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Introduction

This thesis consists of two parts. Chapter I is based on the single-authored
work, “Stability of utility maximization in nonequivalent markets,” which will
appear in Finance & Stochastics. Stability of the utility maximization problem
with random endowment and indi↵erence prices is studied for a sequence of
financial markets in an incomplete Brownian setting. The novelty lies in the
nonequivalence of markets, in which the volatility of asset prices (as well as
the drift) varies. Degeneracies arise from the presence of nonequivalence. In
the positive real line utility framework, a counterexample is presented showing
that the expected utility maximization problem can be unstable. A positive
stability result is proven for utility functions on the entire real line.

Chapter II is based on the joint work with Dmitry Kramkov, “Mucken-
houpt’s (Ap) condition and the existence of the optimal martingale measure.”
The chapter seeks to answer the question, “When is the dual optimizer a mar-
tingale?” In the problem of optimal investment with a utility function defined
on (0,1), we formulate su�cient conditions for the dual optimizer to be a uni-
formly integrable martingale. Our key requirement consists of the existence
of a martingale measure whose density process satisfies the probabilistic (Ap)
condition for the power p = 1/(1 � a), where a 2 (0, 1) is a lower bound on
the relative risk-aversion of the utility function. In Section II.6, we construct
a counterexample showing that this (Ap) condition is sharp.
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Chapter I

Stability of Utility
Maximization in Nonequivalent
Markets

I.1 Introduction

As part of Hadamard’s well-posedness criteria, stability of the utility max-
imization problem with random endowment is studied with respect to per-
turbations in both volatility and drift. Specifically, we seek to answer the
question:

What conditions on the utility function and modes of convergence on the
sequence of volatilities and drifts guarantee convergence of the corresponding

value functions and indi↵erence prices?

Perhaps surprisingly, convergence can fail even in the tamest of settings
when the utility function is finite only on R and the volatility can vary. We
present a simple counterexample in a stochastic volatility setting with power
utility. When the utility function is finite only on R+, the admissibility cri-
terion is harsh: negative values in terminal wealth plus random endowment
equate to minus infinity in utility. When volatility can vary, a contingent claim
that is replicable only in the limiting market requires strictly more initial capi-
tal in every pre-limiting market in order to avoid a minus infinity contribution
towards expected utility. As part of the counterexample, we prove a positive
convergence result in which the limiting market adopts an additional admissi-
bility condition that is implicitly present in each pre-limiting market.

When the investor’s utility function is finite on the entire real line, the
admissibility criterion is di↵erent. Our main result provides conditions on the
utility function and on the sequence of markets so that we have convergence
of the value functions and indi↵erence prices. We consider a similar setup to
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[41], and our main assumptions are analogous to theirs. The only non-standard
assumption we require is an assumption on the limiting market. The significant
di�culty stems from the growth of the dual utility function at infinity because
in contrast to utilities on R+, the conjugate of a real line utility grows strictly
faster than linearly at infinity. We provide two su�cient conditions. These
conditions include:

1. The first condition applies to a contingent claim that is replicable in
the limiting market yet not replicable in any pre-limiting market. The
corresponding stability problem is relevant when a claim’s underlying
asset is not liquidly traded but is closely linked to a liquidly traded
asset. This situation arises, e.g., when hedging weather derivatives by
trading in related energy futures or when an executive wants to hedge his
position in company stock options but is legally restricted from liquidly
trading his own company’s stock. Practical and computational aspects
of this problem are considered by [11], [45], and in more generality by
[20].

2. The second su�cient condition requires exponential preferences and ad-
ditional regularity of the limiting market but places no restrictions on
the claim’s replicability. This case covers a general incomplete Brownian
market structure under a mild BMO condition on the limiting market.
The connection between BMO and exponential utility is long established;
see, for example, [12] and [22].

The questions of existence and uniqueness for the optimal investment prob-
lem from terminal wealth are thoroughly studied. The surrounding literature
is vast, and only a small subset of work is mentioned here. For general utility
functions on R+ in a general semimartingale framework, [37] finish a long line
of research on incomplete markets without random endowment. In [9], this
work is extended to include bounded random endowment, while [26] study the
unbounded random endowment case. For utility functions on R in a locally
bounded semimartingale framework, [49] studies the case with no random en-
dowment, while [47] handle the unbounded random endowment case. In [6],
the authors study the non-locally bounded semimartingale setting without
random endowment and unify the framework for utilities on R and R+.

Stability with respect to perturbations in the market price of risk for fixed
volatility is first studied in [41] for utility on R+ and later in [5] for exponential
utility. Both works consider risky assets with continuous price processes and no
random endowment. For a locally bounded asset and an investor with random
endowment, [32] study a market stability problem in which the financial market
and random endowment stay fixed while the subjective probability measure
and utility function vary. A BSDE stability result is used in [19] to study a
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specific stability problem for an exponential investor related to the indi↵erence
price formulas derived in [20]. Using this BSDE stability result, [19]’s market
stability result extends to a case with a fixed market price of risk and a varying
underlying correlation factor between the traded and nontraded securities. In
contrast to these previous works, we seek to prove a stability result for a
general utility function on R allowing for varying both volatility and market
price of risk in the presence of random endowment.

Stability is related to the concept of robustness with respect to a collection
of probability measures. Robustness in option pricing dates back to the uncer-
tain volatility models (UVM) of [4] and [43], who consider a range of possible
volatilities and determine the best- and worst-case option prices. In contrast
to UVM, which seek to price claims in a complete yet uncertain market, we
seek to determine stability properties using indi↵erence prices in an incom-
plete market. With utility maximization, both the volatility and the drift
impact investors’ optimal trading decisions. In [17], [44], and [50], the authors
consider robust utility maximization problems, in which both the volatility
and drift vary within a class of subjective probability measures. Robust opti-
mization seeks the best trading strategy in the worst possible model, whereas
our investor firmly believes in the specified subjective model, and we seek to
determine which of these models are stable.

The structure of the paper is as follows. Section I.2 presents a counterex-
ample for a power investor with unspanned stochastic volatility. Section I.3
lays out the model assumptions and states the main result. The proofs are pre-
sented in Section I.4. Finally, Section I.5 provides a counterexample showing
the necessity of a nondegeneracy assumption and provides su�cient conditions
on the structure of the dual problem for this assumption to hold.

I.2 Stability Counterexample for Power Util-

ity

When an investor’s preferences are described by utility on the positive real
line and random endowment is present, the admissibility condition provides
an additional implicit constraint. As we will prove, this constraint can create
a discontinuity in the value function and indi↵erence prices for markets with
varying martingale drivers. The following are simple incomplete Brownian
models with a contingent claim that can only be replicated in the limiting
market.
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I.2.1 Market Model

We let B and W be independent Brownian motions on a filtered probability
space (⌦,F ,F,P) where F = (Ft)0tT is the natural filtration of (B,W )
completed with P-null sets and F = FT . We consider stock market models,
S⇢, with stochastic volatility indexed by correlation parameter ⇢ 2 (�1, 1)
where

dS⇢
t = µ⌫tdt+

p
⌫t
⇣

p

1� ⇢2dBt + ⇢dWt

⌘

, S⇢
0 := 0,

d⌫t =  (✓ � ⌫t) dt+ �
p
⌫tdBt, ⌫0 := 1.

(I.2.1)

The constants , ✓,� > 0 satisfy Feller’s condition, 2✓ � �2, which guarantees
that there exists a unique strong solution for ⌫ that is strictly positive for all
⇢ 2 (�1, 1). The risky asset S⇢ is traded, whereas the stochastic volatility ⌫
is not traded. The dynamics of S⇢ are written in an arithmetic fashion, which
can be viewed as the returns of a positive asset. For our purposes, the outcome
of trading is unchanged whether we consider arithmetic or geometric specifi-
cations of the dynamics. For a fixed ⇢, [36] studies the utility maximization
problem in the context of this model. Each ⇢ market also has a bank account
with zero interest rate.

A contingent claim f is defined by f := �(BT ), where � : R ! R is a
bounded, continuous function. The claim f is replicable in the ⇢ = 0 market;
however, it is not replicable in any other market. We define �min := inf �,
which corresponds to the subreplication price of f in the ⇢ 6= 0 markets (see
Proposition I.2.1 below). We allow for the possibility that � is a constant
function, in which case the endowment f can be viewed as a deterministic
initial endowment.

Remark I.2.1. Our model assumes that all markets share the same probability
space and filtration. In particular, we assume that both Brownian motions,
B and W , are observable in each ⇢ market. However, suppose an investor in
the ⇢ market can only observe the path of the risky asset, S⇢. Then such an
investor can also observe both B and W .1 Since the quadratic variation of S⇢

is observable and there exists a unique (positive) strong solution to the SDE
for ⌫, we can observe ⌫ and B from hS⇢i. Also from the observation of S⇢ and
µ, we can determine (

p

1� ⇢2B + ⇢W ), which allows the investor to observe
both B and W separately (for ⇢ 6= 0).

I.2.2 Optimal Investment Problem

An investor is modeled by power utility U(x) = x�/� for x > 0 with � < 0.
As a convention, U(x) = �1 for x  0. The investor begins with initial

1
Many thanks to an anonymous reviewer for making this keen observation.
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capital x > ��min. A progressively measurable process H is integrable if
R T

0
⌫tH2

t dt < 1, a.s. An integrable H is called ⇢-admissible if there exists a
finite constant K = K(H) such that (H · S⇢)t � �K for all t 2 [0, T ]. We
define the primal optimization set by

C(⇢) := {(H · S⇢)T : H is ⇢-admissible} .
For ⇢ 2 (�1, 1), the primal value function is defined by

u(x, ⇢) := sup
X2C(⇢)

E [U (x+X + f)] , x > ��min. (I.2.2)

Remark I.2.2. For ⇢ = 0, u(·, 0) is well-defined for a larger x-domain than
(��min,1). Yet the x-domain is tight for every ⇢ 6= 0. This discontinuity in
the domains at ⇢ = 0 hints at the issue of (dis)continuity with respect to ⇢ in
the primal problem. See [9] for more details on the primal domain definition.

For each ⇢ 2 (�1, 1), we define the dual domain by

D(⇢) :=

⇢

measures Q ⇠ P : E


dQ
dP

�

= 1 and EQ [X]  0 8X 2 C(⇢)
�

.

Lemma 5.2 in [8] shows that D(⇢) 6= ;. Similar to [33], we have the following
result, which will be proven in Section I.4.

Proposition I.2.1. Let ⇢ 6= 0 be given. The subreplication price of f is �min;
that is,

inf
Q2D(⇢)

EQ [�(BT )] = �min.

Moreover, for all x 2 R and (H ·S⇢)T 2 C(⇢) such that x+ (H ·S⇢)T + f � 0,
we have

x+ (H · S⇢)T � ��min . (I.2.3)

We consider a di↵erent optimization problem for ⇢ = 0 with an additional
admissibility constraint motivated by (I.2.3). For any x > ��min, we define
the admissibly-constrained primal optimization sets in the ⇢ = 0 market by

Cc(x) := {X 2 C(0) : x+X � ��min} .
The corresponding admissibly-constrained primal value function is defined by

uc(x) := sup
X2C

c

(x)

E [U (x+X + f)] , x > ��min. (I.2.4)

The following is the main result of the section. We note that when �(z) = 0
for all z 2 R, we have that C(⇢ = 0) for u(x, 0) corresponds to Cc(x), and
u(x, 0) = uc(x) for x > ��min. In this case, the next theorem provides a
stability result in the spirit of [41].
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Theorem I.2.2. Assume the market dynamics (I.2.1) and utility function
U(x) = x�/�, for x > 0, with � < 0. Assume the random endowment function
� is continuous and bounded, and the initial endowment is x > ��min. Let u
and uc be as in (I.2.2) and (I.2.4), respectively. Then,

lim
⇢!0

u(x, ⇢) = uc(x) .

The proofs of Theorem I.2.2 and its Corollary I.2.4 (below) will follow in
Section I.4. The corollary says that when � is not constant, indi↵erence prices
for f do not converge to the unique arbitrage-free price in the ⇢ = 0 market
as ⇢ ! 0. For any ⇢ 2 (�1, 1), we define the value function without random
endowment by

w(x, ⇢) := sup
X2C(⇢)

E [U (x+X)] , x > 0. (I.2.5)

Definition I.2.3. Given x > ��min and ⇢ 2 (�1, 1), p = p(x, ⇢) 2 R is called
the indi↵erence price for f at x in the ⇢ market if w(x+ p, ⇢) = u(x, ⇢).

Of course, for ⇢ = 0, the indi↵erence price corresponds to the unique
arbitrage-free price for the bounded replicable claim, f . Also notice that since
indi↵erence prices are arbitrage-free prices, then p(x, ⇢) � �min for every x >
��min.

Corollary I.2.4. Under the assumptions of Theorem I.2.2 and for � not con-
stant: For x > ��min, the indi↵erence prices for f do not converge to the
arbitrage-free price in the ⇢ = 0 market. Indeed, lim sup⇢!0 p(x, ⇢) < p(x, 0).

Remark I.2.3. For the sake of clarity, emphasis is placed on the simplicity of
the power investor’s problem. Some aspects can be generalized at the expense
of more lengthy proofs and set-ups, e.g., a more general utility function or
more general asset dynamics. For the special case when f = 0, Theorem I.2.2
can be extended to the more general market models of Section I.3 in order
to generalize the value function convergence of Theorem 2.12 in [41] in the
varying volatility setting. The di�culty in generalizing beyond f = 0 stems
from the need for a dual conjugacy result for uc, which is not available in
the literature due to the Inada condition not being satisfied at x = 0 for the
(!-dependent) function x 7! U(x+ f � �min).

I.3 Utility Functions on R
Modeling investor preferences on the entire real line removes the fixed admis-
sibility lower bound, which prevents the degeneracy of Theorem I.2.2 from
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occurring. The remainder of this work is devoted to studying conditions that
guarantee stability for real line utility functions.

Let (⌦,F ,F = (Ft)0tT ,P) be a filtered probability space with the fil-
tration generated by d-dimensional Brownian motion B = (B1, . . . , Bd). We
assume that F is completed with all P null sets and F = FT , for a fixed time
horizon T 2 (0,1).

We consider a sequence of financial market models with stocks Sn valued
in R, for 1  n  1,

dSn
t = �nt |�n

t |2 dt+ �n
t dBt , Sn

0 = 0. (I.3.1)

Letting Lp := {progressively measurable ✓ :
R T

0
|✓t|pdt < 1, a.s}, p = 1, 2, we

require that �n = (�n,1, . . . , �n,d) satisfies �n,i 2 L2 for 1  n  1, 1  i  d,
and �n|�n|2 2 L1 for 1  n  1. For 1  n  1, we define the local
martingales Mn by

Mn := (�n,1 · B1) + . . .+ (�n,d · Bd), (I.3.2)

so that the dynamics of Sn are of the form

dSn
t = �nt dhMnit + dMn

t , Sn
0 = 0.

Additionally, we assume that �n�n,i 2 L2 for 1  n  1, 1  i  d, so
that (�n ·Mn) is well-defined. We let Zn

t := E(��n ·Mn)t, t 2 [0, T ], denote
each market’s minimal martingale density process, where E(·) refers to the
stochastic exponential. Each market is assumed to have a bank account with
a zero interest rate.

A sequence {Xn}n�1 of semimartingales is said to converge to X in the
semimartingale topology provided that

sup
|✓|1

E [|(✓ · (Xn �X))T | ^ 1] �! 0 as n ! 1.

Here, the supremum is taken over progressively measurable ✓, which are bounded
uniformly by 1 in t and !. The following assumptions capture the necessary
market regularity and the convergence of a sequence of markets.

Assumption I.3.1. The collections {Mn}1n1 and {(�n ·Mn)}1n1 satisfy
the convergence relations:

Mn �! M1 and (�n ·Mn) �! (�1 ·M1)

in the semimartingale topology as n ! 1.

The assumption that (�n · Mn) �! (�1 · M1) is similar to the appro-
priate topology assumption of [41], whereas the convergence assumption on
Mn is new since the previous market stability work required the martingale
components to remain constant.
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Assumption I.3.2. Each minimal martingale density process, Zn, for 1 
n  1, is a P-martingale.

Under the minimal martingale measure Qn, where dQn

dP = Zn
T , S

n is a local
martingale and any P-local martingale N such that hN,Mnit = 0 for t 2 [0, T ]
remains a local martingale under Qn. We refer to [18] for a survey on minimal
martingale measures and their use in mathematical finance.

Under Assumption I.3.1, we have that (�n · Mn)T �! (�1 · M1)T and
h�n · MniT �! h�1 · M1iT in probability as n ! 1. Hence, Zn

T �! Z1
T

in probability as n ! 1. Under Assumption I.3.2, each Zn is a martingale,
and so Sche↵e’s Lemma implies the seemingly stronger fact that Zn

T �! Z1
T

in L1(P) as n ! 1.
A further non-degeneracy assumption is needed on the limiting market

in order to ensure that randomness does not disappear in a degenerate way.
A counterexample showing that this condition is in some sense necessary is
provided in Section I.5.

Assumption I.3.3. The dynamics of hM1i satisfy the nondegeneracy condi-
tion

Pd
i=1(�

1,i
t )2 6= 0 for all t 2 [0, T ], P-a.s.

Remark I.3.1. The markets {S⇢
n}1n1 of Section I.2 satisfy Assumptions

I.3.1, I.3.2, and I.3.3 for any ⇢n �! ⇢ 2 [�1, 1] as n ! 1.

Finally, a contingent claim f 2 L1(P) is given and is independent of n 2 N.
We make no assumption on the replicability of f at this time.

I.3.1 Optimal Investment Problem

An investor is modeled by preferences U : R ! R, which are finite on the entire
real line. U is assumed to be continuously di↵erentiable, strictly increasing,
strictly concave and satisfies the Inada conditions at �1 and +1:

U 0(�1) := lim
x!�1

U 0(x) = 1 and U 0(+1) := lim
x!1

U 0(x) = 0.

Additionally, we assume that U satisfies the reasonable asymptotic elasticity
conditions of [37] and [49]:

AE�1(U) := lim inf
x!�1

xU 0(x)
U(x)

> 1 and AE+1(U) := lim sup
x!1

xU 0(x)
U(x)

< 1 .

(I.3.3)
The utility function’s Fenchel conjugate is defined by for y > 0 by V (y) :=

supx2R{U(x)�xy}. V is strictly convex and continuously di↵erentiable. With-
out loss of generality, we assume that U(0) > 0. When U(0) > 0, we have
V (y) > 0 for all y > 0.

Similar to [41], [32], and [5], we make the following assumption:
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Assumption I.3.4. The collection of random variables {V (Zn
T )}1n1, where

Zn
T is the minimal martingale density for the Sn market, is uniformly inte-

grable.

In [41], the authors show that Assumption I.3.4 is both necessary and
su�cient for stability of the value function in the case of complete markets.
They study the stability problem with a utility function defined on the positive
real line, no random endowment, fixed volatility, and varying market price
of risk; see [41] Proposition 2.13. In an incomplete setting, they provide a
counterexample to the value function stability showing that in some sense
Assumption I.3.4 is necessary.

For 1  n  1, a process H is Sn-integrable if H�n,i 2 L2 for 1  i  d.
Cauchy-Schwartz’s inequality produces H�n(�n,i)2 2 L1 for 1  i  d. The
Sn market’s admissible strategies are defined by

Hn
adm := {H : H is Sn-integrable, 9K = K(H), (H · Sn)t � �K, 8t} .

The primal value function is defined by

un(x) := sup
H2Hn

adm

E [U (x+ (H · Sn)T + f)] , x 2 R. (I.3.4)

Let Mn denote the set of probability measures Q such that Q ⇠ P and Sn

is a local martingale under Q. We are primarily interested in such measures
that have finite V -entropy: E[V (dQ

dP )] < 1. Let Mn
V denote those measures

Q 2 Mn having finite V -entropy. For 1  n  1, the dual value function is
defined for the Sn market by

vn(y) := inf
Q2Mn

V

E


V

✓

y
dQ
dP

◆

+ y
dQ
dP f

�

, y > 0. (I.3.5)

At first glance, our definition of the dual value function di↵ers from that
of [47], who, for 1  n  1, consider the infimum over Q ⌧ P such that
Sn is a Q-local martingale and E[V (dQ

dP )] < 1. Assumptions I.3.2 and I.3.4
plus Zn

T > 0 imply that Mn
V 6= ;. In this case, Theorem 1.1(iii) of [47] shows

that the optimal dual element lies in the set Mn
V , and thus the two dual value

function definitions agree.
The primal admissible class of strategies is too small to attain a solution to

the optimal investment problem. However, the behavior of the value function
is our primary interest, rather than the behavior (or even attainability) of the
optimizer. Using that f 2 L1(P) and Mn

V 6= ;, Theorem 1.2(i) of [47] implies
that our definition of the primal value function agrees with the definition of uE
of [47]. Here, E = xn + f and E refers to the notation of the aforementioned
work.
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By using [1] and [2], for 1  n  1, we can rewrite any Q 2 Mn
V as

dQ
dP = Zn

TE(L)T , where L is a local martingale null at 0 such that hL,Mnit = 0
for all t 2 [0, T ]. We need to make a further assumption in order to ensure a
“nice” structure of the limiting market’s dual domain. For n = 1, let B be
defined by

B := {local martingales L :L0 = 0, hL,M1it = 0, 8t 2 [0, T ],

9 constant C = C(L), E(L)t  C, 8t 2 [0, T ]} .
Assumption I.3.5. For n = 1, the dual problem, (I.3.5), can be expressed
as

v1(y) = inf
L2B

E [V (yZ1
T E(L)T ) + yZ1

T E(L)Tf ] , y > 0,

where Z1
T is the minimal martingale density in the S1 market.

This assumption is non-trivial to verify in general due to the fact that V
is increasing strictly faster than linearly as y �! +1. It is mathematical in
nature and ensures that the dual optimizer does not vary “too much”. Section
I.5 provides two su�cient conditions. The first condition covers the original
motivation for our stability problem, where the contingent claim is replicable
in the (incomplete) limiting market but not replicable in any pre-limiting mar-
ket. In this case, the limiting market consists of a driving Brownian motion, a
replicable claim, and additional independent Brownian noise. The second con-
dition makes no assumptions on the claim’s replicability; however, it requires
exponential preferences and imposes a mild BMO condition on the limiting
market. Indeed, a BMO condition on the limiting market’s minimal martin-
gale density ensures that the dual optimizer has controlled oscillations, which
implies Assumption I.3.5. Similarly, [12] make use of a form of BMO regularity
of some dual element in order to establish BMO regularity of the optimal dual
element.

The following is our main result.

Theorem I.3.6. Suppose that the sequence of markets satisfies Assumptions
I.3.1, I.3.2, and I.3.4. Suppose that the limiting market satisfies Assumptions
I.3.3 and I.3.5. Then, for xn �! x as n ! 1,

lim
n!1

un(xn) = u1(x).

Moreover, for yn �! y > 0 as n ! 1,

lim
n!1

vn(yn) = v1(y).

For 1  n  1, the value function without random endowment is defined
by

wn(x) := sup
H2Hn

adm

E [U (x+ (H · Sn)T )] , x 2 R.

11



Definition I.3.7. Given 1  n  1 and x 2 R, pn = pn(x) is called the
indi↵erence price for f at x in the Sn market if wn(x+ pn) = un(x).

The indi↵erence price, pn, exists by the continuity of wn and boundedness
of f . Its uniqueness is guaranteed since wn is strictly increasing.

Corollary I.3.8. Let the assumptions be as in Theorem I.3.6. Then for x 2 R,
the indi↵erence prices for f converge; that is, limn!1 pn(x) = p1(x).

Remark I.3.2. The results in Theorem I.3.6 and Corollary I.3.8 remain true
(with only minor notational changes to the proofs) in the case with varying
random endowment. Specifically, the random endowments {fn}1n1 corre-
sponding to the {Sn}1n1 markets need to satisfy

sup
n

kfnkL1 < 1 and fn �! f1 in probability as n ! 1 (I.3.6)

in order for the results to hold. This additional flexibility allows us to consider
the case of a varying quantity of contingent claims and also contingent claims
that depend on the individual markets. For example, if g : R ! R is bounded
and continuous, then fn := g(Sn

T ) will satisfy (I.3.6).

Remark I.3.3. The study of the optimal terminal wealths and the optimal dual
elements is typical in utility maximization in addition to properties of the value
functions; however, it is absent in the present work. When varying both the
volatility and drift of the risky assets, a major hurdle to stability is handling
the change in the primal and dual feasible elements from market to market.
Here, we use the varying volatility as a tool for pricing financial securities via
a “nearby” models with good properties, rather than using it for investment
advice. Because the study of optimal strategies is rather involved, it is beyond
the scope of the present work and would be an interesting question to address
in future research.

Remark I.3.4. A special case of stability with varying volatility is considered
in [32] (see their Remark 2.5). The authors consider a fixed risky asset with
varying equivalent subjective probability measures. However, this approach
relies on the invertibility of the volatility process in every market, which in
particular implies completeness for all markets. In our model, such measures
would correspond to the risky asset laws, Pn := P�(Sn)�1. Due to the changes
in the volatility structure with n, the laws Pn are nonequivalent in the present
work. Moreover, our results do not rely on completeness.

I.4 Proofs

We begin by proving the results from Section I.2 for the power investor. As
in Sections I.2 and I.3, we assume a (completed) Brownian filtration.

12



I.4.1 Dual Problems and Power Investor Proofs

We begin by proving Proposition I.2.1. Example 1 of [33] uses the duality
between L1(P) and L1(P) in order to establish a similar result when the
contingent claim is independent of the traded assets. Without independence,
we cannot apply the duality result directly, and instead we explicitly construct
a sequence of martingale measures realizing the subreplication price.

Proof of Proposition I.2.1. Let ⇢ 6= 0 be given. We first seek to show that for
all 0 < t0 < T ,

ess inf
Q2D(⇢)

EQ[�(BT )|Ft0 ] = �min,

which implies that the subreplication price is �min. Subsequently, we will show
(I.2.3).

We fix t0 < T and let T 0 2 (t0, T ) and x 2 R be given. Then B⇢ :=
p

1� ⇢2B + ⇢W and W ⇢ :=
p

1� ⇢2W � ⇢B are orthogonal P-Brownian
motions. Equivalently, we have that B =

p

1� ⇢2B⇢ � ⇢W ⇢ and W = ⇢B⇢ +
p

1� ⇢2W ⇢. Consider the local martingale Z defined for t 2 [0, T ] by

Zt := E ��µ
p
⌫ · B⇢

�

t
E
✓

1

⇢

✓

�µ
p

1� ⇢2
p
⌫ � x

T
+
⌘I[T 0,T ]

T � T 0

◆

·W ⇢

◆

t

,

where ⌘ := BT 0 � xT 0/T 2 FT 0 . In fact, Z is a martingale, which we verify
by applying Novikov’s condition locally. The following procedure is standard;
see, e.g., Section 6.2 Example 3(a) in [42]. By Corollary 5.14 of [31], it su�ces
to find � > 0 and tn := n� such that for each n � 1,

E


exp

✓

1

2

Z t
n+1

t
n

d hMiu
◆�

< 1, (I.4.1)

where for t 2 [0, T ],

Mt := �µ
�p

⌫ · B⇢
�

t
+

1

⇢

✓✓

�µ
p

1� ⇢2
p
⌫ � x

T
+
⌘I[T 0,T ]

T � T 0

◆

·W ⇢

◆

t

.

By applying Cauchy-Schwartz to (I.4.1), it su�ces to choose � > 0 such that
for each n � 1, we have

E


exp

✓

Z t
n+1

t
n

µ2

⇢2
⌫udu

◆�

< 1 and E


exp

✓

�
⌘2

⇢2(T � T 0)

◆�

< 1. (I.4.2)

Jensen’s Inequality and Tonelli’s Theorem imply that

E


exp

✓

Z t
n+1

t
n

µ2

⇢2
⌫udu

◆�

 E


Z t
n+1

t
n

exp

✓

�µ2

⇢2
⌫u

◆

du

�

�

.
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By defining ⌫̃t through the equality ⌫t =
�2(1�e�t)

4
⌫̃t, we have that ⌫̃t is noncen-

trally �2-distributed with 4✓
�2 degrees of freedom and noncentrality parameter

4e�t

�2(1�e�t)
. Then E[exp(

R t
n+1

t
n

µ2

⇢2
⌫udu)] < 1 so long as �  ⇢2

µ2�2(1�e�T )
.

By Cauchy-Schwartz, we have

E


exp

✓

�
⌘2

⇢2(T � T 0)

◆�

= E
"

exp

 

�

⇢2(T � T 0)

 

B2
T 0 � 2xT 0BT 0

T
+

✓

xT 0

T

◆2
!!#

 e
�x

2(T 0)2

⇢

2
T

2(T�T

0)

s

E


exp

✓

2�B2
T 0

⇢2(T � T 0)

◆�

E


exp

✓�4�xT 0BT 0

⇢2T (T � T 0)

◆�

,

which is finite provided that �  ⇢2(T�T 0)
8T 0 .

Thus, taking � := ⇢2 min( 
µ2�2(1�e�T )

, T�T 0

8T 0 ) yields (I.4.2).

We define Q 2 D(⇢) by dQ
dP := ZT and the processes B

⇢
and W

⇢
by

B
⇢

t := B⇢
t + µ

Z t

0

p
⌫u du

and

W
⇢

t := W ⇢
t +

µ
p

1� ⇢2

⇢

Z t

0

p
⌫u du+

xt

⇢T
� ⌘

R t

0
I[T 0,T ]

⇢(T � T 0)
.

By Girsanov’s Theorem, B
⇢
and W

⇢
are orthogonal Q-Brownian motions.

Moreover, ⌘ =
p

1� ⇢2B
⇢

T 0 � ⇢W
⇢

T 0 , which implies that

BT =
⇣

p

1� ⇢2B
⇢

T � ⇢W
⇢

T

⌘

+ x�
⇣

p

1� ⇢2B
⇢

T 0 � ⇢W
⇢

T 0

⌘

.

Then, P-a.s.,

EQ [�(BT ) | Ft0 ]

= EQ
h

�
⇣⇣

p

1� ⇢2B
⇢

T � ⇢W
⇢

T

⌘

�
⇣

p

1� ⇢2B
⇢

T 0 � ⇢W
⇢

T 0

⌘

+ x
⌘

| Ft0

i

= EQ
h

�
⇣⇣

p

1� ⇢2B
⇢

T � ⇢W
⇢

T

⌘

�
⇣

p

1� ⇢2B
⇢

T 0 � ⇢W
⇢

T 0

⌘

+ x
⌘i

= EP [� (BT � BT 0 + x)] .

The choice of T 0 2 (t0, T ) and x 2 R is arbitrary, and therefore,

ess inf
Q2D(⇢)

EQ [�(BT ) | Ft0 ] = �min. (I.4.3)

Finally, we suppose that x 2 R and (H · S⇢)T 2 C(⇢) such that x +
(H · S⇢)T + �(BT ) � 0. Then for all Q 2 D(⇢), we have that (H · S⇢) is a
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lower-bounded Q-local martingale, and hence a Q-supermartingale. For all
t0 < T , we have 0  x+ (H · S⇢)t0 + EQ[�(BT )|Ft0 ]. By (I.4.3) above, we have
0  x + (H · S⇢)t0 + �min. Continuity with respect to time and taking t0 ! T
yields (I.2.3).

As is typical in convex optimization, we introduce the dual problem as
tool for proving Theorem I.2.2 and Corollary I.2.4. For y > 0, define V (y) :=
supx>0{U(x)� xy}. For U(x) = x�/�, we have V (y) = 1��

�
y�/(��1). For y > 0

and z � �min, we define

Vc(y, z) : = sup
x>��min

{U(x+ z)� xy}

=

(

V (y) + yz, for y < U 0 (z � �min) ,

U (z � �min) + y�min, otherwise.

We can then define a constrained form of the dual value function for ⇢ 2 (�1, 1)
by,

vc(y, ⇢) := inf
Q2D(⇢)

E


Vc

✓

y
dQ
dP , f

◆�

, y > 0. (I.4.4)

For Z⇢
t := E(�µ

p
⌫ · B)t, t 2 [0, T ], the random variable Z⇢

T is the minimal
martingale density corresponding to the S⇢ market. The martingale property
of Z⇢ is shown in Lemma 5.2 of [8]. In particular, vc(y, ⇢) < 1 for all y > 0
and ⇢ 2 (�1, 1).

The constrained dual problem arises naturally from the endogenous primal
admissibility constraint (I.2.3). For ⇢ 6= 0, we could define a constrained
primal problem, u⇢

c = u⇢
c(x) for x > ��min, and a corresponding constrained

optimization set, C⇢
c (x), analogously to uc and Cc(x) in the ⇢ = 0 case. In that

case, we would have u⇢
c(x) = u(x, ⇢) for all x > ��min by (I.2.3), and (I.4.4)

would be the natural candidate for its dual conjugate. Indeed, for ⇢ 6= 0, [40]
prove that the constrained form of the dual value function, (I.4.4), is in fact
equal to the dual value function as it is defined in [9], Equation (3.1). (See
[40] Theorem 4.2.)

Remark I.4.1. In [40], the authors consider the problem of facelifting, in which
the primal and dual value functions in the presence of unspanned random
endowment are not continuous with respect to time to maturity as the maturity
decreases to 0. At first glance, our stability problem di↵ers from that of
varying maturity. However, both problems have the property that the random
endowment is non-replicable in every pre-limiting market yet replicable in the
limit. This property allows for the admissibility constraint, (I.2.3), to appear
endogenously in the pre-limiting models, whereas (I.2.3) must be exogenously
applied in the limiting model.
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Lemma I.4.1. Let the assumptions of the model be as in Theorem I.2.2. For
y > 0,

lim sup
⇢!0

vc(y, ⇢)  E
⇥

Vc(yZ
0
T , f)

⇤

,

where Z0
T is the minimal martingale density for the S0 market.

Proof. One can show that {V (yZ⇢
T )}⇢ is uniformly integrable, e.g., using the

proof of Lemma 5.2 in [8]. For each ⇢ 2 (�1, 1), Z⇢ is a martingale, and hence
convergence in probability along with Sche↵e’s Lemma implies that Z⇢

T �! Z0
T

in L1(P) as ⇢! 0. Convergence in L1(P) plus f 2 L1(P) implies that {Z⇢
Tf}⇢

is uniformly integrable. Since Vc(yZ
⇢
T , f) �! Vc(yZ0

T , f) in probability as
⇢! 0 and

Vc(yZ
⇢
T , f)  V (yZ⇢

T ) + yZ⇢
Tf

for all ⇢ 2 (�1, 1), Fatou’s Lemma implies

E
⇥

Vc

�

yZ0
T , f
�⇤ � lim sup

⇢!0
E [Vc (yZ

⇢
T , f)]

� lim sup
⇢!0

vc(y, ⇢).

Lemma I.4.2. Let the assumptions of the model be as in Theorem I.2.2. Let
u and uc be as defined in (I.2.2) and (I.2.4), respectively. For any x > ��min,
uc(x)  lim inf⇢!0 u(x, ⇢).

Before proving Lemma I.4.2, we need two technical lemmas, which will
again be used in the proof of Theorem I.3.6. While the notions of integrability
are defined separately for Sections I.2 and I.3, the notions agree and are not
referred to separately in Lemmas I.4.3 and I.4.4 below.

Lemma I.4.3. Let X be a semimartingale and H be X-integrable. Suppose
that there exists K > 0 such that (H · X)t � �K for all t 2 [0, T ]. Then
for any � > 0 there exists a sequence of progressively measurable integrands
{Hn}n�1 such that for each n � 1, Hn is uniformly bounded in t and !, while
for all t 2 [0, T ],

(Hn ·X)t � �K � �,

and (Hn ·X)T �! (H ·X)T in probability as n ! 1.

Proof. For n � 1, we define the integrands Hn := HI{|H|n}, where IA denotes
the indicator function of a set A ⇢ ⌦⇥ [0, T ]. We define the stopping times

�n := inf {t  T : (Hn ·X)t  �K � �} .
Then (HnIJ0,�

n

K · X)t � �K � � for all t 2 [0, T ]. Moreover, we have that
supt |((Hn � H) · X)t| �! 0 in probability as n ! 1 by Lemma 4.11 and
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Remark (ii) following Definition 4.8 both in [7]. This convergence implies that
P(�n = T ) �! 1 and hence (Hn ·X)�

n

�! (H ·X)T in probability as n ! 1.
Considering the sequence {HnIJ0,�nK}n�1 yields the result.

Lemma I.4.4. Let {Xn}n�1 be a sequence of semimartingales such that Xn �!
X in the semimartingale topology as n ! 1. Suppose that H is progressively
measurable and uniformly bounded in t and ! and there exists a K > 0 such
that (H · X)t � �K for all t 2 [0, T ]. Then for any � > 0, there exists a
sequence {Hn}n�1 such that for all n � 1, Hn is uniformly bounded in t and
!, for all t 2 [0, T ],

(Hn ·Xn)t � �K � �,

and (Hn ·Xn)T �! (H ·X)T in probability as n ! 1.

Proof. Since H is uniformly bounded and progressively measurable, it is X-
and Xn-integrable for all n � 1. Moreover, the definition of semimartingale
convergence implies that

(H ·Xn) �! (H ·X) in the semimartingale topology as n ! 1. (I.4.5)

For n � 1, we define the stopping times ⌧n by

⌧n := inf {t  T : (H ·Xn)n < �K � �}

and let Hn := HIJ0,⌧
n

K. By definition of ⌧n, we have (Hn ·Xn)t � �K � � for
all t 2 [0, T ]. Using (I.4.5),

P(⌧n < T ) = P (9 t0 < T : (H ·Xn)t0 < �K � �)

 P
✓

sup
tT

|(H · (Xn �X))t| > �

◆

+ P (9 t0  T : (H ·X)t0 < �K)

= P
✓

sup
tT

|(H · (Xn �X))t| > �

◆

+ 0

�! 0 as n ! 1.

Thus, (Hn ·Xn)T = (H ·Xn)⌧
n

�! (H ·X)T in probability as n ! 1.

Proof of Lemma I.4.2. Let " > 0 be given. Since uc is concave, it is continuous
on the interior of its domain, and hence we may choose x0 < x such that
uc(x) < uc(x0) + ". We then choose (H · S0)T 2 Cc(x0) such that uc(x0) 
E[U(x0 + (H · S0)T + f)] + ".

We define � := x�x0

4
> 0. Since H is (⇢ = 0)-admissible and we have

x0+(H ·S0)T � ��min, Lemma I.4.3 provides us with a sequence of integrands
{Hn}n�1 such that for each n � 1, Hn is bounded uniformly in t and ! while
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x0 + � + (Hn · S0)t � ��min for all t 2 [0, T ]. In particular, for all n � 1,
(Hn · S0)T 2 Cc(x0 + �) ✓ Cc(x), and we have the uniform lower bound

U
�

x+ (Hn · S0)T + f
� � U (x� x0 � � + f � �min)

� U

✓

3

4
(x� x0)

◆

> �1.

Fatou’s Lemma implies that

uc(x)  uc(x
0) + "

 E
⇥

U
�

x+ (H · S0)T + f
�⇤

+ 2"

 lim inf
n!1

E
⇥

U
�

x+ (Hn · S0)T + f
�⇤

+ 2",

which allows us to choose a su�ciently large n such that H̃ := Hn is uniformly
bounded in t and !, (H̃ · S0)T 2 Cc(x0 + �) and

uc(x)  E
h

U
⇣

x+ (H̃ · S0)T + f
⌘i

+ 3". (I.4.6)

Now that we have achieved su�ciently nice regularity of a nearly-optimal
strategy, H̃, we proceed by varying the parameter ⇢. Let ⇢k �! 0 be a
sequence realizing the lim inf in lim inf⇢!0 u(x, ⇢). Since S⇢

k �! S0 in the
semimartingale topology as k ! 1, Lemma I.4.4 allows us to choose {H̃k}k�1

such that for each k � 1, H̃k is bounded uniformly in t and ! while x0 + 2� +
(H̃k · S⇢

k)t � ��min. Moreover, (H̃k · S⇢
k)T �! (H̃ · S0)T in probability as

k ! 1. For every k � 1, we have the uniform lower bound

U(x+ (H̃k · S⇢
k)T + f) � U(x� x0 � 2� + f � �min) � U(

1

2
(x� x0)) > �1.

Therefore by Fatou’s Lemma and (I.4.6) above,

uc(x)  E
h

U
⇣

x+ (H̃ · S0)T + f
⌘i

+ 3"

 lim inf
k!1

E
h

U
⇣

x0 + (H̃k · S⇢
k)T + f

⌘i

+ 3"

 lim inf
k!1

E
h

U
⇣

x+ (H̃k · S⇢
k)T + f

⌘i

+ 3"

 lim inf
k!1

u(x, ⇢k) + 3"

= lim inf
⇢!0

u(x, ⇢) + 3".

Since " > 0 is arbitrary, the desired result holds.
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Proof of Theorem I.2.2. Fix ⇢ 6= 0. For x > ��min, X 2 C(⇢) such that
x+X � ��min, y > 0, and Q 2 D(⇢), we have

E [U(x+X + f)]  E


Vc

✓

y
dQ
dP , f

◆

+ y
dQ
dP (x+X)

�

 E


Vc

✓

y
dQ
dP , f

◆�

+ xy.

This strengthening of Fenchel’s inequality relies on the bound x+X � ��min

in order to replace V with Vc(·, f). Next, we take the supremum over all
X 2 C(⇢) with x + X � ��min and the infimum over all Q 2 D(⇢), which
yields that for any x > ��min and y > 0,

u(x, ⇢)  vc(y, ⇢) + xy.

This inequality along with Lemmas I.4.1 and I.4.2 shows that for any x >
��min and y > 0,

uc(x)  lim inf
⇢!0

u(x, ⇢)  lim sup
⇢!0

vc(y, ⇢) + xy  E[Vc(yZ
0
T , f)] + xy . (I.4.7)

Next, we show that uc(·) and vc(·, 0) are conjugates. We let y > 0 be given
and define the candidate optimal terminal wealth X̂ by

X̂ :=

(

�V 0(yZ0
T )� f , if yZ0

T  U 0(f � �min),

��min , otherwise.

For dQ0

dP := Z0
T = E(�µ

p
⌫ · B)T , we have that X̂ 2 L1(Q0). By martingale

representation and the strict positivity of
p
⌫ by the Feller condition, we may

write X̂ = EQ0
[X̂] + (H · S0)T for some integrable H. Since X̂ � ��min and

(H · S0) is a Q0-martingale, we know that (H · S0)t � ��min � EQ0
[X̂] > �1

for all t 2 [0, T ]. Thus, H is S0-admissible.
We define x̂ := EQ0

[X̂] > ��min so that X̂ � x̂ 2 Cc(x̂). For any y > 0,

E
⇥

Vc

�

yZ0
T , f
�⇤

= E
h

U
⇣

X̂ + f
⌘

� yZ0
T X̂
i

= E
h

U
⇣

X̂ + f
⌘i

� yx̂

 sup
x>��min

(

sup
X2C

c

(x)

E [U(x+X + f)]� yx

)

= sup
x>��min

{uc(x)� xy} .

The other direction of the inequality holds by (I.4.7), and so we obtain that
for any y > 0,

E[Vc(yZ
0
T , f)] = sup

x>��min

{uc(x)� xy} .
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Since uc(·) is concave and upper semicontinuous on (��min,1), we have
uc(x) = infy>0{E[Vc(yZ0

T , f)] + xy} for x > ��min. Strict convexity of y 7!
E[Vc(yZ0

T , f)] implies the di↵erentiability of uc(·). (See, e.g., Proposition 6.2.1
on page 40 of [24].) Now for any x > ��min, choosing y = d

dx
uc(x) yields

equality in (I.4.7).

Finally, we show that indi↵erence prices do not converge as ⇢! 0.

Proof of Corollary I.2.4. Let x > ��min be given. Suppose that for ⇢n �! 0,
we have p(x, ⇢n) �! p̄ as n ! 1. By being the limit of arbitrage-free prices
in the {⇢n}n models, we must have p̄ 2 [inf �, sup�].

Using that � is not constant, for x > ��min, we have that uc(x) < u(x, 0).
This result can be obtained, for example, by Theorem 2.2 of [37] and f ’s repli-
cability in the S0 market, which imply that u(x, 0) = E[U(I( @

@x
u(x, 0)Z0

T ))]
where P(I( @

@x
u(x, 0)Z0

T ) < f � �min) > 0. By Theorem I.2.2,

lim
n

u(x, ⇢n) = uc(x) < u(x, 0) = w(x+ p(x, 0), 0).

Taking f = 0 in Theorem I.2.2 and using the concavity of w(·, ⇢) for every ⇢ 2
(�1, 1), we have that w(·, ⇢) �! w(·, 0) uniformly on compacts in (��min,1)
as ⇢! 0. Thus,

lim
n

w(x+ p(x, ⇢n), ⇢n) = w(x+ p̄, 0),

which implies that w(x + p̄, 0) < w(x + p(x, 0), 0). Since w(·, 0) is strictly
increasing, we conclude that p̄ < p(x, 0).

I.4.2 Proof of the Main Result

The proof of the main result, Theorem I.3.6, follows Lemmas I.4.5 and I.4.7
(below), which establish lower and upper semicontinuity-type results for the
sequence of primal and dual value functions, respectively.

Lemma I.4.5. Suppose that the sequence of markets satisfies Assumption
I.3.1, and M1

V 6= ;. Then for x 2 R and xn �! x as n ! 1,

u1(x)  lim inf
n!1

un(xn) .

Significant di�culty in proving Lemma I.4.5 stems from the nonequivalence
of markets (the martingale drivers, Mn, di↵er). The idea behind the proof
of Lemma I.4.5 is that since the pre-limiting markets are “close” to the S1

market, strategies in the S1 market are “close” to being strategies in the pre-
limiting markets. This idea will be made precise by appropriate approximation
and stopping. First, we need a helper lemma.
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Lemma I.4.6. Under Assumption I.3.1, Sn �! S1 in the semimartingale
topology as n ! 1.

Proof. Since Mn �! M1 in the semimartingale topology as n ! 1, it
remains to show that (�n · hMni) �! (�1 · hM1i) in the semimartingale
topology. We seek to show

An :=
d
X

i=1

Z T

0

�

��n(�n,i)2 � �1(�1,i)2
�

� dt �! 0 in probability as n ! 1,

(I.4.8)
which will then imply the desired result.

The mapping X 7! hXi is continuous in the space of semimartingales with
respect to semimartingale convergence, and so Assumption I.3.1 implies:

d
X

i=1

Z T

0

�

�n,i � �1,i
�2

dt �! 0 in probability as n ! 1, (I.4.9)

d
X

i=1

Z T

0

�

�n�n,i � �1�1,i
�2

dt �! 0 in probability as n ! 1. (I.4.10)

Let {An}n2N be a subsequence of {An}n2N, where for notational conve-
nience we denote the subsequence index N as an infinite subset of N. We
choose a further subsequence {An}n2N 0 , where N 0 ⇢ N , such that the conver-
gence in (I.4.9) and (I.4.10) occurs P-a.s. as n ! 1 for n 2 N 0.

We define the random variable

q := sup
n2N 0

d
X

i=1

Z T

0

⇣

�

�n,i
�2

+
�

�n�n,i
�2
⌘

dt.

The almost-sure convergence along the subsequence N 0 implies that q < 1, P-
a.s., which allows us to define the equivalent probability measure dQ

dP := e�q

EP[e�q ]
.

Under Q, we have more regularity of elements in N 0; in particular,

d
X

i=1

�

�n,i � �1,i
�2

+
�

�n�n,i � �1�1,i
�2 �! 0 (I.4.11)

in L1(Q⇥ Leb) as N 0 3 n ! 1, where Leb denotes the Lebesgue measure on
[0, T ]. Hence, we have that {Pd

i=1(1+(�n)2)(�n,i)2}n2N 0 is (Q⇥Leb)-uniformly
integrable. Since

d
X

i=1

�

��n(�n,i)2 � �1(�1,i)2
�

� 
d
X

i=1

⇥

(1 + (�n)2)(�n,i)2 + (1 + (�1)2)(�1,i)2
⇤
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for all n � 1 and by (I.4.11),
Pd

i=1 |�n(�n,i)2 ��1(�1,i)2| �! 0 in (Q⇥Leb)-
measure as n ! 1, we have that

d
X

i=1

�

��n(�n,i)2 � �1(�1,i)2
�

� �! 0 in L1(Q⇥ Leb) as N 0 3 n ! 1.

Now we choose a further subsequence {An}n2N 00 , where N 00 ✓ N 0, such
that

d
X

i=1

Z T

0

�

��n(�n,i)2 � �1(�1,i)2
�

� �! 0 Q-a.s. as N 00 3 n ! 1,

and note that this convergence also holds P-a.s. by the equivalence of P
and Q. Thus, we have shown that for all subsequences {An}n2N , N ✓ N,
there exists a further subsequence {An}n2N 00 , N 00 ✓ N , such that we have
Pd

i=1

R T

0
|�n(�n,i)2 � �1(�1,i)2| �! 0 P-a.s. for n 2 N 00 as n ! 1. There-

fore, (I.4.8) holds, which completes the proof.

Proof of Lemma I.4.5. First, we show that the supremum in the limiting pri-
mal optimization problem, (I.3.4), can be taken over all admissible wealth
processes whose integrands are bounded. Let H 2 H1

adm be given, and let
K 2 (0,1) be such that (H · S1)t � �K for all t 2 [0, T ]. Lemma I.4.3
provides us with a sequence of integrands {Hn}n�1 such that for each n � 1,
Hn is bounded uniformly in t and ! while (Hn · S1)t � �2K for all t 2 [0, T ]
and (Hn · S1)T �! (H · S1)T in probability as n ! 1. In particular,
(Hn · S1) 2 H1

adm with {(Hn · S1)}n�1 sharing the same lower admissibility
bound, �2K. By Fatou’s Lemma,

E [U (x+ (H · S1)T + f)]  lim inf
n!1

E [U (x+ (Hn · S1)T + f)] .

Therefore, it su�ces to take the supremum in (I.3.4) over all H̃ 2 H1
adm such

that H̃ is uniformly bounded in t and !. That is,

u1(x) = sup
H̃2H1

adm,H̃ bdd

E
h

U
⇣

x+ (H̃ · S1)T + f
⌘i

. (I.4.12)

Now let H̃ 2 H1
adm be given such that H̃ is uniformly bounded in t and !

by a constant K 2 (0,1). Even though H̃ is S1-admissible and Sn-integrable
for every n, it is not necessarily admissible for each Sn market. Using Lemma
I.4.4, we mitigate this issue by choosing {H̃n}n�1 such that for each n � 1,
H̃n is bounded uniformly in t and ! while (H̃n · Sn)t � �3K for all t 2 [0, T ]
and (H̃n · Sn)T �! (H̃ · S1)T in probability as n ! 1.
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Applying Fatou’s Lemma gives us that

E
h

U(x+ (H̃ · S1)T + f)
i

 lim inf
n!1

E
h

U(xn + (H̃n · Sn)T + f)
i

 lim inf
n!1

un(xn).

Taking the supremum over all uniformly bounded H̃ 2 H1
adm, as in (I.4.12),

yields the result.

We next proceed to the second main lemma, which establishes an upper-
semicontinuity result for the dual problem.

Lemma I.4.7. Let the assumptions of the model be as in Theorem I.3.6. Then
for {yn}1n<1 ✓ (0,1) such that yn �! y > 0 as n ! 1,

v1(y) � lim sup
n!1

vn(yn) .

Using Assumption I.3.5, the following lemma will further refine the collec-
tion B over which the infimum is taken in the limiting market’s dual problem.
We define B0 by

B0 := {L 2 B :9 constants c = c(L), d = d(L),

0 < c  E(L)t  d < 1, 8t 2 [0, T ], and hLiT  d} (I.4.13)

The following lemma builds on Corollary 3.4 in [41].

Lemma I.4.8. Suppose that the limiting market’s dual problem satisfies As-
sumption I.3.5 and that E[V (Z1

T )] < 1, where Z1
T is the minimal martingale

density for S1. Let B0 be defined as in (I.4.13). Then for y > 0,

v1(y) = inf
L2B0

E [V (yZ1
T E(L)T ) + yZ1

T E(L)Tf ] .

Proof. The first part of the proof is based on the proof of Corollary 3.4 of [41].
Let L 2 B be given. By the convexity of V , we have

E


V

✓

yZ1
T

✓

1

n
+

n� 1

n
E(L)T

◆◆

+ yZ1
T

✓

1

n
+

n� 1

n
E(L)T

◆

f

�

 1

n
E [V (yZ1

T ) + yZ1
T f ] +

n� 1

n
E [V (yZ1

T E(L)T ) + yZ1
T E(L)Tf ]

�! E [V (yZ1
T E(L)T ) + yZ1

T E(L)Tf ] as n ! 1,

because V (yZ1
T ) 2 L1(P) by the assumption that E[V (Z1

T )] < 1 and rea-
sonable asymptotic elasticity, (I.3.3). For each n � 1, we let Ln denote the
element Ln 2 B such that 1

n
+ n�1

n
E(L) = E(Ln).
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Let " > 0 be given, and choose N su�ciently large such that

E
⇥

V
�

yZ1
T E(LN)T

�

+ yZ1
T E(LN)Tf

⇤

 E [V (yZ1
T E(L)T ) + yZ1

T E(L)Tf ] + ".

We define the sequence of stopping times {⌧k}1k<1 by ⌧k := inf{t  T :
hLNit � k}. Then (LN)⌧k 2 B0 for each k. By continuity of LN and finiteness of
hLNiT , we have that E(LN)⌧

k

�! E(LN)T in probability as k ! 1. Sche↵e’s
Lemma implies that the L1(P)� limk Z1

T E(LN)⌧
k

= Z1
T E(LN)T , which implies

that limk E[yZ1
T E(LN)⌧

k

f ] = E[yZ1
T E(LN)Tf ].

Convergence in probability of {E(LN)⌧
k

}1k<1 also implies that

V
�

yZ1
T E(LN)⌧

k

� �! V
�

yZ1
T E(LN)T

�

in probability as k ! 1.

Let C be the bound on E(LN) from above given to us in definition of B.
Since 1

N
 E(LN)t  C for all t, we have for all k that V (yZ1

T E(LN)⌧
k

) 
max(V ( 1

N
Z1

T ), V (CZ1
T )), where max(V ( 1

N
Z1

T ), V (CZ1
T )) is in L1(P) by rea-

sonable asymptotic elasticity, (I.3.3). Thus,

V (yZ1
T E(LN)⌧

k

) �! V (yZ1
T E(LN)T ) in L1(P) as k ! 1.

Finally, we may choose K su�ciently large so that E[V (yZ1
T E(LN)⌧

K

) +
yZ1

T E(LN)⌧
K

f ]  E[V (yZ1
T E(LN)T ) + yZ1

T E(LN)Tf ] + ", which then implies
that

E
⇥

V
�

yZ1
T E(LN)⌧

K

�

+ yZ1
T E(LN)⌧

K

f
⇤

 E [V (yZ1
T E(L)T ) + yZ1

T E(L)T f ] + 2".

Since " > 0 and L 2 B are arbitrary, Assumption I.3.5 allows us to conclude
the desired result.

Establishing an upper-semicontinuity property for the dual problem is dif-
ficult because with small changes in the limiting market, we must produce a
dual element of a pre-limiting market with appropriately small changes. Using
the Kunita-Watanabe decomposition, we decompose elements L 2 B0 in terms
of strongly orthogonal components based on the varying martingale drivers,
Mn.

A P-local martingale, N , is said to be in H2
0 (P) provided N0 = 0 and

E[hNiT ] < 1, in which case N is a martingale. A sequence of martingales
{Nn}1n<1 ✓ H2

0 (P) converges to N in H2
0 (P) if E[hNn � NiT ] �! 0 as

n ! 1. We say that two (locally square integrable) local martingales, M and
N , are strongly orthogonal if hM,Nit = 0 for all t 2 [0, T ]. Note that as our
filtration is Brownian, all local martingales are continuous and hence locally
square integrable.

24



Lemma I.4.9. Let {Mn}1n1 be local martingales such that Mn �! M1

in the semimartingale topology as n ! 1, and suppose that M1 satisfies
Assumption I.3.3. Let L 2 H2

0 (P) be strongly orthogonal to M1 and decompose
L into its (unique) Kunita-Watanabe decomposition for 1  n < 1 by

L = Ln + (Hn ·Mn),

where Ln and (Hn ·Mn) are in H2
0 (P) and Ln is strongly orthogonal to Mn.

Then Ln �! L in H2
0 (P) as n ! 1.

Proof. The filtration F = (Ft)0tT is the (P-completed) filtration generated
by the d-dimensional Brownian motion (B1, . . . , Bd) on (⌦,F ,F,P) with F =
FT . For notational concreteness, we denote

L = (⌫1 · B1) + . . .+ (⌫d · Bd),

for ⌫k 2 L2, 1  k  d. Recall that for 1  n  1, Mn has the form
(I.3.2). For x = (x1, . . . , xd),y = (y1, . . . , yd) 2 Rd, we let |x| denote the
Euclidean norm, |x| := px2

1 + · · ·+ x2
d, and let the inner product be x·y :=

x1y1 + . . .+ xdyd. We define the vector ⌫ := (⌫1, . . . , ⌫d).
For 1  n < 1, we define

Hn :=
⌫·�n

|�n|2 I{|�n| 6=0}.

Then Hn is progressively measurable and Mn-integrable with (Hn · Mn) 2
H2

0 (P). We define Ln := L � (Hn · Mn) 2 H2
0 (P). Ln and Mn are strongly

orthogonal, and thus L = Ln + (Hn ·Mn) is the Kunita-Watanabe decompo-
sition for L with respect to Mn. Since Ln and Mn are strongly orthogonal,
Ln �! L in H2

0 (P) if and only if (Hn ·Mn) �! 0 in H2
0 (P) as n ! 1. Hence,

we seek to show that E[hHn ·MniT ] = E[
R T

0
(⌫·�n)2

|�n|2 I{|�n| 6=0}dt] �! 0 as n ! 1.

Since L 2 H2
0 (P), we have for 1  n < 1,

(⌫·�n)2

|�n|2 I{|�n| 6=0}  |⌫|2 2 L1(P⇥ Leb).

The assumption that Mn �! M1 in the semimartingale topology as n ! 1
implies that for 1  k  d, �n,k �! �1,k in (P ⇥ Leb)-measure as n ! 1.
Since hL,M1i = 0, we have that ⌫·�1 = 0 (P ⇥ Leb)-a.e. Assumption I.3.3
ensures that |�1| 6= 0 (P⇥ Leb)-a.e., and hence,

(⌫·�n)2

|�n|2 I{|�n| 6=0} �! 0 in (P⇥ Leb)-measure as n ! 1.

Thus dominated convergence implies that E[hHn · MniT ] �! 0 as n ! 1,
which completes the proof of the claim.
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Proof of Lemma I.4.7. We let B0 be defined as in (I.4.13) and let L 2 B0 be
given. Let K 2 (0,1) be the constant given in the definition of B0 such that
|Lt|  K for all t and hLiT  K.

We let Ln be given as in Lemma I.4.9. Then Ln �! L in H2
0 as n ! 1.

For 1  n < 1, define stopping times

⌧n := inf {t  T : |Ln
t � Lt| � 1 or hLnit � K + 1} .

The H2
0 (P) convergence of {Ln}1n<1 implies that hLniT �! hLiT in L1(P)

as n ! 1, while the Burkholder-Davis-Gundy inequalities additionally give
us that P(supt |Ln

t � Lt| � 1) �! 0 as n ! 1. Hence, P(⌧n = T ) �! 1 as
n ! 1. We conclude that Ln

⌧
n

�! LT and hLni⌧
n

�! hLiT in probability as
n ! 1, which yields

E(Ln)⌧
n

�! E(L)T in probability as n ! 1.

Furthermore, the definition of ⌧n provides upper and lower bounds on E(Ln)⌧
n

,
which are independent of n:

e�2K�2  E(Ln)⌧
n

 eK+1. (I.4.14)

Such uniform bounds and the choice of the Lns are made possible by the choice
of L 2 B0.

For 1  n  1, Zn is a martingale by Assumption I.3.2, and by Fatou’s
Lemma, 1 = E[Z1

T ]  lim infn!1 E[Zn
T ] = 1. Hence, limn!1 E[Zn

T ] = E[Z1
T ].

Sche↵e’s Lemma then implies that Zn
T �! Z1

T in L1(P) as n ! 1, and in
particular, {Zn

T}1n1 is uniformly integrable. By (I.4.14) and using that
f 2 L1(P), we have that

0  ynZ
n
TE(Ln)⌧

n

f 
✓

sup
m

ym

◆

eK+1kfk1Zn
T ,

which implies that {ynZn
TE(Ln)⌧

n

f}1n1 is uniformly integrable. Conver-
gence in probability and uniform integrability imply that

ynZ
n
TE(Ln)⌧

n

f �! yZ1
T E(L)Tf in L1(P) as n ! 1.

We use (I.4.14) again in order to obtain uniform integrability of the re-
maining term in the dual value function. As mentioned in Assumption 1.2(i)
of [47], the reasonable asymptotic elasticity condition (I.3.3) along with the
U(0) > 0 is equivalent to the following: for all � > 0 there exists C > 0 such
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that V (�y)  CV (y) for all y � 0. Then for 1  n < 1,

0  V (ynZ
n
TE(Ln)⌧

n

)

 V
�

ynZ
n
T e

K+1
�

I{y
n

Zn

T

E(Ln)
⌧

n

�U 0(0)}
+ V

�

ynZ
n
T e

�2K�2
�

I{y
n

Zn

T

E(Ln)
⌧

n

<U 0(0)}

 V

✓✓

sup
m

ym

◆

eK+1Zn
T

◆

+ V
⇣⇣

inf
m

ym
⌘

e�2K�2Zn
T

⌘

 (C1 + C2)V (Zn
T ),

where C1, C2 are the constants produced by the reasonable asymptotic elas-
ticity of U . The constants C1, C2 depend on the choice of L, K, infm ym,
and supm ym but not on n. Assumption I.3.4 now guarantees the uniform
integrability of {V (ynZn

TE(Ln)⌧
n

)}1n<1. Convergence in probability and uni-
form integrability imply that V (ynZn

TE(Ln)⌧
n

) �! V (yZ1
T E(L)T ) in L1(P) as

n ! 1. Finally, we have

E [V (yZ1
T E(L)T ) + yZ1

T E(L)Tf ]
= lim

n
E [V (ynZ

n
TE(Ln)⌧

n

) + ynZ
n
TE(Ln)⌧

n

f ]

� lim sup
n

vn(yn).

Taking the infimum over all L 2 B0 and applying Lemma I.4.8 yields that
v1(y) � lim supn vn(yn).

Proof of Theorem I.3.6. We first note that the assumption that M1
V 6= ; of

Lemma I.4.5 is satisfied by Assumption I.3.4. For xn �! x 2 R and y = y(x),
Lemmas I.4.5 and I.4.7 imply

u1(x)  lim inf
n!1

un(xn)  lim sup
n!1

vn(y)+xny  v1(y)+xy = u1(x). (I.4.15)

The last equality can be shown by Theorem 1.1 of [47] by taking E = x + f
and y = E[dµ̂(x)

dP ]. Here, E and µ̂(x) refer to the notation used in [47].
Moreover, the inequality chain (I.4.15) shows for y > 0, vn(y) �! v1(y)

as n ! 1. For yn �! y > 0, we also have that vn(yn) �! v1(y) as n ! 1
because the convexity of each vn implies that vn �! v1 uniformly on compacts
in (0,1) as n ! 1.

Proof of Corollary I.3.8. Let {pn
k

(x)}1k<1 be a convergent subsequence of
{pn(x)}1n<1 with limk pn

k

(x) = p 2 R. By Theorem I.3.6,

u1(x) = lim
k

un
k

(x),
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while wn
k

(x + pn
k

(x)) = un
k

(x) for each k � 1 by the definition of the in-
di↵erence price. Next, we take the contingent claim to be 0 and note that
limk x+ pn

k

(x) = x+ p, which allows us to conclude from Theorem I.3.6 that

w1(x+ p) = lim
k

wn
k

(x+ pn
k

(x)),

which implies that p = p1(x). Since f 2 L1(P), {pn(x)}n is bounded, hence
any subsequence has a further subsequence that converges to p1(x). Therefore,
limn pn(x) exists and equals p1(x).

I.5 Examples

The first example shows that Assumption I.3.3 is necessary in the sense that
its absence can allow Theorem I.3.6’s conclusion to fail. The example is con-
structed in a very simple setting, but the same idea can generate more complex
counterexamples whenever Assumption I.3.3 fails.

Example I.5.1. Let d = 1, so that the probability space is generated by a
1-dimensional Brownian motion, B. We define the martingales Mn := 1

n
B for

1  n < 1 and M1 := 0. Let �n := 0 for all 1  n  1 so that S1
t = 0 for

all t 2 [0, T ] and for 1  n < 1, Sn has the dynamics

dSn =
1

n
dB, Sn

0 = 0.

The stock markets satisfy Assumptions I.3.1 and I.3.2, but the limiting market
does not satisfy Assumption I.3.3.

Let the contingent claim be given by f := I{B
T

�0}. By Itô’s representation
theorem and the boundedness of f , there exists a progressively measurable H
such that E[

R T

0
H2

t dt] < 1 and f = 1
2
+(H ·B)T . Moreover, (H ·B) is bounded

since for all t 2 [0, T ],

(H · B)t = E [(H · B)T | Ft] = E


f � 1

2
| Ft

�

2


�1

2
,
1

2

�

, P-a.s..

Hence, we can conclude by Theorem 2.1 of [49] that for all 1  n < 1 and
x 2 R,

un(x) = U

✓

x+
1

2

◆

.

Yet for all x 2 R, Jensen’s inequality implies u1(x) = E[U (x+ f)] < U(x+ 1
2
).

The following two examples provide su�cient conditions on the limiting
market for Assumption I.3.5 to hold.
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Example I.5.2. This example covers the original motivation for this work,
where the contingent claim is replicable in the (possibly incomplete) limit-
ing market. In this case, the limiting market consists of a driving Brownian
motion, a replicable claim, and additional independent Brownian noise.

Recall that (B1, . . . , Bd) is the d-dimensional Brownian motion generating
the completed filtration, F = (Ft)0tT . We let (F1

t )0tT denote the filtration
generated by B1, completed with all P-null sets. The risky asset, S1, has
dynamics as in (I.3.1) and is (F1

t )0tT -adapted. The contingent claim, f 2
L1(⌦,F1

T ,P), is replicable: there exists an S1-integrable H and constant c
such that f = c+ (H · S1)T .

Proposition I.5.3. Suppose that S1 is (F1
t )0tT -adapted with dynamics

(I.3.1) and satisfies Assumption I.3.3. Suppose that f 2 L1(⌦,F1
T ,P) is repli-

cable. Then Assumption I.3.5 is satisfied.

Proof. Let y > 0 and Q 2 M1
V be given. Write dQ

dP = Z1
T E(L)T for its Radon-

Nikodym density. We have that Z1
T 2 F1

T , while Assumption I.3.3 implies
that hL,B1it = 0 for t 2 [0, T ]. By localization and Lemma 5.3 of [7],

E[E(L)T |F1
T ]  E[E(L)0|F1

T ] = 1.

Then E[E(L)T |F1
T ] = 1, P-a.s., since

1 = E[Z1
T E(L)T ] = E[Z1

T E[E(L)T |F1
T ] ]  E[Z1

T ] = 1,

with equality holding if and only if E[E(L)T |F1
T ] = 1, P-a.s. By Jensen’s

inequality,

E[V (yZ1
T E(L)T )] = E

⇥

E
⇥

V (yzE(L)T )|F1
T

⇤ |z=Z1
T

⇤

� E
⇥

V (yzE
⇥E(L)T |F1

T

⇤

)|z=Z1
T

⇤

= E[V (yZ1
T )].

Since f is bounded and replicable, Q 7! E[dQ
dP f ] is constant on M1. Hence, for

all Q 2 M1
V , E[V (yZ1

T )+yZ1
T f ]  E[V (y dQ

dP )+y dQ
dP f ], which implies that Z1

T

is the density of the dual minimizer, and so Assumption I.3.5 is satisfied.

Example I.5.4 (Exponential Investors). For the exponential investor, As-
sumption I.3.5 is satisfied, under an easier-to-verify BMO assumption. We
refer to [34] for additional details on BMO martingales.

Definition I.5.5. A P-local martingale N is said to be in BMO(P) if

sup
⌧

�

�EP [|NT �N⌧ | |F⌧ ]
�

�

1 < 1,

where the supremum is taken over stopping times ⌧  T .
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Assumption I.5.6. (�1 ·M1) 2 BMO(P).

For the remainder of this section, we let U(x) = � exp(�↵x) for a positive
constant ↵. The conjugate to U is V (y) = y

↵
(log y

↵
� 1), y > 0. We have the

following relationships for c 2 R and y > 0:

V 0(cy) = V 0(y) +
1

↵
log c, (I.5.1)

V (y) + yc = y

✓

V 0(ye↵c)� 1

↵

◆

. (I.5.2)

For a set A 2 F and random variable X 2 L1(P), we adopt the notation
E[X;A] := E[XIA] =

R

A
XdP.

Theorem I.5.7. Let U(x) = � exp(�↵x) for a positive constant ↵ and assume
that Assumption I.5.6 holds. Let Q1 denote the minimal martingale measure,
dQ1

dP := Z1
T = E(��1 ·M1)T , and suppose that Q1 2 M1

V . Then Assumption
I.3.5 is satisfied.

Proof. Let x 2 R and Z1
T E(L)T = E(�(�1 ·M1) + L)T 2 M1

V be the dual
optimizer for the dual problem (I.3.5) with n = 1 and y := u0

1(x). For
1  n < 1, we define the stopping times ⌧n := inf{t  T : E(L)t � n}. Using
that V (0) = 0 and the definition of ⌧n, it is not di�cult to verify that each
probability density Z1

T E(L)⌧
n

corresponds to a martingale measure in M1
V .

Theorem 2.1 of [29] implies that there exists an S1-integrable Ĥ such
that Ĥ is optimal for (I.3.4) with n = 1 and (Ĥ · S1) is a martingale with
respect to every measure Q 2 M1

V . The process Ĥ is a permissible wealth
process (in the S1 market), rather than an admissible wealth process; see
[47] Definition 1.1 for details. Then Proposition 4.1 from [47] implies that
x+ (Ĥ · S1)T + f = �V 0(yZ1

T E(L)T ). Hence, for any Q 2 M1
V , (I.5.1) with

c = x implies that

E


dQ
dP V 0 �yZ1

T E(L)T e↵f
�

�

= E
⇥

Z1
T E(L)TV 0 �yZ1

T E(L)T e↵f
�⇤

. (I.5.3)

Then,

0  E [V (yZ1
T E(L)⌧

n

) + yZ1
T E(L)⌧

n

f ]� v1(y)

= E [V (yZ1
T E(L)⌧

n

) + yZ1
T E(L)⌧

n

f ]� E [V (yZ1
T E(L)T ) + yZ1

T E(L)Tf ]
= E

⇥

yZ1
T E(L)⌧

n

V 0(yZ1
T E(L)⌧

n

e↵f ) � yZ1
T E(L)TV 0(yZ1

T E(L)T e↵f )
⇤

by (I.5.2)

= E
⇥

yZ1
T E(L)⌧

n

�

V 0(yZ1
T E(L)⌧

n

e↵f )� V 0(yZ1
T E(L)T e↵f )

�⇤

by (I.5.3)
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=
y

↵
E [Z1

T E(L)⌧
n

(log E(L)⌧
n

� log E(L)T )]
by (I.5.1)

=
y

↵
EQ1



n log

✓

n

E(L)T

◆

; {⌧n < T}
�

=
y

↵

�

n log nQ1(⌧n < T )� nEQ1
[log E(L)T ; {⌧n < T}]� .

In order to show Assumption I.3.5, it now su�ces to show

n log nQ1(⌧n < T )� nEQ1
[log E(L)T ; {⌧n < T}] �! 0 as n ! 1. (I.5.4)

Showing n log nQ1(⌧n < T ) �! 0 as n ! 1 will employ Doob’s submartin-
gale inequality, whereas nEQ1

[log E(L)T ; {⌧n < T}] �! 0 relies on the as-
sumption that (�1 ·M1) 2 BMO(P).

Let �(y) := y log y. We have that � is convex, � � �1/e, and � is increasing
on [1/e,1). Using that Z1

T E(L)T is the dual optimizer, it is not di�cult to
check that �(E(L)t) 2 L1(Q1) for each t 2 [0, T ]. Convexity of � implies that
�(E(L)) is a Q1-submartingale. (Note that E(L) is a Q1-martingale since
EQ1

[E(L)T ] = EP[Z1
T E(L)T ] = 1.)

For a process Y , we let Y ⇤ := sup0tT Yt. For any n > 1,

E(L)⇤ � n if and only if �(E(L))⇤ = (E(L) log E(L))⇤ � n log n.

Doob’s submartingale inequality implies that for n > 1,

n log nQ1(E(L)⇤ � n) = n log nQ1 (�(E(L))⇤ � n log n)

 EQ1 ⇥
�(E(L)T )+; {�(E(L))⇤ � n log n}⇤

= EQ1 ⇥
�(E(L)T )+; {E(L)⇤ � n}⇤ .

Since �(E(L)T ) 2 L1(Q1), we have that

lim sup
n!1

n log n Q1(⌧n < T )  lim sup
n!1

n log n Q1(E(L)⇤ � n)

 lim sup
n!1

EQ1
[�(E(L)T )+; {E(L)⇤ � n}]

= 0.

Now suppose that Assumption I.5.6 holds. Then by Lemma 3.1 of [12] the
density of the dual optimizer, Z1E(L), satisfies RL logL(P); that is, Z1E(L)
is a P-martingale and

sup
⌧

�

�

�

�

EP


Z1
T E(L)T

Z1
⌧ E(L)⌧ log

✓

Z1
T E(L)T

Z1
⌧ E(L)⌧

◆

�

�

�

�

F⌧

�

�

�

�

�

1
< 1,
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where the supremum is taken over all stopping times ⌧  T . Lemma 2.2 of [22]
shows that �(�1 ·M1)+L 2 BMO(P), which then implies that L 2 BMO(P).

Since h��1 ·M1, Lit = 0 for all t 2 [0, T ], then Theorem 3.6 of [34] implies
that L = L � h��1 ·M1, Li 2 BMO(Q1). Then by Theorem 2.4 of [34], L
satisfies

sup
⌧

�

�

�

�

EQ1


log+
✓ E(L)⌧
E(L)T

◆

�

�

�

�

F⌧

�

�

�

�

�

1
< 1, (I.5.5)

where the supremum is taken over all stopping times ⌧  T . Re-writing (I.5.5),
and considering only the stopping times ⌧n for n � 1, we have

K := sup
n

�

�EQ1 ⇥
(log E(L)⌧

n

� log E(L)T ) I{E(L)
⌧

n

�E(L)
T

}|F⌧
n

⇤

�

�

1 < 1.

For each n � 1, {⌧n < T} 2 F⌧
n

and E(L)⌧
n

= n on {⌧n < T}. Then,

�EQ1
[log E(L)T ; {E(L)⌧

n

� E(L)T} \ {⌧n < T}]
 EQ1

[log E(L)⌧
n

� log E(L)T ; {E(L)⌧
n

� E(L)T} \ {⌧n < T}]
= EQ1 ⇥EQ1 ⇥

(log E(L)⌧
n

� log E(L)T ) I{E(L)
⌧

n

�E(L)
T

}|F⌧
n

⇤

; {⌧n < T}⇤

 K Q1 (⌧n < T ) .

Thus,

�nEQ1
[log E(L)T ; {⌧n < T}]
= �nEQ1

[log E(L)T ; {E(L)T > n} \ {⌧n < T}]
� nEQ1

[log E(L)T ; {E(L)T  n} \ {⌧n < T}]
 0 + nKQ1(⌧n < T ).

Equation (I.5.4) now follows from

0  n log nQ1(⌧n < T )� nEQ1
[log E(L)T ; {⌧n < T}]

 n log nQ1(⌧n < T ) + nK Q1(⌧n < T )

�! 0, as n ! 1.
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Chapter II

When is the Dual Optimizer a
Martingale?

II.1 Introduction

An unpleasant qualitative feature of the general theory of optimal investment
with a utility function defined on (0,1) is that the dual optimizer bY may not
be a uniformly integrable martingale. In the presence of jumps, it may even
fail to be a local martingale. The corresponding counterexamples can be found
in [37]. In this paper, we seek to provide conditions under which the uniform
martingale property for bY holds and thus, bY /bY0 defines the density process of
the optimal martingale measure bQ.

The question of whether bY is a uniformly integrable martingale is of long-
standing interest in mathematical finance and can be traced back to [23] and
[30]. This problem naturally arises in situations involving utility-based argu-
ments. For instance, it is relevant for pricing in incomplete markets, where
according to [27] the existence of bQ is equivalent to the fact that for every
bounded contingent claim  its marginal utility-based price p is unique. In
this case,

p = EbQ[ ] = E
"

bYT

bY0

 

#

,

and thus bQ plays the role of the pricing measure from the classical Black and
Scholes theory of complete financial markets, see [48] and [10]. Notice that the

nonexistence of bQ is equivalent to E
h

bY
T

bY0

i

< 1. Then for  = 1 the expression

E
h

bY
T

bY0
 
i

fails to be even an arbitrage-free price!

Of course, if the dual minimizer bY can be computed explicitly as in [35],
then its uniform integrability property may be verified using either the suf-
ficient conditions of Novikov and Kazamaki or the necessary and su�cient
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criteria based on Hellinger processes. We refer the reader to [34, Section 1.4]
for the former and to [28, Section IV.2] for the latter. However, for a generic
incomplete model there is little hope of obtaining an explicit representation
for bY , and a di↵erent approach should be used.

Our key requirement consists of the existence of a dual supermartingale
Z, which satisfies the probabilistic Muckenhoupt (Ap) condition for the power
p > 1 such that

p =
1

1� a
. (II.1.1)

Here a 2 (0, 1) is a lower bound on the relative risk-aversion of the utility func-
tion. As we prove in Theorem II.5.1, this condition, along with the existence
of an upper bound for the relative risk-aversion, yields (Ap0) for bY for some

p0 > 1. This property in turn implies that the dual minimizer bY is of class (D),
that is, the family of its values evaluated at all stopping times is uniformly
integrable. In Proposition II.6.1, we construct a counterexample showing that
the bound (II.1.1) is the best possible for bY to be of class (D) even in the case
of power utilities and continuous stock prices.

In the case of the power utility function

U(x) =
x1�a

1� a
, x > 0,

with the relative risk-aversion a 2 (0, 1) the dual optimizer bY satisfies (Ap)
with p given by (II.1.1) if and only if the (Ap) condition holds for some dual

supermartingale Z. Moreover, bY has the smallest (Ap)-constant among all such
Z. This fact has been already established in [46]. For reader’s convenience we
shall restate it as Proposition II.3.3.

A similar idea of passing regularity from some dual element to the optimal
one has been employed in [13], [21] and [12] for respectively, quadratic, power
and exponential utility functions defined on the whole real line. These papers
use appropriate versions of the Reverse Hölder (Rq) inequality. We recall that
(Ap) and (Rq) conditions are dual in the sense that if Z is the density process
of the equivalent probability measure Q and 1/p + 1/q = 1, then (Ap) for Z
(under P) is equivalent to (Rq) for 1/Z under Q. We also remind the reader
that contrary to (Ap), the uniform integrability property is not implied but
rather required by (Rq). While this requirement is not a problem for real-line
utilities, where the optimal martingale measures always exist, it is clearly an
issue for utility functions defined on (0,1).

Observe also that for power and exponential utilities and for continuous
stock prices one can characterize bY in terms of a solution to a one-dimensional
quadratic BSDE, see [25]. Under additional assumption of bounded market
price of risk the theory of such equations yields that bY is a stochastic ex-
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ponential of a BMO-martingale and in particular is a uniformly integrable
martingale.

Even if the dual minimizer bY is of class (D), it may not be a martingale,
due to the lack of the local martingale property; see the single-period example
for logarithmic utility in [37, Example 5.10]. In Proposition II.4.2 we prove that
every maximal dual supermartingale (in particular, bY ) is a local martingale if
the ratio of any two positive wealth processes is �-bounded.

Our main results, Theorems II.5.1 and II.5.3, are stated in Section II.5.
They are accompanied by Corollaries II.5.5 and II.5.6, which exploit well
known connections between the (Ap) condition and BMO martingales.

II.2 Setup

We use the same framework as in [37, 38] and refer to these papers for more
details. There is a financial market with a bank account paying zero interest
and d stocks. The process of stocks’ prices S = (Si) is a semimartingale with
values in Rd on a filtered probability space (⌦,F , (Ft)t2[0,T ],P). Here T is a
finite maturity and F = FT , but we remark that our results also hold for the
case of infinite maturity.

A (self-financing) portfolio is defined by an initial capital x 2 R and a
predictable S-integrable process H = (H i) with values in Rd of the number of
stocks. Its corresponding wealth process X evolves as

Xt = x+

Z t

0

HudSu, t 2 [0, T ].

We denote by X the family of non-negative wealth processes:

X , {X � 0 : X is a wealth process}
and by Q the family of equivalent local martingale measures for X :

Q , {Q ⇠ P : every X 2 X is a local martingale under Q} .
We assume that

Q 6= ;, (II.2.1)

which is equivalent to the absence of arbitrage; see [14, 16].
There is an economic agent whose preferences over terminal wealth are

modeled by a utility function U defined on (0,1). We assume that U is
of Inada type, that is, it is strictly concave, strictly increasing, continuously
di↵erentiable on (0,1), and

U 0(0) = lim
x!0

U 0(x) = 1, U 0(1) = lim
x!1

U 0(x) = 0.
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For a given initial capital x > 0, the goal of the agent is to maximize the
expected utility of terminal wealth. The value function of this problem is
denoted by

u(x) = sup
X2X , X0=x

E [U(XT )] . (II.2.2)

Following [37], we define the dual optimization problem to (II.2.2) as

v(y) = inf
Y 2Y,Y0=y

E [V (YT )] , y > 0, (II.2.3)

where V is the convex conjugate to U :

V (y) = sup
x>0

{U(x)� xy} , y > 0,

and Y is the family of “dual” supermartingales to X :

Y = {Y � 0 : XY is a supermartingale for every X 2 X} .

Note that the set Y contains the density processes of all Q 2 Q and that, as
1 2 X , every element of Y is a supermartingale.

It is known, see [38, Theorem 2], that under (II.2.1) and

v(y) < 1, y > 0, (II.2.4)

the value functions u and �v are of Inada type, v is the convex conjugate to
u, and

v(y) = inf
Q2Q

E


V

✓

y
dQ
dP

◆�

, y > 0. (II.2.5)

The solutions X(x) to (II.2.2) and Y (y) to (II.2.3) exist. If y = u0(x) or,
equivalently, x = �v0(y), then

U 0(XT (x)) = YT (y),

and the product X(x)Y (y) is a uniformly integrable martingale.
The last two properties actually characterize optimal X(x) and Y (y). For

convenience of future references, we recall this “verification” result.

Lemma II.2.1. Let bX 2 X and bY 2 Y be such that

U 0( bXT ) = bYT , E
h

V (bYT )
i

< 1, E
h

bXT
bYT

i

= bX0
bY0.

Then bX solves (II.2.2) for x = bX0 and bY solves (II.2.5) for y = bY0.
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Proof. The result follows immediately from the identity

U( bXT ) = V (bYT ) + bXT
bYT

and the inequalities

U(XT )  V (bYT ) +XT
bYT , X 2 X ,

U( bXT )  V (YT ) + bXTYT , Y 2 Y ,

after we recall that XY is a supermartingale for all X 2 X and Y 2 Y .

The goal of the paper is to find su�cient conditions for the lower bound
in (II.2.5) to be attained at some Q(y) 2 Q called the optimal martingale mea-
sure or, equivalently, for the dual minimizer Y (y) to be a uniformly integrable
martingale; in this case,

YT (y) = y
dQ(y)

dP .

Our criteria are stated in Theorem II.5.1 below, where a key role is played by
the probabilistic version of the classical Muckenhoupt (Ap) condition.

II.3 (Ap) condition for the dual minimizer

Following [34, Section 2.3], we recall the probabilistic (Ap) condition.

Definition II.3.1. Let p > 1. An optional process R � 0 satisfies (Ap) if
RT > 0 and there is a constant C > 0 such that for every stopping time ⌧

E
"

✓

R⌧

RT

◆

1
p�1

�

�

�

�

�

F⌧

#

 C.

Observe that if an optional process R > 0 satisfies (Ap), then by Hölder’s
inequality it satisfies (Aq) for every q � p. If in addition R is a continuous
local martingale, then it also satisfies (Ar) for some r < p. The latter fact is
delicate and follows from Gehring’s inequality, see Corollary 3.3 in [34].

An important consequence of the (Ap) condition is a uniform integrability
property. For continuous local martingales this fact is well known and can be
found e.g., in [34, Section 2.3].

Lemma II.3.2. If an optional process R � 0 satisfies (Ap) for some p > 1
and E [RT ] < 1, then R is of class (D):

{R⌧ : ⌧ is a stopping time} is uniformly integrable.
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Proof. Let ⌧ be a stopping time. As p > 1, the function x 7! x� 1
p�1 is convex.

Hence, by Jensen’s inequality,

E
"

✓

R⌧

RT

◆

1
p�1

�

�

�

�

�

F⌧

#

= R
1

p�1
⌧ E



R
� 1

p�1

T

�

�

�

�

F⌧

�

� R
1

p�1
⌧ (E [RT | F⌧ ])

� 1
p�1 .

Using the constant C > 0 from (Ap), we obtain that

R⌧  Cp�1E [RT | F⌧ ] ,

and the result follows.

To motivate the use of the (Ap) condition in the study of the dual mini-
mizers Y (y), y > 0, we first consider the case of power utility with a positive
power. The following result has been already established in [46].

Proposition II.3.3. Let (II.2.1) hold. Assume that

U(x) =
x1�a

1� a
, x > 0,

with the relative risk-aversion a 2 (0, 1) and denote p , 1
1�a

> 1. Then for
y > 0, the solution Y (y) to the dual problem (II.2.3) exists if and only if

E


Y
� 1

p�1

T

�

< 1 for some Y 2 Y (II.3.1)

and, in this case, for every Y 2 Y, Y > 0 and every stopping time ⌧ ,

E
"

✓

Y⌧ (y)

YT (y)

◆

1
p�1

�

�

�

�

�

F⌧

#

 E
"

✓

Y⌧

YT

◆

1
p�1

�

�

�

�

�

F⌧

#

.

In particular, Y (y) satisfies (Ap) if and only if there is Y 2 Y satisfying (Ap).

Proof. Observe that the convex conjugate to U is given by

V (y) =
a

1� a
y�

1�a

a = (p� 1)y�
1

p�1 , y > 0.

Then (II.3.1) is equivalent to (II.2.4), which, in turn, is equivalent to the
existence of the optimal Y (y), y > 0. Denote bY , Y (1). Clearly, Y (y) = ybY .
Recall that bY > 0.

Let a stopping time ⌧ and a process Y 2 Y , Y > 0, be such that

E
"

✓

Y⌧

YT

◆

1
p�1

�

�

�

�

�

F⌧

#

< 1.
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We have to show that

⇠ , E

2

4

 

bY⌧

bYT

!

1
p�1

�

�

�

�

�

�

F⌧

3

5� E
"

✓

Y⌧

YT

◆

1
p�1

�

�

�

�

�

F⌧

#

 0.

For a set A 2 F⌧ , the process

Zt , bYt1{t⌧} + bY⌧

 

Yt

Y⌧

1A +
bYt

bY⌧

(1� 1A)

!

1{t>⌧}, t 2 [0, T ],

belongs to Y and is such that Z0 = 1 and Z⌧ = bY⌧ . We obtain that

E
"

✓

Z⌧

ZT

◆

1
p�1

�

�

�

�

�

F⌧

#

= E
"

✓

Y⌧

YT

◆

1
p�1

�

�

�

�

�

F⌧

#

1A + E

2

4

 

bY⌧

bYT

!

1
p�1

�

�

�

�

�

�

F⌧

3

5 (1� 1A)

= E

2

4

 

bY⌧

bYT

!

1
p�1

�

�

�

�

�

�

F⌧

3

5� ⇠1A.

Dividing both sides by Z
1

p�1
⌧ = bY

1
p�1
⌧ and choosing A = {⇠ � 0}, we deduce

that

E
"

✓

1

ZT

◆

1
p�1

#

= E
"

✓

1
bYT

◆

1
p�1

#

� E
"

✓

1
bY⌧

◆

1
p�1

max(⇠, 0)

#

.

However, the optimality of bY = Y (1) implies that

E
"

✓

1
bYT

◆

1
p�1

#

 E
"

✓

1

ZT

◆

1
p�1

#

.

Hence ⇠  0.

We now state the main result of the section.

Theorem II.3.4. Let (II.2.1) hold. Suppose that there are constants 0 < a <
1, b � a and C > 0 such that

1

C

⇣y

x

⌘a

 U 0(x)
U 0(y)

 C
⇣y

x

⌘b

, x  y, (II.3.2)

and there is a supermartingale Z 2 Y satisfying (Ap) with

p =
1

1� a
.

Then for every y > 0, the solution Y (y) to (II.2.3) exists and satisfies (Ap0)
with

p0 = 1 +
b

1� a
.
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Remark II.3.1. Notice that if the relative risk-aversion of U is well-defined and
bounded away from 0 and 1, then in (II.3.2) we can take C = 1 and choose
a and b as lower and upper bounds:

0 < a  �xU 00(x)
U 0(x)

 b < 1, x > 0.

In particular, if

1  �xU 00(x)
U 0(x)

 b, x > 0,

then choosing a 2 (0, 1) su�ciently close to 1 we fulfill the conditions of
Theorem II.3.4 if there exists a supermartingale Z 2 Y satisfying (Ap) for
some p > 1.

Observe also that for the positive power utility function U with relative
risk-aversion a 2 (0, 1) we can select b = a and then obtain same estimate as
in Proposition II.3.3:

p0 = 1 +
a

1� a
=

1

1� a
= p.

The proof of Theorem II.3.4 relies on the following lemma.

Lemma II.3.5. Assume (II.2.1) and suppose that there are constants 0 < a <
1 and C1 > 0 such that

1

C1

⇣y

x

⌘a

 U 0(x)
U 0(y)

, x  y, (II.3.3)

and there is a supermartingale Z 2 Y satisfying (Ap) with

p =
1

1� a
.

Then for every y > 0 the solution Y (y) to (II.2.3) exists, and there is a constant
C2 > 0 such that for every stopping time ⌧ and every y > 0,

E [I(YT (y))YT (y)| F⌧ ]  C2I(Y⌧ (y))Y⌧ (y), (II.3.4)

where I = �V 0.

Remark II.3.2. Recall that for x = �v0(y) the optimal wealth process X(x)
has the terminal value

XT (x) = �V 0(YT (y)) = I(YT (y))

and the product X(x)Y (y) is a uniformly integrable martingale. It follows
that for every stopping time ⌧

X⌧ (x) =
1

Y⌧ (y)
E [I(YT (y))YT (y)| F⌧ ]
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and therefore, inequality (II.3.4) is equivalent to

X⌧ (x)  C2I(Y⌧ (y)).

Proof of Lemma II.3.5. To show the existence of Y (y) we need to verify (II.2.4).
As I = �V 0 is the inverse function to U 0, condition (II.3.3) is equivalent to

I(x)

I(y)
 C3

⇣y

x

⌘1/a

, x  y, (II.3.5)

where C3 = C1/a
1 . From (II.3.5) we deduce that for y  1

V (y) = V (1) +

Z 1

y

I(t)dt  V (1) + C3I(1)

Z 1

y

t�1/adt

= V (1) + C3I(1)
a

1� a
(y�

1�a

a � 1)

= V (1) + C3I(1)(p� 1)(y�
1

p�1 � 1).

Hence, there is a constant C4 > 0 such that

V (y)  C4(1 + y�
1

p�1 ), y > 0.

As Z satisfies (Ap), we have

E


Z
� 1

p�1

T

�

< 1.

It follows that
v(y)  E [V (yZT/Z0)] < 1, y > 0,

which completes the proof of the existence of Y (y).
Let ⌧ be a stopping time and let y > 0. We set bY , Y (y) and define the

process

Yt , bYt1{t⌧} + bY⌧
Zt

Z⌧

1{t>⌧}, t 2 [0, T ].

Clearly, Y 2 Y and Y0 = bY0 = y. We represent

I(bYT )bYT = ⇠1 + ⇠2 + ⇠3,

by multiplying the left-side on the elements of the unity decomposition:

1 = 1{bY
⌧

bY
T

} + 1{Y
T

bY
T

<bY
⌧} + 1{bY

T

<Y
T

,bY
T

<bY
⌧}.

For the first term, since I = �V 0 is a decreasing function, we have that

⇠1 = I(bYT )bYT1{bY
⌧

bY
T

}  I(bY⌧ )bYT .
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Using the supermartingale property of bY , we obtain that

E [⇠1| F⌧ ]  I(bY⌧ )bY⌧ .

For the second term, we deduce from (II.3.5) that

⇠2 = I(bYT )bYT1{Y
T

bY
T

<bY
⌧} = I(bYT )bY

1
a

T
bY

� 1�a

a

T 1{Y
T

bY
T

<bY
⌧}

 C3I(bY⌧ )bY
1
a

⌧ YT
� 1�a

a 1{⌧<T}  C3I(bY⌧ )bY⌧

✓

Z⌧

ZT

◆

1�a

a

= C3I(bY⌧ )bY⌧

✓

Z⌧

ZT

◆

1
p�1

and the (Ap) condition for Z yields the existence of a constant C5 > 0 such
that

E [⇠2| F⌧ ]  C5I(bY⌧ )bY⌧ .

For the third term, we deduce from (II.3.5) that

⇠3 = I(bYT )bYT1{bY
T

<Y
T

,bY
T

<bY
⌧}  I(bYT )bYT1{bY

T

<Y
T

}
= I(bYT )

a
bYT I(bYT )

1�a1{bY
T

<Y
T

}  C1I(YT )
aYT I(bYT )

1�a

= C1(I(YT )YT )
a(I(bYT )YT )

1�a

and then from Hölder’s inequality that

E [⇠3| F⌧ ]  C1(E [I(YT )YT | F⌧ ])
a
⇣

E
h

I(bYT )YT

�

�

�

F⌧

i⌘1�a

.

We recall that the terminal wealth of the optimal investment strategy with
bX0 = �v0(y) is given by

I(bYT ) = bXT .

It follows that

E
h

I(bYT )YT

�

�

�

F⌧

i

= E
h

bXTYT

�

�

�

F⌧

i

 bX⌧Y⌧ = bX⌧
bY⌧

= E
h

bXT
bYT

�

�

�

F⌧

i

= E
h

I(bYT )bYT

�

�

�

F⌧

i

.

To estimate E [I(YT )YT | F⌧ ] we decompose

I(YT )YT = I(YT )YT1{bY
⌧

Y
T

} + I(YT )YT1{bY
⌧

>Y
T

}.

Since I is decreasing, we have that

I(YT )YT1{bY
⌧

Y
T

}  I(bY⌧ )YT .
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As Y is a supermartingale and Y⌧ = bY⌧ , we obtain that

E
h

I(YT )YT1{bY
⌧

Y
T

}
�

�

�

F⌧

i

 I(bY⌧ )Y⌧ = I(bY⌧ )bY⌧ .

For the second term, using (II.3.5) we deduce that

I(YT )YT1{bY
⌧

>Y
T

} = I(YT )Y
1
a

T Y
� 1�a

a

T 1{bY
⌧

>Y
T

}  C3I(bY⌧ )bY
1
a

⌧ Y
� 1�a

a

T

= C3I(bY⌧ )bY⌧

 

bY⌧

YT

!

1�a

a

= C3I(bY⌧ )bY⌧

✓

Z⌧

ZT

◆

1
p�1

and the (Ap) condition for Z implies that

E
h

I(YT )YT1{bY
⌧

>Y
T

}
�

�

�

F⌧

i

 C5I(bY⌧ )bY⌧ .

Thus we have
E [I(YT )YT | F⌧ ]  ⌘ , (1 + C5)I(bY⌧ )bY⌧

and then

E [⇠3| F⌧ ]  C1⌘
a
⇣

E
h

I(bYT )bYT

�

�

�

F⌧

i⌘1�a

.

Adding together the estimates for E [⇠i| F⌧ ] we obtain that

E
h

I(bYT )bYT

�

�

�

F⌧

i

 ⌘ + C1⌘
a
⇣

E
h

I(bYT )bYT

�

�

�

F⌧

i⌘1�a

or equivalently that

⇣ , 1

⌘
E
h

I(bYT )bYT

�

�

�

F⌧

i

 1 + C1⇣
1�a.

Observe now that

0  x  1 + C1x
1�a if and only if 0  x  x⇤,

where x⇤ is the only root of

x = 1 + C1x
1�a, x > 0.

It follows that ⇣  x⇤ and

E
h

I(bYT )bYT

�

�

�

F⌧

i

= ⇣⌘  x⇤⌘ = x⇤(1 + C5)I(bY⌧ )bY⌧ ,

We thus have proved inequality (II.3.4) with C2 = (1 + C5)x⇤.
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Proof of Theorem II.3.4. Fix y > 0. In view of Lemma II.3.5, we only have to
verify that bY , Y (y) satisfies (Ap0).

Denote bX , X(�v0(y)) and recall that by Lemma II.3.5 and Remark II.3.2,
there is C2 > 0 such that, for every stopping time ⌧ ,

bX⌧  C2I(bY⌧ ).

Observe also that as I = �V 0 is the inverse function to U 0, the second inequal-
ity in (II.3.2) is equivalent to

y

x
 C

✓

I(x)

I(y)

◆b

, x  y.

We fix a stopping time ⌧ . Since I(bYT ) = bXT , we deduce from the inequal-
ities above that

 

bY⌧

bYT

!1/b

 max

 

1, C1/b I(bYT )

I(bY⌧ )

!

 max

 

1, C3

bXT

bX⌧

!

,

where C3 = C1/bC2. It follows that

 

bY⌧

bYT

!

1
p

0�1

=

 

bY⌧

bYT

!

1�a

b

 max

0

@1, C1�a
3

 

bXT

bX⌧

!1�a
1

A

 1 + C1�a
3

 

bXTZT

bX⌧Z⌧

!1�a
✓

Z⌧

ZT

◆1�a

.

Denoting by C1 > 0 the constant in the (Ap) condition for Z, we deduce from

Hölder’s inequality and the supermartingale property of bXZ that

E

2

4

 

bY⌧

bYT

!

1
p

0�1

�

�

�

�

�

�

F⌧

3

5  1 + C1�a
3

 

E
"

bXTZT

bX⌧Z⌧

�

�

�

�

�

F⌧

#!1�a 

E
"

✓

Z⌧

ZT

◆

1
p�1

�

�

�

�

�

F⌧

#!a

 1 + C1�a
3 Ca

1 .

Hence, bY satisfies (Ap0).

II.4 Local martingale property for maximal

elements of Y
Even if the dual minimizer Y (y) is uniformly integrable, it may not be a
martingale, due to the lack of the local martingale property; see the single-
period example for logarithmic utility in [37, Example 5.10]. Proposition II.4.2
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below yields su�cient conditions for everymaximal element of Y (in particular,
for Y (y)) to be a local martingale.

A semimartingale R is called �-bounded if there is a predictable process
h > 0 such that the stochastic integral

R

hdR is bounded. Following [39], we
make the following assumption.

Assumption II.4.1. For all X and X 0 in X such that X > 0, the process
X 0/X is �-bounded.

Assumption II.4.1 holds easily if every X 2 X is continuous. Theorem 3
in Appendix of [39] provides a su�cient condition in the presence of jumps. It
states that every semimartingale R is �-bounded if there is a finite-dimensional
local martingale M such that every bounded purely discontinuous martingale
N is a stochastic integral with respect to M . In particular, as Proposition 2
in the Appendix of [39] shows, every semimartingale R is �-bounded if the
filtered probability space (⌦,F , (Ft)t2[0,T ],P) allows for the existence of a finite-
dimensional stock price process S 0 such that the S 0-market is complete.

Proposition II.4.2. Suppose that Assumption II.4.1 holds. Let Y 2 Y be
such that Y X 0 is a local martingale for some X 0 2 X , X 0 > 0. Then Y X is a
local martingale for every X 2 X . In particular, Y is a local martingale.

Proof. We assume first that X 0 = Y = 1. Let X 2 X . As X is �-bounded,
there is a predictable h > 0 such that

�

�

�

�

Z

hdX

�

�

�

�

 1.

Since the bounded non-negative processes 1 ± R hdX belong to X , they are
supermartingales, which is only possible if

R

hdX is a martingale. It follows
that X is a non-negative stochastic integral with respect to a martingale:

X = X0 +

Z

1

h
d(

Z

hdX) � 0.

Therefore, X is a local martingale, see [3]. Under the condition X 0 = Y = 1,
the proof is obtained.

We now consider the general case. Without loss of generality, we can
assume that X 0

0 = Y0 = 1. By localization, we can also assume that the local
martingale Y X 0 is uniformly integrable and then define a probability measure
Q with the density

dQ
dP = X 0

TYT .

Let X 2 X . We have that XY is a local martingale under P if and only if
X/X 0 is a local martingale under Q.
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By Assumption II.4.1, the process X/X 0 is �-bounded. Elementary com-
putations show that X/X 0 is a wealth process in the financial market with
stock price

S 0 =
✓

1

X 0 ,
S

X 0

◆

;

see [15]. The result now follows by applying the previous argument to the
S 0-market whose reference probability measure is given by Q.

II.5 Existence of the optimal martingale mea-

sure

Recall that X(x) denotes the optimal wealth process for the primal prob-
lem (II.2.2), while Y (y) stands for the minimizer to the dual problem (II.2.3).
As usual, the density process of a probability measure R ⌧ P is a uniformly
integrable martingale (under P) with the terminal value dR

dP .
The following is the main result of the paper.

Theorem II.5.1. Let Assumption II.4.1 hold. Suppose that there are con-
stants 0 < a < 1, b � a and C > 0 such that

1

C

⇣y

x

⌘a

 U 0(x)
U 0(y)

 C
⇣y

x

⌘b

, x  y, (II.5.1)

and there is a martingale measure Q 2 Q whose density process Z satisfies
(Ap) with

p =
1

1� a
. (II.5.2)

Then for every y > 0 the optimal martingale measure Q(y) exists and its
density process Y (y)/y satisfies (Ap0) with

p0 = 1 +
b

1� a
.

Proof. From Theorem II.3.4 we obtain that the dual minimizer Y (y) exists and
satisfies (Ap0) and then from Lemma II.3.2 that it is of class (D). The local
martingale property of Y (y) follows from Proposition II.4.2, if we account for
Assumption II.4.1 and the martingale property of X(�v0(y))Y (y). Thus, Y (y)
is a uniformly integrable martingale and hence, Y (y)/y is the density process
of the optimal martingale measure Q(y).

We refer the reader to Remark II.3.1 for a discussion of the conditions of
Theorem II.5.1.
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Example II.5.2. In a typical situation, the role of the “testing” martingale
measure Q is played by the minimal martingale measure, that is, by the op-
timal martingale measure for logarithmic utility. For a model of stock prices
driven by a Brownian motion, its density process Z has the form:

Zt = E (�� · B)t := exp

✓

�
Z t

0

�dB � 1

2

Z t

0

|�s|2 ds
◆

, t 2 [0, T ],

where B is an N -dimensional Brownian motion and � is a predictable N -
dimensional process of the market price of risk. We readily deduce that Z
satisfies (Ap) for all p > 1 if both � and the maturity T are bounded. This
fact implies the assertions of Theorem II.5.1, provided that inequalities (II.5.1)
hold for some a 2 (0, 1), b � a and C > 0 or, in particular, if the relative risk-
aversion of U is bounded away from 0 and 1.

The following result shows that the key bound (II.5.2) is the best possible.

Theorem II.5.3. Let constants a and p be such that

0 < a < 1 and p >
1

1� a
.

Then there exists a financial market with a continuous stock price S such that

1. There is a Q 2 Q whose density process Z satisfies (Ap).

2. In the optimal investment problem with the power utility function

U(x) =
x1�a

1� a
, x > 0,

the dual minimizers Y (y) = ybY , y > 0, are well-defined, but are not
uniformly integrable martingales. In particular, the optimal martingale
measure bQ = Q(y) does not exist.

The proof of Theorem II.5.3 follows from Proposition II.6.1 below, which
contains an exact counterexample.

We conclude the section with a couple of corollaries of Theorem II.5.1 which
exploit connections between the (Ap) condition and BMO martingales. Here-
after, we shall refer to [34] and therefore, restrict ourselves to the continuous
case.

Assumption II.5.4. All local martingales on the filtered probability space
(⌦,F , (Ft)t2[0,T ],P) are continuous.
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From Assumption II.5.4 we deduce that for everyQ 2 Q the density process
Z is a continuous uniformly integrable martingale and that the dual minimizer
Y (y) is a continuous local martingale. We also obtain that for every X 2 X
the local martingale ZX is continuous. In particular, the wealth process X is
continuous and therefore, Assumption II.4.1 holds.

We recall that a continuous local martingale M with M0 = 0 belongs to
BMO if there is a constant C > 0 such that

E [hMiT � hMi⌧ | F⌧ ]  C for every stopping time ⌧, (II.5.3)

where hMi is the quadratic variation process for M . It is known that BMO is
a Banach space with the norm

kMkBMO , inf
np

C > 0 : (II.5.3) holds for C > 0
o

.

We also recall that for a continuous local martingale M with M0 = 0,

1. The stochastic exponential E(M) , eM�hMi/2 satisfies (Ap) for some
p > 1 if and only if M 2 BMO; see Theorem 2.4 in [34].

2. The stochastic exponentials E(M) and E(�M) satisfy (Ap) for all p > 1
if and only the martingale

q(M)t , E [hMiT | Ft]� E [hMiT ] , t 2 [0, T ], (II.5.4)

is well-defined and belongs to the closure in k·kBMO of the space of
bounded martingales; see Theorem 3.12 in [34].

Corollary II.5.5. Let Assumption II.5.4 hold. Suppose that there are con-
stants b � 1 and C > 0 such that

1

C

⇣y

x

⌘

 U 0(x)
U 0(y)

 C
⇣y

x

⌘b

, x  y, (II.5.5)

and there is a martingale measure Q 2 Q with density process Z = E(M) with
M 2 BMO. Then for every y > 0 the optimal martingale measure Q(y) exists
and its density process is given by Y (y)/y = E(M(y)) with M(y) 2 BMO.

Proof. From 1 we deduce that Z satisfies (Ap) for some p > 1. Clearly, (II.5.5)
implies (II.5.1) for every a 2 (0, 1) and in particularly for a satisfying (II.5.2).
Theorem II.5.1 then implies that Y (y)/y satisfies (Ap0) for some p0 > 1 and
another application of 1 yields the result.

We notice that by 1 and Theorem II.5.3 the power 1 in the first inequality
of (II.5.5) cannot be replaced with any a 2 (0, 1), in order to guarantee that
the optimal martingale measure Q(y) exists.
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Corollary II.5.6. Let Assumption II.5.4 hold and let inequality (II.5.1) be
satisfied for some constants 0 < a < 1, b � a and C > 0. Suppose also that
there is a martingale measure Q 2 Q whose density process Z = E(M) is
such that the martingale q(M) in (II.5.4) is well-defined and belongs to the
closure in k·kBMO of the space of bounded martingales. Then for every y > 0
the optimal martingale measure Q(y) exists and its density process is given by
Y (y)/y = E(M(y)) with M(y) 2 BMO.

Proof. The result follows directly from 2 and Theorem II.5.1.

II.6 Counterexample

In this section we construct an example of financial market satisfying the
conditions of Theorem II.5.3. For a semimartingale R, we denote by E(R) its
stochastic exponential, that is, the solution of the linear equation:

dE(R) = E(R)�dR, E(R)0 = 1.

We start with an auxiliary filtered probability space (⌦,F , (Ft)t�0,Q),
which supports a Brownian motion B = (Bt) and a counting process N = (Nt)
with the stochastic intensity � = (�t) given in (II.6.3) below; B0 = N0 = 0.
We define the process

St , E(B)t = eBt

�t/2, t � 0,

and the stopping times

T1 , inf {t � 0 : St = 2} ,
T2 , inf {t � 0 : Nt = 1} ,
T , T1 ^ T2 = min(T1, T2).

We fix constants a and p such that

0 < a < 1 and p >
1

1� a
(II.6.1)

and choose a constant b such that

a < b <
1

q
and �  1

2
�(1� �), (II.6.2)

where

q , p

p� 1
<

1

a
,

� , b� a > 0,

� , b

2
(1� qb) > 0.
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With this notation, we define the stochastic intensity � = (�t) as

�t ,
�

1� (St/2)�
1{t<T1} + �1{t�T1}, t � 0. (II.6.3)

Recall that N � R �dt is a local martingale under Q.
Finally, we introduce a probability measure P ⌧ Q with the density

dP
dQ =

1

EQ
⇥

Sb
T

⇤Sb
T .

Notice that
⇢

dP
dQ = 0

�

= {ST = 0} = {E(B)T = 0} = {T = 1} (II.6.4)

and therefore, the stopping time T is finite under P:

P(T < 1) = 1.

Proposition II.6.1. Assume (II.6.1) and (II.6.2) and consider the financial
market with the price process S and the maturity T defined on the filtered
probability space (⌦,FT , (Ft)t2[0,T ],P). Then

1. The probability measure Q belongs to Q and the density process Z of Q
with respect to P satisfies (Ap).

2. In the optimal investment problem with the power utility function

U(x) =
x1�a

1� a
, x > 0, (II.6.5)

the dual minimizers Y (y) = ybY , y > 0, are well-defined but are not
uniformly integrable martingales. In particular, the optimal martingale
measure bQ = Q(y) does not exist.

The proof is divided into a series of lemmas.

Lemma II.6.2. The stopping time T is finite under Q and the probability
measures P and Q are equivalent.

Proof. In view of (II.6.4), we only have to show that

Q(T < 1) = 1.

Indeed, by (II.6.3), the intensity � is bounded below by � > 0 and hence,

Q(T > t)  Q(T2 > t)  e��t ! 0, t ! 1.
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From the construction of the model and Lemma II.6.2 we deduce that
Q 2 Q. To show that the density process Z of Q with respect to P satisfies
(Ap) we need the following estimate.

Lemma II.6.3. Let 0 < ✏ < 1 be a constant and ⌧ be a stopping time. Then

EQ [S✏
T | F⌧ ]  S✏

⌧ 
✓

1 +
✏(1� ✏)

2�

◆

EQ [S✏
T | F⌧ ] .

Proof. We denote

✓ =
1

2
✏(1� ✏)

and deduce that

S✏
t = E(B)✏t = E(✏B)te

�✓t, t 2 [0, T ].

In particular, S✏ is a Q-supermartingale, and the first inequality in the state-
ment of the lemma follows.

To verify the second inequality, we define local martingales L and M under
Q as

Lt =

Z t

0

✓

�r
(dNr � �rdr),

Mt = E(✏B)tE(L)t,
and observe that

Mt = S✏
t , t  T, t < T2,

MT =

✓

1 +
✓

�T

◆

S✏
T , T = T2.

Since � � �, we obtain that

S✏
t  Mt 

✓

1 +
✓

�

◆

S✏
t , t 2 [0, T ].

As S  2, we deduce that M is a bounded Q-martingale and the result readily
follows.

Lemma II.6.4. The density process Z of Q with respect to P satisfies (Ap).

Proof. Fix a stopping time ⌧ . As Q ⇠ P, we have

E
"

✓

Z⌧

ZT

◆

1
p�1

�

�

�

�

�

F⌧

#

= EQ

"

✓

Z⌧

ZT

◆1+ 1
p�1

�

�

�

�

�

F⌧

#

= EQ
✓

Z⌧

ZT

◆q�
�

�

�

F⌧

�

= EQ

" 

eZT

eZ⌧

!q�
�

�

�

�

F⌧

#

,
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where eZ = 1/Z is the density process of P with respect to Q.
Recall that

eZT = CSb
T ,

for some constant C > 0. Since 0 < b < bq < 1, Lemma II.6.3 yields that

eZ⌧ = EQ
h

eZT

�

�

�

F⌧

i

= CEQ ⇥Sb
T

�

�F⌧

⇤ � C

✓

1 +
b(1� b)

2�

◆�1

Sb
⌧ ,

EQ
h

eZq
T

�

�

�

F⌧

i

= CqEQ
h

Sqb
T

�

�

�

F⌧

i

 CqSqb
⌧ ,

which implies the result.

We now turn our attention to the second item of Proposition II.6.1. Of
course, our financial market has been specially constructed in such a way that
the solutionsX(x) and Y (y) to the primal and dual problems are quite explicit.

Lemma II.6.5. In the optimal investment problem with the utility function U
from (II.6.5), it is optimal to buy and hold stocks:

X(x) = xS, x > 0.

The dual minimizers have the form Y (y) = ybY , y > 0, with

bY = E(L)Z, (II.6.6)

where Z is the density process of Q with respect to P and

Lt =

Z t

0

�

�r
(�rdr � dNr), t 2 [0, T ]. (II.6.7)

Proof. We verify the conditions of Lemma II.2.1. For the stochastic exponen-
tial E(L) we obtain that

E(L)t = e�t, t < T,

and, as ST1 = 2, that

E(L)T = e�T
✓

1{T=T1} +
✓

1� �

�T

◆

1{T=T2}

◆

= e�T
 

1{T=T1} +
✓

ST

2

◆�

1{T=T2}

!

= e�T
✓

ST

2

◆�

.

52



Hence for bY defined by (II.6.6) we have

bYT = E(L)TZT = CS�a
T = CU 0(ST ),

for some constant C > 0.
Let X 2 X . Under Q, the product XE(L) is a local martingale, because

X is a stochastic integral with respect to the Brownian motion B and E(L) is
a purely discontinuous local martingale. It follows that X bY = XE(L)Z is a
non-negative local martingale (hence, a supermartingale) under P. Thus,

bY 2 Y .

Observe that the convex conjugate to U is given by

V (y) =
a

1� a
y�

1�a

a , y > 0.

It follows that

V (ybYT ) = V (y)bYT
bY �1/a
T = V (y)C�1/a

bYTST

and therefore,

E
h

V (ybYT )
i

 V (y)C�1/a < 1, y > 0.

To conclude the proof we only have to show that the local martingale
S bY = SE(L)Z under P is of class (D) or, equivalently, that the local martingale
SE(L) under Q is of class (D). Actually, we have a stronger property:

{S⌧E(L)⌧ : ⌧ is a stopping time} is bounded in Lq(Q).

Indeed,
StE(L)t  Ste

�t  21�bSb
t e

�t, t 2 [0, T ],

and then for a stopping time ⌧ ,

EQ [(S⌧E(L)⌧ )q]  2q(1�b)EQ ⇥�Sb
⌧e

�⌧
�q⇤

= 2q(1�b)EQ ⇥E(B)qb⌧ e
q�⌧
⇤

= 2q(1�b)EQ [E(qbB)⌧ ]  2q(1�b).

The following lemma completes the proof of the proposition.

Lemma II.6.6. For the dual minimizer bY constructed in Lemma II.6.5 we
have

E
h

bYT

i

< 1.

Thus, bY is not a uniformly integrable martingale.
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Proof. Recall from the proof of Lemma II.6.5 that for the local martingale L
defined in (II.6.7),

E(L)T = e�T
✓

ST

2

◆�

.

Using (II.6.2), we deduce that

E(L)T =
1

2�
e�T (E(B)T )

� =
1

2�
e�TE(�B)T e

� 1
2 �(1��)T  1

2�
E(�B)T .

It follows that

E
h

bYT

i

= E [E(L)TZT ] = EQ [E(L)T ]  1

2�
EQ [E(�B)T ]  1

2�
.
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décomposition de föllmer schweizer. Annales de l’Institut Henri Poincaré,
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stochastic integrals. Séminaire de Probabilités, 1686:73–85, 1998.

[22] Peter Grandits and Thorsten Rheinländer. On the minimal entropy mar-
tingale measure. Annals of Probability, 30(3):1003–1038, 2002.

56



[23] Hua He and Neil D. Pearson. Consumption and portfolio policies with
incomplete markets and short-sale constraints: the infinite-dimensional
case. Journal of Economic Theory, 54(2):259–304, 1991.

[24] J.B. Hiriart-Urruty and C. Lemarechal. Convex Analysis and Minimiza-
tion Algorithms I: Part 1: Fundamentals. Grundlehren der mathematis-
chen Wissenschaften. Springer, 1996.

[25] Ying Hu, Peter Imkeller, and Matthias Müller. Utility maximization in
incomplete markets. Ann. Appl. Probab., 15(3):1691–1712, aug 2005.

[26] Julien Hugonnier and Dmitry Kramkov. Optimal investment with ran-
dom endowments in incomplete markets. Annals of Applied Probability,
14(2):845–864, 2004.

[27] Julien Hugonnier, Dmitry Kramkov, and Walter Schachermayer. On
utility-based pricing of contingent claims in incomplete markets. Mathe-
matical Finance, 15(2):203–212, 2005.

[28] Jean Jacod and Albert N. Shiryaev. Limit Theorems for Stochastic Pro-
cesses. Springer Berlin Heidelberg, 2003.

[29] Yuri M. Kabanov and Christophe Stricker. On the optimal portfolio for
the exponential utility maximization: Remarks to the six-author paper.
Mathematical Finance, 12(2):125–134, April 2002.

[30] I. Karatzas, J. Lehoczky, S. Shreve, and G. Xu. Martingale and duality
methods for utility maximization in an incomplete market. SIAM Journal
on Control & Optimization, 29(3):702–830, 1991.

[31] Ioannis Karatzas and Steven Shreve. Brownian Motion and Stochastic
Calculus. Graduate Texts in Mathematics. Springer New York, 1991.

[32] Constantinos Kardaras and Gordan Žitković. Stability of the utility maxi-
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[39] Dmitry Kramkov and Mihai Ŝırbu. On the two-times di↵erentiability of
the value functions in the problem of optimal investment in incomplete
markets. Annals of Applied Probability, 16(3):1352–1384, 2006.

[40] Kasper Larsen, H. Mete Soner, and Gordan Žitković. Facelifting in Utility
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