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Abstract

We apply mathematical methods to model diffusion and migration of ions,

electrons, and holes in electrochemical and polymer semiconductor systems.

When a voltage is applied across planar, blocking parallel electrodes, charge

carriers redistribute in the cell to screen the electrode charge, forming electrical

double layers. The structure of the double layer and the external current can

be predicted via the Poisson-Nernst-Planck (PNP) equations for charge carrier

flux, conservation, and electric potential. In this thesis, we employ asymptotic

analysis and numerical methods to quantify charge transport in four separate

electrochemical devices. In organic light-emitting diodes (OLEDs), diffusion

in the disordered polymer semiconductor is significant in comparison to mi-

gration. We solve the PNP equations via asymptotic analysis and find that

including diffusion leads to a large increase in current proportional to the ratio

of the cell width to the double layer width, thus diffusion cannot be neglected.

Mixed ionic-electronic conductors (MIECs) conduct both ions and electrons,

however ion mobility is difficult to measure. We derive a similarity solution

to the PNP equations for cation invasion in a planar MIEC polymer film, and

find that the location of the moving front is proportional to the square-root

of the product of ion mobility, applied voltage and time. However differences

between these results and experimental data indicate that additional work is

needed to verify the accuracy of this method to calculate ion mobility.



The net charge in a zwitterionic hydrogel is dependent on the surrounding

electrolyte pH. This charge alters the electrical impedance of the hydrogel.

We apply the PNP equations coupled with acid-base dissociation equations

to predict the reduction in electrical impedance as pH deviates from the iso-

electric point based on material parameters. This model aids in the design of

low-impedance hydrogels to improve signal transmittance in biosensor encap-

sulation applications. Lastly, we model discharging of an electrolytic cell. At

high voltage, a “reverse peak” or maximum in the current magnitude emerges.

Through asymptotic analysis and numerical solutions of the PNP equations,

we conclude that bulk depletion and neutral salt adsorption in the double layer

during charging cause the reverse peak.
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1. Introduction

We applied asymptotic analysis, analytical and numerical methods to develop

mathematical models for ionic and electronic transport in four electrochem-

ical and organic electronics devices comprised of novel materials and charge

carriers. Experimental research on these new materials and devices is pro-

gressing rapidly, however open questions remain that can be addressed by

improved modeling. Our methodical approach to mathematical modeling has

led to significant insights on the underlying physics driving charge transport

in electrochemical systems and organic electronics.

The diffusion and migration of ions and electrons in response to an applied

potential are fundamental to electrochemical and semiconductor systems.2–4

The simplest device geometry in both cases is two blocking, parallel-plate elec-

trodes separated by an electrolyte or semiconducting material (figure 1.1).4–6

When a voltage is applied, charge carriers accumulate at the electrodes to

screen the surface charge.3 This region of charge accumulation is the electrical

double layer, with a characteristic length scale, the Debye length

λD =

√
εkBT

2q2c0
, (1.1)

where ε is the permittivity of the material, kB is Boltzmann’s constant, T is

temperature, q is the charge of a proton, and c0 is the mean concentration

of charge carriers. The Debye length λD is generally much smaller than the

1



device width L. For example, at c0 = 1 mM in water at T = 300 K, the Debye

length λD ≈ 10 nm. The ratio of the Debye length λD to the spacing between

electrodes or width of the cell L is the dimensionless Debye length ε, defined

as

ε = λD/L� 1, (1.2)

at the experimentally-relevant limit of thin double layers at the electrode inter-

faces. In the double layer, the electric potential and concentration of charge

carriers is enhanced compared to that of the bulk (figure 1.1). The trans-

port of charge carriers in an electrochemical system can be described by the

Poisson-Nernst-Planck (PNP) equations, a set of nonlinear, partial differen-

tial equations. The PNP equations include an equation for the contributions

of diffusion and migration to charge carrier flux, charge conservation across

the cell, and Poisson’s equation relating the electric field to the charge den-

sity.7 In the semiconductor community, these equations are referred to as the

drift-diffusion equations, and the term “space-charge layer” is used to describe

electron and hole, or electron vacancy, accumulation at an interface, where the

space-charge length λS is mathematically equivalent to λD.2,8 Space-charge

layers are formed by charge injection from the electrode into the semicon-

ductor,9 opposed to charge separation in the case of double layer formation.

When the PNP equations are non-dimensionalized by a characteristic length-

scale (L), concentration (c0), and potential (VT ), two dimensionless groups

emerge: ε and the dimensionless applied voltage V/VT , where V is the applied

voltage and VT is the thermal voltage, VT = kBT/q ≈ 25 mV at T = 300 K. In

the systems studied in this thesis, additional dimensionless groups contribute

to the dynamics, including the ratio of charge carrier mobilities or the ratio of

reaction constants to c0. The behavior of an electrochemical or semiconductor

2



Cathode
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a. b. Semiconductor Device

Figure 1.1: A model electrochemical cell (a) and semiconductor device (b). a)
Cations (+) and anions (−) from the bulk accumulate at the counter-electrode
to form double layers. b) Electrons (−) and holes (+) are injected into the
polymer film from electrodes, indicated by the arrows, and accumulate in
space-charge layers. The anode is the positively charged electrode, while the
cathode is negatively charged.

system can be predicted by solving the PNP equations at specific values of the

dimensionless groups.

At sufficiently high applied voltage V � VT , strong concentration and

potential gradients in the thin double layer result in sharp variations at the

electrode interfaces that render the PNP equations difficult to solve numeri-

cally and impossible to solve analytically. However, we can exploit the singular

nature of the PNP equations at the thin double layer limit, ε → 0, to derive

asymptotic expressions for the electric potential and charge carrier concentra-

tions in the double layer and in the bulk. The potential and charge carrier

concentration are expanded around the small parameter, the dimensionless De-

bye length ε, and inserted in the PNP equations to yield a series of asymptotic

expressions in the double layer and in the bulk at each order of ε.

The leading order terms reveal the dominant contributions to the charge

carrier densities and potential. This insight on the physics of the system is

an advantage of asymptotic analysis not accessible via a primarily numerical

analysis.10 A second advantage is that the asymptotic expressions are valid

3



for the experimentally relevant limit ε→ 0, where the solution is numerically

intractable due to steep gradients in potential and charge carrier concentra-

tion. In this thesis, we employ asymptotic analysis, analytical techniques

such as similarity solutions and Laplace transforms, and numerical methods.

Asymptotic analysis, analytical techniques, and scaling analyses are employed

to simplify the PNP equations, and the results are validated by comparing to

numerical solutions of the PNP equations at values of ε accessible to numerical

methods. Finally, we compare our models to experimental data for validation

and to provide insight on the experimental findings.

Organic electronics, the focus of chapters 2 and 3, are based on solid-

state polymer semiconductors that can be designed to conduct both ions and

electrons and holes.5,11–13 The physics of charge transport in polymer semi-

conductors differs from classical semiconductor theory in that diffusion, which

is often neglected in crystalline semiconductors, is not negligible compared to

migration, particularly in the highly concentrated space-charge layers adja-

cent to the electrode-semiconductor interface.9 In OLEDs, the charge carriers

(electrons and holes) are injected at the electrodes, accumulate in space-charge

layers as depicted in figure 1.1b, and then recombine in the bulk to emit pho-

tons. The thin space-charge layers are difficult to resolve numerically, so in

chapter 2 we apply asymptotic analysis to the PNP equations in order to derive

a simple expression for the current resulting from an applied voltage.14 This

expression can be applied by experimentalists to predict the current based on

material parameters, and thus device performance.

Polymer mixed ionic-electronic conductors are promising new materials

for biosensor,11,15 superconductor,16,17 and organic lighting18,19 applications.

However, ion mobility in the polymer film is difficult to measure, prompting

Stavrinidouet al.1,20 to design a simple device to measure ion mobility con-
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sisting of a polymer film doped with holes in contact with an electrode at

one end and an electrolyte at the other. A gate electrode immersed in the

electrolyte drives the injection of cations from the electrolyte into the poly-

mer film. The positive ions displace positively charged holes, which exit and

are detected at the electrode. In chapter 3, we employ the PNP equations

to model the invading moving front of cations across the polymer film.21 We

apply a scaling analysis to simplify the PNP equations at the limit of infinite

hole mobility compared to cation mobility and large voltage V � VT . The

simplified equations can be solved numerically via a similarity solution. We

then fit our similarity solution to experimental data for cation invasion in a

polymer film.1 The similarity solution is valid at the thin double layer limit

relevant to the experimental system, where the concentration and potential

gradients in the double layer are too steep to be resolved numerically.

Biosensors for use in the brain require an electrically-conductive, mechan-

ical barrier between the relatively hard biosensor electrode and the soft tissue

of the brain to avoid damage due to mechanical strain.22,23 Zwitterionic hy-

drogels are a promising biomaterial for this application. These hydrogels carry

a charge on the hydrogel backbone at a physiological pH = 7.4 that lowers the

electrical impedance compared to the electrolyte, and can be designed to match

the elastic modulus of the soft tissue.24,25 In chapter 4, we model ion trans-

port through zwitterionic hydrogels under the influence of a low-amplitude

oscillation in the applied voltage via the PNP equations coupled with acid-

base dissociation equations and predict the electrical impedance dependence

on pH. When a low-amplitude oscillating voltage is applied, the resulting

current responds linearly, oscillating at the same frequency as the voltage. We

can exploit this linear response by linearizing the PNP equations at the limit

of low amplitude V � VT . The linearized equations can be solved numerically
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for the spacial ion concentrations and potential at smaller ε than is possible

when solving the full PNP equations. The electrical impedance, equal to the

ratio of the applied potential to the external current, is calculated from the

solution to the linearized PNP equations. This model can aid in the design

of hydrogels with desirable electrical properties for biosensor encapsulation

applications such as low electrical impedance and high conductivity.

In chapter 5, we focus on charge carried by inverse micelles in nonpolar

fluids. Nonpolar fluids differ from aqueous systems in that there is very lit-

tle free charge available to carry a current.26 Added surfactants stabilize the

fluid by preventing unwanted buildup of electrical potential at interfaces.27,28

Interestingly, at applied voltages V ∼ VT , the current during discharging of

an electrolytic cell is asymmetric to the charging current and, at sufficiently

large voltage, a “reverse peak”, or maximum, in the magnitude of the current

emerges, in sharp contrast to the monotonic decay in the current during charg-

ing.29–32 We apply asymptotic analysis, Laplace transforms, and numerical

methods to the PNP equations to develop a mathematical model for discharg-

ing electrolytic cells that captures this asymmetry and the reverse peak in the

discharging current.

Finally, in chapter 6 we conclude with a summary of major findings and

future work, including mathematical models of organic electrochemical tran-

sistors and signaling molecule transport in synapses.
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2. Asymptotic Analysis of

Double-Carrier,

Space-Charge-Limited

Transport in Organic

Light-Emitting Diodes

2.1 Introduction

Organic light-emitting diodes (OLEDs) are solid state lighting devices that

convert electrical energy to light through electroluminescence.33 A standard

device configuration consists of a transparent anode, typically indium tin ox-

ide, an organic semiconducting polymer film that is 10-1000 nm thick, and a

metallic cathode.5,6, 34,35 An applied voltage drives the injection of electrons

through the cathode, and electron vacancies, or holes, through the anode into

the organic thin film, where they diffuse and migrate, or drift, towards the

oppositely charged electrode. When in close proximity, an electron and hole

recombine to form an exciton, which radiatively decays to emit a photon.

The current in an organic device is limited by charge transport across the
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organic thin film36 when the energy barrier to injection is lower than 0.3-0.4

eV,37 as opposed to being limited by the electrode-film contacts that provide

the majority of the resistance in inorganic devices.38 At the electrode-organic

film interface, “space-charge layers” exist where the charge carrier (electron

or hole) density varies rapidly.39 Quantifying the charge carrier distribution

within these space-charge layers is crucial to understanding charge transport in

OLEDs,39 as well as in other types of organic electronics such as light-emitting

electrochemical cells40 and organic solar cells.41

The current and recombination rate are key parameters in analyzing OLED

performance. The simplest mathematical model that relates current, charge

recombination, and applied voltage is the drift-diffusion equations that account

for diffusion, drift, and recombination of electrons and holes.2,3, 42 The drift-

diffusion equations are non-linear coupled differential equations that cannot

be solved exactly. However, when simplifying assumptions are made, it is

possible to make analytical progress. For example, Mott & Gurney2 considered

diffusion-free single-carrier injection into a thin film with no intrinsic charge,

for which the current is

Ĵ =
9µ̂ε̂

8

V̂ 2

L̂3
, (2.1)

where V̂ is the applied voltage; L̂ is the width of the thin film; ε̂ is the

permittivity of the thin film; µ̂ is the electric mobility, µ̂ = D̂ê/k̂BT̂ , where

D̂ is the diffusivity of the charge carrier, ê is the magnitude of the charge of

an electron, k̂B is Boltzmann’s constant, and T̂ is temperature. Note that all

hatted variables (e.g. V̂ ) are dimensional. Equation (2.1) is known as the

Mott-Gurney Law.2

For single-carrier injection, the Mott-Gurney law has been extended to

include the effects of charge traps,43–47 uneven injection barriers,38,48 and in-

trinsic charge.45 The latter is responsible for an ohmic regime (Ĵ ∝ V̂ ) that
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precedes the space-charge limited regime described by the Mott-Gurney law.2

Mark & Lampert45 add a term to the Mott-Gurney law that describes the

linear increase in current with voltage due to intrinsic charge. Murgatroyd49

found that the current-voltage relation for single carrier, diffusion-free injec-

tion can be represented by a functional relationship between Ĵ/L̂ and V̂ /L̂2,

which is consistent with the Mott-Gurney law2 and Mark & Lampert’s ohmic

current at low voltage.45

For double-carrier transport, Parmenter & Ruppel50 obtained a solution

to the drift-diffusion equations for diffusion-free, double-carrier injection and

recombination into trap-free insulators, where recombination is modeled as a

bimolecular reaction according to Langevin kinetics.51 They50 found that the

Mott-Gurney law holds if the single-carrier electric mobility is replaced with

an effective mobility that is a function of the individual electron and hole mo-

bilities, and a recombination mobility. In contrast to Parmenter & Ruppel,50

who neglected diffusion, Baron’s52 work included double-carrier diffusion, drift,

and recombination. In particular, Baron used Poisson’s equation to account

for deviations from electroneutrality in the film, yet did not include the con-

tribution of the gradient in charge density to the total carrier flux across the

thin film. Baron found that the Mott-Gurney scaling, Ĵ ∝ V̂ 2/L̂3, holds.

The increase in current due to diffusion and double-carrier injection is

examined in Torpey’s53 work. Torpey first addressed the diffusion-free case

of double-carrier injection with recombination using a scaling analysis and

confirmed that Ĵ ∝ V̂ 2/L̂3, in agreement with Parmenter & Ruppel.50 Torpey

then solved the drift-diffusion equations numerically and found that at small

reservoir concentrations the current is limited by the inability of the contacts

to provide sufficient electrons and holes. Torpey found a space-charge-limited

current at large reservoir concentrations, where Ĵ ∝ V̂ 2. Notably, at large
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reservoir concentrations, the current is much greater than the Ĵ ∝ V̂ 2/L̂3

diffusion-free scaling (see figure 11 in Torpey53).

Lastly, when diffusion and drift are included but recombination is ne-

glected, Neumann et al.54 find Ĵ ∝ V̂ 3/L̂3 at high voltage, and Ĵ ∝ V̂ /L̂3

at low voltage compared to the thermal voltage, k̂BT̂ /ê (which is 26 mV at

300K). They assert that there is only one length scale in the system, the device

thickness L̂, to justify the scaling with L̂−3 in the current-voltage relation at all

voltages. However, as we show below, when diffusion is included an additional

length scale arises: the space-charge length.

The electrode-film boundary conditions imposed in the works discussed

above feature ohmic contacts,50,52,54,55 or reservoir conditions that fix the con-

centrations at the electrodes.2,6, 39,45,53 The ohmic condition assumes that

the electric field is zero at the electrodes, while reservoir conditions assume a

fixed voltage-independent concentration. In addition to these boundary con-

ditions, Walker et al.56 and Malliaras & Scott38 review boundary conditions

that quantify the injection of charge due to thermionic emission, tunneling,

and backflowing interface recombination, where injection is a function of the

local electric field at the electrode-organic interface.

In this work, we derive a current-voltage relation for space-charge-limited

transport in thin organic films due to diffusion and drift of electrons and holes.

Although this analysis does not account for carrier recombination, the results

are subsequently utilized to derive a recombination-voltage relation for low

recombination rate OLEDs.

As shown below, non-dimensionalization of the drift-diffusion equations

reveals an important parameter governing charge transport in the thin film:
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the width of the space-charge layer,

λ̂s =

√
ε̂k̂BT̂

2ê2n̂0

, (2.2)

where n̂0 is the charge density at the electrode. This is mathematically equiva-

lent to the Debye screening length in electrochemical systems.57 In the present

case, however, the space charge develops as a result of injection of charges into

a film with no intrinsic charge, while the Debye length characterizes the extent

of the space charge of mobile ions intrinsic to an electrolyte near a charged

surface. Importantly, for space-charge-limited transport in OLEDs, the space

charge layer is often small in comparison to the width of the device, such

that ε = λ̂s/L̂ � 1.6,39,58 For instance, in Pinner et al.’s6 experiments on

OLED charge transport ε = 0.048 for an ITO/PPV/Au device. In Torpey’s53

numerical simulation of small-molecule organic semiconductors, based on the

material parameters used in the paper, ε ranges from 0.022 to 0.049. Sim-

ilarly, DeMello’s39 numerical work contains examples where ε = 0.00098 for

double-carrier injection into an OLED with ohmic contacts. In Peng et al.’s58

numerical analysis of charge transport in OLEDs, ε = 0.0012 for ohmic and

injection limited cases.

When the space-charge layer is thin, ε� 1, numerical solutions of the drift-

diffusion equations are challenging, since the equations are singular as ε→ 0.39

This is manifested in the development of sharp gradients in charge carrier

concentration: the charge accumulates in thin regions (space-charge layers) at

each electrode and rapidly decays to a low bulk concentration. Asymptotic

analysis, specifically singular perturbation methods, are ideal for such prob-

lems;10 indeed they exploit the fact that ε� 1 to obtain analytic, closed-form

approximations that are asymptotic as ε → 0. In this paper, we use these
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techniques to derive a current-voltage relation for OLEDs with double-carrier

diffusion and drift.

This paper is structured as follows. In section 2.2 we present the drift-

diffusion equations that describe charge transport and recombination in an

OLED. In sections 2.3 through 2.5 we apply asymptotic analysis to the drift-

diffusion equations to derive a current-voltage relation for double-carrier in-

jection into OLEDs in the thin space-charge-layer regime, ε � 1. In section

2.6 we compare the current-voltage relation to the numerical solution of the

drift-diffusion equations. In section 2.7 we derive a recombination-voltage re-

lation for kinetically limited OLEDs and compare to the numerical solution

of the drift-diffusion equations with recombination. We present conclusions in

section 2.8.

2.2 Mathematical Model

The drift-diffusion equations describe the transport of electrons and holes in

an organic film, caused by diffusion down concentration gradients and drift

in an electric field. The thickness L̂ (10-1000 nm) of an OLED is typically

much smaller than its width and depth; thus, the device is treated as one-

dimensional, and charge transport occurs normal to the electrodes only, desig-

nated as the x̂ direction. The x̂-origin is located at the anode (figure 2.1). We

assume that the OLED is operating at steady-state. The net fluxes of each

species are

ĵ± = −µ̂±
k̂BT̂

ê

dn̂±
dx̂
∓ µ̂±n̂±

dφ̂

dx̂
, (2.3)

where the ± subscript refers to electrons (-) or holes (+), ĵ± is the flux of the

charge carrier, µ̂± is the carrier mobility, and φ̂ is the electric potential. The

first term in (2.3) accounts for diffusion, the second drift. Poisson’s equation

states that the variation in electric field across the OLED is proportional to
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the local charge density,

d2φ̂

dx̂2
= − ê

ε̂
(n̂+ − n̂−). (2.4)

Charge carrier conservation equations equate the change in flux across the film

to the consumption of charge carriers due to recombination,

dĵ±
dx̂

= −k̂n̂+n̂−, (2.5)

where k̂ is the reaction rate constant for the recombination of electrons and

holes, with units of length cubed per time, assuming Langevin kinetics.51 In

(2.5) we do not account for any electron or hole generation through exciton

dissociation.

We assume that electrons are injected through the cathode and holes

through the anode such that the number density of charge carriers at the elec-

trode is finite and constant,53 and that the potential at the electrodes is equal

to an applied potential. We assume that the concentration of a charge carrier

is zero at its counter electrode.39,54 These assumptions form the boundary

conditions described in (4.21) and (2.15).

To non-dimensionalize the governing equations (2.3)-(2.5), the spatial coor-

dinate, x̂, is normalized by the device length, L̂; the electric potential φ̂ by the

thermal voltage; and the electron and hole densities by n̂0, the charge carrier

density at the electrodes. The flux is normalized by D̂n̂0/L̂. For simplicity,

we set the magnitude of the charge density at the anode and at the cathode

to be equal, and set the mobility of electrons equal to the mobility of holes. In

addition, we neglect the electric field-dependence of the mobility. Henceforth,

all equations are in terms of dimensionless variables (unless stated otherwise)
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and appear without a caret accent. From (2.3), the flux is

j± = −dn±
dx
∓ n±

dφ

dx
. (2.6)

Poisson’s equation now reads

d2φ

dx2
= − 1

2ε2
(n+ − n−), (2.7)

where ε is the dimensionless space-charge length, defined as

ε =
λ̂s

L̂
=

1

L̂

√
ε̂k̂BT̂

2ê2n̂0

. (2.8)

From (2.5), the charge conservation equations are

d

dx

(
−dn±
dx
∓ n±

dφ

dx

)
= −kn+n−, (2.9)

where the dimensionless reaction rate k = k̂n̂0L̂
2/D̂ is known as the Damkhöler

number in engineering literature,59 and is equal to the ratio of the diffusive

timescale (L̂2/D̂) to the recombination timescale (1/k̂n̂0). When the reaction

is slow in comparison to diffusion (k � 1), the recombination is kinetically

limited. If the inverse is true, recombination is limited by charge transport.

Here, we assume that the system is kinetically limited, so the reaction term

can be neglected to a first approximation (k = 0) in (2.9) yielding

d

dx

(
−dn±
dx
∓ n±

dφ

dx

)
= 0. (2.10)

It is convenient to write the drift-diffusion equations (2.6-2.10) in terms

of the mean charge carrier concentration, c = 1
2
(n+ + n−), half the charge

density, ρ = 1
2
(n+ − n−), and the current, J = j+ − j−. Thus, Poisson’s
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equation becomes

− ε2d
2φ

dx2
= ρ. (2.11)

The net flux, j+ + j−, is zero across the film, since the flux of electrons and

holes are equal in magnitude but opposite in direction, which implies

ρ
dφ

dx
+
dc

dx
= 0, (2.12)

An integration of (2.10) shows that the current J satisfies

c
dφ

dx
+
dρ

dx
= −1

2
J. (2.13)

The aforementioned boundary conditions, in non-dimensional form, are

Anode, x = 0 : n+ = 1, n− = 0, and φ =
1

2
V, (2.14)

Cathode, x = 1 : n+ = 0, n− = 1, and φ = −1

2
V, (2.15)

where V is the applied potential (normalized by the thermal voltage, V =

V̂ ê/k̂BT̂ ) minus the normalized built-in potential drop due to the difference

in the work functions of the anode and cathode.60 The applied potential V is

equal to the integral of the electric field E across the device,

V = −
∫ 1

0

E dx, (2.16)

where

E = −dφ/dx. (2.17)

A schematic of the device configuration is shown in figure 2.1. In the pro-

ceeding analysis, we solve for the electric field, hole and electron density, and
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Holes Electrons
j+ j-

x = 0
Anode

x = 1
Cathode

n  = 0+
n  = 1-
Φ = -V/2Φ = V/2

n  = 0-
n  = 1+

x = 1/2

Figure 2.1: Holes are injected through the anode with a flux j+, while electrons are
injected through the cathode with a flux j−; the fluxes will be determined in the
proceeding analysis. The boundary conditions are shown at the anode (x = 0) and
at the cathode (x = 1).

electric potential in the anodic half (0 ≤ x ≤ 1/2) of the OLED. The electric

field is symmetric around x = 1/2, while the electric potential is antisym-

metric. The electron density is symmetric to the hole density, so asymptotic

expressions for the electron density in the cathodic region (1/2 ≤ x ≤ 1) can

be derived from the expressions for the hole density in the anodic region by

replacing x with 1− x, and vice versa.

In the absence of recombination the problem presented here is mathemat-

ically similar to ion transport across a permeable membrane at the interface

between two reservoirs of fixed electrolyte concentrations,61–63 relevant to ionic

channels in biological systems. Note, however, that in61–63 it is assumed that

the concentrations of both species (cation and anion) are non-zero in each

reservoir. In the case of OLEDs, the appropriate boundary conditions set the

concentration of electrons (holes) to zero at the anode (cathode). Another

related electro-diffusion problem is that of current passage across a cation-

selective surface, which is relevant to electrodialysis at over limiting currents

in thin-gap cells.64 In that problem, the anions do not react at the electrodes;

hence, their concentration within the cell is subject to an integral constraint.

For an OLED, there are no such constraints on the concentrations of electrons

and holes in the semiconductor film.
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2.3 Master Equation for the Electric Field

Equations (2.11) - (2.13) can be combined into a single master equation in

terms of the electric field E. First, (2.11) is substituted into (2.12), yielding

d

dx

(
−ε

2

2
E2 + c

)
= 0. (2.18)

Equation (2.18) is readily integrated, resulting in

− ε2

2
E2 + c = A, (2.19)

where the constant of integration

A =
−ε2

2
E2
? + c?, (2.20)

where E? and c? are the electric field and mean concentration, respectively,

at the midpoint of the device. These two quantities are not known a priori,

but must be determined as part of the asymptotic analysis. From (2.19) and

(2.20), the carrier concentration can be written as

c =
ε2

2
(E2 − E2

?) + c?. (2.21)

Poisson’s equation (2.11) is inserted into (2.13) resulting in

ε2
d2E

dx2
= cE − 1

2
J. (2.22)
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Equation (2.21) is combined with (2.22) to yield the master equation for the

electric field across the OLED,

ε2
d2E

dx2
−
[
ε2

2
(E2 − E2

?) + c?

]
E = −1

2
J. (2.23)

Similar master equations have been derived to analyze charge transport in

liquid-state electrochemical systems63,65 and in OLEDs without diffusion.53

2.4 Asymptotic Analysis

In the operation of an OLED, a potential difference between the anode and

the cathode drives a current across the organic thin film. The applied voltage

must be high enough to overcome the energy barriers for the injection of charge

carriers. Typically, the potential difference is much greater than the thermal

voltage, V � 1 (or V̂ � k̂BT̂ /e ' 26 mV).34 Therefore, we prescribe the

voltage

V = µ(ε)V?, (2.24)

where V? is an O(1) constant and µ(ε)� 1. The bulk field, EB, arises from the

O(µ) drop in potential across the O(1)-width bulk region. Due to symmetry

of the field about x = 1/2, the integral (2.16) can be written as

1

2
µV? = −

∫ 1
2

0

E(x) dx, (2.25)

where we have used φ(1/2) = 0, and φ(0) = V/2 = µV?/2. Hence, the bulk

field is

EB = µ(ε)V? + o(µ), (2.26)

which is spatially uniform to leading order. Therefore, the electric field at

the midpoint is E? = µ(ε)V? to leading order. The majority of the injected
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charge carriers in the device are concentrated at the space-charge layers near

each electrode, so the concentration in the electroneutral bulk is expected to

be asymptotically small in ε,

cB = δ(ε)ca + o(δ) (2.27)

where δ(ε)� 1 is an a priori unknown function and ca is an O(1) coefficient.

Thus, c? = δ(ε)ca to leading order. In the bulk, where x ∼ O(1), one can

simply set ε = 0 in the master equation (2.23) to derive the leading order

current J as

J = 2cBEB = 2µδcaV? + o (µδ) . (2.28)

The charge density is zero in the electroneutral bulk, to leading order. How-

ever, at the anode-thin-film interface (x = 0) the charge density ρ = 1/2, and

ρ = −1/2 at the cathode (x = 1), according to (4.21) and (2.15). The bulk so-

lution (2.26)-(2.28) does not satisfy these boundary conditions. This indicates

the existence of an asymptotically small region near each electrode, a space-

charge layer, where electroneutrality is violated. We derive an asymptotic

approximation for the electric field in the space-charge layer next.

2.4.1 Space-Charge Layer

Due to symmetry, we focus on the hole-rich space-charge layer near the anode

(x = 0). In this region, the concentration of charge carriers varies rapidly;

hence, we define a stretched “inner” coordinate x = x/ε, such that x ∼ O(1)

as ε→ 0. The electric field in the space-charge layer is expected to be O(1/ε),

resulting in an O(1) potential drop across the space-charge-layer (the majority

of the O(µ) applied potential drops across the bulk of the OLED). We define

E = Eε, where E ∼ O(1). Applying these scalings to the master equation
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(2.23) yields:

1

ε

d2E

dx2
−
[

1

2ε
E

2 − ε

2
E2
? +

c?
ε

]
E = −J

2
. (2.29)

Recall that the midpoint concentration c? (2.27) is small, δ � 1, and the

midpoint field E? (2.26) is O(µ). Thus, to ensure that the space-charge layer

is in quasi-equilibrium to a first approximation, we choose µ � 1/ε so that

terms proportional to the midpoint field E? and current J (∼ µδ) in (2.29) do

not enter the leading order balance. That leading O(1/ε) balance is therefore

d2E

dx2
=

1

2
E

3
, (2.30)

with the boundary conditions

dE

dx
=

1

2
, and

d2E

dx2
=

1

2
E at x = 0, (2.31)

derived from (2.11), (4.21), and (2.23). The solution to (2.30) and (2.31) is

E(x) = − 2

x+ 2
, (2.32)

which represents the leading order solution for the electric field in the space-

charge layer. This expression was also found by Chu & Bazant66 for the

electric field in the Debye layer of an electrochemical cell at the diffusion-

limited current.

The decay to zero of the O(1/ε) space-charge field as x→∞ is consistent

with the prescribed O(µ) bulk field, where µ � 1/ε. We look to (2.29) for

the scaling of the next term of the space-charge layer field. After the terms

included in (2.30), the next largest term in (2.29) is c?E/ε ∼ δcaE/ε from

(2.27) since ca and E are O(1), and µ� 1/ε. Thus, the expansion of electric
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field in the space-charge layer is

E(x) =
1

ε

(
E0(x) + δE1(x) + o(δ)

)
, (2.33)

where E0 is the previously-calculated leading order term (2.32). An equation

for the next, O(δ/ε), term of the electric field in the space-charge layer, E1(x),

is derived by inserting (2.33) into (2.29). Since µ� 1/ε, the current J does not

enter the O(δ/ε) balance. The term c?E/ε is to leading order δcaE0/ε from

(2.27). The term containing the midpoint field, εE2
?E is O(εµ2) to leading

order in E. When µ is restricted to µ � δ
1
2/ε, this term does not enter into

the O(δ/ε) balance. With this restriction, the O(δ/ε) field is governed by

d2E1

dx2
− 3

2
E

2

0E1 = caE0, (2.34)

with the boundary conditions

dE1

dx
= 0, and

d2E1

dx2
=

1

2
E1 at x = 0. (2.35)

Substituting the result for E0 (2.32) into (2.34) and solving the resulting equa-

tion yields

E1(x) = ca
12 + 12x+ 6x2 + x3

3(2 + x)2
. (2.36)

The O(δ/ε) field (2.36) diverges as x →∞ and hence clearly does not match

the bulk, indicating that a transition, or intermediate, region exists between

the electroneutral bulk and the space-charge layer.

2.4.2 Intermediate Layer

The device length and the width of the space-charge layer are clear choices

for the characteristic length of the bulk, x ∼ O(1), and the space-charge
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layer, x ∼ O(ε), respectively; however there is no obvious length scale for the

intermediate layer. Through a scaling analysis, the intermediate layer field

and width are found to scale as

E =
δ

1
2

ε
Ẽ, and x =

ε

δ
1
2

x̃, (2.37)

where Ẽ and x̃ are O(1). The width of the intermediate layer is ε/δ
1
2 , and the

magnitude of the field within it is δ
1
2/ε, which fit the criteria ε � ε/δ

1
2 � 1

and µ � δ
1
2/ε � 1/ε. Therefore, the leading order equation that results in

the intermediate layer from (2.23) is

d2Ẽ

dx̃2
=

1

2
Ẽ3 + caẼ. (2.38)

A solution to (2.38) that decays to zero as x̃→∞ is67

Ẽ(x̃) = −
2
√
ca

sinh (
√
cax̃)

. (2.39)

The behavior of the asymptotic expansion for the intermediate field must

match that of the space-charge field as x̃ → 0 and the bulk field as x̃ → ∞.

As x̃→ 0, Ẽ → −2/x̃; as x→∞, the leading order space-charge field (2.32),

rewritten in terms of x̃ and Ẽ, approaches Ẽ = −2/x̃. Therefore the behavior

of the intermediate field as x̃→ 0 matches that of the space-charge field. Since

we require µ� δ
1
2/ε, the decay of (2.39) at large x̃ is consistent with the O(µ)

bulk field (2.26). To determine a relation between µ, δ, and ε, we need a

second term for the field in the intermediate layer that scales by µ to match

to the leading order bulk electric field EB = µV?. The expansion for the field
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in the intermediate region is thus written as

E(x̃) =
δ

1
2

ε
Ẽ0(x̃) + µẼ1(x̃) +O(µ), (2.40)

where the leading order term Ẽ0 is given by (2.39). From (2.23), the equation

for Ẽ1 is

d2Ẽ1

dx̃2
− 3

2
Ẽ2

0Ẽ1 − caẼ1 = cbẼ0 − caV?, (2.41)

where cb is the next order of the expansion of the midpoint concentration, that

is

c? = δca + µεδ
1
2 cb + o

(
µεδ

1
2

)
, (2.42)

which is added to account for a possible higher order bulk concentration con-

tribution to Ẽ1. An exact solution to (2.41) cannot be obtained. However,

only the behavior of Ẽ1 as x̃→∞ and as x̃→ 0 is needed for matching with

the bulk and the space-charge layer, respectively. As x̃ → ∞ it is clear that

Ẽ1 → V? since Ẽ0 decays exponentially, thereby matching the bulk field, but

the behavior as x̃→ 0 needs to be examined carefully.

A power series expansion around x̃ = 0 reveals two homogeneous solutions

to (2.41):

fh1 =
a0
x̃2

+
a0ca

6
− 7a0c

2
a

120
x̃2 +O(x̃3), (2.43)

and

fh2 = b0x̃
3 +O(x̃4), (2.44)

where a0 and b0 are constants, as well as a particular solution,

fp =
cb
3
x̃+

caV?
4
x̃2 − c2aV?

24
x̃4 + o(x̃4). (2.45)

The series approximation of the O(µ) correction to the intermediate field as
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x̃→ 0 is thus

Ẽ1 =
a0
x̃2

+
a0ca

6
+
cb
3
x̃+

(
−7a0c

2
a

120
+
caV?

4

)
x̃2 + b0x̃

3 +O(x̃3). (2.46)

We now proceed to match the intermediate field, (2.39) and (2.46), to the

electric field in the space-charge layer, (2.32) and (2.36), according to van

Dyke’s matching procedure,10 in order to obtain a0 and δ. This is detailed in

Appendix 2.A.1. The results of the matching procedure are

a0 = 4 and δ = µε. (2.47)

However, we have not yet found an expression for ca, which can only be de-

termined by matching to higher-order space-charge-field terms.

2.4.3 Higher Order Space-Charge-Field Terms

To determine an expression for ca, where cB ∼ δca is the leading order bulk

concentration, we need to determine the next two terms in the space-charge

layer field, which include the contribution of current. The order of these terms

in the space-charge layer expansion can be determined from the higher order

terms in the correction to the intermediate field (2.46), as x̃ → 0. Equation

(2.46) implies the expansion

E(x) =
1

ε
E0(x) +

δ

ε
E1(x) +

δ
3
2

ε
E2(x) +

δ2

ε
E3(x) + o

(
δ2

ε

)
. (2.48)

Substituting (2.48) into (2.29), the differential equation for E2 is

d2E2

dx2
− 3

2
E

2

0E2 = cbE0, (2.49)
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subject to the boundary conditions

dE2

dx
= 0, and

d2E2

dx2
=

1

2
E2 at x = 0. (2.50)

This differential equation has the same form as (2.34); the solution has the

same form as E1 (2.36), except that ca is replaced by cb. Thus,

E2(x) = cb
12 + 12x+ 6x2 + x3

3(2 + x)2
. (2.51)

This term matches to the O(x̃) term in (2.46), however this does not provide

the value of ca. Another term of the expansion of the space-charge layer field

is needed here to determine ca. For the next term, E3(x), we first extend the

expansion of the midpoint concentration c? by an additional term

c? = δca + δ
3
2 cb + δ2cc + o(δ2), (2.52)

where we have applied µ = δ/ε from (2.47). The equation for the fourth term

in the space-charge layer electric field expansion is

d2E3

dx2
− 3

2
E

2

0E3 =
3

2
E0E

2

1 −
1

2
V?E0 + caE1 + ccE0 − caV?, (2.53)

subject to

dE3

dx
= 0, and

d2E3

dx2
=

1

2
E3 − caV? at x = 0. (2.54)

Equations (2.53) and (2.54) can be solved in closed form, however we are only

interested in the behavior as x→∞. A power series expansion of the solution

to (2.53) and (2.54) as x→∞ yields

E3(x) =
4c2a − 21caV?

60
x2 +

c2a − 9caV?
90

x3 +O(x2). (2.55)
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Next, we match the first four terms in the expansion for the space-charge field

to the first two terms in the intermediate solution. This matching procedure, in

contrast to the last, matches the terms in each expansion that are larger than

O(δ2/ε) in the space-charge field expansion and O(δ/ε) in the intermediate

field expansion according to van Dyke’s rule.10 This procedure, detailed in

Appendix 2.A.1, yields

ca = 2V?. (2.56)

When (2.24) and (2.47) are inserted into (2.56), the bulk concentration is

recovered to leading order as

cB ∼ 2εV, (2.57)

which is indeed small as V = µV? where µ� 1/ε.

2.5 Current-Voltage Relation

From (2.26), (2.28), and (2.57), the leading order current is

J ∼ 4εV 2. (2.58)

The first correction to (2.58) can be found through a higher-order analysis of

the integral constraint (2.16). The details of the analysis are given in Appendix

2.A.2, where it is shown that the constraint yields a logarithmic correction to

the leading order bulk electric field,

EB = V − 2 ln 2εV + o(ln δ). (2.59)

Substituting (2.57) and (2.59) into (2.28) yields the improved current-voltage

relation,

J = 8εV

(
V

2
− ln 2εV

)
+ o(δ ln δ). (2.60)
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From (2.59) and (5.9), for the analysis to be valid the applied voltage must

be sufficiently large such that µ � ln 1/δ. An upper bound on the applied

voltage, µ � δ
1
2/ε, is necessary to calculate the first correction to the space-

charge field (2.46). The current-voltage relation (5.9) is therefore valid over

the range

ln
1

δ
� µ� δ

1
2

ε
, (2.61)

where µ is prescribed by the magnitude of the applied voltage V . The current

(5.9), in dimensional form, reads

Ĵ = 4ε̂µ̂
1

L̂2λ̂s

(
V̂ 2

2
− V̂ k̂BT̂

ê
ln

2êλ̂sV̂

L̂k̂BT̂

)
, (2.62)

where λ̂s is given by (2.2). To leading order, the current exhibits a quadratic

dependence on the applied voltage V̂ and the reciprocal of the film width L̂,

Ĵ ∝ V̂ 2/L̂2λ̂s, in contrast to the Mott & Gurney law for diffusion-free single

carrier injection, where Ĵ ∝ V̂ 2/L̂3.

2.6 Comparison between Asymptotic Analy-

sis and Numerical Solution of the Drift-

Diffusion Equations

Our analysis has furnished asymptotic approximations for the field and car-

rier densities across the OLED. To validate our analysis, we solved the drift-

diffusion equations (2.6), (5.4), and (2.10) numerically using the MATLAB

BVP4C solver. The asymptotic results for the electric field are compared

against the numerical results for ε = 0.001 (figure 2.2), showing good agree-

ment.

The density of holes n+ and electrons n− in the anodic region are easily
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Figure 2.2: Asymptotic solutions for the electric field in the space-charge layer
(dash), the intermediate layer (dash-dot) and in the bulk (dot) are compared to the
numerical solution (open circles) of the electric field in the anodic region (0 ≤ x ≤
1/2) for ε = 0.001 and V = 50. The asymptotic solutions plotted include two terms
of the asymptotic series for the field in the space-charge layer, (2.32) and (2.36), the
leading order intermediate field (2.39) and the bulk field (2.59).

calculated from the asymptotic expressions for the electric field. In figure 2.3,

the hole and electron densities in the anodic region are plotted on a semilog

axis. The solution for the hole density in the space-charge layer includes

the first correction to the density, calculated from (2.36). The asymptotic

expansion for the electron density in the intermediate region decays to zero as

x̃→ 0 (figure 2.3), as expected; in fact, from (2.32), (2.36), and (2.51), it can

be shown that the electron density is zero through O(δ
3
2 ). The discrepancy

between the asymptotic bulk electron and hole densities and the numerics

can be attributed to the fact that only the leading order term for the bulk

concentration (2.57) was calculated. This error is seen in both the electron

and hole density asymptotic expansions.

The steep gradient in hole density in figure 2.3 results in a diffusive current

that must be balanced by a negative electric field to conserve charge in (2.10).
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Figure 2.3: Numerical solutions for the A) hole density (circle) and B) electron
density at ε = 0.001 and V = 50 are compared to asymptotic expressions for the
hole and electron densities in the space-charge layer (dash), intermediate layer (dash-
dot), and bulk (dot). Note, the vertical scales of (A) and (B) are different.

From the definition of the space-charge width (2.8), ε ∝ 1/
√
n̂0. Hence, as

the charge density in the electrode approaches infinity, as in the case of ohmic

contacts without diffusion, ε → 0. A plot of the potential at several values

of ε is useful (figure 2.4) to elucidate the increase in current due to diffusion.

The leading order potential φ is calculated from (2.17) and the electric field

across the space-charge layer (2.32), the intermediate layer (2.39) , and the

bulk (2.59).

As ε → 0, a maximum in potential develops, resulting in “virtual ohmic

contacts”53 near the electrodes. The maximum results from the negative elec-

tric field near the anode that develops to balance diffusion in the charge con-

servation equation (2.10). The virtual contacts are located at the point where

the electric field is zero. Between the virtual contacts near the anode and the

cathodes, the voltage drops linearly. The potential at the virtual contact in-

creases as ε decreases, and is larger than the applied potential at the electrode.

Hence, the voltage drop across the bulk is larger than the naive estimate V̂ /L̂,

resulting in a higher current. This is reflected in the current-voltage relation

(2.62), where Ĵ ∝ 1/λ̂s. If diffusion is neglected this increase in current due

29



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

1

2

3

4

5

6

7

8

9

10

Position, x

Po
te

nt
ia

l, 
Φ

Virtual 
Contact

ε = 0.01: Numerics
ε = 0.001: Numerics

Space-Charge Layer
Bulk

Figure 2.4: The asymptotic solutions (dash) for electric potential are compared
to the numerical solution (symbols). The electric potential at ε = 0.001 has a
maximum (indicated by arrow), or virtual contact, closer to the anode than the
potential at ε = 0.01 (triangle). As ε → 0, the potential increases at the virtual
contact, effectively increasing the voltage drop across the bulk. In this figure, the
applied voltage is V = 10.

to an interior “virtual contact” across the OLED is not accounted for.

The current-voltage relation (5.9) is compared to the numerical results in

figure 2.5 at three values of ε. As ε decreases, the accuracy of the asymptotic

expression increases. The current-voltage relation (5.9) is fundamentally dif-

ferent from the Mott-Gurney law for diffusion-free injection into insulators.

The major difference is the additional characteristic length scale, the space-

charge length λ̂s, that results from including diffusion: instead of Ĵ ∝ V̂ 2/L̂3,

we find that Ĵ ∝ V̂ 2/L̂2λ̂s to leading order. Since the space-charge layer is

much thinner than the film, ε = λ̂s/L̂ � 1, this predicts a large O(L̂/λ̂s) in-

crease in the current that passes through the film for double-carrier injection

with diffusion (figure 2.5). This can be interpreted in terms of the virtual

ohmic contacts as discussed above.

The increase in current is consistent with experimental results for double-

30



0 20 40 60 80 100 120 140 160 180 200

10-1

100

101

102

103

Voltage, V

C
ur

re
nt

, J
 = 0.01: Numericsε
 = 0.005: Numericsε
 = 0.001: Numericsε

Asymptotics

Figure 2.5: The asymptotic expression for current (5.9) (dashed line) are compared
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(triangle). The asymptotics perform well as ε→ 0.

carrier injection into an ITO/MEH-PPV/Ca OLED performed by Parker.68

The energy barrier to injection across the MEH-PPV/Ca interface is approx-

imately 0.1 eV, which indicates a space-charge-limited OLED.37 Specifically,

Parker reports current-voltage curves for OLEDs for varying widths of the

polymer thin film, L̂. When the macroscopic electric field across the film,

V̂ /L̂, is plotted against the current, the curves for the various widths collapse

onto a single current-voltage curve, indicating that the current-voltage relation

should be a function of the ratio V̂ /L̂, as seen in (2.62), where Ĵ ∝ V̂ 2/L̂2,

as opposed to Ĵ ∝ V̂ 2/L̂3 for diffusion-free transport. In terms of the charge

density at the electrode, Ĵ ∝
√
n̂0; the current increases with the reservoir

density, as expected. When the charge density in the electrode is small, the

current is small since it is limited by the electrons and holes available in the

electrode for transfer to the thin-film.
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2.7 The First Effects of Carrier

Recombination

Thus far, we have set the recombination rate constant k equal to zero, thereby

neglecting recombination of carriers. The results reported in section 2.6 for

the electric field, hole and electron densities, and electric potential, can be

viewed as the leading order terms in an asymptotic expansion in terms of the

recombination rate. That is, the leading order local recombination rate is

r(x; ε, k) = kn+(x; ε)n−(x; ε), (2.63)

where n+(x; ε) and n−(x; ε) are the hole and electron profiles calculated for

k = 0. In the space-charge layer adjacent to the anode, the electron density

is zero to O(δ
3
2 ); thus the local recombination rate in the space-charge layer

is zero through kδ
3
2 . In the intermediate region, the leading order recombi-

nation rate is equal to the leading order bulk recombination rate. The total

recombination rate across the OLED is the integral of the local recombination

rate, R =
∫ 1

0
kn+(x)n−(x) dx. Since the space-charge layers are thin, the bulk

recombination rate r ∼ 4kε2V 2, from (2.57), is the dominant contribution to

the total recombination rate. The leading order asymptotic expression for the

total recombination rate,

R ∼ 4kε2V 2, (2.64)

is compared to numerical results in figure 2.6. In this figure, the numerics

solve the full drift-diffusion equations, including recombination, at ε = 0.001

and V = 50, for a variety of recombination rate constants, k. The asymptotic

solution matches well to the numerics through O(1) values of k, indicating that

the simple expression R ∼ 4kε2V 2 may be applied to OLEDs to approximate
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pared to the numerical solution of the drift-diffusion equations (circle) as a function
of recombination rate constant k at V = 50 and ε = 0.001.

the total recombination rate for low to moderate recombination rate constants.

2.8 Conclusions

We have quantified double-carrier drift, diffusion, and recombination in OLEDs

via asymptotic analysis of the drift-diffusion equations. For space-charge-

limited OLEDs, the carrier densities vary rapidly near the electrodes. We

have shown this variation in carrier densities occurs on the length-scale of

the space-charge width λ̂s, which is much smaller than the device thickness.

Thus, the ratio ε = λ̂s/L̂ is a small parameter exploited in our analysis to

yield asymptotic approximations to the current-voltage relation and the elec-

tric field, carrier densities, and electric potential across the OLED. Chiefly,

we found that the leading order current across the OLED is Ĵ ∝ V̂ 2/L̂2λ̂s,

in contrast to diffusion-free single-carrier injection, where Ĵ ∝ V̂ 2/L̂3.2 The

difference is due to the characteristic length scale, the space-charge width λ̂s

that emerges when the drift-diffusion equations are non-dimensionalized. This
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space-charge width is much thinner than the width of the device, so we predict

a higher current than a diffusion-free analysis would, which can be interpreted

as an increased potential drop between virtual ohmic contacts that result from

diffusion. The scaling for the current derived here, Ĵ ∝ V̂ 2/L̂2λ̂s, is consistent

with experimental data for ITO/MEH-PPV/Ca OLEDs by Parker,68 which

shows that the current scales as Ĵ ∝ V̂ 2/L̂2.

We assumed that the charge carrier densities at the electrode were equal,

and the electrons and holes have the same mobility in the organic film. In

addition, we assumed that the charge carrier mobility does not depend upon

the electric field. These assumptions can be relaxed; we plan to do so in future

work. For example, the mobility can be adjusted to account for the electric

field through the functional form µ̂ = µ̂0 exp

√
Ê/Ê0, where µ̂0 and Ê0 are

material parameters.37

Lastly, we analyzed kinetically-limited OLEDs with small recombination

rates (k < 1). We derived an approximate expression for the recombination

rate across the OLED that compares well with numerics for low to moderate

reaction rate constants k. A solution extended to apply at larger k is desirable

to accurately predict the recombination in an OLED beyond the kinetically-

limited regime.

2.A Appendix

2.A.1 Matching

To determine the value of a0 in (2.46), we match the field in the space-charge

layer to that of the intermediate layer in the domain of overlap, x → ∞ and
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x̃→ 0. As x→∞, from (2.32) and (2.36) we have

E0(x) ∼ −2

x
+

4

x2
− 8

x3
+O

(
1

x4

)
, and E1(x) ∼ ca

3
x+

2ca
3

+
4ca
3x2

+O

(
1

x3

)
.

(2.65)

The expansion of the leading order intermediate field (2.39) as x̃→ 0 is

Ẽ0(x̃) ∼ −2

x̃
+
ca
3
x̃− 7c2a

180
x̃3 +O(x̃4), (2.66)

while the next term Ẽ1 has the expansion (2.46). Next, we rewrite the space-

charge layer expansions (2.65) in terms of the intermediate coordinate x̃, collect

terms, and then rewrite the intermediate expansion in terms of space-charge

layer coordinate x. This matching procedure is discussed by van Dyke.10 The

space-charge layer expansions (2.65) in terms of x̃, where x̃ = xδ
1
2 , are

E(x̃) =
δ

1
2

ε

(
−2

x̃
+
ca
3
x̃

)
+
δ

ε

(
4

x̃2
+

2ca
3

)
+ o

(
δ

ε

)
. (2.67)

Recall, δ � 1. The expansion of the intermediate field, (2.46) and (2.66), in

terms of the inner variable is,

Ẽ(x) =
δ

1
2

ε

(
−2

(δ
1
2x)

+
ca
3

(δ
1
2x)

)
+ µ

(
a0

(δ
1
2x)2

+
a0ca

6

)
+ o

(
δ

ε

)
(2.68)

For (2.67) and (2.68) to be equal

a0 = 4, and δ = µε. (2.69)

To determine ca we match the four terms in the space-charge layer expansion

(2.32), (2.36), (2.51), and (2.55) to the two-term intermediate expansion (2.39)

and (2.46). The series approximations for E0 and E1 as x → ∞ and Ẽ0 as

x̃ → 0 are (2.67) and (2.68), respectively. The O(δ
3
2/ε) correction to the
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space-charge field, E2, as x→∞ is

E2(x) ∼ cb
3
x+

2cb
3

+
4cb
3x2

+ o

(
1

x3

)
, (2.70)

while the O(δ2/ε) correction, E3, is approximated as (2.55) as x → ∞. The

first four terms in the expansion for the space-charge layer field (E0, E1, E2,

and E3) are rewritten as functions of the intermediate spatial variable, x̃,

through the relation, x = x̃/δ
1
2 , which gives

E(x̃) =
δ

1
2

ε

(
−2

x̃
+
ca
3
x̃+

c2a − 9caV?
90

x̃3
)

+
δ

ε

(
4

x̃2
+

2ca
3

+
cb
3
x̃+

4c2a − 21caV?
60

x̃2
)

+ o

(
δ

ε

)
(2.71)

The power series expansion of the first two terms representing the intermediate

field as x̃ → 0 are given by (2.66) and (2.46). These terms are rewritten in

terms of the space-charge layer spatial coordinate x as

Ẽ(x) =
δ

1
2

ε

(
−2

(δ
1
2x)

+
ca
3

(δ
1
2x)− 7c2a

180
(δ

1
2x)3

)

+
δ

ε

(
4

(δ
1
2x)2

+
2ca
3

+
cb
3

(δ
1
2x) +

15caV? − 14c2a
60

(δ
1
2x)2

)
+ o

(
δ

ε

)
.(2.72)

After rewriting (2.71) and (2.72), it is clear that the following matching con-

ditions result:

c2a − 9caV?
90

= − 7

180
c2a, and

4c2a − 21caV?
60

=
15caV? − 14c2a

60
. (2.73)

Both of these conditions yield the same expression for ca; namely,

ca = 2V?. (2.74)
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2.A.2 Integral Constraint

An integral constraint (2.25) relates the applied potential to the integral of the

electric field across the thin film. The integral (2.25) is broken up into three

regions, corresponding to the electric field profiles in the space charge layer,

intermediate layer, and in the bulk. Thus,

1

2
µV? =

∫ η
ε

0

E(x) dx+

∫ γδ
1
2

ε

ηδ
1
2

ε

Ẽ(x̃) dx̃+

∫ 1
2

γ

EB(x) dx. (2.75)

In the space charge layer, the lower bound is zero at the anode, while the

upper bound is a regularization variable η normalized by the space-charge

layer width ε, where ε� η � ε/δ
1
2 . In the intermediate layer, the bounds are

the variables η and γ normalized by the intermediate layer width ε/δ
1
2 , where

ε/δ
1
2 � γ � 1. The purpose of η and γ are to avoid diverging contributions

from the space-charge layer and intermediate integrals as x→∞, x̃→ 0, and

x̃ → ∞ respectively. The final result cannot depend on η or γ. The integral

of the space-charge field is

∫ η
ε

0

E(x) dx ∼
∫ η

ε

0

E0(x) dx+

∫ η
ε

0

δE1(x) dx+O

(
δ

3
2η2

ε2

)
, (2.76)

where the error originates from the integral of the next term, δ
3
2E2(x), across

the space charge layer. The integral of the leading order field (2.32) is

∫ η
ε

0

E0(x) dx =

∫ η
ε

0

−2

x+ 2
dx ∼ −2 ln

η

ε
+ 2 ln 2 +O

(
ε

η

)
, (2.77)

while the integral of the first correction (2.36) is

∫ η
ε

0

δE1(x) dx =

∫ η
ε

0

δca
12 + 12x+ 6x2 + x3

3(2 + x)2
dx ∼ ca

6

δη2

ε2
+O

(
δη

ε

)
. (2.78)
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In the intermediate layer, the integral of the leading order field (2.39) is

∫ γδ
1
2

ε

ηδ
1
2

ε

Ẽ0(x̃) dx̃ ∼
∫ ∞

ηδ
1
2

ε

−2
√
ca

sinh
√
cax̃

dx̃ ∼ ln δ+2 ln
η

ε
+ln ca−2 ln 2−ca

6

δη2

ε2
+O

(
δ2η4

ε4

)
.

(2.79)

Finally, the integral of the bulk field, whose lower limit γ is replaced by 0 since

the bulk field is a constant to leading order, is

∫ 1
2

0

EB(x) dx ∼ 1

2

δ

ε
V? +O

(
δ

ε

)
. (2.80)

The contributions (2.77)-(2.80) are summed, resulting in

1

2
µV? + ln caδ + ... (2.81)

Thus, (2.75) is asymptotic to (2.81) to O(µ); however, there is an O(ln δ)

mismatch. Therefore, the bulk field is adjusted to EB = µV? − 2 ln δca. Note,

this adjustment of EB does not affect any of the preceding analysis.

The new expression for the bulk electric field, after substituting for µV?, δ,

and ca according to (2.24), (2.47), and (2.56), respectively, is thus

EB = V − 2 ln 2εV + o(ln δ). (2.82)
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3. Moving Ion Fronts in Mixed

Ionic-Electronic Conducting

Polymer Films

3.1 Introduction

Mixed ionic-electronic conductors (MIECs) are materials that conduct both

electronic (electrons or holes) and ionic charge carriers.69 Certain organic

semiconductors are MIECs; the ability to transport ionic and electronic charge

carriers opens up organic electronics to a wide range of promising applications

including gas sensors,70,71 light-emitting electrochemical cells,18,19 supercon-

ductors,16,17 and transistors.15,72

MIECs based on organic semiconductors are used in biosensors to detect

the presence of ions in biological tissue.13 An example biosensor device is the

Organic Electrochemical Transistor73 (OECT), which consists of a gate elec-

trode immersed in an electrolyte, in contact with an organic semiconductor film

sandwiched between a grounded source electrode and a drain electrode where

the voltage is applied.74 The applied voltage drives the injection of ions from

the electrolyte into the polymer film. The ions displace electronic charge carri-

ers that evacuate the thin film across the source electrode, resulting in the con-
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version of an ionic current to an electrical signal. For example, Bernards et al.75

employed an OECT to measure glucose concentrations in the blood stream,

while Tarabella et al.76 designed an OECT to monitor micelle formation in an

electrolyte. The conjugated polymer poly(3,4-ethylenedioxythiophene) doped

with negatively charged poly(styrenesulfonate) (PEDOT:PSS) is an organic

biocompatible MIEC commonly used in biosensors due to its high ion and

hole mobilities, flexibility, and stability.77

The electrical mobility is defined as the ratio of the drift velocity of a

charged species to the magnitude of the applied electric field.78 Accurate

prediction and measurement of the mobility of ionic species in an organic MIEC

is key to characterizing ion transport. However, the mobility is challenging to

determine because standard techniques to measure charge carrier mobility,

such as time of flight measurements,79 are difficult to implement in organic

MIECs.1 Stavrinidou et al.1 designed a device to measure ion mobility in

organic MIECs, which is depicted in figure 3.1. Their device is comprised of a

gold cathode adjacent to a PEDOT:PSS polymer thin film in contact with an

electrolyte. A reference electrode in the electrolyte completes the circuit. The

= 0

PEDOT:PSSElectrolyte

Glass Substrate

Gold
Cathode

SU-8

x

y
z

�

 = -v�

Figure 3.1: Schematic of the planar organic semiconductor device designed
by Stavrinidou et al.1 The device consists of a 32 mm × 16 mm × 400 nm
(x×y×z) PEDOT:PSS film in contact with a gold cathode and an electrolyte
reservoir, sandwiched between an SU-8 ion barrier layer and a glass substrate.
The potential is φ. The magnitude of the applied voltage, v, is around 2 volts.
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polymer thin film is enriched in holes compensated by the fixed negative charge

on the functional groups of PSS. When a constant voltage is applied across

the electrodes the cations displace the positively charged holes, which exit at

the cathode resulting in an electric signal indicating the presence of invading

ions. The PEDOT:PSS is electrochromic, so the film changes color based on

the density of electrons and holes. As the holes evacuate, transmittance of

light through the device increases. The measured change in transmittance ∆T

is the change in transmittance relative to the transmittance in the absence of

an applied field. Stavrinidou et al.1 measured the transmittance along the

film with time in order to determine the profile of the invading cations. They

define the cation drift length δ as the location where ∆T is one half of its

maximum value. Stavrinidou et al.1 find that the drift length increases as the

square-root of time, δ ∼ t1/2, for a range of electrolytes. Thus, it is inferred

that the moving cation front also advances as t1/2.

In an earlier paper, Stavrinidou et al.20 analyzed the invasion of cations

via a circuit model comprised of two resistors in series. The holes are far more

mobile than the ions, hence the voltage drops primarily across the cation-rich

region, or resistor. They found that the drift length δ =
√

2µpvt where µp is

the cation mobility, and v is the applied voltage. Stavrinidou et al.1 combined

this result with the measurement of the change in drift length with time to

determine the cation mobility, µp, assumed to be a constant (i.e. no field

dependence). They also solved the governing differential equations for charge

carrier transport numerically to confirm the δ =
√

2µpvt relation.

The square-root-of-time front scaling is intriguing for several reasons. First,

this scaling is typically associated with a diffusive process, yet in this case

electro-migration is expected to dominate ion transport due to the large ap-

plied voltage. We define “large” as an applied voltage much greater than the
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thermal voltage, kBT/q ≈ 26 mV, where kB is the Boltzmann constant, T is

temperature, and q is the charge of a proton. However, diffusion presumably

plays a role as the measured and calculated cation density profiles are not

sharp fronts, as would be expected if ion transport were solely due to electro-

migration. Moreover, the spatial cation profiles noticeably broaden in time

due to diffusion. What is the relative importance of diffusion versus migra-

tion? Additionally, the invading cations eventually reach the cathode, so the

δ ∼ t1/2 scaling cannot persist indefinitely. When does the scaling break down?

Here, we answer these questions by constructing and analyzing a mathematical

model for the front invasion dynamics.

Moving front dynamics of charged species also appear during redox reac-

tions and electrical switching in conjugated polymer thin films,80–83 and in

electrophoretic separations in aqueous media.84–87 The advancement of the

moving front can be linear in time t81,85,86 or proportional to t1/280,82,83,87 de-

pending on the material properties and device geometry. Mani et al.88 and

Zangle et al.89 demonstrated that ion concentration polarization fronts at

a microchannel-nanochannel junction can propagate as enrichment and de-

pletion shocks. Under a constant current, these shocks advance linearly in

time; for a fixed potential difference, the shocks advance as t1/2 and the shock

thickness increases as t1/2.90 Mani and Bazant91 demonstrated that a variety

of scalings for the shock advancement and thickness can be obtained in mi-

crochannels with a power-law growth in width; moreover, the evolution of the

shock is self-similar. It will be shown that the present problem shares certain

similarities to the propagation of concentration polarization under constant

voltage.

In the following section, we present the governing drift-diffusion equations

for ion invasion across an MIEC film. Next, we simplify the drift-diffusion
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equations in the experimentally relevant limits of large applied voltage, a high

hole mobility to cation mobility ratio, and local electroneutrality. We apply a

similarity transformation to the simplified drift-diffusion equations governing

the cation invasion and hole displacement. The results section includes com-

parisons between the similarity solutions and numerical solution of the full

drift-diffusion equations. We then compare our results to the experiments of

Stavrinidou et al.1

3.2 Governing Equations

The invasion of cations and displacement of holes in a planar MIEC device

is depicted in figure 3.2. Figure 3.2(a) shows the device at time t = 0 when

the electric field is applied. Initially, the polymer film is enriched in holes

compensated by fixed anions supplied by the polymer backbone. We assume

that the initial hole and fixed anion densities are uniform. In figure 3.2(b),

at a later time t > 0, cations are injected at the electrolyte-polymer interface

and invade the film, displacing holes that evacuate across the cathode. The

electrolyte is assumed to be a well-mixed reservoir. The cathode accepts holes

but is a blocking electrode for the ions; similarly, holes do not enter the elec-

trolyte reservoir. To model ionic and electronic charge transport in this device,

Cathode
(-)Electrolyte

t = 0

Cathode
(-)Electrolyte

t > 0 Cation Fronta. b.
Hole

Electron

Cation

Anion

Fixed
Anion

δ(t)

Figure 3.2: Cation invasion schematic: a) Initially, the thin film includes uni-
formly distributed fixed anions and holes. b) After a potential is applied,
cations (and some anions) enter the film, displacing holes. The invasion length
is δ(t).

we turn to the drift-diffusion equations, which consist of an equation for car-
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rier flux that accounts for both diffusion and migration of charged species, a

charge conservation equation, and Poisson’s equation that relates the electric

field to the local charge density. Note, the drift-diffusion equations are math-

ematically equivalent to the Poisson-Nernst-Planck equations: the former is

typically used as a moniker for electronic charge transport, the later for ionic

transport. Here, we refer to the governing equations for ionic and electronic

transport as the drift-diffusion equations uniformly. Given the device dimen-

sions, 32 mm × 16 mm × 400 nm (x×y×z),1 we assume that the ion and hole

transport is predominately one-dimensional along the x-direction between the

electrolyte and the electrode.

The flux of a charged species is equal to the sum of the fluxes due to

diffusion and migration. The cation flux jp is

jp = −µp
kBT

q

∂p

∂x
+ µppe, (3.1)

where p is the cation density, e = −∂φ/∂x is the electric field, φ is the electric

potential, and x is the position in the direction of the width of the thin film.

Similarly, the flux of holes jh is

jh = −µh
kBT

q

∂h

∂x
+ µhhe, (3.2)

where h is the hole density and µh is the hole mobility. The flux of mobile

anions from the reservoir is

jn = −µn
kBT

q

∂n

∂x
− µnne, (3.3)

where n is the mobile anion density and µn is the anion mobility. Poisson’s
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equation relates the variation in electric field to the local space charge density,

∂e

∂x
=
q

ε
(p+ h− n− a), (3.4)

where a is the density of the uniform, fixed anions on the polymer backbone,

and ε is the permittivity of the film. The final set of equations are charge

conservation equations,

∂p

∂t
= −∂jp

∂x
,
∂h

∂t
= −∂jh

∂x
, and

∂n

∂t
= −∂jn

∂x
, (3.5)

where t is time.

At the electrolyte-polymer film interface, we assume that the reservoir con-

centration of ions is equal to the concentration of fixed anions on the polymer

backbone. At the electrode, we assume that there are no faradaic reactions

between the ions and the electrode, regardless of the applied voltage. This

assumption is dependent on the ion and electrode material selected. The cor-

responding boundary condition is a no-flux condition for the ions. Initially,

the cation density in the film is zero. The boundary and initial conditions for

cations are expressed mathematically as

p(0, t) = a,
kBT

q

∂p(l, t)

∂x
= p(l, t)e(l, t), and p(x, 0) = 0, (3.6)

where l is the width of the polymer film. Similarly, the boundary and initial

conditions for anions are

n(0, t) = a,
kBT

q

∂n(l, t)

∂x
= −n(l, t)e(l, t), and n(x, 0) = 0. (3.7)

The boundary conditions for the holes include a no-flux condition at the
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electrolyte-polymer interface, because the electrolyte does not conduct holes,

and a reservoir condition at the electrode. Initially the hole density is assumed

to be equal to the fixed anion density. These conditions are

kBT

q

∂h(0, t)

∂x
= h(0, t)e(0, t), h(l, t) = a, and h(x, 0) = a. (3.8)

The boundary conditions for the electric potential are

φ(0, t) = 0, and φ(l, t) = −v, (3.9)

corresponding to a fixed potential difference v across the film.

We now non-dimensionalize the governing equations by normalizing p, n,

and h by a, the uniform negative backbone density; x by l, the width of the

thin film; and e by v/l, the applied voltage divided by the width of the film.

Time t is normalized by the time for cations to migrate across the film at a

given applied voltage, t ∼ l2/µpv. There is evidence that the carrier mobility is

field-dependent in disordered polymers,92,93 however for simplicity we assume

that all carrier mobilities are constant.

The dimensionless charge conservation equations for cations and anions

(3.5), when the equations for flux (3.1)-(3.3) are inserted, are

∂p̂

∂t̂
=

1

v̂

∂2p̂

∂x̂2
− ∂

∂x̂
(p̂ê), and

∂n̂

∂t̂
=

1

v̂

∂2n̂

∂x̂2
+

∂

∂x̂
(n̂ê), (3.10)

where the caret superscript indicates a dimensionless variable or parameter.

The parameter v̂ is the dimensionless group v̂ = vq/kBT , where kBT/q is the

thermal voltage. The dimensionless charge conservation equation for holes is

∂ĥ

∂t̂
=
m̂

v̂

∂2ĥ

∂x̂2
− m̂ ∂

∂x̂
(ĥê), (3.11)

46



where m̂ = µh/µp is the ratio of the hole mobility to the cation mobility. The

dimensionless Poisson equation is

ε̂2v̂
∂ê

∂x̂
=

1

2
(p̂+ ĥ− n̂− 1), (3.12)

where ε̂ is the ratio of the Debye length λd =
√
εkBT/2q2a to the width of

the film, defined as ε̂ = λd/l. The Debye length characterizes the width of the

screening layer adjacent to a charged surface, such as the polymer-electrolyte

or polymer-cathode interfaces. In the device designed by Stavrinidou et al.,1

ε̂ ≈ 10−9 based on a PEDOT:PSS dielectric constant of εr = 3.5, l = 32 mm,

T = 300 K and a = 3× 1020 cm−3.1 In the numerical solution to the full drift-

diffusion equations, the dimensionless Debye length is taken to be ε̂ = 0.001.

This value of ε̂ was selected because the experimental value is numerically

intractable with the solvers used here. However, note that the larger value of

ε̂ should not affect the dynamics as the majority of the film is electroneutral.

The dimensionless boundary and initial conditions for cations are

p̂(0, t̂) = 1,
∂p̂(1, t̂)

∂x̂
= v̂p̂(1, t̂)ê(1, t̂) and p̂(x̂, 0) = 0. (3.13)

Similarly, the dimensionless boundary and initial conditions for anions are

n̂(0, t̂) = 1,
∂n̂(1, t̂)

∂x̂
= −v̂n̂(1, t̂)ê(1, t̂) and n̂(x̂, 0) = 0. (3.14)

The dimensionless boundary and initial conditions for holes are

∂ĥ(0, t̂)

∂x̂
= v̂ĥ(0, t̂)ê(0, t̂), ĥ(1, t̂) = 1 and ĥ(x̂, 0) = 1. (3.15)
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Finally, the dimensionless boundary conditions for the electric potential are

φ̂(0, t̂) = 0 and φ̂(1, t̂) = −1. (3.16)

The dimensionless equations (3.10)- (3.12) and boundary conditions (3.13)-

(3.16) are the basis for our analysis of moving front dynamics in a planar

MIEC device. In the following section, we consider a simplified description of

front dynamics at large voltages, which is followed by numerical solution of

the full equations in the results section.

3.3 Large Voltage Analysis: Similarity Solu-

tion

The governing equations (3.10)-(3.16) presented above can be simplified by

considering the experimentally relevant case of a large voltage, a high hole-

to-cation mobility ratio, and local electroneutrality. At large voltages v̂ � 1

the flux of anions from the electrolyte into the film can be neglected, since the

strongly biased voltage prevents their entry. The smallness of the Debye length

ε̂ ≈ 10−9 in Stavrinidou et al.’s1 experiments indicates that the charge density

is confined to extremely thin regions immediately adjacent to the electrolyte-

and electrode- polymer film interfaces, while the bulk of the film is electroneu-

tral. When we assume electroneutrality and neglect the presence of anions in

the film, Poisson’s equation (3.12) is replaced by the algebraic constraint

p̂+ ĥ = 1. (3.17)

Lastly, a mobility ratio of m̂ ∼ 100 is expected.20 As the mobility ratio in-

creases to infinity, the potential drop is confined to the cation-rich region be-
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hind the moving front, and the electric field in the hole-rich region approaches

zero. Effectively, the resistance of the hole region is negligible in comparison

to that of the cation region. Henceforth, we assume the limit m̂→∞.

Under the above assumptions, the drift-diffusion equations (3.10)-(3.12)

can be transformed from partial differential equations to ordinary differential

equations via a similarity transformation. The similarity transformation as-

serts that the relevant length scale in the problem is the (unknown a prioi)

invasion length δ, rather than the film width l. This is reasonable at the above

conditions (v̂ �1, m̂ � 1) since the voltage is effectively dropped across δ

rather than l.

An expression for δ can be found via the following argument. Assuming

that electro-migration is the dominant transport mechanism for ions, the ve-

locity of the front, dδ/dt ∼ µpe. The field exists primarily in the cation-rich

region, hence e ∼ v/δ, giving dδ/dt ∼ µpv/δ, and thus δ ∼ √µpvt. For ease of

algebra, we multiply the right-hand-side by
√

2 and define

δ(t) =
√

2µpvt. (3.18)

The invasion length δ is normalized by the film width l; and time by l2/µpv,

the cation migration timescale. The dimensionless invasion length is

δ̂(t̂) =
√

2t̂. (3.19)

This result is consistent with the invasion length given by the circuit model of

Stavrinidou et al.20 A similarity variable η̂ is defined as

η̂ =
x̂√
2t̂
. (3.20)
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To transform the governing equations, we first redefine the dependent variables

in terms of the similarity variable, η̂. The cation density is p̂(x̂, t̂) = P̂ (η̂), and

the hole density is ĥ(x̂, t̂) = Ĥ(η̂). The electric field scales as the potential,

φ̂(x̂, t̂), divided by δ̂, since the bulk of the potential drop is confined to the

cation-rich region of width δ̂. The electric field scaling is therefore ê(x̂, t̂) =

Ê(η̂)/δ̂.

The cation density at the electrode (x̂ = 1) satisfies a no-flux condition

(3.13). It is expected that the similarity solution should be valid at early

times when the moving front is far from the electrode and unaffected by its

presence; that is, the front effectively advances into a semi-infinite half-space.

Hence, this no-flux condition is replaced by the requirement that the cation

density is equal to zero far ahead of the front, p̂(∞, t̂) = 0. This new boundary

condition and the initial condition p̂(x̂, 0)=0 collapse into a single boundary

condition as η̂ →∞. The two boundary conditions for the cation density are

thus

P̂ (0) = 1 and P̂ (∞)→ 0. (3.21)

Assuming that the potential drop occurs in the cation-rich region and that

the potential is constant in the hole-rich region, the electric field beyond the

moving front is zero. In terms of the similarity variable, then

Ê(∞)→ 0. (3.22)

The transformed cation conservation equation (3.10) is thus

η̂
dP̂

dη̂
= −1

v̂

d2P̂

dη̂2
+

d

dη̂
(P̂ Ê). (3.23)
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The tranformed hole equation (3.11) is

η̂

m̂

dĤ

dη̂
= −1

v̂

d2Ĥ

dη̂2
+

d

dη̂
(ĤÊ). (3.24)

The similarity solution is only valid when the mobility ratio m̂→∞, indicating

that there is no potential drop across the hole-rich region. At this limit, the

left-hand side of (3.24) is negligible in comparison to the right-hand side. Thus,

the hole density satisfies the equation

0 = −1

v̂

d2Ĥ

dη̂2
+

d

dη̂
(ĤÊ). (3.25)

Equation (3.25) implies that the holes evolve in a quasi-steady manner. Since

they are infinitely more mobile than the cations, they respond instantaneously

to the slow cation front dynamics. The electroneutrality equation (3.17), Ĥ =

1− P̂ , is inserted into (3.25) to eliminate Ĥ, yielding after rearrangement

− 1

v̂

d2P̂

dη̂2
+

d

dη̂
(P̂ Ê) =

dÊ

dη̂
. (3.26)

The left-hand side of (3.26) is equal to the right-hand side of (3.23). Combining

these two equations yields

η̂
dP̂

dη̂
=
dÊ

dη̂
. (3.27)

Equations (3.23) and (3.27) and the boundary conditions (3.21) and (3.22)

are solved simultaneously to give the cation density and electric field profiles.

These equations are ordinary differential equations and thereby easier to solve

numerically than the full partial differential drift-diffusion equations. More-

over, the similarity transformation yields considerable insight into the physics

of the cation invasion process, revealing the self-similarity of the moving front

dynamics.
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3.4 Results

We solve the self-similar differential equations (3.23) and (3.27) with Matlab’s

bvp4c function, a collocation code for boundary value problems.94 The semi-

infinite domain η = [0,∞) is truncated at a finite value ηf ; the similarity

equations are solved at progressively larger values of ηf to ensure convergence.

Here, we present comparisons between the similarity solution and the solution

to the full drift-diffusion equations (3.10)-(3.16), which are solved numerically

by Matlab’s pdepe function. The parameters used in comparing the similarity

solution to the numerical solution of the full drift-diffusion equations and the

experiments are summarized in table 4.1.

Full Drift-Diffusion Similarity Solution Experiments
Debye Length, ε̂ 10−3 0 2× 10−9

Applied Voltage,v̂ 40 40 and 76.92 76.92
Mobility Ratio, m̂ 102 ∞ 102

Table 3.1: Summary of the parameters used in the solution to the full drift-
diffusion equations and the similarity solution in comparison to the dimen-
sionless experimental parameters. The dimensional experimental parameters
are as follows: λd = 2 × 10−11 m, v = 2 V, and µp = 0.144 mm2/Vs. The
similarity solution is compared to both the full drift-diffusion equations and
the experiments, so two applied voltages are listed.

Figure 3.3 compares the evolution of the ionic charge density and electric

field across the film from the similarity solution and full drift-diffusion equa-

tions. The dimensionless voltage is v̂ = 40, which corresponds to a voltage

of 1.02 volts, an experimentally relevant voltage. In the solution to the full

drift-diffusion equations, ε̂ = 0.001. Admittedly, this value of ε̂ is much larger

than in experiments, where ε̂ ≈ 10−9; at smaller values of ε̂ sharp gradients in

the ion profiles develop in the screening layers at the electrolyte-film and film-

electrode interfaces that render the solution to the full drift-diffusion equations

numerically intractable. This underscores the utility of the similarity solution,
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Figure 3.3: Comparison of the similarity solution (line) to the solution of the
full drift-diffusion equations (circles) for a) the electric field ê and b) the ionic
charge density p̂ − n̂. Note that in the similarity solution n̂ = 0, so that the
charge density is equal to the cation density p̂. The dimensionless applied
voltage is v̂ = 40 which corresponds to a dimensional voltage of 1.02 volts,
the mobility ratio m̂ = 100, and the dimensionless Debye length is ε̂ = 0.001.
The first curve from left to right is at t̂ = 0.02, and each successive curve
corresponds to a time increment of 0.04. After the front reaches the wall in
(b), the charge accumulates in a Debye layer, leading to a spike in the electric
field in (a).

which is much easier to solve numerically yet evidently compares very well

with the full drift-diffusion equations. In order to obtain converged solutions

to the full drift at smaller values of ε̂, the pdepe solver could be replaced with

more powerful numerical schemes. Another approach would be to combine

numerical solution with singular perturbation analysis of the rapid variation

in concentration and electric potential within the Debye (or boundary) layers.

We selected the pdepe solver in Matlab because it is simple to implement. The

fact that the solution of the full drift-diffusion equations agrees well with the

similarity solution validates our comparison of the similarity solution to the

experimental results.

At early times the electric field is extremely large (figure 3.3(a)), because

the potential drop is confined to the narrow region behind the moving front

that has barely infiltrated the film. As the front progresses, the electric field
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weakens as the potential drops over a widening cation-rich region. This evo-

lution is reflected in the ionic charge density profile, given in figure 3.3(b).

Specifically, the cation front is sharp at early times, indicating the dominance

of electro-migration under the initially strong field. The front then broadens

diffusively as it is driven to the electrode by the weakening field. The most

significant deviation between the similarity solution and the full drift-diffusion

equations occurs at the electrolyte-film interface (x = 0), where the full drift-

diffusion equations capture charge accumulation in the thin Debye layer (figure

3.3 (b)) and a spike in the electric field (figure 3.3 (a)). Recall, the similar-

ity solution assumes electroneutrality and hence neglects the presence of the

Debye layer. Nevertheless, the overall agreement between the similarity solu-

tion and the full numerical solution is excellent, which lends confidence to the

assertion that invasion dynamics are self-similar.

To quantify the persistence of the t1/2 scaling of the front location, we cal-

culated the moving front location at each time-step, defined as the x-position

where the ionic charge density p̂ − n̂ = 0.5. This plot is shown in figure 3.4.

At large voltages, the similarity solution prediction of the front location is ac-

curate up until the point where the moving front reaches the electrode. This

a surprising result given that the similarity solution is formally valid at early

times, when the front is far from the electrode, δ � l (in dimensionless terms

x̂ � 1). To explain this, recall that the position of the front advances under

the applied voltage as δ ∼ √µpvt. The thickness ∆ of the front broadens

diffusively as ∆ ∼ (tµpkBT/q)
1/2, independent of the voltage. The ratio of the

front thickness to front location is then ∆/δ ∼ (kBT/vq)
1/2, which decreases

with increasing voltage as v−1/2. Hence, at low voltages the diffusive thick-

ening of the front causes the ions at the leading edge of the front to reach

the electrode well before the bulk of the front, as seen in the inset of figure
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Figure 3.4: The time dependence of the location of the moving front (the
position where p̂− n̂ = 0.5) from the similarity solution (3.19) for the dimen-
sionless moving front location (solid line) is compared to the solution of the full
drift-diffusion equations (circles) at various voltages, v̂ = 10, 20, 30, 40. Time
t̂ is dependent upon voltage; here t̂ is scaled by v̂ = 10 Inset: the ionic charge
density profile at v̂ = 10 after the front reaches the electrode (t̂ = 0.41). The
full drift-diffusion equations capture the formation of a Debye layer, while the
similarity solution does not.

3.4. Those leading ions then form a Debye layer at the electrode which causes

the disparity between the front location predicted by the similarity solution

and full solution. At larger voltages the front does not have the opportunity

to thicken before it reaches the electrode. Consequently, the bulk of the ions

reach the electrode very shortly after the ions at the leading edge, thereby re-

ducing the disparity between the full drift-diffusion solution and the similarity

solution.

Stavrinidou et al.1 measured the change in transmittance of an electrochro-

matic PEDOT:PSS polymer film during potassium invasion. Assuming that

the transmittance is equal to the normalized cation density, in figure 3.5 we

digitized the transmittance data given in figure 1(c) of Stavrinidou et al.1 and

compared it to the similarity solution. The applied voltage in the experiment is
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2 volts, or v̂ = 76.92, and the potassium mobility is µp = 0.14±0.02 mm2/V s,

as calculated by Stavrinidou et al.1 In the inset, figure 3.5c, we fit the square

of the front location with (3.19) and find that the data do not pass through the

origin, indicating that there is a time lag between the time that the voltage

is applied and the invasion of the cations. To account for this, we modi-

fied (3.19) to include a time lag term tlag. We fit the modified expression,

δ2 = 2µpv(t− tlag), to the data and estimated the time lag to be tlag = 2.73 s.

The value of tlag does not affect the similarity solution, aside from a shift in

the cation density profiles with respect to time.
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Figure 3.5: a) Comparison between transmittance data by Stavrinidou et al.1

(symbols joined by line) and the similarity solution for the cation density (line)
at an applied voltage of 2 V (v = 76.92), µp = 0.14 mm2/Vs, and a time lag
of tlag = 2.73 s. The transmittance profiles are shown at 5 second increments.
b.) The x-position of the experimental data (red dots) is transformed to
the similarity variable η. The experimental data collapse to a single curve,
indicating self-similarity, with the exception of the data from the first time
step (red open circle). c.) The square of the front location where p = 0.5
(circles) is plotted against time and fitted (solid line) to determine the mobility
µp and the time lag tlag.

These experiments are conducted at an early time, when the moving front

is between 0 and 8 mm from the electrolyte in a 32 mm thick film. In fig-

ure 3.5(a), we plot our similarity solution for the cation density against the

transmittance data and find that while the expression for δ (3.18) accurately
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predicts the location of the moving front, the similarity solution for the cation

density profile is much steeper than that of the experiments. This begs the

question: do the experiments exhibit self-similar front dynamics? To answer

this, in figure 3.5(b) we transformed the experimental transmittance data from

∆T (x, t) to ∆̂T (η̂) by dividing the x-position by δ, given by (3.18). After the

transformation, the transmittance data collapse to a single curve, with the

exception of the transmittance at the first time step, indicating that the inva-

sion process is self-similar, and that the front scaling is in fact given by (3.18).

However, qualitative differences in the spatial profiles are seen in figure 3.5,

suggesting that additional physical effects are at play in the experiments.

We investigate this discrepancy further by relaxing several assumptions.

First, we assumed that the cation and hole mobilities are constant, despite the

large variations in the electric field (figure 3.3(a)). To relax this assumption,

we endow the mobility with a simple power-law dependence on the electric

field, µp = µp0(e/e0)
s, where s is the power law index, e0 = kBT/ql, and µp0

is the mobility at e0. We look for similarity solutions of the drift-diffusion

equations with the generalized similarity variable η̂ = (x̂ + B̂t̂α)/Ât̂β, where

B̂t̂α (B is a constant) controls the advancement of the front and Ât̂β (A is a

constant) dictates the thickening of the front.91 Our hope is to find similarity

solutions with α = 1/2 and β > 1/2 to capture the broader (or thicker)

density profile seen in the experiments as compared to our existing similarity

solution with a field-independent mobility (s = 0). It can be shown that

α = β = 1/(s + 2) is required for a similarity solution to exist, revealing

that the drift-diffusion equations exhibit a family of self-similar solutions for

a power-law dependent mobility. Interestingly, when s = −1 (the mobility

increases with decreasing electric field) the front advances and thickens linearly

in time. However, the experiments clearly show that the front advances as t1/2,
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consistent with α = 1/2. The slope of the experimental transmittance data

points within 0.2η of the midpoint in figure 3.5 is a constant, calculated to

be approximately −1. Thus, the slope of the front dp/dx scales as t−1/2.

The thickness of the moving front is inversely proportional to the slope, so it

follows that the thickness scales with the t1/2 and β = 1/2. This implies that

the simple power-law dependent mobility cannot yield a similarity solution

with a front that advances as t1/2 while thickening at a greater rate.

A second issue may be voltage losses in the electrolyte and at the electrolyte-

film and film-electrode interfaces, leading to a reduced driving voltage across

the film. To test this hypothesis, we fit the similarity solution to the experi-

mental data1 with two adjustable parameters: the applied voltage v and cation

mobility µp. The best fit between the similarity solution and the experimental

data requires an order of magnitude decrease in the applied voltage and an

order of magnitude increase in the cation mobility from the reported values,1

which does not seem plausible.

Another effect involving the electric potential is the possibility of a Don-

nan potential difference between the electrolyte and the negatively charged

polymer film.95 The existence of such a potential difference would cause an

increase in cation concentration at the electrolyte-polymer interface relative to

its value in the electrolyte reservoir. We have examined whether such an in-

crease in ion concentration alters the shape of the moving ion front as follows.

The ratio of the cation concentration at the interface to the hole concentration

was varied from 1:1 to 1.5:1 and 0.5:1 in our numerical solution, by adjusting

the ion boundary conditions (3.13-3.14). Deviations from the 1:1 ratio hith-

erto assumed result in a change in the moving front location, but there is no

significant change in the slope of the cation density profiles. It is therefore un-

likely that a local increase in ion concentration at the electrolyte-polymer film
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interface due to a Donnan potential difference is responsible for the mismatch

in front shape between theory and experiment.

Third, our assumption of one-dimensional ion transport neglects the pos-

sible existence of screening layers due to surface charges at the interfaces of

the film with the glass substrate and the Su-8 ion barrier. These layers could

provide another path for (surface) conductivity of the cation front. A more so-

phisticated analysis could be performed by depth-averaging the drift-diffusion

equations to arrive at effective one-dimensional transport equations that ac-

count for these screening layers.88 Another reason for the discrepancy may be

a delay before the applied field is switched on, allowing for cations and anions

to diffuse into the film and altering the initial condition. We tested this idea

and found that while the front location increases, the shape of the cation den-

sity profile does not change significantly. Finally, there is the possibility that

the the change in transmittance is not a precise proxy for the cation density

profile. We hope that the present work will inspire additional experimental

and modeling efforts. For example, an alternative method for measuring the

cation density across the film would provide verification of the transmittance

as an accurate measure of cation density. Experiments reporting invasion dy-

namics across the entire film as opposed to the initial stages would enable a

verification of the persistence of the t1/2 scaling provided by our analysis.

3.5 Conclusion

Motivated by the recent experiments of Stavrinidou et al.,1 we have analyzed

the moving front dynamics of cations invading a MIEC polymer film. Our

work demonstrates that the invasion process is self-similar at the large driv-

ing voltages used in the experiments, and confirms that the front location

advances with a square-root-of-time scaling, t1/2. The thickness of the cation
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front also grows as t1/2. Remarkably, at larges voltages, v̂ � 1, the similarity

solution is in excellent agreement with the numerical solution of the full drift-

diffusion equations until the point that the front reaches the end of the film.

The agreement between solutions of the full drift-diffusion equations and the

similarity solution validates the reliability of the numerical methods. We com-

pared our similarity solution to the above-mentioned experiments: although

both display self-similar evolution of the ion front with a t1/2 advancement,

the experimental ion density profile (which we assumed to be equal to the re-

ported transmittance data) is considerably broader than we predict. We hope

the discrepancy between theory and experiment will motivate further work on

this subject.

The present problem is similar to that of ion concentration polarization

shocks in microchannel-nanochannel systems under constant voltage.90 A

cation-selective nanochannel acts a junction between two microchannels. The

application of a fixed voltage results in a depleted ion concentration polar-

ization zone in one microchannel and an enriched zone in the other. Under

certain conditions the zones can propagate as shocks; the depletion shock ad-

vances with a t1/2 scaling, and its thickness grows as t1/2. This depletion zone

is equivalent to the cation front in the present problem: namely, both are low-

conductivity regions displacing a region of higher conductivity. In our problem,

the high-conductivity region is the hole-rich region of the film, whereas in the

concentration polarization problem it is the electroneutral electrolyte ahead of

the depletion shock. Importantly, in both problems the majority of the poten-

tial drop occurs across the low-conductivity region behind the advancing front.

At constant current, a concentration polarization depletion shock propagates

linearly in time;88,90 hence, it is expected that cation front invasion would also

advance linearly with t if the device of Stavrinidou et al.1 were operated at

60



constant current conditions. This mode of operation may also provide another

method to measure the ion mobility in MIEC films.

Another analogy to cation invasion is capillary filling, in which a viscous

liquid is drawn into a capillary by a pressure difference, displacing the air in

the tube. The location of the advancing liquid front (or meniscus) again in-

creases with a square-root-of-time scaling, a result referred to as Washburn’s

law.96 Once more, this is a situation where a low conductivity region (the

liquid) invades a high conductivity region (the inviscid air). The pressure dif-

ference across the capillary plays the role of the driving voltage, and the liquid

and air regions are analogous to the cation and hole regions, respectively. It

is well known that the displacement of a low viscosity fluid by a high vis-

cosity fluid is stable, whereas the opposite scenario is susceptible to viscous

fingering (Saffman-Taylor) instability.97 Therefore, the cation invasion front

should also be stable and remain uniform against perturbations transverse to

the propagation direction, which could be caused by, for example, variation

in the MIEC film morphology. On a related note, Mani and Bazant91 demon-

strated that depletion concentration polarization (or deionization) shocks at

constant current evolve via the process of inverse Laplacian growth, which also

yields stable and uniform fronts in disordered microstructures. We leave the

interesting subject of front invasion dynamics in inhomogenous MIEC films to

future work.
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4. A Predictive Model for

Electrical Impedance

Spectroscopy of Zwitterionic

Hydrogels

4.1 Introduction

Organic biosensors are promising devices for monitoring and detecting ions

and small molecules at low concentrations in the body.13 These devices are

based on a class of materials, mixed ionic electronic conductors (MIECs),

that conduct both ions and electrons and holes (electron vacancies).69 Poly-

mer MIECs are promising for biosensor applications due to their flexibility,

biocompatability, high ion and hole mobilities, and potential for functionaliza-

tion.77 The organic electrochemical transistor (OECT) is a device commonly

applied to biological applications.13,15 The OECT is comprised of a polymer

semiconducting thin film between source and gain electrodes in contact with

an electrolyte. A gate electrode immersed in the electrolyte completes the

circuit.98 Ions injected from the electrolyte into the semiconducting thin film

displace electrons and holes, which then migrate and diffuse to the electrodes,
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driving an electronic current. The transistor design amplifies the electrical

signal, resulting in a sensitive detection method for target ions.

Tang et al.99 designed an OECT capable of detection of the neurotrans-

mitter dopamine at the nanomolar level. An OECT designed by Bernards et

al.75 incorporated an enzyme, glucose oxidase, into the electrolyte to detect

glucose concentration. In vivo, Khodagholy et al.100,101 recorded local brain

activity via an OECT at a spatial resolution and signal to noise ratio high

enough to identify microseizures, a necessary step for epilepsy diagnosis. In

this application, the OECT is directly in contact with the soft tissue of the

brain. The OECT is bio-conformable due to the flexible nature of the semi-

conducting polymer used here, poly(3,4-ethylenedioxythiophene) polystyrene

sulfonate (PEDOT:PSS). However, the PEDOT:PSS thin film is still much

harder than the soft tissue, with a Young’s modulus of ∼ 2 GPa,102,103 while

the magnitude of the complex modulus for the soft grey matter in the brain is

∼ 3 kPa.104 This mechanical mismatch can lead to adverse effects caused by

the strain induced by relative motion of the brain and the device.22–24,105

A hydrogel barrier between the soft tissue and the relatively hard device

can be added to alleviate this mechanical strain. The hydrogel is designed to

match the elastic modulus of the soft tissue while preserving electrical prop-

erties of the electrolyte such as conductivity and capacitance,25 and can be

endowed with additional functionality, including device encapsulation to im-

prove device lifetime and prevent loss of molecules necessary for sensing, such

as enzymes for glucose sensing.106,107 The lifetime and performance of biosen-

sors are significantly impacted by the “foreign body effect”: the biosensors

illicit an immune response and the immune cells encapsulate the device in a

collagen network.108,109 Zwitterionic hydrogels such as poly(carboxybetaine

methacrylate) (PCBMA) are ultra-low fouling: PCBMA was shown to resist
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the buildup of a collagen network for up to three months109 and maintain

device performance.110 The functional groups on a zwitterionic polymer are

acidic and basic. At the isoelectric point, the monomer is neutral: the nega-

tively charged acidic group offsets the positive charge on the basic functional

group. Below the isoelectric point, the monomer is positively charged: the

basic functional group is positively charged and the acidic functional group is

neutralized by the high hydrogen concentration in the electrolyte. Above the

isoelectric point, the polymer is negatively charged. The isoelectric point pI

is calculated from the dissociation constants for acidic and basic residues, Ka

and Kb, respectively as111

pI =
− logKa − logKb

2
. (4.1)

For use in biosensor applications, hydrogels must be electronically active

to promote electronic and ionic charge transport.112 Desirable electrical prop-

erties include high ion conductivity and low electrical impedance.24 The elec-

trical impedance Z is the ratio of the applied voltage to the current, and com-

prises both real (in phase with voltage) and imaginary (out of phase with volt-

age) contributions which are frequency dependent. The real part of impedance

at low frequencies is a measure of the resistance of the fluid while the imaginary

part at low frequencies is the capacitance of the double layer at the hydrogel-

electrode interface. The frequency of neural electrical signals is 1 kHZ,113 so

impedance is often measured at 1 kHz for biosensors designed for use in the

skull.77,112,114 Electrical impedance spectroscopy (EIS) is a valuable charac-

terization tool for measuring capacitance and resistance. EIS is performed by

applying a low amplitude, sinusoidal oscillation in the voltage between two

electrodes of the form φ = −v
2

exp(iωt), where i =
√
−1, v is the voltage am-
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plitude and ω is the angular frequency. The oscillating voltage is expressed

here as a complex number where the real part of φ gives the physical applied

voltage. At sufficiently low voltages the measured current is I = Im exp(iωt),

where Im is a complex coefficient and the current oscillates at the same fre-

quency as the applied voltage. The real part of I gives the physical impedance.

Low voltage amplitude is defined as v � kBT/q, where vT = kBT/q is the

thermal voltage, kB is Boltzmann’s constant, T is temperature, and q is the

charge of a proton. In this linear regime, the current, ion concentration and

potential in the hydrogel oscillate at the frequency of the applied potential,

but can be out of phase.115 The electrical impedance can be calculated from

the oscillating applied potential and current as Z = v exp(iωt)/Im exp(iωt),

where impedance Z is independent of time and frequency in the linear regime.

The phase angle between the applied potential and the measured current is

tan[θ(ω)] = Im[Z(ω)]/Re[Z(ω)]. When the current is in phase with the applied

potential, θ(ω) = 0, the system behaves as a resistor. Conversely, a system

with a current completely out of phase with the applied potential θ(ω) = π/2

behaves as a capacitor. To determine the resistance and capacitance of the

hydrogel and the diffusivity of the charge carriers, the current can be further

analyzed by applying an equivalent circuit model.116 These models are useful

for interpreting EIS data, but limited in scope since they do not provide infor-

mation about the micro-scale dynamics of the system, such as spatio-temporal

ion densities.

The Poisson-Nernst-Planck (PNP) equations are partial, nonlinear differ-

ential equations that describe charge transport in electrochemical systems.7

In the present work, the PNP equations are employed to model ion transport

in zwitterionic hydrogels and to subsequently predict the current resulting

from an oscillating applied potential and the electrical impedance. At a pH
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not equal to the isoelectric point, the zwitterionic hydrogel carries a non-zero

charge on the polymer backbone due to dissociation and association of the

acidic and basic functional groups. The pH dependent charge density in the

hydrogel will be incorporated into Poisson’s equation relating charge density

to the electric field.

Yates et al.117 modeled an electrochemical cell with a four-step pH de-

pendent surface reaction using the Gouy-Chapman-Stern model118–120 for the

electrical double layer, a region of counter-ion accumulation next to a charged

surface. Bousse et al.121 define an equivalent circuit model where the capac-

itance of the double layer according to the Gouy-Chapman-Stern model is in

parallel with the capacitance of adsorbed charge due to pH dependent surface

reactions in series with the Warburg impedance, the impedance due to changes

in the surface pH with the oscillating potential. Bousse et al.122 apply this

model to a field-effect transistor and derive an expression for the relation be-

tween pH, surface charge density, and potential. Landheer et al.123 begin with

this expression and the Poisson-Boltzmann equations to model the effect of pH

on a field-effect transistor functionalized with biological macromolecules. Via

an equivalent circuit model, Landheer et al.123 calculate the capacitance of

each component of the device and find that the biosensor sensitivity is highest

at low electrolyte concentrations. In these previous works, the pH affected

the reaction rate on the surface of the electrode, and was used to calculate the

capacitance of the double layer.122,123 In the case of a zwitterionic hydrogel,

the pH changes the charge density throughout the cell and must be included

in Poisson’s equation relating the spatial variation in the electric field to the

volumetric space charge density.

In section 4.2, we propose a model for charge transport in zwitterionic

hydrogels based on the PNP equations and equilibrium acid-base association
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relations. We then linearize the PNP equations in section 4.3 and solve for

the electrical impedance. In section 4.4 we apply an equivalent circuit model

to the numerical solution of the PNP equations to calculate the conductiv-

ity, resistance, and capacitance of a model PCMBA hydrogel. We conclude

in section 4.5 with a possible extension of this model to account for steric

resistance due to hydrogel mesh spacing. Our findings can be applied to pre-

dict the impedance in zwitterionic hydrogels to aid in design for biosensor

encapsulation.

4.2 Mathematical Model

We present a model for the transport of cations, anions, hydrogen and hydrox-

ide in a zwitterionic hydrogel immersed in electrolyte and sandwiched between

two planar, parallel, blocking electrodes (figure 4.1). The equations describing

ion transport are the Poisson-Nernst-Planck (PNP) equations, consisting of

equations for the ion conservation and Poisson’s equation relating the charge

density to spatial variations in the electric field. The zwitterionic hydrogel

system requires four sets of ion conservation equations, one for each charged

species. The four species are hydrogen ions, hydroxide ions, and dissociated

cations and anions. The mean concentration of hydrogen and hydroxide de-

pends on the pH of the electrolyte and the association and dissociation rate

constants of the functional groups on the zwitterionic hydrogel backbone. The

pH is determined by the composition of the electrolyte; for example, the pH

of blood is pH = 7.4. The extent of dissociation of the acidic and basic func-

tional groups depends directly on the pH according to the expressions (4.8)

for the acidic [A−] and basic [HB+] functional group concentrations developed

below. We assume that the hydrogel is a thin film, with transport in the x

direction and infinite dimensions in y and z compared to x. The equations
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Figure 4.1: Zwitterionic hydrogel sandwiched between two electrodes im-
mersed in an electrolyte. The system contains two functional groups on the
polymer backbone and four mobile ion species: cations, anions, hydrogen, and
hydroxide. The current resulting from a low amplitude oscillating applied
voltage v

2
cos (ωt) is calculated.

presented here are thus one-dimensional in x. The ion conservation equation

is

∂ni
∂t

= µivT
∂2ni
∂x2

+ ziµi
∂

∂x

(
ni
∂φ

∂x

)
, (4.2)

where ni is the ion concentration with the following naming convention for

the subscript i: H = hydrogen, X = hydroxide, C = cation, and A = anion.

Additional ionic species, e.g. for a multi-component electrolyte, could easily

be incorporated by adding additional ion concentrations to (4.3) and solving

(4.2) for each additional species. Time is t, x is position, µi = Di/vT is the

ion mobility for each species, Di is the diffusivity, and zi is the charge of each

ion. The electric potential is φ. Poisson’s equation is

∂2φ

∂x2
= −q

ε
(nH − nX + zCnC + zAnA + ρgel) , (4.3)

where ρgel is the charge density of the hydrogel and ε is the permittivity of

the hydrogel. The charge on the hydrogel backbone is determined by the

equilibrium reactions for the association and dissociation of hydrogen from
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the functional groups on the polymer backbone,

HA� A− +H+, and HB+ � B +H+, (4.4)

where A is the acidic functional group, B is the basic functional group, and

H is hydrogen. The dissociation constants for these reactions are

Ka =
[A−]nH
[HA]

, and Kb =
[B]nH
[HB+]

, (4.5)

where [] indicates the concentration of the designated species. The concen-

tration of the charged functional groups A− and HB+ are calculated from an

expression for the concentration of hydrogen ions as a function of pH and a

mole balance for the total moles of monomers in the system. The pH is defined

as

pH = − log nH0, (4.6)

where nH0 is the equilibrium (v = 0) hydrogen concentration. The mole

balance on the total concentration of monomers N can be written for the

acidic or basic functional groups as

N = [A−] + [HA] = [HB+] + [B]. (4.7)

Equations (4.5-4.7) can be rearranged to eliminate [HA] and [B], then solved

for [A−] and [HB+]:

[A−] =
NKa

Ka + nH
, and [HB+] =

NnH
Kb + nH

. (4.8)

If the pH is known, the hydrogen concentration can be calculated according to

(4.6). The concentration of charged functional groups is then given by (4.8),
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with the known values of the dissociation constants Ka and Kb, and the total

concentration of monomer N . At low pH compared to the isoelectric point,

pH < pI, the excess of hydrogen associates with the acidic group, forming

HA and reducing the concentration [A−]. Similarly, the basic group accepts a

hydrogen at low pH (4.4), forming HB+. Thus, at low pH < pI, the hydrogel

is positively charged. The converse is true at pH > pI. The charge density of

the hydrogel is

ρgel =
NnH

Kb + nH
− NKa

Ka + nH
. (4.9)

When pH = pI at the isoelectric point, the charge density of the hydrogel is

ρgel = 0 according to (4.9). The equilibrium ion concentrations and potential

at v = 0 are necessary to complete the model:

At v = 0, φ(x) = 0, ni(x) = ni0, and nC0 = −zA
zC
nA0, (4.10)

where the expression for nA0 gives the anion concentration based on the cation

concentration nC0 and the stoichiometry of the electrolyte. The appropriate

boundary conditions for the ion concentrations are no flux at the electrodes in

the absence of Faradaic reactions,

∂ni
∂x

= −zini
∂φ

∂x
at x = 0, l. (4.11)

The applied potential at the electrodes oscillate in time according to

φ(x = 0, t) = −v
2

eiωt and φ(x = l, t) =
v

2
eiωt. (4.12)

Thus the maximum total applied potential drop is v.
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4.3 Linearized PNP Equations

Electrical impedance spectroscopy is performed by measuring the time-varying

current response to an AC voltage for a sweep in frequencies. The electrical

impedance is then calculated from the ratio of the applied voltage to the mea-

sured current. This technique requires a linear current response, proportional

to the applied voltage. In the nonlinear regime, the impedance is dependent on

the amplitude of the applied voltage.115 A linear current response is achieved

by applying a low-amplitude applied voltage in comparison to the thermal volt-

age, v � vT .116 The PNP equations can be linearized by perturbing the ion

concentration and potential in proportion to the small-amplitude oscillations

in applied voltage. Thus the ion densities are expanded as

ni = ni0 + ni1e
iωt, (4.13)

and the potential as

φ = φ1e
iωt. (4.14)

where ni1 and φ1 are O(v). Note that the physical ion densities and potential

can simply be found by taking the real part of (4.13) and (4.14) after solving

the linearized PNP equations. This is valid as we only consider linear depar-

tures from equilibrium. The leading order term φ0 = 0 in the absence of an

equilibrium surface charge. When these expressions are inserted into (4.2) and

(4.3), the resulting linearized charge conservation equation is

iω

µi
ni1 = vT

d2ni1
dx2

+ zini0
d2φ1

dx2
. (4.15)

The equilibrium terms for the ion density ni0 are constants, so they do not

appear in the derivatives. Poisson’s equation (4.3) requires an additional step
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before linearization. The hydrogel charge density ρgel is not linearly dependent

on the perturbed hydrogen concentration nH1. We perform a regular expansion

on (4.8) for [A−] and [HB+] in v to yield expressions that are valid for low

amplitude voltages in comparison to the thermal voltage kBT/q. The series

expansion of (4.8) for the concentration of the dissociated acidic functional

group is

[A−] =
NKa

Ka + (nH0 + nH1eiωt)
∼ NKa

ni0 +Ka

− nH1e
iωt NKa

(nH0 +Ka)2
. (4.16)

The concentration of the dissociated basic functional group can be similarly

written as

[HB+] =
N(nH0 + nH1e

iωt)

Kb + (nH0 + nH1eiωt)
∼ NnH0

ni0 +Kb

+ nH1e
iωt NKb

(nH0 +Kb)2
. (4.17)

Expressions (4.16) and (4.17) are inserted into (4.9) , which is combined with

Poisson’s equation (4.3) to yield

ε

q
eiωt

d2φ1

dx2
=−

(
NnH0

nH0 +Kb

− NKa

nH0 +Ka

+ nH0 − nX0

)
− eiωt

(
NKbnH1

(nH0 +Kb)2
+

NKanH1

(nH0 +Ka)2
+ nH1 − nX1 + zCnC1 + zAnA1

)
.

(4.18)

The term independent of time in (4.18), the first term on the right-hand side,

must be zero since it is voltage-independent. Hence,

0 =
NnH0

ni0 +Kb

− NKa

ni0 +Ka

+ nH0 − nX0. (4.19)

Equation (4.19) states that in the absence of an applied field, the charge density

on the hydrogel backbone is equal to the difference in concentration of the
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dissociated hydrogen and hydroxide in the electrolyte. The time-dependent

equation for the perturbed potential φ1 is then

− ε
q

d2φ1

dx2
=

NKbnH1

(nH0 +Kb)2
+

NKanH1

(nH0 +Ka)2
+nH1−nX1 +zCnC1 +zAnA1. (4.20)

We can now solve equations (4.15) and (4.20) together with the linearized form

of the boundary conditions (4.11),

dni1
dx

= −zini0
dφ1

dx
at x = 0, l, φ1(0, t) = −v/2 and φ1(l, t) = v/2, (4.21)

to yield numerical solutions for the perturbed ion densities and applied poten-

tials.

The electrical impedance is equal to the ratio of the voltage difference

between the electrodes to the electrical current. The former equals ∆V =

v exp iωt in dimensional variables. The current I(t) is equal to the derivative

of the surface charge at the electrode, I(t) = dQ/dt = d(εSE)/dt, S is the

constant surface area of the electrode and E = −∂φ/∂x is the electric field.115

Together with the expansion for potential (4.14), this yields,

Z =
v exp iωt

εS ∂2

∂t∂x
(φ1 exp iωt)

. (4.22)

After taking the mixed partial derivative, the expression for impedance Z is

Z =
v

εSiω dφ1
dx
|x=0

. (4.23)

The impedance Z is a complex number, comprised of a real and imaginary

part. The real part of impedance corresponds to the resistivity of the hydrogel

and electrolyte, while the imaginary part is proportional to the inverse of the

73



capacitance of the hydrogel and the double layers at the electrode-electrolyte

interfaces.

4.4 Impedance Analysis

In order to calculate the electrical impedance at a sweep of frequencies, we

solved equations (4.15) and (4.20) along with the boundary conditions (4.21)

for each of the four charged species (hydrogen, hydroxide, cations, and anions)

with Matlab’s bvp4c method, a boundary value problem solver for systems

of ordinary differential equations based on collocation methods.94 We then

calculated the impedance according to (4.23).

At a pH unequal to the isoelectric point, the zwitterionic hydrogel car-

ries a net charge. Figure 4.2 is a Bode plot of the real and imaginary parts

of impedance for a sweep of frequencies. The material parameters selected

here, listed in table 4.1, correspond to a model PCBMA hydrogel immersed

in a symmetric binary electrolyte at a cation and anion concentrations of

nC0 = nA0 = 10−4 M and a monomer concentration of N = 0.1 M.124 This

model electrolyte could be replaced with an asymmetric electrolyte by adjust-

ing the ratio of the anion to cation mobility and the charge of each ion zC and

zA. We choose a symmetric electrolyte to clearly show the impact of the hydro-

gel on electrical impedance. At the isoelectric point of the PCBMA polymer,

pI = 6.4, the impedance is larger for all frequencies than at pH = 5, 7.4, or 8.

Deviations from the isoelectric point reduce both the real and imaginary por-

tions of the electrical impedance due to the presence of a charge on the hydrogel

backbone as well as an increase in the concentration of mobile hydrogen or hy-

droxide ions. The increase in the total number of charge carriers reduces the

resistance of the hydrogel and increases the capacitance of electrical double

layers at the electrode-electrolyte interface. The resistivity of the fluid corre-
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Figure 4.2: The real (open symbols) and imaginary (filled symbols) parts of
impedance are plotted for a range of frequencies and an equilibrium cation
concentration of nC0 = 10−4 M. In comparison to the isoelectric point, pH =
6.4, any deviation results in a decrease in impedance. Lines through computed
points are included to guide the eye.

sponds to the real part of impedance at low frequencies,? which decreases in

figure 4.2. The imaginary part of impedance at high frequency relates to the

capacitance of the bulk fluid (a dielectric solvent), which is not dependent on

the concentration of charge carriers. The double layer capacitance is inversely

related to the limit of the imaginary part of impedance at low frequencies,

so a decrease in Im(Z) as f → 0 corresponds to an increase in the double

layer capacitance due to the increase in the concentration of charge carriers

in the cell. These limits are discussed in more detail below. The physiological

frequency of electrical signals in the brain, f = 1 kHz as indicated in figure

4.2, falls at the low-frequency limit at which the hydrogel behaves as a resistor

in series with double layer capacitance. The impact of the hydrogel is signif-

icant here compared to the high-frequency limit. For biosensor encapsulation

applications, a low impedance at f = 1 kHz is likely desirable, which requires

an electrolyte pH unequal to the isoelectric point.
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Figure 4.3: The cation (solid line) and anion (dashed line) concentrations are
shown for a) pH = 6.4 and b) pH = 8 at frequencies ranging from f =
440 to 4.4 ∗ 109 Hz and an equilibrium cation concentration of nC0 = 10−4

M. The ion concentration in the double layer increases as pH deviates from
pH = 6.4. This is plotted for t = 4 ms, the time of the first peak in current
at f = 440 Hz. The arrows indicated increasing frequency. At pH = 8, the
width of the double layer scaled by l is λD/l = 3.09 ∗ 10−4, beyond which the
bulk is uniform in concentration. Only one electrode is shown; the behavior is
symmetrical at the other electrode.

Figure 4.3 shows the cation and anion concentration profiles at pH = 6.4

and pH = 8 scaled by the ionic strength of the electrolyte c0 = 1/2(nH +nX +

z2CnC + z2AnA). The cation and anion densities are antisymmetric around x =

l/2. The anions and cations accumulate at the electrode (x = 0, l) interfaces

forming electrical double layers. The capacitance of the double layer at pH = 8

is larger than at pH = 6.4. The charge on the hydrogel backbone at pH = 8 is

immobile, so the mobile ions in the electrolyte are free to migrate and diffuse

towards the electrode interfaces to screen the surface charge. This charge

screening layer is the electrical double layer with a width λD =
√
εkBT/2q2c0.

The RC timescale, τRC = lλD/D, is the characteristic timescale for double

layer charging.4 For the conditions in figure 4.2, at a pH = 8, the frequency of

oscillations in the applied potential is equal to the rate of double layer charging

at fRC = 1/τRC = 4.3 ∗ 103 Hz, which is the frequency corresponding to

Re(Z) = Im(Z). At low frequencies f < 1/τRC , the double layer charges with
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ions. As frequency increases, ion migration and diffusion is slower than the fast

oscillations in the polarity of the charged electrode, reducing the capacitance

of the electrical double layer.

The electric field in the double layer, shown in figure 4.4a scaled by vT/l, is

strongly dependent on the pH of the electrolyte. The magnitude of the electric

field is much larger at pH = 8 than pH = 6.4 due to the increased charge

density in the double layer (figure 4.3). The asymmetry around E = 0 results

from changes in the polarity of the electrode potential at t = 4 ms depending

on the frequency, where t = 4 ms is the time of first maximum in current at

f = 430 Hz, an arbitrary selection. At large frequencies, the electric field in

the bulk is equal for both pH = 6.4 and 8 due to absence of an appreciable

double layer formation; i.e. electroneutrality persists throughout the cell. In
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Figure 4.4: a) The electric field in the double layer at pH = 8 (line) is larger
than the field at pH = 6.4 (dashed) due to the charge on the hydrogel backbone
when the pH does not equal the isoelectric point. The hydrogel charge density
scaled by the ionic strength of the electrolyte Ngel/c0 for b) pH = 8 and c)
pH = 6.4. In this figure, frequencies range from f = 440 to 4.4 ∗ 109 Hz, the
equilibrium cation concentration nC0 = 10−4M, and time t = 4 ms.

figure 4.4b, the hydrogel charge density scaled by the ionic strength of the

electrolyte ρgel/c0 is plotted against position x/l at pH = 8. The hydrogel

charge density in the bulk is ρgel = −15.5c0, while at pH = 6.4 ρgel = 0

(figure 4.4c). This significant hydrogel charge density accounts for the drop
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in electrical impedance from pH = 6.4 to pH = 8. Interestingly, the hydrogel

charge density responds to the higher electric field (figure 4.4a) in the double

layer, which is also reflected in the hydrogen and hydroxide concentrations.

This results in a local change in the pH in the double layer compared to the

bulk.

Voltage
Cation
Concentration

Cation
Charge

v = 5 mV nC0 = 10−4 M zC = 1

Anion
Charge

Hydrogel
Monomer
Concentration

Surface
Area

zA = 1 N = 0.1 M S = 10−4 m2

Association
Rate

Dissociation
Rate

Mobility
Ratios

Ka = 10−3 Kb = 10−9.8 m = [0.1, 0.1, 1, 1]
Hydrogel
Width

Permittivity
Cation
Diffusivity

l = 10−4 m εr = 80.4 D = 1.33× 10−8m2/s

Table 4.1: Material parameters for a model PCBMA hydrogel immersed in a
symmetric binary electrolyte.

The mean cation concentration in figure 4.2 is nC0 = 10−4 M. However, in

experiments the ion concentration in the electrolyte may be much higher, on

the order of nC0 = 1 M.124 In figure 4.5, the impedance curves are shown for

mean concentrations of 1 M, 0.1 M, and 0.01 M at a physiological pH = 7.4 and

cell width l = 1 µm. An order of magnitude increase in concentration decrease

the real and imaginary parts of impedance by an order of magnitude at low

amplitude. This decrease stems from the addition of mobile ions to carry the

current in the electrolyte, reducing the resistivity of the fluid. The imaginary

part of impedance converges at a higher frequency than the frequency range

plotted here.

The electrical impedance can be analyzed via a four element circuit model,?

depicted in figure 4.6, consisting of the geometric capacitance of the cell Cg
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impedance are plotted for a range of dimensionless frequencies. The cation
concentration varies from 10−2 M to 1 M. As the concentration increases, the
impedance decreases at low frequencies.

in parallel with the three elements in series: the resistance of the hydrogel Rg

and the capacitance of the double layers Cdl. This unit is in series with the

resistance of the external circuit, Re, which is measurable in experiments at

high frequency but not included in the PNP equation-based model presented

in this work. The impedance derived for this four-element circuit model can

Rg

Cg

Cdl Cdl

Re

Figure 4.6: Four-element circuit model consisting of the resistance of the ex-
ternal circuit Re in series with the geometric capacitance of the cell Cg in
parallel with the capacitance of each double layer Cdl and the resistance of the
hydrogel Rg.
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be expressed as,?

Z = Re +

[(
Rg +

2i

ωCdl

)−1
+

(
i

ωCg

)−1]−1
, (4.24)

where ω = 2πf is the angular frequency. The real part of impedance is

Re(Z) = Re +
Rg

a+ ω2R2
gC

2
g

, (4.25)

where a = 1 + 4c+ 4c2 and c = Cg/Cdl. The imaginary part of impedance is

Im(Z) = Rg
(2c+ 4c2)(ωRgCg)

−1 + ωRgCg
a+ ω2R2

gC
2
g

. (4.26)

The asymptotic limits of these equations as ω → 0 and ω → ∞ can be used

to calculate the resistances and capacitances to leading order in ω. These

asymptotic limits are depicted on a Bode plot? in figure 4.7 showing Re(Z)

and ωIm(Z) plotted against frequency f at the isoelectric point pH = 6.4 and

cation concentration nC0 = 10−4 M. The asymptotic limits of (4.25) and (4.26)

to leading order in ω as ω →∞ are?

lim
ω→∞

Re(Z) = Re +O(ω−2) and lim
ω→∞

ωIm(Z) =
1

Cg
+O(ω−2). (4.27)

The asymptotic limits as ω → 0 are

lim
ω→0

ωIm(Z) =
2

Cdl + 2Cg
+O(ω2) and lim

ω→0
Re(Z) =

Rg

a
+O(ω2). (4.28)

The resistances Re and Rg and capacitances Cg and Cdl can be solved for

by first calculating Re and Cg from the limits of Re(Z) and ωIm(Z) as ω →

∞ according to (4.27). The limits as ω → 0 along with Re, Cg, and the

definitions of c and a yield the double layer capacitance Cdl and finally the
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hydrogel resistance Rg. We applied this method to the impedance spectrum

at nC0 = 10−4 and pH = 5, 6.4, 7.4, 8 (figure 4.2) to calculate the resistances

and capacitances in figure 4.8.

The resistance Rg decreases as the pH deviates from pH = 6.4 due to an

increase in the total concentration of charge in the cell, including dissociated

salt, the charged functional groups on the hydrogel backbone, and dissociated

hydroxide and hydrogen ions. The capacitance of the double layers increases,

as shown in figure 4.3, with the concentration of charge carriers, and is four

orders of magnitude larger than the geometric capacitance of the cell Cg, which

is independent of charge carrier concentration. The calculated capacitance Cg

in figure 4.5 is Cg = 13.3 nF. Cg ∼ 1/L,? so the change in the width of the cell

from L = 10−4 m to L = 10−6 m is responsible for the two order of magnitude

increase in Cg compared to the capacitance Cg = 0.133 nF in figure 4.8.

The effect of pH on impedance is significant when the electrolyte ion con-

centration is nC0 = 10−4 M. However, at higher concentrations the increase in
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Figure 4.8: The double layer capacitance Cdl and hydrogel resistance Rg are
plotted as a function of pH. At the isoelectric point, Cdl is at a minimum and
increases with deviations from the isoelectric point. Rg, conversely, decreases
as pH deviates from the isoelectric point. The capacitance Cg is independent
of pH.

the total concentration of mobile ions due to a change in pH is minimal. At

nC0 = 1 M, the impedance decrease is O(10−9Ω) as the pH increases from pH

= 6.4 to pH = 7.4. The impact of the charge on the hydrogel backbone on

impedance is limited to low ion concentration for this model PCBMA hydro-

gel. The effect of pH would be more pronounced for a zwitterionic hydrogel

with divalent or trivalent functional groups due to the increase in charge per

functional group from z = ±1 to z = ±2 or 3 when completely dissociated.

Our model can be readily adapted to analyze multi-valent functional groups.

4.5 Discussion and Conclusions

We have developed a mathematical model for ion transport in swelled zwit-

terionic hydrogels based on the PNP equations and equilibrium equations for

acid-base association and dissociation. This model incorporates the effect of

pH on the charge of the functional groups on the hydrogel backbone by adding
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a term for the charge density of the hydrogel to Poisson’s equation (4.3). The

nonlinear, partial differential PNP equations were linearized for low-amplitude

oscillations in the applied voltage and solved with Matlab’s bvp4c boundary

value problem solver. The electrical impedance was calculated according to

(4.23). The predicted impedance curves at a sweep of frequencies were ana-

lyzed via a four-element circuit model to extract parameters including resis-

tivity, double layer capacitance, and the geometric capacitance to characterize

the expected electrical properties of an electrolyte-hydrogel system. We have

shown that the impedance decreases as the pH deviates from the pH at the

isoelectric point of PCBMA hydrogel, pH = 6.4. The decrease in resistance

of the hydrogel and increase in the double layer capacitance at the electrode-

hydrogel interface are due to an increase in the concentration of mobile ions in

the hydrogel and charged functional groups on the zwitterionic hydrogel back-

bone. At high electrolyte ion concentrations, we find that the total charge on

the hydrogel backbone is small in comparison to the total salt concentration,

thus the impedance does not change significantly with pH at those concentra-

tions.

This model can be used to improve the design of the hydrogel for biosen-

sor encapsulation applications. For example, the zwitterionic hydrogel will

not give anomalous electrical measurements in systems with high salt con-

centration, since the electrolyte ion concentration dominates the impedance.

However, if the electrical signal is weak, a hydrogel with a large charge density

on the polymer backbone compared to the ionic strength of the electrolyte may

aid in device performance due to reduced electrical impedance and increased

conductivity of the electrical signal.

The charge transport model presented in this paper is modular in nature;

the boundary conditions, equilibrium conditions, and parameters can be al-
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tered to include additional physics. For example, to account for spatial varia-

tion in the density of the hydrogel, the total concentration of the hydrogel N

can be replaced with a function of position x. This change does not impact

the analysis because the PNP equations are linearized with respect time, not

position. If the mesh size of the hydrogel is on the order of the hydrodynamic

radius of the ion, the ion mobility is impeded. The ion mobility µi can be

adjusted by a Brinkman factor125 to account for the reduction in mobility.

The hydrogel here is sandwiched between two electrodes, as per the typical

electrical impedance spectroscopy setup. For use as a mechanical barrier for

biosensors, the hydrogel is in contact with soft tissue and a polymer-coated

electrode.109,112 The method presented to incorporate acid-base dissociation

into the PNP equations can be applied to hydrogel encapsulated biosensors by

altering the boundary conditions to allow for time-dependent ion concentra-

tion at the soft tissue-hydrogel interface and ion injection from the hydrogel

into the polymer film driven by an applied potential. For example, in Fe-

icht et al.,21 we modeled ionic and electronic charge transport in a polymer

coated electrode via the PNP equations numerically and analytically. The

hydrogel and polymer charge transport models are compatible and can be in-

corporated into a device-level model for a zwitterionic hydrogel-encapsulated

organic biosensor to aid in the design of a biosensor for use in the body.

84



5. Discharging Dynamics of

Diffuse Charge in an

Electrolytic Cell

5.1 Introduction

Charge carriers accumulate at a charged interface, forming electric double

layers comprising a diffuse layer and fixed charge on a surface.126 Electrical

double layers are a key component of electrochemical systems. For example,

capacitive desalination exploits double layers adjacent to high surface area

electrodes to separate ions from the bulk solution.127–129 Electrochemical ca-

pacitors store charge at the electrode-electrolyte interface for energy storage

applications, and are notable for their high power compared to batteries and

energy density compared to conventional capacitors.130–133 A simple device

exhibiting charge separation is an electrolytic cell, e.g. parallel plate blocking

electrodes that charge and discharge in response to cycling the applied volt-

age.4 An applied voltage leads to a separation of ionic charge in solution that

generates a non-uniform electric field across the device, with a higher electric

field in the double layers and a lower electric field in the electroneutral bulk of

the cell. The ions accumulate in double layers adjacent to the electrode surface
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that are typically thin compared to the width of the cell. The width of the

diffuse double layer is characterized by the Debye length, λ̂D =

√
ε̂k̂BT̂ /2q̂2ĉ0

where ε̂ is the permittivity, k̂B is Boltzmann’s constant, T̂ is temperature, q̂

is the charge of a proton and ĉ0 is the initial concentration of ions. Variables

and parameters with a carat superscript are dimensional, while those without

a carat are dimensionless. When the applied voltage is switched off, the cell

discharges as the ions eventually return to a uniform concentration distribu-

tion. The external current spikes in response to the step changes in voltage,

and then eventually decays in magnitude to zero. This spike and decay in

the magnitude of the external current is seen during both the charging and

discharging process.

One might expect that given the globally cyclic nature of the charging

and discharging process, the temporal evolution of the external current during

charging would be antisymmetric (i.e. opposite in sign but equal in magni-

tude) to the current during discharging. However, experiments at high voltages

compared to the thermal voltage VT in nonpolar fluids doped with surfac-

tant29–32 show that while the current during charging monotonically decays,

the discharging current is nonmonotonic, resulting in a maximum and min-

imum in the current. The maximum in the magnitude of the current is re-

ferred to as the “reverse peak”.32 Nonpolar fluids are doped with surfactant

that self-assemble into inverse micelles to stabilize charges, thereby prevent-

ing undesirable buildup of large electric potentials,28 in systems ranging from

petroleum26,27 to electronic inks.29,134 Novotny and Hopper30 reported a re-

verse peak in the external current while measuring the current response to a

field applied to xylene doped with Aerosol OT. They suggest that the non-

monotonic current response stems from dissociation and recombination of the

charge carriers, in this case surfactant micelles. Novotny31 performed similar
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experiments for blocking and nonblocking electrodes, and compared to numer-

ical solutions of the Poisson-Nernst-Planck (PNP) equations describing the

diffusion and migration of charge carriers in a fluid. Novotny included a term

for bulk dissociation and recombination of the micellar charge carriers, as well

as Faradaic reactions at the electrode interfaces to account for nonblocking

electrodes. Novotny found that the blocking electrode model matches experi-

ments when dissociation and recombination are included, to account for charge

transfer between micellar charge carriers.

Kornilovitch and Jeon32 measured the current carried by poly-isobuthylene

succinimide inverse micelles in IsoparM during charging and discharging of par-

allel plate electrodes and also compared the results to the numerical solution

of the PNP equations. They did not include a term for dissociation and recom-

bination, yet observed a reverse peak; thus recombination is not necessary to

the formation of a reverse peak. Kornilovitch and Jeon32 proposed a relation

between the time the reverse peak occurs t̂p, measured from the time when the

voltage is turned off, to the diffusivity of the charge carriers, D̂ ∼ 0.1(L̂2/t̂p),

accurate to 50%, where L̂ is the width of the device. Their analysis assumes

that the charge carriers are monodisperse and have equal diffusivities. This

effort to provide an estimate of the charge carrier diffusivity can supplement

existing characterization methods for charge transport in doped nonpolar flu-

ids, including measuring conductivity as a function of dopant concentration135

and performing dynamic light scattering for charge carrier mobility.29 The

transient, frequency-dependent current measured during electrical impedance

spectroscopy (subjecting material to small amplitude AC voltage) can also

be fit to standard circuit models to calculate the double layer capacitance

and Debye length of doped nonpolar fluids.136,137 Further, in a discharging

experiment the total concentration of the charge carriers in the cell can be cal-
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culated by integrating the current with respect to time at high voltage.32,138

The charge carrier mobility can be calculated from the initial current during

charging and discharging,138 however this is challenging due to the initial spike

in the current.

At high voltages V � VT , the dynamics during discharging are funda-

mentally different from the dynamics during charging.30,32 Bazant et al.4 per-

formed asymptotic analysis and numerical computations to model the charging

dynamics of an electrolytic cell at the experimentally-relevant limit of thin De-

bye lengths, λ̂D � L. They solved the PNP equations for charge transport

in three regimes based on the magnitude of the applied voltage V̂ compared

to the thermal voltage, V̂T = k̂BT̂ /q̂. The “linear regime” where the applied

voltage is less than the thermal voltage, formally V̂ � V̂T , is characterized by

a uniform bulk salt concentration profile everywhere in the cell, where the salt

concentration is equal to the mean of the cation and anion concentration. The

double layers behave as linear (voltage-independent) capacitors here, and the

charging dynamics is on the RC timescale. The “weakly nonlinear” regime

occurs at an applied voltage 1 . V̂ < V̂T ln 1/ε. Here, at the limit of thin dou-

ble layers λ̂D � L̂, the salt concentration is uniform in the bulk electroneutral

electrolyte, but the double layers behave as nonlinear capacitors, meaning

that the total charge stored increases nonlinearly with the applied voltage.

Again, charging is on the charging RC timescale, but now capacitance is a

function of voltage. In the “strongly nonlinear” regime, V̂ & V̂T ln 1/ε, the

bulk is depleted of ions due to neutral salt adsorption by the double layers,

where depletion refers to a bulk salt concentration lower than the initial con-

centration ĉ0. In contrast to the linear and weakly nonlinear regimes, here

charging occurs on the diffusion timescale. Bazant et al.4 report asymptotic

and numerical solutions for the linear and weakly nonlinear regimes, and de-
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rive effective macro-scale equations for the strongly nonlinear regime. Beunis

et al.139 solved the PNP equations at specific limits of the dynamics of charg-

ing, including an extreme case of full charge separation at very large voltage

V̂ � V̂T ln 1/ε, resulting in transient space charge layers and a power-law de-

cay in the external current. The possibility of a transient space-charge was

also suggested by Bazant et al.4

We adapt the analysis of Bazant et al.4 to solve for the current during

discharging in the linear and weakly nonlinear regime. The initial condition

for each of these analyses is the steady-state solution derived by Bazant et

al.4 after the system has fully charged. In the linear regime, the charging and

discharging current are found to be antisymmetric, although the potential and

charge density are not. In the weakly nonlinear regime, the magnitude of the

discharging current decays to zero over a longer period of time than the charg-

ing current, breaking the antisymmetry between current during charging and

discharging. However, the current in the weakly nonlinear regime monotoni-

cally decays in magnitude, indicating that an analysis of the strongly nonlinear

regime, where neutral salt is transferred between the double layer and the bulk,

is necessary to capture the reverse peak in the current. At applied voltages

several times larger than the thermal voltage during charging, the bulk is de-

pleted of ions due to the large capacitance of the double layers. This bulk

depletion and subsequent replenishment during discharging is a characteristic

feature of the strongly nonlinear regime that is not included in the weakly

nonlinear analysis.

This paper begins with a presentation of the governing Poisson-Nernst-

Planck equations and boundary conditions. Numerical calculations used to

verify our asymptotic results are presented in section 5.3. In section 5.4, we

solve the linear regime equations via a Laplace transform for small voltages. In
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section 5.5, we compare the discharging current to the charging current in the

weakly nonlinear regime. We present numerical solutions to the PNP equations

for the strongly nonlinear regime in section 5.6 and analyze the dynamics of

discharging at three relevant timescales. We then provide discussion on the

physics behind the reverse peak. In section 5.7, we note the saturation of the

reverse peak at very large voltage and provide semi-analytic expressions for the

reverse peak current and time. The charge carrier diffusivity and concentration

can be estimated from these expressions. Finally, we conclude in section 5.8

with a summary of our findings and suggestions for future work.

5.2 Mathematical Model

We consider a binary, symmetric electrolyte containing ions of equal diffusiv-

ity sandwiched between planar, parallel, blocking electrodes. In the absence

of an applied field or a charged electrode surface at steady state, the ionic

concentration within the electrolyte is uniform. When a potential difference is

applied across the electrodes, ions migrate leading to an external current that

charges the electrodes. The system reaches steady state when the ion flux de-

cays to zero throughout the cell. This redistribution of ions is reflected in the

external current, which spikes when the applied voltage is suddenly switched

on then decays to zero at steady state. There are no Faradaic reactions so the

ion flux at the electrodes is always zero. We use the variable t̂ to denote time

during the discharging process, whereas time is denoted as ŝ during charging.

The applied voltage is switched on at ŝ = 0 and switched off at t̂ = 0. Figure

5.1 depicts the moment when the applied voltage is switched off. The ions

initially pinned in the double layer redistribute into the electroneutral bulk,

discharging the parallel plate electrodes. As t̂→∞, the ions return to a uni-

form concentration profile and the external current again reaches zero. Our
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goal is to quantify the external current dynamics during discharging of the

electrolytic cell.
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Figure 5.1: Schematic of discharging dynamics in an electrolytic cell. a) Ini-
tially, at t̂ = 0 ions are concentrated in double layers at the electrodes and
uniformly distributed in the bulk. At t̂ = 0, the applied field is switched off
and b) the ions eventually redistribute to a uniform concentration profile.

We apply the PNP equations to model the discharging dynamics. We

neglect the presence of a Stern layer at the electrode surfaces to focus on the

simplest case of discharging dynamics. The PNP equations consist of equations

for the flux of ions driven by diffusion and migration, a charge conservation

equation, and Poisson’s equation relating the gradient of the electric field to

the local charge density. The cell is thin in the x̂ direction (figure 5.1) but

wide and long in the ŷ and ẑ directions. Hence, we assume that the transport

is one dimensional in the x̂ direction. The flux of cations, ĵp, is

ĵp = −D̂ ∂p̂

∂x̂
− D̂q̂

k̂BT̂
p̂
∂φ̂

∂x̂
, (5.1)

where p̂ is the cation concentration, φ̂ is the electric potential, and D̂ is the

diffusivity of the ions, assuming equal diffusivity. The flux of anions ĵn is

ĵn = −D̂∂n̂
∂x̂

+
D̂q̂

k̂BT̂
n̂
∂φ̂

∂x̂
. (5.2)
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The charge conservation equations are

∂p̂

∂t̂
= −∂ĵp

∂x̂
, and

∂n̂

∂t̂
= −∂ĵn

∂x̂
. (5.3)

Poisson’s equation is

∂2φ̂

∂x̂2
= − q̂

ε̂
(p̂− n̂). (5.4)

The boundary conditions include no flux conditions for the ions at the electrode-

electrolyte interface,

∂p̂

∂x̂
= − q̂

k̂BT̂
p̂
∂φ̂

∂x̂
and

∂n̂

∂x̂
=

q̂

k̂BT̂
n̂
∂φ̂

∂x̂
, at x̂ = ±L̂. (5.5)

The electric potential φ̂(x̂ = ±L̂) = 0 at the electrode interfaces for t̂ > 0.

At t̂ < 0, the cell is at steady state following the charging process driven

by a voltage V̂ , so the charging steady state solution is the initial condition

for discharging. In the linear and weakly nonlinear regime, we use Bazant et

al.’s4 steady state solutions as the initial condition. In the strongly nonlinear

regime, we solve the PNP equations during charging numerically and use the

numerical solution when the current reaches zero (within an error tolerance)

as the initial condition for discharging.

We non-dimensionalize the above equations by normalizing length x̂ by L̂;

the electric potential φ̂ by V̂T ; and ion density p̂ and n̂ by ĉ0, the initial uni-

form ion concentration before charging. Bazant et al.140 show that the relevant

timescale for the exponential decay in the current during charging in the linear

regime is the RC time, t̂ ∼ L̂λ̂D/D̂, where λ̂D is the Debye length. Two di-

mensionless groups emerge: the dimensionless Debye length ε = λ̂D/L̂ and the

dimensionless applied voltage V = V̂ /V̂T . These two groups fully characterize

the charging and discharging dynamics, and remain constant throughout the
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charging-discharging cycle. Recall, all un-hatted variables are dimensionless.

The resulting dimensionless charge conservation equations (5.3), rewritten in

terms of the mean salt concentration c = 1
2
(p+ n) and half the charge density

ρ = 1
2
(p− n) are

∂c

∂t
= ε

∂2c

∂x2
+ ε

∂

∂x

(
ρ
∂φ

∂x

)
and

∂ρ

∂t
= ε

∂2ρ

∂x2
+ ε

∂

∂x

(
c
∂φ

∂x

)
, (5.6)

where ε = λD/L � 1 at the experimentally relevant thin double layer limit.

The dimensionless form of Poisson’s equation (5.4) is

− ε2∂
2φ

∂x2
= ρ. (5.7)

The dimensionless boundary conditions are

∂ρ

∂x
= −c∂φ

∂x
,
∂c

∂x
= −ρ∂φ

∂x
, and φ = 0 at x = ±1. (5.8)

After solving for the concentration, charge density, and potential, the ex-

ternal current can be calculated from Gauss’ law.140 The external current is

equal to the change in the electric field with time at the electrode surface,

and can be calculated at either electrode due to symmetry in the electric field

about x = 0. The dimensionless expression for the current J in the external

circuit is

J = ε
∂2φ

∂x∂t

∣∣∣∣
x=−1

, (5.9)

where J is scaled by 2ÂD̂ĉ0q̂/L̂, and Â is the surface area of the electrode.

5.3 Numerical Solution to the PNP Equations

The dimensionless PNP equations (5.6)-(5.7) along with the boundary con-

ditions (5.8) are solved numerically using MATLAB’s pdepe solver, a finite-
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difference based, initial-value problem solver. The numerical solution provides

insight on the behavior of the system at a range of applied voltages V and

Debye lengths ε to guide our asymptotic analyses. The experimental and

numerical results from Kornilovitch and Jeon32 indicate that as the applied

voltage increases for a fixed value of ε � 1, the dynamics transition from

linear to nonlinear, indicated by the appearance of a reverse peak in the mag-

nitude of the current. We solved the PNP equations for ε = 0.01 and voltages

ranging from V = 0.5− 40 in figure 5.2.
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Figure 5.2: A) Magnitude of the current resulting from step changes in volt-
age at ε = 0.01. Time is scaled by the RC timescale. a) The applied voltage
is turned on at s = 0. The current decays monotonically towards zero. b)
The applied field is switched off at t = 0. At low voltages V = 0.5, 3, 7, the
magnitude of the current decreases monotonically towards zero. At larger volt-
ages, V = 10, 13, 25, 40, the magnitude of the current decreases to a minimum,
then reverses and increases to reach a maximum, the reverse peak, followed
by a monotonic decay towards zero. At large voltage, V = 25, 40 the current
appears to saturate; the curves for V = 25, 40 overlap.

Here, the time during charging is s, where the applied voltage undergoes

a step change from φ(±1) = 0 to φ(±1) = ±V at s = 0. The current during

charging decays monotonically for all V . The time variable during discharging

is t, where the applied voltage is switched off at t = 0, so that φ(±1) = 0

for t > 0. After the applied voltage is switched off, the external current ulti-
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mately decays in magnitude towards zero at steady state. However, the decay

is only monotonic at lower applied voltages (V = 0.5, 3, 7). At V ≥ 10, the

magnitude of the current reaches a minimum before reversing towards a max-

imum referred to as the reverse peak. As the applied voltage increases further

(V = 25, 40), the current appears to saturate, meaning that the reverse peak

does not shift with increasing voltage. After the reverse peak, the current

decays exponentially in time for all voltages, with a similar slope. This indi-

cates that the time scale for the decay in the current at a specific value of ε

is constant across a range of applied voltages. We aim to identify the charge

transport dynamics that result in the asymmetry between charging and dis-

charging in the nonlinear regimes, and the limiting factor leading to saturation

of the reverse peak.

5.4 Linear Dynamics

We follow the analysis of Bazant et al.4 describing the ion dynamics during

charging to solve for the charge density and potential profiles during the dis-

charging process. At low applied voltages where the applied voltage is less

than the thermal voltage, formally V � 1, all quantities are written as a reg-

ular expansion in V , resulting in c = c0 +V c1 +O(V 2), ρ = V ρ1 +O(V 2), and

φ = V φ1 +O(V 2). The expansions are inserted in (5.6), yielding

∂2c1
∂x2

= 0. (5.10)

Integrating (5.10) results in c1(x) = a(t)x+ b(t). The no-flux boundary condi-

tions (5.8) to O(V ), ∂c1
∂x

= 0 at x = ±1, require that a = 0. Finally, the integral

of the concentration
∫ 1

0
c1dx = 0, as the total ion concentration is conserved

in the absence of Faradaic reactions, thus b = 0 and c1 = 0. The concentration

is thus equal to the initial concentration in the electrolyte, c0 through O(V ).
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The O(V ) charge density evolves according to the linear Debye-Falkenhagen

equation,141 written in terms of ρ = V ρ1 as

1

ε

∂ρ

∂t
=
∂2ρ

∂x2
− 1

ε2
ρ. (5.11)

The initial condition for this equation is the steady state charge density ρss

after charging,4

ρss(x) = −V sinh(x/ε)

sinh(1/ε)
. (5.12)

The linearized boundary conditions (5.8) are

∂ρ

∂x
= −∂φ

∂x
, at x = ±1. (5.13)

We solve (5.11) by a Laplace transform L in time, where L(f(t)) = f̌(T ) and

T denotes the Laplace variable. The Laplace-space quantities are denoted by

a check superscript. The Laplace transformed Debye-Falkenhagen equation is

(
T

ε
ρ̌+

V

ε

sinh(x/ε)

sinh(1/ε)

)
=
∂2ρ̌

∂x2
− 1

ε2
ρ̌, (5.14)

Assuming antisymmetry in the charge density about x = 0, the solution is

ρ̌ = A sinh (mx)− V ε

m2ε2 − 1

sinh(x/ε)

sinh(1/ε)
, (5.15)

where m =
√
T/ε+ 1/ε2 and A(T ) is an as yet unknown function of T . In-

serting (5.15) into the Laplace transform of Poisson’s equation (5.7) and inte-

grating once yields

∂φ̌

∂x
= − A

mε2
((m2ε2 − 1) cosh (m) + cosh (mx)) +

V

m2ε2 − 1

sinh (x/ε)

sinh (1/ε)
. (5.16)
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By requiring the potential φ(t, 0) = 0 due to antisymmetry, and applying the

boundary conditions (5.13) we find that

A(T ) =
m2ε3V

(m2ε2 − 1)(m(m2ε2 − 1) cosh (m) + sinh (m))
. (5.17)

Integrating (5.16) yields the Laplace transform of the electrical potential,

φ̌ = − A

m2ε2
[m(m2ε2−1)x cosh (m)+sinh (x/ε)]+

V ε

m2ε2 − 1

sinh (x/ε)

sinh (1/ε)
. (5.18)

At long times, T → 0, the charge density (5.15) decays exponentially.

Specifically, at this limit, the charge density can be expanded as

ρ̌S→0 =
V
2

csch (1/ε)[x cosh (x/ε) + (2ε− 3 coth (1/ε)) sinh (x/ε)]

1 + T coth (1/ε)
+O(T ).

(5.19)

This Laplace-space equation for the charge density at long times can be

inverted to yield

ρt→∞ =
V

2
sech (1/ε)[x cosh (x/ε)+(2ε−3 coth (1/ε)) sinh (x/ε)] exp (−t tanh (1/ε)).

(5.20)

This reveals that the time scale for charge density relaxation in the linear

regime is

τ = coth (1/ε), (5.21)

where time is scaled by the RC time, L̂λ̂D/D̂. This agrees with the timescale

found by Bazant et al.4 for the charging process. For comparison, in the charg-

ing case, the Laplace transform of the charge density is ρ̌charge = TA sinhmx

where A is given in (5.17).

Equations (5.15) and (5.18) for the charge density and electric potential in

Laplace space, alongside (5.17) for the parameter A, can be inverted numeri-
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cally using an Euler summation method.142 The numerically inverted solution

for charge density is compared to the long-time solution (5.20) and numer-

ical solution to equations (5.6-5.8) in figure 5.3 for V = 0.5 and ε = 0.05.

The agreement between numerics and the Laplace transform solutions indi-

cates that the assumption that the concentration is uniform and equal to one

throughout the cell is valid at low voltages.
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Figure 5.3: The numerically inverted Laplace transform solution (5.15) (dash)
for the charge density and the long-time solution for the charge density (5.20)
(line) at V = 0.5 and ε = 0.05 are compared to the numerical solution of the
PNP equations (5.6-5.8) (circle) at t = 0.01, 1, 5. Only the cathodic half of the
cell is shown.

In the linear regime, the external current during charging and discharging

is antisymmetric. However, the potential and charge density profiles are not.

In figure 5.4, we show the potential and charge density during charging and

discharging. At s1 and t1, the magnitude of the current |J | = 0.25; at s2

and t2, |J | = 0.05. The two pairs of curves show that, at the same current

magnitude in the charging and discharging cycle, the potential and charge

density profiles are not equivalent. This is counterintuitive given the antisym-

metry of the external current (figure 5.4c). At t1 = s1, the current is equal to
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Figure 5.4: The potential and charge density, from the numerical solution to
the PNP equations, are plotted during charging and discharging at two pairs of
times at which the current is equal in magnitude. Here, ε = 0.05 and V = 0.5.
At s1 and t1 (line), the current (c) is |J | = 0.25, while |J | = 0.05 at s2 and
t2 (dash). Neither the potential (a) nor charge density (b) profiles match at a
given magnitude of the current. Only the cathodic half of the cell is shown.

|J | = V/2, or half of its maximum value |J(t = 0)| = V , indicating that the

charging and discharging processes are at the halfway point. As time contin-

ues the charge density during charging increases, while the discharging charge

density decreases, emphasizing the asymmetry of the charging and discharg-

ing dynamics. When the applied voltage at the electrode switches to zero,

the potential profile rapidly switches in response (figure 5.4a), to the potential

profile shown in the schematic in figure 5.5. The maximum in potential is

located at an O(ε) distance from the electrode, where the charge density in

the double layer causes curvature in the potential according to Poisson’s equa-

tion (5.7). In the double layer, the migration of cations is directed towards

the electrode due to the negative electric field, while cation diffusion is toward

the midpoint of the cell driven by the steep drop in concentration from the

double layer to the bulk. The potential is linear in the electroneutral bulk,

where cation migration is towards the center. The potential profile also holds

in the weakly nonlinear regime. In the strongly nonlinear regime, charge den-

sity in the bulk leads to curvature in the bulk potential (figure 5.9b) during
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discharging according to Poisson’s equation (5.7).
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Figure 5.5: During discharging, the potential is zero at the electrode and the
midpoint. The curvature in the potential is due to the charge density in the
double layer according to Poisson’s equation (5.7). The electric field is negative
in the double layer and positive in the bulk. Cation migration and diffusion
oppose each other in the double layer, whereas they do not in the bulk.

5.5 Weakly Nonlinear Dynamics

When the applied voltage is on the order of the thermal voltage, the salt

concentration is not uniform throughout the cell. In order to screen the surface

charge on the electrodes, the thin double layers adsorb neutral salt from the

bulk141 at a concentration that depends nonlinearly on the applied voltage.143

This nonlinear capacitance is characteristic of the weakly nonlinear regime.4

To a first approximation, accumulation of ions in the thin double layer does

not significantly deplete the bulk of ions, so the bulk salt concentration is c = 1

to leading order in ε. Bulk diffusion, accordingly, is negligible in this regime.

To solve for the external current during discharging in this weakly nonlinear

regime, we address the PNP equations (5.6-5.8) in the thin Debye limit, ε→ 0.

The equations (5.6-5.8) are singular as ε → 0, motivating the use of matched

asymptotic expansions.10 In the weakly nonlinear regime, the electrolytic cell

comprises the double layer, or inner region of width x ∼ O(ε), adjacent to the

electrode and the bulk, or outer region of width x ∼ O(1), centered around

the midpoint of the cell. The boundary conditions (5.8) apply at the literal

electrode-electrolyte interface.
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Bazant et al.4 apply matched asymptotics to the PNP equations (5.6-

5.7) for charging in the weakly nonlinear regime. In the bulk, the position

x ∼ O(1) as ε→ 0. Bazant et al.4 perform regular expansions in ε in the bulk,

and coordinate rescaling in the inner region, the Debye layer. The Debye

layer is shown to have a quasi-equilibrium Gouy-Chapman structure. Regular

expansions in ε in the bulk are inserted into (5.6-5.7), yielding the leading

order bulk concentration, cc = 1, an asymptotically small charge density ρc,

and bulk potential

φc = jc(s)x, (5.22)

where jc is the current density to leading order in ε. The subscript c refers to

the charging process. The position, x is the outer coordinate where x = ±1

corresponds to the outer edge of the inner region. Matching between the

double layer and the bulk shows that the current density jc is asymptotic to

the external current J and is given by the solution to the differential equation4

Cc
djc
ds

= −jc, and jc(s = 0) = V. (5.23)

where Cc is the capacitance of the double layer,

Cc = cosh ((jc − V )/2). (5.24)

The capacitance (5.24) is a function of the total voltage and the flux of ions

jc from the bulk to the double layer. As ions flow from the bulk to the double

layer during charging, the capacitance increases. It can be shown that the

current density jd during discharging is similarly given by the solution of

Cd
djd
dt

= −jd, and jd(t = 0) = V, (5.25)
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where Cd = cosh (jd/2) is the differential capacitance of the double layer. The

initial condition for discharging can be calculated from φd = jd(t)x where the

potential is φd(0,−1) = −V at x = −1. This shows that the potential drop in

the bulk is linear, which is consistent with the applied potential at V = 0.5 in

figure 5.4. The initial current is thus jd(0) = V . With this initial condition,

the implicit solution to (5.25) is

t = Fd(jd)− Fd(V ), where Fd(u) = −
∫ u

0

cosh z/2

z
dz. (5.26)

For comparison, the current in the charging case jc, is given by the implicit

solution to4

s = Fc(jc − V ), where Fc(u) = −
∫ u

0

cosh z/2

z + V
dz. (5.27)

The current during charging jc is not antisymmetric to the discharging current

jd in the weakly nonlinear regime. As stated previously, the current density jd

is asymptotic to the external current J . In figure 5.6 we compare the numerical

solution to (5.26) for the current density jd to the numerical solution to (5.6)-

(5.8) for the external current J and the numerical solution to (5.27) for the

current density during charging jc at V = 0.5, 1, 3 and ε = 0.05. At low

applied voltages V � 1 (linear regime), the current density during charging,

discharging and the external current match, as expected. However, deviations

arise at V = 1, and are strongly apparent at V = 3. First, when comparing

the charging and discharging current densities in figure 5.6, the discharging

process occurs at a more rapid pace than charging. During charging, migration

and diffusion oppose each other during the formation of the double layers.

Conversely, during discharging the bulk potential and diffusion fluxes both

promote the movement of cations from the electrode to the bulk, as depicted
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Figure 5.6: A) Current during discharging jd (dot), given by (5.25), compared
to the current during charging j0c (dash), given by (5.27), and the numerically
calculated current J (line) during discharging for three applied voltages, V =
0.5, 1, 3 and ε = 0.05. B) Concentration at time t = 0 for V = 0.5, 1, 3. At
V = 3, the bulk concentration is not equal to unity due to salt adsorption in
the double layer and ion depletion in the bulk, which invalidates the weakly
nonlinear analysis.

in figure 5.5. Secondly, J 6= V at t = 0. Instead, the current J < 3 initially

for V = 3. To leading order, the flux jd = c0V and c0(x) = 1 for all x at

t = 0. Figure 5.6b shows that the bulk concentration at V = 3 and t = 0 is

lower than 1, c0 ∼ 0.87. If we insert this bulk concentration c0 = 0.87 and

V = 3 into jd = c0V , we find jd = 2.61. At t = 0, |J | = 2.68, according to the

numerical solution for J at V = 3, so the correction in the bulk concentration

c0 captures the decrease in current at t = 0. At long times for V = 3, the

external current J matches jd because c0 → 1 as t → ∞, thus the effect of

initial bulk depletion on jd does not play a role as t→∞. We conclude that

the drop in the magnitude of the external current at t = 0 is due to an increase

in the adsorption of ions in the double layer, balanced by depletion of ions in

the bulk.

The weakly nonlinear analysis breaks down when the total concentration

in the double layer, cD ∼ c0ε expV to O(ε) according to the Gouy-Chapman

model,118,119 is on the order of the concentration in the bulk, c0. This occurs at
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an applied voltage (normalized by VT ) V ∼ ln 1/ε. At ε = 0.05, the breakdown

is predicted at V = 3, in agreement with the results in figure 5.6. Bazant et

al.4 define a similar limit for the weakly nonlinear analysis during charging;

namely, 4ε sinh2(V/4)� 1.

The weakly nonlinear analysis presented here captures the asymmetry in

the current between charging and discharging stemming from nonlinear capac-

itance in the double layer. However, the analysis does not predict a reversal

in the current during discharging. Indeed, the current is monotonic. We must

therefore conclude that the non-monotonic current at higher voltages is due

to neutral salt adsorption and bulk diffusion, indicating that the reversals in

the current must occur on the diffusion timescale. In the following section,

we numerically investigate the effects of bulk depletion and diffusion on the

current at large voltages.

5.6 Strongly Nonlinear Dynamics

When the applied voltage is larger than V ∼ ln 1/ε, the double layers adjacent

to the electrodes deplete the bulk of ions during charging. The weakly non-

linear analysis assumed that the bulk concentration was equal to the initial

uniform concentration; at larger voltages, this assumption breaks down, indi-

cating a transition to the strongly nonlinear regime. The strongly nonlinear

regime is characterized by the development of a “reverse peak”, or a maximum

in the magnitude of the current during the discharging process, due to neutral

salt desorption from the double layer to the bulk.

Recall, before the electric field is switched on, the ions are uniformly dis-

tributed throughout the cell. After the field is applied, the ions separate to

form double layers adjacent to the electrodes. Once the system reaches steady

state, the external current decays to zero, and the applied field is switched
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off. After an initial spike, the magnitude of the current decays to a minimum.

After this point, ions from the double layer diffuse and migrate into the bulk,

leading to an acceleration in the current to a reverse peak, before the current

magnitude decays to zero. The current during discharging is shown in figure

5.7 for ε = 0.01 and applied voltages between V = 3 and V = 13, from which

this behavior is clearly observed. The V = 3 case is in the weakly nonlinear

regime. The current is compared to the current density jd (5.26) calculated

from the weakly nonlinear analysis, which qualitatively matches the numerical

results. The weakly nonlinear asymptotics deviate from the numerical solution

at short times due to bulk depletion, as discussed in section 5.5. As the volt-

age increases to V = 7, the weakly nonlinear analysis no longer matches the

current, but the latter is still monotonic (figure 5.7). As the voltage increases

further (V = 10, 13), the reverse peak emerges and becomes more pronounced

in comparison to the minimum in the magnitude of the current.
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Figure 5.7: The current at a fixed double layer thickness, ε = 0.01, shows
the development of the reverse peak as V increases. The current calculated
from the numerical solution to the PNP equations is compared to the weakly
nonlinear current jd (dash) for V = 3 and V = 7. The transition from weakly
to strongly nonlinear occurs at V ∼ − ln 0.01 = 4.7.
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The asymmetry between the charging and discharging processes is high-

lighted by the development of the reverse peak. In order to better understand

the origin of the reverse peak, we investigate the current on three timescales

relevant to the discharging dynamics. The largest of these is the diffusion time,

t̂D = L̂2/D̂, followed by the RC time t̂RC = L̂λ̂D/D̂, and finally the double

layer relaxation time, t̂λ = λ̂2D/D̂.

In figure 5.8, the current is plotted for pairs of V and ε that fall within the

strongly nonlinear regime but do not completely deplete the bulk of salt during

charging. The emergence of the reverse peak in cases where the concentration

in the bulk is larger than O(ε), as shown in figure 5.9c for V = 13 and ε = 0.01,

indicates that total charge separation is not required for a reverse peak in the

current. Figure 5.8a, scaled on the double layer relaxation time, shows the

initial spike in current, followed by a minimum in the current that occurs at

an O(1) time. Time is plotted on a log-log scale here. On this scale, the current

is approximately linear leading up to the minimum in current magnitude.

In figure 5.8b, time is scaled by the RC time t̂RC for three values of ε and

applied voltage V . When plotted on a log-lin scale, the decay in current after

the reverse peak is linear, corresponding to an exponential decay in the current

at long times. The timescale b for the exponential decay J ∼ exp (−bt) is O(1),

indicating that the decay is occurring on the RC time t̂RC . This is consistent

with the exponential decay in the current in the linear regime (5.21), where

b = coth(1/ε) ∼ 1 for small ε. Finally, the current is rescaled on the diffusion

time t̂D in figure 5.8c. The time at which the reverse peak occurs is on the

order of the diffusion time, indicating that the rapid growth in the current

before the reverse peak is driven by the diffusion of ions from the double layer

to the bulk (figure 5.9). The exponential increase in the current magnitude

is on the timescale a, where J ∼ exp(at) and a ∼ O(1) preceding the reverse
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peak.

While the current during discharging provides insight into the dynamics of

the cell, the concentration and potential profiles enable a closer look. Figure

5.9 shows the evolution of the current magnitude |J |, the potential, φ, con-

centration c, and charge density ρ for ε = 0.01 and V = 13 initially, at the

minimum and maximum in current. The cathodic half of the cell is shown in

figure 5.9; equivalent dynamics occur in the anodic half.

Immediately after the applied field is switched off, the potential at the elec-
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trode switches from −V to 0. Charge density causes curvature in the potential,

according to Poisson’s equation (5.7). At t = 0, the large, positive charge den-

sity in the double layer is reflected in an increase in potential. As depicted in

figure 5.5, the maximum in potential is outside of the double layer, where the

charge density rapidly decays to zero. Initially, cations are concentrated in

the double layers and depleted in the bulk (figure 5.9c). From the first time-

point to the second time-point, the latter corresponding to a minimum in the

magnitude of the current, anions from the bulk of the cell migrate towards

the maximum in potential, briefly increasing the charge density and potential,

as indicated by the small arrowheads in figure 5.9b,d. From the minimum in

current (t = 0.32) to the reverse peak (t = 46), cations from the double layer

diffuse and migrate into the bulk driven by strong concentration gradients, de-
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creasing the concentration at the electrode, increasing the bulk concentration,

and yielding an exponential rise in the magnitude of the current with time

(figure 5.9a,c). The charge density decreases in the bulk as both cations and

anions enter, leading to a drop in the potential. As time approaches t = 46,

the concentration gradient weakens, and the bulk concentration reaches O(1).

Following the reverse peak, the cell behavior can be described by a linear RC

circuit: the bulk resembles an Ohmic resistor in series with the double layer,

represented as a linear capacitor. Accordingly, at times after the reverse peak,

the current decays exponentially on the RC timescale, as shown in figure 5.8,

until the concentration profile is uniform and the current reaches zero. This is

akin to the linear dynamics in section 5.4. It is evident that the reverse peak

is due to the onset of bulk depletion.

5.7 Reverse Peak Saturation at Very Large

Voltage

At larger voltages, V ≥ 25 at ε = 0.01, the discharging current appears to

saturate (figure 5.2). This saturation is due to total charge separation and

complete bulk depletion of salt during charging. In figure 5.10, the magnitude

of the current at the reverse peak and the time of the reverse peak scaled by the

diffusion time are plotted against ln ε at voltages V = 15, 20, 30, 40, and 55. It

is evident from the overlap in data points at V ≥ 30 that the reverse peak has

saturated in time and current magnitude, whereas at V = 15 and 20 the peak

is shifting in time despite saturation in the magnitude of the current at the

reverse peak. The current magnitude Jp and time of the reverse peak tp scale

as ln 1/ε. Therefor, we fit Jp and tp for V = 55 to the expression a ln 1/ε + b

using the data points for ε = 0.001 through 0.01. The resulting expressions
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for the peak current Jp and peak time tp are

Jp = −aj ln 1/ε− bj and tp = at ln 1/ε+ bt, (5.28)

where aj = 0.755 ± 0.005, bj = 0.085 ± 0.03, at = 0.116 ± 0.004 and bt =

0.093 ± 0.02. The error in these constants is the standard deviation of the

points from the fitted expressions. The expression for the peak current (5.28)

can be re-dimensionalized as

Ĵp = (−aj ln 1/ε− bj)
Â0D̂

ε2
, (5.29)

where Â0 = Âε̂k̂BT̂ /q̂L̂
3. The dimensional peak time is

t̂p = (at ln 1/ε+ bt)
L̂2

D̂
. (5.30)

The correlations (5.29) and (5.30) can be used to infer the charge carrier diffu-

sivity D̂ and concentration ĉ0 from experiments. To perform this experiment,
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the electrolytic cell should be discharged at a sufficiently large voltage V̂ such

that the reverse peak saturates in current and time. Equation (5.30) can be

solved for diffusivity,

D̂ = (at ln 1/ε+ bt)
L̂2

t̂p
. (5.31)

This expression can be inserted into (5.29), which is solved for ε. The result for

ε is inserted into (5.31) to obtain D̂. The charge carrier concentration ĉ0 can

be calculated from ε = 1/L

√
ε̂k̂BT̂ /2q̂2ĉ0. This is a single-point measurement

to estimate diffusivity and charge carrier concentration; one only needs the

value of t̂p and Ĵp.

We applied this method to Kornilovitch and Jeon’s32 experimental results

for the saturated reverse peak in current in an OLOA 11000- doped, Isopar

M system. Those experiments were performed in a 10 µm thick cell, with

0.5 wt.% OLOA 11000 at temperature T = 10 C. Figure 1D in their paper

show a peak time of t̂p = 1.63 s and a peak current of Ĵp = −6.3 ∗ 10−8 A, at

V̂ = 8 V. These values were inserted into (5.29) and (5.30) to yield a diffusivity

D̂ = 3.2∗10−11 m2/s, dimensionless Debye length ε = 0.024, and charge carrier

concentration ĉ0 = 37 nmol/L. These values are consistent in magnitude with

values predicted by Kornilovitch and Jeon’s32 method, D̂ = 7∗10−12 and ĉ0 =

12.15 nmol/L at V = 1.16 V. Their method was based firstly on estimating

the skewness of the reverse peak for a range of charge carrier concentrations,

and secondly integrating the discharging current over all times to obtain the

charge carrier concentration. We emphasize that our approach requires only

a single-point measurement.

5.8 Conclusions

This work was motivated by the asymmetry between the current during charg-

ing and discharging of an electrolytic cell, which has been experimentally ob-
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served.29–32 This asymmetry arises when the applied voltage is on the order

of the thermal voltage or larger. We analyzed the discharging process in three

regimes defined by the applied voltage magnitude via asymptotic analysis and

numerical methods. We derived asymptotic solutions for the current in the

linear and weakly nonlinear regimes that can be directly applied to analyzing

experimental data. For the strongly nonlinear regime, we identified three rele-

vant timescales for discharging dynamics and the impact of bulk depletion on

the emergence and ultimate saturation of the reverse peak.

The discharging dynamics are linear when the applied voltage is smaller

than the thermal voltage. We solved the charge transport equations via

Laplace transforms in the linear regime, where the concentration is uniform

throughout the cell to leading order. We find that the timescale for the ex-

ponential decay in the current during discharging is the RC timescale, and

that the current is anti-symmetric to the charging current. Interestingly, the

electric potential and charge density are not antisymmetric between charging

and discharging. This can be attributed to a complementary diffusion and

migration fluxes during discharging (figure 5.5), where both point towards the

midpoint of the cell, compared to opposing diffusion and migration flux during

charging.

At an applied voltage on the order of the thermal voltage, nonlinear capac-

itance in the double layers results in weakly nonlinear dynamics. We analyzed

the weakly nonlinear dynamics via matched asymptotics for thin double layers

and derived an asymptotic expression for the external current. The asymp-

totic current matches the current calculated from the numerical solution to the

PNP equations provided V . ln 1/ε. At V ∼ ln 1/ε, the asymptotic current

deviates from the numerical solution at early times due to neutral salt adsorp-

tion in the double layers and depletion in the bulk, indicating a breakdown
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in the weakly nonlinear analysis. Our work shows that bulk depletion results

in the emergence of the reverse peak in current. The reverse peak occurs on

the diffusion timescale, indicating that the diffusion of ions from the double

layer to the bulk drives the acceleration in current. The timescale for the ex-

ponential decay in the magnitude of the current following the reverse peak is

the RC timescale. At long times, the discharging cell behaves as a linear RC

circuit, and mimics the behavior of the linear regime. At very large voltage

(V � ln 1/ε), the reverse peak saturates due to total depletion of the bulk

salt during charging. We fit the current and time of the saturated reverse

peak to develop a expressions (5.29) and (5.30) correlating the peak current

and time to ε and the charge carrier diffusivity D̂. These correlations can be

used to infer the value of these two parameters as well as the charge carrier

concentration ĉ0 from experiment, as we have demonstrated.

In this work, we solved the PNP equations for a binary, symmetric elec-

trolyte. When the diffusivities of the ions are unequal, it can be shown that

the decay in the external current in the linear regime is on the ambipolar RC

time, λ̂DL̂/D̂a. Here, D̂a is the ambipolar diffusivity, D̂a = 2D1D2/(D1 +D2),

where D1 and D2 are the cation and anion diffusivities. Recall, the reverse

peak occurs on the diffusion timescale. When the ions have unequal diffusivi-

ties, it is likely that multiple reverse peaks in the current will be observed at

timescales corresponding to the diffusivity of the two species and the ambipo-

lar diffusivity. This is an interesting problem for future work; charge carriers

of opposite sign are not necessarily of equal size in surfactant doped non-polar

fluids.

The PNP equations assume a dilute solution of non-interacting ions. This

can lead to an unphysically large concentration of ions in double layers at large

voltages. Kilic et al.144,145 analyze the dynamics of a charging electrolytic
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cell at large voltage by incorporating the effects of steric hindrance of ions,

via Bikerman’s model.146 Steric hindrance can be especially important for

charge transport in doped nonpolar fluids as the charges are encapsulated in

micelles. For reference, OLOA 1100 inverse micelles in dodecane are around

7 nM in diameter.137 Kilic et al.144,145 show that including steric hindrance

limits the concentration in the double layers, which grows exponentially with

voltage in the standard PNP equations. With steric hindrance, the weakly

nonlinear regime thus extends to higher voltage than VT ln 1/ε. The emergence

of the reverse peak would likely be shifted to higher voltage using Bikerman’s

model.146 This is an interesting problem for future work.
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6. Conclusion

The electrochemical systems studied in this thesis involve novel materials,

charge carriers and devices. We developed a framework for incorporating the

physics of these unconventional materials into mathematical models based on

the PNP equations for charge transport at the limit of thin double layers and

space-charge layers. Our predictive models can be included in device-scale

models for use by experimentalists to aid in the design and advancement of

organic electronics and electrochemical systems.

In chapter 2, we analyzed electron and hole transport in organic light-

emitting diodes (OLEDs) via the PNP equations.14 In OLEDs, electrons and

holes are injected at the electrodes, diffuse and migrate through the polymer

semiconductor and then recombine in the bulk to form photons, which are

emitted through the transparent anode. The current across an OLED, pro-

portional to the rate of recombination, is an important measure of device per-

formance. We focused on space-charge limited transport, in which migration

and diffusion point in opposite directions in the space-charge layer, leading to

accumulation of injected charge that limits the current. These rapid variations

in charge carrier density and electric field in the space-charge layer motivated

our application of singular asymptotic analysis to the PNP equations. In the

absence of electron-hole recombination, our analysis revealed three regions

within the OLED: (i) “space-charge layers” near each electrode whose width
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λs are much smaller than the device width L, wherein carrier densities decay

rapidly and the electric field is intense; (ii) a “bulk” region whose width is on

the scale of L, where carrier densities are small; and (iii) intermediate regions

bridging (i) and (ii). We solved the PNP equations in each layer, and found

that the current J scales as V 2/L2λS, where V is the applied voltage. This

scaling is in contrast to the diffusion-free scaling V 2/L3,2 and agrees with the

scaling for the current across ITO/MEH-PPV/Ca OLEDs in experiments by

Parker.68 Thus, we found that diffusion leads to a large O(L/λS) increase

in current and must be included to accurately predict the current across an

OLED for given material parameters. This finding emphasizes the importance

of both diffusion and the space-charge layer to the current and device perfor-

mance. Finally, we derived an asymptotic recombination-voltage relation for

a kinetically-limited OLED, in which charge recombination occurs on a much

longer timescale than diffusion and migration.

The ion mobility in mixed ionic-electronic conducting polymer films is dif-

ficult to measure directly. A simple device designed to measure ion mobility

consists of a polymer film doped with holes in contact with an electrode and an

electrolyte. A gate electrode immersed in the electrolyte completes the circuit.1

The film contains a fixed negative charge density supplied by the polymer back-

bone, which is initially compensated by a uniform density of holes (electron

vacancies). As the cations invade the film driven by an applied voltage, the

holes evacuate across the electrode to maintain overall electroneutrality; thus,

an ionic current is converted to an electronic signal. Recent experiments on ion

injection into the polymer film have shown that the location of the advancing

ion front increases as the square-root of time,1 a scaling typically associated

with diffusive transport. However, the potential difference across the film is

on the order of volts; hence, one would expect that ion transport is dominated
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by migration as opposed to diffusion. We modeled the ionic and electronic

transport via the PNP equations.21 Under the assumptions that the driving

voltage is strong and that the holes are infinitely more mobile than the cations,

a similarity transformation reduced the governing partial differential equations

to coupled nonlinear ordinary differential equations that can be readily solved

numerically. The similarity transformation clearly elucidates the square-root

of time front scaling, δ =
√

2µV t, where δ is the front location, µ is the cation

mobility, and t is time. We compared the similarity solution to the numeri-

cal solution of the full drift-diffusion equations, finding excellent agreement.

When compared to experimental data, our model captures the front location,

confirming that the cation invasion process is self-similar at large driving volt-

ages. However, qualitative differences between the ion profiles are observed.

We suggest that potential losses at the polymer interfaces, 2-D transport along

the glass substrate or ion barrier, or a nonlinear relationship between the hole

concentration and transmission through the chromatographic polymer film in-

dicating de-doping may lead to error in the mobility measurement.

In chapter 4, we reported a mathematical model for ion transport and

electrical impedance in zwitterionic hydrogels. The zwitterionic hydrogel has

acidic and basic functional groups that carry a net charge at a pH not equal

to the isoelectric point. Such hydrogels can be used as a mechanical interface

between a relatively hard biosensor and soft tissue in the body. For this ap-

plication, the electrical impedance of the hydrogel must be characterized to

ensure that ion transport to the biosensor is not significantly impeded. The

electrical impedance is the ratio of the applied voltage to the measured cur-

rent. We considered a model system, wherein an oscillating voltage is applied

across an electrochemical cell comprising a hydrogel immersed in an electrolyte

sandwiched between parallel, planar blocking electrodes. We employed the

117



PNP equations coupled with acid-base dissociation equations for the charge

on the hydrogel backbone to model the transport of ions through the hydro-

gel. The electrical impedance was calculated from the numerical solution to

the PNP equations and analyzed via a four-element circuit model comprised

of the resistance of the hydrogel, the geometric capacitance of the cell, and

the capacitance of the electrical double layers at the electrode-hydrogel in-

terface. We found, for example, that an increase in pH from the isoelectric

point, pH = 6.4 for a model hydrogel, to pH = 8 reduces the resistance of

the hydrogel by ∼ 40% and increases the double layer capacitance by ∼ 250%

at an equilibrium cation concentration of 0.1 mM. The significant impact of

charged functional groups on the hydrogel to the resistance and capacitance

is damped at higher electrolyte ion concentrations. This model can be used

to improve the design of zwitterionic hydrogels for biosensor applications. For

instance, if the electrical signal detected by the biosensor is weak, our model

predicts that low impedance can be achieved for a hydrogel isoelectric point

far from the pH of the electrolyte, increasing transmission of the electrical

signal through the hydrogel.

In chapter 5, we analyzed the electrochemical dynamics of a discharging

electrolytic cell comprised of a binary symmetric electrolyte between two pla-

nar, parallel blocking electrodes. This analysis is applicable to doped nonpolar

fluids in which the charge is carried by inverse micelles. When a voltage is

initially applied, charge carriers diffuse and migrate towards the electrodes,

forming electrical double layers. After the system reaches steady state and the

external current decays to zero, the applied voltage is switched off and the cell

discharges, with the charge carriers eventually returning to a uniform spatial

concentration. At voltages on the order of the thermal voltage VT , experiments

on doped nonpolar fluids observe that the temporal evolution of the external
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current during charging and discharging is not symmetric.30,32 In fact, at suffi-

ciently large voltages, V > VT ln(1/ε), the current during discharging displays a

“reverse peak” before decaying in magnitude to zero. We analyzed the dynam-

ics of discharging by solving the PNP equations via asymptotic and numerical

techniques in three regimes. In the “linear regime”, when the applied voltage

is formally much less than the thermal voltage, the charging and discharg-

ing current is antisymmetric in time; however, the potential, charge density

and concentration profiles during charging and discharging are asymmetric.

When the applied voltage VT . V . VT ln(1/ε) in the “weakly nonlinear”

regime, the current during charging and discharging is asymmetric. The bulk

salt concentration is still uniform in the weakly nonlinear regime at the thin-

Debye-layer limit; however nonlinear capacitance is responsible for the asym-

metry of the current. The reverse peak in the discharging current develops in

the “strongly nonlinear” regime at an applied voltage V ∼ VT ln(1/ε), driven

by neutral salt adsorption by Debye layers and consequent bulk depletion dur-

ing charging. Our analysis provides a framework for analyzing the dynamics

of an electrolytic cell during discharging and elucidates the underlying physics

of the reverse peak.

6.1 Future Work

The organic electrochemical transistor (OECT) is a device consisting of a

mixed ionic-electronic conducting polymer film in contact with source and

gain electrodes at each end. The length of the polymer film is covered in an

electrolyte containing an immersed gate electrode.73 A potential difference

between the gate and source electrodes drives the injection of cations from

the electrolyte into the polymer film below. The cations, injected perpendic-

ular to the polymer film, displace doped holes which evacuate the film at the
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source electrode, resulting in an electric current. This device has been applied

to measure glucose concentration75 and monitor micelle formation.76 The dy-

namics in this device are similar to the 1-D transport modeled in chapter 3,

however in this case the cation flux is perpendicular to hole flux, requiring

2-D PNP equations. I am interested in developing a mathematical model for

cation injection and hole transport in the polymer film via the PNP equations

and numerical methods. This problem is ripe for modeling due to the complex

physics of cation injection. Our hypothesis is that injection of cations results

in a thin space-charge layer in the film at the polymer-electrolyte interface,

similar to the space-charge layer that develops due to electron and hole in-

jection in OLEDs.14 If this is the case, the flux of holes in the film is driven

by three effects: an applied potential difference between the drain and source

electrodes, maintaining electroneutrality in response to cation injection, and

migration due to the electric field established by the charge density in the

space-charge layer. The interplay of these three effects can be captured by

the PNP equations but would be difficult to observe experimentally. In future

work, I am interested in determining the impact of a space-charge layer on

cation and hole transport in OECTs.

In a departure from the electronic device oriented nature of this thesis,

my second thought for future work lies firmly in biology. The nervous system

serves as the wiring between the brain and the body, directing motion and

relaying feedback. The information is relayed through electrical and electro-

chemical signals along the system of nerves, which are bundles of neurons.147

The signal travels along a neuron and is transmitted from a neuron to a target

cell via the release of neurotransmitters into the synapse, a junction between

two cells that is generally between 15-25 nm wide.148 The neurotransmitters

are contained within vesicles that fuse to the cell membrane triggering exocy-
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tosis, releasing the neurotransmitters into the synapse. The neurotransmitters

then diffuse and migrate across the thin gap. In the case of direct synaptic

transmission, the neurotransmitters bind to ligand-gated receptors to open ion

channels selective to Na+, K+, Ca2+, or Cl−. For example, acetylcholine is a

positively-charged neurotransmitter that binds to the nicotinic acetylcholine

receptor in the nervous system specific to Na+ and K+.147 These receptors are

located directly across the gap from the neurotransmitter release point. Con-

versely, negatively charged glutamate often escapes the synapse due to the

negative charge on the surface of the cell membranes, thus glutamate trans-

porters are located outside of the synaptic cleft.149,150 The escape of glutamate

compared to acetylcholine can be attributed to the charge of the neurotrans-

mitter,151 indicating that electrostatics play an important role in the synap-

tic cleft. I propose modeling the transport of acetylcholine in the synapse.

The transport of neurotransmitters in the synaptic cleft is best modeled via

the cylindrical PNP equations. Through the use of a detailed mathematical

model, I intend to study the relationship between the width of the synaptic

cleft, the number of neurotransmitter molecules released, the binding kinetics

and receptor concentration. This results of this work could provide valuable

insight on the physics of neural signaling.
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