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Abstract

The future electricity grid is likely to be increasingly complex and uncertain due

to the introduction of new technologies in the grid, the increased use of control and

communication infrastructure, and the uncertain political climate. In recent years, the

transactive energy market framework has emerged as the key framework for future

electricity market design in the electricity grid. However, most of the work done in

this area has focused on developing retail level transactive energy markets. There

seems to be an underlying assumption that wholesale electricity markets are ready to

support any retail market design.

In this dissertation, we focus on designing wholesale electricity markets that can

better support transactive retail market. On the highest level, this dissertation con-

tributes towards developing tools and models for future electricity market designs. A

particular focus is placed on the relationship between wholesale markets and invest-

ment planning.

Part I of this dissertation uses relatively simple models and case studies to evaluate

key impediments to flexible transmission operation. In doing so, we identify several

potential areas of concern in wholesale market designs:

1. There is a lack of consideration of demand flexibility both in the long-run and

in the short-run

2. There is a disconnect between operational practices and investment planning

3. There is a need to rethink forward markets to better manage resource adequacy

under long-term uncertainties

4. There is a need for more robust modeling tools for wholesale market design

In Part II and Part III of this dissertation, we make use of mathematical decomposition

and agent-based simulations to tackle these concerns.

Part II of this dissertation uses Benders Decomposition and Lagrangian Decompo-

sition to spatially and temporally decompose a power system and operation problem



with active participation of flexible loads. In doing so, we are able to not only im-

prove the computational efficiency of the problem, but also gain various insights on

market structure and pricing. In particular, the decomposition suggests the need for

a coordinated investment market and forward energy market to bridge the disconnect

between operational practices and investment planning.

Part III of this dissertation combines agent-based modeling with state-machine

based modeling to test various spot, forward, and investment market designs, includ-

ing the coordinated investment market and forward energy market proposed in Part II

of this dissertation. In addition, we test a forward energy market design where 75% of

load is required to be purchased in a 2-year-ahead forward market and various trans-

mission cost recovery strategies. We demonstrate how the different market designs

result in different investment decisions, winners, and losers. The market insights lead

to further policy recommendations and open questions.

Overall, this dissertation takes initial steps towards demonstrating how mathemat-

ical decomposition and agent-based simulations can be used as part of a larger market

design toolbox to gain insights into different market designs and rules for the future

electricity grid. In addition, this dissertation identifies market design ideas for further

studies, particularly in the design of forward markets and investment cost recovery

mechanisms.
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Chapter 1

Introduction

With rapid technological advances and increasing concerns over environmental and climate issues,

the electricity industry is poised to undergo significant changes in the coming decades. On the

generation-side, advances in non-fossil fuel generation and storage technologies, along with new

environmental regulations, have resulted in a strong push towards increasing the penetration of

renewable energy in the United States. In 2015, wind and solar energy made up approximately

67% of all new generation capacity addition in the United States [3]. With the United States

agreement to the Paris Climate Agreement, this trend of increasing renewable energy penetration

is likely to continue [4]. On the demand-side, electricity consumers are given increasing control

over how they would like to purchase and use electricity. New consumer technologies such as

electric vehicles and smart appliances have the potential to change consumer electricity demand

patterns. In addition, the proliferation of residential renewable generation, such as residential

rooftop solar, allows consumers to be both a net consumer and a net producer of electricity.

One key impact of this changing electricity industry landscape is the increasing level of op-

erational, investment, and institutional uncertainties faced by power system industry stakeholders

[5]. System operators are faced with the challenge of ensuring the reliability and efficiency of

the power system in the face of increasing level of variability and uncertainty from both electric-

ity generation and demand. Similarly, system planners and investors are challenged with making

economically efficient investment decisions under uncertain long-term energy demand and supply
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outlook and regulatory decisions. The jobs of system operators, planners, regulators, and asset

owners are made even more difficult by the uncertain political landscape that inevitably affects

energy and electricity policies.

These changes happening in the electricity grid have significantly increased the level of com-

plexity in the grid. While significant amount of research and development has been done to attempt

to understand the technical implications of this increasing grid complexity, the economic and reg-

ulatory implications of this increasing grid complexity are not well understood. The availability

of new power system technologies is both a bane and a boon in the context of electricity mar-

ket and regulation. On one hand, the current electricity market and regulation framework is not

equipped to deal with the level of complexity that these technologies could bring to power system

operations and planning. On the other hand, advances in control, communication, and sensing

technologies provide a level of flexibility to the grid that could be harnessed to give market de-

signers and regulators the ability to design robust market systems and regulation to better manage

the future electricity grid.

This dissertation was at first motivated by the need to develop market and regulatory tools to

manage flexibility brought about by new transmission technologies as will be discussed in Part I of

this dissertation. However, it became apparent that there is a lack of modeling tools to handle the

level of complexity brought about by these technologies and that there is an urgent need to develop

market design tools that could handle the level of complexity. Therefore, Part II and Part III of

this dissertation contribute to the development of tools for electricity market design for the future,

with a particular focus on the relationship between operational markets and investment planning

and on the design of wholesale electricity markets that better support transactive energy.

1.1 Future Electric Transmission System [1]

Most of the recent work on grid modernization in the context of the future electric grid or “Smart

Grids" focuses on the distribution system instead of on the transmission system. While increased

distribution automation will be a key aspect of the future electricity grid, the need to update the
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Figure 1.1: Investment in Transmission Infrastructure by Investor-owned Utilities Taken from [2]

transmission system should not be neglected. Investment in transmission infrastructure has been

steadily increasing over the years (Fig. 1.1) and is expected to continue increasing due to aging

infrastructure, changes in demand patterns, and renewable energy integration [6]. Therefore, it is

important that we consider opportunities to modernize the electric transmission system.

Transmission flexibility has not been a major consideration in the traditional operation and

design of the transmission system [1]. Transmission needs are typically met by building additional

transmission capacity, with little consideration for alternatives solutions and technologies. This is

unfortunate as advances in fast power electronics have resulted in the availability of various control

and sensing technologies that could provide a greater level of flexibility in the transmission grids,

and in some cases, reduce the need for new transmission lines [1]. With the challenges faced

by investors looking to build new transmission lines, such as right-of-way issues and regulatory

uncertainties, transmission investors should be encouraged to consider alternative solutions that

could reduce the need for new line capacity.

In order to encourage investors to consider alternative investment options, there is a need to

design operational and market frameworks that support and appropriately value such technologies.

The conventional transmission planning process was designed with transmission line investments

in mind, and generally does not consider the unique characteristics of disruptive transmission

technologies, such as flexible line flow control and switching devices [1]. The value of flexible
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transmission technologies is often hidden under overly restrictive operational and regulatory rules.

Therefore, a thorough reconsideration of power system operational practices and market design

is needed to accommodate a greater variety of transmission investment options, and to provide

incentives for system operators and transmission owners to consider alternatives to transmission

line investments. Part I of this dissertation evaluates some of the key impediments to flexibility

in the transmission sector using a small test system and provides some preliminary policy recom-

mendations that could provide better incentives for investments in both flexible and conventional

transmission technologies.

1.2 Transactive Energy Markets for Flexible Power System Operation and Plan-
ning

In the power system industry, generation, transmission, distribution, and loads are highly inter-

dependent and hence designing appropriate incentives for transmission investment inevitably re-

quires rethinking electricity markets at all levels. The design of electricity markets is a highly

challenging task due to the complex interactions among the physical, economic, and information

constraints of the system. These physical constraints come about due to physical laws governing

energy conversion and energy flow through the system and are highly technology dependent. The

economic constraints come about due to pricing and compensation structures that are defined by

regulatory and market rules. Finally, information constraints come about due to private and public

information held by different stakeholders and are strongly influenced by institutional and market

structures.

In recent years, “transactive energy” markets have emerged as a framework for future elec-

tricity market designs. It is intended to support distributed decision-making in order to better

manage complexity in the power system and to promote risk-sharing among stakeholders [7, 8].

In the United States, research on transactive energy markets is led by the Gridwise Architecture

Council (GWAC) formed by the Department of Energy. The GWAC describes transactive energy

markets as “techniques for managing the generation, consumption or flow of electric power within
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an electric power system through the use of economic or market based constructs while consider-

ing grid reliability constraints [9]”. The design of transactive energy markets involves the design

of appropriate price signals and market structures to enable distributed decision-making and to

provide incentives for stakeholders to make private decisions that align with public objectives.

This is not a straightforward endeavor as it requires joint considerations of both the physical and

economic constraints in the system, as well as the coordination of a diverse group of stakeholders

with frequently misaligned objectives.

Though the design of transactive energy market is still in its early stages, some theoretically

promising market models have been proposed, such as the TeMIX [8] framework proposed by Ed

Cazalet, which is a power exchange-based framework [10], and the Pacific Northwest GridWise

Olympic Peninsula Project, which uses a double auction market. However, there are still many

open research questions that need to be answered as we consider these proposed market designs.

Some of these questions include:

1. How should the market structure be designed? How do we assign different decision-making

responsibilities to different stakeholders?

2. What kind of information needs to be exchanged among stakeholders? What kind of price

signals is needed?

3. What are some potential unexpected consequences of the different market designs? Who

would be the winners/losers? Are there any negative externalities?

In order to better understand some of these questions, we need to develop tools to evaluate

different market structures and market rules and to allow us to compare different proposed market

designs. Part II and Part III of this dissertation contribute to developing and demonstrating such

tools that could help us better understand different transactive energy market designs.
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1.3 Tools for Transactive Energy Market Design

There are several approaches that economists have traditionally used to analyze and design market

structures and market rules. One approach uses mathematical and economic theories, such as par-

tial equilibrium theory, optimization theory, and game theory, to model and study market structures

and behaviors [11]. Models using these techniques are frequently mathematically and theoretically

elegant and are useful in describing market behavior under idealized conditions. However, they

are driven by assumptions that are not reflective of real world conditions. A second approach

uses econometric studies of empirical market data to study market behavior [11]. This approach

is challenging in the context of transactive energy market because of the lack of data on actual

transactive energy market implementation. Yet another approach uses experimental studies with

human participants (e.g. [12]). The one big downside of this approach is that it is often difficult

and costly to scale up such experimental studies to accurately reflect the behavior of large-scale

transactive energy markets.

In order to provide additional tools that could help policy makers and researchers better study

transactive energy markets, various research groups have developed modeling framework that pro-

vides the flexibility required to model the complex interactions present in transactive energy mar-

kets. Such efforts include the Dynamic Monitoring and Decision Systems(DYMONDS) frame-

work developed at Carnegie Mellon University [13] and the prosumer-based smart grid modeling

framework developed at Georgia Institute of Technology[14]. All these tools provide frameworks

that enable distributed decision-making by intelligent agents interacting under a specified set of

rules. The key design question in applying these frameworks is how to define the decision-making

problem of individual agents. There are two key approaches that can be used to design the decision

problems for the distributed decision makers: the bottom-up approach and the top-down approach.

Both these approaches have their own strengths and weaknesses which will be discussed below.
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1.3.1 Top-Down Approach: Mathematical Decomposition for Market Design

Mathematical optimization and economic theory were closely linked in the early days of optimiza-

tion theory, but have drifted further and further apart in recent years [15]1. In [15], Herbert Scarf

argues that “it may be fruitful to view economic institutions as highly specialized computational

procedures, and to view numerical algorithms as the analogs of economic activity engaged in by

individual firm”. In this dissertation, we explore this relationship between mathematical optimiza-

tion and economic theory further by demonstrating how mathematical decomposition can be used

to provide insights into market design.

In this approach, we start with an overall centralized problem and use mathematical decompo-

sition techniques to decompose the centralized optimization problem into individual stakeholders’

subproblems, as demonstrated in [16–18]. The two key strengths of this approach are: (1) It pro-

vides a systematic approach to derive market structure, and (2) It frequently results in distributed

decision-making models that are provably optimal under certain conditions.

In Part II of this dissertation, we demonstrate how mathematical decomposition can be used to

not only improve the computational efficiency of complex power system operation and planning

problem, but also to provide insights into market structure and pricing.

1.3.2 Bottom-Up Approach: Simulation for Market Design

In the bottom-up approach, we start by considering each stakeholders’ individual objectives and

constraints and design the appropriate price signals that are needed to provide the necessary

system-wide coordination. The resulting models are then tested through simulations. This bottom-

up modeling approach is used in [19, 20] and agent-based electricity market modeling literature

such as [21, 22]. The strength of this approach is that it is highly scalable and flexible, which

allows researchers to easily experiment with different market models under different market as-

sumptions. However, this flexibility can be a weakness as the complexity of the resulting models

can make it difficult to evaluate any emergent behaviors shown through simulations. Nevertheless,
1See [15] for an interesting discussion on the relationship between mathematical programming and economic theory
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we believe that this approach complements other more theoretical market design approaches and is

particularly useful for testing different market structures under different experimental conditions.

In Part III of this dissertation, we demonstrate how this approach can be useful in testing different

electricity market rules and structures for power system operation and planning.

1.4 Wholesale Electricity Market Design In Support of Transactive Retail Markets

In this dissertation, we focus on wholesale electricity market design. The reason for this is that

in the foreseeable future, a majority of electricity transactions will still happen on the wholesale

level. Most work in the area of transactive energy markets focus on retail level transactive energy

design and there seems to be an implicit assumption that current wholesale electricity market

design is sufficient to support retail level transactive energy markets. We believe that this implicit

assumption is not true, and that inefficiencies and disincentives in current wholesale market design

will impede the development of retail level transactive energy markets. In Chapter 4 (Part I) of

this dissertation, we highlight several aspects of wholesale electricity market design that need to

be updated to better support retail level transactive energy markets.

1.5 Dissertation Outline

As indicated in the discussion above, the rest of this dissertation is divided into three parts. Part

I uses simple models and case studies to highlight impediments to flexibility in the transmission

sector and makes several initial recommendations on wholesale market designs that better support

transactive energy. In Part I, it quickly becomes apparent that new tools need to be developed to

allow us to evaluate different market structures and market rules, and to test some of the policy

recommendations. Therefore, Part II and Part III focus on tools for transactive energy market

design that allow for more complex case studies. Part II uses a top-down mathematical decompo-

sition approach to provide insights into wholesale market design for a power system operation and

planning problem, while Part III adopts a bottom-up simulation approach to test various multi-

timescale wholesale market designs for power system operation and planning. In the concluding
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chapter, we discuss the role of the tools presented in this dissertation in the broader context of an

overall market design framework and highlight the key contributions of this dissertation.
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Part I

Analytical Evaluation of Flexibility in

Electric Transmission System
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Chapter 2

Models for Transmission Investment

Decisions

As discussed in the introduction, the current institutional framework supporting the electricity in-

dustry generally does not support flexibility in the transmission sector. One of the key reasons

for this is the decoupling between power system operations and planning. Infrastructure planning

in the power system industry is traditionally done for the worst case scenarios, without consider-

ations of how real time operational flexibility can be used to manage these worst case scenarios

during actual system operation. Large infrastructure investments are often made to handle sce-

narios that rarely occur, resulting in infrastructures that are underused most of the time. This is

likely to worsen with increasing level of renewable energy penetration as the transmission lines

used to support renewables are typically sized based on the maximum generating capacity of the

renewable [23], even though the capacity factors for intermittent energy sources such as wind and

solar energy are typically only 20% to 40% of rated capacity [24]. Such large transmission infras-

tructure investments could be avoided if we make transmission investment and sizing decision at

value and consider potential options for operational flexibility, such as demand response and stor-

age technologies. However, the current institutional framework does not typically support such

considerations.
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In addition to the decoupling of operations and planning, there is also a disconnect between

power markets and power system operation and planning. Mismatches between the constraints

considered in electricity markets and the actual physical constraints during real-time operations

have resulted in a need for significant uplift payments in the energy market [25]. In markets for

financial transmission rights (FTR), mismatches between FTR capacity and real-time operational

transmission capacity have caused revenue inadequacy in the system [26]. These inconsistencies

between market prices and actual values make it difficult for stakeholders to effectively manage

risk both in the short-run and long-run. In addition, they provide inaccurate and inefficient signals

for investments in both conventional and flexible technologies.

The goal of Part I of this dissertation is to highlight how the disconnect among power markets,

power system operations, and power system planning not only impedes improvements in flexibility

in the transmission sector, but also affects the performance of electricity markets. Using a two-bus

test system, we demonstrate flaws in the current power system operations and planning framework,

and suggest potential solutions to provide better incentives for flexibility. In this chapter, we

begin by considering how flexible technologies could potentially change the scale economies of

the transmission sector and benefit the electricity grid. Next, we develop two models that can be

used to support optimal investment decision-making in conventional transmission line and flexible

reactance device.

Chapters 2 and 3 (and part of chapter 4) of this dissertation are based on [1] and is reproduced

with permission by the publisher.

2.1 Scale Economies of Transmission Technologies

The well-recognized argument for the heavy regulation of the transmission sector is that the elec-

tric transmission grid represents a natural monopoly due to the economies of scale and lumpiness

of transmission infrastructure. However, similar to how technological developments have reduced

economies of scale in the generation sector, the introduction of new, flexible technologies in the

transmission sector has the potential of changing the scale economies of the transmission sector.
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For example, line power flow control devices, such as slow mechanically-switched phase angle

regulators (PAR) and very fast power electronically-switched Thyristor-Controlled Series Capac-

itors (TCSC), can be used to adjust the electrical parameters of the system, especially when there

exists significant unused transmission line capacity in the system. These technologies allow for in-

cremental investments in line flow control technologies to be made. To illustrate this, we consider

a technology that controls line power flow by changing the line reactance. Such flexible reactance

can be modeled as a controllable capacitor placed in series with the transmission line (Fig. 2.1).

The controllable capacitor changes the admittance matrix of the transmission network, which, in

turn, alters the pattern of line power flow in the system. For a single line with flexible reactance,

the line impedance can be written as:

Zline = Rline + j(Xline −XFlex) (2.1)

where j is the imaginary unit defined to be
√
−1, Rline and Xline are the resistance and reactance

of the line, and XFlex is the controllable reactance of the series capacitor.

Figure 2.1: Model of Line with Device Providing Flexible Reactance

Changes in the reactance of a line in the system affect the line power flow distribution in the

system according to Kirchhoff’s Current Law (KCL) and Kirchhoff’s Voltage Law (KVL). The

effects of variable reactance on line flows in the grid can be illustrated using a small two-node

electric power system comprising two parallel lines whose reactances are XA and XB respec-

tively. It can be shown that under the “DC” power flow formulation, KCL causes real power

flow in the two lines to split in inverse proportion to the proportion of reactance in each branch

[27]. Mathematically, the real power line flows (FA and FB) through two parallel lines carrying a
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combined power of P are:

FA =
XB

XA +XB
P (2.2)

FB =
XA

XA +XB
P (2.3)

The potential of flexible reactance devices in providing more flexibility in making transmission

investment decision can be illustrated via a simple example. In the two bus base case system shown

in Fig. 2.2, two nodes are connected via two transmission lines with equal reactance but different

thermal capacity limit. The cheaper generation is connected to the node on the left. To simplify

the exposition, we assume that the generator limits are not binding constraints in this system.

Figure 2.2: Base Case System for Example to Show Investment Effects of Flexible Reactance

In such a system, the most economically efficient power dispatch is to try to transfer as much

power as possible from the less expensive generator (G1) to the load where the more expensive

generator (G2) is located. In the base case, the maximum power that can be transferred from G1

to the load where G2 is located is 8 pu if we consider only the thermal capacity limit. Even though

line 1 has a thermal limit of 5 pu, the maximum power that can flow through line 1 is still 4 pu

(i.e. the thermal limit of line 2) due to KCL.

Now, consider the following question: What do we need to do to increase the power delivered

from G1 to the load located at node 2 to 9 pu? First, we consider potential investment in new

transmission line (Fig. 2.3).

Assuming that the reactance of the new line will be the same as the reactance of the original

lines, the minimum new line investment of 3 pu is needed to increase the transfer capacity to 9 pu.

With a new line investment of 3 pu, the maximum power flow in each of the three lines will be 3
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Figure 2.3: Transmission Line Capacity Needed to Increase Transfer Capacity to 9 pu

pu. Given that transmission line investment is lumpy, it is likely that a line whose thermal capacity

is higher than 3 pu will have to be installed to provide the increase in transmission capacity. The

lumpy nature of transmission investment and the economies of scale of such investment are often

cited as reasons why merchant transmission investments are inefficient [28].

Now, we consider potential investment in devices that provide flexible reactance to reach the

same goal. In this case, such devices can be used to lower the reactance of line 1 to enable more

of its line capacity to be used:

Figure 2.4: Flexible Reactance Investment Needed to Increase Transfer Capacity to 9 pu

In this case, a device that provides 0.005 pu of flexible reactance will lower the reactance of

line 1 to 0.02 pu. Using equations (2.2) and (2.3), it follows that this will increase the maximum

flow in line 1 to its thermal limit of 5 pu, while the maximum flow in line 2 remains at 4 pu.

The key difference between investment in flexible reactance device and investment in new

transmission line is that investment in flexible reactance device is not lumpy, which allows us to

make marginal expansion in transmission capacity. In addition, investment in flexible reactance

device allows us to avoid right-of-way cost that often plagues transmission line deployment. To

further demonstrate the changing scale economies of transmission investment, we estimate the

cost of the two investment options presented in the example above.
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Figure 2.5: Typical cost ranges for new transmission line investments

The cost of new transmission investment is dependent on the voltage rating, the number of

circuits, and the length of the transmission line. The limiting factor for the operational capacity

of transmission line is dependent on the voltage rating and length of the line. Lines with higher

voltage ratings tend to have higher capacity. Shorter lines (< 50 miles) tend to be limited by the

thermal capacity limit of the line, whereas longer lines (> 50 miles) tend to be limited by the

surge impedance loading limits [29]. Figure 8.5 shows some typical cost for new transmission

line investments using data taken from [29] and [30], which include the cost of obtaining right of

way. Information about the cost of Flexible AC Transmission System (FACTS) devices is difficult

to obtain. For devices that provide flexible reactance, a cost of $135000/MVar has been cited

in literature [31]. The MVar operating range of the flexible reactance is given by the following

equation [31]:

s = Xc
K2
line

Sbase
(2.4)

where Xc is the maximum series capacitor reactance in pu, Kline is the thermal line limit of the

transmission line, and Sbase is the MVA base power (100MVA in this examples shown in this

chapter).

The cost of investments for the two options presented in the example above is estimated for

different assumptions of length and voltage rating of transmission lines. In the graph in Fig. 2.6,
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Figure 2.6: Comparison of cost of new line investment and cost of investment in flexible reactance device

the cost of building the 300 MW new line in the example is presented for lines of different length,

using the lowest $/MW-mile line investment cost shown in Fig. 2.5. The cost of installing the

flexible reactance device in line 1 is also calculated based on per mile line reactance for 345kV

and 765kV transmission lines given in [32]. Based on the graph, it can be seen that for transmission

line of all lengths, the flexible reactance is the lower cost option for achieving the same increase

in transmission capacity. If we assume the higher $/MW-mile line investment cost shown in Fig.

2.5, the results would favor the flexible reactance device even more.

The relative cost of investing in new transmission lines and investing in flexible devices to

achieve the same increase in capacity is dependent on the current configuration in the system.

Flexible devices are useful in systems with low utilization of existing lines. New transmission

lines are useful when larger capacity expansion is needed. A comprehensive cost analysis of the

different investment options needs to be done on a case by case basis. In closing, new technologies

have changed the economics of transmission investment. Changes in scale economies in the gen-

eration sector have allowed for greater competition and market-based solutions in the generation
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Figure 2.7: Flowchart of Transmission Investment Decision Making Framework

sector, suggesting that market-based solutions could play a greater role in the transmission sector,

especially if the appropriate institutional framework exists to support such solutions.

2.2 Models for Optimal Transmission Investment Decision Making Under Uncer-
tainty

In order to further evaluate the potential and challenges of integrating flexible technologies in the

grid, we develop two models to evaluate the optimal investment decision in conventional trans-

mission line and flexible reactance device. The first model accounts for the value of operational

flexibility, while the second model extends the first model to account for the value of investment

flexibility. Here, operational flexibility is the ability of the system to effectively react to short-run

uncertainties and system conditions, whereas investment flexibility is the ability of the investment

plan to react to long-run uncertainties and changes in system conditions. A three-step transmission

investment decision making framework is used for the models and summarized in Fig. 2.7.

The first step of the framework is to characterize the uncertainties being considered. In order to

select an appropriate method to characterize uncertainty, a sound understanding of the uncertainty
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being characterized and the information available is important. The investment decision is strongly

influenced by which uncertainties are characterized and how they are characterized. In addition,

it is also strongly affected by the institutional structure of the electricity industry. Factors such as

who is making the investment decision and what information are shared among stakeholders have

a strong effect on the resulting investment decision.

The second step of the framework is to develop a mathematical model of the decision-making

problem. The objective function and constraints in the mathematical models are dependent on

how uncertainties are characterized and the operational framework that is being modeled. In

addition, the decision-making problem can be modeled as either a static decision-making process

or a dynamic decision-making process. In a static decision-making process, a single optimal

decision plan is found. In a dynamic decision-making process, the optimal decision plan will be

dependent on information that is received over time.

The final step of the framework is to solve the mathematical model developed in order to eval-

uate the investment decision. The optimal investment decision-making problem can be difficult

to solve for realistic problem size. New algorithms and heuristics will need to be developed for

the large scale decision-making problem. Since the goal of this part of the dissertation is not to

design new algorithms, the models are implemented for small case studies that can be solved using

readily available optimization software and packages. The development of algorithms to handle

more complex case studies will be deferred to the next part of this dissertation.

2.2.1 Model 1: Valuing Short-term Operational Flexibility for Transmission In-

vestment Decisions

In this first model, the goal is to evaluate how the optimal investment decision-making is affected

by short-run operational uncertainties under different operational frameworks. Short-run uncer-

tainties considered here include uncertainties in renewable energy generation and power demand

and also potential outages in transmission elements.
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Step 1: Uncertainty Characterization Using K-means Clustering

For the purpose of this problem, we are interested in the influence of short-run fluctuations in wind

and loads, and transmission line outages on investment decision. Uncertainty in transmission line

outages is captured by the probability that the given element will fail. This probability can be

obtained from historical outage data for similar line types or engineering knowledge. More effort

was taken to properly characterize wind and load uncertainty.

Transmission line flow is affected not only by the level of wind and load at each bus, but also

by the relative level of wind and load located at different buses. Therefore, we select an uncertainty

characterization method that not only allows us to capture uncertainty in the wind and load level

at a given bus, but also allows us to capture the correlation among wind generation and load of

different buses. The K-means clustering algorithm was selected as it allows us to create a set of

representative wind and load scenarios that accurately capture the wind and load profile at each

bus as well as the correlation among wind generation and load in the system. K-means clustering

was used in [33] to create wind generation and load scenarios for wind generation investment

decisions.

K-means clustering is an iterative algorithm that clusters data into similar groups. In this case,

the dataset are historical wind generation and power demand data for the entire system. Each

data point is multi-dimensional and consists of the wind generation and load data at all nodes

for a given point of time. The K-means clustering algorithm is used to group the data set into a

representative set of clusters. The centroid of each cluster will give us the wind and load level for

one scenario, and the number of observations in each cluster will give us the probability that the

scenario happens. A general outline of the K-means algorithm is shown below [33]:

1. Select the appropriate number of clusters (N). One method of selecting the number of cluster

is by testing out different number of clusters and plotting out the graph of percentage of

variance explained by the clusters vs number of clusters. The appropriate number of clusters

is selected such that any additional increase in number of clusters does not produce any

substantial increase in model performance.
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2. Randomly select N points from the data set to be used as initial centroids for the N clusters.

3. The squared Euclidean distances between each original data point and the centroids are

calculated. Each original data point is assigned to the cluster that it is closest to based on

the Euclidean distances calculated.

4. Calculate the mean of each cluster to get the set of new centroids.

5. Repeat steps 3-5 until there are no changes in cluster composition between iterations and

store the clusters and the total sum of distance of the resulting clusters.

6. In order to reduce the possibility of landing in a local minimum, repeat steps 2 to 5 for a

user-selected number of times.

7. Select the result with the minimum total sum of distance as the final clusters.

Step 2: Mathematical Modeling and Optimization for Optimal Investment

In this step, a mathematical model of the optimal investment problem is developed. The objective

of the problem is to minimize the overall expected operational and investment cost of the system,

subjected to operational and investment constraints. The exact forms of the objective function

and constraints are dependent on the operational rules being modeled. The general form of the

mathematical optimization problem can be written as:

min
x,y

NS∑
s=1

Ct(s)Copt(x, s) + Cinvt(y) (2.5)

s.t. gop(x, y, s) = 0 (2.6)

hop(x, y, s) ≤ 0 (2.7)

ginvt(y, s) = 0 (2.8)

hinvt(y, s) ≤ 0 (2.9)

xmin ≤ x ≤ xmax (2.10)

ymin ≤ y ≤ ymax (2.11)
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where x represents the operational decision variables, y represents the investment decision vari-

ables, Copt represents the hourly operational cost, Cinvt represents the annualized investment cost,

NS represents the number of scenarios, and Ct(s) is the number of hours scenario s happens in a

year. Equations (2.6) and (2.7) represent the equality and inequality operational constraints respec-

tively, while equations (2.8) and (2.9) represent the equality and inequality investment constraints

respectively. Equations (2.10) and (2.11) represent the variable limits for the operational and in-

vestment decision variables. The investment decision variables y include investment capacity for

both new transmission lines and devices that provide flexible reactance.

Optimal investment decision models using the following four different types of operational

dispatch approaches are developed in this chapter:

• Economic dispatch with economic considerations only

• Preventive (N-1) security constrained economic dispatch

• Corrective (N-1) security constrained economic dispatch with inelastic load

• Corrective (N-1) security constrained economic dispatch with elastic load

The four different models are outlined next.

Economic Dispatch with Economic Considerations Only: The first case uses the standard

economic dispatch where the only operational objective is to minimize generation cost. The objec-

tive function here is the minimization of the expected generation cost and transmission investment

cost:

min
P s
g ,x

s
Flex,t,θ

s
n,f

s
line,l/l̄

bline,l̄,Kline,l̄,KFlex,t

NS∑
s=1

Ct(s)

NG∑
g=1

cg(P
s
g ) +

Nl̄∑
l̄=1

cinvt,l̄(Kline,l̄) +

NT∑
t=1

cinvt,t(KFlex,t) (2.12)

where NS , NG, Nl̄, NT represent the number of scenarios, number of generators, number of new

lines, and number of flexible devices respectively, cg, cinvt,l̄, cinvt,t represent the generation cost,

new line investment cost, and new flexible reactance cost respectively, P sg is the power generation,
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xsF lex,t is the operational setting of the flexible reactance device in terms of change in reactance, θsn

represents the nodal angles, fs
line,l/l̄

represents the line flows, Kline,l̄,KFlex,t represent new trans-

mission line and flexible reactance capacity respectively, and bline,l̄ is a binary variable indicating

whether the new line is built.

The operational constraints are:

GPs
g + Sf sline −Ds = 0 ∀ s ∈ Ns (2.13)

Pming ≤ P sg ≤ Pmaxg ∀ s ∈ Ns, g ∈ NG (2.14)

fsline,l =
θsl,to − θsl,from
xl − xsF lex,t l

∀ s ∈ Ns, l ∈ Nl (2.15)

−Kline,l ≤ fsline,l ≤ Kline,l ∀ s ∈ Ns, l ∈ Nl (2.16)

−M(1− bline,l̄) ≤ fsline,l̄ −
θs
l̄,to
− θs

l̄,from

xl̄ − xsF lex,t l̂
≤M(1− bline,l̄) ∀ s ∈ Ns, l̄ ∈ Nl̄ (2.17)

−Kline,l̄ ≤ fsline,l̄ ≤ Kline,l̄ ∀ s ∈ Ns, l̄ ∈ Nl̄ (2.18)

0 ≤ xsF lex,t ≤ KFlex,t ∀ s ∈ Ns, t ∈ NT (2.19)

where Nl is the number of existing lines and the rest are as defined earlier. The symbols in bold

represent matrices or vectors. Equation (2.13) is the nodal power balance, where G is a binary

matrix indicating the nodal location of the generators, S is a matrix that is -1 for a transmission

line exiting a node, and +1 for a transmission line entering a node, and Ps
g, f sline, Ds are vectors of

power generation, transmission line flow, and nodal power demand respectively. Equation (2.14)

represents the generation limit, where Pming and Pmaxg are the maximum and minimum generation

capacity respectively. Equation (2.15) and (2.16) are the line flow constraints for existing trans-

mission lines, where θsl,to, θ
s
l,from are the nodal power angles at the two nodes connected by the

transmission line, xl represents the transmission line reactance,Kline,l is the existing transmission

line capacity, xsF lex,t l is the flexible reactance setting for the flexible reactance device t that is

on line l, and the remaining variables are as defined earlier. Equation (2.17) and (2.18) are the

line flow constraints for new transmission lines. Equation (2.17) is a big-M constraint, which uses
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a large penalty term M to enforce the line flow constraint only when the line is actually built.

Finally, equation (2.19) is the operational limits of the flexible reactance device.

The investment constraints are:

0 ≤ Kline,l̄ ≤ Kmax
line,l̄bline,l̄ ∀ l̄ ∈ Nl̄ (2.20)

0 ≤ KFlex,t ≤ 0.5xl ∀ l ∈ Nl (2.21)

Equation (2.20) and (2.21) are the investment limits of new transmission lines and flexible reac-

tance device, where Kmax
line,l̄

is the maximum line investment capacity. In this chapter, we assume

that the maximum capacity of flexible reactance device that can be installed in a line is 50% of the

base reactance of the line.

Preventive (N-1) Security Constrained Economic Dispatch: In the first case, we assume that

power is dispatched by minimizing the generation cost only. In actual system operation, power

is often dispatched more conservatively due to security constraints to maintain the reliability of

the grid. In this second case, we assume that the power system is operated under (N-1) security.

This means that power is dispatched such that the system will remain within the operating limits

defined by constraints (2.13) - (2.18) even if any single system element fails. Under preventive (N-

1) security, the system should remain within the specified operating limits without any corrections

in power dispatch or control settings in the system. This dispatch approach is commonly used in

current system operation. The key drawback of this approach is that it leads to highly conservative

and economically-inefficient dispatch.

Note that in actual system operation, the acceptable operating limits under normal condition

and emergency operating conditions are different. For instance, the emergency (short-term) line

flow limits for transmission lines are higher than the line flow limits during normal operating

condition. For the purpose of this chapter, we do not account for the differences in emergency

and normal line flow limits. In addition, we only consider failures in transmission elements (i.e.

transmission line or flexible reactance device).
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The preventive (N-1) security constrained economic dispatch is similar to the basic economic

dispatch problem presented in the last section. The only difference is that there is an increase

in the number of operational constraints. The base case set of operational constraints shown

earlier is replicated with one transmission element removed at a time. Therefore, the final number

of operational constraints is equal to (1 + the total number of transmission elements) times the

number of operational constraints in the base case set of operational constraints shown earlier. For

each scenario, the power dispatch and flexible reactance settings have to remain the same for all

(N-1) line failures, however, the line flows and nodal power angles will be different and governed

by Kirchhoff’s Laws.

Corrective N-1 Security Constrained Economic Dispatch with Inelastic Load: Preventive

(N-1) operation results in conservative operation of the system that is often highly inefficient.

In recent years, “smart grid” proponents have proposed the use of a corrective (N-1) operational

strategy to minimize the inefficiency in the system [34]. In corrective (N-1) operation, corrective

dispatch and control changes can be made to the system when outages happen as long as it can be

done within a certain time to avoid dynamic instabilities. In this case, we assume that the potential

corrective actions that can be taken are changing the power dispatch and changing the flexible

reactance control setting. This is the operational approach that is frequently touted by smart grid

proponents as it accounts for the value of corrective control technologies. The main arguments

in support of corrective (N-1) security constrained economic dispatch is that the system can often

remain operational for a short period of time after outages occur, which allows for fast corrective

actions to be taken to bring the system within the acceptable operational limits [34].

As with the previous case, the number of operational constraints is equal to (1 + the total

number of transmission elements) times the number of operational constraints in the base case

operational constraints. However, in this case, the power dispatch and control settings of the flex-

ible reactance are allowed to change in response to (N-1) contingencies. In addition, adjustment

needs to be made to the objective function to account for the probability of each of the contin-

gencies happening. The objective function for the corrective (N-1) security constrained economic
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dispatch is given by:

min
P s,c
g ,xs,cF lex,t,θ

s,c
n ,fs,c

line,l/l̄

bline,l̄,Kline,l̄,KFlex,t

Nc∑
c=1

pc(c)

NS∑
s=1

Ct(s)

NG∑
g=1

cg(P
s,c
g )+

Nl̄∑
l̄=1

cinvt,l̄(Kline,l̄)+

NT∑
t=1

cinvt,t(KFlex,t)

(2.22)

where pc is the probability of each case c happening andNc is the total number of cases. The cases

include the base case with no contingencies and the cases representing all (N-1) contingencies.

The other variables are as defined earlier.

Corrective N-1 Security Constrained Economic Dispatch with Elastic Load: In the previous

case, we assume that the load is inelastic and non-dispatchable. In this case, we assume that part

of the load is elastic and dispatchable. A “loss of load” price is assigned to each load. This loss of

load price is the amount that needs to be compensated to the consumers if their load is shed at any

point of time. The new operational objective is hence to minimize both expected generation and

load cost:

min
P s,c
g ,xs,cF lex,t,θ

s,c
n ,fs,c

line,l/l̄

bline,l̄,Kline,l̄,KFlex,t,P
s,c
loss,d

Nc∑
c=1

pc(c)

NS∑
s=1

Ct(s)
[ NG∑
g=1

cg(P
s,c
g ) +

ND∑
d=1

cD(P s,closs,d)
]

+

Nl̄∑
l̄=1

cinvt,l̄(Kline,l̄) +

NT∑
t=1

cinvt,t(KFlex,t) (2.23)

where ND is the number of dispatchable load, P s,closs,d is the amount of load being shed, cD repre-

sents the price of loss load, and the remaining variables are as defined earlier. The power balance

constraints shown earlier (Equation (2.13) needs to be altered to account for the potential of dis-

patching load:

GPs,c
g + Sf s,cline −Ds + Ps,c

loss,d = 0 ∀ s ∈ Ns (2.24)
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In addition, an additional constraint representing the capacity limits for the dispatchable load needs

to be added:

Pminloss,d ≤ P
s,c
loss,d ≤ P

max
loss,d ∀ s ∈ Ns, d ∈ ND (2.25)

where Pminloss,d and Pmaxloss,d is the minimum and maximum capacity of dispatchable load respec-

tively.

Step 3: Solve Optimization Problem to Evaluate Investment Decisions

The optimization problems presented above are mixed-integer non-linear programming problems

(MINLP). MINLP are challenging problems to solve. Even though various optimization algo-

rithms and heuristics have been developed in recent years to enable us to better solve such prob-

lems, large scale MINLP problems are still computationally challenging. As mentioned earlier,

the goal of this part of the dissertation is not to design new algorithms and heuristics to solve the

optimal transmission investment decision problem. Instead, the goal is to use simple case stud-

ies to generate insights into institutional and policy design for flexible transmission technologies.

Therefore, the simple case studies used in this chapter are designed to be solvable using generic

MINLP solvers such as BARON and SCIP that can be used with well-established optimization

platforms. In this case, OptiToolbox for MATLAB is used to implement SCIP to solve the opti-

mization problem [35].

2.2.2 Model 2: Valuing Long-term Investment Flexibility for Transmission Invest-

ment Decisions

In this second model, the goal is to evaluate how the optimal investment decision-making is af-

fected by different levels of long-run uncertainties and with different level of load responsiveness.

The long-run uncertainties that are considered here include long-run uncertainties in load growth

and generation investment patterns.
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Figure 2.8: Graphical Illustration of a Hypothetical Markov Chain for Long-term Load Growth

Step 1: Uncertainty Characterization Using Markov Processes

In this model, the uncertain load growth and generation investment patterns are modeled using a

discrete-time Markov process (also known as Markov chain). A Markov process is a memoryless

process, which means that the next state of the process is only dependent on the current state

and not on any previous state. Markov chains are described by discrete states and a state transition

matrix. A graphical illustration of a hypothetical Markov chain for long-term load growth is shown

in Figure 2.8.

In Figure 2.8, the nodes (L1, L2, L3, L4, L5) represent the five different states (i.e. load

levels in this example). The numbers on the edges represent the state transition probabilities. The

numbers on the self-loops tell us the probability that the state will stay the same in the next time

period, while the numbers on the edges connecting two nodes tell us the probability of transitioning

from one state to another. For instance, if the current load level is L1, there is a 50% chance that

the next load level will be the same, a 25% chance that the next load level will be L2, and a 25%

chance that the next load level will be L3.

The challenge of obtaining a Markov chain representation of uncertainty in generation and
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load growth lies in determining the appropriate state transition matrix. Historical system data and

expert elicitation can be used to determine the appropriate states and state transition matrix.

Step 2: Mathematical Modeling and Optimization for Optimal Investments

A stochastic dynamic programming model is used to model this long-term optimal investment

problem. More specifically, the optimal investment decision problem is modeled as a discrete-time

Markov decision process (MDP). MDP provides an elegant framework to model decision-making

under uncertainty under a set of modeling assumptions [36, 37]. These assumptions are:

• There is a finite number of states.

• There is a finite number of actions/decisions.

• The system state transition process has the Markov property. Future states are only influ-

enced by the current state and not previous states.

• The cost/reward associated with each state-action pair can be computed.

The five key components of a MDP problem formulation are: (1) decision epoch, (2) state

space, (3) action space, (4) transition probabilities, and (5) reward function [36]. The MDP prob-

lem formulation for the long-term optimal investment problem will be presented next.

Decision Epoch: The decision epoch in our problem formulation represents the time interval

between investment decisions. This is dependent on the institutional framework governing in-

vestment decisions. An annual decision-making cycle would be a reasonable assumption to make

here. However, to simplify computation, a four-year decision cycle is used in this part of the

dissertation.

State Space(S) and Action Space(A): The states of the model is described by three types of

state variables: Network Configuration (NC), Maximum Load Level (ML), Generation Capacity

(GC). The action space is the set of transmission investment options.
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State Transition Probabilities (P (s′|s, a), Pa(s
′, s)): The load level and generation capac-

ity are modeled as Markov processes as described earlier. These are exogenous state variables

and their state transition probabilities are assumed to not be affected by the actions taken (i.e.

P (s′|s, a) = P (s′|a)). The network configuration represents the state of the transmission network,

including both new lines and flexible reactance devices. This is an endogenous state variable where

the state transition matrix is dependent on the decision being taken (i.e. P (s′|s, a) 6= P (s′|s)).

Reward Function(Ra(s′, s)): The reward function gives the value of transitioning from state s

to state s′ after taking action a. The reward function represents the savings in operational cost in

state s′ given the new network configuration. It can be calculated using the following formula:

Ra(s
′, s) = COp({NC0,MLS′ , CGS′})− COp+invt({NCS′ ,MLS′ , CGS′}) (2.26)

where COp({.}) is the annual operational cost at the state defined by the state variables and

COp+invt({.}) is the annual operational cost and annualized investment cost at the state defined

by the state variables. The first term of the formula represents the operational cost at the new

load level and generation capacity assuming that base case configuration. The second term in the

formula represents the operational cost and total annualized investment cost at the new load level

and generation capacity at the new network configuration. The operational cost can be obtained

by running the optimal power flow for the set of scenarios obtained using the K-means clustering

technique discussed earlier adjusted based on the appropriate network configuration, load level

and generation capacity.

Terminal Reward: Since the problem is modeled as a finite horizon Markov Decision Process,

a terminal reward is defined for the problem. The terminal reward is defined to be the expected

operational savings due to the investment minus the cost of investment over the remaining lifetime

of the investment. It is assumed that the state remains at the final state for the rest of the lifetime

of the investment. The terminal reward is calculated based on the following formula:
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Rterm(S) =
1− (1 + i)−Np

i
[COp({NC0,MLS , CGS})− COp+invt({NCS ,MLS , CGS})]

(2.27)

where i is the interest rate and Np is the number of remaining time periods in the lifetime of the

investment. The first term in the equation above represents the annual operational cost at the final

load and generation level if the network configuration remained at the base case (i.e. no investment

is made). The second term represents the annual operational cost and annualized investment cost

at the final load and generation level with the new network configuration.

Solution Objective: The goal of the MDP problem is to determine the best “policy”. The policy

function (πt(s)) specifies the action that the decision maker will choose in state s at each time

period t. At every time period the decision maker can choose to do nothing and wait for more

information, invest in a flexible reactance device, or invest in new line. The goal is to choose a

policy that maximizes the expected discounted sum of cumulative reward over the time horizon:

Vπ = Eπ,S
{ T∑
t=1

γtRπ(s′, s)
}

(2.28)

where γ is the discount factor and Rπ is the reward due to following the policy.

Step 3: Solve Optimization Problem to Evaluate Investment Decision

The Markov decision process can be solved using various dynamic programming algorithm such

as policy iteration, value iteration, and various approximate dynamic programming techniques.

For a large problem with a large state space, various heuristics and approximation techniques will

be needed to fully solve the dynamic programing problem. However, for the purpose of this part

of the dissertation, the basic backward induction technique is used to solve this finite-stage MDP.

The backward induction algorithm is a recursive algorithm that does the follow [38]:
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1. For the final period, T , let the value function be equal to the terminal reward:

vT (s) = Rterm(S) (2.29)

2. Set counter n = 1

3. For t = T − n and for all states s, calculate the follow:

vt(s) = max
α∈A

{∑
s′∈A

Pa(s
′, s)(Ra(s

′, s) + γvt+1(s′))
}

(2.30)

πt(s) = argmax
α∈A

{∑
s′∈A

Pa(s
′, s)(Ra(s

′, s) + γvt+1(s′))
}

(2.31)

4. Increase counter n = n+ 1

5. If n = T , end algorithm. Otherwise, repeat 2 to 5.

The MDP Toolbox for MATLAB is used to solve the case studies presented in Part I of this

dissertation [38].
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Chapter 3

Case Studies and Policy Discussion

In this chapter, we use the models presented in the last chapter to illustrate how different oper-

ational approaches can have different impacts on investment decisions, and highlight the impor-

tance of considering the operational and market effects when making investment decisions. We

also demonstrate the need for well-designed long-term markets to encourage information and risk

sharing among stakeholders. In this part of the dissertation, the case studies are done using simple

2-bus systems for clearer exposition. More complex test systems will be used in later parts of this

dissertation as appropriate tools are developed to handle more complex problems.

3.1 Impact of Operational and Market Practices on Investment Planning

The decoupling among operation, market, and planning is problematic as the value of different

technologies depends on the supporting operational and market framework. In particular, rigid

operational and market mechanisms, such as the use of preventive (N-1) security constrained dis-

patch and the treatment of load as inelastic, favor conventional technologies and hide the value of

flexible technologies. In contrast, flexible operational and market mechanisms that enable opera-

tional flexibility incentivize flexible technologies.

A simple two-bus example is used to illustrate the impact of different operational and market

practices on investment decision making. The four different operational approaches modeled in
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Figure 3.1: Base Case System for Case Study

Section 2.2.1 is considered.

3.1.1 Case Study A

In this case study, there is an urban location (Node 1) and a remote location (Node 2) connected

via two transmission lines (Figure 3.1). The urban location has a higher maximum load of 2000

MW or 20 pu, while the remote location has a lower maximum load of 500 MW or 5 pu. In

addition, the urban location has two types of gas turbines (a 2500MW, $30/MWh gas turbine and

a 2500MW, $50/MWh gas turbine), while the remote location has a coal power plant (500MW,

$20/MWh).

Now, assume that a new environmental regulation is being considered that will cause the coal

plant to be shut down in the near future. In anticipation of the coal plant being closed, a wind

power developer is considering building a new 2000 MW wind farm at the remote location. In

addition, a tech company is considering building a large data center at the remote location, which

would increase the load at the remote location to 1000 MW. This is illustrated in Figure 3.2.

The key question to be answered here is: What is the optimal level of transmission line and

flexible reactance device investment in anticipation of these changes under different operational

and market framework? Model 1 presented in the previous chapter will be used to answer this

question.

As mentioned earlier, the first step to valuing investment decision is to characterize the uncer-
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Figure 3.2: System with Anticipated Changes

tainties being considered. In this case study, short-run wind and load fluctuations and transmission

element outages are considered. Each transmission element is assumed to have a 2% chance of

failure. Historical hourly wind and load data from PJM for the year 2012 and 2013 were used to

obtain wind and load fluctuation patterns for this case study [12]. The urban location uses load

data from the PJM Mid-Atlantic region, while the remote location uses wind and load data from

the PJM West region. The K-means clustering technique presented in Section 2.2.1 was used to

produce 100 scenarios that together capture the wind and load fluctuations and correlation among

the data.

In order to evaluate the performance of the K-means clustering algorithm in providing a re-

duced model of the dataset, the cumulative distribution function and correlation matrix of the 100

generated scenarios were compared to that of the complete dataset. The comparison of the cu-

mulative distribution function for the wind generation, urban load, and remote load are shown in

Figure 3.3.

The spearman correlation coefficient is used to compare the rank correlation among the gen-

erated scenarios and the complete dataset. The correlation matrix for the complete dataset and the

correlation matrix for the generated scenarios are shown in Table 3.1. Both the comparison of the

cumulative distribution function and correlation matrix confirm that the set of scenario generated

via K-means clustering is a good representation of the original data.

Having generated the representative scenarios using K-means clustering, we implemented
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Figure 3.3: Comparison of Cumulative Distribution Function. (a) Wind Generation (b) Urban Load (c)
Remote Load

Table 3.1: Comparison of Correlation Matrix of Complete Dataset and Generated Scenarios (Generated
Scenarios Correlation in Parenthesis)

Wind Urban Load Remote Load
Wind 1(1) -0.09(-0.09) -0.16(-0.16)

Urban Load -0.09(0.09) 1(1) 0.92(0.96)
Remote Load -0.16(-0.16) 0.92(0.96) 1(1)

Model 1 for the 4 different operational approaches presented in the previous chapter. The results

of the simulations are summarized in Table 3.2.

In the first case, we do not consider the reliability needs of the system. Under this optimization

approach, investments are only made if the cumulative value of the generation cost savings is

greater than the cost of investment. The optimal investment option is to invest in 0.0025pu of

flexible reactance in line 1, which allows for the full 500MW capacity of line 1 to be used. This

entails a total operational and investment cost of $0.303 Billion/year.

In the second case, we consider the preventive N-1 security constrained economic dispatch.
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Table 3.2: Results of Simulation for Optimal Investment Considering Short-Run Operational Flexibility
(FRD stands for Flexible Reactance Device)

Operational Framework Investment Decision Operational and Annualized
Investment Cost (B$)

Economic Dispatch FRD Line 1 (0.0025pu) 0.303
Preventive N-1 Line(450MW) 0.314
Corrective N-1 Line(353MW), 0.311

FRD Both Line (0.0053pu)
Corrective N-1 with FRD Line 1 (0.0025pu) 0.307
Dispatchable Load

In this case, the optimal investment decision is to invest in a new 450MW transmission line. This

line is needed to maintain enough transmission capacity when any of the other two lines fail. As

expected, this results in the most conservative and expensive option.

In the third case, we account for the ability of the system to take corrective actions to maintain

the reliability of the system during contingencies. In this case, a transmission line with a smaller

capacity is required. Flexible reactance devices are installed in both of the existing lines to ensure

that the full capacity of those lines can be used when any of the other lines fail. This scenario cost

slightly less than the second scenario.

Finally, in the fourth case, we account for the ability to shed load during contingencies. The

“loss-of-load” price assigned to the urban load is $5000/MWh whereas the price assigned to the

remote load is $1000/MWh. Due to the additional flexibility brought about by the ability to dis-

patch loads during contingencies, the optimal investment decision is identical to the investment

decision for the purely economic case (i.e. invest in flexible reactance in line 1).

The results demonstrate the importance of accounting for the underlying operational and mar-

ket framework when making investment decisions. In particular, the results demonstrate that rigid

operational and market frameworks, such as preventive N-1 security constrained economic dis-

patch and the treatment of load as inelastic can result in inefficient line over-investment. As it

stands, the value of many flexible technologies are hidden and lost under the current conservative

and rigid operational framework, which deters investors from investing in such technologies. In

order to provide appropriate incentives for investment in flexible technologies and transition to-
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wards a smart grid, it is critical that we not only adopt a more flexible operational and market

framework, but also account for operational and market flexibility during investment planning.

3.2 Information and Risk Sharing in the Face of Uncertainties

Even if we account for operational and market flexibility in making investment planning, the

ability to make efficient investment decision in the transmission sector is still limited due to the

difficulty of making accurate long-term predictions in the electricity sector. Long-term load pre-

dictions done by system operators and transmission planners have been demonstrated to be highly

inaccurate [39]. In addition, generation expansion plans have been known to change suddenly and

unexpectedly. Historical data is insufficient in making accurate long-term predictions due to the

rapidly changing technological landscape in the electricity industry. This uncertainty in generation

and load patterns can result in inefficient overinvestment or underinvestment. Under a guaranteed

rate-of-return regulatory framework, consumers bear the risk of inefficient investments and there

are no true incentives or mechanisms for transmission planners to improve the way they deal with

uncertainty in transmission planning.

We extend the case study presented earlier to illustrate the impact of long-term uncertainty on

investment decisions.

3.2.1 Case Study B

Now, we extend the previous case study and consider the fact that policy changes and business

plans are often uncertain. In this case, we assume that there is a possibility that the environmental

policy does not get approved by Congress. If the environmental policy does not get approved by

Congress, the coal plant remains open and the new wind farm is not built. In addition, the tech

company is not sure how much energy will be needed by the new data center. The two uncertain

state variables here are the generation capacity at the remote region (GC) and the maximum load
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Figure 3.4: State Transition Matrix for Uncertain States

level at the remote region (ML). The potential states for these uncertain state variables are:

GC ∈


Coal Remains, No Wind (GC1,Base)

2000 MW Wind Generation (GC2)
(3.1)

ML ∈


No Increase in Load (ML1,Base)

Load Level Increase to 1000MW (ML2)

Load Level Increase to 1500MW (ML3)

(3.2)

The state transition matrix for the uncertain states are shown in Figure 8.10. In this figure, m

represents the probability that the load level will increase from ML1→ML2 and from ML2→

ML3, while g represents the probability that the wind farm will be built. Notice that the model

could support different transitional probabilities from ML1 to ML2 and from ML2 to ML3.

A Markov decision process as described in Model 2 in the previous chapter is used to solve

this long-term dynamic investment problem. A 10% per annum discount rate and interest rate is

used. As mentioned earlier, we assume that investment decisions are made every 4 years and the

lifetime of the investments is 20 years. The operational cost at each state was calculated using the

same 100 wind and load scenarios found through K-means clustering. The wind and load levels

for the different scenarios are scaled to correspond to the appropriate states. In the cases with
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inelastic load, the system is penalized heavily for not meeting the load, such that the system will

always seek to meet the load. The investment decisions being considered are whether to invest in

0.0025 pu of flexible reactance in Line 1 and whether to invest in a new 450MW new transmission

line. The results of three different cases are described next.

First, we consider the deterministic case, where g=1 and m=1. The operational approach

considered here is the economic dispatch only approach. In this case, we know for sure that the

demand will increase from 500 to 1000MW at the remote node between decision periods 1 (Year

1) and 2 (Year 5), and from 1000MW to 1500MW between decision periods 2 and 3 (Year 9). In

addition, the wind farm will be built between decision periods 1 and 2. In this case, the optimal

investment decision is to invest in 0.0025 pu of flexible reactance in line 1 during Year 1 and invest

in the 450MW new line in Year 9.

For the second case, we consider a case similar to the first case. However, in this case g=0.5

and m=0.5. In this case, future evolution of demand and generation investment are uncertain. The

optimal investment decision in Year 1 here is to build the 450 MW new line. The investment deci-

sion in Year 5 and Year 9 will be dependent on the actual realization of the demand and generation

investment. The flexible reactance device will be built in Year 5 or Year 9 only if the demand

increased from the base case. In this case, it can be observed that uncertainty in future demand

growth and generation investment pattern resulted in more aggressive and expensive investment

decision. One key reason for this conservative investment decision is due to the assumption that

demand is inelastic.

In the final case, we use the same assumptions as the second case (g=0.5, m=0.5). However,

load is considered to be elastic in this case. Similar to the earlier simulations, we assume that

the “loss-of-load” price for the urban load is $5000/MWh whereas the “loss-of-load” price for the

remote load is $1000/MWh. In this case, the optimal investment decision in Year 1 is to invest

in the flexible reactance device. The new line will only be built in Year 5 or Year 9 if the load

increased to 1500MW and the wind farm is built. This demonstrates how accounting for load

elasticity gives us the flexibility to invest in smaller, flexible devices as an intermediate measure in

face of long-term uncertainty. This enables us to delay the decision to invest in the more expensive
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transmission line until more information on future load and generation pattern can be obtained.

The results above highlight two key requirements for efficient transmission investment:

1. Load needs to participate in the market, both in the long-run and in the short-run. In current

long-term transmission planning, transmission investment is made to fully accommodate

all future load growth without considering how much customers are willing to pay for the

delivery of the energy. This is despite the fact that loads are more elastic in the long-run

as customers can take steps to reduce their load consumptions through energy efficiency

programs or installation of private generators. The results demonstrate that if we demand

that total load has to be met at all cost, transmission planner will tend to overinvest to

account for the worst case load scenario. In addition, the potential of incremental expansion

in transmission capacity using smaller, flexible devices is often ignored when the incentive

is to over-design the system.

Accounting for load elasticity allows more flexibility to transmission planners, by enabling

them to make incremental, smaller transmission upgrades/investments while waiting for

more information on future load and generation pattern to arrive. Technologies are available

to allow for more fine grained dispatched of demand. However, in order to enable greater

participation of load in electricity markets, some sort of market mechanism needs to exist

for load to make their long-term willingness-to-pay function for electricity or willingness-

to-accept-compensation function for load shedding be known. One way in which this can

be done is to design electricity markets that are symmetric (i.e. load submit bids along with

generation to reveal how much they are willing to pay for electricity). Another potential

way in which this can be done is to put in place a menu of reliability insurance program

where load can purchase different level of reliability and be compensated at different price

level should load be shed. Regardless of how it is done, there need to be a way to allow load

to participate and express their preference in electricity markets of all time-scales.

2. There need to be a mechanism for long-term information to be exchanged among stake-

holders, such as the multi-timescale stratum energy market framework proposed in [40].
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Long-term uncertainty has a significant impact on investment decisions. The key question

to be answered here is: How can we empower transmission owners and planners with more

accurate information about future load and generation uncertainties and allow for long-term

risks to be shared among stakeholders?

These will be discussed further in the next chapter.

3.3 Challenges in Designing Financial Rights for Flexibility

Another open question and design challenge for transmission flexibility is how would we design

financial transmission rights such that they not only encourage efficient operation of the system,

but also incentivize economically efficient investment in both flexible and conventional transmis-

sion technologies? Can we design a system of short-term and long-term transmission rights that

provide appropriate price signals for investments and potentially allow for greater participation of

merchant transmission investments?

The inefficiency of current financial transmission rights implementation can be seen from

the revenue shortfall that frequently occurs due to the mismatch between the system constraints

considered during financial transmission rights auction and real time system condition. Currently,

this revenue inadequacy is dealt with via an “uplift” payments to owners of financial transmission

rights that are funded either through surplus revenue from periods of excess congestion rent or

through transmission owners who pass the cost over to consumers via access charges [41]. In the

cases where the “uplift” payments are funded by surplus revenue, holders of financial transmission

rights are not guaranteed full payment. One main cause of this revenue inadequacy issue is the

lack of considerations for both short-run and long-run uncertainties during financial transmission

rights auctions and allocations, which are commonly implemented via deterministic approaches

[26]. Even without flexible technologies, the electric transmission network is not static due to

line de-ratings and outages. With the inclusion of flexible technologies that change the topology

and electrical properties of the network, the revenue inadequacy problem brought about by current

financial transmission rights implementation is likely to worsen. By neglecting the stochastic
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nature of the power system, financial transmission rights ignore the value of flexibility and do not

provide efficient signals for optimal investments in both flexible and conventional technologies. A

key open question for the design of financial rights for flexibility is to develop market mechanisms

to manage the uncertainties inherent in electricity operations [42]. At the very minimum, we

believe that this would involve the creation of multi-timescale reconfiguration markets for financial

transmission rights that goes as close to real time as possible, to enable market participants to

adjust their transmission rights portfolio as new information is available on the anticipated system

configuration.

The theoretical development of financial transmission rights has traditionally focused on its

use as a hedging mechanism for congestion cost. In recent years, there has been increased interest

in the use of long-term financial transmission rights to encourage efficient investment decisions

(e.g. [43] and [44]). [44] presents the results of several experiments on using long-term finan-

cial transmission rights for inducing efficient investment decision and finds that price signals from

long-term financial transmission rights do not provide consistent and efficient signals for invest-

ment and much is left up to the discretion of the transmission planner to interpret the price signal.

[43] combines concepts from long-term financial transmission rights literature with concepts from

performance-based regulation literature to propose a combined merchant-regulatory framework

for transmission. The proposed mechanism has the potential of being a highly flexible insti-

tutional framework for transmission investment as depending on the nature of the transmission

investment, a merchant-based approach or performance based regulatory approach might be more

suitable. Despite some interesting results that have been presented in current literature, there re-

main many open research questions as to how long-term financial transmission rights need to be

designed to provide efficient price signals for investment. The design of well-functioning long-

term financial rights mechanism is a second key challenge for the design of financial rights for

flexibility.
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3.4 Conclusions

In this part of the dissertation, we illustrate how flexible technologies have reduced the economies

of scale of transmission sector. Models were developed to account for the value of operational

flexibility and investment flexibility in making investment decisions. These models were used to

demonstrate impediments to flexibility in the transmission sector and to make policy recommen-

dation. Using simple case studies, we demonstrated the importance of not only adopting flexible

operational and market framework, but also the importance of accounting for these flexibility in

making investment decisions. In addition, we demonstrated the need for loads to participate more

actively in electricity markets, both in short-term markets and long-term markets, and presented a

preliminary framework for how a long-term market can be designed to provide more information

for system planner and to enable long-term investment risk-sharing. Finally, we identified some

challenges in designing financial rights for transmission flexibility.

Several initial policy recommendations were made throughout this part of the dissertation. In

the next chapter, we discuss these recommendations in the context of wholesale electricity market

design and highlight how we will tackle some of these issues in the rest of the dissertation.

3.5 Appendix 1: Investment Cost

Investment cost has a huge influence on the overall investment decision. The investment cost for

new transmission capacity expansion and flexible reactance are calculated based on the following

assumptions.

The transmission line cost was calculated using the following cost assumptions:

• Investment Cost: $1000 per MW-mile [29]

• Length of transmission line is 200 miles

• 10 % interest rate

• 20-year life-time of investment
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There is a lack of detailed investment cost information for flexible reactance devices and hence we

had to use the limited information we can find to make a best faith estimate. The flexible reactance

device investment cost was calculated using the following cost assumptions for TCSC:

• Investment Cost: $135/kVAR[31]

• The MVar operating range of TCSC can be calculated using the following formula[31]:

Operating Range = XC
Ks
line

Sbase
(3.3)

where Xc is the maximum series capacitor reactance in pu, Kline is the thermal line limit of

the transmission line, and Sbase is the MVA base power (100 MVA in this case).

• 10% interest rate

• 20-year life-time of investment

The investment cost assumption for the transmission line used is the lower end of the cost given

in the referenced source. The resulting investment costs used in this case study are:

Table 3.3: Annualized Investment Costs

Annualized Investment Cost
New Line Investment $ 23k/MW

Flexible Reactance Device in Line 1 $ 40M/pu flexible reactance
Flexible Reactance Device in Line 2 $ 32M/pu flexible reactance
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Chapter 4

Implications for Wholesale Electricity

Market Design

In the last two chapters, we used simple models and case studies to highlight potential impedi-

ments to flexibility in the transmission sector. Many of the policy recommendations made are not

transmission specific, but involved changing the way the overall electricity markets are designed.

In this chapter, we provide a broader discussion of the recommendations in the context of whole-

sale electricity market design. In particular, we focus on how these recommendations influence

our modeling in the rest of this dissertation.

4.1 Need to Allow for Active Participation of Load in Wholesale Electricity Mar-
kets

Traditionally, electricity loads are considered to be inelastic and do not actively participate in

wholesale electricity markets. This lack of load flexibility often results in large volatility in

wholesale electricity prices and made it easier for generators to exercise market power [45]. In

recent years, the use of demand response programs has become increasingly popular in the United

States. These demand response programs are typically interruptible load programs where con-

sumers agree to reduce their energy use when requested by the system operator during certain
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system conditions.

In the future electricity grid, load is expected to be more elastic both in the short-term and in

the long-term. In short-term operation, the use of technologies such as smart metering, smart ap-

pliances, and electric vehicles could provide consumers with the ability to more actively respond

to electricity prices. In long-term planning, load serving entities can invest in distributed gener-

ations or energy-efficiency programs to gain more control over their energy needs. Furthermore,

should any of the proposed transactive retail markets be implemented, load serving entities will

have more information and ability to provide flexibility in the wholesale markets.

With these changes in the future, we believe that load should be allowed to provide flexible

bids into the electricity markets. Therefore, in the rest of this dissertation, we model double-

sided markets where loads are allowed to actively participate in both forward and spot wholesale

markets.

4.2 Need to Co-model Operational Decisions and Investment Planning

As demonstrated and discussed in the earlier chapters, there is a gap between investment planning

and operational practices in the electricity industry. Investment planning is often done for the

worst case scenarios. For instance, generation capacity planning is done to meet peak load and

transmission planning is done to meet N-2 reliability. The issue with worst case planning strategies

is that they often result in highly conservative investment decisions that do not account for the

value of flexibility.

With the availability of new technologies, the future electricity grid is likely to be more flex-

ible. In addition to the demand flexibility discussed in the previous section, additional grid flexi-

bility can be introduced via smart transmission and distribution technologies. Advanced control,

communication, and sensing infrastructures can also be used to provide system operators with

more flexibility to quickly respond to changing grid conditions. With the increasing flexibility,

it becomes increasingly important for investors and system planners to take into account oper-

ational flexibility in making investment decisions. This dissertation attempts to bridge the gap

48



between operational decisions and investment planning by co-modeling operational and invest-

ment decision-making.

4.3 Need to Design Forward Energy Markets for Better Resource Adequacy and
Risk Sharing

One area of wholesale market design that has received significant attention in recent years is the

design of long-term markets for generation resource adequacy. There are several ways in which

different regions have attempted to tackle the resource adequacy problem, but there is no clear

consensus as to what is the best method to ensure long-term resource adequacy. In this section,

we will discuss some of these strategies and describe the strategy proposed in this dissertation.

In some areas, long-term resource adequacy is managed through long-term bilateral contracts

between generators and load serving entities. The key issue with using bilateral contracts is that

the details of such contracts are often private, and hence information that might be useful for the

long-term planning of other stakeholders are not made public. For example, in ERCOT, 90% of

generation is contracted for ahead of the spot market but the contract details are not provided to

the “public, regulators, and ERCOT’s market monitor” [46]. Given that there are often strong sub-

stitutionary effects among generation and transmission investment options, the lack of availability

of contract details makes it very difficult to make efficient investment decisions.

In northeastern United States, forward capacity markets are used to ensure long-term resource

adequacy. The way forward capacity markets work is that the system operators dictate how much

capacity each load serving entity is required to purchase in the forward market based on its forecast

of future peak load. The effectiveness and efficiency of forward capacity markets as a tool for

resource adequacy is a topic of debate [47][48]. One of the key criticisms of this strategy is that

the capacity requirements are determined based on “worst case” scenarios (e.g. peak load), and

hence do not fully account for the potential of operational flexibility.

In some other regions, long-term resource adequacy is tackled using forward energy-only mar-

kets. These forward energy markets can come in different forms. In Columbia, the forward energy

49



market uses physical contracts where generators are required to physically deliver the amount of

energy contracted [49]. In Nordpool, the forward energy market uses financial contracts where no

physical delivery of energy is involved [50]. Whether such energy-only forward markets are able

to ensure long-term resource adequacy is still an open question.

In this dissertation, we propose the use of long-term markets for energy (e.g. 5 years ahead)

with mandated participation of load and/or generators. Load serving entities should be required

to procure their long-term forecasted electricity demand that should be within a certain range

of the actual realized demand. For example, load serving entities could be required to procure

sufficient generation 5 year ahead such that the actual required demand falls within plus or minus

15% of the procured demand. In order to encourage load serving entities to provide as accurate

a forecast as possible, the load serving entities would be penalized if the demand falls outside

the plus or minus 15% range. The rationale behind this penalty is that the load serving entities

should be penalized for the underinvestment or overinvestment that occurs due to vastly inaccurate

forecasts. A similar regulation should be put in place for generators, where generators are required

to contract out a certain percentage of their generation via long-term contracts and be penalized

for not meeting those needs. A preliminary framework showing the information exchange for the

long-term market is shown in Figure 4.1, where λforward is the forward price of electricity and π

is the future marginal penalty that the generation or load serving entities will face if the contracted

quantity in the forward market is vastly different from the spot. For example, the penalty to be paid

by the load serving entity when real time market has cleared is given by the following equation:

πmax(|Pd,forward − Pd,spot| − ε, 0) (4.1)

where Pd,forward is the contracted long-term demand, Pd,spotis the actual realized demand during

the spot market, and ε is the forecast error tolerance (e.g. 15% of Pd,forward). The load serving

entity will only be penalized if the forecast is off by a certain tolerance level.

The benefit of such a system is that it provides bounds to the uncertainty that investment

planners face in making investment decision. Information regarding the bounds on uncertainty
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Figure 4.1: Preliminary framework of Information Exchange for Long-Term Market

and on how much customers are willing to pay for demand can allow investment planners to

make more efficient and flexible investment decision. In addition, the cost of underinvestment or

over-investment is shared by the stakeholders. The framework described above is a preliminary

proposal and more work needs to be done to provide a more detailed evaluation of different market

designs for long-term markets in the electricity sector.

In the rest of this dissertation, we pay particular attention to the design of forward energy

markets. In particular, we test the long-term energy market with mandated participation proposed

in this section.

4.4 Develop Robust Modeling Tools to Manage Complexity

As mentioned frequently throughout the previous chapters, the future electricity grid is likely to

have a greater diversity of technologies. A result of this greater diversity is that power system

operation and planning models will get increasingly complex. In addition to capturing the com-
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plexity brought about by the new technologies, market models for the future electricity grid need

to capture the temporal and spatial complexity of the electricity industry. We need to develop tools

to allow us to model multi-timescales markets with stakeholders operating at different levels of

aggregation and with different level of technological sophistication.

In recent years, various tools have been developed to capture some of these complexity in

electricity markets. Some of the major tools developed include the AMES wholesale power market

testbed and the Electricity Market Complex Adaptive System (EMCAS) software. The AMES

testbed is an open source software developed at Iowa State University [51]. This testbed focuses

on the modeling of the FERC Standard Market Design. The EMCAS software is a commercial

software developed by Argonne National Laboratory [52]. This software captures various aspects

needed to model current electricity market design, including the handling of multi-timescales

markets. However, with its current feature set, it still does not provide the features required to

capture all the complexity of future electricity markets.

Even though there are tools being developed to better model electricity markets, these tools

are still limited in scope and do not truly provide sufficient modeling flexibility to capture the

complexity of the future electricity grid. In the rest of this dissertation, we contribute to the

development of robust modeling tools for market design of the future electricity grid.
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Part II

Temporal and Spatial Decomposition

for Electricity Market Design
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Chapter 5

Mathematical Decomposition for Power

System Operation and Planning

In Part I of this dissertation, we focused our study on impediments towards flexibility in the trans-

mission sector. However, many of the policy recommendations made are not transmission specific,

but involve changing the way the overall power system markets and operations are designed. In

this part of the dissertation, we broaden our focus and extend Model 1 in Part I of the disserta-

tion to include flexible generation and demand. Instead of limiting our case studies to simple test

system, in this part of the dissertation, we use mathematical decomposition to directly deal with

both the institutional and computational complexity of the power system operation and planning

problem.

The overall goal of this part of the dissertation is to demonstrate how mathematical decompo-

sition can be used to not only manage the computational complexity of the power system opera-

tion and planning problem, but also to guide market design for distributed decision-making. We

demonstrate the use of Non-Convex Generalized Benders Decomposition and Lagrangean Decom-

position to temporally and spatially decompose a power system operation and investment problem

with flexible transmission, generation, and demand devices that is posed as a non-convex Mixed

Integer Non-Linear Programming(MINLP) problem. In our case study, we demonstrate how the
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temporally decomposed problem can be solved faster than the original problem, even when the

original problem is solved using state of the art commercial MINLP solver. In addition, a signif-

icant focus of the case study is to demonstrate how mathematical decomposition techniques can

be used to gain economic insights that can guide electricity market design. In the first half of this

chapter, we provide an overview of the theory behind Benders decomposition and Lagrangean

decomposition and discuss the various economic interpretation of the different decomposition

strategies. In the second half, we combine the two decomposition techniques to temporally and

spatially decompose a power system operation and investment problem.

This part of the dissertation is based on a working paper [53].

5.1 Mathematical Decomposition and Its Economic Interpretation

Optimization decomposition algorithms have traditionally been used as a way to handle large-scale

optimization problem. With advances in the field of computing, increasingly complex decompo-

sition algorithm has been developed and implemented in recent years to handle larger and more

complicated optimization problems. Most of these newer decomposition strategies are extensions

of the three major traditional decomposition methods: Dantzig-Wolfe Decomposition [54], Ben-

ders Decomposition [55], and Lagrangean Decomposition [56]. The appropriate decomposition

algorithm to use depends on the structure of the problem. All of these decomposition strategy

has been used in various work to improve the computational efficiency of different aspects of the

power system planning problem [57–59], but few has highlighted the economic interpretation of

the decomposition. Therefore, in the remaining of this section, we provide a brief overview of

the key decomposition strategies used in this paper (i.e. Benders Decomposition and Lagrangean

Decomposition) and a discussion of the economic interpretation and market insights that can be

gained through mathematical decomposition.
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5.1.1 Generalized Benders Decomposition

Generalized Benders Decomposition (GBD) is particularly appropriate for problems with compli-

cating variables1 in the form of [55]:

min
x,y

f(x, y) s.t. G(x, y) ≤ 0 x ∈ X y ∈ Y (5.1)

where y is the complicating variable(s) and the problem is such that when y is fixed, the problem

becomes a much easier optimization problem. Many non-linear programming and mixed-integer

programming problems can be written in the form above. An extensive exposition of GBD can be

found in [55]. For the purpose of this paper, we will focus on the case where:

min
x,y

fx(x) + fy(y) (5.2)

s.t. G(x, y) ≤ 0 Gx(x) ≤ 0 Gy(y) ≤ 0 (5.3)

x ∈ X y ∈ Y (5.4)

In the context of the power system operation and planning problem, these complicating variables

(y) are typically investment capacity variables (including generation, transmission and responsive

load capacity), while the non-complicating variables (x) are the operational variables. Therefore,

fy(y) and fx(x) are the investment cost and operational cost of the system respectively andGy(y),

Gx(x), and G(x, y) represent the investment constraints, operation constraints, and coupling con-

straints respectively.

The fundamental idea behind GBD is that the master problem provides the lower bound of the

original objective function while the subproblems provide the upper bound [60]. The algorithm

ends when the upper bound and lower bound converge to within a certain tolerance limit. A cutting

plane approach is used to solve the master problem, where constraints (‘cuts’) are iteratively added

to bound the feasible set or objective function of the original problem based on the results of the
1It is often possible to convert problems with complicating variables to problems with complicating constraints by

adding new variables. However, for certain problem types this conversion might require the introduction of too many
new variables, which makes the decomposition inefficient
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subproblem(s). Theoretically, the master problem is the projection of the problem from the full

variable space, onto the y space2. In our context, the master problem is the investment master

problem:

min
y

fy(y) + FOp (5.5)

s.t. Gy(y) ≤ 0 (5.6)

w(y?,j) + λjInFea(y − y?,j) ≤ 0 ∀ j ∈ I (5.7)

fx(y?,h) + λhOpt(y − y?,h) ≤ FOp ∀ h ∈ V (5.8)

y ∈ Y (5.9)

where FOp is the master problem estimation of the operational cost of the system(fx(x)). In (5.7),

I is the set of Feasibility Benders Cut where each cut represents the first order approximation

of the objective function (i.e. w(.)) of a feasibility check that was found to be infeasible, y?,j

represents the investment variables obtained from feasibility check j, and λjInFea is the vector of

dual variables obtained from feasibility check j. Similarly, in (5.8), V is the set of Optimality

Benders Cut where each cut represents the first order approximation of the objective function

(i.e. fx(.)) of one iteration of the operational subproblem, y?,h represents the investment variables

obtained from solving the h-th iteration of the operational subproblem, and λhOpt is the vector

of dual variables obtained from solving the h-th iteration of the operational subproblem. The

feasibility check and operational subproblem will be defined next.

The feasibility check is used to ensure that there exists a feasible solution to the operational

subproblem for the current investment decision discovered by the master problem. The feasibility

check in this case can be written as:

w = min
x,e

1T e (5.10)

s.t. e ≥ 0 (5.11)
2see [61] for a more theoretical exposition of the decomposition strategy
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Gx(x) ≤ 0 (5.12)

G(x, y?) ≤ e (5.13)

x ∈ X (5.14)

where e is the vector of slack variables used to relax the coupling constraints and y? is the invest-

ment decision discovered by the master problem in the latest iteration. If any of the slack variables

are greater than zero, the operation subproblem is infeasible and a feasibility Benders Cut is added

to the master problem as shown in (5.7). If the operational subproblem is shown to be feasible, we

continue to solve the actual subproblem, which can be written as:

min
x

fx(x) (5.15)

s.t. Gx(x) ≤ 0 (5.16)

G(x, y?) ≤ 0 (5.17)

x ∈ X (5.18)

An optimality Benders Cut is added to the master problem as shown in (5.8) each time the opera-

tional subproblem is solved. In the context of power system operation and planning, the operation

subproblem can typically be decomposed into a series of individual optimal power flow problems.

This will be demonstrated later in this part of the dissertation.

Various extensions of GBD has been developed to improve the implementability and perfor-

mance of GBD for problems with different characteristics (i.e. binary variables, non-convexities

etc.). For this paper in particular, an extension of the GBD for non-convex MINLP presented in

[62] is used to handle the non-convexity of the power system planning and operation problem

used. This will be discussed further in Section 5.2.
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5.1.2 Lagrangean Decomposition

Unlike GBD, Lagrangean Decomposition is suitable for problems with complicating constraints.

In the context of power system operation and planning, these arise from system level constraints

such as power balances in the system. Therefore, Lagrangean Decomposition is commonly used

to spatially or functionally decompose power system problems (e.g. [16, 63]). Lagrangean De-

composition is a special case of Lagrangean Relaxation where instead of directly relaxing the

complicating constraints, we assign each complicating constraint to one of the subproblems, du-

plicate the ‘outside’ variable that appears in the complicating constraint, and add the new com-

plicating constraint equating the duplicated variables to the objective function using the penalty

method[56]. This will be demonstrated in the simple example below:

min
a,b,ŝ

fa(a) + fb(b) + fs(ŝ) (5.19)

s.t Ga(a) ≤ 0 (5.20)

Gb(b) ≤ 0 (5.21)

Gs(a, b, ŝ) ≤ 0 (5.22)

a ∈ A, b ∈ B, ŝ ∈ Ŝ (5.23)

where a and b are the decision variables for zone A and zone B respectively, while ŝ contains

the system-wide variables (i.e. zone A + B) . Similarly, (5.20), (5.21) and (5.22) are the zone A

constraints, zone B constraints, and system-wide constraints respectively. Now, we assume that

there is a system operator that can be tasked with maintaining the system variables and constraints

(e.g the Independent System Operator). In this case, we ‘assign’ the system constraints to the

system operator and double the non-system variables that appear in the system constraints. The

new overall problem becomes:

min
a,b,ŝ,as,bs

fa(a) + fb(b) + fs(ŝ) + λa(as − a)

+λb(bs − b) (5.24)
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s.t Ga(a) ≤ 0 (5.25)

Gb(b) ≤ 0 (5.26)

Gs(as, bs, ŝ) ≤ 0 (5.27)

a ∈ A, b ∈ B, ŝ ∈ Ŝ (5.28)

where as and ab are duplicated variables of a and b. Typically, not all the variables in a and b will

be duplicated, as only those that appear in the complicating constraints will need to be duplicated.

The constraints maintaining equality between the duplicated variables are added to the objective

function with penalty terms (λa and λb). The new overall problem can then be easily decomposed

into three subproblems. First, the system operator subproblem is:

min
as,bs,ŝ

fs(ŝ) + λa(as) + λb(bs) (5.29)

s.t Gs(as, bs, ŝ) ≤ 0 (5.30)

as ∈ A, bs ∈ B, ŝ ∈ Ŝ (5.31)

The subproblem for zone A is:

min
a

fa(a)− λa(a) (5.32)

s.t Ga(a) ≤ 0 a ∈ A (5.33)

The subproblem for zone B is:

min
b

fb(b)− λb(b) (5.34)

s.t Gb(b) ≤ 0 b ∈ B (5.35)

The subproblems above can be solved iteratively where the multiplier λa and λb are updated

at each iteration using a multiplier update method such as the sub-gradient method [64] or the

cutting-plane method [65]. The sub-gradient method of multiplier update used in this dissertation
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is shown below:

λk+1 = λk + αk(x
k
a − xkb ) (5.36)

where λk is the multiplier at the kth iteration, xa and xb are the duplicated variables that we want

to equalize, and αk is the kth step size. Prices are adjusted until the constraints maintaining the

equality between the duplicated variables are fulfilled.

5.1.3 Economic Interpretation of Decomposition

The role of mathematical decomposition in system design has received increasing notice in recent

years. From network architecture [64] to auction design [66], mathematical decomposition can be

used to provide insights into how a complex system or problem can be distributed over multiple

decision makers.

Benders Decomposition is suitable for vertical decomposition of industry/market structure.

In terms of power systems, examples of vertical decomposition include decomposing the power

system operation and planning problem into an investment subproblem and an operational sub-

problems, and separating the power system operation problem into independent unit commitment

and economic dispatch problems. In addition, Benders Decomposition provides additional in-

formation about the interactions among variables via the cutting planes (i.e. the optimality and

feasibility cuts), that could guide pricing decision in an auction/market setting. These interactions

have significant implications in an investment setting due to the complementaries or substitution

effects of different investment options being considered. Cutting planes reduce the feasible region

of the solution which translate to constraining investment options based on information obtained

through previous round results. In combinatorial auctions, the dual variable associated with a cut

is associated with the opportunity cost of accepting a bid over the others [67]. This interpretation

of Benders Cuts will be demonstrated further in the next chapter.

Lagrangean Decomposition has a particularly interesting market interpretation, with strong

links to double-sided auction theory. It is frequently likened to a tatonnement procedure [68][69],

a price discovery mechanism where prices are iteratively adjusted until supply and demand of
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a product is balanced. Using the earlier Lagrangean Decomposition example, as and bs can be

interpreted as the system’s demand for a certain resource, while a and b can be interpreted to be

the supply of the resource by zone A and zone B. The prices are adjusted until supply is equal to

demand(i.e. as = a and bs = b).

Besides the convenient pricing mechanism, Lagrangean Decomposition also provides a frame-

work to explore different potential market structures for distributed decision-making. The flexi-

bility in assigning variables and constraints to different subproblems allows us to create different

market structures with different exchanges of information and different services/resources being

priced. Unlike Benders Decomposition, Lagrangean Decomposition is suitable for horizontal de-

composition of industry/market structure, where the same function is distributed across multiple

parties. In terms of power systems, such horizontal decomposition includes distributing power

system operation decisions across individual nodes or power system investment decisions across

multiple stakeholders. Nested Lagrangean Decomposition can also be used to design more com-

plicated, hierarchical market structures (e.g. a three-tier market structure with nodal exchange,

zonal exchange, and system-wide exchange). Furthermore, combining Lagrangean Decomposi-

tion with other mathematical decomposition techniques, such as Benders Decomposition, could

potentially lead to richer market interpretations.

A demonstration of such economic interpretations on a temporally and spatially decomposed

power system investment and operation problem will be presented in the next chapter.

5.2 Power System Investment Problem with Flexible Transmission, Generation
and Demand Devices

In this section, we introduce the power system investment problem with possible investments

in wind generation, new transmission lines, flexible reactance devices for existing transmission

lines (e.g Thyristor Controlled Series Compensator), and responsive load capacity. Two possible

decompositions of this problem is also presented. First, the full problem formulation will be given.

The objective function is to maximize social welfare accounting for load utility, operational
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cost, and investment cost. Writing it in standard form, the maximization problem becomes the

following minimization problem:

min
Xy

invt,X
s,y
Op

Y∑
y=1

e−ry

{
S∑
s=1

Pr(s)
[ NG∑
g=1

cg(P
s,y
G,g) (5.37)

−
ND∑
d=1

(
Ud(P

s,y
D,d)− closs,d(P

s,y
loss,d)

)]
(5.38)

+

NL̂∑
l̂=1

cinvt,l̂(b
y

line,l̂
) +

NL∑
f=1

cinvt,f (Ky
F lex,f ) (5.39)

+

NG∑
g=1

cinvt,g(K
y
G,g) +

ND∑
d=1

cinvt,d(K
y
D,d)

}
(5.40)

where Xy
invt and Xs,y

Op are the set of investment and operational decision variables respectively.

PG,g,PD,d and Ploss,d represent the power generation, supplied demand, and unmet demand re-

spectively. bline,l̂, KFlex,l, KG,g, and KD,d are the binary variable indicating whether a line is

built, new flexible reactance capacity, new generation capacity, and new responsive demand ca-

pacity respectively. r is the interest rate. Y is the total number of investment time period, while

S is the total number of scenario in each time period. Pr(s) is the total number of times scenario

s occurs in an investment time period. NG, ND, NL̂,NL are the number of generators, number of

loads, number of potential new lines, and number of existing lines respectively. cg, Ud and closs,d

are the generation cost, demand utility, and cost of loss load respectively, while cinvt,l̂, cinvt,f ,

cinvt,g and cinvt,d are the annualized new line investment cost, flexible reactance investment cost,

generator investment cost and responsive load capacity investment cost respectively.

For this problem, the operational aspect of the problem is captured using a DC power flow.

Therefore, the system level constraints in this problem include the nodal power balance equations

and the power flow equations. The nodal power balance constraints can be written as:

GP s,y
G + Sfs,y

line −DP s,y
D,d + DP s,y

loss,d = 0 ∀ s, y (5.41)

where the bolded variables indicate matrices/vectors. G and D are 0-1 matrices mapping the
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vectors of generation and demand variables to the nodes. S is a matrix that is +1 for transmission

lines ending at the node and -1 for transmission lines starting at the node. fline, PG, PD,d, and

Ploss,d are vectors of transmission line flows, power generation, power demand supplied, and

unmet demand respectively.

The power flow equations are written as:

f t,yline,l =
θs,yl,to − θ

s,y
l,from

xl − xs,yF lex,l
∀ l, s, y (5.42)

−M(1− by−dl̂
line,l̂

) ≤ fs,y
line,l̂

−
θs,y
l̂,to
− θs,y

l̂,from

xl̂
≤M(1− by−dl̂

line,l̂
) ∀ l̂, s, y > dl̂ (5.43)

where θl,to and θl,from are the nodal angle at the ending and starting nodes of the transmission

line respectively. fline,l is the line flow for line l. xl is the reactance of the transmission line and

xs,yF lex,l is the flexible reactance setting of the line. dl̂ is the construction delay of the new line,

and the rest are as defined earlier. The power flow constraints for new lines are written as big-M

constraints (where M is a large constant), such that the constraint for each line is only enforced if

the line is built.

The generator constraints are written as follows:

PminG,g ≤ P
s,y
G,g ≤ P

max
G,g + γs,yw Ky

G,g ∀ g, s, y (5.44)

Ky−1
G,g ≤ K

y
G,g ≤ KG,max,g ∀ g, y > 1 (5.45)

0 ≤ Ky
G,g ≤ KG,max,g ∀ g, y = 0 (5.46)

where γw is a parameter that captures the level of wind power available at any period of time

if the generator is a wind generator. γw is any value between 0 and 1 for wind generators, and

1 otherwise. PminG,g , PmaxG,g , and KG,max,g are the minimum generation, maximum generation,

and maximum investment in generation capacity for generator g respectively. Constraint (5.44)

is the operational constraint of the generators, while constraints (5.45) and (5.46) are investment
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constraints of the generators.

The load constraints are as follows:

P inelas,s,yD,d −Ky
D,d − P

t,y
loss,d ≤ P

s,y
D,d ≤ P

max,s,y
D,d ∀ d, s, y (5.47)

Ky−1
D,d ≤ K

y
D,d ≤ KD,max,d ∀ d, y > 1 (5.48)

0 ≤ Ky
D,d ≤ KD,max,d ∀ d, y = 0 (5.49)

where PmaxD,d is the maximum load demanded at the given time period, P inelasD,d is the inelastic

load demanded at the given time period, KD,max,d is the maximum investment in responsive load

capacity, and the rest are as defined earlier. Constraint (5.47) is the operational constraint of the

loads, while constraints (5.48) and (5.49) are investment constraints for the responsive loads.

The line constraints are:

−Kline,l ≤ fs,yline,l ≤ Kline,l ∀ l, s, y (5.50)

−Kline,l̂b
y−dl̂
line,l̂

≤ fs,y
line,l̂

≤ Kline,lb
y−dl̂
line,l̂

∀ l̂, s, y > dl̂ (5.51)

fs,y
line,l̂

= 0 ∀ l̂, s, y ≤ dl̂ (5.52)

by−1

line,l̂
≤ by

line,l̂
∀ l̂, y > 1 (5.53)

0 ≤ by
line,l̂

∀ l̂, y = 0 (5.54)

by
line,l̂

∈ {0, 1} ∀ l̂, y (5.55)

where Kline,l is the line flow capacity and the rest or the variables are as defined earlier. (5.50) is

the operational line flow constraint for existing lines, while (5.51) and (5.52) are the operational

line flow constraints for new potential lines. (5.53), (5.54) and (5.55) are the investment constraints

for new potential lines.

Last but not least, the flexible reactance constraints are:

0 ≤ xs,yF lex,l ≤ K
y
F lex,l∀ l, s, y (5.56)
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Ky−1
Flex,l ≤ K

y
F lex,l ≤ 0.5xl∀ l, y > 1 (5.57)

0 ≤ Ky
F lex,l ≤ 0.5xl∀ l, y = 0 (5.58)

where (5.56) is the operational flexible reactance constraint and (5.57) and (5.58) are the flexible

reactance investment constraints.

5.2.1 Temporal Decomposition

The first decomposition strategy we implemented is to decompose the full problem formulation

above temporally to separate the investment problem from the operational problem. Since the

problem above is non-convex, we applied the Non-Convex GBD algorithm presented in [62] to

this problem. The key difference between the Non-Convex GBD and the traditional GBD is that in

Non-Convex GBD the GBD iteration is applied to a convex estimation of the original problem (i.e.

the Lower Bounding Problem (LBP)) instead of the original problem. GBD applied to the LBP

provides a series of valid investment decisions and lower bounds to the original problem, which

is then used to construct the primal subproblems (PP) to find valid upper bounds to the original

problem[62].

Convex Relaxation to Obtain Lower Bounding Problem(LBP)

In the problem described above, the non-convex constraint is constraint (5.42). By rearranging the

constraint, we observe that the constraint is a bilinear equation:

f s,yline,lxl − f
s,y
line,lx

s,y
F lex,l = θs,yl,to − θ

s,y
l,from (5.59)

In order to convert the non-convex bilinear equation to a convex equation, we replace the bilin-

ear function with its McCormick relaxation. Let vs,yl = fs,yline,lx
s,y
F lex,l, the concave and convex

envelopes for the bilinear constraint are as follows:

vs,yl ≥ Kline,lx
s,y
F lex,l +Ky

F lex,lf
s,y
line,l −K

y
F lex,lKline,l (5.60a)
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vs,yl ≥ −Kline,lx
s,y
F lex,l (5.60b)

vs,yl ≤ −Kline,lx
s,y
F lex,l +Ky

F lex,lf
s,y
line,l +Ky

F lex,lKline,l (5.60c)

vs,yl ≤ Kline,lx
s,y
F lex,l (5.60d)

The equations above are linear constraints when the investment variables are held fixed. The LBP

can then be obtained by replacing constraint (5.42) in the original full problem with equations

(5.60a - 5.60d) and the equation below:

fs,yline,lxl − v
s,y
l = θs,yl,to − θ

s,y
l,from (5.61)

Master Problem Formulation(MP)

The LBP is now a mixed-integer linear program. The MP of the LBP can be written as follows:

min
Xy

invt,ν

Y∑
y=1

e−ry

[ NL̂∑
l̂=1

cinvt,l̂(b
y

line,l̂
) +

NL∑
f=1

cinvt,f (Ky
F lex,f )

+

NG∑
g=1

cinvt,g(K
y
G,g) +

ND∑
d=1

cinvt,d(K
y
D,d)

]
+ ν (5.62)

s.t. (5.45), (5.46), (5.48), (5.49), (5.53)− (5.55), (5.57), (5.58)

w(X?,j
Invt) + λjInFea(XInvt −X?,j

Invt) ≤ 0 ∀ j ∈ I (5.63)

fx(X?,h
Invt) + λhOpt(XInvt −X?,h

Invt) ≤ ν ∀ h ∈ V (5.64)

where ν is the master problem estimation of the operational cost and (5.63) and (5.64) are the

infeasibility cuts and optimality cuts as in (5.7) and (5.8). If there are no changes in master

problem solutions between iteration, the master problem can be forced to generate new integer
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realization by adding the following constraint to the problem above:

∑
l̂,y∈{l̂:by,i

line,l̂
=1}

by,i
line,l̂

−
∑

l̂,y∈{l̂:by,i
line,l̂

=0}

by,i
line,l̂

≤ |{l̂ : by,i
line,l̂

= 1}| − 1 ∀i ∈ I ∪ V

Primal Bounding Problem (PBP)

The PBP is obtained by fixing the investment variables in the LBP. The resulting problem is:

min
Xs,y

Op

Y∑
y=1

e−ry
S∑
s=1

Pr(s)
[ NG∑
g=1

cg(P
s,y
G,g)−

ND∑
d=1

(
Ud(P

s,y
D,d)− closs,d(P

s,y
loss,d)

)]
(5.65)

s.t. (5.41), (5.43), (5.44), (5.47), (5.50)− (5.52), (5.56), (5.60a)− (5.60d) (5.66)

Note that the problem above naturally decomposes into S × Y number of operational subprob-

lems (PBPs,y) for each time period (s, y), s ∈ S, y ∈ Y . The results of the individual operational

subproblems are combined3 and used to derive the optimality cuts, which is the first order approx-

imation of the operational objective function with respect to the investment variables.

Feasibility Problem(FeaP)

The feasibility problem is similar to the PBP except that slack variables are added to all the in-

equality constraints and the objective function is to minimize the sum of slack variables(see (5.5)).

In this case, we run the feasibility problem only if any of the PBP subproblem is infeasible. Sim-

ilar to PBP, FeaP can be decomposed into S × Y number of feasibility subproblems (FeaPs,y).

The results of the feasibility subproblems are used to derive the feasibility cuts.
3In this case, it takes a simple summation of objective function values and Lagrange multipliers for the individual

operational subproblems to form the optimality cuts
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Figure 5.1: Overview of Algorithm Flow for Temporally Decomposed Problem

Primal Problem(PP)

The PP is just the original full problem with the investment variables fixed (i.e. the non-convex

version of the PBP).

min
Xs,y

Op

Y∑
y=1

e−ry
S∑
s=1

Pr(s)
[ NG∑
g=1

cg(P
s,y
G,g)−

ND∑
d=1

(
Ud(P

s,y
D,d)− closs,d(P

s,y
loss,d)

)]
(5.67)

s.t. (5.41)− (5.44), (5.47), (5.50)− (5.52), (5.56) (5.68)

As with the PBP and FeaP, the problem above naturally decomposes into S × Y number of oper-

ational subproblems(PPs,y) for each time period (s, y), s ∈ S, y ∈ Y .

The complete Non-Convex GBD Algorithm is presented in Algorithm 14 located at the end of

this chapter and a diagrammatic overview of the algorithmic flow for this temporally decomposed
4This is a simplified version of the algorithm presented in [62] that has been modified to fit our needs
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problem is shown in Fig. 5.1.

5.2.2 Spatial and Temporal Decomposition

In this section the temporal decomposition above is extended further by applying Augmented

Lagrangean Decomposition, also known as the Method of Multipliers. Augmented Lagrangean

Decomposition is an extension of the basic Lagrangean Decomposition approach described earlier

(See [70] for an extensive discussion of this algorithm). The main difference between Augmented

Lagrangean Decomposition and the Lagrangean Decomposition approach described earlier is the

addition of a quadratic term to the objective function, which makes the objective function strictly

convex. Applying Augmented Lagragean Decomposition to the earlier example in Section 5.1,

the objective function (5.24) will become:

min
a,b,ŝ,as,bs

fa(a) + fb(b) + fs(ŝ) + λa(as − a) + λb(bs − b)

+
γ

2
‖ as − a ‖2 +

γ

2
‖ bs − b ‖2 (5.69)

where γ is a parameter that can be adjusted to encourage convergence. The new objective function

above is no longer separable due to the quadratic term. However, there are various strategies that

have been developed to deal with this non-separability [70]. The method we adopt in this part of

the dissertation is the alternating direction method. In this method, the quadratic term is duplicated

and the subproblems are solved sequentially by fixing the external variables. Going back to the

example in Section 5.1, the objective functions of the subproblems will now be:

Subproblem for System Operator:

min
ŝ,as,bs

fs(ŝ) + λa(as) + λb(bs)

+
γ

2
‖ as − ak ‖2 +

γ

2
‖ bs − bk ‖2 (5.70)
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Subproblem for zone A:

min
a
fa(a)− λa(a) +

γ

2
‖ ak+1

s − a ‖2 (5.71)

Subproblem for zone B:

min
b
fb(b)− λb(b) +

γ

2
‖ bk+1

s − b ‖2 (5.72)

where the superscripts k/k + 1 indicate fixed variables. The constraints remain the same as those

shown in Section 5.1. Using the alternating direction method, we alternate between solving the

system operator problem and solving the zonal subproblems. At each iteration k, we fix the exter-

nal variables to the solution obtained from the previous iteration of the external subproblem(s).

The decomposition approach just described is used to spatially decompose the temporally

decomposed problem shown in Section 5.2.1. Augmented Lagrangean Decomposition is used to

separate each node’s problem.

Spatial Decomposition of Operational Problem

First, we decompose the operational problem PBPs,y. In order to simplify the decomposition, we

introduce a new variable type, which represents the net nodal import:

Es,y
p = DP s,y

D,d −DP s,y
loss,d −GP s,y

G ∀ s, y (5.73)

where Es,y
p is a p×1 vector of nodal import where p ∈ P , P is the number of nodes in the system.

We add constraint (5.73) to the operational problem and rewrite the system balance constraint

(5.41) with the new variable. PBPs,y becomes:

min
Xs,y

Op

e−ryPr(s)
[ NG∑
g=1

cg(P
s,y
G,g)−

ND∑
d=1

(
Ud(P

s,y
D,d)− closs,d(P

s,y
loss,d)

)]
(5.74)

s.t. (5.43), (5.44), (5.47), (5.50)− (5.52), (5.56)(5.60a)− (5.60d), (5.73)
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Sfs,y
line −Es,y

p = 0 ∀ s, y (5.75)

where (5.75) is the new nodal power balance equation. Now, the nodal export becomes our cou-

pling variable and hence we double the variable and rewrite the objective function of the problem

in the Augmented Lagrangean form (the constraints stay the same):

min
Xs,y

Op

e−ryPr(s)
[ NG∑
g=1

cg(P
s,y
G,g)−

ND∑
d=1

(
Ud(P

s,y
D,d)− closs,d(P

s,y
loss,d)

)]

+

P∑
p=1

[
λp(Ê

s,y
p − Es,yp ) +

γ

2
‖ Ês,yp − Es,yp ‖2

]
(5.76)

where Ês,yp is the duplicated variable. Now, we decompose the problem into a system level sub-

problem and nodal level subproblems for each node. The system level problem is in charge of

system level variables such as line flow, flexible reactance settings, and nodal angles, whereas the

individual nodes are in charge of nodal level variables such as generation and demand. The system

level problem (PBPsys) can be written as:

min
Xs,y

Op,Sys

P∑
p=1

[
λp(Ê

s,y
p ) +

γ

2
‖ Ês,yp − Es,y,kp ‖2

]
(5.77)

s.t. (5.43), (5.50)− (5.52), (5.56), (5.60a)− (5.60d), (5.75)

where XOp,Sys represents only the system level operational variables. The individual node sub-

problem (PBPp) can be written as:

min
Xs,y

Op,p

e−ryPr(s)
[NG,p∑
g=1

cg(P
s,y
G,g)−

ND,p∑
d=1

(
Ud(P

s,y
D,d)− closs,d(P

s,y
loss,d)

)]
− λp(Es,yp ) +

γ

2
‖ Ês,y,k+1

p − Es,yp ‖2 (5.78)

s.t. (5.44), (5.47), (5.73)
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where XOp,p represents only the variables in node p. NG,p and ND,p are the number of gener-

ators and number of loads in node p respectively. Note that the constraint set only contains the

corresponding constraints for generators and loads in node p.

The decompositions strategy for PPs,y is identical to the process above. The only difference

is that constraints (5.60a) - (5.60d) are replaced with (5.42).

Spatial Decomposition of Investment Problem

Next, we decompose the investment master problem (MP ) In this case, the complicating variables

are the generation and responsive load capacity investment decision variables. We duplicate the

generation and responsive load capacity investment decision variables and rewrite the objective

function of the MP in Augmented Lagrangean form:

min
Xy

invt,ν

Y∑
y=1

e−ry
{ NL̂∑

l̂=1

cinvt,l̂(b
y

line,l̂
) +

NL∑
f=1

cinvt,f (Ky
F lex,f )

+

NG∑
g=1

[
cinvt,g(K

y
G,g) + λG,g(K̂

y
G,g −K

y
G,g)

+
γ

2
‖ K̂y

G,g −K
y
Gg
‖2
]

+

ND∑
d=1

[
cinvt,d(K

y
D,d) + λD,d(K̂

y
D,d −K

y
D,d)

+
γ

2
‖ K̂y

D,d −K
y
Dd
‖2
]}

+ ν (5.79)

where K̂y
G,g and K̂y

D,d are the replicated generation and responsive demand capacity investment

variable respectively. Similar to the operational problem, we decompose the investment problem

into a system level subproblem and nodal level subproblems for each node. The system level

problem is in charge of transmission related investment variables, whereas the individual node

subproblems are in charge of their own nodal generation and demand investments. The system
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level problem (MPsys) becomes:

min
Xy

invt,s,ν

Y∑
y=1

e−ry
{ NL̂∑

l̂=1

cinvt,l̂(b
y

line,l̂
) +

NL∑
f=1

cinvt,f (Ky
F lex,f )

+

NG∑
g=1

[
λG,g(K̂

y
G,g) +

γ

2
‖ K̂y

G,g −K
y,k
Gg
‖2
]

+

ND∑
d=1

[
λD,d(K̂

y
D,d) +

γ

2
‖ K̂y

D,d −K
y,k
Dd
‖2
]}

+ ν (5.80)

s.t. (5.53)− (5.55), (5.57), (5.58)

w(X?,j
Invt,s) + λjInFea(XInvt,s −X?,j

Invt,s) ≤ 0 ∀ j ∈ I (5.81)

fx(X?,h
Invt,s) + λhOpt(XInvt,s −X?,h

Invt,s) ≤ ν ∀ h ∈ V (5.82)

where XInvt,s is the system level investment variables. The individual node investment subprob-

lems (MPp) can be written as:

min
Xy

invt,p,ν

Y∑
y=1

e−ry
{NG,p∑
g=1

[
cinvt,g(K

y
G,g)− λG,g(K

y
G,g)

+
γ

2
‖ K̂y,k+1

G,g −Ky
Gg
‖2
]

+

ND,p∑
d=1

[
cinvt,d(K

y
D,d)− λD,d(K

y
D,d)

+
γ

2
‖ K̂y,k+1

D,d −Ky
Dd
‖2
]}

+ ν (5.83)

s.t. (5.45), (5.46), (5.48), (5.49)

where XInvt,p represents the investment variables for node p. Once again, only the investment

constraints for the investments in node p is included in the problem.
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Price Update

The system operator is in charge of updating all the price signals λ in this problem. The updating

equation for the price signals is written as:

λk+1 = λk + γ(xk − xkd) (5.84)

where xd is the duplicated version of coupling variable x and γ is the same γ as used for the

quadratic terms in the Augmented Lagrangean version of the objective function. The choice of γ

affects the speed of convergence. In this paper, we use a dynamic updating scheme for γ [71]:

γk+1 =


γkτup ‖ rk ‖2 > µ ‖ qk ‖2

γk

τdown
µ ‖ rk ‖2 < ‖ qk ‖2

γk otherwise

(5.85)

where τup > 1, τdown > 1, and µ > 1 are parameters that sets the rate of change of γ, and rk and

qk are defined as follows:

rk = xk − xkd (5.86)

qk = γ(xkd − xk−1
d ) (5.87)

In order to speed up convergence, the γ for each coupling variable is allowed to evolve indepen-

dently according to the updating scheme above. In addition, for every 10 continuous iterations in

which there are no change in any of the γ, we reset all γ to:

γk+1 = (Njump)γ
0 (5.88)

where γ0 is the initial value of γ and Njump is the number of times in which there are no changes

in any of the γ for 10 continuous iterations. This heuristic was found to speed up convergence
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Figure 5.2: Algorithmic Flow for Spatially Decomposed Primal Problem

significantly for certain cases and will be discussed further in the next chapter.

The algorithmic flow for this problem, is very similar to the algorithmic flow for the tempo-

rally decomposed problem shown in Fig. 5.1. The main difference is that each of the operational

(PBP ,PP ) and investment subproblems (RMP ) are now broken down spatially into nodal sub-

problems. As an example, Fig. 5.2 illustrates the new algorithmic flow of the primal problem.
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Algorithm 1 Algorithm for Non-Convex GBD
1: Initialize Iteration Counters: m← 0 n← 1
2: Initialize Index Sets: I0 = V 0 = U0 ← ∅
3: Initialize Upper Bound: UB ← +∞
4: Initialize Bounds on LBP: UBLBP ← +∞

LBLBP ← −∞
5: Set Tolerances εs,y and ε
6: Initialize X1

Invt and Investment Cost (i.e. Investment only portion of MP’s objective function) C1
Invt

7: repeat
8: if m = 0 or (MP is feasible and LBLBP < UBLBP and LBLBP < UB− ε|LBLBP|) then
9: repeat

10: m← m+ 1
11: Solve PBPs,y for all (s, y), s ∈ S, y ∈ Y with XInvt = Xm

Invt

12: if All PBPs,y are feasible then
13: Add Optimality Cuts to MP
14: Im ← Im−1 ∪m
15: if

∑
s,y objPBPs,y + Cm

Invt < UBLBP then
16: UBLBP←

∑
s,y objPBPs,y + Cm

Invt

17: X?
Invt ← Xm

Invt and m? = m
18: end if
19: else
20: V m ← V m−1 ∪m
21: Solve FeaPs,y for all (s, y), s ∈ S, y ∈ Y
22: Add Feasibility Cuts to MP
23: end if
24: Solve MP
25: if MP is feasible then
26: Set Xm+1

Invt to the new investment variables
27: LBLBP← objMP

28: Cm+1
Invt ← objMP − ν, where ν is MP ’s estimation of operational cost

29: end if
30: until LBLBP ≥ UBLBP or MP is infeasible
31: end if
32: if UBLBP < UB− ε|UBLBP| then
33: Solve PPs,y for all (s, y), s ∈ S, y ∈ Y with XInvt = X?

Invt

34: Um ← Um−1 ∪m?

35: if All PPs,y feasible with optimum value X?
Op and

∑
s,y objPPs,y < UB then

36: UB←
∑

s,y objPPs,y

37: Xop
Invt ← X?

Invt , Xop
Op ← X?

Op

38: end if
39: if Im\Un 6= ∅ then
40: UBLBP← +∞
41: else
42: Select i ∈ Rm\Un where objPBP (X

i
Invt) is the smallest

43: X?
Invt ← Xi

Invt, UBLBP← objPBP (X
i
Invt)

44: m? ← i, n← n+ 1
45: end if
46: end if
47: until UBLBP ≥ UB− ε|UBLBP| and (MP is infeasible or LBLBP ≥ UB− ε|LBLBP|)
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Chapter 6

Case Study

In this chapter, we demonstrate the use of the decomposition schemes developed in the previous

chapter on a 24-bus test system. First, we simulate the algorithms above to demonstrate that the

decomposed problems converge to the ε-optimal solution and provide significant computational

benefits in the temporally decomposed case. Next, we analyze the decomposed algorithms to

generate insights that could guide market design.

6.1 Algorithmic Test on 24-Bus Test System

First, the decomposed algorithms are tested on a modified version of the 24-Bus IEEE Reliability

Test System used in [72]. The branch data, generation data, load data, and cost functions for the

test system are shown in Appendix 2. The test system is divided into two wind and load region

as shown in Fig. 6.1. Historical hourly wind and load data from PJM for years 2012 to 2015

were used to obtain wind and load patterns for this paper [73]. Region A uses wind and load

data from the PJM Mid-Atlantic region, whereas Region B uses wind and load data from the PJM

West region. As with the previous part of this dissertation, K-means clustering was applied to the

historical wind and load data to produce S number of scenarios of correlated wind and load level.

The results of the K-mean clustering algorithm is S number of scenarios with correlated wind and

load levels given as percentages. The percentages tells us how much of the maximum capacity of
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Figure 6.1: 24-Bus Test System

wind or load is generated or demanded in a given region for a given scenario s ∈ S.

We simulate 3 investment cycles (i.e. Y = 3), where each investment time period is 4 years

apart, and use an interest rate r of 10%. Therefore, we adjust the discount function used in the

problem from e−ry to e−4r(y−1) to account for the 4 year cycle. The following happens over the 3

investment cycles:

• 300MW generator at node 22 and 350MW generator at node 23 retire in cycle 1.

• 155MW generator at node 16 and 310MW generator at node 23 retire in cycle 2.

• Maximum load increases by 5% each investment cycle, which causes the linear term of the

load utility function to increase by 5% each cycle as well.

The potential investment options considered are:

• As much as 2000MW of wind generation nameplate capacity at nodes 2, 7, 17, 22 and 23 at

an annualized cost of $220k/MW

• Up to 20% of the maximum load at each node can be converted to responsive load at an

annual cost of $500,000/MW. Note that a significant portion of the load is already price-
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Table 6.1: Potential New Line Addition

From To Reactance Capacity Investment Cost
(p.u.) (MW) (M$/MW-year)

1 1 2 0.0139 100 0.7
2 1 5 0.0845 100 4.3
3 2 4 0.1267 100 6.4
4 7 8 0.0614 100 3.1
5 8 9 0.1651 100 8.4
6 8 10 0.1651 100 8.4
7 16 17 0.0259 250 1.3
8 21 22 0.0678 250 3.4
9 15 21 0.0490 250 2.5

10 16 19 0.0231 250 1.2
11 17 22 0.1053 250 5.3
12 12 23 0.0966 250 4.9
13 13 23 0.0865 250 4.4

Table 6.2: Potential Flexible Reactance Addition

From To Flexible Capacity Investment Cost
(p.u.) (M$/p.u.-year)

1 15 21 0.0245 20
2 15 24 0.0260 20.8
3 16 17 0.0130 10.4
4 16 19 0.0116 9.6
5 17 18 0.0072 5.6
6 17 22 0.0527 42.4

sensitive in the problem setup. The differences between minimum and maximum loads

given in Table 6.7 gives us the loads that are already elastic.

• 13 potential new lines as shown in Table 6.1

• 6 potential flexible reactance devices on existing lines as shown in Table 6.2.

The updating parameters used for the Lagrangean Decomposition are as follows:

• τup = τdown = 2

• γ = µ = 5 for operational problems

• γ = µ = 100 for investment problems.
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The original full problem was solved with BARON [74], a leading commercial MINLP solver,

using CPLEX as its linear programming solver. The decomposed problems were solved with

CPLEX [75] as the linear solver, GUROBI [76] as the mixed integer linear program solver, and

BARON as the non-linear programming solver. We used an absolute tolerance of 0.2% for all

optimization problems and all simulations were done on an Intel Core i7-4790 CPU at 3.6GHz

with 16 GB RAM.

6.1.1 Computational Efficiency of Temporally-Decomposed Problem

As mentioned earlier, one of the basic purposes of mathematical decomposition is to improve the

computational efficiency of the problem. In terms of computational efficiency, there is a trade-

off between communication overhead and distributed processing. In our case, we find that the

temporally decomposed problem is significantly more computationally efficient as compared to

solving the original non-decomposed problem using BARON. However, the temporally and spa-

tially decomposed problem is significantly slower, due to the high number of iterations needed for

convergence of the spatially decomposed problem. For the purpose of market design, computa-

tional efficiency is not a direct concern, however, the number of iterations required for convergence

provides some information about the ease or difficulty of price discovery.

Fig. 6.2 shows the computational time required for the original problem versus the tempo-

rally decomposed problem for different number of scenarios plotted on a logarithmic scale. From

the graph, we can see that the computational time for the original problem grows exponentially

with increasing problem size while the computational time for the temporally decomposed prob-

lem grows linearly with increasing problem size. This indicates that the temporally decomposed

problem is significantly more computationally efficient and scalable as compared to the original

problem.
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Figure 6.2: Comparison of Computational Time Required for Original Problem versus Temporally Decom-
posed Problem(Logarithmic Scale)

Table 6.3: Comparison of Convergence Time, Lower Bound, and Upper Bound for Original Problem and
Decomposed Problem with 50 Scenarios

Original Temporally Temporally
Decomposed and Spatially

Decomposed
Time(s) 5363 262 96778

Lower Bound ($B) -2.275 -2.275 -2.273
Upper Bound ($B) -2.271 -2.270 -2.269

6.1.2 Comparison of Decomposed Problem Solution with Original Problem Solu-

tion

Next, we compare the solutions of the original problem, the temporally decomposed problem, and

the temporally and spatially decomposed problem with 50 scenarios. The convergence time, lower

bound, and upper bound for the different problems are shown in Table 6.3. From the table, we can

observe that the lower bounds and upper bounds are very similar in all three cases, which suggests
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Table 6.4: Comparison of Investment Decisions(FR denotes Flexible Reactance)

Original Temporal Temporal
Decomposition and Spatial

Decomposition
Cycle 1 Investments

FR 2 0.026 0.026 0.026
FR 3 0.002 - 0.01
FR 4 0.012 0.012 0.012
FR 5 - - 0.007

Line 4 1 1 1
Line 9 1 1 1

Cycle 2 Investments
Line 1 1 1 1

Gen Node 7 414 446 283
Flex Load Node 4 15 - 17

Cycle 3 Investments
FR 1 0.025 0.025 0.025
FR 6 - - 0.003

Line 7 - 1 -

that the problem converged to similar solutions. Fig. 6.3 and Fig. 6.4 show the convergence of the

temporally decomposed problem and the temporally and spatially decomposed problem respec-

tively. Note that there are only a small number of data points for UBP because the non-convex

primal problem is only solved after the convex relaxed problem has converged. The implication of

this is discussed later in the discussion on approximate pricing. Fig. 6.5 shows the stabilization of

prices from the convergence of the spatially decomposed operational problem (PBPsys, PBPp)

The investment decisions found at convergence for the three different algorithms are shown in

Table 6.4. We observe that there are small differences in investment decisions, even though the

lower and upper bounds of the results for the three different algorithms are fairly similar. This is

likely due to close substitutes in potential investment options. In the real world, there are likely

to be other factors that could help investment planners decide between investments that are close

substitutes. Such factors could include environmental impacts and ease of financing.
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Figure 6.3: Convergence of Temporally Decomposed Problem with 50 Scenarios

Figure 6.4: Comparison of Temporally and Spatially Decomposed Problem with 50 Scenarios
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Figure 6.5: Example of Stabilization of Nodal Prices for One Scenario

6.1.3 Optimality

In the results above, we observe that the final lower and upper bounds of the objective function

values for all three cases are very similar, which suggests that the decomposed algorithms were

able to find the ε-optimal solution to the full problem. In [62], it was proven that if the Non-Convex

GBD algorithm converges finitely with a feasible solution, the solution found is an ε-optimal

solution to the original problem. In this dissertation, we did not attempt to mathematically prove

that the spatially and temporally decomposed algorithm provides an ε-optimal solution. The proof

of optimality is left for future work.

6.2 Market Insights

As mentioned before, a key focus of this paper is to demonstrate the economic and market insights

that can be gained through mathematical decomposition. In this subsection, we will highlight
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some key insights that can be gained not only from the decomposition scheme presented, but also

through the process of developing the decomposition strategy.

6.2.1 Market Structure

The market structure suggested by the temporally and spatially decomposed problem is a coor-

dinated forward electricity market and investment auction as shown in Fig. 6.6. Based on the

Benders Decomposition of the problem, capacity prices obtained from the operational problems

are needed to provide the operational information required for investment decision making. Re-

alistically, perfect information on operational details cannot be obtained ahead of time due to the

real-time nature of electricity flow and demand. However, a well-designed forward electricity

market should provide forward electricity prices that could provide some information to guide

decision making during the investment auction. Even though these forward prices do not tell

us everything about actual operational conditions, it provides a good indicator of what real-time

prices could look like and provides an opportunity for investor to manage risk.

Due to the nature of electricity power flow and the lumpy nature of power system investments,

any additional infrastructure in the power system could have a significant impact on electricity

prices. Each additional power system investment can significantly alter power flow and optimal

prices in the system such that forward prices determined prior to the investment are no longer

accurate signals of real-time operating conditions. Therefore, as demonstrated by Benders De-

composition, there needs to be a feedback process between the forward energy market and invest-

ment planning, such that forward price signals account for investment decisions and vice versa.

Note that the key difference between the market structure suggested here and the forward capacity

markets being implemented by ISO-NE and PJM is that the market structure indicated here is a

forward energy market and not a capacity market. More work needs to be done to better under-

stand how this coordination between forward energy market and power system transmission and

generation investment planning can be best achieved in actual power systems and whether they

would perform better in the long run as compared to capacity markets.

The spatial decomposition used in this case allows us to delegate generation and demand
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operation and investment decisions to the nodes, assuming that appropriate price signals are given

by the market coordinator/system operator. Depending on the market complexity desired, the

problem can be decomposed into zones instead of nodes, with each zone consisting of multiple

nodes. Furthermore, Lagrangean Decomposition can be use to further decompose the problem to

introduce hierarchical market structures such as that shown in Fig 6.7, where the nodal problem is

further decomposed into individual generation and demand problems coordinated by a nodal/zonal

coordinator. An example of how the nodal problem can be decomposed into individual generator

and demand sub-problems can be seen in [16].
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Figure 6.6: Market Structure Suggested By Temporally and Spatially Decomposed Problem

88



Figure 6.7: Extended Hierarchical Market Structure
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6.2.2 Pricing and Externalities

The decomposition schemes presented give us some idea on potential pricing schemes and auc-

tion rules for the investment auction and forward market. Different decomposition and multiplier

updates methods lead to different pricing strategies. The Augmented Lagrangean Decomposition

scheme demonstrated in this chapter has two pricing components - the multiplier λ and the penalty

parameter γ. The multiplier λ is the actual price signal that is updated based on the mismatch in

demand and supply for the corresponding resource/services, while the penalty parameter γ pro-

vides market participants with an extra signal that represents the velocity of convergence. This in-

formation regarding the velocity of convergence, along with information regarding the mismatch

in supply and demand, provides individual stakeholders with additional information to improve

their bids in subsequent iterations. With current technological availability, the iterative approach

towards price discovery and market clearing could be easily implemented for markets that do not

have to clear in real-time, such as the forward market and investment auction discussed here. For

real-time markets that needs to clear within seconds, the functional clearing approach such as that

proposed in [16] could be used.

The set of Benders Cuts provides information regarding the substitution and complementary

effects among investment options. The complex interactions among different investment options

could be difficult to discern from the Benders Cut with continuous investment options. However,

for transmission investments with binary investment options, the interpretation can be relatively

straightforward. To illustrate this, consider two optimality Benders Cut obtained through the ben-

ders decomposition process with only two binary line investment options:

fx(X?,1
Invt,A, X

?,1
Invt,B) + λ1

Opt,A(XInvt,A −X?,1
Invt,A)

+λ1
Opt,B(XInvt,B −X?,1

Invt,B) ≤ FOp (6.1)

fx(X?,2
Invt,A, X

?,2
Invt,B) + λ2

Opt,A(XInvt,A −X?,2
Invt,A)

+λ2
Opt,B(XInvt,B −X?,2

Invt,B) ≤ FOp (6.2)
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where (6.1) and (6.2) are the optimality cuts obtained from the first and second iteration of the

Benders Decomposition, and XInvt,A and XInvt,B are binary variables for two line investment

options. Now, assume that the parameters for the optimality cuts obtained from the first two

iterations of the algorithm are as shown in Table 6.5.

Table 6.5: Parameters for Benders Cut Interpretation Illustrative Example

h X?,h
Invt,A X?,h

Invt,B λhA λhB
1 0 0 negative value positive value
2 1 0 negative value negative value

Keeping in mind that the goal of the investments is to minimize operation cost (FOp), the

negative multiplier value associated with Line A in (6.1) suggests that Line A is a beneficial

investment option whereas the positive multiplier value associated with Line B suggests that Line

B is not a beneficial investment option. However, in the second cut obtained when Line A is

already built, the multiplier value associated with Line B becomes negative, which suggests that

it is now beneficial to build Line B as well. Taken together, this set of benders cut suggests

that Line A and Line B are complementary investments. More work needs to be done to better

understand how such information could be helpful in enabling the formation of socially-beneficial

cooperative investment alliances during investment auctions and also in helping system operators

value complementary investments.

6.2.3 Approximate Pricing

In the Non-Convex GBD algorithm adopted in this chapter, a convex relaxation of the original

non-convex problem is used as an approximate to the original problem and to speed up conver-

gence. In the algorithm, the original non-convex version serves only as a check to the investment

decisions obtained through solving the convex relaxation of the problem. This leads to the follow-

ing question: As the power system become increasingly complex, what is the minimum level of

complexity that needs to be modeled and considered in designing markets and pricing schemes.

Non-convexities have traditionally been difficult to price. The information available for forward

markets and investment markets that occur long before the actual real-time transaction are inher-
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ently highly uncertain and imperfect. In such situations, using an approximate, simpler model for

market clearing might prove to be good enough. For multi-temporal markets, a series of increas-

ingly complex system and market model could be used as we move from long-term planning to

real-time operation. These series of markets should be designed to be consistent with each other,

such that the prices obtained by the long-term market are a reasonable approximation of real-time

market prices.

6.2.4 ‘Behind the Scene’ Insights

Researchers generally only report results of successful decomposition attempts and the resulting

insights. Unfortunately, some of the most important insights when using mathematical decompo-

sition for market design are gained through the process of decomposition. ‘Failed’, behind-the-

scene, decomposition attempts are typically not discussed even if they provide important insights

into market design. Here, we discuss some of the insights that were gained during the process of

decomposing this problem.

Firstly, it is easy to start the decomposition process with preconceived expectations of how

the final decomposition should look like. Occasionally, the problem structure is such that the

preconceived expectations can be met, however, in some situations, the preconceived expectations

cannot be supported by the underlying mathematical structure of the problem. If one finds it hard

to decompose a problem in a certain way using sound mathematical decomposition techniques, it

could suggest that the complicating constraints or variables cannot be adequately captured using

prices. For instance, we attempted to apply Lagrangean Relaxation to spatially decompose the

operational problem such that network flow is managed in a distributed manner instead of through

a system operator. This was proposed in [77] and successfully done in [78] where the DC power

flow constraints were successfully handled in a distributed manner by the generations and loads

subproblems, without the need for a system operator subproblem. However, in attempting to

apply that to the problem in this part of the dissertation, we find that the additional complexity

brought about by flexible reactance devices made it such that it is no longer simple or practical

to distribute the power flow constraints. Therefore, we choose to have the power flow constraints
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managed by the system operator sub-problem instead. This suggests that it is difficult to design

a market without a system operator or market coordinator managing the system level power flow

constraints when there are flexible reactance devices in the system.

Next, introducing new variables to the optimization problem can simplify the decomposition

and allow for different market structure. The introduction of new variables is particularly helpful

in designing hierachical market structure. For instance, instead of decomposing the problem such

that each generator and load has its own subproblem, we introduce a new variable representing

the net nodal import and decompose the problem nodally. In doing so, we were able to simplify

the decomposition of the problem and reduce the number of complicating variables that need to

be coordinated on the overall system level. As suggested earlier in Fig. 6.7, the problem can

be decomposed further into individual generator and load subproblems with a nodal coordina-

tor, resulting in a hierachical market structure. With the future electric power system becoming

increasing complex, a hierachical market structure is likely to be preferable to a single layered

market structure, as it allows for localized complexity to be isolated such that the complexity of

each level of the market is manageable.

Finally, the tuning of parameters for the decomposition algorithms could provide information

about potential areas of concern in designing pricing schemes. In tuning the update velocity pa-

rameter (γ) for the operational sub-problem, it was discovered that a straightforward use of a fixed

γ can be used under most normal operating scenarios. However, for scenarios that have insuffi-

cient generation resulting in unusually high nodal prices at some locations, careful tuning of the

parameter γ is required to ensure that convergence occur within a reasonable number of iterations.

The ‘jump’ in γ shown in (5.88) was found to greatly speed up convergence under such scenarios

through our experimentations. This suggests that if such an iterative market clearing/auction pro-

cess is to be implemented, special care needs to be taken to ensure that the price updating scheme

works in both normal operating conditions and contingency situations.
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6.3 Limitations of Mathematical Decomposition for Market Design

Even though mathematical decomposition can provide insights into market structure and pricing,

there are some limitations that practitioners should be aware of. First, as mentioned earlier, one

of the key benefits of using mathematical decomposition for market design is that the resulting

distributed decision-making model is provably optimal under certain conditions. However, real

world conditions deviate significantly from these conditions and are more complicated. Some

aspects of the real world that were not captured in this work include gaming behaviors among

agents, different risk preferences, and stochasticity.

Another limitation of using mathematical decomposition for market design is that the informa-

tion exchange requirement of the market structure suggested by the decomposition process might

not be easily implemented in the real world. There is a need to translate the insights generated

from mathematical decomposition into more practical market designs that can actually be imple-

mented. For example, to practically implement the market structure proposed in Fig. 6.6, we need

to figure out how to actually achieve the coordination between investment and forward markets.

Questions such as "what kind of contracts are needed" and "how frequently should forward market

clearing occur" will need to be answered.

6.4 Conclusions

As the power system becomes increasingly complex, more sophisticated market structure and

pricing strategy need to be developed to allow stakeholders to manage this complexity in a ef-

ficient and effective manner. In this part of the dissertation, we demonstrate how mathematical

decomposition can be a tool not only to improve the computational efficiency of power system

decision problems, but also to help provide insights that could guide market design. We show

how a temporally decomposed power system investment and operation problem can be solved in a

more computationally efficient manner as compared to the original full version of the problem. In

addition, we demonstrate how spatial and temporal decomposition can be used to generate market

insights that could guide future market design.

94



As discussed earlier, mathematical decomposition relies on various assumptions that are often

not reflective of the real world. Therefore, it should not be used as the only tool to guide market

design. Instead, it should be used as a tool to generate initial insights into potential market structure

and pricing solutions to guide future studies. It is best used in conjunction with other tools in

a market designers toolbox such as simulation, human experiments, econometrics, and market

equilibrium analysis. In the next and final part of this dissertation, we will demonstrate how

simulations can be used to guide market design.

6.5 Appendix 2: Data for Part II of Dissertation

Table 6.6: 24 Bus Test System Generation Data

Node Capacity a b
(MW) ($/MW 2) ($/MW )

1 40 0.0230 71
1 152 0.0215 24
2 40 0.0155 71
2 152 0.0370 24
7 300 0.0320 34
13 591 0.0310 33
15 60 0.0335 41
15 155 0.0350 20
16 155 0.0255 20
18 400 0.0365 10
21 400 0.0285 10
22 300 0.0065 24
23 310 0.0220 20
23 350 0.0280 19
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Table 6.7: 24 Bus Test System Load Data

Node Max Load Min Load a b
(MW) (MW) ($/MW 2) ($/MW )

1 220 100 -0.0270 116
2 200 100 -0.065 60
3 360 250 -0.0155 88
4 150 80 -0.0260 20
5 150 80 -0.0170 64
6 280 120 -0.0185 38
7 250 120 -0.0205 58
8 350 180 -0.0130 68
9 350 180 -0.0365 136
10 380 180 -0.0275 138
13 530 250 -0.0295 86
14 390 180 -0.0075 90
15 640 310 -0.0305 40
16 200 100 -0.0285 126
18 660 320 -0.0355 54
19 360 200 -0.0125 64
20 260 120 -0.0200 38
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Table 6.8: 24 Bus Test System Branch Data

From To Reactance Capacity
(p.u.) (MW)

1 2 0.0139 100
1 3 0.2120 100
1 5 0.0845 100
2 4 0.1267 100
2 6 0.1920 100
3 9 0.1190 100
3 24 0.0839 200
4 9 0.1037 100
5 10 0.0883 100
6 10 0.0605 100
7 8 0.0614 100
8 9 0.1651 100
8 10 0.1651 100
9 11 0.0839 200
9 12 0.0839 200

10 11 0.0839 200
10 12 0.0839 200
11 13 0.0476 250
11 14 0.0418 250
12 13 0.0476 250
12 23 0.0966 250
13 23 0.0865 250
14 16 0.0389 250
15 16 0.0173 250
15 21 0.0490 250
15 24 0.0519 250
16 17 0.0259 250
16 19 0.0231 250
17 18 0.0144 250
17 22 0.1053 250
18 21 0.0259 250
19 20 0.0396 250
20 23 0.0216 250
21 22 0.0678 250
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Part III

Simulation-Based Electricity Market

Design
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Chapter 7

Bottom-up Market Model for Power

System Operation and Planning

In Part I and Part II of this dissertation, we used optimization models of varying complexity to

study the power system operation and planning problem and gained insights into potential market

design and pricing decisions. In this part of the dissertation, we demonstrate how a bottom-

up simulation-based approach can provide the flexibility to further evaluate some of the market

insights gained in the previous parts of this dissertation.

We combine agent-based modeling with a state-machine driven simulation to model different

market structures consisting of a spot market, a forward market, and an investment auction. The

goal is to demonstrate how simulation-based modeling techniques can be used to test different

transactive energy market structures and market rules by relaxing various assumptions, with a

focus on how investment decisions for generators and transmission technologies are impacted

by different market structures. We seek to demonstrate how simulation-based transactive energy

market studies can be used to better understand the potential externalities of different market

frameworks such as how risk is distributed across stakeholders, and who are the winners/losers.

Some of the policy insights and proposals from the earlier parts of the dissertation are integrated

in the model developed in this chapter. In particular, we integrated the regulatory mandate that
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requires load to purchase a certain portion of their load in the forward market as proposed in Part

I of this dissertation. We also evaluate a potential market model with coordinated forward energy

market and investment planning as suggested in Part II of this dissertation.

In this chapter, we present a brief background on simulation-based transactive energy market

design and develop the models used in this part of the dissertation. This part of the dissertation

is part of a working paper [79] that was submitted with the final report for the Carnegie Mellon

University - National Institute of Standards and Technology Smart Grid In a Room Simulator

project [80].

7.1 Simulation-based Transactive Energy Market Design

Fundamentally, transactive energy markets need to have four key traits:

1. It provides the necessary market signals to enable distributed decision-making at value.

2. It respects private information, while ensuring that information required for coordination is

shared.

3. It enables market interactions across multiple timescales.

4. It aligns private objectives with public objectives to ensure that the power system continues

to operate in a reliable and efficient manner.

In this section, we will discuss how simulation can be used to model transactive energy markets

that have these traits, in order to highlight potential areas of concern for further evaluation.

7.1.1 Agent-based Modeling for Distributed Decision-Making

Agent-based modeling is particularly helpful for modeling the first two traits mentioned above as

it is designed to model distributed, autonomous decision making [21]. In agent-based modeling,

each agent can be modeled with its own embedded intelligence and autonomous decision making

capability. Each agent is given its own private objective function, private constraints, and learning
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capabilities based on historical market performance. In addition, private versus public information

are defined as part of the agent characteristics and hence information privacy and exchanges can

be carefully controlled by model designers.

Out of the four traits mentioned earlier, the fourth trait is the most difficult to achieve and

evaluate, as it depends on market design decisions and also on stakeholder behaviors. Design

decisions that can have a significant impact on whether public and private objectives are aligned

include market pricing decisions, information exchanges, and management of risks and uncertain-

ties. Stakeholders behaviors that can have a significant impact on the alignment of public and

private objectives include anti-competitive behaviors and price responsiveness. The agent-based

modeling framework provides model designers with tremendous flexibility and control over how

agents make decisions and interact, which allows for different assumptions on stakeholder behav-

iors and market designs to be tested. This gives us the ability to evaluate potential misalignments

in private and public objectives and other unexpected market behaviors.

7.1.2 Multiple Timescale Handling with State Machines

Multi timescale markets are key to ensuring that long-term and short-term objectives are aligned in

a transactive energy market. Increasingly, researchers are recognizing the need for well function-

ing forward markets to provide investment signals to ensure that an appropriate level of generation

and transmission investments is made (e.g. [8] and [81]). Previous work on agent-based multi-

timescale modeling includes [22], which focuses on the interactions between the day-ahead market

and the spot market, and [82], which focuses on the interactions between forward and spot mar-

kets. A transactive energy market is likely to have markets operating at several time scales (e.g.

annually, monthly, daily, hourly) and there need to be a simulation framework that is sufficiently

robust to handle multiple timescales.

One robust strategy of simulating multiple timescale systems is the use of state machine driven

simulations as implemented in the Carnegie Mellon University - National Institute of Standards

and Technology Smart Grid In a Room Simulator(CMU-NIST SGRS) [83]. An intuitive way to

model multi-timescale markets using state machines is to define interactions happening at one
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Figure 7.1: Algorithmic Flow for State Machine Based Multiple Timescale Market Simulation

timescale to one state. For instance, decisions that need to be made every hour are assigned to

state 1 and decisions that need to be made evey year are assigned to state 2. Fig. 7.1 demonstrates

the algorithmic flow of a state machine based multiple timescale market simulation.

7.1.3 Simulation Platforms

In recent years, there has been increasing efforts to develop simulation tools that can aid in trans-

active energy market design. Some examples include the AMES Wholesale Power Market Testbed

developed at Iowa State University [84] and the C2 Wind Tunnel Co-Simulation Tool developed

at Vanderbilt University [85]. These two simulation platforms represent two ends of a spectrum.
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On one end of the spectrum, we have the AMES Testbed which is designed specifically to model a

Federal Energy Regulatory Commission proposed wholesale market design and is primarily used

to test various variations of the proposed market design. On the other end of the spectrum, we have

the C2 Wind Tunnel Co-Simulation Tool which is designed to be a highly flexible co-simulation

platform designed to simulate any complex system with heterogeneous system components.

This paper uses the state-machine based CMU-NIST Smart Grid in a Room Simulator men-

tioned earlier [83], which is a flexible simulation platform designed specifically to model dis-

tributed decision-making in an electricity grid. The Smart Grid In a Room Simulator is a scalable

agent-based simulation framework built on MATLAB. It provides a simulation platform for re-

searchers and policy-makers to test different distributed market and control algorithms. Users

are in charge of modeling the agents as state machines and defining the necessary information

exchanges among agents. At each step of the simulation, the decision-making process of each

individual agent depends on the state the agent is in.

7.2 Test Market Model

In this section, we detail the spot market, forward market and investment market models used in

this paper. In order to simplify the problem, we assume risk neutral market stakeholders without

any form of anti-competitive behavior. The modeling efforts are focused on the following three

market design decisions:

1. As proposed in Part I of this dissertation [1], it is assumed that there is a regulatory man-

date that requires at least 75% of load to be purchased in the forward market as a strategy

to encourage forward market participation. Any deviations from this mandate result in a

penalty.

2. Three different transmission cost recovery policies are considered: short-run congestion

revenue based cost recovery, short-run plus forward congestion revenue based cost recovery,

and regulated fixed return. Details of the three different policies will be discussed later.
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3. We consider three different market interaction models: a spot only market with investment

auction, spot market with forward market that is independent of the investment auction, and

spot market with forward market that is coordinated with the investment auction. Details of

the three different interaction models will be discussed later.

Relatively simple stakeholder behaviors are assumed for modeling decisions not directly relevant

to the three market design decisions above.

7.2.1 Generator Model

For the generator spot market, we assume perfectly competitive bids in the form of short-run

marginal cost bids for the spot market. A linear short-run marginal cost function is used:

CG,SRMC(xG) = aGxG + bG (7.1)

where xG is the amount of power generated and aG and bG are cost function parameters.

Similarly, we assume that the forward market bids are long-run marginal cost bids. The long-

run marginal cost function differs from the short-run marginal cost function in that it includes the

marginal cost of investment as generation capacity is assumed to be flexible in the long-run.

CG,LRMC(xG) = aGx+ bG + cG (7.2)

where cG is the annualized marginal cost of generation capacity investment given in $/MWh

In terms of the generator investment decisions, we assume that the generator’s goal is to max-

imize expected profit. The generator investment problem is as follows(GenInvt):

max
Pn
G,SR,P

n
G,Tot,KG

N∑
n=1

E
[
λnLR(PnG,Tot − PnG,SR) + λnSR,estP

n
G,SR −

1

2
anG(PnG,Tot)

2

− bnGPnG,Tot
]
− CGKG (7.3)

104



s.t PnG,Tot < KG,base +KG for n = 1 : N (7.4)

PnG,SR + PnG,Fwd = PnG,Tot for n = 1 : N (7.5)

KG,bid,min ≤ KG ≤ KG,bid,max (7.6)

PnG,SR, P
n
G,Tot,KG ≥ 0 for n = 1 : N (7.7)

where λnLR and λnSR,est is the forward nodal price and estimated spot nodal price respectively for

time period n, CG is the annualized marginal cost of capacity given in $/MW that is scaled based

on the number of operational time periods considered, PnG,SR, PnG,Fwd and PnG,Tot are the esti-

mated residual short-run generation, forward contracted generation, and estimated total real-time

generation respectively for time period n, KG,base and KG are the existing and new generation

capacity respectively, N is the number of operational time periods considered, KG,bid,max and

KG,bid,min are the maximum and minimum bids respectively, and the rest are as defined earlier.

Constraint (7.4) represents the capacity constraint of the generator, while (7.6) represents the

investment limits of the generator. Constraint (7.5) defines the relationship between forward gen-

eration, estimated residual short-run generation, and estimated total real-time generation.

The generator is modeled as a two-state state machine. The first state involves decisions

occurring on the hourly timescale, while the second state involves decisions occurring on the

annual timescale. When the decisions are made depends on the market structure and hence we

will defer discussion of the agent states to Section 7.3

7.2.2 Load Model

For the load spot market decision, we assume that the load contains a fixed portion and a responsive

portion. For the responsive portion of the load, the load marginal utility function:

UL(xL) = aLxL + bL (7.8)

where xL is the amount of load consumed including both responsive and fixed load and aL and

bL are the utility function parameters. For the responsive portion of the load, we assume that the
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load will be shed as long as the marginal responsive load payment is greater than or equal to the

marginal utility. Therefore, the marginal cost function of load shedding at any given time n can

be written as:

SL(xFlex,L) = −aLxFlex,L + (aLx
n
max,L + bL) (7.9)

= aL,F lexxFlex,L + bnL,F lex (7.10)

where aL,F lex = −aL

bnL,F lex = aLx
n
max,L + bL

where xFlex,L is the quantity of load being shed and xnmax,L is the maximum load demanded at

time n. This cost function along with the fixed load quantity is submitted to the market operator

as part of the spot market bids.

The load forward market decision is affected by the regulatory mandate suggested earlier. In

this case, the load has to decide how much to purchase from the forward market, while consid-

ering the uncertainty in actual real-time demand. The load forward profit maximization decision

problem is as follows(LoadFwd):

max
Pn,s
D,SR,P

n
D,Fwd,

Pn,s
D,Ex,P

n,s
D,Flex,ε

n,s

E
S∑
s=1

1

S

[
RD(Pn,sD,SR − P

n,s
D,Ex)− λnSR,estP

n,s
D,SR −

1

2
an,sL,F lex(Pn,sD,F lex)2

− bn,sL,F lexP
n,s
D,F lex − λεP

n,s
D,maxε

n,s
]

+RDP
n
D,Fwd − λnLRP

n,s
D,Fwd (7.11)

s.t. Pn,sD,SR + PnD,Fwd + Pn,sD,F lex − P
n,s
D,Ex = Pn,sD,max for s = 1 : S (7.12)

if 1−
PnD,Fwd
Pn,sD,max

> Tol, εn,s = 1−
PnD,Fwd
Pn,sD,max

− Tol

else εn,s = 0 for s = 1 : S (7.13)

Pn,sD,SR ≤ P
n,s
D,max for s = 1 : S (7.14)

Pn,sD,F lex ≤ pFlexP
n,s
D,max for s = 1 : S (7.15)
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Pn,sD,SR, P
n
D,Fwd, P

n,s
D,Ex, P

n,s
D,F lex ≥ 0 for s = 1 : S (7.16)

where PnD,Fwd is the load to be purchased in the forward market for time period n, Pn,sD,SR is

the anticipated load purchase in the spot market for scenario s of time period n, Pn,sD,F lex is the

anticipated flexible load dispatch for scenario s of time period n, Pn,sD,max is the maximum load

demanded for scenario s or time period n, RD is the retail electricity price paid by customers to

the load serving entity, pFlex is the percentage of load that is flexible, and S is the total number

of load scenarios simulated by the load for planning purposes. Tol is the forward load purchase

error tolerance level set by the regulatory mandate such that if the regulatory mandate requires at

least 75% of the load to be purchased in the forward market, Tol = 1 − 0.75 = 0.25. Pn,sD,Ex is

the amount of load purchased in the forward market in excess of the maximum load demanded at

a given time for scenario s of time period n, it is only non-zero if the maximum load demanded

is less than the forward load purchased. εs,n is as defined in the conditional constraint(7.13) and

it represents the forward load purchase error in excess of the tolerance level for scenario s of time

period n.

The conditional constraint (7.13) can be written as the following integer linear constraints to

facilitate optimization:

1−
PnD,Fwd
Pn,sD,max

≤ Tol +m (7.17)

1−
PnD,Fwd
Pn,sD,max

− Tol ≤ εn,s + (1 + Tol)(1−m) (7.18)

1−
PnD,Fwd
Pn,sD,max

− Tol ≥ εn,s − (1 + Tol)(1−m) (7.19)

where m is a binary variable.

The forward load bids submitted by the loads are fixed forward power demand for each time

period (i.e. PnD,Fwd). Since the forward load price is affected by the estimated spot prices and

vice versa, an iterative price discovery process is needed to settle the forward market. This will be

described further in Section 7.3.
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7.2.3 Transmission Model

In this model, we consider investments in both new line capacity and flexible line reactance capac-

ity. We assume that transmission owners do not actively participate in spot and forward markets.

However, they make investment decisions on new line capacity or flexible reactance capacity based

on forward and spot markets results. The transmission owner investment problem is dependent on

the transmission cost recovery method being considered.

Regulated Fixed Return

The first cost recovery method being considered is where the transmission owner of each line or

flexible reactance device is guaranteed a regulated rate of fixed return by the system operator. In

this case, we assume that the transmission owner’s bid is just the annualized cost of investment:

Bid = CL(KL) (7.20)

where KL is the transmission line capacity or flexible reactance capacity and CL(.) is the annual-

ized investment cost function of the investment option.

Short-run Congestion Revenue Only Cost Recovery

The second cost recovery method being considered is where the transmission owner of each line or

flexible reactance device is given rights to the short run congestion charges of the line. The short-

run congestion charges are assumed to be the shadow prices or Lagrange multiplier associated with

the transmission capacity constraint or flexible reactance capacity constraint of the spot market

clearing problem. In this case, the transmission owner’s bid function is assumed to be:

Bid =
CL(KL)

KL
(7.21)
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Forward and Short-run Congestion Revenue Based Cost Recovery

The final cost recovery method is where the transmission owner is given rights to both the for-

ward and short-run congestion charges of the line. Similar to the short-run congestion charges, the

long-run congestion charges are assumed to be the shadow prices associated with the transmis-

sion capacity constraint or flexible reactance capacity constraint of the long-run market clearing

problem. In this case the transmission owner’s bid is defined as follow:

Bid =
CL(KL)−

∑N
n=1 µ

n
LRKL

KL
(7.22)

where µLR is the forward congestion charges obtained from the forward market clearing.

7.2.4 System Operator Model

Now, we will discuss how the various markets are cleared by the system operator or market coor-

dinator. The forward market is cleared using a DC optimal power flow given generation and load

bids in the forward market. The generator bid submitted by generator g for the forward market

for operational period n consists of the bid function parameters (agG, b
g
G, c

g
G) and the generator’s

capacity (Kg
G,Tot). The load bid submitted by load d for the forward market for operational pe-

riod n consists of the forward demand (Pn,dD,Fwd). The forward market clearing problem for an

operational period n is written as (MarClrFwd):

min
Pn,g
G,Fwd,θ

n,i,

fn,l
line,r

n,l
flex,P

n,d
D,Fwd,Cl,

Pn,d
D,loss

Ng∑
g=1

[1

2
agG(Pn,gG,Fwd)

2 + (bgG + cgG)Pn,gG,Fwd

]
+

Nd∑
d=1

VLLP
n,d
D,loss (7.23)

s.t. AGPn
G,Fwd −ADPn

D,Fwd,Cl+ALf
n
line = 0 (7.24)

Pn,dD,loss + Pn,dD,Fwd,Cl = Pn,dD,Fwd for d = 1 : Nd (7.25)

fn,lline =
θn,i=linefrom,l − θn,i=lineto,l

xlline − r
n,l
flex

for l = 1 : Nl (7.26)

109



0 ≤ Pn,gG,Fwd ≤ K
g
G,Tot for g = 1 : Ng (7.27)

0 ≤ rn,lflex ≤ K
l
f lex for l = 1 : Nl (7.28)

−K l
line ≤ f

n,l
line ≤ K

l
line for l = 1 : Nl (7.29)

− π ≤ θn,i ≤ π for i = 1 : Ni (7.30)

Pn,dD,loss, P
n,d
D,Fwd,Cl ≥ 0 for d = 1 : Nd (7.31)

where Pn,gG,Fwd represents the cleared forward generation for generator g for operational period

n, Pn,dD,Fwd,Cl represents the cleared forward demand for load d for operational period n, Pn,dD,loss

represents the fixed load requested that needs to be shed for load d1, θn,i represents the nodal

angles at node i, fn,lline represents the line flows for line l, rn,lflex represents the change in line

reactance achieved by controlling the flexible reactance devices at line l, VLL is the cost of not

fulfilling any fixed demand, Ng, Ni, Nd and Nl represent the number of generators, number

of nodes, number of loads, and number of transmission lines in the system respectively, AG is

a Ni × Ng matrix that is 1 if the generator is at the corresponding node and zero otherwise,

AD is a Ni × Nd matrix that is 1 if the load is at the corresponding node and zero otherwise,

AL is a Ni × NL matrix that is 1 if the line is exiting the node and -1 if the line is entering

the node, Pn
G,Fwd, Pn

D,Fwd,Cl and fnline are the vectors of cleared forward generation, cleared

forward demand, and line flows respectively, xlline is the original reactance of transmission line

l, linefrom,l is the index of the node that line l is exiting from, lineto,lis the index of the node

that line l is entering, K l
f lex is the flexible reactance capacity at line l, K l

line is the transmission

line capacity at line l, and the rest are as defined earlier. Constraint (7.24) represents the nodal

power balance for the system. Constraint (7.25) ensures that the forward load bids are accounted

for whether they are fulfilled by the market or not. Constraint (7.26) represents the line flow

equations. Constraints (7.27), (7.28), and (7.29) are the capacity constraints of the different system

components. Constraint (7.30) represents the nodal angle limits.

For the spot market clearing, we assume that the amount of generation that has been contracted
1In the forward market, the entire forward demand bid is considered to be fixed
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in the forward market has already been paid for and hence there are no incremental cost for gen-

eration up to the amount that has already been contracted for in the forward market. In addition,

a portion of the demand is flexible/responsive. The generator bid submitted by generator g for the

spot market for operational period n consists of the bid function parameters (agG, b
g
G) and the gen-

erator’s capacity (Kg
G,Tot). The load bid submitted by load d for the spot market for operational

period n consists of the cost function parameters for the cost of shedding the elastic portion of

the demand (an,dL,F lex, bn,dL,F lex), total demand including both inelastic and elastic demand (Pn,dD,max)

and the inelastic demand (Pn,dD,min). The spot market clearing problem is written as(MarClrSpot):

min
Pn,g
G,SR,θ

n,i,

fn,l
line,r

n,l
flex,P

n,d
D,SR,Cl,

Pn,d
D,loss,P

n,d
D,Flex

Pn,g
G,Fwd,Use

Ng∑
g=1

{1

2
agG[(Pn,gG,SR)2 − (Pn,gG,Fwd,Use)

2] + bgG(Pn,gG,SR − P
n,g
G,Fwd,Use)

}

+

Nd∑
d=1

VLLP
n,d
D,loss + bn,dL,F lexP

n,d
D,F lex +

1

2
an,dL,F lex(Pn,dD,F lex)2 (7.32)

s.t. AGPn
G,SR −ADPn

D,SR,Cl+ALf
n
line = 0 (7.33)

Pn,dD,loss + Pn,dD,SR,Cl...

+ Pn,dD,F lex = Pn,dD,max for d = 1 : Nd (7.34)

fn,lline =
θn,i=linefrom,l − θn,i=lineto,l

xlline − r
n,l
flex

for l = 1 : Nl (7.35)

0 ≤ Pn,gG,SR ≤ K
g
G,Tot for g = 1 : Ng (7.36)

0 ≤ Pn,gG,Fwd,Use ≤ P
n,g
G,Fwd for g = 1 : Ng (7.37)

Pn,gG,Fwd,Use ≤ P
n,g
G,SR for g = 1 : Ng (7.38)

0 ≤ rn,lflex ≤ K
l
f lex for l = 1 : Nl (7.39)

−K l
line ≤ f

n,l
line ≤ K

l
line for l = 1 : Nl (7.40)

− π ≤ θn,i ≤ π for i = 1 : Ni (7.41)
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Pn,dD,F lex ≤ P
n,d
D,max − P

n,d
D,min for d = 1 : Nd (7.42)

Pn,dD,loss + Pn,dD,SR,Cl ≥ P
n,d
D,min for d = 1 : Nd (7.43)

Pn,dD,loss, P
n,d
D,SR,Cl, P

n,d
D,F lex ≥ 0 for d = 1 : Nd (7.44)

where Pn,gG,SR is the generation cleared in the spot market for generator g during operational

period n, Pn,dD,SR,Cl represents the cleared short-term demand for load d during operational pe-

riod n, Pn,dD,F lex represents the elastic load not consumed for load d during operational period n,

Pn,gG,Fwd,Use represents the generation that has been cleared in the forward market that is actually

needed in the spot market for generator g during operational period n, Pn
G,SR and Pn

D,SR,Cl are

the vectors are cleared generation and load in the spot market during operational period n, and

the rest are as defined earlier. Constraint (7.33) represents the nodal power balance for the sys-

tem. Constraint (7.35) represents the line flow equations. Constraints (7.36), (7.39), and (7.40)

are the capacity constraints of the different system components. Constraint (7.41) represents the

nodal angle limits. Constraints (7.37) and (7.38), along with the objective function, ensure that the

forward generation that is already contracted is used as far as possible. Constraints (7.34), (7.42)

and (7.43), along with a sufficiently high value for VLL ensure that flexible demand is used before

fixed load is shed.

The investment auction is a combined generation and transmission investment auction. Gen-

erators bid in new generation capacity based on the expected spot and forward nodal prices as

shown in GenInvt, while transmission bids depend on the transmission cost recovery policy. The

exact mechanism in which the investment auction is carried out depends on whether generation or

transmission investments are prioritized as will be discussed next.
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Generation-First Investment Auction

Figure 7.2: Algorithmic Flow for Generation First Investment Auction

The algorithmic flow for the case where generation is prioritized is shown in Fig. 7.2. In this sit-

uation, generators begin each investment auction by submitting capacity bids based on GenFwd,
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using the expected spot prices and/or forward prices provided by the market coordinator or sys-

tem operator. The market coordinator determines the expected spot prices by running a series

of spot market clearing problem using different possible load scenarios. The load scenarios for

each operational time period are drawn from a normal distribution using the mean and standard

deviation of expected load for the given time period. The hourly mean and standard deviation of

expected load for all the operational time periods considered are supplied by the loads, based on

their best estimates of their own expected power demand. At each generation investment cycle,

the expected spot prices are updated based on new generation capacity proposed until the change

in prices between iterations are within a certain tolerance level. Once the changes in prices are

less than a certain tolerance level, the corresponding generation capacity bids become the cleared

generation capacity that generators are committed to building and the transmission investment cy-

cle begins. In addition, after the first iteration within an investment cycle, generation capacity bids

for subsequent iterations are bounded by the following rules:

KG,bid,max = KG,previous (7.45)

KG,bid,min =


0.75KG,previous KG,previous > 0.2KG,max

0 otherwise
(7.46)

where KG,previous is the generation investment bid at the previous iteration and the rest are as

defined earlier. The bidding rule above is designed to prevent huge fluctuations in bids that prevent

convergence. As an example of this bidding process, Fig. 7.3 shows the generator investment bids

for iterations over multiple investment cycles for one of the simulation conducted in the case study.

In this simulation, the generator capacity cleared at the end of each investment cycle is 105 MW

for investment cycle 1, 151MW for investment cycle 2, and 207MW for investment cycle 3.
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Figure 7.3: Example of Generator Investment Bids for Iterations Over Multiple Investment Cycles

For the transmission investment cycle, transmission owners submit investment bids for both

line capacity or flexible reactance as described earlier. At each transmission investment cycle, only

the most profitable investment option is accepted before returning to the generation investment cy-

cle and the entire investment auction ends if there are no profitable transmission investment options

remaining. The method in which the profitability of different investment options are determined

depends on the transmission cost recovery method under consideration:

• Regulated Fixed Return: In this case, the market coordinator is provided with the entire

investment cost of the transmission investment option. The profitability of investment option

ll is defined as:

Profitll = Costpre − Costllpost − C llL(K ll
L) (7.47)

where Costpre is the total annual cost of power system operation without investment ll,

Costllpost is the total annual cost of power system operation with investment ll, and CL(K ll
L)

is the cost of investment submitted to the market coordinator through the transmission bids
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as shown in (7.20).

• Short-run Congestion Revenue Only Cost Recovery: In this case, the transmission bids rep-

resent the minimum cumulative congestion price that the transmission owner needs to be

willing to make the investment. In other words, the transmission owner will only invest in

investment ll if and only if:
C llL(K ll

L)

K ll
L

≤
N∑
n=1

µll,nSR (7.48)

where µll,nSR is the shadow price associated with the transmission capacity constraint or flex-

ible reactance capacity constraint obtained through the spot market clearing problem, and

the left hand side of the equation is the transmission bid as shown in (7.21). If this condition

holds, the profitability of the investment option from the system point of view is defined to

be:

Profitll = Costpre − Costllpost −
N∑
n=1

µll,nSRK
ll
L (7.49)

• Forward and Short-run Congestion Revenue Based Cost Recovery: In this case, the trans-

mission bids represent the minimum cumulative short-run congestion price that the trans-

mission owner needs to be willing to make the investment, after accounting for forward

congestion revenue. Note that transmission owners are only compensated based on the

short-run congestion price if the capacity constraint is active in the spot market but inactive

in the forward market. If the capacity constraint is active in the forward market, the trans-

mission owner is compensated based on the forward congestion price. The transmission

owner will only invest in investment ll if and only if:

C llL(K ll
L)−

∑N
n=1 µ

ll,n
LRK

ll
L

K ll
L

≤
N∑
n=1

µll,nM (7.50)

where

µll,nM =


µll,nSR µll,nLR = 0

0 otherwise

(7.51)
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and µll,nLR is the shadow price associated with the transmission or flexible reactance capacity

constraint obtained through the forward market clearing problem and the left hand side of

the equation is the transmission bid as shown in (7.22). If this condition hold, the profitabil-

ity of the investment option from the system point of view is defined to be:

Profitll = Costpre − Costllpost −
N∑
n=1

µll,nO K ll
L (7.52)

where

µll,nO =


µll,nSR µll,nLR = 0

µll,nLR otherwise

(7.53)

Transmission-First Investment Auction

The algorithmic flow for the case where transmission is prioritized is shown in Fig. 7.4. In this

situation, transmission owners begin each investment auction by submitting bids based on the ex-

pected spot prices and/or forward prices provided by the market coordinator and the transmission

cost recovery method. The transmission investment cycle is repeated until there are no longer any

profitable investment options before moving on to the generation investment cycle. The gener-

ation investment cycle repeats as in the generation-first investment auction until the changes in

prices between iterations are less than a certain tolerance level. The investment auction alternates

between the transmission and generation investment cycles until there are no longer any profitable

transmission investment option.
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Figure 7.4: Algorithmic Flow for Transmission First Investment Auction
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7.2.5 Load Forecast Module

Since the focus of this dissertation is not on load forecasting, we did not attempt to find the best

load forecasting model for our purpose. Instead, we adopt a modified version of the load modeling

strategy presented in [86] in this paper. As with [86], we model the daily load for each month using

the first principal component of the daily load for the month:

Ld = µm + wT
d vm (7.54)

where Ld is a 24× 1 vector representing hourly loads for a day, γm is a 24× 1 vector representing

the mean daily loads for the month, vm is a 24 × 1 is the principal components of the daily load

for the month, and wd is a 24× 1 vector representing a daily stochastic process.

The parameters γm and vm are calibrated using historical data. Instead of explicitly modeling

the daily stochastic process wd as in [86], we fit a simpler autoregressive model of order 1 to the

weights associated with the principal components:

wtd = wt−1
d + εt + constant (7.55)

where t is the time step and ε is a white noise process with a mean of zero.

7.3 Market Interactions

In this section, we discuss the market interactions happening at different timescale for the three

different market interaction models being considered.

7.3.1 Spot Only Market with Investment Market

For the spot only market, a forward market does not exist. Therefore, at every time t, the generators

and loads submit their generation and load bids for time t to the system operator and the system

operator clears the market using MarClrSpot. At the start of each year (i.e t = 0, N, 2N, 3N...),
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an investment auction is conducted based on the auction format presented in Fig. 7.2 or Fig. 7.4.

This auction is conducted a year ahead such that any investment decisions made at time t becomes

operational at time t + N . During the auction, the system operator/market coordinator calculates

estimated spot market prices for time between t + N and t + 2N by running S scenarios of spot

market clearing for each of the time between t + N and t + 2N and taking the average price for

each time period. The anticipated loads for each scenario are obtained by drawing randomly from

a normal distribution with mean and standard deviation given by the expected hourly load and

standard deviation for the specific load. Note that an independent mean and standard deviation

is given for each hourly load between time t + N and t + 2N . A time-line of this interaction is

shown in Fig. 7.5, while a summary of the market interactions for the spot only market is shown

in Table 7.1 at the end of this chapter.

Figure 7.5: Spot Only Simulation Time-line

7.3.2 Spot Market with Independent Forward and Investment Markets

In this case, we assume that a forward energy market exists and that there is a regulatory mandate

that requires at least 75% of the load to be purchased in the forward market to encourage market

participation. As discussed earlier, any deviation from this mandate results in a penalty. We as-

sume that the forward market is conducted 2N time-step ahead to ensure that when the investment

auction at time t = 0, N, 2N, 3N etc. is held, forward market for time between t+N and t+ 2N

has been cleared. For every time t, the generators and loads submit their spot market bids for time
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t and forward market bids for time t+ 2N . The system operator clears the spot market for time t

using MarClrSpot. Since the loads forward purchase decision is dependent on both the forward

price and anticipated spot price, and vice versa, the forward market needs to be cleared via an

iterative price discovery process. The forward price is obtained by solving MarClrFwd based on

the forward bids, while the estimated spot price is obtained by running S scenarios of anticipated

real-time loads and taking the average spot price. This forward price and estimated spot price is

returned to the load to allow it to adjust its forward bids by solving LoadFwd. The iterative price

discovery process continues until the change in prices between two iterations is less than a certain

tolerance level. In addition, in order to promote price stabilization, within a single market clearing

cycle, the forward load purchase bids are only allowed to decrease or stay the same over iterations.

The investment auction process is similar to the process discussed earlier for the spot market.

The only difference is that the forward price, generation and loads are accounted for by the indi-

vidual stakeholders decision making. A time-line of this interaction is shown in Fig. 7.6, while a

summary of the market interactions for the spot only market is shown in Table 7.2 at the end of

this chapter.

Figure 7.6: Spot Market with Independent Forward and Investment Market Simulation Time-line

7.3.3 Spot Market with Coordinated Forward and Investment Markets

In this case, we assume that a forward energy market exists as with the previous case. However, the

forward energy market in this case is coordinated with the investment markets such that forward
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market for time between t+N and t+2N is cleared during the investment auction market at time

t = 0, N, 2N, 3N etc. A time-line of this interaction is shown in Fig. 7.7, while a summary of the

market interactions for the spot only market is shown in Table 7.3 at the end of this chapter.

Figure 7.7: Spot Market with Coordinated Forward and Investment Market Simulation Time-line
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Table 7.1: Summary of Interaction for Spot Only Market with Investment Market

Generator Load Transmission ISO
State 0 - Use load fore-

cast module to
provide S simu-
lated load series.
Send signal to
ISO to indicate
that initialization
is completed.

- Once ‘initializa-
tion completed’
signal is received
from all loads,
send signal to
start simulation
and move to State
1.

State 1 Submit spot mar-
ket bid.

Submit inelastic
and elastic real
time demand,
and cost function
parameters of
cost of shedding
elastic load as
shown in (7.10).

- Clear short-run
market as in
MarClrSpot.
Send appropri-
ate time signal
to repeat state 1
until the time step
corresponds to
the start of a new
year. At the start
of a new year,
send signal to
move to State 2
and start invest-
ment auction.

State 2 Solve investment
problem GenInvt
and submit new
generation capac-
ity bid.

Submit hourly
mean and stan-
dard deviation of
expected load for
operational peri-
ods considered.

Submit transmis-
sion bids as in
Section 7.2.3

Conduct invest-
ment auction as
in Fig. 7.2 or Fig.
7.4. Calculate
and provide esti-
mated spot prices
for time between
t+N and t+ 2N
to generators,
loads, and trans-
missions at each
iteration. Once
investment auc-
tion ends, send
signal to move to
State 1
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Table 7.2: Summary of Interaction for Independent Forward and Investment Markets Market

Generator Load Transmission ISO
State 0 Same as Table 7.1
State 1 Submit spot mar-

ket bid for time t
and forward bid
for time t+ 2N .

Submit forward
load bid for time
t+ 2N by solving
LoadFwd . Sub-
mit inelastic and
elastic real time
demand, and cost
function param-
eters of cost of
shedding elastic
load as shown in
(7.10) for time
t. Submit hourly
mean and stan-
dard deviation of
expected load for
time t+ 2N

- Clear short-run
market for time
t along with for-
ward market for
time t + 2N us-
ing MarClrSpot
and MarClrFwd
respectively Pro-
vide forward
prices and es-
timated spot
prices for the
time t + 2N to
loads. Forward
market takes a
few iteration to
clear as described
in Section 7.3.
Send appropri-
ate time signal
to repeat state 1
until the time step
corresponds to
the start of a new
year. At the start
of a new year,
send signal to
move to State 2
and start invest-
ment auction.

State 2 Same as Table 7.1
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Table 7.3: Summary of Interaction for Coordinated Forward and Investment Markets Market

Generator Load Transmission ISO
State 0 Same as Table 7.1
State 1 Same as Table 7.1
State 2 Solve investment

problem GenInvt
and submit new
generation capac-
ity bid. Submit
forward market
bids for time be-
tween t + N and
t+ 2N

Submit hourly
mean and stan-
dard deviation of
expected load for
operational peri-
ods considered.
Submit forward
load bids for time
between t + N
and t + 2N by
solving LoadFwd
.

Submit transmis-
sion bids as in
Section 7.2.3

Conduct invest-
ment auction as
in Fig. 7.2 or Fig.
7.4. Calculate
and provide es-
timated spot and
cleared forward
prices for time
between t + N
and t + 2N to
generators, loads,
and transmissions
at each iteration.
Once investment
auction ends,
send signal to
move to State 1
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Chapter 8

Case Studies

The simulation framework described in the previous chapter is tested on a modified version of

the 24-Bus IEEE Reliability Test System used in [72]. We tested 12 different cases with different

market structures:

1. Spot Only + Investment Market

(a) Generation First Investment Auction

i. Regulated Fixed Return Based Cost Recovery (1F)

ii. Short Run Congestion Revenue Based Cost Recovery (1M)

(b) Transmission First Investment Auction

i. Regulated Fixed Return Based Cost Recovery (1F)

ii. Short Run Congestion Revenue Based Cost Recovery (1M)

2. Spot + Independent Forward and Investment Markets

(a) Generation First Investment Auction

i. Regulated Fixed Return Based Cost Recovery (2F)

ii. Forward and Short Run Congestion Revenue Based Cost Recovery (2M)

(b) Transmission First Investment Auction
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i. Regulated Fixed Return Based Cost Recovery (2F)

ii. Forward and Short Run Congestion Revenue Based Cost Recovery (2M)

3. Spot + Coordinated Forward and Investment Markets

(a) Generation First Investment Auction

i. Regulated Fixed Return Based Cost Recovery (3F)

ii. Forward and Short Run Congestion Revenue Based Cost Recovery (3M)

(b) Transmission First Investment Auction

i. Regulated Fixed Return Based Cost Recovery (3F)

ii. Forward and Short Run Congestion Revenue Based Cost Recovery (3M)

8.1 Test System

The branch data, generation data, load data, and cost functions for the test system are shown in

Appendix 3. The test system is the same test system used in Part II of this dissertation (Fig.

6.1). Historical hourly load data from PJM for years 2012 to 2015 were used to calibrate the load

forecast model in this paper [73]. Region A uses load data from the PJM Mid-Atlantic region,

whereas Region B uses load data from the PJM West region. The load model was fitted using

normalized historical data to capture the load pattern. We consider 25 different load scenarios by

generating 25 load series using the load model(i.e. S = 25). The normalized load series generated

by the load model is then scaled up by multiplying the load series by the maximum nodal load as

shown in Table 8.8

To simplify simulations, within each year, we simulate only one representative day for each of

the four seasons (i.e. N = 4 × 24 hours), and 4 years in total (i.e. t ∈ 1 : 4N ). The interest rate

is assumed to be 10% per year. In addition, we assume that the maximum nodal load increases by

2% per year.

The investment options being considered along with their annualized investment cost are

shown in Table 8.1, Table 8.2, and Table 8.3.
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Table 8.1: Potential Generation Addition

Node Capacity Investment Cost aG bG

(MW) (k$/MW-year) ($/MW 2) ($/MW )

G1 1 250 286 0.013 24

G2 14 250 286 0.013 24

G3 18 250 286 0.013 24

G4 22 250 694 0.044 10

G5 10 250 694 0.044 10

Table 8.2: Potential New Line Addition

From To Reactance Capacity Investment Cost

(p.u.) (MW) (M$/year)

T1 6 10 0.0605 100 3.1

T2 7 8 0.0614 100 3.1

T3 8 10 0.1651 100 8.4

T4 20 23 0.0216 250 1.1

T5 15 21 0.0490 250 2.5

Table 8.3: Potential Flexible Reactance Addition

From To Flexible Capacity Investment Cost

(p.u.) (M$/p.u.-year)

F1 15 24 0.0260 20.8

F2 16 17 0.0130 10.4

F3 17 18 0.0072 5.6
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8.2 Investment Decisions

The investment decisions resulting from the simulations are shown in Table 8.4. The table shows

the year in which the transmission investments become operational and generation capacity in year

2 to year 4 for G1 and G2. Generation investment options G3 to G5 were not invested in for any

cases. Since investment decisions made at the start of the first investment decision cycle (t = 0)

are only made available in year 2, no new transmission or generation capacity is available in year

1. The labels for the cases and investment options in Table 8.4 are as shown in the start of this

chapter.

Table 8.4: Investment Decisions For Different Simulation Cases

Transmission Investment Generation Capacity
Year Available (MW in Year2/Year3/Year4)

T1 T2 T3 T4 T5 F1 F2 F3 G1 G2

Gen.
First

1F 3 2 2 2 141/141/141 141/141/141
2F 2 2 2 105/105/151 105/105/105
3F 3 2 2 2 2 2 2 141/141/141 141/141/141
1M 2 141/141/141 141/202/202
2M 4 3 2 105/151/151 105/151/207
3M 2 2 2 2 141/141/141 141/141/141

Trans.
First

1F 2 2 2 2 2 105/105/105 59/59/59
2F 2 2 2 2 2 79/79/79 45/45/45
3F 2 2 2 2 2 2 2 105/105/105 73/73/73
1M 2 2 141/141/141 141/202/202
2M 2 2 2 105/105/105 105/151/193
3M 4 2 2 2 188/188/188 188/188/188

Before we continue with the discussion of the result, we want to highlight the fact that in

the model presented in this paper, generation and transmission owners make investment decisions

based on expected operational revenue for the initial year of operation only. The underlying as-

sumption is that since we assume that load increases over the years, if the investment decision is

profitable in the initial year of operation, it should be profitable in subsequent years. This is not

always a valid assumptions for real-world investment decision. However, for the purpose of this

case study, this assumption is used to simplify the problem and analysis.
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8.3 Implications of Market Structure and Market Design on Investment Decisions

Several observations can be made by comparing the resulting investment decisions for different

market structures in Table 8.4. These observations and their policy implications are discussed

next.

8.3.1 Prioritizing Generation vs. Transmission Investments

The order in which generation and transmission investments are made have a significant impact on

resulting investment decisions. This is because generation and transmission investments, in some

situations, can be substitutionary investments. This substitutionary effect is particularly obvious

when we compare the resulting investment decisions of the generation-first and transmission-

first simulations for Cases 1F, 2F, and 3F. In general, the generation-first simulations result in

greater generation investment than the transmission-first simulations. Similarly, the transmission-

first simulations result in greater and earlier transmission investments when compared to the

generation-first simulations.

Traditionally, the electricity industry in the United States uses an integrated resource planning

process to centrally plan generation and transmission investments. Under such a framework, it is

relatively easy to take into account substitutionary effects of different investment types. However,

with greater deregulation and decentralization of electricity operation and planning, the question of

how to design markets to take into account these substitutionary effects become a more challenging

problem. As demonstrated in this case study, different investment clearing schemes favor different

investment types. It is extremely unlikely that any investment market design for the future could

truly be 100% technology neutral. However, it is important for market designers and policy makers

to understand the biases of any market mechanisms to ensure that any biases align with broader

societal objectives.
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8.3.2 Different Market Interaction Models

The risk profiles of different investment options are strongly affected by the different market in-

teraction models considered. We defer discussion of the risk profiles brought about by different

market structure to Section 8.4. In this section, we focus on the difference between investment

decisions for the cases with the independent forward and investment markets and investment de-

cisions for the cases with the coordinated forward and investment markets. From Table 8.4, it can

be observed that cases with coordinated forward and investment markets generally result in more

investments in generation and transmission when compared to the cases with independent forward

and investment markets. In the cases with independent forward and investment market, investment

decisions are made based on forward prices and quantities that are cleared prior to the investment

cycle. New generation or transmission investments are unable to take advantage of the forward

market in the initial year of operation. In the cases with coordinated forward and investment mar-

ket, the forward market under consideration clears as investment markets clear and hence new

investments are accounted for in the forward market. In this case study, this coordination results

in greater overall investment level.

The impact of the timing of market interactions on investment decisions is amplified in the styl-

ized market interaction models used in this paper. However, it is still a valid concern in real world

market design. In designing electricity markets for the future, such impacts can be reduced by

careful market design that accounts for how investment decisions interact with the broader market

framework. Liquid markets with multiple time-scales that allow market participants to continually

adjust their market decisions with new information could allow new transmission and generation

investments to integrate into the broader market more smoothly. Alternatively, researchers could

explore whether a one-time market adjustment process could be designed to allow for reallocation

of resources with the addition of new capacity, such a one-time market process could be loosely

modeled after the “initial public offering" process in financial stock markets.
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8.3.3 Regulated vs. Congestion Revenue Based Cost Recovery for Transmission

Investment

Comparing the cases with regulated transmission cost recovery and the cases with congestion

revenue-based cost recovery in Table 8.4, it can be observed that the cases with congestion revenue

based cost recovery result in lower transmission investment levels. This seems to affect the level

of transmission line investments more than it affects flexible reactance device investments. This

could be due to the lumpy nature of transmission line investments. Often, the installation of a new

line eliminates congestion on the particular line, which wipes out real-time congestion charges.

The effects of flexible reactance devices are more marginal and does not entirely eliminates real-

time congestion charges.

There are two reasons why a transmission investment that is profitable in the regulated cost

recovery cases is not profitable in the congestion revenue based cost recovery cases:

1. The expected total congestion revenue is less than what is required by the transmission

owners for profitability. In other words, conditions (7.48) or (7.50) is not valid.

2. After accounting for the congestion charges that needs to be paid to the transmission owners,

the cost is greater than the benefits to the system. In other words, the profit calculated in

(7.49) or (7.52) is negative.

Numerical examples of these two cases will be shown in Section 8.4. From a market design stand-

point, the first case could be mitigated by supplementing congestion revenue based compensation

with an additional fixed compensation. The second case could be mitigated by only awarding par-

tial rights to the congestion charges. Regardless, the result suggests that congestion revenue only

based cost recovery for transmission investment do not accurately reflect the value of transmission

investments.
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8.4 Risk Profiles of Different Market Structures

In order to study the risk profiles of the different market structures, we run 100 spot market sce-

narios for each hour of each year using the forward market decisions and investment decisions

for the different cases found in the earlier simulations. We use the same simplification used

earlier and simulate only one representative day for each of the four seasons within each year

(i.e. N = 4 × 24 hours). Therefore a total of 9600 observations are simulated for each year

(i.e.100×N ). In this section, we only consider the cases where generation investments are prior-

itized.

8.4.1 Nodal Price Comparison

First, we compare and contrast the nodal prices obtained for Cases 1F, 2F, and 3F to evaluate how

the different market interaction models affect nodal prices. We use nodal prices for the last year

of the simulations (year 4) for this section since the system at year 4 would have been able to take

advantage of the results of all 3 investment cycles.

We calculate the mean nodal spot price for each hour and compare the mean nodal spot prices

obtained for the different cases. Fig. 8.1 shows the distributions of the differences in mean nodal

spot prices for Case 2F and Case 1F, whereas Fig. 8.2 shows the distributions of the differences

in mean nodal spot prices for Case 3F and Case 1F. From both histograms, it can be observed that

the nodal spot prices for cases with a forward market (Cases 2F and 3F) are typically lower than

the nodal spot prices for the case with a spot market only (Case 1F). The differences in prices

between Case 2F and Case 1F are generally larger than the differences in prices between Case 3F

and 1F. In addition, we observe a pattern of larger variances in the differences in nodal prices for

nodes in Region A as compared to the differences in nodal prices for nodes in Region B. In Fig.

8.1 and Fig. 8.2, the bluer bars correspond to nodes in Region A (i.e. nodes 1 to 10). We can

observe that the bluer bars have greater spread in both Fig. 8.1 and 8.2. This suggests that there

are zonal/regional differences in market behaviors in response to market structure.
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Figure 8.1: Distributions of Differences between Mean Nodal Spot Price in Case 2F and Case 1F in Year 4
for the 24 Nodes (Negative values indicate that prices for 2F < prices for 1F)

Figure 8.2: Distributions of Differences between Mean Nodal Spot Price for Case 3F and Case 1F in Year
4 for the 24 Nodes (Negative values indicate that prices for 3F < prices for 1F)
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Next, we compare the forward price and mean nodal spot price for each hour for Case 2F and

Case 3F in Fig. 8.3 and 8.4 respectively. We find that the average spot prices are generally higher

than the forward price. In addition, the variances of the differences in spot and forward prices in

Fig. 8.3 and Fig. 8.4 demonstrate the same zonal/regional patterns as described earlier.

To further quantify the differences in spot and forward prices, we calculate the expected for-

ward risk premium for the two cases using the following equation:

E(RiskPremia) = E[
λSR − λLR

λLR
] (8.1)

Based on this equation, the risk premium is positive if expected spot price is greater than forward

price and negative otherwise. The overall expected forward risk premium is 2% for Case 2 and

20% for Case 3.

Figure 8.3: Distributions of Differences in Forward Nodal Price and Mean Nodal Spot Price for Case 2F in
Year 4 for the 24 Nodes (Negative values indicate that forward price is less than spot price)
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Figure 8.4: Distributions of Differences in Forward Nodal Price and Mean Nodal Spot Price for Case 3F in
Year 4 for the 24 Nodes (Negative values indicate that forward price is less than spot price)

Various econometric studies have been done to evaluate the risk premium for actual forward

electricity markets [50][87], however, most of the results of these studies do not provide a fair

comparison to the results of the models in this paper as the forward market structures studied are

very different. The only forward market structure we could find that is similar to what is being

proposed in this dissertation is the Colombian forward electricity market structure that was started

in 2010 [49]. In the Colombian forward electricity market, the forward market clearing occurs 1-2

years ahead and 100% of regulated load is required to be purchased in the forward market [49].

This is similar to the forward market design used in this paper where forward market clearing

occurs 1 or 2 years ahead and 75% of load is required to be purchased in the forward market.

[88] did an econometric study of the Colombian forward market and found that the forward risk

premium averages about 2.14%. This is consistent with the risk premium found in Case 2F of this

study, but lower than the average risk premium found in Case 3F. We will attempt to explain the

higher risk premium for Case 3F in the next section.
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8.4.2 Load Comparison

In Fig. 8.5 and Fig.8.6, we compare the percentage of load that is purchased in the forward market

for Case 2F and Case 3F in year 4. We observe that the average load percentage purchased through

the forward market is generally greater for Case 2F than for Case 3F. The overall average load

purchased through the forward market is 88% for Case 2F and 80% for Case 3F. We hypothesize

that the differences in percentage of load purchased in the two different forward market could be

a reason for the difference in risk premium between Case 2F and Case 3F. In Case 3F, the lower

demand in the forward market results in higher reliance on the more volatile spot market, which

in turn causes the higher risk premium.

Figure 8.5: Distributions of Proportion of Load Purchased Via Forward Market for Case 2F in Year 4 for
the 17 Loads
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Figure 8.6: Distributions of Proportion of Load Purchased Via Forward Market for Case 3F in Year 4 for
the 17 Loads

Next, we calculate the overall load profit for year 4 for Cases 1F, 2F and 3F. The load profit

is calculated using the profit function defined in the objective function in (7.11). The overall load

profits for Region A and Region B are calculated independently and shown in Fig. 8.7 and Fig.

8.8 respectively. In both regions, we observe that the profit for Case 3F is generally higher than

the profit for Case 2F, and the profit for Case 2F is generally higher then the profit for Case 1F.

As expected, Case 1F with only a spot market has the greatest variance in overall load profit. In

fact, for Region A, the load profit was negative for some scenarios in Case 1F. This results suggest

that the coordinated forward and investment market structure (3F) is the most favorable market

structure for loads, while the spot only market structure (1F) is the least favorable market structure

for loads.
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Figure 8.7: Distributions of Total Load Profit for Loads Located in Region A for Cases 1F, 2F, and 3F in
Year 4

Figure 8.8: Distributions of Total Load Profit for Loads Located in Region B for Cases 1F, 2F, and 3F in
Year 4
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Table 8.5: Mean Generation Profit

Mean
(k$)

G1 G2
1F 130 -16
2F 30 -22
3F 96 -31
1M 150 130
2M 8.7 32
3M 120 -28

8.4.3 Generation Profit Comparison

In this section, we evaluate the profitability of the new generation investments for Cases 1F to 3F

and 1M to 3M for year 4. The distributions of the generation profit for G1 and G2 in year 4 for the

different cases are shown in Fig. 8.9, Fig. 8.10, Fig. 8.11 and Fig. 8.12. Note that the generation

profit accounts for the annualized cost of investment. To better quantify the generation profit, the

average generation profit for G1 and G2 for the different cases are shown in Table 8.5.

From the table and histograms, it can be observed that the spot only market structure (1F/1M)

is the most favorable market structure for generators. This makes sense as from Fig. 8.1 to Fig.

8.4 we know that the spot-only market structure results in the highest nodal prices. In the previous

section, we find that the worst market design for loads is the spot only market design. The fact

that the most favorable market structure for generators is also the worst for loads highlights an

important point in market design - there are always winners and losers. In this model, we assume

that generators bid in a perfectly competitive manner. If generators have market power and is able

to bid strategically, the results could potentially be very different.

Another observation from the table and histograms is that on average, G2 is not profitable for

Cases 1F, 2F, 3F, and 1M. This is a result of interactions between generation and transmission

investments. Even though the generation investment was profitable during the generation invest-

ment cycle in which it is made, the addition of new transmission investments reduces the nodal

prices at G2 making it unprofitable. Such interactions are likely to increase with a greater variety
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of grid technologies. How to best consider such interactions between generation and transmission

investments is still an open research question in power markets design.

Figure 8.9: Distribution of Generator Profit per MW Capacity for Generator G1 for Cases 1F, 2F, and 3F in
Year 4
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Figure 8.10: Distribution of Generator Profit per MW Capacity for Generator G1 for Cases 1M, 2M, and
3M in Year 4

Figure 8.11: Distribution of Generator Profit per MW Capacity for Generator G2 for Cases 1F, 2F, and 3F
in Year 4
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Figure 8.12: Distribution of Generator Profit per MW Capacity for Generator G2 for Cases 1M, 2M, and
3M in Year 4

8.4.4 Transmission Revenue Comparison

Finally, we evaluate three of the transmission investment options in greater detail. The three

transmission investment options (T4, T5, and F3) are selected as they are most frequently invested

in in year 2. The mean and standard deviation of the expected congestion revenue for the three

investment options in year 2 is shown in Table 8.6. From the table, it can be observed that the

standard deviation for congestion revenue is zero in some cases. This occurs under two conditions:

1. There is no congestion as in T4 and T5 in Case 1F.

2. There are no scenarios in which the transmission line flow is constrained in the spot market

but not constrained in the forward market. In such situations, the only congestion revenue

is obtained from the forward market clearing, which is fixed and hence has zero variability.

For Cases 1F, 2F, and 3F, congestion revenue does not matter as the transmission owners are

assured cost recovery through the regulated rate of return. Therefore, as expected, the congestion

revenue shown in Table 8.6 for the three cases are in some cases less than the investment costs
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Table 8.6: Mean and Standard Deviation of Expected Congestion Revenue for T4, T5, and F3 for Y2(* Indi-
cates That the Investment Was Not Installed and Hence the Congestion Revenue Shown is Pre-Installation)

Mean(Standard Deviation)
M$ k$

T4 T5 F3
1F 0 (0) 0 (0) 16 (11)
2F 96 (0) 78 (0) 580 (2.7)*
3F 1.2 (0) 29 (0) 0.01 (0.1)
1M 110 (55)* 110 (45)* 1100 (460)
2M 130 (27)* 75 (0)* 600 (13)
3M 1.3 (0) 21 (0) 0.1 (0.2)*

shown in Table 8.2 and Table 8.3 earlier. As mentioned in Section 8.3.3, there are two reasons why

transmission investments that are profitable in the regulated cost recovery case are not profitable

in the congestion revenue based cost recovery cases. Examples of the first reason can be seen in

investments T4 and T5 for Case 1M. From the results for case 1F, we can observe that if T4 or

T5 is built, congestion revenue will go to zero, and hence congestion revenue alone is insufficient

to make T4 and T5 profitable in case 1M from the point of view of the transmission owners.

Examples for the second reason can be seen in investments T4 and T5 for Case 2M. From the

results for case 2F, we can observe that even if both T4 and T5 are built, the congestion revenues

are high enough such that both lines are profitable from the point of view of the transmission

owners. However, from the point of view of the system operator, the amount of congestion charges

that will be paid out is less than the cost savings to the system due to the lines and hence it is not

profitable from the system point of view. Some potential solutions for this has been discussed in

Section 8.3.3.

8.5 Limitations

Through the case studies, we have demonstrated how agent-based simulations can be a useful tool

to gain insights into various market designs. In this section, we will highlight some of the key

limitations of using agent-based simulations for market design.

First, the performance and results of the simulations are tied to system parameters and assump-
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tions. With electricity markets, any model developed needs to be specific to the system conditions

of the market of interest. Market and system conditions in New England are very different from

conditions in Texas, and there is probably not going to be a one-size-fit-all model or solution. The

extent to which market behaviors observed in case studies using a specific test system is general-

izable to other test systems depends on the root cause of the market behaviors. For instance, in

our case studies, the observations made regarding transmission cost recovery are likely to be gen-

eralizable since the root cause of the observed behaviors is technology related (i.e. the lumpiness

of transmission line). Observations made regarding risk premium, losers, and winners, are more

difficult to generalize since they are brought about by complex interactions among the different

agents within a specific system.

Second, mathematical and computational models are simplifications of the real world and

hence behaviors observed in models might not be directly translatable to the real world. Stylized

models such as those used in this dissertation are useful as a starting point to evaluate potential

effects of different market designs, but it can be difficult to evaluate whether certain effects are

due to the simplifications made by the stylized models or by the market features being tested.

Ideally, we will want to follow up the simulations using stylized models with simulations using

more complex models that better reflect the real world, or with pilot testing.

8.6 Conclusion

In this part of the dissertation, we develop an agent based modeling model to simulate different

market structures with different combinations of spot energy market, forward energy market, and

investment auctions. The forward market design used is similar to the recently introduced forward

market design used in Colombia [49], where load is mandated to purchase a certain percentage of

their load from the forward market conducted 1-2 years ahead. In addition, we modeled different

cost recovery mechanisms for transmission investment cost recovery. Using a case study, we

demonstrate how simulation-based modeling techniques can be used to better understand potential

winners/losers and risk profiles of different market design options. The policy implications of our
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findings and open research questions have been discussed in Section 8.3 and Section 8.4.

As mentioned earlier, we tested two key policy recommendations or design suggestions ob-

tained from Part I and Part II of this dissertation. The results show that the risk premium brought

about by the mandated load participation in long-term market as proposed in Part I of the disser-

tation is dependent on the broader market structure. The risk premium shown in one of our model

is consistent with the risk premium found in a similar market structure implemented in Colombia

[88]. The coordinated forward and investment market model as proposed in Part II shows mixed

results. This proposed forward market model appears to favor loads more than the independent

forward market model. However, its effects on generation and transmission investment decisions

and returns are mixed. As mentioned earlier, the coordinated and independent forward market

models presented in this dissertation are highly stylized models. In real world market design, the

level of interactions among forward and investment markets will depend on how often market

participants are allowed to adjust their forward market decisions to respond to new information

in the market. Also, we suggested the possibility of a one-time market adjustment process that is

specifically design to allow for reallocation of resources with each addition of new capacity.

8.7 Appendix 3: Data for Part III of the Dissertation
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Table 8.7: 24 Bus Test System Generation Data

Node Capacity aG bG
(MW) ($/MW 2) ($/MW )

1 40 0.0230 71
1 152 0.0215 24
2 40 0.0155 71
2 152 0.0370 24
7 300 0.0320 34
13 591 0.0310 33
15 60 0.0335 41
15 155 0.0350 20
16 155 0.0255 20
18 400 0.0365 10
21 400 0.0285 10
22 300 0.0065 24
23 310 0.0220 20
23 350 0.0280 19

Table 8.8: 24 Bus Test System Load Data

Node Max Load a b
(MW) ($/MW 2) ($/MW )

1 198 -0.0270 116
2 180 -0.065 60
3 324 -0.0155 88
4 135 -0.0260 20
5 125 -0.0170 64
6 252 -0.0185 38
7 225 -0.0205 58
8 315 -0.0130 68
9 315 -0.0365 136
10 342 -0.0275 138
13 477 -0.0295 86
14 351 -0.0075 90
15 576 -0.0305 40
16 180 -0.0285 126
18 594 -0.0355 54
19 324 -0.0125 64
20 234 -0.0200 38
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Table 8.9: 24 Bus Test System Branch Data

From To Reactance Capacity
(p.u.) (MW)

1 2 0.0139 100
1 3 0.2120 100
1 5 0.0845 100
2 4 0.1267 100
2 6 0.1920 100
3 9 0.1190 100
3 24 0.0839 200
4 9 0.1037 100
5 10 0.0883 100
6 10 0.0605 100
7 8 0.0614 100
8 9 0.1651 100
8 10 0.1651 100
9 11 0.0839 200
9 12 0.0839 200
10 11 0.0839 200
10 12 0.0839 200
11 13 0.0476 250
11 14 0.0418 250
12 13 0.0476 250
12 23 0.0966 250
13 23 0.0865 250
14 16 0.0389 250
15 16 0.0173 250
15 21 0.0490 250
15 24 0.0519 250
16 17 0.0259 250
16 19 0.0231 250
17 18 0.0144 250
17 22 0.1053 250
18 21 0.0259 250
19 20 0.0396 250
20 23 0.0216 250
21 22 0.0678 250
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Part IV

Conclusion
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Chapter 9

Conclusions and Future Work

With the introduction of new transmission, generation, and demand technologies, the electric

power system is becoming increasingly complex. New market and regulatory tools need to be

developed to be able to deal with the increased flexibility and complexity of the future electricity

grid. In this concluding chapter, we will discuss the work presented in this dissertation in the con-

text of a broader market design framework and highlight the key contributions of this dissertation

9.1 Market Design for Complex Socio-Technical Systems

The overall contribution of this dissertation to the design of future electricity markets is in de-

veloping and demonstrating tools that can be part of a broader market design framework. In Fig.

9.1, we present an overall market design framework for the future electricity grid. We believe

that the market design framework presented here is relevant to market design for any complex

socio-technical systems, and not just for electricity grids.
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Figure 9.1: Overall Market Design Framework

The first stage of market design is what we call the “proof of concern" stage or issue analysis

stage. In this stage, the goal is to find potential areas of concern in the market and to frame the

problem. These concerns could arise due to various reasons, such as the introduction of new tech-

nology into the power system, or undesirable market behavior observed through market testing.

One way in which one can frame potential market problems is through the use of “toy problems"

as done in Part I of this dissertation. The purpose of these “toy problems” is to demonstrate po-

tential areas of concerns using simple examples that are easily understood. Generating such "toy

problems” is as much of an art as it is a science, and the process of generating the problem can

often give practitioners a better understanding of the issue at hand.

Once the market problems we are trying to solve have been defined, we move on to the market

design generation stage. In this stage, the goal is to generate market designs that could solve

the issues at hand. There are various ways in which market designs can be generated. They

could be based on economic theory or they could be based on the experiences of market experts.

Part II of this dissertation demonstrates how mathematical decomposition can be used to generate

insights that could help make market design decisions. Used in conjunction with economic theory
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and expert experience, mathematical decomposition can be used to generate promising market

designs.

Once a specific market design or a set of potential market designs is selected, we move on to

the market design analysis/evaluation stage. In this stage, the goal is to conduct studies to evaluate

the proposed market designs. This can be done either through experimental studies with actual

human participants, or through simulation-based studies as presented in Part III of the disserta-

tion. With advances in computing, simulation-based studies are the most scalable, cost-effective

option to test different market designs. At this stage the potential externalities, risk profiles, and

unintended consequences of the different market designs being proposed can be evaluated. If any

undesirable market behavior is discovered at this stage, we can go back to the initial issue analysis

stage to deal with the undesirable behavior.

Once we are satisfied with the performance of the simulation or experimental model, it is

recommended that an initial limited pilot test of the market design be conducted if possible. In

some cases, this might not be possible and a complete implementation of the market design needs

to be introduced at once. Regardless, whether it is a pilot test or complete implementation of the

new market design, a market monitoring and data collection system needs to be in place so that

the market data can be analyzed to ensure that it is functioning as expected.

Regardless of how well studied a certain market design is, it is likely that unexpected behaviors

will emerge during actual implementation. Therefore, market design is inherently an iterative

process, where practitioners will likely have to tweak different market components over time. The

framework presented in Fig. 9.1 provides a systematic approach to market design.

9.2 Models for Power System Planning and Operations

Besides the broader contribution of this dissertation to market design for complex socio-technical

systems, this dissertation also contributes to the development of various models for power system

planning and operations. All the models presented in this dissertation are mixed-integer, non-

linear, and non-convex due to the modeling of transmission investments as lumpy investments and
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the consideration of flexible reactance devices. The resulting models are therefore more complex

than traditional DC transmission and generation investment models. The reason for developing

and using a more complex model for our case studies is to ensure that the market design tools

presented in this dissertation are flexible enough to handle the increasing complexity in the power

system.

In Part I of this dissertation, we developed two transmission investment models. The first

model captures the value of operational flexibility by accounting for short-run uncertainties char-

acterized through K-means clustering, whereas the second model captures the value of investment

flexibility by accounting for long-run uncertainties characterized through markov processes. In ad-

dition, different operational frameworks with different levels of flexibility were considered. The

models were used to understand how different operational frameworks handle uncertainties and

how different levels of information uncertainties affect investment decisions.

The models in Part I were only used to solve simple examples on a 2-Bus Test System. In

Part II of this dissertation, we expanded the model in Part I to account for potential investments

in generation and flexible transmission devices. The model was decomposed temporally and spa-

tially to allow us to generate insights that could guide market design. The temporally decomposed

model is highly computationally efficient and can be solved faster than the corresponding cen-

tralized problem using a leading MINLP solver. The temporally and spatially decomposed model

is computationally inefficient, but it allows us to generate greater insights into different potential

market structures.

In the final part of this dissertation, agent-based models where each agent is modeled as a

state-machine were developed. The agent-based models are highly flexible and were used to test

various spot, forward, and investment market configurations. In addition, the models were used to

test various transmission cost recovery methods.
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9.3 Market Insights

The models discussed in the previous section were used to gain insights into different aspects of

electricity market design through case studies. More often than not, these insights lead to further

research questions. Some of the key market insights gained are presented below:

• System flexibility is key in the face of uncertainties. Flexible operational frameworks, such

as the corrective N-1 operational framework, along with the availability of flexible loads, can

reduce the need for redundant investments. In addition, improvements in system flexibility

also increase the value of investments in more modular flexible devices.

• There needs to be a strategy for long-term information exchange in the system so that stake-

holders are provided with better information about long-term uncertainties. Well designed

forward markets are needed in the system. Simulations show that even the simple for-

ward market models tested in this dissertation provide significant benefits to transmission

investment cost recovery and load profits. Interestingly, the forward market tested in this

dissertation is detrimental to generators’ profits.

• A regulatory mandate that requires load serving entities to purchase a certain percentage

of their load in the long-term forward market (1-5 years ahead) is a promising strategy for

forward market design. In fact, a similar design has been used in Colombia since 2010 with

promising results [49]. However, more work needs to be done to better understand whether

such a market structure is feasible in the United States.

• There needs to be a feedback process between forward energy market and investment plan-

ning. In testing a coordinated forward energy and investment market model, we find that

such a coordinated market model generally results in higher investment levels. In actual

real-world market design, the level of feedback between forward energy market and in-

vestment planning depends on the ability for market participants to adjust their forward

decisions in response to new information in the market. This could potentially be achieved

through liquid, multiple time-scale markets. In addition, it might be interesting to study
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the potential of a one-time forward market adjustment process, similar to the “initial public

offering” process in the financial stock market, to allow for reallocation of resources with

the addition of new capacity.

• A potential hierarchical market structure is proposed in Fig. 6.7.

• Various pricing insights were gained from the decomposition schemes. However, more

work needs to be done to translate these insights into practical pricing strategies. For ex-

ample, how can we use the penalty term that represents the velocity of convergence in the

decomposed problem to improve price discovery in real-world markets or auctions? How

can information regarding the substitutionary and complementary effects among different

investment options obtained through Benders Cuts be used to potentially form socially ben-

eficial cooperative investment alliances?

• Non-convexities have traditionally been difficult to price. In the Non-Convex GBD algo-

rithm adopted in Part II of this dissertation, a convex relaxation of the non-convex problem

is used as an approximation to the original problem to ease computation. This leads to the

question of what is the minimum level of complexity that needs to be modeled in designing

electricity markets and pricing schemes.

• The potentially substitutionary effects of generation and transmission investments mean that

the order of investments can have significant impacts on overall investments in the system.

It is unlikely that any investment market protocol could be truly 100% technology neutral.

Therefore, it is important for market designers to understand the biases of any investment

protocol to ensure that any investment bias introduced to the system align with the broader

societal objectives.

• Congestion revenue based cost recovery appears to result in under investments in transmis-

sion lines due to two reasons. First, the lumpiness of investments often results in post-

investment congestion revenue of zero. Second, in some situations, transmission owners are

willing to make the investment based on expected congestion revenue, but the congestion
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revenue that needs to be paid out by the system operator to the transmission owner does

not justify the investment. The availability of long-run congestion revenue via the forward

market helps with the first situation. In the second situation, some cases could potentially

be resolved by rewarding only partial rights to the congestion revenue, such that the trans-

mission owners receive a percentage of the congestion revenue that makes it profitable to

both the transmission owners and system operators.

9.4 Concluding Remarks

In this concluding chapter, we have discussed the contributions of this dissertation in terms of

model development and market insights, and in the context of an overall framework for market

design. On the highest level, this dissertation is about developing and demonstrating market de-

sign tools that can handle the increasing level of complexity in the electric power system. This

dissertation takes some initial steps in demonstrating how tools such as mathematical decompo-

sition and computer simulations can be used to gain insights into market design for the future

electricity grid. However, more work remains to be done. In particular, we believe that there

should be greater exploration of the potential of mathematical decomposition as a tool for market

design, especially in terms of market pricing.

In addition, we believe that one of the biggest challenges in the design of future electricity

markets is that it is currently difficult to compare studies done by different researchers due to the

variety of tools being used. Simulation-based studies like the one used in this dissertation are

particularly notorious for being difficult to interpret. Therefore, one key research focus in the near

future for the electricity market design community should be to develop a common evaluation

framework to compare the different market design ideas being tested by the broader research

community and to develop best practices for electricity market design.
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[16] J.-Y. Joo and M. D. Ilić, “Multi-layered optimization of demand resources using lagrange

dual decomposition,” IEEE Transactions on Smart Grid, vol. 4, no. 4, pp. 2081–2088, 2013.

[17] M. D. Prica, “An algorithmic interactive planning framework in support of sustainable tech-

nologies,” Ph.D. dissertation, Carnegie Mellon University, 2010.

[18] E. G. Cazalet, “Decomposition of complex decision problems with applications to electrical

power system planning,” 1970.
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californiaâĂŹs electricity industry,” The Journal of Industrial Economics, vol. 47, no. 3, pp.

285–323, 1999.

[46] A. N. Kleit and R. J. Michaels, “Does competitive electricity require capacity markets? the

texas experience,” The Texas Public Policy Foundation, 2013.

[47] A. Botterud and G. Doorman, “Generation investment and capacity adequacy in electricity

markets,” International Association for Energy Economics. Second Quarter, 2008.

[48] D. Newbery, “Missing money and missing markets: Reliability, capacity auctions and inter-

connectors,” Energy Policy, vol. 94, pp. 401–410, 2016.

[49] L. M. Ausubel and P. Cramton, “Using forward markets to improve electricity market de-

sign,” Utilities Policy, vol. 18, no. 4, pp. 195–200, 2010.

[50] A. Botterud, T. Kristiansen, and M. D. Ilic, “The relationship between spot and futures prices

in the nord pool electricity market,” Energy Economics, vol. 32, no. 5, pp. 967–978, 2010.

[51] L. Tesfatsion. The AMES Wholesale Power Market Test Bed. [Online]. Available:

http://www2.econ.iastate.edu/tesfatsi/AMESMarketHome.htm

[52] Argonne National Laboratory. Electricity Market Complex Adaptive System (EMCAS).

[Online]. Available: http://ceeesa.es.anl.gov/projects/emcas.html
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