absence of live AC organisms. I propose that federal agencies interested in applying eDNA 
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sampling for invasive Asian carp detection perform regular and consistent sampling across the 

gradient of AC invasion in the Illinois river, starting from locations with heavy AC presence and 

into the CAWS and in Lake Michigan. The purpose would be to establish a background level of 

eDNA concentrations where Asian carp are absent and the eDNA concentration where Asian carp 

are present. Thus, if the concentration gradient along the Illinois River changes spatially, e.g. the 

concentrations in the Brandon Road pool are now similar to the concentration distributions in the 

Marseilles pool, then this could also indicate new movement of AC.  

I also recommend that the eDNA sampling results should be reported as copy numbers rather than 

just as positive/negative. Chapter 4 showed that analysis using results with copy numbers allows 

for concentration estimates with lower variability compared to concentration estimates from using 

positive/negative results. Under the current protocol, a detection with 10000 copies and a sample 

with 100 copies is reported identically as one positive sample. However, it is expected that a 

positive sample with 10,000 copies will be more meaningful (i.e., indicate AC presence) compared 

to the sample with 100 copies. 

6.2.3 Implications for decision-making about AC prevention 

The decision analysis in Chapter 5 suggests that there may be benefit to installing an additional 

barrier in the Brandon Road pool. Installing an additional barrier is shown in chapter 5 to be a cost-

effective way at improving prevention, especially if there is a high likelihood of invasion and 

damage from AC. However, the model does show that increased risk aversion of decision-makers 

favors staying with the status quo, since an additional barrier is not fool-proof and may be a 

wasteful expenditure. The model also shows that hydrologic separation of the CAWS is not a 

viable solution under almost every assumption about invasion costs and probability, due to the 
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high costs and 25-year implementation time. If invasion is imminent, then implementing 

hydrologic separation will be ineffective and wasteful. However, if the probability of invasion is 

very low (thus making hydrologic separation potentially effective), then adding another electric 

barrier will also be highly effective at much lower cost. 

6.2.4 Implications about AC monitoring in the CAWS and Illinois River 

The study in Chapter 5 shows that monitoring methods provide value for making decisions about 

AC prevention only if the specificity of the monitoring method is 1 (i.e., that the false positive rate 

is ~0%). This suggests that decision-makers should prefer monitoring methods with very high 

specificity but low sensitivity (e.g., fishing and netting) compared to tools with high sensitivity but 

less than perfect specificity (e.g., eDNA sampling). This has already been seen in recent years 

where invasive AC managers have been relying increasingly on conventional surveillance tools, 

like electrofishing, traps and netting, and have significantly reduced the number of eDNA sampling 

events in the CAWS and the Illinois River.116 However, the goal of developing an effective 

invasive species monitoring strategy should seek to attain high sensitivity and high specificity. I 

suggest that the models developed in this dissertation could be used to minimize the risk of false 

positives and to utilize the high sensitivity of eDNA sampling more effectively. 

6.3 Future Work 

This dissertation assesses the false negatives of eDNA sampling stemming from the sampling 

protocol and the false positives from detecting target eDNA in the absence of the target organism.82 

This work assumed that the probability of falsely detecting non-target DNA in the PCR or qPCR 

analysis is zero when the target DNA is not present. The modeling framework proposed in Chapter 

3 could be extended to include a probability of falsely amplifying non-target DNA. Studies show 
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that one way to mitigate this false positive rate would be to analyze multiple replicates per sample 

and require multiple positive replicates before determining a positive sample.130–132 The current 

protocol for BH and SC eDNA sampling is vulnerable to these method false positives, since only 

one replicate out of eight needs to be positive for each marker to determine a positive sample. I 

recommend future studies on the probability of these false detections in the laboratory and 

statistical models to help inform changes to the protocol to minimize this risk, e.g. requiring more 

than one positive replicate. 

Also, throughout this work, I modeled the CAWS as a single location. However, in reality, the 

CAWS is a series of canals with complex hydrology.60 Future work should integrate my updated 

statistical model of eDNA sampling with hydrodynamic models of the CAWS, invasive fish 

movement, alternative shedding rates, eDNA shedding rates and degradation rates, similar to the 

work performed by Schultz et al.108 This would allow for a stronger assessment of the hydrologic 

influences on eDNA concentration and the relationship between eDNA detection and potential fish 

presence in the CAWS. 

In chapter 5, I developed a decision tree model considering only a one-time decision about 

prevention and a one-time monitoring event. It is more realistic that decision-makers will be 

making yearly decisions and performing yearly monitoring events. The decision model could be 

extended to consider a stochastic decision-making process.129 Also, the probabilities of invasion, 

preventative ability, and costs are considered as deterministic values, rather than as distributions. 

Future work should characterize these values as distributions in order to incorporate more of the 

uncertainty of these variables into the decision model.  
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This model also assumes that AC can only invade the Great Lakes if the preventative measure 

fails. However, there are other pathways, e.g. human-mediated transport, which could cause AC 

invasion though the preventative method is successful at preventing AC passage through the 

CAWS into the Great Lakes. These pathways are very unlikely, due to the illegal nature of 

transporting live AC, but are possible and may make costly prevention measures less desirable due 

to its ineffectiveness at stopping these pathways. Also, in my model I assumed that the decision-

makers have no ability to control and manage the expected damages once the invasion occurs. 

Future work on the model could include the choice of control strategies in addition to prevention 

strategies for minimizing the risk of invasion and the environmental damages.129,133 Finally, the 

decision model only considers the objective of minimizing preventative costs and expected 

invasion costs. However, these prevention strategies also have direct and indirect impacts on the 

environment (e.g., water quality) and other industries (e.g., cargo shipping). Future models could 

include the balancing of these competing objectives and differing stakeholder values. 
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 Supporting Information for Chapter 2 

A.1   R Code for Analysis 

This is the code used to run the binomial and beta-binomial regression modeling analysis shown 

in Chapter 2. It also includes the code used to create the figures.  

################################################# 

#RCode for The Effect of Streamflow Conditions on  

#Silver Carp eDNA Detection in the CAWS 

################################################ 

 

#install and load necessary packages 

install.packages(c("gamlss","ggplot2","usdm")) 

library(gamlss) 

library(ggplot2) 

library(usdm) 

 

#load data table  

df<-read.table("RData.csv",header=TRUE,sep=",") 

n<-nrow(df) 

 

#1. test covariates for colinearity 

df_var<-subset(df,select=-c(1:4,12)) #remove the detection data 

vifstep(df_var,th=10) 

 

#2. Binomial regression will all covariates 

df_test<-subset(df,select=-c(3:4,15)) 

#Full Model 

reg_b<-gamlss(cbind(SC_Y,SC_N-SC_Y)~.,data=df_test,family = BI) 

summary(reg_b) 

 

reg_qb<-gamlss(cbind(SC_Y,SC_N-SC_Y)~.,data=df_test,family = BI) 

summary(reg_qb) 

 

#Final Model 

reg_b2<-gamlss(cbind(SC_Y,SC_N-SC_Y)~sma_30_vol_MG+precip+Temp+pH+Chloroph,data=df_test,family = 

BI) 

summary(reg_b2) 

 

#3. Beta-Binomial regression will all covariates 

#Full Model 

reg_bb<-gamlss(cbind(SC_Y,SC_N-SC_Y)~.,data=df_test,family = BB) 

summary(reg_bb) 

 

#Final Model 

reg_bb2<-gamlss(cbind(SC_Y,SC_N-SC_Y)~sma_30_vol_MG,data=df_test,family = BB) 

summary(reg_bb2) 

 

#3. Make Figure 4 
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attach(df) 

Year<-factor(df$Year) 

#make data frame for plotting 

df_plot<-data.frame(SC_Y=SC_Y,SC_N=SC_N,sma_30_vol_MG=sma_30_vol_MG,Year=Year) 

detach(df) 

 

#regress the final BB model 

reg = gamlss(cbind(SC_Y,SC_N-SC_Y)~sma_30_vol_MG,sigma.formula=~1,data=df_plot,family = 

BB,trace=FALSE) 

 

#predict the mean and 95% confidence intervals using BB model 

d_p<-data.frame("sma_30_vol_MG"=seq(0,5,.01)) 

mu_p<-predict(reg,what="mu",type="response",newdata=d_p) 

sigma_p<-predict(reg,newdata=d_p,what="sigma",type="response") 

d_p$mu_p<-mu_p 

d_p$sigma_p<-sigma_p #not variance 

var_p <- mu_p*(1-mu_p)*(sigma_p/(sigma_p+1)) 

 

#get alpha/beta of beta distribution 

estBetaParams <- function(mu, var) { 

  alpha <- ((1 - mu) / var - 1 / mu) * mu ^ 2 

  beta <- alpha * (1 / mu - 1) 

  return(params = list(alpha = alpha, beta = beta)) 

} 

params = estBetaParams(mu_p,var_p) 

d_p$alpha_p<-params$alpha 

d_p$beta_p<-params$beta 

 

#calculate the 95% CI at each point 

d_p$lower<-qbeta(.025,params$alpha,params$beta) 

d_p$upper<-qbeta(.975,params$alpha,params$beta) 

 

#plot 

ggplot(data=df_plot)+ 

  #plot the points 

  geom_point(aes(x=sma_30_vol_MG,y=SC_Y/SC_N,size = SC_N,shape=Year)) + 

  scale_shape_manual(values=c(0,1,17,8))+ 

  #plot the fitted line & 95% CI 

  geom_line(data=d_p,aes(x=sma_30_vol_MG,y=mu_p),size = 1.5) + 

  geom_line(data=d_p,aes(x=sma_30_vol_MG,y=lower),linetype = "dashed",size = 1) + 

  geom_line(data=d_p,aes(x=sma_30_vol_MG,y=upper),linetype = "dashed",size = 1) + 

   

  #eliminates background, gridlines, and chart border 

  theme_bw()+ 

  theme( 

    plot.background = element_blank() 

    ,panel.grid.major = element_blank() 

    ,panel.grid.minor = element_blank()) + 

   

  #draws x and y axis line 

  theme(axis.line.x = element_line(colour="black"), 

        axis.line.y = element_line(colour="black")) + 

  theme(text=element_text(size=18,colour="black"), 

        axis.text = element_text(colour="black"), 
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        legend.key=element_blank())+ 

  scale_y_continuous(limits = c(0,1),breaks=c(0,.25,.5,.75,1),expand=c(0,.02))+ 

  scale_x_continuous(limits=c(0,4),expand=c(.02,0))+ 

  ylab("Fraction of Positive SC eDNA Samples\n") +  

  xlab("\n30-day average of daily reverse flow volume [million gallons]") + 

  labs(shape = "Year",size = "# of samples") 

 

Table A-1. The number of positive Silver Carp and Bighead Carp eDNA samples for all sampling events from 

2009-2012 in the CAWS upstream of the electric barrier. The date and location of each sampling event is also 

listed. Starting July 2010, an interagency group led by the US Army Corps of Engineers (USACE) took over 

eDNA sampling analysis from University of Notre Dame (UND) 

Date of 

Sample 
Laboratory 

Locatio

n 

Silver Carp eDNA 
Bighead Carp 

eDNA 

Total #  

of 

samples 

# of 

positive 

samples 

Total # 

of 

samples 

# of 

positive 

samples 

8/3/2009 UND CR5 25 0 25 0 

9/10/2009 UND CR1 13 0 13 0 

9/10/2009 UND CR2 7 0 7 0 

9/23/2009 UND CRA 14 0 14 0 

9/23/2009 UND CRC 27 0 27 0 

9/23/2009 UND CRD 44 1 44 26 

9/10/2009 UND CRM 73 0 73 0 

10/22/2009 UND CR1 7 0 7 0 

10/1/2009 UND CR3 3 1 3 0 

10/1/2009 UND CR4 38 0 38 0 

10/1/2009 UND CR5 28 1 28 0 

10/1/2009 UND CRE 21 0 21 3 

10/22/2009 UND NSC 45 5 45 0 

11/24/2009 UND CLK 3 0 3 0 

11/24/2009 UND CR5 1 0 1 0 

11/24/2009 UND CRA 11 0 11 0 

11/24/2009 UND CRB 3 0 3 0 

11/24/2009 UND CRC 13 0 13 0 

11/24/2009 UND CRD 34 0 34 2 

11/24/2009 UND CRE 40 2 40 1 

11/24/2009 UND LKC 3 0 3 0 

12/8/2009 UND CRA 46 4 46 0 

12/8/2009 UND CRC 5 0 5 0 

12/8/2009 UND CRD 33 1 33 0 

12/1/2009 UND CRM 11 0 11 0 

12/8/2009 UND LKC 14 0 14 0 

3/30/2010 UND CRA 39 0 39 0 

3/30/2010 UND CRB 2 0 2 0 

3/30/2010 UND CRC 7 0 7 0 
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3/30/2010 UND CRD 43 1 43 0 

3/30/2010 UND LKC 14 0 14 0 

4/20/2010 UND CR1 20 0 20 0 

4/15/2010 UND CRC 6 0 6 0 

4/15/2010 UND CRD 61 0 61 0 

4/20/2010 UND NSC 67 1 67 0 

5/27/2010 UND BHR 13 1 13 0 

5/27/2010 UND CR2 45 1 45 0 

5/27/2010 UND CR3 34 4 34 0 

5/20/2010 UND CRC 9 0 9 0 

5/20/2010 UND CRD 35 0 35 0 

5/27/2010 UND CRM 20 1 20 0 

5/27/2010 UND MXZ 3 1 3 0 

5/12/2010 UND NSC 58 0 58 0 

7/22/2010 USACE CLK 24 0 24 0 

7/20/2010 USACE CRA 85 0 85 0 

7/20/2010 USACE CRB 5 0 5 0 

7/22/2010 USACE CRB 3 0 3 0 

7/20/2010 USACE CRC 8 0 8 0 

7/22/2010 USACE LKC 68 0 68 0 

10/13/2010 USACE CR5 54 4 54 0 

11/2/2010 USACE BHR 1 0 1 0 

11/15/2010 USACE CR1 4 0 4 0 

11/2/2010 USACE CR2 81 0 81 1 

11/30/2010 USACE CR5 45 1 45 0 

11/8/2010 USACE CRC 13 0 13 0 

11/8/2010 USACE CRD 96 1 96 0 

11/8/2010 USACE CRE 1 0 1 0 

11/2/2010 USACE CRM 27 0 27 0 

11/2/2010 USACE MXZ 5 0 5 0 

11/15/2010 USACE NSC 110 1 110 1 

12/7/2010 USACE CR4 29 0 29 0 

12/7/2010 USACE CR5 47 0 47 2 

5/16/2011 USACE CR1 3 0 3 0 

5/10/2011 USACE CR2 79 1 79 0 

5/10/2011 USACE CRM 24 0 24 0 

5/10/2011 USACE MXZ 11 0 11 0 

5/16/2011 USACE NSC 111 0 111 0 

6/23/2011 USACE BHR 2 0 2 0 

6/15/2011 USACE CLK 34 4 34 0 

6/27/2011 USACE CR1 9 0 9 0 

6/23/2011 USACE CR2 79 0 79 0 

6/15/2011 USACE CRA 3 0 3 0 
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6/15/2011 USACE CRB 12 2 12 0 

6/15/2011 USACE CRC 51 0 51 0 

6/23/2011 USACE CRM 24 0 24 0 

6/15/2011 USACE LKC 15 1 15 0 

6/23/2011 USACE MXZ 9 0 9 0 

6/27/2011 USACE NSC 105 1 105 0 

7/12/2011 USACE CLK 11 0 11 0 

7/19/2011 USACE CLK 11 0 11 0 

7/19/2011 USACE CRA 2 0 2 0 

7/12/2011 USACE CRB 5 0 5 0 

7/19/2011 USACE CRB 4 0 4 0 

7/12/2011 USACE CRC 13 0 13 0 

7/19/2011 USACE CRC 15 0 15 0 

7/12/2011 USACE CRD 41 0 41 0 

7/19/2011 USACE CRD 50 1 50 0 

7/12/2011 USACE LKC 32 2 32 0 

7/19/2011 USACE LKC 32 1 32 0 

8/17/2011 USACE BHR 2 0 2 0 

8/1/2011 USACE CLK 13 0 13 0 

8/30/2011 USACE CLK 14 0 14 0 

8/22/2011 USACE CR1 6 0 6 0 

8/17/2011 USACE CR2 73 1 73 0 

8/17/2011 USACE CR3 7 0 7 0 

8/1/2011 USACE CRB 4 0 4 0 

8/30/2011 USACE CRB 4 0 4 0 

8/1/2011 USACE CRC 8 0 8 0 

8/30/2011 USACE CRC 14 0 14 0 

8/30/2011 USACE CRD 51 0 51 0 

8/17/2011 USACE CRM 23 0 23 0 

8/1/2011 USACE LKC 32 0 32 0 

8/30/2011 USACE LKC 31 1 31 0 

8/17/2011 USACE MXZ 9 0 9 0 

8/22/2011 USACE NSC 108 0 108 0 

9/19/2011 USACE CR1 8 0 8 0 

9/13/2011 USACE CR2 79 0 79 0 

9/6/2011 USACE CR5 57 0 57 0 

9/13/2011 USACE CRM 24 0 24 0 

9/13/2011 USACE MXZ 8 0 8 0 

9/19/2011 USACE NSC 106 2 106 0 

10/11/2011 USACE CLK 14 0 14 0 

10/27/2011 USACE CLK 14 0 14 0 

10/25/2011 USACE CR1 3 0 3 0 

10/18/2011 USACE CR2 79 0 79 0 
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10/25/2011 USACE CR2 65 0 65 0 

10/25/2011 USACE CR3 3 0 3 0 

10/26/2011 USACE CR4 124 0 124 0 

10/26/2011 USACE CR5 104 2 104 0 

10/27/2011 USACE CR5 1 0 1 0 

10/11/2011 USACE CRB 13 0 13 0 

10/27/2011 USACE CRB 5 0 5 0 

10/11/2011 USACE CRC 5 0 5 0 

10/27/2011 USACE CRC 15 0 15 0 

10/11/2011 USACE CRD 51 0 51 0 

10/27/2011 USACE CRD 51 1 51 0 

10/27/2011 USACE CRE 113 10 113 0 

10/18/2011 USACE CRM 24 1 24 0 

10/25/2011 USACE CRM 19 2 19 0 

10/11/2011 USACE LKC 30 0 30 0 

10/27/2011 USACE LKC 31 0 31 0 

10/18/2011 USACE MXZ 11 0 11 0 

10/25/2011 USACE MXZ 8 0 8 0 

10/25/2011 USACE NSC 111 1 111 0 

5/22/2012 USACE CLK 16 4 16 0 

5/22/2012 USACE CRB 3 2 3 0 

5/22/2012 USACE CRC 14 3 14 0 

5/22/2012 USACE CRD 50 3 50 0 

5/22/2012 USACE LKC 30 5 30 0 

6/11/2012 USACE CLK 14 2 14 0 

6/25/2012 USACE CLK 15 1 15 0 

6/11/2012 USACE CR1 4 0 4 0 

6/11/2012 USACE CRB 5 0 5 0 

6/25/2012 USACE CRB 4 0 4 0 

6/11/2012 USACE CRC 7 0 7 0 

6/25/2012 USACE CRC 13 2 13 0 

6/25/2012 USACE CRD 52 0 52 0 

6/11/2012 USACE LKC 16 1 16 0 

6/25/2012 USACE LKC 30 4 30 0 

6/11/2012 USACE NSC 53 1 53 0 

7/11/2012 USACE CLK 6 0 6 0 

7/24/2012 USACE CLK 13 1 13 0 

7/10/2012 USACE CR1 2 0 2 0 

7/10/2012 USACE CR2 35 5 35 0 

7/24/2012 USACE CRB 4 0 4 0 

7/11/2012 USACE CRC 7 0 7 0 

7/24/2012 USACE CRC 8 0 8 0 

7/10/2012 USACE CRM 15 0 15 0 
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7/11/2012 USACE LKC 30 2 30 0 

7/24/2012 USACE LKC 31 2 31 0 

7/10/2012 USACE MXZ 7 1 7 0 

7/10/2012 USACE NSC 55 3 55 0 

8/20/2012 USACE CLK 14 0 14 0 

8/6/2012 USACE CR2 35 0 35 0 

8/20/2012 USACE CRB 3 0 3 0 

8/20/2012 USACE CRC 14 2 14 0 

8/20/2012 USACE CRD 51 0 51 0 

8/6/2012 USACE CRM 15 0 15 0 

8/20/2012 USACE LKC 32 6 32 0 

8/6/2012 USACE MXZ 7 0 7 0 

9/17/2012 USACE CLK 13 2 13 0 

9/11/2012 USACE CR1 4 2 4 0 

9/11/2012 USACE CR2 35 5 35 0 

9/17/2012 USACE CRB 4 0 4 0 

9/17/2012 USACE CRC 13 3 13 0 

9/17/2012 USACE CRD 51 3 51 0 

9/11/2012 USACE CRM 15 12 15 0 

9/17/2012 USACE LKC 33 8 33 0 

9/11/2012 USACE MXZ 7 0 7 0 

9/11/2012 USACE NSC 53 11 53 0 

10/22/2012 USACE CLK 14 9 14 1 

10/2/2012 USACE CR1 4 1 4 0 

10/15/2012 USACE CR1 4 0 4 0 

10/2/2012 USACE CR2 31 4 35 0 

10/22/2012 USACE CRB 4 3 4 1 

10/22/2012 USACE CRC 13 6 13 0 

10/22/2012 USACE CRD 42 5 42 0 

10/2/2012 USACE CRM* - - 15 0 

10/22/2012 USACE LKC 12 11 12 2 

10/2/2012 USACE MXZ 7 3 7 0 

10/2/2012 USACE NSC 53 7 53 0 

10/15/2012 USACE NSC 53 8 53 0 
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Table A-2. The p-values of the β coefficient of the reverse flow volume covariate when fitting logit(p) in a 

beta-binomial model and the AIC of the model fit for a range of different time frames and types of moving 

averages of the reverse flow volume covariate: (a) 15, 30, 60 and 90-day; (b) simple and exponential. The 

exponential moving average is a weighted average using an alpha value of 2/(# of days+1). The best fitting 

covariate (30-day moving average) in terms of AIC is bolded. 

Variable (different averages of daily reverse 

flow volume) 

p-value of β AIC 

30-day moving average 2.9E-13 484 

60-day moving average 2.8E-10 490 

90-day exponential moving average 7.7E-10 490 

60-day exponential moving average 3.1E-10 491 

30-day exponential moving average 6.3E-09 498 

90-day moving average 4.8E-07 500 

15-day moving average 3.3E-06 509 

15-day exponential moving average 1.5E-05 510 
 

 

 

Table A-3. The goodness of fit in terms of AIC for four different model types (Binomial, Beta-Binomial, Zero-

Inflated Binomial, Zero-Inflated Beta-Binomial) using RevVol (30-day moving average of reverse flow 

volume) as the only covariate. The best fitting model (Beta-Binomial) in terms of AIC is bolded. 

Model (with just RevVol as the variable) AIC 

Beta-Binomial 484 

Zero-Inflated Beta-Binomial 486 

Zero-Inflated Binomial 590 

Binomial 630 
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Figure A-1 The Chicago Area Waterway System (CAWS) connecting Lake Michigan to the Des Plaines River 

(a tributary of the Illinois River). The names of Chicago’s Metropolitan Water Reclamation District 

(MWRD) water quality monitoring locations are shown in the boxes and are colored to match their 

corresponding eDNA monitoring location in the stream. The figure is adapted from 121. 
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 Supporting Information for Chapter 3 

B.1   Fitting a distribution for the number of filters used per sample 

In 2014, USFWS’ Whitney Genetics Lab (WGL) processed 6144 water samples using filtration. 

The number of filters used per sample was carefully documented. I use a zero-truncated or positive 

Poisson random variable to model the number of filters used per sample. The positive Poisson 

distribution is the Poisson distribution, given that the value of the random variable must be greater 

than zero. This distribution was used, because the number of filters used per sample must be at 

least one. The probability mass function of the positive Poisson distribution (𝑔(𝑘; 𝜆)) is derived 

from a standard Poisson distribution (𝑓(𝑘; 𝜆)), as shown here: 

 𝑔(𝑘; 𝜆) = 𝑃(𝑋 = 𝑘|𝑋 > 0) =
𝑓(𝑘;𝜆)

1−𝑓(0;𝜆)
=

𝜆𝑘𝑒−𝜆

𝑘!(1−𝑒−𝜆)
 ( B-1 ) 

The lambda parameter or mean of the distribution is 3.4 filters per sample, which is very close to 

the rule of thumb stated in the QAPP of using 3 filters per sample. 

Then, using this distribution and the protocol that if 8 or fewer filters were used, then each of the 

filters were eluted into 200 µL and if 9 or more filters were used, then each of the filters were 

eluted into 100 µL, I can simulate the distribution of elution volume per sample for the filtration 

process. This distribution is shown in Figure A1. The expected value of the elution volume under 

these assumptions for filtration is 680 µL with a standard deviation of 340 µL. This is larger than 

the elution volume for the centrifugation process (began in 2015), which is always 200 µL for each 

sample and the elution volume for the filtration process used by USACE (from 2009-2012). 
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Figure B-1. Distribution of elution volume for filtration with the PW kit (2009-2012 protocol), filtration with 

the DN kit (2013-2014 protocol) and centrifugation with the DN kit (2015 protocol) 
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B.2   Estimating the capture and extraction efficiencies from experimental data 

In 2016, WGL performed experiments to quantify the extraction efficiency of the IBI Scientific 

gMax mini (IBI) kit, which is a copy of the Qiagen DNEasy (DN) kit, and the capture efficiencies 

of filtration and centrifugation.  

 First, WGL prepared initial cell dilutions of 103
 and 104 copies/μL. To confirm the amount 

of DNA copies in each dilution, WGL quantified the number of copies in 32 qPCR 

replicates of each dilution (xij). I modeled the amount of DNA delivered to each replicate 

as a negative binomial random variable with mean λiv where λi is the mean concentration 

of each dilution i, v is the volume of cell dilution tested (3 μL) and ri measures the 

dispersion of the DNA in the dilution for each dilution. 

 𝑥𝑖𝑗  ~ 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚(𝜆𝑖𝑣, 𝑟𝑖) ( B-2 ) 

 To determine the extraction efficiency of the IBI kit, WGL pipetted 10 μL of the 103 

copies/μL dilution into an extraction tube for the IBI kit 30 times. 8 qPCR replicates were 

prepared post-extraction and the amount of DNA in each replicate was quantified. I model 

the amount of DNA extracted per sample (Ei) as a negative binomial random variable with 

mean λ1vϕe and dispersion parameter r, where v = 10 μL and ϕe is the unknown extraction 

efficiency of the IBI kit. Then, I model the amount of DNA in each qPCR replicate j from 

extraction tube i, yij, as a Poisson random variable with mean Eif, where f = 3 μL/200 μL. 

 𝐸𝑖 ~ 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚(𝜆1𝑣𝜙𝑒 , 𝑟1) 

 𝑦𝑖𝑗  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐸𝑖𝑓) ( B-3 ) 
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 To determine the capture efficiencies of filtration and centrifugation, WGL delivered 10 

μL of the 104
 copies/μL dilution into a 2-L sample for filtration and 5 50-mL tubes for 

centrifugation. After the capture process, the samples were extracted using the IBI kit and 

eluted into 200 μL. Eight replicates were prepared for each sample and the amount of DNA 

in each replicate was quantified using qPCR. I model the amount of DNA in each sample 

i after capture by the given method j (j = 1 for centrifugation and 2 for filtration) and 

extraction via the IBI kit (Cij) using a negative binomial random variable with mean 

λ2vϕc,jϕe, where v = 10 μL, ϕc,j is unknown and ϕe is known from the previous experiment. 

Then, I model the amount of DNA in each qPCR replicate k, zijk, as a Poisson random 

variable with mean Cijf, where, f = 3 μL/200 μL. 

 𝐶𝑖𝑗 ~ 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚(𝜆2𝑣𝜙𝑐,𝑗𝜙𝑒 , 𝑟2) 

 𝑧𝑖𝑗𝑘 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐶𝑖𝑗𝑓) ( B-4 ) 

I analyzed the data for all three experiments in one run using JAGS in R. The parameters (λ1, λ2, r1, 

r2, ϕe, ϕc,1 and ϕc,2) were fit given the results from the three experiments (xij, yij, zijk). I assumed a 

gamma distribution for λ1 and λ2, with an uninformative prior (shape = .001, rate = .001) and a 

wide, uninformative uniform prior for r1 and r2. I assumed a logistic normal distribution for each 

of the efficiency terms, ϕe, ϕc,1 and ϕc,2, with an uninformative normal prior for their mean (mean 

= 0, precision = .0001) and an uninformative gamma prior for their precision (shape = .001, rate = 

.001). The posterior distributions of each parameter can be found in Table B-1 and the correlation 

matrix of these parameters can be found in Table B-2. 
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Table B-1 The posterior distributions of the seven unknown parameters (ϕc,1 – capture efficiency of 

centrifugation; ϕc,2 – capture efficiency of filtration; ϕe – extraction efficiency of IBI kit; λ1 – mean 

concentration of 103 dilution; r1 – dispersion parameter of  103 dilution; λ2 – mean concentration of 104 

dilution; r2 – dispersion parameter of  104 dilution) fitted using the MCMC algorithm. 

 

Parameter Mean Standard deviation 
95% Confidence Interval 

Lower (2.5%) Upper (97.5%) 

ϕc,1 0.064 0.018 0.035 0.11 

ϕc,2 0.037 0.011 0.020 0.062 

ϕe 0.33 0.028 0.28 0.39 

λ1 1520 87 1360 1700 

λ2 18100 349 12500 26200 

r1 10 1.9 6.9 14 

r2 0.90 0.13 0.68 1.1 
 

Table B-2. Correlation matrix of the seven unknown parameters (ϕc,1 – capture efficiency of centrifugation; 

ϕc,2 – capture efficiency of filtration; ϕe – extraction efficiency of IBI kit; λ1 – mean concentration of 103 

dilution; r1 – dispersion parameter of  103 dilution; λ2 – mean concentration of 104 dilution; r2 – dispersion 

parameter of  104 dilution) fitted using the MCMC algorithm. 

Correlation Matrix ϕc,1 ϕc,2 ϕe λ1 λ2 r1 r2 

ϕc,1 1 0.5 -0.28 0.19 -0.61 -0.0087 -0.010 

ϕc,2 - 1 -0.26 0.18 -0.62 -0.0033 -0.019 

ϕe - - 1 -0.67 -0.006 -0.006 0.011 

λ1 - - - 1 0.006 -0.0059 0.011 

λ2 - - - - 1 0.013 -0.028 

r1 - - - - - 1 -0.015 

r2 - - - - - - 1 
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B.3   Dilution assay data and results for both PCR and qPCR markers 

I estimated the probability of amplification or sequencing one copy of the PCR and qPCR markers, 

ψ, using experimental data on the proportion of replicates that undergo successful amplification or 

sequencing over a series of dilutions of initial target DNA copy amounts (Table B-3; Table B-4; 

Table B-5).84,87  

I modeled ψ for each marker/reaction by assuming that the number of target marker copies in each 

of the replicates is distributed as a Poisson random variable with mean equal to the expected 

number of target marker copies in the dilution. The probability that at least one copy amplifies (p) 

in the replicate, i.e. the probability of a positive replicate, is one minus the probability that none of 

the copies in the replicate amplifies or is successfully sequenced. Then, given the number of 

positive replicates (npos) out of the number of tested replicates (nrep), I can estimate the probability 

of amplifying or sequencing a single copy (ψ)  

 𝑁𝑟 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) 

 𝑝 = 1 − (1 − 𝜓)𝑁𝑟 

 𝑛𝑝𝑜𝑠 = 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑟𝑒𝑝, 𝑝) ( B-5 ) 

I fit ψ for each marker and reaction using JAGS in R. For each marker/reaction, I specified an 

uninformative logistic normal prior for ψ (mean = 0, variance = 100000, both on the logit scale).  
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Table B-3. The frequency of successful PCR amplification for a series of dilutions of Bighead Carp and Silver 

Carp DNA. Data from Schultz and Lance (2015).84 

Estimated copy 

number 
Frequency of successful amplification 
Silver Carp Bighead Carp 

1 0.28 0.22 
2 0.3 0.7 
3 0.3 0.8 
4 0.57 0.8 
5 0.85 0.82 
6 0.63 0.93 
7 - 0.97 
8 0.9 0.97 
9 0.93 1 
10 0.98 1 
11 1 1 
12 0.97 1 
13 0.97 1 
14 1 1 
15 1 1 
50 1 1 
100 1 1 
200 1 1 
500 1 1 
1000 1 1 
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Table B-4. The frequency of successful sequencing of the target DNA sequence for a series of dilutions of 

Bighead Carp and Silver Carp DNA. Data from Schultz and Lance (2015).84 

Estimated copy 

number 
Frequency of successful sequencing 

Silver Carp Bighead Carp 
1 1 0.00 
2 0.89 0.10 
3 1 0.00 
4 0.94 0.24 
5 0.95 0.14 
6 0.95 0.21 
7 1 0.45 
8 0.89 0.13 
9 0.54 - 
10 1 - 
11 0.9 - 
12 0.97 - 
13 0.97 - 
14 1 - 
15 1 0.83 
25 - 0.45 
50 - 0.70 
100 - 0.93 
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Table B-5. The frequency of successful qPCR amplification of each marker for a series of dilutions of silver 

carp DNA (ACTM1, ACTM3, SCTM4, SCTM5) or bighead carp DNA (BHTM1, BHTM2). These data were 

obtained from Farrington et al. 2015.2 The frequency is calculated 

Estimated 

Copy 

Number 

Frequency of Successful 

Amplification 

 

Estimated 

Copy 

Number 

Frequency of Successful 

Amplification 

ACTM1 ACTM3 SCTM4 SCTM5 BHTM1 BHTM2 

1.6 0.5 0 0.25 0.5 1.1 0.25 0 

3.4 0.5 0.75 1 0.75 2.2 1 0.75 

46 1 1 1 1 16 1 1 

508 1 1 1 1 230 1 1 

6051 1 1 1 1 2193 1 1 
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Table B-6. The posterior distribution of the probability that a single DNA copy amplifies or sequences from 

dilution assays testing the amplification of the PCR and qPCR markers and sequencing of the PCR markers 

over a range of target DNA concentrations 

Type of 

Assay 

Type of 

Reaction 

Marker Name Probability of amplifying or 

sequencing a single target 

DNA copy [ψ], 

mean (5% - 95%) 

PCR 

 

Amplification BH-PCR 0.34 (0.28 – 0.41) 

SC-PCR 0.28 (0.22 – 0.34) 

Sequencing BH-PCR 0.04 (0.03 – 0.05) 

SC-PCR 0.36 (0.27 – 0.46) 

qPCR 

 

Amplification ACTM1 0.27 (0.07 – 0.65) 

ACTM3 0.27 (0.07 – 0.61) 

SCTM4 0.42 (0.13 – 0.78) 

SCTM5 0.36 (0.11 – 0.74) 

BHTM1 0.47 (0.17 – 0.84) 

BHTM2 0.52 (0.11 – 0.98) 

 

Table B-7. The frequency of positive Bighead Carp and Silver Carp eDNA samples found in all US waterways 

from 2013 to 2016 

Year 

(Laboratory) 

eDNA samples in all US waterways  

[positive samples/total samples (%)] 

Bighead Carp Silver Carp 

2013 

(USFWS) 
0/2083 (0.0%) 24/2083 (1.1%) 

2014 

(USFWS) 
7/5714 (0.12%)  34/5714 (0.60%) 

2015 

(USFWS) 
15/6109 (0.25%) 3/6109 (0.05%) 

2016 

(USFWS) 
1/5977 (0.02%) 1/5977 (0.02%) 

 



132 

 
Figure B-2. Results of dilution assay for amplifying BH and SC DNA using the PCR markers BH-PCR and 

SC-PCR showing the proportion of replicates that are successfully amplified as a function of the expected 

number of target copies in the replicate and the curve for the fitted distribution of ψ for each marker. 

 

 
Figure B-3. Results of dilution assay for sequencing BH and SC DNA using the markers BH-PCR and SC-

PCR showing the proportion of replicates that are successfully sequenced as a function of the expected 

number of target copies in the replicate and the curve for the fitted distribution of ψ for each marker. 
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Figure B-4. Results of dilution assay for amplifying BH and SC DNA using the qPCR markers ACTM1, 

ACTM3, BHTM1, BHTM2, SCTM4, and SCTM5 showing the proportion of replicates that are successfully 

amplified as a function of the expected number of target copies in the replicate and the curve for the fitted 

distribution of ψ for each marker. 
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Figure B-5. Comparison of the probability of a positive sample for the PCR and qPCR methods given the 

number of copies in a replicate for Bighead Carp and Silver Carp eDNA detection. The solid line denotes the 

mean probability value and the dashed lines show the 95% credible interval. 
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B.4   Tornado diagrams showing influence of percentage changes to protocol 

parameters on the protocol’s sensitivity 

 
Figure B-6. Tornado diagram showing the change in the minimum mean SC eDNA concentration detectable 

with probability 95% given a 10% decrease and increase for each of the six sampling protocol parameters. 

The vertical axis is located at 41,700 copies/L, which is the sensitivity of the current 2015-2016 sampling 

protocol, i.e., a sample size of 0.25 liters, capture efficiency of 6%, extraction efficiency of 33%, elution 

volume of 200 µL, a reaction volume of 3 µL and 8 replicates. It is assumed that the eDNA was randomly 

distributed (r = 100). 
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Figure B-7. Tornado diagram showing the change in the minimum mean SC eDNA concentration detectable 

with probability 95% given a 10% decrease and increase for each of the six sampling protocol parameters. 

The vertical axis is located at 1,320,000 copies/L, which is the sensitivity of the current 2015-2016 sampling 

protocol, i.e., a sample size of 0.25 liters, capture efficiency of 6%, extraction efficiency of 33%, elution 

volume of 200 µL, a reaction volume of 3 µL and 8 replicates. It is assumed that the eDNA was clumped (r = 

0.3). 
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 Supporting Information for Chapter 4 

Table C-1. The number of positive samples of each target marker (AC-TM1, AC-TM3, BH-TM1, BH-TM2, 

SC-TM4, SC-TM5) for each combination of sampling location in the Illinois River(La Grange pool, 

Marseilles pool, Brandon Road pool) and capture method (filtration or centrifugation). 

Sampling 

location 

Capture 

method 

Number of positive samples for target marker _______ 

out of 25 total samples  

AC-

TM1 

AC-

TM3 

BH-

TM1 

BH-

TM2 

SC-

TM4 

SC-

TM5 

La Grange 

pool 

Filtration 19 19 19 19 19 19 

Centrifugation 23 23 23 22 23 23 

Marseilles 

pool 

Filtration 23 22 20 21 23 23 

Centrifugation 21 20 11 13 17 19 

Brandon 

Road pool 

Filtration 1 1 0 0 0 0 

Centrifugation 5 6 2 2 2 2 

 

Table C-2. The estimated mean eDNA concentration distribution of each target marker (AC-TM1, AC-TM3, 

BH-TM1, BH-TM2, SC-TM4, SC-TM5)  in each sampling location in the Illinois River (La Grange pool, 

Marseilles pool, Brandon Road pool) and the CAWS. The value in larger font is the mean and the values in 

the parentheses are the 95% credible intervals of the distribution. 

Target 

marker 

Mean eDNA concentration 

[copies/L] 

La Grange pool Marseilles pool Brandon Road 

pool 

CAWS 

AC-

TM1 

4,030,000 
(1,840,000 – 8,340,000) 

442,000 
(215,000 – 870,000) 

19,800 
(9,490 – 39,200) 

9,420 
(1,020 – 78,900) 

AC-

TM3 

2,600,000 
(1,180,000 – 5,330,000) 

393,000 
(192,000 – 755,000) 

22,100 
(4,510 – 20,600) 

6,610 
(828 – 32,300) 

BH-

TM1 

321,000 
(130,000 – 704,000) 

256,000 
(108,000 – 508,000) 

10,600 
(7,850 – 32,400) 

3,770 
(35 – 13,300) 

BH-

TM2 

545,000 
(237,000 – 1,130,000) 

233,000 
(91,500 – 483,000) 

16,400 
(7,850 – 32,400) 

4,100 
(52 – 16,500) 

SC-

TM4 

1,780,000 
(794,000 – 3,540,000) 

296,000 
(141,000 – 546,000) 

8,230 
(3,200 – 17,600) 

8,540 
(152 – 47,300) 

SC-

TM5 

4,380,000 
(1,970,000 – 8,570,000) 

360,000 
(177,000 – 688,000) 

10,000 
(4,260 – 20,100) 

9,330 
(131 – 49,900) 
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Figure C-1. A three-stage site occupancy model when interpreting eDNA sampling data 
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Figure C-2. The prior (grey) and posterior (black) distributions of the capture efficiency (ϕc ) of the filtration 

method. 

 

 

 
Figure C-3. The prior (grey) and posterior (black) distributions of the capture efficiency (ϕc ) of the 

centrifugation method. 
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 Supporting Information for Chapter 5 

 
Figure D-1. Annual costs for implementing each of the prevention strategies over the 50 year time frame. The 

stop prevention strategy is not shown, since that will have zero preventative costs. 
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Figure D-2. The exponential utility function (Utility = 1 – e-NPV/R) for two risk tolerances (R), $1 billion and 

$500 million. 
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Figure D-3. Optimal prevention strategy as a function of the annual cost of invasion on the x-axis and the 

base probability of invasion on the y-axis, given risk neutrality, time frame of 100 years and a discount rate of 

4%. The colors denote the optimal prevention strategy for each combination of invasion costs and base 

probability of invasion. Red is the status quo, blue is additional barrier and green is stop prevention. 
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Figure D-4. Optimal prevention strategy as a function of the annual cost of invasion on the x-axis and the 

base probability of invasion on the y-axis, given “environmental” risk tolerance of $1 billion. Red is the status 

quo, blue is additional barrier and green is stop prevention. 

 

 


