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Abstract

Among the many issues that profoundly affect the world economy every day, energy is one

of the most prominent. Countries such as the U.S. strive to reduce reliance on the import of

fossil fuels, and to meet increasing electricity demand without harming the environment.

Two of the most promising solutions for the energy issue are to rely on renewable energy,

and to develop efficient electricity storage. Renewable energy—such as wind energy and solar

energy—is free, abundant, and most importantly, does not exacerbate the global warming

problem. However, most renewable energy is inherently intermittent and variable, and thus

can benefit greatly from coupling with electricity storage, such as grid-level industrial batteries.

Grid storage can also help match the supply and demand of an entire electricity market. In

addition, electricity storage such as car batteries can help reduce dependence on oil, as it can

enable the development of Plug-in Hybrid Electric Vehicles, and Battery Electric Vehicles.

This thesis focuses on understanding how to manage renewable energy and electricity storage

properly together, and electricity storage alone.

In Chapter 2, I study how to manage renewable energy, specifically wind energy. Managing

wind energy is conceptually straightforward: generate and sell as much electricity as possible

when prices are positive, and do nothing otherwise. However, this leads to curtailment when

wind energy exceeds the transmission capacity, and possible revenue dilution when current

prices are low but are expected to increase in the future. Electricity storage is being considered

as a means to alleviate these problems, and also enables buying electricity from the market for

later resale. But the presence of storage complicates the management of electricity generation

from wind, and the value of storage for a wind-based generator is not entirely understood.

I demonstrate that for such a combined generation and storage system the optimal policy

does not have any apparent structure, and that using overly simple policies can be considerably

suboptimal. I thus develop and analyze a triple-threshold policy that I show to be near-



optimal. Using a financial engineering price model and calibrating it to data from the New York

Independent System Operator, I show that storage can substantially increase the monetary

value of a wind farm: If transmission capacity is tight, the majority of this value arises from

reducing curtailment and time-shifting generation; if transmission capacity is abundant this

value stems primarily from time-shifting generation and arbitrage. In addition, I find that

while more storage capacity always increases the average energy sold to the market, it may

actually decrease the average wind energy sold when transmission capacity is abundant.

In Chapter 3, I examine how electricity storage can be used to help match electricity

supply and demand. Conventional wisdom suggests that when supply exceeds demand, any

electricity surpluses should be stored for future resale. However, because electricity prices can

be negative, another potential strategy of dealing with surpluses is to destroy them. Using real

data, I find that for a merchant who trades electricity in a market, the strategy of destroying

surpluses is potentially more valuable than the conventional strategy of storing surpluses.

In Chapter 4, I study how the operation and valuation of electricity storage facilities

can be affected by their physical characteristics and operating dynamics. Examples are the

degradation of energy capacity over time and the variation of round-trip efficiency at different

charging/discharging rates. These dynamics are often ignored in the literature, thus it has not

been established whether it is important to model these characteristics. Specifically, it remains

an open question whether modeling these dynamics might materially change the prescribed

operating policy and the resulting valuation of a storage facility. I answer this question using a

representative setting, in which a battery is utilized to trade electricity in an energy arbitrage

market.

Using engineering models, I capture energy capacity degradation and efficiency variation

explicitly, evaluating three types of batteries: lead acid, lithium-ion, and Aqueous Hybrid Ion—

a new commercial battery technology. I calibrate the model for each battery to manufacturers’

data and value these batteries using the same calibrated financial engineering price model as

in Chapter 2. My analysis shows that: (a) it is quite suboptimal to operate each battery as

if it did not degrade, particularly for lead acid and lithium-ion; (b) reducing degradation and

efficiency variation have a complimentary effect: the value of reducing both together is greater

than the sum of the value of reducing one individually; and (c) decreasing degradation may

have a bigger effect than decreasing efficiency variation.
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Chapter 1

Introduction

Among the many issues that profoundly affect the world economy every day, energy is one

of the most prominent. It is of strategic importance for countries such as the U.S. to reduce

reliance on the import of fossil fuels; and it is of paramount importance that we meet our

increasing electricity demand without harming the environment, or our own health and well-

being.

Two of the most promising solutions for how we can safely meet our energy needs are to

rely on renewable energy, and to develop efficient electricity storage.

(1) Renewable energy—such as wind energy and solar energy—is free yet abundant. For

instance, wind energy alone, if harnessed at a 20% efficiency, can supply more than five times

of all the world’s energy needs (Lu et al. 2009). Renewable energy is environmentally friendly;

it does not emit carbon dioxide. More than twenty-nine states in the U.S. have already

established Renewable Portfolio Standards (DSIRE 2012b), which require a certain percentage

of electricity to come from renewable energy: For instance, New York state requires that 15%

of electricity consumption should come from renewable resources by 2015 (DSIRE 2012a).

However, renewable energy is inherently intermittent and variable—as wind does not always

blow and the sun does not always shine. To mitigate these issues, renewable energy can be

coupled with electricity storage, such as grid-level industrial batteries.

(2) Other than supporting the growth of renewable energy, grid-level electricity storage

can also help match the supply and demand of an entire electricity market. This is crucial,

as electricity supply and demand must be matched in real time to ensure the integrity of the

power grid. In addition, electricity storage such as car batteries can help reduce dependence

1



Ch1. Introduction

on oil, as it can facilitate the development of Plug-in Hybrid Electric Vehicles (PHEVs), and

Battery Electric Vehicles (BEVs): In 2011, the transportation sector accounted for about 25%

of the total carbon emission in the U.S. (EIA 2012). California is in the process of enacting

laws to mandate a minimum amount of electricity storage for 2015 and 2020 (CPUC 2012).

For all of these reasons, renewable energy and electricity storage are two pillars that are

likely to shape the world’s energy future. This thesis focuses on understanding how to manage

them properly, together, or electricity storage alone.

In Chapter 2, I will focus on studying the problem of managing renewable energy, specif-

ically wind energy. Wind energy is booming worldwide: in the past decade, U.S. wind gen-

eration capacity has grown more than tenfold (Wiser and Bolinger 2010); similar growth has

been seen in other countries as well.

Managing power generation from wind is conceptually straightforward: generate and sell

as much electricity as possible when prices are positive, and do nothing otherwise. However,

this strategy may dilute a wind farm’s potential revenue because (i) it requires curtailing wind

energy when it exceeds the capacity of the transmission line that connects the wind farm to

the electricity market; (ii) this strategy also requires curtailment when prices are negative:

negative prices are observed in almost every electricity market, often caused by the high cost

of shutting down conventional power plants when electricity supply exceeds demand; and (iii)

this strategy sells electricity when prices are positive but unfavorable, especially because wind

in the U.S. tends to blow most strongly at night when electricity prices are typically low.

Electricity storage is being considered as a means to alleviate curtailment and boost revenue,

as it also enables buying electricity from the market for later resale. But the presence of storage

complicates the management of electricity generation from wind, and the value of storage for

a wind-based generator is not entirely understood.

I model the problem of managing a combined wind and storage system with transmission

capacity as a Markov Decision Process (MDP). I demonstrate that for such a system the

optimal generation and storage policy does not have any apparent structure, and that using

overly simple policies can be considerably suboptimal. I thus develop and analyze a triple-

threshold policy that I show to be near-optimal and practical to compute on realistic instances.

This triple-threshold policy generalizes existing policy structures in the literature (Nascimento

and Powell 2010, Secomandi 2010b).

2



Ch1. Introduction

Using a financial engineering price model and calibrating it to data from the New York

Independent System Operator (NYISO), I show that storage can substantially increase the

monetary value of an wind farm: If transmission capacity is tight, the majority of this value

arises from reducing curtailment and time-shifting generation; if transmission capacity is abun-

dant this value stems primarily from time-shifting generation and arbitrage. In addition, I find

that while more storage capacity always increases the average energy sold to the market, it may

actually decrease the average wind energy sold when the transmission capacity is abundant.

In Chapter 3 I examine how electricity storage can be used to help match electricity

supply and demand. Conventional wisdom suggests that when supply exceeds demand, any

electricity surpluses should be stored for future resale. However, because electricity prices

can be negative, another potential strategy of dealing with electricity surpluses is to destroy

them. I compare these two strategies of dealing with surpluses from the perspective of a

merchant who trades electricity in a market. I do so by modeling the problem of managing an

electricity storage facility at different round-trip efficiencies (the ratio of electricity discharged

to that charged): a high round-trip efficiency represents the storage strategy; a low round-trip

efficiency represents the destruction strategy (as the majority of the electricity is lost during

the conversion process).

I find that the optimal policy to operate storage with prices that can potentially be negative

has an elegant policy structure, which subsumes a classical result in Charnes et al. (1966).

Using this structure in conjunction with the same price model as in Chapter 2, I find that the

strategy of destroying surpluses is potentially more valuable than the conventional strategy of

storing surpluses.

In Chapter 4 I study how the operation and valuation of electricity storage facilities can

be affected by their physical characteristics and operating dynamics. Examples of such char-

acteristics are the degradation of energy capacity over time, and the variation of round-trip

efficiency at different charging/discharging rates. Such dynamics are often ignored in the lit-

erature (Graves et al. 1999, Sioshansi et al. 2009, Walawalkar et al. 2007); thus it has not

been established whether it is important to model these dynamics in operating and valuing

a storage facility. Specifically, in Chapter 4 I answer the following two questions: (Q1) How

suboptimal is it to operate an actual battery as if it were ideal? (Q2) How much do practi-

tioners overestimate the value of a battery if they use the value of operating an ideal battery

optimally?
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I answer these questions using a representative setting, in which a battery is utilized to

trade electricity in an energy arbitrage market. I model the problem of managing a battery as

an MDP. Using engineering models, I capture the dynamics of energy capacity degradation and

efficiency variation explicitly for three types of batteries: lead acid, lithium-ion, and Aqueous

Hybrid Ion—a new commercial battery technology. I calibrate the model for each battery to

manufacturers’ data and determine the value of each battery under an optimal policy using

the same calibrated financial engineering price model as in Chapter 2 and 3. My analysis

over a twenty-year horizon shows that: (a) it is quite suboptimal to operate each battery as

if it did not degrade, particularly for lead acid and lithium-ion; but it does not matter much

if one ignores efficiency variation; (b) reducing degradation and efficiency variation have a

complimentary effect: the value of reducing both together is greater than the sum of the value

of reducing each one individually; and (c) decreasing degradation may have a bigger effect

than decreasing efficiency variation.

This thesis revolves around managing two promising solutions for meeting the world’s

energy needs in a sustainable way. In Chapter 2 I study how to manage wind power with

electricity storage. My results give guidance to managers operating wind farms, and can serve

as a basis for sizing a generation and storage system. In Chapter 3 I study different strategies

of using electricity storage to help match electricity supply and demand. My results can inform

policy makers about the need to assess the potential impact of different strategies of dealing

with surpluses. In Chapter 4 I study how the operations and valuation of electricity storage

could be affected by storage dynamics. The results not only demonstrate the importance

of modeling dynamics, but also pinpoint the most promising area of focus to improve each

battery. My modeling of battery dynamics can also be used to study the operation of electric

car fleets and battery swapping stations. I conclude with future work in Chapter 5.
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Chapter 2

Managing wind-based electricity

generation in the presence of

storage and transmission capacity

2.1 Introduction

The last decade has seen a boom in global wind-based electricity generation: since 2000, U.S.

wind generation capacity has grown more than tenfold (Wiser and Bolinger 2010); similar

growth has been seen in other countries as well. This global trend will probably continue

for at least another decade or two, as many countries have enacted policies to promote wind

energy (REN21 2010).

Managing wind energy generation is conceptually straightforward: generate and sell as

much as possible when the price is positive (electricity prices can be negative), and do nothing

otherwise. However, this policy may dilute a wind farm’s revenue because of the following:

(i) This strategy requires curtailing wind energy when it exceeds the capacity of the trans-

mission lines connecting wind farms (mostly remote) to electricity markets. Curtailment is a

significant issue: in 2009, 17% of the wind power in the Electric Reliability Council of Texas

This chapter is a joint work with Alan Scheller-Wolf, Nicola Secomandi, and Stephen Smith; it is under
the second round revision for the MSOM Special Issue on the Environment.
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(ERCOT) was curtailed due to lack of transmission capacity (Wiser and Bolinger 2010). This

bottleneck in transmission capacity is unlikely to disappear in the near future, as it takes much

longer (about five years) to build transmission lines than to build wind farms (about one year;

SECO 2011).

(ii) This strategy also leads to curtailment when electricity prices are negative. Negative

prices have been observed in the New York Independent System Operator (NYISO 2011),

ERCOT (ERCOT 2008), the Nordic Power Exchange (Sewalt and de Jong 2007), and the

European Energy Exchange (Fanone and Prokopczuk 2010, Genoese et al. 2010). Negative

prices may be caused by the high cost of ramping up and down conventional power plants:

when electricity demand is low, these plant operators may try to avoid a costly shut-down

by paying others to consume their excess power (Brandstätt et al. 2011, Genoese et al. 2010,

Knittel and Roberts 2005, Nicolosi 2010, Sewalt and de Jong 2007).

(iii) This strategy may sell wind energy when prices are positive, but unfavorable. For

instance, wind in the U.S. tends to blow most strongly at night, when electricity prices are

typically low.

These problems can be alleviated by co-locating wind farms with electricity storage facil-

ities, for instance, grid-level electricity batteries. Storage also enables buying electricity for

future resale. However, the presence of storage complicates the management of a wind farm:

the operator needs to decide periodically how much to generate, and how much to buy from

the market, or to sell to the market from generation and/or inventory. In addition, the value

of storage for a wind generator is not yet completely understood.

We investigate this problem of operating a wind-based electricity generation, storage, and

transmission (WST) system. We model our problem as a finite-horizon MDP. We show that

computing an optimal policy for this MDP does not have any apparent structure, while overly

simple policies may be considerably suboptimal. We thus develop several heuristic policies

that are easier to compute than an optimal policy. Our most effective policy has a triple-

threshold structure, which can be exploited in computation: this policy requires two fewer

dimensions of computation than an optimal policy, and thus is an order or magnitude faster

to compute. Moreover, this heuristic is within 2% of optimality for a comprehensive range of

system configurations in experiments using electricity price and wind energy models calibrated

to data from NYISO.

Our experiments also quantify the monetary and energy values of storage when using our
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triple-threshold policy (the energy value of storage captures how storage can change the energy

flow rate in a WST system). We find that storage can substantially increase the monetary value

of a WST system: For a typical scenario with tight transmission capacity, storage increases

the monetary value of the system by 33.5%, of which 17% is due to reducing curtailment, 12%

to time-shifting generation, and 4.5% to arbitrage. When the transmission capacity is less

constraining, storage increases the monetary value of the system by 21%, of which 1.5% is due

to reducing curtailment, 15% is due to time-shifting, and 4.5% to arbitrage.

Storage can thus greatly decrease the average wind energy curtailed (by 87% compared

to the no-storage case) and increase the average energy that the system sells to the market

(by 26% compared to the no-storage case) when transmission capacity is tight. However, with

ample transmission capacity, adding storage may actually decrease the average wind energy

sold, primarily because the benefit of reducing curtailment decreases, and is surpassed by the

conversion loss at the storage facility.

Our results provide guidelines for practitioners to operate WST systems near optimally,

and also can help them evaluate the merits of storage for wind farms. In addition, our work

provides a basis for the sizing of storage facilities and transmission lines.

The rest of this chapter is organized as follows: we review the literature in §2.2. We

present our MDP model in §2.3 and explore heuristics in §2.4. We discuss our framework for

the valuation of storage in §2.5. We specify the price model and the wind energy model used

in our numerical study in §2.6 and §2.7, respectively. We carry our numerical analysis in §2.8.

We conclude and discuss future work in §2.9.

2.2 Literature Review

In the literature on wind-storage systems, Denholm and Sioshansi (2009) and Fertig and Apt

(2011) consider the interplay of storage and transmission capacity: the former studies how to

best locate storage when transmission capacity is binding; the latter studies the optimal sizing

of storage and transmission capacity. In contrast, we develop policies to manage an existing

WST system. Moreover, these papers evaluate the value of storage assuming price and wind

energy are deterministic processes, while our paper captures the uncertainty of both, which is

more realistic; we show that ignoring uncertainty may result in a significant loss of value.

Other related studies examine different uses of storage for wind farms. Brown et al. (2008)
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focus on how to serve the load of an isolated system using wind generators and pump-hydro

storage to minimize daily operating cost. Castronuovo and Lopes (2004) maximize the daily

profit of a wind-hydro system in a market. Korpaas et al. (2003) consider a wind-storage

system that serves load as well as trades in an electricity market. In contrast to this literature,

we include transmission capacity and explore how it affects the value of storage.

Wu and Kapuscinski (2012) investigate how to curtail wind energy to minimize the total

balancing cost of an electricity market (possibly in the presence of storage) from the point of

view of an electricity market operator. In contrast, we study how to operate a single wind

farm co-located with storage from the perspective of a wind farm manager. Xi et al. (2011)

optimize the use of an electricity storage facility in both the electricity energy and ancillary

markets; we consider the use of storage for a wind farm constrained by transmission capacity,

investigating different operating policies, and assessing both the monetary and energy values

of storage for such a system.

Another stream of work centers on how a wind-farm manager can use storage to make

better bidding decisions in a forward market. Some papers assume price is deterministic, such

as Bathurst and Strbac (2003) and Costa et al. (2008); others take price uncertainty into

account, such as Gonzalez et al. (2008), Löhndorf and Minner (2010), and Kim and Powell

(2011). Different from these papers, we do not consider bidding and assume any electricity

offered to the market is accepted. This is realistic: many electricity markets in the U.S. treat

wind generators as “must-run” in normal conditions (Wiser and Bolinger 2010); in addition,

38% of all the wind capacity developed in the U.S. in 2009 was sold through merchant/quasi-

merchant projects “whose electricity sales revenue is tied to short-term contracted and/or

wholesale spot electricity market prices” (Wiser and Bolinger 2010, p. 43). Furthermore, this

literature ignores transmission capacity, an integral factor in the operation of remote wind

farms, which we model.

As electricity can be viewed as a special type of inventory, our work is also related to the

literature in inventory theory (see Zipkin 2000 and Porteus 2002). In this literature demand

is the typical source of uncertainty, but supply can also exhibit randomness. In contrast, price

and wind (supply) are the sources of uncertainty in our model.

This chapter is particularly related to the literature on commodity and energy storage.

Cahn (1948) introduces the classic warehouse problem, for which Charnes et al. (1966) show
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the optimality of a simple basestock policy. Rempala (1994) and Secomandi (2010b) extend

this work to incorporate a limit on the rate at which the commodity can be injected into or

withdrawn from storage. Other related work includes Boogert and de Jong (2008), Chen and

Forsyth (2007), Lai et al. (2010a), Mokrian and Stephen (2006), Thompson et al. (2009), Wu

et al. (2012), and Devalkar et al. (2011) (these authors also model the processing decision

of a commodity processor; see Boyabatli et al., 2011 and Boyabatli, 2011 for related work).

Different from these systems, our model has a random inflow, the wind energy.

Related settings with random inflow include hydropower generation (Nasakkala and Keppo

2008) and liquified natural gas (LNG) regasification (Lai et al. 2010b). These systems differ

from ours in that they store their input (water or LNG), while our system stores the output

(electricity). Thus, the operating policies of hydropower or LNG regasification systems in

these papers feature only one sell-down threshold, which depends on model parameters, while

our triple-threshold policy has additional store-up-to thresholds, which also depend on model

parameters.

2.3 Model

We consider the problem of operating a WST system: a remote wind farm is co-located with

a storage facility, both of which are connected to a wholesale market via a transmission line

(Figure 2.1). The operator of this system can buy and sell electricity in this market (the

transmission line is bi-directional). We assume that the WST system is small compared to the

market, so the operator’s decisions do not affect market prices. The operator makes trading

decisions periodically over a finite horizon, specifically in time periods t ∈ T := {1, · · · , T},

where each period t is defined as the time interval (t − 1, t] (Figure 2.2). In terminal period

T + 1, any electricity left in the storage facility is worthless. It is easy to show that this

assumption could be relaxed without changing the results.

Parameters. We assume the storage facility is finite in energy capacity and power capac-

ity; without loss of generality, we normalize the energy capacity to one (energy unit). If we

think of the storage facility as a warehouse for electricity, the energy capacity is analogous to

the space of the warehouse; the power capacity is analogous to the maximum rate of adjusting

the warehouse inventory. For the rest of this chapter and the whole thesis, any capacity should
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Figure 2.1 System overview

 

Figure 2.2 Order of events time line

 

be interpreted as power capacity, unless specified otherwise. We use the following parameters:

• K1,K2: charging and discharging capacity (in energy units/period), respectively. K1 <

0 < K2.

• G,C: the generation and transmission capacity (in energy units/period), respectively. We

assume that G+K2 ≥ C. This is realistic: since wind blows intermittently, it is reasonable to

size the transmission capacity to be less than the sum of the wind farm’s generation capacity

and the storage discharging capacity so that the transmission line is better utilized (if G+K2 <

C, the transmission capacity is never constraining).

• α, β, η: efficiency of the storage facility in charging, discharging, and storing over one

period, respectively; all three parameters are in (0, 1]. The round-trip efficiency is defined

α · β · η.

• τ : transmission efficiency, the ratio of the quantity of electricity flowing out of the trans-

mission line to that flowing into this line, i.e., 1 − τ is the ratio of loss in the line. We apply

τ at the end of transmission in either direction.

• δ: risk-free discount rate (we use a risk-neutral valuation; Seppi, 2002), 0 < δ < 1.

State variables. A state variable with subscript t is known at time t, but unknown at

earlier times, that is 0, 1, · · · , t− 1 (Powell 2007, §5.2). At time t− 1, the state St−1 includes

the following information:
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• xt−1: inventory of electricity (in energy units) in the storage facility at time t − 1. The

domain of this variable is X := [0, 1 ·η]. The maximum inventory level is η because we assume

that the storage loss happens at the end of each period.

• wt−1: the maximum amount of available energy (in energy units) that the wind farm could

produce in period t − 1. wt−1 = min{G, the available wind energy in period t − 1}, where G

is implicitly multiplied by one period.

• pt−1: price vector of electricity in period t − 1 ($/energy unit); each component of this

vector is a factor in the price model in §2.6. We denote the sum of all the components in

vector pt−1 by pt−1, a scalar.

We thus define St−1 as (xt−1, wt−1,pt−1). In particular, S0 is the given initial state

(x0, w0,p0), where w0 and p0 are the given wind and price in the initial stage, respectively.

Random variables. At time t− 1, the random variables are

• wt: the electricity that the wind farm can produce in period t; wt ∈ W ⊆ R
+.

• pt: the price of electricity in period t; pt ∈ P ⊆ R
n, where n is the number of components

in pt. Similarly, we denote pt as the sum of all the components in pt.

These random variables are exogenous and may be correlated.

Sequence of events. We assume for each period t ∈ T , the sequence of events is as

follows (see also Figure 2.2):

1) The operator determines the joint inventory and generation action pair (at, gt) contingent

on the realization of the wind energy wt for this period, where

• gt: the quantity of electricity to generate in period t; gt ∈ R
+.

• at: the net inventory change in period t; at ∈ R. If at < 0, at is the decrease in

inventory due to selling; if at ≥ 0, at is the increase in inventory due to generation and/or

buying. It is easily shown that the option of simultaneously increasing and decreasing inventory

is suboptimal.

2) Electricity flows through the system, incurring the loss in discharging (selling) or charging

(generation and/or buying), as well as the loss in transmission.

3) The market price pt is revealed, and the associated financial settlement is completed.

4) At the end of period t, a fraction 1− η of any resulting inventory is lost.
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In practice, although the operator of a WST system makes trading decisions periodically

(for instance, every hour in the real-time market in NYISO), the operator can change the

wind generation by adjusting the angle of the wind turbine blades almost in real time, say

every few seconds, based on current wind energy information. Our sequence of events is an

approximation of this combined periodic trading and real-time adjustment. Specifically, we

approximate the real-time adjustment by assuming that the operator adapts his decisions to

the realized wind energy of the current period, so his decision pair (at, gt) is implemented

during period t, rather than at the beginning of this period. But he does not observe pt until

period t is over.

Transition functions. The inventory level at time t ≥ 1 is xt = η(xt−1 + at). The quan-

tities wt−1 and pt−1 evolve to wt and pt according to two exogenous stochastic processes (we

specify them in §2.6 and §2.7). We assume that the operator’s decisions do not affect market

price.

Immediate payoff function and constraints. Let R(at, gt, pt) denote the immediate

payoff function in period t of the triple (at, gt, pt), modeling either the purchasing cost or the

selling revenue. The quantity sold or bought obeys different constraints in the following three

cases:

• If at < 0, then the inventory decreases, which means that the total quantity sold is

(gt − atβ) · τ . This quantity, before the transmission loss, cannot exceed the transmission

capacity, so we have constraint C1: gt − atβ ≤ C, where C is implicitly multiplied by one

period.

• If 0 ≤ at/α ≤ gt, the wind farm generates more electricity than it stores in the facility,

which means that the operator sells the excess electricity to the market: (gt − at/α) · τ , which

before the transmission loss cannot surpass the transmission capacity. This yields constraint

C2: gt − at/α ≤ C.

• If at/α > gt, more electricity is stored than is generated, which means that the operator

buys the quantity (at/α − gt)/τ from the market. This quantity likewise cannot exceed the

transmission capacity, yielding constraint C3: (at/α− gt)/τ ≤ C.
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Thus, R(at, gt, pt) is defined as follows:

R(at, gt, pt) :=







pt · (gt − atβ) · τ, if at < 0,

pt · (gt − at/α) · τ, if 0 ≤ at ≤ gt · α,

−pt · (at/α− gt)/τ, if at > gt · α,

(2.1)

where the first two cases represent the selling revenue and the third case the purchasing cost.

The feasible set of action pairs (at, gt), denoted by Ψ(xt−1, wt), is defined by the following

constraints:

C1 : gt − atβ ≤ C, if at < 0,

C2 : gt − at/α ≤ C, if 0 ≤ at ≤ gt · α,

C3 : (at/α− gt)/τ ≤ C, if at > gt · α,

C4 : gt ≤ wt,

C5 : −xt−1 ≤ at ≤ 1− xt−1,

C6 : K1 ≤ at ≤ K2;

C4 constrains the generation by the wind energy availability (note that this constraint implies

that gt ≤ G, as wt ≤ G); C5 limits the inventory change by the energy available in the storage

facility (left) and remaining storage energy capacity (right); and C6 incorporates the charging

and discharging capacities (K1 and K2 are implicitly multiplied by one period).

Objective function. We formulate our problem as an MDP. Each stage of our MDP

corresponds to one time period. A policy π is a mapping from any state St in any stage t to

a feasible action pair (at, gt). Let A
π
t (St) denote the decision rule of policy π in period t, and

let Π denote the set of all feasible policies. Our objective is to maximize the total discounted

expected cash flows over all feasible policies:

max
π∈Π

T∑

t=1

δt−1
E [R(Aπ

t (St), pt)|S0] , (2.2)

where the expectation E is taken with respect to risk-adjusted distributions of wind and price;

recall that we use risk-neutral valuation (Seppi 2002).
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For each time t − 1 where 0 ≤ t − 1 ≤ T , we define V ∗
t−1(St−1) as the optimal value

function from time t− 1 onward. In addition, set V ∗
T (ST ) := 0, ∀ST . For any time t− 1 where

0 ≤ t− 1 < T , V ∗
t−1(St−1) satisfies

V ∗
t−1(St−1)

= E

[

max
(at,gt)∈Ψ(xt−1,wt)

E [R(at, gt, pt) + δV ∗
t (St)|wt,pt−1]

∣
∣
∣
∣
wt−1,pt−1

]

= E

[

max
(at,gt)∈Ψ(xt−1,wt)

R(at, gt,E[pt|wt,pt−1]) + δE [V ∗
t (St)|wt,pt−1]

∣
∣
∣
∣
wt−1,pt−1

]

, (2.3)

where the last equality in (2.3) follows from the fact that R(·) is linear in its third argument.

Note that (2.3) reflects our sequence of events: the inner maximization assumes that the

operator adapts his decisions to wt, but pt is unknown until time t.

The optimal policy of (2.3) is in general complex due to the possible non-concavity of

the value functions in inventory, resulting from negative prices and efficiency loss (see Ap-

pendix A.1 for a detailed explanation). Therefore, we compute an optimal policy via dynamic

programming on a discretized state space. Because computing such an optimal policy is time-

consuming (see §2.8.2), we develop heuristics which are more efficient to compute.

2.4 Heuristics

In this section we discuss several heuristic policies for solving the MDP (2.3), and demonstrate

why they require significantly less computational effort than the optimal policy. We arrive at

the first heuristic by optimizing a modified version of this MDP in §2.4.1 and the second

heuristic by optimizing a model without the buying option in §2.4.2. We briefly examine other

heuristics in §2.4.3. We compare the computational effort required for all heuristics and an

optimal policy in §2.4.4.
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2.4.1 Triple-threshold policy

To obtain the heuristic in this subsection, we modify the immediate payoff function in the

MDP (2.3) to include the max{E[pt|wt,pt−1], 0} instead of E[pt|wt,pt−1] as follows:

V H1
t−1(St−1) (2.4)

=E

{

max
(at,gt)∈Ψ(xt−1,wt)

R(at, gt,max{E[pt|wt,pt−1], 0}) + δE
[
V H1
t (St)|wt,pt−1

]
∣
∣
∣
∣
wt−1,pt−1

}

,

where we designate the optimal value function with superscript H1 (representing “Heuristic

1”). Similarly, we designate the optimal actions for model (2.4) with superscript H1, and ab-

breviate gH1
t (xt−1, wt,pt−1) and aH1

t (xt−1, wt,pt−1) to gH1
t and aH1

t , respectively. The optimal

policy of (2.4) is then used as a heuristic for the original MDP (2.3).

Note that (2.4) includes a special case when the conditional expected prices are always

nonnegative. To avoid trivial cases, we make the following benign assumption:

Assumption 2.1. For any period t ∈ T , E[|pk||wt−1,pt−1] < ∞ for any k ≥ t.

The absence of negative conditional expected prices, combined with the lack of inventory

holding cost and salvage penalty in model (2.4), imply that the operator is always better off

having more inventory. This gives rise to Lemma 2.1, which characterizes the monotonicity of

the value functions in inventory in (2.4) (see its proof in Appendix A.2).

Lemma 2.1. For any time t−1 where 0 ≤ t−1 ≤ T , V H1
t−1(xt−1, wt−1,pt−1) is non-decreasing

in xt−1 given any wt−1 and pt−1.

Lemma 2.1, together with how the immediate payoff function varies with the generation

decision gt, implies that in model (2.4) it is optimal to generate as much energy as possible.

This is in Lemma 2.2, which is formally proved in Appendix A.3.

Lemma 2.2. For each period t ∈ T , the optimal generation action gH1
t for model (2.4) is

gH1
t = min{wt, C +min{1− xt−1,K2}/α}.

Before we prove the optimal inventory policy structure for (2.4) in Proposition 2.2, we prove

the concavity of V H1
t−1(xt−1, wt−1,pt−1) in Proposition 2.1 (see Appendix A.4 for its proof).

Proposition 2.1. For any time t−1 where 0 ≤ t−1 ≤ T , it holds that |V H1
t−1(xt−1, wt−1,pt−1)| <

∞ and V H1
t (xt−1, wt−1,pt−1) is concave in xt−1 ∈ X given any wt−1 and pt−1.
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Figure 2.3 Proposition 2.2: The arrow on the left denotes the level used in Figure 2.4

 

We now can establish the optimal inventory policy for (2.4), in Proposition 2.2 (the proof

is in Appendix A.5). We define x+ := max{x, 0} and x− := min{x, 0}.

Proposition 2.2. For each period t ∈ T , given any wt ∈ W and pt−1 ∈ P, there exist

three inventory levels X1
t (wt,pt−1), X2

t (wt,pt−1), and X t(wt,pt−1) (simplified to X1
t , X2

t ,

and Xt, respectively) where X1
t ≤ X2

t ≤ Xt such that aH1
t is computed as follows (recall that

gH1
t = min{wt, C +min{1− xt−1,K2}/α}):

A) If either (1) wt ≥ C +min{1− xt−1,K2}/α or (2) C ≤ wt < C +min{1 − xt−1,K2}/α

and xt−1 > X2
t − α(wt − C)+: aH1

t = α(gH1
t − C)+ (fill up);

B) If (1) xt−1 + α(wt − C)+ ≤ X2
t and wt < C + min{1 − xt−1,K2}/α, but not (2) wt ≤

min{1− xt−1,K2}/α and xt−1 + wt · α ≤ X1
t : aH1

t = min{X2
t − xt−1, α · wt,K2} (store up to

X2
t );

C) If wt ≤ min{1 − xt−1,K2}/α and xt−1 + wt · α ≤ X1
t : aH1

t = min{X1
t − xt−1, α(Cτ +

wt),K2} (store up to X1
t );

D) If wt < C and X2
t ≤ xt−1 ≤ X t: aH1

t = 0 (do nothing);

E) If wt < C and xt−1 > X t: aH1
t = max{X t − xt−1, (wt − C)−/β,K1} (sell down to X t).

Proposition 2.2 can be interpreted as follows. Given any point on the (xt−1, wt) plane,

the optimal inventory action of policy H1 depends on the region into which this point falls:

in region A) it is optimal to generate, sell, and store as much as possible; in region B) it is

optimal to generate and store as much as possible to reach X2
t , and sell the rest; in region

C) it is optimal to first generate and store, and then to buy as much as possible to reach
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X1
t ; in region D) it is optimal to keep the inventory level unchanged; i.e., to sell whatever is

generated; and in region E) it is optimal to sell down as much as possible to reach inventory

level X t.

Figure 2.3 demonstrates these five regions for a special case when the three thresholds (X1
t ,

X2
t , and Xt) are not functions of wt. This can occur, for instance, when the wind process

for each period is independent, causing E
[
V H1
t (St)|wt,pt−1

]
in (2.4) to be independent of wt.

Note that the optimal actions still are functions of wt, as spelled out in Proposition 2.2. For

this special case, all curves that separate these regions are linear or piecewise linear, e.g., L1,

L2, and L3 in Figure 2.3; however, for the general case where these three thresholds do depend

on wt, these three lines will not necessarily be linear or piecewise linear: their shapes depend

on how X1
t , X

2
t , and Xt are affected by the specific distribution of the wind and price process.

For H1, the most general structure of its optimal action is at the → in Figure 2.3, i.e., for

any horizontal line on the (xt−1, wt) plane in Figure 2.3 such that wt < min{C,K2/α}. For

such a case, we denote the optimal inventory action for the entire feasible inventory set X as

follows, moving left to right:

aH1
t =







min{X1
t − xt−1, α(C · τ +wt),K2}, if xt−1 ∈ [0, (X1

t − αwt)
+),

min{X2
t − xt−1, wt · α,K2}, if xt−1 ∈ [(X1

t − αwt)
+,X2

t ),

0, if xt−1 ∈ [X2
t ,X t],

max{X t − xt−1, (wt −C)−/β,K1}, if xt−1 ∈ (X t, η].

This is shown in Figure 2.4. For this case, the optimal action can be of four distinctive types:

if xt−1 < (X1
t − αwt)

+, generate and buy as much as possible to reach X1
t ; if (X

1
t − αwt)

+ ≤

xt−1 ≤ X2
t , generate and store as much as possible to reach X2

t ; if X
2
t ≤ xt−1 ≤ X t, maintain

the same inventory level; if xt−1 > X t, sell to bring the inventory as close to X t as possible.

Because of these three inventory thresholds, we call the optimal policy the triple-threshold

policy.

The existence of these three thresholds is due to the concavity of V H1
t−1(xt−1, wt−1,pt−1)

in xt−1, in the presence of two efficiency losses: transmission loss (τ < 1), and the loss in

conversion (α · β < 1). As a result, the marginal values of the following types of action differ:

storing one unit bought from the market; storing one unit from generation; and selling one
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Figure 2.4 The optimal policy structure of the triple-threshold policy for the case wt < min{C,K2/α}

 

Figure 2.5 The optimal ending inventory level of the first period for Example 2.1
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unit from the inventory. If τ = 1, then X1
t = X2

t , because the first two types of action have

the same marginal value; if α · β = 1, then X2
t = Xt, because the last two types of action

have the same marginal value. In the case τ = 1, our optimal policy reduces to those shown

in Secomandi (2010b).

Example 2.1. This example illustrates the triple-threshold policy for a four-period model with

a deterministic price and wind process: The price path is [0.25, 0.3, 3, 0.5]; the wind path is

[0.1, 0.2, 0.1, 0.2]. Other related parameters are α = η = 1, β = 0.5, τ = 0.8, C = 0.3, and

G = K1 = K2 = 1. Figure 2.5 plots the optimal ending inventory versus the starting inventory

level in the first period; it displays a structure of three thresholds: X1
1 = 0.2, X2

1 = 0.6, and

X1 = 0.8 (the derivation is available upon request).
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2.4.2 Dual-threshold policy and its variant

We now consider a heuristic that does not allow buying, even though conditional expected

prices can be negative. In this model for each period t ∈ T , the only difference from the

original MDP (2.3) is in the feasible set: the new feasible decision set imposes the condition

at ≤ gtα, which is equivalent to removing constraint C3 from Ψ(xt−1, wt).

Under this modification, the monotonicity of the value functions in inventory still holds,

the proof of which is omitted because it is identical to that of Lemma 2.1. The optimal

generation action for this case is as shown in the following lemma. For notation convenience,

we use superscript H2 for the optimal actions and the optimal value function of this policy

that does not admit buying.

Lemma 2.3. For each period t ∈ T , the generation action gH2
t is determined as follows:

If E[pt|wt,pt−1] < 0: gH2
t = min{wt, (1 − xt−1)/α,K2/α}; if E[pt|wt,pt−1] ≥ 0: gH2

t =

min{wt, C +min{1− xt−1,K2}/α}.

Lemma 2.3 agrees with Lemma 2.2 when the conditional expected price is nonnegative:

generate as much as possible. When the conditional expected price is negative, the optimal

action of H2 is to sell nothing and generate as much as possible. Despite the possibility of

negative conditional expected prices, the concavity of the value functions in inventory continues

to hold due to the absence of the buying option, as stated in Proposition 2.3 (see Appendix

A.7 for its proof):

Proposition 2.3. For each time t − 1 where 0 ≤ t − 1 ≤ T , it holds that |V H2
t−1(St−1)| < ∞

and V H2
t−1(xt−1, wt−1,pt−1) is concave in xt−1 ∈ X given any wt−1 ∈ W and pt−1 ∈ P.

With Proposition 2.3, we can prove the optimal inventory action of H2 in Proposition 2.4.

Proposition 2.4. For every period t ∈ T , the optimal inventory action is as follows: 1) if

E[pt|wt,pt−1] < 0: aH2
t = αmin{wt, (1− xt−1)/α,K2/α}; 2) if E[pt|wt,pt−1] ≥ 0: the optimal

inventory action is the same as in Proposition 2.2 except without region C).

Proof: 1) this follows directly from Lemma 2.3; 2) the proof is straightforward from that

of Proposition 2.2 and thus is omitted. �

Proposition 2.4 can be interpreted as follows: 1) if E[pt|wt,pt−1] < 0, sell nothing and

store as much as possible from generation; 2) if E[pt|wt,pt−1] ≥ 0, generate as much as
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possible, and the inventory policy structure is a special case of the triple-threshold policy,

a dual-threshold policy. This has two thresholds: generate-and-store-up-to and sell-down-

to. Similar dual-threshold policies have also been found in other literature (Nascimento and

Powell 2010, Secomandi 2010b). Similar to the triple-threshold policy, the two thresholds of

the dual-threshold policy result from the conversion loss in the storage facility.

An improvement on this dual-threshold policy is to buy as much as possible when condi-

tional expected prices are negative, and follow the dual-threshold policy otherwise.

2.4.3 Other heuristics

In this subsection, we describe three other heuristics that we use to benchmark the performance

of the triple-threshold and dual-threshold policies.

Two-period policy. This heuristic makes decisions as if the problem were a two-period

dynamic programming problem: for each period, the value of any inventory at the end of the

second period is zero. Specifically for each stage t and each state, we find its action by solving

a modified version of the MDP (2.3): we set Vk(·) = 0 for all k ∈ T , k ≥ t+ 2 in (2.3). This

action is then used as a heuristic action for the corresponding stage and state in (2.3).

Rolling horizon policy. This policy makes decisions by ignoring the uncertainty in the

price and wind energy: for each state in each stage t, we first construct a forward curve of

the price and of the wind energy from periods t through T (each forward curve consists of

expected values conditional on the current state variables). Based on these two forward curves,

we find the optimal action for the current period by solving a linear program (LP), which is

the deterministic version of the MDP (2.3).

This rolling horizon policy ignores the uncertainty in the optimization, which is different

from assuming price and wind energy are deterministic: we still model the uncertainty in the

evolution of these variables, but we make decisions in each stage and state as if the future were

certain.

Näıve policy. If the conditional expected price for this period is positive, this policy

generates and sells as much as possible and stores as much leftover electricity as possible; if

this expected price is negative, this policy generates and stores as much as possible.
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2.4.4 Comparison of the computational requirements of different policies

To compute an optimal policy for the MDP (2.3) we use backward dynamic programming.

For every discrete modified state (xt−1, wt,pt−1) of period t, we search for all feasible decision

pairs (at, gt) to find an optimal action. Thus, the computation required for each period is on

a discretized grid of 4 + d dimensions: There is one dimension for each of xt−1, wt, at, and gt;

and d is the dimension of our price model (d = 2 in our price model; see §2.6).

To solve for the triple-threshold policy for (2.4), for every (wt, pt−1) (note that the state

variable xt−1 is excluded) of each period t, we compute an optimal inventory action in two

steps: step 1) is to find the three critical inventory levels X1
t , X2

t , and Xt; step 2) is to

compute the value function of each modified state (xt−1, wt,pt−1) using Proposition 2.2. In

step 1), we also use exhaustive search, but we do not need to search for gt, as it is given in

closed-form. Thus, the computation required for each period is only a discretization grid of 2

+ d dimensions. In step 2), we use Proposition 2.2 to find the optimal action (at, gt) without

exhaustive search, thus the computation required is only on a grid of 2 + d dimensions as well.

As a result, the total computational effort for both steps is still 2 + d dimensional. We compute

the dual-threshold policy similarly. Therefore, the triple-threshold and dual-threshold policies

require two fewer dimensions of computation than an optimal policy.

Compared to an optimal policy, the other heuristics that we consider are also easier to

compute. The two-period policy solves for optimal actions only for two periods rather than

for the entire horizon; the rolling horizon policy is determined by repeatedly solving an LP,

which is more efficient to solve than the MDP (2.3); and the näıve policy is trivial to compute.

We compare the numerical and computational performance of these heuristics against those

of an optimal policy, based on price and wind energy models calibrated to real data, in §2.8.2.

2.5 Storage valuation

The value that storage provides for a WST system can be three-fold:

• Storage can reduce wind energy curtailed due to the transmission capacity constraint;

• Storage enables the wind farm to time-shift generation to periods of more favorable prices;

• Storage enables the wind farm to buy electricity from the market for future resale.
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For these reasons, the value of storage can be measured both financially, as the increase

in the total value of the system; or with respect to energy, as the decrease in the wind energy

curtailed, or the increase in energy or wind energy sold. We compute these values in §2.8.3.

2.5.1 Monetary value of storage

We quantify the monetary value of storage as the percentage increase in the value of the

system with storage under the triple-threshold policy compared to that of the system without

storage. (We use the triple-threshold policy as it is both efficient to calculate and near-optimal,

as shown in §2.8.2.) Specifically, the value of storage is

V H1
0 − V NS

0

V NS
0

× 100 =

(
V H1
0 − V H2

0

V NS
0

+
V H2
0 − V H3

0

V NS
0

+
V H3
0 − V NS

0

V NS
0

)

× 100, (2.5)

where V H1
0 , V H2

0 , and V H3
0 are the values of the system with storage at the initial stage

and state using the triple-threshold policy, the dual-threshold policy, and the näıve policy

(denote by H3), respectively; and V NS
0 is the optimal value of the system without storage (the

arguments of all V0’s are removed for simplicity). Using (2.5), we can interpret the value of

storage as the sum of the following three components:

• (V H1
0 − V H2

0 )/V NS
0 : the value of storage due to arbitrage, as V H1

0 −V H2
0 is the difference

between the value of the system with storage under the triple-threshold policy and the value

of the same system under the dual-threshold policy (which does not buy).

• (V H2
0 − V H3

0 )/V NS
0 : the value of storage due to time-shifting generation, as V H2

0 − V H3
0

is the difference between the value of the system with storage under the dual-threshold policy

and the näıve policy (which sells as much as possible when conditional expected prices are

positive).

• (V H3
0 − V NS

0 )/V NS
0 : the value of storage due to reduced curtailment, as V H3

0 − V NS
0 is

the difference between the value of the WST system under the näıve policy and that of the

system without storage.

2.5.2 Energy value of storage

To measure the energy value of storage we again use the triple-threshold policy. We will

compare—for the cases with and without storage—the following three average quantities: (i)

The average wind energy curtailed: the average wind energy available minus the average wind
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energy generated; (ii) The average energy sold: the average energy sold to the market, from

generation and inventory; and (iii) The average wind energy sold: the difference between the

average energy sold and the average energy bought from the market. These quantities are the

sum of the expected corresponding quantities for all stages starting in the initial stage and

state at inventory level zero, divided by the number of periods.

To provide a basis for evaluating the performance of different policies and computing the

values of storage, we need a price and a wind energy model.

2.6 Price model

In this section we specify the price model that is used in our numerical study in §2.8. We

describe the price data that we use in §2.6.1, review the literature on commodity price models

in §2.6.2 and discuss the price model that we use in §2.6.3. We discuss how we calibrate this

model to this data in §2.6.4, and how we discretize this model in §2.6.5.

2.6.1 Price data

We use price data from NYISO to carry out our experiments; NYISO is among the largest

and most liquid electricity markets (NYISO 2011). For each of its fifteen zones, NYISO (2011)

reports the real-time price for every five minutes from 1999 until the present. We choose a

single zone (New York City), and focus on data from 2005-2008, as this time span is recent and

long enough for calibration. We take the average real-time price of every hour, and use this as

the original price series for calibrating our model. In §2.8 we use one hour as the stage length of

our MDPs. We chose an hourly decision frequency because most real-time markets, including

NYISO, run on a hourly interval, at which time transactions for five-minute subintervals are

decided.

We plot this hourly price series in Figure 2.6. This figure shows that these prices exhibit

mean reversion, a tendency to revert back to the mean price level (approximately $75/MWh,

where MWh represents megawatt hour); and seasonality, a term we use to describe any re-

peated pattern on any time scale, such as hourly, daily, weekly, monthly, and yearly. Further-

more, these prices show a slight upward trend. The most prominent feature, however, is the

variability, with a substantial number of positive and negative price jumps. The maximum

price is $1, 943.5/MWh; the minimum is $−300.3/MWh. Another important feature is the
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Figure 2.6 The average hourly real-time price in New York City from 2005-2008 in NYISO
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existence of negative prices (166 instances), most of which result from negative jumps. Thus,

a reasonable price model for this data should capture mean reversion, seasonality, a long-term

trend, and both positive and negative jumps.

2.6.2 Electricity price models

In this subsection we review the literature on electricity price models. Since electricity is a

commodity, its price models are mostly based on those of general commodities from the field of

financial engineering (such as Schwartz and Smith 2000, and references therein). Most of these

commodity price models (mainly reduced-form, see Seppi 2002) capture mean reversion and

a long-term trend, and can be tailored to describe special features of electricity prices, such

as seasonality (Lucia and Schwartz 2002). Apart from reduced-form price models, there are

also equilibrium models to describe the evolution of electricity prices, such as those of Barlow

(2002) and Benth and Koekebakker (2008). Other models, commonly used in the electrical

engineering literature, include input/output hidden Markov models (Gonzalez et al. 2005) and

artificial neural networks (Szkuta et al. 1999). A comprehensive review of electricity price

models in the engineering field can be found in Bunn (2004).

To fully describing the features of electricity prices also requires one to capture extreme

price variability (a feature contributed to by the current difficulty in economically storing

electricity on a large scale). For example, on June 25, 1998, the electricity price in the Midwest

region jumped to $7,500/MWh (FERC 1998), compared to around $40/MWh on average in

that year. This type of extreme variability cannot be modeled by pure Gaussian price models.
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To capture it, alternatives include

• Adding a jump process where the jump size is modeled as a normal distribution (Cartea

and Figueroa 2005), or an affine jump diffusion (Villaplana 2005) in which the jump size and

intensity are affine functions of the state variables.

• Modeling volatility as a stochastic process, for instance, a GARCH model (Escribano et al.

2002, Garcia et al. 2005), or a Lévy process (Benth et al. 2007).

• Specifying—on top of “normal” regimes—regimes of “abnormal” states, a method often

called regime-switching, such as in Deng (2000), Rambharat et al. (2005), Huisman and Mahieu

(2003), De Jong (2006), Geman and Roncoroni (2006), and Seifert and Uhrig-Homburg (2007).

Variants of this approach differ in modeling the transitions between regimes.

2.6.3 Our price model

To obtain a price model that describes all the features of electricity prices discussed in §2.6.1,

we modify one of the models in Lucia and Schwartz (2002) by generalizing its seasonality com-

ponent and adding a jump component. Specifically, in our reduced-form model, the electricity

price pt for period t is

pt = ξt + f(t) + Jt,

where ξt is a mean reverting process; f(t) a deterministic seasonality function; and Jt a jump

process. A mean-reverting process is commonly used in energy price models, such as in Smith

and McCardle (1999), Seppi (2002), Jaillet et al. (2004), Secomandi (2010a,b), and Devalkar

et al. (2011). As in one of the models in Lucia and Schwartz (2002), we use the following mean

reverting model with zero mean-reversion level:

dξt = −κξtdt+ σdZt,

where κ is the mean-reverting rate; σ the constant volatility; and dZt a standard Brownian

motion increment. We use this spot price model rather than a log-spot price model because

of the existence of negative electricity prices. The mean price level in the data is captured by

the seasonality function of our model.

To obtain the seasonality function f(t), we generalize one from Lucia and Schwartz (2002),
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which consists of three terms: a constant level; a term to describe the effect of a non-business

day; and a cosine function to capture daily differences, which in effect captures monthly and

yearly seasonality as well. To capture the non-business day effect, they use the term B · Dt,

where B is the magnitude of this effect, and Dt equals 1 if period t belongs to a holiday or a

weekend, and 0 otherwise.

We add another two terms to this seasonality function: a linear term to describe any

general trend of electricity prices, and a cosine function to capture hourly “seasonality.” To

summarize, we use the following seasonality model:

f(t) = A+B ·Dt + γ1 cos

(

(t+ ω1)
2π

365 · 24

)

+ µ · t+ γ2 cos

(

(t+ ω2)
2π

24

)

,

where A is the constant level; γ1 and ω1 are the magnitude and the phase shift of daily

seasonality, respectively; µ is the long-term trend; and γ2 and ω2 are the magnitude and the

phase shift of the hourly seasonality, respectively.

We model the jump component Jt as an arrival process with the arrival rate λ and the

jump size following an empirical distribution, derived from our data:

Jt = jump size · {1, if there is a jump; 0, if there is no jump}.

We use an empirical distribution because it is the easiest distribution to use to solve our MDPs

numerically. We incorporate negative jumps to model the sudden large negative prices in our

data, which the mean reversion model cannot produce.

2.6.4 Price model calibration

We calibrate our price model to the hourly price series described in §2.6.1. To estimate the

model parameters, we first separate the jump component from this hourly price series, and

estimate the parameters related to jumps. Then from the resulting series we estimate the

parameters related to mean-reversion and seasonality.

We regard any price as including a (positive or negative) jump if either the difference

between this price and its predecessor price is an “outlier,” or its absolute value is an “outlier”

(we define “outlier” in Appendix A.8). Cartea and Figueroa (2005) use only the former

qualification, but we find the latter useful because of the jump clumping in our data: there
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Table 2.1 Empirical jump size distribution

Size −1200 −1100 −1000 −900 −800 −700 −600 −500

Probability 0.0004 0.0004 0.0004 0.0007 0.0011 0.0007 0.0026 0.0015

Size −400 −300 −200 −100 0 100 200 300

Probability 0.0022 0.0126 0.0167 0.1746 0.3079 0.4097 0.0383 0.0123

size 400 500 600 700 800 900 1000 1100

Probability 0.0071 0.0022 0.0030 0.0015 0.0015 0.0004 0.0007 0.0015

Table 2.2 Estimated parameters for each component of the price model (MAE = $12.50/MWh)

Mean Reversion Seasonality Jump

κ σ A B γ1 ω1 γ2 ω2 µ λ

0.1924 17.3215 74.9985 −1.3769 2.9681 164.8868 −18.3058 −4.4985 0.00034 0.0768

are a number of visually apparent jumps that are adjacent to each other in Figure 2.6, but

their individual differences are not large enough to be detected by the method of Cartea

and Figueroa (2005). To identify outliers, we use steps standard in statistical quality control

(Montgomery 2008), as detailed in Appendix A.8.

For any price tagged as an outlier in the above steps, we set the jump size equal to the

difference between this price and its predecessor. We then bin these jumps to construct an

empirical distribution, and estimate the jump arrival rate λ as the number of jump occurrences

divided by the number of periods (Table 2.1). This method, though simple, extracts almost

all jumps that are visually apparent. More sophisticated methods could also be applied, see

for example Klüppelberg et al. (2010) and Fanone and Prokopczuk (2010).

We perform a nonlinear regression, similar to Lucia and Schwartz (2002), on the hourly

price series with jumps removed. This yields the estimated parameters displayed in Table 2.2.

The mean absolute error (MAE) from this regression is 12.5 ($/MWh), while the mean of

this price series is 76.21 ($/MWh). We assume the market price of risk (Duffie 1992) is zero,

because we do not have futures prices to calibrate it. If one had such data, one could estimate

the market price of risk accordingly (Lucia and Schwartz 2002).

2.6.5 Discretization

To numerically solve our MDPs we discretize the mean reverting process to a lattice: A tree

with discrete time steps that specifies attainable price levels and their probabilities for each

period. Based on the estimated parameters for the mean reversion model, we use the method

in Hull and White (1993) to construct a trinomial price lattice, with each time step equal to
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an hour. This discretized mean reverting process and the discrete jump process comprise the

two-dimensional price vector in the state of our MDPs.

Even though in §2.3 we assume that each component of the price vector is unknown before

the operator makes a decision, in the numerical study we assume that before decision-making

the operator does not know the mean reversion component, but knows the jump component;

otherwise we do not need to keep the jump component in the state, because jumps are inde-

pendently and identically distributed.

2.7 Wind energy model

In this section we specify the wind energy model that is used in our numerical study in §2.8.

We describe the data and our model in §2.7.1, and the calibration and discretization of our

model in §2.7.2 and §2.7.3, respectively.

2.7.1 Data and model

We use hourly wind speed data of the Central Park weather station in New York City, the

same location from which we draw our price data. We obtain these data from NOAA (2010),

and focus on 2001-2008, as this time span is long enough for calibration.

The wind speed obtained was recorded at 10 meters above ground, and we need to convert

it to wind speed at the hub height of a wind turbine. We accomplish this by using the model

from Heier (2006):

Wind speed at height h = Wind speed at 10 meters · (h/10)constant ,

where this constant depends on conditions such as air and ground. We set h = 80 meters,

the height for the General Electric (GE) turbine model 1.5-77, because the GE has the largest

share of the U.S. wind turbine market and its 1.5 MW series is among the best selling turbines

in the U.S. (Wiser and Bolinger 2010). We choose the constant to be 0.38 so that our wind

data’s capacity factor (the ratio of actual energy output over a long period versus nameplate

capacity) is 32%, in the range of capacity factors of wind farms in New York state1. We convert

1www.windpoweringamerica.gov/pdfs/wind maps/ny wind potential chart.pdf
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Table 2.3 Production Curve of GE1.5MW

Speed (m/s) 0 1 2 3 4 5 6 7 8 9 10 11 12

Power (MW) 0 0 0 0 0.043 0.131 0.25 0.416 0.64 0.924 1.181 1.359 1.436

Speed (m/s) 13 14 15 16 17 18 19 20 21 22 23 24 25

Power (MW) 1.481 1.494 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

wind speed to wind energy through the production curve of GE1.5-77 (see Table 2.3), which

specifies the amount of wind energy produced by such a turbine for any given wind speed.

We model the wind speed process Qt as the sum of an autoregressive (AR) process ξ′t and

a seasonality function f ′(t):

Qt = ξ′t + f ′(t).

Specifically, ξ′t is an AR(1) (an AR process of order 1) as follows:

ξ′t = φξ′t−1 + σ′ǫt,

where φ and σ′ are scalars, and each ǫt ∼ N(0, 1) is an i.i.d. error term. The seasonality

component f ′(t) is

f ′(t) = A′ + γ3 cos((t+ ω3) · 2π/(24 · 365)) + γ4 cos((t+ ω4) · 2π/24),

where A′ is a constant level; γ3 and ω3 are the magnitude and the phase shift of daily seasonal-

ity, respectively; and γ4 and ω4 are the magnitude and the phase shift of the hourly seasonality,

respectively.

2.7.2 Calibration

Since the AR(1) model is a discrete-time version of a mean reverting model, we calibrate the

wind speed model using the same method used to calibrate the mean reverting component of

our price model. The estimated parameters are shown in Table 2.4. We test the fitness of this

calibration by computing MAE in terms of power: We first compute the series of energy of the

actual wind speed and that of the estimated wind speed, then sum up the difference between

these two energy series, and finally divide it by the number of periods. The MAE is 0.2715

MW; the turbine generation capacity is 1.5 MW. We also experimented with an AR(2) model,

2www.inl.gov/wind/software/powercurves/pc ge wind.xls
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Table 2.4 Estimated parameters for the wind speed model (MAE = 0.2715 MW)

φ A′ σ′ γ3 γ4 ω3 ω4

0.6398 6.4690 2.9522 1.4811 0.1028 −53.1759 −16.4796

and found that it does not fit the data any better than the AR(1) model in terms of MAE.

Even though in our analytical model we allow price and wind processes to be correlated,

statistical analysis shows that the stochastic component of our price series is uncorrelated with

the stochastic component of the wind data. (The deterministic seasonality components of wind

and price capture the fact that wind tends to blow most strongly at night, when prices tend

to be low.) This lack of correlation is not surprising, because for the considered time period

wind energy consisted of only a small proportion of the electricity generation in NYISO.

2.7.3 Discretization

In order to use the continuous-space wind speed process in our MDPs, we discretize this process

into a grid, which specifies the wind speed levels and transition probabilities among all levels.

We choose a grid rather than a trinomial tree as we have a natural set of wind speed levels:

the positive integers that do not exceed 25 (meters/second), which comprises the production

curve of the GE15-77 turbine. We denote this set as M . To find the transition probability

from any level i ∈ M to any level j ∈ M , ρij , we try to match the first two moments of the

discretized wind speed model at level i and its continuous counterpart as follows:

min
ρij ,∀j∈M

∑

j∈M

(ρij · j − φ · i)2 +
∑

j∈M

[

ρij · j
2 − (φ · i)2 − σ′2

]2
,∀i ∈ M ,

where the first (second) summation is the difference of the first (second) moment matching:

the first moment of the continuous wind speed model for each i ∈ M is φ · i; the second

moment is (φ · i)2 + σ′2. We give equal weights to these moment matchings for simplicity;

one can easily specify different weights. Likewise, other methods of estimating the transition

probabilities can be applied, for example, those in Hoyland and Wallace (2001).
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2.8 Numerical study

In this section we discuss the setup of our numerical study in §2.8.1, compare the performance

of all the heuristic policies and an optimal policy in §2.8.2, and quantify the monetary and

energy values of storage in §2.8.3.

2.8.1 Setup

We study a wind farm that includes 120 GE1.5-77 turbines, so its total generation capacity is

120 × 1.5 MW= 180 MW (MW represents megawatt; 1 watt = 1 joule/ second). This wind

farm is remote and connected to a wholesale market via a transmission line that has a loss of

3%, that is, τ = 3% (DukeEnergy 2011). We vary the wind farm’s transmission capacity (in

MW) from 80 MW to 180 MW in steps of 20 MW. (This transmission capacity could be leased

from a transmission company, so the capacity of the entire transmission line can be larger.)

Co-located with the wind farm is an industrial battery, which can be charged or discharged

fully in ten hours (EPRI 2004). We vary its energy capacity (in MWh; 1 megawatt hour =

3.6 Giga joules) from 200 MWh to 1200 MWh in steps of 200 MWh. The relative size of

the WST system is consistent with Denholm and Sioshansi (2009) and Pattanariyankool and

Lave (2010). We also vary the round-trip efficiency of this industrial battery, and find that

our qualitative managerial insights to be consistent. Therefore in the results we report, the

storage efficiency parameters are fixed at α = 0.85, β = 1, and η = 1.

As mentioned in §2.6.1, we assume each period is one hour. We use a time horizon of one

month, so the total number of periods is 31 × 24 = 744. The discount factor δ for each stage

(period) is 0.999999, corresponding to an annual risk-free interest rate of 1% with continuous

compounding (recall that we use risk-neutral valuation).

We numerically evaluate an optimal policy to (2.3), along with all the heuristics of §2.4.

For all policies, we discretize the inventory set evenly to 301 levels (beyond this level of

discretization the results vary little). The value of each policy is the value of the objective

function in (2.2) evaluated at initial inventory zero using the action of this policy for each

stage and state. We find the actions of each policy using dynamic programming to solve each

corresponding MDP, based on steps specified in §2.4.3 and §2.4.4.
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Figure 2.7 Value of heuristics versus that of an optimal policy: storage energy capacity equals 600 MWh
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2.8.2 The performance of all the policies

We report here the performance of all policies not only in terms of their relative values, but

also in their computation time. We carry out all experiments on a computer with Intel(R)

Core(TM) i7-2600K CPU of 3.40GHz with 8 MB cache.

On average, for a given WST configuration, computing an optimal policy takes around 11

hours, which exceeds the decision frequency of every hour; in contrast, the triple-threshold

policy and dual-threshold policy (and its variant) take around 30 and 20 minutes, respectively,

which is within hourly decision frequency. All other heuristics can be computed within seconds.

For each heuristic, we compute the percentage of its value relative to that of an optimal

policy. Figure 2.7 reports these results for a range of transmission capacity levels given a

storage energy capacity of 600 MWh (this corresponds to the proportions of storage energy

capacity to generation capacity used in Denholm and Sioshansi 2009). As seen in this figure,

the problem of managing a WST system is non-trivial: using the näıve policy can result in

a significant loss of optimality, from 9% at 80 MW of transmission capacity to 17% at 180

MW of transmission capacity. In contrast, almost all the optimal value is captured by the

triple-threshold policy: it achieves about 99% of the optimal value over all the transmission

capacity levels. The sub-optimality of the other heuristic policies is more pronounced: from

95% to 96.4% for the dual-threshold policy, from 97% to 97.5% for the dual-threshold policy

augmented with buying, from 90.5% to 95% for the two-period policy, and from 89% to 93% for

the rolling horizon policy. Therefore, the triple-threshold policy is practical and near optimal,

while other heuristic policies, though practical, do not perform as well.
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Figure 2.8 Effect of storage energy capacity and transmission capacity on the value of the triple-threshold
policy: each curve represents one storage energy capacity level
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Next we further examine the performance of the triple-threshold policy. Figure 2.8 plots

the performance of this policy relative to the optimal policy that we obtain (the optimal

policy may not be unique), over a range of storage energy capacity and transmission capacity

levels. The triple-threshold policy consistently performs well for all the parameters considered,

achieving at least 98% of the optimal value. Given any transmission capacity, the performance

of our heuristic policy deteriorates as the storage energy capacity increases: with larger storage

energy capacities our computed optimal policy can buy much more than the triple-threshold

policy (which thinks any negative expected price is zero). Moreover, given any storage energy

capacity, the performance of this triple-threshold policy improves as the transmission capacity

increases: as this transmission capacity becomes less constraining, the difference in the quantity

purchased by our optimal policy and the triple-threshold policy diminishes because storage

energy capacity becomes binding.

2.8.3 The value of storage

We now analyze the monetary and energy values of storage under the triple-threshold policy.

2.8.3.1 The monetary value of storage. We present the monetary value of storage

and the breakdown into its three components (defined in §2.5) for a range of storage and

transmission capacity levels in Figure 2.9. Storage can substantially increase the monetary

value of a WST system: for a typical setting when the transmission capacity is 120 MW, and

the storage energy capacity is 600 MWh (the relative size of a WST system in Denholm and
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Figure 2.9 Breakdown of the monetary value of storage under the triple-threshold policy given 600 MWh of
storage energy capacity (left) and 120 MW of transmission capacity (right)
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Sioshansi 2009 and Pattanariyankool and Lave 2010), the monetary value of storage is around

33.5%, of which 4.5% is from arbitrage, 12% from time-shifting generation, and 17% from

reducing curtailment.

Given a storage energy capacity level of 600 MWh (Figure 2.9 Left), the monetary value of

storage decreases with more transmission capacity, because the value of reducing curtailment

plummets as the transmission capacity increases, even though both the value of arbitrage and

the value of time-shifting generation increase with more transmission capacity (see expression

(2.5) in §5). In addition, when the transmission is tight, the majority of the monetary value

of storage is due to reducing curtailment; with ample transmission capacity, the majority of

this value is attributable to time-shifting generation and arbitrage.

Given a transmission capacity level of 120 MW (Figure 2.9 Right), the monetary value of

storage is increasing concave with more storage energy capacity. This is because for any given

transmission capacity, the value of the system without storage is constant when changing the

storage energy capacity, while all three monetary values of storage (from reducing curtailment,

time-shifting, and arbitrage) increase with the storage energy capacity until they level out

because of the bottleneck in transmission capacity (see expression (2.5) in §5).

2.8.3.2 The energy value of storage. We next examine the energy value of storage.

Figure 2.10 (Left) shows that using storage can substantially reduce curtailment. For instance,

when the storage energy capacity is 600 MWh and the transmission capacity is 120 MW, the

average curtailment per period (i.e., per hour) is reduced by around 87% compared to the

system without storage: if lack of transmission is leading to curtailment, 87% of the wind
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Figure 2.10 Curtailment per hour (left) and energy sold per hour (right) under the triple-threshold policy for
different storage energy capacity levels
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Note: Each curve corresponds to a storage energy capacity level; 0 MWh corresponds to no storage

Figure 2.11 Wind energy sold per hour for different storage energy capacity levels under the triple-threshold
policy (left) and the naive policy (right)
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Note: Each curve corresponds to a storage energy capacity level; 0 MWh corresponds to no storage.

energy curtailed can be recouped through use of storage under our triple-threshold policy.

Given any storage energy capacity (including the no-storage case), the curtailment shrinks

with more transmission capacity; and given any transmission capacity, the curtailment shrinks

with more storage energy capacity.

Figure 2.10 (Right) indicates that storage can greatly increase the average energy sold per

period. For instance, when the storage energy capacity is 600 MWh and the transmission

capacity is 120 MW, storage increases the average energy sold by about 26% compared to the

no-storage case: 14% is due to more wind energy sold (less curtailed); and 12% due to reselling

electricity bought from the market.

However, under the triple-threshold policy, storage does not necessarily increase the average
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wind energy sold per period. As seen from Figure 2.11 (Left), when the transmission capacity

is low, more storage energy capacity indeed increases the average wind energy sold; however,

when the transmission capacity is high, more storage can actually slightly reduce average wind

energy sold. This is because at high transmission capacity there is very limited curtailment

for the system without storage; the benefit of reducing curtailment with storage decreases

to such an extent that this benefit is surpassed by the conversion loss in the storage facility.

In contrast, if the näıve policy is used, then more storage energy capacity does increase the

average wind energy sold (see Figure 2.11 right). This observation implies that a policy that

strives to maximize revenue (such as the triple-threshold policy) does not also maximize the

average wind energy sold.

2.9 Conclusions and future work

We consider the problem of managing a WST system that trades electricity in an electricity

market. We demonstrate that computing an optimal policy does not have any simple structure,

while overly simple policies may sacrifice significant value. We thus develop a triple-threshold

heuristic policy, which generalizes policy structures that are known in the commodity storage

literature. This structure enables us to reduce the computation significantly compared to an

optimal policy.

We investigate the performance of this triple-threshold policy and other heuristics relative

to that of an optimal policy. We do so using price and wind energy models calibrated to real

data for a range of round-trip efficiency, transmission capacity, and storage energy capacity

levels. We find that while other heuristics are inferior, the triple-threshold policy is within 2%

of optimality on a set of realistic instances. This implies that in practice the optimal policy

may resemble a triple-threshold policy.

Our experiments show that storage can substantially increase the monetary value of the

system: when the transmission capacity is tight, the majority of this value comes from reducing

curtailment and time-shifting generation; when the transmission capacity is abundant, the

majority arises from time-shifting generation and arbitrage. The substantial monetary value

of storage—combined with the fact its cost is dropping rapidly (AquionEnergy 2011)—makes

investing in storage potentially appealing. We also find that although storage can substantially

reduce curtailment and increase the average energy sold, more storage energy capacity may
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actually decrease the average wind energy sold if a revenue-maximizing policy is used.

Our work can be extended in several directions. First, one could include bidding in a

forward market, in addition to the spot market considered in this chapter. Second, one could

investigate the collective effect of multiple wind farms and storage facilities on electricity prices,

at high levels of wind energy penetration, such as 20% of the total electricity generation in the

U.S. (DOE 2008).
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Chapter 3

Is It More Valuable to Store or

Destroy Electricity Surpluses?

3.1 Introduction

In a commodity market, storage is useful to match supply and demand: when supply outstrips

demand, any surpluses can be stored for future sale. Thus, storing surpluses is a natural

strategy for dealing with electricity surpluses for a merchant that trades electricity in a market,

particularly because electricity supply and demand must be matched in real time to ensure the

integrity of the electrical grid. However, another potential strategy for dealing with electricity

surpluses is to destroy and dispose of them. This strategy is potentially appealing for a

merchant because of the existence of negative electricity prices, as mentioned in Chapter 2,

or, equivalently, because of periods in which buyers are paid to buy electricity.

Negative prices are caused by various factors, as mentioned in Chapter 2. Other than

those reasons, in recent years, negative prices in the U.S. may also have been caused by

Renewable Energy Credits traded in the market, or the federal Production Tax Credit received

by wind-based electricity generators (Fink et al. 2009): Production Tax Credit is currently

valued at $22/MWh (DSIRE 2011); thus wind generators may bid a negative price and still

This chapter is a joint work with Alan Scheller-Wolf, Nicola Secomandi, and Stephen Smith; it is under
the first round revision for Management Science.
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generate positive revenue from the sale, as long as the price is higher than -$22/MWh. With

the increased use of wind power, negative prices may become more frequent and larger in

magnitude in the future (Brandstätt et al. 2011, Genoese et al. 2010, Nicolosi 2010).

It is not clear which—storage or disposal—strategy for managing electricity surpluses is

more valuable for a merchant. We investigate this question by considering a merchant’s prob-

lem of managing a storage facility at different round-trip efficiencies. As mentioned in Chapter

2, the round-trip efficiency of an electricity storage facility represents the ratio of the quantity

of electricity withdrawn to that injected (EPRI 2004). By varying this efficiency, our model

encompasses both the case when electricity surpluses are stored and the case when they are

destroyed: a high round-trip efficiency represents the storage strategy and a low round-trip

efficiency the disposal strategy (as the majority of the electricity is lost during the conversion

process).

We model this problem of managing a storage facility with prices that are potentially

negative as an MDP. The round-trip efficiency and the physical constraint on the energy

capacity of the storage facility make our electricity storage problem similar to that of other

commodities, such as natural gas or oil. However, our problem differs from these due to the

existence of negative prices; negative prices have not been observed in these markets, and

there is no known optimal policy structure for this case in the literature. Therefore, we derive

our model’s optimal policy: We show that for every state and stage, the inventory domain

can be divided into three regions, one region in which it is optimal to empty the facility, one

in which it is optimal to fill up the facility, and one in which it is optimal to do nothing.

This policy structure subsumes the optimal policy structure for managing storage in Charnes

et al. (1966); when price can be only positive, our policy simplifies to theirs. This structure

facilitates computing the values of the storage and disposal strategies for managing electricity

surpluses.

We compare the values of these two strategies using the same financial engineering price

model in Chapter 2. We vary the round-trip efficiency of the storage facility over a range

that includes both low and high values, to model both disposal and storage strategies. Our

numerical results show that the disposal strategy is even more valuable than the storage

strategy. They also suggest that the value of the storage strategy originates from using an

efficient storage facility to store electricity purchased mainly at low but positive prices for

resale at high positive prices. This is in contrast to the disposal strategy, whose value arises

39



Ch3. Is It More Valuable to Store or Destroy Electricity Surpluses?

from using an inefficient storage facility to destroy surpluses purchased at negative prices.

These findings are potentially relevant to electricity merchants, and also may inform policy

makers who might be interested in assessing the potential impact of the disposal and storage

strategies on consumer surpluses and social welfare.

The rest of this chapter is organized as follows: we review the extant literature in §3.2; we

present our MDP in §3.3 and our structural analysis of its optimal policy in §3.4; we carry out

our numerical analysis in §3.5; we conclude in §3.6.

3.2 Literature Review

Our work is related to the commodity and energy storage literature. One problem studied in

this literature is the classical warehouse problem introduced by Cahn (1948): given a warehouse

with limited space, what is the optimal inventory trading policy in the face of variability in

the commodity price? Charnes et al. (1966) show that if this price is stochastic and positive,

for a given time and spot price the optimal inventory trading decisions are the same for any

inventory level: either fill up the warehouse, empty it, or do nothing. The warehouse in this

chapter is an electricity storage facility. We show that the presence of negative prices can

dramatically alter the optimal policy structure of Charnes et al. (1966): for a given time and

commodity price, different types of actions can be optimal at different inventory levels. Also, in

our model it can be optimal to fully charge the storage facility at low inventory levels and fully

discharge it at high inventory levels, which is not optimal in the models considered by Charnes

et al. (1966). Other related work can be found in the literature on commodity and energy

real option (see, e.g., Smith and McCardle 1999, Geman 2005), which we have mentioned in

Chapter 2. However, all of these papers assume that the commodity price is positive.

Most of the extant literature on electricity storage assumes perfect information on future

electricity prices, including Graves et al. (1999), Figueiredo et al. (2006), Walawalkar et al.

(2007), and Sioshansi et al. (2009). These authors use historical price data to examine the

value of storage in various electricity markets: they assume that one has the ability to foresee

future prices, and find the optimal policy for a given price path by solving a linear programming

problem. In contrast, we model prices as a stochastic process, and derive the optimal policy

in the face of price uncertainty. Two papers on electricity storage that do model price as a

stochastic process are Mokrian and Stephen (2006) and Xi et al. (2011): Mokrian and Stephen
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(2006) assess the value of different electricity storage facilities in an electricity market; Xi

et al. (2011) co-optimize multiple usages of storage, including energy usage and backup service.

However, neither of these papers considers the case when price can be negative, nor do they

derive the optimal policy structure.

This chapter is also related to Chapter 2 on managing wind-based electricity generation

with storage: Although Chapter 2 also considers the possibility of negative prices, it does not

quantify the relative values of the storage strategy and the disposal strategy, which we do

in this chapter. And, unlike Chapter 2’s finding that negative prices can be ignored when

managing a remote wind farm with storage and transmission capacity, we find in this chapter

that negative prices are significant enough to make the disposal strategy even more valuable

than the storage strategy for managing a standalone storage facility located at a market.

3.3 Model

We consider a merchant’s problem of managing electricity storage in an electricity wholesale

market, specifically in a real-time market. (Consistent with the literature on valuing electricity

storage mentioned in §3.2, we do not consider bidding in a forward market.) Note that the

model in this section is a subset of the model in §2.3: excluding from §2.3 all the modeling

elements (states, actions, and constraints) related to wind, transmission capacity, and power

capacity gives the model in this section, except some differences in conventions as we explain

later on. However, for the sake of concreteness, we define the model completely in this section.

We assume that the merchant is a price taker, and thus his trading decisions do not affect

the market price. The merchant trades electricity in a finite horizon at each period t from a

set T : = {1, · · · , T}; at the terminal period T + 1, any electricity left is worthless. Different

from Chapter 2, this chapter does not define period as the interval between two time epochs;

furthermore, this chapter does not even introduce the concept of time, but uses only period,

because this chapter does not have wind energy as in Chapter 2, which is revealed gradually

over a period. Chapter 4 is the same as Chapter 3 in this regard.

The source of uncertainty in the model of this chapter is only the evolution of electricity

price {Pt, t ∈ {0} ∪ T }; Pt is a random variable with the support P ⊆ R
n, where n is the

number of components in Pt. As in Chapter 2, Pt is a vector of price components. Note

that in this chapter, the convention of denoting a random variable is different from Chapter
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2: in Chapter 2, a random variable is always denoted in lower case, and a random variable

with subscript t is unknown or random before time t, but is known or realized at time t;

in this chapter, a variable is random if it is denoted in upper case, and it is known if it is

denoted in lower case. We use the same convention in Chapter 4 as well. This section and

the next are independent of any specific price model, except for the requirement that prices

be Markovian and not affected by the merchant’s decisions. We use the same price model as

in Chapter 2, but calibrate it to different input data for estimating model parameters, which

we mention in §3.5.1. At the beginning of every period t ∈ T , the merchant knows the price

of the previous period pt−1 ($/MWh, where MWh represents megawatts hour), which gives

the conditional probability distribution of the price in the current period, Pt. The market

price is unknown before each market player’s decision to be consistent with the operation of

an electricity market, which clears after all players’ decisions.

The merchant’s storage facility is finite in energy capacity; without loss of generality,

we normalize the available energy capacity to be one (MWh). The storage facility’s round-

trip efficiency equals α · β · η, where α, β and η (all in (0, 1]) represent the efficiency in

charging, discharging, and storing over one period (storage facilities may lose electricity by

self-discharging when on standby). Most of the literature models round-trip efficiency as a

single number in between 0 and 1, irrespective of how long electricity has been stored. Our

model allows the possibility of asymmetric charging and discharging efficiencies, and η allows

the storage loss to depend on time.

We denote the inventory (electricity) in the merchant’s facility at the beginning of each

period t by xt, where xt has the domain X := [0, 1 · η]. (The maximum inventory level is η

because we assume that the storage loss occurs at the end of each period.) The decision for

each period t is denoted by at: if at < 0, at is the quantity of inventory decrease due to selling,

so the actual quantity sold to the market is at multiplied by the discharging efficiency, that

is at · β; if at ≥ 0, at is the quantity of the inventory increase due to buying, so the actual

quantity bought from the market is at divided by the charging efficiency, that is at/α. For any

given initial inventory level xt, the feasible action set for at is [−xt, 1− xt] =: Ψ(xt).

For each period t ∈ T , let R(at, pt) denote the immediate payoff function, which is the

3Chapter 2 differs in this convention due to a referee’s suggestion on the journal version of Chapter 2.
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purchasing cost if at ≥ 0 and the selling revenue if at < 0, specifically

R(at, pt) :=







− 1
α
at · pt, if at ≥ 0,

−βat · pt, if at < 0,

. (3.1)

For each period t ∈ T , the sequence of events is as follows:

(i) At the beginning of period t, based on xt and pt−1, the merchant decides on at.

(ii) The physical transfer of electricity follows, either from the merchant to the market in

the case of selling or vice versa in the case of buying. With the physical transfer, there occurs

a loss in discharging (selling) or charging (buying).

(iii) The market price pt is revealed, and the associated financial settlement is completed.

(iv) At the end of period t, the inventory decreases by (1 − η) × 100 percent, thus xt+1 =

η(xt + at).

We formulate the merchant’s problem as a finite-horizon MDP. Each stage of the MDP

corresponds to one time period. The state variables in stage t are xt and pt−1. The objective

is to maximize the total expected discounted market value of the cash flows over the horizon.

For period t ∈ T ∪{T +1}, let Vt(xt,pt−1) denote the value function from period t onward

given xt and pt−1; if t = T + 1, the value function is VT+1(xT+1, pT ) := 0. Let Et[·] be a

shorthand notation for EPt [·|pt−1]. For any period t ∈ T , the value function Vt(xt,pt−1) is

the expected sum—given pt−1—of the optimal immediate payoff function and the discounted

resulting value function for the next period, and thus satisfies the following recursion:

Vt(xt,pt−1) = max
at∈Ψ(xt)

Et [R(at, Pt) + δVt+1 (η(xt + at),Pt)]

= max
at∈Ψ(xt)

{R(at,Et[Pt]) + δEt[Vt+1 (η(xt + at),Pt)]} , (3.2)

where δ ∈ (0, 1] is the one-period risk-free discount factor. The second equality follows because

R(at, ·) is linear. This model is consistent with a market value maximization formulation

(Seppi 2002), i.e., we use risk-neutral probability measures, and use a constant risk-free rate

to determine the discount factor.
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3.4 Analysis

In this section, we derive the optimal policy structure of model (3.2). Define yt := η(xt + at)

as the ending inventory level in period t, thus yt ∈ [0, η] since at ∈ [−xt, 1 − xt]. Substituting

at = yt/η − xt into (3.2), for every period t ∈ T we obtain

Vt(xt,pt−1) = max
yt∈[0,η]

R(yt/η − xt,Et[Pt]) + δEt [Vt+1 (yt,Pt)] (3.3)

=max
{
V S
t (xt,pt−1), V

B
t (xt,pt−1)

}
,

where V S
t (xt,pt−1) is the optimal value function attainable by selling, and V B

t (xt,pt−1) by

buying:

V S
t (xt,pt−1) := max

yt∈[0,ηxt]
{−ytβEt[Pt]/η + δEt[Vt+1 (yt,Pt)] + xtβEt[Pt]} , (3.4)

V B
t (xt,pt−1) := max

yt∈[ηxt,η]
{−ytEt[Pt]/(αη) + δEt[Vt+1 (yt,Pt)] + xtEt[Pt]/α} . (3.5)

To avoid trivial cases, we make the following standard assumption about price (Assumption

3.1). We then establish the convexity of our value functions in Proposition 3.1 (see Appendix

B.1 for its proof).

Assumption 3.1. For any t ∈ T , Et[|Pt|] < ∞.

Proposition 3.1. For any t ∈ T ∪ {T + 1}, it holds that |Vt(xt,pt−1)| < ∞ and Vt(xt,pt−1)

is convex in xt ∈ X given any pt−1 ∈ P.

For any period t ∈ T , we can solve the original maximization problem in (3.2) by solving

the two equivalent problems in (3.4) and (3.5). In each of the two objective functions, the last

term is independent of the decision variable yt, and hence can be omitted from the optimization,

so (3.4) and (3.5) reduce to

W S
t (xt,pt−1) := max

yt∈[0,ηxt]
−ytβEt[Pt]/η + δEt[Vt+1 (yt,Pt)], (3.6)

WB
t (xt,pt−1) := max

yt∈[ηxt,η]
−ytEt[Pt]/(αη) + δEt[Vt+1 (yt,Pt)]. (3.7)

Denote yS∗t (xt) and yB∗
t (xt) as the optimal solution to (3.6) and (3.7), respectively. We

characterize these optimal solutions in the following lemma.
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Lemma 3.1. yS∗t (xt) can be either 0 or ηxt; y
B∗
t (xt) can be either ηxt or η.

Proof: Following from Proposition 3.1, Vt+1 (yt, pt) is finite and convex in yt given any pt.

Thus as shown in the proof of Proposition 3.1, Et[Vt+1(yt,Pt)] is finite because Et[|Pt|] is finite,

and Et[Vt+1(yt,Pt)] is convex in yt given any pt−1 as expectation preserves convexity. Adding

finite linear terms does not alter the finiteness and convexity, thus both objective functions in

(3.6) and (3.7) are finite and convex in yt given any pt−1. Therefore, the maximizers of both

objective functions can occur at only their corresponding end points, that is, yS∗t (xt) can be

either 0 or ηxt; y
B∗
t (xt) either ηxt or η. �

Define Y S
t := yS∗t (η) and Y B

t := yB∗
t (0), thus it follows directly from Lemma 3.1 that Y S

t

can be either 0 or η · η = η2, and Y B
t can be either 0 or η. Relax (3.6) and (3.7) by setting

xt = η and xt = 0, respectively; define wS
t (yt,pt−1) and wB

t (yt,pt−1) as the objective functions

of these two relaxed problems, respectively.

We next prove the existence of two critical thresholds using yS∗t (xt) and yB∗
t (xt), and

characterize these two thresholds using Y S
t and Y B

t . Then we will use these two thresholds to

characterize the optimal policy structure of (3.4) and (3.5), and correspondingly the optimal

policy for (3.2).

Lemma 3.2. For any t ∈ T and pt−1 ∈ P, there exist feasible inventory levels XS
t (pt−1)

and XB
t (pt−1) (simplified to XS

t and XB
t , respectively) such that







yS∗t (xt) = 0, if xt ∈ [0,XS
t ),

yS∗t (xt) = ηxt, if xt ∈ [XS
t , η];







yB∗
t (xt) = ηxt, if xt ∈ [0,XB

t ],

yB∗
t (xt) = η, if xt ∈ (XB

t , η].

Specifically, XS
t and XB

t can be computed by considering different values for Y S
t and Y B

t ,

respectively:

XS
t =







η, if Y S
t = 0,

max yt/η s.t. wS
t (yt,pt−1) = wS

t (0,pt−1) if Y S
t = η2;

(3.8)

XB
t =







0, if Y B
t = η,

min yt/η s.t. wB
t (yt,pt−1) = wB

t (η,pt−1), if Y B
t = 0.

(3.9)

Proof: According to Lemma 3.1, yS∗t (xt) can be either 0 or ηxt. Since the objective
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Figure 3.1 Illustration of the inventory level XS
t

 

Note: The squares represent the global maximum for each figure, which correspond to the two different cases
in (3.8); the dots represent the corresponding XS

t for each case.

function in (3.6) is convex in yt for any xt ∈ [0, η] (similar to the proof in Lemma 3.1), it

follows that as xt increases from 0 to η, there exists one and only one inventory level (denoted

by XS
t ) below which yS∗t (xt) = 0 (sell down to zero), and above which yS∗t (xt) = ηxt (do

nothing). We can characterize XS
t by considering the two different values of Y S

t :

• If Y S
t = 0 (either wS

t (yt,pt−1) is non-increasing as in Figure 3.1(a), or it is not monotonic

as in Figure 3.1(b)), then XS
t = η, since yS∗t (xt) = 0 for all xt.

• If Y S
t = η2 (either wS

t (yt,pt−1) is non-decreasing as in Figure 3.1(c), or it is not monotonic

as in Figure 3.1(d)), then XS
t is the maximum value of yt/η in the interval [0, ηxt] such that

wS
t (yt,pt−1) = wS

t (0,pt−1). In this case, XS
t can be either zero as in Figure 3.1(c), or nonzero

as in Figure 3.1(d).

Similarly, for (3.7), since the objective function in (3.7) is convex in yt for any xt, then as

xt increases from 0 to η, there exists one and only one inventory level (denoted by XB
t ) below

which yB∗
t (xt) = ηxt (do nothing), and above which yB∗

t (xt) = η (fill up). We can then define

XB
t as stated. �

The inventory level XS
t splits the feasible inventory domain into two regions: a sell-all

region on the left, and a do-nothing region on the right (see Figure 3.2). Likewise, XB
t splits

the inventory domain into two regions: a do-nothing region on the left, and a fill-up region on

the right (see Figure 3.2). The value of XS
t can be smaller than, equal to, or larger than the

value of XB
t ; we characterize them in detail in Lemma 3.3.

Lemma 3.3. For each period t ∈ T , (i) both XS
t and XB

t change from 0 to η, as Et[Pt]

changes from −∞ to ∞; (ii) if Et[Pt] < 0, then XS
t ≥ XB

t ; if Et[Pt] ≥ 0, then it is possible

that either XS
t > XB

t or XS
t ≤ XB

t .
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To prove the optimal structure in Proposition 3.2, we need the following Lemma 3.4 (see

Appendix B.3 for its proof).

Lemma 3.4. For any t ∈ T , if XS
t > XB

t , the graphs of V S
t (·,pt−1) and V B

t (·,pt−1) cross at

most once over X . When they do cross, either one of the following conditions holds:

• If XS
t = η, XB

t = 0, and E[Pt] < 0, then V S
t (η,pt−1) ≥ V B

t (η,pt−1);

• Otherwise, V S
t (η,pt−1) ≤ V B

t (η,pt−1).

Remark: Note that by crossing at most once, we meant V S
t (·,pt−1) and V B

t (·,pt−1) have

the same value at most once over the interval X excluding the two end points, that is, over

the interval (0, η). The above two conditions hold only when V S
t (·,pt−1) and V B

t (·,pt−1) do

cross; they do not need to hold when V S
t (·,pt−1) and V B

t (·,pt−1) do not cross.

With Lemma 3.4, we can establish the optimal policy structure in the following proposition.

Proposition 3.2. For each period t ∈ T , the feasible inventory set X can be divided into at

most three non-overlapping regions: a region where it is optimal to empty the storage facility,

one where it is optimal to fill up the facility, and one to do nothing. Specifically,

Case 1: If XS
t ≤ XB

t , the optimal action in stage t and state (xt,pt−1) for model (3.2) is

a∗t (xt,pt−1) =







−xt, if xt ∈ [0,XS
t ),

0, if xt ∈ [XS
t ,X

B
t ],

1− xt, if xt ∈ (XB
t , η].

(3.10)

Case 2: If XS
t = η, XB

t = 0 and E[Pt] < 0, when xt varies from 0 to η in set X , the

optimal action in stage t and state (xt,pt−1) for model (3.2) changes from filling up the facility

to selling all the available inventory.

Case 3: If XS
t > XB

t except under the condition in Case 2, when xt varies from 0 to η in

set X , the optimal action in stage t and state (xt,pt−1) for model (3.2) changes from selling

all the available inventory to filling up the facility.

Proof: Case 1: XS
t ≤ XB

t

We will examine the optimal action in stage t and state (xt,pt−1) for model (3.2), denoted

by a∗t for simplicity, in three regions separately:

i) For xt ∈ [0,XS
t ), as seen from Figure 3.2(a), the optimal decision for (3.6) is yt = 0 (to
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Figure 3.2 Illustration of Case 1, 2 and 3 in Proposition 3.2

 

sell everything), and the optimal decision for (3.7) is to do nothing, which is also a feasible

solution to (3.6). Thus, the optimal decision for (3.3) is yt = 0, or, equivalently, a∗t = −xt.

ii) Similar to i), for xt ∈ (XB
t , η], the optimal decision for (3.7) is to fill up, while for (3.6)

is to do nothing, which is also a feasible action for (3.7). Thus, the optimal decision for (3.3)

is yt = η, or, equivalently, a∗t = 1− xt.

iii) For xt ∈ [XS
t ,X

B
t ], the optimal decisions for both (3.6) and (3.7) are to do nothing.

Thus, the optimal decision for (3.3) is to do nothing.

Case 2 and Case 3: XS
t > XB

t

If XS
t > XB

t , for xt ∈ [0,XB
t ) the optimal decision is to sell all the available inventory, and

for xt ∈ (XS
t , η] the optimal decision is to fill up the facility. The interval [XB

t ,XS
t ] requires

further consideration, since the optimal decision for (3.6) is to sell all the available inventory

while for (3.7) it is to fill up the facility.

To prove the optimal structure for this region, we use Lemma 3.4, which implies that when

xt varies over X the optimal action can change at most once. (Note that this property holds

not only for region [XB
t ,XS

t ], but for the entire X .) Thus the set X can be partitioned into

two regions: in each region, any inventory level has the same optimal ending inventory level,

or, equivalently, optimal action.

However, to determine whether as xt increase the optimal action would change from selling

all to filling up, or vice versa, we need to consider the following two cases separately:

Case 2: XS
t = η, XB

t = 0 and E[Pt] < 0.

In this case, it follows from Lemma 3.4 that when V S
t (·,pt−1) and V B

t (·,pt−1) do cross,

we have V S
t (η,pt−1) ≥ V B

t (η,pt−1), which means that when they cross, V S
t (·,pt−1) ends at a

point no lower than that for V B
t (·,pt−1). Thus, the optimal structure can be only of the form

in Figure 3.3(b), that is, as xt increase, the optimal action changes from filling up to selling
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Figure 3.3 The optimal policy structure for case 1 (panel a), case 2 (panel b), and case 3 (panel c) in Proposition
3.2

all. This structure includes two degenerated cases when these functions do not cross: for all

xt ∈ X , the optimal action is to fill up; or for all xt ∈ X , the optimal action is to sell down

to zero.

Case 3: XS
t > XB

t except the scenario in Case 2

Similar to Case 2, it follows from Lemma 3.4 that when V S
t (·,pt−1) and V B

t (·,pt−1) do

cross, we have V S
t (η,pt−1) ≤ V B

t (η,pt−1); thus the optimal structure can be only of the form

in Figure 3.3(c), that is, as xt increase, the optimal action changes from selling all to filling

up. When these functions do not cross, this structure includes the same two degenerated cases

as in Case 2. �

Figure 3.3(a) shows the optimal policy structure for Case 1: it consists of three ordered

regions corresponding to the optimal action of discharging, doing-nothing, and charging, but

some regions may be empty. For instance, it is possible that XS
t = XB

t = η, in which case

the optimal decision is to sell down to zero at all initial inventory levels, i.e., all of X is a

discharging region, and the other two regions are empty.

For Case 2 and 3, X is divided into two regions: discharging and charging; the do-nothing

region is reduced to a single point. Again one region can be empty.

Lemma 3.3 complements Proposition 3.2 in illustrating the price regions for which the

optimal policy structure of Case 1, 2 and 3 would occur, that is if Et[Pt] < 0, the optimal

structure can be from either Figure 3.3(b) or (c); when Et[Pt] ≥ 0, the optimal structure can

be from either 3.3(a) or (b).

We next examine how Vt(xt,pt−1) changes with different parameters. Specifically, the
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Figure 3.4 The optimal policy structure by Charnes et al. (1966) when prices are positive

following proposition illustrates how Vt(xt,pt−1) changes with α. We elaborate on this in the

numerical analysis.

Proposition 3.3. For each period t ∈ T , if Et[Pt] < 0, there always exists an ᾱ such that if

α ≤ ᾱ, Vt(xt,pt−1) increases when α decreases.

We have shown that the three patterns in Figure 3.3 characterize the optimal structure

of our MDP. This structure generalizes the optimal structure established by Charnes et al.

(1966) when the commodity price can be only positive: In this case the optimal action in a

given stage and state is the same for all inventory levels: either do nothing, fill up the facility,

or empty it, as in Figure 3.4(a), (b) and (c), respectively. Each pattern in Figure 3.4 is a

special case of a pattern in Figure 3.3. Note that the optimal ending inventory levels in the

structure of Charnes et al. (1966) are monotone in inventory; however, this is not always true

in our structure (see Figure 3.3).

Mathematically, this difference is due to the linearity in inventory of the value functions

of the model of Charnes et al. (1966), and the convexity in inventory of the value functions of

our model, as shown in Proposition 3.1. This disparity in value functions is remarkable, as the

value functions of other storage models (see, e.g., Secomandi 2010b) are concave rather than

convex in inventory. In the following example, we demonstrate how negative prices together

with the effect of a round-trip efficiency less than one give rise to a value function that is

convex in inventory. This example also illustrates Proposition 3.2.

Example 3.1. For simplicity, we assume no loss in charging or storing over time (α = η =

1). However, half of the electricity will be lost in discharging (β = 0.5). The time horizon

consists of three periods, thus T = 3; their prices are deterministic and equal to −4, −3, and
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Figure 3.5 The optimal value function and optimal ending inventory level in stage 1 for Example 3.1
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0 respectively. The value function for the second period is (we omit the price argument as it

is obvious from the example setup)

V2(x2) = max

{

max
−x2≤a2≤0

{−a2 · (−3) · 0.5 + 0} , max
0≤a2≤1−x2

{−a2 · (−3) + 0}

}

= 3(1 − x2).

The value function for the first period is

V1(x1)

=max

{

max
−x1≤a1≤0

{−a1 · (−4) · 0.5 + 3(1 − x1 − a1)} , max
0≤a1≤1−x1

{−a1 · (−4) + 3(1− x1 − a1)}

}

=max

{

max
−x1≤a1≤0

{−a1 + 3− 3x1}, max
0≤a1≤1−x1

{a1 + 3− 3x1}

}

=(4− 4x1) · 1(0 ≤ x1 ≤ 0.5) + (3− 2x1) · 1(0.5 ≤ x1 ≤ 1),

where 1(·) is an indicator function: one if the inequalities in the parenthesis are satisfied; zero

otherwise.

Thus V1(x1) is convex in x1 (see the left panel of Figure 3.5). The optimal inventory

decision is to fill up the storage facility when x1 is less than a half, and to sell all the available

inventory otherwise (see the right panel of Figure 3.5), which is an example of the structure in

Figure 3.3(b). It is easy to show that XS
1 = η and XB

1 = 0: Defining y1 := x1 + a1, we obtain

that yS1 (η) = Y S
t = 0 and yB1 (0) = Y B

t = η, then apply Lemma 3.2. �
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The intuition for Example 3.1 is as follows: Since the price trajectory is −4, −3, 0, filling

up the storage facility in period 1 is always better than filling it up in period 2, and in period 2

selling any inventory level is never optimal. The only issue is then whether it may be optimal

to empty the storage facility in period 1 and to fill it up in period 2, rather than filling it

up in period 1 and doing nothing in period 2. The payoff of the first strategy is 3 − 2x1;

the payoff of the second strategy is 4 − 4x1. The first strategy is better than the second

one if and only if 3 − 2x1 > 4 − 4x1, that is, x1 > 0.5. This means that in period 1 it is

optimal to empty when the inventory level exceeds 0.5, and it is optimal to fill up when the

inventory level is less than or equal to 0.5. This illustrates how an efficiency loss (in this

example 50% for charging) combined with negative prices can induce a nontrivial relationship

between inventory availability and an optimal action; that is, emptying the storage facility at

high inventory levels (above 0.5) and filling it up at low inventory levels (at or below 0.5).

This nontrivial relationship manifests itself in the convexity of the optimal value function in

inventory in period 1.

Example 3.2. This example has the same efficiency as Example 3.1, but it has four periods.

In the first period, the price is deterministic: 4; the price of the last three periods is stochastic,

with equal probability to be either of the following three paths: (−12,−10.8, 0), (−12,−7.5, 0),

and (54, 0, 0).

Using the same method in Example 3.1, we can compute—for each of the three price

paths—the value function of the second stage. We then combine these three price paths to

obtain the expected value function for stage two, which is the continuation valuation function

for stage 1. Similarly, we compute the value function for stage 1 and its optimal ending

inventory level versus the starting inventory level, which we plot in Figure 3.6. (Detailed

derivation is available upon request.) This demonstrates an example of the optimal structure

in Figure 3.3 (a).

3.5 Numerical analysis

In this section, we examine the market value of an electricity storage facility by applying the

optimal policy established in §3.4, in conjunction with an electricity price model from Chapter

2. We first discuss the numerical setup in §3.5.1; we then discuss our numerical results on
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Figure 3.6 The optimal value function and optimal ending inventory level in stage 1 for Example 3.2
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Table 3.1 Estimated parameters for the mean reversion, seasonality, and jump model for every eighth hours
(MAE = $14.32/MWh)

Mean Reversion Seasonality Jumps

κ σ A B γ1 ω1 γ2 ω2 µ λ

0.2736 18.7771 77.1156 −0.6235 4.4012 −161.7086 −18.5844 1.9777 0.0032 0.0459

comparing the two strategies of dealing with surpluses in §3.5.2, and on the value lost by

ignoring negative prices in §3.5.3.

3.5.1 Setup

In the ensuing analysis, we focus on one specific type of storage technology, and choose its

parameters from the standard range in Eyer and Corey (2010): a battery that has an energy

capacity of 8 MWh and can be fully charged/discharged within eight hours. Thus we set eight

hours as the length of each period, which is also the period length in the price model.

We use the same price model and the same calibration method as in Chapter 2, but

the input data for calibration is the average price of every eight hour block (three blocks of

each day: 00:00-8:00, 8:00-16:00, 16:00-24:00) of the data used in Chapter 2. We show the

calibration result for all the three components of the price model in Table 3.1, and the jump

size distribution in Table 3.2.

To solve our MDP, we use backward dynamic programming. To compute the optimal

action for each state in each period t, we leverage the optimal policy structure obtained in §4.

53

Paper2/pic/a_ex_vf_opt_inv.eps


Ch3. Is It More Valuable to Store or Destroy Electricity Surpluses?

Table 3.2 Jump size distribution

Size -300 -250 −200 −150 −100 −50 0 50 100

Probability 0.005 0.0100 0.0149 0.0249 0.0647 0.0498 0.1343 0.2338 0.2338

Size 150 200 250 300 350 400 450 500

Probability 0.0846 0.0796 0.0299 0.0050 0.0100 0.0100 0.0050 0.0050

Assuming that the battery starts empty, according to Proposition 3.2, the possible inventory

levels visited by an optimal policy in period t is 0, η, . . . , ηt−1. Thus, for each period t we only

need to compute the value functions at these inventory levels. In addition, as in Chapter 2,

we discretize the mean reversion process as a trinomial lattice based on the method in Jaillet

et al. (2004). In summary, the state variable for each stage in our MDP is the discretized triple

(inventory level, mean reversion level, jump size).

We solve the MDP in (3.2) for a horizon of one year, so the total number of periods

(stages) is the product of the number of days in a year and the number of periods per day:

365 ·3 = 1, 095 periods. The discount factor δ for each stage (period) is 0.99999, corresponding

to an annual risk-free interest rate of 1% with continuous compounding (recall that we use risk-

neutral valuation, but we assume a zero market price of risk). In the following experiments,

we vary the round-trip efficiency, denoted by r, by varying α, β, and η: α and β can be any

number in (0,1]; η is chosen from the set {1, 0.9997, 0.9983, 0.9962}, which corresponds to the

self-discharge rate over a month of 0% for a sodium sulfur, 3% for a lead acid, 15% for a

NiCad, and 20% for a NiMH (EPRI 2004, Linden and Reddy 2002).

3.5.2 Comparison of the value of destroying and storing surpluses

Recall that our goal is to assess the relative merits of two strategies for dealing with surpluses,

storing or destroying them. To do this, we compare the total expected discounted values of

our MDP for different round-trip efficiencies r ranging from 0.01 to 1. For each round-trip

efficiency, this total value is the value function at zero inventory level in the initial stage.

(Note that these values do not include capital costs, as our model assumes that the battery

already exists.) We model the disposal and storage strategies by setting r = 0.01 and r = 1,

respectively. The other considered values for the parameter r correspond to intermediate

strategies.

If the electricity price is strictly positive, then we would expect the total value to increase

when the storage facility becomes more efficient, that is, as the round-trip efficiency parameter
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Figure 3.7 Total value in a year for different round-trip efficiencies
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Note: The x-axis values are not evenly spaced.

r becomes larger. However, due to the possibility of negative electricity prices, this is not true

in general. As seen in Figure 3.7, as the round-trip efficiency increases from 0.01 to 1, the

total value of the facility first decreases, and then increases after 0.3. In Figure 3.7, we assume

β = η = 1 and vary α, so the round-trip efficiency r equals α. The value of $66, 403 for a

battery with round-trip efficiency 0.8 in Figure 3.7 is consistent with the range of values for

comparable batteries reported by Denholm et al. (2010). We repeated this experiment for a

range of different β and η values, and found the same non-monotonic phenomenon as we vary

α. (This non-monotonicity illustrates Proposition 3.3.)

This non-monotonicity results from negative prices combined with low round-trip efficien-

cies: The greater the loss in charging, the more electricity is needed to fill up a battery, and

the more value the merchant can obtain by buying electricity at a negative price. Thus, an

inefficient battery creates market value primarily by destroying electricity surpluses when pur-

chasing them at negative prices. This is in stark contrast to an efficient one, which creates

market value by storing electricity surpluses: purchasing them at low, mainly positive, prices

and reselling them at higher prices. Next we further explore this difference.

We compare the value breakdown of a perfect battery (r = 1, solid bars) and an inefficient

one (r = 0.01, grey bars) over different price intervals in Figure 3.8. In this figure, each

bar within each price interval represents the total expected discounted cash flow in this price

interval over the entire horizon. For a perfect battery, most of the notably positive bars
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Figure 3.8 Value for r = 1 and r = 0.01 at different price intervals
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are above $100/MWh, with the highest value in the interval [100$/MWh, 150$/MWh]; the

most notable negative value, which denotes purchasing costs, is in the interval [0$/MWh,

50$/MWh]. So if r = 1, most of the value comes from buying at low positive prices and selling

at high positive prices. This contrasts with the graph for an inefficient battery, for which most

of the positive bars spread over the negative price range: The majority of the market value

of such a battery comes from buying and burning electricity when price is negative. Thus,

setting r = 0.01 is a fairly accurate model of the disposal strategy.

To further demonstrate the different approaches of optimally managing a perfect battery

and an inefficient one, we plot the total quantity sold and bought at different price intervals in

Figures 3.9 and 3.10, respectively. These figures indicate that a perfect battery sells much more

than an inefficient one;the former typically buys at low positive price intervals, from [0$/MWh,

100$/MWh] (it also infrequently buys at negative prices, though this is not apparent from

Figure 3.10), and the latter buys predominately at negative prices (it also buys at extremely

low positive prices, though almost never and thus apparent from Figure 3.10).

Our experiments shows that the value of a battery with round-trip efficiency 0.01 exceeds

that of a perfect battery, suggesting that the disposal strategy is even more valuable than

the storage strategy. This superiority implies that destroying electricity surpluses with an

extremely inefficient storage facility, or even a load bank (a device that acts as an electricity

load to consume power) is likely to be more valuable than storing surpluses using a battery

with high performance. The advantage of the disposal strategy over the storage strategy may
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Figure 3.9 Total quantity sold for r = 1 and r = 0.01 at different price intervals
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Figure 3.10 Total quantity bought for r = 1 and r = 0.01 at different price intervals
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Figure 3.11 Comparing the values at different round-trip efficiencies for both the cases considering and ignoring
negative prices
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be even more substantial in the Electric Reliability Council of Texas (ERCOT 2008) and

the European Energy Exchange (Brandstätt et al. 2011, Nicolosi 2010) as compared to our

experiments using NYISO data, because these two markets exhibit larger and more frequent

negative prices.

3.5.3 Value lost in ignoring negative prices

We have illustrated in §3.4 that the existence of negative prices can change the optimal in-

ventory policy from Charnes et al. (1966) to that shown in Proposition 3.2. We now illustrate

how much value is lost for both the storage and disposal strategy if one ignores negative prices

and assumes the policy from Charnes et al. (1966) is optimal. To do so, for each round-trip

efficiency we compare the optimal value obtained in Figure 3.7 with the value for the case in

which we ignore negative prices in determining our operating strategy. To compute the latter,

we first construct a price model that ignores negative prices, then obtain its corresponding

optimal action, and finally apply these actions in the original price model. We construct a

price model that ignores negative prices based on the original price model by truncating any

negative Et[Pt] in the immediate payoff function in the MDP (3.2) to zero. We chose not to

truncate any negative pt to zero because the underlying price distribution is inflated, and it

is hard to isolate the effect of a wrong price distribution from the effect of ignoring negative

prices.
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Figure 3.12 Value breakdown into different price intervals when r = 0.01
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We compare these two sets of value for different round-trip efficiencies in Figure 3.11: the

value considering negative expected prices and the value ignoring them. We can see from this

figure that the value of the storage strategy (r = 1) does not change much if we ignore negative

conditional expected prices. However, the value of the disposal strategy (r = 0.01) decreases

significantly: from $327, 511 to $242, 861, a decrease of around 25.9%. This is not surprising

given the findings of Figure 3.9 and 3.10: since the value of the storage strategy stems mainly

from sales at positive prices, this value would not be far off even if negative expected prices

are ignored; since the value of the disposal strategy comes mainly from purchases at negative

prices, this value may drop considerably if we ignore negative expected prices.

We investigate this difference further in Figure 3.12, which shows the value breakdown into

price intervals for considering and ignoring negative prices when r = 0.01. Figure 3.12 shows

that if we ignore negative prices, we hold the electricity longer hoping for a good positive price

to sell; if we do consider the negative prices, we sell as soon as possible if price is positive so

that the battery is ready to absorb more negative prices, the major source of earnings. As

a result, for the negative price brackets, the values for considering negative prices are higher

than those ignoring these negative prices.
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3.6 Conclusions

Motivated by the empirical observation that electricity prices can be negative, we investigate

whether it is more valuable for merchants to manage electricity surpluses by storing them or

destroying them. We evaluate these two strategies by considering a storage facility with dif-

ferent round-trip efficiencies: a high round-trip efficiency corresponds to the storage strategy;

a low round-trip efficiency to the disposal strategy. We model this problem as an MDP and

derive its optimal policy structure, which generalizes a classic result by Charnes et al. (1966).

We apply this optimal policy to data and find that the disposal strategy has even more value

for a merchant than the storage strategy. In addition, we find that the value of the storage

strategy arises from purchasing electricity primarily at low positive prices and reselling the

stored electricity at higher prices, whereas the disposal strategy generates value primarily by

buying electricity at negative prices and destroying it.

Our model and conclusions are intriguing, but they are also limited in the following ways.

First, we assume that the merchant makes a decision every eight hours, a period long enough

to fully charge/discharge a storage facility without significantly shortening its life expectancy.

In reality, however, these trading decisions can be made more frequently, for instance every

hour, during which charging/discharging may not have been completed. If such decisions are

permitted, flow rate constraints would have to be added to our model, such as in Chapter

2. Second, since we assume the merchant is a price taker, our model does not capture the

equilibrium behavior of all players in the market. Third, in comparing the values of the disposal

and storage strategies we assume that the facilities (including power electronics) associated

with these two strategies already exist, and we thus ignore their capital costs. If these facilities

need to be developed, then these costs would have to be included in our analysis. The main

difficulty here would be gathering data on the cost of a device to destroy electricity, such as an

extremely inefficient battery or, alternatively, a load bank. It is unclear how our conclusions

might change when relaxing these limitations, which could be addressed by future research.
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Chapter 4

Combining Operations Management

and Engineering Models to

Effectively Manage Electricity

Storage

4.1 Introduction

Electricity storage has the potential to play an important role in many aspects of the global

economy: grid-level electricity storage can help match electricity supply and demand in a

market (as in Chapter 3); it can support the growth of renewable energy, such as wind and

solar energy, mitigating their variability and intermittence (as in Chapter 2); and electricity

storage such as car batteries can enable the development of Plug-in Hybrid Electric Vehicles

(PHEVs) or Battery Electric Vehicles (BEVs). California is in the process of enacting laws to

mandate a minimum amount of electricity storage for 2015 and 2020 (CPUC 2012). Thus, it

is crucial to manage electricity storage properly and value storage correctly.

When electricity storage is managed or valued (say in an electricity market), it is often

implicitly assumed that characteristics such as energy capacity and round-trip efficiency are

This chapter is a joint work with Jay Apt, Alan Scheller-Wolf, Nicola Secomandi, and Stephen Smith.
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static. We assumed this in Chapter 2 and 3; similar assumptions are made in Graves et al.

(1999), Hittinger et al. (2010), Sioshansi et al. (2009), Walawalkar et al. (2007), Xi et al. (2011),

and Hittinger et al. (2012). However, these characteristics are inherently dynamic, being

functions of the usage history of the storage facility and the corresponding operating conditions:

Energy capacity degrades over time, and may degrade more rapidly with higher discharging

speed (EPRI 2004); round-trip efficiency decreases with rapid charging/discharging, according

to Peukert’s law (Peukert 1897).

It has not been established whether these dynamics materially affect the optimal manage-

ment, or the valuation of a storage facility. Therefore, we answer the following two sets of

questions:

(Q1) What is the effect if we operate a battery as if it did not have these dynamics? For

instance, how suboptimal is it to operate a battery as if it did not degrade? As if it were

immune to efficiency variation? What about both?

(Q2) What is the effect of modeling these dynamics on valuing a battery? Concretely, if

we value an “ideal” battery (everything else being equal except without efficiency variation or

energy capacity degradation), how much would we overvalue this battery? What if we ignore

both?

The first question addresses the necessity of considering battery dynamics in operating

a battery; the second question gives an upper bound on the value of improving a battery’s

characteristics, and also shows how inaccurate the valuation of a battery can be if we assume

that a battery is “perfect” when it is not.

There are two papers that do consider energy capacity degradation in valuing batteries:

Jenkins et al. (2008) and Peterson et al. (2010b). However, they do not optimize the operation

of the battery: Jenkins et al. (2008) consider how to size a battery by factoring in energy

capacity degradation; Peterson et al. (2010b) treat degradation as a fixed cost. Thus, it

remains uncertain how the dynamics of energy capacity affect the optimal operating policy,

and the ultimate valuation, which depends on this optimal operating policy.

To study the effect of both dynamics in operating and valuing storage, we use a represen-

tative setting: operating a battery in an energy arbitrage market. We model this problem as

a finite-horizon Markov Decision Process (MDP). Since the dynamics of energy capacity and

efficiency are battery specific, we examine three types of batteries: lead acid, the cheapest
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and among the most widely-used battery technologies (EPRI 2004); lithium-ion, the most

widely-adopted battery technology in the development of new PHEVs and BEVs; and Aque-

ous Hybrid Ion (AHI), a newly-commercialized battery technology (AquionEnergy 2011). For

each type of battery chemistry, we model energy capacity degradation and efficiency variation

separately, calibrating them against data from representative manufacturers.

We operate the batteries every hour over a twenty-year horizon—long enough for battery

dynamics to be fully exhibited—incorporating the same financial engineering price model as

in Chapter 2 calibrated to electricity prices form NYISO. We study the importance of mod-

eling either (i) energy capacity degradation, or (ii) efficiency variation, or (iii) both together,

determining answers to both Q1 and Q2.

For each question, we use as a benchmark the value of operating an actual battery with

energy capacity 1MWh optimally, taking into account both degradation and efficiency varia-

tion. We find these benchmark values to be $88,000, $390,000, and $397,000, for lead acid,

lithium-ion, and AHI battery, respectively. These values do not account for capital costs,

which are $300,000, $600,000, and $200,000. Our numerical results also show the following:

(i) Energy capacity degradation: it is quite suboptimal to operate a battery that degrades

as if it did not: sacrificing around 66% of the optimal value for a lead acid battery, around 54%

for a lithium-ion battery, and 17% for an AHI battery. This implies that it is imperative to

take into account energy capacity degradation when operating a battery. In valuing storage,

our analysis shows that if we assume that the battery is free from degradation, we would be

too optimistic by a large margin: we may overvalue lead acid by around 135%, lithium-ion by

119%, and AHI by 37%.

(ii) Efficiency variation: if we operate a battery as if its efficiency were constant at its rated

level, lithium-ion is almost unaffected (within 1% of optimality), but this is not so for lead acid

and AHI: they lose around 7% and 9% of their optimal values, respectively. Furthermore, if

we value batteries by assuming their efficiencies are fixed at nominal levels, we may overvalue

a lead acid battery by 4%, a lithium-ion battery by about 6%, and an AHI battery by about

14%. Thus, accounting for energy capacity degradation in the operation and valuation of a

battery is quite important, but accounting for efficiency variation is less so.

(iii) Both energy capacity degradation and efficiency variation: if we operate a battery

as if it had neither dynamic, the loss of optimal value is even larger than the sum of the
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loss of optimality from ignoring either one independently: We may lose 81% of optimality for

lead acid, and 65% for lithium-ion, and 47% for AHI. Likewise, if we improve the battery in

both features, we may increase the value by 233%, 156%, and 80% for lead acid, lithium-ion,

and AHI, respectively. This means that the benefit is greater than the sum of the benefit of

improving each feature independently: Accounting for degradation and efficiency variation is

complementary.

(iv) Profitability: If the capital costs are taken into account, we find that the only battery

that can potentially break even through energy arbitrage over a twenty-year horizon is an AHI

battery, due to its extremely low energy capacity degradation and next-to-lowest cost among

all three types of batteries. These results hold under different salvage values or costs.

The above results can give guidance to managers when operating a storage facility: en-

ergy capacity degradation cannot be safely ignored; for efficiency, it depends on the battery

chemistry. In addition, our results show that in deciding whether to purchase a battery, if one

ignores battery dynamics, one may easily err on the optimistic side, overvaluing the battery.

Furthermore, our results shed light on the area of greatest potential for battery engineers to fo-

cus on: reducing degradation may be more effective than fighting Peukert’s law. These results

are potentially relevant for other applications of storage as well: In particular, our modeling

of energy capacity degradation and efficiency variation can also be used to value batteries in

such applications as operating electric vehicle fleets (Kleindorfer et al. 2012), and coupling

with renewable energy.

The rest of this chapter is organized as follows: we introduce our MDP model in §4.2 and

characterize and calibrate the dynamics of energy capacity and efficiency in §4.3. We discuss

our numerical analysis and report our results in §4.4. We conclude with future work in §4.5.

4.2 Model

We model the problem of managing a battery in an electricity wholesale market (specifically in

an energy arbitrage market) over a finite horizon considering the dynamics of energy capacity

and efficiency. At the beginning of the finite horizon, the operator buys a battery and incurs

a capital cost; at the end of the horizon, the operator either salvages the battery or disposes

4This is as opposed to an ancillary market, in which each player provides service such as regulation and
spinning reserve. The ancillary market is much smaller than the energy market, and thus can easily be saturated.
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of it at a cost. In between, the operator manages the battery periodically in each period

t ∈ T = {1, · · · , T} according to the following sequence of events:

1) At the beginning of each period t, the operator observes the state variables St :=

(xt,Mt,pt−1), which are defined as follows (where the initial state variable is S1 := (x1,M1,p0)):

• xt, the current inventory level (the quantity of energy stored in the battery; in MWh);

• Mt, the current energy capacity (the maximum amount of energy that the battery can

hold). We normalize the maximum energy capacity to be one, so Mt ∈ [0, 1], and xt ∈ [0,Mt].

• pt−1, electricity price in period t−1, which gives the conditional probability distribution

of pt, the price for period t. pt−1 and pt are vectors, as in Chapter 2 and 3. We discuss pt

further below.

2) The operator decides the quantity of energy to charge or discharge in this period t,

denoted by at ∈ R. Similar to Chapter 2 and 3, if at < 0, at is the quantity of inventory

decrease due to selling; if at ≥ 0, at is the quantity of inventory increase due to buying.

3) Price Pt for period t, denoted by pt, is revealed (as mentioned in Chapter 2, this chapter

adopts the same convention as in Chapter 2 to denote a random variable: a random variable

is denoted in upper case, and its realization in lower case), and the financial settlement for the

trading action at is completed. Pt is the only source of uncertainty in the model; we use the

same price transition function as in Chapter 2. As before, Pt and pt denote the sum of all the

components in Pt and pt, respectively.

4) At the end of each period t, inventory becomes (xt + at)η, where η is the self-discharge

rate per period, as in Chapter 2 and 3; the energy capacity degrades to Mt − H(at), where

H(at) is the energy capacity degradation in period t due to action at, which we specify in

§4.3.1.

For each period t ∈ T , let R(at, pt) denote the immediate payoff function, which is either

the purchasing cost if at ≥ 0 or the selling revenue if at < 0, specifically

R(at, pt) :=







− 1
α(at)

· at · pt, if at ≥ 0,

−β(at) · at · pt, if at < 0,

(4.1)

where α(at) and β(at) are the charging and discharging efficiency given action at. We specify

them in §4.3.2. Note that here the charging and discharging efficiencies depend on action

at, while in Chapter 2 and 3 they are constant. Also note that changes of the charging and
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discharging efficiency as a function of at are not permanent, but changes in Mt are.

The feasible set for an action at, denoted by Ψ(St), is defined as follows:

− xt ≤ at ≤ Mt − xt,

K1 ≤ at ≤ K2,

Mt+1 = Mt −H(at), (4.2)

xt+1 = (xt + at)η,

where the first constraint is the energy availability (left) and the remaining storage energy

capacity constraint (right); the second constraint is the power capacity constraint for charging

and discharging, where K1 and K2 are the charging and discharging power capacity (MW) of

the battery. Similar to Chapter 2, K1 and K2 are implicitly multiplied by one period. The

third and forth relations specify the evolution of energy capacity and inventory, respectively.

We formulate the problem of managing the battery as a finite-horizon MDP. Each stage of

the MDP corresponds to one time period. Let π denote a policy that maps any state St to an

action at, and denote as Aπ
t (St) the decision rule in stage t under this policy; let Π denote the

set of all feasible policies. The objective is to maximize the total expected discounted market

value of the cash flows over all feasible policies:

max
π∈Π

T∑

t=1

δt−1
E[R(Aπ

t (St), Pt)|S1], (4.3)

where δ ∈ (0, 1] is the discount rate of each stage. Similar to Chapter 2 and 3, we use a

risk-neutral framework (Seppi 2002). Note that we omit the constant capital cost in (4.3).

For period t, let Vt(St) denote the value function from period t onward given St. If t = T+1,

the value function is Vt(St) := θ(Mt), which reflects salvage value or disposal cost. For any

period t ∈ T , the value function Vt(St) is the expected sum of the optimal immediate payoff

function and the discounted value function for the next period, and thus satisfies the following

recursion:

Vt(St) = max
at∈Ψ(St)

E [R(at, Pt) + δVt+1 (St+1) |pt−1] ,

= max
at∈Ψ(St)

R(at,E[Pt|pt−1]) + δEt+1[Vt+1 (St+1) |pt−1], (4.4)

66



Ch4. Combining Operations Management and Engineering Models to Effectively Manage Electricity Storage

where the second equality follows as the immediate payoff function is linear in price.

Similar to Chapter 2, we can show that the value function in (4.4) is in general not concave

due to negative prices and the power constraint (the power constraint can be viewed as a

transmission power capacity constraint as in Chapter 2). It is thus difficult to characterize the

optimal policy structure, and we therefore resort to discretizing the continuous-state MDP,

and use dynamic programming to solve for the optimal action for each period.

4.3 Dynamics of energy capacity and efficiency

In this section we model how a battery’s energy capacity and efficiency change with action at.

Since these dynamics vary among batteries, we study three different types of batteries: lead

acid, lithium-ion, and AHI. To calibrate the model parameters for these three types of batteries

we use data sheets from representative manufacturers: for lead acid, we use the sheet from

Whisper Power (WhipserPower, 2012); for lithium-ion, the sheet from cell ANR26650M1-B

manufactured by A123 systems (A123System, 2012); and for AHI, published data from Aquion

Energy (Whitacre et al., 2012).

4.3.1 Dynamics of energy capacity

Different batteries lose their energy capacity according to different mechanisms. In this sub-

section we briefly discuss the mechanism behind each battery’s energy capacity degradation,

and then talk about how we model each specifically. Finally, we elaborate on how we calibrate

the parameters for each battery.

4.3.1.1 Lead acid and AHI A lead acid battery is believed to degrade at a rate related

to its depth of discharge (the energy level to which a lead acid battery is discharged). Data

are available describing energy capacity degradation as a function of depth of discharge in

experiments with constant depth of discharge (EPRI 2004). However, no data are available

on how a lead acid battery’s energy capacity will evolve over a path with different depths of

discharge in different periods.

Nevertheless, the energy throughput of a lead acid battery before failure—the total quantity

of energy that a battery can discharge over its life time—has been observed to be close to be a
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Table 4.1 Parameters used to compute energy capacity degradation and efficiency variation of all three types
of batteries

Characteristics Lead Acid Lithium-ion AHI

1 n0: maximum num-
ber of full cycles

400 2000; not used in ex-
periments, as we use
Wang et al. (2011)

5000

2 h0: rated number of
discharging hours

20 1 13

3 β0: Efficiency at
the rated number of
hours

85% 90% 88%

4 k: Peukert constant 1.22 1.04 Not Applicable

5 ν0: Nominal voltage 12.9V 3.25V Not Applicable

6 m0: energy capacity
for one cell or one
module

12.9V× 225 Ah =
2.9 KWh

3.25V × 2.5 Ah
=8.125 Wh

1.2V × 0.21 Ah
=0.252 Wh; not rel-
evant, as we do not
use Peukert’s law

Note: Each column is adapted from WhipserPower (2012), A123System (2012), and Whitacre et al. (2012),
respectively, unless otherwise cited. Row 1 is for computing the degradation function: the number of cycles for
lead acid is adapted from the original data sheet by multiplying the number of cycles given an 80% depth of
discharge by 80% to obtain the number of cycles for 100% depth of discharge; Row 2 through Row 6 are for
computing the changes in efficiency.

constant (Bindner et al. 2005). Thus we model the effect of lead acid degradation as a constant

upper limit on energy discharged; that is we model the energy capacity degraded due to action

at as a linear function of electricity discharged as follows:

H(at) = |(at)
−|/n0,

where (at)
− := min{at, 0}, as in Chapter 2; n0 is the commonly-quoted number of cycles before

failure: a full cycle is fully charging and discharging a battery once (see n0 in Row 1 of Table

4.1). As we normalize the maximum energy capacity to be one, n0 should also be interpreted

as the maximum energy throughput for this battery. Since we have the same type of data for

AHI’s energy capacity degradation (Whitacre et al. 2012), we model it similarly.

4.3.1.2 Lithium-ion A lithium-ion battery, specifically the LiFePO4 chemistry, is be-

lieved to degrade as a function of the total energy throughput during its life time as well as

its discharging rates (Peterson et al. 2010a, Wang et al. 2011). (Please refer to Gang et al.

(2003) and Choi and Lim (2002) for other types of lithium-ion battery chemistry.)
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Table 4.2 B(CRate(at))

CRate(at) 0.5 2 6 10

B(CRate(at)) 31,630 21,681 12,934 15,512

Since in the MDP (4.4) we need to vary discharge rates (the period length is fixed, but

the amount of energy to charge or discharge varies, which means that for each period the

charging and discharging rates vary), we use the degradation model of Wang et al. (2011),

which describes the energy capacity loss of a lithium-ion battery at different discharge rates.

Specifically, we use the degradation model in Wang et al. (2011) at room temperature (25◦C),

which expresses the percentage of the energy capacity loss for a lithium-ion battery as a

function of ampere-hours and C-Rate (which is the reciprocal of the number of hours to

discharge the battery) as follows:

H(at) = B(CRate(at)) · exp

{
−31, 700 + 370.3 × CRate(at)

8.314 × (25 + 273)

}

× (Ah(at))
0.55, (4.5)

where B(CRate(at)), unitless, is shown in Table 4.2; CRate(at) represents C-Rate; and Ah(at)

represents ampere-hours. For any CRate(at) that falls into the range of CRate(at) in Table 4.2,

we use linear interpolation; for anything outside of the range, we use the number of its closest

neighbor. Please refer to Appendix C.2 for the derivation of CRate(at) and Ah(at) as functions

of at.

Since we model the energy capacity degradation of lithium-ion without using the maximum

number of cycles, we do not need to quote a cycle number in Row 1 in Table 4.1 for lithium-ion,

but we list it as a ballpark comparison.

4.3.2 Dynamics of efficiency

We next model how the efficiency changes with different action at for all three types of batteries.

4.3.2.1 Lead acid and lithium-ion To model how the round-trip efficiency may change

with actions at, we use Peukert’s law (Peukert 1897), which establishes the relationship between

the number of hours that a battery takes to discharge and its discharge current.

We derive the discharging efficiency β(at) for given at in any single period with period
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Figure 4.1 Discharging voltage versus action at for lead acid and lithium-ion
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length ∆t as follows:

β(at) = β0 · h
1

k
−1

0 ·∆t · |at|
1

k
−1

︸ ︷︷ ︸

Current efficiency

ν(at)

ν0
︸ ︷︷ ︸

Voltage Efficiency

= Constant · |a|
1

k
−1 · ν(at), (4.6)

where β(at) can be interpreted as the product of current efficiency (or coulombic efficiency) and

voltage efficiency; β0 is the efficiency at the rated number of hours for a battery to discharge—

h0; k is the Peukert constant: the closer k is to one, the smaller the variation of efficiency is

in at; and ν(at) captures how the discharging voltage changes with action at. Parameters β0,

h0, and k of lead acid and lithium-ion are listed in Row 3, Row 2, and Row 4 in Table 4.1,

respectively. See Appendix C.1 for the derivation of β(at).

For ν(at), we plot data for lead acid (WhipserPower 2012) and for lithium-ion (A123System

2012) in Figure 4.1 (left) and Figure 4.1 (right), respectively, each of which suggests the fitness

of a simple cubic function. We thus use a cubic function for ν(at) as follows: l1|at|
3 + l2|at|

2 +

l3|at| + l4, and use nonlinear regression to calibrate it. Because both batteries consist of

many identical cells with almost identical physical characteristics, we first calibrate one cell’s

discharging voltage versus discharging power curve; we then find for action at of the entire

battery (with normalized maximum energy capacity one) the corresponding power of a single

cell: at·m0/∆t, wherem0 is the energy capacity of a single cell in Row 6 in Table 4.1. Therefore,

we convert the curve of discharging voltage versus power to the curve of discharging voltage

versus at.
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Figure 4.2 Efficiency curve for AHI
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Note: Dots represent data from Whitacre et al. (2012); the line is the calibrated efficiency curve.

Since we could not find similar data for charging, we assume symmetric charging and

discharging, that is α(at) = β(−at). This is in line with the standard assumption where the

constant charging efficiency is the same as the constant discharging efficiency (Hittinger et al.

2012).

4.3.2.2 AHI As a new battery chemistry, it is not known whether AHI follows Peukert’s

law or not. However, the efficiency of this battery has been tested, yielding data (Whitacre

et al. 2012) shown in dots in Figure 4.2. This data suggests that a simple square root function

can capture how the efficiency changes with the number of hour to discharge. Since the number

of hours to discharge for given action at equals 1/|at| (recall that the energy capacity is normal-

ized to one), we can characterize the efficiency as a function of at. We use nonlinear regression

and calibrate the discharging efficiency curve as follows: β(at) = 0.6109 + 0.0768/
√

|at|. As

charging and discharging appear symmetric in their current and voltage, we assume symmetric

charging and discharging (Whitacre et al. 2012), that is, α(at) = β(−at).

As we model AHI’s α(at) and β(at) without using Peukert’s law, the numbers in Row 2

through Row 6 in Table 4.1 are not relevant. However, for the sake of comparison, we list

those that are applicable for AHI.

We summarize how we model and calibrate the dynamics of energy capacity and efficiency

for all three batteries in Table 4.3.
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Table 4.3 A summary of models for dynamics of energy capacity and efficiency for all three batteries

Lead Acid Lithium-ion AHI

Degradation Bindner et al. (2005) Wang et al. (2011) Bindner et al. (2005)

Efficiency variation Peukert’s law (Peukert 1897) Whitacre et al. (2012)

Manufacturer Whisper Power A123 Systems Aquion Energy

Table 4.4 Additional parameters used for all three types of batteries

Characteristics Lead Acid Lithium-ion AHI

1 Number of mod-
ules/cells

345 123,000 4,000,000

2 Maximum C-Rate 0.2 20 10

3 Self-discharging rate 3%/month 5%/month 2%/month

4 Current capital cost $200/KWh $600/KWh $300/KWh

5 Specific energy 2.7KWh/65 kg= 41
Wh/kg

8.25Wh/0.076g =
109 Wh/kg

Not relevant; see be-
low

6 Weight of toxic ma-
terials

1MWh/(41Wh/kg)
=24,390 kg

1MWh/(109Wh/kg)
= 9,174 kg

zero toxic material

Note: Each column is adapted from WhipserPower (2012), A123System (2012), and Whitacre et al. (2012),
respectively, unless otherwise cited. Row 1 is the number of cells or modules that are used to assemble a
battery of energy capacity 1MWh; Row 2 is also the power capacity K1 and K2 (which we assume to be
symmetrical) without sign nor units, recalling that C-rate is the reciprocal of number of hours to charge or
discharge a battery, and the maximum energy capacity is normalized. (Also observe that because for lead acid
−K1 = K2 < 1, its power constraint is binding, but not for lithium-ion and AHI.) Row 3 is for computing η
(EPRI 2004); Row 4 is the capital cost as of the date of writing; and Row 5 and Row 6 are for computing the
disposal cost.

4.4 Numerical analysis

In this section we introduce the setup of our numerical analysis, and then discuss how the

dynamics of energy capacity and efficiency may affect the operation and valuation of the

aforementioned three types of batteries. We fix each battery’s energy capacity to be one

MWh. Depending on the battery technology, this battery may be made of multiple cells or

modules: the number of cells or modules is in Row 1 in Table 4.4, derived from 1MWh divided

by the energy capacity of a single cell or module in Row 6 of Table 4.1.

We assume that the period length is one hour, which corresponds to the real-time energy

arbitrage market in NYISO. We assume that the decision horizon is 20 years, which means

that the number of periods is 24 × 365 × 20 = 175, 200 (without accounting for leap years).

We use the same price model calibrated to data in NYISO as in Chapter 2, and use the

same risk-neutral discounting rate per period (hour): δ = 0.999999, which corresponds to an

annual risk-free interest rate of 1% with continuous compounding. η is computed converting
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Figure 4.3 Values and profits of three batteries over a twenty-year horizon

Lead Acid Lithium−ion AHI 

−200

−100

0

100

200

300

400

k$

 

 

88

390 397

−112

−210

97

Value
Profit

the self-discharge rate per month from Row 3 in Table 4.4 evenly to self-discharge rate per

period (hour), which is 0.99996, 0.99993, and 0.99997 for lead acid, lithium-ion, and AHI,

respectively.

The current capital cost for each battery is shown in Row 4 in Table 4.4. In the following,

we first assume zero salvage value (from §4.4.1 to §4.4.4): θ(Mt) = 0; we later study how the

results may change with different salvage values or disposal costs in §4.4.5.

Similar to computing the optimal policy in Chapter 2, we use standard dynamic program-

ming to find the optimal value of each battery. We discretize the inventory and energy capacity

to 21 levels each, and discretize the price model in the same way as in Chapter 2.

We study the importance of modeling degradation, modeling efficiency variation, and mod-

eling both together. We first study the value and profit of operating each battery in an energy

arbitrage market, considering both degradation and efficiency variation, over the entire horizon

in §4.4.1. We then study how these values are affected by ignoring these battery dynamics, in

§4.4.2 through §4.4.4. We finally examine how the results may be affected by different salvage

values or costs, in §4.4.5.

4.4.1 Value and profit for each battery

The value of managing each battery is the value of V1(S1) in the MDP (4.4) evaluated in the

initial stage at initial inventory zero and initial energy capacity of 1MWh. The profit of each

battery is then its value minus the capital costs (see Row 4 in Table 4.4).

In Figure 4.3 we plot the values and profits of all the three batteries. We can see from
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this figure that the values for both lithium-ion and AHI are very close, and are much higher

than that of lead acid. However, it is not cost-effective to invest in either lead acid or lithium-

ion batteries: their profits are negative. Lead acid, though the cheapest technology, has the

shortest life time and lowest efficiency (see Row 1 and Row 3 of Table 4.1), greatly limiting

its value; lithium-ion, though possessing the highest efficiency, is still not cost-effective in this

application because of its high degradation and high capital cost (see Row 4 of Table 4.4). This

lack of profitability is consistent with the existing literature (Peterson et al. 2010b, Sioshansi

et al. 2009, Walawalkar et al. 2007). In contrast, the profit of an AHI battery is positive,

primarily due to its longer cycle life and next-to-lowest capital cost (see Row 1 in Table 4.1

and Row 4 in Table 4.4, respectively). Nevertheless, the profit of AHI over a twenty-year

horizon is merely $97, 000, resulting in a return-on-investment of only about 32% over twenty

years, and thus an annual return-on-investment of 2.8%.

We next examine, for each battery, the importance of modeling energy capacity degradation

in §4.4.2, efficiency variation in §4.4.3, and both in §4.4.4. In each of these three subsections,

we study how the optimal value of the MDP (4.4) for each battery is affected by ignoring

subsets of these two dynamics. Note that we study the impact on the optimal value of the

MDP (4.4), rather than its profit; including capital costs would dilute this effect.

4.4.2 The importance of modeling energy capacity degradation

We examine the importance of modeling energy capacity degradation from the following two

perspectives:

• How suboptimal is it to operate a battery that degrades as if it did not degrade?

• If we estimate the value of a battery using the value of an ideal battery (operated opti-

mally), by how much do we overestimate the actual value?

The first (second) question is the embodiment of Q1 (Q2) with respect to energy capac-

ity degradation. The answer to the first question demonstrates whether operators can safely

ignore degradation when considering operating policies. The answer to the second question de-

termines an upper bound on the ceiling value that the battery can reach if its degradation rate

is reduced, or alternatively, whether degradation should be an area of focus for improvement.

For each of these two questions, we compare the optimal case with another case. The

optimal case is denoted by (Actual, Actual): the first word represents battery characteristics,
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and the second represents the assumptions used in determining the operating policy, as in

(4.7). Equivalently, (Actual, Actual) is the case of operating an actual battery optimally,

considering both degradation and efficiency variation, as in §4.4.1.



Actual
︸ ︷︷ ︸

↓

, Actual
︸ ︷︷ ︸

↓



 (4.7)

Battery characteristics Operating policy assumptions

For the first question, we compare the value of (Actual, Actual) with that of (Actual,

Ideal): the battery degrades as in (Actual, Actual), but it is operated as if it did not degrade

(see Figure 4.4). The difference between the values of (Actual, Actual) and (Actual, Ideal)

gives the value lost in operating a battery while ignoring degradation. To compute the value

of (Actual, Ideal) for each battery, we modify the MDP (4.4) by removing the energy capacity

evolution function (4.2). We compute the action for each stage and each state, and then apply

these actions to the MDP (4.4), which includes the battery degradation; the resulting value

at the initial state and stage thus gives the value of operating this battery while ignoring

degradation. We denote this value by V AI
1 , where the superscript AI denotes Actual and Ideal,

respectively. (The state variable in V AI
1 is omitted for simplicity.) Thus, the loss of optimality

due to ignoring degradation is defined as

V1 − V AI
1

V1
× 100%, (4.8)

where V1 represents the optimal value for the case (Actual, Actual), with its state variable is

also omitted for simplicity.

For the second question, we compare the value of (Actual, Actual) with that of (Ideal,

Ideal): An ideal battery operated optimally (see Figure 4.4). To compute the value of (Ideal,

Ideal) for each battery, we modify the MDP (4.4) by removing the energy capacity evolution

function (4.2). The value from this modified MDP is the value of optimally managing an

ideal battery, denoted by V II
1 , where the superscript II represents Ideal and Ideal. As before,

we omit the state variable. Therefore, we define the upper limit on the value of decreasing
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Figure 4.4 Three cases

This figure is for §4.4.2, §4.4.3, and §4.4.4; we compare these three cases for the purpose of studying the
importance of modeling any combination of features: degradation alone, efficiency variation alone, or both
together. When we study the effect of degradation alone, we assume for all three cases that the battery is
subject to efficiency variation; vice versa when studying the effect of efficiency variation alone.

Figure 4.5 Effect of energy capacity degradation on managing and valuing a battery
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(Ideal, Ideal) is computed using (4.9).

degradation as

V II
1 − V1

V1
× 100%. (4.9)

In this subsection, (Actual, Actual), (Actual, Ideal), and (Ideal, Ideal) assume the battery

suffers from efficiency loss, and optimize taking this into account. Thus the effect of ignoring

capacity degradation is isolated.

Figure 4.5 plots the values of the three cases: (Actual, Actual), (Actual, Ideal), and

(Ideal, Ideal). The percentage above each bar of (Actual, Ideal) is computed using (4.8);

the percentage above each bar of (Ideal, Ideal) is computed using (4.9).
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Figure 4.6 The total expected electricity sold over twenty years for each battery

Lead Acid Lithium−ion AHI 
0

5000

10000

15000

T
ot

al
 e

xp
ec

te
d 

el
ec

tr
ic

ity
 s

ol
d 

(M
W

h)

 

 

337 400

2662
1986

2499

11298

2514

3845

5638

(Actual, Actual)
(Actual, Ideal) degradation only
(Ideal, Ideal) degradation only

Considering Q1, the batteries that lose the most value if we operate them as if they did not

degrade are the lead-acid battery and the lithium-ion battery, decreasing by approximately

66% and 54% of the optimal value, respectively. This is because in (Actual, Ideal), the

operator tends to wear the battery out earlier than is optimal—according to (Actual, Actual);

even though the total amount of energy sold in (Actual, Ideal) is higher than in (Actual,

Actual) (see Figure 4.6), this energy is bought at a higher average price, and sold at a lower

average price than under (Actual, Actual), as (Actual, Ideal) does not take into account the

opportunity cost of degradation. The least affected battery is the AHI battery: its energy

capacity degradation is so low that even though (Actual, Ideal) sells a lot more energy than

(Actual, Actual), the energy capacity under (Actual, Ideal) does not degrade much.

To further illustrate this point, we break down the expected electricity sold and the ex-

pected cash flows for each battery into each year over the horizon in Figure 4.7. As seen from

the left three sub-figures, all three batteries in (Actual, Ideal) buy much more in the early

years than in (Actual, Actual). Consequently, since lead acid and lithium-ion degrade fast,

they lose most of their energy capacities around midway, resulting in extremely low cash flows

in the latter half of the horizon (see Figure 4.7 right). However, since AHI degrades slower

than the other two batteries, it still has a reasonable energy capacity for trading in later years.

For the second question, it is thus not surprising that a lead acid and a lithium-ion bat-

tery benefit significantly by improving their cycle life: increasing by around 135% and 119%,

respectively, if the life time constraint is not binding (seen (Ideal, Ideal) in Figure 4.5). An

AHI battery benefits significantly as well, increasing by 37%, but not as dramatically because

its degradation rate is already low. These percentage increases give the highest possible value

that these batteries can attain if their life time is improved.
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Figure 4.7 The expected electricity sold (Left) and expected cash flows (Right) in each year for each battery
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4.4.3 The importance of modeling efficiency variation

Similar to §4.4.2, we consider the importance of modeling efficiency variation by answering two

questions: each question is the embodiment of Q1 and Q2 with respect to efficiency variation,

respectively. For the first question, we compare the value of the case (Actual, Actual) with

that of (Actual, Ideal), where the latter operating policy erroneously assumes the efficiency

is constant at the efficiency in Row 3 in Table 4.1. For the second question, we compare the

value of the case (Actual, Actual) with that of (Ideal, Ideal), where a battery with constant

efficiency at in Row 3 in Table 4.1 is operated optimally.

Also similar to §4.4.2, for all cases in this subsection we assume that the degradation is

included in the model—whether Actual or Ideal—and that the optimization takes into this

account. We define the loss of optimality due to ignoring efficiency in (4.8) and the value of
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Figure 4.8 Effect of efficiency variation on managing and valuing each battery
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decreasing efficiency variation in (4.9), respectively.

Figure 4.8 plots the values of all the three cases. If we operate a battery that has varying

efficiency as if it had constant efficiency, the least affected battery is the lithium-ion battery,

because its efficiency does not change much with different discharging rates: the Peukert

constant is very close to one. Thus even when ignoring changes in efficiency, a lithium-ion

battery can still achieve almost all of the optimal value (more than 99%). In contrast, the lead

acid and the AHI battery lose value around 7% and 9%, respectively, because the efficiency of

these two batteries changes more rapidly than that of lithium-ion.

For all three batteries, if the efficiency is fixed to the rated levels, the battery values would

increase by 4% (lead acid), 6% (lithium-ion), and 14% (AHI), respectively, compared to the

case of (Actual, Actual). These percentage increases are significantly smaller than those from

reducing degradation seen in Figure 4.5, indicating that degradation has a much larger effect

than efficiency variation.

4.4.4 The importance of modeling both energy capacity degradation and

efficiency variation

In this subsection, we consider the effect of modeling both degradation and efficiency variation

together.

We plot the values of all three cases in Figure 4.9. Ignoring both degradation and efficiency

variation results in a great loss of optimality: 81% for lead acid, 65% for lithium-ion, and
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Figure 4.9 Effect of modeling both degradation and efficiency variation on managing and valuing each battery
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Figure 4.10 The expected electricity sold for each year for AHI
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47% for AHI. This loss is greater than the sum of the losses from ignoring each dynamic

independently. This is because if the operator uses a model that ignores degradation and

assumes a fixed higher efficiency than actual, the operator not only trades more often than

when ignoring degradation alone, but also trades between prices that are not desirable when

ignoring degradation alone. This wears the battery out even earlier than ignoring degradation

alone, and earns less value along the way.

We use AHI as an example to demonstrate this point in Figure 4.10 and Figure 4.11,

which plot the expected quantity sold and the expected cash flows, respectively, in each year

for AHI under four scenarios: (Actual, Actual), (Actual, Ideal) degradation only, (Actual,

Ideal) efficiency variation only, and (Actual, Ideal) both degradation and efficiency variation.

As seen from Figure 4.10, in the first two years, the quantity sold when ignoring both
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Figure 4.11 The expected cash flows for each year for AHI
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dynamics exceeds that when ignoring degradation alone; however, within the same two years,

as seen from Figure 4.11, the order of cash flows is reversed: the cash flow when ignoring both

is lower than when ignoring degradation only. This is because while ignoring degradation,

assuming that AHI has a higher efficiency than actual would make arbitrage artificially more

appealing (higher efficiency indicates lower loss in trading), thus the operator trades more often

and at potentially less desirable prices, possibly even resulting in losses. As a consequence,

this burns the battery out even earlier, and thus in the latter years the electricity sold when

ignoring both dynamics is lower than when ignoring degradation only, and so are the cash

flows.

Additionally, seen from the case (Ideal, Ideal) in Figure 4.9, the benefit of reducing degra-

dation and efficiency variation together is greater than the sum of the benefit of reducing one

independently: increasing lead acid by 223%, lithium-ion by 156%, and AHI by 80%. This

means that reducing degradation and energy variation are complementary. This also implies

that if practitioners value these three batteries with the value of their perfect equivalents (with

neither degradation nor efficiency variation), they may grossly overestimate the values.

4.4.5 Sensitivity analysis of salvage value or disposal cost

We investigate how the value of each battery is affected by its salvage values or costs. So far,

all our results have assumed zero salvage value. We compare the valuation of each battery

with those under another two different salvage regimes: (i) disposal cost, the product of the

weight of toxic materials in each battery that need to be disposed of and the unit disposal

cost per ton, which we set as $1500 per ton (Buchman 2012, Goonan 2012). The weight of
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Figure 4.12 Sensitivity analysis on salvage value (k$)
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toxic materials to be disposed of are shown in Row 6 in Table 4.4 (note that because an AHI

battery does not contain any toxic material, it has zero material to be disposed of). And (ii)

a time-dependent proportional salvage value, which is the remaining energy capacity times

the forecast unit purchasing cost at the end of the horizon, assuming the capital cost of each

battery decreases by 4% every year (see Anderson (2009) for lithium-ion). We also tried an

annual decrease of 8% for AHI, as the AHI battery technology is early on the learning curve;

however, the qualitative result does not change.

Figure 4.12 compares the values of the MDP (4.4) at zero salvage value, and at salvage

values (i) and (ii) above. As expected, an AHI battery is not affected by disposal costs, as it

has no toxic materials to dispose of. Compared to a lithium-ion battery, a lead acid battery is

strongly adversely affected by the disposal cost, because its specific energy (defined as energy

per kg) is lower, indicating that the weight of toxic materials to dispose of for the same energy

capacity is higher. Since salvage value (ii) can increase the valuation of each battery almost

proportionally to their capital costs, a lithium-ion battery benefits the most, as it is the most

expensive, with AHI and lead acid next. In summary, salvage values or costs do not change the

above analysis qualitatively: lead acid and lithium-ion remain unprofitable, and AHI remains

moderately profitable.

5The regulation for disposing of lithium-ion batteries vary between countries (Goonan 2012): We use the
one in Europe; lithium-ion batteries in the U.S. can be discarded in landfill without incurring a disposal cost.
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4.5 Conclusion and future work

We study how the operation and valuation of electricity batteries are affected by the dynamics

of two important features: energy capacity and charging/discharging efficiency. We use a

representative setting in which the battery is used for arbitrage in an energy market. We

examine three different types of batteries, model the operating dynamics specific to each

battery, and calibrate them against specifications from manufactures.

We find that it is quite suboptimal to operate a battery as if its energy capacity did

not degrade, particularly for lead acid and lithium-ion batteries. In contrast, operating a

battery while ignoring efficiency variation does not matter much for lithium-ion (within 1%

of optimality), but matters moderately for lead acid and AHI. Furthermore, if degradation is

already ignored when operating a battery, ignoring efficiency variation may greatly amplify the

loss in value. Our results also provide guidance for the area of focus for improving a battery:

We find for each battery that improving degradation may increase the value of a battery faster

than reducing efficiency variation.

To further study whether it is important to model energy capacity degradation and effi-

ciency variation, one could optimize the operation of a battery across multiple markets, such

as the regulation market and the spinning reserve market. However, this may suffer from

the curse of dimensionality, as one needs to add in the states the price of all other markets.

Alternatively, one can also study how energy capacity and efficiency variation may affect the

operation of storage facilities that couple with renewable energy, or storage facilities that are

used in BEV fleets and BEV battery switching stations (Avci et al. 2012, Taheri et al. 2011,

Worley and Klabjan 2011).
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Chapter 5

Conclusion and future work

Renewable energy and electricity storage are two potential solutions for the global energy

issue. If managed properly, they can contribute to a sustainable energy future. In this thesis,

I aim to deepen the understanding of the operational aspect of these two solutions, and hope

to inspire more related future research.

In Chapter 2, I consider the problem of managing a wind farm together with an electricity

storage facility that sells electricity to a market through a transmission line. I demonstrate

that this problem is nontrivial analytically, as the optimal policy does not have any apparent

structure, and numerically, as a simple policy may result in a significant loss of value. I then

develop a heuristic with a triple-threshold structure which captures almost all the optimal

value. This triple-threshold structure also generalizes the policy structure in existing litera-

ture. Using a financial engineering price model and calibrating it to real data from NYISO,

I examine the value of storage, and find that it is fairly significant. I further find that when

transmission is abundant, this value comes mainly from time-shifting generation and arbi-

trage; while transmission is tight, it comes mainly from time-shifting generation and reducing

curtailment. In addition, I find that more storage does not necessarily increase the total wind

energy sold to the market. The analytical results from this chapter can also be used to the

management of other commodity storage with random inflow, such as natural gas storage.

In Chapter 3, I examine how to use electricity storage to implement two different strategies

to help match electricity supply and demand. My numerical results, based on real data, show

that the new strategy of destroying electricity surpluses because of negative prices may be even

more valuable than the conventional strategy of storing surpluses for future sale. Although

there may be engineering and policy issues that need to be overcome before implementing this
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destruction strategy, it is an opportunity that merits further investigation.

In Chapter 4, I delve into how the operation and valuation of electricity storage can be

influenced by whether degradation or efficiency variation are modeled. I study three types of

batteries, using real manufacturer data. I demonstrate that though efficiency variation does

not matter much in managing and valuing each battery, degradation does play a significant

role, particularly for lead acid and lithium-ion batteries. In addition, I find that it is better to

reduce degradation together with reducing efficiency variation, because the value of reducing

both together is greater than the sum of reducing each one individually. The modeling of

battery dynamics in this chapter can be a stepping stone to examine the operation of electric

car fleets and battery swapping stations.

Besides the future work mentioned in the conclusion of each chapter, there are other

directions toward which this thesis can be extended. First, one can relax the price-taker as-

sumption: Throughout the entire thesis, it is assumed that the operator of either the combined

wind-storage system or the storage system alone does not affect market prices. It would be

interesting to investigate the effect of this assumption, especially when wind and/or storage

makes up a significant portion of an electricity market. Second, as wind power has a strong

price-suppressing effect—such as potentially leading to more negative prices—one can inves-

tigate how negative prices would evolve with the increased use of wind power, and how these

negative prices may in return affect the market valuation of wind power, as well as how all

these results may be affected by the introduction of electricity storage on a large scale.
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A.1 Non-concavity of the value functions in (2.3)

The non-concavity of the value functions originates from the convexity of the immediate payoff

function in the decision variable at when prices are negative: in (2.1), for any pt < 0, we have

−pt/(α · τ) ≥ −pt · τ/α ≥ −pt · τ · β. Intuitively, we illustrate the non-concavity of the

value function in inventory by showing the case without transmission capacity. When prices

are negative, at any low inventory level, the marginal value of increase inventory is the price

divided by discharging efficiency; at any high inventory level, the marginal value of decreasing

inventory is the price times discharging efficiency. Thus, the marginal value of inventory at a

low inventory level is lower than at a high inventory level, resulting in the non-concavity of

the value function in inventory.

A.2 Proof of Lemma 2.1

Proof: In period t = T + 1 and time t = T , we have V H1
T (xT , wT ,pT ) = 0, ∀xT , thus the

hypothesis holds for this case.

Suppose this hypothesis holds for all periods k + 1, · · · , T . We next prove that for period

t = k and time t − 1, V H1
k−1(x

1
k−1, wk−1,pk−1) ≤ V H1

k−1(x
2
k−1, wk−1,pk−1) for any 0 ≤ x1k−1 <

x2k−1. We achieve this by proving that for any feasible action (a1k, g
1
k) in Ψ(x1k−1, wk), we can

always find a feasible action (a2k, g
2
k) in Ψ(x2k−1, wk) such that the objective function in (2.4)

at (a2k, g
2
k) is no lower than that at (a1k, g

1
k).

1) If a1k < 0, then (a2k, g
2
k) = (a1k, g

1
k): (a2k, g

2
k) is feasible as (a1k, g

1
k) is feasible (it satisfies

constraints C1-C6); the immediate payoff function for (a1k, g
1
k) and (a2k, g

2
k) are the same,

but the resulting inventory level from (a2k, g
2
k) is higher than that from (a1k, g

1
k). Because of
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the hypothesis in period t = k + 1, the objective function in (2.4) at (a2k, g
2
k) is no lower

than that at (a1k, g
1
k).

2) If a1k ≥ 0, then (a2k, g
2
k) = (a1k − (x2k−1 − x1k−1), [g

1
k − (x2k−1 − x1k−1)/α]

+): (a2k, g
2
k) is feasible

as (a1k, g
1
k) is feasible. The resulting inventory level from (a1k, g

1
k) and (a2k, g

2
k) are the same

(x2k−1+a2k = x2k−1+a1k−(x2k−1−x1k−1) = x1k−1+a1k), and the immediate payoff function from

(a2k, g
2
k) is no lower than that at (a1k, g

1
k). Thus the objective function in (2.4) at (a2k, g

2
k) is

no lower than that at (a1k, g
1
k). �

A.3 Proof of Lemma 2.2

Proof: For each period t and any given state St−1, denote the maximum quantity that one

can generate by ḡt = min{wt, C +min{1− xt−1,K2}/α}. We prove that gH1
t = ḡt by showing

that for any feasible action (at, gt) such that gt < ḡt, we can always find a feasible solution

(a′t, gt + ε), ε > 0, which gives no lower objective value function in (2.4). Denote qt as the

quantity to sell (if qt ≥ 0) or buy (if qt < 0) resulting from a feasible action (at, gt). Since

gt < ḡt, it follows that either qt < C or xt−1 + at < min{1, xt−1 +K2}, thus we consider the

following cases:

1) If qt < 0, define ε = min{wt − gt,−qt}. Thus action (a′t, g
′
t) = (at, gt + ε) is feasible, and

gives 0 ≥ q′t = qt+ ε ≥ qt (buying less) and the same ending inventory. Hence the objective

function at (a′t, g
′
t) is no lower than that at (at, gt).

2) If 0 ≤ qt < C, define ε = min{wt − gt, C − qt}. Thus action (a′t, g
′
t) = (at, gt + ε) is feasible,

and gives q′t = qt + ε > qt ≥ 0 (selling more) and the same ending inventory. Hence the

objective function at (a′t, g
′
t) is no less than that at (at, gt).

3) If qt = C, then xt−1 + at < min{1, xt−1 +K2}. We consider the following two cases:

• If at ≥ 0, define ε = min{wt−gt,min{1−xt−1−at,K2−at}/α}, then a′t = at+αε ≤

at + α ·min{1− xt−1 − at,K2 − at}/α ≤ min{1 − xt−1,K2}.

• If at < 0, define ε = min{wt − gt,−βat}, then at < a′t = at + ε/β ≤ at − βat/β = 0.

In both cases, (a′t, gt + ε) is feasible and gives q′t = qt and a′t > at, hence it results in

no lower objective value than (at, gt) does, due to Lemma 2.1. �
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A.4 Proof of Proposition 2.1

Proof: We first prove finiteness. For each stage the quantity sold cannot exceed C. Thus given

any St−1, it holds that |V H1
t−1(St−1)| ≤

∑T
k=t |E[pk|wt−1,pt−1]| · C ≤

∑T
k=t E[|pk||wt−1,pt−1] ·

C < ∞, where the last inequality follows from Assumption 2.1.

We next prove concavity by induction. For period T + 1 and time T , V H1
T (ST ) = 0, so

the hypothesis holds. Suppose for all periods k + 1, · · · , T , the hypothesis holds. For period

t = k and time k − 1, according to Lemma 2.2, gH1
k = min{wk, C + min{1 − xk−1,K2}/α}.

Substituting gH1
k for gk in (2.4), we obtain an optimization problem with only one decision

variable, ak, as follows:

V H1
k−1(Sk−1) = E

[

max
ak s.t. (ak ,g

H1

k
)∈Ψ(xk−1,wk)

R(ak, g
H1
k ,max{E[pk|wk,pk−1], 0})

+δE
[
V H1
k (Sk) |wk,pk−1

]∣
∣wk−1,pk−1

]
. (A.4.1)

We next prove that the set C := {(xk−1, ak)|xk−1 ∈ X , (ak, g
H1
k ) ∈ Ψ(xk−1, wk)} is convex:

given any (x1k−1, a
1
k) and (x2k−1, a

2
k) in C , the linear combination (xλk−1, a

λ
k) = (λx1k−1 + (1 −

λ)x2k−1, λa
1
k + (1 − λ)a2k) is also in C , where λ ∈ [0, 1]. It is easy to verify that (xλk−1, a

λ
k) is

also in C if: a1k and a2k are both positive ((xλk−1, a
λ
k) satisfies constraints C2-C5-C6, or C3-

C5-C6); or both negative ((xλk−1, a
λ
k) satisfies constraint C1-C5-C6). If one is positive and

the other negative, we next show that (xλk−1, a
λ
k) is also in C . Without loss of generality, we

assume that a1k < 0 ≤ a2k. Clearly, (x
λ
k−1, a

λ
k) satisfies constraint C5 and C6 as (x1k−1, a

1
k) and

(x2k−1, a
2
k) are in C . If aλk is negative, then (xλk−1, a

λ
k) satisfies C1: g

H1
k −aλkβ ≤ gH1

k −a1kβ ≤ C

(the first equality follows as 0 > aλk = λa1k + (1 − λ)a2k ≥ λa1k + (1 − λ)a1k = a1k). If aλk

is nonnegative, then (xλk−1, a
λ
k) satisfies either C2 or C3: if 0 ≤ gH1

t − a2k/α ≤ C, then

gH1
k − aλk/α ≤ gH1

k < gH1
k − a1kβ ≤ C (the second inequality following from the fact that

a1k < 0, and the last inequality from the fact that (x1k−1, a
1
k) is in C ), thus C2 is satisfied; if

0 ≤ (a2k/α − gH1
k )/τ ≤ C, then (aλk/α − gH1

k )/τ ≤ (a2k/α − gH1
k )/τ ≤ C (the first inequality

following from the fact that a2k ≥ aλk), thus C3 is satisfied. In summary, C is a convex set.

We now prove that the whole objective function in (A.4.1) is concave on C . Since we have

max{E[pk|wk,pk−1], 0} ≥ 0,
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it follows that

−β·τ ·max{E[pk|wk,pk−1], 0} ≥ −max{E[pk|wk,pk−1], 0}·τ/α ≥ −max{E[pk|wk,pk−1], 0}/(α·τ),

so the immediate payoff function R(·) in (A.4.1) is concave over ak. As R(·) is constant in xk−1

(xk−1 does not appear in the function itself), it is jointly concave on C . Furthermore, according

to the induction hypothesis, the value function V H1
k (xk, wk,pk) is concave in xk ∈ X given

any wk and pk. Since xk = (xk−1 + ak)η, V
H1
k (xk, wk,pk) is jointly concave in xk−1 and ak

given any wk and pk, and thus δE
[
V H1
k ((xk−1 + ak)η,wk,pk) |wk,pk−1

]
is also concave on C

given any wk and pk−1 as expectation preserves concavity. As a result, the objective function

in (A.4.1) is concave on C given any wk−1 and pk−1.

Moreover, X is a convex set, and Ψ(xk−1, wk) is a nonempty set for any xk−1 ∈ X . Also

since V H1
k−1(Sk−1) < ∞, according to Theorem A.4 in Porteus (2002), the expression inside the

first expectation in (2.4) is concave on X given any wk and pk−1, and thus V H1
k−1(Sk−1) is

concave on X given any wk−1 and pk−1.

By the principle of mathematical induction, the hypothesis holds for all periods t =

1, · · · , T + 1. �

A.5 Proof of Proposition 2.2

Proof: For each period t ∈ T , according to Lemma 2.2, gH1
t = min{wt, C + min{1 −

xt−1,K2}/α}. Substituting gH1
t into (2.4) for gt, we obtain the following optimization problem

with only one decision variable, at:

V H1
t−1(St−1) = E

[

max
at s.t. (at,gH1

t )∈Ψ(xt−1,wt)
R(at, g

H1
t ,max{E[pt|wt,pt−1], 0})

+δE
[
V H1
t (St) |wt,pt−1

]∣
∣wt−1,pt−1

]
. (A.5.1)

Define yt := xt−1 + at for all at such that (at, g
H1
t ) ∈ Ψ(xt−1, wt). Let Ψ

1(xt−1, wt) denote

the feasible set of yt for all at ≥ gH1
t ·α; Ψ2(xt−1, wt) the set of yt for all 0 ≤ at ≤ gH1

t ·α; and

Ψ(xt−1, wt) the set of yt for all at ≤ 0. Note the extra equality signs added to at > gH1
t ·α and

at < 0, comparing to the cases in (2.1): they do not change the results of the optimal policy,
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but facilitate the exposition of the proof later on. We obtain Ψ1(xt−1, wt), Ψ
2(xt−1, wt), and

Ψ(xt−1, wt) by combining constraints C1, C2, C3, C5 and C6 with constraints at ≥ gH1
t · α,

0 ≤ at ≤ gH1
t · α, and at ≤ 0 respectively:

Ψ1(xt−1, wt)

={yt|g
H1
t · α+ xt−1 ≤ yt ≤ 1; yt ≤ xt−1 + α(C · τ + gH1

t );K1 + xt−1 ≤ yt ≤ K2 + xt−1}

={yt|g
H1
t · α+ xt−1 ≤ yt ≤ 1; yt ≤ xt−1 + α(C · τ + gH1

t ); yt ≤ K2 + xt−1}, (A.5.2)

Ψ2(xt−1, wt)

={yt|xt−1 ≤ yt ≤ 1; yt ≤ gH1
t · α+ xt−1; yt ≥ α(gH1

t − C) + xt−1;K1 + xt−1 ≤ yt ≤ K2 + xt−1}

={yt|yt ≤ 1; yt ≤ gH1
t · α+ xt−1; yt ≥ α(gH1

t − C) + xt−1; yt ≤ K2 + xt−1}, (A.5.3)

Ψ(xt−1, wt)

={yt|0 ≤ yt ≤ xt−1; yt ≥ (gH1
t − C)/β + xt−1;K1 + xt−1 ≤ yt ≤ K2 + xt−1}

={yt|0 ≤ yt ≤ xt−1; yt ≥ (gH1
t − C)/β + xt−1;K1 + xt−1 ≤ yt}. (A.5.4)

Substituting at = yt−xt−1 into (2.4), (2.4) reduces to finding the maximum of the following

three:

E

[

max
yt∈Ψ1(xt−1,wt)

{
(gH1

t − yt/α+ xt−1/α)max{E[pt|wt,pt−1], 0}/τ

+δE
[
V H1
t (yt · η,wt,pt) |wt,pt−1

]}∣
∣wt−1,pt−1

]
, (A.5.5)

E

[

max
yt∈Ψ2(xt−1,wt)

{
(gH1

t − yt/α+ xt−1/α)max{E[pt|wt,pt−1], 0} · τ

+δE
[
V H1
t (yt · η,wt,pt) |wt,pt−1

]}∣
∣wt−1,pt−1

]
, (A.5.6)

E

[

max
yt∈Ψ(xt−1,wt)

{
(gH1

t − ytβ + xt−1β)max{E[pt|wt,pt−1], 0} · τ

+δE
[
V H1
t (yt · η,wt,pt) |wt,pt−1

]}∣
∣wt−1,pt−1

]
. (A.5.7)

These three problems can be thought of as the problem of buying, the problem of generating

and storing, and the problem of selling respectively. Next, we relax (A.5.5), (A.5.6) and (A.5.7)

by the following three steps:

• removing the last constraint in the feasible set of (A.5.5), (A.5.6) and (A.5.7), which is

equivalent to removing the charging and discharging power capacity constraints in C6;
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• removing the second to last constraint in the feasible set of (A.5.5), (A.5.6) and (A.5.7),

which is equivalent to removing the transmission capacity constraints C3, C2 and C1 respec-

tively;

• in (A.5.5) setting xt−1 = 0 and wt = 0, so Ψ1(xt−1, wt) becomes [0, 1];

• in (A.5.6) setting xt−1 = 0 and setting wt to be arbitrary large (which means gH1
t =

C +min{1 − xt−1,K2}/α), so that Ψ2(xt−1, wt) becomes [0, 1];

• in (A.5.7) setting xt−1 = 1, so Ψ(xt−1, wt) becomes [0, 1].

Meanwhile, we remove constant terms from (A.5.5), (A.5.6) and (A.5.7), and obtain the

following problems:

E

[

max
yt∈[0,1]

{
−ytmax{E[pt|wt,pt−1], 0}/(α · τ) + δE

[
V H1
t (yt · η,wt,pt) |wt,pt−1

]}
∣
∣
∣
∣
wt−1,pt−1

]

,

(A.5.8)

E

[

max
yt∈[0,1]

{
−ytmax{E[pt|wt,pt−1], 0} · τ/α+ δE

[
V H1
t (yt · η,wt,pt) |wt,pt−1

]}
∣
∣
∣
∣
wt−1,pt−1

]

,

(A.5.9)

E

[

max
yt∈[0,1]

{
−ytmax{E[pt|wt,pt−1], 0} · τ · β + δE

[
V H1
t (yt · η,wt,pt) |wt,pt−1

]}
∣
∣
∣
∣
wt−1,pt−1

]

.

(A.5.10)

Denote the optimal solutions to (A.5.8), (A.5.9) and (A.5.10) by X1
t , X

2
t and Xt respec-

tively, which are all in [0, 1]. We next show that X1
t ≤ X2

t ≤ X t.

Define Ut(yt, wt,pt−1) := δE
[
V H1
t (yt · η,wt,pt) |wt,pt−1

]
and denote its derivative with

respect to yt over [0, 1] by U ′
t(yt, wt,pt−1). (In the case when Ut(yt, wt,pt−1) is piecewise

linear, such as when both the price and wind energy processes follow discrete distributions,

define U ′
t(yt, wt,pt−1) as the right derivative at yt = 0, and the left derivative over yt ∈ (0, 1].)

According to Proposition 2.1, V H1
t (yt · η,wt,pt) is concave in yt · η given any wt and pt,

thus Ut(yt, wt,pt−1) is concave in yt given any wt and pt−1, and hence U ′
t(yt, wt,pt−1) is non-

increasing in yt. Since −max{E[pt|wt,pt−1], 0}/(α · τ) ≤ −max{E[pt|wt,pt−1], 0} · τ/α ≤

−max{E[pt|wt,pt−1], 0} · τ · β, it follows that X1
t ≤ X2

t ≤ Xt.

These three thresholds characterize the optimal policies for (A.5.5), (A.5.6), and (A.5.7)

respectively. The objective functions in (A.5.5), (A.5.6), and (A.5.7) are concave in yt and

their relaxed problems in (A.5.8), (A.5.9), and (A.5.10) achieve their global maxima at X1
t ,
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Figure A.5.1 The proof of Proposition 2.2

  

 

X2
t , and Xt, so the optimal action for (A.5.5), (A.5.6), and (A.5.7) is to move as close as

possible to X1
t , X

2
t , and Xt in their corresponding feasible set.

We next show the optimal solution for each of the three problems on the (xt−1, wt) plane,

as in Figure A.5.1.

A.5.1 The optimal action for (A.5.5): the problem of buying

For (A.5.5), observe that the feasible set for yt is Ψ1(xt−1, wt) = [xt−1 + gH1
t · α,min{xt−1 +

K2, xt−1 + α(Cτ + gH1
t ), 1}]. This set can be either empty or nonempty in the following two

cases:

(i1) if wt > min{1 − xt−1,K2}/α (see region A1 in Figure A.5.1(a)): gH1
t = min{wt, C +
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min{1 − xt−1,K2}/α} > min{1 − xt−1,K2}/α, so the left end of Ψ1(xt−1, wt) is greater than

its right end, indicating that Ψ1(xt−1, wt) is empty. Intuitively, since the amount generated

exceeds what can be stored, the optimal action for (A.5.5) for this case is not to buy.

(i2) if wt ≤ min{1 − xt−1,K2}/α: gH1
t = wt, and the feasible set becomes [xt−1 + wt ·

α,min{xt−1+K2, xt−1+α(Cτ +wt), 1}]. Relative to the left end point of this feasible set, X1
t

can be either to this point’s right, or to its left. Recall that the optimal action for (A.5.5) is

to bring the inventory level as close as possible to X1
t , so for each of these two cases, we can

obtain the optimal action for (A.5.5) as follows: on the right (xt−1+wt ·α ≤ X1
t ; see region A2

in Figure A.5.1(a)), the optimal yt for (A.5.5) equals min{X1
t , xt−1+K2, xt−1+α(Cτ+wt), 1},

i.e., at equals min{X1
t − xt−1,K2, α(Cτ + wt), 1 − xt−1} = min{X1

t − xt−1,K2, α(Cτ + wt)}.

When X1
t is on the left (X1

t < xt−1 +wt · α; see region A3 in Figure A.5.1(a)), the optimal yt

for (A.5.5) equals xt−1 + wt · α, i.e., at = wt · α;

A.5.2 The optimal action for (A.5.6): the problem of generating and storing

For problem (A.5.6), we consider the following three cases:

(ii1) if wt ≥ C + min{1 − xt−1,K2}/α (see region B1 in Figure A.5.1(b)): gH1
t = C +

min{1 − xt−1,K2}/α, then it is straightforward that aH1
t is α(gH1

t − C)+, i.e., generate as

much electricity as the transmission lines can transport and the storage facility can charge.

(ii2) if C ≤ wt < C +min{1− xt−1,K2}/α: g
H1
t = wt. Since the generated amount exceeds

the transmission capacity, then the minimum quantity that we have to store in the inventory

is the excess (gH1
t − C), thus the optimal at for this case is at least α(gH1

t − C) = α(wt − C).

Observe in (A.5.6) that the feasible set for yt is [xt−1+α(wt−C), xt−1+min{α·wt,K2, 1−xt−1}].

Relative to the left end point of this set, X2
t can either lie on its right, or on its left. For each

of these two cases, we can obtain the optimal action for (A.5.6) as follows (recall that the

optimal action for (A.5.6) is to bring the inventory level as close as possible to X2
t ): when X2

t

is on the right (xt−1 + α(wt − C) ≤ X2
t ; see region B2 in Figure A.5.1(b)), the optimal yt for

(A.5.6) for this case equals min{X2
t , xt−1 + min{α · wt,K2, 1 − xt−1}}, so the corresponding

at equals min{X2
t − xt−1,min{α · wt,K2, 1− xt−1}} = min{X2

t − xt−1, α · wt,K2}. When X2
t

lies on the left (X2
t < xt−1 + α(wt − C); see region B3 in Figure A.5.1(b)), the optimal yt for

(A.5.6) for this case equals xt−1 + α(wt − C), i.e., at = α(wt − C).

(ii3) wt < C: gH1
t = wt. The feasible set for yt is [xt−1, xt−1 + min{α · wt,K2, 1 − xt−1}].

Similar to the argument in (ii2), X2
t can fall either on the left or right of the end point of this

93



Appendix A

set. If xt−1 ∈ [0,X2
t ] (see region B4 in Figure A.5.1(b)), then the optimal action for this case

is to generate and store as much as possible to reach X2
t , i.e., at = min{X2

t −xt−1, α ·wt,K2};

if xt−1 ∈ (X2
t , η] (see region B5 in Figure A.5.1(b)), the optimal action is to keep the inventory

unchanged by selling all generated electricity, i.e. at = 0.

Note that the optimal action in B1 and B3 for (A.5.6) are the same: generate as much

possible, sell quantity C to the market, and then store the rest. Thus, we combine these

two regions and express their unified formula for the optimal action: if (xt−1, wt) satisfies

either of the following two conditions: 1) wt ≥ C + min{1 − xt−1,K2}/α; or 2) C ≤ wt <

C + min{1 − xt−1,K2}/α and xt−1 > X2
t − α(wt − C)+, then the optimal action at for this

case equals α(gH1
t − C)+.

Also note that the optimal action in B2 and B4 for (A.5.6) are the same: store generated

electricity as much as possible to reach X2
t , and sell the rest of the generated electricity. Thus,

we can combine these two regions and express their unified formula for the optimal action: if

(xt−1, wt) satisfies the following condition xt−1 + α(wt − C)+ ≤ X2
t and wt < C + min{1 −

xt−1,K2}/α, then the optimal action at for this case equals min{X2
t − xt−1, α · wt,K2}.

A.5.3 The optimal action for (A.5.7): the problem of selling

For (A.5.7), we consider the following two cases:

(iii1) if wt > C (see region C1 in Figure A.5.1(c)): gH1
t = min{wt, C+min{1−xt−1,K2}/α} >

C, the quantity generated exceeds transmission capacity, thus we cannot sell.

(iii2) if wt ≤ C: gH1
t = wt. Recall that the optimal action for (A.5.7) is to sell to bring the

inventory level as close as possible to Xt in its corresponding feasible set, so if xt−1 ∈ [0,X t)

(see region C2 in Figure A.5.1(c)), the optimal action for problem (A.5.7) is to sell nothing

from inventory. Otherwise, if xt−1 ∈ [Xt, η] (see region C3 in Figure A.5.1(c)), the optimal

action for problem (A.5.7) is to sell down as much as possible to inventory level Xt, i.e.,

at = max{X t − xt−1, (wt − C)−/β,K1}.

A.5.4 The optimal action for (A.5.1)

We next find the optimal solution to the original problem (A.5.1) by combining the optimal

solution for (A.5.5), (A.5.6), and (A.5.7) for each region mentioned in §A.5.1, §A.5.2, and

§A.5.3.
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A) If (xt−1, wt) satisfies either of the following two conditions: 1) wt ≥ C + min{1 −

xt−1,K2}/α; or 2) C ≤ wt < C + min{1 − xt−1,K2}/α and xt−1 > X2
t − α(wt − C)+ (as

in region A in Figure 2.3), then the optimal solution to (A.5.6) is aH1
t = α(gH1

t − C)+, which

is also the optimal solution to (A.5.1). This is because the optimal solutions to (A.5.5) and

(A.5.7) are also feasible solutions to (A.5.6).

B) If (xt−1, wt) satisfies the first of the following two conditions, but not the second: 1)

xt−1+α(wt−C)+ ≤ X2
t , wt < C+min{1−xt−1,K2}/α}, but not 2) wt ≤ min{1−xt−1,K2}/α

and xt−1+wt ·α ≤ X1
t (as in region B—excluding C—in Figure 2.3), then the optimal solution

to (A.5.6) is aH1
t = min{X2

t − xt−1, α · wt,K2}, which is also the optimal solution to (A.5.1).

This is because the optimal solutions to (A.5.5) and (A.5.7) are also feasible solutions to

(A.5.6).

C) If wt ≤ min{1− xt−1,K2}/α and xt−1 +wt ·α ≤ X1
t (as in region C in Figure 2.3), then

the optimal solution to (A.5.5) is aH1
t = min{X1

t − xt−1, α(Cτ + wt),K2}, which is also the

optimal solution to (A.5.1). This is because the optimal solutions to (A.5.6) and (A.5.7) are

also feasible solutions to (A.5.5).

D) If wt ≤ C and X2
t ≤ xt−1 ≤ Xt (as in region D in Figure 2.3), then the optimal solution

to (A.5.1) is aH1
t = 0, because it is the optimal solution to (A.5.5), (A.5.6), and (A.5.7).

E) If wt ≤ C and xt−1 > Xt (as in region E in Figure 2.3), then the optimal solution

to (A.5.7) is aH1
t = max{X t − xt−1, (wt − C)−/β,K1}, which is also the optimal solution to

(A.5.1). This is because the optimal solution to (A.5.5) and (A.5.6) is also a feasible solution

to (A.5.7). �

A.6 Proof of Lemma 2.3

Proof: When E[pt|wt,pt−1] ≥ 0, the proof is the same as that for Lemma 2.2. When

E[pt|wt,pt−1] < 0, both the immediate payoff function R(·) and the continuation value function

in the modified MDP (2.3) (without buying) reach their maxima when the ending inventory

level reaches the highest level possible: the immediate payoff function reaches its maximum if

the quantity to sell is zero, a decision leaving the highest ending inventory level possible; the

continuation value function in modified MDP (2.3) (without buying) is non-decreasing in the

ending inventory level because the value function in period t is non-decreasing in inventory

level. As a result, the optimal action is to sell nothing and store as much as possible, that is
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aH2
t = gH2

t · α. Adding these extra two constraints to the feasible set, it is easy to show that

gH2
t = min{wt, (1 − xt−1)/α,K2/α}. Note that there may be other optimal solutions, but we

focus on the optimal solution that gives the highest ending inventory level.

A.7 Proof of Proposition 2.3

Proof: We prove concavity by induction. For period T + 1 and time T , V H2
T (ST ) = 0, so the

hypothesis holds. Suppose for all periods k+1, · · · , T , the hypothesis holds. For period t = k

and time k − 1, if E[pk|wk,pk−1] ≥ 0, the proof is a special case of that of Proposition 2.1. If

E[pk|wk,pk−1] < 0, according to Lemma 2.3, gH2
k = min{wk, (1 − xk−1)/α,K2/α}, and thus

aH2
k = α·min{wk, (1−xk−1)/α,K2/α}. Substituting both aH2

k and gH2
k into (2.3), the objective

function is concave in xk−1 given wk−1,pk−1: the immediate payoff function is zero and thus

concave in xk−1; the continuation value function E
[
δV H2

k

(
(xk−1 + aH2

k )η,wk,pk

)
|wk−1,pk−1

]

is concave in xk−1 given any pk−1 and wk because V H2
k

(
(xk−1 + aH2

k )η,wk,pk

)
is concave in

(xk−1 + aH2
k )η given any pk and wk according to the hypothesis, and expectation preserves

concavity. Therefore, V H2
k−1(xk−1, wk−1,pk−1) is concave on X given any wk−1,pk−1. �

A.8 Procedures to identify jumps

Step 1. For the original price series {pt : 1 ≤ t ≤ t̄} (where t̄ is the last period in this price

series), compute its mean p̂ and standard deviation σ̂′′. Tag as outliers those prices outside of

p̂± 3σ̂′′, and remove them from the original series.

Step 2. Repeat Step 1 until no more “jumps” can be found.

Step 3. Construct the series {∆t : 1 ≤ t ≤ t̄ − 1} by defining ∆t as pt+1 − pt, i.e., the

difference between two consecutive prices in the original series. Remove any ∆t in which pt+1

is tagged as an outlier in the previous two steps.

Step 4. Repeat Step 1 and Step 2 for the series {∆t : 1 ≤ t ≤ t̄− 1}.
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B.1 Proof of Proposition 3.1

Proof: We first prove finiteness. For each period t, the quantity bought cannot exceed 1/α,

and the quantity sold cannot exceed η. Note that η ≤ 1 ≤ 1/α, thus for each period t,

given any pt−1, it holds that |Vt(xt,pt−1)| ≤
∑T

k=t |Ek[Pk|pk−1]| · (1/α) < ∞, where the last

inequality follows from Assumption 3.1.

We next prove the convexity by induction. For t = T + 1, VT+1(xT+1,pT ) = 0, so the

hypothesis holds. Suppose it holds for any t = k + 1, · · · , T , then Vk+1 (xk+1, pk) in (3.3) is

finite and convex in xk+1 given any pk.

For t = k, Ek[Vk+1(yk,Pk)] is also finite as Ek[|Pk|] is finite, and convex in yk given any xk

and pk−1 as expectation preserves convexity. Therefore given pk−1, the objective function in

(3.4) is finite and convex in yk over [0, xkη], thus the optimal yk for (3.4) can be either 0 or

ηxk; similarly, the optimal yk for (3.5) can be either ηxk or η. So an optimal solution to (3.3)

must reside at one of the three candidate points: 0, ηxk, η (define the set of these three points

as Y ). Denote the objective function in (3.3) by uk(xk, yk,pk−1), thus

Vk(xk,pk−1) = max
yk∈Y

{uk(xk, yk,pk−1)} . (B.1.1)

We proceed to show that the functions uk(xk, yk,pk−1) for each yk ∈ Y are finite and

convex in xk, for any given pk−1:

(i) uk(xk, 0,pk−1) = δEk[Vk+1 (0,Pk)] + xkβEk[Pk], which is finite and linear in xk given

any pk−1.

(ii) uk(xk, xkη,pk−1) = δEk[Vk+1 (ηxk,Pk)], which is convex in xk because Ek[Vk+1 (yk,Pk)]
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is convex in yk for given pk−1 and xk = yk/η.

(iii) uk(xk, η,pk−1) = (xk − 1) · Ek[Pk]/α + δEk[Vk+1 (η,Pk)], finite and linear in xk given

any pk−1.

So Vk(xk,pk−1) is the maximum of three functions which are convex over a convex set X

for each action in Y given any pk−1. Since Y is a nonempty finite set, by Proposition A-3 in

Porteus (2002), Vk(xk,pk−1) is also convex in xk given any pk−1. Additionally, Vk(xk,pk−1)

is finite because all three functions are finite.

Therefore, for any t ∈ T ∪ {T + 1}, Vt(xt,pt−1) is finite and convex in xt given any

pt−1 ∈ P. �

B.2 Proof of Lemma 3.3

Proof: (i) As Et[Pt] → −∞, it follows that for all xt, we have y
S∗
t (xt) → ηxt and yB∗

t (xt) → η,

so XS
t = XB

t = 0: Intuitively, the optimal action for (3.4) is to sell nothing, and the optimal

action to (3.5) is to buy as much as possible. As Et[Pt] → ∞, it follows that for all xt, we have

yS∗t (xt) → 0 and yB∗
t (xt) → ηxt, so XS

t = XB
t = η: buy nothing and sell as much as possible.

(ii) We know that 0 ≤ XS
t ,X

B
t ≤ η; observe from (3.6) and (3.7) that wS

t (0,pt−1) =

wB
t (0,pt−1). If Et[Pt] < 0, then −ytβEt[Pt]/η ≤ −ytEt[Pt]/(αη). Thus for all yt, we have

wS
t (yt,pt−1) ≤ wB

t (yt,pt−1), which includes wS
t (η,pt−1) ≤ wB

t (η,pt−1). Therefore, we can

consider XS
t and XB

t in the following two cases:

• If Y B
t = 0, the optimal yt for w

B
t (yt,pt−1) is 0, thus w

B
t (0,pt−1) ≥ wB

t (η,pt−1). Therefore,

wS
t (0,pt−1) = wB

t (0,pt−1) ≥ wB
t (η,pt−1) ≥ wS

t (η,pt−1), so Y S
t = 0. According to (3.8), we

have XS
t = η, thus XB

t ≤ XS
t .

• If Y B
t = η, then it follows from (3.9) that XB

t = 0, which means that XB
t ≤ XS

t . �

B.3 Proof of Lemma 3.4

Proof: For any xt ∈ [0,XS
t ), we have yS∗t (xt) = 0. Substituting yS∗t (xt) = 0 into (3.4)

gives V S
t (xt,pt−1) = δEt[Vt+1 (0,Pt)] + xtβEt[Pt], which is linear in xt. Similarly, for any

xt ∈ (XB
t , η], we have yB∗

t (xt) = η, and thus V B
t (xt,pt−1) = −ηEt[Pt]/(αη)+δEt[Vt+1 (η,Pt)]+

xtEt[Pt]/α, which is also linear in xt.
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Since 0 ≤ XB
t < XS

t ≤ η, then 0 ≤ XB
t < η and 0 < XS

t ≤ η. Based on the value of XS
t

and XB
t , we consider the following four cases (a)-(d):

i) XS
t = η: This implies that V S

t (xt,pt−1) is linear in xt over the entire X .

(a) If XB
t = 0: Since the plots of V S

t (xt,pt−1) and V B
t (xt,pt−1) as a function of xt are

both linear in xt, they can cross at most once. If these two functions ever cross, the linear

function with greater coefficient should end at a point no lower than that of the function

with smaller coefficient. If Et[Pt] < 0, the coefficient of xt in V S
t (xt,pt−1) is no less than

that in V B
t (xt,pt−1) (because βEt[Pt] ≥ Et[Pt]/α), thus if both functions do cross, we have

V S
t (η,pt−1) ≥ V B

t (η,pt−1). Similarly, if Et[Pt] ≥ 0 and both functions cross, then we have

V S
t (η,pt−1) ≤ V B

t (η,pt−1).

(b) If 0 < XB
t < η: In this scenario, V B

t (0,pt−1) = V S
t (0,pt−1), as the optimal action

to (3.5) at xt=0 is to do nothing and the optimal action to (3.4) at xt=0 is to sell down to

zero (effectively to do nothing). Since V B
t (xt,pt−1) is convex in xt according to Proposition

3.1, and starts with the same point as V S
t (xt,pt−1), which is a straight line, V B

t (xt,pt−1) can

cross V S
t (xt,pt−1) at most once (see Figure B.3.1 Case (b)) excluding xt = 0. And when these

functions do cross, we have V S
t (η,pt−1) ≤ V B

t (η,pt−1): the convex function should end at a

point no lower than the straight line.

ii) 0 < XS
t < η: In this case, V B

t (η,pt−1) > V S
t (η,pt−1), as the optimal solution to (3.4)

at xt = η is to do nothing, which is a feasible , but not optimal, solution to (3.5), as XB
t < η.

Thus the plot of V B
t (xt,pt−1) as a function of xt ends at a point no lower than the one for

V S
t (xt,pt−1), which is convex in xt (Proposition 3.1).

(c) XB
t = 0: As in (a), V B

t (xt,pt−1) is a straight line over X . It ends at a point no

lower than the one for a convex curve V S
t (xt,pt−1) (see Figure B.3.1 Case (c)), so the plots of

V S
t (xt,pt−1) and V B

t (xt,pt−1) as functions of xt can cross at most once.

(d) 0 < XB
t < η: Similar to (b), the plots of V S

t (xt,pt−1) and V B
t (xt,pt−1) cross at most

once over [0,XS
t ); and similar to (c), at most once over (XB

t , η]. We will consider the following

three scenarios separately:

• If there is one crossing over [XB
t ,XS

t ] (Figure B.3.1 Case (d1)), then there is no crossing

over [0,XB
t ] or [XS

t , η], as there is only one crossing over [0,XS
t ) and (XB

t , η]. Observe that

the domain X is covered entirely by [0,XB
t ], [XB

t ,XS
t ] and [XS

t , η], thus the number of times

that these plots cross over X is only once.

• If there is no crossing over [XB
t ,XS

t ], then there is at most one crossing over [0,XB
t ].
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Figure B.3.1 Cases (b)-(d): case (a) is trivial and not shown.

 

Suppose there is indeed one crossing. Then we apply the same argument in (b) to obtain

V S
t (0,pt−1) = V B

t (0,pt−1). Since V B
t (xt,pt−1), a convex curve, starts with the same point as

another convex curve V S
t (xt,pt−1), and ends at a point no lower than the one for V S

t (xt,pt−1)

(Figure B.3.1 case (d2)), it follows that V B
t (XB

t ,pt−1) ≥ V S
t (XB

t ,pt−1). Since V B
t (xt,pt−1)

is a straight line over (XB
t , η], the plots of V S

t (xt,pt−1) and V B
t (xt,pt−1) cannot cross over

(XB
t , η] as V B

t (η,pt−1) > V S
t (η,pt−1). Therefore, the plots of V S

t (xt,pt−1) and V B
t (xt,pt−1)

as functions of xt can cross at most once over X excluding xt = 0.

• If there is no crossing over [XB
t ,XS

t ], there is at most one crossing over [XS
t , η]. Suppose

there is indeed one crossing, we can likewise prove that the two plots cross at most once over

X , in the same manner as above.

Since for cases (c) and (d), it holds that V B
t (η,pt−1) ≥ V S

t (η,pt−1), thus when V S
t (·,pt−1)

and V B
t (·,pt−1) cross, it still follows that V

B
t (η,pt−1) ≥ V S

t (η,pt−1).

From cases (a)-(d), we can summarize that the plots of V S
t (xt,pt−1) and V B

t (xt,pt−1) as

functions of xt cross at most once over X . When they do cross, if XS
t = η, XB

t = 0, and

Et[Pt] < 0, then V S
t (η,pt−1) ≥ V B

t (η,pt−1); otherwise, V
S
t (η,pt−1) ≤ V B

t (η,pt−1). �
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Appendix B

B.4 Proof of Proposition 3.3

Proof: If Et[Pt] < 0, the immediate payoff function in (3.2) increases when α decreases: as α

approaches zero, the immediate payoff function in (3.2) approaches infinity. Since the second

expression is finite according to Proposition 3.1, then there always exists an ᾱ such that if

α ≤ ᾱ, the value function increases with decreasing α.
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C.1 Deriving the discharging efficiency β(at)

We assume the charging/discharging efficiency is constant over the charging/discharging dura-

tion for any given charging/discharging rate. In other words, once the charging and discharging

rate is fixed, the efficiency at any time during the charing/discharging process is the same.

We derive the discharging efficiency β(at,Mt) for given at and energy capacity Mt in any

single period with period length ∆t. We later show that β(at,Mt) does not depend on Mt.

With this rate of discharging (at over ∆t), the number of hours it takes to discharging the

battery, denoted by h(at), is Mt/|at| (recall that at is negative for a discharging action). The

corresponding discharge current is I(at) = |at| ·β(at)/[ν(at)∆t], where ν(at) is the discharging

voltage for given action at, as mentioned in §4.3.2. It follows from Peukert’s Law (Peukert

1897) that

Ik(at)h(at) = Ik0 · (h0 ·Mt), (C.1.1)

where I0 is the rated current; h0 · Mt is the rated number of hours to discharge give energy

capacity Mt; and I0 = Mt · β0/(ν0 · h0 · Mt) = β0/(ν0 · h0). Substituting h(t) = Mt/|at|,

I(at) = |at| · β(at,Mt)/[ν(at)∆t], and I0 = β0/(ν0 · h0) into (C.1.1), we obtain

[
|at| · β(at,Mt)

ν(at)∆t

]k

·
Mt

|at|
=

(
β0
ν0h0

)k

(h0 ·Mt),

which can be simplified to

β(at,Mt) = β0 · h
1

k
−1

0 ·∆t · |at|
1

k
−1 ν(at)

ν0
. (C.1.2)
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It can be easily seen from (C.1.2) that β(at,Mt) does not depend on Mt; thus we write the

discharging efficiency as β(at). This is not surprising because we use Peukert’s law to relate

discharging efficiency with current, but the corresponding current for given action at stays the

same irrespective of whether the energy capacity has degraded.

C.2 Deriving CRate(at) and Ah(at)

For a given at, we have

CRate(at) =
I(at)

I0
· C0 =

I(at)

I0
·
1

h0
=

|at| · β(at)/[ν(at) ·∆t]

1 · β0/(ν0 · h0)
·
1

h0
= |at|

1

kh
1

k
−1

0 ,

where C0 = Mt/(h0 ·Mt) is the rated C-rate for the battery. Similarly, we can derive Ah(at)

as follows:

Ah(at) = I(at) ·∆t =
|at| · β(at)

ν(at) ·∆t
·∆t =

|at| · β(at)

ν(at)
=

|at|

ν(at)
· β0 · h

1

k
−1

0 ·∆t · |at|
1

k
−1 ν(at)

ν0

= β0 · h
1

k
−1

0 ·∆t · |at|
1

k /ν0.
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