
Maximum Margin Correlation Filters

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Andres F. Rodriguez-Perez

B.S., Electrical Engineering, Brigham Young University

M.S., Electrical Engineering, Brigham Young University

Carnegie Mellon University

Pittsburgh, Pennsylvania

August, 2012

Copyright c© 2012 by Andres Rodriguez

All Rights Reserved

ii

ABSTRACT

Support vector machines (SVMs) and correlation filters (CFs) are popular for automatic target

recognition (ATR) and other computer vision tasks. SVMs are designed to maximize the separation

between two classes in some feature space. SVMs are popular for classification (determining the

class-label of a target) and generalize well for targets not in the training set, but SVMs are not

specifically designed for localization (finding where a target is). When using SVMs, regions of

interest (ROIs) are usually first extracted using some other detector before SVMs are applied. CFs

accurately localize the target of interest in a large scene but their classification performance may not

be as good (compared to SVMs) for targets not in the training set. In this thesis we introduced new

linear CFs by combining the criteria used in state-of-the-art CFs to improve performance. Using

our improved linear CF designs, we present a new type of classifier called the Maximum Margin

Correlation Filters (MMCFs), which combine the generalization capabilities of SVMs and the shift-

invariance of correlation filters (CFs), i.e., MMCF is also invariant to shifts between the training

images and the query image, thereby avoiding the need for image registration and detection before

SVM-based classification. We extend our work to quadratic correlation filters (QCFs) and present

the Quadratic MMCF (QMMCF) and show its relation to the second order polynomial Kernel SVM

(referred to as Quadratic SVM (QSVM) in this thesis). We extend the capabilities of CFs and

therefore of MMCFs and QMMCFs to include vector features (as opposed to scalar features, i.e.,

gray-scaled pixels) in order to use features such as the Histogram of Oriented Gradients (HOG). We

test the efficacy of the our designs on real data and show improvement over linear and quadratic

CFs and linear and quadratic SVMs.

iii

ACKNOWLEDGMENTS

I would like to thank my advisor, Vijayakumar Bhagavatula, for his continual support, example,

and willingness to advise. Even though he had many other responsibilities and students to advise,

he was fully committed to my research. I would like to thank the other members of my committee

Marios Savvides, Abhijit Mahalanobis and Kevin Priddy for taking the time to make my thesis

better. I would like to thank the Air Force Research Laboratory for providing the main funding for

this work. I would like to thank my friends Naresh Boddetti, Ramu Bhagavatula, John Smereka,

and Kathy Brigham, for the many hours they spent discussing the topics presented in this work. I

would like to thank Clark Taylor for teaching me how to do research and preparing me to start my

PhD. I would like to thank my mother and father for their example of diligence and excellence. I

would like to thank my sons David and Tomas for brightening my days and for their patience on the

many days when their dad could not play with them and had to work long nights. Finally, I would

like to thank my best friend and sweetheart Mary-Kathryn for her tremendous support, inspiration,

and the love she has always given me.

iv

TABLE OF CONTENTS

1 Introduction 1
1.1 Background . 2

1.1.1 Correlation filters . 2
1.1.2 Support vector machines . 3

1.2 High-level approach and contributions . 5
1.3 Test datasets . 6
1.4 Notation . 7
1.5 Organization . 9

2 Correlation filters 10
2.1 Matched filter and efficient application of correlation filters 12

2.1.1 Derivation . 14
2.2 Equal Correlation Peak Synthetic Discriminant Function (ECPSDF) filter 14

2.2.1 Derivation . 15
2.3 Minimum Variance Synthetic Discriminant Function (MVSDF) filter 15

2.3.1 Derivation . 16
2.4 Minimum Average Correlation Energy (MACE) filter 17

2.4.1 Derivation . 17
2.4.2 Extensions . 19

2.5 Optimal Tradeoff Synthetic Discriminant Function (OTSDF) filter 20
2.5.1 Derivation . 21

2.6 Minimum Noise and Correlation Energy (MINACE) filter 22
2.6.1 Derivation . 23

2.7 Gaussian MACE (GMACE) filter . 24
2.7.1 Derivation . 25
2.7.2 Extensions . 26

2.8 Unconstrained correlation filters: MACH and UMACE and UMSESDF filters . . . 26

v

2.8.1 Derivation . 27
2.8.2 Extensions . 29

2.9 Action MACH filter . 31
2.9.1 Derivation . 32

2.10 Average of Synthetic Exact Filter (ASEF) . 32
2.10.1 Derivation . 32

2.11 Minimum Output Sum of Squared Error (MOSSE) filter 33
2.11.1 Derivation . 33

2.12 Optimal Tradeoff Circular Harmonic Function (OTCHF) filter 34
2.12.1 Derivation . 35

2.13 MACE-Mellin Radial Harmonic (MACE-MRH) filter 40
2.13.1 Derivation . 40

2.14 Distance Classifier Correlation Filter (DCCF) . 45
2.14.1 Derivation . 46
2.14.2 Extensions . 48

2.15 Polynomial Correlation Filter (PCF) . 48
2.15.1 Derivation . 48
2.15.2 Extensions . 50

2.16 Quadratic Correlation Filter (QCF) . 50
2.16.1 Derivation . 51
2.16.2 Extensions . 53

2.17 Multi-Frame Correlation Filter (MFCF) . 54
2.17.1 Derivation . 55
2.17.2 Extensions . 56

2.18 Summary . 56

3 Correlation filter improvements 57
3.1 Generalized unconstrained and constrained correlation filters 57

3.1.1 Generalized Unconstrained Correlation Filter (UCF) 60
3.1.1.1 Efficient computation . 61
3.1.1.2 Subsets of the UCF . 63

3.1.2 Generalized Constrained Correlation Filter (CCF) 67
3.1.2.1 Subsets of the CCF . 70

3.1.3 Modified CCF: CCF can equal UCF . 72
3.1.4 Circular correlation effects . 73
3.1.5 Implementation and false-class constraints 78

3.2 Quadratic Correlation Filter enhancements . 79
3.2.1 Producing sharp peaks . 80

vi

3.2.2 Efficient method to train QCF filters: fastQCF 82
3.3 Kalman Correlation Filter (KCF) for sequential images 83

3.3.1 Derivation . 84
3.4 Experiments . 90

3.4.1 Vehicle recognition for filter comparison 90
3.4.2 QCF two target class recognition using KCF and MFCF 93

3.5 Summary . 96

4 Maximum Margin Correlation Filter 97
4.1 MMCF: An extension to SVMs . 97

4.1.1 SVM review . 97
4.1.2 Space and frequency domain SVMs . 102
4.1.3 MMCF: SVM with localization criterion 103

4.1.3.1 Delta-function-like desired output 105
4.2 MMCF: An extension to correlation filters . 109

4.2.1 From ECPSDF to SVM . 109
4.2.1.1 Minimum norm solutions for underconstrained systems 109
4.2.1.2 ECPSDF and SVM differences 110

4.2.2 Relaxing equality constraints to inequality constraints 118
4.2.3 From CCF to MMCF . 119

4.3 MMCF solution . 119
4.3.1 Modified MMCF . 122

4.4 Implementation . 123
4.4.1 Unbounded scalar variables . 123
4.4.2 Sequential minimal optimization . 123

4.5 Experiments . 124
4.6 Summary . 128

5 Quadratic MMCF 129
5.1 From QCF to QSVM . 129
5.2 QMMCF: Generalized Maximum Margin Quadratic Correlation Filters 133

5.2.1 Zero desired correlation output . 139
5.2.2 QSVM: A special case of QMMCF . 140
5.2.3 Closed form solution (no quadratic programming) 142

5.3 Implementation . 143
5.4 Experiments . 145
5.5 Summary . 148

vii

6 Vector features 149
6.1 Histograms of Oriented Gradients . 149
6.2 Correlation output using matrix notation . 151

6.2.1 Implementation . 154
6.3 Experiments . 155
6.4 Summary . 157

7 Experiments 158
7.1 Test dataset . 158
7.2 Pre- and Post-processing data . 159

7.2.1 Training images preprocessing . 159
7.2.2 Training images selection and registration 160
7.2.3 Background selection . 161
7.2.4 Image and filter transformation . 162
7.2.5 Correlation output normalization . 162

7.2.5.1 Zero-mean and unit energy test chips 163
7.2.5.2 Peak-to-Correlation Energy (PCE) 164
7.2.5.3 Peak-to-Sidelobe Ratio (PSR) 164

7.2.6 Retraining . 167
7.2.7 Selecting parameters . 167

7.3 Experimental setup . 169
7.4 Computational comparison . 171
7.5 Experimental results . 172
7.6 Summary . 237

8 Conclusions 238
8.1 Contributions . 238
8.2 Conclusions . 240
8.3 Future Work . 241

A Minimizing a quadratic subject to linear constraints 243

B Minimizing a ratio of quadratic terms 245

C Distance from a point to a hyperplane 247

D Quadratic correlation matrix 249

Bibliography 259

viii

LIST OF FIGURES

1.1 The desired output (right) to an input image (left) correlated with the CF template.

CFs can be designed to output a sharp peak when the input is the desired target. . . 3

1.2 Example of the different classes of targets. 7

2.1 Tradeoff between the output noise variance (ONV) and the average correlation en-

ergy (ACE). Note that, although not shown, the values extend beyond 1. 20

2.2 Efficient architecture to apply the QCF to image x(m,n). 53

3.1 This figure shows that it is theoretically possible for a test chip z to have a higher

inner product with filter h than the inner product of the training image xn with h. . 71

3.2 An example of (a) circular correlation ġ = x⊗̃h where the peak is along the axis at

ġ[0] and (b) regular correlation g = x⊗ h, where the peak is at g[d− 1] = g[999]. . 75

3.3 The desired correlation output and the template are of length d (the same length as

the training image). The desired correlation output has the peak value at the first

index and the actual correlation output has the peak value at the center. 76

3.4 The desired correlation output and the template are of length L (the same length as

the zero-padded training image). The desired correlation output has the peak value

at index
⌈
d+L

2

⌉
and the actual correlation output has the peak value at the center. . 77

ix

3.5 The desired correlation output is of length L (the same as the zero-padded training

image) and the template is truncated to be of length d (the same length as the original

training image). The desired correlation output has the peak value at index
⌈
d+L

2

⌉
and the actual correlation output has the peak value at the center. 77

3.6 Changing the constrained correlation peak value for the false-class image from 0

in (a) to −1 in (b) produces a very different filter h (orthogonal to the hyperplane

h†x = 0). 79

3.7 Relationship between gmax and the uncertainty in position measurements σ2
p 87

3.8 Images of toy tanks (left) Abram, (center) German, and (right) Missile used to test

the algorithm . 94

3.9 Frames 3, 4, 5, and 6 of Straight video. Top: before noise is added (for ease of vis-

ibility for the reader). Bottom: after the background mean is increased and AWGN

is added (the actual frames used in testing). 95

3.10 Frames 2, 7, 11, and 15 of Rounded-rectangle with and without noise. 95

3.11 Example output from video Straight: (left) the frame, (center) the states after an

observation, and (right) the states after applying the motion model. 96

4.1 An example of a linearly separable problem that benefits from using slack variables

to find a decision boundary with more generalization. a) The data points from two

different classes, b) the decision boundary obtained by enforcing perfect separation,

i.e., C → ∞, and c) the decision boundary obtained by allowing slack variables

with a C value obtained using cross-validation. 101

4.2 The effects of relaxing the constraints from equality to inequality where xT1 and

xT2 are true-class data points and xF is a false-class data point. a) The hyperplane

obtained with equality constraints leads to a small margin that may not generalize

well. b) The hyperplane obtained by relaxing the constraints leads to a larger margin

that may provide better generalization. 112

x

4.3 The difference in the margin when a bias is used versus when it is not used. Figs. (a)

and (b) both have peak constraints ui = −1 for the false-class features but produce

a different h because (a) uses a bias b. Similarly, Figs. (c) and (d) both have peak

constraints ui = 0 for false-class features but also produce different h because (c)

uses a bias b. When a bias is used as in Figs. (a) and (c), the peak constraints ui

for false-class features do not affect the direction of h, whereas in Figs. (b) and (d)

when a bias is not used, different peak constraints ui produce different h vectors. . 114

4.4 In (a), when N ≥ d + 1, ECPSDF cannot find one hyperplane that goes through

all the true-class data points (the SVM margin is shown), except for the rare case

when some points of a given class are collinear as shown in (b). In (b), the ECPSDF

margin is shown. Note that both (a) and (b) have the same SVM margin. 115

6.1 An image (a) is broken into non-overlapping cells. The circled cells in (a) are shown

in (b). In (b) the green block in made of 2×2 cells. The circled cell in (b) in shown in

(c). In (c), each cell is composed of 8×8 pixels each with a gradient magnitude and

quantized orientation. In this figure, the pixels with a quantized unsigned orientation

of 20◦ are shown in blue, where those with a quantized signed orientation of 20◦

are shown in dark blue and those with a quantized signed orientation of 200◦ are

shown in light blue. The sum of the magnitudes corresponding to the unsigned

orientations of 20◦, the signed orientation of 20◦, and the signed orientation of 200◦

are represented by the height of the 1st, 10th, and 19th entry in the histogram in (d).

Thus, the 1st histogram value equals the sum of the 10th and 19th histogram values.

The gradient energy of the first block in green is represented by the height of the

28th entry in the histogram. The gradient of the other blocks in (b) are represented

by the 29th, 30th, and 31st histogram values. 150

xi

7.1 In this correlation output array, there is one large peak and another one small. The

PSR compares the peak values to the surrounding values. We observe in this exam-

ple that the PSR values of these two correlation peaks are similar, even though the

correlation peak values are not similar. This can be caused when one target is in an

illuminated region and the other one in a darker region. (Figure from Kereke’s 2008

SPIE presentation [32]). 165

7.2 An example of a test frame containing the BRDM2 target. 170

7.3 Localization rate as a function of the number of FAs per frame using (left) gray-

scaled pixel and (right) HOG features for (top) Set 1, (middle) Set 2, and (bottom)

Set 3 for the QMMCF. 195

7.4 Localization rate as a function of the number of FAs per frame using (left) gray-

scaled pixel and (right) HOG features for (top) Set 1, (middle) Set 2, and (bottom)

Set 3 for the QSVM. 196

7.5 Localization rate as a function of the number of FAs per frame using (left) gray-

scaled pixel and (right) HOG features for (top) Set 1, (middle) Set 2, and (bottom)

Set 3 for the TQCF. 197

7.6 Localization rate as a function of the number of FAs per frame using (left) gray-

scaled pixel and (right) HOG features for (top) Set 1, (middle) Set 2, and (bottom)

Set 3 for the MMCF. 198

7.7 Localization rate as a function of the number of FAs per frame using (left) gray-

scaled pixel and (right) HOG features for (top) Set 1, (middle) Set 2, and (bottom)

Set 3 for the SVM. 199

7.8 Localization rate as a function of the number of FAs per frame using (left) gray-

scaled pixel and (right) HOG features for (top) Set 1, (middle) Set 2, and (bottom)

Set 3 for the CCF. 200

xii

7.9 Localization rate as a function of the number of FAs per frame using (left) gray-

scaled pixel and (right) HOG features for (top) Set 1, (middle) Set 2, and (bottom)

Set 3 for the mCCF. 201

7.10 Localization rate as a function of the number of FAs per frame using (left) gray-

scaled pixel and (right) HOG features for (top) Set 1, (middle) Set 2, and (bottom)

Set 3 for the UCF. 202

7.11 Localization rate as a function of the number of FAs per frame using (left) gray-

scaled pixel and (right) HOG features for (top) Set 1, (middle) Set 2, and (bottom)

Set 3 for the EASEF. 203

7.12 Localization rate as a function of the number of FAs per frame using (left) gray-

scaled pixel and (right) HOG features for (top) Set 1, (middle) Set 2, and (bottom)

Set 3. 204

7.13 Recognition rate as a function of lambda λ for different classifiers using (left) gray-

scaled pixel and (right) HOG features for (top) Set 1, (middle) Set 2, and (bottom)

Set 3. In all the plots, the recognition rate is lowest at the edges, i.e., when λ = 0 or

λ = 1, and has the highest values in between. 208

7.14 Recognition rate as a function of psi ψ for different classifiers using (left) gray-

scaled pixel and (right) HOG features for (top) Set 1, (middle) Set 2, and (bottom)

Set 3. 209

7.15 Recognition rate as a function of variance gσ2 for different classifiers using (left)

gray-scaled pixel and (right) HOG features for (top) Set 1, (middle) Set 2, and

(bottom) Set 3. Note that a negative variance for MMCF means that the desired

correlation plane is zero, i.e., g = 0, and a zero variance means that the desired

correlation plane is a delta function. 210

xiii

7.16 Recognition rate as a function of normalized localization errorD for different classi-

fiers using (left) gray-scaled pixel and (right) HOG features for (top) Set 1, (middle)

Set 2, and (bottom) Set 3. MMCF outperforms all linear classifiers (except mCCF

in (a) with slightly lower performance), and QMMCF outperforms all quadratic

classifiers. Usually performance does not improve when D > 0.3. 211

7.17 The percent of support vectors (i.e., support vectors over number of training images)

for QMMCF, MMCF, and CCF (using gσ2 = 0 and ψ = 1) as a function of λ using

(left) gray-scaled pixel and (right) HOG features for (top) Set 1, (middle) Set 2, and

(bottom) Set 3. 212

7.18 The classification criterion h†h and localization criterion h†Dh as a function of λ

using (left) gray-scaled pixel and (right) HOG features for (top) Set 1, (middle) Set

2, and (bottom) Set 3 for the QMMCF. 213

7.19 The classification criterion h†h and localization criterion h†Dh as a function of λ

using (left) gray-scaled pixel and (right) HOG features for (top) Set 1, (middle) Set

2, and (bottom) Set 3 for the TQCF. 214

7.20 The classification criterion h†h and localization criterion h†Dh as a function of λ

using (left) gray-scaled pixel and (right) HOG features for (top) Set 1, (middle) Set

2, and (bottom) Set 3 for the MMCF. 215

7.21 The classification criterion h†h and localization criterion h†Dh as a function of λ

using (left) gray-scaled pixel and (right) HOG features for (top) Set 1, (middle) Set

2, and (bottom) Set 3 for the CCF. 216

7.22 The classification criterion h†h and localization criterion h†Dh as a function of λ

using (left) gray-scaled pixel and (right) HOG features for (top) Set 1, (middle) Set

2, and (bottom) Set 3 for the mCCF. 217

7.23 The classification criterion h†h and localization criterion h†Dh as a function of λ

using (left) gray-scaled pixel and (right) HOG features for (top) Set 1, (middle) Set

2, and (bottom) Set 3 for the UCF. 218

xiv

7.24 The classification criterion h†h and localization criterion h†Dh as a function of λ

using (left) gray-scaled pixel and (right) HOG features for (top) Set 1, (middle) Set

2, and (bottom) Set 3 for the EASEF. 219

7.25 The correlation output response (left) when the QMMCF classifier (center: the train-

ing image with the largest coefficient is shown) is applied to a test image (right) in

(top) Set 1, (middle) Set 2, and (bottom) Set 3. The test image has a green box

around the ground truth target location and a red box around the maximum correla-

tion peak value. 221

7.26 The correlation output response (left) when the QSVM classifier (center: the train-

ing image with the largest coefficient is shown) is applied to a test image (right)

in (top) Set 1, (middle) Set 2, and (bottom) Set 3. The test image has a green box

around the ground truth target location and a red box around the maximum correla-

tion peak value. 222

7.27 The correlation output response (left) when the TQCF classifier (center: the training

image with the largest coefficient is shown) is applied to a test image (right) in (top)

Set 1, (middle) Set 2, and (bottom) Set 3. The test image has a green box around

the ground truth target location and a red box around the maximum correlation peak

value. 223

7.28 The correlation output response (left) when the MMCF classifier (center) is applied

to a test image (right) in (top) Set 1, (middle) Set 2, and (bottom) Set 3. The test

image has a green box around the ground truth target location and a red box around

the maximum correlation peak value. 224

7.29 The correlation output response (left) when the SVM template (center) is applied

to a test image (right) in (top) Set 1, (middle) Set 2, and (bottom) Set 3. The test

image has a green box around the ground truth target location and a red box around

the maximum correlation peak value. 225

xv

7.30 The correlation output response (left) when the CCF template (center) is applied to

a test image (right) in (top) Set 1, (middle) Set 2, and (bottom) Set 3. The test image

has a green box around the ground truth target location and a red box around the

maximum correlation peak value. 226

7.31 The correlation output response (left) when the mCCF template (center) is applied

to a test image (right) in (top) Set 1, (middle) Set 2, and (bottom) Set 3. The test

image has a green box around the ground truth target location and a red box around

the maximum correlation peak value. 227

7.32 The correlation output response (left) when the UCF template (center) is applied to

a test image (right) in (top) Set 1, (middle) Set 2, and (bottom) Set 3. The test image

has a green box around the ground truth target location and a red box around the

maximum correlation peak value. 228

7.33 The correlation output response (left) when the EASEF template (center) is applied

to a test image (right) in (top) Set 1, (middle) Set 2, and (bottom) Set 3. The test

image has a green box around the ground truth target location and a red box around

the maximum correlation peak value. 229

7.34 Localization rate as a function of the number of FAs per frame using gray-scaled

pixel and retraining using 1500 meters range tests frames for the QMMCF. 234

7.35 Localization rate as a function of the number of FAs per frame using gray-scaled

pixel and retraining using 1500 meters range tests frames for the QSVM. 234

7.43 Localization rate as a function of the number of FAs per frame using gray-scaled

pixel and retraining using 1500 meters range tests frames. 234

7.36 Localization rate as a function of the number of FAs per frame using gray-scaled

pixel and retraining using 1500 meters range tests frames for the TQCF. 235

7.37 Localization rate as a function of the number of FAs per frame using gray-scaled

pixel and retraining using 1500 meters range tests frames for the MMCF. 235

xvi

7.38 Localization rate as a function of the number of FAs per frame using gray-scaled

pixel and retraining using 1500 meters range tests frames for the SVM. 235

7.39 Localization rate as a function of the number of FAs per frame using gray-scaled

pixel for and retraining using 1500 meters range tests frames for the CCF. 236

7.40 Localization rate as a function of the number of FAs per frame using gray-scaled

pixel and retraining using 1500 meters range tests frames for the mCCF. 236

7.41 Localization rate as a function of the number of FAs per frame using gray-scaled

pixel and retraining using 1500 meters range tests frames for the UCF. 236

7.42 Localization rate as a function of the number of FAs per frame using gray-scaled

pixel and retraining using 1500 meters range tests frames for the EASEF. 237

C.1 The perpendicular distance from a point xn to the hyperplane h†x + b = 0 248

xvii

LIST OF TABLES

3.1 Time to train one QCF filter using N = 100, d = 2800 83

3.2 Filter performance (%) using true-class images only 92

3.3 Filter performance (%) using true- and false-class images before retraining 92

3.4 Filter performance (%) after retraining . 93

3.5 Recognition performance (%) . 96

4.1 Filter performance (%) using true-class images only 126

4.2 Filter performance (%) using true- and false-class images before retraining 126

4.3 Filter performance (%) after retraining . 127

5.1 Filter performance (%) using true-class images only 146

5.2 Filter performance (%) using true- and false-class images before retraining 147

5.3 Filter performance (%) after retraining . 147

6.1 Filter performance (%) using true-class images only 156

6.2 Filter performance (%) using true- and false-class images before retraining 156

6.3 Filter performance (%) after retraining . 157

7.1 Computational complexity big O and measured (sec.) 172

7.2 Filter performance (%) using true-class images only 174

7.3 Filter performance (%) using true- and false-class images before retraining 175

xviii

7.4 Filter performance (%) after retraining . 176

7.5 Confusion matrices using gray-scaled pixels for (top) Set 1, (middle) Set 2, and

(bottom) Set 3 for the QMMCF. 177

7.6 Confusion matrices using gray-scaled pixels for (top) Set 1, (middle) Set 2, and

(bottom) Set 3 for the QSVM. 178

7.7 Confusion matrices using gray-scaled pixel for (top) Set 1, (middle) Set 2, and

(bottom) Set 3 for the TQCF. 179

7.8 Confusion matrices using gray-scaled pixel for (top) Set 1, (middle) Set 2, and

(bottom) Set 3 for the MMCF. 180

7.9 Confusion matrices using gray-scaled pixels for (top) Set 1, (middle) Set 2, and

(bottom) Set 3 for the SVM. 181

7.10 Confusion matrices using gray-scaled pixels for (top) Set 1, (middle) Set 2, and

(bottom) Set 3 for the CCF. 182

7.11 Confusion matrices using gray-scaled pixels for (top) Set 1, (middle) Set 2, and

(bottom) Set 3 for the mCCF. 183

7.12 Confusion matrices using gray-scaled pixels for (top) Set 1, (middle) Set 2, and

(bottom) Set 3 for the UCF. 184

7.13 Confusion matrices using gray-scaled pixels for (top) Set 1, (middle) Set 2, and

(bottom) Set 3 for the EASEF. 185

7.14 Confusion matrices using HOG features for (top) Set 1, (middle) Set 2, and (bottom)

Set 3 for the QMMCF. 186

7.15 Confusion matrices using HOG features for (top) Set 1, (middle) Set 2, and (bottom)

Set 3 for the QSVM. 187

7.16 Confusion matrices using HOG features for (top) Set 1, (middle) Set 2, and (bottom)

Set 3 for the TQCF. 188

7.17 Confusion matrices using HOG features for (top) Set 1, (middle) Set 2, and (bottom)

Set 3 for the MMCF. 189

xix

7.18 Confusion matrices using HOG features for (top) Set 1, (middle) Set 2, and (bottom)

Set 3 for the SVM. 190

7.19 Confusion matrices using HOG features for (top) Set 1, (middle) Set 2, and (bottom)

Set 3 for the CCF. 191

7.20 Confusion matrices using HOG features for (top) Set 1, (middle) Set 2, and (bottom)

Set 3 for the mCCF. 192

7.21 Confusion matrices using HOG features for (top) Set 1, (middle) Set 2, and (bottom)

Set 3 for the UCF. 193

7.22 Confusion matrices using HOG features for (top) Set 1, (middle) Set 2, and (bottom)

Set 3 for the EASEF. 194

7.23 Filter performance (%) using gray-scaled pixels and retraining using 1500 meters

range tests frames. 230

7.24 Confusion matrices using gray-scaled pixels and retraining using 1500 meters range

tests frames for the QMMCF. 230

7.25 Confusion matrices using gray-scaled pixels and retraining using 1500 meters range

tests frames for the QSVM. 231

7.26 Confusion matrices using gray-scaled pixels and retraining using 1500 meters range

tests frames for the TQCF. 231

7.27 Confusion matrices using gray-scaled pixels and retraining using 1500 meters range

tests frames for the MMCF. 231

7.28 Confusion matrices using gray-scaled pixels and retraining using 1500 meters range

tests frames for the SVM. 232

7.29 Confusion matrices using gray-scaled pixels and retraining using 1500 meters range

tests frames for the CCF. 232

7.30 Confusion matrices using gray-scaled pixels and retraining using 1500 meters range

tests frames for the mCCF. 232

xx

7.31 Confusion matrices using gray-scaled pixels and retraining using 1500 meters range

tests frames for the UCF. 233

7.32 Confusion matrices using gray-scaled pixels and retraining using 1500 meters range

tests frames for the EASEF. 233

xxi

LIST OF ABBREVIATIONS

ACE average correlation energy

ASEF Average of Synthetic Exact Filter

ASM average similarity measure

ATR automatic target recognition

ATR-ADID ATR Algorithm Development Image Database

CCF generalized Constrained Correlation Filter

CF correlation filter

CHF circular harmonic function

CPCF Constrained PCF

DCCF Distance Classifier Correlation Filter

DFT discrete Fourier transform

EASEF Extended-ASEF

ECPSDF Equal Correlation Peak Synthetic Discriminant Function

EEMACH Eigen-EMACH

xxii

EMACH Extended MACH

EMOSSE Extended-MOSSE

EOTSDF Extended-OTSDF

FIR finite impulse response

FKQCF Fukunaga-Koontz QCF

FOM figure of merit

FR Fisher ratio

GMACH Generalized MACH

HOG Histogram of Oriented Gradients

IDFT inverse DFT

iMACE inequality MACE

iOTSDF inequality OTSDF

KF Kalman filter

LDA linear discriminant analysis

MACE Minimum Average Correlation Energy

MACE-MRH MACE Mellin Radial Harmonic

MACH Maximum Average Correlation Height

mCCF modified Constrained Correlation Filter

MF Matched filter

MFCF Multi-Frame Correlation Filter

xxiii

MICE Minimum Correlation Energy

MINACE Minimum Noise and Correlation Energy

MMCF Maximum Margin Correlation Filter

MMSE minimum mean squared error

MOSSE Minimum Output Sum of Squared Error

MRH Mellin radial harmonics

MRHF Mellin Radial Harmonic Function

MSE mean squared error

MSESDF Minimum Squared Error Synthetic Discriminant Function

MVSDF Minimum Variance Synthetic Discriminant Function

ONV output noise variance

OTCHF Optimal Tradeoff CHF

OTMACH Optimal Tradeoff MACH

OTSDF Optimal Tradeoff Synthetic Discriminant Function

PCE peak-to-correlation energy

PCF Polynomial Correlation Filter

PDCCF Polynomial DCCF

PSD power spectral density

PSR peak-to-sidelobe ratio

QCF Quadratic Correlation Filter

xxiv

QMACE Quadratic MACE

QMMCF Quadratic Maximum Margin Correlation Filter

QMMCF Quadratic Maximum Margin Correlation Filter

QSVM Quadratic SVM

ROI region of interest

RQ Rayleigh quotient

RQQCF Rayleigh Quotient QCF

SAR synthetic aperture radar

SDF synthetic discriminant function

SPREF Spatio-temporal Regularity Flow

SSQSDF Subspace Quadratic Synthetic Discriminant Function

SVM support vector machine

TQCF Transformed QCF

UCF generalized Unconstrained Correlation Filter

UMACE Unconstrained MACE

UMSESDF Unconstrained MSESDF

UOTSDF Unconstrained OTSDF

xxv

CHAPTER 1

INTRODUCTION

Automatic target recognition (ATR) is important in numerous applications including reconnaissance

systems, smart weapons, and unmanned vehicles. ATR is composed of correct localization (finding

where a target is) and correct classification (determining the class-label of a target). Thus, correct

recognition implies correct localization and correct classification. ATR is a difficult problem be-

cause targets from the same class can vary greatly in appearance due to variations in illumination,

viewpoints, and non-rigid deformations. The problem may be further compounded when computa-

tional capacity is limited.

Two different types of algorithms that are used in ATR applications are support vector machines

(SVMs) and correlation filters (CFs). SVMs are designed to maximize the separation between two

classes in some feature space. SVMs are popular for classification and generalize well for targets

not in the training set, but SVMs are not specifically designed for localization. When using SVMs,

regions of interest (ROIs) are usually first extracted using some other detector (e.g., face detector

when doing face recognition) before SVMs are applied. CFs accurately localize the target of interest

in a large scene but their classification performance may not be as good (compared to SVMs) for

targets not in the training set.

In this introductory chapter we provide a high-level overview of CFs and SVMs. We summarize

the contributions of this thesis, which include explaining the sometimes conflicting relationship

1

between localization and generalization, and introducing new linear and quadratic classifiers that

bridge CFs and SVMs to achieve improved localization and classification. We also describe the

datasets we used in our experiments, we introduce the notation that is used throughout the thesis,

and finally we present the organization of the rest of this thesis.

1.1 BACKGROUND

1.1.1 Correlation filters

We offer a high-level overview of CFs in this section and give more details in Chapter 2. CFs

have been investigated for object recognition (note that in this thesis, we use the terms object recog-

nition, target recognition, and ATR interchangeably). Attractive properties of CFs such as shift-

invariance, noise robustness, graceful degradation, and distortion tolerance can be useful in a variety

of pattern recognition applications including face localization [12], pedestrian localization [13], ob-

ject localization and tracking [11], biometric recognition [64, 67, 79], and vehicle recognition [60].

In this approach, a carefully designed template (called a filter in the frequency domain) h(m,n)

is cross-correlated with the query image x(m,n) to produce the output g(m,n). This operation is

efficiently carried out in the frequency domain,

G(u, v) = X(u, v)H∗(u, v), (1.1)

where ∗ denotes the conjugate, and G(u, v), X(u, v) and H(u, v) are the 2-D discrete Fourier

transforms (DFTs) of the correlation output, the query image, and the template, respectively. When

the query image is an authentic match (also called true-class or Class-1) g(m,n) should exhibit a

sharp peak at the center of the target’s location, and when the query image is an impostor (also

called false-class or Class-2) g(m,n) should not have any significant peak. The higher the peak

the higher the probability that the query image is from the authentic class, and the location of the

peak indicates the location of the object. Thus CFs offer the ability to simultaneously localize and

classify objects. Fig. 1.1 shows the desired correlation output to an input image correlated with the

CF template.

2

Figure 1.1: The desired output (right) to an input image (left) correlated with the CF template. CFs can be
designed to output a sharp peak when the input is the desired target.

1.1.2 Support vector machines

We offer a high-level overview of SVMs in this section and give more details in Section 4.1.1.

SVMs have been used in vision tasks such as face localization [51] and pedestrian localization

[21]. Given N training vectors xi ∈ Rd (the elements of these vectors can be the raw pixel values

or features computed from the selected region) and class labels li ∈ {−1, 1} ∀i ∈ {1, · · · , N},

the SVM approach finds the hyperplane that maximizes the soft margin (i.e., L-2 norm distance)

between two classes by solving

min
h,b

1

2
hTh + C

N∑
i=1

ξi (1.2)

s.t. li(h
Txi + b) ≥ 1− ξi,

where superscript T denotes the transpose, h and b represent the hyperplane (h is orthogonal to

the hyperplane and b is the bias), C > 0 is a tradeoff parameter, and ξi ≥ 0 is a penalty term

corresponding to misclassified training samples. The term soft margin refers to the inclusion of this

penalty term that allows some training vectors to be misclassified to account for outliers. When the

penalty terms ξi = 0 for all i, the margin is referred to as a hard margin, and all training vectors

should be correctly classified, i.e., li(hTxi + b) ≥ 1 for all i. Correctly classifying all training

vectors is possible only for linearly separable data. If the data is not linearly separable, penalty

3

terms are required. The solution to Eq. 1.2 is a linear combination of the training vectors, i.e.,

h =
N∑
i=1

aixi, (1.3)

where the coefficients ai are non-zero only for the support vectors.

Assuming that the features used are pixels values (i.e., images with d pixels lexicographically

rearranged into column vectors), one can use the resulting solution h for simultaneous object local-

ization and classification by cross-correlating h (or more correctly the 2-D template represented by

it) with the query image. However, since the template is not optimized to produce sharp correlation

peaks, the resulting correlation plane (i.e., the 2-D correlation output) would exhibit very broad

peaks which may result in poor object localization.

There are some previous approaches that are aimed at achieving shift-invariant classification.

Most of these approaches cross-correlate the template with the query image and are sometimes

known as sliding window algorithms. Scholkopf et al. [70] proposed a method to achieve shift-

invariance by training an SVM on centered images, generating shifted images of the support vec-

tors and re-training the SVM. Decoste et al. [22] described different algorithms for training shift-

invariant SVMs, and Chapelle et al. [18] proposed algorithms to incorporate shift-invariance in

non-linear SVMs. These methods include shift-invariance constraints explicitly as inequalities, i.e.,

min
w,b

wTw + C
N∑
i=1

d∑
j=1

ξji (1.4)

s.t. li(w
Txji + b) ≥ 1− ξji ,

where xji is the image xi shifted by j pixels. For images, j refers to shifts in both the x- and

y-directions. In these methods, the number of constraints gets multiplied by the number of shifts

making the complexity of these methods prohibitive for large number of shifts. In fact, the ap-

proaches in [18, 22, 70] make the classifier invariant to just 1 or 2 pixel shifts in the images, and

hence precise object localization is still very challenging. Thornton et al. [78] proposed what they

called SVM Correlation Filter. They simply treat shifted versions of the true-class training images

as virtual false-class training images, which does not scale well with the number of training images,

4

i.e., the number of training images gets multiplied by the number of shifts making the complexity of

these methods prohibitive for large number of shifts. Moreover, they do not deal with actual false-

class training images as well as their shifted versions which, if included, could further increase the

complexity of the problem making the optimization problem intractable.

1.2 HIGH-LEVEL APPROACH AND CONTRIBUTIONS

In this thesis we investigate the relationship between localization and classification. We intro-

duce a general form of CFs that includes the various criteria normally used, and describe how to

achieve an optimal tradeoff among these criteria. We combine the design principles of SVMs and

our generalized CFs which results in a new type of classifier called the Maximum Margin Corre-

lation Filter (MMCF). The MMCF classifier is less susceptible to over-fitting than traditional CFs

while providing geometric shift-invariance to SVM classifiers. That is, MMCF not only correctly

classifies the query but also determines the relative shift between the query and the training samples

efficiently. MMCF design leads to a more distinguishable peak in the correlation plane. Sharper

correlation peaks lead to better object localization because the values in the vicinity of a sharp peak

will be much smaller than the peak making the peak location accurate. We extend the linear MMCF

to quadratic MMCF, and introduce different features that we can used in all these algorithms.

The main contributions of this thesis are as follows:

• Improved existing CFs. We present two generalized linear CFs that encompass all the state-of-

the-art linear CFs. We present a method to enhanced the performance of quadratic CFs both

in computational speed and performance, and show experimental results. We present a design

that improves recognition performance when using CFs in a sequence of images, i.e., in video,

by using the correlation output with a tracker. We provide experimental results showing that

our algorithms are more efficient and yield improved performance on our dataset.

• Designed a new algorithm that combines the capabilities of SVMs and our generalized CFs

to yield the Maximum Margin Correlation Filter (MMCF). We investigate the relationship

5

between localization and classification, and show that the criteria used to achieved localization

and generalization are conflicting, i.e., one is optimized at the expense of the other, and we

show how to achieve an optimal tradeoff between these criteria. The MMCF classifier is less

susceptible to over-fitting than traditional CFs while providing geometric shift-invariance to

SVM classifiers. We show that MMCF is an extension to both SVM and CFs by deriving

MMCF first starting with an SVM and then with a CF, thus we bridge these two important

research fields. We provide experimental results showing that MMCF usually outperforms

linear CFs and always outperforms SVMs on our dataset.

• Designed the Quadratic MMCF (QMMCF) by extending the maximum margin principles

to quadratic CFs (QCFs). QMMCF is better able to exploit the higher-order statistics of

the data resulting in superior performance. This improved performance comes at the cost of

added computation during the testing. We show the relationship between QCFs and Quadratic

SVMs (QSVMs) (also known as second order Kernel SVMs). We provide experimental re-

sults showing that QMMCF outperforms QCFs and QSVMs on our dataset, as well as MM-

CFs.

• Extended the capabilities of CFs and therefore of MMCF to include vector features. CFs

usually used scalar features, i.e., gray-scaled pixels. We adapt our algorithms to include

non-scalar features, e.g., features such as Histogram of Oriented Gradients (HOG) which

have recently gained much popularity. We provide experimental results showing that MMCF

and QMMCF maintain superior performance over other state-of-the-art linear and quadratic

algorithms, respectively, when using HOG features on our dataset.

1.3 TEST DATASETS

We provide experimental results using real videos. In this section, we present a brief overview

of our dataset and leave the details to Chapter 7. We consider target recognition on a set of infrared

videos where the vehicle’s class-label and location are unknown. We use the recently approved for

6

(a) Pickup (b) SUV (c) BTR70 (d) BRDM2

(e) BMP2 (f) T72 (g) ZSU23-4 (h) 2S3

Figure 1.2: Example of the different classes of targets.

public release ATR Algorithm Development Image Database (ATR-ADID) [17] produced by the

Military Sensing Information Analysis Center. The database contains infrared videos of 512×640

pixels/frame from eight military vehicles (one vehicle in each video), shown in Fig. 1.2, taken at

multiple ranges during day and night time at 30 Hz. The vehicles were driven at about 10 mph

making a circle of diameter of about 100 meters, therefore exhibiting full 360◦ of azimuth rotation.

Each video is 60 seconds long, (i.e., 1800 frames) allowing the vehicle to complete at least one full

circle. We used videos from each vehicle collected during day time at a range of 1000 meters and

compared our results to the ground truth data provided in the database.

1.4 NOTATION

Throughout this thesis, we use the following notational conventions:

• lower case non bold letters, e.g., xi(m,n), denote spatial domain 2-D arrays (also called

planes or images)

– we loosely use xi(m,n) to represent both image i and the (m,n) pixel value of image i

• upper case non bold letters, e.g., Xi(u, v), denote frequency domain 2-D arrays

• lower case bold letters denote vectors (lexicographically arranged) of 2-D frequency domain

7

arrays, e.g, xi denotes Xi(u, v)

– we loosely refer to xi as the ith image when we mean the vectorized 2-D DFT repre-

sentation of the ith image

– we loosely refer to g as the correlation plane when we mean the vectorized 2-D DFT

representation of the correlation plane

– we loosely refer to h as the template (or filter) when we mean the vectorized 2-D DFT

representation of the template

• lower case bold letters with an inverted hat denote vectors of 2-D spatial domain arrays, e.g,

x̌i denotes xi(m,n)

• upper case bold letters denote matrices, e.g., X = [x1, . . . ,xN]

– some matrices are diagonal matrices representations of vectors, e.g., Xi = diag(xi)

• the ⊗ symbol denotes the 2-D correlation operator of either two 2-D arrays, e.g., gi(m,n) =

xi(m,n) ⊗ h(m,n), or of the implied 2-D arrays represented by their vector versions, e.g.,

g = xi ⊗ h

• the � symbol denotes the Hadamard product, e.g., xi � h

• the � symbol denotes the Hadamard divide, e.g., gi � xi

• the overbar symbol denotes the mean of a set, e.g., x̄ = 1
N

∑N
i=1 xi

• the overdot symbol denotes the desired output, e.g., ġi denotes the desired gi

• the superscript T symbol denotes the transpose, e.g., hT

• the superscript asterisk symbol denotes the conjugate, e.g., X∗i

• the superscript dagger symbol denotes the conjugate transpose, e.g., h†

• the partial derivative of a scalar with respect to a vector denotes the gradient, e.g., ∂L∂h

8

1.5 ORGANIZATION

The rest of this thesis is organized as follows. Chapter 2 provides an extensive review of CF

theory and applications. Chapter 3 contains our contributions to CFs; we introduce new CFs and

offer improvements to some existing CFs. Chapter 4 introduces the MMCF. We show the relation-

ship between SVMs and CFs and how MMCF is a generalization of both. Chapter 5 introduces

the Quadratic MMCF as an extension to the linear MMCF, and we show how it relates to QSVMs.

Chapter 6 shows how vector features, in particular HOG features, can be used in our model. Chapter

7 describes the datasets used in the experiments, the pre- and post-processing techniques applied,

and the experimental results. The thesis concludes in Chapter 8 with a summary of the main findings

and contributions of our work and some possible directions for future research.

9

CHAPTER 2

CORRELATION FILTERS

In this chapter we review advances in correlation filter (CF) design during the past three decades.

In the CF approach, a carefully designed template (loosely called a filter) is cross-correlated with

a query image to produce a correlation output also known as correlation plane. This output is then

searched for the highest peak or some other relevant metric such as the peak-to-correlation energy

(PCE) or peak-to-sidelobe ratio (PSR) (explained in Section 7.2.5) and compared to a threshold

to determine whether the query image is from the true-class (also known as the authentic class)

or from the false-class (also known as the impostor class). Among the many advantages that CFs

offer is built-in shift invariance; that is, when an input image is translated by a certain amount, the

correlation output is translated by that same amount.

The most basic CF is the Matched filter (MF). Although the MF is optimal for detecting a known

image in the presence of additive white noise, its recognition performance decreases significantly

when the image has small distortions (e.g., from rigid body motion, lighting conditions, background,

etc). Thus, it requires one MF for every possible distortion, making their use costly and impractical.

In 1980, Hester and Casasent introduced the design of one CF from multiple training images

called the Equal Correlation Peak Synthetic Discriminant Function (ECPSDF) filter [28]. This filter

(and most CFs) depends on a set of training images that captures the expected distortions (in testing)

and builds a template from these images. Although the ECPSDF filter recognition performance is

10

usually inadequate for images not in the training set, it opened the way for future CFs. The Mini-

mum Variance Synthetic Discriminant Function (MVSDF) filter [82] was designed to minimize the

output noise variance in the correlation plane, but also suffers from poor recognition performance.

The Minimum Average Correlation Energy (MACE) filter [41] was a significant advance in CF

designs. This filter is designed to reduce the energy of the correlation output resulting in a sharp

peak at the location of the target facilitating target recognition. The Optimal Tradeoff Synthetic

Discriminant Function (OTSDF) filter [55] and the Minimum Noise and Correlation Energy (MI-

NACE) filter [54] are extensions of the MACE filter to achieve robustness to additive noise. The

Minimum Squared Error Synthetic Discriminant Function (MSESDF) filter [88] is a general form

of the MACE filter that allows the user to specify the desired correlation output. Each of these filters

were constrained to have a certain value for the inner product between each training image and the

filter. This inner product is referred to as the value at the origin (for centered images) or loosely

referred to as the correlation peak in the correlation plane. For example the correlation peak can

be constrained to be 1 for the true-class images and 0 for false-class images so that in testing the

filter response has a high value (near 1) for true-class images and a low value (near 0) for false-class

images. Note that referring to this inner product as the correlation peak is a slight abuse in termi-

nology. The correlation peak is known as the highest value in the correlation plane, and this inner

product, in theory, is not necessarily the highest value. However, in practice the correlation peak is

usually the highest value for training images.

Another advance in CF designs was removing the correlation peak constraints. Removing these

peak constraints increases the solution space and improves the chances of finding a filter with better

recognition performance. The first of these filters are the Maximum Average Correlation Height

(MACH) filter [45] (recently a 3-D MACH filter [63] was used for action classification), the Un-

constrained MACE (UMACE) filter [45], and the Unconstrained MSESDF (UMSESDF) filter [45].

More recent designs include the Average of Synthetic Exact Filter (ASEF) [12] and the Minimum

Output Sum of Squared Error (MOSSE) filter [13]. These unconstrained filters are unconstrained

forms of the mentioned constrained CFs (meaning that they have the same objective functions but

11

do not have the hard correlation peak constraints) with the addition that MACH filter also minimizes

a measure of the scatter of the correlation outputs. Another linear CF is the Distance Classifier Cor-

relation Filter (DCCF) [43] which transforms the training images so that their classes become more

compact and more separated from each other.

A different type of CF design is used when the filter requires invariance to in-plane rotations

or invariance to scale changes. Circular Harmonic Function (CHF) filters are used for in-plane

rotations [29, 92] and Mellin Radial Harmonic Function (MRHF) filters are used for scale changes

[46, 76]. More recent CF designs that are built on these methods are the Optimal Tradeoff CHF

(OTCHF) filters [89] and the MACE Mellin Radial Harmonic (MACE-MRH) filters [31].

Another type of CFs is non-linear CFs. Typically they exhibit superior recognition performance

but require more computation. The Polynomial Correlation Filters (PCFs) [40] design uses a set of

linear filters applied to point nonlinear versions of the input, and their outputs are added to produce

a single output. The Quadratic Correlation Filter (QCF) [36] determines and uses a quadratic non-

linearity to maximize the separation between two classes. The rest of this chapter gives more details

on these CFs.

2.1 MATCHED FILTER AND EFFICIENT APPLICATION OF
CORRELATION FILTERS

The most basic CF is the Matched filter (MF) whose origins are in detecting signals in received

radar returns. It is well known that the MF maximizes the Signal-to-Noise Ratio (SNR) for additive

white noise [87]. In radar the MF output can be used to estimate the relative time shift between

transmitted and received signal, and from that estimate the distance to the target.

In practice, MFs do not work well for target recognition. These filters perform poorly when

a target is distorted. Therefore, too many MFs would be required to account for all the different

distortions (e.g., from rigid body motion, illumination, and/or background changes). However, MFs

serve as a good theoretical foundation to explain how linear CFs works and their shift-invariance

property.

12

We describe how to apply a MF through an example. This same technique is used to apply

many CFs. Suppose that we want to know if and where an image h(m,n) of a given object (e.g.,

tank, helicopter, etc.) is found in the larger image x(m,n). In this example the image h(m,n) of

the desired object is the CF template and x(m,n) is the test image. In most other CFs, h(m,n) is a

template designed from multiple images. A naive technique is to use a shifting window approach,

i.e., comparing h(m,n) with every block (referred hereafter as test chip) within x(m,n) that is of

size equal to h(m,n). For every test chip, we compute the sum of all the elements in the Hadamard

(i.e., point-wise) product between h(m,n) and the test chip. When this sum is above some pre-

specified threshold that test chip is labeled as containing the target of interest. The shifting window

operation, referred to as correlation is expressed as

g(m,n) =
∑
k,l

x(m+ k, n+ l)h(k, l)

= x(m,n)⊗ h(m,n)

= x(m,n) ? h(−m,−n), (2.1)

where ⊗ and ? denotes the 2-D correlation and convolution operator, respectively, and g(m,n) is

called the correlation output. Note that correlation is equivalent to convolution with the spatial-

reversed (i.e., flipped) template.

The correlation operator can be efficiently computed using DFTs as

g(m,n) = F−1 {F{x(m,n)}F∗{h(m,n)}} , (2.2)

where F{·} and F−1{·} denote the 2-D DFT and inverse DFT (IDFT) operators, respectively, and

the superscript ∗ symbol denotes the conjugate. Recall from DFT theory that x and h require zero-

padding in order to avoid circular correlation.

13

2.1.1 Derivation

The goal is to find if x is a good match for the desired pattern h. A simple method is to find the

squared error e, i.e.,

e = |h− x|2

= (h− x)†(h− x)

= h†h + x†x− 2h†x. (2.3)

Assuming that the energy of both x and h has been normalized, i.e., h†h = x†x = 1, then

minimizing the error e is equivalent to maximizing the correlation term h†x. This inner product

is maximized when the vectors are in the same direction. Since the vectors are unit norm then

−1 ≤ h†x ≤ 1 is maximum when h and x are parallel (h†x = 1), i.e., when they are the same.

2.2 EQUAL CORRELATION PEAK SYNTHETIC DISCRIMINANT
FUNCTION (ECPSDF) FILTER

The ECPSDF filter was introduced in 1980 [28], and it is also known as the conventional-SDF.

This filter (like all composite CFs) is designed using a set of training images that attempts to capture

the distortions expected to show up in testing. The filter is designed to be a linear combination of

training images where the combination weights are chosen so that the peak filter response to the

training images is a pre-specified value (usually 1 for the true-class and 0 for the false-class). When

the filter is applied to a test image (not in the training set) the correlation plane tends to have a higher

value (close to the pre-specified value of 1) at the location of the object of interest.

In practice this filter is not used as it gives peaks with very large side lobes which makes recog-

nition more challenging because the center of the peak is not as distinguishable, and it is easily

confused with the peaks and side-lobes from false-class images. This is due to the filter not being

designed to capture the high frequency components of the training images, and, thus, easily confuses

similar targets.

14

2.2.1 Derivation

The constrained peak value is h†xi = ui, where xi represents the ith image, h represents the

filter, and ui is the pre-specified peak filter response (usually ui = 1 ∀i). Another constraint in

the ECPSDF filter design is that the template h is a linear combination of the training images, i.e.,

h =
∑N

i=1 aixi. Let X = [x1, . . . ,xN], then the constraints are

X†h = u, (2.4)

and

h = Xa, (2.5)

where u = [u1, . . . , uN]T , and a = [a1, . . . , aN]T . Substituting Eq. 2.5 into Eq. 2.4 gives

X†Xa = u. (2.6)

The weights can be computed from Eq. 2.6 as follows,

a = (X†X)−1u. (2.7)

Substituting the weights in Eq. 2.7 into Eq. 2.5 gives the filter equation:

h = X(X†X)−1u. (2.8)

2.3 MINIMUM VARIANCE SYNTHETIC DISCRIMINANT FUNCTION
(MVSDF) FILTER

The MVSDF filter was introduced in 1986 [82]. This filter is designed to minimize the cor-

relation output noise variance (ONV) when the input training images are corrupted by additive

zero-mean noise, while simultaneously satisfying the correlation output constraints, i.e., h†xi = ui.

In practice this filter is not commonly used for the same reasons as the ECPSDF filter. In

addition, the filter requires the knowledge of the covariance of the additive noise. If the noise is

assumed to be white noise then the MVSDF filter equals the ECPSDF filter.

15

2.3.1 Derivation

In the spatial domain, the desired peak value is ȟT x̌i = ci, where x̌i represents the ith image,

ȟ represents the template, and ci is the pre-specified filter response. The images are corrupted with

noise so the actual correlation peak is ȟT (x̌i + ň) = ci + cň, where cň = ȟT ň and ň is modeled as

a zero-mean wide sense stationary random process. The ONV is defined as

var(uň) = E{(ȟT ň)2}

= ȟTE{ňňT }ȟ

= ȟTCȟ, (2.9)

where C = E{ňňT } is the d × d covariance matrix of the noise, where d is the dimension of the

template.

var(cň) can be expressed in the frequency domain as follows. The variance is the value at the

origin of the autocorrelation function, and therefore var(cň) can be computed by summing over

all frequencies of Sc, the power spectral density (PSD) of cň. Further, Sc can be computed as the

PSD of ň times the square of the magnitude of the filter frequency response. Thus, the ONV can be

represented in vector notation as follows,

var(cn) =

d−1∑
k=0

Sc[k]

=
d−1∑
k=0

p[k]|h[k]|2

= h†Ph, (2.10)

where d is the dimension of h, p represents the PSD of the input noise ň, and diagonal matrix P

contains p along its diagonal. Using Parseval’s theorem [49],

ci = ȟT x̌i =
1

d
h†xi =

1

d
ui, (2.11)

where ui = dci. The quadratic h†Ph is minimized subject to the linear constraints X†h = u when

16

(using the Lagrange multipliers method explained in Appendix A)

h = P−1X(X†P−1X)−1u. (2.12)

When the additive noise is white noise, i.e., P = αI for α 6= 0, the MVSDF filter equals the

ECPSDF filter. This means that the ECPSDF filter minimizes the ONV under additive white noise.

2.4 MINIMUM AVERAGE CORRELATION ENERGY (MACE) FILTER

The MACE filter was introduced in 1987 [41]. This is the first filter designed to control the

shape of the correlation plane gi(m,n) and not just the peak value h†xi. The correlation output

shape is controlled by minimizing the average correlation energy (ACE) of the correlation plane

from to the training images while simultaneously satisfying the correlation outputs h†xi to yield a

pre-specified value ui for all i.

The MACE filter facilitates recognition by producing very sharp delta-function-like peaks with

minimum sidelobes for desired class training images and no such sharp peaks for false-class im-

ages. However the recognition performance significantly decreases for non-training intra-class im-

ages [16, 41]. In practice many images of interest have strong low frequency components. Since the

MACE filter effectively whitens the spectrum (on the average), it enhances high frequency compo-

nents. It is therefore very sensitive to distortions, i.e., to images outside of the training set, as well

as to additive (high frequency) noise. In practice, although this filter has been successfully used in

pattern recognition applications [68], variations of this filter are more robust (e.g., the OTSDF [55],

GMACE [16], MSESDF [88], and MINACE [54] filters discussed below).

2.4.1 Derivation

The hard constraints are given by h†xi = ui, where xi represents the ith image, h represents the

filter, and ui is the pre-specified peak filter response. The correlation plane in response to image xi

is represented by gi = X∗ih, where diagonal matrix Xi contains xi along its diagonal. The energy

of the correlation output ǧi is Ei = ǧTi ǧi = 1
dg
†
igi. Since all the Ei (i = 1, . . . , N) cannot be

17

simultaneously minimized subject to X†h = u, the ACE is minimized instead. The ACE can be

expressed as

Eavg =
1

N

N∑
i=1

Ei

=
1

Nd

N∑
i=1

g†igi

=
1

Nd

N∑
i=1

h†XiX
∗
ih

=
1

Nd

N∑
i=1

h†Dih

= h†

(
1

Nd

N∑
i=1

Di

)
h

= h†Dh, (2.13)

where diagonal matrix Di = XiX
∗
i contains the power spectrum of xi along its diagonal, diagonal

matrix D = 1
N

∑N
i=1 Di contains the average power spectral density of the training images along

its diagonal, and the 1
d scalar is to account for the fact that inner products in the space domain are

scaled by 1
d in the frequency domain, where d is the dimension of the training vectors xi,

The quadratic h†Dh is minimized subject to the linear constraints X†h = u when (using the

Lagrange multipliers method explained in Appendix A)

h = D−1X(X†D−1X)−1u. (2.14)

Premultiplying by the inverse of the average power spectral density D−1 is equivalent to whitening

the average spectrum of the training images, resulting in sharper peaks (see Section 7.2.4 for a

detailed explanation). In practice, the d × d matrix D is not constructed. Instead large matrix

multiplication can be avoided taking advantage of D’s diagonality.

One measurement of quality of the filter is the correlation output variance for the training images

18

in the presence of additive zero-mean noise. Assuming zero-mean white noise with variance σ2 then

var(ȟ†ň) = E{(ȟ†ň)2}

= E{ȟ†ňň†ȟ}

= ȟ†E{ňň†}ȟ

= σ2ȟ†ȟ

= σ2Eȟ, (2.15)

where Eȟ is the energy of the filter. Note that a filter with higher energy produces higher variance

in the filter output.

A modification of the MACE filter suggested in the original paper is as follows: Correlation

planes will have different energy values. In order to decrease the variation in the energy of these

planes, average energy is modified as Ēavg = 1
N

∑N
i=1 aiEi. Start with ai = 1 ∀i, compute h,

and alter ai according to ai = [Ei/Emax]R, where Emax = maxi(Ei), and R is a constant which

determines the rate of convergence. This suboptimal filter will increase the ACE but reduce the

variation in the energy of the planes.

2.4.2 Extensions

Savvides and Kumar [67] showed that the MACE filter can be efficiently trained online without

inverting a matrix at each iteration, thus reducing the computational requirement. The design is able

to train online and adapt to varying data streams caused by changes in illuminations, backgrounds,

and/or different views (e.g., due to rotation, scale, pose, non-rigid deformation, etc). The application

investigated was biometric authentication systems.

Boddeti, Su, and Kumar [10] used a modified form of the MACE filter for biometric encryption.

The traditional MACE filter produces a sharp peak at the correlation output of centered images. The

modified MACE filter produces multiple peaks at different locations by adjusting the phase of the

images in the frequency domain. This filter is used for face verification and the peak locations are

19

Figure 2.1: Tradeoff between the output noise variance (ONV) and the average correlation energy (ACE).
Note that, although not shown, the values extend beyond 1.

used to encode a secret key of the authorized user.

2.5 OPTIMAL TRADEOFF SYNTHETIC DISCRIMINANT FUNCTION
(OTSDF) FILTER

The OTSDF filter was introduced in 1990 [55, 56]. The ACE is denoted by E1 = h†Dh and the

ONV is denoted by E2 = h†Ph. Minimizing E2 typically leads to high-frequency emphasizing fil-

ters whereas minimizing E2 typically leads to low-frequency emphasizing filters. Thus, minimizing

one criterion significantly deteriorates the performance from the point of view of the other criterion.

An optimal filter is defined such that for a given value of E1, E2 is minimized. Typically, slightly

increasing the value of E1 from its minimum, greatly improves E2, and vice-versa as shown in Fig.

2.1.

In practice this filter is widely used. Since sharp peaks are usually more desirable than noise

robustness, the filter is usually designed to perform more like the MACE filter than the MVSDF

filter.

20

2.5.1 Derivation

The goal is to minimize E1 subject to a specified value of E2 and to the linear constraints

X†h = u (this method could be generalized for more than two criteria). Lagrange multipliers are

used to obtain the following functional

Lβ(h, β,∆) = E1 + βE2 − 2∆†(X†h− u)

= h†Dh + βh†Ph− 2∆†(X†h− u)

= h†Th− 2∆†(X†h− u), (2.16)

where 0 ≤ β ≤ ∞ is a scalar Lagrange multiplier, ∆ 6= 0 is a vector of nonzero Lagrange

multipliers, and T = D + βP. Note that negative values for β are not considered because E2 ≥ 0.

The values of β lie between β = 0 when only E1 is optimized and β = ∞ when only E2 is

optimized. The solution that minimizes one criterion subject to a specific value for the other can be

shown (see Appendix A, Eq. A.2) to be

h = T−1X(X†T−1X)−1u. (2.17)

In order to replace use a bounded scalar, β can be replaced with β = 1
λ(1 − λ), where 0 ≤ λ ≤ 1,

i.e.,

T = D + βP

= D +
1

λ
(1− λ)P

=
1

λ
(λD + (1− λ)P)

∝ λD + (1− λ)P, (2.18)

21

where we define 0
0 = 1, and the 1

λ can be ignored because it does not affect the filter, i.e.,

h =

(
1

λ
T

)−1

X

(
X†
(

1

λ
T

)−1

X

)−1

u

=
λ

λ
T−1X(X†T−1X)−1u

= T−1X(X†T−1X)−1u. (2.19)

For λ = 0 the filter becomes the MVSDF filter and for λ = 1 it becomes the MACE filter. In many

experiments λ takes on a value close to 1 to ensure a sharp peak but also some noise robustness.

2.6 MINIMUM NOISE AND CORRELATION ENERGY (MINACE)
FILTER

The MINACE filter was introduced in 1992 [54]. The authors first developed a filter similar to

the MACE filter called the Minimum Correlation Energy (MICE) filter. Although the MACE filter

guarantees the least average correlation plane energy, it provides little control over the variability

of the correlation plane energies and may result in a biased treatment of a particular training image

(e.g., a training images whose correlation energy is significantly different from the mean correlation

energy of the remaining training images). While the MACE filter averages the spectra of the training

images, MICE uses a tight envelope of the training image spectra. Although the authors claim the

MICE reduces variability of the correlation plane energies, they show no proof to support this claim.

The MINACE filter adds a flat frequency spectrum (the spectrum of white noise) into the MICE

envelope. The MINACE filter is similar to the OTSDF filter providing a tradeoff between the peak

sharpness and noise robustness. However, when the noise is additive noise, OTSDF filter is designed

to outperform (i.e., reduce the ONV given an ACE) any other tradeoff filter (the MINACE filter

included).

In practice MINACE has similar recognition performance to the OTSDF filter. Some publica-

tions claim a slight superior recognition performance over the OTSDF filter [54, 71] and others in-

ferior recognition performance [26, 33] (the experiments cited for inferior recognition performance

22

assumed additive white noise). Because sensor noise and clutter are not strictly additive noise we

cannot show theoretically which filter has superior performance.

2.6.1 Derivation

The goal of MICE is to minimize a tight upper bound Emax for all the energies in the training

images, i.e., find Emax so that

Emax ≥ Ei, (2.20)

where

Ei = h†Dih, (2.21)

where diagonal matrix Di contains the power spectrum of xi along its diagonal. The next step is to

find anEmax of the form (the MINACE authors chose the quadratic assumption probably to emulate

the ACE form)

Emax = h†Th (2.22)

that satisfies Eq. 2.20. One solution is to find a T(k) where

T(k) ≥ Di(k) (2.23)

for all i and for all frequencies k (i.e., for all the diagonal elements of T and Di).

One possible solution is

TSUM =
N∑
i=1

Di (2.24)

which is a scaled version of the T used in the MACE filter. TSUM , however, may result in a biased

treatment of a particular training image. The authors claim that using

T(k) = max[D1(k), · · · ,DN (k)] (2.25)

for each k diagonal element in the matrices provides a tighter bound. However, the authors do not

point out that T may also result in a biased treatment of a particular training image.

The quadratic h†Th is minimized subject to the linear constraints X†h = u when (using the

23

Lagrange multipliers method explained in Appendix A)

h = T−1X(X†T−1X)−1u. (2.26)

The MICE filter is computed substituting the T in Eq. 2.25 into Eq. 2.26. The MICE filter suffers

from the same drawbacks as the MACE filter in that it is not designed to be robust to additive noise.

In order to not emphasize the high frequency components of noise, the power spectrum of the noise

P is added to the MICE envelope, i.e.,

T = max[D1(k), · · · ,DN (k), βP(k)], (2.27)

where 0 ≤ β < ∞ is used as a tradeoff between peak sharpness and noise robustness. When the

power spectrum of the (usually high) frequency components fall below βP(k) for some frequency

k, βP(k) is used for frequency k in order to not overemphasize the high frequency components

when computing the inverse of T. Substituting the T in Eq. 2.27 into Eq. 2.26 results in the

MINACE filter.

2.7 GAUSSIAN MACE (GMACE) FILTER

The GMACE filter was introduced in 1991 [16]. To improve the intraclass recognition perfor-

mance of the MACE filter, an additional constraint is added requiring the filter’s correlations planes

to approximate a specified shape function. This is achieved by minimizing the sum of squared er-

rors between the filter’s outputs and the desired shape of the training images, while simultaneously

satisfying the correlation output constraints, h†xi = ui. Unlike the MACE filter, the GMACE

filter is not designed to minimize the ACE. However if the desired correlation output is a delta

function, then the MACE and GMACE filters are equivalent. The shape the authors chose is a

Gaussian-function-like shape that allows control of the peak’s sharpness by adjusting the width of

the Gaussian. The sharper the peak, the more accurate the localization at the expense of a decrease

in recognition performance for non-training images. The filter becomes more tolerant to distortion

and noise as the width of the Gaussian increases. In practice, a Gaussian with a very small width

24

(almost a delta-function-like) as the specified correlation shape is usually used.

2.7.1 Derivation

The mean squared error (MSE) between the correlation output g and the desired correlation

output ġ of the training images is given as follows,

MSE =
1

Nd

N∑
i=1

|gi − ġ|2

=
1

Nd

N∑
i=1

(
g†igi − 2g†i ġ + ġ†ġ

)
=

1

Nd

N∑
i=1

(
h†XiX

∗
ih− 2h†Xiġ + ġ†ġ

)
= h†

(
1

Nd

N∑
i=1

XiX
∗
i

)
h− 2h†

(
1

Nd

N∑
i=1

Xiġ

)
+

1

d
ġ†ġ

= h†Dh− 2h†p + Ef , (2.28)

where diagonal matrix Xi contains xi along its diagonal, gi = X∗ih represents the correlation

output for the ith image, D = 1
Nd

∑N
i=1 XiX

∗
i is the average power spectral density of the N

training images, ġ represents the desired Gaussian-function-like correlation output, Ef = 1
d ġ
†ġ,

and

p =
1

Nd

N∑
i=1

Xiġ =
1

d
X̄ġ, (2.29)

where diagonal X̄ = 1
N

∑N
i=1 Xi contains the average of the 2-D DFT of the images along its

diagonal.

The expression h†Dh − 2h†p + Ef is minimized subject to the linear constraints X†h = u

when (using the Lagrange multipliers method explained in Appendix A)

h = D−1X(X†D−1X)−1u +
[
I−D−1X(X†D−1X)−1X†

]
D−1p

= hMACE + hshape, (2.30)

where hMACE ensures sharp peaks and hshape serves to control the shape of the correlation plane.

25

2.7.2 Extensions

The Minimum Squared Error Synthetic Discriminant Function (MSESDF) filter introduced in

1992 [88] presents a small extension to the GMACE filter. The derivation includes using dif-

ferent desired shape functions as the correlation output for each of the training images, i.e., =

1
Nd

∑N
i=1 |gi− ġi|2 (MSESDF) instead of 1

Nd

∑N
i=1 |gi− ġ|2 (GMACE). The only difference in the

derivation is that p is replaced by p = 1
Nd

∑N
i=1 Xiġi allowing each desired correlation output to

be unique.

2.8 UNCONSTRAINED CORRELATION FILTERS: MACH AND UMACE
AND UMSESDF FILTERS

The first unconstrained CFs introduced in 1994 [45] were the Maximum Average Correla-

tion Height (MACH) filter, the Generalized MACH (GMACH) filter, the Unconstrained MACE

(UMACE) filter, and the unconstrained MSESDF (UMSESDF) filter. Previous SDF filters were

constrained to produce an inner product of h†xi = ui for the training images, but such hard con-

straints are not necessarily satisfied by the non-training images. Removing these constraints in-

creases the solution space and may improve the chances of finding a filter with better recognition

performance. The draw-back with these filters is their high dependency on the average of the train-

ing images x̄ = 1
N

∑N
i=1 xi which, in some cases, may be too blob-like. This issue is addressed

below in this section’s “Extensions”.

The MACH filter has been investigated for many applications [38, 42, 48, 63, 91]. The MACH

filter is designed to minimize the average (dis-)similarity measure (ASM), i.e., the scatter of the

correlation planes, and simultaneously minimize the ACE and maximize the average correlation

peak intensity (|ḡ|2 = |h†x̄|2). The Generalized MACH filter is designed as a MACH filter with the

additional criterion to minimize the variance of the correlation peaks.

The UMACE and UMSESDF filters are variations of the MACH filter that ignore the ASM or

the ACE, respectively. Numerical results show [45] that MACH filter outperforms these other filters

26

in recognition performance.

Savvides and Kumar [67] showed that the UMACE filter can be efficiently trained online and

adapt to varying data streams caused by changes in illuminations, backgrounds, and/or different

views (e.g., due to rotation, scale, pose, non-rigid deformation, etc).

2.8.1 Derivation

The first step is to compute the ASM between an ideal desired correlation output represented

by ġ and the actual correlation outputs represented by gi. The ideal desired correlation output that

minimizes the distortion of the correlation outputs with respect to ġ measured as the MSE

e =
1

Nd

N∑
i=1

|gi − ġ|2 (2.31)

is found by taking the gradient of e with respect to ġ, setting it equal to zero, and solving for ġ. This

gives

ġOPT =
1

N

N∑
i=1

gi = ḡ. (2.32)

Substituting Eq. 2.32 into Eq. 2.31 gives the ASM,

ASM =
1

Nd

N∑
i=1

|gi − ḡ|2

=
1

Nd

N∑
i=1

|X∗ih− X̄∗h|2

= h†

(
1

Nd

N∑
i=1

(Xi − X̄)(Xi − X̄)∗

)
h

= h†Sh, (2.33)

where diagonal matrix Xi contains xi along its diagonal, and diagonal matrix S = 1
Nd

∑N
i=1(Xi −

X̄)(Xi−X̄)∗ represents a measure of the similarity (or more correctly, dissimilarity) of the training

images to the true-class mean. The ACE is the previously derived quadratic (see Eq. 2.13)

ACE = h†Dh, (2.34)

27

where diagonal matrix D = 1
Nd

∑N
i=1 XiX

∗
i contains the average power spectrum of the training

images along its diagonal.

The average peak intensity may be expressed as

|ū|2 = |h†x̄|2 = h†x̄x̄†h. (2.35)

The filter h that simultaneously maximizes the average peak intensity |ū|2 and minimizes both ASM

and ACE is obtained using the following Rayleigh quotient (RQ),

J(h) =
h†x̄x̄†h

h†Sh + h†Dh
(2.36)

which is maximized (see Appendix B) when

hMACH = (D + S)−1x̄. (2.37)

The GMACH filter is obtained by minimizing the following variance of the correlation peaks,

σ2
g0

=
1

Nd

N∑
i=1

∣∣∣h†xi − h†x̄
∣∣∣2

= h†

(
1

Nd

N∑
i=1

(xi − x̄)(xi − x̄)†

)
h

= h†Vh, (2.38)

where V = 1
Nd

∑N
i=1(xi − x̄)(xi − x̄)†. To minimize this variance and the ASM and ACE, Eq.

2.36 is rewritten as

J(h) =
h†x̄x̄†h

h† (δV + S + D) h
, (2.39)

where δ is used to control the emphasis on V. The solution to Eq. 2.39 is

hGMACH = (δV + D + S)−1x̄. (2.40)

Although the sum of these matrices is a non-diagonal matrix, hGMACH can be efficiently computed

[48] requiring the inversion of an N × N matrix (instead of d × d), where the number of training

images N is usually much less than the number of pixels d.

28

The UMACE filter is obtained by ignoring S and V, i.e.,

hUMACE = D−1x̄. (2.41)

This looks like the MACE filter, i.e.,

hMACE = D−1X(X†D−1X)−1u

= D−1Xa

= D−1x̂, (2.42)

where x̂ represents a weighted average of the training images and a = (X†D−1X)−1u is the weight

vector necessary to satisfy the hard constraints on the training images. It is interesting to note that

by choosing u carefully hMACE can equal hUMACE .

The UMSESDF filter is obtained by ignoring D and V, i.e.,

hUMSEDSF = S−1x̄. (2.43)

However hUMSESDF is not used in practice because it does not produce sharp peaks.

The authors also noted that by normalizing the amplitude of the Fourier transform of the training

images, the D matrix is simplified to

D =
1

dN

N∑
i=1

XiX
∗
i =

1

d
I, (2.44)

where 1
N

∑N
i=1 XiX

∗
i = I which can improve computational efficiency.

2.8.2 Extensions

Savvides, Venkataramani, and Kumar [65] used what they coined the Unconstrained OTSDF

(UOTSDF) filter as an extension to UMACE filter. The UMACE filter’s D in Eq. 2.41 is replaced

by the OTSDF filter’s T in Eq. 2.18, i.e.,

hUMACE = T−1x̄. (2.45)

29

Our experimental results (see Ch. 7) show that UOTSDF outperforms UMACE.

Alkanhal, Kumar, and Mahalanobis [4] proposed the Extended MACH (EMACH) filter to ad-

dress the high dependence on the mean training image. They claim that the response of the MACH

filter (and other SDF filters) to a training image follows too closely the response of the mean training

image, and that the mean training image is not always a good representation of the true-class. In

addition, the MACH filter gives a biased treatment to the low-frequency components represented by

the mean training images (the high frequency components in the training images where much of the

discriminatory information is found can be blurred when computing the mean). The EMACH filter

modifies the objective function in Eq. 2.36 to

J(h) =
h†Eh

h†Sh + h†Dh
, (2.46)

where

S =
1

Nd

N∑
i=1

(
Xi − (1− β)X̄

) (
Xi − (1− β)X̄

)∗
, (2.47)

and

E =
1

Nd

N∑
i=1

(xi − βx̄)(xi − βx̄)†, (2.48)

where β is a value between 0 and 1 (β = 0 is the MACH filter). This is maximized (see Appendix

B) when h is the eigenvector corresponding to the largest eigenvalue of (D + S)−1E.

Kumar and Alkanhal [83] proposed the Eigen-EMACH (EEMACH) filter. This follows the same

design as the EMACH filter but instead approximates the matrix S by its dominant eigenvectors.

This causes the filter to be less specific on the training images and generalize better to true-class

images outside the training set.

A comparative study by Kerekes and Kumar [33] show that MACH outperformed the EEMACH

and EMACH filters using gray-scaled images. Another study by Van Nevel and Mahalanobis [48]

showed that the GMACH filter outperformed the MACH and EMACH filters using LADAR data.

A natural extension to the MACH filter is the Optimal Tradeoff MACH (OTMACH) filter pre-

30

sented by Kumar, Carlson, and Mahalanobis [84] using the ideas from the OTSDF filter (see Section

2.5). Note that in their paper they referred to that filter as the OTSDF filter but others (e.g., [7]) call

it the OTMACH filter to avoid confusion with the the OTSDF filter introduced in Section 2.5. In

this design they minimize ASM (or modify ASM–see Eq. 2.47), ONV, and ACE. The solution is

similar to Eq. 2.37,

h = T−1x̄, (2.49)

where T = αP+βD+γS is a linear combination of the ONV, ACE, and ASM. Banerjee, Chandra,

and Datta [7] proposed using a neural network to find suitable parameters α, β, γ for face recogni-

tion.

A comparative study by Singh and Kumar [75] showed that the OTMACH filter outperformed

the MACH, EMACH, DCCF (discussed in Section 2.14), and Polynomial DCCF (discussed in Sec-

tion 2.15) filters, and that the EMACH filter outperformed the MACH filter on synthetic aperture

radar (SAR) data.

2.9 ACTION MACH FILTER

The Action MACH filter was introduced in 2008 [63]. Instead of using a set of 2-D training

images, the Action MACH filter uses a set of 3-D training videos. The 3-D DFT of each video is

computed, vectorized, and used for training in the same exact way that vectorized images are used

to train the MACH filter.

The Action MACH filter can be designed using both scalar and vector features with some modi-

fications to the DFT computations when using feature vectors. The types of features used in training

must also be used for testing. For scalar features the temporal derivative of each pixel is computed.

Vector features used the Spatio-temporal Regularity Flow (SPREF) [2] features. Each pixel is re-

placed by a 3-D feature vector that represents the direction along which the intensity changes the

least. In addition, the Clifford Fourier transform [23] is used in order to compute Fourier transforms

of the videos with vector features.

31

2.9.1 Derivation

The derivation is the same as the MACH filter (see Section 2.8) using 3-D (instead of 2-D) DFTs

for the training and testing videos.

2.10 AVERAGE OF SYNTHETIC EXACT FILTER (ASEF)

The ASEF was introduced in 2009 [12]. This unconstrained filter is designed by building one

filter hi for each training image and then taking the average of all the filters to obtain h. Averaging

the filters results in a filter that avoids over-fitting to the training set. Each filter hi exactly maps

a training image to a desired correlation plane ġi. Similar to the GMACE filter, the authors chose

a Gaussian-function-like shape as the desired correlation plane and used the Gaussian’s width to

tradeoff between sharp peaks for easy localization (small width), and broad peaks for distortion

(large width). In their design the images do not need to be centered as long as the Gaussian’s center

is at the target’s centered location. In fact, it is possible to have multiple targets in one training

image [13] with Gaussians-function-like shapes centered at each of the target locations.

The filter has been successfully used for ocular localization (the eye and surrounding regions)

[12] and for pedestrian localization [13]. One disadvantage of ASEF is the large number of training

images required (in the order of hundreds) for good recognition performance. This disadvantage is

addressed by the MOSSE filter discussed in the next section.

2.10.1 Derivation

Given the 2-D DFT of a training image Xi(k, l) and a desired 2-D DFT of a correlation plane

Ġi(k, l), the exact filter is

Hi(k, l) =
Ġi(k, l)

X∗i (k, l)
, (2.50)

and the ASEF is

H(k, l) =
1

N

N∑
i=1

Hi(k, l). (2.51)

32

If ASEF is trained on a small number of images, the filter can become unstable when some frequen-

cies of Xi are close to zero.

2.11 MINIMUM OUTPUT SUM OF SQUARED ERROR (MOSSE) FILTER

The MOSSE filter was introduced in 2010 [11]. This filter is designed to minimize the MSE

between the desired correlation plane and the actual correlation plane. The difference between the

MOSSE and MSESDF filter is that no hard constraints are placed on the correlation peak in the

MOSSE filter (recall that the MSESDF filter required X†h = u), and that the targets do not need to

be centered in the training set (this second difference is insignificant when viewed in the frequency

domain). The simplicity of the MOSSE filter allows the filter to adapt in real time to changes due

to rigid-body motion, deformation, and/or lighting. The filter adapts by weighting new images

more, with weights for older images decaying exponentially over time. The application investigated

was adaptively recognizing faces and other objects-of-interest as the images go through different

changes in illuminations and poses. It was reported that the filter processed frames at a rate of 669

frames per second using a 2.4 GHz Core 2 Duo CPU.

2.11.1 Derivation

The MSE between the correlation output g and the desired correlation output ġi of the training

images is given by

MSE =
1

Nd

N∑
i=1

|gi − ġi|2

=
1

Nd

N∑
i=1

(
g†igi − 2g†i ġ + ġ†i ġi

)
=

1

Nd

N∑
i=1

(
h†XiX

∗
ih− 2h†Xiġi + ġ†i ġi

)
= h†

(
1

Nd

N∑
i=1

XiX
∗
i

)
h− 2h†

(
1

Nd

N∑
i=1

Xiġi

)
+

1

Nd

N∑
i=1

ġ†i ġi

= h†Dh− 2h†p + Ef , (2.52)

33

where diagonal matrix Xi contains the entries of the xi along its diagonal, D = 1
Nd

∑N
i=1 XiX

∗
i ,

p = 1
Nd

∑N
i=1 Xiġi, Ef = 1

Nd

∑N
i=1 ġ†i ġi, and ġ represents the desired correlation output. The h

that minimizes the MSE is found by taking its gradient and setting it equal to zero, i.e.,

2Dh− 2p = 0, (2.53)

and solving for h gives,

h = D−1p

=

(
N∑
i=1

XiX
∗
i

)−1(N∑
i=1

Xiġi

)
, (2.54)

which can be expressed as

H(k, l) =

∑N
i=1Xi(k, l)Ġ

∗
i (k, l)∑N

i=1Xi(k, l)X∗i (k, l)
. (2.55)

This filter can be modified so that it can be adapted to new training images. For a new frameXi(k, l)

the filter is updated as follows,

Hi(k, l) =
Ai(k, l)

Bi(k, l)
, (2.56)

where

Ai(k, l) = η(Xi(k, l)Ġ
∗
i (k, l)) + (1− η)Ai−1(k, l), (2.57)

and

Bi(k, l) = η (Xi(k, l)X
∗
i (k, l)) + (1− η)Bi−1(k, l), (2.58)

where η is the learning rate (the MOSSE authors used η = 0.125).

2.12 OPTIMAL TRADEOFF CIRCULAR HARMONIC FUNCTION
(OTCHF) FILTER

The OTCHF was introduced in 2000 [89]. Circular harmonic functions (CHFs) were used in

1982 [29] to design in-plane rotation invariant filters giving a constant output as the input is rotated.

However, that design uses only one harmonic and, therefore, ignores a lot of the discriminatory

pattern information. In 1985, Schils and Sweeney [69] showed that the ECPSDF (see Section 2.2)

34

can be used to produce rotationally-invariant filters using multiple in-plane rotations as training

images and taking the limit of the interval between each rotation to zero (i.e., having an infinite

number of images). In 1986, Kumar [90] introduced a filter design where the correlation output can

be varied in a specified manner with input rotation. The OTCHF filter improves upon this design

and includes the ACE, ONV, and ASM criteria discussed previously. The result is a filter whose

correlation planes have sharp peaks at the object’s locations for a specific range of rotations (e.g.,

between 45◦ and 90◦) and low values elsewhere.

2.12.1 Derivation

Let X(ρ, φ), H(ρ, φ), and G(ρ, φ) be the frequency domain polar representation of X(u, v),

H(u, v), and G(u, v), respectively, where ρ = (u2 + v2)
1
2 corresponds to the magnitude and φ =

arctan(vu) corresponds to the angle between u and v, respectively. The correlation value at the

origin (the correlation peak) is

g0 =

ˆ ∞
−∞

ˆ ∞
−∞

G(u, v)dudv

=

ˆ ∞
0

ˆ 2π

0
G(ρ, φ)ρdφdρ

=

ˆ ∞
0

ˆ 2π

0
X(ρ, φ)H∗(ρ, φ)ρdφdρ (2.59)

(note that in Cartesian coordinates the integration is over dudv and in polar coordinates is over

ρdφdρ).

Periodic signals can be expressed using a Fourier series expansion. SinceX(ρ, φ),H(ρ, φ), and

G(ρ, φ) are periodic in φ with period 2π they can be expressed as

X(ρ, φ) =
∞∑

k=−∞
Xk(ρ)ejkφ, (2.60)

and

Xk(ρ) =
1

2π

ˆ 2π

0
X(ρ, φ)e−jkφdφ, (2.61)

where Xk(ρ) is the kth CHF of X(u, v), and similarly for H(ρ, φ) and G(ρ, φ). Substituting these

35

Fourier series expansions back into Eq. 2.59 gives

g0 =

ˆ ∞
0

ˆ 2π

0

∞∑
k=−∞

Xk(ρ)ejkφ
∞∑

l=−∞
H∗l (ρ)e−jlφρdφdρ

=
∞∑

k=−∞

∞∑
l=−∞

ˆ 2π

0
ej(k−l)φdφ

ˆ ∞
0

Xk(ρ)H∗l (ρ)ρdρ. (2.62)

Noting that

ˆ 2π

0
ej(k−l)φdφ =


2π k = l

0 k 6= l

, (2.63)

Eq. 2.62 can be rewritten as follows,

g0 =
∞∑

k=−∞
2π

ˆ ∞
0

Xk(ρ)H∗k(ρ)ρdρ

=
∞∑

k=−∞
Ck, (2.64)

where

Ck = 2π

ˆ ∞
0

Xk(ρ)H∗k(ρ)ρdρ (2.65)

is loosely referred to as the kth CHF weight.

A rotation in the input Cartesian image is equivalent to a circular shift in the polar image along

the φ axis which is equivalent to a phase change in the frequency polar domain (note that Eq. 2.60

changes to X(ρ, φ + θ) =
∑∞

k=−∞Xk(ρ)ejk(φ+θ)). The correlation peak value of an input image

rotated by θ is therefore

gθ =

∞∑
k=−∞

2π

ˆ ∞
0

(
Xk(ρ)ejkθ

)
H∗k(ρ)ρdρ

=
∞∑

k=−∞
Cke

jkθ. (2.66)

In order to have a constant correlation peak for all rotations, i.e., gθ = c ∀θ, only one CHF

weight can be used in Eq. 2.66. This is because using more than one CHF weight includes oscil-

latory terms from ejkθ. However, if only one CHF weight is nonzero then all but one of the terms

of the Fourier expansion are ignored which leads to poor discrimination. One solution is to find co-

36

efficients Ck that approximate a desired gθ, e.g., a high value between 45◦ and 90◦ and low values

everywhere else. This is equivalent to the finite impulse response (FIR) filter design problem. There

are excellent FIR designs methods presented elsewhere [49] that can be used to find the coefficients

Ck.

Once the coefficients Ck are computed, Eq. 2.65 is used to solve for the CHFs Hk(ρ). There

are infinite solutions, and therefore other constraints such as ONV, ACE and ASM can be included

to find a unique solution.

The ONV is obtained by computing the variance at the correlation peak due to additive noise.

Assuming the noise to be isotropic (i.e., Pn(ρ, φ) = Pn(ρ)),

ONV =

ˆ ∞
−∞

ˆ ∞
−∞

Pn(u, v)|H(u, v)|2dudv

=

ˆ ∞
0

ˆ 2π

0
Pn(ρ, φ)|H(ρ, φ)|2ρdφdρ

=

ˆ ∞
0

ˆ 2π

0
Pn(ρ)|H(ρ, φ)|2ρdφdρ

=

ˆ ∞
0

ˆ 2π

0
Pn(ρ)

∞∑
k=−∞

∞∑
l=−∞

Hk(ρ)H∗l (ρ)ej(k−l)φρdφdρ

=
∞∑

k=−∞

∞∑
l=−∞

ˆ ∞
0

Pn(ρ)Hk(ρ)H∗l (ρ)ρdρ

[ˆ 2π

0
ej(k−l)φdφ

]

= 2π
∞∑

k=−∞

ˆ ∞
0

Pn(ρ)|Hk(ρ)|2ρdρ. (2.67)

37

The ACE is obtained by averaging the correlation energies for each angle θ, i.e.,

ACE =
1

2π

ˆ 2π

0

ˆ ∞
0

ˆ 2π

0
|G(ρ, φ+ θ)|2ρdφdρdθ

=
1

2π

ˆ 2π

0

ˆ ∞
0

ˆ 2π

0
|X(ρ, φ+ θ)|2|H(ρ, φ)|2ρdφdρdθ

=
1

2π

¨ 2π

0

ˆ ∞
0

∑
k,l

Xk(ρ)X∗l (ρ)ej(k−l)(φ+θ)

[∑
m,n

Hm(ρ)H∗n(ρ)ej(m−n)φ

]
ρdρdφdθ

=
∑

k,l,m,n

ˆ ∞
0

Xk(ρ)X∗l (ρ)Hm(ρ)H∗n(ρ)ρdρ

ˆ 2π

0
ej(k−l+m−n)φdφ

[
1

2π

ˆ 2π

0
ej(k−l)θdθ

]

=

∞∑
k=−∞

∞∑
m=−∞

∞∑
n=−∞

ˆ ∞
0
|Xk(ρ)|2Hm(ρ)H∗n(ρ)ρdρ

[ˆ 2π

0
ej(m−n)φdφ

]

= 2π

∞∑
k=−∞

∞∑
m=−∞

ˆ ∞
0
|Xk(ρ)|2|Hm(ρ)|2ρdρ

= 2π
∞∑

m=−∞

ˆ ∞
0

PX(ρ)|Hm(ρ)|2ρdρ, (2.68)

where

PX(ρ) =
∞∑

k=−∞
|Xk(ρ)|2 (2.69)

is the sum of the power spectra of the CHF Xk(ρ).

The ASM measures the dissimilarities in the correlations planes for all possible angles θ, i.e.,

ASM =
1

2π

ˆ 2π

0

ˆ ∞
0

ˆ 2π

0
|G(ρ, φ+ θ)− Ḡ(ρ, φ)|2ρdφdρdθ

=
1

2π

ˆ 2π

0

ˆ ∞
0

ˆ 2π

0
|X(ρ, φ+ θ)H(ρ, φ)− X̄(ρ, φ)H(ρ, φ)|2ρdφdρdθ

=
1

2π

ˆ 2π

0

ˆ ∞
0

ˆ 2π

0
|X(ρ, φ+ θ)− X̄(ρ, φ)|2|H(ρ, φ)|2ρdφdρdθ, (2.70)

38

where

X̄(ρ, φ) =
1

2π

ˆ 2π

0
X(ρ, φ+ ψ)dψ

=
1

2π

ˆ 2π

0

∞∑
z=−∞

Xz(ρ)ejz(φ+ψ)dψ

=
∞∑

z=−∞
Xz(ρ)ejzφ

[
1

2π

ˆ 2π

0
ejzψdψ

]
= X0(ρ). (2.71)

Substituting Eq. 2.71 into Eq. 2.70 gives

ASM =
1

2π

ˆ 2π

0

ˆ ∞
0

ˆ 2π

0
|X(ρ, φ+ θ)−X0(ρ)|2|H(ρ, φ)|2ρdφdρdθ

=
1

2π

ˆ 2π

0

ˆ ∞
0

ˆ 2π

0

∑
k,l 6=0

Xk(ρ)X∗l (ρ)ej(k−l)(φ+θ)
∑
m,n

Hm(ρ)H∗n(ρ)ej(m−n)φρdφdρdθ

= 2π
∑
k 6=0

∞∑
m=−∞

ˆ ∞
0
|Xk(ρ)|2|Hm(ρ)|2ρdρ

= 2π
∞∑

m=−∞

ˆ ∞
0

PASM (ρ)|Hm(ρ)|2ρdρ, (2.72)

where

PASM (ρ) =
∑
k 6=0

|Xk(ρ)|2. (2.73)

To minimize the ASM, ACE, and ONV, Refregier [55] showed that an optimal tradeoff among

quadratic criteria can be obtained by minimizing a weighted sum of the criteria. The filter is obtained

minimizing the following figure of (de-)merit (FOM) subject to Eq. 2.65,

FOM = ACE + γASM + βONV

= 2π

∞∑
m=−∞

ˆ ∞
0

PFOM (ρ)|Hm(ρ)|2ρdρ, (2.74)

where

PFOM (ρ) = PX(ρ) + γPASM (ρ) + βPn(ρ) (2.75)

and γ, β ≥ 0. It can be shown that minimizing this quadratic criterion subject to the linear con-

39

straints yields

Hk(ρ) = λ∗k
Xk(ρ)

PFOM (ρ)
, (2.76)

where

λk =
Ck´ 2π

0
|Xk(ρ)|2
PFOM (ρ)ρdρ

. (2.77)

2.13 MACE-MELLIN RADIAL HARMONIC (MACE-MRH) FILTER

The MACE-MRH filter was introduced in 2006 [31]. The Mellin transform is invariant to scale

changes in the spatial domain (this is similar to the Fourier transform magnitude being invariant to

shifts in the spatial domain) and is commonly used in pattern recognition applications; however, it

requires the images to be centered. Mellin radial harmonics (MRH) were first used in 1988 [46] to

design shift-invariant filters that were also invariant to scale. However, that design only uses one

harmonic and therefore ignores much of the discriminatory pattern information. The MACE-MRH

filter only provides scale invariance for a limited range of scales but is able to use more harmonics,

therefore improving discrimination. In addition it applies the ACE criterion discussed previously to

have sharp peaks at the object’s location in the correlation plane.

2.13.1 Derivation

LetX(ρ, φ),H(ρ, φ), andG(ρ, φ) be the polar representations ofX(u, v),H(u, v), andG(u, v),

respectively, where ρ = (u2 + v2)
1
2 corresponds to the magnitude and φ = arctan(vu) corresponds

to the angle between u and v, respectively. The MRH expansion of a signal X(ρ, φ) is [46]

X(ρ, φ) =

∞∑
k=−∞

Xk(φ)ρj2πk−1, (2.78)

and

Xk(φ) = L−1

ˆ R

r0

X(ρ, φ)ρ−j2πk−1ρdρ, (2.79)

where

L = lnR− ln r0 (2.80)

40

is a positive integer value (this is to satisfy the orthogonality required among the MRH components

[46]), and the limits of integration are chosen to expand the radial bandwidth of the pattern, e.g., r0

is a positive number close to zero and R a number greater than the radial bandwidth ρmax.

The correlation peak using the MRH expansion is (see Eq. 2.59) given as follows,

g0 =

ˆ ∞
0

ˆ 2π

0
X(ρ, φ)H∗(ρ, φ)ρdφdρ

≈
ˆ R

r0

ˆ 2π

0
X(ρ, φ)H∗(ρ, φ)ρdφdρ

=

ˆ R

r0

ˆ 2π

0

[∞∑
k=−∞

Xk(φ)ρj2πk−1

][∞∑
l=−∞

H∗l (φ)ρ−j2πl−1

]
ρdφdρ

=

∞∑
k=−∞

∞∑
l=−∞

ˆ 2π

0
Xk(φ)H∗l (φ)dφ

[ˆ R

r0

ρj2π(k−l)−2ρdρ

]

=

∞∑
k=−∞

∞∑
l=−∞

ˆ 2π

0
Xk(φ)H∗l (φ)dφ [Lδ(k − l)]

= L
∞∑

k=−∞

ˆ 2π

0
Xk(φ)H∗k(φ)dφ

= L
∞∑

k=−∞
Ck, (2.81)

where

Ck =

ˆ 2π

0
Xk(φ)H∗k(φ)dφ. (2.82)

The radial integral
´ R
r0
ρj2π(k−l)−2ρdρ = Lδ(k − l) because of the orthogonality of MRH compo-

nents. This can be shown mathematically as follows. Note that

ˆ R

r0

ρj2π(k−l)−2ρdρ =

ˆ r0eL

r0

ρj2π(k−l)−1dρ (2.83)

41

(R = r0e
L comes from Eq. 2.80). When k = l

ˆ r0eL

r0

ρj2π(k−l)−1dρ =

ˆ r0eL

r0

ρ−1dρ

= ln ρ

∣∣∣∣r0eL
ρ=r0

= ln
(
r0e

L
)
− ln r0

= ln r0 + ln
(
eL
)
− ln r0

= L, (2.84)

and when k 6= l

ˆ r0eL

r0

ρj2π(k−l)−1dρ =
1

j2π(k − l)
ρj2π(k−l)

∣∣∣∣r0eL
ρ=r0

=
1

j2π(k − l)

[(
r0e

L
)j2π(k−l) − (r0)j2π(k−l)

]
=

1

j2π(k − l)

[
ej2π(k−l)L (r0)j2π(k−l) − (r0)j2π(k−l)

]
= 0 (2.85)

noting that (k − l)L is an integer and ej2πτ = 1 for any integer τ .

When an input image is scaled by β > 0, i.e., x̂(m,n) = x(βm, βn) the Fourier transform is

given by X̂(u, v) = 1
β2X

(
u
β ,

v
β

)
and the polar 2-D FT is given by

X̂(ρ, φ) =
1

β2
X

(
ρ

β
, φ

)
(2.86)

with MRHs

X̂k(φ) = L−1

ˆ R

r0

X̂(ρ, φ)ρ−j2πk−1ρdρ

= L−1

ˆ R

r0

1

β2
X

(
ρ

β
, φ

)
ρ−j2πk−1ρdρ

= L−1

ˆ R
β

r0
β

1

β2
X(ρ̃, φ)(βρ̃)−j2πk−1(βρ̃)βdρ̃

= β−j2πk−1L−1

ˆ R
β

r0
β

X(ρ̃, φ)ρ̃−j2πk−1ρ̃dρ̃

≈ β−1β−j2πkXk(φ), (2.87)

42

where ρ̃ = ρ
β . If β is a large value, R is chosen to be large enough so that Rβ still encompasses the

radial bandwidth of X(ρ, φ) and the approximation is valid. The correlation peak using this scaled

image is (see Eq. 2.81)

g(β) = β−1L
∞∑

k=−∞
Ckβ

−j2πk

= β−1L
∞∑

k=−∞
Cke

ln(β−j2πk)

= β−1L

∞∑
k=−∞

Cke
−j2πk lnβ. (2.88)

Selecting only one MRH weight gives

g̃(β) = β−1LCMe
−j2πM lnβ. (2.89)

Then, a scale change results in only an additional phase factor in the correlation output. The relative

intensity distribution (e.g., using PCE or PSR–see Section 7.2.5) remains unaffected. Therefore the

filter is invariant to shifts and scales. However, if only one MRH weight is nonzero then all but one

of the terms of the Fourier expansion are ignored which leads to poor discrimination. The novelty

of MACE-MRH is that it provides a tradeoff between discrimination and scale-control.

If a desired scale response gβ is specified for different β values then the problem becomes

finding theCk that produces such a response. This can be accomplished by taking advantage of finite

impulse response (FIR) design methods. For this purpose, an invertible logarithmic transformation

L is defined as follows,

gL(β) = L{g(β)} =
1

L
e
Lβ
2π g

(
e
Lβ
2π

)
. (2.90)

43

Applying it to Eq. 2.88 yields

gL(β) =
1

L
e
Lβ
2π

(
e
Lβ
2π

)−1
L

∞∑
z=−∞

Cze
−j2πz ln

(
e
Lβ
2π

)

=

∞∑
z=−∞

Cze
−jβ(zL)

=

∞∑
k=−∞

Cke
−jβk

≈
K∑

k=−K
Cke

−jβk, (2.91)

where k = zL. Eq. 2.91 is equivalent to the FIR filter design problem. There are excellent FIR

designs methods presented elsewhere [49] that can be used to find the coefficients Ck.

Once the coefficients Ck are computed, Eq. 2.82 can be used to solve for the MRHs Hk(φ).

There are infinite solutions, and therefore other constraints such as ONV, ACE and ASM can be

included to find a unique solution.

The MACE-MRH filter uses the ACE criterion as follows. Let PX(φ) represent the average of

X(ρ, φ) along the radial axis (from r0 to R). Then the ACE can be computed as

ACE =

ˆ R

r0

ˆ 2π

0
PX(φ)|H(ρ, φ)|2ρdφdρ

=

ˆ 2π

0
PX(φ)

∞∑
k=−∞

∞∑
l=−∞

Hk(φ)H∗l (φ)

ˆ R

r0

ρj2π(k−l)−2ρdρdφ

= L

∞∑
k=−∞

ˆ 2π

0
PX(φ)|Hk(φ)|2dφ. (2.92)

The MRH Hk(φ) is obtained by solving

min
Hk(φ)

ˆ 2π

0
(PX(φ) + α)|Hk(φ)|2dφ (2.93)

s.t.

ˆ 2π

0
Xk(φ)H∗k(φ)dφ = Ck.

The regularization parameter α is added in case PX(φ) = 0 for some φ. This is the equivalent to

including the ONV criterion and assuming that the power spectrum of the noise along the radial axis

44

is Pn(φ) = α ∀φ. The solution to Eq. 2.93 is

Hk(φ) = λ∗k
Xk(φ)

PX(φ) + α
, (2.94)

where

λk =
Ck´ 2π

0
|Xk(φ)|2
PX(φ)+αdφ

. (2.95)

2.14 DISTANCE CLASSIFIER CORRELATION FILTER (DCCF)

The DCCF for two-class classification was introduced in 1993 [43] and extended to multiclass

in 1996 [44]. The DCCF transforms the images for each class so that transformed images of each

class are compact and separated from the other classes. In other words, the goal is to maximize

the distance between transformed class means and minimize the transformed in-class scatter. The

formulation is similar to linear discriminant analysis (LDA) when using the frequency domain of the

images; the difference being in how the in-class scatter is computed. LDA minimizes the scatter of

the projected (a single value) in-class images while DCCF minimizes the scatter of the transformed

(an entire plane) in-class images.

This filter does not appear to be widely used. There are two problems with DCCF. First, unlike

other CFs, DCCF is not designed to provide a sharp peak at the target’s location. This reduces

the shift-invariance advantage of CFs. In their experiments the authors used centered images so no

localization (i.e., shift-invariance) performance is given. Second, the metric used during training

is not the metric used for testing. That is, DCCF is trained to maximize the squared difference of

the projected class means (or correlation peak values), but in testing the entire correlation plane is

used. The authors claim that by making the in-class correlation planes similar, then the in-class peak

values should be similar to each other. However, overall consistency in the correlation planes does

not necessarily mean consistency in the correlation peak values. The DCCF may be better used as a

post-localization stage to classify a target between a group of already localized targets.

45

2.14.1 Derivation

The goal is to maximize the separation between two classes. Under transform h, the squared

difference between two class means is

A(h) =
1

d
|h†x̄1 − h†x̄2|2

=
1

d
h†(x̄1 − x̄2)(x̄1 − x̄2)†h

= h†SAh, (2.96)

where x̄c represents the mean image for Class c, and SA = 1
d(x̄1 − x̄2)(x̄1 − x̄2)† (note that SA

is not a diagonal matrix). For C classes, where C > 2, A(h) is the sum of the squared differences

between the transformed mean of each class and the transformed global mean, i.e.,

A(h) =
1

d

C∑
c=1

|h†x̄c − h†x̄|2

=
1

d
h†

(
C∑
c=1

(x̄c − x̄)(x̄c − x̄)†

)
h

= h†SAh, (2.97)

where SA = 1
d

∑C
c=1(x̄c − x̄)(x̄c − x̄)†, and x̄ represents the global mean.

In addition, the in-class scatter is minimized. For this purpose, the in-class scatter can be repre-

sented by adding the ASM (see Eq. 2.33) over all classes, i.e.,

B(h) =
C∑
c=1

N∑
i=1

1

d
h†(Xic − X̄c)(Xic − X̄c)

∗h

=
1

d
h†

(
C∑
c=1

N∑
i=1

(Xic − X̄c)(Xic − X̄c)
∗

)
h

= h†SBh, (2.98)

where diagonal matrix SB = 1
d

∑C
c=1

∑N
i=1(Xic − X̄c)(Xic − X̄c)

∗, diagonal matrix Xic contains

the 2-D DFT of the ith image of Class c along its diagonal, and diagonal matrix X̄c contains x̄c

46

along its diagonal. For comparison, in LDA under transform h the in-class scatter is

σ2
c =

1

d

N∑
i=1

|h†xic − h†x̄c|2

= h†

(
1

d

N∑
i=1

(xic − x̄c)(xic − x̄c)
†

)
h, (2.99)

where xic represents the ith image in Class c. The total scatter in LDA can be represented as the

sum of each in-class variance, i.e.,

C(h) =
C∑
c=1

σ2
c

= h†

(
1

d

C∑
c=1

N∑
i=1

(xic − x̄c)(xic − x̄c)
†

)
h

= h†SCh, (2.100)

where SC = 1
d

∑C
c=1

∑N
i=1(xic− x̄c)(xic− x̄c)

† (note that SC is not a diagonal matrix). It is worth

noting that the diagonal elements of SC are the same as the diagonal elements of SB . Also if the

number of dimensions d is greater than N − c (this is usually the case in most CF problems) then

SC is singular, whereas SB is non-singular.

In order to maximize A(h) and minimize B(h) simultaneously, the ratio

J(h) =
A(h)

B(h)
=

h†SAh

h†SBh
(2.101)

is maximized with respect to h. The optimum solution (see Appendix B) is the dominant eigenvector

of S−1
B SA.

To test a test chip z, the squared difference between the transformed image and the transform of

47

each class mean is computed, i.e.,

l(z) = min
c
|H∗z−H∗x̄c|2

= min
c

(
x̄†cHH∗x̄c − 2z†HH∗x̄c + z†HH∗z

)
= min

c

(
x̄†cHH∗x̄c − 2z†HH∗x̄c

)
= min

c

(
bc − z†hc

)
= max

c
(z†hc − bc) (2.102)

where l(z) represents the class-label of image z, diagonal matrix H contains h along its diagonal,

bc = x̄†cHH∗x̄c, and hc = 2HH∗x̄c. To test an image z larger than the training image, the spatial

domain representation of z and hc is cross-correlated, the scalar bc is subtracted from the entire

correlation plane (i.e., from each value in the plane), and then the maximum value for all the classes

c is computed.

2.14.2 Extensions

Anwaar-ul-Haq et al. [5] extended the DCCF to 3-D for action recognition. They show superior

performance over the Action MACH filter.

2.15 POLYNOMIAL CORRELATION FILTER (PCF)

PCFs were introduced in 1997 [40]. The PCF output is a nonlinear function of the input that

can enhance recognition performance. The application of this filter can easily be extended to data

fusion from multiple sensors.

2.15.1 Derivation

The PCF output can be expressed as

g(m,n) =

P∑
p=1

hp(m,n)⊗ xp(m,n), (2.103)

48

where xp(m,n) represents the elements of image x(m,n) raised to the pth power. This is expressed

in the frequency domain as

g =

P∑
p=1

Xp∗hp, (2.104)

where diagonal matrix Xp contains xp along its diagonal. The goal is to find corresponding filters hp

that maximize some objective, e.g., to maximize the average peak value at the origin and minimize

some other metric (e.g., ASM, ONV, ACE). The authors used ASM in their paper, i.e., maximize

J(h) =
|h† ˆ̄x|2

h†Sh

=

∣∣∣∑P
p=1 h†px̄p

∣∣∣2∑P
p=1

∑P
q=1 h†pSpqhq

, (2.105)

where

h =


h1

...

hP

 , x̂ =


x̄1

...

x̄P

 (2.106)

is a vector form by concatenating a series of vectors that represent the mean image raised to various

powers,

S =


S11 · · · S1P

...
. . .

...

SP1 · · · SPP

 (2.107)

is a block matrix of diagonal matrices, and Spq = 1
N

∑N
i=1(Xp

i − X̄p)(Xq
i − X̄q)∗. The solution

that maximizes the Rayleigh Quotient J(h) is (see Appendix B)

h = S−1x̂. (2.108)

This method is not restricted to power nonlinearities. It can use any point nonlinear function

fp(x(m,n)), i.e.,

g(m,n) =
P∑
p=1

hp(m,n)⊗ fp(x(m,n)). (2.109)

49

The solution is the same as Eq. 2.108 with

x̂ =


f1(x̄)

...

fP (x̄)

 , (2.110)

where fp(x̄) is fp(x̄(m,n)) arranged as a vector, and

Spq =
1

N

N∑
i=1

(
fp(Xi)− fp(X̄)

) (
fq(Xi)− fq(X̄)

)∗
. (2.111)

This extension can be used for sensor fusion by treating the data processed from different sensors

as a nonlinear transformation.

2.15.2 Extensions

Alkanhal and Kumar [3] combined ideas from PCF and DCCF to form the Polynomial DCCF

(PDCCF). It is a DCCF design but uses a series of images transformed by a function as shown in

Eq. 2.109. They present an extensive analysis of PDCCF, but because they used centered images,

their experiments fail to show any localization (shift-invariance) performance. A comparative study

by Singh and Kumar [75] showed that PDCCF outperformed DCCF in almost all cases in their

synthetic aperture radar (SAR) data experiments.

Al-Mashouq, Kumar, and Alkanhal [1] presented the Constrained PCF (CPCF) that constrains

the values at the peak. In addition an analysis is presented suggesting that using the power functions

in Eq. 2.103 helps recognition performance for low values of p. As p increases pass a given value the

contributions to the total peak from the pth order filter decreases and the correlation peak variance

due to clutter increases. They suggest that the highest order should be restricted to p = 4.

2.16 QUADRATIC CORRELATION FILTER (QCF)

QCFs were introduced in 2004 [37]. A disadvantage of linear CFs is that several CFs are

required to handle the wide variety of target appearances. When these CFs are applied to a test

50

image, their outputs are compared to select a winner. A QCF requires several linear CFs as well

but has the advantage that these CFs are designed to work together to produce a single correlation

output. In addition, quadratic classifiers are able to exploit the higher-order statistics of the data,

potentially leading to superior recognition performance. In one set of experiments using gray-scale

images, QCFs were shown to outperform other CFs [33].

2.16.1 Derivation

QCF maximizes a metric of separation between the overall outputs for two classes of targets.

To express this separation metric, let x̌(c) (all the notation in this derivation is in the spatial domain)

be a vectorized image from Class c where c ∈ {1, 2} with d elements and let Q be a d × d matrix.

The goals is to make y =
(
x̌(c)

)T
Qx̌(c) large and positive when c = 1 (i.e., when the target is from

Class 1) and large and negative when c = 2 (i.e., when the target is from Class 2). Let

φc = E

{(
x̌(c)

)T
Qx̌(c)

}
(2.112)

indicate the mean QCF output for all training images from Class c. In the most basic QCF design,

Q is computed such that

J(Q) = |φ1 − φ2| (2.113)

is a large value. In other words, a large between-class separation is desired.

To enable a correlation-type QCF implementation architecture, Q is assumed to be of the form

Q =

N1∑
i=1

f̌if̌
T
i −

N2∑
i=1

b̌ib̌
T
i . (2.114)

It can be shown [37] that J(Q) is maximized for a givenN1 andN2 when f̌1, · · · , f̌N1 and b̌1, · · · , b̌N2

are the eigenvectors corresponding to the N1 largest positive and the N2 largest negative eigenval-

ues, respectively, of

R = R1 −R2, (2.115)

51

where

Rc = E

{
x̌

(c)
i

(
x̌

(c)
i

)T}
(2.116)

is the correlation matrix for all the training images in Class c.

To show how to apply the QCF to a test image x(m,n), first let test chip ž denote a vectorized

subregion (equal in size to a training image) of x(m,n) with QCF output

y = žTQž

= žT

(
N1∑
i=1

f̌if̌
T
i

)
ž− žT

(
N2∑
i=1

b̌ib̌
T
i

)
ž

= žTFFT ž− žTBBT ž

= v̌T v̌ − w̌T w̌, (2.117)

where F = [f̌1, . . . , f̌N1], B = [b̌1, . . . , b̌N2], v̌ = FT ž, and w̌ = BT ž. The value of vi (the

ith element of v̌) can be obtained for all locations within the image x(m,n) by means of 2-D

correlation, i.e.,

vi(m,n) = x(m,n)⊗ fi(m,n), (2.118)

where the eigenfilter fi(m,n) is the f̌i eigenvector reshaped as 2-D filter. A similar derivation can

be shown for wi (the ith element of w̌). Fig. 2.2 shows the architecture to apply the QCF to image

x(m,n). The QCF output g(m,n) is

g(m,n) =

N1∑
i=1

v2
i (m,n)−

N2∑
i=1

w2
i (m,n)

=

N1∑
i=1

(x(m,n)⊗ fi(m,n))2 −
N2∑
i=1

|(x(m,n)⊗ bi(m,n))2, (2.119)

which can be efficiently implemented in the frequency domain as

g(m,n) =

N1∑
i=1

(
F−1 {F{x(m,n)}F∗{fi(m,n)}}

)2− N2∑
i=1

(
F−1 {F{x(m,n)}F∗{bi(m,n)}}

)2
,

(2.120)

where F and F−1 represent the DFT and IDFT, respectively. This requires 2(N1 + N2) + 1 2-D

DFTs (combining bot the DFTs and IDFTs). Note that when the QCF is applied to multiple images

52

Figure 2.2: Efficient architecture to apply the QCF to image x(m,n).

(e.g., in a video), the 2-D DFTs of the eigenvectors only need to be computed once. Therefore in

video processing, QCF requires N1 +N2 + 1 2-D DFTs per video frame.

In QCF design the number of eigenfilters affects the recognition performance. As the number

of eigenfilters used increases, we observed that in the testing set recognition performances first

increases and then decreases. In our experiments we use N1 = 7 and N2 = 1. More training

images results in better recognition performance. Some CFs that use the average of the training

images for their designs (e.g., the MACH filter [84]) limit the number of training images to prevent

the average from becoming a blurry image. However, QCF uses the average of the QCF output (see

Eq. 2.112), and therefore over-fitting is not a problem. For example, Mahalanobis et al. [36] used

over 20,000 training images (over 5,000 true-class images and over 15,000 false-class images). In

our experiments, we use a small number of training images and show that QCF still achieves good

recognition performance.

2.16.2 Extensions

Mahalanobis et al. [36, 37] proposed the Rayleigh Quotient QCF (RQQCF). This filter is

sometimes referred to as the Fukunaga-Koontz QCF (FKQCF) because it can be derived using

53

the Fukunaga-Koontz transform [27]. In addition to maximizing the class separation, it attempts

to reduce the class-scatter by equalizing the average output from Class 1 with the average negative

output of Class 2, i.e., E
{(

x̌(1)
)T

Qx̌(1)
}

= −E
{(

x̌(2)
)T

Qx̌(2)
}

(see Eq. 2.112). However,

note that there is no theoretical justification that this will reduce the class-scatter, and in fact it may

reduce performance by emphasizing this criterion over maximum class separation. This objective

can be accomplished by rewriting the objective function in Eq. 2.113 as

J(Q) =
|φ1 − φ2|
φ1 + φ2

. (2.121)

The solution is the same as Eq. 2.114 with f̌1, · · · , f̌N1 and b̌1, · · · , b̌N2 as the eigenvectors cor-

responding to the N1 largest positive and N2 largest negative eigenvalues, respectively, of (R1 +

R2)−1(R1 −R2) (see Eq. 2.116). Sims and Mahalanobis [73] showed that RQQCF outperforms

the MACH filter when tested with infrared imagery.

Muise et al. [47] proposed the Subspace Quadratic Synthetic Discriminant Function (SSQSDF).

The SSQSDF matrix assumes the form

Q =

N∑
i=1

βix̌ix̌
T
i . (2.122)

The outputs x̌Ti Qx̌i are constrained to be 1 for true-class training images and 0 for false-class

training images. This helps to reduce the correlation peak variance (a challenge in the RQQCF

design). Experiments show similar recognition performance between SSQSDF and QCF [33, 73].

2.17 MULTI-FRAME CORRELATION FILTER (MFCF)

MFCF was introduced in 2009 [34]. The MFCF combines information from the current cor-

relation output with previous correlation outputs to enhance recognition in a Bayesian framework.

Each correlation value is mapped to a probability value, i.e., the probability that there is a true-class

target centered at the location given the correlation value at that location. The array of probability

values is convolved with a circular Gaussian motion model to get a prior probability array to use for

the next mapping. Using a circular Gaussian motion model assumes that the target can move in any

54

direction (e.g., Brownian motion). It works well for situations where the targets move by only a few

pixels from frame to frame.

2.17.1 Derivation

The MFCF is based on a Bayesian framework where the filter’s output is mapped into a proba-

bility array,

P (gi(m,n)|Ti(m,n)) , (2.123)

where gi(m,n) represents the correlation output in response to the ith image, and Ti(m,n) denotes

the event that a target is centered at pixel (m,n) and T̂i(m,n) denotes the event that there is no target

centered at (m,n). Using training examples, the distributions of the likelihoodsP (gi(m,n)|Ti(m,n))

and P (gi(m,n)|T̂i(m,n)) can be estimated. The posterior probability is computed as follows,

P (Ti(m,n)|gi(m,n)) =
P (gi(m,n)|Ti(m,n))P (Ti(m,n))

P (gi(m,n)|Ti(m,n))P (Ti(m,n)) + P (gi(m,n)|T̂i(m,n))P (T̂i(m,n))

(2.124)

where P (Ti(m,n)|gi(m,n)) represents the probability that a target is centered at location (m,n)

given a correlation value at that location at frame i, P (Ti(m,n)) represents the prior probability

that a target is centered at location (m,n), and P (T̂ (m,n)) = 1− P (T (m,n)).

Next, a fixed 2-D Gaussian τ(m,n) ∼ N (0, σ2) is correlated with the posterior to estimate the

prior probability of the object at any location in the next frame,

P (Ti+1(m,n)) = P (Ti(m,n)|gi(m,n))⊗ τ(m,n). (2.125)

This is a simple motion model and it implies that the target may move in any direction with equal

probability, with decreasing probability of moving by larger amounts. The standard deviation of

τ(m,n) is proportional to the maximum velocity (in pixels/frame) of the target.

As successive input frames become available, the probability array is updated using Bayes the-

orem to reflect the probability based on both the estimates and the observed data. It was shown

[34] that this Bayesian approach improves the recognition performance of conventional CFs by

55

suppressing false alarms and improving the ability to recognize targets in the presence of clutter.

In addition to computing the correlation plane (and possibly the PSR plane), the MFCF requires

two additional 2-D DFTs for the required convolution with the 2-D circular Gaussian. Note that

other motion models can be used instead of Gaussian.

2.17.2 Extensions

Mahalanobis, Stanfill, and Chen [39] used MMCF with two motion models (instead of one),

one for stationary and another for non-stationary objects. They tested their models with walking

humans and showed that MMCF outperformed single-frame correlation filtering even when using a

tracker.

2.18 SUMMARY

In this chapter we presented the advances in CF design over the past three decades. We pre-

sented different linear CFs that are constrained to have a certain peak value for training images, and

discussed different linear unconstrained filters that do not have these constraints and have a larger

solution space to find a filter that may have better recognition performance. We presented CFs that

in addition to shift-invariance have rotation-control or scale-control. We presented non-linear filters

that may have better recognition performance at the expense of additional computation. We con-

cluded by presenting a recent CF design used to enhance performance in a sequence of images, i.e.,

in video.

56

CHAPTER 3

CORRELATION FILTER IMPROVEMENTS

In the previous chapter we reviewed different CF designs. In this chapter we present two gener-

alized linear CFs that encompass all of the state-of-the-art linear CFs discussed in Chapter 2. We

provide some experimental results comparing our generalized linear CFs to those already discussed.

In addition, we present a method to enhance the performance of quadratic CFs (QCFs) both in com-

putational speed and performance, and show experimental results. We conclude by presenting a

design that improves recognition performance when using CFs in a sequence of images, e.g., in

video.

Before proceeding, we recall from Section 1.4 that lower case bold letters denote vectors (lex-

icographically arranged) of 2-D frequency domain arrays, and that we loosely refer to xi or gi as

the ith image or the ith correlation output, respectively, when we mean the vectorized 2-D DFT rep-

resentation of the ith image or the ith correlation output, respectively. Also note that by Parseval’s

theorem, the inner products in the frequency domain are scaled by 1
d [50].

3.1 GENERALIZED UNCONSTRAINED AND CONSTRAINED
CORRELATION FILTERS

Using the criteria that are generally used in state-of-the-art linear CFs, we can design a gen-

eralized Unconstrained Correlation Filter (UCF) and a generalized Constrained Correlation Filter

57

(CCF), and show how linear composite CFs are subsets of these filters. The criteria used in linear

CFs are summarized as follows.

1. The mean square error (MSE) is the average squared difference between the actual correlation

plane gi and the desired correlation plane ġi, i.e.,

MSE =
1

Nd

N∑
i=1

|gi − ġi|2

=
1

Nd

N∑
i=1

(g†igi − 2g†i ġi + ġ†i ġi)

=
1

Nd

N∑
i=1

(h†XiX
∗
ih− 2h†Xiġi + ġ†i ġi)

= h†

(
1

Nd

N∑
i=1

XiX
∗
i

)
h− 2h†

(
1

Nd

N∑
i=1

Xiġi

)
+

1

Nd

N∑
i=1

ġ†i ġi

= h†Dh− 2h†p + Ef , (3.1)

where gi = X∗ih represents the correlation output for the nth image, D = 1
Nd

∑N
i=1 XiX

∗
i

is the average power spectral density of the N training images, Ef = 1
Nd

∑N
i=1 ġ†i ġi is the

average energy of the desired correlation planes, and h†p = 1
Nd

∑N
i=1 g†i ġi is a measurement

of the similarity of the actual correlation planes to the desired correlation planes where

p =
1

Nd

N∑
i=1

Xiġi. (3.2)

The average correlation energy (ACE) criterion h†Dh (see Eq. 2.13) is a special case of the

MSE criterion when ġi = 0. Minimizing the ACE usually produces correlation planes with

values near zero (except at the location of the target due to the constraints) making the peak

(i.e., the location of the target) more distinguishable.

2. The average similarity measure (ASM) is a measure of the scatter (similar to the variance but

for an entire plane) in the correlation planes, i.e., 1
Nd

∑N
i=1 |gi − ḡ|2, where ḡ = 1

N

∑N
i=1 gi

represents the average of the correlation planes. In other words, ASM measures how dissim-

ilar the correlation planes are with respect to the mean of the correlation planes. Note the

58

difference between ASM and ACE. Minimizing the ASM makes the correlation planes more

similar. Minimizing the ACE will minimize the energy in the correlation (on the average),

but there could be significant differences between the responses of each training image. The

ASM can be written as

ASM =
1

Nd

N∑
i=1

|gi − ḡ|2

=
1

Nd

N∑
i=1

(g†igi − 2g†i ḡ + ḡ†ḡ)

=
1

Nd

N∑
i=1

g†igi −
2

d

(
1

N

N∑
i=1

g†i

)
ḡ +

1

d
ḡ†ḡ

=
1

Nd

N∑
i=1

g†igi −
1

d
ḡ†ḡ

=
1

Nd

N∑
i=1

h†XiX
∗
ih−

1

d
h†X̄X̄∗h,

= h†Dh− h†Mh, (3.3)

where the diagonal matrix X̄ = 1
N

∑N
i=1 Xi contains x̄ along the diagonal, and the diagonal

matrix M = 1
dX̄X̄∗ contains the power spectral density of the x̄ along the diagonal.

3. The output noise variance (ONV) is a measure of the variance of the correlation plane pixels

caused by additive noise in the images. In the space domain this is defined as

ONV = σ2

= V ar{ȟT (x̌
(n↓)
i + η̌)}

= V ar{ȟT η̌}

= V ar{čη}, (3.4)

where x̌
(n↓)
i represents the vector x̌i shifted by n pixels, V ar{ȟT x̌

(n↓)
i } = 0 for all shifts n,

η̌ is a zero-mean wide sense stationary random process. That is, the variance at each pixel

caused by additive noise is the same. Note that the ONV is the value at the origin of the

59

autocorrelation function of čη which can be obtained by summing over all frequencies of

Pcη̌ , the power spectral density of cη̌, i.e.,

ONV = σ2

=
d−1∑
k=0

Pcη̌ [k]

= h†Ph, (3.5)

where P is the power spectral density of the input noise η̌ and d is the dimension of h. In

many scenarios, unit-variance white noise is assumed, i.e., P = 1
dI, where I is the identity

matrix.

3.1.1 Generalized Unconstrained Correlation Filter (UCF)

Based on these criteria, we present the multi-objective generalized Unconstrained Correlation

Filter (UCF)

min
h

(MSE, ASM, ONV) (3.6)

where MSE, ONV, ASM ≥ 0. Refregier [55] (see also [15]) showed that multi-quadratic criteria

are optimized (i.e., the solution yields the best for one criterion for a fixed value of the others) as

follows. Lagrange multipliers are used to obtain the following functional,

L(h, γ, β) = MSE + γASM + βONV

= h†Dh− 2h†p + Ef + γ(h†Dh− h†Mh) + βh†Ph

= h†((1 + γ)D− γM + βP)h− 2h†p + Ef

= h†Th− 2h†p + Ef , (3.7)

where 0 ≤ γ, β < ∞ are scalar Lagrange multipliers, and T = (1 + γ)D− γM + βP. Note that

when γ = 0 only the MSE and ONV criteria are optimized, when β = 0 only the MSE and ASM

criteria are optimized, and when γ = β = 0 only the MSE criterion is optimized.

60

Taking the gradient of Eq. 3.7 and setting it to zero gives,

∂L(h, γ, β)

∂h
= 2Th− 2p = 0, (3.8)

and solving for h gives

h = T−1p. (3.9)

In order to use bounded scalars, γ and β can be replaced with γ = 1
ψ (1 − ψ) and β = 1

λ(1 − λ),

respectively, where 0 < ψ, λ ≤ 1, i.e.,

T = (1 +
1

ψ
(1− ψ))D− 1

ψ
(1− ψ)M +

1

λ
(1− λ)P

=
1

λψ
(λD− λ(1− ψ)M + (1− λ)ψP)

∝ λD− λ(1− ψ)M + (1− λ)ψP, (3.10)

where the scale factor 1
λψ can be ignored because all the correlation outputs are scaled accordingly

and therefore it does not affect the filter’s performance. In other words, the filters h and λψh have

the same recognition performance when they are applied to a test image.

3.1.1.1 Efficient computation

UCFs can be efficiently trained online as follows. After the nth image the filter is computed as

follows,

hn =
1

n
p′n �

(
1

n
(1 + γ)dn +

1

n2
γsn � s∗n + β

)
, (3.11)

where � represents the Hadamard product, � represents the Hadamard division, additive unit-

variance white noise for the ONV is assumed, i.e., P = 1
dI, and

p′n = xn � ġn + p′n−1, (3.12)

dn = xn � x∗n + dn−1, (3.13)

sn = xn + sn−1, (3.14)

61

where the filter is initialized with the values p′0 = d0 = s0 = 0. It can be shown that after N

iterations, the same filter as in Eq. 3.9 is obtained, i.e., after N iterations,

hN =
1

N
p′n �

(
1

N
(1 + γ)dn +

1

N2
γsn � s∗n + β

)
=

1

N

(
xn � ġn + p′n−1

)
� · · ·(

1

N
(1 + γ) (xn � x∗n + dn−1) +

1

N2
γ (xn + sn−1)� (xn + sn−1)∗ + β

)
=

1

N

(
N∑
n=1

xn � ġn

)
� · · ·(

1

N
(1 + γ)

(
N∑
n=1

xn � x∗n

)
+

1

N2
γ

(
N∑
n=1

xn

)
�

(
N∑
n=1

xn

)∗
+ β

)

=

(
1

Nd

N∑
n=1

xn � ġn

)
�

(
(1 + γ)

(
1

Nd

N∑
n=1

xn � x∗n

)
+ γ

1

d
x̄� x̄∗ +

1

d
β

)

=

(
(1 + γ)

(
1

Nd

N∑
n=1

XnX
∗
n

)
+ γ

1

d
X̄X̄∗ + β

1

d
I

)−1(
1

Nd

N∑
n=1

Xnġn

)
= ((1 + γ)D + γM + βP)−1 p

= T−1p. (3.15)

Similarly, we can design an efficient adaptive filter using

p′n = ηxn � ġn + (1− η)p′n−1, (3.16)

dn = ηxn � x∗n + (1− η)dn−1, (3.17)

sn = ηxn + (1− η)sn−1, (3.18)

where the filter is initialized with the values p′0 = d0 = s0 = 0. The simplicity of the UCF

filter implementation allows the filter to adapt in real-time to changes such as rigid-body motion,

deformation, and/or lighting. The filter adapts by weighting new images more, with weights for

older images decaying exponentially over time.

62

3.1.1.2 Subsets of the UCF

All the state-of-the-art linear unconstrained correlation filters are subsets of the UCF. To show

this, we first introduce some basic concepts. It is well known that the delta-like function in the space

domain corresponds to a constant in the frequency domain, i.e.,

ˇ̇gi = [0, . . . , 0, ui, 0, . . . , 0]T F←−−→ ġi = ui1, (3.19)

where ˇ̇gi has a value of ui at the center of the target’s location and zeros elsewhere. Also note that

when ġi = ġ for all i, then p simplifies to

p =
1

Nd

N∑
i=1

Xiġi

=

(
1

Nd

N∑
i=1

Xi

)
ġ

=
1

d
X̄ġ, (3.20)

and if ġ = 1 (a delta function in the space domain) then p = x̄, the average of the training images

in the frequency domain.

MACH filter The UCF filter in Eq. 3.9 reduces to the MACH filter (Section 2.8) when λ = 1

and gi = 1 for all i, i.e.,

h = (D− (1− ψ)M)−1x̄. (3.21)

In the original MACH filter implementation [45], ψ = 1
2 , and

h = (D− 1

2
M)−1x̄. (3.22)

UOTSDF filter The UCF filter in Eq. 3.9 reduces to the UOTSDF filter (Section 2.8) when

ψ = 1 and ġi = 1 for all i, i.e.,

h = (λD + (1− λ)P)−1x̄. (3.23)

63

ASEF filter The UCF filter in Eq. 3.9 reduces to the ASEF filter (Section 2.10) when λ = 1,

ψ = 1, and ġi = ġ for all i represents a 2-D Gaussian-function-like desired correlation output.

ASEF uses one filter hi per image and then averages them, i.e.,

h =
1

N

N∑
i=1

hi, (3.24)

where hi is computed as in Eq. 3.9 using only one image, i.e.,

hi = D−1
i pi, (3.25)

where the diagonal matrix Di = XiX
∗
i contains the power spectral density of image xi along the

diagonal. Eq. 3.25 can be simplified as follows,

hi = D−1
i Xiġ

= (XiX
∗
i)
−1Xiġ

= (X∗i)
−1ġ

= ġ � x∗i , (3.26)

where � represents the Hadamard division. Note that when ġ = 1, hi is the inverse filter.

Extended-ASEF (EASEF) filter The Fourier transform of the training images Xi usually has

high frequency components with very low energy. The energy at each frequency value of the filter

is

ei = hi � h∗i

= (ġ � x∗i)� (ġ � x∗i)
∗

= (ġ � ġ∗)� (xi � x∗i) . (3.27)

This shows that near-zero energy frequency components in xi produce very high energy (it goes to

∞ when xi has a frequency component equal to zero) frequency components in hi.

Bolme et al. [13] modify the original ASEF [12] to try to fix this, and their work shows some

64

improvements over the original ASEF. They only used the frequencies corresponding to the top 95%

of the total energy to construct the filter and set hi(ω) = 0 for the remaining frequencies. However,

in forcing the high frequency components to zero, much of discriminative information contained

within these images is discarded. In most images of interest, this forces to zero the majority of the

frequency components because most of the energy can be found in a small selection of the frequency

components. In addition, selecting the frequencies with the top 95% requires a sorting algorithm of

order O(Nd2) for N training images of dimension d which requires additional computation.

We present the Extended-ASEF (EASEF) as a better approach to reduce the effects of near-zero

energy frequencies. A small β ≥ 0 is added to Eq. 3.25 as follows,

hi = (Di + βI)−1pi. (3.28)

The βI term prevents overemphasizing low energy components without ignoring them. In order to

use a bounded scalar, β can be replaced with β = 1
λ(1−λ) where 0 < λ ≤ 1, and hi can be written

as follows,

hi =

(
Di +

(
1− λ
λ

)
I

)−1

pi

= λ (λDi + (1− λ)I)−1 pi

= λT−1
i pi

∝ T−1
i pi, (3.29)

where the scale factor λ can be ignored because all the correlation outputs are scaled accordingly

so it does not affect the filter’s performance, and Ti = λDi + (1− λ)I. Note that this modified hi

is also a special case of Eq. 3.9 using only one image, ψ = 1, and P = I.

MOSSE filter The UCF filter in Eq. 3.9 reduces to the MOSSE filter (Section 2.11) when

λ = 1, ψ = 1 and ġi = ġ for all i represents a 2-D Gaussian-function-like desired correlation

output, i.e.,

h = D−1X̄ġ. (3.30)

65

Extended-MOSSE (EMOSSE) filter MOSSE suffers from a similar problem as ASEF, i.e.,

the training images Xi usually have high frequency components with very low energy which leads

to very high energy frequency components in h. Using the same techniques for EASEF, we add a

small β ≥ 0 to Eq. 3.30 as follows,

h = (D + βI)−1X̄ġ, (3.31)

and replaced the unbounded β with β = 1
λ(1− λ) where 0 < λ ≤ 1, i.e.,

h =

(
D +

(
1− λ
λ

)
I

)−1

X̄ġ

= λ (λD + (1− λ)I)−1 X̄ġ

= λT−1p

∝ T−1p, (3.32)

where the scale factor λ can be ignored because all the correlation outputs are scaled accordingly so

it does not affect the filter’s performance, T = λD+(1−λ)I and p = X̄ġ. Note that this modified

h is also a special case of Eq. 3.9 using ψ = 1, ġi = ġ for all i, and P = I. This filter can also be

expressed as

h = hUOTSDF � ġ, (3.33)

where hUOTSDF is the UOTSDF filter h shown in Eq. 3.23. When the desired output is a delta

function, i.e., ġ = 1, EMOSSE becomes UOTSDF. If λ is also equal to 1, EMOSSE and UOTSDF

becomes UMACE.

UMACE filter The UCF filter in Eq. 3.9 reduces to the UMACE filter (Section 2.11) when

λ = 1, ψ = 1 and ġi = 1, i.e.,

h = D−1x̄. (3.34)

Note that this filter is also a special case of both the UOTSDF and MOSSE filters.

66

3.1.2 Generalized Constrained Correlation Filter (CCF)

When there are false-class images, our empirical evidence shows that constraining the correla-

tion peak values significantly improves recognition performance. In addition to the UCF, we present

the multi-objective generalized Constrained Correlation Filter (CCF)

min
h

(MSE, ONV, ASM) (3.35)

s.t. X†h = u,

where MSE, ONV, ASM≥ 0, X = [x1, ...,xN] is a matrix where the columns represent the training

images, and u = [u1, ..., uN]T is a vector with the constrained correlation peak values for each

training image xi. Refregier [55] (see also [15]) showed that multi-quadratic criteria are optimized

(i.e., the solution yields the best for one criterion for fixed values of the others) as follows. Lagrange

multipliers are used to obtain the following functional,

L(h, γ, β) = MSE + γASM + βONV− 2∆†(X†h− u)

= h†Dh− 2h†p + Ef + γ(h†Dh− h†Mh) + βh†Ph− 2∆†(X†h− u)

= h† ((1 + γ)D− γM + βP) h− 2h†p + Ef − 2∆†(X†h− u)

= h†Th− 2h†p + Ef − 2∆†(X†h− u), (3.36)

where T = (1 + γ)D − γM + βP, γ, β ≥ 0 are Lagrange multipliers, and ∆ 6= 0 is a vector of

non-zero Lagrange multipliers. Note that when γ = 0 only MSE and ONV are optimized, when

β = 0 only MSE and ASM are optimized, when γ = β = 0 only MSE is optimized, when γ →∞

and β → ∞ only ASM and ONV are optimized, when γ → ∞ only ASM is optimized, and when

β →∞ only ONV is optimized.

Taking the gradient and setting it equal to zero gives,

∂L(h, γ, β,∆)

∂h
= 2Th− 2p− 2X∆ = 0, (3.37)

67

and solving for h, we get

h = T−1(p + X∆)

= T−1p + T−1X∆. (3.38)

Substituting h in Eq. 3.38 into the constraint in Eq. 3.35 gives

u = X†h

= X†(T−1p + T−1X∆)

= X†T−1p + X†T−1X∆, (3.39)

and the Lagrange multiplier vector ∆ can be computed as follows,

∆ = (X†T−1X)−1(u−X†T−1p). (3.40)

Substituting ∆ in Eq. 3.40 into h in Eq. 3.38 gives the filter solution,

h = T−1p + T−1X∆

= T−1p + T−1X(X†T−1X)−1(u−X†T−1p)

= hUCF + T−1X(X†T−1X)−1(u−X†hUCF)

= hUCF + T−1X(X†T−1X)−1(u− uUCF), (3.41)

where u are the constrained correlation outputs at the center, hUCF is the UCF filter h shown in

Eq. 3.9, and uUCF = X†hUCF are the correlation outputs at the center when using filter hUCF .

In order to use bounded scalars, γ and β can be replaced with γ = 1
ψ (1 − ψ) and β = 1

λ(1 − λ),

respectively, where 0 ≤ ψ, λ ≤ 1, i.e.,

T = (1 + γ)D− γM + βP

= (1 +
1

ψ
(1− ψ))D− 1

ψ
(1− ψ)M +

1

λ
(1− λ)P

=
1

λψ
(λD + λ(1− ψ)M + (1− λ)ψP)

=
1

ψ
D− 1

ψ
M +

1

λ
P + M−P, (3.42)

68

where we define the ratio 0
0 = 1 for the cases when ψ = 0 and/or λ = 0.

Desired peak value does not affect h The value at the origin of the desired correlation output

ġi(m,n) does not affect the CCF solution. To show this, let the value at the origin ġi(m,n) be

changed by αi, i.e., ġi(0, 0)′ = ġi(0, 0) +αi. Adding a value to the origin in the space domain adds

a constant to the entire frequency domain plane, i.e., ġ′i = ġi + αi1, and the new p′ is

p′ =

N∑
i=1

Xiġ
′
i

=
N∑
i=1

Xi(gi + αi1)

=
N∑
i=1

Xigi +
N∑
i=1

αiXi1

= p +

N∑
i=1

αixi

= p + XΛ, (3.43)

where Λ = [α1, . . . , αN]T . The CCF solution using p′ is

h′ = T−1p′ + T−1X(X†T−1X)−1(u−X†T−1p′)

= T−1(p + XΛ) + T−1X(X†T−1X)−1(u−X†T−1(p + XΛ))

= T−1p + T−1XΛ + T−1X(X†T−1X)−1(u−X†T−1p−X†T−1XΛ)

= h + T−1XΛ−T−1X(X†T−1X)−1(X†T−1XΛ)

= h + T−1XΛ−T−1XΛ

= h, (3.44)

where u = X†T−1p, which indicates that the filter does not change. This derivation is somewhat

intuitive because the correlation peak value for the training images is already constrained, therefore

the value at the center of the desired correlation output can be ignored. Thus, having a delta-

function-like desired correlation output in the space domain, i.e., ġ = α1 in the frequency domain,

or having a desired outputs of zeros everywhere, i.e., ġ = 0, gives the same filter h.

69

Extended-OTSDF Note that when the desired output is ġi = 0 for all n, the CCF filter in Eq.

3.41 simplifies to

h = T−1X(X†T−1X)−1u, (3.45)

which we called the Extended-OTSDF (EOTSDF) because the solution looks like the OTSDF filter

but in addition to the ONV and ACE criteria, it also minimizes the ASM criterion.

Non-training images can have higher correlation peak values than training images Linear

CFs may produce a higher response for non-training images than for training images. Even if the

training images have unit energy, h will not have unit energy. In fact h†h > 1 when x†ixi = 1

and ui = 1. Since xi has unit energy and the projection to h is constrained to be 1, then h†xi =

|h||xi| cosβ = |h| cosβ = 1, where β is the angle between h and xi. Assuming β > 0 then

cosβ < 0 and |h| > 1. Since h is designed such that h†xi = 1, there exists test chips z different

than the training images for which h†z > 1, e.g., if z is equal or similar to h. Assuming the test

chip is normalized, i.e., |z| = 1, then h†z > 1 when the angle between h and z is less than the angle

between h and xi (note that if h exists, the angle between h and any image xi is equal if and only

h†xi is constrained to be the same value for all i) as shown in Fig. 3.1. Although it is theoretically

possible that a test chip that produces this response is an impostor, an image that resembles h that

much is very likely a true-class image if the filter was well designed.

3.1.2.1 Subsets of the CCF

All the state-of-the-art linear constrained correlation filters are subsets of the CCF.

MSESDF filter The CCF filter in Eq. 3.41 reduces to the MSESDF filter (Section 2.7) when

λ = 1, ψ = 1 and ġi = 1, i.e.,

h = D−1p + D−1X(X†D−1X)−1(u−X†D−1p). (3.46)

70

Figure 3.1: This figure shows that it is theoretically possible for a test chip z to have a higher inner product
with filter h than the inner product of the training image xn with h.

OTSDF filter The CCF filter in Eq. 3.41 reduces to the OTSDF filter (Section 2.5) when

ψ = 1 and ġi = α1 for all i and any α ∈ <. The CCF filter in Eq. 3.41 is simplified to

h = T−1X(X†T−1X)−1u, (3.47)

where

T = D +

(
1

λ
− 1

)
P

=
1

λ
(λD + (1− λ)P)

∝ λD + (1− λ)P, (3.48)

where the 1
λ can be ignored because it does not affect the filter (note that we defined 0

0 = 1), i.e.,

h =

(
1

λ
T

)−1

X

(
X†
(

1

λ
T

)−1

X

)
u

=
λ

λ
T−1X(X†T−1X)−1u

= T−1X(X†T−1X)−1u. (3.49)

71

MACE filter The CCF filter in Eq. 3.41 reduces to the MACE filter (Section 2.4) when λ = 1,

ψ = 1, and ġi = α1 for all i and any α ∈ <, i.e.,

h = D−1X(X†D−1X)−1u. (3.50)

Note that this filter is also a special case of both the OTSDF and MSESDF filters.

MVSDF filter The CCF filter in Eq. 3.41 reduces to the MVSDF filter (Section 2.3) when

λ = 0, ψ = 1, and ġi = α1 for all i and any α ∈ <, i.e.,

h = D−1X(X†D−1X)−1u. (3.51)

When P = αI for all α 6= 0, the MVSDF reduces to the ECPSDF filter,

h = X(X†X)−1u. (3.52)

Note that the MVSDF filter is also a special case of both the OTSDF and MSESDF filters.

3.1.3 Modified CCF: CCF can equal UCF

When CCFs are trained, the desired response is usually chosen to be some ġT for all the true-

class images and ġF for all false-class images. However, choosing instead a unique ġi for each

image can improve the filter’s performance. One method to accomplish this is to choose ġi for each

image such that the CCF and UCF filters are the same.

Note from Eq. 3.41 that

hCCF = hUCF + hEOTSDF , (3.53)

where hCCF is the CCF filter h shown in Eq. 3.41, hUCF is the UCF filter h shown in Eq. 3.9, and

hEOTSDF is the EOTSDF filter h shown in Eq. 3.45 with constrained correlation peak values

uEOTSDF = uCCF − uUCF , (3.54)

where uCCF is the peak value constraint for the CCF filter (the u shown in Eq. 3.41) and uUCF =

X†T−1p is the peak value for the UCF filter. In order for hCCF = hUCF , then hEOTSDF = 0,

72

i.e., uCCF = uUCF . This may be accomplished by letting each desired ġi be a scaled version of

the others, i.e., ġi = τiġ, and determining the scalar τi for all i as follows,

uCCF = uUCF

= X†T−1p

= X†T−1
N∑
i=1

Xiτiġ

= X†T−1Ġ
N∑
i=1

xiτi

= X†T−1ĠXΓ, (3.55)

where Γ = [τ1, . . . , τN]T , and the diagonal matrix Ġ contains ġ along the diagonal. The vector Γ

can be computed as follows,

Γ = (X†T−1ĠX)−1u, (3.56)

and the filter can be computed as follows,

h = T−1ĠX(X†T−1ĠX)−1u

= T̂−1X(X†T̂−1X)−1u, (3.57)

where T̂ = TG−1. We call this h the modified Constrained Correlation Filter (mCCF). Our results

usually show superior performance over the CCF and UCF filters.

3.1.4 Circular correlation effects

Discrete Fourier transforms (DFTs) are typically used to compute CFs. Therefore, correlations

are actually circular (also known as periodic) correlations [49]. The result is that it is generally not

possible to design a template (recall that terms template and filter depict whether our design is in

the space or the frequency domain, respectively) that produces the desired correlation output even

if we only have one training image. In the following discussion, we use 1-D notation for simplicity

which can easily be adapted to 2-D.

Let ġ be the desired cross-correlation output of x and h, where x, h, and ġ are of length d.

73

The actual cross-correlation output g = x ⊗ h is of length 2d − 1. The value at the center of

g is ȟ†x̌i =
∑d−1

n=0 x[n]h[n], and this value equals ġ[0], i.e., the first value of the desired cross-

correlation output. This can be shown as follows (using Parseval’s theorem),

d−1∑
n=0

x[n]h[n] =
1

d

d−1∑
k=0

X[k]H∗[k]

=
1

d

d−1∑
k=0

Ġ[k]

= ġ[0], (3.58)

where the inverse DFT (IDFT) is defined as follows,

ġ[n] =
1

d

d−1∑
k=0

Ġ[k]ej
2πk
d
n. (3.59)

Therefore the value at the center of g = x⊗ h is represented by ġ[0].

If a Gaussian-function-like discrete output with the mean at the center of g is desired, then a

Gaussian-function-like centered at ġ[0] should be used. This Gaussian-function-like wraps around

ġ because of the periodicity assumption with finite discrete signals, i.e.,

ġ[(n−m)c] F←−−→ e−j
2πk
d
mĠ[k], (3.60)

where c represents circular periodicity and F represents the Fourier transform. As long as the

desired Gaussian-function-like correlation output has a small variance, the effects of aliasing due to

circular convolution are negligible.

One problem is that the desired correlation output generally cannot equal the actual correlation

output, i.e.,

ġ = x⊗̃h 6= x⊗ h = g, (3.61)

where ⊗̃ represents circular correlation. For example, suppose x is a signal of d = 1000 random

numbers and we find an h, such that ġ = [1, 0, 0, ..., 0] is of length d. Note the difference between

x⊗̃h and x⊗ h shown in Fig. 3.2.

If x and h are zero-padded to length L = 2d − 1, such that xe = [x, 0, 0, . . . , 0] and he =

74

(a) (b)

Figure 3.2: An example of (a) circular correlation ġ = x⊗̃h where the peak is along the axis at ġ[0] and (b)
regular correlation g = x⊗ h, where the peak is at g[d− 1] = g[999].

[h, 0, 0, . . . , 0], then regular correlation is equivalent to circular correlation. However, for most xe

it is not possible to find a zero-padded he such that

he = F−1 {F{ġ} � F{xe}}

[h, 0, 0, . . . , 0] = F−1 {F{ġ} � F{[x, 0, 0, ..., 0]}} , (3.62)

where F and F−1 represent the DFT and IDFT, respectively, and� represents the Hadamard divide

operator.

Possible solutions

While there is no exact solution to this problem, there are several techniques which will be

described here that may be used to improve results. We use the simple inverse filter design to present

these techniques. Note that in Figures 3.3, 3.4, and 3.5, x is repeated as this is the DFT periodicity

assumption. The green lines represent values of zero, the red lines represent real numbers, and the

blue line represents the correlation peak. If this thesis is viewed in black and white, all the thin

lines in x represent zero values, and the thick lines represent real numbers. The desired correlation

outputs ġ (or g desired) is a circular-shifted delta function with zeros everywhere except at the peak.

We now present the following four techniques:

75

1. Usual approach, i.e.,

h = F−1 {F{ġ} � F{x}} (3.63)

where h is of length d. In this case ġ[0] = 1 and zero elsewhere. As shown by example in

Fig. 3.2, the cross-correlation of x and h generally does not result in zero values. Fig. 3.3

shows the training and testing phases.

Figure 3.3: The desired correlation output and the template are of length d (the same length as the training
image). The desired correlation output has the peak value at the first index and the actual correlation output
has the peak value at the center.

2. Zero-pad x, i.e.,

h = F−1 {F{ġ} � F{xe}} (3.64)

where h is of length L (usually L = 2d − 1). In this case ġ [n] = 1 for n =
⌈
d+L

2

⌉
and 0

elsewhere, where d·e represents the ceiling operator. Fig. 3.4 shows the training and testing

phases and gives some intuition as to why the peak of ġ is at n =
⌈
d+L

2

⌉
in order to have the

peak at the center of the cross-correlation of x and h.

3. Same as #2 and then truncating h to be of length d (the same length as x before zero-padding)

76

Figure 3.4: The desired correlation output and the template are of length L (the same length as the zero-
padded training image). The desired correlation output has the peak value at index

⌈
d+L
2

⌉
and the actual

correlation output has the peak value at the center.

as follows,

h′[n] = h

[⌈
L− d

2

⌉
+ n

]
, (3.65)

for n = 0, ..., d− 1. Fig. 3.5 shows the training and testing phases.

Figure 3.5: The desired correlation output is of length L (the same as the zero-padded training image) and the
template is truncated to be of length d (the same length as the original training image). The desired correlation
output has the peak value at index

⌈
d+L
2

⌉
and the actual correlation output has the peak value at the center.

4. Same as #2 and then deemphasizing the edges (instead of zero-padding them completely as

in #3), e.g., multiply with a sine function

h′[n] = h[n] sin

[
nπ

L− 1

]
, (3.66)

77

for n = 0, . . . , d− 1, where h′ is of length L.

3.1.5 Implementation and false-class constraints

We use a Gaussian-function-like desired correlation output represented by ġi = ġT with a small

variance in the space domain (or equivalently, a large variance in the frequency domain) for all i

corresponding to true-class images and

ġi = ġF = −εġT (3.67)

for all i corresponding to false-class images, where 0 ≤ ε ≤ 1. In our experiments (discussed in Ch.

7) we use ε = 0.0.1. That is, we want a distinguishable peak for true-class images and a very small

negative values for false-class images. We observe empirically that this improves performance over

1) designing a filter with only true-class images and ignoring the false-class images, 2) using ġi =

ġF = −ġT (i.e., ε = 1) for all i corresponding to false-class images, and 3) using ġi = ġF = 0 for

all i corresponding to false-class images.

We use a simple example to explain graphically why changing the value of ε produces a different

filter. Suppose that there are only one true-class training image and one false-class training image

with constrained correlation peak values 1 and 0, respectively. This means that the true-class image

is in the hyperplane h†x = 1, and the false-class image is in the hyperplane h†x = 0. When

linear CFs are designed, there is, however, the additional constraint that the zero image, i.e., x = 0,

produces a zero output, i.e., the zero image image is in the hyperplane h†x = 0. Fig. 3.6(a) shows

these hyperplanes. The direction of h is orthogonal to these hyperplanes (proof in Appendix C).

Now, suppose that the constrained correlation peak value for the false-class training image changes

to −1. This produces a new h where the true-class image is in the new hyperplane h†x = 1, the

false-class image is in the new hyperplane h†x = −1, and the zero image is in the new hyperplane

h†x = 0. Fig. 3.6(b) shows these hyperplanes. We can see in these figures that changing the value

of ε can produce a very different filter h.

78

(a) (b)

Figure 3.6: Changing the constrained correlation peak value for the false-class image from 0 in (a) to −1 in
(b) produces a very different filter h (orthogonal to the hyperplane h†x = 0).

3.2 QUADRATIC CORRELATION FILTER ENHANCEMENTS

In Section 2.16 we reviewed quadratic correlation filters (QCFs). Generally, QCF designs as-

sume a true class and a clutter class and maximizes the separation between these classes, which

typically produces a large positive peak for the true class and a negative peak for the clutter class.

This approach, however, does not utilize the full potential of QCFs. These filters are capable of dis-

tinguishing between two different classes. Linear CFs are not always trained to specifically reject

a clutter class. They can reject clutter by default by producing strong peaks only for true targets.

Our work [59, 61] shows that we can achieve the full potential of QCFs to recognize two different

classes of targets by having one target class produce large positive correlation peaks, and the other

target class produce large negative correlation peaks, and by default the clutter will usually exhibit

low correlation values.

In order to facilitate recognition, we desire sharp peaks. Mahalanobis, et al. [36], suggests using

shifted versions of the true class as part of the clutter class to reduce the sidelobes of the correlation

plane. This cannot be implemented in our design because we do not use a clutter class. Kerekes,

et al., noted that prewhitening the images can produce sharp peaks [33], and we follow a similar

approach discussed in Section 3.2.1.

In order to speed up the training process we present a method to reduce the computational

79

requirements from order O(d3) to order O(N3) for the general case when the number of training

images N is much smaller than the image dimension d. This method is discussed in Section 3.2.2.

3.2.1 Producing sharp peaks

The ECPSDF filter is equivalent to the OTSDF filter if the training and testing images are trans-

formed by x̂i = T−
1
2 xi (using the OTSDF T shown in Eq. 2.18). Kumar and Mahalanobis [86]

presented this idea for the MVSDF filter (instead of the OTSDF filter), but the same principles ap-

ply here. To verify this, the ECPSDF filter (see Eq. 2.8) is computed using transformed images

as follows (note that T is diagonal with positive entries and is therefore symmetric and positive

definite),

ĥECPSDF = X̂(X̂†X̂)−1u

= T−
1
2 X((T−

1
2 X)†T−

1
2 X)−1u

= T−
1
2 X(X†T−1X)−1u, (3.68)

where X̂ = T−
1
2 X. Applying ĥECPSDF to a transformed test chip ẑ = T−

1
2 z is the same as

applying the OTSDF filter hOTSDF to the original test chip z, i.e.,

ĥ†ECPSDF ẑ = ĥ†ECPSDF (T−
1
2 z)

= (T−
1
2 ĥECPSDF)†z

= (T−1X(X†T−1X)−1u)†z

= h†OTSDF z, (3.69)

where hOTSDF = T−1X(X†T−1X)−1u correctly matches the OTSDF filter in Eq. 2.17. This

shows that applying the ECPSDF filter on transformed training and testing images has the same

effect as applying the OTSDF filter on original (non-transformed) images. Also note from Eq. 3.69

that transforming the testing images is the same as transforming the filter itself, which can be used

to achieve some computational advantages, i.e., instead of transforming all the test images, we only

need to transform the filter.

80

Typically, most images have discriminative features at higher frequencies, i.e., at edges (object

contours) within the image, and most of the energy at the lower frequencies. In the MACE filter,

this T−
1
2 transformation flattens the average power spectrum of the training images, thereby em-

phasizing the high frequency components. This also explains the sensitivity of the MACE filter to

additive noise; it emphasizes the high frequency noise components. The MVSDF filter, on the other

hand, emphasizes the low frequency components. The OTSDF filter allows for a tradeoff between

ONV and ACE. In the CF literature this transformation is sometimes referred as prewhitening the

images. This is somewhat abusing the terminology because each image is not strictly prewhitened,

rather the spectrum of the images after the transformation is usually somewhat flattened but they are

not strictly flat, especially when the OTSDF T is used.

In our QCF design this same concept is key in achieving sharp peaks, and we call this design

the Transformed QCF (TQCF). We transform all the training images with T−
1
2 using the T matrix

from the OTSDF shown in Eq. 2.18, then we computed matrices F and B as shown in Section 2.16,

and then transform these matrices as follows,

F̄ = T−
1
2 F, (3.70)

and

B̄ = T−
1
2 B. (3.71)

Note that to avoid introducing additional variables we are abusing the notation. The prewhitening

is actually done in the frequency domain so the filters in F and B must first be transformed to the

frequency domain (note from Eq. 2.119 that these filters are in the space domain). Also note that

this transformation requires a slight increase in computation in training the filter, but requires no

additional computation in applying/testing the filter. Having sharp peaks allows a QCF to recognize

two different classes of targets by having one target class produce large positive correlation peaks,

the other target class produce large negative correlation peaks, and by default the clutter will usu-

ally exhibit low correlation values. We present experimental results showing the QCF’s ability to

81

recognize two classes of targets in Section 3.4.

3.2.2 Efficient method to train QCF filters: fastQCF

We present a method to efficiently compute the QCF eigenvectors which we called fastQCF

[60]. A filter with N1 Class 1 and N2 Class 2 training images of size d requires computing the

eigenvalues of a d × d matrix. The required computations are of the order O(d3). The required

computations can be reduced to order O(N3), where N = N1 + N2, using the fact that the QCF

only requires the eigenvectors corresponding to the non-zero eigenvalues of R = R1−R2 (see Eq.

2.116). This is beneficial because in most QCF applications N � d.

It is well known that given an m × n matrix A where m > n, the eigenvectors corresponding

to the non-zero eigenvalues of m×m matrix AAT can be obtained by 1) finding the eigenvectors

of n × n matrix ATA and 2) premultiplying those eigenvectors by A. Both matrices will have

the same non-zero eigenvalues. The trick is therefore to express matrix R as R = AAT (note the

transpose and not the hermitian symbol). Let the first N1 columns of A be the lexicographically

rearranged training images from Class 1 and let the next N2 columns be the lexicographically rear-

ranged training images from Class 2. Then multiply the first N1 columns by
√

1
N1

and multiply the

next N2 columns by j
√

1
N2

, where j =
√
−1, so that the columns of A are

A =

[√
1

N1
x̌

(1)
1 ,

√
1

N1
x̌

(1)
2 , . . . ,

√
1

N1
x̌

(1)
N1
, j

√
1

N2
x̌

(2)
1 , j

√
1

N2
x̌

(2)
2 , . . . , j

√
1

N2
x̌

(2)
N2

]
, (3.72)

where x̌
(c)
i represents the ith training image of Class c. We can verify that R = AAT = R1 −R2

(see Eq. 2.115) as follows,

R = AAT

=

N1∑
i=1

(√
1

N1
x̌

(1)
i

)(√
1

N1
x̌

(1)
i

)T
+

N2∑
i=1

(
j

√
1

N2
x̌

(2)
i

)(
j

√
1

N2
x̌

(2)
i

)T

=
1

N1

N1∑
i=1

x̌
(1)
i

(
x̌

(1)
i

)T
− 1

N2

N2∑
i=1

x̌
(2)
i

(
x̌

(2)
i

)T
= R1 −R2. (3.73)

82

Table 3.1: Time to train one QCF filter using N = 100, d = 2800

time (s)
Traditional 152.2

fastQCF 0.48

Thus, once matrix A is formed, the required eigenvectors of R can be efficiently computed.

In most of our experiments we use N = 100 training images of dimensions d = 2800. Using

MATLAB on a standard Windows XP 2.91 GHz, 3.25 GB of RAM desktop, we trained a filter ten

times using the traditional method and fastQCF and report the average times in Table 3.1. The table

shows that our method is over 300 times faster than the traditional method to train the same filter.

3.3 KALMAN CORRELATION FILTER (KCF) FOR SEQUENTIAL
IMAGES

The Multi-Frame Correlation Filter (MFCF) was reviewed in Section 2.17. MFCF combines

information from the current correlation output with previous correlation outputs to enhance target

recognition. MFCF, however, uses a fixed motion model and does not take into account the target’s

velocity. For example, in vehicle recognition MFCF is inadequate to represent the case where there

may be multiple vehicles moving with different velocities and/or a vehicle with a varying velocity.

If the vehicle’s movement is large between frames, the convolution shown in Eq. 2.125 will place

the actual vehicle’s location under a low probability region in the posterior probability shown in Eq.

2.124. As a result, the vehicle may not be detected. In addition the MFCF may not be very robust

against occlusions. When a vehicle is occluded, the correlation peak becomes small, leading to a

low value in the probability image in Eq. 2.123.

These problems may be overcome by using a tracker. We introduce the Kalman Correlation

Filter (KCF) [60] to address this issue using a Kalman filter (KF). Although there are more advanced

trackers, the purpose of KCF is to show that combining a CF with a simple tracker can improve

recognition. The KCF approach allows recursive minimum mean squared error (MMSE) estimation

of a moving target’s state.

83

3.3.1 Derivation

The KF consists of two models. The state model (also known as prediction model or motion

model) describes how the state χ evolves in time and the observation model (also known as update

model) describes how the observations Z are related to the states (note that all the notation in this

derivation is in the spatial domain):

χt = Aχt−1 + εt (State model)

Zt = Cχt + δt (Observation model) (3.74)

where we use χt and Zt to represent the target state and observation, respectively, at time t instead

of the traditional KF notation xt and zt to avoid confusion with previous image notation, A is the

state transition matrix, C is the observation matrix, and εt and δt are Gaussian distributed random

vectors.

We use a discrete white noise acceleration model [8] to allow for velocity changes. The state

vector is

χt = [px, py, vx, vy]
T , (3.75)

where px and py represent the target location in the image plane (not world coordinates), and vx and

vy represent the target’s velocities in pixels per frame in the x− and y−directions, respectively.

The state transition matrix is

A =



1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1


, (3.76)

where T (set to 1 without loss of generality) represents the time between the measurements. The

84

Gaussian distributed random vector εt is modeled as

εt =



εx × 1
2T

2

εy × 1
2T

2

εx × T

εy × T


, (3.77)

where εx and εy are zero-mean Gaussian random variables with variance E{ε2
x} = E{ε2

y} = σ2
a

chosen to represent the noise level, and it has the following covariance matrix (it is assumed that εx

and εy are independent, i.e., E{εxεy} = 0),

Rt = E{εtεTt }

= σ2
a



1
4T

4 0 1
2T

3 0

0 1
4T

4 0 1
2T

3

1
2T

3 0 T 2 0

0 1
2T

3 0 T 2


. (3.78)

It has been suggested [8] that the standard deviation σa be of the order of the maximum acceleration

magnitude aM , where 0.5aM ≤ σa ≤ aM . This has the effect of introducing zero-mean noise

propagated into the velocities and positions. Expanding the state model equations gives

χt = Aχt−1 + εt

pxt

pyt

vxt

vyt


=



1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1





pxt−1

pyt−1

vxt−1

vyt−1


+



εx × 1
2T

2

εy × 1
2T

2

εx × T

εy × T



=



pxt−1 + Tvxt−1 + 1
2εxT

2

pyt−1 + Tvyt−1 + 1
2εyT

2

vxt−1 + εxT

vyt−1 + εyT


. (3.79)

85

The location of the maximum peak in the correlation output g is used as the observed position

of the target in the KF model, i.e.,

Zt =

ox
oy

 , (3.80)

where ox and oy represent the location of the maximum peak in g in the x− and y−image coor-

dinates, respectively. Because the position is the only observed parameter, the observation matrix

is

C =

1 0 0 0

0 1 0 0

 . (3.81)

Expanding the observation model equations gives,

Zt = Cχt + δt

oxt
oyt

 =

1 0 0 0

0 1 0 0




pxt

pyt

vxt

vyt


+

δxt
δyt



=

pxt + δxt

pyy + δyt

 . (3.82)

The Gaussian distributed random vector δ̌t in the update equation is assumed to be zero-mean

with covariance matrix

Q = E{δtδTt } =

σ2
p 0

0 σ2
p

 . (3.83)

We relate σ2
p to the maximum peak value of the correlation output. A higher peak value represents

more confidence in target location estimates and therefore has a small variance; a smaller peak

value represents lower confidence and therefore has a large variance. The relationship between σ2
p

and gmax (shown in Fig. 3.7) can be modeled (somewhat arbitrarily, as other such models might

work) as

σ2
p = 2(k−gmax) + 0.001, (3.84)

86

Figure 3.7: Relationship between gmax and the uncertainty in position measurements σ2
p.

where gmax is the highest value in the correlation output, and k is a constant chosen as the average

gmax for the visible target case. A small value of 0.001 is added to keep at least a very small degree

of uncertainty even for high correlation outputs.

The KCF allows recursive MMSE estimation of a dynamic target’s random vector state repre-

sented by a mean vector µ and a covariance matrix Σ. Algorithm 3.1 contains the basic pseudocode

for the KCF algorithm for one target. The five equations shown towards the bottom of Algorithm

3.1 are known as the KF equations. The Kalman gain matrix K weights confidence in the prediction

versus the observation. Complete confidence in the prediction corresponds to a K with zero values.

In our experiments, complete confidence in our measurements corresponds to a K with ones along

the diagonal and zeros elsewhere.

This KCF algorithm provides a framework which suppresses noise by combining information

from current observations with information from all previous correlation outputs. In the MMSE

sense, it optimally computes the probability of a target before and after observing each correlation

output. It is robust to variations in velocities and acceleration and can accommodate target occlu-

sions. For example, if a moving tank temporarily disappears behind some other object for a few

frames, the KCF can still assign a high probability of detection: it would place low confidence in

the observations (since a low gmax yields a very high σ2
p) and more confidence in the prediction,

87

Algorithm 3.1 Single-target KCF
1: initialize parameters: A,R,C
2: while get another image 6= NULL do
3: compute g (apply CF to image)
4: observe Z = (ox, oy)

T : location of gmax
5: compute measurement error σ2

p and construct Q

6: if not first image then µ,Σ =UPDATE(µ̂, Σ̂,Q,C)
7: else initialize µ = [Z,0] and Σ = diag(σ2

p, σ
2
p, σ

2
v , σ

2
v)

8: µ̂, Σ̂ =PREDICTION(µ,Σ,A,R)
9: end while
1: function µ,Σ =UPDATE(µ̂, Σ̂,Q,C)
2: K = Σ̂CT (CΣ̂CT + Q)−1

3: µ = µ̂ + K(Z −Cµ)
4: Σ = Σ̂−KCΣ̂

1: function µ̂, Σ̂ =PREDICTION(µ,Σ,A,R)
2: µ̂ = Aµ
3: Σ̂ = AΣAT + R

thus giving an estimated position of the target.

Algorithm 3.1, however, does not use the full information of the correlation output and therefore

only works for one target. In order to take full advantage of the properties of CFs (i.e., the ability

to locate multiple targets at unknown locations), a few modifications are made to Algorithm 3.1.

Algorithm 3.2 contains the basic pseudocode for the KCF algorithm for multiple targets.

To locate more targets in the first image, the highest correlation peak value is found. Then,

the area around the peak is set to zero. This is repeated for the next highest peak, and repeated

again until all peaks above some threshold are located. Setting the region around each peak to zero

is done to prevent confusing one peak that extends over a few pixels with multiple targets. For

each peak, a state χ(i) is assigned with that position and with zero velocity. The uncertainty of the

position depends on the peak height, and the uncertainty in velocity is chosen to be a constant (σ2
v

in Algorithm 3.2) for the initial states. The prediction equations in Algorithm 3.1 are then applied

to each state.

For subsequent images, the highest peak in an area near a state (starting with the state with the

smallest uncertainty in position) is located. The size of the search area is directly proportional to the

88

state’s position uncertainty. The peak is assigned to that state and a small area around the peak is

set to zero. This is repeated for all the states in order of increasing position uncertainty. The update

equations in Algorithm 3.1 are then applied to each state. New targets can be detected by repeating

the process for the initial image using the remaining peaks in the correlation output. Finally the

update equations in Algorithm 3.1 are applied to each state. If a state’s location uncertainty grows

above some threshold (the standard deviation in position is larger than the image size), then the

target is deleted either because it was lost or it never existed (we were tracking noise). A state xi is

declared to correspond to a target if the uncertainty of the state’s position after the update equations

is smaller than some threshold.

Algorithm 3.2 Multi-targets KCF
1: initialize parameters: A,R,C
2: while get another image 6= NULL do
3: if not first image then
4: for each state χ(i) do (from smallest to largest position uncertainty)
5: µ̂(i), Σ̂(i) = PREDICTION(µ(i),Σ(i),A,R)

6: observe Z(i) = [(ox, oy)]
T : location of gmax in area around µ̂(i)

7: zero a small area in g around and including gmax
8: compute measurement error σ2

p and Q

9: µ(i),Σ(i) = UPDATE(µ̂(i), Σ̂(i),Q,C)
10: end for
11: end if
12: while gmax > threshold T ′ do /* find new states */
13: zero a small area in g around and including gmax
14: compute measurement error σ2

p and Q
15: initialize µ(i) = [Z(i),0] and Σ(i) = diag(σ2

p, σ
2
p, σ

2
v , σ

2
v)

16: end while
17: for all states χ(i): if σx(i)

> size of image, then delete state
18: Detection: for all states χ(i): if σx(i)

< threshold T ′′, then label state as an actual target
19: end while

In addition to computing the correlation plane, the bottleneck of the KCF are the 4 × 4 matrix

multiplies per state which are negligible compared to the two 2-D FFT computations required for

the MFCF convolution per image frame.

89

3.4 EXPERIMENTS

We test our algorithm on real and synthetic videos. The details of our experimental setup are

discussed in Chapter 7. In this section we give a brief overview of our experiments and present

results comparing the performance of the filters discussed in this chapter.

3.4.1 Vehicle recognition for filter comparison

We consider vehicle recognition on a set of 512 × 640 pixels 30 Hz infrared videos where the

vehicle’s class-label and location are unknown. Our dataset has eight vehicles (one vehicle in each

video) driving in one circle, shown in Fig. 1.2. We consider 14 different types of classifiers: UCF,

MOSSE, UOTSDF, MACH, UMACE, EASEF, ASEF, mCCF, CCF, OTSDF, MACE, ECPSDF,

TQCF, and QCF. For each type of classifier we train eight filters. Each filter is trained to recognize

one given target (there are eight targets) for all 360◦ degrees of azimuth rotation. We determine

target location by cross-correlating the template (recall that terms template and filter depict whether

our design is in the space or the frequency domain, respectively) with the test image and determin-

ing its location by the highest value in the resulting correlation output. For the highest value, we

compute the peak-to-correlation-energy (PCE) as follows,

PCE =
gmax√∑

m,n |g(m,n)|2 − |gmax|2
, (3.85)

where gmax = maxn,m(g(m,n)) is the maximum value of the correlation plane. We select the

template (out of the eight templates–one per target) that gives the highest PCE value. We declare

a correct recognition when the correct template produces the maximum response to a given frame

(i.e., correct classification) and produces the peak within a specified window centered at the correct

location (i.e., correct localization). This means that it is considered an error 1) when the largest

correlation peak is not close to the target’s ground truth location and is from the incorrect class,

or 2) when the largest correlation peak is close to the target’s ground truth location but is from

the incorrect class, or 3) when the largest correlation peak is from the correct class but the peak’s

90

location is not near the target’s ground truth location.

We performed three sets of experiments. In Set 1, each filter is trained using 20 true-class

images. In Set 2, each filter is trained using using 20 true-class images and 80 background (false-

class) images. In Set 3, each filter is initially trained as in Set 2 and then retrained, i.e., we cross-

correlate the template with the frames from which we cropped the training images, add the false

positives as false-class training images, and retrain the template. Table 3.2 shows the classification

(class), localization (loc), and recognition (recog) rates for each filter in Set 1. Table 3.3 shows the

classification, localization, and recognition rates for each filter in Set 2, and it shows the recognition

performance improvement (impr) over the recognition rates in Set 1. Improvement is computed

as new performance minus old performance, and the result divided by old performance. Table

3.4 shows the recognition rates in Set 3, and it also shows the number of retraining (ret) cycles

we used (after a certain number of cycles, performance does not improve), and the recognition

performance improvement over the recognition rates in Set 2. We compared different λ, ψ, and

variance ġσ2 of the desired Gaussian-function-like shape correlation output parameters and report

our best recognition performance findings. The values of the parameters selected are in bold and

non-bold values are default parameters for those filters. The filters with bold names correspond to

our filter designs.

These results show that unconstrained CFs usually have superior performance (by performance

we mean recognition performance) over constrained CFs when only true-class images are used.

Using false-class images improves the performances of all the filters except for ASEF, in particular

the constrained CFs, where all of them except for ECPSDF exhibit over 150% improvement in

performance. In fact, constrained CFs usually have superior performance over unconstrained CFs

when we use false-class images, and this difference is more notable after retraining when more

false-class images are added. We observe that ψ = 1 or 0.9999 usually produces the best results and

changing ψ has little effect on the performance. We observe that changing λ significantly affects the

performance. This means that in our dataset the ASM criterion has little effect on the performance

compared to MSE and ONV. In all of our experiments, our proposed linear CFs outperformed

91

Table 3.2: Filter performance (%) using true-class images only

class local recog λ ψ ġσ2

TQCF 50.8 72.8 48.9 0.70 1 0
QCF 32.1 39.9 27.4 0 1 0
CCF 20.9 56.6 17.7 0.55 0.90 0.5

OTSDF 20.9 56.2 17.5 0.55 1 0
MACE 16.6 42.0 7.4 1 1 0

ECPSDF 14.4 27.0 10.9 0 1 0
mCCF 22.6 67.6 21.2 1.00 1.00 1.0
UCF 32.3 66.0 32.3 0.05 0.95 0

UOTSDF 32.2 65.8 32.2 0.05 1 0
MOSSE 27.2 62.4 24.5 1 1 1.5
MACH 29.5 63.6 29.1 1 0 0

UMACE 17.4 53.1 14.7 1 1 0
EASEF 34.1 67.0 31.8 0.05 1 0.5
ASEF 17.2 47.6 14.3 1 1 1.5

Table 3.3: Filter performance (%) using true- and false-class images before retraining

class local recog λ ψ ġσ2 impr
TQCF 75.3 76.8 63.7 0.30 1 0 30.3
QCF 34.8 48.8 22.4 0 1 0 -18.2
CCF 53.7 90.2 52.6 0.85 1.00 2.5 197.2

OTSDF 53.6 90.3 52.4 0.85 1 0 199.4
MACE 40.0 84.1 36.2 1 1 0 389.2

ECPSDF 16.1 63.9 11.1 0 1 0 1.8
mCCF 54.2 93.2 53.4 0.99 .9999 0.5 151.9
UCF 36.1 64.7 34.5 0.25 0.55 0.5 6.8

UOTSDF 33.3 66.3 33.3 0.15 1 0 3.4
MOSSE 29.7 64.5 26.1 1 1 2.0 6.5
MACH 33.4 68.2 33.1 1 0.15 0 13.7

UMACE 25.8 61.6 18.6 1 1 0 26.5
EASEF 35.4 68.7 31.8 0.05 1 0.5 0
ASEF 16.8 46.7 13.6 1 1 1.5 -4.9

existing state-of-the-art linear CFs. When we only use true-class images, our UCF design performed

comparably to the best performing linear CF from Chapter 2 UOTSDF with a 0.3% improvement.

When we also use false-class images, our mCCF design outperformed the best performing linear

CF from Chapter 2 OTSDF by 1.9% before retraining and 11.4% after retraining.

TQCF always outperforms all filters, but this comes with increase computational cost. As shown

92

Table 3.4: Filter performance (%) after retraining

class local recog λ ψ ġσ2 ret impr
TQCF 87.6 89.7 82.4 0.20 1 0 8 29.4
QCF 57.6 79.3 54.9 0 1 0 5 145.1
CCF 61.9 90.0 59.1 0.75 1.00 1.5 6 12.4

OTSDF 59.9 90.7 58.1 .80 1 0 7 10.9
MACE 46.2 85.1 42.7 1 1 0 3 18.0

ECPSDF 38.7 80.2 35.1 0 1 0 7 216.2
mCCF 65.8 92.4 64.7 .999 .9999 1.0 4 21.2
UCF 37.9 77.9 36.5 0.15 0.99 1.0 5 5.8

UOTSDF 35.7 74.6 35.3 0.35 1 0 2 6.0
MOSSE 31.9 76.5 31.1 1 1 2.5 4 19.2
MACH 35.7 77.8 34.9 1 0.55 0 3 5.4

UMACE 23.8 65.4 21.4 1 1 0 1 15.1
EASEF 33.9 66.5 32.9 0.05 1 0 3 3.5
ASEF 20.8 49.4 15.6 1 1 1.5 3 14.7

in Section 2.16, QCFs (and therefore TQCFs) can be written as the sum of squares of linear CF out-

puts. The number of linear correlations is the number of eigenvectors used. In our experiments

we used 8 eigenvectors, thus the computational testing cost of QCFs is 8 times the computational

cost of the linear filters. For the experiments using true-class images only, we used 8 eigenvectors

corresponding 8 to the largest positive eigenvalues (there are only positive eigenvectors when only

true-class images are used), and for the other experiments we used 7 eigenvectors corresponding to

the 7 largest positive eigenvalues and 1 eigenvector corresponding the the largest negative eigen-

value. We observe that the recognition rate improvement of TQCF over QCF is 78%, 184%, and

79% in Sets 1, 2, and 3, respectively. Thus, in our dataset, using TQCF has a significant benefit.

3.4.2 QCF two target class recognition using KCF and MFCF

The previous dataset does not have videos with two targets, occluded targets, or targets moving

at different velocities. To show the QCF’s ability to simultaneously recognize two classes of targets

and to show KCFs superiority over MFCF, we synthesized videos of moving tanks using images

from three classes of toy tanks: Abrams, German, and Missile shown in Fig. 3.8. Former Carnegie

Mellon University students Ryan Kerekes and Ramu Bhagavatula captured images of these three

93

Figure 3.8: Images of toy tanks (left) Abram, (center) German, and (right) Missile used to test the algorithm

toy tanks at multiple depression angles and various azimuth rotations (covering all 360◦ of rotations

spaced every two degrees). We adapted a system made by Kerekes [33] to create these videos.

The toy tank images are segmented from the images and projected onto a plane using projective

geometry to simulate a 3-D world. A simulated camera is used to capture 2-D images of the 3-D

world. The collection of captured images forms the videos.

We show the results for two synthetic video sequences which we named Straight and Rounded-

rectangle with additive white Gaussian noise. The first synthesized video, Straight, has seven frames

and contains six tanks: two from each class. Three tanks are stationary while the other three move

from left to right in the scene and are occluded as they pass behind the stationary tanks. The moving

tanks each have a different acceleration. Fig. 3.9 shows some video frames before noise is added

(for ease of visibility for the reader), and after the background mean is increased and white noise

is added (which are the actual frames used in testing). To help identify the tanks in the figures we

labeled them with their initials: A, G, and M.

The second synthesized video, Rounded-rectangle, has 23 frames and contains tanks German

and Abraham crossing each other, turning when they reach the end of the screen, and repeating the

processes completing one loop. The tanks go under a bridge and temporarily disappear. Fig. 3.10

shows some video frames.

In these experiments, the QCF is trained with German (Class 1) and Abrams (Class 2) images.

The results show the capability for the QCF in the KCF framework. Fig. 3.11 shows the outputs of

Frame 2 in video Straight. It contains the image frame, the KCF state after an observation, and the

KCF state after applying the motion model. The update plot correctly shows the correct locations of

the two German (positive peaks) and Abrams (negative peaks) tanks, and correctly ignores the two

94

Figure 3.9: Frames 3, 4, 5, and 6 of Straight video. Top: before noise is added (for ease of visibility for
the reader). Bottom: after the background mean is increased and AWGN is added (the actual frames used in
testing).

Figure 3.10: Frames 2, 7, 11, and 15 of Rounded-rectangle with and without noise.

95

Figure 3.11: Example output from video Straight: (left) the frame, (center) the states after an observation,
and (right) the states after applying the motion model.

Table 3.5: Recognition performance (%)

video KCF MFCF
Straight 100 92.3

Rounded-rectangle 87.0 71.7

Missile tanks (it was never trained to recognize the Missile tank). Note in Fig. 3.8 that these tanks

look very similar, and in Fig. 3.11 it is impossible for most humans to differentiate them.

Table 3.5 shows the recognition rates for the QCF when used with the KCF and the MFCF.

When the vehicles go through occlusions and move with changing velocities, KCF outperforms

MFCF as shown in these experiments. If the velocity of the vehicles was small and known then the

performance of MFCF and KCF would be comparable.

3.5 SUMMARY

In this chapter we introduced two linear CFs: the CCF and UCF. UCFs can be efficiently com-

puted and used for scenarios that required adaptive filters. Our experimental results show that our

filters perform better than the state-of-the-art linear CFs. In addition we enhanced the performance

of QCFs (both computational performance and recognition performance), and show its ability to si-

multaneously recognize multiple targets from two different classes. Finally, we presented the KCF,

which improves recognition performance when using CFs in a sequence of images, i.e., in video,

and show that in our dataset it outperformed the MFCF. In the next two chapters we use some of the

concepts discussed here to design linear and quadratic maximum margin correlation filters.

96

CHAPTER 4

MAXIMUM MARGIN CORRELATION FILTER

In this chapter we combine the design principles of support vector machines (SVMs) and correlation

filters (CFs) and introduce a new type of classifier called the Maximum Margin Correlation Filter

(MMCF). The MMCF classifier is less susceptible to over-fitting than traditional CFs while provid-

ing geometric shift-invariance to SVM classifiers. We show that the MMCF is an extension to both

SVM and CFs by deriving MMCF first starting with an SVM design and then starting with a CF

design. We provide experimental results showing that MMCF always outperforms linear SVMs and

usually outperforms linear CFs in our dataset. An important contribution in this chapter to the SVM

and CF research fields is to present the relationship between these two state-of-the-art classifiers.

4.1 MMCF: AN EXTENSION TO SVMS

In this section we show how MMCF is an extension to SVM classifiers. We review SVM

classifiers, introduce the hard and soft margin SVM, formulate the SVM objective function in the

frequency domain, and introduce MMCF as an SVM with a localization criterion.

4.1.1 SVM review

SVM classifiers [14, 19, 81] (referred to as SVMs throughout this thesis) are designed by ex-

tracting features from the training images and then using a feature vector to represent an image.

97

When using pixel values as features, the image is lexicographically scanned to form a feature vec-

tor. Given N of these training column vectors x̌i ∈ Rd×1 (inverted hat denotes spatial domain)

and class labels li ∈ {−1, 1} ∀i ∈ {1, . . . , N}, the SVM approach (for a 2-class problem) finds

the hyperplane that maximizes the smallest L-2 norm distance between the hyperplane and any data

sample by solving

max
ȟ,b′

(
min
i

(
li(ȟ

T x̌i + b′)

|ȟ|

))
, (4.1)

where ȟ and b′ represent the hyperplane (ȟ denotes the normal to the hyperplane and b′ is the

bias or offset from the origin), and li(ȟ
T x̌i+b

′)

|ȟ| represents the distance from data sample x̌i to the

hyperplane ȟT x̌ + b′ = 0 (see proof in Appendix C). We use the prime symbol for the bias b′ and

other variables in the SVM space domain formulation, and later we remove the prime symbol in the

SVM frequency domain formulation.

The problem with the formulation in Eq. 4.1 is that for any (ȟ, b′) solution, (αȟ, αb′) is also a

solution for all α 6= 0. To get a unique (ȟ, b′) solution, one possibility is to constrain li(ȟT x̌i+b
′) =

1 for the x̌i closest to the decision boundary ȟT x̌ + b′ = 0 (in this case |ȟ| need not equal 1). In

other words, mini
(
li(ȟ

T x̌i + b′)
)

= 1 or, equivalently, li(ȟT x̌i + b′) ≥ 1 for all i. Using these

constraints, we rewrite Eq. 4.1 as follows,

max
ȟ,b

1

|ȟ|
(4.2)

s.t. li(ȟ
T x̌i + b′) ≥ 1,

or equivalently,

min
ȟ,b′

ȟT ȟ (4.3)

s.t. li(ȟ
T x̌i + b′) ≥ 1,

noting that maximizing 1
|ȟ| is equivalent to minimizing ȟT ȟ. Eq. 4.3 is known as the SVM primal

98

optimization problem. A more general form is

min
ȟ,b′

ȟT ȟ (4.4)

s.t. li(ȟ
T x̌i + b′) ≥ liu′i,

where u′i is the peak constraint for feature vector x̌i which allows for other values besides liu′i = 1.

We have assumed up to this point that the data is linearly separable so that the constraint

li(ȟ
T x̌i+ b′) ≥ liui for all i always holds. If ui = uT for all true-class feature vectors and ui = uF

for all false-class feature vectors, the space or distance that separates the true- and false-class data

is
uT − uF
|ȟ|

(4.5)

and is known as the hard margin. We can relax the constraints to li(ȟT x̌i + b′) ≥ liu
′
i − ξ′i, where

ξ′i ≥ 0 for all i. This allows for data vectors to be on the wrong size of the margin which may be

misclassified. This margin is known as the soft margin. Data on the wrong size of the margin is

penalized in the optimization problem as follows,

min
ȟ,b′

ȟT ȟ + 2C

N∑
i=1

ξ′i (4.6)

s.t. li(ȟ
T x̌i + b′) ≥ liu′i − ξ′i,

where ξ′i is known as a slack variable and penalizes points that are on the wrong side of the margin,

and 2C is a tradeoff parameter that weighs the cost (the “2” is included to avoid fractions when

deriving the dual formulation). We use vector notation to be more consistent with the CF notation

and write Eq. 4.6 as follows,

min
ȟ,b′

ȟT ȟ + 2C1T ξ′ (4.7)

s.t. L(X̌T ȟ + b′1) ≥ Lu′ − ξ′,

where ξ′ = [ξ′1, . . . , ξ
′
N]T , diagonal matrix L contains the vector labels li along the diagonal, X̌ =

[x̌1, . . . , x̌N], and u′ = [u
′(1)
1 , . . . , u

′(1)
N1
, u
′(2)
1 , . . . , u

′(2)
N2

)], where u′(1)
i is the inner product (peak)

constraint for the true-class feature vectors and u′(2)
i is the inner product constraint for the false-

99

class feature vectors.

Using Lagrange multipliers, the constrained problem in Eq. 4.7 can be expressed as follows,

L(ȟ, ξ′, b′,a,µ) = ȟT ȟ + 2C1†ξ′ − 2aT [L(X̌T ȟ + b′1)− Lu′ + ξ′]− 2µT ξ′, (4.8)

where a,µ ≥ 0 are vectors of N Lagrange multipliers, a� [L(X̌T ȟ + b′1)− Lu′ + ξ′] = 0, and

µ � ξ′ = 0, where � is the Hadamard product operator. We seek to maximize the vector a that

minimizes L(ȟ, ξ, b,a,µ) [30, 35]. Taking the partial derivative with respect to ȟ and setting it to

equal zero gives
∂L
∂ȟ

= ȟ− X̌La = 0, (4.9)

and solving for ȟ gives

ȟ = X̌La. (4.10)

Taking the partial derivatives with respect to b and ξ and setting them to equal zero gives

∂L
∂b

= −2aTL1 = 0, (4.11)

and

∂L
∂ξ

= 2C1− 2a− 2µ = 0, (4.12)

and solving for C1 gives,

C1 = a + µ. (4.13)

Given that a,µ ≥ 0 and a = C1− µ, then 0 ≤ a ≤ C1.

Substituting Eqs. 4.10 and 4.13 into Eq. 4.8 gives,

L(a) = (X̌La)T X̌La + 2(a + µ)T ξ′ − 2aT [L(X̌T X̌La + b′1)− Lu′ + ξ′]− 2µT ξ′

= aTLX̌T X̌La + 2aT ξ′ + 2µT ξ′ − 2aTLX̌T X̌La− 2b′aTL1 + 2aTLu′ − 2aT ξ′...

−2µT ξ′

= 2aTLu′ − aTLX̌T X̌La, (4.14)

100

Figure 4.1: An example of a linearly separable problem that benefits from using slack variables to find a
decision boundary with more generalization. a) The data points from two different classes, b) the decision
boundary obtained by enforcing perfect separation, i.e., C → ∞, and c) the decision boundary obtained by
allowing slack variables with a C value obtained using cross-validation.

where 2b′aTL1 = 0 using Eq. 4.11. We seek the vector a that maximizes L(a), i.e.,

max
0≤a≤C1

2aTLu′ − aTLX̌T X̌La. (4.15)

Eq. 4.15 is known as the dual formulation and can be solved by standard quadratic programming

techniques (see Section 4.4.2). Note that using a hard margin is equivalent to C = ∞ for linearly

separable data, so the dual problem is the same for the hard margin case with a ≥ 0 instead of

0 ≤ a ≤ C1.

Soft margin for linearly separable problems Soft margins can be helpful even for linearly

separable problems to provide better generalization. Fig. 4.1 shows one such example, where

one data point is very likely an outlier (or a mislabeled data point). In this scenario, the decision

boundary in Fig. 4.1(c) may be better than the decision boundary in Fig. 4.1(b). Cross-validation

can be used to find an adequate C. Note that C → ∞ forces the perfect separation shown in Fig.

4.1(b).

101

4.1.2 Space and frequency domain SVMs

Before we introduce the frequency domain SVM formulation, we review some of the notational

conventions discussed in Section 1.4:

• lower case bold letters with an inverted hat denote vectors (lexicographically arranged) of 2-D

spatial domain arrays, e.g, x̌i denotes xi(m,n)

• lower case bold letters sometimes denote vectors of 2-D frequency domain arrays, e.g, xi

denotes Xi(u, v)

– we loosely refer to xi as the ith image when we mean the vectorized 2-D DFT repre-

sentation of the ith image

– we loosely refer to g as the correlation plane when we mean the vectorized 2-D DFT

representation of the correlation plane

– we loosely refer to h as the template (or filter) when we mean the vectorized 2-D DFT

representation of the template

Parseval’s theorem [50] states that inner products in the space domain are only scaled by 1
d in the

frequency domain, where d is the dimension of the vectors, e.g., x̌Ti x̌j = 1
dx
†
ixj and ȟT x̌i = 1

dh
†xi.

Using Parseval’s theorem, it can be shown that the the solution a to the SVM dual problem in

Eq. 4.15 is the same whether the training vectors are in the space or frequency domain, i.e.,

a = argmax
0≤a≤C1

2aTLu′ − aTLX̌T X̌La

= argmax
0≤a≤C1

2aTL

(
1

d
u

)
− aTL

(
1

d
X†X

)
La

= argmax
0≤a≤C1

1

d

(
2aTLu− aTLX†XLa

)
= argmax

0≤a≤C1
2aTLu− aTLX†XLa, (4.16)

where we choose u = du′ so that everything is scaled appropriately.

102

Similarly, the SVM primal problem in Eq. 4.7 can be expressed in the frequency domain as

follows,

min
h,b

h†h + 2C1T ξ (4.17)

s.t. L(X†h + b1) ≥ Lu− ξ,

where b = db′ and ξ = dξ′.

CFs usually assume xi is in the frequency domain, in order to take advantage of the fact that

correlation in the space domain can be computed as multiplication in the frequency domain. Since

we will also use this property, the SVM notation will be in the frequency domain hereafter.

4.1.3 MMCF: SVM with localization criterion

The Maximum Margin Correlation Filter (MMCF) classifier combines the design principles of

SVMs and CFs. In addition to maximizing the smallest L-2 distance between the hyperplane and any

data, MMCF minimizes the MSE between the desired correlation output and the actual correlation

output, i.e.,

MSE =
1

Nd

N∑
i=1

|gi − ġi|2

=
1

Nd

N∑
i=1

(
g†igi − 2g†i ġi + ġ†i ġi

)
=

1

Nd

N∑
i=1

(
h†XiX

∗
ih− 2h†Xiġi + ġ†i ġi

)
= h†

(
1

Nd

N∑
i=1

XiX
∗
i

)
h− 2h†

(
1

Nd

N∑
i=1

Xiġi

)
+

1

Nd

N∑
i=1

ġ†i ġi

= h†Dh− 2h†p + Ef , (4.18)

where diagonal matrix Xi contains xi along the diagonal, gi = X∗ih represents the correlation

output for the nth training image, D = 1
dN

∑N
i=1 XiX

∗
i is average power spectral density of the

N training images, h†p = 1
Nd

∑N
i=1 g†i ġi is a measurement of the similarity between the actual

103

correlation planes and the desired correlation planes with

p =
1

Nd

N∑
i=1

Xiġi, (4.19)

and Ef = 1
Nd

∑N
i=1 ġ†i ġi is the average energy of the desired correlation planes. We choose a

desired correlation output represented by ˇ̇gi to be Gaussian-function-like with a small variance or

a delta function in order to have a sharp peak in the correlation output at the target’s location. This

can improve the localization capability of SVMs. Note that ˇ̇gi can also equal 0 because the peak

value is already constrained in the objective function.

For this purpose we write the MMCF multi-objective function as follows (the constant Ef can

be ignored here because it does not depend on h and does not affect the minimization problem),

min
h,b

(
h†h + 2C1T ξ,h†Dh− 2h†p

)
(4.20)

s.t. L(X†h + b1) ≥ Lu− ξ,

where u = [u
(1)
1 , . . . , u

(1)
N1
, u

(2)
1 , . . . , u

(2)
N2

)], where u(1)
i is the peak constraint for the true-class fea-

ture vectors and u(2)
i is the peak constraint for the false-class feature vectors. In most of our ex-

periments, u(1)
i = 1 for true-class feature vectors and u(2)

i = 0 or other small negative value ε

for false-class feature vectors. That is, for true-class images, we expect a value near 1 and for

false-class we expect a value that is close to 0. This allows us to detect the true targets and ignore

everything else. We refer to h†h+2C1T ξ as the margin criterion because minimizing that criterion

maximizes the margin which facilitates classification and h†Dh − 2h†p as the localization crite-

rion because minimizing that criterion can result in sharp peaks which facilitates localization. The

smaller the value of h†h, the larger the margin; a larger margin usually (but not necessarily) results

in better generalization and classification performance [9]. The smaller the value of h†Dh− 2h†p,

the sharper the correlation peak (assuming ˇ̇gi is a Gaussian-function-like with a small variance or

a delta-function-like or a function of all zeros). A sharp peak usually results in better localization

performance.

Refregier [55] showed that two quadratic criteria are optimized (i.e., the solution gives the best

104

performance for one criterion for a fixed value of the other) by minimizing a weighted sum of the

two criteria (see also [15]), i.e.,

min
h,b

β
(
h†h + 2C1T ξ

)
+
(
h†Dh− 2h†p

)
(4.21)

s.t. L(X†h + b1) ≥ Lu− ξ,

where 0 ≤ β ≤ ∞. Subsuming one quadratic term into the other quadratic term, Eq. 4.21 can be

written as follows,

min
h,b

h†Th− 2h†p + 2C1T ξ (4.22)

s.t. L(X†h + b1) ≥ Lu− ξ,

where

T = D + βI, (4.23)

and C ← βC to avoid introducing new notation. Here β is the parameter which trades-off mar-

gin (i.e., L-2 norm margin maximization between the centered true-class and false-class training

images) and object localization. Setting β = ∞ will ignore the localization criterion and result

in the conventional SVM classifier for centered images. Therefore, the SVM objective function is

a special case of this more general MMCF objective function with β = ∞. Smaller values of β

improve object localization by having sharper peaks in the correlation output.

4.1.3.1 Delta-function-like desired output

Our earlier work [62] assumed a delta-function-like desired output which can simplify the prob-

lem. The desired CF output in the space domain is set to ˇ̇gi = [0, . . . , 0, ȟT x̌i, 0, . . . , 0]T where

we use ȟT x̌i as the cross-correlation value of ȟ and x̌i at the target’s location. In other words, a

peak centered at the target’s location and zeros everywhere else is desired. In the frequency domain,

vector ġi can be expressed as

ġi = 1ȟT x̌i =
1

d
1h†xi =

1

d
1x†ih (4.24)

105

by using the property that a delta function in the space domain is a constant in the frequency domain.

The MSE in Eq. 4.18 can be simplified to (note that xi = Xi1),

MSE = h†Dh− 2h†p + Ef

= h†Dh− 2h†
1

Nd

N∑
i=1

(Xiġi) +
1

Nd

N∑
i=1

(
ġ†i ġi

)
= h†Dh− 2

Nd2

N∑
i=1

h†Xi1x†ih +
1

Nd3

N∑
i=1

h†xi1
†1x†ih

= h†Dh− 2

Nd2

N∑
i=1

h†xix
†
ih +

1

Nd2

N∑
i=1

h†xix
†
ih

= h†Dh− 1

d
h†

(
1

Nd

N∑
i=1

xix
†
i

)
h

= h†Dh− 1

d
h†
(

1

Nd
XX†

)
h

= h†Dh− 1

d
h†Rh

= h†Zh, (4.25)

where R = 1
NdXX† is a non-diagonal matrix known as the correlation matrix, and Z = D− 1

dR.

Note from Eq. 4.18 that h†Zh is a sum of squares, and thus is non-negative for any h, and therefore

Z is positive semidefinite.

The MMCF multi-objective function can be expressed as

min
h,b

(
h†h + 2C1T ξ,h†Zh

)
(4.26)

s.t. L(X†h + b1) ≥ Lu− ξ.

Eq. 4.26 can be expressed as a weighted sum of the two criteria, i.e.,

min
h,b

β
(
h†h + 2C1T ξ

)
+ h†Zh (4.27)

s.t. L(X†h + b1) ≥ Lu− ξ,

where 0 ≤ β ≤ ∞, and subsuming one quadratic term into the other quadratic term Eq. 4.27 can

106

be written as follows,

min
h,b

h†Th + 2C1T ξ (4.28)

s.t. L(X†h + b1) ≥ Lu− ξ,

where T = Z + βI, and C ← βC. Since Z is positive semidefinite, then T is positive definite for

β > 0, and the data can be transformed such that

h̃ = T
1
2 h (4.29)

and

x̃i = T−
1
2 xi, (4.30)

and the MMCF multi-objective function can be written as follows,

min
h,b

h̃†h̃ + C1T ξ (4.31)

s.t. L(X̃†h̃ + b1) ≥ Lu− ξ,

where X̃ = [x̃1, . . . , x̃N]. This has the standard SVM form (see Eq. 4.17) which means that this

MMCF design can be implemented using a standard SVM solver by using transform images to find

h̃. Then h can be computed as follows,

h = T−
1
2 h̃. (4.32)

Note that the formulation in Eq. 4.28 is equivalent to maximizing a non-Euclidean margin or

in Eq. 4.31 an Euclidean margin in a transformed space. Shivaswamy et al. [72] recently showed

that the type of margin (e.g., L-2 norm margin) maximized is important while designing maximum

margin classifiers. For example, Ashraf et al. [6] maximized a non-Euclidean margin for their task

of applying Gabor filters in a lower dimensional feature space. They are motivated by reducing

the computational complexity of designing classifiers on potentially infinite dimensional features

extracted from infinite number of Gabor filters. However, we are motivated by a peak sharpness

criterion, which improves object localization performance.

107

Computing T−1 Directly computing the inverse of the non-diagonal d× d matrix T is com-

putationally intensive. One method to reduce the computational complexity is to use the Woodbury

matrix identity1 [52]. Let matrix T be expressed as

T = D + βId −
1

d
R

= Ta −
1

d
R

= Ta −
1

Nd2
XX†

= Ta +

(
− 1

Nd2
X

)
INX†, (4.33)

where diagonal matrix Ta = D + βId. We added a subscript to the identity matrices Id and IN

corresponding to their d× d and N ×N size, respectively. Using the Woodbury matrix identity,

T−1 =

(
Ta +

(
− 1

Nd2
X

)
INX†

)−1

= T−1
a + T−1

a

(
− 1

Nd2
X

)(
I−1
N + X†T−1

a

(
− 1

Nd2
X

))−1

X†T−1
a

= T−1
a + T−1

a X
(
Nd2IN −X†T−1

a X
)−1

X†T−1
a . (4.34)

This requires inverting twoN×N matrices instead of one d×dmatrix which is useful when d� N

which is often the case..

Another method to reduce the computational complexity is to ignore the correlation matrix R

in Eq. 4.25, and approximate T by a diagonal matrix,

T = Z + βI

= D− 1

d
R + βI

≈ D + βI, (4.35)

thus avoiding the inversion of a non-diagonal matrix. This simplifies the localization criterion h†Zh

1 Thanks to Vishnu Naresh Boddeti for pointing this out. The Woodbury matrix identity is
(A+UCV)−1 = A−1 +A−1U(C−1 +VA−1U)−1VA−1.

108

shown in Eq. 4.26 to

h†Dh = h†

(
1

Nd

N∑
i=1

XiX
∗
i

)
h

=
1

Nd

N∑
i=1

|X∗ih|2, (4.36)

which is a measure of the average of the energies of the correlation outputs. This localization

criterion ignores the single pixel at the target’s location. However, the energy contribution of the

value at the target’s location to the energy of the entire correlation output is negligible, and thus

this approximation does not adversely affect the filter. This is equivalent to having the desired

correlation output be all zeros, i.e., ġi = 0 for all i. The value at the target’s location can be ignored

because it is already constrained to be li(h†xi + b) ≥ liui − ξi. Empirically, we observed that the

overall loss in filter performance is negligible when using this approximation.

4.2 MMCF: AN EXTENSION TO CORRELATION FILTERS

In this section we show how MMCF is a generalized CF. We first show that SVM is a general

form of the ECPSDF filter. Then we use the same concepts to generalized the more advanced CCF

that we introduced in Chapter 3.

4.2.1 From ECPSDF to SVM

In this section we show that SVM is a general form of the ECPSDF filter. We first show that

the ECPSDF is the minimum norm solution for an underconstrained system, and then detail the

differences between SVM and ECPSDF. The ECPSDF filter becomes an SVM by relaxing the

equality constraints to inequality constraints and adding a bias.

4.2.1.1 Minimum norm solutions for underconstrained systems

Minimum norm solutions are usually used for underdetermined systems. Suppose that we have

a problem with inner-product constraints of the form h†xi = ui for i = 1, . . . , N , where h is of

109

dimension d > N . There are infinite vectors that satisfy those constraints. If hs is one possible

solution, then hs + αh0 ∀α ∈ < is also a solution, where h0 is a vector orthogonal to the space

spanned by the vectors xi ∀i, i.e., h0 ∈ M⊥ where M = span(x1, . . . ,xN), and therefore h†0xi =

0 ∀i. This can be easily verified as follows,

(hs + αh0)†xi = h†sxi + αh†0xi

= ui + 0. (4.37)

The solution with minimum norm hmin lies in hs + αh0 and is also orthogonal to h0. Therefore

hmin lies in M , and therefore it is of the form

h =
N∑
i=1

aixi = Xa. (4.38)

In other words the minimum norm problem,

min
h

h†h (4.39)

s.t. X†h = u

is equivalent to solving,

X†h = u, (4.40)

where

h = Xa. (4.41)

This is the ECPSDF objective function in Section 2.2. In other words, ECPSDF is a minimum norm

problem similar to SVM.

4.2.1.2 ECPSDF and SVM differences

The only two differences between ECPSDF and SVM are as follows: 1) ECPSDF does not use

a bias b, and 2) ECPSDF uses equality constraints instead of inequality constraints.

110

ECPSDF does not use a bias b Not using a bias its equivalent to having the origin x0 = 0 as

a point on the hyperplane h†x + b = 0 as an additional constraint. In other words,

min
h

h†h (4.42)

s.t. X†h + b = u

h†0 + b = 0

and

min
h

h†h (4.43)

s.t. X†h = u

are equivalent. This presents a slight disadvantage to the ECPSDF formulation because it makes an

assumption that it is not explicitly given. However, in practice, constraining the peak value for the

zero vector to be zero may not be very disadvantageous. For example, this is equivalent to assuming

that a false-class image with one monochromatic color with its mean subtracted, i.e., an image with

zero variance where all values becomes zero after subtracting the mean as it is commonly done in

preprocessing.

ECPSDF uses equality constraints instead of inequality constraints Assuming that ECPSDF

uses a bias and that the constrained peak values are ui = 1 for all xi ∈ true-class and ui = −1 for

all xi ∈ false-class, then Eq. 4.39 can be written as

min
h

h†h (4.44)

s.t. li(h
†xi + b) = 1,

where li = {−1, 1} is the class-label of the training vectors. Equivalently, it can be written as

max
h

1

|h|
(4.45)

s.t. li(h
†xi + b) = 1,

111

(a) (b)

Figure 4.2: The effects of relaxing the constraints from equality to inequality where xT1
and xT2

are true-
class data points and xF is a false-class data point. a) The hyperplane obtained with equality constraints leads
to a small margin that may not generalize well. b) The hyperplane obtained by relaxing the constraints leads
to a larger margin that may provide better generalization.

or as

max
h

li(h
†xi + b)

|h|
, (4.46)

where li(h
†xi+b)
|h| is the distance from the hyperplane h†x+b = 0 to the training vector xi (see proof

in Appendix C). That is, the ECPSDF is implicitly designed to maximize the distance between

the hyperplanes h†x + b = 1 containing all the true-class points and h†x + b = −1 containing

all the false-class points. This means that the ECPSDF is a maximum margin filter. In general, if

h†xi+ b = uT for all xi ∈ true-class and h†xi+ b = uF for all xi ∈ false-class, then the maximum

margin between these hyperplanes is

h†xT + b

|h|
− h†xF + b

|h|
=
uT − uF
|h|

. (4.47)

SVM (ignoring slack variables) maximizes the distance between two hyperplanes that contain

at least one (although it could contain more) of the true-class and false-class points, respectively.

That is, SVM only takes into account the data points from each class that are closest in distance to

the data points from the opposite class to come up with a decision boundary. This results in a larger

margin and can lead to better generalization as shown in Fig. 4.2.

When not using a bias and using ui = uT for all xi ∈ true-class and ui = uF for all xi ∈

112

false-class, ECPSDF maximizes the distance between the hyperplanes h†x = uT and h†x = uF

with the implicit constraint that the zero image has peak value u0 = 0. This margin is

h†xT
|h|

− h†xF
|h|

=
uT − uF
|h|

, (4.48)

as in Eq. 4.47 but with a different |h|. Fig. 4.3 shows the difference in the margin when a bias

is used versus when it is not used. From this figure we see that when a bias is used, changing

the false-class constraint value ui does not change the direction of h; however, when a bias is not

used, changing the constraint value ui produces a different h (see Section 3.1.5 for a discussion

on different ui values for false-class feature vectors). If there are no explicit false-class feature

vectors, the ECPSDF solution h maximizes the distance from the hyperplane h†x = 1 to the origin

(it assumes the zero image has ui = 0).

Another ECPSDF disadvantage is that it usually fails when N ≥ d+ 1 (except for the rare case

when some points of a given class are collinear). Fig. 4.4 helps to make this point. When d ≤ N a

hyperplane that perfectly separates these two classes can usually be found as is shown next.

When d ≥ N there usually exists a hyperplane that perfectly separates these two classes

In many applications, the dimension of the training vectors d is greater than the number of training

vectors, N . When d ≥ N there exists a hyperplane that contains the data of Class 1 that is parallel

to a different hyperplane that contains the data of Class 2 if and only if the columns of

X(2−µ1) = X(2) − µ1 = [x
(2)
1 − µ1,x

(2)
2 − µ1, . . . ,x

(2)
N − µ1] (4.49)

are not in the span of the columns of

X(1−µ1) = X(1) − µ1 = [x
(1)
1 − µ1,x

(1)
2 − µ1, . . . ,x

(1)
N − µ1], (4.50)

where X(1) is a matrix containing the feature vectors of Class 1, X(2) is a matrix containing the

feature vectors of Class 2, and µ1 is the mean of the feature vectors in X(1). If this condition is met

then the two parallel hyperplanes exist, and therefore there exists a hyperplane between these two

hyperplanes that perfectly separates the two classes.

113

(a) (b)

(c) (d)

Figure 4.3: The difference in the margin when a bias is used versus when it is not used. Figs. (a) and (b)
both have peak constraints ui = −1 for the false-class features but produce a different h because (a) uses a
bias b. Similarly, Figs. (c) and (d) both have peak constraints ui = 0 for false-class features but also produce
different h because (c) uses a bias b. When a bias is used as in Figs. (a) and (c), the peak constraints ui
for false-class features do not affect the direction of h, whereas in Figs. (b) and (d) when a bias is not used,
different peak constraints ui produce different h vectors.

Axiom 1: If d ≥ N there exists at least one hyperplane that contains all N points.

Lemma 1: A hyperplane h†x + b1 = 0, or equivalently, h†x = −b1 that contains all the data

points in X(1) must also contain its mean µ1.

114

(a) (b)

Figure 4.4: In (a), when N ≥ d + 1, ECPSDF cannot find one hyperplane that goes through all the true-
class data points (the SVM margin is shown), except for the rare case when some points of a given class are
collinear as shown in (b). In (b), the ECPSDF margin is shown. Note that both (a) and (b) have the same
SVM margin.

The proof is as follows,

h†µ1 = h†

(
1

N

N∑
i=1

x
(1)
i

)

=
1

N
(h†x

(1)
1 + · · ·+ h†x

(1)
N)

=
1

N
((−b1) + · · ·+ (−b1))

= −b1. (4.51)

Thus, µ1 is also in the hyperplane h†x = −b1.

Lemma 2: The vector h is orthogonal to the vector x
(1)
i − µ1.

The proof is as follows. Since h is orthogonal to the hyperplane h†x = −b1 (see proof in

Appendix C), then h must be orthogonal to any vector in that hyperplane. The vector x
(1)
i − µ1 is

a vector on that hyperplane because x
(1)
i and µ1 (by Lemma 1) are points on the hyperplane.

Lemma 3: The vector h is orthogonal to any vector in the span of the columns of X(1−µ1).

The proof is as follows. Let v be a vector in the span of the columns of X(1−µ1), i.e.,

v = α1(x
(1)
1 − µ1) + · · ·+ αN (x

(1)
N − µ1). (4.52)

115

Using Lemma 2,

h†v = h†
(
α1(x

(1)
1 − µ1) + · · ·+ αN (x

(1)
N − µ1)

)
= α1h

†(x
(1)
1 − µ1) + · · ·+ αNh†(x

(1)
N − µ1)

= α10 + · · ·+ αN0 = 0. (4.53)

Lemma 4: Any vector v + µ1 is in the hyperplane h†x = −b1, where v is a vector in the span

of the columns of X(1−µ1).

The proof is as follows. Using Lemmata 2 and 3,

h†(v + µ1) = h†v + h†µ1 = 0 + (−b1) = −b1. (4.54)

Lemma 5: The vector w is in the hyperplane h†x = −b1 if w−µ1 is in the span of the columns

of X(1−µ1). This can be expressed as h†x = −b1|x ∈ span
(
X(1−µ1)

)
+ µ1.

The proof is as follows. Let v = w − µ1, and by Lemma 4 v + µ1 = w is in the hyperplane

h†x = −b1.

Lemma 6: The vector x
(2)
i is linearly independent of the columns of X(1) if x

(2)
i −µ1 is linearly

independent of the columns of X(1−µ1), i.e., rank
([

X(1),x
(2)
i

])
= rank

(
X(1)

)
+ rank

(
x

(2)
i

)
if rank

([
X(1−µ1),x

(2)
i − µ1

])
= rank

(
X(1−µ1)

)
+ rank

(
x

(2)
i − µ1

)
.

The proof is as follows. Linearly independence implies that

x
(2)
i − µ1 6= α1(x

(1)
1 − µ1) + ...+ αN (x

(1)
N − µ1), (4.55)

116

for all αi ∈ <. Therefore,

x
(2)
i 6= α1(x

(1)
1 − µ1) + · · ·+ αN (x

(1)
N − µ1) + µ1

6= α1x
(1)
1 + · · ·+ αNx

(1)
N + µ1(−α1 − · · · − αN + 1)

6= α1x
(1)
1 + · · ·+ αNx

(1)
N + µ1α̂

6= α1x
(1)
1 + · · ·+ αNx

(1)
N +

1

N
(x

(1)
1 + · · ·+ x

(1)
N)α̂

6= α1x
(1)
1 +

1

N
α̂x

(1)
1 + · · ·+ αNxN +

1

N
α̂x

(1)
N

6=
(
α1 +

1

N
α̂

)
x

(1)
1 + · · ·+

(
αN +

1

N
α̂

)
x

(1)
N

6= ᾱ1x
(1)
1 + · · ·+ ᾱNx

(1)
N , (4.56)

where ᾱi = αi + 1
N α̂, α̂ = −α1 − · · · − αN + 1.

Theorem 1: Two different parallel hyperplanes h†x = −b1 and h†x = −b2 contain all the data

in X(1) and X(2), respectively, if and only if

rank
([

X(1−µ1),X(2−µ1)
])

= rank
(
X(1−µ1)

)
+ rank

(
X(2−µ1)

)
(4.57)

and

µ1 /∈ X(2). (4.58)

For example, Theorem 1 is violated if the same sample is labeled as a Class 1 sample and as a Class

2 sample, i.e., x
(1)
i = x

(2)
j for some sample i and j in Class 1 and 2, respectively.

The proof is as follows. By definition, h†x
(2)
i = −b2 ∀i, and if b1 6= b2, then the data are

in different parallel hyperplanes. From Lemma 5, h†x = −b1|x ∈ span
(
X(1−µ1)

)
+ µ1, and

other vectors not in span
(
X(1−µ1)

)
+ µ1 can be constrained to be in a different hyperplane, e.g.,

h†x = −b2. That is, if the vector x
(2)
i ∀i /∈ span

(
X(1−µ1)

)
+µ1, then x

(2)
i can be constrained to be

in the hyperplane h†x = −b2. If vector x
(2)
i − µ1 is not in span

(
X(1−µ1)

)
, then by definition, it is

linearly independent of the vectors X(1−µ1) = [x
(1)
1 −µ1,x

(1)
2 −µ1, ...,x

(1)
N −µ1], and therefore,

rank
([

X(1−µ1),x
(2)
i − µ1

])
= rank

(
X(1−µ1)

)
+ rank

(
x

(2)
i − µ1

)
= rank

(
X(1−µ1)

)
+ 1,

(4.59)

117

given that x
(2)
i 6= µ1 if the vector x

(2)
i − µ1 is not in span

(
X(1−µ1)

)
.

To prove the reverse, if

rank
(
X(1−µ1)

)
= rank

([
X(1−µ1),x

(2)
i − µ1

])
(4.60)

then the vector x
(2)
i −µ1 is in span

(
X(1−µ1)

)
and from Lemma 5, x

(2)
i has to be in the hyperplane

h†x = −b1. Therefore, b1 = b2 and two different hyperplanes do not exist.

Theorem 2: Two hyperplanes contain all the data in X(1) and X(2), respectively, if

rank
([

X(1),X(2)
])

= rank
(
X(1)

)
+ rank

(
X(2)

)
. (4.61)

However, the reverse is not necessarily true. This is a more strict requirement than Theorem 1, i.e.,

if it is true, then two different hyperplanes exist, and if it is false, it does not mean that two different

hyperplanes do not exist. For example, x
(1)
1 = [1, 0, 0]T , x

(1)
2 = [0, 1, 0]T , and x

(2)
1 = [1, 1, 0]T

does not pass Theorem 2 requirements but it passes Theorem 1 requirements.

The proof is as follows. Using Theorem 1 and Lemma 6, if

rank
([

X(1−µ1),X(2−µ1)
])

= rank
(
X(1−µ1)

)
+ rank

(
X(2−µ1)

)
(4.62)

then

rank
([

X(1),X(2)
])

= rank
(
X(1)

)
+ rank

(
X(2)

)
. (4.63)

4.2.2 Relaxing equality constraints to inequality constraints

As discussed earlier, ECPSDF is a maximum margin classifier, and it can be reformulated as

an SVM by including a bias and relaxing the equality constraints to inequality constraints. CFs,

in general, are maximum margin classifiers. Including a bias and relaxing the equality constraints

to inequality constraints can improved generalization and lead to better performance. This comes

at some computational cost. ECPSDF and other CFs usually have a closed-form solution that can

be efficiently computed (e.g., see Eqs. 2.8 and 2.17). Including a bias and/or using inequality

constraints in the formulation prevents a closed-form solution, and requires quadratic programming

118

techniques (see Section 4.4.2). However, since the testing time does not increase, a small increase

in training computation that results in improved performance is usually a good tradeoff.

4.2.3 From CCF to MMCF

In Section 3.1.2, we introduced our CCF design. CCF outperformed all the other linear CFs

when false-class features are available. In Section 4.2.1, we showed how ECPSDF produces a

larger margin by using a bias and inequality constraints in the objective function. In fact, doing

this transforms ECPSDF into the SVM, which is known to generalize well. ECPSDF is one of

the first CF designed, and there have been several advances leading up to our CCF design which

outperformed ECPSDF by 62%, 374%, and 68% in the three sets of experiments in Section 3.4.1.

Similarly, we designed the Maximum Margin Correlation Filter (MMCF) by using a bias and

inequality constraints on CCF. That is, we seek the h that minimizes the CCF objective function

h†Th − 2h†p + ġ†ġ subject to the linear inequality constraints L(X†h + b1) ≥ Lu. Including

slack variables, the MMCF objective function can be expressed as follows,

min
h,b

h†Th− 2h†p + 2C1T ξ (4.64)

s.t. L(X†h + b1) ≥ Lu− ξ,

where T = (1 − γ)D − γM + βP, p = 1
Nd

∑N
i=1 Xiġi , and u = [u

(1)
1 , . . . , u

(1)
N1
, u

(2)
1 , . . . , u

(2)
N2

]

(note that the peak constraints belonging to Class 2 are negated because of the L matrix).

4.3 MMCF SOLUTION

The MMCF objective functions in Eq. 4.22 (derived from SVM) and in Eq. 4.64 (derived from

CCF) are the same, and can be solved as follows. Using Lagrange multipliers, the constrained

problem in Eq. 4.64 can be expressed as follows,

L(h, ξ, b,a,µ) = h†Th− 2h†p + 2C1T ξ − 2aT [L(X†h + b1)− Lu + ξ]− 2µT ξ, (4.65)

119

where a,µ ≥ 0 are vectors of Lagrange multipliers. Taking the partial derivative with respect to h

and setting it equal to zero gives

∂L
∂h

= 2Th− 2p− 2XLa = 0, (4.66)

and solving for h gives

h = T−1(p + XLa), (4.67)

which can be expanded as

h = T−1p + T−1XLa

= hUCF + T−1XLa, (4.68)

where hUCF is the UCF h in Eq. 3.9. Taking the partial derivatives with respect to b and ξ and

setting them equal to zero gives
∂L
∂b

= −2aTL1 = 0, (4.69)

and

∂L
∂ξ

= 2C1− 2a− 2µ = 0, (4.70)

and solving for C1 gives

C1 = a + µ. (4.71)

Given that a,µ ≥ 0 and a = C1− µ , then 0 ≤ a ≤ C1.

120

Substituting Eqs. 4.67 and 4.71 into Eq. 4.65 gives

L(a) = (T−1(p + XLa))†T(T−1(p + XLa))− 2(T−1(p + XLa))†p + 2(a + µ)T ξ . . .

−2aT [L(X†(T−1(p + XLa)) + b1)− Lu + ξ]− 2µT ξ

= (p + XLa)†T−1(p + XLa)− 2(p + XLa)†T−1p + 2aT ξ + 2µT ξ . . .

−2aTLX†T−1(p + XLa)− 2baTL1 + 2aTLu− 2aT ξ − 2µT ξ

= (p† + aTLX†)T−1(p + XLa)− 2(p† + aTLX†)T−1p− 2aTLX†T−1(p + XLa)...

+2aTLu

= p†T−1p + 2aTLX†T−1p + aTLX†T−1XLa− 2p†T−1p− 2aTLX†T−1p . . .

−2aTLX†T−1p− 2aTLX†T−1XLa + 2aTLu

= −p†T−1p− 2aTLX†T−1p− aTLX†T−1XLa + 2aTLu

= −aTLX†T−1XLa + 2aT (Lu− LX†T−1p) + κ,

= −aTLX†T−1XLa + 2aTL(u− uUCF) + κ, (4.72)

where 2baTL1 = 0 using Eq. 4.69, 0 ≤ a ≤ C1, κ = −p†T−1p does not depend on a and does

not affect the a that maximizes L(a), and

uUCF = X†T−1p = X†hUCF (4.73)

represents the peak correlation output value at the center for the UCF filter. We seek the a that

maximizes L(a), i.e.,

max
0≤a≤C1

2aTL(u− uUCF)− aTLX†T−1XLa. (4.74)

Eq. 4.74 is known as the dual formulation and can be solved by standard quadratic programming

techniques (see Section 4.4.2).

Finally, note from Eq. 4.68 that

h = hUCF + T−1XLa

= hUCF + h0, (4.75)

121

where h0 = T−1XLa is the MMCF filter when the desired correlation output ġi = 0 ∀i.

4.3.1 Modified MMCF

We can design a UCF that produces the MMCF peak constraints by letting each desired ġi be a

scaled version of the others, i.e., ġi = τiġ, and determining the scalar τi for all i as follows,

uMMCF = uUCF

= X†T−1p

= X†T−1

(
1

Nd

N∑
i=1

Xiτiġ

)

=
1

Nd
X†T−1Ġ

N∑
i=1

xiτi

=
1

Nd
X†T−1ĠXΓ, (4.76)

where Γ = [τ1, . . . , τN]T , and diagonal matrix Ġ contains ġ along the diagonal. The vector Γ can

be computed as follows,

Γ = Nd(X†T−1ĠX)−1u. (4.77)

Then u = uUCF and Eq. 4.74 can be simplified to

max
0≤a≤C1

−aTLX†T−1XLa. (4.78)

Since T is positive definite, then LX†T−1XL is also positive definite and Eq. 4.78 is maximized

when a = 0. The filter is

h = T−1p + T−1XLa

= T−1p

=
1

Nd
T−1ĠXΓ

= T−1ĠX(X†T−1ĠX)−1u

= T̂−1X(X†T̂−1X)−1u, (4.79)

122

where T̂ = TG−1. Thus, the modify MMCF solution is equivalent to mCCF from Section 3.1.2.

This solution is intuitively; once u = uUCF , then all the constraints are already satisfied, and the

non-UCF portion of h is not needed.

4.4 IMPLEMENTATION

4.4.1 Unbounded scalar variables

The T used in the CCF to MMCF formulation is T = (1 + γ)D− γM + βP which accounts

for the MSE, ASM, and ONV criteria discussed in Section 3.1. In the SVM to MMCF formulation,

there is no ASM criterion used (γ = 0), and we implicitly assumed that P = 1
dI, so that T = D+ β

d I

(see Eq. 4.23). In our experiments we use the more general T = (1 + γ)D − γM + βP, where

γ, β ≥ 0. In order to use bounder scalars, γ and β are replaced with bounded scalars: γ is replaced

with γ = 1
ψ (1− ψ) and β with β = 1

λ(1− λ), where 0 ≤ ψ, λ ≤ 1, i.e.,

T = (1 + γ)D− γM + βP

= (1 +
1

ψ
(1− ψ))D− 1

ψ
(1− ψ)M +

1

λ
(1− λ)P

=
1

λψ
(λD + λ(1− ψ)M + (1− λ)ψP)

=
1

ψ
D− 1

ψ
M +

1

λ
P + M−P, (4.80)

where we define the ratio 0
0 = 1 for the cases when ψ = 0 and/or λ = 0. Note that when γ = 0 only

MSE and ONV are optimized, when β = 0 only MSE and ASM are optimized, when γ = β = 0

only MSE is optimized, when γ → ∞ and β → ∞ only ASM and ONV are optimized, when

γ →∞ only ASM is optimized, and when β →∞ only ONV is optimized.

4.4.2 Sequential minimal optimization

There are several algorithms to minimize the quadratic term in Eq. 4.74. The most popular

algorithm is the sequential minimal optimization (SMO) [53]. Instead of simultaneously solving for

the entire a = [a1, . . . , aN]T vector, SMO recursively solves for different (an, am)n 6=m pairs and

123

can be implemented efficiently.

4.5 EXPERIMENTS

We test our algorithm on real videos of vehicles. The details of our experimental setup are

discussed in Chapter 7. In this section we give a brief overview of our experiments and present

results comparing the performance of the filters discussed in this chapter.

We consider vehicle recognition on a set of 512 × 640 pixels 30 Hz infrared videos where the

vehicle’s class-label and location are unknown. Our dataset has eight vehicles (one vehicle in each

video) driving in one circle, shown in Fig. 1.2. We consider the quadratic CFs, the best uncon-

strained CFs, UCF and EASEF, and all the constrained CFs from Chapter 3 using both equality and

inequality constraints. We referred to the filters that have the same objective function as OTSDF

and MACE but have instead inequality constraints and a bias as inequality OTSDF (iOTSDF) and

inequality MACE (iMACE) respectively. Note that inequality ECPSDF is the same as SVM, and

inequality CCF is the same as MMCF. In total we consider 15 different types of classifiers: UCF,

EASEF, mCCF, MMCF, CCF, iOTSDF, OTSDF, iMACE, MACE, SVM, ECPSDF, TQCF, and QCF,

where MMCF is the generalized CCF, and SVM is the generalized ECPSDF. For each type of clas-

sifier we train eight filters. Each filter is trained to recognize one given target (there are eight targets)

for all 360◦ degrees of azimuth rotation. We determine target location by cross-correlating the tem-

plate with the test image and determining its location by the highest value in the resulting correlation

output. For the highest value, we compute the peak-to-correlation-energy (PCE) (see Eq. 3.85) and

select the template (out of the eight templates–one per target) that gives the highest PCE value. We

declare a correct recognition when the correct template produces the maximum response to a given

frame (i.e., correct classification) and produces the peak within a specified window centered at the

correct location (i.e., correct localization). This means that it is considered an error 1) when the

largest correlation peak is not close to the target’s ground truth location and is from the incorrect

class, or 2) when the largest correlation peak is close to the target’s ground truth location but is from

124

the incorrect class, or 3) when the largest correlation peak is from the correct class but the peak’s

location is not near the target’s ground truth location.

We performed three sets of experiments. In Set 1, each filter is trained using 20 true-class

images. In Set 2, each filter is trained using using 20 true-class images and 80 background (false-

class) images. In Set 3, each filter is initially trained as in Set 2 and then retrained, i.e., we cross-

correlate the template with the frames from which we cropped the training images, add the false

positives as false-class training images, and retrain the template. Table 4.1 shows the classification

(class), localization (loc), and recognition (recog) rates for each filter in Set 1. Table 4.2 shows the

classification, localization, and recognition rates for each filter in Set 2, and it shows the recognition

performance improvement (impr) over the recognition rates in Set 1. Improvement is computed

as new performance minus old performance, and the result divided by old performance. Table

4.3 shows the recognition rates in Set 3, and it also shows the number of retraining (ret) cycles

we used (after a certain number of cycles, performance does not improve), and the recognition

performance improvement over the recognition rates in Set 2. We compared different λ, ψ, and

variance ġσ2 of the desired Gaussian-function-like shape correlation output parameters and report

our best recognition performance findings. The values of the parameters selected are in bold and

non-bold values are default parameters for those filters.

These results show that generalizing the constrained CFs improves performance when retraining

is used. As the number of false class images increases in retraining, relaxing the equality constraints

to inequality constraints and including a bias improves all the constrained CFs, i.e., i.e., SVM shows

a 35% improvement over ECPSDF, iMACE shows a 3% improvement over iMACE, iOTSDF shows

a 9% improvement over OTSDF, and MMCF shows a 7% improvement over CCF. We observe that

when few training images are used (i.e., before retraining) it is usually better to use equality con-

straints. This is somewhat surprising because inequality constraints have lower or equal objective

function values than having equality constraints. We conjecture that in a large dimensional space

when there are few images, having two hyperplanes that contains all the images may generalized

better than having two hyperplanes that maximize the separation between the two classes.

125

Table 4.1: Filter performance (%) using true-class images only

class local recog λ ψ ġσ2

TQCF 50.8 72.8 48.9 0.70 1 0
QCF 32.1 39.9 27.4 0 1 0

MMCF 32.7 66.4 29.6 0.01 0.20 1.5
iOTSDF 20.9 55.5 17.4 0.55 1 0
iMACE 16.4 42.6 7.8 1 1 0
SVM 12.1 25.8 9.9 0 1 0
CCF 21.1 57.8 17.7 0.55 0.90 0.5

OTSDF 20.9 56.2 17.5 0.55 1 0
MACE 16.6 42.0 7.4 1 1 0

ECPSDF 14.4 27.0 10.9 0 1 0
mCCF 22.6 67.6 21.2 1.00 1.00 1.0
UCF 32.3 66.0 32.3 0.05 0.95 0

EASEF 34.1 67.0 31.8 0.05 1 0.5

Table 4.2: Filter performance (%) using true- and false-class images before retraining

class local recog λ ψ ġσ2 impr
TQCF 75.3 76.8 63.7 0.30 1 0 30.3
QCF 34.8 48.8 22.4 0 1 0 -34.3

MMCF 51.1 87.7 49.6 0.95 1.00 2.0 67.6
iOTSDF 50.5 87.6 49.0 0.95 1 0 181.6
iMACE 36.2 81.8 32.6 1 1 0 318.0
SVM 23.1 55.7 17.6 0 1 0 77.8
CCF 50.5 87.6 49.0 0.95 1 0 181.6

OTSDF 36.2 81.8 32.6 1 1 0 318.0
MACE 40.0 84.1 36.2 1 1 0 389.2

ECPSDF 16.1 63.9 11.1 0 1 0 1.8
mCCF 54.2 93.2 53.4 0.99 .9999 0.5 151.9
UCF 36.1 64.7 34.5 0.25 0.55 0.5 6.8

EASEF 35.4 68.7 31.8 0.05 1 1.0 0

The linear CFs MMCF and mCCF outperformed all the linear CFs and QCF. Linear CF require

one cross-correlation in testing. TQCF always outperforms all filters, but this comes with increase

computational cost. As shown in Section 2.16, QCFs (and therefore TQCFs) can be written as the

sum of squares of linear CF outputs. The number of linear correlations is the number of eigenvectors

used. In our experiments we used 8 eigenvectors, thus the computational testing cost of QCFs is 8

times the computational cost of the linear filters. In the next chapter, we introduced the quadratic

126

Table 4.3: Filter performance (%) after retraining

class local recog λ ψ ġσ2 ret impr
TQCF 87.6 89.7 82.4 0.20 1 0 8 29.4
QCF 57.6 79.3 54.9 0 1 0 5 145.1

MMCF 63.9 95.3 63.2 0.25 1.00 0 9 27.4
iOTSDF 63.9 95.3 63.2 0.25 1 0 9 29.0
iMACE 47.4 84.3 44.0 1 1 0 1 35.0
SVM 47.4 87.3 47.4 0 1 0 4 169.3
CCF 61.9 90.0 59.1 0.75 1.00 1.5 6 12.4

OTSDF 59.9 90.7 58.1 0.80 1 0 7 10.9
MACE 46.2 85.1 42.7 1 1 0 3 18.0

ECPSDF 38.7 80.2 35.1 0 1 0 7 216.2
mCCF 65.8 92.4 64.7 .999 .9999 1.0 4 21.2
UCF 37.9 77.9 36.5 0.15 0.99 1.0 5 5.8

EASEF 33.9 66.5 32.9 0.05 1 0 3 3.5

MMCF (QMMCF), and we will show that it can outperforms all the previously mentioned filters

including TQCF.

We also observed that retraining improves the performance of ECPSDF by 216% and SVM by

169%. This is more improvement than the observed from other filters. ECPSDF and SVM used the

ONV criterion and ignore the MSE and ASM criteria. In general, we observe that retraining im-

proves the performance when the ONV criterion is emphasized. That is, when there are few training

images, choosing a λ that is less than but close to 1 usually gives the best performance. Recall that

λ = 1 ignores the ONV (or margin) criterion and λ = 0 only uses the ONV criterion and ignores

the other criteria (see Eq. 4.80). As the number of training images increases (in our experiments

this happens in retraining), performance usually increases when keeping λ constant, and lowering

the value of λ further increases the performance. For example, before retraining, MMCF’s best

performance is when λ = 0.95 with 49.6%. After retraining using λ = 0.95, MMCF’s performance

increases to 54.3% (not shown in the tables above); however, the overall best performance after

retraining is when λ = 0.25 with 63.2%. This observation is more apparent in the generalized con-

strained CFs than the regular constrained CFs, although it usually happens in both. This happens

because emphasizing ONV results in a larger margin of separation between true- and false-classes.

127

When ONV is emphasized, the localization criterion is de-emphasized. This results in many false-

positive peaks before retraining. After retraining, many of the false-positive are included as false-

class images. This improves classification and localization and reduces (but does not eliminates)

the need for the localization criterion.

4.6 SUMMARY

We presented the similarities between SVMs and CFs, and we connected these two state-of-

the-art algorithms with the MMCF. The MMCF classifier is less susceptible to over-fitting than

traditional CFs while providing geometric shift-invariance to SVM classifiers. We concluded this

chapter providing experimental results demonstrating that MMCF outperforms SVM, UCF, CCF,

and QCF filters.

128

CHAPTER 5

QUADRATIC MMCF

In the previous chapter we showed the relation between linear CFs and SVMs. In this chapter we

show the relation between quadratic correlation filters (QCFs) and Quadratic SVMs (QSVMs) also

known as second order polynomial Kernel SVMs. We combine the design principles of linear CFs

and QCFs and introduce the Quadratic Maximum Margin Correlation Filter (QMMCF) of which

QSVM is a subset. QMMCF is better able to exploit the higher-order statistics of the data resulting

in superior performance. This improved performance comes at the cost of added computation in

testing. Our experiments show that QMMCF outperforms all previously discussed filters including

QSVMs. Note that all notation in this chapter is in the spatial domain. Thus, we avoid the usual

inverse hat symbol (e.g., x̌) to clean up the notation because there is no need to differentiate between

frequency and space domain.

5.1 FROM QCF TO QSVM

As discussed in Section 2.16, the QCF design maximizes the difference between the mean values

Ec{xTQx} of each class c. An approach that may generalized better is to maximize the difference

between the minimum value of xTQx when x belongs to Class 1 and the maximum value of xTQx

when x belongs to Class 2. This is a maximum margin problem that has a loss function which does

not penalize correct values, and hence it may provide superior performance over QCFs. This can be

129

written as

max
Q

(
1

|Q|F

(
min

(
x

(1)T
1 Qx

(1)
1 , . . . ,x

(1)T
N1

Qx
(1)
N1
,−x

(2)T
1 Qx

(2)
1 , . . . ,−x

(2)T
N2

Qx
(2)
N2

)))
, (5.1)

where Q is a d × d matrix, x
(1)T
i Qx

(1)
i ∀i = 1, . . . , N1 is the output of the ith training image in

Class 1, N1 is the number of Class 1 training images, x
(2)T
i Qx

(2)
i ∀i = 1, . . . , N2 is the output

of the ith training image in Class 2, N2 is the number of Class 2 training images, and | · |F is the

Frobenius norm. Note that we divide by the Frobenius norm of Q because otherwise for some

possible Q, κQ (with κ > 1) would gives a higher value in Eq. 5.1.

Eq. 5.1 can be written as follows,

max
Q

(
min
i

(
li(x

T
i Qxi)

|Q|F

))
, (5.2)

where li ∈ {−1, 1} ∀i ∈ {1, . . . , N} corresponds to the class-label of xi, and N = N1 + N2.

This is a convex problem (Q is the unknown and therefore does not need to be restricted to be

positive definite to make the problem convex). There exists a Frobenius norm |Q|F such that

mini li(x
T
i Qxi) = 1, or equivalently, lixTi Qxi ≥ 1 for all i. Using these constraints, we rewrite

Eq. 5.2 as follows,

max
Q

1

|Q|F
(5.3)

s.t. lix
T
i Qxi ≥ 1,

or equivalently,

min
Q

|Q|2F (5.4)

s.t. lix
T
i Qxi ≥ 1.

A more general form is

min
Q

|Q|2F + 2C
N∑
i=1

ξi (5.5)

s.t. lix
T
i Qxi + b ≥ liui − ξi,

130

where ξi is a penalty term known as a slack variable that allows some points to be on the wrong

side of the margin at some cost, and 2C is a tradeoff parameter that weighs the cost (the “2” is

included to avoid fractions when deriving the dual formulation). To simplify notation we show the

solution to the simpler formulation in Eq. 5.4 and note that the solution to Eq. 5.5 requires only a

few additional steps.

Using Lagrange multipliers, the constrained problem in Eq. 5.4 can be expressed as follows,

L(Q,a) = |Q|2F −
N∑
i=1

2ai(lix
T
i Qxi − 1), (5.6)

where ai ≥ 0 for all i. Eq. 5.6 can be re-written as

L(Q,a) =

d∑
n,m=1

Q2[n,m]−
N∑
i=1

2ai

li d∑
n,m=1

xi[n]xi[m]Qij − 1

 , (5.7)

where

Q =


Q11 · · · Q1d

...
. . .

...

Qd1 · · · Qdd

 , (5.8)

Q[n,m] refers to the (n,m) value of matrix Q,

|Q|2F =
d∑

n,m=1

Q2[n,m] (5.9)

is the Frobenius norm, and xi[m] refers to the the mth value of vector xi. Note that

∂L
∂Q

=


∂L

∂Q[1,1] · · ·
∂L

∂Q[1,d]

...
. . .

...

∂L
∂Q[d,1] · · ·

∂L
∂Q[d,d]

 . (5.10)

Taking the derivative with respect to Qnm and setting it equal to zero gives

∂L
∂Q[n,m]

= 2Q[n,m]−
N∑
i=1

2ailixi[n]xi[m] = 0, (5.11)

and solving for Q[n,m] gives

Q[n,m] =
N∑
i=1

ailixi[n]xi[m]. (5.12)

131

Plugging Eq. 5.12 into Eq. 5.7 gives the dual formulation,

L(a) =
∑
n,m

(∑
i

ailixi[n]xi[m]

)2

−
∑
i

2ai

li∑
n,m

xi[n]xi[m]
∑
j

ajljxj [n]xj [m]− 1


=

∑
n,m

∑
i,j

aiajliljxi[n]xj [n]xi[m]xj [m]−
∑
n,m

∑
i,j

2aiajliljxi[n]xj [n]xi[m]xj [m]...

+2
∑
i

ai (5.13)

= −
N∑

i,j=1

aiajlilj

d∑
n=1

xi[n]xj [n]
d∑

m=1

xi[m]xj [m] + 2
N∑
i=1

ai

= 2
N∑
i=1

ai −
N∑

i,j=1

aiajlilj(x
T
i xj)

2

= 2aT1− aTXa, (5.14)

where

X =


l1l1(xT1 x1)2 · · · l1lN (xT1 xN)2

...
. . .

...

lN l1(xTNx1)2 · · · lN lN (xTNxN)2

 . (5.15)

Eq. 5.14 is the dual formulation and can be solved by standard quadratic programming techniques

(see Section 4.4.2). Once we compute a, matrix Q can be computed using Eq. 5.12 as follows,

Q =
∑

(i:ai 6=0)

ailixix
T
i . (5.16)

In testing, matrix Q can be applied to a vectorized image x′ (equal in size to a training image)

as follows,

x′TQx′ = x′T

 ∑
(i:ai 6=0)

ailixix
T
i

x′

=
∑

(i:ai 6=0)

ailix
′Txix

T
i x′

=
∑

(i:ai 6=0)

aili(x
T
i x′)2

=
∑

(i:ai 6=0)

ailiK(xi,x
′), (5.17)

132

where K(v1,v2) = (vT1 v2)2 is known as a second-order polynomial kernel. From this observation

we note that this maximum margin QCF is equivalent to solving a Quadratic SVM (QSVM) also

known as a second-order polynomial kernel SVM. Although using QSVMs in not novel, making

the connection between QCFs and QSVMs is novel.

Testing QSVMs with a large query image requires the same number of cross-correlations as the

number of support vectors. Let z be a test image, and xi be the nth training image. The correlation

output is

g =
∑

(i:ai 6=0)

aili (z⊗ xi)
2 . (5.18)

The main computational load is equal to s+ 1 2-D DFTs, where s is the number of support vectors.

5.2 QMMCF: GENERALIZED MAXIMUM MARGIN QUADRATIC
CORRELATION FILTERS

Expressing the quadratic correlation output using matrix notation In this section we give

an overview on how to express the quadratic correlation output using matrix notation. The math-

ematical details can be found in Appendix D. The QCF output for the ith training feature vector,

xTi Qxi, can be expressed as follows,

xTi Qxi = xTi [q1, . . . ,qd]xi

= [xTi q1, . . . ,x
T
i qd]xi, (5.19)

where q1 to qd are the column vectors of d × d matrix Q. If xi represents a 1-D feature vector

(instead of a vectorized 2-D feature image), the correlation output can be computed as follows (the

first index of q1 is represented by q[l, k] = q[0, 0]),

d−1∑
k=0

d−1∑
l=0

xi[n+ k]q[l, k]xi[n+ l]. (5.20)

Eq. 5.20 cannot be trivially expressed in the frequency domain, and therefore the derivation is done

in the spatial domain.

133

When xi represents a 1-D feature, the quadratic correlation output in Eq. 5.20 can be written as,

gi = XT
Cih, (5.21)

where

h =



q1

q2

...

qd


(5.22)

is a vector of length d2,

XCi =



π1xi π1x
(1↓)
i . . . π1x

(d−1↓)
i

π2xi π2x
(1↓)
i . . . π2x

(d−1↓)
i

...
...

. . .
...

πdxi πdx
(1↓)
i . . . πdx

(d−1↓)
i


(5.23)

is a d2 × d matrix, gi is a vector of length d, x
(r↓)
i represents the vector xi shifted by r pixels, and

πlx
(r↓)
i represents the shifted vector multiplied by its lth vector value, i.e., πlx

(r↓)
i = x

(r↓)
i [l]x

(r↓)
i .

In our experiments, xi represents a 2-D feature image. In this case, the quadratic correlation

output when x[n,m] is a 2-D R× C feature image is

gi[n,m] =

R−1∑
l=0

R−1∑
k=0

C−1∑
u=0

C−1∑
v=0

xi[n+ l,m+ u]xi[n+ k,m+ v]ql+1,u+1[k, v], (5.24)

where the columns of Q are each rearrange as 2-D R × C arrays. The quadratic correlation output

in Eq. 5.24 can be written as

gi = XT
Cih, (5.25)

where

134

XCi =



π1xi . . . π1x
(R−1↓)
i . . . π1x

(
−−→
C−1)
i . . . π1x

(R−1↓,
−−→
C−1)

i

π2xi . . . π2x
(R−1↓)
i . . . π2x

(
−−→
C−1)
i . . . π2x

(R−1↓,
−−→
C−1)

i

...
...

...
...

πC−1xi . . . πC−1x
(R−1↓)
i . . . πC−1x

(
−−→
C−1)
i . . . πC−1x

(R−1↓,
−−→
C−1)

i

πCxi . . . πCx
(R−1↓)
i . . . πCx

(
−−→
C−1)
i . . . πCx

(R−1↓,
−−→
C−1)

i

πC+1xi . . . πC+1x
(R−1↓)
i . . . πC+1x

(
−−→
C−1)
i . . . πC+1x

(R−1↓,
−−→
C−1)

i

...
...

...
...

π2C−1xi . . . π2C−1x
(R−1↓)
i . . . π2C−1x

(
−−→
C−1)
i . . . π2C−1x

(R−1↓,
−−→
C−1)

i

π2Cxi . . . π2Cx
(R−1↓)
i . . . π2Cx

(
−−→
C−1)
i . . . π2Cx

(R−1↓,
−−→
C−1)

i

π2C+1xi . . . π2C+1x
(R−1↓)
i . . . π2C+1x

(
−−→
C−1)
i . . . π2C+1x

(R−1↓,
−−→
C−1)

i

...
...

...
...

πdxi . . . πdx
(R−1↓)
i . . . πdx

(
−−→
C−1)
i . . . πdx

(R−1↓,
−−→
C−1)

i


(5.26)

is a d2 × d matrix, x
(r↓)(c→)
i represents the vectorized 2-D R×C feature image shifted by r pixels

down and c pixels to the right. The vector that starts at the (n,m) entry of this XT
Ci matrix is

πix

(
m%R↓,

−−−−−→
bmR c−1

)
i , (5.27)

where % represents the modulus (or remainder) operator, and b·c represents the floor operator.

135

QMMCF criteria We use the criteria discussed in Section 3.1. The MSE can be computed as

follows,

MSE =
1

N

N∑
i=1

(gi − ġi)
2

=
1

N

N∑
i=1

(
gTi gi − 2gTi ġi + ġTi ġi

)
=

1

N

N∑
i=1

(
hTXCiX

T
Cih− 2hTXCiġi + ġTi ġi

)
= hT

(
1

N

N∑
i=1

XCiX
T
Ci

)
h− 2hT

(
1

N

N∑
i=1

XCiġi

)
+

1

N

N∑
i=1

ġTi ġi

= hTDh− 2hTp + Ef , (5.28)

where d2 × d2 matrix D = 1
N

∑N
i=1 XCiX

T
Ci is the average of the autocorrelation matrices for

the training vectors, hTp = 1
N

∑N
i=1 gTi ġi is a measurement of the similarity between the actual

correlation planes and the desired correlation planes with

p =
1

N

N∑
i=1

XCiġi, (5.29)

and Ef = 1
N

∑N
i=1 ġTi ġi is the average energy of the desired correlation planes.

The ASM can be computed as follows,

136

ASM =
1

N

N∑
i=1

(gi − ḡ)2

=
1

N

N∑
i=1

(gTi gi − 2gTi ḡ + ḡT ḡ)

=
1

N

N∑
i=1

gTi gi − 2

(
1

N

N∑
i=1

gTi

)
ḡ + ḡT ḡ

=
1

N

N∑
i=1

gTi gi − ḡT ḡ

=
1

N

N∑
i=1

hTXCiX
T
Cih− hT X̄CX̄T

Ch

= hT

(
1

N

N∑
i=1

XCiX
T
Ci

)
h− hT X̄CX̄T

Ch

= hTDh− hTMh, (5.30)

where

ḡ =
1

N

N∑
i=1

gi =
1

N

N∑
i=1

XT
Cih = X̄T

Ch, (5.31)

and d2 × d2 matrix M = X̄CX̄T
C.

The ONV can be computed as follows,

ONV = σ2

= E{(hTη)2}

= hTE{ηηT }h

= hTPh, (5.32)

where d2 × d2 matrix P is the autocorrelation matrix of the additive noise η. In many scenarios,

unit-variance white noise is assumed, i.e., P = I.

The QCF output for the ith training feature vector, xTi Qxi, can be written as an inner product

137

as follows,

xTi Qxi = xTi [q1, . . . ,qd]xi

= hTyi, (5.33)

where

h =



q1

q2

...

qd


, yi =



π1xi

π2xi
...

πdxi


, (5.34)

where πixi represents xi multiplied by its ith value, and q1 to qd are the column vectors of matrix

Q. Note that the vectors yi and h are of dimension d2, and vector xi is of dimension d.

QMMCF objective function We designed the QMMCF minimizing the criteria MSE, ASM,

and ONV subject to the linear constraints li(hTyi + b) ≥ liui. Refregier [55] showed (and we

also show this in Eq. 3.36) that an optimal tradeoff among quadratic criteria can be obtained by

minimizing a weighted sum of the criteria. Thus, the QMMCF objective function

min
h

(MSE, ONV, ASM) (5.35)

s.t. L(YTh + b1) ≥ Lu,

can be expressed as follows,

min
h,b

hTTh− 2hTp (5.36)

s.t. L(YTh + b1) ≥ Lu,

where T = (1 − γ)D − γM + βP (see Eq. 3.36), diagonal matrix L contains the vector labels li

along the diagonal, Y = [y1, . . . ,yN], and u = [u
(1)
1 , . . . , u

(1)
N1
, u

(2)
1 , . . . , u

(2)
N2

] (note that the peak

constraints belonging to Class 2 are negated because of the L matrix). Including slack variables, the

138

objective function is

min
h,b

hTTh− 2hTp + 2C1T ξ (5.37)

s.t. L(YTh + b1) ≥ Lu− ξ,

where ξ = [ξ1, . . . , ξN]T . This is the same objective function as Eq. 4.64 (replacing the X by Y).

The dual formulation is (see derivation leading to Eq. 4.74),

max
0≤a≤C1

2aTL(u− uUCF)− aTLY†T−1YLa, (5.38)

where

uUCF = YTT−1p = Y†hUCF (5.39)

represents the peak correlation output value at the center for the UCF filter.

5.2.1 Zero desired correlation output

When the desired correlation output ġi = 0 for all i, then p = 0, and the primal objective

function can be expressed as

min
h,b

hTTh + 2C1T ξ (5.40)

s.t. L(YTh + b1) ≥ Lu− ξ,

where

h = T−1YLa (5.41)

and the dual can be expressed as

max
0≤a≤C1

2aTLu− aTLYTT−1YLa. (5.42)

Since T is positive definite, the data can be transformed such that

h̃ = T
1
2 h (5.43)

139

and

ỹi = T−
1
2 yi, (5.44)

and the QMMCF primal objective function can be written as

min
h,b

h̃T h̃ + C1T ξ (5.45)

s.t. L(ỸT h̃ + b1) ≥ Lu− ξ,

and the dual as

max
0≤a≤C1

2aTLu− aTLỸT ỸLa, (5.46)

where Ỹ = [ỹ1, . . . , ỹN]. This means that this QMMCF design can be implemented using a stan-

dard SVM solver by using transform images to find h̃. Then h can be computed as follows,

h = T−
1
2 h̃. (5.47)

5.2.2 QSVM: A special case of QMMCF

When T = I and p = 0 (e.g., when β →∞ and P = I which means that we only consider the

ONV criterion and assume additive white noise), then the QMMCF primal objective function can

be expressed as

min
h,b

hTh + 2C1T ξ (5.48)

s.t. L(YTh + b1) ≥ Lu− ξ.

We can show that this is the same formulation as Eq. 5.5 by rewriting Eq. 5.5 as follows,

min
Q

d∑
i,j=1

Q2
ij + 2C

N∑
i=1

ξi (5.49)

s.t. li(x
T
i Qxi + b) ≥ liui − ξi.

The scalars
∑d

i,j=1,Q
2
ij can be expressed as hTh, and xTi Qxi can be expressed as hTy (see Eq.

5.33). Thus, Eqs. 5.5 and 5.48 are equivalent. The dual formulations are therefore equivalent, but

140

this can also be shown as follows. When T = I, p = 0, u = L1, and C → ∞, Eq. 5.38 can be

written as

max
a≥0

2aT1− aTLYTYLa, (5.50)

or equivalently,

max
a≥0

2aT1− aTXa, (5.51)

where

X = LYTYL

=


l1l1y

T
1 y1 · · · l1lNyT1 yN

...
. . .

...

lN l1y
T
Ny1 · · · lN lNyTNyN

 . (5.52)

The inner product

yTi yj =



x
(1)
i xi

x
(2)
i xi

...

x
(d)
i xi



T 

x
(1)
j xj

x
(2)
j xj

...

x
(d)
j xj


=

d∑
m=1

x
(m)
i x

(m)
j xTi xj

=

d∑
m=1

x
(m)
i x

(m)
j

d∑
p=1

x
(p)
i x

(p)
j

=

(
d∑

m=1

x
(m)
i x

(m)
j

)2

= (xTi xj)
2. (5.53)

141

Substituting Eq. 5.53 into Eq. 5.52 gives,

X =


l1l1(xT1 x1)2 · · · l1lN (xT1 xN)2

...
. . .

...

lN l1(xTNx1)2 · · · lN lN (xTNxN)2

 . (5.54)

which is equivalent to 5.15, thus showing that the two dual formulations are equivalent.

5.2.3 Closed form solution (no quadratic programming)

The QMMCF solution can be computed without quadratic programming if the inequality con-

straints are replaced by equality constraints and the bias is ignored. The objective function simplifies

to

min
h,b

hTTh− 2hTp (5.55)

s.t. LYTh = u.

Using Lagrange multipliers, the constrained problem in Eq. 5.55 can be expressed as follows,

L(h,a) = hTTh− 2hTp− 2aT (LYTh− u), (5.56)

where a 6= 0 is a vector of N non-zero Lagrange multipliers. We seek to maximize the vector a

that minimizes L(h,a). Taking the gradient and setting it equal to zero gives,

∂L(h,a)

∂h
= 2Th− 2p− 2YLa = 0, (5.57)

and solving for h gives

h = T−1(p + YLa)

= T−1p + T−1YLa. (5.58)

142

Substituting h in Eq. 5.58 into the objective function constraints in Eq. 5.55 gives

u = LYTh

= LYT (T−1p + T−1YLa)

= LYTT−1p + LYTT−1YLa, (5.59)

and the Lagrange multiplier vector a can be computed as follows,

a = (LYTT−1YL)−1(u− LYTT−1p). (5.60)

Substituting a in Eq. 5.60 back into h in Eq. 5.58 gives the QMMCF closed form solution,

h = T−1p + T−1Xa

= T−1p + T−1YL(LYTT−1YL)−1(u− LYTT−1p). (5.61)

5.3 IMPLEMENTATION

The draw back of QMMCF is constructing a non-diagonal d2 × d2 matrix T and taking the

inverse. Efficient implementation is a topic of future research. In this section we discuss possible

methods to implement QMMCF.

Recall that matrix T is

T = (1− γ)D− γM + βP, (5.62)

where D = 1
N

∑N
i=1 XCiX

T
Ci, M = X̄CX̄T

C, and P = I are d2 × d2 matrices, and XCi and X̄C

are d2 × d matrices. Matrix D can be written as

D =
1

N

N∑
i=1

XCiX
T
Ci =

1

N
XCXT

C, (5.63)

where

XC = [XC1, . . . ,XCN] (5.64)

is a d2 × dN matrix.

In our experiments we use d = 2800. Therefore building a d2 × d2 matrix requires on the order

143

of d4 = 62 TB of memory. This is impractical. One method to reduce the memory requirements

is to set γ = 0 which is equivalent to ignoring the ASM criterion. The ASM criterion has not been

shown to provide significant performance improvement compared to the MSE and ONV criteria.

This reduces matrix T to

T =
1

N
XCXT

C + βI. (5.65)

Using the Woodbury matrix identity1 ,

T−1 =

(
βId2 +

(
1

N
XC

)
IdNXT

C

)−1

= (βId2)−1 + (βId2)−1

(
1

N
XC

)(
I−1
dN + XT

C (βId2)−1

(
1

N
XC

))−1

XT
C (βId2)−1

=
1

β

(
Id2 + XC

(
βNIdN + XT

CXC

)−1
XT

C

)
, (5.66)

where Id2 and IdN are identity matrices of size d2 × d2 and dN × dN , respectively. This requires

inverting a Nd×Nd matrix instead of a d2 × d2 matrix.

Recall that the dual can be expressed as

max
0≤a≤C1

2aTu− aTLYTT−1YLa, (5.67)

where T−1Y can be computed as

T−1Y =
1

β

(
Id2 + XC

(
βNIdN + XT

CXC

)−1
XT

C

)
Y

=
1

β

(
Y + XC

(
βNIdN + XT

CXC

)−1
XT

CY
)
. (5.68)

Thus, the d2 × d2 matrix T never needs to be computed. The largest matrix needed is an Nd×Nd

matrix which requires on the order of d2N2 = 7.8N2 MB of memory which is practical for small

values of N . However, in our experiments, N = 100 (requiring on the order of 78 GB of memory)

before retraining and it can be up to N = 1000 (requiring on the order of 7.8 TB of memory) after

retraining, making this method also impractical to implement.

For computational reasons, in our implementation we use the same T computed in MMCF.
1 The Woodbury matrix identity is (A+UCV)−1 = A−1 +A−1U(C−1 +VA−1U)−1VA−1.

144

We premultiplied the image xi instead of yi as in Eq. 4.30. Recent work [33, 59] shows that

premultiplying the training images by matrix T−
1
2 shown in Eq. 4.30 results in sharper peaks and

enhanced performance. This is because higher frequency components (which is usually where most

of the discriminative information is) are emphasized by premultiplying the image with this matrix.

As our experimental results will show, premultiplying the training images by matrix T−
1
2 enhances

performance. We conjecture that using the correct T matrix will further improve the results.

5.4 EXPERIMENTS

We test our algorithm on real videos of vehicles. The details of our experimental setup are

discussed in Chapter 7. In this section we give a brief overview of our experiments and present

results comparing the performance of the filters discussed in this chapter.

We consider vehicle recognition on a set of 512 × 640 pixels 30 Hz infrared videos where the

vehicle’s class-label and location are unknown. Our dataset has eight vehicles (one vehicle in each

video) driving in one circle, shown in Fig. 1.2. We consider QMMCF, QSVM, Quadratic MACE

(QMACE) which is QMMCF with λ = 1, TQCF, MMCF, SVM, CCF, mCCF, UCF, and EASEF.

For each type of classifier we train eight filters. Each filter is trained to recognize one given target

(there are eight targets) for all 360◦ degrees of azimuth rotation. We determine target location by

cross-correlating the template with the test image and determining its location by the highest value

in the resulting correlation output. For the highest value, we compute the peak-to-correlation-energy

(PCE) (see Eq. 3.85) and select the template (out of the eight templates–one per target) that gives

the highest PCE value. We declare a correct recognition when the correct template produces the

maximum response to a given frame (i.e., correct classification) and produces the peak within a

specified window centered at the correct location (i.e., correct localization). This means that it

is considered an error 1) when the largest correlation peak is not close to the target’s ground truth

location and is from the incorrect class, or 2) when the largest correlation peak is close to the target’s

ground truth location but is from the incorrect class, or 3) when the largest correlation peak is from

145

Table 5.1: Filter performance (%) using true-class images only

class local recog λ ψ ġσ2

QMMCF 46.1 70.8 37.3 0.60 1.00 0
QMACE 15.0 28.9 2.1 1 1 0
QSVM 20.4 29.3 16.9 0 1 0
TQCF 50.8 72.8 48.9 0.70 1 0
MMCF 32.7 66.4 29.6 0.01 0.20 1.5
SVM 12.1 25.8 9.9 0 1 0
CCF 21.1 57.8 17.7 0.55 0.90 0.5

mCCF 22.6 67.6 21.2 1.00 1.00 1.0
UCF 32.3 66.0 32.3 0.05 0.95 0

EASEF 34.1 67.0 31.8 0.05 1 0.5

the correct class but the peak’s location is not near the target’s ground truth location.

We performed three sets of experiments. In Set 1, each filter is trained using 20 true-class

images. In Set 2, each filter is trained using using 20 true-class images and 80 background (false-

class) images. In Set 3, each filter is initially trained as in Set 2 and then retrained, i.e., we cross-

correlate the template with the frames from which we cropped the training images, add the false

positives as false-class training images, and retrain the template. Table 5.1 shows the classification

(class), localization (loc), and recognition (recog) rates for each filter in Set 1. Table 5.2 shows the

classification, localization, and recognition rates for each filter in Set 2, and it shows the recognition

performance improvement (impr) over the recognition rates in Set 1. Improvement is computed

as new performance minus old performance, and the result divided by old performance. Table

5.3 shows the recognition rates in Set 3, and it also shows the number of retraining (ret) cycles

we used (after a certain number of cycles, performance does not improve), and the recognition

performance improvement over the recognition rates in Set 2. We compared different λ, ψ, and

variance ġσ2 of the desired Gaussian-function-like shape correlation output parameters and report

our best recognition performance findings. The values of the parameters selected are in bold and

non-bold values are default parameters for those filters.

These results show that QMMCF improves performance when retraining is used. As the num-

ber of false class images increases in retraining, using QMMCF improves over QSVM by 33%,

146

Table 5.2: Filter performance (%) using true- and false-class images before retraining

class local recog λ ψ ġσ2 impr
QMMCF 59.2 88.6 55.8 0.50 1.00 0 49.6
QMACE 24.5 62.5 14.9 1 1 0 609.5
QSVM 24.3 57.9 22.6 0 1 0 33.7
TQCF 75.3 76.8 63.7 0.30 1 0 30.3
MMCF 51.1 87.7 49.6 0.95 1.00 2.0 67.6
SVM 23.1 55.7 17.6 0 1 0 77.8
CCF 53.7 90.2 52.6 0.85 1.00 2.5 197.2

mCCF 54.2 93.2 53.4 0.99 .9999 0.5 151.9
UCF 36.1 64.7 34.5 0.25 0.55 0.5 6.8

EASEF 35.4 68.7 31.8 0.05 1 1.0 0

Table 5.3: Filter performance (%) after retraining

class local recog λ ψ ġσ2 ret impr
QMMCF 89.5 96.6 86.4 0.05 1.00 0 4 54.8
QMACE 45.1 73.2 36.7 1 1 0 3 146.3
QSVM 65.62 92.2 64.9 0 1 0 7 187.2
TQCF 87.6 89.7 82.4 0.20 1 0 8 29.4
MMCF 63.9 95.3 63.2 0.25 1.00 0 9 27.4
SVM 47.4 87.3 47.4 0 1 0 4 169.3
CCF 61.9 90.0 59.1 0.75 1.00 1.5 6 12.4

mCCF 65.8 92.4 64.7 .999 .9999 1.0 4 21.2
UCF 37.9 77.9 36.5 0.15 0.99 1.0 5 5.8

EASEF 33.9 66.5 32.9 0.05 1 0 3 3.5

over TQCF by 5%, over mCCF by 34%, and over MMCF by 37%. Keep in mind that these im-

proved results were obtained using the MMCF matrix T and not the QMMCF matrix T derived in

this chapter. A topic of future research is to find a computationally feasible method to implement

QMMCF using the matrix T derived in this chapter. We conjecture that using the correct T matrix

will further improve the results.

We also observed that retraining improves more of the performance when the ONV criterion

is emphasized. That is, when there are few training images (before retraining), choosing λ = 0.5

gave the best performance. Recall that λ = 1 ignores the ONV criterion and λ = 0 only uses the

ONV criterion and ignores the MSE criterion (see Eq. 4.80). As the number of training images

increases (after retraining), performance usually increases keeping λ constant. Lowering the value

147

of λ, however, further increases the performance. For example, before retraining QMMCF’s best

performance is 55.8% when λ = 0.5. After retraining using λ = 0.5, QMMCF’s performance

increases to 73.4% (not shown in the tables above) which is a 32% improvement. However, the

overall best performance after retraining is when λ = 0.05 with 86.4% which is a 118% improve-

ment over the 39.6% performance (not shown in the tables above) before retraining. When ONV

is emphasized, the MSE criterion is de-emphasized. This results in many false-positive peaks be-

fore retraining. After retraining, a lot of the false-positive are included as false-class images. This

improves classification and localization and reduces (but not eliminates) the need for the MSE cri-

terion.

5.5 SUMMARY

In this chapter we showed the relation between QCFs and QSVMs. We combined the design

principles of CFs and QSVMs and introduced the Quadratic Maximum Margin Correlation Filter

(QMMCF). Our results show superior performance to all the other filters previously mentioned.

This improved performance comes at the cost of added computation in the testing.

148

CHAPTER 6

VECTOR FEATURES

In the previous chapters we have used scalar features, i.e., gray-scaled pixels, in our designs. In

this chapter we discuss vector features and adapt our filter designs to include vector features. We

focus on the Histograms of Oriented Gradients (HOG) feature [21, 24] due to its recent growth

in popularity. The results show our CFs maintain superior performance over other state-of-the-art

algorithms when we use HOG features.

6.1 HISTOGRAMS OF ORIENTED GRADIENTS

The CF designs that have been introduced in the previous chapters use scalar features, i.e.,

gray-scaled pixels. There are algorithms that extract features from different regions in the image.

We call these features vector features. A simple example is using color pixels. Every pixel in the

image is consider a different region with three values: red, green, and blue. Another example is

using HOG features. They were originally proposed by Dalal and Triggs [21] and later modified by

Felzenszwalb, et al. [24]. In Felzenszwalb, et al.’s work, HOG features are obtained by taking the

gradient at every pixel, computing the magnitude and orientation of each gradient value, quantizing

each unsigned orientation to the closest multiple of 20 degrees, i.e., 20◦, 40◦, · · · , 180◦ (there are

nine quantized values), and quantizing each signed orientation to the closest multiple of 20 degrees,

i.e., 20◦, 40◦, · · · , 360◦ (there are eighteen quantized values). Each pixel in the image is associated

149

(a) (b) (c)

(d)

Figure 6.1: An image (a) is broken into non-overlapping cells. The circled cells in (a) are shown in (b). In (b)
the green block in made of 2 × 2 cells. The circled cell in (b) in shown in (c). In (c), each cell is composed
of 8 × 8 pixels each with a gradient magnitude and quantized orientation. In this figure, the pixels with a
quantized unsigned orientation of 20◦ are shown in blue, where those with a quantized signed orientation of
20◦ are shown in dark blue and those with a quantized signed orientation of 200◦ are shown in light blue. The
sum of the magnitudes corresponding to the unsigned orientations of 20◦, the signed orientation of 20◦, and
the signed orientation of 200◦ are represented by the height of the 1st, 10th, and 19th entry in the histogram
in (d). Thus, the 1st histogram value equals the sum of the 10th and 19th histogram values. The gradient
energy of the first block in green is represented by the height of the 28th entry in the histogram. The gradient
of the other blocks in (b) are represented by the 29th, 30th, and 31st histogram values.

with a gradient magnitude, an unsigned quantized orientation, and a signed quantized orientation.

The image is broken into non-overlapping cells each composed of 8 × 8 pixels and overlapping

blocks each composed of 2 × 2 cells. Each cell is represented by a 31-D vector. The first 27

entries of the 31-D HOG vector are the sum of the magnitudes corresponding to each orientation (9

unsigned and 18 signed). The last 4 entries of the 31-D vector contain the gradient energy of the

four overlapping blocks that contain that cell. Therefore an R×C training image is represented by

an
⌊
R
8

⌋
×
⌊
C
8

⌋
× 31 HOG feature cube. This process is shown in Figure 6.1 and is the same for

training and test images. In our experiments, we used Felzenszwalb, et al.’s code [25] to compute

the HOG features.

150

The HOG feature cubes from the training images are used to designed a 3-D filter that can be

cross-correlated with the HOG feature cubes from the test images. If the correlation output produces

a value above some threshold, then the test image is labeled as one containing a true target and that

location of the value represents the location of the target.

6.2 CORRELATION OUTPUT USING MATRIX NOTATION

When computing HOG features from a 2-D image, the result is a 3-D feature cube, with the

number of features being the third dimension. This requires computing a 3-D filter. However, 3-D

correlation is not required because correlation along the feature dimension is not needed. Rather,

the overall correlation output is computed by doing a series of 2-D correlations and adding them.

More specifically, let ȟ(p)(m,n) be the pth point spread function (i.e., 2-D impulse response) and

x̌i(p)(m,n) be the pth feature of the ith image. The overall correlation output for ith image is

ǧi(m,n) =
P∑
p=1

x̌i(p)(m,n)⊗ ȟ(p)(m,n), (6.1)

where P is the number of HOG features, i.e., the dimension of the histogram (in our experiments

P = 31). In the frequency domain and using vector notation, Eq. 6.1 can be written as

gi =

P∑
p=1

gi(p)

=
P∑
p=1

X∗i(p)h(p), (6.2)

where d×d diagonal matrix Xi(p) contains the vectorized pth HOG feature of the ith image along the

diagonal, h(p) represents the pth filter, and d is the dimension of the HOG feature (which is usually

smaller than the dimension of the image). Thornton [77] pointed out (for a different problem with

the same format as Eq. 6.2) that this summation can be written as

gi = X†ih, (6.3)

151

where gi is a vector of length d, h = [h†(1), ...,h
†
(P)]
† is a vector of length dP , and Xi = [Xi(1), ...,Xi(P)]

T

is a dP × d block matrix of diagonal matrices.

We use the criteria discussed in Section 3.1. The only difference is that Xi is not diagonal and

therefore X†i 6= X∗i as in previous chapters. The MSE can be computed as follows,

MSE =
1

dN

N∑
i=1

|gi − ġi|2

=
1

dN

N∑
i=1

(
g†igi − 2g†i ġi + ġ†i ġi

)
=

1

dN

N∑
i=1

(
h†XiX

†
ih− 2h†Xiġi + ġ†i ġi

)
= h†Dh− 2h†p + Ef , (6.4)

where

D =
1

N

N∑
i=1

XiX
†
i

=


1
N

∑N
i=1 Xi(1)X

∗
i(1) · · · 1

N

∑N
i=1 Xi(1)X

∗
i(P)

...
. . .

...

1
N

∑N
i=1 Xi(P)X

∗
i(1) · · ·

1
N

∑N
i=1 Xi(P)X

∗
i(P)

 (6.5)

is a dN × dN block matrix of diagonal matrices, h†p = 1
N

∑N
i=1 g†i ġi is a measurement of the

similarity between the actual correlation planes and the desired correlation planes with

p =
1

N

N∑
i=1

Xiġi, (6.6)

and Ef = 1
N

∑N
i=1 ġ†i ġi is the average energy of the desired correlation planes.

The ASM can be computed as follows,

152

ASM =
1

N

N∑
i=1

|gi − ḡ|2

=
1

N

N∑
i=1

(gTi gi − 2gTi ḡ + ḡT ḡ)

=
1

N

N∑
i=1

gTi gi − 2

(
1

N

N∑
i=1

gTi

)
ḡ + ḡT ḡ

=
1

N

N∑
i=1

gTi gi − ḡT ḡ

=
1

N

N∑
i=1

hTXiX
†
ih− hT X̄X̄†h

= hT

(
1

N

N∑
i=1

XiX
†
i

)
h− hT X̄X̄†h

= hTDh− hTMh, (6.7)

where

ḡ =
1

N

N∑
i=1

gi =
1

N

N∑
i=1

X†ih = X̄†h, (6.8)

and M = X̄X̄†.

The ONV can be computed as follows,

ONV = σ2

=
d−1∑
k=0

Pcη̌ [k]

= h†Ph, (6.9)

where Pcη̌ is the power spectral density of cη̌ (which represents the inner product between the filter

and the input noise), and P is the power spectral density of the input noise. In many scenarios,

unit-variance white noise is assumed, i.e., P = 1
dI, where I is the identity matrix.

153

6.2.1 Implementation

Recall that our CF designs require inverting

T = (1 + γ)D− γM + βP. (6.10)

When using P features, matrix T can be up to dP × dP which may be computational infeasible to

invert. However, matrix T is a block matrix of diagonal matrices, and can be inverted iteratively as

follows. Let

T =

 TA TB

TC TD

 , (6.11)

where TD is a d× d diagonal matrix. Using the Banachiewicz inversion formula [20],

T−1 =

 T−1
A + T−1

A TB(TD −TCT−1
A TB)−1TCT−1

A −T−1
A TB(TD −TCT−1

A TB)−1

−(TD −TCT−1
A TB)−1TCT−1

A (TD −TCT−1
A TB)−1

 .
(6.12)

The d(P − 1) × d(P − 1) matrix T−1
A can then be iteratively computed using the Banachiewicz

inversion formula. Using this method only diagonal matrices are inverted.

For convenience in our experiments, in order to use bounded scalars the unbounded scalars γ

and β are replaced with γ = 1
ψ (1 − ψ) and β = 1

λ(1 − λ), where 0 ≤ ψ, λ ≤ 1. Eq. 6.10 can be

written as

T = (1 + γ)D− γM + βP

= (1 +
1

ψ
(1− ψ))D− 1

ψ
(1− ψ)M +

1

λ
(1− λ)P

=
1

λψ
(λD + λ(1− ψ)M + (1− λ)ψP) , (6.13)

where we define the ratio 0
0 = 1 for the cases when ψ = 0 and/or λ = 0 (this allows for the scalars

γ →∞ and β →∞).

154

6.3 EXPERIMENTS

We repeat the same set of experiments as in Chapter 5 but using HOG features instead of gray-

scaled pixel features. The details of our experimental setup are discussed in Chapter 7. We consider

vehicle recognition on a set of 512×640 pixels 30 Hz infrared videos where the vehicle’s class-label

and location are unknown. Our dataset has eight vehicles (one vehicle in each video) driving in one

circle, shown in Fig. 1.2. We consider all the classifiers from Chapter 5. For each type of classifier

we train eight filters. Each filter is trained to recognize one given target (there are eight targets) for

all 360◦ degrees of azimuth rotation. We determine target location by cross-correlating the template

with the test image and determining its location by the highest value in the resulting correlation

output. For the highest value, we compute the peak-to-correlation-energy (PCE) (see Eq. 3.85) and

select the template (out of the eight templates–one per target) that gives the highest PCE value. We

declare a correct recognition when the correct template produces the maximum response to a given

frame (i.e., correct classification) and produces the peak within a specified window centered at the

correct location (i.e., correct localization). This means that it is considered an error 1) when the

largest correlation peak is not close to the target’s ground truth location and is from the incorrect

class, or 2) when the largest correlation peak is close to the target’s ground truth location but is from

the incorrect class, or 3) when the largest correlation peak is from the correct class but the peak’s

location is not near the target’s ground truth location.

We performed three sets of experiments. In Set 1, each filter is trained using 20 true-class

images. In Set 2, each filter is trained using using 20 true-class images and 80 background (false-

class) images. In Set 3, each filter is initially trained as in Set 2 and then retrained, i.e., we cross-

correlate the template with the frames from which we cropped the training images, add the false

positives as false-class training images, and retrain the template. Table 6.1 shows the classification

(class), localization (loc), and recognition (recog) rates for each filter in Set 1. Table 6.2 shows the

classification, localization, and recognition rates for each filter in Set 2, and it shows the recognition

performance improvement (impr) over the recognition rates in Set 1. Improvement is computed

155

Table 6.1: Filter performance (%) using true-class images only

class local recog λ ψ ġσ2

QMMCF 70.2 87.1 68.8 1× 10−6 0.99 0
QSVM 18.1 42.4 7.7 0 1 0
TQCF 30.4 38.5 21.7 1× 10−9 1 0
MMCF 41.3 73.6 40.3 1× 10−5 1.00 0d
SVM 34.3 41.0 14.9 0 1 0
CCF 30.4 68.9 28.1 3× 10−6 0.4 0.2

mCCF 30.5 69.5 27.6 1× 10−5 0.99 0.1
UCF 41.3 73.6 40.3 1× 10−5 1 0

EASEF 36.2 69.1 32.7 1× 10−4 1 0

Table 6.2: Filter performance (%) using true- and false-class images before retraining

class local recog λ ψ ġσ2 impr
QMMCF 72.4 94.1 72.2 1× 10−5 0.80 0 4.9
QSVM 13.6 53.8 11.4 0 1 0 48.1
TQCF 24.9 47.5 23.6 3× 10−8 1 0 8.8
MMCF 44.9 75.5 42.6 3× 10−5 0.99 0d 5.7
SVM 16.4 57.2 9.8 0 1 0 -34.2
CCF 40.3 66.9 34.5 1× 10−5 0.20 0.05 22.8

mCCF 40.3 66.9 34.5 1× 10−5 0.20 0.05 25.0
UCF 44.8 75.5 42.6 3× 10−5 0.99 0 5.7

EASEF 34.3 71.5 32.2 3× 10−5 1 0 -1.5

as new performance minus old performance, and the result divided by old performance. Table

6.3 shows the recognition rates in Set 3, and it also shows the number of retraining (ret) cycles

we used (after a certain number of cycles, performance does not improve), and the recognition

performance improvement over the recognition rates in Set 2. We compared different λ, ψ, and

variance ġσ2 of the desired Gaussian-function-like shape correlation output parameters and report

our best recognition performance findings. The values of the parameters selected are in bold and

non-bold values are default parameters for those filters.

The results show that 1) our MMCF filter outperforms all the other linear filters (ties with the

UCF filter), and 2) our QMMCF filter outperforms all the linear and quadratic filters. The values

for the MMCF and UCF filter become equal as λ→ 0 and ġ = 0 because the UCF filter portion of

the MMCF filter gets emphasized. MMCF outperforms SVM by 170%, 335%, and 172% and CCF

156

Table 6.3: Filter performance (%) after retraining

class local recog λ ψ ġσ2 ret impr
QMMCF 76.6 95.6 76.5 1× 10−5 0.70 0 1 6.0
QSVM 21.4 80.5 20.4 0 1 0 7 79.0
TQCF 55.3 87.8 54.9 3× 10−8 1 0 5 132.6
MMCF 57.6 87.1 54.7 1× 10−4 1.00 0.2 4 25.4
SVM 24.5 72.1 19.6 0 1 0 5 100.0
CCF 50.8 77.7 46.8 3× 10−5 1.00 0 2 35.7

mCCF 50.8 77.6 46.8 3× 10−5 1.00 0 2 35.7
UCF 57.6 87.1 54.7 1× 10−4 1.00 0.2 4 25.4

EASEF 34.3 71.5 32.2 3× 10−5 1 0 0 0

by 43%, 23%, and 14%, and QMMCF outperforms QSVM by 794%, 533%, and 275% and TQCF

by 217%, 206%, 39% in Sets 1, 2, and 3, respectively. This shows that using other features such as

HOG maintains the superior performance of our algorithms in our dataset.

6.4 SUMMARY

In this chapter we adapted our MMCF filter design to include vector features. We tested our

designed with HOG features. Our results shows that in our dataset, our design outperformed all the

other state-of-the-art filters when HOG features are used.

157

CHAPTER 7

EXPERIMENTS

In the previous chapters we have shown some experimental results. In this chapter we explain in

more detail the dataset used in our experiments. We discuss common techniques that may be used

in the pre- and post-processing stages. We explain our method for selecting parameters. We give

more details on the results presented in previous chapters, and present our conclusions.

7.1 TEST DATASET

We test our algorithm on real videos. We consider vehicle recognition on a set of infrared

videos where the vehicle’s class-label and location are unknown. We use the recently approved for

public release ATR Algorithm Development Image Database [17] produced by the Military Sensing

Information Analysis Center. The database contains infrared videos of 512×640 pixels/frame from

eight military vehicles (one vehicle in each video), shown in Fig. 1.2, taken at multiple ranges

during day and night time at 30 Hz. We used videos from each vehicle collected during day time at

a range of 1000 meters. The ground truth provided in the dataset varies by about 10 pixels from the

target’s center. To improve the ground truth data, we manually selected the location of the target’s

center for each frame for each vehicle.

The vehicles were driven at about 10 mph making a circle of diameter of about 100 meters,

therefore exhibiting full 360◦ of azimuth rotation. Each video is originally 60 seconds long, (i.e.,

158

1800 frames) allowing the vehicle to complete at least one full circle. We truncated the videos so

that the vehicles in the video only make one full circle, and we downsampled each video to 1000

frames so that all the videos contain the same number of frames.

From these 1000 frames, we selected 20 frames uniformly sampled for training and from the

reminder 980 frames we selected 200 frames uniformly sample for testing. We only selected 200

frames for testing to reduce the testing time and because we observed in preliminary experiments

that using all 980 frames does not significantly change the results. We referred to these 20 frames as

training frames. From these frames we truncated a 70× 40 pixel area centered at the target’s center

that contains the entire target region, and truncated 80 non-target regions. These truncated areas

are the images used to train the template. The 20 training images with the target are the true-class

images and the 80 images with background are the false-class images.

7.2 PRE- AND POST-PROCESSING DATA

Pre- and post-processing techniques may be used to reduce the effect of different illumination,

to register and center the targets in the training images, to select an adequate background for the

training images, to emphasize certain frequencies over others, and to measure the peak-sharpness

in the correlation plane. Different scenarios may benefit from different techniques. The following

discussion summarizes the common techniques that are sometimes used.

7.2.1 Training images preprocessing

Some of the techniques that may be used to preprocess the images are:

• To reduce edge effects that arise at the boundaries of the image

– have the background of the training images be equal to the mean of the image

– set all the values along the entire u- and v-axis in the frequency domain of the training

images to zero

159

– apply a cosine window to the training images [12]

• To reduce the effects of shadows and intense lighting

– apply the logarithmic function log(x+1) to the image pixels for both training and testing

[12, 66]

– zero-mean the training images and then normalize the energy

– use adaptive histogram equalization (similar to imadjust command in MATLAB)

An alternative to unit energy training images is unit variance training images. The only difference

is that the autocorrelation peak in the training images is one when they have unit energy and d when

they have unit variance, where d is the dimension of the training images. In our experiments, we

subtracted the mean of each training images (this reduces the aliasing caused by circular correlation)

and normalized the energy to be unit energy. This is equivalent to setting to zero the origin in the

frequency domain and normalizing the energy in the frequency domain.

7.2.2 Training images selection and registration

It is important to choose an adequate set of images to train the filter to represent the possible

distortions of the target. Using too many or too few images may lower the filter’s recognition perfor-

mance. In addition the training images require registration, i.e., alignment, for better performance.

In fact, poor registration significantly decreases the filter’s performance.

Suppose that a filter capable of recognizing 360 degrees of azimuth rotation for a tank is required

for ATR, and a set of images that sample this range is available. One well-known technique to train

the filter is to first choose one image from the set and train the filter with just that one image. Then

that filter is tested against all the images in the set. The image where the filter performed the worst is

selected as an additional training image, and the two training images are registered. To register, the

second image is shifted so that the cross-correlation peak is centered. Then a new filter is trained

using these two images, and tested against all the images in the set. The image where the filter

160

performs the worst is selected and shifted so that the correlation peak is centered (i.e., registered),

and added to the training set. The filter is retrained with these three images and this process is

repeated until the filter recognizes all the images in the set, i.e., until the filter’s output for all the

images in the set is above some threshold value. The number of training images is usually much

less than the number of images in the training set.

During this process, however, the filter’s recognition performance may decrease with additional

images before reaching this threshold. When this happens, it means that the filter is not capable of

capturing all the different distortions in the image set. In this case, the set of images is divided into

two or more groups, e.g., four filters at every 90 degrees of azimuth rotation. Then, for each subset,

a different filter is trained.

In our experiments, we used 20 true-class training images spaced at approximately 360◦

20 = 18◦

apart of azimuth rotation. Even though we had manually selected the target’s center, we also regis-

tered the images using the above method to further improve registration accuracy. Although some of

the filter’s performance may have improved with more training images, we choose a constant value

for the training images for all filters so that no one filter would could benefit from more training

images.

7.2.3 Background selection

There are different options in selecting the background for the training images. Some methods

use a white background, others use a black background, and others use the mean value of the target

region. It is important to determine an appropriate background since a mismatched background may

cause the filter to discriminate based on the background’s pattern rather than the target’s pattern. We

investigated elsewhere [58] the effects of different backgrounds on the filter performance in different

scenarios using both synthetic (pixels in the background chosen from a Gaussian distribution) and

real backgrounds (photographs of different sceneries) for testing. In our comparisons we did not

restrict ourselves to using a background with constant pixel intensity for training but also included

backgrounds with varying pixel intensity with a mean and a standard deviation equal to the mean and

161

the standard deviation of the target region. Our experiments showed that without a prior knowledge

of the background in the testing images, training the filters using a background with the mean and

variance of all the desired objects tends to give better results. In the experiments of this thesis, this

technique would have required manually truncating each target region along its sihouette and was

not used. Rather, we truncated a small square region that contains the target, and subtracted the

mean from that entire region.

7.2.4 Image and filter transformation

In Section 3.2.1 we showed that the ECPSDF filter equals the OTSDF filter if the training and

testing images are transformed by T−
1
2 (see Eq. 2.18 for a description of T). Equivalent, the

MMCF filter can equal the SVM filter with this transformation. Some filters such as the ECPSDF

filter and QCF are not designed to produce sharp peaks. Based on previous work [33, 59, 61], we

expect that transforming the images in these filter results in OTSDF-like behavior, i.e., sharp peaks

with built-in noise tolerance. In our experiments, we explicitly transformed the images in the QCF

and QMMCF filters to have OTSDF-like behavior, and our results show significant improvement in

performance. Other filters used this transformation implicitly in their designs such as the OTSDF,

and MMCF filters.

7.2.5 Correlation output normalization

The zero-mean/unit-energy techniques, and/or the PCE or PSR metrics provide some form of

normalization to the correlation output, e.g., due to illumination changes in the test image scene

(e.g., when one part of the scene is lighted while another part is the shadows) and/or in different test

images. In addition, PCE and PSR are useful metrics for quantifying the sharpness of the correlation

peak. Peak sharpness is a measure of how high a peak is in relation to the surrounding values. In

this section we discuss these techniques in more detail. In our experiments, we computed the PCE

for each correlation output.

162

7.2.5.1 Zero-mean and unit energy test chips

In Section 7.2.1 the importance of zero-meaning and normalizing the energy in the training

images was discussed. In testing it is not always desirable to do this for the entire scene. If one

area of the scene has more illumination, those values will be unfairly emphasized. Instead it may be

better to normalize every test chip, i.e., every test region equal in size to the training images.

We use 1-D notation for simplicity to show how this is done. The mean of each test chip (of

length d) in image x(n) is computed as follows,

µx(n) =
1

d

d−1∑
k=0

x(n+ k)

=
1

d

d−1∑
k=0

x(n+ k)z(k)

=
1

d
x(n)⊗ z(n), (7.1)

where

z(n) =


1 0 ≤ n ≤ d− 1

0 n > d− 1

. (7.2)

In 2-D, d represents the dimensions of the template h(m,n) before zero-padding (the template is

usually zero-padded to be greater than or equal to the test image size in order to do correlation in

the frequency domain). The energy of zero-mean test chips is computed as follows,

e(n) =
d−1∑
k=0

(x(n+ k)− µx(n))2

=
d−1∑
k=0

x2(n+ k)−
d−1∑
k=0

2x(n+ k)µx(n) +
d−1∑
k=0

µ2
x(n)

=

d−1∑
k=0

x2(n+ k)z(k)− 2dµ2
x(n) + dµ2

x(n)

= x2(n)⊗ z(n)− dµ2
x(n)

= x2(n)⊗ z(n)− 1

d
(x(n)⊗ z(n))2. (7.3)

163

The correlation output can be computed using zero-mean unit-energy test chips as follows

g(n) =
d−1∑
k=0

[
x(n+ k)− µx(n)

(e(n))
1
2

]
h(k)

=

∑d−1
k=0 x(n+ k)h(k)− µx(n)

∑d−1
k=0 h(k)

(e(n))
1
2

=
x(n)⊗ h(n)− µx(n)hs

(e(n))
1
2

=
x(n)⊗ h(n)− 1

d (x(n)⊗ z(n))hs(
x2(n)⊗ z(n)− 1

d (x(n)⊗ z(n))2
) 1

2

, (7.4)

where hs =
∑d−1

k=0 h(k) is the sum of the template’s values. Thus, using zero-mean unit-energy

test chips requires two additional correlations (or four DFTs). Although we have found this method

useful in other experiments, in the set of experiments used in this thesis we found that doing these

additional computations does not improve performance. Therefore, we do not compute the zero-

mean unit-energy of the test chips.

7.2.5.2 Peak-to-Correlation Energy (PCE)

When there is only one authentic target in the image, the Peak-to-Correlation Energy (PCE) [85]

is a good metric to use, and it is computed for each test image as follows:

PCE =
gmax√∑

m,n |g(m,n)|2 − |gmax|2
, (7.5)

where gmax = maxn,m(g(m,n)) is the maximum value of the correlation plane. In our experi-

ments, we found PCE to be a very useful metric. When there is more than one target in the image or

when there is significant variation in illumination computing the peak-to-sidelobe ratio (explained

below) is a better metric for target recognition.

7.2.5.3 Peak-to-Sidelobe Ratio (PSR)

Another commonly used correlation peak sharpness metric is the peak-to-sidelobe ratio (PSR)

[67] defined as

PSR ,
peak− µ

σ
, (7.6)

164

Figure 7.1: In this correlation output array, there is one large peak and another one small. The PSR compares
the peak values to the surrounding values. We observe in this example that the PSR values of these two
correlation peaks are similar, even though the correlation peak values are not similar. This can be caused
when one target is in an illuminated region and the other one in a darker region. (Figure from Kereke’s 2008
SPIE presentation [32]).

where µ and σ are the mean and the standard deviation, respectively, of the region surrounding the

correlation peak (we refer to the size of this region as “PSR outer window size”) possibly excluding

a small area around the peak (we refer to the size of this region as “PSR inner window size”) to

avoid contributions from broad correlation peaks. A PSR value of η indicates that the peak is η

standard deviations above the mean of the surrounding values. For example, a value of g = 6 or

greater is unlikely to be the result of an impostor target.

This metric can be efficiently computed for an entire correlation output using two correlations

(or four DFTs) for each image [34]. A more efficient method is to compute the PSR only for the

highest correlation values. However, computing PSR at only high correlation outputs may overlook

some (not so high) peak values that stand out in comparison to their surrounding values (e.g., an

authentic image in a dark (low intensity) location in the large scene) as shown in Fig. 7.2.5.3.

The PSR for each value can be efficiently computed as follows [34]. We use 1-D notation

for simplicity. The mean of each region surrounding each correlation value in image g(n) can be

165

computed as follows,

µ(n) =
1

K

K−1∑
k=0

g(n+ k)

=

K−1∑
k=0

g(n+ k)w(k)

= g(n)⊗ w(n), (7.7)

where

w(n) =


1
K 0 ≤ n ≤ K − 1

0 n > K − 1

. (7.8)

In 2-D, K represents the dimensions of the “PSR outer window” possibly excluding the “PSR inner

window”. The variance can be computed as follows,

σ2(n) =
1

K

K−1∑
k=0

(g(n+ k)− µ(n))2

=
1

K

K−1∑
k=0

g2(n+ k)− 1

K

K−1∑
k=0

2g(n+ k)µ(n) +
1

K

K−1∑
k=0

µ2(n)

=
K−1∑
k=0

g2(n+ k)w(k)− 2µ2(n) + µ2(n)

= g2(n)⊗ w(n)− µ2(n)

= g2(n)⊗ w(n)− (g(n)⊗ w(n))2 . (7.9)

The entire PSR plane can be computed as follows,

gPSR(n) =
g(n)− µ(n)

σ(n)

=
g(n)− g(n)⊗ w(n)(

g2(n)⊗ w(n)− (g(n)⊗ w(n))2
) 1

2

(7.10)

which requires two additional correlations (or four DFTs).

166

7.2.6 Retraining

Dalal and Triggs [21] proposed cross-correlating the 2-D template (recall that terms template

and filter depict whether our design is in the space or the frequency domain, respectively) with

training frames, adding the false positives as false-class training images, and retraining the template.

In our experiments, we cross-correlated the template with the 20 training frames of each class (20×

8 = 160 training frames total). A false positive occurs when the highest peak is not at the correct

location or when the highest peak corresponds to the wrong class. For each frame, we selected at

most one false positive by truncating an area in the training frame centered at the location of the

highest false-positive peak of the correlation output. These truncated areas were added to the set of

false-class images and the filter was retrained. We repeated this process nine times. We observe that

the performance improves during the first three retraining iterations but it usually does not change

much after that. We observe that this retraining method always improves recognition performance

particularly in the constrained CFs.

7.2.7 Selecting parameters

Most CFs require the selection of parameters. In our experiments, we conducted hundreds of

tests with different parameters and chose the parameters that gave the best recognition performance.

Other methods that are commonly used is to use a validation set of images (images not used in train-

ing or testing) and choose parameters that maximize recognition performance on this set. Another

method that is commonly used [32, 74, 80] is to select parameters that produce a large Fisher ratio

(FR). The FR is a measurement of the separation between two sets of filter responses expressed as

FR =
|µ2 − µ1|2

σ2
1 + σ2

2

, (7.11)

where µ1, µ2, σ
2
1 and σ2

2 are the means and variances of the two sets. Set 1 is defined as the correla-

tion peak values in response to true-class images and Set 2 as the correlation peak values in response

to false-class images. The correlation peak values can either be the highest peak in the correlation

plane, the highest PSR value, or the highest PCE value.

167

In our experiments, some parameters are chosen to be the same for all filters such as the number

of true-class training images, the number of false-class training images, and the constrained peak

value for the training images. We call these parameters constant parameters. Other parameters are

chosen to be unique to each filter such as the λ, ψ, and gσ2 that provide a tradeoff between the

MSE, ASM, and ONV criteria and control the desired correlation plane peak sharpness. We call

these parameters varying parameters.

Constant parameters were chosen by varying one parameter while keeping the other ones con-

stant and selecting a value that produces overall good performance across all the filters. Before

explaining the details of the process, recall that the constrained peak is usually set to uT = 1 for

true-class images and uF = −ε for false class images, where ε is some small value. This means

that for true-class images we desire a filter response with a high value and for the false-class images

we desire a filter response with a value close to zero. As explained in Section 3.1.5, the value of ε

can affect the filter. Initially we use ε = 0.1 and 100 background (false-class) images. We trained

filters with 5, 10, 15,..., 45, and 50 true-class training images. After comparing the results, we

found that using 20 true-class training images produces good results across all the filters and using

more than 20 training images did not significantly improve the results. Using 20 true-class training

images and 100 background images, we trained filters with ε = 0, 10−4,10−3,10−2, 10−1, and 1.

After comparing the results, we find that using ε = 10−2 produces good results across all the filters.

Using 20 true-class training images, and ε = 10−2, we trained filters with 10, 20, 30, ..., 90, and

100 background (false-class) images. After comparing the results, we find that using 80 background

training images produces good results across all the filters and using more than 80 training images

did not significantly improve the results. Thus, the constant parameters that were used in all filters

were 20 true-class training images, 80 background (false-class) training images, and ε = 10−2.

Varying parameters were chosen individually for each filter by simultaneously varying λ and

gσ2 parameter while keeping ψ = 1, selecting the best λ and gσ2 combination and then varying

the ψ parameter. We observed that the ψ of the varying parameters has little effect on performance

compared to the λ. We tested the filters against λ =1, 0.9999, 0.999, 0.99, 0.95, 0.90, 0.85,...,0.15,

168

0.10, 0.05, 0.03, 0.01, 3 × 10−3, 1 × 10−3, 3 × 10−4, 1 × 10−4, 3 × 10−5, 1 × 10−5, 3 × 10−6,

1 × 10−6, 3 × 10−7, 1 × 10−7, 3 × 10−8, 1 × 10−8, 3 × 10−9, 1 × 10−9, 3 × 10−10, 1 × 10−10,

and 0 (as we will see, experiments using gray-scaled pixel features usually performed best with a λ

value close to 1, and experiments using HOG features usually performed best with a λ value close to

0). For each λ value we tested different variance parameters of the Gaussian-function-like desired

correlation output using gσ2 =0, 0.001, 0.01, 0.02, 0.05, 0.1, 0.5, 1.0, 1.5, 2.0, and 2.5. We selected

the best λ and gσ2 value and then tested against different ψ values using ψ =1, 0.99999, 0.9999,

0.999, 0.99, 0.95, 0.90, 0.85, 0.80, 0.75, ...,0.15, 0.10, 0.05, 0.03, and 0.01.

7.3 EXPERIMENTAL SETUP

To demonstrate the efficacy of our algorithm, we consider 18 classifiers: QMMCF, QSVM,

QMACE, TQCF, QCF, MMCF, SVM, CCF, OTSDF, mCCF, UCF, MOSSE, UOTSDF, MACH,

UMACE, ECPSDF, EASEF, and ASEF. For each type of classifier we train eight filters. Each filter

is trained to recognize one given target (there are eight targets) for all 360◦ degrees of azimuth

rotation. We determine target location by cross-correlating the template (recall that terms template

and filter depict whether our design is in the space or the frequency domain, respectively) with the

test image and determining its location by the highest value in the resulting correlation output. For

the highest value, we compute the peak-to-correlation-energy (PCE) (see Eq. 7.5) and select the

template (out of the eight templates–one per target) that gives the highest PCE value. We declare

a correct recognition when the correct template produces the maximum response to a given frame

(i.e., correct classification) and produces the peak within a specified window centered at the correct

location (i.e., correct localization). This means that it is considered an error 1) when the largest

correlation peak is not close to the target’s ground truth location and is from the incorrect class,

or 2) when the largest correlation peak is close to the target’s ground truth location but is from

the incorrect class, or 3) when the largest correlation peak is from the correct class but the peak’s

location is not near the target’s ground truth location. Note that the low quality frame and the general

169

Figure 7.2: An example of a test frame containing the BRDM2 target.

background (see Fig. 7.2) makes the problem of localization and classification challenging.

It is important to note that we did not include any shifted images of authentic class as impostor

class as commonly done in some localization approaches [22, 36, 70]. Including every possible shift

would have required an additional 20 × {(2 × 70 − 1) × (2 × 40 − 1) − 1} = 219600 false-class

images per filter. One of the strengths of the algorithms in this work is avoiding the need to use

these shifted images during training and still being able to locate the vehicle with high precision.

To investigate the ability of the various approaches to localize and classify targets, we did not

use any tracker in these experiments but assumed that the vehicle can be anywhere in each frame,

and we treated each frame independently from other frames. Including a tracker may improve

localization performance but is omitted from our experiments in order to analyze the performance

of the unaided filters.

170

We declare a correct recognition when the correct template produces the maximum response to

a given frame (i.e., correct classification) and produces the peak within a specified window centered

at the correct location (i.e., correct localization). This means that it is considered an error 1) when

the largest correlation peak is close to the target’s ground truth location but is from the incorrect

class, or 2) when the largest correlation peak is from the correct class but the peak’s location is not

near the target’s ground truth location. In these experiments, we defined the window as follows,

window =

(
|Px − P̂x|

w
≤ D

)
∩

(
|Py − P̂y|

h
≤ D

)
, (7.12)

where Px and Py are the ground truth location coordinates, P̂x and P̂y are correlation peak location

coordinates, and 0 ≤ D ≤ 1 is the normalized distance. Recall that in our experiments, width

w = 70 and height h = 40. D = 0 requires that the correlation peak location be the same as

the ground truth location. D = 0.5 requires that the peak location be within 35 and 20 pixels

of the ground truth location in the x− and y−directions, respectively. D = 1 requires that the

peak location be within 70 and 40 pixels of the ground truth location in the x− and y−directions,

respectively.

In addition, we repeat the experiments using HOG features. Each 70× 40 pixel image is trans-

formed to an 8× 4 HOG feature image where each pixel is a 31-D vector; i.e., an 8× 4× 31 HOG

feature cube. This process is shown in Figure 6.1 and is the same for training and test images. In

our experiments, we used Felzenszwalb, et al.’s code [25] to compute the HOG features.

7.4 COMPUTATIONAL COMPARISON

The theoretical and measured complexity of the QMMCF, QSVM, TQCF, MMCF, CCF, UCF,

and ASEF classifiers is shown in Table 7.1. The other filters are not considered because they

are subsets of one of these classifiers. These comparisons were done using MATLAB on a 2.91

GHz, 3.25 GB RAM Dual Core Windows XP desktop. To measure the training and testing time,

we used N = 100 training images (gray-scaled pixels and not HOG features) of dimension d =

171

Table 7.1: Computational complexity big O and measured (sec.)

Training one template Testing one image
Template Big O time (s) Big O time (s)
QMMCF min(N3, N2d2) +Nd log d 0.66 Nds log ds 10.9
QSVM min(N3, N2d) 0.31 Nds log ds 10.9
TQCF N3 +Nd log d 0.92 vds log ds 0.96
MMCF min(N3, N2d) +Nd log d 0.62 ds log ds 0.19
SVM min(N3, N2d) 0.27 ds log ds 0.19
CCF N3 +Nd log d 0.35 ds log ds 0.19
UCF Nd log d 0.39 ds log ds 0.19

EASEF Nd log d 0.35 ds log ds 0.19

40×70 = 2800, and 200 testing images of dimension ds = 512×640 = 327680 and report the av-

erage time (in seconds) per image. QMMCF, TQCF, MMCF, CCF, UCF, and EASEF are designed

by transforming the images into the frequency domain thereby requiring N FFTs of size d, i.e.,

O(Nd log d). In addition to the Fourier transforms of the images, QMMCF, QSVM, MMCF, and

SVM solve the quadratic optimization problem using SMO which has a computational complexity

ofO(min(N3, N2d)), and CCF requires a matrix inversion of complexityO(N3). The computation

required to test the linear filters is exactly the same, i.e., it involves the cross-correlation of the query

image with the template which is computed efficiently in the frequency domain which has a compu-

tational complexity of O(ds log ds). Testing TQCF requires v cross-correlations, where v < N is

the number of eigenvalues used, and therefore has a computational complexity of O(vds log ds) (in

Table 7.1 v = 8). QMMCF and QSVM can required up to N (the number of support vectors) cross-

correlations per frame, and therefore have a computational complexity of at most O(Nds log ds)

(in Table 7.1 N = 100 support vectors). The computational complexity of QMMCF, QSVM, and

TQCF can be reduced by computing FFTs in different cores in a multi-core platform.

7.5 EXPERIMENTAL RESULTS

We performed three sets of experiments. In Set 1, each filter is trained using 20 true-class

images. In Set 2, each filter is trained using using 20 true-class images and 80 background (false-

172

class) images. In Set 3, each filter is initially trained as in Set 2 and then retrained, i.e., we cross-

correlate the template with the frames from which we truncated the training images, add the false

positives as false-class training images, and retrain the template. Table 7.2 shows the classification

(class), localization (loc), and recognition (recog) rates for each filter in Set 1. Table 7.3 shows the

classification, localization, and recognition rates for each filter in Set 2, and it shows the recognition

performance improvement (impr) over the recognition rates in Set 1. Improvement is computed

as new performance minus old performance, and the result divided by old performance. Table

7.4 shows the recognition rates in Set 3, and it also shows the number of retraining (ret) cycles

we used (after a certain number of cycles, performance does not improve), and the recognition

performance improvement over the recognition rates in Set 2. We compared different λ, ψ, and

variance ġσ2 of the desired Gaussian-function-like shape correlation output parameters and report

our best recognition performance findings. The values of the parameters selected are in bold and

non-bold values are default parameters for those filters. The first value is obtained using gray-scaled

pixel features and the second value (separated by a comma) is obtained using HOG features. The

SDF acronym is removed in order to fit all the results in each table, e.g., OTSDF is represented by

OT.

We also investigate the classification performance of each classifier using confusion matrices

and receiver operating characteristic (ROC) curves. For QMMCF, QSVM, TQCF, MMCF, SVM,

CCF, mCCF, UCF and EASEF we show the confusion matrices using gray-scaled pixels in Tables

7.5 through 7.13, respectively, and using HOG features in Tables 7.14 through 7.22, respectively.

Each column of the matrices represents the instances in a predicted class, while each row repre-

sents the instances in an actual class. The target classes Pickup, SUV, BTR70, BRDM2, BMP2,

T72, ZSU23-4, and 2S3 shown in Fig. 1.2 are represented in these tables as targets 1 through 8,

respectively. For QMMCF, QSVM, TQCF, MMCF, SVM, CCF, mCCF, UCF and EASEF we show

the ROC curves in Figs. 7.3 through 7.11. The ROC curves are computed as follows. For each test

frame, the correct filter is applied (i.e., if the test frame contains target 3, the filter trained with target

3 images is applied). For each correlation output, we compute the number of false alarms (FA) de-

173

Table 7.2: Filter performance (%) using true-class images only

class local recog λ ψ ġσ2

QMMCF 46, 70 71, 87 37, 69 0.60, 1n6 1, 0.99 0
QMACE 15, 04 29, 09 02, 01 1 1 0
QSVM 20, 18 29, 42 17, 08 0 1 0
TQCF 51, 30 73, 39 49, 22 0.70, 1n9 1 0
QCF 32, 25 40, 45 27, 18 0 1 0

MMCF 33, 41 66, 74 30, 40 0.01, 1n5 0.2, 1 3
2 , 0d

iOT 21, 41 56, 74 17, 40 0.55, 1n5 1 0
iMACE 16, 02 43, 10 08, 01 1 1 0
SVM 12, 34 26, 41 10, 15 0 1 0
CCF 21, 30 58, 69 18, 28 0.55, 3n6 0.9, 0.4 1

2 , 1
5

OT 21, 31 56, 65 18, 28 0.55, 3n6 1 0
MACE 17, 02 42, 10 07, 01 1 1 0

ECP 14, 12 27, 56 11, 08 0 1 0
mCCF 23, 31 67, 70 21, 28 1.00, 1n5 1, 0.99 1, 1

10

UCF 32, 41 66, 74 32, 40 0.05, 1n5 0.95, 1 0, 0
UOT 32, 41 66, 74 32, 40 0.05, 1n6 1 0

MOSSE 27, 03 62, 01 25, 01 1 1 3
2 , 0

MACH 30, 03 64, 01 29, 01 1 0, 1 0
UMACE 17, 03 53, 01 15, 01 1 1 0
EASEF 34, 36 67, 69 32, 33 0.05, 1n4 1 1

2 , 0
ASEF 17, 22 48, 38 14, 17 1 1 3

2 , 0

fined as the number of peaks that are greater than the peak value corresponding to the target (setting

to zero a small area around each FA peak to prevent double counting values from peaks that extend

over a few pixels). For each filter we plot eight ROC curves (one per target) as the localization rate

(over the entire 200 test frames) versus the number of FA per frame. The ROC curves of the average

over the eight targets are shown in Fig. 7.12.

174

Table 7.3: Filter performance (%) using true- and false-class images before retraining

class local recog λ ψ ġσ2 impr
QMMCF 59, 72 89, 94 56, 72 0.50, 1n5 1, 0.8 0 50, 5
QMACE 25, 20 63, 44 15, 6 1 1 0 610, 433
QSVM 24, 14 58, 54 23, 11 0 1 0 34, 48
TQCF 75, 25 77, 48 64, 24 0.30, 3n8 1 0 30, 9
QCF 35, 38 49, 54 22, 20 0 1 0 -18, 6

MMCF 51, 45 88, 76 50, 43 0.95, 3n5 1, 0.99 2, 0d 68, 6
iOT 51, 41 88, 75 49, 40 0.95, 3n5 1 0 182, -1

iMACE 36, 10 82, 46 33, 02 1 1 0 318, 156
SVM 23, 16 56, 57 18, 10 0 1 0 78, -34
CCF 54, 40 90, 67 53, 35 0.85, 1n5 1, 0.2 5

2 , 1
20 197, 23

OT 54, 42 90, 69 52, 34 0.85, 1n5 1 0 199, 25
MACE 40, 16 84, 56 36, 12 1 1 0 389, 1244

ECP 16, 30 64, 64 11, 26 0 1 0 2, 225
mCCF 54, 40 93, 67 53, 35 0.99, 1n5 .9999, 0.2 1

2 , 1
20 152, 25

UCF 36, 45 65, 76 35, 43 0.25, 3n5 0.55, 0.99 1
2 , 0 7, 6

UOT 33, 45 66, 76 33, 42 0.15, 3n5 1 0 3, 5
MOSSE 30, 11 65, 47 26, 03 1 1 2, 0 7, 200
MACH 33, 11 68, 47 33, 03 1 0.15, 1 0 14, 200

UMACE 26, 11 62, 47 19, 03 1 1 0 27, 200
EASEF 35, 34 69, 72 32, 32 0.05, 3n5 1 1

2 , 0 0, -3
ASEF 17, 19 47, 32 14, 15 1 1 3

2 , 0 -5, -12

175

Table 7.4: Filter performance (%) after retraining

class local recog λ ψ ġσ2 ret impr
QMMCF 90, 77 97, 96 86, 77 0.05, 1n5 1, 0.7 0 4,1 55, 6
QMACE 45, 67 73, 80 37, 61 1 1 0 3, 3 146, 853
QSVM 66, 21 92, 81 65, 20 0 1 0 7, 7 187, 79
TQCF 88, 55 90, 88 82, 55 0.20, 3n8 1 0 8, 5 29, 133
QCF 58, 28 79, 68 55, 22 0 1 0 5, 6 145, 11

MMCF 64, 58 95, 87 63, 55 0.25, 1n4 1, 1 0, 1
5 9, 4 27, 25

iOT 64, 54 95, 86 63, 51 0.25, 3n5 1 0 9, 4 29, 29
iMACE 47, 53 84, 74 44, 47 1 1 0 1, 2 35, 1935
SVM 47, 25 87, 72 47, 20 0 1 0 4, 5 169, 100
CCF 62, 51 90, 78 59, 47 0.75, 3n5 1, 1 3

2 , 0 6, 2 12, 36
OT 60, 51 91, 78 58, 47 0.80, 3n5 1 0 7, 2 11, 36

MACE 46, 41 85, 66 43, 33 1 1 0 3, 2 18, 169
ECP 39, 30 80, 61 35, 26 0 1 0 7, 5 216, 0

mCCF 66, 51 92, 78 65, 47 .999, 3n5 .9999, 1 1, 0 4, 2 21, 36
UCF 38, 58 78, 87 37, 55 0.15, 1n4 0.99, 1 1,1

5 5, 4 06, 25
UOT 36, 57 75, 85 35, 53 0.35, 1n4 1 0 2, 4 6, 26

MOSSE 32, 57 77, 79 31, 51 1 1 5
2 ,1

5 4, 3 19, 1500
MACH 36, 55 78, 76 35, 48 1 0.55, 1 0 3, 3 5, 1500

UMACE 24, 55 65, 76 21, 48 1 1 0 1, 3 15, 1500
EASEF 34, 34 67, 72 33, 32 0.05, 3n5 1 0, 0 3, 0 4, 0
ASEF 21, 19 49, 32 16, 15 1 1 3

2 , 0 3, 0 15, 0

176

Table 7.5: Confusion matrices using gray-scaled pixels for (top) Set 1, (middle) Set 2, and (bottom) Set 3 for
the QMMCF.

1 2 3 4 5 6 7 8
1 107 72 0 17 4 0 0 0
2 0 196 0 1 3 0 0 0
3 0 25 134 38 3 0 0 0
4 0 33 5 160 2 0 0 0
5 0 13 2 38 76 2 0 69
6 64 38 17 40 20 14 0 7
7 19 69 19 59 2 0 32 0
8 23 64 0 94 0 0 0 19

1 2 3 4 5 6 7 8
1 196 0 3 0 0 0 0 1
2 98 36 38 0 2 0 14 12
3 0 0 165 0 0 0 0 35
4 0 0 37 163 0 0 0 0
5 1 0 60 0 65 0 0 72
6 70 0 9 34 0 74 0 13
7 59 0 35 20 0 0 86 0
8 4 0 0 34 0 0 0 162

1 2 3 4 5 6 7 8
1 181 4 13 0 0 0 0 2
2 1 167 32 0 0 0 0 0
3 0 0 197 3 0 0 0 0
4 0 0 15 184 0 0 0 1
5 0 0 7 0 176 0 2 15
6 0 15 3 0 0 177 0 5
7 7 0 20 2 0 0 150 21
8 0 0 0 0 0 0 0 200

177

Table 7.6: Confusion matrices using gray-scaled pixels for (top) Set 1, (middle) Set 2, and (bottom) Set 3 for
the QSVM.

1 2 3 4 5 6 7 8
1 0 0 0 1 0 0 0 199
2 0 16 0 73 0 4 0 107
3 0 0 0 0 0 2 6 192
4 0 0 0 16 0 0 0 184
5 0 0 0 1 0 0 0 199
6 0 0 0 0 0 76 4 120
7 0 0 0 0 0 0 21 179
8 0 0 0 2 0 0 0 198

1 2 3 4 5 6 7 8
1 1 21 168 0 0 0 10 0
2 0 103 93 0 0 0 4 0
3 0 62 20 8 0 0 110 0
4 0 137 13 46 0 0 4 0
5 0 170 2 0 5 0 26 0
6 0 29 16 51 0 0 20 84
7 0 138 0 1 0 0 56 5
8 0 26 13 0 0 0 1 160

1 2 3 4 5 6 7 8
1 4 162 1 31 0 0 0 2
2 0 200 0 0 0 0 0 0
3 0 43 140 12 0 0 5 0
4 0 18 0 182 0 0 0 0
5 0 21 126 7 46 0 0 0
6 0 33 7 18 0 94 5 43
7 0 4 1 5 0 0 186 4
8 0 0 0 2 0 0 0 198

178

Table 7.7: Confusion matrices using gray-scaled pixel for (top) Set 1, (middle) Set 2, and (bottom) Set 3 for
the TQCF.

1 2 3 4 5 6 7 8
1 95 9 0 94 0 0 1 1
2 0 144 0 41 0 3 0 12
3 0 53 28 46 0 73 0 0
4 0 28 0 172 0 0 0 0
5 0 175 0 25 0 0 0 0
6 3 55 11 12 0 54 1 64
7 5 114 1 3 0 0 65 12
8 0 19 0 8 0 0 0 173

1 2 3 4 5 6 7 8
1 195 0 0 0 0 0 5 0
2 48 149 3 0 0 0 0 0
3 0 0 188 3 0 0 9 0
4 0 0 5 176 0 16 3 0
5 0 0 49 49 55 0 47 0
6 0 2 3 0 0 167 11 17
7 7 0 98 0 0 0 95 0
8 0 0 20 0 0 0 0 180

1 2 3 4 5 6 7 8
1 170 0 26 0 0 0 4 0
2 9 167 15 9 0 0 0 0
3 5 1 164 14 0 11 2 0
4 0 0 0 200 0 0 0 0
5 14 2 22 3 153 0 6 0
6 0 3 0 9 0 187 1 0
7 2 0 5 10 0 0 183 0
8 1 0 10 7 0 0 4 178

179

Table 7.8: Confusion matrices using gray-scaled pixel for (top) Set 1, (middle) Set 2, and (bottom) Set 3 for
the MMCF.

1 2 3 4 5 6 7 8
1 0 154 0 46 0 0 0 0
2 0 146 0 54 0 0 0 0
3 0 80 0 120 0 0 0 0
4 0 48 0 152 0 0 0 0
5 0 157 0 43 0 0 0 0
6 0 58 0 142 0 0 0 0
7 0 98 0 102 0 0 0 0
8 0 91 0 109 0 0 0 0

1 2 3 4 5 6 7 8
1 150 45 0 4 0 0 0 1
2 35 163 0 1 0 0 0 1
3 27 93 49 11 0 1 10 9
4 2 24 0 160 0 0 1 13
5 5 75 0 6 34 11 54 15
6 28 7 4 56 0 51 22 32
7 25 33 3 21 0 0 100 18
8 27 20 0 42 0 0 0 111

1 2 3 4 5 6 7 8
1 166 24 0 3 0 1 3 3
2 18 178 0 3 0 0 1 0
3 7 13 54 101 0 13 9 3
4 0 1 0 186 0 1 12 0
5 6 19 0 129 28 11 6 1
6 2 5 0 8 0 179 0 6
7 33 17 0 21 1 14 114 0
8 14 22 0 32 0 14 0 118

180

Table 7.9: Confusion matrices using gray-scaled pixels for (top) Set 1, (middle) Set 2, and (bottom) Set 3 for
the SVM.

1 2 3 4 5 6 7 8
1 0 0 0 0 0 0 0 200
2 0 9 0 6 0 0 0 185
3 0 0 0 0 0 0 0 200
4 0 0 0 11 0 0 0 189
5 0 0 0 1 0 0 0 199
6 0 0 0 0 0 33 0 167
7 0 0 0 0 0 0 10 190
8 0 0 0 0 0 0 0 200

1 2 3 4 5 6 7 8
1 150 29 0 2 0 1 0 18
2 143 30 0 2 0 10 2 13
3 3 44 0 75 0 1 77 0
4 21 90 0 84 0 0 5 0
5 5 165 0 21 0 9 0 0
6 41 15 0 52 0 16 6 70
7 70 41 0 33 0 38 0 18
8 76 16 0 19 0 0 0 89

1 2 3 4 5 6 7 8
1 120 19 0 7 0 45 0 9
2 17 81 1 0 0 100 0 1
3 0 8 21 16 0 155 0 0
4 0 0 0 135 0 53 0 12
5 0 0 0 14 0 186 0 0
6 0 0 0 0 0 194 0 6
7 1 0 0 13 0 136 30 20
8 0 0 0 4 0 13 0 183

181

Table 7.10: Confusion matrices using gray-scaled pixels for (top) Set 1, (middle) Set 2, and (bottom) Set 3
for the CCF.

1 2 3 4 5 6 7 8
1 0 189 0 11 0 0 0 0
2 0 199 0 1 0 0 0 0
3 0 118 0 82 0 0 0 0
4 0 65 0 135 0 0 0 0
5 0 179 0 21 0 0 0 0
6 0 120 0 80 0 0 0 0
7 0 165 0 35 0 0 0 0
8 0 137 0 63 0 0 0 0

1 2 3 4 5 6 7 8
1 129 62 0 6 1 1 0 1
2 25 171 0 1 0 0 1 2
3 17 50 53 61 5 3 4 7
4 2 20 0 163 2 0 3 10
5 20 88 1 11 56 9 7 8
6 10 13 1 46 0 76 14 40
7 21 21 1 17 2 0 93 45
8 11 33 0 39 0 0 0 117

1 2 3 4 5 6 7 8
1 156 33 0 4 1 0 1 5
2 79 115 0 1 1 0 0 4
3 16 14 75 31 7 2 17 38
4 3 6 0 162 4 2 16 7
5 40 13 1 20 95 5 15 11
6 28 5 0 18 3 119 15 12
7 17 13 2 6 4 1 127 30
8 21 4 0 32 0 1 0 142

182

Table 7.11: Confusion matrices using gray-scaled pixels for (top) Set 1, (middle) Set 2, and (bottom) Set 3
for the mCCF.

1 2 3 4 5 6 7 8
1 185 15 0 0 0 0 0 0
2 71 125 0 0 0 0 4 0
3 137 61 0 0 0 0 2 0
4 126 12 0 39 0 0 0 23
5 23 69 0 57 4 0 33 14
6 175 10 0 0 0 0 0 15
7 181 8 0 1 0 0 10 0
8 136 1 0 0 0 0 0 69

1 2 3 4 5 6 7 8
1 200 0 0 0 0 0 0 0
2 151 48 0 0 0 0 1 0
3 197 0 0 0 0 0 1 2
4 162 0 0 12 0 0 0 26
5 96 3 0 4 11 0 86 0
6 156 0 0 0 0 0 0 44
7 192 0 0 1 0 0 5 2
8 117 0 0 0 0 0 0 83

1 2 3 4 5 6 7 8
1 195 2 0 0 0 0 1 2
2 141 54 0 0 0 0 4 1
3 196 0 0 0 0 0 4 0
4 132 0 0 32 0 0 0 36
5 65 5 0 7 90 0 33 0
6 132 0 0 1 0 0 0 67
7 177 0 0 6 0 0 12 5
8 97 0 0 0 0 0 0 103

183

Table 7.12: Confusion matrices using gray-scaled pixels for (top) Set 1, (middle) Set 2, and (bottom) Set 3
for the UCF.

1 2 3 4 5 6 7 8
1 63 75 0 59 0 0 1 2
2 0 172 0 25 0 0 0 3
3 82 17 0 60 0 0 41 0
4 39 18 0 141 0 0 0 2
5 0 26 0 146 0 0 31 0
6 8 16 0 82 0 0 19 75
7 0 60 0 60 0 0 34 46
8 0 33 0 48 0 0 3 116

1 2 3 4 5 6 7 8
1 142 0 0 13 0 0 5 40
2 8 108 0 12 0 0 20 52
3 20 6 0 29 0 2 143 0
4 4 0 0 137 0 10 9 40
5 12 52 0 65 0 0 71 0
6 32 0 0 76 0 2 5 85
7 49 0 0 40 0 1 84 26
8 51 0 0 38 0 0 6 105

1 2 3 4 5 6 7 8
1 121 19 0 17 0 0 0 43
2 1 132 0 16 0 0 3 48
3 5 41 0 97 0 49 8 0
4 0 0 0 151 0 7 0 42
5 0 85 0 91 0 0 20 4
6 1 9 0 80 0 10 0 100
7 10 22 0 59 0 0 47 62
8 5 11 0 40 0 0 0 144

184

Table 7.13: Confusion matrices using gray-scaled pixels for (top) Set 1, (middle) Set 2, and (bottom) Set 3
for the EASEF.

1 2 3 4 5 6 7 8
1 66 15 0 118 0 0 1 0
2 0 115 0 85 0 0 0 0
3 10 19 0 154 0 0 17 0
4 5 7 0 188 0 0 0 0
5 0 12 0 183 0 0 5 0
6 0 7 0 129 0 0 27 37
7 14 9 0 126 0 0 47 4
8 0 6 0 99 0 0 10 85

1 2 3 4 5 6 7 8
1 62 107 0 30 0 0 1 0
2 0 182 0 18 0 0 0 0
3 47 19 0 82 0 0 52 0
4 22 21 0 157 0 0 0 0
5 0 25 0 134 0 0 41 0
6 7 19 0 86 0 0 27 61
7 0 70 0 56 0 0 40 34
8 0 28 0 44 0 0 14 114

1 2 3 4 5 6 7 8
1 70 20 0 109 0 0 1 0
2 0 142 0 58 0 0 0 0
3 3 43 0 141 0 0 13 0
4 3 9 0 188 0 0 0 0
5 0 100 0 95 0 0 5 0
6 4 15 0 109 0 0 30 42
7 16 16 0 112 0 0 54 2
8 0 7 0 91 0 0 8 94

185

Table 7.14: Confusion matrices using HOG features for (top) Set 1, (middle) Set 2, and (bottom) Set 3 for
the QMMCF.

1 2 3 4 5 6 7 8
1 143 30 4 8 5 2 8 0
2 5 193 0 0 0 0 0 2
3 4 0 176 2 4 1 0 13
4 4 0 1 193 0 0 0 2
5 44 12 0 3 70 14 0 57
6 4 2 0 8 56 105 0 25
7 6 6 0 69 1 2 84 32
8 11 2 0 8 20 0 0 159

1 2 3 4 5 6 7 8
1 128 53 0 8 2 0 2 7
2 1 197 0 0 0 1 0 1
3 5 1 177 6 5 0 6 0
4 0 1 0 199 0 0 0 0
5 30 36 2 12 86 21 1 12
6 21 8 0 17 31 110 0 13
7 15 8 0 32 0 0 136 9
8 45 11 1 7 6 1 4 125

1 2 3 4 5 6 7 8
1 134 41 1 9 1 1 2 11
2 0 198 0 0 0 1 0 1
3 1 3 175 5 1 0 13 2
4 0 0 0 199 0 0 1 0
5 24 15 5 16 110 16 3 11
6 1 20 0 25 19 116 2 17
7 4 16 0 26 0 0 147 7
8 7 24 1 9 0 4 8 147

186

Table 7.15: Confusion matrices using HOG features for (top) Set 1, (middle) Set 2, and (bottom) Set 3 for
the QSVM.

1 2 3 4 5 6 7 8
1 24 77 1 68 0 30 0 0
2 10 65 3 53 6 62 0 1
3 20 24 2 23 58 55 0 18
4 33 8 1 64 5 65 6 18
5 3 39 11 45 73 25 0 4
6 0 109 0 27 0 41 17 6
7 0 169 0 24 0 0 6 1
8 6 46 2 110 1 15 5 15

1 2 3 4 5 6 7 8
1 5 159 1 27 7 0 0 1
2 0 192 0 3 5 0 0 0
3 0 200 0 0 0 0 0 0
4 13 172 0 9 0 0 0 6
5 0 200 0 0 0 0 0 0
6 0 195 0 5 0 0 0 0
7 0 182 0 3 0 0 11 4
8 0 200 0 0 0 0 0 0

1 2 3 4 5 6 7 8
1 23 108 0 0 0 11 45 13
2 7 161 0 0 0 0 22 10
3 0 45 0 0 0 0 119 36
4 0 14 0 0 0 3 119 64
5 0 96 0 0 2 27 63 12
6 0 71 0 0 0 46 64 19
7 0 44 0 0 0 0 155 1
8 19 155 0 0 0 2 19 5

187

Table 7.16: Confusion matrices using HOG features for (top) Set 1, (middle) Set 2, and (bottom) Set 3 for
the TQCF.

1 2 3 4 5 6 7 8
1 0 48 19 131 2 0 0 0
2 0 99 1 71 29 0 0 0
3 0 8 74 0 118 0 0 0
4 0 96 1 50 53 0 0 0
5 0 63 21 60 54 1 0 1
6 0 58 68 70 4 0 0 0
7 0 148 19 32 0 1 0 0
8 0 118 12 52 1 1 0 16

1 2 3 4 5 6 7 8
1 3 97 39 60 1 0 0 0
2 27 39 24 109 1 0 0 0
3 0 37 109 54 0 0 0 0
4 0 2 0 198 0 0 0 0
5 0 23 43 85 49 0 0 0
6 5 21 23 143 4 0 0 4
7 0 25 0 175 0 0 0 0
8 0 11 6 183 0 0 0 0

1 2 3 4 5 6 7 8
1 133 47 2 0 7 0 0 11
2 18 166 15 1 0 0 0 0
3 2 0 180 12 6 0 0 0
4 9 11 10 170 0 0 0 0
5 17 58 12 6 107 0 0 0
6 54 101 0 0 0 43 1 1
7 2 185 0 0 0 0 13 0
8 99 28 0 0 0 0 0 73

188

Table 7.17: Confusion matrices using HOG features for (top) Set 1, (middle) Set 2, and (bottom) Set 3 for
the MMCF.

1 2 3 4 5 6 7 8
1 102 12 7 6 2 1 36 34
2 31 129 2 2 0 0 0 36
3 10 37 45 28 2 3 52 23
4 11 7 1 121 2 19 3 36
5 44 4 9 43 0 59 5 36
6 39 16 2 21 1 63 12 46
7 31 20 6 11 1 17 75 39
8 53 13 0 4 0 0 4 126

1 2 3 4 5 6 7 8
1 109 32 0 32 1 1 3 22
2 19 162 10 0 1 0 5 3
3 3 63 73 22 4 3 31 1
4 15 12 1 156 1 10 0 5
5 68 16 27 14 8 63 0 4
6 56 26 1 26 3 65 6 17
7 27 31 3 12 6 37 69 15
8 67 46 0 3 0 2 8 74

1 2 3 4 5 6 7 8
1 111 19 1 57 2 0 8 2
2 16 175 0 9 0 0 0 0
3 3 41 104 29 5 0 18 0
4 8 16 6 165 0 4 1 0
5 29 36 21 30 51 6 26 1
6 21 40 2 28 2 87 9 11
7 21 2 7 6 9 15 135 5
8 21 67 2 11 0 2 16 81

189

Table 7.18: Confusion matrices using HOG features for (top) Set 1, (middle) Set 2, and (bottom) Set 3 for
the SVM.

1 2 3 4 5 6 7 8
1 20 100 0 52 0 27 1 0
2 14 78 1 49 2 56 0 0
3 21 15 1 20 62 36 0 18
4 34 6 1 58 3 70 9 19
5 3 36 10 38 68 14 0 4
6 0 98 0 18 0 36 44 4
7 0 132 0 19 0 0 49 0
8 8 59 1 87 0 15 30 0

1 2 3 4 5 6 7 8
1 64 134 0 1 0 1 0 0
2 4 190 0 6 0 0 0 0
3 3 197 0 0 0 0 0 0
4 83 98 0 5 0 0 0 14
5 56 144 0 0 0 0 0 0
6 3 184 0 2 0 3 0 8
7 1 181 0 0 0 0 0 18
8 8 187 0 5 0 0 0 0

1 2 3 4 5 6 7 8
1 18 106 0 0 1 10 3 62
2 17 165 0 1 1 12 3 1
3 39 26 0 0 0 6 2 127
4 0 13 0 0 0 56 2 129
5 19 122 0 2 4 34 0 19
6 0 24 0 3 0 68 14 91
7 3 40 0 3 0 56 31 67
8 8 74 0 3 0 9 0 106

190

Table 7.19: Confusion matrices using HOG features for (top) Set 1, (middle) Set 2, and (bottom) Set 3 for
the CCF.

1 2 3 4 5 6 7 8
1 91 29 8 12 3 2 0 55
2 37 136 21 4 0 0 0 3
3 9 8 48 34 9 0 0 92
4 0 3 1 60 0 0 0 136
5 23 7 46 107 0 0 1 16
6 18 29 5 25 13 43 11 56
7 52 42 9 34 8 5 28 22
8 47 55 6 6 2 1 3 80

1 2 3 4 5 6 7 8
1 85 31 2 18 3 3 3 0
2 23 126 19 14 1 1 15 0
3 6 24 89 10 3 3 32 0
4 9 7 17 0 2 2 30 1
5 71 24 27 7 14 14 27 0
6 19 25 4 28 79 79 13 8
7 20 23 7 8 21 21 89 17
8 54 65 3 7 6 6 17 27

1 2 3 4 5 6 7 8
1 70 51 11 54 10 3 1 0
2 27 155 9 2 0 0 6 1
3 9 36 126 19 0 2 8 0
4 8 12 19 150 1 7 1 2
5 38 76 17 33 23 1 11 1
6 9 26 2 38 2 99 7 17
7 14 11 16 9 11 7 116 16
8 9 46 3 53 1 3 12 73

191

Table 7.20: Confusion matrices using HOG features for (top) Set 1, (middle) Set 2, and (bottom) Set 3 for
the mCCF.

1 2 3 4 5 6 7 8
1 103 11 7 5 2 1 37 34
2 32 129 2 1 0 0 0 36
3 10 33 44 29 2 3 56 12
4 11 7 1 121 2 19 4 35
5 42 4 9 44 0 59 5 37
6 39 16 2 21 1 62 12 47
7 32 20 5 12 1 17 74 39
8 54 12 0 4 0 0 4 126

1 2 3 4 5 6 7 8
1 108 32 2 32 2 2 2 20
2 18 161 17 0 0 0 1 3
3 6 73 71 21 3 4 21 1
4 10 11 1 155 1 17 0 5
5 53 16 20 13 8 87 0 5
6 55 23 1 24 5 71 5 16
7 22 28 4 15 6 50 64 11
8 64 46 0 3 0 2 8 77

1 2 3 4 5 6 7 8
1 111 29 1 25 0 1 3 30
2 13 163 0 0 0 0 0 24
3 1 59 98 15 0 0 2 25
4 10 17 4 159 0 8 1 1
5 19 26 5 15 40 15 3 77
6 23 35 2 31 5 72 5 27
7 14 36 4 5 11 9 92 29
8 19 70 1 2 0 0 12 96

192

Table 7.21: Confusion matrices using HOG features for (top) Set 1, (middle) Set 2, and (bottom) Set 3 for
the UCF.

1 2 3 4 5 6 7 8
1 102 12 7 6 2 1 36 34
2 31 129 2 2 0 0 0 36
3 10 37 45 28 2 3 52 23
4 11 7 1 121 2 18 3 36
5 44 4 9 43 0 59 5 36
6 39 16 2 21 1 36 12 46
7 31 20 6 11 1 17 75 39
8 53 13 0 4 0 0 4 126

1 2 3 4 5 6 7 8
1 109 32 0 32 1 1 3 22
2 19 162 10 0 1 0 5 3
3 3 63 73 22 4 3 31 1
4 15 12 1 156 1 10 0 5
5 68 16 27 14 8 63 0 4
6 56 26 1 26 3 65 6 17
7 27 31 3 12 6 37 69 15
8 67 46 0 3 0 2 8 74

1 2 3 4 5 6 7 8
1 111 19 1 57 2 0 8 2
2 16 175 0 9 0 0 0 0
3 3 41 104 29 5 0 18 0
4 8 16 6 165 0 4 1 0
5 29 36 21 30 51 6 26 1
6 21 40 2 28 2 87 9 11
7 21 2 7 6 9 15 135 5
8 21 67 2 11 0 2 16 81

193

Table 7.22: Confusion matrices using HOG features for (top) Set 1, (middle) Set 2, and (bottom) Set 3 for
the EASEF.

1 2 3 4 5 6 7 8
1 88 57 2 42 0 1 9 1
2 24 110 29 36 0 0 0 1
3 0 21 79 75 0 4 21 0
4 21 12 16 128 1 17 5 0
5 5 15 110 50 10 1 9 0
6 38 45 10 27 0 65 14 1
7 17 30 39 29 0 0 78 7
8 126 24 0 16 0 0 12 22

1 2 3 4 5 6 7 8
1 85 62 3 44 0 0 5 1
2 18 116 18 47 0 1 0 0
3 0 13 86 101 0 0 0 0
4 18 10 19 140 0 13 0 0
5 2 29 85 74 8 2 0 0
6 35 46 11 42 0 64 2 0
7 20 63 37 42 0 0 32 6
8 133 29 1 19 0 0 0 18

1 2 3 4 5 6 7 8
1 85 62 3 44 0 0 5 1
2 18 116 18 47 0 1 0 0
3 0 13 86 101 0 0 0 0
4 18 10 19 140 0 13 0 0
5 2 29 85 74 8 2 0 0
6 35 46 11 42 0 64 2 0
7 20 63 37 42 0 0 32 6
8 133 29 1 19 0 0 0 18

194

Figure 7.3: Localization rate as a function of the number of FAs per frame using (left) gray-scaled pixel and
(right) HOG features for (top) Set 1, (middle) Set 2, and (bottom) Set 3 for the QMMCF.

195

Figure 7.4: Localization rate as a function of the number of FAs per frame using (left) gray-scaled pixel and
(right) HOG features for (top) Set 1, (middle) Set 2, and (bottom) Set 3 for the QSVM.

196

Figure 7.5: Localization rate as a function of the number of FAs per frame using (left) gray-scaled pixel and
(right) HOG features for (top) Set 1, (middle) Set 2, and (bottom) Set 3 for the TQCF.

197

Figure 7.6: Localization rate as a function of the number of FAs per frame using (left) gray-scaled pixel and
(right) HOG features for (top) Set 1, (middle) Set 2, and (bottom) Set 3 for the MMCF.

198

Figure 7.7: Localization rate as a function of the number of FAs per frame using (left) gray-scaled pixel and
(right) HOG features for (top) Set 1, (middle) Set 2, and (bottom) Set 3 for the SVM.

199

Figure 7.8: Localization rate as a function of the number of FAs per frame using (left) gray-scaled pixel and
(right) HOG features for (top) Set 1, (middle) Set 2, and (bottom) Set 3 for the CCF.

200

Figure 7.9: Localization rate as a function of the number of FAs per frame using (left) gray-scaled pixel and
(right) HOG features for (top) Set 1, (middle) Set 2, and (bottom) Set 3 for the mCCF.

201

Figure 7.10: Localization rate as a function of the number of FAs per frame using (left) gray-scaled pixel and
(right) HOG features for (top) Set 1, (middle) Set 2, and (bottom) Set 3 for the UCF.

202

Figure 7.11: Localization rate as a function of the number of FAs per frame using (left) gray-scaled pixel and
(right) HOG features for (top) Set 1, (middle) Set 2, and (bottom) Set 3 for the EASEF.

203

Figure 7.12: Localization rate as a function of the number of FAs per frame using (left) gray-scaled pixel and
(right) HOG features for (top) Set 1, (middle) Set 2, and (bottom) Set 3.

204

These results show that using false-class images and retraining can significantly improve per-

formance. In Set 1, most confusion matrices show that some targets are never detected (i.e., they

have zeros along the column), but this rarely happens in Set 3. In addition, the ROC curves show

that the localization performance also improves from Set 1 to Set 3. The results also show that our

linear correlation filter designs can outperform all linear correlation filter, and our quadratic cor-

relation filter designs outperform existing quadratic and all linear designs. In addition, they show

that using the MSE and ONV criteria can significantly improve results. In Tables 7.2, 7.3, and 7.4,

QMMCF outperforms QSVM using gray-scaled pixels by 118%, 143%, and 32%, and using HOG

features by 763%, 555%, and 285%, respectively, TQCF outperforms QCF using gray-scaled pixels

by 81%, 190%, and 49%, and using HOG features by 22%, 20%, and 150%, respectively, MMCF

outperforms SVM using gray-scaled pixels by 200%, 178%, and 34%, and using HOG features by

167%, 330%, and 175%, respectively, in Sets 1, 2, and 3.

To observe the effect of each criterion, we compute the recognition rates using different λ values

and keep ψ and g2
σ constant; using different ψ values and keep λ and gσ2 constant; and using

different ġσ2 value and keep λ and ψ constant. Figures 7.13, 7.14, and 7.15 (best viewed in color)

shows the effect of changing λ, ψ, and ġσ2 values, respectively, while keeping the other values

constant. Note that the plots in Figure 7.13 corresponding to Set 3 include QSVM and SVM.

Earlier, we discussed that MMCF is equivalent to SVM, and QMMCF is equivalent to QSVM when

λ = 1 (and ψ = 1 and gσ2 = 0 for MMCF). Before retraining, all the filters have the same training

images, but as we retrain, each filter selects a different set of false-class training images. Therefore,

MMCF usually has a different set of false-class training images for each λ value after retraining.

However, to investigate the effect of changing λ for a fixed set of training images, we designed the

MMCF using the same set of training images obtained after retraining for the λ that gave the best

recognition rate (in our experiments this was λ = 0.25 for gray-scaled pixels and λ = 10−4 for

HOG features). In the plots in Set 3, the graphs corresponding to SVM are actually MMCF plots

with varying λ using the SVM set of images obtained after retraining.

From these figures we observe that the ASM criterion does not significantly affect our results.

205

Setting ψ = 1 (i.e., ignoring the ASM criterion) usually gives the best results (on a few filters

setting ψ = 0.99 or ψ = 0.999 may give a small improvement of less than 1%). Although the

MACH filter benefited from varying ψ, UCF with ψ = 1 always outperformed the MACH filter

in our experiments. We also observe that varying the variance of the desired Gaussian-function-

like correlation output affects the unconstrained filters and mCCF when using gray-scaled pixels

but it has negligible effects otherwise. Furthermore, when false-class training images are used,

constrained CFs usually outperformed unconstrained CF. Therefore, if false-class training images

are available, then setting gσ2 = 0 usually gives the best performance. We observe that varying

the λ value, which represents a tradeoff between ONV and ACE, has a significant effect on the

recognition rates . In all the plots, the recognition rate is lowest at the edges, i.e., when λ = 0 or

λ = 1, and highest in between. Therefore, we conclude that a tradeoff between ONV and MSE is

very beneficial.

We also compare performance as a function of the normalized distanceD in Fig. 7.16 for all sets

of experiments using the QMMCF, QSVM, TQCF, MMCF, SVM, CCF, mCCF, UCF and EASEF

classifiers. In all sets of experiments, QMMCF outperforms all the other classifiers for all values

of D. We observe that the improvement when D > 0.3 is insignificant over D = 0.3. This means

when the target is correctly recognized, the classifier usually puts the target’s location within 21 and

12 pixels in the x- and y-direction, respectively, of the ground truth location.

We next investigated the relation between the number of support vectors that the QMMCF,

QSVM, MMCF, SVM, and CCF filters have (using gσ2 = 0 and ψ = 1 for MMCF and CCF).

MMCF , SVM, and CCF can all be formulated as a weighted sum of the training images (or trans-

formed images) as in Eqs. 4.67 (when p = 0), 4.10, and 3.38 (when p = 0), respectively, and

QMMCF and QSVM can all be formulated as a weighted sum of the squared inner product of the

training images (or transformed images) as in Eqs. 5.41 and 5.16, respectively. The vectors a used

in QMMCF, QSVM, MMCF and SVM have many zero elements while CCF does not have any zero

elements. We referred to the training vectors corresponding to non-zero elements of a as support

vectors. Fig. 7.17 compares the average percentage of supports vectors to the number of training

206

images over the eight (one per vehicle) templates. We see from this figure that SVM (i.e., MMCF

with λ = 0) has the fewest number of support vectors. As the value of λ increases, the number

of support vectors that QMMCF and MMCF have slightly increases, and CCF uses all the support

vectors for all λ values.. This trend was observed for all QMMCFs, QSVMs, MMCFs, SVMs and

CCFs in all our experiments. We note that using all training images as support vectors (as is the

case in CCF), usually decreases performances as the number of training images increases because

the classifier overfits to the training images. MMCF and QMMCF use more support vectors than

SVM and QSVM, respectively, to improve localization (and therefore recognition) while usually

maintaining a smaller number of support vectors than CCF which avoids overfitting.

In addition, we investigated how the margin criterion h†h (i.e., the ONV criterion when P = αI

for all α 6= 0) and the localization criterion h†Dh (i.e., the MSE criterion when ġ = 0) vary as

a function of λ. As discussed earlier, when λ = 1 we minimize only the localization criterion

h†Dh, and when λ = 0 we minimize only the margin criterion h†h. For QMMCF, QSVM, QCF,

MMCF, SVM, CCF, mCCF, UCF and EASEF we show the average (over the eight filters–one per

vehicle) values of criteria h†h and h†Dh as function of λ in Figs. 7.18 through 7.24, respectively.

Notice from Figs. 7.20, 7.21, and 7.22 that MMCF, CCF, and mCCF, respectively, are the only

filters for which as λ increases, h†h monotonically increases and h†Dh monotonically decreases.

This is because these are the only filters that are designed to optimally trades-off between these

two criteria. Note that QMMCF is also designed as a tradeoff between these criteria but, do to

computational constraints, our actual implementation is not (as discussed in Ch. 5, QMMCF is

implemented as a QSVM with the training vectors premultiplied by the MMCF matrix T). A good

filter usually has a λ value that produces a low value for both of these criteria. We observe that

for MMCF, CCF, and mCCF, a slight increase in one criterion can significantly improve the other

criterion. For example, in the MMCF experiment in Set 1, increasing the value of h†Dh from 21.0

at λ = 1 to 38.1 at λ = 0.9, decreases the value of h†h from 7.1 × 106 to 3.4 × 105. This is the

reasons for QMMCF outperforming QSVM, MMCF outperforming SVM, and CCF outperforming

both ECPSDF and MACE filters.

207

Figure 7.13: Recognition rate as a function of lambda λ for different classifiers using (left) gray-scaled pixel
and (right) HOG features for (top) Set 1, (middle) Set 2, and (bottom) Set 3. In all the plots, the recognition
rate is lowest at the edges, i.e., when λ = 0 or λ = 1, and has the highest values in between.

208

Figure 7.14: Recognition rate as a function of psi ψ for different classifiers using (left) gray-scaled pixel and
(right) HOG features for (top) Set 1, (middle) Set 2, and (bottom) Set 3.

209

Figure 7.15: Recognition rate as a function of variance gσ2 for different classifiers using (left) gray-scaled
pixel and (right) HOG features for (top) Set 1, (middle) Set 2, and (bottom) Set 3. Note that a negative
variance for MMCF means that the desired correlation plane is zero, i.e., g = 0, and a zero variance means
that the desired correlation plane is a delta function.

210

Figure 7.16: Recognition rate as a function of normalized localization error D for different classifiers using
(left) gray-scaled pixel and (right) HOG features for (top) Set 1, (middle) Set 2, and (bottom) Set 3. MMCF
outperforms all linear classifiers (except mCCF in (a) with slightly lower performance), and QMMCF out-
performs all quadratic classifiers. Usually performance does not improve when D > 0.3.

211

Figure 7.17: The percent of support vectors (i.e., support vectors over number of training images) for
QMMCF, MMCF, and CCF (using gσ2 = 0 and ψ = 1) as a function of λ using (left) gray-scaled pixel
and (right) HOG features for (top) Set 1, (middle) Set 2, and (bottom) Set 3.

212

Figure 7.18: The classification criterion h†h and localization criterion h†Dh as a function of λ using (left)
gray-scaled pixel and (right) HOG features for (top) Set 1, (middle) Set 2, and (bottom) Set 3 for the QMMCF.

213

Figure 7.19: The classification criterion h†h and localization criterion h†Dh as a function of λ using (left)
gray-scaled pixel and (right) HOG features for (top) Set 1, (middle) Set 2, and (bottom) Set 3 for the TQCF.

214

Figure 7.20: The classification criterion h†h and localization criterion h†Dh as a function of λ using (left)
gray-scaled pixel and (right) HOG features for (top) Set 1, (middle) Set 2, and (bottom) Set 3 for the MMCF.

215

Figure 7.21: The classification criterion h†h and localization criterion h†Dh as a function of λ using (left)
gray-scaled pixel and (right) HOG features for (top) Set 1, (middle) Set 2, and (bottom) Set 3 for the CCF.

216

Figure 7.22: The classification criterion h†h and localization criterion h†Dh as a function of λ using (left)
gray-scaled pixel and (right) HOG features for (top) Set 1, (middle) Set 2, and (bottom) Set 3 for the mCCF.

217

Figure 7.23: The classification criterion h†h and localization criterion h†Dh as a function of λ using (left)
gray-scaled pixel and (right) HOG features for (top) Set 1, (middle) Set 2, and (bottom) Set 3 for the UCF.

218

Figure 7.24: The classification criterion h†h and localization criterion h†Dh as a function of λ using (left)
gray-scaled pixel and (right) HOG features for (top) Set 1, (middle) Set 2, and (bottom) Set 3 for the EASEF.

219

Next, we show examples of the different templates and their responses to the same test image

(containing the BRDM2 target) in Figs. 7.25 through 7.33 using the QMMCF, QSVM, TQCF,

MMCF, SVM, CCF, mCCF, UCF and EASEF classifiers, respectively. From these figures we ob-

serve that our quadratic correlation filter designs QMMCF and TQCF usually produce a very sharp

peak at the target’s location. We also observed that QMMCF and MMCF produce a sharper peak

than QSVM and SVM, respectively. As discussed earlier, this is because QMMCF and MMCF

includes the localization criterion which can help improve overall recognition performance.

We conclude by testing our classifiers with test images taken at 1500 meters range. As was

mentioned earlier, the ATR Algorithm Development Image Database contains IR videos taken at

multiple ranges. Using the previous set up, we trained the QMMCF, QSVM, TQCF, MMCF, SVM,

CCF, mCCF, UCF and EASEF classifiers using images taken at 1000 meters range. Given that the

training frames are taken at 2/3 the distance of the testing frames, we scaled the training images by

0.68. We observed that scaling the training images by 0.68 gave a slight improvement over scaling

the images by exactly 2/3. We tested the classifiers using different λ and ġσ2 values and report our

best results. We used ψ = 1 for all classifiers because our previous results showed that varying

ψ does not significantly improve the results. Table 7.23 shows the classification, localization, and

recognition rates using gray-scaled pixels and retraining. The confusion matrices are shown in

Tables 7.24 through 7.32, and the ROC curves are shown in Figures 7.34 through 7.42 for the

QMMCF, QSVM, TQCF, MMCF, SVM, CCF, mCCF, UCF and EASEF classifiers, respectively.

The ROC curves of the average over the eight targets are shown in Fig. 7.43. The results show that

the recognition performance is lower than our previous set up. This is because the training images

and test images comes from two different videos taken at different ranges making the ATR task more

challenging, but also because the resolution of the test images is much lower (the targets are less

than 26 × 46 pixels). Many of the targets are very similar and require high resolution for accurate

classification (the confusion matrices show that some filters are not even able to detect some targets).

Thus, this decrease in resolution greatly decreases the classification and recognition performance

of all filters. We also observe that in this set, QMMCF does not outperform MMCF. We conjecture

220

Figure 7.25: The correlation output response (left) when the QMMCF classifier (center: the training image
with the largest coefficient is shown) is applied to a test image (right) in (top) Set 1, (middle) Set 2, and
(bottom) Set 3. The test image has a green box around the ground truth target location and a red box around
the maximum correlation peak value.

221

Figure 7.26: The correlation output response (left) when the QSVM classifier (center: the training image
with the largest coefficient is shown) is applied to a test image (right) in (top) Set 1, (middle) Set 2, and
(bottom) Set 3. The test image has a green box around the ground truth target location and a red box around
the maximum correlation peak value.

222

Figure 7.27: The correlation output response (left) when the TQCF classifier (center: the training image with
the largest coefficient is shown) is applied to a test image (right) in (top) Set 1, (middle) Set 2, and (bottom)
Set 3. The test image has a green box around the ground truth target location and a red box around the
maximum correlation peak value.

223

Figure 7.28: The correlation output response (left) when the MMCF classifier (center) is applied to a test
image (right) in (top) Set 1, (middle) Set 2, and (bottom) Set 3. The test image has a green box around the
ground truth target location and a red box around the maximum correlation peak value.

224

Figure 7.29: The correlation output response (left) when the SVM template (center) is applied to a test image
(right) in (top) Set 1, (middle) Set 2, and (bottom) Set 3. The test image has a green box around the ground
truth target location and a red box around the maximum correlation peak value.

225

Figure 7.30: The correlation output response (left) when the CCF template (center) is applied to a test image
(right) in (top) Set 1, (middle) Set 2, and (bottom) Set 3. The test image has a green box around the ground
truth target location and a red box around the maximum correlation peak value.

226

Figure 7.31: The correlation output response (left) when the mCCF template (center) is applied to a test
image (right) in (top) Set 1, (middle) Set 2, and (bottom) Set 3. The test image has a green box around the
ground truth target location and a red box around the maximum correlation peak value.

227

Figure 7.32: The correlation output response (left) when the UCF template (center) is applied to a test image
(right) in (top) Set 1, (middle) Set 2, and (bottom) Set 3. The test image has a green box around the ground
truth target location and a red box around the maximum correlation peak value.

228

Figure 7.33: The correlation output response (left) when the EASEF template (center) is applied to a test
image (right) in (top) Set 1, (middle) Set 2, and (bottom) Set 3. The test image has a green box around the
ground truth target location and a red box around the maximum correlation peak value.

229

that this is because QMMCF was not implemented as derived because of computational limitations

(see Section 5.3), and our heuristic implementation does not produces as good results, particularly

in this lower resolution. However, the results show the same pattern as our previous set up where

QMMCF outperforms QSVM and MMCF outperforms SVM and all the other linear filters, thus

showing consistency with different ranges. In Ch. 8, we discuss ideas that may further improve

performance.

Table 7.23: Filter performance (%) using gray-scaled pixels and retraining using 1500 meters range tests
frames.

class local recog λ ġσ2 ret
QMMCF 40.3 68.3 27.7 0.35 0 4
QSVM 27.5 40.5 14.0 0 0 5
TQCF 35.7 59.6 29.6 0.90 0 2
MMCF 37.2 72.4 32.2 0.85 0 4
SVM 16.6 38.1 15.1 0 0 8
CCF 42.3 73.0 31.4 0.95 0 4

mCCF 27.3 62.7 23.9 0.90 0 5
UCF 27.1 47.6 24.4 0.85 1

2 4
EASEF 17.2 35.4 15.8 0.70 1 3

Table 7.24: Confusion matrices using gray-scaled pixels and retraining using 1500 meters range tests frames
for the QMMCF.

1 2 3 4 5 6 7 8
1 62 9 84 30 0 0 2 13
2 1 35 63 4 0 15 1 81
3 0 0 200 0 0 0 0 0
4 0 0 136 47 0 0 0 17
5 41 10 44 49 23 0 0 33
6 2 6 41 32 0 68 9 42
7 5 4 68 10 0 3 67 43
8 2 0 34 21 0 0 0 143

230

Table 7.25: Confusion matrices using gray-scaled pixels and retraining using 1500 meters range tests frames
for the QSVM.

1 2 3 4 5 6 7 8
1 184 1 0 6 0 0 0 9
2 107 0 0 0 0 0 0 93
3 0 0 0 0 0 0 0 200
4 0 0 0 0 0 0 0 200
5 7 13 9 112 56 0 0 3
6 0 0 0 0 0 11 0 189
7 1 7 0 1 4 0 7 180
8 0 0 0 17 1 0 0 182

Table 7.26: Confusion matrices using gray-scaled pixels and retraining using 1500 meters range tests frames
for the TQCF.

1 2 3 4 5 6 7 8
1 79 0 80 1 0 10 30 0
2 3 67 104 1 0 18 7 0
3 197 0 3 0 0 0 0 0
4 80 0 0 96 0 11 13 0
5 14 9 20 1 0 11 145 0
6 22 0 7 5 0 124 42 0
7 13 0 0 13 0 33 140 1
8 8 0 49 0 0 38 43 62

Table 7.27: Confusion matrices using gray-scaled pixels and retraining using 1500 meters range tests frames
for the MMCF.

1 2 3 4 5 6 7 8
1 69 57 0 42 25 3 3 1
2 14 112 0 29 41 5 2 0
3 0 8 57 51 10 0 0 74
4 0 6 15 113 1 20 6 39
5 5 43 4 77 51 13 3 4
6 4 18 5 49 13 105 2 4
7 16 23 9 50 6 40 21 35
8 1 23 12 77 10 9 0 68

231

Table 7.28: Confusion matrices using gray-scaled pixels and retraining using 1500 meters range tests frames
for the SVM.

1 2 3 4 5 6 7 8
1 0 3 0 1 0 191 4 1
2 1 2 0 0 0 197 0 0
3 0 0 0 0 0 200 0 0
4 0 0 0 0 0 200 0 0
5 0 14 0 58 0 100 28 0
6 0 0 0 16 0 176 0 8
7 0 0 0 0 0 140 40 20
8 0 2 0 18 0 124 9 47

Table 7.29: Confusion matrices using gray-scaled pixels and retraining using 1500 meters range tests frames
for the CCF.

1 2 3 4 5 6 7 8
1 55 52 1 33 40 0 9 10
2 25 101 6 22 41 1 0 4
3 5 6 159 14 0 10 0 6
4 6 3 45 99 5 18 8 16
5 10 42 3 63 47 12 7 16
6 6 7 16 23 7 82 6 53
7 4 13 5 37 10 17 52 62
8 4 20 35 40 1 7 12 81

Table 7.30: Confusion matrices using gray-scaled pixels and retraining using 1500 meters range tests frames
for the mCCF.

1 2 3 4 5 6 7 8
1 70 30 1 52 14 5 1 27
2 51 62 3 22 45 2 0 15
3 55 4 13 12 55 12 39 10
4 19 18 27 60 38 12 18 8
5 39 7 15 11 98 3 1 26
6 12 65 1 6 12 58 8 38
7 33 49 11 29 27 0 41 10
8 30 30 1 57 13 25 9 35

232

Table 7.31: Confusion matrices using gray-scaled pixels and retraining using 1500 meters range tests frames
for the UCF.

1 2 3 4 5 6 7 8
1 124 11 0 39 0 18 0 8
2 27 79 0 66 0 19 0 9
3 38 0 8 136 0 1 0 16
4 22 3 5 111 0 3 0 56
5 71 29 0 56 0 0 0 39
6 26 0 0 68 0 11 0 95
7 30 1 17 14 0 0 1 137
8 60 0 0 1 0 45 0 94

Table 7.32: Confusion matrices using gray-scaled pixels and retraining using 1500 meters range tests frames
for the EASEF.

1 2 3 4 5 6 7 8
1 72 31 0 0 0 0 0 97
2 1 56 0 14 0 0 0 129
3 176 0 4 2 0 0 0 18
4 13 5 15 9 0 0 0 158
5 52 61 0 56 13 0 0 20
6 51 7 52 17 15 0 0 58
7 124 1 0 0 0 0 0 75
8 30 4 9 24 11 0 0 122

233

Figure 7.34: Localization rate as a function of the number of FAs per frame using gray-scaled pixel and
retraining using 1500 meters range tests frames for the QMMCF.

Figure 7.35: Localization rate as a function of the number of FAs per frame using gray-scaled pixel and
retraining using 1500 meters range tests frames for the QSVM.

Figure 7.43: Localization rate as a function of the number of FAs per frame using gray-scaled pixel and
retraining using 1500 meters range tests frames.

234

Figure 7.36: Localization rate as a function of the number of FAs per frame using gray-scaled pixel and
retraining using 1500 meters range tests frames for the TQCF.

Figure 7.37: Localization rate as a function of the number of FAs per frame using gray-scaled pixel and
retraining using 1500 meters range tests frames for the MMCF.

Figure 7.38: Localization rate as a function of the number of FAs per frame using gray-scaled pixel and
retraining using 1500 meters range tests frames for the SVM.

235

Figure 7.39: Localization rate as a function of the number of FAs per frame using gray-scaled pixel for and
retraining using 1500 meters range tests frames for the CCF.

Figure 7.40: Localization rate as a function of the number of FAs per frame using gray-scaled pixel and
retraining using 1500 meters range tests frames for the mCCF.

Figure 7.41: Localization rate as a function of the number of FAs per frame using gray-scaled pixel and
retraining using 1500 meters range tests frames for the UCF.

236

Figure 7.42: Localization rate as a function of the number of FAs per frame using gray-scaled pixel and
retraining using 1500 meters range tests frames for the EASEF.

7.6 SUMMARY

In this chapter we explained in detail the dataset used in our experiments. We discussed the pre-

and post-processing stages, explained our method for selecting parameters, gave more details on the

results presented in previous chapters, and presented our conclusions. Our experiments show that in

our dataset, our linear and quadratic designs outperformed state-of-the-art linear and quadratic CFs

and SVMs, respectively, using gray-scaled pixel values and HOG features.

237

CHAPTER 8

CONCLUSIONS

We have presented in this thesis the linear and quadratic Maximum Margin Correlation Filter

(MMCF) which combines the design principles of SVMs and CFs. To this end, we reviewed CFs,

and introduced the UCF and CCF that take into account the criteria used in state-of-the-art lin-

ear CFs. We introduced the QMMCF and we showed the relation between QCFs and QSVMs.

We adapted our MMCF filter design to include vector features. We tested our designs with gray-

scaled pixels and with HOG features. In all of our experiments our linear designs outperformed all

other linear CFs and linear SVM, and our quadratic designs outperformed other quadratic CFs and

QSVMs. In this chapter, we outline our contributions, conclusions, and future work.

8.1 CONTRIBUTIONS

The main contributions of this thesis are as follows:

• Improved existing CFs. We presented three generalized linear CFs that encompass all the

state-of-the-art linear CFs, the Unconstrained Correlation Filter (UCF), the Constrained Cor-

relation Filter (CCF), and the modified CCF (mCCF). We presented a method to enhanced the

performance of quadratic CFs both in computational speed and performance, and showed ex-

perimental results. We presented a design that improves recognition performance when using

CFs in a sequence of images, i.e., in video, by using the correlation output with a tracker. We

238

provided experimental results showing our algorithms are more efficient and yield improved

performance on our dataset.

• Designed a new algorithm that combines the capabilities of SVMs and our generalized CFs

to yield the Maximum Margin Correlation Filter (MMCF). We investigated the relationship

between localization and classification, and show that the criteria used to achieved localization

and generalization are conflicting, i.e., one is optimized at the expense of the other, and we

showed how to achieve an optimal tradeoff between these criteria. We showed that MMCF is

an extension to both SVM and CFs by deriving MMCF first starting with an SVM and then

with a CF, thus we bridged these two important research fields. We provided experimental

results showing that MMCF outperforms both linear SVMs and linear CFs on our dataset.

• Designed the Quadratic MMCF (QMMCF) by extending the maximum margin principles to

quadratic CFs (QCFs). QMMCF is better able to exploit the second-order statistics of the

data resulting in superior performance. This improved performance comes at the cost of

added computation during the testing. We showed the relationship between quadratic cor-

relation filters and Kernel-SVMs. We provided experimental results showing that QMMCF

outperforms quadratic CFs and quadratic SVMs (also known as second order Kernel SVMs)

on our dataset.

• Extended the capabilities of CFs and therefore of MMCF to include vector features. CFs

usually used scalar features, i.e., gray-scaled pixels. We adapted our algorithms to include

non-scalar features, e.g., features such as Histogram of Oriented Gradients (HOG) which

have recently gained much popularity. We provided experimental results showing that MMCF

and QMMCF maintain superior performance over other state-of-the-art linear and quadratic

algorithms, respectively, when using HOG features on our dataset.

239

8.2 CONCLUSIONS

From our experimental results, we draw the following conclusions:

• QMMCF is the recommended filter to use when ample computational resources are available

for testing. Our experiments showed that QMMCF usually outperforms all the other filters.

• TQCF is the recommended filter to use when computational resources prevents the use of

QMMCF and when gray-scaled pixels are used as features.

• UCF is the recommended filter to use when only true-class images are available. However,

obtaining false-class images is trivial (e.g., through retraining or the Internet), and therefore

this is not a advantage of UCF. UCF is also the recommended filter when online training or

adaptive training is required and computational resources are limited.

• mCCF is the recommended filter to use when computational resources are limited and there

are only a few training images with no outliers. These are the conditions when CCF performs

best, and since our experiments show that mCCF usually outperforms CCF, mCCF is the

chosen for these scenarios.

• MMCF is the recommended filter to use when computational resources are limited and there

are many training images with possible outliers. MMCF is designed to handle outliers and

ignores correctly classified data that is far from the decision boundary.

• The ASM criterion does not significantly improve the results and can be ignored. In our

experiments, setting σ = 1 (i.e., ignoring the ASM criterion) usually gave the best results (on

a few filters setting σ = 0.99 or σ = 0.999 gave an insignificant improvement of less than

1%). The MACH filter does benefit from varying σ, but in our experiments UCF with σ = 1

always outperformed the MACH filter, and there is no computational advantage or any other

reason to use the MACH filter over UCF.

240

• A tradeoff between the MSE criterion (in particular the ACE criterion which is the MSE

criterion when g = 0) and ONV criterion significantly improves performances over just

ignoring one of the two criterion.

• Retraining (cross-correlating the template with training frames, adding the false positives as

false-class training images, and retraining the template) significantly improves performance

most of the time.

8.3 FUTURE WORK

In this section several methods to further improve performance are listed:

• Felzenswalb et al., [24] proposed a parts-based model Latent SVM which presents a few

ideas that can also be used in this work. In their work the training images from the same class

are autonomously clustered into different groups, and a classifier is designed for each group.

Further, each training image is broken into six rectangular parts covering high energy regions,

and a classifier is designed for each part. In our work we only designed one filter per class.

We expect improved performance by designing multiple filters per class in a similar way to

Felzenswalb et al.

• In our experiments, we did not use a tracker because we wanted to compute the performance

of the unaided CFs. Using a simple tracker has been shown to improve the overall perfor-

mance over using CFs alone [57]. We proposed combining our proposed designs with a

tracker to improve recognition performance.

• The vehicles used in our experiments do not change much in scale, i.e., the distance from the

vehicles to the camera does not significantly change. When scale is an issue, it is popular to

used a pyramid approach, i.e., train a filter for different scales. However, there are infinite

in-between scales and designing a filter for every possible scale is thus impossible. In this

scenario, we proposed using the MACE-Mellin Radial Harmonic (MACE-MRH) filter [31].

241

This filter offers a controlled scaled response for one training image. The smaller the scale,

the better the response. We propose that instead of using one training image, we use a filter as

the input to the MACE-MRH. Thus, the output is filtered with some controlled scale response.

• In this thesis, we derived the QMMCF but due to computational limitations we could not

compute matrix T and had to implement a modified version. We propose finding a method to

transform the images by the inverse of T without actually computing matrix T. This would

implement QMMCF as it was derived, which may improve performance.

• In this work we focus our attention on the MSE, ASM, and ONV criteria. We proposed

comparing other methods discussed in Chapter 2 that have been used in designing CFs such

as minimizing the variance of the correlation peaks, maximizing the average correlation peak

intensity, and using the largest(s) eigenvalue(s) of the D matrix (the average power spectral

density of the training images).

• Linear CFs have been used for action recognition [5, 63] sometimes using Spatio-temporal

Regularity Flow (SPREF) [2] features. Each pixel is replaced by a 3-D feature vector that

represents the direction along which the intensity changes the least. In addition, the Clifford

Fourier transform [23] is used in order to compute Fourier transforms of the videos with

vector features. We proposed adapting our MMCF and QMMCF designs in a similar way to

use them for action recognition.

242

APPENDIX A

MINIMIZING A QUADRATIC SUBJECT TO LINEAR
CONSTRAINTS

The goal is to minimize a quadratic subject so some linear constraints, i.e.,

min
h

h†Th (A.1)

s.t. X†h = u,

where T is assumed to be a Hermitian (symmetric if T is real) matrix. We use Lagrange multipliers,

take the gradient, set it equal to zero and solve for h, i.e.,

L(h,Γ) = h†Th− 2Γ†(X†h− u). (A.2)

Taking the gradient gives,
dL(h,Γ)

dh
= 2Th− 2XΓ = 0, (A.3)

and solving for h gives,

h = T−1XΓ. (A.4)

243

Substituting h into the original constraint in Eq. A.1, the Lagrange multiplier vector is computed as

follows,

X†h = u

X†(T−1XΓ) = u, (A.5)

and solving for Γ gives,

Γ = (X†T−1X)−1u. (A.6)

Finally substituting Γ in Eq. A.6 back into h in Eq. A.4 gives the solution,

h = T−1XΓ

= T−1X(X†T−1X)−1u. (A.7)

244

APPENDIX B

MINIMIZING A RATIO OF QUADRATIC TERMS

The goal is to find the h that maximizes the Rayleigh Quotient (RQ),

J(h) =
h†Ah

h†Bh
, (B.1)

where A and B are assumed to be Hermitian (symmetric if they are real) matrices, and h†Bh 6= 0

(or equivalently, B is a non-singular matrix). This is accomplished by first taking the gradient and

setting it equal to zero as follows,

∂J(h)

∂h
=

2Ah(h†Bh)− 2Bh(h†Ah)

(h†Bh)2
= 0. (B.2)

Rearranging terms gives,

Ah(h†Bh) = Bh(h†Ah), (B.3)

diving both sides by the scalar h†Bh 6= 0 gives,

Ah = Bh
h†Ah

h†Bh

= BhJ(h), (B.4)

and premultiplying by B−1 gives,

B−1Ah = hJ(h)

= λh, (B.5)

245

where J(h) = λ. Eq. B.5 is an eigenvalue problem. Since J(h) = λ represents the eigenvalues

of B−1A, then J(h) is maximized by the eigenvector h corresponding to the largest eigenvalue of

B−1A.

246

APPENDIX C

DISTANCE FROM A POINT TO A HYPERPLANE

The goal is to find the distance from a point to a hyperplane. The vector h is orthogonal to the

hyperplane h†x + b = 0, or equivalently, the vector h is orthogonal to any vector v = xA − xB ,

where xA and xB are two different points on the hyperplane, i.e., h†xA + b = 0 and h†xB + b = 0

for xA 6= xB . This is easily verified using the fact that the inner product of two orthogonal vectors

is zero, i.e.,

h†v = h†(xA − xB)

= h†xA − h†xB

= −b− (−b) = 0. (C.1)

Figure C.1 shows that

xi = x⊥ + d
h

|h|
, (C.2)

where d is the perpendicular distance to a hyperplane from the point x⊥ to the point xi. Multiplying

both sides by h† gives

h†xi = h†x⊥ + d
|h|2

|h|
= −b+ d|h|. (C.3)

247

Figure C.1: The perpendicular distance from a point xn to the hyperplane h†x + b = 0

Thus, the perpendicular distance from a given point xi to the hyperplane h†x + b = 0 is given by

d =
h†xi + b

|h|
. (C.4)

248

APPENDIX D

QUADRATIC CORRELATION MATRIX

The QCF output for the ith training feature vector, xTi Qxi, can be expressed as follows,

xTi Qxi = xTi [q1, ...,qd]xi

= [xTi q1, ...,x
T
i qd]xi, (D.1)

where q1 to qd are the column vectors of d × d matrix Q. If xi represents a 1-D feature vector

(instead of a vectorized 2-D feature image), the correlation output can be computed as follows (the

first index of q1 is represented by q1[0]),

gi[n] = (q1[0]xi[n+ 0] + q1[1]xi[n+ 1] + ...+ q1[d− 1]xi[n+ d− 1])xi[n+ 0] + ...

(q2[0]xi[n+ 0] + q2[1]xi[n+ 1] + ...+ q2[d− 1]xi[n+ d− 1])xi[n+ 1] + ...

...

(qd[0]xi[n+ 0] + qd[1]xi[n+ 1] + ...+ qd[d− 1]xi[n+ d− 1])xi[n+ d− 1]

=

(
d−1∑
k=0

xi[n+ k]q1[k]

)
xi[n+ 0] + ...+

(
d−1∑
k=0

xi[n+ k]qd[k]

)
xi[n+ d− 1]

=
d−1∑
k,l=0

xi[n+ k]ql+1[k]xi[n+ l]

=
d−1∑
k,l=0

xi[n+ k]q[l, k]xi[n+ l], (D.2)

249

where q[l, k] = ql+1[k]. Note that Eq. D.2 can expressed as

gi[n] =
d−1∑
l=0

xi[n+ l]
d−1∑
k=0

xi[n+ k]q[l, k]

=
d−1∑
l=0

xi[n+ l]oi[l, n], (D.3)

where o[l, n] is the correlation of xi[n] and q[l, n] and can be efficiently computed in the frequency

domain. That is, the correlation of xi[n] and q[l, n] in the frequency domain is,

Oi(l, ω) =
d−1∑
n=0

oi[l, n]e−jωn

d−1∑
n=0

(
d−1∑
k=0

xi[n+ k]q[l, k]

)
e−jωn. (D.4)

Substituting p = n+ k so that n = p− k gives the following,

Oi(l, ω) =

d−1+k∑
p=0+k

(
d−1∑
k=0

xi[p]q[l, k]

)
e−jω(p−k)

=

d−1∑
p=0

xi[p]e
−jωp

(d−1∑
k=0

q[l, k]ejωk

)
= Xi(ω)Q∗(l, ω). (D.5)

250

Eq. D.3 is not a correlation. Expressing the frequency domain of gi[n] in Eq. D.3 as combination

of the frequency domains of xi and ql is not trivial. gi[n] can be expressed as

gi[n] =

d−1∑
l=0

xi[n+ l]oi[l, n]

=

d−1∑
l=0

x∗i [n+ l]oi[l, n]

=
d−1∑
l=0

(
1

2π

ˆ
v
Xi(v)ejvnejvldv

)∗(1

2π

ˆ
f
Oi(l, f)ejfndf

)

=
1

4π

ˆ
v

ˆ
f
X∗i (v)

(
d−1∑
l=0

Oi(l, f)e−jvl

)
e−jvnejfndvdf

=
1

4π

ˆ
v

ˆ
f
X∗i (v)Xi(ω)

(
d−1∑
l=0

Q∗(l, ω)e−jvl

)
e−jvnejfndvdf

=
1

4π

ˆ
v

ˆ
f
X∗i (v)Xi(f)Q∗(v, f)e−jvnejfndvdf, (D.6)

where

Q∗(v, f) =
d−1∑
l=0

Q∗(l, ω)e−jvl (D.7)

is the Fourier transform with respect to l of the Fourier transform of q[l, n] with respect to n, and xi

is assumed to be real (x∗i is used to simplify the notation). Gi(ω) can be expressed as

Gi(ω) =
d−1∑
n=0

gi[n]e−jωn

=

d−1∑
n=0

(
1

4π

ˆ
v

ˆ
f
X∗i (v)Xi(f)Q∗(v, f)e−jvnejfndvdf

)
e−jωn

=
1

4π

ˆ
v

ˆ
f
X∗i (v)Xi(f)Q∗(v, f)

(
d−1∑
n=0

e−jvnejfne−jωn

)
dvdf

=
1

4π

ˆ
v

ˆ
f
X∗i (v)Xi(f)Q∗(v, f)δ(f − v − ω)dvdf

=
1

2π

ˆ
v
X∗i (v)X(v + ω)Q∗(v, v + ω)dv, (D.8)

which is not a product of Fourier transforms. Therefore, using the frequency domain does not

provide a computational advantage. For this reason, QMMCF is derived in the space domain.

251

The quadratic correlation output in Eq. D.2 can be written as,

gi =



∑d
l,k=1 xi[l]xi[k]ql[k]∑d

l,k=1 xi[1 + l]xi[1 + k]ql[k]

...∑d
l,k=1 xi[d− 1 + l]xi[d− 1 + k]ql[k]


=



∑d
l,k=1 xi[l]xi[k]ql[k]∑d

l,k=1 x
(1↓)
i [l]x

(1↓)
i [k]ql[k]

...∑d
l,k=1 x

(d−1↓)
i [l]x

(d−1↓)
i [k]ql[k]



=



∑d
l=1 xi[l]q

T
l xi∑d

l=1 x
(1↓)
i [l]qTl x

(1↓)
i

...∑d
l=1 x

(d−1↓)
i [l]qTl x

(d−1↓)
i


=



∑d
l=1 qTl (πlxi)∑d

l=1 qTl (πlx
(1↓)
i)

...∑d
l=1 qTl (πlx

(d−1↓)
i)


, (D.9)

where gi is a vector of length d, x
(r↓)
i represents the vector xi shifted by r pixels, and πlx

(r↓)
i

represents the shifted vector multiplied by its lth value. Eq. D.2 can be expressed using matrix

notation as follows,

gi =



∑d
l=1 qTl (πlxi)∑d

l=1 qTl (πlx
(1↓)
i)

...∑d
l=1 qTl (πlx

(d−1↓)
i)


=



π1x
T
i π2x

T
i ... πdx

T
i

π1x
(1↓)T
i π2x

(1↓)T
i ... πdx

(1↓)T
i

...
...

. . .
...

π1x
(d−1↓)T
i π2x

(d−1↓)T
i ... πdx

(d−1↓)T
i





q1

q2

...

qd


,

= XT
Cih, (D.10)

where

XCi =



π1xi π1x
(1↓)
i ... π1x

(d−1↓)
i

π2xi π2x
(1↓)
i ... π2x

(d−1↓)
i

...
...

. . .
...

πdxi πdx
(1↓)
i ... πdx

(d−1↓)
i


(D.11)

252

is a d2 × d matrix and

h =



q1

q2

...

qd


(D.12)

is a vector of length d2. The shifts in Eq. D.11 could be regular shifts or circular shifts. In previous

chapters, we implicitly used circular shifts by not zero extending the images in the training phase.

However, if regular shifts are desired, then when xi is shifted by r, there are r more zeros in x
(r↓)
i

than in xi, and therefore XCi can be simplified as

XCi =



π1xi π1x
(1↓)
i ... π1x

(d−1↓)
i

π2xi π2x
(1↓)
i ... 0

...
...

...

πdxi 0 ... 0


. (D.13)

In our experiments, xi represents a 2-D feature image. In this case, the quadratic correlation

output when x is a 2-D R× C feature image is

gi[n,m] =
R−1∑
k=0

R−1∑
l=0

C−1∑
u=0

C−1∑
v=0

xi[n+ l,m+ u]xi[n+ k,m+ v]ql+1,u+1[k, v], (D.14)

where the columns of Q are each rearrange as 2-D R×C arrays. The values of gi can be expressed

253

as follows,

gi =



∑R−1
l,k=0

∑C−1
u,v=0 xi[l, u]xi[k, v]ql,u[k, v]∑R−1

l,k=0

∑C−1
u,v=0

∑C
u,v=0 xi[l + 1, u]xi[k + 1, v]ql,u[k, v]

...∑R−1
l,k=0

∑C−1
u,v=0 xi[l +R− 1, u]xi[k +R− 1, v]ql,u[k, v]∑R−1

l,k=0

∑C−1
u,v=0 xi[l, u+ 1]xi[k, v + 1]ql,u[k, v]∑R−1

l,k=0

∑C−1
u,v=0 xi[l + 1, u+ 1]xi[k + 1, v + 1]ql,u[k, v]

...∑R−1
l,k=0

∑C−1
u,v=0 xi[l +R− 1, u+ 1]xi[k +R− 1, v + 1]ql,u[k, v]∑R−1
l,k=0

∑C−1
u,v=0 xi[l, u+ 2]xi[k, v + 2]ql,u[k, v]∑R−1

l,k=0

∑C−1
u,v=0 xi[l + 1, u+ 2]xi[k + 1, v + 2]ql,u[k, v]

...∑R−1
l,k=0

∑C−1
u,v=0 xi[l +R− 1, u+ C − 1]xi[k +R− 1, v + C − 1]ql,u[k, v]



=



∑R−1
l,k=0

∑C−1
u,v=0 xi[l, u]xi[k, v]ql,u[k, v]∑R−1

l,k=0

∑C−1
u,v=0 x

(1↓)
i [l, u]x

(1↓)
i [k, v]ql,u[k, v]

...∑R−1
l,k=0

∑C−1
u,v=0 x

(R−1↓)
i [l, u]x

(R−1↓)
i [k, v]ql,u[k, v]∑R−1

l,k=0

∑C−1
u,v=0 x

(
−→
1)
i [l, u]x

(
−→
1)
i [k, v]ql,u[k, v]∑R−1

l,k=0

∑C−1
u,v=0 x

(1↓,−→1)
i [l, u]x

(1↓,−→1)
i [k, v]ql,u[k, v]

...∑R−1
l,k=0

∑C−1
u,v=0 x

(R−1↓,−→1)
i [l, u]x

(R−1↓,−→1)
i [k, v]ql,u[k, v]∑R−1

l,k=0

∑C−1
u,v=0 x

(
−→
2)
i [l, u]x

(
−→
2)
i [k, v]ql,u[k, v]∑R−1

l,k=0

∑C−1
u,v=0 x

(1↓,−→2)
i [l, u]x

(1↓,−→2)
i [k, v]ql,u[k, v]

...∑R−1
l,k=0

∑C−1
u,v=0 x

(R−1↓,
−−→
C−1)

i [l, u]x
(R−1↓,

−−→
C−1)

i [k, v]ql,u[k, v]



254

=



∑R
l=1

∑C−1
u=0 qTuR+lπuR+lxi∑R

l=1

∑C−1
u=0 qTuR+lπuR+lx

(1↓)
i

...∑R
l=1

∑C−1
u=0 qTuR+lπuR+lx

(R−1↓)
i∑R

l=1

∑C−1
u=0 qTuR+lπuR+lx

(
−→
1)
i∑R

l=1

∑C−1
u=0 qTuR+lπuR+lx

(1↓,−→1)
i

...∑R
l=1

∑C−1
u=0 qTuR+lπuR+lx

(R−1↓,−→1)
i∑R

l=1

∑C−1
u=0 qTuR+lπuR+lx

(
−→
2)
i∑R

l=1

∑C−1
u=0 qTuR+lπuR+lx

(1↓,−→2)
i

...∑R
l=1

∑C−1
u=0 qTuR+lπuR+lx

(R−1↓,
−−→
C−1)

i



=



∑d
n=1 qTnπnxi∑d

n=1 qTnπnx
(1↓)
i

...∑d
n=1 qTnπnx

(R−1↓)
i∑d

n=1 qTnπnx
(
−→
1)
i∑d

n=1 qTnπnx
(1↓,−→1)
i

...∑d
n=1 qTnπnx

(R−1↓,−→1)
i∑d

n=1 qTnπnx
(
−→
2)
i∑d

n=1 qTnπnx
(1↓,−→2)
i

...∑d
n=1 qTnπnx

(R−1↓,
−−→
C−1)

i



, (D.15)

where x
(r↓)(c→)
i represents the vectorized 2-D R × C image shifted by r pixels down and c pixels

to the right, and πnx
(r↓)(c→)
i represents the shifted vector multiplied by its nth value. Eq. D.14 can

255

be expressed in matrix notation as follows,

gi =



∑d
n=1 qTnπnxi∑d

n=1 qTnπnx
(1↓)
i

...∑d
n=1 qTnπnx

(R−1↓)
i∑d

n=1 qTnπnx
(
−→
1)
i∑d

n=1 qTnπnx
(1↓,−→1)
i

...∑d
n=1 qTnπnx

(R−1↓,−→1)
i∑d

n=1 qTnπnx
(
−→
2)
i∑d

n=1 qTnπnx
(1↓,−→2)
i

...∑d
n=1 qTnπnx

(R−1↓,
−−→
C−1)

i



=



π1x
T
i ... πdx

T
i

π1x
(1↓)T
i ... πdx

(1↓)T
i

...
...

π1x
(R−1↓)T
i ... πdx

(R−1↓)T
i

π1x
(
−→
1)T
i ... πdx

(
−→
1)T
i

π1x
(1↓,−→1)T
i ... πdx

(1↓,−→1)T
i

...
...

π1x
(R−1↓,−→1)T
i ... πdx

(R−1↓,−→1)T
i

π1x
(
−→
2)T
i ... πdx

(
−→
2)T
i

π1x
(1↓,−→2)T
i ... πdx

(1↓,−→2)T
i

...
...

π1x
(R−1↓,

−−→
C−1)T

i ... πdx
(R−1↓,

−−→
C−1)T

i





q1

q2

...

qd



= XT
Cih, (D.16)

where

XCi =



π1xi ... π1x
(R−1↓)
i π1x

(
−→
1)T
i π1x

(1↓,−→1)T
i ... π1x

(R−1↓,
−−→
C−1)

i

π2xi ... π2x
(R−1↓)
i π2x

(
−→
1)T
i π2x

(1↓,−→1)T
i π2x

(R−1↓,
−−→
C−1)

i

...
...

...
...

πdxi ... πdx
(R−1↓)
i πdx

(
−→
1)T
i πdx

(1↓,−→1)T
i ... πdx

(R−1↓,
−−→
C−1)

i


(D.17)

is a d2 × d matrix, x
(r↓)(c→)
i represents the vectorized 2-D R×C feature image shifted by r pixels

down and c pixels to the right. The vector that starts at the n,m entry of this XT
Ci matrix is

πnx

(
m%R↓,

−−−−−→
bmR c−1

)
i , (D.18)

where % represents the modulus (or remainder) operator, and b·c represents the floor operator. The

shifts in Eq. D.17 can be regular shifts or circular shifts. If they are regular shifts, then when xi is

256

shifted down by r, there are r more zeros in x
(r↓)
i than in xi, and the same applies to shifts to the

right, and therefore XCi can be simplified as

XCi =



π1xi ... π1x
(R−1↓)
i ... π1x

(
−−→
C−1)
i ... π1x

(R−1↓,
−−→
C−1)

i

π2xi ... 0 ... π2x
(
−−→
C−1)
i ... 0

...
...

...
...

πCxi ... 0 πCx
(
−−→
C−1)
i ... 0

πC+1xi ... πC+1x
(R−1↓)
i ... 0 ... 0

πC+2xi ... 0 ... 0 ... 0

...
...

...
...

π2Cxi ... 0 ... 0 ... 0

π2C+1xi ... π2C+1x
(R−1↓)
i ... 0 ... 0

π2C+2xi ... 0 0 ... 0

...
...

...
...

πdxi ... 0 ... 0 ... 0



. (D.19)

Note that XCi is an upper triangular matrix formed by upper triangular matrices.

The QCF output for the ith training feature vector, xTi Qxi, can be written as a dot product as

follows,

xTi Qxi = xTi [q1, ...,qd]xi

= hTyi, (D.20)

where

h =



q1

q2

...

qd


, yi =



π1xi

π2xi
...

πdxi


, (D.21)

where πnxi represents the xi multiplied by its nth value, and q1 to qd are the column vectors of

257

matrix Q. Note that the vectors yi and h are of dimension d2, and vector xi is of dimension d.

The quadratic correlation output is of dimension d; however, the correlation between h and yi

is of dimension d2. Therefore, the quadratic correlation output is not just c = h ⊗ yi. In fact, the

d2 × d2 correlation matrix YCi such that c = h⊗ yi = YT
Cih can be shown to be,

YCi =

[
yi y

(1↓)
i ... y

(d2−1)↓)
i

]
, (D.22)

which is different than the d2 × d matrix

XCi =



π1xi π1x
(1↓)
i ... π1x

(d−1↓)
i

π2xi π2x
(1↓)
i ... π2x

(d−1↓)
i

...
...

. . .
...

πdxi πdx
(1↓)
i ... πdx

(d−1↓)
i


=

[
yi y

(d↓)
i ... y

(d(d−1)↓)
i

]
(D.23)

(note that yi is shifted by a product of d in XCi) used in Chapter 5.

258

BIBLIOGRAPHY

[1] K. Al-Mashouq, B. V. K. Vijaya Kumar, and M. Alkanhal. Analysis of signal-to-noise ratio of

polynomial correlation filters. In Proc. SPIE, 1999.

[2] O. Alatas, P. Yan, and M. Shah. Spatio-temporal regularity flow (SPREF): its estimation and

applications. IEEE Trans. Circuits and Systems for Video Technology, 17(5):584–589, 2007.

[3] M. Alkanhal and B. V. K. Vijaya Kumar. Polynomial distance classifier correlation filter for

pattern recognition. Applied Optics, 42(23):4688–4708, 2003.

[4] M. Alkanhal, B. V. K. Vijaya Kumar, and A. Mahalanobis. Improving the false alarm capabili-

ties of the maximum average correlation height correlation filter. Opt. Eng., 39(5):1133–1141,

2000.

[5] Anwaar-ul-Haq, Iqbal Gondal, and Manzur Murshed. Action recognition using spatio-

temporal distance classifier correlation filter. In Int’l Conf. on Digital Image Computing, 2011.

[6] A. Ashraf, S. Lucey, and T. Chen. Reinterpreting the applicaiton of gabor filters as a manip-

ulation of the margin in linear support vector machines. IEEE Trans. Pattern Analysis and

Machine Intelligence, 32(7):1335–1341, 2010.

[7] P. Banerjee, J. Chandra, and A. Datta. Feature based optimal trade-off parameter selection of

frequency domain correlation filter for real time face authentication. In Proc. Int’l Conf. on

Communication, Computing & Security, 2011.

259

[8] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan. Estimation with applications to tracking and

navigation. Wiley, New York, 2001.

[9] C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[10] V. N. Boddeti, F. Su, and B. V. K. Vijaya Kumar. A biometric key-binding and template

protection framework using correlation filters. In Lecture Notes on Computer Science, 2009.

[11] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui. Visual object tracking using

adaptive correlation filters. In IEEE Conf. Computer Vision and Pattern Recognition, 2010.

[12] D. S. Bolme, B. A. Draper, and J. R. Beveridge. Average of synthetic exact filters. In IEEE

Conf. Computer Vision and Pattern Recognition, 2009.

[13] D. S. Bolme, Y. M. Lui, B. A. Draper, and J. R. Beveridge. Simple real-time human detec-

tion using a single correlation filter. In IEEE Int’l Workshop on Performance Evaluation of

Tracking and Surveillance, 2010.

[14] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers.

In Proc. Fifth Annual Workshop on Computational Learning Theory, 1992.

[15] S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Univ. Press, 2004.

[16] D. Casasent, G. Ravichandran, and S. Bollapraggada. Gaussian minimum average correlation

energy correlation filters. Applied Optics, 30(35):5176–5181, 1991.

[17] Military Sensing Information Analysis Center. www.sensiac.org.

[18] O. Chapelle and B. Scholkopf. Incorporating invariances in non-linear support vector ma-

chines. Advances in Neural Information Processing Systems, 1(1):609–616, 2002.

[19] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–297, 1995.

[20] Germund Dahlquist and Ake Bjorck. Numerical Methods in Scientific Computing: Volume 1.

Society for Industrial and Applied Mathematics, 2008.

260

[21] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In IEEE Conf.

Computer Vision and Pattern Recognition, 2005.

[22] D. Decoste and B. Scholkopf. Training invariant support vector machines. Machine Learning,

46(1):161–190, 2002.

[23] J. Ebling and G. Scheuermann. Clifford Fourier transform on vector fields. IEEE Trans.

Visualization and Computer Graphics, 11(4):469–479, 2005.

[24] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discrimi-

natively trained part based models. IEEE Trans. on Pattern Analysis and Machine Intelligence,

32(9):1627–1645, 2010.

[25] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Cascade object detection with

deformable part models, Aug 2012.

[26] J. Figue and P. Refregier. Optimality of trade-off filters. Applied Optics, 32(11):1933–1935,

1993.

[27] K. Fukunaga and W. L. G. Koontz. Representation of random processes using the finite

karhunen-loève expansion. IEEE Trans. Information and Control, 16(1):85–101, 1970.

[28] C. F. Hester and D. Casasent. Multivariant technique for multiclass pattern recognition. Ap-

plied Optics, 19(11):1758–1761, 1980.

[29] Y. N. Hsu and H. H. Arsenault. Optical character recognition using circular harmonic expan-

sion. Applied Optics, 21(22):4016–4019, 1982.

[30] W. Karush. Minima of functions of several variables with inequalities as side constraints.

Master’s thesis, University of Chicago, 1939.

[31] R. A. Kerekes and B. V. K. Vijaya Kumar. Correlation filters with controlled scale response.

IEEE Trans. Image Processing, 15(7):1794–1802, 2006.

261

[32] R. A. Kerekes and B. V. K. Vijaya Kumar. Multiple target detection in video using quadratic

multi-frame correlation filtering. In Proc. SPIE, 2008.

[33] R. A. Kerekes and B. V. K. Vijaya Kumar. Selecting a composite correlation filter design: a

survey and comparative study. Opt. Eng., 47(6):1–18, 2008.

[34] R. A. Kerekes and B. V. K. Vijaya Kumar. Enhanced video-based target detection using multi-

frame correlation filtering. IEEE Trans. Aerospace and Electronic Systems, 45(1):289–307,

2009.

[35] H. W. Kuhn and A. W. Tucker. Nonlinear programming. In Proc. Berkeley Symp. on Mathe-

matical Statistics and Probabilities. Univ. of California Press, 1951.

[36] A. Mahalanobis, R. Muise, and S. R. Stanfill. Quadratic correlation filter design methodology

for target detection and surveillance applications. Applied Optics, 43(27):5198–5205, 2004.

[37] A. Mahalanobis, R. Muise, S. R. Stanfill, and A. Van Nevel. Design and application of

quadratic correlation filters for target detection. Applied Optics, 40(3):837–850, 2004.

[38] A. Mahalanobis and H. Singh. Application of correlation filters for texture recognition. Ap-

plied Optics, 33(11):2173–2179, 1994.

[39] A. Mahalanobis, R. Stanfill, and K. Chen. A bayesian approach to activity detection in video

using multi-frame correlation filters. In Proc. SPIE, 2011.

[40] A. Mahalanobis and B. V. K. Vijaya Kumar. Polynomial filters for higher-order and multi-input

information fusion. In Euro American Opto-Electronic Information Processing Workshop,

1997.

[41] A. Mahalanobis, B. V. K. Vijaya Kumar, and D. Casasent. Minimum average correlation

energy filters. Applied Optics, 26(5):3633–3640, 1987.

[42] A. Mahalanobis, B. V. K. Vijaya Kumar, and R. Frankot. Intraclass and between-class training-

image registration for correlation-filter synthesis. Applied Optics, 39(17):2918–2924, 2000.

262

[43] A. Mahalanobis, B. V. K. Vijaya Kumar, and S. R. F. Sims. Distance classifier correlation

filters for distortion tolerance, discrimination and clutter rejection. In Proc. SPIE, 1993.

[44] A. Mahalanobis, B. V. K. Vijaya Kumar, and S. R. F. Sims. Distance classifier correlation

filters for multiclass automatic recognition. Applied Optics, 35(17):3127–3133, 1996.

[45] A. Mahalanobis, B. V. K. Vijaya Kumar, S. Song, S. R. F. Sims, and J. F. Epperson. Uncon-

strained correlation filters. Applied Optics, 33(17):3751–3759, 1994.

[46] D. Mendlovic, E. Marom, and N. Konforti. Shift and scale invariant pattern recognition using

Mellin radial harmonics. Opt. Comm., 67(3):172–176, 1988.

[47] R. Muise, A. Mahalanobis, R. Mohapatra, X. Li, D. Han, and W. Mikhael. Constrained

quadratic correlation filters for target detection. Applied Optics, 43(2):304–314, 2004.

[48] A. Nevel and A. Mahalanobis. Comparative study of maximum average correlation height

filter variants using ladar imagery. In Proc. SPIE, 2003.

[49] A. V. Oppenheim, R. W. Schafer, and J. R. Buck. Discrete-time signal processing. Prentice

Hall, 2009.

[50] A. V. Oppenheim, A. S. Willsky, and S. Hamid. Signals and Systems. Prentice Hall, 1997.

[51] E. Osuna, R. Freund, and F. Girosit. Training support vector machines: an application to face

detection. In IEEE Conf. Computer Vision and Pattern Recognition, 1997.

[52] K. B. Petersen and M. S. Pedersen. The matrix cookbook, Oct 2008.

[53] J. Platt. Sequential minimal optimization: A fast algorithm for training support vector ma-

chines. Advances in Kernel Methods–Support Vector Learning, 208(14):98–112, 1998.

[54] G. Ravichandran and D. Casasent. Minimum noise and correlation energy (MINACE) optical

correlation filter. Applied Optics, 31(11):1823–1833, 1992.

263

[55] Ph. Réfrégier. Filter design for optical pattern recognition: multicriteria optimization ap-

proach. Opt. Lett., 15(15):854–856, 1990.

[56] Ph. Réfrégier and J. Figue. Optimal trade-off filters for pattern recognition and their compari-

son with the wiener approach. Optical Computing and Processing, 1(3):245–266, 1991.

[57] A. Rodriguez, J. Panza, and B. V. K. Vijaya Kumar. Automatic recognition of multiple targets

with varying velocities using quadratic correlation filters and kalman filters. In IEEE Radar,

2010.

[58] A. Rodriguez, J. Panza, and B. V. K. Vijaya Kumar. Selecting a background for the training

images of a correlation filter: a comparative study. In Proc. SPIE, 2010.

[59] A. Rodriguez and B. V. K. Vijaya Kumar. Automatic multi-target recognition from two classes

using quadratic correlation filters. In Proc. SPIE, 2010.

[60] A. Rodriguez and B. V. K. Vijaya Kumar. Automatic target recognition of multiple targets

from two classes with varying velocities using correlation filters. In IEEE Int’l Conf. of Image

Processing, 2010.

[61] A. Rodriguez and B. V. K. Vijaya Kumar. Segmentation-free ocular detection and recognition.

In Proc. SPIE, 2011.

[62] Andres Rodriguez, Vishnu Naresh Boddeti, B. V. K. Vijaya Kumar, and Abhijit Mahalanobis.

Maximum margin correlation filter: A new approach for localization and classification. IEEE

Trans. Image Processing, 2012. (submitted).

[63] M. D. Rodriguez, J. Ahmed, and M. Shah. Action MACH–a spatio-temporal maximum av-

erage correlation height filter for action recognition. In IEEE Conf. on Computer Vision and

Pattern Recognition, 2008, 2008.

[64] M. Savvides, J. Heo, J. Thornton, P. Hennings, C. Xie, K. Venkataramani, R. A. Kerekes,

M. Beattie, and B. V. K. Vijaya Kumar. Biometric identification using advanced correlation

264

filter methods. In Springer-Verlag Lecture Notes in Computer Science, Ambient Intelligence,

2005.

[65] M. Savvides, K. Venkataramani, and B. V. K. Vijaya Kumar. Incremental updating of ad-

vanced correlation filters for biometric authentication systems. In IEEE Proc. Int’l Conf. on

Multimedia Expo, 2003.

[66] M. Savvides and B. V. K. Vijaka Kumar. Illumination normalization using logarithm trans-

forms for face authentication. In Proc. Int’l Conf. on Advances in Pattern Recognition, 2003.

[67] M. Savvides and B. V. K. Vijaya Kumar. Efficient design of advanced correlation filters for

robust distortion-tolerant face recognition. In IEEE Conf. Advanced Video and Signal Based

Surveillance, 2003.

[68] M. Savvides, B. V. K. Vijaya Kumar, and P. Khosla. Face verification using correlation filters.

In IEEE Workshop on Automatic Identification Advanced Technologies, 2002.

[69] G. F. Schils and D. W. Sweeney. Rotationally invariant correlation filtering. J. Opt. Soc. Am.

A, 2(9):1411–1418, 1985.

[70] B. Scholkopf, C. Burges, and V. Vapnik. Incorporating invariances in support vector learning

machines. In Proc. Int’l Conf. on Artificial Neural Networks, 1996.

[71] R. K. Shenoy. Object detection and classification in SAR images using MINACE correlation

filters. Master’s thesis, Carnegie Mellon University, Pittsburgh, April 1995.

[72] P.K. Shivaswamy and T. Jebara. Relative margin machines. In Proc. Advances in Neural

Information Processing Systems, 2008.

[73] S. R. F. Sims and A. Mahalanobis. Performance evaluation of quadratic correlation filters for

target detection and discrimination in infrared imagery. Opt. Eng., 43(8):1705–1711, 2004.

[74] R. Singh. Advanced correlation filters for multi-class synthetic aperture radar detection and

classification. Master’s thesis, Carnegie Mellon University, Pittsburgh, May 2002.

265

[75] R. Singh and B. V. K. Vijaya Kumar. Performance of the extended maximum average correla-

tion height (EMACH) filter and the polynomial distance classifier correlation filter (PDCCF)

for multiclass SAR detection and classification. In Proc. SPIE, 2002.

[76] E. Tajahuerce, A. Moya, J. Garcia, and C. Ferreira. Real filter based on Mellin radial harmonics

for scale-invariant pattern recognition. Applied Optics, 33(14):3086–3093, 1994.

[77] J. Thornton. Iris matching under deformation and occlusion. PhD thesis, Carnegie Mellon

University, Pittsburgh, April 2007.

[78] J. Thornton, M. Savvides, and B. V. K. Vijaya Kumar. Linear shift-invariant maximum margin

svm correlation filter. In Proc. Intelligent Sensors, Sensor Networks and Information Process-

ing Conf., 2005.

[79] J. Thornton, M. Savvides, and B. V. K. Vijaya Kumar. A Bayesian approach to deformed

pattern matching of iris images. IEEE Trans. Pattern Analysis and Machine Intelligence,

29(4):596–606, 2007.

[80] A. Van Nevel and A. Mahalanobis. Comparative study of maximum average correlation height

filter variants using ladar imagery. Opt. Eng., 42(2):541–550, 2004.

[81] V. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

[82] B. V. K. Vijaya Kumar. Minimum-variance synthetic discriminant functions. J. Opt. Soc. Am.

A, 3(10):1579–1584, 1986.

[83] B. V. K. Vijaya Kumar and M. Alkanhal. Eigen-extended maximum average correlation height

(EEMACH) filters for automatic target recognition. In Proc. SPIE, 2001.

[84] B. V. K. Vijaya Kumar, D. W. Carlson, and A. Mahalanobis. Optimal trade-off synthetic

discriminant function filters for arbitrary devices. Opt. Lett., 19(19):1556–1558, 1994.

[85] B. V. K. Vijaya Kumar and L. Hassebrook. Performance measures for correlation filters.

Applied Optics, 29(20):2997–3006, 1990.

266

[86] B. V. K. Vijaya Kumar and A. Mahalanobis. Alternate interpretation for minimum variance

synthetic discriminant functions. Applied Optics, 25(15):2484–2485, 1986.

[87] B. V. K. Vijaya Kumar, A. Mahalanobis, and R. D. Juday. Correlation Pattern Recognition.

Cambridge Univ. Press, 2005.

[88] B. V. K. Vijaya Kumar, A. Mahalanobis, S. Songs, S. Sims, and J. Epperson. Minimum

squared error synthetic discriminant function. Opt. Eng., 31(5):915–922, 1992.

[89] B. V. K. Vijaya Kumar, A. Mahalanobis, and A. Takessian. Optimal tradeoff circular harmonic

function correlation filter methods providing controlled in-plane rotation response. IEEE

Trans. Image Processing, 9(6):1025–1034, 2000.

[90] B. V. K. Vijaya Kumar and T. Ng. Multiple circular-harmonic-function correlation filter pro-

viding specified response to in-plane rotation. Applied Optics, 11(11):1871–1878, 1996.

[91] B. Walls and A. Mahalanobis. Performance of the MACH filter and DCCF algorithms in the

presence of data compression. In Proc. SPIE, 1999.

[92] R. Wu and H. Stark. Rotation-invariant pattern recognition using a vector reference. Applied

Optics, 23(6):838–840, 1984.

267

