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Abstract

The spin structure of protons and neutrons has been an open question for nearly twenty-five years,
after surprising experimental results disproved the simple model in which valence quarks were re-
sponsible for nearly 100% of the nucleon spin. Diverse theoretical approaches have been brought
to bear on the problem, but a shortage of precise data – especially on neutron spin structure – has
prevented a thorough understanding.

Experiment E06-014, conducted in Hall A of Jefferson Laboratory in 2009, presented an opportu-
nity to add to the world data set for the neutron in the poorly covered valence-quark region. Jefferson
Laboratory’s highly polarized electron beam, combined with Hall A’s facilities for a high-density,
highly polarized 3He target, allowed a high-luminosity double-polarized experiment, while the large
acceptance of the BigBite spectrometer gave coverage over a wide kinematic range: 0.15 < x < 0.95.
In this work, we present the analysis of a portion of the E06-014 data, measured with an incident
beam energy of 4.74 GeV and spanning 1.5 < Q2 < 5.5 (GeV/c)2. From these data, we extract the
longitudinal asymmetry in virtual photon-nucleon scattering, A1, on the 3He nucleus. Combined
with the remaining E06-014 data, this will form the basis of a measurement of the neutron asymme-
try An1 that will extend the kinematic range of the data available to test models of spin-dependent
parton distributions in the nucleon.
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Chapter 1

Introduction:
Describing the Nucleon

One of the driving inspirations of physics research has always been to understand matter: what it’s
made of, how it interacts with other matter, and how tiny building blocks combine to form stars,
planets, people, and everything else that is encountered in everyday life. Nucleons – protons and
neutrons, the building blocks of the nucleus – are vital components of large-scale matter, but they
are simple to name and complicated to understand.

In this chapter, we will lay out a framework for describing and exploring nucleonic structure in
the context of Quantum Chromodynamics. Section 1.1 enumerates the parts of the nucleon and
describes an enduring mystery about its spin structure. In Section 1.2, we introduce experimental
methods for investigating nucleon structure, especially through electron scattering. In Section 1.3,
meanwhile, we give a detailed discussion of unpolarized and polarized structure functions, which
are indispensable tools for organizing and interpreting experimental results. With this groundwork
laid, we will then be ready to explore the longitudinal spin asymmetry A1 – which will drive the
remainder of this dissertation – in Chapter 2.

1.1 What Are Nucleons Made of?

The building block of macroscopic matter is the atom, which is composed of a positively charged
nucleus and the negatively charged (and far less massive) electrons that orbit it. The nucleus
is in turn made up of nucleons – positively charged protons and electrically neutral neutrons –
held together by the strong force described by Quantum Chromodynamics (QCD). In the Standard
Model, electrons are fundamental particles in the lepton family, but nucleons have internal structure.
One of the great outstanding challenges of nonperturbative QCD is determining how a nucleon’s
constituents – quarks, antiquarks, and gluons – contribute to its observable characteristics; in this
section, we set the stage for the mystery.

1.1.1 Quarks, Gluons, and Antiquarks

In the simplest model, protons and neutrons are each made up of three light quarks. Quarks are
fundamental particles with spin 1/2 and come in six flavors – up, down, charm, strange, top, and
bottom – of which up and down are the lightest. An up quark u has charge +2/3 while a down
quark d has charge −1/3; a proton (charge +1) can thus be made up of two ups and a down, uud,
while a neutron (charge 0) is made up of two downs and an up, udd. These three partons are termed
valence quarks.

16
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Figure 1.1: A representation of the internal structure of the neutron: valence quarks, sea quarks,
and gluons, interacting with each other primarily through the strong force. This figure, as well as
the Feynman diagrams that appear later in this work, was generated using Jaxodraw [1].

Each quark carries a color charge, which leads naturally to the term Quantum Chromodynamics
for the theory of the force between these color charges. There are three possible color charges,
conventionally labeled red, blue, and green, and each has a corresponding opposite charge (anti-red,
anti-blue, or anti-green). The three valence quarks are bound by the strong force in a color singlet
state, so that the nucleon as a whole is colorless.

The strong force is carried by gluons, massless spin-1 bosons which themselves carry color and
anti-color. The quarks within a nucleon constantly exchange gluons, and gluons within the nucleon
interact with each other, as well. As our understanding of the nucleon has grown more sophisticated,
we have moved beyond the simplest model and realized that the gluonic contribution to nucleon
structure must not be neglected.

The third component of nucleon structure is the sea of quark-antiquark pairs, appearing in pair
production and disappearing in annihilation processes throughout the nucleon. Lighter particles are
more likely to appear here, so the sea is dominated by the lightest quarks: uū and dd̄ pairs. Strange
quark-antiquark pairs (ss̄) are believed to contribute to the behavior of the nucleon, but heavier
pairs – cc̄, bb̄, and tt̄ – occur with negligible probability.

Three valence quarks, uncountable gluons, and a sea of quarks and their antimatter partners:
these are what nucleons are made of (Figure 1.1). Yet, as particle physicists were reminded in the
1980s, making a parts list is a far easier task than understanding precisely how they go together.

1.1.2 The Nucleon Spin Crisis

Precise measurements of nucleon substructure pose a significant experimental challenge, as we will
explore in more detail in Section 1.2 (and, indeed, in the remainder of this dissertation). Historically,
this has been especially true for experiments exploring aspects of nucleon structure that are depen-
dent on spin – the intrinsic angular momentum carried by elementary particles, hadrons, and atomic
nuclei. Such experiments require either spin-polarized particle beams or spin-polarized targets – or
both – and the technology needed to perform precise measurements in these areas lagged theoretical
predictions by years.

In the late 1970s and early 1980s, the E-80 [2, 3] and E-130 [4, 5] experiments at SLAC used a
polarized electron beam, directed at a polarized proton target, to begin exploring the proton spin
structure. These early measurements, with relatively low precision by modern standards and in a
limited kinematic range, seemed to support the simple model that nearly all of the proton spin was
carried by the spins of its valence quarks, and that other possible sources of angular momentum could
be ignored. In 1988, however, this picture was shattered when the European Muon Collaboration
(EMC), conducting polarized-muon-beam experiments at CERN, announced new results [6, 7]. The
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Figure 1.2: A generic Feynman diagram showing AB → CD scattering through exchange of a single
boson (dashed line).

combination of the EMC and SLAC data showed that the quarks inside the proton (valence and
sea together) contributed only about 12 ± 17% of the proton’s total spin of 1/2 [7]. The predicted
Ellis-Jaffe sum rule [8] was violated, the simple relativistic quark model was overturned, and the
“proton spin crisis” had begun. The title of one 1988 paper [9] plaintively asked, “Where, oh where
is the proton spin?”

Yet the proton spin crisis was also a spin opportunity, giving rise to a wide variety of new theories
(several of which we will discuss in Section 2.3) and clever experiments. Spin contributions from
gluons and orbital angular momentum could no longer be assumed to be negligible, which led to a
more complete basic formulation for the total nucleon spin SNz

SNz = Sqz + Lqz + Sgz + Lgz =
1

2
(1.1)

where S
q(g)
z represents the z-axis projection of the quark (gluon) spin and L

q(g)
z the z-axis projec-

tion of the quark (gluon) orbital angular momentum. Our present, and not wholly satisfactory,
understanding [10] is that about 30 − 35% of the nucleon spin comes from the spins of its quarks
(with the valence quark contribution partially canceled by the sea quark contribution), while the
total contribution Jgz from gluons appears too small to account for the missing proton spin. This
leaves the quark orbital angular momentum Lqz; direct measurements of this quantity are not cur-
rently possible, but measurements of transverse quark motion provide some indirect access. This
dissertation represents efforts toward filling in one more piece of the nucleon spin puzzle.

1.2 How to Experiment on a Nucleon

A typical nucleus has a diameter on the order of 2 to 15 femtometers (1 fm = 10−15 m = 1 fermi).
A nucleon is smaller still: the proton has a root-mean-square (RMS) charge radius of about 0.877
fm [11]. Conventional imaging techniques, such as optical microscopes or X-rays, cannot resolve ob-
jects on such a tiny scale. In this section, we will discuss a variety of methods used to explore nucleon
structure, and introduce the formalism necessary to understand and interpret these explorations.

1.2.1 An Introduction to the Physics of Scattering

Fundamentally, the science of physics is the science of the interactions of forces and matter. Scat-
tering interactions – in which some force deflects a particle from its straight-line trajectory – are
a crucial tool for this study. Figure 1.2 shows a convenient way of describing a scattering event
between two particles, mediated by the exchange of a force-carrying boson. Particles A and B, with
four-momenta pA and pB , respectively, exchange a boson with four-momentum q; the final state of
the system is composed of particles C and D, whose four-momenta are, respectively, pC and pD.
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A scattering event AB → CD might be mediated by any of the four fundamental forces (or some
combination of them); in practice, however, the gravitational force can be neglected in particle-
particle interactions. By studying such interactions – how often they occur, the particles that are
produced, the angles, momenta and energies involved – physicists can probe both the structure of
the particles involved and the precise nature of their interactions. Different types of probes, and
different types of targets, allow better access to various observables.

In explorations of nucleon spin structure, scattering probes may be divided into two broad cate-
gories. Hadron-hadron scattering – particularly nucleon-nucleon scattering – is one fruitful method.
At Brookhaven National Laboratory’s Relativistic Heavy Ion Collider (RHIC), for example, two
beams of protons (either polarized or unpolarized) can be accelerated in opposite directions and
brought together in a head-on collision. When the scattering interaction involves a large transfer of
momentum, the mathematical description of the process can be factorized into contributions from
long-distance and short-distance interactions [12, 13]. The short-distance contribution comes from
hard interactions between quarks, anti-quarks, and gluons in the colliding protons, and can be calcu-
lated from first principles in the framework of QCD perturbation theory. Information about nucleon
structure and parton distributions, meanwhile, can be extracted from the long-distance contribu-
tions to the interaction. By combining measurements of more than a dozen contributing processes,
from pion production to the annihilation of a quark in one hadron with an antiquark in the other
(the Drell-Yan process [14]), experimenters can isolate the spin contributions of quarks, anti-quarks,
and even gluons.

The second major category of probes into nucleon spin structure is lepton scattering. In this
process, a relativistic, charged lepton – generally an electron or a muon – exchanges a virtual photon
or a virtual Z boson with a target nucleon. One great advantage of lepton-nucleon scattering as
a probe of nucleon structure is that one vertex of the interaction – at which the lepton emits or
absorbs a virtual boson and goes on its way – can be described solely by Quantum Electrodynamics
(QED) for photon exchange (or by electroweak theory for Z exchange), simplifying the interaction.

At the Thomas Jefferson National Accelerator Facility (Jefferson Lab), where the work of this
dissertation took place, electrons are accelerated to energies of up to 6 GeV before striking a fixed
target; electron scattering is thus the primary probe available at this institution. With this in mind,
we will focus on electron scattering in the rest of this discussion, but the results are applicable to
muon scattering as well.

Figure 1.3 shows the lowest-order electron-nucleon scattering interaction. Here, the incoming
electron has four-momentum k = (E,~k), while the incoming nucleon has four-momentum p = (Ep, ~p).
They interact when the electron emits a virtual photon, with four-momentum q, that is absorbed by
the nucleon. If the reaction is inelastic, then the nucleon breaks up into N distinct particles, each
with final momentum p′i; if the proton is left intact, then there is only one particle, with momentum
p′, in the final hadronic state. The scattered electron, meanwhile, has momentum k′. Electron
scattering results are usually discussed in terms of five relativistically invariant quantities – ν, y,
Q2, W , and x – formed from these four-momenta, which characterize the interaction.

At each vertex of the process shown in Figure 1.3, the total four-momentum is conserved. We
can therefore express q in terms of the initial and final four-momenta of the electron, k and k′

respectively

q ≡ k − k′ =
(
E − E′,~k − ~k′

)
= (E − E′, ~q) (1.2)

where ν is defined as

ν ≡ p · q
MN

(1.3)

and MN is the mass of the nucleon. In the target rest frame, p = (MN ,~0) and we thus have
ν = E − E′, the electron energy loss. In the same way, the invariant quantity y is identified in the
nucleon rest frame as the fractional energy loss
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Figure 1.3: The lowest-order inclusive electron-nucleon scattering interaction, en → eX.

y ≡ p · q
p · k =

E − E′
E

in the nucleon rest frame. (1.4)

When q2 6= 0, the photon exchanged between the electron and the nucleon is off its mass shell and
need not behave like a real photon: it is a virtual photon, effectively carrying borrowed energy for a
short time in obedience to the Heisenberg uncertainty principle [15]. In practice, since q2 < 0 for a
virtual photon, it is convenient to define a positive expression Q2 for the four-momentum transfer
(or virtuality of the exchanged photon)

Q2 ≡ −q2 = 2EE′ (1− cos θ) in the nucleon rest frame (1.5)

where θ is the electron’s scattering angle in the laboratory frame.
On the hadronic side of the interaction in Figure 1.3, there could be one outgoing particle (if

the electron simply imparts some momentum to the nucleon without breaking it up) or many. In
exclusive scattering, we measure both the scattered electron and outgoing particles from the hadron
vertex; we may then exclude from our analysis any reaction channels without the particular outgoing
particle or particles we have chosen to measure.

In inclusive electron-nucleon scattering, en → eX, only the scattered electron is measured; the
final hadronic state X could be any of the multiparticle states that are possible with a given energy
transfer. We define the invariant mass W of this unmeasured hadronic system

W 2 ≡ (p+ q)
2

= M2
N + 2MNν −Q2. (1.6)

The Bjorken x variable completes our set of useful, relativistically invariant kinematic variables:

x ≡ Q2

2p · q =
Q2

2MNν
(1.7)

x has its simplest physical interpretation in the infinite momentum frame, in which the nucleon is
traveling with a very large momentum compared to its mass. It can be shown that, in this frame,
x is the fraction of the nucleon momentum carried by the quark that interacts with the virtual
photon [15].
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Figure 1.4: Schematic representation of cross section, in arbitrary units, as a function of Q2 and ν for
inclusive scattering of an electron from a light nucleus. For the first, “elastic”, peak, W is calculated
based on the momentum of the target nucleus; for the other peaks, the nucleon momentum is used.
Reproduced from Zheng [16].

The intrinsic strength of a scattering reaction determines its cross section, which is proportional
to the reaction rate and has units of area. Typically denoted σ, the cross section gives the probability
of an interaction by defining the effective target area for that process. It is a formulation that does not
rely on specific experimental parameters, such as the density of particles in the target or the intensity
of the beam, allowing us to separate these details from our description of the basic underlying physics
of the interaction. In the scattering of an electron from a nucleus via exchange of a single photon,
the cross section σ shows strong dependence on Q2 and ν, as illustrated in Figure 1.4.

The shape of the cross-section spectrum in Figure 1.4 suggests that we can think of Q2 and ν as
defining several different regimes of electron-nucleus scattering, each with different dynamics. It is
helpful at this point to note that Q2 effectively defines the spatial resolution of the virtual photon
as a probe into the nuclear structure, in the same way that the frequency of a real photon used in
a X-ray imager or a microscope defines the spatial resolution of the image.

The leftmost peak in Figure 1.4 corresponds to elastic scattering on the nucleus, which is at
rest in the laboratory frame (~p = 0). For these values of four-momentum transfer Q2 and energy
transfer ν, the target nucleus has a high probability of remaining intact, in which case it scatters as
a coherent whole with mass MT and a momentum transfer spread across its constituent nucleons.

In quasi-elastic scattering, the excitation energy exceeds the nuclear binding energy and the probe
“sees” quasi-free nucleons within. The electron scatters elastically from a single nucleon, either a
proton or a neutron, and its target escapes the nucleus. The quasi-elastic peak is broader than the
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elastic peak because the target nucleon, unlike its nucleus, is not at rest in the laboratory frame;
instead, it has Fermi motion within the nucleus (which can be considered a Fermi gas) and has a
momentum of up to about 250 MeV/c [17].

For 1.2 < W < 2.0 GeV/c2 – the resonance region – we begin to probe the substructure of
the target nucleon itself. Absorption of the virtual photon excites the nucleon into a resonance, an
unstable bound state. The lowest nucleon resonance is the ∆(1232) (in this notation, 1232 MeV/c2

is its mass). Higher-mass resonances (such as the N∗1(1440) and N∗2(1520)) often blur together in
inclusive measurements.

Finally, for W > 2 GeV/c2 and Q2 > 1 (GeV/c)2, we enter the deep inelastic scattering (DIS)
region, in which we access partons – the constituents of the nucleon. Figure 1.4 shows a relatively
smooth cross-section spectrum in this regime, which arises because – instead of a few possible
resonances – we now have a variety of possible multiparticle states, accessible with a wide range of
four-momentum transfers.

1.2.2 Scattering Formalism

We have introduced the scope and scale of electron-nucleon scattering, including a set of observables
that give excellent access to the dynamics of these interactions. We will now develop a formal
description of this type of scattering, following in the footsteps of Anselmino et al. [18].

Let us consider the differential cross section d2σ/dΩdE′, which gives us the relative likelihood
of detecting the scattered electron in the solid angle dΩ and in the energy range (E′, E + dE′).
Let the incident electron have four-momentum k and spin s and the scattered electron have four-
momentum k′ and spin s′. The incident nucleon has mass M , four-momentum p and spin S. In
inclusive scattering, we detect the scattered electron but not the final hadronic state; we can thus
ignore final-state interactions on the hadron side, so we cannot include information about their spins
or momenta in our description of the interaction. We can, however, exercise some control over the
initial state (k, s) and (p, S) through careful experimental design.

It is algebraically convenient to use tensor notation to represent the dynamics at each vertex of
the interaction. The lepton vertex – that is, the upper vertex of Figure 1.3 – can be represented
by the tensor Lµν , while the lower (hadron) vertex is represented by the tensor Wµν . This gives a
deceptively simple form for the differential cross section

d2σ

dΩdE′
=

α2

2Mq4

E′

E
LµνW

µν (1.8)

where we have used α to represent the fine structure constant, α = e2/4ε0πh̄c.
The leptonic tensor Lµν is well understood from quantum electrodynamics and can be expressed

in terms of the Dirac γ matrices, the electron Dirac spinor u, and ū = u†γ0

Lµν (k, s; k′, s′) = [ū(k′, s′)γµu(k, s)]
∗

[ū(k′, s′)γνu(k, s)] . (1.9)

It is useful to divide Lµν into four parts, two that are symmetric (S) under an interchange of the
indices µ and ν and two that are antisymmetric (A) under the same interchange, giving us

Lµν (k, s; k′, s′) = L(S)
µν (k; k′) + iL(A)

µν (k, s; k′) + L′(S)
µν (k, s; k′, s′) + iL′(A)

µν (k; k′, s′) . (1.10)

The unpolarized leptonic tensor, 2L
(S)
µν , is obtained by summing Lµν (k, s; k′, s′) over the final spin

states s′ and averaging over the incident spin states s′.
The hadronic tensor Wµν contains information about the structure of the target as well as QED

and is consequently far less well understood. In order to simplify the problem of understanding
Wµν , we can represent it as a linear combination of tensors that are symmetric and antisymmetric
under µ, ν exchange, as we did for Lµν :



CHAPTER 1. INTRODUCTION: DESCRIBING THE NUCLEON 23

Wµν (q; p, S) = W (S)
µν (q; p) + iW (A)

µν (q; p, S) . (1.11)

Application of conservation laws at the hadron vertex allows us to derive general expressions for the
symmetric and antisymmetric parts of Wµν .

W (S)
µν (q; p) = 2M

(
−gµν +

qµqν
q2

)
W1

(
p · q,Q2

)
+

2

M

(
pµ −

p · q
q2

qµ

)(
pν −

p · q
q2

qν

)
W2

(
p · q,Q2

)

(1.12)

W (A)
µν (q; p, S) = 2εµναβq

α
[
M2SβG1

(
p · q,Q2

)
+
(
(p · q)Sβ − (S · q)pβ

)
G2

(
p · q,Q2

)]
(1.13)

where the metric tensor gµν is given by




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 (1.14)

and εµναβ is 1 if µναβ is an even permutation of 0123, −1 if it is an odd permutation, and 0 if any
two or more indices are the same.

In Equations 1.12 and 1.13, we have introduced four structure functions: W1

(
p · q,Q2

)
and

W2

(
p · q,Q2

)
for the symmetric part, and G1

(
p · q,Q2

)
and G2

(
p · q,Q2

)
for the antisymmetric

part. We will consider these functions in greater depth in Section 1.3. For now, they serve as useful
tools that, in the words of Halzen and Martin [15], “parametrize our total ignorance of the form of
the current at the [hadron] end of the propagator.”

We can then combine the leptonic and hadronic tensors to obtain the full equation for the
differential cross section. Terms that multiply tensors with opposite symmetry vanish in the sum
over µ and ν, so we are left with

d2σ

dΩdE′
=

α2

2Mq4

E′

E

[
L(S)
µν W

µν(S) + L′(S)
µν (s, s′)Wµν(S) − L(A)

µν (s)Wµν(A)(S)− L′(A)
µν (s′)Wµν(A)(S)

]
.

(1.15)
In principle, each tensor product in Equation 1.15 is a measurable quantity, so that one might

conduct a series of experiments investigating Wµν(S) and Wµν(A) by varying the initial and final

particle spins and measuring the cross sections. For example, we can single out the L
(S)
µν Wµν(S) term

by averaging over initial spins and summing over final spins, thus measuring the unpolarized cross
section:

d2σunpol

dΩdE′
(k, p; k′) =

α2

Mq4

E′

E
L(S)
µν W

µν(S). (1.16)

Alternatively, we might measure the cross section for both target-nucleon spin states. The difference
between these cross sections, summed over the final electron spins, would then give us access to the

L
′(A)
µν Wµν(A) term:

∑

s′

[
d2σ

dΩdE′
(k, s, p,−S; k′, s′)− d2σ

dΩdE′
(k, s, p, S; k′, s′)

]
=

2α2

Mq4

E′

E
L(A)
µν W

µν(A). (1.17)

In practice, of course, it is usually simpler to control the spin s of the incident electron than it
is to measure the scattered electron’s spin s′, which constrains experimental investigations of the
hadronic tensor.
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1.3 Nucleon Structure Functions: An Overview

Suppose that we were scattering relativistic electrons from a point-like, spin- 1
2 nucleon that was

infinitely heavy, with a charge of +1e; conservation of energy would dictate that E = E′. In this
situation, we could replace the expression in Equation 1.16 with the much simpler, unpolarized Mott
cross section:

(
dσ

dΩ

)

Mott

=
α2 cos2 θ

2

4E2 sin4 θ
2

(1.18)

where θ is the electron scattering angle in the laboratory frame. Since a real nucleon has structure
and finite mass, we cannot make that replacement, but we can use the Mott cross section to simplify
Equation 1.16, both algebraically and conceptually

d2σunpol

dΩdE′
=

(
dσ

dΩ

)

Mott

[
W2(ν,Q2) + 2W1(ν,Q2) tan2

(
θ

2

)]
(1.19)

where we have expressed W1 and W2 as functions of ν = p · q/M rather than as functions of p · q.
The form of Equation 1.19 makes clear that the inelastic structure functions W1(ν,Q2) and

W2(ν,Q2) parameterize the manner in which the target nucleon’s behavior deviates from that of
a static particle. In their dependence on Q2, they also parameterize its structure, i.e. the way
in which it is different from a point particle. This, indeed, is why they bear the name structure
functions. In this section, we will explore the use of structure functions to understand electron-
nucleon scattering, in both the unpolarized case (where we have averaged over the initial particle
spins) and the polarized case. Finally, in Section 1.3.3, we will examine physical interpretations of
these useful quantities.

1.3.1 Unpolarized Structure Functions

By convention, the unpolarized structure functions F1(x,Q2) and F2(x,Q2) are commonly used in
place of the structure functions W1(ν,Q2) and W2(ν,Q2) that we defined in Section 1.2.2. The two
pairs of structure functions are very closely related

F1(x,Q2) = MW1(ν,Q2) (1.20)

F2(x,Q2) = νW2(ν,Q2) (1.21)

where the target nucleon has mass M . This convention reflects the experimental fact of Bjorken
scaling (see Section 1.3.3.1): in the Bjorken limit of large Q2, large ν, and fixed x, F1 and F2 lose
most of their dependence on Q2 and can be approximated as functions of x alone. Indeed, as we
will see in Section 1.3.3.1, there exists a simple relationship between the two structure functions in
that limit.

In our new notation, Equation 1.16 becomes

d2σunpol

dΩdE′
=

(
dσ

dΩ

)

Mott

[
1

ν
F2(x,Q2) +

2

M
F1(x,Q2) tan2

(
θ

2

)]
. (1.22)

Let us digress briefly from our discussion of pure electron-nucleon scattering to address a possible
ambiguity in scattering experiments with a nuclear target. If the nucleus has mass number A, there
are two competing conventions for the definition of F1 and F2. The definitions we have given in
Equations 1.20 and 1.21 are the unpolarized structure functions over the nucleus. The alternative
convention defines per-nucleon unpolarized structure functions F ′1 = F1/A and F ′2 = F2/A. In this
dissertation, we use the first convention, defining our structure functions over the nucleus rather
than per nucleon.
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Figure 1.5: Scattering (k̂, k̂′) and polarization (k̂, Ŝ) planes.

1.3.2 Polarized Structure Functions

The measurement of the structure functions F1(x,Q2) and F2(x,Q2) through Equation 1.22 gives
access to the symmetric part Wµν(S) of the hadronic tensor. Recall from Equation 1.13 that the anti-
symmetric part, Wµν(A), is also expressed in terms of structure functions: G1(ν,Q2) and G2(ν,Q2).

As we found with W1(ν,Q2) and W2(ν,Q2) in Section 1.3.1, it is convenient to replace G1(ν,Q2)
and G2(ν,Q2) with polarized structure functions that, to a first approximation, lose their Q2-
dependence in the Bjorken limit. These polarized structure functions, g1(x,Q2) and g2(x,Q2),
are defined in terms of G1 and G2

g1(x,Q2) = M2νG1(ν,Q2) (1.23)

g2(x,Q2) = Mν2G2(ν,Q2). (1.24)

Let us imagine an experiment with longitudinally polarized electrons – that is, electrons with
spin parallel (↑) or antiparallel (↓) to their direction of motion – incident on a polarized nucleon
target; the subject of this dissertation is just such an experiment. If we flip the target nucleon
polarization, S → −S, what difference will we measure in the differential cross section? Anselmino
et al. [18] give a general description. Consider an arbitrary nucleon spin direction

Sµ = (0, Ŝ). (1.25)

Meanwhile, the longitudinally polarized electron has spin

sµ↑ = −sµ↓ =
1

m
(E,~k) (1.26)

where we recall that ~k is the three-momentum of the initial electron and E is its energy.
Now we could flip the spin of the target nucleon and find the difference in cross sections between

the two cases; keeping the target spin the same, while flipping the spin of the initial electron, would
give the same result. The difference in cross sections is given by [18]

d2σ↑,S

dΩdE′
− d2σ↑,−S

dΩdE′
= −4α2

Q2

E′

E

[
(~k′ · Ŝ + ~k · Ŝ)

Mν
g1(x,Q2) +

2(E~k′ · Ŝ − E′~k · Ŝ)

Mν2
g2(x,Q2)

]
. (1.27)

As before, E′ is the energy of the scattered electron and ~k′ is its three-momentum.
We are primarily concerned here with two special cases: longitudinal and transverse nucleon

polarization, defined relative to the electron momentum. We will take the longitudinal case first. In
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this terminology, a longitudinally polarized nucleon target has a spin either parallel (⇑) or antiparallel
(⇓) to the incoming electron’s longitudinal spin. We will take the parallel spin to be the positive
variant of S; we thus have

~k · Ŝ = |~k| = E (1.28)

~k′ · Ŝ = E′ cos θ (1.29)

where we have neglected the electron mass, and where θ is the electron scattering angle in the
laboratory frame, as defined in Figure 1.5. If we apply these results to Equation 1.27 and use the
definition of Q2 from Equation 1.5, we obtain the full expression for the longitudinal cross-section
difference

d2σ↓⇑

dΩdE′
− d2σ↑⇑

dΩdE′
=

4α2

Q2

E′

E

[
E + E′ cos θ

Mν
g1(x,Q2)− Q2

Mν2
g2(x,Q2)

]
. (1.30)

Meanwhile, a transversely polarized nucleon target has a spin perpendicular to the incident
electron’s momentum direction; the two senses of the nucleon spin are denoted ⇒ and ⇐. Our dot
products may then be evaluated as

~k · Ŝ = 0 (1.31)

~k′ · Ŝ = E′k̂′ · Ŝ = E′ sin θ cosφ (1.32)

where φ is the angle between the polarization plane defined by (k̂, Ŝ) and the scattering plane defined

by (k̂, k̂′), as shown in Figure 1.5. Inserting our results into Equation 1.27, we find the relationship
between differential cross sections of the two transverse target polarizations

d2σ↓⇒

dΩdE′
− d2σ↑⇒

dΩdE′
=

4α2

Q2

E′2

E
sin θ cosφ

(
g1(x,Q2)

Mν
+

2Eg2(x,Q2)

Mν2

)
. (1.33)

We see that the magnitude of the difference between cross sections is maximized when φ = 0 or
when φ = π, the two cases when Ŝ lies on the scattering plane.

In practice, performing two complete, independent cross-section measurements and then taking
their difference is an unnecessarily difficult and time-consuming way to investigate g1(x,Q2) and
g2(x,Q2). It is simpler to study the structure functions by measuring asymmetries, in which many
experimental limitations and sources of error cancel each other out. Let us adopt dσ as shorthand for
the differential cross section d2σ/dΩdE′; we will represent the unpolarized differential cross section
as σ̄. We can then define a longitudinal spin-spin asymmetry A‖ between cases where the nucleon
and electron spins are parallel and antiparallel to each other

A‖ ≡
dσ↓⇑ − dσ↑⇑
dσ↓⇑ + dσ↑⇑

=
dσ↓⇑ − dσ↑⇑

2σ̄
. (1.34)

In the case of a transversely polarized nucleon target, we can define an analogous transverse
spin-spin asymmetry A⊥:

A⊥ ≡
dσ↓⇒ − dσ↑⇒
dσ↓⇒ + dσ↑⇒

=
dσ↓⇒ − dσ↑⇒

2σ̄
. (1.35)

Here, ⇒ denotes a target spin in the scattering plane, perpendicular to the incident electron mo-
mentum and pointing toward the side of the beamline where scattered electrons are detected.

The denominators of the spin-spin asymmetries A‖ and A⊥ are the same: each is equal to
2σ̄, twice the unpolarized differential cross section. Their numerators are given by Equations 1.30
and 1.33, respectively.



CHAPTER 1. INTRODUCTION: DESCRIBING THE NUCLEON 27

Figure 1.6: Deep inelastic scattering as scattering from a single quark, reproduced from Kuhn et
al. [10].

Through these three measured quantities – A‖, A⊥, and σ̄ – we may thus gain experimental
access to the structure functions F1(x,Q2), F2(x,Q2), g1(x,Q2), and g2(x,Q2) [19].

1.3.3 Interpretation

We have seen that the unpolarized structure functions F1(x,Q2) and F2(x,Q2) (Section 1.3.1) and
polarized structure functions g1(x,Q2) and g2(x,Q2) (Section 1.3.2) are useful algebraic tools in
describing electron-nucleon scattering. These functions are more than means to simplify complicated
equations, however: they are of great physical interest in and of themselves for the description they
give of nucleon structure. In this section, we will discuss the physical interpretation of these structure
functions, setting the stage for more focused investigations.

1.3.3.1 Bjorken Scaling

When we examine an object with a finite size – be it a cell, an atom, or a nucleon – our measurement
will always depend on the spatial resolution of our probe. For experiments involving scattering
through single-photon exchange, this means that our observables will depend on Q2, the four-
momentum transferred in the interaction.

Suppose that we increase the spatial resolution of our probe into nucleon structure. As we saw
in Section 1.2.1, as Q2 increases, we can start to think of inelastic electron-nucleon scattering as
elastic electron-quark scattering: the electron is effectively interacting with a single “free”, spin-
1
2 quark inside the nucleon (Figure 1.6). Since quarks are point-like objects, further increases in
spatial resolution will have no effect, and the behavior of the scattering interaction will lose its Q2

dependence.
This phenomenon, known as Bjorken scaling, was first predicted by Bjorken and Paschos in

1969 [20]. It applies in the Bjorken limit of infinite energy and four-momentum transfer

Q2 →∞ and ν →∞ with fixed x =
Q2

2Mν
. (1.36)

In this limit, the structure functions are independent of Q2, so we can write them as F1(x), F2(x),
g1(x), and g2(x), and the relationship between F1(x) and F2(x) is given by the Callan-Gross rela-
tion [21]:

F2(x) = 2xF1(x). (1.37)

The scaling behavior of the structure functions is not exact, however. Scaling violation arises
from the fact that single-photon exchange is only the simplest process through which an electron can
interact with hadronic matter; higher-order processes obeying different dynamics also contribute to
cross sections. Figure 1.7 shows the Feynman diagrams for two such processes, in which either the
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Figure 1.7: Lowest-order Feynman diagrams for gluon radiation in electron-quark scattering, com-
plicating the simple picture of single-photon exchange.

incident quark or the scattered quark emits a hard gluon. Adding these radiative corrections to the
simple picture of Figure 1.3 violates one of the underlying assumptions of Bjorken scaling – that the
quarks’ transverse momenta are negligible in the frame where the nucleon has a large longitudinal
momentum – and gives the cross section a logarithmic evolution with Q2.

Figure 1.8 shows the measured Q2 evolution of the proton structure function F p2 (x,Q2) for a
range of fixed x values that spans four orders of magnitude. Bjorken scaling is approximately
satisfied at x ≈ 0.1, but scaling violation is clear at low and high values of x. Once the size of a
structure function has been measured for some high Q2 at a given value of x, its Q2 evolution can
be calculated from QCD.

1.3.3.2 The Quark-Parton Model

The approximate obedience of the nucleon structure functions to Bjorken scaling is strong evidence
for the quark-parton model, in which a nucleon is composed of pointlike constituents that do not
interact with each other and each carry a fraction x of the total momentum. These partons are
identified with quarks, and we can neglect their interactions in the limit of small spatial resolution
(large Q2) because QCD predicts that they are asymptotically free at small distances.

In this picture, the cross section for lepton-nucleon deep inelastic scattering can then be modeled
as the weighted sum of the cross sections for lepton scattering from each individual quark, with the
weights computed according to the quark number densities.

Let us first consider the unpolarized case, in which we average over the possible spin states ↑ and
↓ of the parton. We define the unpolarized parton distribution function (PDF) qi(x) as the sum of
the number densities for the two spin states

qi(x) = q↑i (x) + q↓i (x). (1.38)

In the Bjorken limit, qi(x) is simply the probability that the nucleon’s ith quark has momentum frac-
tion x. (We can account for scaling violation by extending this notation to include Q2 dependence:
qi(x,Q

2) is the probability that the nucleon’s ith quark, when probed with a spatial resolution of
Q2, is found to have momentum fraction x.)

This simple parton model predicts that, in the Bjorken limit, the unpolarized structure functions
satisfy

F1(x) =
1

2

∑

i

e2
i q(x) =

1

2

∑

i

e2
i

[
q↑i (x) + q↓i (x)

]
(1.39)

and

F2(x) = x
∑

i

e2
i q(x) = x

∑

i

e2
i

[
q↑i (x) + q↓i (x)

]
(1.40)
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16. Structure functions 1

NOTE: THE FIGURES IN THIS SECTION ARE INTENDED TO SHOW THE REPRESENTATIVE DATA.

THEY ARE NOT MEANT TO BE COMPLETE COMPILATIONS OF ALL THE WORLD’S RELIABLE DATA.
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Figure 16.7: The proton structure function F
p
2 measured in electromagnetic scattering of positrons on

protons (collider experiments ZEUS and H1), in the kinematic domain of the HERA data, for x > 0.00006
(cf. Fig. 16.10 for data at smaller x and Q2), and for electrons (SLAC) and muons (BCDMS, E665, NMC)
on a fixed target. Statistical and systematic errors added in quadrature are shown. The data are plotted as a
function of Q2 in bins of fixed x. Some points have been slightly offset in Q2 for clarity. The ZEUS binning
in x is used in this plot; all other data are rebinned to the x values of the ZEUS data. For the purpose of
plotting, F

p
2 has been multiplied by 2ix , where ix is the number of the x bin, ranging from ix = 1 (x = 0.85)

to ix = 28 (x = 0.000063). References: H1—C. Adloff et al., Eur. Phys. J. C21, 33 (2001); C. Adloff et al.,
Eur. Phys. J. C30, 1 (2003); ZEUS—S. Chekanov et al., Eur. Phys. J. C21, 443 (2001); S. Chekanov et al.,
Phys. Rev. D70, 052001 (2004); BCDMS—A.C. Benvenuti et al., Phys. Lett. B223, 485 (1989) (as given
in [55]) ; E665—M.R. Adams et al., Phys. Rev. D54, 3006 (1996); NMC—M. Arneodo et al., Nucl. Phys.
B483, 3 (1997); SLAC—L.W. Whitlow et al., Phys. Lett. B282, 475 (1992).

Figure 1.8: Scaling violation in the proton structure function F p2 , reproduced from Nakamura et
al. [11]. In order to provide visual separation between the data sets for different bins of fixed x,
the F p2 value has been multiplied by 2ix , where 1 ≤ ix ≤ 28 is the number of the x bin. H1 and
ZEUS data points are from positron-proton collider experiments. The remaining data points are
from lepton scattering on a fixed proton target; SLAC used an electron probe, while BCDMS, E665
and NMC used a muon probe.

where ei is the electric charge of the ith quark, which enters into the equations because the quark-
virtual photon coupling is electromagnetic.

To predict the polarized nucleon structure functions in this model, we must introduce the polar-
ized PDF ∆qi(x)

∆qi(x) = q↑i (x)− q↓i (x). (1.41)

The sign of ∆qi(x) is set by letting ↑(↓) denote a quark spin (anti)parallel to the nucleon spin [18].
The polarized structure function g1(x) is then directly analogous to its unpolarized counterpart

F1(x)

g1(x) =
1

2

∑

i

e2
i∆qi(x) =

1

2

∑

i

e2
i

[
q↑i (x)− q↓i (x)

]
. (1.42)

This simple model, however, fails to produce a description of g2(x), in which the transverse spin
of the quark (relative to the nucleon spin direction) becomes important. To compute g2, we need to
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understand the forces that bind the nucleon together, i.e. the interactions between gluons and the
struck quark.

1.3.3.3 The Operator Product Expansion

To calculate deep-inelastic-scattering cross sections or structure functions at finite values of Q2, it
is useful to separate the non-perturbative parts of the equations from the perturbative parts. The
standard method of achieving this goal is to use the Operator Product Expansion (OPE), introduced
in 1969 by Kenneth Wilson [22]. Let us consider the product of two local operators Oa(d)Ob(0),
separated by a distance d. As their separation distance approaches zero, the two operators are
essentially located at the same point, and we can express their product as an expansion in local
operators:

lim
d→0
Oa(d)Ob(0) =

∑

k

cabk(d)Ok(0). (1.43)

The Wilson coefficients cabk(d) may be calculated in perturbation theory, since non-perturbative
effects in QCD act on a scale much larger than d [23]. Information about these effects is contained
in the non-perturbative operators Ok(0), each of which makes a cross-section contribution of order
x−n(Q/M)2−t. The term n in the exponent is the operator spin; t is its twist, defined as

t ≡ D − n = dimension − spin. (1.44)

Leading-twist (t = 2) operators dominate the OPE at large values of Q2, but higher-twist
operators become more important as Q2 is reduced – and the polarized structure function g2(x,Q2)
gives us access to those higher-twist terms. In 1977, Wandzura and Wilczek showed that this
structure function can be expressed as the sum of a twist-2 term (the Wandzura-Wilczek term
gWW

2 (x,Q2)) and a twist-3 term that arises from quark-gluon correlations [24]. That is,

g2(x,Q2) = gWW
2 (x,Q2) + ḡ2(x,Q2) (1.45)

where ḡ2(x,Q2) is the twist-3 term and gWW
2 (x,Q2) can be expressed entirely as a function of

g1(x,Q2)

gWW
2 (x,Q2) = −g1(x,Q2) +

∫ 1

x

g1(y,Q2)

y
dy. (1.46)

Since g2(x,Q2) contributes at leading order to the observable A⊥, and since knowledge of g1(x,Q2)
can be used make a clean distinction between its twist-2 and twist-3 elements, g2(x,Q2) is an
appealing probe into non-perturbative QCD at higher twist.

1.4 Outline of the Dissertation

In the remainder of this dissertation, we will motivate and describe the measurement of a virtual
photon-nucleon asymmetry, A1(x,Q2), which gives access to three structure functions – F1(x,Q2),
g1(x,Q2), and g2(x,Q2). When measured on both the proton and the neutron, A1(x,Q2) can also
be used to untangle the polarized and unpolarized parton distribution functions, testing theoretical
solutions to the nucleon spin puzzle. We will explore the theory and implications of this asymme-
try, as well as previous measurements, in Chapter 2. Chapter 3 describes the source of our data,
Experiment E06-014, which ran in Hall A of Jefferson Lab in February and March of 2009.

The measurement of any double-spin asymmetry requires understanding the polarizations both
of the lepton beam and of the nucleon target; in Chapter 4, we describe Hall A’s electron beam
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polarimetry apparatus and discuss the final determination of the electron beam polarization. Chap-
ter 5 contains a detailed discussion of the BigBite spectrometer, which took data for the asymmetry
measurements, and its calibration. The specifics of our data analysis procedures are described in
Chapter 6, and we report and discuss our preliminary results in Chapter 7.



Chapter 2

An1 : Measurements and Models

As we saw in Chapter 1, much theoretical and experimental effort has been devoted to teasing apart
the problem of nucleon structure. By separating out the many different aspects of the problem,
physicists have been able to make great progress on the puzzle, piece by piece.

In this dissertation, our piece of the puzzle concerns the virtual photon-nucleon asymmetries A1

and A2. In Section 2.1, we will define these asymmetries and discuss their physical interpretation,
including how proton and neutron measurements can be combined to give insights into the nucleon
spin puzzle. In Section 2.2, we survey previous measurements to summarize the current experimental
status of these quantities. Finally, Section 2.3 is a survey of attempts to model A1 theoretically.
Having studied these asymmetries for the proton and the neutron, we will then turn our attention
in Chapter 3 and beyond to a new measurement of A1 on the 3He nucleus and ultimately on the
neutron.

2.1 The Spin Asymmetries A1 and A2

In electron scattering from a nucleon, the electron and nucleon exchange a virtual photon with four-
momentum q. All three particles in this interaction have spin, and the relative spin direction of each
affects the probability of the scattering interaction.

Consider the hadronic vertex of the interaction, where the nucleon (with four-momentum p)
absorbs the virtual photon. Unlike a real photon, a virtual photon can be polarized in either a
transverse or longitudinal direction relative to its momentum ~q: it has three available polarization
states rather than just two. What is the likelihood of the nucleon absorbing such a virtual photon?
Answering this question requires a careful treatment of the flux factor, which is the number density
of the incident virtual photons per unit time and is thus a necessary ingredient in the cross-section
formula. While real photons have a flux factor 4Mν, the virtual-photon flux factor is arbitrary [15].
We choose a laboratory-frame flux factor 4M

(
ν −Q2/2M

)
in accordance with the Hand conven-

tion [25]. We can then express the laboratory cross section for electron-nucleon scattering in terms
of two virtual photon-nucleon cross sections, one (σT ) for transversely polarized virtual photons and
one (σL) for longitudinally polarized virtual photons

dσ

dE′dΩ
= Γ(σT + εσL) (2.1)

where

Γ =
α
(
ν −Q2/2M

)

2π2Q2

E′

E

1

1− ε (2.2)

32
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Figure 2.1: Definition of virtual photon-nucleon cross sections σ3/2 and σ1/2.

and ε, the ratio of the virtual photon’s longitudinal polarization to its transverse polarization, is
given by

1

ε
= 1 + 2

(
1 +

Q2

ν2

)
tan2 θ

2
. (2.3)

The virtual photon-nucleon cross sections σT and σL, like the unpolarized structure functions F1

and F2, encode information about the hadronic vertex. We can thus express one set of functions in
terms of the other set [15]

σT ≡
4π2α

ν −Q2/2M

1

M
F1(ν,Q2) (2.4)

σL ≡
4π2α

ν −Q2/2M

[(
1 +

ν2

Q2

)
1

ν
F2(ν,Q2)− 1

M
F1(ν,Q2)

]
. (2.5)

This notation allows us to express a relationship between F1 and F2

F1(x,Q2) =
F2(x,Q2)

(
1 + (2Mx)2

Q2

)

2x
(

1 + σL(x,Q2)
σT (x,Q2)

) . (2.6)

Combining this relationship with the Callan-Gross relation (Equation 1.37) allows one to deduce
that σL vanishes in the Bjorken limit.

Let us suppose that the nucleon is longitudinally polarized and the virtual photon is circularly
polarized (that is, it has a rotating transverse polarization), with helicity ±1. Figure 2.1 shows the
two possible spin configurations at this vertex. If the virtual photon and the nucleon have parallel
spins, we denote the cross section of the interaction as σ3/2; if their spins are antiparallel, the cross
section is σ1/2. The subscript of the cross sections represents the total spin projection along the
direction of the virtual photon momentum, ~q [26, 16].

This helicity decomposition of the virtual photon absorption cross section allows us to ask how
changing the polarization of the virtual photon affects the scattering interaction as a whole.

2.1.1 Definitions of A1 and A2

We begin by defining the longitudinal asymmetry, A1, as the asymmetry between the two cross
sections defined in Figure 2.1

A1(x,Q2) ≡ σ1/2 − σ3/2

σ1/2 + σ3/2
. (2.7)
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A second virtual photon asymmetry, A2, arises from interference between the longitudinal and
transverse virtual photon-nucleon amplitudes. Consider the transition from the initial state |H,h〉,
where the virtual photon has helicity H and the nucleon has helicity h, to a final state |X〉 that is
not observed. We can express the interference cross section σLT in terms of the transitions between
these states [27]

σLT = 2Re
∑

X

〈+1

2
,+1|X〉〈−1

2
, 0|X〉. (2.8)

A2 is then the fraction of the total cross section due to this interference term

A2(x,Q2) ≡ 2σLT
σ1/2 + σ3/2

. (2.9)

and σLT may also be expressed in terms of g1 and g2 [28]

σLT =
4π2α

MN (ν −Q2/2M)

√
Q2

ν

(
g1(x,Q2) + g2(x,Q2)

)
(2.10)

Here, MN is the nucleon mass and α is the fine structure constant.
A2 is bounded [27] by a function of A1 and the virtual photon absorption cross sections σL and

σT that we defined in Equations 2.4 and 2.5:

|A2| ≤
√

σL
2σT

(1 +A1) (2.11)

We can relate A1 and A2 to three of the four nucleon structure functions, both unpolarized (F1)
and polarized (g1 and g2). To simplify the algebra, it is both convenient and customary to define
the ratio γ2

γ2 ≡ Q2

ν2
=

(2MNx)2

Q2
. (2.12)

It is then possible to derive the relationships

A1(x,Q2) =
g1(x,Q2)− γ2g2(x,Q2)

F1(x,Q2)
(2.13)

A2(x,Q2) =
γ
[
g1(x,Q2) + g2(x,Q2)

]

F1(x,Q2)
. (2.14)

These equations can be combined to relate our virtual photon asymmetries A1 and A2 to the ratio
of g1 and F1

A1(x,Q2) + γA2(x,Q2) = (1 + γ2)
g1(x,Q2)

F1(x,Q2)
. (2.15)

We can see from Equation 2.12 that γ2 → 0 as Q2 →∞. Equation 2.13 then reduces to

A1(x,Q2) ≈ g1(x,Q2)

F1(x,Q2)
for large Q2 (2.16)

Equation 2.16 is also supported by a simple physical argument [29]. Let us go back to the picture
of our virtual photon as circularly polarized with its helicity parallel or antiparallel to the quark
spin. If their spins are antiparallel, the quark may absorb the virtual photon and flip its helicity in
the process. If their spins are parallel, however, this absorption is forbidden: the total projection of
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the quark and virtual-photon spin onto the momentum axis is 3/2, but the quark is only a spin-1/2
particle.

If the virtual photon’s helicity is parallel to the nucleon spin’s projection onto its momentum
axis (the σ3/2 case), then it may only be absorbed by a quark whose spin is antiparallel to the spin

of the nucleon on that axis. If q↓(x) represents the distribution function of such quarks, then we
have

σ3/2 ∼
∑

e2
i q
↓
i (x). (2.17)

Now consider a virtual photon whose spin is antiparallel to the projection of the nucleon spin (the
σ1/2 case). By an analogous argument, it may only be absorbed by a quark whose spin is parallel
to the spin of the nucleon

σ1/2 ∼
∑

e2
i q
↑
i (x). (2.18)

We may then express A1 as

A1(x) ∼
∑
e2
i

(
q↑i (x)− q↓i (x)

)

∑
e2
i

(
q↑i (x) + q↓i (x)

) =

∑
e2
i∆qi(x)∑
e2
i qi(x)

=
g1(x)

F1(x)
(2.19)

where we have used the quark-model expressions for F1(x) and g1(x), as given by Equations 1.39
and 1.42.

To leading order, F1(x,Q2) and g1(x,Q2) evolve with Q2 in the same way, so their Q2 evolutions
partially cancel in Equation 2.16, leaving A1 with little dependence on Q2. Experimental data
support this observation for both the proton and the neutron, as shown in Figure 2.2. This behavior
helps make A1 an appealing probe into the x dependence of nucleon spin structure.

2.1.2 Measuring A1 and A2 with a Polarized Electron Beam

We have defined A1 and A2 based on the orientation of the virtual photon spin relative to the nucleon
spin. In practice, however, it is generally far simpler to align the spin of the incident electron either
parallel or perpendicular to the nucleon spin. Knowing the electron spin and the kinematics of the
interaction, we can then recover the effective polarization of the virtual photons.

Our task, then, is to find expressions for the virtual photon-nucleon asymmetries A1 and A2

in terms of the experimental electron-nucleon asymmetries A‖ and A⊥, defined in Equations 1.34
and 1.35. These latter two asymmetries depend on all four structure functions – F1, F2, g1, and
g2 – which complicates comparison with theory. Fortunately, we can eliminate F2 from the final
linear combination of A‖ and A⊥ through use of the variable R(x,Q2), the ratio of the longitudinal
to transverse virtual photoabsorption cross sections, which has been measured in earlier experi-
ments [31]:

R ≡ σL
σT

=
F2

2xF1

(
1 +

4M2x2

Q2

)
− 1. (2.20)

With R encapsulating our dependence on F2, we may express the ratios g1/F1 and g2/F1 in terms
of the parallel and perpendicular electron-nucleon asymmetries [32]

g1

F1
=

1

d′

(
A‖ + tan

θ

2
A⊥

)
(2.21)

g2

F1
=

y

2d′

(
E + E′ cos θ

E′ sin θ
A‖ −A⊥

)
(2.22)
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Fig. 1. Ratios g
p
1
/F

p
1
extracted from experiments assuming the gWW

2
model for g2. Inner errors are statistical only, while systematic errors are

included in quadrature in the outer error bars. The solid curves correspond to the NLO QCD fit described in the text, while the dashed curves

are from the simple fit given by Eq. (5).

(a)

24 P.L. Anthony et al. / Physics Letters B 493 (2000) 19–28

Fig. 2. Same as Fig. 1 except for gn
1
/Fn
1
and Eq. (6) for the dashed curves.

(b)

Figure 2.2: Q2 evolution of g1/F1 ratio for the proton (a) and for the neutron (b), reproduced from
Anthony et al. [30].

where y = ν/E and

d′ =
(1− ε)(2− y)

y(1 + εR)
. (2.23)

With some algebra (see, for example, Melnitchouk et al. [32]), we may then obtain

A‖ = D (A1 + ηA2) (2.24)

A⊥ = d (A2 − ξA1) (2.25)

where we have used the kinematic variables

D =
E − εE′
E(1 + εR)

(2.26)

η =
ε
√
Q2

E − εE′ (2.27)
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Figure 2.3: Proton parton distribution functions at Q2 = 5 (GeV/c)2. The PDFs marked uV and
dV correspond to valence up and down quarks, respectively. Sea quark distributions are denoted ū
(up sea quarks), d̄ (down sea quarks), or s/s̄ (strange sea quarks). The gluon distribution, divided
by 10 to give it the same scale as the others, is denoted g. This figure is reproduced from Zheng [16]
and derived from global fits performed by Pumplin et al. [33].

d = D

√
2ε

1 + ε
(2.28)

ξ = η
1 + ε

2ε
. (2.29)

Equations 2.24 and 2.25 give us, in turn,

A1 =
1

D (1 + ηξ)
A‖ −

η

d (1 + ηξ)
A⊥ (2.30)

A2 =
ξ

D (1 + ηξ)
A‖ +

1

d (1 + ηξ)
A⊥ (2.31)

which allow the direct computation of A1 and A2 from asymmetries measured in deep inelastic
electron-nucleon scattering.

2.1.3 A1 for the Proton and the Neutron: Flavor Decomposition

In Section 1.1.1, we described the partons that make up the nucleon: valence quarks (up and down),
sea quarks and antiquarks (up, down and strange), and gluons. The parton distribution functions
(PDFs) q(x,Q2) allow us to refine this picture by giving the probability of finding a particular
parton, carrying a momentum fraction x, with a probe of inverse-squared spatial resolution Q2.

Figure 2.3 shows the x evolution of proton PDFs at a fixed value of Q2. We see that gluons and
sea quarks dominate at low x, while the valence u and d quarks dominate at high x. This region,
accessible through deep inelastic scattering, is often called the valence quark region. The dominance
of valence quarks makes this a relatively simple region to model theoretically; perturbative QCD
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may be used to predict structure functions, asymmetries and PDFs in the valence quark region, but
not at lower values of x.

The unpolarized PDFs q(x) are insensitive to spin; polarized PDFs, defined in Equation 1.41

as ∆qi(x) = q↑i (x) − q↓i (x), incorporate spin information. If we assume isospin symmetry, we can
combine data for the proton and the neutron to perform a flavor decomposition, separating out the
behavior of different types of quarks.

For measurements in the valence quark region, we can ignore the contributions of strange quarks.
Let q(x) and ∆q(x) be proton PDFs. We can then combine Equations 1.39 and 1.42 to extract the
ratio of gp1 to F p1 in terms of PDFs

gp1
F p1

=
4∆u(x) + ∆d(x) + 4∆ū(x) + ∆d̄(x)

4u(x) + d(x) + 4ū(x) + d̄(x)
. (2.32)

By isospin symmetry, the ratio for the neutron is the same, but with the proton PDFs u(x) and
d(x) interchanged

gn1
Fn1

=
∆u(x) + 4∆d(x) + ∆ū(x) + 4∆d̄(x)

u(x) + 4d(x) + ū(x) + 4d̄(x)
. (2.33)

With a little algebra, we can combine Equations 2.32 and 2.33 to find the ratio of polarized PDFs
to unpolarized PDFs for both u and d quarks. We obtain

∆u+ ∆ū

u+ ū
=

4

15

gp1
F p1

(
4 +

d+ d̄

u+ ū

)
− 1

15

gn1
Fn1

(
1 + 4

d+ d̄

u+ ū

)
. (2.34)

∆d+ ∆d̄

d+ d̄
=

4

15

gn1
Fn1

(
4 +

u+ ū

d+ d̄

)
− 1

15

gp1
F p1

(
1 + 4

u+ ū

d+ d̄

)
. (2.35)

Equations 2.34 and 2.35 are often presented in a simplified form, using the variable Rdu to
represent the ratio of down-quark PDFs to up-quark PDFs

Rdu ≡ d+ d̄

u+ ū
. (2.36)

As shown in Figure 2.3, the antiquark distributions ū and d̄ approach zero for x > 0.3, so that
Rdu = (d + d̄/(u + ū) ≈ d/u. This ratio may be extracted from existing data on protons and
deuterons using electrons or neutrinos as probes. In the former case, data going to higher x is
available, at the expense of increased dependence on nuclear models [34]. Figure 2.4 shows the
evolution in x of d/u ≈ Rdu.

We see that combining measurements of g1/F1 on the proton with measurements of g1/F1 on the
neutron allows us to compute the flavor-decomposed quark helicity distributions of Equations 2.34
and 2.35, when combined with existing data on Rdu. These g1/F1 ratios are approximately equal to
A1 at large values of Q2, but this approximation is not generally needed, since the asymmetry A2

may be measured with the same data and g1/F1 is given exactly by a linear combination of A1 and
A2 (Equation 2.15).

Equations 2.34 and 2.35 give PDF ratios (∆q + ∆q̄)/(q + q̄) for all quarks – valence and sea –
but theoretical predictions are often given only for valence quark distributions ∆q/q. A comparison
of experiment to theory thus requires calculating how much these two ratios differ. Following the
work of Zheng [36], we will show this calculation for generic quark PDFs q, for which either d or u
may be substituted.

The antiquark content q̄ of a nucleon is, by definition, part of the sea; the quark content is
divided between valence quarks and sea quarks. If we write the valence quark distribution as qV
and the sea quark distribution as qS = q̄, then we may rewrite q+ q̄ as qV + qS + q̄ = qV + 2q̄. Doing
the same thing for ∆q + ∆q̄ = ∆qV + 2∆q̄ gives us
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FIG. 4. Extracted d/u ratio, using the off-shell deuteron calculation (full circles) and using

on-shell kinematics (open circles). Also shown for comparison is the ratio extracted from neutrino

measurements by the CDHS collaboration [26].

18

Figure 2.4: d/u ratio as a function of x, reproduced from Melnitchouk and Thomas [34]. Circles
represent SLAC proton and deuteron data; open circles incorporate an on-shell deuteron model, while
solid circles use an off-shell model. Neutrino-beam measurements from the CDHS collaboration [35],
which are insensitive to nuclear effects, are shown as open diamonds.

∆q + ∆q̄

q + q̄
=

∆qV + 2∆q̄

qV + 2q̄
. (2.37)

If we wish to extract the polarized-to-unpolarized PDF ratio for valence quarks alone, we must find
a relationship between the quantity in Equation 2.37 and the valence-quark quantity ∆qV /qV . We
can accomplish this by finding the multiplicative factors that will transform one into the other:

∆qV
qV

=
∆qV + 2∆q̄

qV + 2q̄
· qV + 2q̄

qV
· ∆qV

∆qV + 2∆q̄
(2.38)

Regrouping these factors simplifies the algebra

∆qV
qV

=
∆qV + 2∆q̄

qV + 2q̄
·
(

1 +
2q̄

qV

)
·
(

1 +
2∆q̄

∆qV

)−1

. (2.39)

We now multiply the final fraction by qV /qV = 1 and multiply both sides of the equation by the

resulting final term,
(

1 + 2∆q̄
qV
· qV

∆qV

)−1

.

∆qV
qV

+
2∆q̄

qV
=

∆qV + 2∆q̄

qV + 2q̄
·
(

1 +
2q̄

qV

)
. (2.40)

Finally, we substitute the more familiar form (∆q + ∆q̄)/(q + q̄) back in

∆qV
qV

=
∆q + ∆q̄

q + q̄
·
(

1 +
2q̄

qV

)
− 2∆q̄

qV
. (2.41)

In order to compute ∆q/q from measurements of g1/F1 using Equation 2.41, we use the measured
nucleon structure function ratios to extract (∆q+∆q̄)/(q+ q̄) according to Equations 2.34 and 2.35,
and then use fits to world data to estimate the sea-quark corrections 2q̄/qV and 2∆q̄/qV . We can
also use Equation 2.41 to find the error on ∆q/q
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C0
u and C0

d. We only use the experimental data in the
large-x region, i.e., x > 0:3, where the sea contribution is
not significant. We perform our fit at a fixed Q2 ! 4 GeV2,
and all the experimental data are evolved to this scale by
using the GRSV parameterization [23] for the polarized
and unpolarized quark distributions. The evolution intro-
duces some theoretical uncertainties.

From our fit, we find the following values for C0
u and C0

d,

 C0
u ! 0:493" 0:249; C0

d ! 1:592" 0:378: (8)

The minimum of the functional !2 is achieved at !2 !
11:4 and !2=DOF ! 1:14. We further notice that the addi-
tional two terms in Eq. (7) do not change significantly the
sum rules for the up and down quarks, such as the Bjorken
and momentum sum rule, which are essential for constrain-
ing the parameters in Refs. [6,22].

In Fig. 2, we show the above fit. We plot the ratios of the
polarized quark distributions !q over the unpolarized
quark distributions q as functions of x for both up and
down quarks, compared with the experimental data. From
these comparisons, we find that the ratio for the up quark
!u=u can still be described by the parameterization based
on the original power-counting rule for u# and u$ [22].
However, for the down quark we have to take into account
a large contribution from the newly discovered term for the
negative helicity distribution d$; the difference between
our result and the original parameterization [22] becomes
significant at large x. The analysis of the anomalous mag-
netic moment and generalized parton distributions of nu-
cleons also indicates significant contributions from the
orbital angular momenta of up and down quarks [24].
This is in qualitative agreement with our fitting results,
taking into account the large error bar for C0

u. A precision
determination of these contributions shall be obtained by
further development for a consistent set of parameters for

Eq. (7) from next-to-leading-order QCD analysis of both
polarized and unpolarized data over the full range in x [22].

Another important prediction of our fit is that the ratio of
!d=d will approach 1 at extremely large x, and it will cross
zero at x % 0:75. It will be interesting to check this pre-
diction in future experiments, such as the 12 GeV upgrade
of Jefferson Lab [25].
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FIG. 2 (color online). Comparison of the quark helicity distri-
butions Eq. (7) with the experimental data, plotted as functions
of x for up (the upper curves) and down (the lower curves)
quarks. The circles are for HERMES data [11], the triangles up
for SLAC [12], the triangles down for JLab Hall A data [9], the
filled squares for CLAS [10]. The dashed curves are the pre-
dictions from [22], and the solid ones are our fit results (only the
large-x ( > 0:3) experimental data were used in the fit).
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Figure 2.5: Quark helicity distributions as functions of x, reproduced from Avakian et al. [37] The
dashed curves represent a prediction from by Leader et al. [38], while the solid curves give Avakian
et al.’s prediction incorporating quark orbital angular momentum [37]. Circles represent data from
HERMES [39]; triangles pointing up show SLAC data [40]; triangles pointing up correspond to data
from Hall A of Jefferson Lab [41]; and squares show CLAS data [42].

δ
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− 2∆q̄
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δ

(
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2q̄

qV

)2
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(2.42)

The same procedure may also be used to estimate the error on (∆q + ∆q̄)/(q + q̄) due to our
neglect of strange-quark contributions [16]. We find

∆u+ ∆ū

u+ ū
=

(
∆u+ ∆ū

u+ ū

)

s,s̄=0

+
s+ s̄

u

[
4

15

gp1
F p1
− 1

15

gn1
Fn1
− 1

5

∆s+ ∆s̄

s+ s̄

]
(2.43)

∆d+ ∆d̄

d+ d̄
=

(
∆d+ ∆d̄

d+ d̄

)

s,s̄=0

+
s+ s̄

d

[
4

15

gn1
Fn1
− 1

15

gp1
F p1
− 1

5

∆s+ ∆s̄

s+ s̄

]
. (2.44)

The error may be bounded without the use of polarized strange-quark PDFs by applying the posi-
tivity constraints |∆s/s| ≤ 1 and |∆s̄/s̄| ≤ 1.

As we will see in Section 2.3.3, perturbative QCD predicts that both of the valence quark PDF
ratios ∆u/u and ∆d/d approach 1 in the limit of x → 1; that is, in a nucleon with spin 1/2, q↑

must dominate over q↓ at large x [37]. Figure 2.5 shows recent experimental data for ∆u/u (in red)
and for ∆d/d (in blue). Although the measured behavior of ∆u/u is consistent with this prediction,
∆d/d shows no sign of approaching 1 in the x range where it has been measured. In this range, these
results imply that up quark spins are generally parallel to the nucleon spin, while down quark spins
are generally antiparallel, and quark orbital momentum makes a significant contribution to nucleon
spin even in the valence quark region. Precise measurements of An1 at high x have the potential to
test these results.
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2.2 Measurements of An
1 and Ap

1 in the Valence Region

Theoretical interest in nucleon spin structure and spin structure functions substantially antedated
physicists’ ability to explore these areas experimentally. James Bjorken first described Bjorken
scaling and proposed a polarized electroproduction sum rule in 1969 [20]; it was not until the late
1970s, at SLAC, that the first results came out from doubly-polarized experiments [2, 3], and not
until the late 1980s that proton spin was discovered to be an unsolved problem [9]. The deep inelastic
scattering region, or valence region, has long been of special interest due to the simplicity of the
PDFs there, but increases in luminosity and x coverage have posed serious challenges.

Figure 2.6 displays the current world data on Ap1 and An1 in the deep inelastic scattering region,

while Figure 2.7 shows world data on two polarized nuclear targets: deuterium (Ad1) and 3He (A
3He
1 ).

Data points at different Q2 values are plotted together, since, to leading order, A1 does not vary with
Q2 in this kinematic range. In the following sections, we will briefly review the experiments that
have produced these measurements over the past two decades; the DIS structure function database
hosted at Durham University [43] is an invaluable resource. Once we know what the data look like,
we will be better placed to consider the theoretical predictions to follow in Section 2.3.

2.2.1 Experiments at CERN

CERN, the European Organization (formerly Council) for Nuclear Research, is an accelerator
facility on the French-Swiss border. Among its many long-running and successful physics programs
are a series of experiments probing the nucleon spin structure functions via inclusive and semi-
inclusive deep inelastic scattering with naturally polarized muons from the M2 beamline of the Super
Proton Synchrotron, or SPS. Accelerated protons strike a beryllium target, releasing pions and
kaons, which then decay into muons; to an extent dependent on the muon and hadron energies, the
forward-going muons are longitudinally polarized due to parity violation in the hadron decays [44].

EMC We will begin our experimental survey in the 1980s with the European Muon Collaboration
(EMC), the first experiment to produce a precise measurement of A1 on the proton. (We neglect
1970s results from the SLAC experiments E-80 and E-130, which have very large error bars compared
to more modern data.) The muons were incident on a pair of target cells, separated by a 22-cm gap
and filled with cryogenically cooled beads of solid ammonia. In each cell, the free protons in the
ammonia were polarized by dynamic nuclear polarization [45], which involves doping the mixture
with unpaired electrons. These paramagnetic radicals are polarized by a magnetic field and then
transfer their polarization to neighboring protons on irradiation with a microwave field near their
paramagnetic resonance. Protons in the two cells were polarized in opposite directions, so that an
asymmetry could be formed in the count rates from each cell; once the background from the 14N
nuclei is subtracted, the result is a doubly-polarized measurement on the proton by itself. The
resulting Ap1 measurement covered an x range of 0.01 to 0.70 and a Q2 range from 3.5 to 29.5
(GeV/c)2 [7].

SMC After EMC ended, the M2 polarized-muon beamline was upgraded and was inherited by the
Spin Muon Collaboration (SMC), which measured asymmetries and spin structure functions using
both a polarized proton target and a polarized deuteron target. As in the EMC experiment, SMC
used twin target cells, kept at opposite polarization and exposed to the muon beam simultaneously.
Three types of target material were used during SMC: chips of irradiated ammonia ice, beads of
butanol (C4H9OH) doped with a paramagnetic complex, and similarly doped beads of deuterated
butanol (C4D9OH)1. The two butanol targets served as fairly clean polarized proton and deuteron

1The irradiation of the ammonia and the doping of the butanol were necessary for the process of dynamic nuclear
polarization.
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Figure 2.6: World deep-inelastic-scattering data for Ap1 (a) and An1 (b). The experiments are de-
scribed in the text.
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targets, since the most common isotopes of carbon and oxygen have spinless nuclei [46]. To reduce
background, the standard inclusive measurement (in which the scattered muon is the only final-state
particle detected) was combined with a semi-inclusive measurement, in which the final-state muon
was detected in coincidence with at least one final-state hadron. The results were measurements of
Ap1 and Ad1 over a range of 0.0008 < x < 0.7 and 0.2 < Q2 < 100 (GeV/c)2 [47].

COMPASS At present, the M2 beamline is occupied by the Common Muon-Proton Apparatus
for Structure and Spectroscopy, or COMPASS. Like its predecessors, COMPASS uses a two-cell
polarized target, each cell with opposite polarization, so that it may simultaneously record data
from each spin configuration. A two-stage spectrometer, constructed around two dipole magnets,
offers a large acceptance in momentum and angle. Like SMC, COMPASS takes data with both
inclusive and semi-inclusive triggers; data analysis for the two modes is handled separately and then
combined for the final physics result.

From 2002 to 2004, COMPASS used deuterated lithium (6LiD) as an effective polarized deuteron
target; this choice was motivated by the material’s high radiation resistance and by the fact that the
6Li nucleus may be approximated as a deuteron and a spin-0 4He nucleus. In 2007, solid ammonia,
of the same type used during SMC, was used as a polarized proton target. In both cases, target
polarization was achieved using dynamic nuclear polarization [48]. To date, the experiment has
published A1 on the deuteron [49] in the range 0.004 < x < 0.07 and 1 < Q2 < 100 (GeV/c)2, and
A1 on the proton [50] in the range 0.004 < x < 0.7 and 1.10 < Q2 < 62.1 (GeV/c)2.

2.2.2 Experiments at SLAC

The SLAC National Accelerator Laboratory is a facility in Palo Alto, California, that began oper-
ating in the late 1960s as a linear accelerator capable of accelerating both electrons and positrons;
it is now used as a coherent X-ray source. While many of SLAC’s most famous experiments used
colliding beams of electrons and positrons, the facility also had a vibrant fixed-target program, which
included several precision measurements of A1. These experiments took advantage of SLAC’s ability
to produce a polarized electron beam by illuminating a strained GaAs photocathode with circularly
polarized laser light; this is essentially the same mechanism by which Jefferson Lab produces its
polarized electron beam, and will be described in detail in Section 3.2.1.

E142 SLAC experiment E142, which ran at End Station A in 1992, was the first experiment to
use 3He gas as an effective polarized neutron target, a usage that is possible because the nuclear
spin of 1/2 is carried by the neutron some 87% of the time (Section 3.3.3). The target was polarized
using a method called spin-exchange optical pumping, which (with a few modifications) is used in
the experiment that is the subject of this work; the technique is described in detail in Section 3.3.3.1.
E142 collected data in two single-arm spectrometers in order to maximize the kinematic reach of
the experiment, so that A1 was measured both for the 3He nucleus and for the neutron (after the
application of nuclear corrections) in the range 0.03 < x < 0.60 and 1.1 < Q2 < 5.5 (GeV/c)2 [51].

E143 E143, which also ran at End Station A in the early 1990s, used frozen single-cell 15N ammonia
targets polarized via dynamic nuclear polarization. One target used ammonia molecules with normal
hydrogen content (15NH3); the other used deuterated ammonia (15ND3). Electron beam irradiation
introduced the paramagnetic radicals necessary for the polarization process. The spectrometer setup
was nearly identical to E142’s, but the magnets were held at higher fields and the hodoscopes were
altered to allow for higher rates. Ap1 and Ad1 could be measured fairly directly on their respective
targets; the experiment also extracted An1 by combining their proton and deuteron data [26]. The
kinematic range covered was 0.031 < x < 0.749 and 1.27 < Q2 < 9.52 (GeV/c)2.
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E154 E154 built on the success of E143 to achieve a reduction in error onAn1 , as well as an extension
of the covered range to lower values of x. Electrons at a single energy (48.3 GeV) were incident on a
3He target polarized by spin-exchange optical pumping. Inclusive events were measured in two new
single-arm spectrometers. The resulting measurements covered a kinematic range of 0.014 < x < 0.7
and 1.2 < Q2 < 15.0 (GeV/c)2 [52].

E155 E155 took E154’s two single-arm spectrometers and added a third in order to increase the
experiment’s Q2 range. The polarized electron beam ran at a single energy of 48.3 GeV and two
dynamically nuclear-polarized targets were used. For proton measurements, the target contained
frozen ammonia, as for E143; deuteron measurements used a sample of 6LiD, which would later
also be used in the COMPASS experiment at CERN. On the latter target, gd1/F

d
1 – approximately

equal to Ad1 in this region – was measured in the range 0.015 < x < 0.75 and 1.22 < Q2 < 34.79
(GeV/c)2 [53]. Proton and deuteron data were combined to measure gp1/F

p
1 and gn1 /F

n
1 for the same

kinematic range [30].

2.2.3 HERMES Experiment at DESY

The Deutches Elektronen Synchrotron, DESY, is a German institution for particle physics research
with locations in Hamburg and in Zeuthen. Historically, the Hamburg site has been home to sev-
eral accelerators, and it was at the Hadron-Electron Ring Accelerator (HERA), which was active
between 1992 and 2007, where measurements of A1 took place. HERA consisted of two parallel ac-
celerators, one for protons and one for either electrons or positrons; the lepton beam polarizes itself
over time via the Sokolov-Ternov mechanism, whereby the probability of a spin-flipping synchrotron
emission changes depending on the orientation of the electron spin relative to the magnetic guiding
field [54]. Over time, this slight asymmetry gives rise to a transversely polarized lepton beam.

The HERMES experiment (HERA Measurement of Spin) ran in HERA’s East Hall. Magnetic
spin rotators just upstream of the hall rotated the transverse beam polarization into longitudinal
polarization; downstream of the experiment, a Compton polarimeter measured the longitudinal po-
larization before another spin rotator returned the polarization to a transverse direction. HERMES
ran primarily with positron beams, but also took some data with electrons. The targets, polarized
hydrogen and polarized deuterium, were produced using an Atomic Beam Source (ABS), wherein
neutral atoms were formed into beams and passed through a Stern-Gerlach-type device that se-
lected atomic hyperfine states with the desired nuclear polarization. A target storage cell, fed by
the ABS, increased the density by a factor of 100. The experiment used a single, large-acceptance
spectrometer with the ability to detect coincidences between scattered leptons and hadrons, al-
lowing semi-inclusive measurements. Inclusive measurements of Ap1 covered a kinematic range of
0.033 < 〈x〉 < 0.44 and 1.22 < 〈Q2〉 < 9.18 (GeV/c)2, where 〈x〉 and 〈Q2〉 are averages in each bin;
the Ad1 inclusive measurement covered nearly the same range, but with a maximum 〈Q2〉 value of
9.16 (GeV/c)2 [39].

2.2.4 Experiments at Jefferson Laboratory

Jefferson Laboratory, the site of the experiment with which this work is concerned, is the home of
an electron accelerator in Newport News, Virginia. Longitudinally polarized electrons, produced
from a photocathode illuminated by circularly polarized light (Section 3.2.1) may be accelerated
to energies of up to 6 GeV in the CEBAF accelerator (Continuous Electron Beam Accelerator
Facility). Fixed-target experiments may be performed simultaneously in three experimental halls,
each with a different basic configuration.

E99-117 To date, the highest-precision available measurements of An1 are from experiment E99-
117, which took inclusive data in Hall A using twin High-Resolution Spectrometers (Section 3.3.5),
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operated independently and at the same scattering angles in order to double the statistics. The
effective polarized neutron target was 3He gas contained in a glass cell and polarized via spin-
exchange optical pumping; the system was quite similar to that described in Section 3.3.3. An1 was
measured at three kinematic points: x = 0.33, 0.47 and 0.60 and Q2 = 2.7, 3.5 and 4.8 (GeV/c)2 [41].

CLAS In Hall B, most experiments are built around the CEBAF Large Acceptance Spectrometer
(CLAS), an approximately spherical detector that surrounds the target with multiple detection layers
(including wire chambers, Čerenkov counters, and lead-glass calorimeters) [55]. Glass cylinders
housed the ammonia-ice beads (either NH3 or ND3), longitudinally polarized via dynamic nuclear
polarization [56]. In the deep-inelastic scattering regime, deuteron and proton measurements of A1,
from the EG1 experiment, have been published for a range of 0.175 < 〈x〉 < 0.575 and 1.01 <
Q2 < 4.16 (GeV/c)2 [42]. Additional Ap1 data from the EG2000 experiment, labeled “CLAS2000”
in Figure 2.6(a), are available for 0.075 < x < 0.775 at Q2 = 2 (GeV/c)2 [57, 58].

Planned An1 Measurements after Upgrade Jefferson Laboratory is in the final stages of plan-
ning for an accelerator upgrade, which will increase the maximum beam energy after five passes
through the accelerator to 11 GeV while adding a fourth experimental hall (Hall D) that will take
12-GeV beam after five and a half passes through the accelerator. Two experiments have been ap-
proved to make precision measurements of An1 at high values of x. The E12-06-122 experiment [59]
is tentatively scheduled to serve as Hall A’s commissioning experiment after the upgrade; it will use
the BigBite spectrometer (Section 3.3.4) to measure the asymmetry, while one of the high-resolution
spectrometers provides corroborating data. The polarized 3He target will be designed along similar
lines to the one used during E99-117 and E06-014 (the subject of this dissertation), and a kinematic
range of 0.32 < x < 0.71 and 3.0 < Q2 < 8.4 (GeV/c)2 is planned.

In Hall C, experiment E12-10-101 [60] plans to take data with the High-Momentum and Super-
High-Momentum Spectrometers, the latter of which is a new spectrometer under development for
the upgrade, and a polarized 3He target similar to that of E12-06-122. The inclusive measurement
of An1 will cover the kinematic range of 0.3 < x < 0.77 and 3 < Q2 < 10 (GeV/c)2, complementing
the planned Hall A measurement while providing an independent check.

2.3 Models of An
1

A wide variety of theoretical approaches have been applied to the problem of nucleon spin structure.
Some match the available data fairly well; some include parameters which must be fixed by fits to the
available data; and some, while not congruent with the available data, nonetheless help guide insights
into the problem. Here, we will take a brief and necessarily incomplete tour of the theoretical models
of the past few decades, with special attention to those making direct predictions of the asymmetry
An1 .

2.3.1 Unbroken SU(6) Symmetry

The simplest model of nucleon structure is the non-relativistic constituent quark model, in which the
three constituent quarks of the nucleon obey an unbroken SU(6) symmetry in both the constituent
quark basis and the current quark basis. The nucleon spin and isospin are both equal to 1/2 and
we assume that the system has no orbital angular momentum. Consider a neutron that is polarized
in the positive z direction. Its wave function is then given by [61, 62]

|n↑〉 =
1√
18

(2|d↑u↓d↑〉+ 2|d↑d↑u↓〉+ 2|u↓d↑d↑〉 − |d↑d↓u↑〉 − |d↑u↑d↓〉 − |d↓u↑d↑〉

− |u↑d↓d↑〉 − |u↑d↑d↓〉 − |d↓d↑u↑〉).
(2.45)
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Figure 2.8: SLAC measurements of Fn2 /F
p
2 = Rnp as a function of x; the angles in the legend

are electron scattering angles. The measurements were performed by Bodek et al. [63], Poucher et
al. [64], and Riordan et al. [65]. The prediction that Rnp = 2/3, which arises from an assumption of
exact SU(6) symmetry, is shown as a solid horizontal line. Figure reproduced from Zheng [16].

The equivalent wave function for the proton, |p↑〉, is given by Equation 2.45 with the u and d quark
labels interchanged.

What would this mean for Ap1 and An1 ? Close [62] works through the implications in detail. By
extracting the total probability of finding each quark in a given spin state from Equation 2.45, and
by making certain assumptions about the virtual photon absorption cross section for the nucleon
(e.g. that they are equal to the sum of the virtual photon absorption cross sections for the three
constituent quarks), one can derive the predictions

Ap1 =
5

9
(2.46)

An1 = 0. (2.47)

SU(6) symmetry, however, was soon shown to be broken. If we let q(x) represent a proton parton
distribution function, as we did in Section 2.1.3, then we can use Equation 1.40 to write the ratio of
the neutron F2 structure function to the proton F2 structure function in the valence region:

Rnp ≡ Fn2
F p2

=
u(x) + 4d(x)

4u(x) + d(x)
. (2.48)

If exact SU(6) symmetry held for the nucleon, then the valence quark distributions should have the
same shape, giving u(x) = 2d(x). We can then simplify Equation 2.48 to give the prediction

Rnp =
2

3
. (2.49)
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As Figure 2.8 shows, when Rnp was measured at SLAC in the 1970s, it was found to deviate
quite dramatically from the prediction of exact SU(6) symmetry. SU(6) symmetry is broken [66, 67];
we must turn to more complicated models to predict An1 and Ap1.

2.3.2 SU(6) Symmetry Breaking via Hyperfine Interactions

The fact of SU(6) symmetry breaking, in and of itself, may be exploited to make predictions of
polarized PDFs and A1 if we assume that the mechanism is color hyperfine interactions, medi-
ated by one-gluon exchange between each quark pair (i, j) [68, 69]. By analogy to electromagnetic
interactions between two magnetic dipoles, such an interaction may be expressed as

Hij
hyp = Aij

[
8π

3
~Si · ~Sjδ3(~rij) +

1

r3
ij

(
3(~Si · r̂ij)(~Sj · r̂ij)− ~Si · ~Sj

)]
. (2.50)

In this notation, ~Si is the spin of the ith quark; ~rij gives the relative position of the ith and jth quarks;
and Aij is set by the quark masses and the interaction strength. To lowest order, Aij = 2αs/3mimj .

What does this say about nucleon structure? To zeroth-order, nucleons are S-wave particles, so
to first order we may ignore all of Equation 2.50 save the Fermi contact term, ~Si · ~Sjδ3(~rij). In the
rest frame of the nucleon, this term raises the energy of quark pairs (diquarks) with S = 1, while
lowering the energy of diquarks with S = 0 [70].

In the valence region, this hyperfine perturbation of the constituent quark model may be used to
make predictions. Consider the region of large x, where the struck quark carries most of the nucleon
energy; the spectator diquark is in a low-energy state, which implies that it has S = 0. The nucleon
spin must then be entirely carried by the struck quark, giving us

lim
x→1

A1 = 1. (2.51)

Further precision may be obtained through parameterization of the quark distribution functions.
First, the basic SU(6) model is extended to allow relativistic motion of the constituent quarks.
This relativistic motion quenches the quark spin; we may describe this as a probability cA(x)/2
for a spin flip (i.e. a spin-up quark flipping to a spin-down state, or vice versa). Then two rough
parameterizations are applied [70]

d(x)

u(x)
= κ(1− x) for x→ 1 and 0.5 < κ < 0.6 (2.52)

cA(x) = nx(1− x)n. (2.53)

Equation 2.52 is chosen so that d(x)/u(x) vanishes for large x; this is required by the model, since
these are proton PDFs. In the SU(6) wavefunction, a pair of identical quarks is in a spin-1 state [69].
The up quarks have a higher energy, on average, than the down quarks, so that there is a much
higher probability of finding an up quark at high x than a down quark. Equation 2.53 also satisfies
fundamental requirements of the model: cA(x) must vanish at very low x and very high x, and for
2 < n < 4 the equation provides the necessary degree of relativistic quenching.

Figure 2.9 shows the resulting predictions for Ap1 and An1 ; the shaded band gives the region
defined by all possible combinations of κ and n. The theory also predicts

lim
x→1

Fn2
F p2

=
1

4
(2.54)

in agreement with the experimental data shown in Figure 2.8.
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Figure 2.9: Predictions of An1 from constituent quark model, compared to world data. The dashed
line on the x-axis marks An1 = 0, the prediction from unbroken SU(6) symmetry. The shaded red
band shows the range of An1 values allowed in a model where SU(6) symmetry is broken by hyperfine
interactions between quarks [70]. We have made use of parameterizations compiled by X. Zheng [71].

2.3.3 Perturbative QCD

At large x, the theoretical picture is simplified. When a single quark is carrying nearly all of the
nucleon momentum, it has a large invariant mass, and its effective couplings to gluons are small.
The problem may then be treated perturbatively. With a few additional assumptions, one can make
predictions for A1 and for the polarized-to-unpolarized PDF ratios.

2.3.3.1 Hadron Helicity Conservation

The simplest initial assumption is that made by Farrar and Jackson [72, 73] in the very early
days of perturbative QCD: that the quarks’ orbital angular momentum is zero. From this starting
point, they argue that the low-momentum pair of spectator quarks have their spins anti-aligned; the
configuration in which the spectator quarks have parallel spins is suppressed by a relative factor of
(1 − x)2. As x → 1, then, it is the struck quark that must carry the helicity of the nucleon as a
whole.

This requirement of hadron helicity conservation leads to the absolute prediction that A1 goes
to 1 as x approaches 1; in the same limit, Rnp → 3/7. At lower values of x, the model may be used
to guide parameterizations of the data for deep inelastic scattering. In 1995, Brodsky, Burkardt,
and Schmidt performed a fit to the data set that was then available (namely the results of E142 at
SLAC and SMC at CERN), requiring helicity conservation at large x [74]. They thus obtained a
parameterization of polarized and unpolarized parton densities in this model; the parameterization
is known by their initials, BBS. Three years later, Leader, Sidorov, and Stamenov [38] expanded on
this work by including a model for Q2 evolution and by fitting to direct measurements of A1 (rather
than to derived measurements of g1). The resulting parameterizations, both BBS and LSS(BBS),
are shown in Figure 2.10.
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Figure 2.10: Predictions of An1 from perturbative QCD with the requirement of hadron helicity
conservation. The solid red line is the BBS parameterization [74] to early experiments; the dashed
blue line shows the LSS(BBS) extension of the BBS parameterization [38]. We have made use of
parameterizations compiled by X. Zheng [71].

2.3.3.2 Quark Orbital Angular Momentum

What if the quark orbital angular momentum is not zero? In that case, angular momentum transfer
between the helicity of the struck quark and the orbital angular momentum would negate the un-
derlying assumptions of hadron helicity conservation. To further complicate the picture, most data
for polarized deep inelastic scattering were not taken at particularly high values of Q2 and W 2. In
parameterizations of unpolarized data, this preasymptotic region and its non-negligible 1/Q2 terms
may be neglected; for the polarized data, where insufficient data exist in the asymptotic region, a
more complicated picture is necessary. Leader et al. recently gave a useful summary of the pitfalls
inherent in parameterizations of polarized deep inelastic scattering data [75].

To address this pair of issues, Leader, Sidorov, and Stamenov have made a practice of performing
fits to the world data at both leading order and next-to-leading order, without imposing the con-
straint of hadron helicity conservation. Figure 2.11 shows the parameterization of the gn1 /F

n
1 data

for three Q2 values from their 2007 fit [76]; these are the most recent predictions of gn1 /F
n
1 for which

the 1/Q2 terms (target-mass and higher-twist corrections) have been taken into account. For the
most recent parameterization [78], these corrections have been taken into account in the calculation
of polarized parton densities, but have not yet been extended to the calculation of gn1 ; the final result
is expected to be quite similar to the plotted parameterization [77]. (In this approach, only g1 is
predicted; F1 is extracted from phenomenological parameterizations of F2 [79] and R [80].)

In 2007, Avakian et al. developed a perturbative QCD model that explicitly includes Fock states
with nonzero quark orbital angular momentum [37]. These states enhance the helicity-flip amplitudes
logarithmically. At large x, the “positive helicity state,” for which the quark spin is aligned with the
nucleon spin, scales as (1 − x)3; the negative helicity state, for which the quark and nucleon spins
are anti-aligned, now scales as (1−x)5 log2(1−x). Using an extension of the BBS parameterization,
they fit this predicted behavior to the available data. As we saw in Figure 2.5, this has a dramatic
effect on the polarized PDF ratio ∆d/d; the red curve in Figure 2.11 shows the resulting prediction
of An1 .
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Figure 2.11: Predictions of An1 from perturbative QCD, allowing quark orbital angular momentum.
The solid red line is the parameterization by Avakian et al. [37], who fit the data with a theory in-
cluding explicit orbital angular momentum. The remaining curves are parameterizations by Leader,
Sidorov, and Stamenov [76, 77], using next-to-leading-order QCD without requiring hadron helic-
ity conservation. Each curve is for a constant Q2 value: 2.5 (GeV/c)2 (dotted blue line) and 10
(GeV/c)2 (dashed green line).

2.3.4 Statistical Model of the Nucleon

In a statistical-mechanical model [81], the nucleon may be regarded as a gas composed of massless
partons: quarks, antiquarks, and gluons. Suppose that these partons are in equilibrium in some
volume of a finite size; let x̄ represent their universal temperature, and X0p their thermodynamical
potential. At given input energy scale, the helicity-dependent portions ph(x) of the parton distribu-
tion functions p(x) may then be expressed as being proportional to the thermodynamic distribution

ph(x) ∝
(
e(x−X

h
0p)/x̄ ± 1

)−1

. (2.55)

Quarks and antiquarks obey Fermi-Dirac statistics and take the plus sign; gluons follow a Bose-
Einstein distribution and take the minus sign. The total parton distribution also includes a diffractive
term, which is helicity-independent and does not feature in predictions of A1. As a whole, the
approach is motivated by its use of a relatively small number of free parameters (eight) [82].

The chiral nature of QCD leads to two properties of the thermodynamical potential. First, the
potential of a quark with helicity h is the opposite of the potential of an antiquark with helicity −h.
Second, the gluon thermodynamical potential is 0. Meanwhile, DIS data leads to further conclusions;
for example, the relative dominance of u(x) over d(x) implies that the total potential of u quarks is
greater than the total potential of d quarks. These conclusions eventually lead to a prediction [83]
that, at Q2 = 4 (GeV/c)2,

lim
x→1

A1 ∼ 0.6
∆u(x)

u(x)
. (2.56)

Other statistical approaches to nucleon structure exist; in 1994, for example, a statistical-
mechanical extension of the MIT bag model (Section 2.3.8) was used to compute the unpolarized
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Figure 2.12: Predictions of An1 from statistical model [82]. Each curve represents predictions with a
constant value of Q2: 4 (GeV/c)2 (solid red line), 10 (GeV/c)2 (dashed blue line), and 100 (GeV/c)2

(dash-dotted green line). We have made use of parameterizations compiled by X. Zheng [71].

structure functions of the proton, but the results failed to agree with experiment [84]. Bhalerao et
al. [85, 86] had better success with a model wherein calculations are performed in the nucleon rest
frame and eventually boosted to the infinite-momentum frame; they also make explicit corrections
for the finite size of the nucleon. Measured values of polarized and unpolarized PDFs for the proton
and neutron are used to constrain the model.

Figure 2.12 shows predictions of A1 from Bourrely et al. [83] for three values of Q2.

2.3.5 Quark-Hadron Duality

In the early 1970s, Elliot Bloom and Fred Gilman [87, 88] observed a curious relationship between
measurements of nucleon structure in two very different kinematics: the deep inelastic scattering
regime and the resonance region (see Figure 1.4). The dynamics in these two kinematic regions are
quite different; in the resonance region, the electron is seen as scattering from a cluster of quarks
and gluons, all of which interact with each other and respond in a correlated way, while deep-
inelastic scattering sees the electron scattering from an essentially free, pointlike quark. Yet, if the
unpolarized structure function F2 is measured in both regions, we see

∫ x2(W2,Q
2)

x1(W1,Q2)

dxF res
2 (x,Q2) =

∫ x2

x1

dxFDIS2 (x,Q2). (2.57)

Here, F res
2 represents the measurement of F2 in the resonance region, at relatively low Q2.

FDIS2 , meanwhile, is F2 as measured through deep inelastic scattering, evolved to the same low Q2.
The integral may be performed over the resonance region as a whole, in which case Equation 2.57
describes global duality ; alternatively, local duality holds when Equation 2.57 is true for integrals over
a single resonance. Figure 2.13 shows a portion of the initial evidence for quark-hadron duality; data
in the resonance region oscillate around the scaling curve, but follow the curve on average [32]. This
implies a profound relationship between the two scattering regimes: as Bloom and Gilman expressed
it in their original paper [87], “the resonances are not a separate entity but are an intrinsic part of
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Figure 2.13: Initial evidence for quark-hadron duality. The value of F2 is plotted as a function of
the scaling variable ω′ = 1 + W 2/Q2. For each Q2 value in GeV, measurements in the resonance
region (at low ω′) are compared to the solid curve, a smooth fit of measurements in the Bjorken
scaling region. Reproduced from Bloom and Gilman [88].

the scaling behavior of” F2.
The high luminosity available over the last ten years has allowed precise tests of local and global

quark-hadron duality. Data from Jefferson Lab’s Hall C showed 10% agreement with global duality
for the unpolarized structure functions for Q2 values as low as 0.5 (GeV/c)2; local duality also
holds for each of the three most prominent resonances [89]. Extending these tests to spin structure,
experiments at DESY [90] and Jefferson Lab’s Hall B [42, 91] have found that global quark-hadron
duality is satisfied for proton and deuteron polarized structure functions, down to Q2 = 1.7 (GeV/c)2

– but these same polarized structure functions violate local duality up to the highest Q2 value covered
by the experiment, 5.0 (GeV/c)2 [91]. A similar test for the polarized structure function g1 of the
neutron and the 3He nucleus, conducted in Jefferson Lab’s Hall A, found that global duality held
down to Q2 = 1.8 (GeV/c)2 [92].

If we assume that local duality holds true, then electromagnetic form factors measured in elastic
scattering at large Q2 can be used to predict the behavior of structure functions as x → 1 in the
deep inelastic scattering regime, and vice versa [93]. This method is model-independent, as local
duality is a phenomenological observation, and the result is consistent with the perturbative-QCD
prediction that A1 → 1 as x→ 1.

The underlying mechanism of quark-hadron duality is not well understood, although theorists
have seen some success by expressing the finite-energy sum rules in terms of the moments of the
structure functions, which naturally mix contributions from all scattering regimes and lead to duality
as long as scaling violations were not too large [95]. By combining the observed fact of quark-hadron
duality with various mechanisms for SU(6) symmetry breaking, however, it is possible to make some
fairly detailed predictions [96]. Depending on the model by which the SU(6) symmetry is broken,
some types of resonances (e.g. states with spin 3/2) will be suppressed at large x. In each case,
relative strengths for the resonances may be found by requiring the model to reproduce local duality,
leading to predictions of A1 and other functions. Figure 2.14 shows the results of this analysis for
three scenarios: the suppression of spin-3/2 resonances at large x, the suppression of transitions
with helicity 3/2, and the suppression of resonances with symmetric wave functions.

After Jefferson Lab’s 12-GeV upgrade, one of the planned An1 experiments will further test duality
by comparing resonance and deep-inelastic-scattering measurements of gn1 in the range 0.45 ≤ x ≤
0.77 [60].
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Figure 2.14: Predictions of An1 from quark-hadron duality, assuming suppression of: transitions
with helicity 3/2 (solid red line), resonances with spin 3/2 (dashed blue line), and resonances with
symmetric wave functions (dash-dotted purple line) [93, 94].

2.3.6 Chiral Soliton Model

The chiral soliton model is a promising non-perturbative means of studying and predicting the
behavior of nucleons; Diakonov and Petrov provide a useful introduction to this approach [97]. The
key theoretical basis of the model is Spontaneous Chiral Symmetry Breaking, or SCSB, which is
held to dominate the physics of nucleons.

Consider the QCD Lagrangian formulated with some number Nf of massless flavors. One of the
features of this Lagrangian is a global symmetry under U(Nf ) × U(Nf ) rotations of the full Dirac
spinors of left- and right-handed quark fields. This chiral symmetry allows the mixing of states with
different parities (through axial U(Nf ) rotations), so that we would expect to see a parity degeneracy
in each set of states with otherwise identical quantum numbers if the symmetry were exact. Yet
we know that this symmetry is not exact; the bare masses of even the light quarks (mu ≈ 2 MeV
and md ≈ 4.5 MeV [11]) break chiral symmetry explicitly. Yet these masses are far too small to
explain the observed splitting between states with the same quantum numbers except for parity; for
example, the mass difference between the nucleon and its parity partner, the N(1535), is nearly 600
MeV! This discrepancy implies that chiral symmetry is broken both spontaneously and strongly;
the associated order parameter, the chiral condensate, is on the order of a few hundred MeV, large
enough to be a significant effect in the dynamics of the nucleon.

It is then useful to work in a generalized SU(Nc) group where there is an arbitrary number of
colors Nc (as opposed to the real world, which has Nc = 3). If Nc is arbitrarily large, then 1/Nc may
be used as an expansion parameter. At low energies, the chiral soliton model reduces the nucleon to
a collection of weakly interacting mesons and glueballs, binding together the valence quarks. Despite
this non-intuitive basis, the model has resulted in some startlingly accurate predictions; for example,
the relationship between mass splittings in the baryon decuplet and the baryon octet, predicted by
this method, fits the observed data to better than 1% [98].

Within these broad parameters, there are a variety of chiral soliton models. The Nambu-Jona-
Lasinio (NJL) model [99, 100], based on a local four-fermion interaction with U(1)×SU(2)L×SU(2)R
chiral symmetry, is a popular choice for studies of nucleon structure functions [101, 102, 103] be-
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Figure 2.15: Predictions of An1 from chiral soliton models. The red dashed line is a prediction from
the NJL model [101, 102]; the blue solid line is a prediction from an SU(3)-based model [104, 105].
We have made use of parameterizations compiled by X. Zheng [71].

cause it uses quark degrees of freedom to describe the hadronic currents, which simplifies the cal-
culation [103]. An alternative approach [97] begins from the assumption that SCSB is caused by
instantons, nonperturbative gluon-field fluctuations which allow delocalization of quark wave func-
tions. This approach has the advantage that the model preserves the original SUL(Nf )× SUR(Nf )
symmetry of the QCD Lagrangian (although it does explicitly break the axial UA(1) symmetry).
This second approach has recently been extended to three quark flavors and used to make predictions
about nucleon structure functions [104, 105].

Figure 2.15 shows the ratio gn1 /F
n
1 as predicted by these two approaches to the chiral soliton

model. These predictions do not incorporate any fit to world data.

2.3.7 Instanton Model

Let us return briefly to the concept of instantons, the nonperturbative gluon-field fluctuations we
described as a possible source of chiral symmetry breaking in Section 2.3.6. At any moment, the
collection of instantons may be regarded as binding quarks at zero energy [97]. Delocalization occurs
when quarks tunnel between instantons, and quarks flip their helicity in the zero-mode form of this
interaction. This mechanism would tend to depolarize quarks by transferring their polarization to
gluons and quark-antiquark pairs within the nucleon.

In an effort to explain the proton spin puzzle, Nikolai Kochelev used the instanton liquid model
for the QCD vacuum to estimate the effect of instanton-induced processes on the polarized proton
structure function gp1 [106]. The resulting contribution is negative and quite large at low x, but
approaches 0 as x → 1, giving a possible explanation to the spin puzzle and suggesting that Ap1 is
negative [41]. Unfortunately, it is not straightforward to apply this model to the neutron, as the
theory is extremely sensitive to the precise mechanics of SU(6) symmetry breaking in the valence-
quark distribution functions. If the instanton contribution to gn1 is analogous to that for the proton,
which is by no means clear, this model could imply that An1 is negative at high x, but the prediction
that Ap1 < 0 is clearly at odds with the data.
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Figure 2.16: Prediction of An1 from bag model [107], including hyperfine effects but excluding cor-
rections due to the pion cloud. We have made use of parameterizations compiled by X. Zheng [71].

2.3.8 Bag Model

The MIT bag model [108], proposed in 1975 by a quintet of physicists from the Massachusetts
Institute of Technology, treats the hadron as a “finite region of space” in which strong fields are
confined. Inside this region – the bag – massless quarks move quasi-freely and relativistically, but
they are confined to the bag by boundary conditions; outside the bag, they are infinitely massive.

In the most basic formulation of the bag model, each quark moves in its own orbital and the
quarks do not interact with each other. In later refinements of the model, this simplification was
addressed by allowing certain types of interactions. Schreiber, Signal and Thomas, for example,
obtained a prediction of 2xg1/F2 for the proton by beginning with the three-dimensional MIT bag
model, modifying the wave functions to bring them into momentum space, and introducing one-
gluon exchange (that is, a color hyperfine interaction) between the quarks [109]. In the Bjorken
limit, where the Callan-Gross relation is expected to hold, this quantity is equal to g1/F1 and thus
to A1.

One-gluon exchange is not the only spin-dependent effect of importance in models of the nucleon;
as we saw in Sections 2.3.6 and 2.3.7, nonperturbative instanton interactions must also be considered.
More general spin-dependent interactions may be included in the bag model by means of an explicit
symmetry-breaking parameter, which again enables predictions of 2xg1/F2 for both the proton and
the neutron [110].

A failing of the basic MIT bag model is the fact that chiral symmetry is explicitly broken on the
surface of the bag. This problem is addressed by the cloudy bag model [111, 112], wherein a meson
cloud couples to the quarks at the bag’s surface. This meson cloud may be assumed to be composed
primarily of pions; since other mesons have higher mass, any corrections due to their presence will
be smaller than the adjustments due to pions [113].

Reasoning in the cloudy bag model, Tony Thomas has argued that the proton spin puzzle has
been solved [114] – or, at least, that experiment and theory are now in agreement that approximately
35% of the proton spin is carried by its valence quarks. The theoretical side of the solution hinges
on the relativistic treatment of the valence quarks, intrinsic to the original MIT bag model; the
prediction that the pion cloud (whose role is constrained by lattice QCD) has net spin opposite to
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the net spin of the bare nucleon (that is, the nucleon undressed with pions); and the inclusion of
one-gluon exchange, which further reduces the valence quark spin.

Boros and Thomas have published predictions of the polarized structure function g1 for the
proton in this model, with and without pion corrections [107]. As part of the same work, they
also predicted values for An1 , with hyperfine interactions [115] but without pion corrections [116], as
shown in Figure 2.16.



Chapter 3

The E06-014 Experiment

The data presented in this dissertation were taken during Experiment E06-014 at the Thomas
Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia. The measurement
of An1 was not a primary goal of this experiment, but the data set was, happily, able to accommodate
more than one interesting physics measurement. In this chapter, we describe E06-014 in detail, from
motivation to apparatus to execution. In Section 3.1, we will give a brief introduction to the driving
physics goal of E06-014, summarize the experimental setup, and describe the actual course of data-
taking. Section 3.2 describes CEBAF, the electron accelerator at Jefferson Lab. In Section 3.3, we
give a detailed discussion of most of the hardware in Hall A, the experimental hall where E06-014
took place; the hall’s two polarimeters, however, are the subject of Chapter 4, and spectrometer
calibrations will be described in Chapter 5. Our analysis software system – a vital component of
any modern accelerator experiment – is described in Section 3.4. Finally, in Section 3.5, we briefly
summarize the course of the actual experimental run.

3.1 Overview of Experiment E06-014

Experiment E06-014, also known as the dn2 experiment, ran in Hall A of Jefferson Lab from February
7 to March 17, 2009. Its purpose was to perform a precision measurement in the neutron system
of the quantity d2, which is formed from the polarized structure functions g1 and g2. Although this
dissertation is primarily concerned with A1 rather than d2, it is worth a brief digression into the
physics of d2 in order to motivate the experimental choices of E06-014.

d2 is a function of Q2 and is defined as follows

d2

(
Q2
)
≡
∫ 1

0

x2
[
2g1

(
x,Q2

)
+ 3g2

(
x,Q2

)]
dx. (3.1)

Through its dependence on g2, d2 is sensitive to quark-gluon correlations and other high twist
processes (see Section 1.3.3.3). Indeed, if we separate g2 into a twist-2 piece gWW

2 (the Wandzura-
Wilczek term of Equation 1.46) and a higher-twist piece ḡ2, we see that d2 is solely determined by
higher-twist dynamics

d2 =

∫ 1

0

x2ḡ2(x,Q2)dx. (3.2)

In the operator product expansion (Section 1.3.3.3), we can express d2 as a twist-3 matrix
element. Let Fαβ refer to the gluon field operators and g refer to the QCD coupling constant. Sµ is
the proton spin and Pµ its momentum. If we define

58
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Figure 13: Same as Fig.5. The solid circles along the x axis show the anticipated statistical accurary
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Figure 3.1: Projected error bar on E06-014 measurement of d̄n2 at 〈Q2〉 = 3 GeV2, compared to
a lattice QCD prediction [118], the results of Jefferson Lab experiments E94-010 [119] and E99-
117 [41], and the results of SLAC experiment E155X [120]. The quantity d̄n2 is equal to dn2 with the
elastic contribution (x = 1) subtracted from the integral. The solid line shows the results of a MAID
calculation [28]; the dashed line is from a chiral perturbation theory calculation at low Q2 [121].
This figure is reproduced from the E06-014 proposal [122].

F̄µν ≡ 1

2
εµναβFαβ (3.3)

then we may represent d2 as

d2S
[µP {ν]Pλ} =

1

8

∑

q

〈P, S|ψ̄qgF̄ {µνγλ}ψq|P, S〉 (3.4)

where the brackets {...} denote symmetrization of indices and the brackets [...] denote antisym-
metrization [117], so that the left-hand side of Equation 3.4 is symmetric under ν, λ interchange and
antisymmetric under µ, ν interchange.

Equation 3.4 sets the stage for one of the two main physical interpretations of dn2 . Since both
the strong force and the electromagnetic force conserve parity, we can pursue an analogy between
color fields and electromagnetic fields: in the rest frame of a polarized nucleon, the color magnetic
field ~B is along the nucleon polarization direction, while the color electric field ~E is perpendicular
to it. We can then define the color polarizabilities of the nucleon, χB and χE , in the nucleon rest
frame

〈P, S|ÔB,E |P, S〉 = χB,E2M2
N
~S (3.5)

where MN is the mass of the nucleon and the color singlet operators are defined by ÔB ≡ j0
a
~Ba and

ÔE ≡ ~ja × ~Ea, where we have expressed the quark current as jµa = −gψ̄γµtaψ [123] and ta = λa/2
is a generator of SU(3), with λa a Gell-Mann matrix.

By combining Equations 3.4 and 3.5, we obtain [124]

d2 =
1

4
(2χB + χE) . (3.6)
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Figure 11: JLab Hall A floor setup using the Bigbite, the left HRS spectrometer and the polarized
3He target.

5 Optimization of the dn
2 measurement

The goal of this experiment is to obtain d2 from a measurement of the unpolarized cross section σ0

and the parallel A‖ and perpendicular A⊥ asymmetries on 3He. Equivalently d2 is obtained from
the measurement of the linear combination of the spin structure functions g1(x, Q2) and g2(x, Q2)
and forming the second moment of this combination:

d2(Q
2) =

∫ 1

0
x2[2g1(x, Q2) + 3g2(x, Q2)] dx =

∫ 1

0
d̃2(x, Q2) dx (13)

The spin structure functions can be expressed in terms of asymmetries and unpolarized cross
sections as follow;

g1 =
MQ2

4α2

y

(1 − y)(2 − y)
2σ0

[
A‖ + tan

θ

2
A⊥

]
(14)

g2 =
MQ2

4α2

y2

2(1 − y)(2 − y)
2σ0

[
−A‖ +

1 + (1 − y) cos θ

(1 − y) sin θ
A⊥

]
(15)

Figure 3.2: Hall A spectrometer placement during E06-014, reproduced from the E06-014 pro-
posal [122].

In the words of Filippone and Ji [117], we see that “d2 measures the response of the color electric
and magnetic fields to the polarization of the nucleon.” Meanwhile, if we consider a nucleon with
transverse spin relative to the incident electron momentum, d2 measures the mean color magnetic
field ~B in the direction of its transverse spin [125].

Conventionally, polarizability refers not just to an alignment of spins, but to the distortion of
a charge distribution from its usual shape in the presence of an external field. As the Q2 of an
interaction increases, we can still speak of the nucleon as being spin-aligned, but the correlators are
local and it is no longer deformed in shape; it is then increasingly less appropriate to speak in terms
of “polarizability” [124]. At high values of Q2, we have

d2 =
−1

M2
N

F y(0) (3.7)

which gives us the second physical interpretation of d2: at time t = 0, immediately after a quark
inside the nucleon has been struck by a virtual photon, d2 is proportional to the ensemble-averaged
transverse force on the struck quark [124].

The quantity d2 may be measured on either the proton (dp2) or the neutron (dn2 ). Like A1, it has
been calculated for both nucleons using a variety of models and methods, from QCD sum rules [125]
to the chiral-quark soliton model [126] to lattice QCD [118]. A lack of precise data at large x values
dominates error bars on the world data. By improving statistics in this region, E06-014 was designed
to improve the statistical error bar on dn2 by a factor of almost four [122], as shown in Figure 3.1.



CHAPTER 3. THE E06-014 EXPERIMENT 61

3.1.1 Measurement Strategy

In order to achieve this fourfold statistical error reduction, E06-014 was designed to take data entirely
in the deep inelastic scattering (DIS) region, in the range 0.2 < x < 0.7 and 2 (GeV/c)2 < Q2 < 6
(GeV/c)2. It took data for six weeks in Hall A, the largest of Jefferson Lab’s three experimental halls
and ran with 15µA of polarized electrons incident on a fixed, polarized 3He target (Section 3.3.3).
Since a free neutron has an average lifetime of only about 14.75 minutes [11], a free-neutron fixed
target is impractical; further, spin-polarizing neutral particles imposes an additional layer of com-
plexity. A 3He target makes an excellent proxy, however, as the polarization of the 3He nucleus is
carried by the neutron with a probability of approximately 87% [127].

The experiment used two of the hall’s three large spectrometers: BigBite (Section 3.3.4) and
the Left High-Resolution Spectrometer (LHRS) (Section 3.3.5). Each spectrometer was placed at
an angle of 45◦ relative to the beamline and operated in a single-arm mode, configured to detect
electrons. BigBite – chosen for its large acceptance and ability to handle high counting rates – took
data for measurements of the double spin asymmetries A‖ and A⊥. The LHRS, with lower noise and
a better-understood efficiency, took data for a measurement of the unpolarized total cross section
σ0. The asymmetry measurements were made possible by the fast (30 Hz) flipping of the electron
beam helicity, and by periodic changes to the polarization direction of the 3He target.

These three measured quantities – σ0, A‖ and A⊥ – can be combined with the kinematic variables
defined in Section 1.2.1 to form an expression for dn2

dn2 =

∫ 1

0

MQ2

4α2

x2y2

(1− y) (2− y)
σ0

[(
3

1 + (1− y) cos θ

(1− y) sin θ
+

4

y
tan (θ/2)

)
A⊥ +

(
4

y
− 3

)
A‖

]
dx (3.8)

where M is the neutron mass and θ is the electron scattering angle in the laboratory frame. Ex-
pressing dn2 in terms of the direct experimental observables (cross section and asymmetry) simplified
the problem of optimizing the statistical error on dn2 (rather than on the structure function g2):
since A⊥ contributes the most to this error, the majority of running time was spent with the target
polarized transverse to the electron beam.

Figure 3.2 shows the layout of the spectrometers on the floor of Hall A. The right HRS position
was chosen so as to leave enough space for the BigBite spectrometer; it was not used for E06-014
data.

3.1.2 Kinematic Settings

Figure 3.3 shows the planned kinematic coverage of the experiment. In order to report results with
a constant Q2 over a wide x range, the decision was made to measure two Q2 points at each x value
and interpolate. The experiment therefore took data with two electron beam energies: 4.7 GeV and
5.9 GeV. A single BigBite magnetic field setting covered the entire kinematic range; the LHRS, with
a much smaller acceptance, required twenty magnet settings, ten at each beam energy, to achieve
the same coverage. These are the bands of different colors in Figure 3.3.

Due to time constraints, the experiment took data for only fifteen out of the twenty planned LHRS
magnet settings. Tables 3.1 and 3.2 list the final kinematic settings for the two beam energies, with
corresponding x and Q2 values.

3.2 CEBAF

The Continuous Electron Beam Accelerator Facility (CEBAF) [130], Jefferson Lab’s source of ac-
celerated, polarized electrons, is a superconducting radiofrequency accelerator. Figure 3.4 is an
aerial view of the site, showing CEBAF’s racetrack shape in the background and the domed exper-
imental halls in the foreground. CEBAF can deliver simultaneous beam of varying energy to all
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Figure 2.4: Kinematic range for the measurement at a constant energy and angle. The bands
represents the horizontal angular acceptance of the BigBite spectrometer. Each band is split
into bins associated with the 10 L-HRS spectrometer momentum settings used at each beam
energy.

2.3.1 Experimental Configuration

Kinematics

BigBite’s mode of operation is such that a single magnetic field setting will cover the entire
kinematic range at each beam energy. The Left HRS central momentum will be stepped
across the same kinematic range to measure the absolute cross section as a function of x.
Tables 2.4 and 2.5 present the kinematic bins and anticipated signal rates. Figure 2.4 plots
the kinematic coverage over x and Q2.

The Polarized Beam

Our rate calculations assume that the achievable beam polarization at CEBAF is 75% with
a current of 15µA although 80% electron beam polarization has been delivered on a regular

Figure 3.3: Planned E06-014 kinematic coverage, reproduced from readiness review [128]. Each band
gives the kinematic range at a constant spectrometer angle and beam energy. The width of each
band is set by BigBite’s horizontal angular acceptance; the colored bins within each band represent
the ten LHRS central-momentum settings that were planned for each beam energy.

three halls. The lowest possible operating energy is about 0.6 GeV, while the highest approaches
6 GeV. Table 3.3 gives selected operating parameters for the accelerator. In the following sections,
we will describe the beam source, the accelerator itself, and the delivery of accelerated beam to the
experimental halls.

3.2.1 Polarized Electron Source

Experimental programs in the three halls demand highly polarized electron beams that can be
delivered simultaneously to three end stations, each of which may require different beam energies
and different currents. (In particular, currents in Hall B are up to 105 times lower than currents
in the other two halls.) To achieve these goals, the beam in each hall is made up of bunches with
a repetition rate of 499 MHz, the third harmonic of the 1497-MHz fundamental frequency of the
accelerator. The beams for the three halls are interleaved together [130]; thus, the properties of a
given bunch in the accelerator are shared with the electrons three bunches ahead and three bunches
behind, but not with the bunches immediately preceding and following.

The source of the polarized electron beam is a photocathode that emits electrons when illumi-
nated by a pulsed laser at a certain energy; the laser’s pulse rate sets the bunch repetition rate of the
beam. The photocathode is made of strained superlattice gallium arsenide (GaAs), a descendant
of photoemission gun technology that dates from 1976 [131]. When the photocathode absorbs a
photon of the right energy, an electron is excited into the conduction band; in the presence of a
large external electric field, it then diffuses to the surface and escapes to the vacuum outside. It is
the energy-level structure of GaAs that allows us to produce polarized electrons with a circularly
polarized laser beam [132].

Figure 3.5(a) shows the energy levels for bulk GaAs. The lowest level in the conduction band,
with its minimum marked Γ6 in the diagram, has s-type symmetry. The top levels of the valence
band, their maxima marked Γ7 and Γ8, have p-type symmetry; the energy gap between them is due
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Momentum Setting (GeV/c) x Q2 (GeV/c)2

0.60 0.208 2.07
0.90 0.331 3.11
1.13 0.436 3.89
1.20 0.470 4.14
1.27 0.505 4.38
1.34 0.541 4.62
1.42 0.584 4.89
1.51 0.633 5.21
1.60 0.685 5.52
1.70 0.745 5.87

Table 3.1: LHRS kinematic settings during E06-014 for a beam energy of 5.89 GeV.

Momentum Setting (GeV/c) x Q2 (GeV/c)2

0.60 0.214 1.66
0.80 0.300 2.22
1.42 0.633 3.93
1.51 0.692 4.18
1.60 0.754 4.43

Table 3.2: LHRS kinematic settings during E06-014 for a beam energy of 4.73 GeV.

Repetition rate 499 MHz/hall
Transverse RMS beam size ∼ 80 µm
RMS bunch length 300 fs/90 µm
Energy spread 2.5× 10−5

Average cavity accelerating gradient 7.5 MV/m
RF power per cavity < 3.5 kW
Average cavity Q0 4.0× 109

Cavity operating temperature 2.08 K
Beam power < 1 MW
Beam loss < 1 µA
Beam current 1-150 µA (Halls A and C)

1-100 nA (Hall B)

Table 3.3: Selected operating parameters for CEBAF [130].
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Figure 3.4: Aerial view of Jefferson Lab accelerator site, taken in 2001. The racetrack shape of the
underground accelerator is reflected in the support buildings and roads visible in the upper left. The
round, grass-covered hills over the three experimental halls can be seen in the lower right; Hall A is
the leftmost of the three halls. This photograph was submitted by Shannan Kyte to the Jefferson
Lab Picture Exchange [129].

to spin-orbit coupling, but Γ8 is two-fold degenerate, taking contributions from both the light hole
band (lh, mj = ±1/2) and the heavy hole band (hh, mj = ±3/2). Suppose that we illuminate the
crystal with left-circularly polarized light (σ−) whose photon energy is larger than the band gap
energy Eg, but less than Eg + ∆SO. Since the photons have helicity −1, only two transitions are
possible for the electrons they excite: mj = 3/2 → mj = 1/2, and mj = 1/2 → mj = −1/2. The
first transition is three times more likely than the second, so the final population of electrons will
have three times as many positive-helicity electrons as negative-helicity electrons.

The polarization P of an electron beam is defined as an asymmetry between the number of
electrons in each helicity state

P =
N+ −N−
N+ +N−

. (3.9)

This gives the electron beam from a bulk-GaAs photocathode a maximum polarization of 50%, as
shown at the right of Figure 3.5(a). For illumination with right-circularly polarized light, which has
helicity +1, we can work through an analogous derivation to find that the resulting electron beam
is 50% polarized in the opposite direction.

In the 1990s, this performance was improved dramatically by the introduction of strained GaAs
photocathodes [133]. These photocathodes typically consist of a layer of GaAs grown on top of
a layer of GaAsP. The lattice spacing of the pure GaAs layer shrinks slightly to meet the lattice
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electrons to the number of incident photons before passing 

through the vacuum window evaluated at low laser intensi- 

ties, will be used as a practical measure of the low 

intensity yield. 

3.2. Polarization 

A plot of the minority carrier energy E as a function of 

momentum for bulk GaAs at room temperature is shown in 

the vicinity of the r point at the left of Fig. 3a. The top of 

the valence band at rs, as well as the spin-orbit split-off 

band at r,, has p-type symmetry, whereas the bottom of 

the conduction band at r, has s-type. The energy level 

diagram and transition probabilities are shown in the mid- 

dle of Fig. 3a. At r,, the light hole (lh) and heavy hole 

(hh) bands are degenerate. Under these conditions, if the 

crystal is illuminated with right (o + 1 only or left (o - 1 

only circularly polarized light, with a photon energy greater 

than the band gap Es, but less than Es plus the spin-orbit 

energy splitting A,,, then electrons excited into the con- 

duction band by a-light can be expected to have a polariza- 

tion Pizt- of 

N+- N- 3-l 
Pg; = ~ = - = +os, 

N,+N_ 3+1 
(3) 

as shown at the right of Fig. 3a. Here the sign of the 

polarization indicates the projection of the spin angular 

CB 

r6 

Y 

G/2 mj=-l/2 

momentum along the axis of propagation of the photon. 

The measured polarization of electrons photoemitted from 

thick GaAs is generally < 50% [26]. Typical values at 

room temperature are on the order of 30%. At liquid 

nitrogen (LN,) temperatures or using thin GaAs, polariza- 

tions > 40% are typically observed [27]. 

3.3. Strained lattice cathodes 

The success of the SLAC source has been a combina- 

tion of the reliability of the source over the long operating 

cycles of the SLC and the fixed-target programs combined 

with the successful adaptation of strained-lattice GaAs- 

GaAs, _,P, cathodes to the source to increase the polariza- 

tion. The lattice constant of GaAs, _XP, is smaller than, 

and can be adjusted relative to, that of GaAs by varying 

the phosphorus fraction X. If GaAs of the proper thickness 

is grown on top of the GaAs,_,P, sublayer, the resulting 

biaxial compressive strain (uni-axial tensile strain along 

the growth direction) within the GaAs layer will lift the 

degeneracy of the lh and hh bands [9,28] at r as shown in 

Fig. 3b [29]. Note that if the hh band is energetically 

higher than the lh band, as is the case for bi-axial compres- 

sive strain, then the resulting electron polarization has the 

same sign as for bulk GaAs if the excitation light has the 

same circular polarization sign. If the band splitting 6 is 

larger than the rms variation in the energy band tailing due 
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Fig. 3. Energy level diagram and transition probabilities at F point. Only the transitions for c-excitation are shown. (a) For &As, the 

solid-line transitions are for Eg < hv < (Eg + A). (b) For GaAs-GaAs, _,P,, the solid-line transitions are for Es < hv < (E, + 6). Figure 3.5: Energy levels for bulk (a) and strained (b) GaAs, reproduced from Alley et al. [132]. At
left is the minority carrier energy E as a function of momentum k, showing the conduction band at
the top and the valence band at the bottom. In the center, transitions between energy levels are
shown for absorption of a left-circularly polarized photon; dashed-line transitions may be avoided
through a careful choice of photon energy, and numbers in circles indicate the relative transition
probabilities (i.e. the transition marked 3 is three times as likely as the one marked 1 ). At right is
the polarization of the excited electrons as a function of photon energy.

spacing of the GaAsP layer, and the resulting strain breaks the degeneracy of the light hole and
heavy hole bands. Figure 3.5(b) shows the resulting level diagrams. It is now possible to choose a
photon energy so that only one transition is possible from the valence band to the conduction band;
in principle, this could result in an arbitrarily well-polarized electron beam.

In practice, however, electron beams generated from this method showed a maximum polarization
of about 80%. Investigation showed that this was partly due to the fact that the pure GaAs layers
in these photocathodes were too thick (about 100 nm) to experience uniform strain throughout their
volume. The solution was to form a strained superlattice, formed of multiple pairs of GaAs and
GaAsP layers, thin enough to avoid strain relaxation [134]. Jefferson Lab’s strained superlattice
photocathode consists of 14 layer pairs with a total depth of 100 nm [135].

Strained superlattice technology has one additional appealing feature: the 780-nm photons re-
quired to excite the photocathode can be produced by frequency-doubling commercially available,
fiber-based 1560-nm lasers. These require far less maintenance than the mode-locked Ti-Sapphire
lasers that drove the 850-nm transitions of the older, single-strained-layer photocathodes [136]. Fur-
thermore, lasers, amplifiers and fibers at a wavelength of 1560 nm are relatively cheap, since this
wavelength is common in the telecommunications industry.

Each of the three halls has its own dedicated laser system: a 1560-nm seed laser, an ErYb-doped
fiber amplifier, and a periodically poled lithium niobate (PPLN) crystal used to double the photon
frequency via second harmonic generation [137]. Each laser is gain-switched so that it pulses at a rate
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1:159 652! 10"3. The utility of the Wien filter is that the
polarization of a beam passing through the device can be
rotated in the plane of the electric field without changing
the central beam orbit.

The transverse electric field is produced along the mid-
plane of the Wien filter by two electrodes which span its
length. The electrode voltages are set by two opposite
polarity 15 kV power supplies controlled by a common
digital to analog converter (DAC), so that the potential on
axis is zero. A magnetic field normal to the electric field is
applied to balance the Lorentz force on the beam axis,

~FF # q$ ~EE% ~!!! ~BB& # 0; (2)

requiring that j EB j # !.
The voltage applied across the two electrodes was

calibrated against the common DAC setting, with the
results shown in Fig. 7. The response is modeled by a
second-order polynomial giving the power supply offset,
gain, and linearity as a function of the DAC setting

VWien # '$p0 % p1 ( Sdac % p2 ( S2dac&: (3)

FIG. 7. Wien voltage with second-order polynomial fit (upper panel) and fit residuals (lower panel) both shown as a function of the
DAC set point (Sdac).
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FIG. 6. Diagram of a Wien filter indicating the rotation of the beam polarization relative to the beam direction ("Wien) in crossed
magnetic and electric fields ( E
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Figure 3.6: Schematic of a Wien filter for an electric field and spin rotation in the horizontal plane.
Reproduced from Grames et al. [139].

of 499 MHz, 120◦ out of phase with the others. With beam splitters, polarizers, and dichroic mirrors,
the three laser beamlines are eventually directed along a single axis, so that all three lasers illuminate
the same photocathode. Along this common beamline, a Pockels cell operates as a quarter-wave
plate, converting the linearly polarized 580-nm beams into circularly polarized beams; fast helicity
flipping (right circular to left circular, and vice versa) is made possible by flipping the sign of the
Pockels cell voltage.

Just before entering the Pockels cell that will give it circular polarization, the linearly polarized
780-nm light passes through another Pockels cell whose voltage, changing according to the same
fast-helicity-flipping sequence, is set to vary the intensity of the laser light in order to minimize the
helicity-correlated charge asymmetry of the beam. This cell is part of a feedback loop that includes
the Hall A beam current monitors and a special data-acquisition system developed by the HAPPEX
(Hall A Proton Parity Experiment) collaboration, and generally keeps the charge asymmetry below
about 200 ppm. For additional control of helicity-correlated effects, an insertable half-wave plate
(IHWP), made of mica, can be placed in the photon beamline, changing the helicity produced by a
given Pockels cell voltage [138].

A constant, -100-kV electric field on the photocathode aids in electron extraction and gives the
electrons an energy of 100 keV on their way into the injector. In this 100-keV beamline, a Wien
filter [139] is used to rotate the electron spin direction without changing the central beam orbit.
When configured with knowledge of spin precession in the accelerator and in the beamlines to the
experimental halls, this allows the polarization direction to be optimized in the three halls. As shown
in Figure 3.6, a Wien filter provides static electric and magnetic fields perpendicular to each other
and to the electron velocity. The apparatus rotates the beam polarization through an angle ηWien

in the electric field plane; the size of the angle is largely determined by the size of the electric field
integral. The magnetic field strength is chosen to satisfy |E/B| = β (where β = v/c is the electron
velocity) so as to cancel the Lorentz force exerted on the beam by the electric field.

3.2.2 Accelerator

Polarized electrons from the electron source are accelerated to high speeds using superconducting
radiofrequency (srf) technology. The basic unit of the accelerator is the accelerating cavity, two
of which are shown in Figure 3.7. Each cavity is fashioned from pure niobium and contains five
cells with an elliptical cup shape; they are kept at a temperature of 2.08 K, at which niobium is a
superconductor, by liquid helium supplied by the Central Helium Liquefier (CHL). With the aid of
its own 5 kW klystron, each cavity is driven by a 1497 MHz electromagnetic wave so that the wave
crests can be aligned with the electron bunches, giving the cavities an average gradient of up to 7.5
MV/m. Each pair of five-cell cavities is sealed together in a single cryostat to make a cryounit; in
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Figure 3 A CEBAF cavity pair. Each five-cell cavity is 0.5 m long.

machine footprint with a total beam line length over 4.5 km. The performance ob-

jectives for the acceleratorwerefinal energybetween0.5 and4.0GeV,with an even-

tual goal of 6 GeV informally designated; full-energy beam current up to 200 µA,

corresponding to a maximum beam-loading current of 1 mA; cw duty factor; beam

rms normalized emittance of 1 mm-mrad; and an rms relative momentum spread

of 2.5 × 10−5. In support of construction, many processing, test, and assembly
processes took place in Jefferson Lab’s onsite Test Lab, a building inherited from

NASA and fitted out for numerous accelerator technology purposes.

Each srf linac consists of 160 accelerating cavities based on a design developed

at Cornell University (Figure 3). The Cornell cavity was chosen for both technical

and practical reasons: a suitable frequency near 1497 MHz, gradients in labora-

tory and beam tests in excess of the 5 MV/m needed for CEBAF’s 4 GeV final

energy (an energy gain of 2.5 MV/cavity/pass), provision for appropriate damping

of higher-order modes (HOMs), and readiness for industrial prototyping. The five-

cell elliptical cavity structure operates in theπ mode and has a fundamental coupler

on the beam line at one end and an HOM coupler on the beam line at the other. The

elliptical shape yields low peak surface electric fields, a good chemical rinsing ge-

ometry, good mechanical rigidity, and resistance to multipactoring of cavities. The

HOMs are coupled out of the cavity through two mutually orthogonal rectangular

waveguides with a cutoff of 1900 MHz. If undamped, HOMs could have external

Q’s as high as 1010, the unloaded Q of the modes due to superconducting losses.

Resonances in the first HOM pass band (TE111) below 1.9 GHz are not damped by

the HOM extraction waveguides, but couple out of the fundamental power coupler

only. It has been observed that some of these dipole modes are poorly damped, due

to self-polarization of the fundamental power coupler. Measurements of HOMs in

CEBAF itself and in a similar cryomodule developed for the Jefferson Lab free-

electron laser (31) (a spinoff that is briefly addressed later) indicate that loadedQ’s

as high as 5 × 107 can exist (below 1.9GHz)without producing beam instabilities,

up to beam currents of 1 mA (5 mA for the free-electron laser). Above 1.9 GHz

HOMs are well damped, with typical Q’s ranging from about 500 to 105, repre-

senting over four orders of magnitude of damping compared to the fundamental
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Figure 3.7: Pair of accelerating cavities, later installed in the CEBAF beamline. Each 50-cm cavity
contains five cells. Four cavity pairs make up a cryomodule. Reproduced from Leemann et al. [130].

turn, four cryounits are joined to make an 8.25-meter cryomodule. Neighboring cryomodules are
connected by warm beam pipes and steering magnets [130].

The basic layout of CEBAF is shown in Figure 3.8. At the injector, electrons from the source
are accelerated from their initial energy of 100 keV to a final energy of 45 MeV; this is accomplished
by passing them through two and a quarter cryomodules. From the injector, they enter the north
linear accelerator segment, which consists of 20 consecutive cryomodules or 160 srf cavities. Early
in Jefferson Lab’s operational history, an electron passing through this linac would have experienced
an energy gain of about 400 MeV, but an energy gain of 600 MeV is now commonplace.

After passing through the north linac, electrons are taken through a 180◦ bend by a series of
quadrupole and dipole magnets in a recirculation arc with a radius of 80 meters. These magnets
steer the beam into the south linac, antiparallel to the north linac but otherwise identical, where it
gains another 600 MeV, and another recirculation arc completes the racetrack shape.

The experimental halls are located at the end of the south linac, but instead of going directly to
these end stations, the beam may be recirculated through the pair of linacs up to four times, each
time using a different set of recirculation arcs, for a total of up to five passes through the accelerator.
RF separators and septum magnets allow particular bunch trains and energies to be extracted from
the second recirculation arc and sent to the appropriate hall. With this combination of extraction
tools, each hall may take a different beam energy, as long as they are all multiples of the one-pass
beam energy, or any number of halls may simultaneously take beam at the maximum energy setting.
A maximum total current of 150 µA may be divided arbitrarily among the three halls.

3.2.3 Beam Delivery to the Experimental Halls

Once the bunch train for Hall A’s beam has been extracted from the end of the south linac, it must
be bent through an angle of 37.5◦ to enter the hall [141]. This is primarily accomplished by the
series of eight dipoles that, with support magnets (a quadrupole and a pair of steering magnets for
each dipole), makes up the Hall A arc. (Similar systems handle beam delivery for the other two
halls.) This system must not only deliver tightly specified beam to the target location, but must also
meet additional specifications at certain points along the way; for example, 50 µm position stability
is needed not only at the target, but also at the two beamline polarimeters.

Fast helicity flipping at the electron source (Section 3.2.1) is programmable according to ex-
perimental needs, but since the Pockels cell is on the common photon beamline, the same helicity
structure is sent to all halls. During E06-014, the beam helicity followed the specifications engi-
neered by the G0 experiment in Hall C [142]. In this scheme, the electron beam is be subdivided
into 1/30-second helicity windows, also known as MPSes for the Master Pulse Signals which mark



CHAPTER 3. THE E06-014 EXPERIMENT 68

Figure 3.8: Schematic of CEBAF, reproduced from Alcorn et al. [140]. The electron beam originates
at the injector and is accelerated to 45 MeV before entering the north linear accelerator. The
electrons gain energy in each of the two linacs, and can be recirculated through the pair of linacs up
to four times before being delivered to one of the three experimental halls.

their boundaries. During each window, the electron beam helicity has a well-defined nominal direc-
tion, either parallel (+) or antiparallel (−) to its momentum. (We will discuss determinations of
the electron beam polarization – i.e. the degree to which “parallel” or “antiparallel” is an accurate
description of the electrons’ longitudinal spins – in Chapter 4.)

Sets of four consecutive helicity windows are arranged in one of two symmetric quartets: either
+ − −+ or − + +−. Each quartet comprises two consecutive helicity pairs; each pair includes
both complementary helicity states. Once the helicity state of the first window in a quartet is
decided (via a pseudorandom number-generation algorithm), the three subsequent helicity states
are likewise uniquely determined. A signal indicating the helicity direction is sent in real time to the
data-acquisition systems, as is a signal marking the beginning of a quartet. The MPS signal marks
the beginning of a new helicity window, and gives a pulse regardless of whether or not the helicity
is actually flipped. This pulse marks a possible transition; during it, the helicity of electrons in the
hall is indeterminate.

Figure 3.9 shows the timing for the MPS, helicity signal, and quartet-initialization (QRT) signal.
Many experiments, particularly those that are sensitive to very small helicity-correlated systematic
effects, run with a delayed helicity signal, where information about a helicity window’s polarization
direction arrives several MPSes after the accelerated electrons do. (A typical delay is eight MPSes.)
E06-014 declined this option and ran with a prompt helicity signal.

3.3 Hall A Hardware

E06-014 ran in Hall A, one of Jefferson Lab’s three experimental halls. In this section, we describe
the Hall-based apparatus that made the measurement possible, most of which is standard equipment
with some modifications for our experiment.
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Figure 3.9: Timing for MPS, helicity and QRT signals in the G0 scheme. The helicity signal shown
is for a +−−+ quartet; it would be inverted for a −+ +− quartet, while the other signals would
remain the same.

3.3.1 Coordinate Systems in Hall A

Two coordinate systems are in use to characterize the behavior of the electron beam as it travels
along the Hall A beamline; additional coordinate systems are introduced once the beam strikes
the target, so as to describe the paths of the scattered particles relative to the target and to the
spectrometers. Here, we will define the various coordinate systems used in Hall A; over the remainder
of this dissertation, we will refer back to these systems frequently.

Upstream of the target, the z axis is traditionally placed along the beamline, with increasing z
in the downstream direction (toward the target). Two coordinate systems – the Accelerator system,
used for beam steering, and the Hall A system, used for equipment surveys and for tracing the beam
upstream of the target – define z thus, and denote the vertical axis as y (with positive y in the
upward direction). As shown in Figure 3.10, however, the two systems differ in their definitions of
the x axis. The Hall A coordinate system places positive x to beam left (when the system is viewed
looking downstream); the Accelerator coordinate system, which is used in the definitions of EPICS
variables, places positive x to beam right, and is thus a left-handed coordinate system [143]. The
origin of the Hall A coordinate system is taken as the nominal center of the target cell, which is also
the pivot point of the High-Resolution Spectrometers.

We can also define a target coordinate system for each spectrometer, so named because the origin
is in the target (where the central ray of the spectrometer intersects with the z axis in the Hall A
system). Here, the z axis points down the central ray of the spectrometer, away from the target and
parallel to the floor. The x axis points downward (with gravity); note that the xtg axis is vertical
whereas the xHall axis is horizontal. The y axis, which is parallel to the floor, is defined so as to
form a right-handed coordinate system: ŷ = ẑ× x̂. These systems are typically used when projecting
tracks back to the target in order to determine momenta and scattering vertices.

Finally, each spectrometer has a set of detector coordinates, which simplify the problem of finding
tracks in drift chambers and projecting these trajectories into other parts of the detector stack. For
BigBite, the detector coordinate system has its origin in the center of the first multi-wire drift
chamber plane. The z axis is the nominal direction of a particle traveling perpendicular to the wire
plane; its angle relative to the Hall A x−z plane is thus equal to the 10◦ pitch of the detector stack.
The x axis, perpendicular to z, lies in the wire plane; positive x is downward, with gravity, since that
is the magnetic dispersion direction. The y axis, also in the wire plane, is once again defined to form
a right-handed coordinate system, so that positive y points roughly toward the beam dump [144].
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Figure 3.10: A schematic of four coordinate systems in common use in Hall A. Here, the beamline
is seen from above, with the downstream direction toward the right of the figure.

3.3.2 Hall A Beamline

Upstream of the target, the Hall A beamline contains a variety of devices used to monitor various
characteristics of the electron beam, several of which are shown in Figure 3.2. The Møller and
Compton polarimeters measure the beam polarization; they will be discussed in Sections 4.2 and 4.3,
respectively. (The Compton polarimeter, which is located in the tunnel leading to the Hall rather
than in Hall A itself, is not shown in the figure.) Below, we describe our measurements of beam
energy (Section 3.3.2.4), current and charge (Section 3.3.2.1), position (Section 3.3.2.2), and raster
(Section 3.3.2.3).

3.3.2.1 Beam Current and Charge

E06-014 ran with beam currents of about 15 µA. Fluctuations around the current setpoint – as well
as occasional beam trips, due to transient difficulties in the accelerator or in other halls – make it
essential to monitor the actual beam current in real time.

For this purpose, Hall A’s standard beamline equipment includes two resonant RF cavities,
stainless-steel cylinders with a high (∼ 3000) Q factor, which are tuned to the fundamental beam
frequency of 1.497 GHz. These Beam Current Monitors (BCMs) are denoted upstream (u) and
downstream (d), based on their relative positions on the beamline. Each produces a voltage signal
proportional to the measured current. This signal is fanned out into three copies, each of which is
amplified by a different gain factor (1, 3, or 10) and sent to a VtoF converter. The resulting signals
– three for each BCM, or six altogether – have frequencies proportional to the beam current and
may be read out by scalers in the HRS and BigBite arms for a continuous measurement of both
current and accumulated beam charge [140]. They are denoted u1, u3, u10, d1, d3, and d10, based
on the originating BCM (upstream or downstream) and gain factor.

In order to calibrate these readouts, it is necessary to take dedicated calibration runs, system-
atically stepping through several beam-current set points. There are two steps in this calibration
process. First, at the injector, the OL02 resonant cavity is calibrated to the Faraday cup, a water-
cooled copper beam dump that can be inserted into the injector beamline so as to collect all of the
current [145]. No beam can be received downstream of the Faraday cup while it is in place, but the
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(a) (b)

Figure 3.11: Procedure for calibrating beam current measurements. (a): The relationship of the
current reading of the OL02 cavity (at the injector) to the current measurement from the Faraday
cup. (b): The relationship of the beam-current scaler rates (in the BigBite arm) to the beam current
from the calibrated OL02 cavity reading.

injector cavity does not disturb the beam, so it is the OL02 injector cavity’s current reading that is
compared directly to the Hall A BCM readouts in the second step.

Figure 3.11(a) shows the OL02 current as a function of the absolute measurement taken by the
Faraday Cup. With this information, we can plot the rate measured in each of the six beam-current
scalers as a function of the beam current, derived from the OL02 readings during our calibration run
(Figure 3.11(b)). From a linear fit to the scaler readouts between 5 and 30 µA, we can determine
the slope of the line relating our scaler rates to the beam current: ωn = offsetn + slopen · I. The
fit does not extend to zero because the BCM readouts are known to be nonlinear at low currents;
instead, the offset (the scaler rate for zero current) is determined from a Gaussian fit to the scaler
rates recorded over the course of five minutes with the beam off. Table 3.4 shows the calibration
constants resulting from these fits. Over a given time interval, these values allow us to extract
both the beam current I and the accumulated beam charge Q from the scaler rate ωn of the nth
beam-current signal, according to Equations 3.10 and 3.11.

I =
ωn − offsetn

slopen
(3.10)

Q = I · t =
t (ωn − offsetn)

slopen
(3.11)

This calibration was performed with the scalers on the BigBite arm; the scalers on the Left HRS
arm record the same signal, and yield consistent results. If we neglect errors in the clock rate, the
error on the fit corresponds to a systematic error of about 0.03% on the beam current calculated
from the u3 scaler rate.

3.3.2.2 Beam Position from the Beam Position Monitors

In order to make an accurate reconstruction of the momentum and vertex position of a given track,
we need to know the position of the beam, in the plane transverse to the nominal beam direction
(x and y in Hall A coordinates), at the location of the target. This position is affected by the
beam’s orbit in the accelerator, the settings of the Compton and Møller magnets, and the fast raster
(Section 3.3.2.3). For slow beam position measurements (over a timescale of several tenths of a
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Scaler Slope (Hz/µA) Offset (Hz) Scaler Slope (Hz/µA) Offset (Hz)

u1 2101± 1 396 d1 2152± 1 154
u3 6480± 2 453 d3 6658± 3 133
u10 19731± 11 771 d10 21008± 10 293

Table 3.4: Calibration results for beam-current scalers, three upstream (u) and three downstream(d),
with gain factors of 1, 3, and 10. Errors on the offsets are on the order of 10−2 Hz.

second), we rely on the two Beam Position Monitors, four-antenna arrays placed 7.524 meters and
1.286 meters upstream of the target. By combining the positions measured by the two BPMs, we
can determine the actual direction of the beam and extrapolate its position at the target.

Each BPM works via a comparison of the signals in an opposing pair of wire antennae. The
channel offsets and their relative gain factors are combined to obtain position readings in the BPM
coordinate system, which is a ∼45◦ counterclockwise rotation from the Accelerator coordinate sys-
tem [143]. In order to interpret the readings from our BPMs, we must compute the transformation
between the BPM readings and target coordinate system.

Typically, this transformation is determined using beam profiles from the harp wire scanners;
one harp is located immediately downstream of each BPM. Unlike the BPMs, harp measurements
are destructive, so the calibration requires a dedicated set of runs during the experiment. The
measurements are conventionally performed in a “bull’s-eye” configuration: a series of five data
points with the beam positioned at different locations. Four points describe the corners of a 4-mm
by 4-mm square, and the fifth data point measures the square’s center near (0,0).

Unfortunately, in the months leading up to E06-014, slips in their encoders made the harp scans
unreliable as absolute position measurements [146]. Instead, we calibrated the analog BPM readouts
to the beam-position readouts in the EPICS data management system (Section 3.3.7.2), which
are derived from the BPM signals. These EPICS readouts, which use the left-handed Accelerator
coordinate system (Section 3.3.1), reflect the results of an earlier calibration using the harp wire
scanners. This method allowed us to recover the coordinate system transformation from the earlier
calibration, as a substitute for performing independent beam-position measurements with two types
of equipment; we effectively reverse-engineered the EPICS calibration.

Using data from the bull’s eye scan, we fit a Gaussian distribution to each measurement of x and
y, EPICS and analog, and extracted the rotation and offset of the coordinate transformation from a
fit to the mean readings at each location. Table 3.5 reports the results of this procedure, performed
independently for each of the two BPMs in each of the two arms of the experiment; separating
the BigBite and LHRS data-acquisition systems was necessary since each set of ADCs has its own
pedestals, its own input scale, and its own sources of electronic noise.

The slow readout rate (roughly every five seconds) of the EPICS measurements meant that only a
few dozen such measurements were available for some locations, leading to significant statistical error.
We estimated the total error by computing the beam position at the target from each spectrometer’s
readouts and coordinate transformation, and then comparing these two measurements for each point
in the bull’s-eye scan. As shown in Figure 3.12, these results are consistent to within about 300 µm
in the horizontal and about 400 µm in the vertical.

3.3.2.3 Beam Position from the Raster

In order to avoid damage to the thin glass cell of the production target, the beam must be rastered
to have a relatively large rectangular cross section at the target; heating damage from an unrastered
beam striking a small area of the target could easily rupture the cell. During E06-014, the beam
was rastered to a size of 4× 6 mm2 using a fast (17-24 kHz) rastering system some 23 m upstream
of the target [140]. By generating low-magnitude transverse magnetic fields at its position in the
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BPM A rot11 rot12 rot21 rot22 disp1 (m) disp2 (m)
BigBite -0.614348 0.658442 0.618053 0.669323 -0.00319424 0.000672374
Left HRS -0.676324 0.69569 0.679527 0.706064 -0.000687716 0.000685615

BPM B rot11 rot12 rot21 rot22 disp1 (m) disp2 (m)
BigBite -0.814325 0.556614 0.814739 0.56004 -0.0061156 0.0078037
Left HRS -0.679278 0.675238 0.684226 0.674596 0.000349452 0.00134201

Table 3.5: Coordinate transformation for beam-position monitors A (top) and B (bottom), obtained
from a fit to beam positions recorded in EPICS. The rotmn values are elements of the two-by-two
rotation matrix, while dispi values correspond to the displacement vector between the two coordinate
systems. These EPICS positions originate from the same BPMs, but reflect the results of an earlier
calibration.

beamline, the rastering system is able to sweep the beam position at the target through deviations of
up to several millimeters, in two independent directions transverse to the beam. The raster current
is read out by a passive transformer – a Pearson probe – which allows a more-or-less instantaneous
calculation of the beam position [143]. However, the calibration of raster current to beam position
must then be redone every time the beam into the Hall is re-tuned, as a change of tune also changes
the way in which the beam passes through the raster magnet and the optics between the raster and
the target.

Although, for reasons of efficiency and safety, it is critically important for any experiment with
a glass-cell target to employ the raster, most experiments are not so sensitive to beam position that
the raster readouts must be used in their data analysis. E06-014 is no exception. In event recon-
struction, the beam’s position transverse to the beamline is needed primarily in order to determine
the momentum of the scattered particle, and it is its vertical position – that is, its position along
the spectrometer dispersion direction – that matters. In E06-014’s experimental setup, then, the
Left High-Resolution Spectrometer (Section 3.3.5) is naturally the detector most sensitive to posi-
tion, due to its high momentum resolution. Consider this detector’s first-order transport matrix,
which takes the scattered particle’s trajectory at its vertex and transforms it to a measured vertical
position x (in meters) and angle θ at the focal plane

[
x
θ

]

fp

=

[
−2.18 −0.198 11.9
−0.10 −0.469 1.967

]


x0

θ0

δp/pc


 . (3.12)

The elements of the transport matrix are approximate values taken from a SNAKE simulation of
the standard tune [147]. x0 gives the vertical position in meters of the particle trajectory, assumed
to be the vertical position of the beam itself at the target, immediately after scattering; θ0 gives its
vertical angle; and δp/pc = (p− pc) /pc gives the trajectory’s fractional deviation from the central
momentum setting pc of the HRS. If we take the average height of the beam at the target to be
0, then x0 is the size of the vertical deviation induced by the raster, and we can follow the matrix
algebra through to estimate its effect on the reconstructed momentum

p = pc + pc (0.090x− 0.038θ − 0.201x0) . (3.13)

If we were to erroneously assume x0 = 0, the error in p would be approximately equal to
|0.201x0pc| [148]. For a vertical raster sweep of ±2 mm and a maximum momentum setting of
1.70 GeV/c, such an assumption would introduce a maximum error of only 0.68 MeV/c into the
momentum, a small effect compared to the experimental resolution. Accordingly, the effects of the
raster will be neglected throughout the E06-014 analysis.
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Figure 3.12: Reconstructed beam positions in BigBite and Left HRS during a bull’s-eye scan.

3.3.2.4 Beam Energy

Accurate kinematic calculations require knowledge of the incoming electron beam energy. During
E06-014, the beam energy was continuously monitored via the Tiefenback method [149], in which
beam position measurements from the BPMs (Section 3.3.2.2) are combined with the field integral
of the Hall A arc magnets to compute the energy of the beam as it enters the Hall.

The Tiefenback method is kept calibrated via comparisons to an absolute means of measuring the
beam energy: an arc measurement (Figure 3.13). (A second absolute measurement method, relying
on the angular distribution of scattered electrons and protons in H(e,e′p) scattering, is also available
in Hall A, but was not used for E06-014 data.) In the arc section of the beamline – just before the
portion properly considered the Hall A beamline – eight dipoles bend the beam through a nominal
angle of 34.3◦. Any deviation from this nominal bending angle is measured by the SuperHarps, pairs

Figure 3.13: Schematic of an arc beam energy measurement, reproduced from Zheng [16].
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Figure 3.14: Nucleon polarization in 3He, reproduced from Zheng [16]. The large arrow gives the
spin direction of the nucleus, while the small arrows give the spin directions of the nucleons.

of wire scanners located both before and after the magnet suite. The actual bend angle through the
arc is related to the beam momentum (and thus to its energy) by

p = k

∫
~B · ~dl
θ

(3.14)

where k = 0.299792/c GeV rad T−1 m−1 [140]. Simultaneously with the SuperHarp measurement
of the actual bend angle, the magnetic field integral is measured using a ninth dipole, a reference
magnet that is located outside the vacuum and is measured directly with a Hall probe. The total
error on this measurement is about δE/E = 2× 10−4 [150].

No independent arc measurements were taken during E06-014; instead, the experiment’s confi-
dence in the Tiefenback method rests on a measurement performed during E06-010, which compared
the results of an arc measurement and of the Tiefenback method. The result of this measurement is
shown in Table 3.6.

Arc Result (MeV) Tiefenback Result (MeV)
5889.4± 0.5stat ± 1syst 5891.3± 2.5syst

Table 3.6: Results of near-simultaneous beam energy measurements on November 17, 2008, using
the arc and Tiefenback methods [151].

3.3.3 Target

In the absence of a free, polarized neutron target, experimenters interested in neutron spin structure
must make do with bombarding a polarized nuclear target and correcting for the presence of protons.
The two most popular choices of nuclei for this purpose are deuterium, which has spin 1, and 3He,
which has spin 1/2. In deuterium, both the proton and the neutron spins are aligned with the nuclear
spin, but large corrections for the proton contribution pose a significant source of uncertainty. In
3He, the model dependence of the result is greatly reduced because the nucleus is in the S state with
a probability of more than 88%, and in that state the proton spins cancel each other, leaving only
a neutron contribution to the spin asymmetry. (Figure 3.14 shows the 3He spin sub-states.) The
effective neutron polarization in a perfectly polarized 3He sample is about 87% [127].

E06-014 therefore used polarized 3He gas, contained in a hand-blown glass cell, as an effective
polarized neutron target. In this section, we will discuss how 3He can be polarized and how that



CHAPTER 3. THE E06-014 EXPERIMENT 76

Figure 3.15: Optical pumping of alkali atoms with zero nuclear spin (i.e. neglecting hyperfine struc-
ture), using right-circularly polarized photons (σ+). The atoms are in a magnetic holding field,
which induces a Zeeman splitting. Reproduced from Kominis [152].

polarization can be measured; describe the production 3He cell as well as the targets used for
calibration; and detail the construction of the target apparatus.

3.3.3.1 Hybrid Spin-Exchange Optical Pumping

The 3He target used during E06-014 is polarized with a three-stage process known as hybrid spin-
exchange optical pumping (HSEOP). In optical pumping, circularly polarized laser light is used to
polarize the electrons in rubidium atoms, which then transfer their polarization to potassium atoms
through spin-exchange collisions. Finally, the polarized potassium atoms undergo spin-exchange
collisions with 3He nuclei, in which polarization is transferred to the latter nuclei. It is the inclusion
of this intermediate potassium stage that makes the process a hybrid. Spin exchange between
rubidium and 3He is far less efficient and may consequently be neglected.

In order to maintain a high polarization despite spin relaxation in the target gas mixture, the
target must continuously undergo HSEOP. We will discuss each of the three stages of the process in
turn.

Optical Pumping In its ground state, a 85Rb atom has one valence electron, located in the 52S1/2

orbital1; it is the spin of this electron that is polarized via optical pumping. The first excited state,
with orbital angular momentum L = 1, resolves into two sublevels due to spin-orbit coupling –
52P1/2 and 52P3/2 – where the subscript is given by J = L ⊕ S. We neglect the 52P3/2 level for
now and focus our attention on the energy levels with J = 1/2. Under the hyperfine interaction,
which arises from coupling between J and the nuclear spin I, these levels each split into two more.
These hyperfine levels have F = 2 and F = 3, where F = I ⊕ J . In a magnetic field, each hyperfine
level undergoes Zeeman splitting, resulting in a multiplet of 2F + 1 levels labeled by the quantum
number mF = −F,−F + 1, ..., F − 1, F .

Although 85Rb has a nuclear spin I = 5/2, let us first consider the simpler case of an alkali
atom with I = 0 (Figure 3.15), so that we may neglect hyperfine structure. Suppose that we place

1In spectroscopic notation, atomic levels are denoted according to their quantum numbers: n (the principal quan-
tum number), S (the total electron spin), L (giving the orbital angular momentum of electrons in the level) and J
(the total electron angular momentum). These are reported in the format n2S+1LJ , where the value of L is given by
a letter; for historical reasons, S signifies L = 0, while P signifies L = 1.
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this atom in a magnetic holding field, so as to induce a Zeeman splitting between the sublevels
mJ = ±1/2, and then illuminate it with circularly polarized light (σ+), propagating against the
holding field direction, at a wavelength that excites the D1 transition between the 52S1/2 and 52P1/2

states. Conservation of angular momentum dictates that such a photon can only be absorbed by
an atom in a level with mJ = −1/2. In absorbing these photons, the atoms are excited to the
2P3/2 level, shown by the red arrow in Figure 3.15. They then decay very quickly (on the order of
10−8 s [153]) to the ground state. Since the electron has mJ = +1/2 while in the P orbital (due
to its absorption of the σ+ photon), it has a 2/3 probability of decaying to an S-orbital state with
mJ = −1/2 and a 1/3 probability of decaying to an S-orbital state with mJ = +1/2, indicated by
the blue arrows in Figure 3.15.

This results in a decrease in the mJ = −1/2 population despite the higher probability of an
electron ending a D1 transition and decay with mJ = −1/2, since further D1 transitions are excited
only on mJ = −1/2 atoms rather than on mJ = +1/2 atoms. Continuous optical pumping thus
polarizes the alkali atoms via depopulation: the population of atoms in the mJ = −1/2 state is
steadily depleted, leaving more and more atoms in the mJ = +1/2 state. For optical pumping with
left-circularly polarized photons (σ− and ∆mJ = −1), the process is inverted: it is the mJ = +1/2
state that is depopulated, leaving Rb atoms with mJ = −1/2.

For an atom with non-zero nuclear spin, like 85Rb, the simple description of Figure 3.15 is no
longer accurate: we must account for hyperfine splitting, so the Zeeman levels are described by mF

rather than by mJ . Optical pumping with σ+ photons depopulates the levels with low mF values in
favor of those with high mF values, one unit of angular momentum at a time. The optical pumping
of atoms with I 6= 0 is thus slower than the analogous process for atoms with zero nuclear spin, as it
takes the absorption of many photons for each atom to work its way up the multiplets, but the end
result is quite similar: illumination with circularly polarized photons σ± will eventually produce a
population of atoms mostly in the mF = ±3 state [154].

Rb polarization may be reduced by several spin relaxation processes, which notably include
thermal mixing between 5P1/2 and 5P3/2 states, and absorption of the unpolarized photons emitted
when Rb atoms decay from a 5P state to a 5S state. The latter mechanism may be suppressed by
the addition of a small amount of nitrogen gas, which quenches the radiative decay of Rb by allowing
its excitation energy to be transferred in a collision with N2 [152]. Meanwhile, continuous optical
pumping mitigates Rb depolarization.

Rb-K Spin Exchange The potential V (r) of an interaction between two S1/2 atoms, Rb and K,
depends on a spin-independent part V0(r) and a spin-dependent part V1(r)

V (r) = V0(r) + ~SRb · ~SKV1(r) (3.15)

where ~SRb is the spin of the rubidium atom and ~SK is the spin of the potassium atom. This
hyperfine, or spin-spin, interaction allows the spins of the two atoms to be interchanged in some
percentage of interactions; this percentage is determined by the size of V1(r) relative to V0(r). Even
when spin-exchange interactions are a small portion of the total, the polarization of one group of
atoms may equilibrate with the other group in a matter of hours – especially when the first group
is continuously re-polarized via optical pumping. The total spin of the interacting atomic pair is
always conserved [155].

In the case of rubidium and potassium, the cross section of the spin-exchange process is about
2× 10−14 cm2. At a particle density of 1014 cm−3, this corresponds to a spin-exchange rate of more
than 100,000 per second, compared to a spin-relaxation rate of 500 per second [156].

K-3He Spin Exchange 3He may also undergo spin-exchange interactions, but its two valence
electrons are in a spin-singlet state, so it is the nuclear spin that takes part through a Fermi-contact
interaction [157, 158]. Inefficiencies arise primarily from spin relaxation, in which the electron spin
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Figure 3.16: Two-step spin exchange, Rb→K→3He, reproduced from Kolarkar [153]. For Rb and
K, the valence electron spin is shown before and after the interaction; for 3He, the nuclear spin is
shown.

cells were hand-blown by Mike Souza at Princeton University. They were filled with

3He gas and characterized at the University of Virginia and the College of William

and Mary. The characterization of a cell includes, measuring the polarization, gas

density, wall thickness of the cell, and spin-up time. In addition to this the ratio of

Rb to K in the cell is also an important parameter that needs to be optimized. Apart

from polarized 3He target cells, an empty cell was used during the experiment which

could be filled with various gases like N2, H2 and 3He. This allowed us to determine

the dilutions factors due to various gases present in the target cell.

Figure 3.6: Target cell showing two separate regions - pumping region and target region [8].

• Target Oven and Ladder System: The pumping chamber of the target cell must

be kept at high temperature of 230◦C in order to reach a significantly high K vapor

pressure. For this, the entire pumping chamber was mounted inside an oven system

with constant flow of compressed hot air. The flow of air was controlled by a PID

feedback system to keep the temperature constant. A number of Resistive Temper-

ature Devices (RTDs) were attached to the cell inside the oven to measure the cell

temperature. A target ladder system which could be controlled remotely is a verti-

cally moving system. It consists of different targets and can position a target in the

right place with respect to the beam, as needed by the experiment. In this experiment

we had four different targets - the primary 3He target, a multiple carbon foil target

for detector optics calibration purposes, an empty target (no target) for beam tuning

40

Figure 3.17: Polarized 3He cell, reproduced from Kolarkar [153]. The glass sphere at the top of the
photograph is the pumping chamber. A thin transfer tube connects it to the target chamber, which
is oriented with its long axis along the beamline.

of the alkali metal couples to the rotational angular momentum of the pair of colliding atoms, rather
than to the nuclear spin of the noble gas atom. In collisions involving 3He, the spin relaxation cross
section is dominated by the alkali metal’s spin-orbit splitting, so that using a lighter alkali metal
atom (e.g. potassium instead of rubidium) can greatly decrease the spin relaxation cross section
and thereby increase the efficiency of spin exchange [159].

The parameter ηSE , the ratio of the spin transfer rate to 3He nuclei to the spin relaxation rate by
alkali metal atoms, forms a useful point of comparison. Measurements at common SEOP tempera-
tures (∼ 350 K) give ηSE as about 2% for Rb-3He, but 25% for K-3He [160]. There is a tremendous
practical difference in efficiency between a Rb-3He spin-exchange optical pumping process and a
Rb-K-3He hybrid spin-exchange optical pumping process (shown in Figure 3.16): typical hybrid ref-
erence cells at Jefferson Lab take about 3-5 hours to achieve maximum 3He polarization, while pure
Rb cells took about 15 hours [161]. A faster spin-up time both reduces overhead for spin rotations
and improves the ability of continuous optical pumping to work against depolarization.
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Figure 3.17 is a photograph of a typical polarized 3He cell used in Hall A. The spherical pumping
chamber2 is where rubidium atoms are optically pumped, and where their polarization is transferred
first to potassium atoms and then to 3He nuclei. N2 and 3He atoms diffuse from the pumping chamber
to the target chamber – where interactions with the electron beam take place – through the thin,
cylindrical transfer tube; a thermal gradient along the transfer tube confines the alkali-metal atoms
to the pumping chamber [162]. This gradient is sufficient to ensure that any Rb and K presence
in the target chamber is negligible. The rate at which 3He atoms diffuse between the target and
pumping chambers is much greater than the rate at which 3He atoms are polarized in the pumping
chamber, so that the 3He polarization is approximately equal in the two chambers [153].

3.3.3.2 Polarizing Apparatus for the E06-014 3He Target

Keeping a 3He target polarized requires two major subsystems: a laser system to perform optical
pumping of the target, and a holding field to keep the nuclear spins aligned in the correct direction.

Laser System E06-014 benefited from the installation of a new set of COMET lasers a few months
prior to the experiment. These lasers had a linewidth of 0.2 nm, a factor of ten less than the linewidth
of their predecessors (FAP lasers). This dramatically improved the optical pumping efficiency, since
a narrower linewidth means that proportionately more photons excite the desired atomic transitions.

The three COMET lasers and most of their associated optics were sited aboveground, in a laser
lab behind the counting house. Each diode laser produced 25 W of unpolarized, 795-nm light, which
traveled through a 75-m optical fiber to reach the hall. Beams from the three fibers were combined
into a single fiber using a 5-to-1 combiner, so that all three lasers could simultaneously deliver light
to the target.

In order to give the beams the circular polarization required for optical pumping3, the beam
from the 5-to-1 combiner output was first passed through a polarizing beamsplitter, which sepa-
rated it into two linearly polarized components. One of these components was passed twice through
a quarter-wave plate, after which both components had the same linear polarization. Finally, passing
each component of the beam through another quarter-wave plate converted their linear polarization
to circular polarization, and the components were recombined, focused and aligned to illuminate
the pumping chamber with a spot about 7.5 cm in diameter (the size of the chamber) [151]. Three
independent optics lines, one each for longitudinal, transverse (horizontal), and vertical target po-
larization, were installed in the months before E06-014 and its sister experiment E06-010.

Holding Field Three pairs of Helmholtz coils, their positions and orientations shown in Fig-
ure 3.18, are capable of producing static magnetic fields in three orthogonal directions: longitudinal
(along the beam line), transverse (horizontal and perpendicular to the beamline), and vertical (also
perpendicular to the beamline). The vertical coil is the largest and completely surrounds the small
and large coils. E06-014 used combinations of these coils to generate holding fields for spins in the
longitudinal and transverse directions; a typical holding field is 25 G, which requires currents on the
order of 7 A in each coil.

In addition to the Helmholtz coils, Figure 3.18 also shows the location of radiofrequency (RF)
and pickup coils, which are necessary for measurements of the target chamber polarization (Sec-
tion 3.3.3.3).

2The tapered tail at the top of the pumping chamber is the pull-off and provides access to the target for filling.
It does not affect target performance outside of initial preparation and handling constraints [151].

3It is necessary to polarize the beam at the target, rather than at the laser output, because light traveling through
polarization-maintaining optical fiber suffers higher attenuation than it would traveling through single-mode fiber.
The 75-m single-mode optical fiber used in Hall A has a measured power loss of about 6% [151].
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Figure 12.8: Top view of the coils used in the 3He target setup. The combinations of the
3 pairs of Helmholtz coils power the main holding field to either longitudinal, transverse
or vertical directions while 3 lines of lasers are available as well in these three directions
to polarize the target. The two sets of RF coils are needed to flip the target spin for
NMR and EPR measurements with different setups field direction. Four pairs of NMR
pick up coils are used during the flips to read out the polarization strength. Two of the
pairs are located below the beam line to measure the NMR signal from upstream and
downstream part of the target chamber. The other two of the pairs are fixed in the target
oven to measure the NMR signal from the pumping chamber.

Figure 3.18: Top view of Helmholtz and RF coils for 3He target, reproduced from Hall A general
operations manual [141].

Small coil Large coil Vertical coil

Inner diameter (m) 1.27 1.45 1.83
Number of turns 256 272 355
Resistance (Ω) 3 3 4.4

Table 3.7: Characteristics of Helmholtz coils for target holding field [151].

3.3.3.3 Target Polarization Measurements

The degree to which our 3He target nuclei are polarized is an essential parameter in extracting a
spin-spin asymmetry like An1 . In order to measure this polarization, the Hall A target is equipped
with the means to perform both relative and absolute polarization measurements: EPR (electron
paramagnetic resonance) measurements provide the absolute polarization in the pumping chamber,
while NMR (nuclear magnetic resonance) measurements give relative values for the polarization in
the target chamber. We will briefly describe both methods here; the results of these measurements
for E06-014 running will be discussed in Section 5.1.2.

NMR In the phenomenon of nuclear magnetic resonance (NMR), the magnetic moments of nuclei
in a constant magnetic field will precess when a radiofrequency (RF) magnetic field is applied in a
perpendicular direction. By sweeping the frequency of this RF field through the resonant frequency
of the 3He nucleus, we can reverse the nuclear spin direction (e.g. from 90◦ to 270◦ relative to
the electron momentum direction). The motion of the spins changes the flux through the pickup
coils shown in Figure 3.18, inducing a radiofrequency electromotive force. Signals from the coils
are combined, pre-amplified, and sent to a lock-in amplifier; the magnitude of this final signal is
proportional to the 3He polarization [163].

It is important to conduct NMR measurements in such a way that polarization is not degraded
afterward. Accordingly, sweeps are performed using to the Adiabatic Fast Passage (AFP) technique,
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which mandates a passage through the resonant frequency that is both faster than the spin relaxation
time and slow enough to allow the nuclear spins to follow the sweep of the RF field.

The underlying principle of NMR can be explained in a classical framework [45]. Consider a

nucleus with magnetic moment ~M in a constant magnetic holding field, ~H0. The nucleus experiences
a torque ~τ

~τ = ~M × ~H0. (3.16)

Now, ~M may be expressed in terms of the nuclear spin ~I as ~M = γh̄~I, where γ is the gyromagnetic
ratio and h̄ is the reduced Planck constant. Torque is defined as the rate of change of the angular
momentum, so we may express it as ~τ = h̄d~I/dt. Combining this information with Equation 3.16,
we find an expression for the rate of change of the magnetic moment

d ~M

dt
= γ ~M × ~H0. (3.17)

At this point, it is convenient to move from the laboratory reference frame to a rotating frame
with angular velocity ~ω relative to the lab, where ω is the frequency of the RF magnetic field we
will later apply. Let d ~M ′/dt′ be the magnetic moment’s rate of change in the new, rotating frame,

while d ~M/dt is defined in the original laboratory frame. We can relate these two quantities by

d ~M

dt
=
d ~M ′

dt′
+ ~ω × ~M. (3.18)

Equations 3.17 and 3.18 combine to give an expression in the rotating frame for the motion of the
magnetic moment

d ~M ′

dt′
= γ ~M ×

(
~H0 +

~ω

γ

)
. (3.19)

A comparison to Equation 3.17 shows that the effective magnetic field in the rotating frame is given
by ~H0 + ~ω/γ. We also see that, at the Larmor frequency ω0 = γ| ~H0|, ~M is a constant of the motion

when the angular velocity of the rotating frame is antiparallel to the holding field ~H0, so that at
this resonance frequency the magnetic moment no longer precesses about ~H0 in the rotating frame.

Let us set our rotating reference frame so that its sense of motion is parallel to the holding field in
the direction defined by the unit vector î, and apply an RF magnetic field HRF in the perpendicular
direction ĵ. In this frame, the magnetic moment of the 3He nucleus sees a constant effective magnetic
field ~He

~He =

(
H0 +

ω

γ

)
î+HRF ĵ. (3.20)

The spin precession in this frame is about the axis defined by ~He, which we can rotate either by
sweeping the holding field H0 through a range of magnitudes, or by sweeping the RF field HRF

through a range of frequencies. As long as we meet the conditions of Adiabatic Fast Passage, the
nuclear spins, following ~He, will rotate as well [163].

During E06-014, NMR-AFP measurements were taken approximately once every four hours. We
used the frequency sweep method, taking the RF field from 77 kHz to 87 kHz and back at a rate of
5 kHz/sec. Figure 3.19 shows a typical lineshape, its signal amplitude h fit according to

h ∝ ω1√
(ω − ω0)

2
+ ω2

1

(3.21)

where ω is the frequency of the RF field, ω0 is the Larmor frequency, and ω1 parameterizes |HRF |
and the width of the signal spectrum [151].
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Figure 3.19: Typical signal from online analysis of a frequency-sweep NMR measurement. The red
and orange curves are from the x-direction pickups; the y pickups (green and blue) were not used.

NMR provides only a relative determination of the target polarization, but NMR measurements
taken during the experiment may be calibrated by comparison to NMR measurements of a sample
with a known polarization. Water is typically used for this purpose, since its polarization under
known conditions (temperature, pressure and magnetic field) may be calculated directly from sta-
tistical mechanics [163]. Water calibration measurements are performed on a water-filled target cell,
under conditions as similar as possible to the original experiment.

EPR When 3He is polarized, the aligned magnetic moments of the gas are responsible for a small
magnetic field (∼0.1 G) that either adds to or subtracts from the holding field, depending on the
polarization direction [164]. An electron paramagnetic resonance (EPR) measurement determines
the 3He polarization by measuring the resulting frequency shift in the level transitions of alkali
atoms.

As we discussed in Section 3.3.3.1, an external magnetic field induces a splitting between the
(2F + 1) levels with the same total angular momentum F but different components mF in the
direction of the holding field. Transitions between these levels can be made through absorption
or emission of a photon with the right frequency; for adjacent levels, this frequency is given by
ν0 = γB0 where γ is the characteristic response of the alkali atom (0.466 MHz/G in the case of the
rubidium ground state [153]). This would be the end of the story if our target were made solely of
rubidium atoms, but it also contains potassium and 3He. The small effective magnetic field ∆B due
to 3He magnetization and to spin exchange interactions between the species induces a shift ∆ν in
the rubidium transition frequency. The actual EPR frequency is then given by [165]

νEPR = ν0 + ∆ν. (3.22)

To measure the 3He polarization, we must determine how much of the frequency shift is due
to the 3He spins. We do this by taking two EPR measurements: one in the initial 3He spin state,
and one after reversing the 3He spins via a frequency sweep of an RF magnetic field under AFP
conditions, exactly as is done during NMR measurements. The difference between the two measured
EPR frequencies, ∆νEPR, is twice the frequency shift due to the 3He magnetization and may be
expressed as [165]

∆νEPR =
4µ0

3

dνEPR
dB

κ0µ3HenpcPpc (3.23)

where µ0 is the vacuum permeability, κ0 is a temperature-dependent, species-specific enhancement
factor, µ3He is the magnetic moment of 3He, npc is the 3He number density in the pumping chamber,
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value is extrapolated to the operating temperature of 255◦, resulting in large uncertainties.

Therefore κoT presents the largest uncertainty in the polarization measurement using EPR.

In order to measure ∆νEPR of Rb, an RF field corresponding to the energy difference

between mF = −3 to mF = −2 ground state sublevels has to be applied to the target.

This increases the number of electrons in the mF = −2 sublevel. Since they absorb the

photons from the circularly polarized laser light, these electrons get excited to the P1/2

state. As they decay back to the ground state (S1/2), there is an increase in the number of

photons emitted which can be detected by a photodiode. This is the D1 transition with a

wavelength of 795 nm. Whereas the energy difference between S1/2 and P3/2 is called D2

(780 nm) transition. A thermal mixing between energy levels can cause electrons in the

P1/2 state to mix with the P3/2 state and later decay back to S1/2 state as a D2 transition.

This will release some D2 light. A D2 filter is used in front of the photodiode to separate D2

light from D1 light. For an EPR measurement, the 3He spins are flipped by sweeping the

RF field (typically used for an NMR sweep) through resonance and measuring the change

in the EPR frequency. A typical EPR spectrum is shown in Figure 3.9.
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Figure 3.9: EPR spectrum showing the 3He spin states when they are anti-parallel ( #B−∆ #B)
and parallel( #B + ∆ #B) to the holding field direction [10].
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Figure 3.20: Typical spectrum from repeated EPR measurements, reproduced from Dutta [151] and

showing measurements with 3He spins antiparallel ( ~B −∆ ~B) and parallel ( ~B + ∆ ~B) to the holding

field ~B.

and Ppc is the 3He polarization in the pumping chamber. The derivative dνEPR/dB is calculated
based on the evolution of the absolute EPR frequency in a magnetic field with changing field mag-
nitude.

In normal target operations, the alkali-atom populations in the pumping chamber are highly
polarized, so they do not absorb polarized light. To measure their energy splitting, we need a
large number of level transitions, so we depolarize the alkali atoms by applying an additional RF
field [16]. When the frequency of the RF field matches the potassium mF = −2 → mF = −1 or
mF = +2→ mF = +1 level splitting (approximately 19 and 16 MHz, respectively, in a 25 G holding
field [151]), the potassium atoms are depolarized, allowing spin-exchange interactions which then
depolarize the rubidium atoms.

The partially depolarized rubidium population is now primed for optical pumping from the
S1/2 state to the P1/2 state. Most such atoms decay directly back to S1/2, emitting 795-nm light
characteristic of the D1 transition. There is, however, thermal mixing between the P1/2 and P3/2

states, so we also observe the P3/2 → S1/2 decay – a D2 transition in which 780-nm light is emitted.
When sweeping the frequency of the RF field over several hundred kHz in the right range, we can
thus find the true level splitting of the potassium atoms by looking for an increase in D1 and D2 light,
which heralds the potassium transition and the depolarization of rubidium. Repeating the procedure
after an AFP 3He spin reversal gives us the EPR frequency shift due to the helium polarization,
which is on the order of tens of kHz [151].

In practice, an increase in D1 light is very difficult to measure, since the pumping chamber is
awash in D1 light from optical pumping. We therefore find the EPR frequency by looking for an
increase in D2 light, using two bandpass filters to dramatically reduce the amount of D1 light reaching
the detection photodiode. Figure 3.20 shows a typical EPR spectrum resulting from numerous
repeated frequency sweeps and AFP spin reversals.

3.3.3.4 E06-014 Targets

Although all production data were taken with a polarized 3He target, E06-014 used three additional
targets for various purposes, from beam tuning to optics calibration to determining a nitrogen dilu-
tion factor. These four targets were positioned on a target ladder, which could be moved vertically
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Figure 3.21: Carbon foils of the optics target, with the production 3He cell visible above. The
photograph is from the Transversity Photo Diary [166].

over a range of 31.5 cm [141] in order to place the desired target in the path of the beam. This
vertical motion was controlled remotely via EPICS (Section 3.3.7.2); each target move contributed
a few minutes of dead time, since beam could not be delivered to the Hall unless the target ladder
was stationary with an approved target in the beamline.

Empty Target The empty-target position corresponds to a hole in the target ladder, through
which the beam passes with no obstructions. This position is primarily used during beam tuning
and Møller polarization measurements, when beam excursions could cause severe damage to other
target components.

Optics Target The optics target consists of seven carbon foils, shown in Figure 3.21, inline with
a solid BeO target further upstream. The BeO foil serves as an alignment point when steering the
beam, since the beam makes a bright spot on the foil that is plainly visible in the target camera.
The carbon foils, meanwhile, are used to calibrate spectrometer optics: the thin, regularly spaced
foils, each about 6.7 cm from its neighbor, allow precise tests of vertex reconstruction along the
beamline direction.

Production 3He Cell Polarized 3He cells in Hall A are generally hand-blown from aluminosilicate
glass (GE180) to the geometry shown in Figure 3.17. The cell used for E06-014 was named Samantha
and was made by Mike Souza at Princeton University. The pumping chamber is about 7.6 cm in
diameter; the target chamber is a cylinder that is 40 cm long and an average of 18.95 ± 0.54 mm
in diameter. The long axis of the target chamber is placed along the beamline so that the pumping
chamber and its transfer tube are to beam left and slightly above the bulk of the target; the transfer
tube is at an angle of 42◦ from vertical. In Figure 3.21, part of the transfer tube is visible before
disappearing into a steel mounting block above the target itself.

The pumping chamber was kept at a temperature of 230◦ C, ideal for optical pumping, by an oven
above the target chamber and surrounding the pumping chamber. Compressed hot air, supplied by
a compressor in the hall, passed through two heaters and then circulated through the oven before
leaving in an exhaust pipe. A thermocouple measured the temperature of the air entering the
oven and a resistive temperature device (RTD) measured the temperature of the air inside; through
feedback electronics controlling one of the two heaters, the oven temperature was kept stable to
within 2◦ C [151].

Table 3.8 gives glass thickness measurements [167] for the target chamber; these are used as
inputs into energy-loss computations and radiative corrections.
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Fiducial Description Position Thickness (mm)

W1 Entrance window - 0.121
A Beam-right sidewall 2.5 cm from W1 1.563
B Beam-right sidewall 12.5 cm from W1 1.556
C Beam-right sidewall 20.3 cm from W1 1.75
D Beam-right sidewall 25.4 cm from W1 1.70
E Beam-right sidewall 35.6 cm from W1 1.70

W2 Exit window - 0.125
F Beam-left sidewall 2.5 cm from W2 1.70
G Beam-left sidewall 11.4 cm from W2 1.67
H Beam-left sidewall 19.1 cm from W2 1.671
I Beam-left sidewall 26.7 cm from W2 1.614
J Beam-left sidewall 35.6 cm from W2 1.678

Table 3.8: Glass thickness measurements for the 3He production cell, Samantha [167]. From a
vantage point above the target chamber, the fiducial points, which are all located at the same height
as the cell’s long axis, begin at W1 (the entrance window) and progress counter-clockwise around
the cylinder.

Reference Cell A 40-cm glass tube serves as a reference cell; for E06-014, the name of this
cell was GMA. Table 3.9 gives glass thickness measurements [167] for this cell. An automatic gas
handling system allows the target operator to remotely vent the cell and refill it with H2, 3He, or
N2, depending on the needs of the experiment; the former two gases are typically used to provide
elastic-scattering data for tests of momentum reconstruction, while the latter allows a calculation of
the dilution factor due to nitrogen contamination in the polarized 3He cell.

3.3.3.5 Target Enclosure

For safety reasons, the target ladder is surrounded by a roughly spherical target enclosure, shown
in Figure 3.22. While in place, the fiber-glass cover confines light from the target laser, protecting
workers in other parts of the hall. In the event of a target cell explosion, the enclosure contains
the resulting radioactive contamination. The target enclosure has an additional benefit: it may be
flushed with 4He gas, which has a much larger radiation length than air and thus reduces the energy
loss of scattered electrons leaving the target [141].

Upstream and downstream of the target, the electron beamlines, which are under vacuum, inter-
face with the target enclosure through beryllium windows in the wall of the target enclosure. The
window at the entrance to the target enclosure is 0.254 mm thick, enough to keep glass shards out
of the beamline if the target cell explodes. (The window at the enclosure’s exit is 0.508 mm thick.)
Each window is also covered with 0.076 mm of aluminum foil on the enclosure side to keep it from
being exposed to air.

3.3.4 BigBite Spectrometer

Experiment E06-014 consisted of two independent, single-arm measurements. The double-polarization
asymmetries of interest for this dissertation were measured in the large-acceptance BigBite spectrom-
eter, positioned at an angle of 45◦ to beam right. Meanwhile, the Left High-Resolution Spectrometer
(LHRS) – one of Hall A’s twin high-resolution spectrometers – was positioned at an angle of 45◦ to
beam left in order to measure the total unpolarized cross section at each kinematic point. (The Right
HRS was not used by the E06-014 collaboration; it was positioned at a large angle to beam right
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Fiducial Description Position Thickness (mm)

W1 Entrance window - 0.129
A Beam-right sidewall 2.5 cm from W1 1.806
B Beam-right sidewall 12.5 cm from W1 1.692
C Beam-right sidewall 20.3 cm from W1 1.738
D Beam-right sidewall 23.4 cm from W1 1.75
E Beam-right sidewall 36.4 cm from W1 1.731

W2 Exit window - 0.134
F Beam-left sidewall 3.0 cm from W2 1.716
G Beam-left sidewall 9.0 cm from W2 1.68
H Beam-left sidewall 20.0 cm from W2 1.637
I Beam-left sidewall 28.4 cm from W2 1.657
J Beam-left sidewall 37.4 cm from W2 1.7

Table 3.9: Glass thickness measurements for the reference cell, GMA [167]. From a vantage point
above the cell, the fiducial points, which are all located at the same height as the cell’s long axis,
begin at W1 (the entrance window) and progress counter-clockwise around the cylinder.

and used for parasitic tests of an upcoming experiment’s new data-acquisition system design [168].)
We will describe the LHRS in Section 3.3.5. In this section, we will briefly discuss the elements of
the spectrometer and its detector stack; a detailed discussion of the spectrometer calibrations will
follow in Chapter 5.

As its name implies, BigBite was designed as a large-acceptance spectrometer, accepting particles
with a wide range of angles and momenta. The heart of the spectrometer is the BigBite magnet,
a non-focusing dipole magnet designed and built for use at NIKHEF before coming to Hall A. Its
water-cooled coils are constructed of hollow copper piping; its yoke and polar pieces are made of
low-carbon steel. The magnet’s entrance face is perpendicular to the floor, while its exit face is tilted
5◦ from the perpendicular [169]. A lead sieve-slit [161] may be placed at the front face of the magnet
to assist with the calibration of the magnet optics; detection elements are “stacked” horizontally,
behind the magnet. Figure 3.23 shows an engineering drawing of the magnet and detector stack
for Experiments E06-010 and E06-014; the magnet front was about 1.5 m from the target in both
run periods, although E06-010 deployed it at a different angle from the beamline (30◦). In its
configuration for E06-014, the magnet had an angular acceptance of about 65 msr, with ±240 mrad
of acceptance in the vertical and ±67 mrad of acceptance in the horizontal [122].

BigBite’s magnetic field is horizontal, running parallel to the floor, and perpendicular to the
momentum direction of a particle passing through the center of the magnet from the center of the
target. The magnet’s dispersion direction is thus vertical. Both negative- and positive-polarity
settings are available; at negative polarity, a positively charged particle is bent down (toward the
floor) and a negatively charged particle is bent up. At an operating current of 710 A, the field in
the center of the magnet is about 1.2 T, near the operational maximum of this device. As the field
mapping in Figure 3.24 shows, the magnetic field is approximately uniform over a distance of about
15 cm.

The BigBite detector stack is extremely adaptable, with components added, removed or reposi-
tioned for different experiments. Figure 3.25 gives a schematic of the detector layout for E06-010
and E06-014; we will now describe each element of the stack in detail.
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Figure 3.22: Target enclosure. Both of the vertical Helmholtz coils can be seen, as can one coil
from each of the small and large Helmholtz pairs. The photograph is from the Transversity Photo
Diary [166].

3.3.4.1 Multi-Wire Drift Chambers

Charged-particle trajectories in BigBite are reconstructed from measurements in three Multi-Wire
Drift Chambers (MWDCs) placed after the magnet. (The center of the first MWDC is the origin of
the detector coordinate system.) Each chamber is filled with a 50-50 mixture of argon and ethane
gas, bubbled through ethyl alcohol, a quenching agent, at 0◦ C [161], and contains three pairs of
wire planes for a total of eighteen wire planes across all three chambers.

Each of these eighteen wire planes is perpendicular to the detector’s nominal central ray (z) and is
bounded by two cathode planes, one upstream and one downstream, six millimeters apart. Halfway
between the cathode planes is a series of wires in which field wires and sense wires alternate; the sense
wires have a one-centimeter spacing (Figure 3.26). The field wires and cathode planes are held at
the same constant high voltage, producing a potential around the sense wires that is approximately
symmetric (Figure 3.27).

When a charged particle passes through the MWDC, it ionizes the argon-ethane gas. Due to the
difference in electrostatic potential between wires, charges freed in the ionization of the gas molecules
tend to drift toward the closest wire; as these ionized particles gain energy from the electric field,
they may ionize additional molecules in turn. The resulting avalanche produces an electrical signal in
the sense wire. The signal is amplified and sent to a discriminator; if it passes the pre-set threshold,
a hit is recorded in the Time-to-Digital Converter (TDC). Generally, a particle coming from the
BigBite magnet will register only one hit in each plane. Later, in off-line analysis, these hits are
combined in order to reconstruct the path that the particle took through the MWDCs.

Each wire chamber contains three pairs of wire planes, and each pair has a different orientation
(Figure 3.28), an arrangement chosen to simplify the problem of reconstructing tracks in three
dimensions. The wires in the two X planes run horizontally. U-plane wires are oriented at +30◦ from
horizontal, while V-plane wires are at an angle of −30◦ to the horizontal, as shown in Figure 3.28.
In each plane, there is a one-centimeter separation between wires; in each plane pair (X and X’, U
and U’, and V and V’) the wire patterns are offset from each other by 0.5 cm. The hit position in
plane X’, for example, thus allows the tracking algorithm to determine whether the particle passed
to the left or to the right of the wire that registered a hit in plane X. The position resolution of the
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Figure 3.13: Layout of the BigBite spectrometer [13].

x is to the right when facing the magnet

y is against the gravity

z is x × y

• Detector coordinate system: The origin is specified by the center of first wire

chamber.

x is pointing down from the center of the chamber

z is the nominal direction of the particle passing through the detector

y is z × x

52

Figure 3.23: An engineering drawing of the BigBite spectrometer, configured for the E06-010 and
E06-014 experiments in October 2008 - March 2009, reproduced from Qian [170].
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Figure 4.25: The schematic view of the BigBite spectrometer together with the
target.
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Figure 4.26: The field mapping of the BigBite magnet for two currents: 710 A and
600 A.
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Figure 3.24: Partial field map of the BigBite magnet at two current settings, reproduced from
Qian [170]. The current setting during E06-014 was 710 A (blue points). z is the direction of the
central ray.
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Figure 3.25: A schematic of the components of the BigBite spectrometer, and their arrangement
during the experiments, reproduced from Qian [170].
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Figure 3.26: Schematic of a BigBite MWDC
wire plane (side view).

Figure 3.17: Drift chamber equipotential lines around a sense wire generated with GARFIELD.

the chambers. Chamber 1 used a newer set of cards, which were more senstive [63]. Furthermore,
these voltages may not reflect the effective voltage inside the chamber due to current drain effects.
Efficiencies were measured from tracking results by determining how frequently a wire was not used
in a reconstruction in the case a track passed through the cell containing the wire.

BigBite Scintillator

A set of 13 scintillator paddles resides between the preshower and shower providing timing infor-
mation. Each paddle is connected to two photomultiplier tubes, one on each end. The signal from
each photomultiplier tube is sent to a an amplifier and copy of the signal is sent to an ADC, which
integrates the amplitude of the signal over time, and a discriminator which sends a logical pulse to a
TDC to provide timing information. This timing, with a resolution of about 300 ps, when associated
with a track can then be used to reconstruct the time of the electron at a drift chamber plane. Since
the scintillator plane resides about 1.0 m from the first plane, timing corrections (assuming a particle
traveling at the speed of light) to the drift times can be up to a few nanoseconds, which can be seen
in tracking.

Furthermore, this timing is used in reference to the neutron arm. By calculating the difference
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Figure 3.27: Equipotential lines around a
sense wire in an MWDC wire plane, gener-
ated with GARFIELD for a previous experi-
ment. Reproduced from Riordan [144].

resulting tracks is at the level of 0.3 mm or less.
In reconstructing a charged-particle trajectory, the straight-line tracking that the MWDCs make

possible also allows us to reconstruct the particle’s curved trajectory through the BigBite magnet,
which in turn allows us to compute both the position of the initial scattering vertex (projected to
the plane of the beam) and the momentum of the scattered particle. The extension of the trajectory
recorded in the MWDCs back through the magnet and to the initial scattering vertex is the task of
the optics software package.

Multi-Wire Drift Chambers

Three drift chambers were used to accurately reconstruct the particles track going into

the BigBite spectrometer. There are three types of wire planes, U, V, and X and their

orientation is shown in Figure 3.14. The X plane is parallel to the ydet axis in the detector

coordinate system and V and U planes are oriented ±30◦ with respect to this axis. Each

chamber has two sets of these planes (total 6 wire planes). In each plane, the sense wires

are spaced 1 cm apart, with a field wire in between a pair of sense wires. A cathode plane is

inserted 3 mm above and below each wire plane. The chamber is filled with a gas composed

of a mixture of 50% argon + 50% ethane, which is first bubbled through alcohol at 0◦C. The

signal generated by the charged particle passing through the chamber is amplified before it

is fed into a TDC for recording the time. The drift time, the amount of time it takes for

free ions to drift from track position to the sense wire, is then converted to a drift distance.

This information gives the hit position of the track in each plane, which is then used to fit

a straight line to reconstruct the original track.

300 300

V

X

y z

x

U

Figure 3.14: Orientation on U, V, and X wire planes in BigBite wire chambers.

BigBite Scintillators

The BigBite scintillator plane consists of 13 bars. The dimensions of each bar is 17×64×4

cm3. Each bar is connected to two PMTs, one on each side. The entire scintillator plane

is mounted between the preshower and shower detectors (see Figure 3.15). The signal from

each PMT is amplified 10 times and then sent to a discriminator which makes a logic pulse.

This pulse is recorded in a TDC for timing information. The BigBite scintillators provided

an accurate timing information of the particles entering the detector, which is used together
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Figure 3.28: U, V, and X wire-plane orientations in BigBite multiwire drift chambers, reproduced
from Allada [161].
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Figure 3.29: Čerenkov radiation.

3.3.4.2 Gas Čerenkov

The BigBite gas Čerenkov was a new element of the BigBite detector stack, commissioned during
E06-014. Pion and proton rates were expected to be a factor of between ten and fifty higher than
electron rates [171]. Running in single-arm mode, without the option of using coincidences with the
LHRS to remove pions and protons from the sample, E06-014 used the gas Čerenkov to remove most
pions and protons from the online BigBite trigger.

Čerenkov counters detect charged, high-energy particles that pass through a dielectric medium
at velocities greater than the speed of light in the medium: c/n, where c is the speed of light in a
vacuum and n is the refractive index of the medium. Such particles, traveling faster than the group
velocity of light in the medium, generate something akin to a photonic shock wave by polarizing
the atoms in their path. The resulting fields superimpose to form a conical wavefront, as shown in
Figure 3.29. The opening angle θC of the cone is given by

cos θC =
ct/n

βct
=

1

βn
for β >

1

n
(3.24)

where β = v/c indicates the particle’s speed [172].
The Čerenkov effect is sensitive to velocity rather than to momentum, making Čerenkov counters

powerful particle-identification tools when used in conjunction with magnetic spectrometers. A
π− track in BigBite might look just like an e− track in BigBite, with the same momentum and
trajectory, but the heavier pion has a lower velocity. To produce Čerenkov radiation and trigger a
Čerenkov counter, a pion must therefore have significantly higher momentum than an electron. We
can calculate the momentum threshold for the Čerenkov effect by inserting the threshold condition,
β = 1/n, into the relativistic expression for a particle’s three momentum, ~p = mc~β/

√
1− β2 where

m is the particle’s mass. We obtain

~pthr =
mc√
n2 − 1

. (3.25)

The BigBite gas Čerenkov is a threshold counter used as an electron tagger: pions need a much
higher momentum than electrons to trigger the detector, and so are much less likely to produce a
Čerenkov signal. The dielectric medium used in this detector is C4F8O gas at 1 atm of pressure.
C4F8O, chosen for its commercial availability and ease of handling, has an index of refraction of
n = 1.00135. The resulting momentum thresholds for electrons, positrons, pions and protons,
computed according to Equation 3.25, are given in Table 3.10.

The detector is located between the front and back MWDC assemblies. Twenty spherical focusing
mirrors are arranged in two columns of ten at the back of the Čerenkov tank. Each mirror is 31
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Particle Mass (MeV/c2) Momentum Threshold (MeV/c)

e± 0.5110 9.831
π± 139.6 2685
p 938.3 18050

Table 3.10: Momentum thresholds in BigBite gas Čerenkov. Particle masses are taken from the
Particle Data Group’s 2010 review [11].

Figure 2: Exploded diagram of the Cerenkov detector showingmirrors , PMTs, and simple

Winston cones. The primary spherical mirrors are 31 cm wide by 21 cm tall with a radius

of 116 cm (focal length: 58 cm). The flat secondary mirrors are 24 cm wide by 20 cm tall.

6

Figure 3.30: Exploded CAD diagram of the BigBite gas Čerenkov, showing mirrors in gray, Winston
cones in pink, and PMTs inside green mu-metal shielding. Reproduced from Sawatzky [173].

cm wide and 21 cm tall, with a focal length of 58 cm and a radius of 116 cm. As high-velocity
charged particles move through the tank, the resulting Čerenkov light strikes the spherical mirrors,
each of which reflects light into one of the twenty PMTs. Reflected light from each spherical mirrors
is redirected onto its PMT by a plane secondary mirror, 24 cm wide and 21 cm tall, at the front of
the tank. To accommodate the wide momentum range of particles accepted by BigBite, a Winston
cone [174] is fitted like a collar on each PMT, extending the diameter of its light collection area from
five inches to eight inches [171]. Figure 3.30 shows the geometry of this apparatus.

T2, the primary trigger used for E06-014 production data, required a coincidence between a signal
in the gas Čerenkov and a signal in the shower. The thresholds for each could be set independently
to maximize electron acceptance while minimizing pion contamination.

3.3.4.3 Scintillator Plane

A scintillator plane, sandwiched between the preshower and shower calorimeters (Section 3.3.4.4),
is available to provide timing information. When an ionizing particle moves through a scintillator,
exciting its molecules, the material luminesces, and the resulting light can be measured in PMTs
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Figure 3.15: Geometry of the BigBite preshower, scintillator, and shower detectors.

components to the DAQ setup, which include

1. The Trigger Supervisor(TS): This is the central control point for the data ac-

quisition activity. It is the link between the experiment specific triggering system and the

read-out controllers (ROCs), which handle the event-by-event retrieval of the data recorded

from the detectors. The hardware is a 9U multi-functional VME board and has several ECL

inputs. External triggers are accepted through the eight input channels, usually known as

T1 to T8. It accepts and prescales multiple triggers and maintains the ”system busy” signal

while a trigger is being processed. From the accepted triggers it generates a signal, for

gating and timing of the front-end electronics (ADCs and TDCs), known as leve1-1 accept

(L1A). The status of the ROCs are exchanged directly with the TS using a dedicated RS432

flat cable daisy-chained to all the ROCs in the configuration, which allows the TS to mon-

itor the ROCs that are busy. During this time no additional triggers are accepted until

all the ROCs are finished processing the data. This way the TS maintains synchronization

between the ROCs [74].
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Figure 3.31: Transverse geometry of BigBite preshower, scintillator and shower detectors, adapted
from Allada [161].

coupled to the scintillating material. In the present application, the great advantage of this method
is its speed: the decay time of a scintillator can be as short as a few nanoseconds for some materials.

BigBite’s scintillator plane is made up of thirteen 17 × 64 × 4 cm3 bars of plastic scintillator,
arranged in a single column with the shortest (4 cm) dimension in the longitudinal direction, as
shown in Figure 3.31. Its active area is thus 221× 64 cm2. Each bar is read out by a pair of PMTs,
one on either side; the signal from each side, amplified by a factor of ten, goes to a discriminator
and then to a TDC to record timing information [161]. This system is essential for coincidence
experiments, which require precise comparisons of particle timing in each arm, but is not critical for
single-arm experiments like E06-014.

3.3.4.4 Preshower and Shower

Further particle identification is provided by the preshower and shower calorimeters, which also con-
tribute to the BigBite trigger (Section 3.3.6); the scintillator is sandwiched between these detectors.
Both the preshower and shower detectors are arrays of lead-glass blocks measuring 8.5 × 8.5 × 34
cm3 [175]; the preshower uses TF-5 lead glass while the shower uses TF-2. Preshower blocks are
oriented so that the long (34 cm) side is perpendicular to the trajectory of a particle passing through
the center of the detector, while shower blocks are placed so that the long side is along that tra-
jectory. The preshower thus has an active area of 229.5 × 68 cm2, with its blocks arranged in two
columns; the seven-column shower array has an active area of 229.5 × 59.5 cm2. Both layers have
27 rows of blocks. A PMT mounted on each of these blocks produces a signal proportional to the
energy deposited. Figure 3.31 shows the layout of the preshower, scintillator and shower arrays.
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A high-energy electron, positron or photon passing through a lead-glass block will undergo pair-
production and bremsstrahlung processes, generating additional electrons, positrons and photons
with lower energies. These secondary shower particles undergo the same types of processes, resulting
in an electromagnetic cascade in which much of the initial electron energy is deposited in the material.
The cascade dissipates only when the particles resulting from the shower drop below an energy at
which they can produce more shower particles, instead interacting with the medium via excitation
and ionization.

In a material with radiation length X0, the distance tmax = xmax/X0 at which the maximum
energy is deposited and the cascade begins to dissipate can be approximated as

tmax = lnE0/Ec − 0.5 (3.26)

where Ec is the critical energy, below which the cascade begins to dissipate [11]. The critical energy
for electrons in lead is about 7 MeV [176], with radiation lengths in lead glass on the order of a few
centimeters, depending on the exact formulation of the material. The 8.5-cm longitudinal dimension
of a preshower block represents about three radiation lengths of TF-5, while the 34-cm longitudinal
dimension of a shower block is about thirteen radiation lengths of TF-2 [161].

Due to Coulomb scattering, an electromagnetic cascade also has a significant transverse size; we
must consider the cross-section of a block that can contain the majority of the shower. In this, it is
useful to define the Molière radius RM

RM =
X0 · 21.2 MeV

Ec
. (3.27)

On average, a cylinder with radius RM contains 90% of the total deposited energy; a cylinder with
radius 3.5RM contains 99% [177]. In the transverse direction, the edge of a shower block is only
about 1.6RM from its center; for this reason, our analysis groups neighboring blocks into clusters,
which catch more of the cascade.

At Jefferson Lab energies, a heavier particle – such as a muon or a pion – acts as a minimum
ionizing particle (MIP) in the lead-glass block, with a very different deposited-energy profile. Instead
of producing a cascade, it loses small amounts of energy in successive ionization reactions. Energy
loss by a MIP can be approximated as about 1.5 MeV per g/cm2 traveled [178]. The TF-5 lead
glass of the preshower has a density of 4.77 g/cm3 [179], which means that, if nuclear interactions
are neglected, a muon or pion is likely to deposit only about 60 MeV in the 8.5 cm of the preshower
block and fewer than 300 MeV in the preshower and shower together, while an electron will deposit
nearly all its energy in the two calorimeters. This discrepancy makes the preshower and shower
calorimeters potent tools for differentiating electron tracks from pion background.

3.3.5 Left High-Resolution Spectrometer

The second arm of E06-014 is the LHRS, positioned at an angle of 45◦ to beam left and configured
to detect electrons for the measurement of the total unpolarized cross section σ0. Although the
measurement of A1 does not use LHRS data, we briefly describe the spectrometer here in order to
gain a more complete sense of the experiment.

Figure 3.32 shows the size and configuration of an HRS relative to Hall A as a whole. The bulk of
each HRS rests on a steel cradle that is supported by four bogies (wheeled carriages) riding on steel
plates, so that the HRS can be rotated into position at the desired azimuthal angle; the maximum
speed of the servomotor-driven system is 3◦ per minute [140]. Of course, they cannot be deployed
to arbitrarily small angles (< 12.5◦) as in Figure 3.32, lest they collide with each other, with the
beam pipe downstream of the target, or with other Hall infrastructure. The spectrometer angle is
measured from markings on the Hall floor and confirmed by surveyors.

The LHRS optics consist of a series of four magnets: two superconducting cos(2θ) quadrupole
magnets, a long superconducting dipole magnet, and a final superconducting cos(2θ) quadrupole
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investigated well beyond the previously known
region. Such measurements could reveal the
limitations of the conventional picture of nuclear
structure, based on nucleons interacting via meson
exchange, which is adequate for describing the low
momentum-transfer regime. Experiments of this
type in heavy nuclei expand our understanding of
nuclear structure, and provide information on how
the nucleon’s properties change when it is
embedded in the nuclear medium. In few-body
systems, where exact calculations can be per-
formed for interacting nucleons, these experiments
may reveal the complete breakdown of the meson-
exchange picture. More realistically, one hopes to
establish that quark models will simply offer a
much more economical description of the experi-
mental data. The spectrometers must have high
resolution to be able to isolate the different
reaction channels in nuclei so that a clean
comparison with theory can be achieved. High
absolute accuracy is required to separate the
various types of electromagnetic currents contri-
buting to the interaction.

Studies of the electromagnetic and weak neutral
current structure of the nucleon are also a major
part of the Hall A program. The HRS devices have
been used to measure the charge [3] and magnetic
[4] form factors of nucleons with high precision.
Virtual [5] and real [6] Compton scattering
experiments complement these data, and a detailed
study of spin observables in the N-D transition
[7] has been performed. An extensive program has
been developed to study the spin structure of the
neutron using a polarized 3He target. The strange-

quark contributions to the charge and magnetiza-
tion distributions of the nucleons have been
investigated via very precise parity-violating elec-
tron scattering experiments [8]. Together these
experiments provide stringent tests of nucleon
structure models.

2. High resolution spectrometers

The core of the Hall A equipment is a pair of
identical 4 GeV=c spectrometers. Their basic lay-
out is shown in Fig. 5. The vertically bending
design includes a pair of superconducting cosð2yÞ
quadrupoles followed by a 6:6 m long dipole
magnet with focussing entrance and exit polefaces
and including additional focussing from a field
gradient, n; in the dipole. Following the dipole is a
third superconducting cosð2yÞ quadrupole. The
second and third quadrupoles of each spectro-
meter are identical in design and construction
because they have similar field and size require-
ments. The main design characteristics of the
spectrometers are shown in Table 1.

2.1. Design choices

The selection of a QQDnQmagnet configuration
with a vertical bend using superconducting mag-
nets was driven by many requirements. These
included: a high momentum resolution at the 10#4

level over the 0.8 to 4:0 GeV=c momentum range,
a large acceptance in both angle and momentum,
good position and angular resolution in the
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Fig. 2. Schematic cross section of Hall A with one of the HRS spectrometers in the (fictitious) 0$ position.
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Figure 3.32: A schematic cross section of Hall A, showing a High-Resolution Spectrometer placed at
the physically impossible, but conceptually simple, angle of 0◦ relative to the beamline. Reproduced
from Alcorn et al. [140].

magnet (Figure 3.33). By adjusting the set currents for each magnet, experimenters can change
the central momentum value in a range from 0.3 to 4.0 GeV/c. (The spectrometer accepts particle
momenta within 4.5% of the central momentum setting.) The dispersion plane is vertical and the
bending angle is 45◦. The spectrometer’s high designed momentum resolution (10−4) and angular
resolution (0.5 mrad in the horizontal and 1.0 mrad in the vertical) come at the price of a solid-angle
acceptance of only 6 millisteradians [140].

Figure 3.34 shows the configuration of the LHRS detector stack during E06-010 and E06-014.
The detectors, as well as their data acquisition systems, are located inside a concrete shield hut in
order to reduce background radiation. For completeness, we will now briefly discuss each element of
this detector stack, although LHRS data do not otherwise figure in this dissertation.

A particle emerging from the LHRS’s magnets strikes the two Vertical Drift Chambers first.
The VDCs work on the same principle as BigBite’s MWDCs (Section 3.3.4.1), although certain
details of the implementation are different. The two VDCs are filled with a 62-38 mixture of argon
and ethane. Each chamber has two wire planes, one each in the u and v orientations (at angles of
45◦ relative to the dispersive and non-dispersive directions); unlike the BigBite wire chambers, the
VDCs are not perpendicular to the nominal central ray but rather intersect it at an angle of 45◦.
The VDCs allow track reconstruction with a position resolution of 100 µm and an angular resolution
of 0.5 mrad.

Next is the S1 scintillator plane, which is made up of six paddles of plastic scintillator (each
with a PMT on either side) and forms part of the HRS trigger; we will describe the trigger in
detail in Section 3.3.6. After this is an aerogel Čerenkov detector used by E06-010 to separate pions
from kaons and protons, followed by a CO2 gas Čerenkov detector used by both experiments to
differentiate pions from electrons with 99% efficiency. The third and final Čerenkov detector in the
LHRS stack is the Ring-Imaging Čerenkov (RICH), a liquid C6F14 detector that identified kaons
for E06-010 but sat idle during E06-014 [170].

The LHRS Čerenkov trio is followed by the S2m scintillator plane, consisting of sixteen scintillator
paddles (again, each has a PMT on each side). It is the S2m, positioned two meters downstream of
the S1, that gives LHRS events their timing, and it is thus crucial for time-of-flight calculations.

The final elements in the LHRS detector stack are two layers of pion rejectors. Each layer is a
2×17 array of lead-glass shower blocks, each with dimensions 15 cm × 15 cm × 35 cm and each read
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Figure 3.11: Layout of the magnets in the High Resolution Spectrometer [7].

• Vertical Drift Chambers: The tracking information was provided by the Vertical

Drift Chambers (VDCs). There are two chambers in the HRS and each chamber

has two wire planes, U and V, at an angle of 45◦ with respect to the dispersive

and non-dispersive directions. The VDC is designed in such a way that the particle

traversing the VDCs at 45◦ will fire about five wires per plane providing accurate

reconstruction of the particle’s track. The track is reconstructed using the timing

information given by the Time-to-Digital Converter (TDC) for each wire. This timing

is used for determining the drift distances for each wire. The cross-over point of the

track is then determined by a linear fit of drift distances versus wire position. The

position and angle of the track reconstructed using this method has a resolution of

about 100 µm and 0.5 mrad, respectively.

• S1 and S2m Scintillators: These are two plastic scintillator planes (S1 and S2m)

separated by a distance of 2 m. The S1 plane consists of six scintillator paddles

with two Photo-Multiplier Tubes (PMTs) on each side of one paddle. Similarly,

the S2m plane consists of 16 scintillator paddles with two PMTs on each side of

a paddle. They are primarily used for triggering the hadron arm (HRS) and to

provide the timing information for the coincidence time-of-flight calculations. The

S2m scintillators provided the timing information. The trigger setup for the HRS is

discussed in section 3.3.2.

49

Figure 3.33: Configuration of dipole and quadrupole magnets within the LHRS, reproduced from
Allada [161].

Figure 3.13: The layout of the detector packages in the LHRS [13].

3.4.3 Vertical Drift Chambers (VDCs)

Design and Characteristics

The Vertical Drift Chambers are used to provide information about the tracking of the

scattered particles. There are two VDCs in each spectrometers which determine the position

and track of a scattered particle. Each of these two VDCs is composed of two wire planes

in the standard UV configuration. The wires in the U and V planes are perpendicular to

each other and lie in the laboratory horizontal plane. Both the planes are oriented at 45◦

with respect to the nominal particle trajectory. The distance between the two VDC planes

is 335 mm and the separation between each pair of U and V planes is 26 mm as shown the

Fig. 3.14. There are a total of 368 sense wires in each plane, spaced 4.24 mm apart [12].

The wires are made of Au-plated tungsten. The VDCs are constructed and placed in such

a way that the lower VDC is positioned to coincide with the spectrometer focal plane and

the second VDC is located above it (as shown in the figure) to enable precise angular re-

construction of the particle trajectories [96].

73

Figure 3.34: Configuration of LHRS detector stack during E06-010 and E06-014, reproduced from
Dutta [151].
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out by a single PMT and ADC. Pions passing through such a detector will leave a distinctive peak
due to minimum ionization, while electrons will produce a full shower and a correspondingly large
signal. The pion rejectors and gas Čerenkov together provide a pion rejection factor of 104 [180].

3.3.6 Triggers and Trigger Logic

With numerous signals coming from so many detectors, it is impossible to record all information
continuously; the volume of data is too great. Instead, we rely on a trigger system to flag short time
windows of potential interest, and concentrate our data-recording efforts on these. Electronic logic
systems identify these time windows, based on parameters such as whether the signal in a detector
has passed a pre-programmed threshold (i.e. the detector has fired) or whether two detectors have
fired at close to the same time. The Hall A data acquisition system is designed to handle up to eight
separate triggers, each with its own integer prescale factor; when a trigger has a prescale factor n,
an event will be recorded 1/n of the times that trigger fires. Several triggers are employed primarily
for troubleshooting purposes, and are prescaled away during production running.

Table 3.11 summarizes the triggers in use during E06-014. Most were single-arm triggers, involv-
ing only BigBite signals or only LHRS signals. Each arm received a copy of T8, a 1024 Hz clock
signal. During low-energy calibration runs early in the experiment, the T5 trigger – a coincidence
between the BigBite T1 and the LHRS T3 – was used for a combined, two-arm data acquisition
system, but in single-arm mode, T5 was disabled.

Trigger Spectrometer(s) Description

T1 BigBite Low shower threshold
T2 BigBite Overlap between T6 and T7
T3 LHRS Overlap between S1 and S2m scintillators

T4 LHRS Overlap between two of S1, S2m and Čerenkov
T5 BigBite and LHRS Coincidence between T1 and T3
T6 BigBite High shower threshold

T7 BigBite Gas Čerenkov
T8 BigBite and LHRS 1024 Hz clock

Table 3.11: Triggers used during E06-014. The low-threshold trigger selects lower-magnitude pulses
in addition to the higher-magnitude pulses selected by the high-threshold trigger.

3.3.6.1 LHRS Triggers

The primary LHRS trigger is the T3 trigger, which requires a hit in both scintillator planes (S1
and S2m). A hit, in turn, requires above-threshold signal in both PMTs (left and right) affixed to
a paddle; a T3 event thus means a pulse in four PMTs, two in each scintillator plane. The LeCroy
1875 TDCs used for the scintillator planes had a time resolution of 50 ps; the timing of the T3
trigger is set by the leading edge of the signal in the PMT on the right side of the S2m scintillator
paddles [161].

The T4 trigger is used to check the T3 efficiency. The logic for T4 requires a coincidence between
the LHRS gas Čerenkov and either of the scintillator planes; T3 events (i.e. coincidences between
the two scintillator planes) are vetoed. T4 events therefore represent the population of potentially
desirable events that are erroneously rejected by the T3 logic, allowing an analysis of the T3 trigger
efficiency. In the E06-014 data, this analysis showed an average T3 efficiency of 99.95% across all
kinematic settings [181]. Figure 3.35 shows the logic for T3 and T4.
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Figure 3.35: Logic diagram for LHRS singles triggers, reproduced from Michaels [182]. This is the
standard wiring for both HRSes; the diagram’s T1 corresponds to E06-014’s T3, while the “2/3
trigger” is E06-014’s T4.

3.3.6.2 BigBite Triggers

Four triggers – T1, T2, T6, and T7 – are BigBite singles triggers. Two of them, T1 and T6, are
designed to detect whether a predetermined minimum energy has been deposited in the preshower
and shower calorimeters. In each case, hardware summing modules are used to add up the signals
from two rows of preshower blocks (four blocks, two in each row) and the signals from the two
corresponding rows of shower blocks (fourteen blocks, seven in each row). There are 26 of these
two-row clusters in all, so every row except the top and bottom rows forms part of two clusters. The
high voltages of the shower and preshower are calibrated to provide different active ranges, so the
shower signal must be amplified a factor of two more than the preshower signal before the two are
combined in a single, total hardware sum.

This hardware sum is directly proportional to the total energy deposited in both parts of the
calorimeter. The sum signal proceeds to a discriminator with a programmable threshold; if enough
energy has been deposited, the trigger fires. As shown in Figure 3.36, T1 and T6 have the same
circuit logic, but their thresholds may be set independently.

The Čerenkov trigger, T7, operates in a similar way, as shown in Figure 3.37. Signals from two
adjacent rows of mirrors (four mirrors altogether) are summed; there are nine overlapping mirror
clusters altogether. If any of these summed mirror-cluster signals passes a programmable threshold,
a T7 trigger is formed.

The primary BigBite trigger for this experiment, however, is T2, which is formed from a geomet-
rical overlap of calorimeter and Čerenkov signals. Figure 3.36 shows the shower part of the T2 logic;
the T2 shower threshold is shared with T6. Meanwhile, Figure 3.37 shows the Čerenkov part of the
T2 logic (the Čerenkov threshold is shared with T7), as well as the logic that combines signals from
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Figure 3.36: Logic diagram for the BigBite shower triggers, T1 and T6, adapted from Sawatzky [183].

the two detectors.
Figure 3.38 demonstrates how the geometrical overlap is defined. The ten rows of Čerenkov

mirrors are assigned to nine overlapping two-row clusters, C1 through C9. The twenty-seven rows
of the shower and preshower are assigned to twenty-six overlapping two-row clusters, A through Z.
The colors of the rows in Figure 3.38 show which Čerenkov clusters overlap with which calorimeter
clusters; the shape of the overlaps is determined by the probable paths of charged particles through
the detector. The top two rows of Čerenkov mirrors (cluster C1), for example, overlap with the
top five rows of the calorimeter (clusters A, B, C, D, and E). Čerenkov rows two and three (C2)
overlap with rows four through eight of the calorimeter (D, E, F, and G), and so on. When a signal
passes the threshold in both a Čerenkov cluster and any of the four calorimeter clusters with which
it overlaps, a T2 trigger is formed.

Since triggers generate gates for ADCs and common stops for TDCs, it is important for the
timing of the various triggers to be consistent. During E06-014, the T6 timing was used for both T6
and T2; the retiming circuit is shown in Figure 3.39. The L1 Accept, or L1A, signal is what gates
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Figure 3.37: Logic diagram for the BigBite Čerenkov triggers, T2 (Čerenkov and shower) and T7
(Čerenkov only), adapted from Sawatzky [183].

the ADCs and TDCs after a trigger is formed, as explained in Section 3.3.7.3.

3.3.6.3 Coincidence Trigger

The coincidence trigger, T5, is designed to detect cases where two particles, one observed in the
LHRS and one in BigBite, could have originated in the same interaction. This is determined by the
relative timing between triggers T1 and T3. If the two arms were perfectly symmetrical, the T5
trigger condition would be simultaneous hits in each arm. In the E06-014 setup, both particle time-
of-flight and trigger-formation time vary between the two spectrometers, so the trigger condition
must be set with this in mind. Trigger-formation times are determined by measuring the time it
takes a pulser signal to propagate through the trigger logic; time of flight may be determined based
on spectrometer geometry and the kinematics of the desired particles. Appropriate cable delays may
then be added (or removed) to the circuitry connecting T1 and T3 to the T5 logic, so as to ensure
a time overlap between signals with the desired timing.

T5 was in service for only a brief time during E06-014, when hydrogen and helium elastics data
were taken with a beam energy of 1.23 GeV. Figure 3.40 shows the relative timing of T1, T3 and T5,
as well as the L1A signal that prompts the recording of an event, for this calibration period. The
LHRS T3 signal had a width of 140 ns, defining the coincidence window, and the 40-ns T1 signal
from BigBite was designed to arrive 60 ns after T3. The T5 timing was set by T1.

For most of this calibration period, the LHRS was in a positive-polarity state so as to detect
protons, while BigBite was in a negative-polarity state for electron detection. When production
running began, both spectrometers were configured to detect electrons. The LHRS triggers were
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Figure 3.38: Geometric overlap between gas Čerenkov and shower for T2 trigger.

disabled in the BigBite DAQ, and vice versa; the T5 trigger was disabled in both.

3.3.7 Data Acquisition System

The trigger logic for the two spectrometers identifies time periods of potential interest to the ex-
periment, but recording the relevant data from those time periods for later study is a complex
undertaking. Timing and analog signals from thousands of PMTs and wires must be stored. In-
formation from beam monitoring devices must be collated with spectrometer signals. Peripheral
information about device functionality, from target temperature to the voltage drawn by a particu-
lar PMT, must be preserved for troubleshooting and possibly for later corrections. These herculean
tasks fall to the Data Acquisition System, or DAQ.

The trigger supervisor (TS) is the hardware keystone of the DAQ; it decides when to acquire
data and write it to disk. The actual data acquisition is handled by two software packages: CODA, a
package written at Jefferson Lab to coordinate complicated and configurable detector readouts, and
EPICS, which is used at numerous facilities to read peripheral information and remotely control ser-
vice devices. DAQ modules generally follow the VME (Versa Module European) bus standard [185].

3.3.7.1 CODA

The bulk of event acquisition in Jefferson Lab is handled within the framework of the CEBAF Online
Data-Acquisition (CODA) system [186]. CODA provides an interface to the Read-Out Controllers,
or ROCs, that serve as on-board computers for crates of electronics modules. The ROCs, which run
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Figure 3.39: Retiming of BigBite trigger, from Allada [184]. In the timing diagram, the “2nd copy
of L1 Accept” corresponds to the “Re-timed L1 Accept” from the circuit diagram.

the VxWorks operating system, follow instructions in the C-based CODA readout list (.crl) file to
retrieve or store signals from the modules inside the crate, which are most often Analog-to-Digital
Converters (ADCs) or Time-to-Digital Converters (TDCs). On receiving an L1A signal from the
trigger supervisor, the ROCs process their data and pass it to the CODA event builder, a software
package that combines data from disparate sources into one CODA event with a single timestamp;
this CODA event is then written to disk by the event recorder.

This set of processes is coordinated and supervised by the run control system, initially written
in Eiffel but now ported to Java [187]. This system, accessible to shift workers through a graphical
user interface, includes facilities for choosing between several DAQ configurations, downloading the
appropriate CODA readout lists to the ROCs, beginning a run, and ending a run – either manually,
or after a pre-set number of CODA events have been recorded. The run control system also monitors
the components and processes necessary for good data-taking, from individual ROCs to the status
of the event recorder, and produces error messages when a ROC or process stops responding to its
commands.

3.3.7.2 EPICS

The Experimental Physics and Industrial Control System (EPICS) [188], developed by a collabora-
tion of numerous laboratories, universities and industrial facilities, is used at Jefferson Lab for both
device control and the slow readout of selected parameters. EPICS drivers, developed to interface
with the native controls for everything from stepper motors to high-voltage power supplies, allow
remote changes to the devices’ operating instructions, often through a simple graphical interface.

The input to EPICS variables, meanwhile, may be generated from hardware (e.g. the vertical
position of the target ladder) or from software (e.g. the beam current in µA, generated from a
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Figure 3.40: Timing of coincidence trigger (T5) relative to BigBite (T1) and LHRS (T3) triggers.

formula involving readouts from two beam current monitors). Each EPICS variable is represented
by a record in the EPICS datastream, and is identifiable by its unique name; the channel for this
variable defines a path to the appropriate record. When an EPICS client requests a record by name,
the system broadcasts to its hardware and software servers to discover the channel and retrieve the
value of the variable. This decentralized method is typical of the EPICS philosophy of avoiding
single points of failure wherever possible.

In typical Hall A running, an EPICS logger script explicitly identifies records of interest to the
experiment. Approximately every thirty seconds, this body of records is retrieved and written to the
data file in a special, EPICS-type event. A separate list of EPICS records is logged at the beginning
and end of each run and written to the electronic logbook. Alarm handlers, configured separately
for each experiment, monitor certain hardware diagnostic variables (such as target temperature or
the flow rate of cryogenic fluids) and automatically alert the shift crew when one of these parameters
is outside the range they have been programmed to accept.

3.3.7.3 Trigger Supervisor

Each spectrometer has a trigger supervisor, a VME module with eight input channels corresponding
to the external triggers generated by the trigger logic (Section 3.3.6). The trigger supervisor prescales
the incoming triggers according to pre-set prescale factors for the run; for example, if T2 has a
prescale factor of two, then the trigger supervisor will accept only half the incoming T2 triggers.

When the trigger supervisor accepts a trigger, it generates the level-one accept (L1A) logic
signal, which gates the ADCs and TDCs and prompts the read-out controllers of each crate to begin
processing and recording their data. The trigger supervisor monitors the crates’ status via an RS432
cable daisy-chained to all the read-out controllers. No new triggers are accepted while any crates
are still busy, ensuring synchronization between all elements of the system [161].

3.4 Hall A Analysis Software

In an experiment like E06-014, the volume and complexity of the recorded data are such that no
collaboration could analyze it without computer aid. TDC and ADC information from thousands of
wires and PMTs must somehow be converted into information about the behavior of real, physical
particles: trajectories, momenta, energies and charges. Information about the beam (its polarization,
position, energy, intensity and angle) and target (its temperature, density, and polarization) must
inform these reconstructions, as well as the final measurements of asymmetries and cross sections.
The software required to perform these tasks is formidable both in breadth and in depth.
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Our analysis software is written using ROOT [189], a C++-based package developed by CERN
physicists to simplify the processing of large quantities of particle physics data. The free collection of
ROOT libraries, licensed under the GNU Lesser General Public License, includes classes for organiz-
ing disparate pieces of data, event-by-event; plotting histograms in one, two and three dimensions;
and performing fits using the Minuit subpackage. ROOT command-line instructions and macros
can be executed through CINT, a C interpreter; ROOT code can also be compiled and run as an
executable, which is significantly faster.

The Hall A Analyzer [190, 141], also known as Podd, is an extension of ROOT designed by and
for the Hall A Collaboration. Building on the basic ROOT libraries, the Analyzer provides abstract
classes for several types of detectors (vertical drift chambers, scintillators, Čerenkov counters, and
shower counters) and procedures for decoding the raw data in CODA files and performing some
physics analysis. Tracks through wire chambers, for example, are found using one of the many
Analyzer libraries. Replay scripts, written for use in an Analyzer environment, provide a framework
for combining information from many sources into a tree, which allows variables to be compared to
each other CODA event by CODA event. This functionality is suitable both for rapid data-quality
checks during an experimental run, and for in-depth, offline analysis after the experiment has been
completed.

In addition to the replay scripts and libraries defining detector classes, Analyzer code is designed
to rely on a collection of database files. These encode certain hardware features of the experiment
– for example, the channel, slot and crate numbers belonging to a particular ADC, TDC, or high
voltage line – as well as calibration constants. These database files are organized into dated di-
rectories so that the software can easily handle configuration changes: each detector class locates
the appropriate directory for the timestamp of the run and thereby automatically loads the correct
information.

The Analyzer was initially designed for use with the basic beamline equipment and high-resolution
spectrometers, but, through the efforts of many experimenters over the years, plug-in libraries extend
its operation to the BigBite spectrometer, as well as to several ad hoc detector configurations.

3.5 Run Summary

E06-014 ran immediately after the Transversity experiment (E06-010) [191], which used a very similar
setup: a polarized 3He target, the LHRS (positioned at an angle of 16◦) and BigBite (positioned
at an angle of 30◦). This shared apparatus allowed the two experiments to share expertise, some
software, and some calibration runs, as well.

Commissioning for E06-014 began with spectrometer moves, installation of new target cells, and
a reconfiguration of the spectrometer data acquisition systems to run independently of each other
(rather than in coincidence mode). BigBite optics calibration data, including 3He elastic singles and
H2 elastics in coincidence with the LHRS, were taken at a relatively low beam energy (1.23 GeV);
the LHRS optics had been calibrated several months earlier, during commissioning for E06-010.
Each spectrometer spent calibration time in positive polarity (with the magnetic field optimized for
detecting positively charged particles) and in negative polarity (optimized for negatively charged
particles.)

Two new detectors were commissioned during E06-014: the BigBite gas Čerenkov (Section 3.3.4.2)
and a photon detector for the Compton polarimeter (Section 4.3.2.5). E06-014 saw substantial work
on an electron detector for the Compton polarimeter (Section 4.3.2.5), but this detector commis-
sioning was not successful.

At BigBite’s position at 45◦, it saw very high event rates; at some kinematic settings, rates in
the LHRS were also high. In fact, E06-014’s data recording rate, which reached 12 MB/s, set a Hall
A record; the system was designed for a maximum rate of 10 MB/s. The strain on the network led
to transient deadtime spikes and synchronization gaps. At certain kinematic points, we reduced the
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production beam current from 15 to 14 µA (and sometimes to 13 µA) in order to alleviate these
effects.

Early production running revealed a vertical hole the size of three shower rows in the BigBite
acceptance. Three days after the beginning of production running, this was traced to the trigger
electronics: a NIM bin was providing insufficient power to a bank of summing modules for the shower
signal. After the NIM bin was replaced, the data showed a more uniform acceptance.

The planned kinematic coverage of E06-014 (Figure 3.3) required running at two beam energies:
5.9 and 4.7 GeV, or five and four passes through a fully operational accelerator, respectively. Since a
pass change in one experimental hall affects the quality and polarization of the beam delivered to the
other two halls, the scheduling of these events requires careful planning and negotiation. E06-014’s
production data were taken in four distinct run periods: a week and a half of highly polarized beam
at 5.9 GeV, three days of minimally polarized beam at 4.7 GeV, a week of highly polarized beam at
5.9 GeV, and a week and a half of moderately polarized beam at 4.7 GeV.

On March 1, 2009, during five-pass production running, power fluctuations during a storm dam-
aged several systems, including the Central Helium Liquefier (used for cryogenic cooling of equip-
ment), the high-voltage systems for the LHRS, and the beam fast-shutdown controls. This event
caused steadily worsening problems in several accelerator magnets. A week later, an air leak into the
1L04 cryomodule, located in the North Linac, was discovered. By then, moisture in that cryomodule
had contaminated its neighbors. Once the magnitude of the problem was clear, the Machine Con-
trol Center elected to bring a chain of three contaminated cryomodules to room temperature and
effectively remove them from the accelerator circuit, tuning the linacs to deliver 4.7-GeV electrons
in five passes through the accelerator, rather than four. The removal of 1L04 and its neighbors
improved the beam quality considerably, however, and a week-long extension of the planned run
allowed E06-014 to collect about 80% of the statistics in its proposal.



Chapter 4

Electron Beam Polarimetry

As we have seen in Section 2.1.2, the neutron spin asymmetry An1 derives from the measured asym-
metries A‖ and A⊥, defined for parallel and perpendicular orientations of the electron beam and
target polarizations. Since neither the electron beam nor the target 3He nuclei can be perfectly
polarized, A‖ and A⊥ must be corrected for the degree to which those polarizations fall short of
100%.

We have discussed the target polarization in Section 3.3.3; its analysis will be covered in Sec-
tion 5.1.2. In this chapter, we will discuss our analysis of the electron beam polarization in depth.
The Jefferson Laboratory accelerator produces and delivers a longitudinally polarized beam through
methods that were described in Section 3.2.1. Here, we will briefly touch upon methods for polar-
ization measurements via Mott scattering (Section 4.1) and Møller scattering (Section 4.2) before
embarking on a detailed description of Compton photon polarimetry in Hall A (Section 4.3); upgrades
to the Compton photon detector, data acquisition system, and analysis methods were commissioned
during Experiment E06-014. Finally, in Section 4.4, we report our conclusions about the polarization
of the electron beam over the course of the experiment.

4.1 Mott Polarimetry

Before the beam has left the injector, a Mott polarimeter may be used to monitor the transverse
polarization of the beam prior to its entry into the racetrack accelerator. The electron beam,
with an energy of approximately 5 MeV, collides with a gold, silver or copper foil target; due to
the coupling between the scattered electron’s spin and its orbital angular momentum with respect
to the target nucleus’s Coulomb potential, a scattering asymmetry may be measured [192]. This
method is destructive; none of the three experimental halls can take beam during the few hours a
Mott measurement typically lasts.

At Jefferson Lab, Mott polarization measurements are systematically a few percentage points
lower than measurements taken by the Hall A and Hall C polarimeters [139]. This discrepancy is
partially explained by the effects of photon background in the Mott polarimeter [193].

Due to scheduling constraints, no Mott polarization measurements were made during E06-014.
Instead, the experiment relied on two polarimeters in the Hall A beamline: the Møller (Section 4.2)
and the Compton (Section 4.3).

4.2 Møller Polarimetry

Historically, Mott scattering became less and less useful for electron-beam polarimetry as electron
beam energies increased. The use of Møller scattering as an alternative polarimetry technique was
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rate is caused by non-M^ller sources, consistent
with predictions of radiative Mott scattering on
the target nuclei. The estimated background level
of the coincidence rate is below 0.5%.

The polarization measurements with the M^ller
polarimeter are invasive and one measurement
typically takes an hour, providing a statistical
accuracy of about 0.2%.

4.5.2. Compton polarimeter
The Compton polarimeter, utilizing the process

of Compton scattering, was designed to measure
the beam polarization concurrently with experi-
ments running in the hall to a 1% statistical error
within an hour [42]. The polarization is extracted
from the measurement of the counting rate
asymmetry for opposite beam helicities in the
scattering of a circularly polarized photon beam
by the electron beam.

Installed at the entrance of the hall, the
Compton polarimeter consists of a magnetic
chicane, a photon source, an electromagnetic
calorimeter, and an electron detector as shown in
Fig. 22. The electron beam is deflected vertically
by the four dipoles of the chicane and crosses the
photon beam at the Compton interaction point.

After interaction, the backscattered photons
are detected in the calorimeter [43] and the
electrons in the silicon strip electron detector
located a few mm above the primary beam in
front of the fourth dipole. Electrons that did not
interact exit the polarimeter and reach the
target. A fast front-end electronics and data-
acquisition system is required to collect data at
rates of up to 100 kHz:

A resonant Fabry–P!erot cavity is used as a
power amplifier for the photon beam [44]. This
monolithic cavity, 85 cm long, uses two high-
finesse mirrors ðF ¼ 26; 000Þ to amplify a primary
230 mW CW Nd:YaG laser beam ðl ¼ 1064 nmÞ:
The circular polarization of the photon beam can
be reversed using a rotatable quarter-wave plate.
To reach and maintain the maximum amplifica-
tion of the photon density a feedback loop insures
that the laser frequency is locked to that of the
cavity. This locking procedure is fully automatic
and requires only a few seconds. An amplification
factor of 7300 has been measured, corresponding
to a photon beam power of 1680 W inside the
cavity. The circular polarization was measured to
be $99:3%70:6% for negative photon helicity
states and 99.9% 70:6% for positive ones. Both
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Fig. 21. Layout of the M^ller polarimeter, (a) presents a side view while, (b) presents a top view. The trajectories displayed belong to a
simulated event of M^ller scattering at yCM ¼ 80% and fCM ¼ 0%; at a beam energy of 4 GeV:
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Figure 4.1: Side (a) and top (b) schematic views of the Hall A Møller polarimeter, displayed with
trajectories from a simulated Møller scattering event (Ebeam = 4 GeV, θCM = 80◦, and φCM = 0◦).
Reproduced from Alcorn et al. [140].

first proposed in 1957 by Kresnin and Rozentsveig [194]. They realized that the cross section for
Møller scattering (e−e− → e−e−) is sensitive to the polarizations of the electron beam (P beam) and
the atomic electrons of the target (P target), according to

σ ∝


1 +

∑

i=X,Y,Z

(
Aii · P beami · P targeti

)

 . (4.1)

Here, i = X,Y, Z are the axes onto which the polarization is projected; A is the analyzing power of
Møller scattering as a polarization measurement, which depends on the scattering angle in the center-
of-mass frame. The maximum possible analyzing power is 7/9 and corresponds to the measurement
of the longitudinal component of the beam polarization [140].

Hall A’s Møller polarimeter is located within the experimental hall and has been a standard
element of the beamline equipment since 1997. Figure 4.1 shows a schematic representation of
the polarimeter, with simulated trajectories of Møller events at Ebeam = 4 GeV and a center-of-
mass angle θCM = 80◦. At the upstream end of the detector is the Møller target, a cryogenically
cooled 10.9-µm-thick iron foil maintained at a polarization of about 7.1% by a 28-mT magnetic
field, courtesy of a set of Helmholtz coils. Møller-scattered electrons pass through three quadrupole
magnets and a dipole magnet en route to a two-arm, lead-glass calorimeter capable of measuring
coincidences. The longitudinal asymmetry of the beam is computed as the average measurement at
two opposing target angles, which approximately cancels transverse contributions [195].

Since it uses a solid target, a Møller measurement is invasive and cannot be undertaken at the
same time as primary data-taking downstream, so it cannot be used for continuous monitoring of
the beam polarization. Furthermore, since the Møller target foil suffers depolarization due to beam
heating, polarization measurements are performed only up to a maximum beam current of about
1.5µA, a factor of ten less than E06-014’s production current of 15µA. Despite these shortcomings,
the Møller polarimeter’s subpercent statistical errors and low (∼ 2%) systematic errors make it a
vital component of electron beam polarimetry in Hall A.

During E06-014, seven Møller measurements were taken: approximately one each week in smooth
running, as well as one after each major configuration change (e.g. a pass change). The measured



CHAPTER 4. ELECTRON BEAM POLARIMETRY 108

Date Beam Energy (GeV) Measured Beam Polarization IHWP Status

7 February 5.90 −0.7943± 0.0013stat ± 0.0159syst in
9 February 1.23 −0.7164± 0.0014stat ± 0.0143syst in

11 February 5.90 +0.7450± 0.0015stat ± 0.0149syst out
19 February 5.90 −0.7448± 0.0011stat ± 0.0149syst in

3 March 5.90 −0.7970± 0.0012stat ± 0.0159syst in
6 March 4.74 +0.6394± 0.0010stat ± 0.0128syst out

12 March 4.74 −0.6079± 0.0013stat ± 0.0122syst out

Table 4.1: Results of Møller measurements of electron beam polarization during E06-014 running,
corrected for beam energy fluctuation. The status of the insertable half-wave plate at the polarized
electron source (Section 3.2.1) is also shown. The sign of the polarization measurement relates the
helicity logic signal to the helicity of electrons in the hall, as will be discussed in Section 6.3.1.3.

beam polarizations are reported in Table 4.1.

4.3 Compton Polarimetry

Both Mott and Møller polarimetry are destructive techniques: data-taking with beam on target
must be halted, often for several hours, in order to perform these beam polarization measurements.
Depending on experimental constraints, beam polarization measurements are thus often separated
by several days (for the Møller) or even several weeks (for the Mott). In addition, at Jefferson Lab,
these methods cannot be used on electron beams identical to the beam received on target. Mott
measurements are taken at the injector, before the electrons are accelerated to their final energies
and before they precess in the accelerator; Møller measurements are taken at beam currents that
are much lower than typical production currents.

There is thus a clear need for a non-destructive polarimeter that can take continuous measure-
ments of the beam polarization, at the production current and energy, even as data is taken on a
nuclear target downstream. In Hall A, the Compton polarimeter meets this need. In this section,
we will review the mechanics of Compton scattering, and how this process can be exploited to pro-
vide a measurement of electron beam polarization (Section 4.3.1). Upgrades of large portions of
the Compton polarimeter – namely the scattered-photon detector and the photon data acquisition
system – were commissioned during E06-014, and we will discuss the details of both the upgraded
and legacy portions of the apparatus in Sections 4.3.2 and 4.3.3. We will then describe the process
of calibrating the polarimeter (Section 4.3.4), the Monte Carlo simulations which have enabled us
to determine the analyzing power of our apparatus (Section 4.3.5), and the final analysis of the
Compton data (Section 4.3.6).

4.3.1 Principles of Compton Polarimetry

In 1923, when Arthur Holly Compton first observed and described photon-electron scattering, e−γ →
e−γ (Figure 4.2), with its attendant alteration of the wavelength of the scattered photon [196], the
effect was hailed as a vindication of the idea that light has a particle nature as well as a wave nature.
In subsequent years, the effect proved to have value beyond its role in that epic debate. In 1929,
Oskar Klein and Yoshio Nishina published a first-order cross section for Compton scattering, in
one of the very first successes of the nascent field of quantum electrodynamics [197]. As improved
experimental techniques allowed greater interest in spin-dependent processes, it was realized that
Compton scattering was just such a process: in 1954, Frederick Lipps and Hendrik Tolhoek [198, 199]
proved that the Klein-Nishina cross-section is sensitive to the relative spins of the incoming photon
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Figure 4.2: Feynman diagrams for Compton scattering.

Figure 4.3: Kinematics of head-on Compton scattering with a crossing angle αC = 0.

and electron. (Alternate derivations may be found in a variety of textbooks, e.g. that of Stephen
Gasiorowicz [200].)

The earliest applications of spin-dependent Compton scattering involved the production of polar-
ized photon and electron beams; in 1973, as upgrades to the Stanford Linear Accelerator were being
planned, Charles Prescott proposed inverting the standard kinematics in order to make routine po-
larization measurements of accelerated electron beams [201]. Since that time, Compton polarimeters
have become standard pieces of equipment at a wide range of accelerators, including SLAC [202],
HERA [203, 204], and NIKHEF [205].

In this section, we will cover the kinematics and spin dependence of Compton scattering in some
depth before exploring precisely how the detection of Compton scattering can lead to a measurement
of the electron beam polarization.

4.3.1.1 Kinematics of Compton Scattering

The kinematics of Compton scattering in the laboratory frame are shown in Figure 4.3. We define
the z axis as the momentum direction of the incident electron, which has energy E; the photon,
incident at an angle αc relative to the z axis, has energy k. The scattered electron is displaced by
an angle θe and has energy E′. The scattered photon, displaced by θγ from the z axis, has energy
k′. In our kinematics, the incident electron has very high energy compared to the incident photon.

The crossing angle αc is 23 mrad in our system, a small enough angle that setting it to zero
introduces negligible error (on the order of 0.01%) [206]. In the discussion that follows, we will
therefore treat the photons and electrons as colliding head-on, neglecting αc.

It is convenient to define a kinematic parameter y, which is the ratio of the minimum energy of
the scattered electron E′min to the energy of the incident electron E [207]
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Figure 4.4: Scattered photon energy k′ as a function of scattering angle θγ for the production beam
energies of E06-014, Ee = 4.7 GeV and 5.9 GeV. The initial photon energy is k = 1.1653 eV for
1064-nm photons, and the crossing angle αc is taken to be zero.

y =

(
1 +

4kE

m2

)−1

(4.2)

We may then express the scattered photon energy k′ as a function of its scattering angle θγ

k′ = k
4yE2

m2
(

1 +
yθ2γE

2

m2

) (4.3)

where we have used the small-angle approximation.
From Equation 4.3, we see that the energy k′ of a Compton-scattered photon is uniquely deter-

mined by the angle its momentum makes with the z axis. In other words, as we follow the population
of photons with energy k′ out from the interaction point, we find that their trajectories make a cone
centered on the z axis, with θγ defining its opening angle.

As Figure 4.4 shows, k′ falls off quickly with increasing θγ for the kinematics of interest: high-
energy back-scattered photons are tightly clustered around the z axis. The minimum possible
scattered photon energy k′min = k corresponds to a scattering angle θγ = π: there is no scattering,
and the photon continues undisturbed on its original path1. Meanwhile, an entirely backscattered
photon (θγ = 0) receives the maximum possible energy in the scattering process

k′max =
4ykE2

m2
(4.4)

k′max is typically called the Compton edge, since, when the Compton cross section is plotted as a
function of k′, k′max is the location of a sharp and sudden drop of the cross section to zero.

The existence of a well defined k′max allows us to define a dimensionless parameter ρ for the
scattered photon momentum

ρ ≡ k′

k′max
. (4.5)

1Incidentally, Equation 4.3 is not valid in this case, since the scattering angle is not small.



CHAPTER 4. ELECTRON BEAM POLARIMETRY 111

max = k'/k'ρ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 (
b

ar
n

)
ρ

/dσd

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Unpolarized Compton Cross Section

Incident Electron Energy

4.74 GeV

5.90 GeV
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The differential unpolarized cross section for Compton scattering may be expressed as a function
of the scattered photon energy ρ. With the classical electron radius r0 = αh̄c/mc2 = 2.817× 10−13

cm, we have [207]

dσ

dρ
= 2πr2

0y

[
ρ2 (1− y)

2

1− ρ (1− y)
+ 1 +

(
1− ρ (1 + y)

1− ρ (1− y)

)2
]
. (4.6)

Figure 4.5 shows the evolution of the cross section in ρ for the E06-014 electron energies.

4.3.1.2 Spin Dependence of Compton Scattering

Compton scattering also has a small spin-dependence, which allows the process to be used in po-
larization measurements. In the Hall A Compton polarimeter, light with nearly 100% circular
polarization interacts with highly longitudinally polarized electrons. In this section, we explore how
the spin polarization of the incident particles affects the Compton scattering process.

Electron and Photon Polarizations The incident particles in a Compton scattering process
both have spin; the electron has spin 1/2, while the photon has spin 1. As we have seen in Section 3.2,
CEBAF routinely delivers a beam with a high degree of longitudinal polarization; that is, most of
the electrons in the accelerated beam are spin-aligned, either parallel or anti-parallel to the direction

of their momentum. Where N
+(−)
e is the number of electrons with spin parallel (antiparallel) to the

beam direction, the extent of this longitudinal polarization is defined as

Pe =
N+
e −N−e

N+
e +N−e

. (4.7)

The definition of photon polarization is worth a more extended discussion. Taking a page from
Jackson [208], let us consider a homogeneous plane electromagnetic wave, with wave vector ~k and
frequency ω. Two orthogonal linear polarization directions, ε̂1 and ε̂2, both normal to the prop-
agation direction k̂, are available to it. The complex amplitudes E1 and E2 of each polarization
component allow a general formulation for the plane wave
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~E (~x, t) = (ε̂1E1 + ε̂2E2) ei
~k·~x−iωt (4.8)

The phase difference between E1 and E2 determines the type of polarization carried by the
wave. If their phases are the same, the wave is linearly polarized, and its polarization vector forms
an angle θ = tan−1 (E2/E1) with ε̂1. If their phases differ, the wave is elliptically polarized. We will
be concerned here with the simplest case of elliptical polarization, circular polarization, in which
|E1| = |E2| and their phases are different by 90◦. A circularly polarized wave may thus be expressed
using a single real amplitude E0 = |E1| = |E2|

~E (~x, t) = E0 (ε̂1 ± iε̂2) ei
~k·~x−iωt (4.9)

If we consider this wave at a fixed point in space, we will see that the magnitude of the electric
field vector remains constant in time, but its direction rotates about the propagation vector with
frequency ω. Suppose that we are looking back on the oncoming wave. If the sign in Equation 4.9 is
positive, the electric field vector rotates in a counter-clockwise direction as seen by an observer facing
the oncoming wave, and the wave can be said to have positive helicity; such a wave is left circularly
polarized. A negative sign in Equation 4.9 corresponds to clockwise rotation of the electric field
vector (again, as seen looking into an oncoming wave) and a negative-helicity – or right circularly
polarized – wave. This suggests an alternative generic formalism for a homogeneous plane wave, this
time decomposed into positive-and negative-helicity elements

~E (~x, t) = (ε̂+E+ + ε̂−E−) ei
~k·~x−iωt (4.10)

where E+ and E−, direct equivalents to E1 and E2, are complex amplitudes, and the polarization
directions are defined by the unit vectors

ε̂± =
1√
2

(ε̂1 ± iε̂2) . (4.11)

It is convenient to describe the polarization of an electromagnetic wave by means of the four
Stokes parameters, which allow us to completely describe the polarization solely by making intensity
measurements with various combinations of a linear polarizer and a quarter-wave plate. To define
the Stokes parameters in the circular-polarization basis of Equation 4.10, we express the coefficients
E± as:

E± = a±e
iδ± (4.12)

We can then define the Stokes parameters themselves as

s0 = |~ε ∗+ · ~E|2 + |~ε ∗− · ~E|2 = a2
+ + a2

−

s1 = 2Re
[(
~ε ∗+ · ~E

)∗ (
~ε ∗− · ~E

)]
= 2a+a− cos (δ− − δ+)

s2 = 2Im
[(
~ε ∗+ · ~E

)∗ (
~ε ∗− · ~E

)]
= 2a+a− sin (δ− − δ+)

s3 = |~ε ∗+ · ~E|2 − |~ε ∗− · ~E|2 = a2
+ − a2

−.

(4.13)

These parameters are not independent; they obey the relation s2
0 = s2

1+s2
2+s2

3. However, the quartet
forms a useful and intuitive way of thinking about the polarization of a plane wave. We see that s0

is a measure of the wave’s intensity, s1 and s2 relate the phases of the polarization components, and
s3 gives the intensity difference between the left- and right-circularly polarized components. The
degree of circular polarization Pγ of an electromagnetic wave is thus given by
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Figure 4.6: The four relative spin orientations for Compton scattering. The two configurations in
each column have identical cross sections.

Pγ =
s3

s0
. (4.14)

Doubly-Polarized Compton Scattering Let us apply these frameworks for electron and pho-
ton polarization to the problem of Compton scattering. When the incident electron is longitudinally
polarized and the incident photon is circularly polarized, there are four possible incident spin config-
urations for Compton scattering at a small crossing angle αc (Figure 4.6). Since Compton scattering
is an electromagnetic process and thus conserves parity, these four states reduce to two relative spin
configurations: parallel and antiparallel, which we will denote by ↑↑ and ↑↓ respectively.

In the laboratory, the Compton cross section for photons with circular polarization Pγ and
electrons with longitudinal polarization P le and transverse polarization P te is given by [207]

(
d2σ

dρdφ

)

Compton

=
1

2π

(
dσ

dρ

)

unpol

·
[
1 + Pγ

(
P leAl(ρ) + P te cosφAt(ρ)

)]
(4.15)

where φ is the azimuthal angle of the photon with respect to the transverse electron polarization P te
and Al and At are the longitudinal and transverse analyzing powers – the asymmetries that would
be measured if the photons were perfectly circularly polarized and if the electrons were perfectly
polarized along the relevant axis. In terms of ρ, y, and the unpolarized cross section dσ/dρ from
Equation 4.6, these differential asymmetries are given by:

Al ≡
σ↑↑ − σ↑↓
σ↑↑ + σ↑↓

=
2πr2

0y

dσ/dρ
(1− ρ (1 + y))

[
1− 1

(1− ρ (1− y))
2

]
(4.16)

At ≡
σ↑→ − σ↑←
σ↑→ + σ↑←

=
2πr2

0yρ

dσ/dρ
(1− y)

√
4ρy(1− ρ)

1− ρ(1− y)
. (4.17)

Because of the large electron momentum in the laboratory frame, the Compton scattering angles
are small enough that our detectors (electron and photon), properly centered, catch the entire
azimuthal distribution of the scattered particles, integrating over φ and removing the transverse
asymmetry term PγP

t
e cosφAt(ρ) from Equation 4.15 [209]. We are thus left with sensitivity only

to the longitudinal term, PγP
l
eAl(ρ), and we will henceforth write P le as Pe

(
dσ

dx

)

Compton

=

(
dσ

dx

)

unpol

· (1 + PγPeAl(ρ)) . (4.18)
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Figure 4.7: Differential Compton asymmetry Al(ρ) for longitudinally polarized electrons, computed
for the two E06-014 production electron beam energies scattering from 1064-nm photons.

Figure 4.7 shows Al as a function of ρ for the E06-014 electron and photon energies. For low
values of ρ, this quantity is negative; it reaches its maximum, Amaxl = (1 − y2)/(1 + y2), at the
maximum scattered-photon energy ρ = 1. The zero crossing is located at ρ = (1 + y)−1.

4.3.1.3 Counting Asymmetry

Conceptually, the most straightforward way of measuring an experimental Compton asymmetry
is by counting the number of times that Compton scattering occurs for each spin configuration
and then forming an asymmetry between the counts. There are two methods of performing such a
measurement; we will follow the Conceptual Design Report for the Hall A Compton polarimeter [210]
in discussing them.

The first method is to sort scattering events according to the energy of the scattered photon and
then form an asymmetry for each energy bin. Let the parallel configuration ↑↑ correspond to the
label + and the antiparallel configuration ↑↓ correspond to the label −. For an integrated luminosity
L of incident photons and electrons at the Compton interaction point, the count rate ni in the ith

bin will follow

n±i = L
∫ ρi+1

ρi

dρε(ρ)
dσ

dρ
(ρ)(1± PePγAl(ρ)) (4.19)

where the energy range of the bin goes from a lower bound of ρi to an upper bound of ρi+1, and
ε(ρ) is the detector efficiency.

For the ith bin, we then obtain

Aiexp =
n↑↑i − n↑↓i
n↑↑i + n↑↓i

' PePγAil. (4.20)

Using the mean value of the theoretical asymmetry Ail for that energy range, the electron polarization
P ie is extracted for each bin, and a final result is achieved by taking the weighted mean over all bins.
In this method, energy bins are chosen so that Al and ε are relatively flat across each bin.

The second method is to integrate the number of counts over the entire energy range of the
acceptance. Instead of considering counts per bin ni, we consider total counts N , defined by an
expression identical to Equation 4.19 except for the range of the integral, which runs from a threshold
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energy ρmin to the maximum energy 1. We can then form an asymmetry between total counts over
all energies

Aexp =
N↑↑ −N↑↓
N↑↑ +N↑↓

= PePγ〈Al〉 (4.21)

where 〈Al〉 is the mean value of Al over the observed energy range

〈Al〉 =

∫ 1

ρmin
dρε(ρ)dσdρ (ρ)Al(ρ)

∫ 1

ρmin
dρε(ρ)dσdρ (ρ)

. (4.22)

In both of these methods, where Ntot is the number of scattering events measured, we can
estimate the fractional error as

(
∆Pe
Pe

)2

' 1

NtotP 2
e P

2
γ b

(4.23)

where b = 〈A2
l 〉 for the bin-wise method and b = 〈Al〉2 for the integrated counts method.

Assuming perfect energy resolution, the primary advantage of the bin-wise counting method
is that the polarization measurement can be mostly decoupled from the detector efficiency, since
the efficiency does not vary much inside a bin and the polarization is computed independently in
each bin. The method of integrated counts requires knowledge of the detector efficiency, but, if the
hardware threshold ρmin is set appropriately, the measurement may focus on the region where the
theoretical asymmetry Al is positive and large.

4.3.1.4 Integrating Asymmetry

The f igure of merit (FOM) of a Compton polarimeter, equal to σ〈Al〉2, is a useful tool for comparing
polarimetry performance for different photon and electron energies. With all other parameters held
equal, it obeys the scaling law [211]

FOM = σ〈Al〉2 ∝ k2E2. (4.24)

This relationship generated keen interest during preparations for the lead-radius experiment PREx [212],
which ran in Spring 2010 at a beam energy of 1.06 GeV. The experiment’s strict requirement of 1%
electron beam polarimetry, at a beam energy lower than any previous successful Compton polariza-
tion measurement at Jefferson Lab, necessitated extensive upgrades of all aspects of the Compton
polarimeter.

We saw in Figure 4.7 that the theoretical asymmetryAl has its greatest magnitude for high-energy
scattered photons (ρ > 0.5). This energy range is also less sensitive to low-energy uncertainties in
the detector response function. If we measure the Compton asymmetry in the energy-weighted, inte-
grated signal, the maximum contribution will therefore come from the part of the photon spectrum
with the highest sensitivity and the best characterization. This measurement requires that scattered
photons be detected in a photon calorimeter, which allows their energy to be recorded.

Let E(ρ) be the mean energy deposited in the photon calorimeter by a photon with incident
energy ρ. The corresponding signal measured in our system is then W (ρ), which – in an ideal
system with perfect detector and PMT response – would be directly proportional to E(ρ). We can
define the energy-weighted, integrated signal S as [210]

S± = L
∫ 1

ρmin

dρW (ρ)ε(ρ)
dσ

dρ
(ρ) (1± PePγAl(ρ)) . (4.25)



CHAPTER 4. ELECTRON BEAM POLARIMETRY 116

We note that the detection threshold ρmin in Equation 4.25 may be brought very close to zero,
depending on the light yield of the photon detector and the implementation of the integration. This
dramatically decreases sensitivity to the detector response.

If we measure S for both polarization configurations, we can form an asymmetry that gives us
access to the electron beam polarization

Aexp =
S+ − S−
S+ + S−

= PePγ
〈WAl〉
〈W 〉 (4.26)

where the signal-weighted analyzing power is

〈WAl〉
〈W 〉 =

∫ 1

ρmin
dρWAl(ρ)ε(ρ)dσdρ (ρ)

∫ 1

ρmin
dρWε(ρ)dσdρ (ρ)

. (4.27)

We will treat the problem of imperfect energy resolution in Section 4.3.4.4.
For Ntot detected events – a quantity that is not necessarily measured in this method – the

fractional error on the measured polarization may be estimated as

(
∆Pe
Pe

)2

' 1

NtotP 2
e P

2
γ
〈EAl〉2
E2

. (4.28)

Historically, the Hall A Compton polarimeter has used the integrated counts method to measure
Pe, but PREx’s low production energy necessitated a change to energy-weighted signal integra-
tion [211]. E06-014, with its relatively high production energies of 4.74 and 5.90 GeV and its toler-
ance for polarimetry errors of several percent, made an excellent test case for this new measurement
method.

4.3.2 Compton Apparatus in Hall A

The Compton polarimeter is located in the Hall A beamline, in the tunnel just upstream of the
hall itself. First installed in 1999, its ability to provide continuous monitoring of the electron beam
polarization has made it a vital asset to an extensive experimental program in the hall, but much
of the original system proved inadequate for experiments requiring greater and greater precision
in beam polarimetry. Driven by the needs of PREx, a wide-ranging Compton upgrade project was
launched in 2005. E06-014 ran partway through this upgrade, and was the commissioning experiment
for the upgraded photon detector, data acquisition system, and integrating analysis method.

Figure 4.8 shows a schematic of the Compton polarimeter layout, with the angles exaggerated
for clarity. In this section, we will describe each of the polarimeter’s hardware elements in turn, as
they existed during E06-014.

4.3.2.1 Magnetic Chicane

In the approach tunnel to Hall A, operators may choose to direct the beam either through a straight
vacuum pipe or through the 15.35-m Compton chicane (Figure 4.9), which consists of four identical
magnetic dipoles with maximum fields of 1.5 T each. A distance of 4.4 m separates the first dipole
from the second, and the third dipole from the fourth. At the center of the chicane, the diverted
beam is parallel to its original path, with a downward displacement of 30 cm. It is in this central
region, 2.3 m in length, that the photon cavity (Section 4.3.2.2) is placed and Compton scattering
occurs.

An initial tune of the beam through the Compton chicane is an involved process that can take
several hours, but periodic refinements of the tune – slight adjustments of the dipole magnet strength
in order to optimize the vertical beam position at the Compton interaction point – are straightfor-
ward. Since the dipoles are wired in series, slight modifications to their fields affect the beam’s
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Figure 4.8: Side-view schematic of the Hall A Compton polarimeter apparatus; angles are exagger-
ated, and distances altered, for clarity. The primary electron beam, shown by a black line, enters the
magnetic chicane from the left. Compton scattering occurs in the center of the chicane; scattered
electrons and photons may be detected in appropriately placed detectors, while the unscattered
beam continues toward the main experimental hall downstream.

position between the second and third dipoles without changing the beam position in the Hall itself;
a 1 mm vertical displacement at the Compton interaction point corresponds to a displacement of
less than 50 µm at the target [213].

The third dipole magnet, located just downstream of the Compton interaction point, plays an
important additional role in the polarimeter. The kinematics of Compton scattering at Jefferson Lab
lead to all three beams – unscattered electrons, scattered electrons, and scattered photons – being
approximately collinear as they emerge from the interaction point (Figure 4.4). The third magnet
separates these beams: scattered and unscattered electrons are bent through different angles, while
the scattered photon trajectories are unchanged by its magnetic field.

4.3.2.2 Photon Source

In the Hall A Compton polarimeter, Compton scattering takes place in a Fabry-Perot cavity that is
used to amplify the power of polarized laser light. When the wavelength of the source laser is locked
to a resonance of the cavity, high gains can be achieved: the intensity of light circulating within the
cavity could, in principle, be thousands of times higher than the intensity of the light at the cavity
input. Our Fabry-Perot cavity (Figure 4.11) and its supporting optics system are located atop a
vibration-damped optics table in the center of the Compton chicane. The laser beam couples to the
cavity via the cavity’s high-finesse mirrors; the electron beam enters and exits the cavity, which is
held at a high vacuum, through a pair of vacuum windows. The crossing angle of the two beams is
23 mrad – just large enough to place the high-finesse mirrors five mm away from the electron beam,
thus providing some protection from the beam halo – and the nominal Compton interaction point
is at the exact center of the cavity [214]. Below, we discuss the particulars of this cavity and the
optical elements that transport, monitor, and optimize the laser light.

During E06-014, the incident photons for Compton scattering were provided by an Innolight
Nd:YAG laser with an infrared wavelength of λ = 1064 nm. The resonant Fabry-Perot cavity
to which this 700-mW laser was locked achieved photon powers in the 400-500 W range during
the experiment. This cavity, 0.85 m in length, consisted of two confocal mirrors separated by
an integral number of half-wavelengths; when a laser of the right wavelength was coupled to this
cavity, constructive interference allowed a resonance to build. The resonance was maintained despite
vibrations and fluctuations via the Pound-Drever-Hall technique for frequency locking [215, 216]. In
this method, two sidebands are introduced to the laser’s frequency spectrum; differentiating the
signal from these sidebands, reflected from the cavity, yields an error signal that reveals which
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Figure 4.9: The upstream half of the Compton chicane in the Hall A tunnel, looking downstream.
The blue return yoke and red coil of the first dipole are visible at left; at right is the second dipole
and the laser table (behind an olive-green curtain).

way the central frequency should be adjusted for optimal efficiency. Typically, these fine frequency
adjustments can be made by one of two methods: a slow feedback method whereby the temperature
of the lasing medium is modified, and a fast feedback method involving a change of voltage to a
piezoelectric medium attached to the crystal [217]. The fast feedback method was the primary
locking tool for the Hall A Compton laser.

A Fabry-Perot cavity may be characterized by several parameters which depend primarily on the
reflectivity R of the mirrors, their transmittivity T , and the distance L that separates them [218].
When the interior of the cavity is held in vacuum, the index of refraction is n = 1, and the trans-
mission of the cavity peaks at certain frequencies νm = mc/2L (here, m is a positive integer and c
is the speed of light). The free spectral range (FSR), which is the frequency separation between two
consecutive peaks, is then

∆νFSR = c/2L. (4.29)

The frequency bandwidth admitted by the cavity is determined by the width of the transmission
peaks relative to the free spectral range. These factors are in turn determined by the reflectivity of
the mirrors, which are usually described in terms of their finesse F

F =
π
√
R

(1−R)
. (4.30)

The finesse and the free spectral range determine the full-width-at-half-maximum, or passband, of
the transmission peaks

∆νFWHM =
∆νFSR

F . (4.31)

Higher-finesse mirrors allow tighter control over the photon frequency within the cavity, as well as
higher cavity gain due to their high reflectivity – but they also make it more difficult to achieve a
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Cavity parameter Measured Value

Length L 0.85± 10−4 m
Free Spectral Range 176.47± 0.02 MHz

Decay time 23.5± 0.5 µs
Finesse 26040± 550

Passband 6.8± 0.14 kHz
Average intra-cavity power 1550± 35 W

Table 4.2: Nominal parameters of Compton Fabry-Perot cavity, as characterized in February
1999 [219].

stable lock.
The gain G = Icirc/Iinc is a function of the finesse, the laser frequency, and the free spectral

range [217]

G(ν) =
G0

1 + (2F/π)2 sin2(πν/∆νFSR)
(4.32)

where the maximum gain G0 is achieved at resonance, when ν is a multiple of ∆νFSR:

G0 =
1

(1−R)2
(4.33)

The Compton laser system is designed to periodically take the cavity into and out of resonance,
making the decay time – the time needed for the cavity resonance to die down once the laser feeding
it has been removed – an important parameter as well. In the limit of an instantaneous shut-off of
the laser, the decay of the intra-cavity power as a function of time is described by an exponential
curve whose characteristic time is given by

Td '
Fτ
π

(4.34)

where τ = L/c is the time necessary for an electromagnetic wave to traverse the cavity [219].
Detailed measurements of the cavity’s parameters were performed in February 1999, when the

cavity and its suite of optics were first installed in the Hall A beamline. Table 4.2 shows the results
of these measurements. By the time that E06-014 ran, ten years later, the cavity’s performance had
naturally degraded, primarily as a result of time and accumulated radiation exposure; for example,
the maximum intra-cavity power achieved during this experiment was only 450 W.

Figure 4.10 is a schematic of the optics supporting the Fabry-Perot cavity. The initial, 1064-nm
laser beam is linearly polarized. The first element is a Faraday optical isolator, which protects the
laser from light reflected back from later optical elements. Next is a half-wave plate (HWP), which
rotates the laser output’s intrinsic linear polarization to make it parallel to the optical table. Three
lenses, marked L in the figure, shape the beam for optimal coupling to the cavity: the beam profile
at the cavity entrance and exit must be smaller than the cavity mirrors, and placing the waist (the
position of the laser beam’s narrowest cross section) at the Compton interaction point (CIP) ensures
maximum luminosity. Fixed mirrors, marked M, steer the beam. After the first steering mirror is
a polarizing beamsplitter cube; this allows light coming directly from the laser to pass, but diverts
reflected light from the cavity into an integrating sphere and photodiode. This reflected signal is fed
into the locking electronics for the Pound-Drever-Hall method.

After the polarizing beamsplitter is a quarter-wave plate (QWP), which converts the linearly
polarized beam into a right- or left-circularly polarized beam. A SURUGA motorized stage allows
us to switch between these two modes by remotely rotating the quarter-wave plate. The beam then
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Figure 4.10: Layout of the Compton cavity laser table, adapted from Baylac [214]

passes underneath the cavity before striking the first of two steering mirrors on motorized mounts;
periodically, as necessitated by the natural degradation of the optical circuit due to vibrations, one
may remotely change their tilt angles in order to optimize the laser’s coupling to the cavity. (In
Figure 4.10, the motorized steering mirrors are denoted M1 and M2, as opposed to the fixed mirrors,
which are not numbered.) The M/M2 mirror set in the upper-left corner of Figure 4.10 brings the
beam up to the height of the cavity.

The remaining elements are diagnostic. At the cavity exit, a harmonic beamsplitter (HBS) is
used to split off two very low-intensity (∼ 1% of the incident) beams from the primary transmitted
beam; these low-intensity beams can then be monitored by a CCD camera and a photodiode. This
transmission photodiode is the source of an intra-cavity power signal, which is both written to the
EPICS datastream and fed into a discriminator to produce a binary logic signal reporting whether
the cavity is in or out of resonance. We will discuss the use and drawbacks of these signals at some
length in Section 4.3.4.1.

Figure 4.11: Side view of the Fabry-Perot cavity for the Compton polarimeter (left). At right is
the cavity endcap, showing the openings for the photon and electron beams. Reproduced from
Escoffier [213].
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Meanwhile, the bulk of the beam continues through another quarter-wave plate, after which
it is linearly polarized again; a Wollaston prism separates the two polarization components. Two
integrating spheres each measure the power contained in one component; by combining these mea-
surements with the known cavity optics, we can extrapolate the polarization Pγ of the photons at
the Compton interaction point. We describe this process in detail in Section 4.3.2.3.

In order to control systematic errors, the cavity is not continuously left in a resonance state
for long periods of time. Instead, it is periodically taken out of resonance and left in a state
with essentially zero photon intensity at the Compton interaction point. These periods, during
which negligible Compton scattering occurs, allow a direct measurement of background processes,
whose effects may then be subtracted from the signal when the cavity is in resonance and Compton
scattering is taking place.

During the time when the cavity is out of resonance, the quarter-wave plate is rotated on its
motorized stage; when the cavity comes back into resonance, its photons therefore carry a circular
polarization opposite to what they had had before. The two polarization states provide independent
measurements of the beam polarization. Any systematic disagreement between the two provides
an important diagnostic of helicity-dependent effects in the electron beam; for example, electrons
of one helicity state or the other might be systematically mis-steered from the optimal Compton
interaction point.

The entire cavity cycle, controlled by an EPICS script set into motion whenever a “Start Run”
command is sent to the data acquisition system, lasts four minutes. It begins with the cavity in
resonance for ninety seconds, with its light in the right-circularly polarized state. The cavity is then
taken out of resonance and held empty for thirty seconds. Ninety seconds of resonance with left-
circularly polarized light follow, and then another thirty seconds out of resonance. The cavity power
is constant to the level of a few Watts (out of 400 to 450 Watts) when the cavity is in resonance;
when the cavity is out of resonance, the measured intra-cavity power is a few milliWatts.

4.3.2.3 Measuring the Photon Polarization

The right-hand side of the optics diagram in Figure 4.10 shows the apparatus for measuring the
degree to which the photons emerging from the cavity are circularly polarized. We may express this
polarization Pγ as the ratio of two of the Stokes parameters defined in Equation 4.13

Pγ =
s3

s0
. (4.35)

where s0 gives the intensity of the electromagnetic wave and s3 gives the intensity difference between
those components of the wave that are left-circularly polarized and those that are right-circularly
polarized.

The first element of the apparatus is a quarter-wave plate, which gives the circularly polarized
photons a linear polarization, allowing the Wollaston prism to send each of the two components of
this linearly polarized beam to a different integrating sphere. If the slow axis of the quarter-wave
plate is at an angle β relative to the horizontal axis of the prism, then the intensity arriving at each
sphere is given by

IS1 =
1

2

[
s0 + s1 cos2(2β) + s2 cos(2β) sin(2β)− s3 sin(2β)

]
(4.36)

IS2 =
1

2

[
s0 − s1 cos2(2β)− s2 cos(2β) sin(2β) + s3 sin(2β)

]
(4.37)

in terms of the Stokes parameters of the laser light incident on the quarter-wave plate [214]. By
changing β, we can make a complete characterization of the polarization, but we are only interested
in the degree of circular polarization and we therefore set β = π/4. The asymmetry between the
measured intensities at each integrating sphere then gives us the polarization at the cavity exit
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IS1 − IS2

IS1 + IS2
=
s3

s0
= P exit

γ . (4.38)

The integrating spheres are not identical; αSn, the ratio of output signal In to input intensity ISn,
is different for each one. At Saclay, where the system was initially tested and built, these calibration
constants were measured at αS1 = 4.195± 0.034 µW/mW and αS2 = 3.735± 0.034 µW/mW [214].
Equation 4.38 thus becomes

P exit
γ =

I1
αS1
− I2

αS2

I1
αS1

+ I2
αS2

(4.39)

where I1 and I2 are the power signals reported by the integrating spheres.
Equation 4.39 gives the photon polarization at the cavity exit, but we must know the photon

polarization at the Compton interaction point, in the center of the cavity, in order to extract the
electron beam polarization through Compton scattering. This value may be deduced from the mea-
sured value if the transfer function, which describes the evolution of the beam’s circular polarization
as it travels from the center of the cavity to the quarter-wave plate at the cavity exit, is known. The
transfer function may be measured to subpercent precision by rotating the elliptical polarization of
the beam at the cavity entrance and performing a polarization measurement at the cavity exit for
each angle [214]. The EPICS programming for the Compton system incorporates the intensity read-
ings from the integrating spheres, the spheres’ calibration constants, and a previously measured (but
undocumented) transfer function, continuously producing a photon polarization value for the Comp-
ton interaction point. This polarization value is read out approximately every 1.7 seconds, along
with other data for the Compton system. We will discuss the drawbacks of this EPICS readout, as
well as the ultimate determination of cavity polarization during the experiment, in Section 4.3.4.3.

4.3.2.4 Electron Detector

In principle, a Compton asymmetry may be measured using only Compton-scattered photons, only
Compton-scattered electrons, or detections of both scattered particles in coincidence. Compton-
scattered electrons are separated from the primary beam in passing through the third dipole of the
chicane; due to their energy loss in the scattering process, they are bent through a larger angle than
the unscattered electrons are. A moveable silicon microstrip detector, kept safely out of the main
unscattered electron beam, can then detect electron tracks and reconstruct their energies.

The original Compton electron detector was destroyed after a close encounter with the main
electron beam in 2006. An upgraded set of silicon microstrip planes was initially installed in the fall
of 2008, but commissioning revealed major problems with the detector; unfortunately, it was not
yet usable during E06-014 running. This experiment therefore relied solely on scattered photons for
its Compton polarization measurements.

4.3.2.5 Photon Detector

To detect Compton-scattered photons, the original Compton polarimeter used a 5x5 array of PbWO4

crystals as a calorimeter. Each crystal had a 2 cm x 2 cm entry face and extended 23 cm in length,
with its own PMT for electronic readout. The crystal gains could be calibrated against each other
using photons tagged by the electron detector [220]. Unfortunately, this procedure proved too labor-
intensive to be performed routinely, and the typical experiment used only the central crystal to take
Compton photon data. For a 100-MeV photon, this simplified configuration degraded the detector
response function by a factor of about 2.8. (For Compton scattering with a 5.9-GeV electron beam,
the maximum scattered-photon energy was 562 MeV; this dropped to 370 MeV for running with
4.74-GeV electrons.)
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(a) (b)

Figure 4.12: The Compton GSO photon detector, (a) mounted to a PMT and (b) inside a steel-
tube housing mounted in the scattered-photon beamline. The tube is suspended alongside the box
containing the original photon detector array; the temperature-controller ports are visible on the
side of the box. The upstream direction is to the right and the downstream direction to the left.

Before E06-014, as a replacement for this PbWO4 system, we installed a single Gd2SiO5 (GSO)
crystal (Figure 4.12(a)), grown by Hitachi Chemical and doped with cerium for improved radiation
hardness. So as to catch most of the shower, the cylindrical crystal has a diameter of 6 cm and a
length of 15 cm. Signal readout is performed with a 12-stage Amperex xp2230 PMT with a custom-
built base to maximize linearity. In order to preserve our ability to switch to the original photon
calorimeter if the need arose, we mounted our GSO detector alongside the box containing the array
of lead tungstate crystals (Figure 4.12(b)). The detector box could slide on rails, installed atop a
table with motorized horizontal and vertical motion; in a brief access to the hall, we could slide the
box so as to center either photon detector on the beam of Compton-scattered photons, and then
clamp it into place. In the event, however, no such changes were necessary: the new GSO detector
was used throughout E06-014.

We will discuss the determination of the photon detector system’s response function and its
non-linearity in Section 4.3.4.4.

4.3.3 Data Acquisition

In its original installation, the Compton polarimeter used a counting data acquisition system. Raw
data from a small, prescaled percentage of waveforms were retained from each helicity window. The
remainder of the data were subjected to an online analysis by one of two CPU cards in the data
acquisition VME crate; only this analyzed summary was written to disk. This strategy to reduce
the amount of disk space required to store the Compton data was made possible by equipping the
VME crate with a dual CPU: as one CPU handled the acquisition of data from a helicity window,
the other worked on the online analysis of data from the previous helicity window. Each CPU card
handed off control of the crate at the end of its helicity window. [221]

During E06-014, we commissioned a second data acquisition system, based on a modified 12-bit
FADC from Struck DE, running with a sampling rate of 200 MHz. The timing of the readout com-
mands is based on a HAPPEX Timing Board [222] that provides start-acquisition, stop-acquisition,
and readout commands based on the master pulse signal (MPS), which marks a brief period of
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Figure 4.13: A wiring diagram for the newly commissioned integrating data acquisition system for
Compton photon data. In integrating mode, the Trigger Enable bit is low and data are read out at
a STOP signal from the HAPPEX timing board. In triggered mode, the Trigger Enable bit is high
and data are also read out just after a photon pulse has been detected. The original data acquisition
system runs in parallel to this one.

indeterminate beam helicity between helicity windows. Integrating data acquisition was set to begin
500 µs after the onset of the low logic level on the MPS line, MPS, and continue until the end of
the MPS, at which time it would be written to disk.

This system was designed to run in parallel with the original counting DAQ, so that the orig-
inal measurement method could be preserved. Two primary running modes were available during
E06-014: triggered mode and integrating mode. Switching between these configurations could be
accomplished between runs by downloading the appropriate library to the VME crate containing the
FADC. An output bit on the Trigger Interface Register (TIR), set by an instruction in this library,
gives a high logic level if the system is in triggered mode, and a low-logic level if it is in integrating
mode; this logic level enables or disables the trigger logic. Figure 4.13 shows a wiring diagram for
the system, which spans one VME crate and one NIM crate.

4.3.3.1 Triggered Mode

In order to troubleshoot our wiring and measure Compton spectra for comparison with Monte Carlo
simulations, we implemented a DAQ configuration in which the detection of a photon pulse triggers
a readout of the waveform for that pulse. The FADC stores 512 signal samples (taken at 5-ns
intervals) in a circular buffer. In triggered mode, when the Trigger Enable output bit on the TIR
bit is high, a photon detector signal beyond a threshold of -50 mV generates a CODA trigger via
the logic shown in Figure 4.13. (Since the PMT has a negative high voltage, a larger signal is more
negative than a smaller one.) A readout command is also generated at the transition from one MPS
to another via the HAPPEX Timing Board. Two hundred one sample values, defining the waveform
of the pulse, are then written to disk. Figure 4.14 shows a typical waveform for a photon pulse with
an energy in the Compton region. Such data allow us to measure the pedestal (baseline level) of
the FADC, confirm that the trigger timing is correct and that there are no distortions in the pulse
shape (which could, for example, arise from reflections in the cable), and measure the distribution
of detected photon energies – the Compton spectrum.

This system was designed to generate a trigger on detecting a photon pulse in the signal from
the GSO, but the same signal may also be sent to a scaler, which can thereby count the number
of photon pulses detected whether the system is in triggered mode or not. One might use this
scaler readout to compute a raw counting asymmetry in Compton scattering, which can lead to the
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Figure 4.14: A typical Compton pulse from the GSO detector, measured in triggered mode of the
new DAQ. The energy carried by this pulse is near the maximum energy that a Compton-scattered
photon can carry.

beam polarization; rates were low during E06-014, however, and we did not implement this method.
However, as we will see in Section 4.3.4.1, the photon rates proved critically important in limiting
our systematic errors.

The chief drawback of this configuration is its deadtime. Between 201 samples per waveform, at
12 bits per sample, and auxiliary data (e.g. accumulator readouts corresponding to the last interval,
scaler readouts for beam current and photon rate, or input bits recording the polarization directions
of the electron beam and Compton laser), the system was able to take data at only about 1 kHz –
less than a third of the actual photon rate when the cavity was in resonance and the beam current
was at its production set point of 15 µA. After the completion of E06-014, a refinement of the DAQ
configuration alleviated this problem for subsequent experiments.

4.3.3.2 Integrating Mode

Our data acquisition system is designed with the primary goal of accommodating the energy-weighted
integrating method of Compton polarimetry, as described in Section 4.3.1.4. This integral is per-
formed automatically by the FADC, so that a minimal amount of information must be written to
disk; the manufacturer added this functionality to the FADC’s firmware, according to our specifica-
tions [223].

A photon detected in the GSO crystal produces an analog pulse much like the one shown in
Figure 4.14; the signal registers in the FADC as a number below the baseline level, or pedestal. The
area between this waveform and the pedestal is, ideally, proportional to the energy the photon has
deposited in the crystal. If we know the pedestal value of our data, we can compute our energy-
weighted integral simply by summing the sampled signal in a hardware accumulator; six different
accumulators, each performing a slightly different integral, are available to us.

It is helpful to define our terms so as to convert a negative voltage level into a positive integrand.
Over an integration period – a single 33-ms helicity window – let S̄ represent the (positive) magnitude
of the average signal per 5-ns time bin from detected photons, while P̄ denotes the average pedestal
value; the energy deposited in the crystal during this integration period is proportional to

(
P̄ − S̄

)
t.

At the end of the helicity window, the value Accn in the nth accumulator is given by

Accn = Nn
(
P̄ − S̄

)
(4.40)

where Nn, which is written to disk along with the accumulator value Accn, is the number of 5-ns
samples that have contributed to the final accumulator value. A simple manipulation of Equa-
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Figure 4.15: Thresholds Tnear and Tfar (dashed lines) for the Compton integrating DAQ. The window
region lies between the two thresholds. The smaller pulse shown has approximately the maximum
energy expected from a Compton photon; the larger pulse belongs to a rare high-energy background
event.

tion 4.40 then gives us an expression for the total integrated, energy-weighted signal Sn over the
helicity window

Sn = NnS̄ = NnP̄ −Accn. (4.41)

The six available accumulators are distinguished by their use of several programmable parame-
ters. We introduce two programmable thresholds, one near the pedestal (Tnear ) and one far from the
pedestal (Tfar ), shown with a plot of two sample photon pulses in Figure 4.15. The first threshold
allows us to integrate over a region including only pedestal noise – or to exclude that region from
an integral. The second threshold allows the exclusion of large background pulses from the integral.
We may also make use of our ability to store samples in the FADC memory in order to include an
entire pulse in the accumulator sum. In this system, when the signal crosses a threshold to enter the
range of an accumulator, the Nbefore preceding samples can also be added into the accumulator; the
same can be done with the Nafter samples following a threshold crossing out of the accumulator’s
range. Six accumulators rely on varying combinations of these programmable parameters:

0. All:: Accumulates all signal over the entire input range of the FADC.

1. Near: Accumulates signal smaller than Tnear , which corresponds to signal between the near
threshold and the high (pedestal) end of the input range (4095 raw a.d.c. units). This is used
to examine pedestal noise.

2. Window: Accumulates signal between Tnear and Tfar . Ideally, this should be set to include
nearly the entire range of Compton-scattered photons (with the possible exception of photons
with very low energies).

3. Far: Accumulates signal between Tfar and the low (saturation) end of the input range (0 raw
a.d.c. units). This is used to examine high-energy background pulses.

4. Stretched Window: Accumulates signal between Tnear and Tfar , plus the Nbefore
4 samples before

the signal crosses Tnear as it enters the window, plus the Nafter
4 samples after the signal crosses

Tnear as it leaves the window. This accumulator excludes any samples that contribute to the
Stretched Far accumulator.
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5. Stretched Far: Accumulates signal between Tfar and the low (saturation) end of the input

range (0 raw a.d.c. units), plus the Nbefore
5 samples before the signal crosses Tfar as it enters

the accumulator range, plus the Nafter
5 samples after the signal crosses Tfar as it leaves the

accumulator range.

In typical running, three accumulators – All, Window, and Stretched Window – access the energy
range of Compton-scattered photons and can be used to extract a Compton asymmetry; we will
discuss the analysis of these accumulator signals in Section 4.3.6. Table 4.3 shows the programmed
values of the accumulation parameters during E06-014.

Accumulator Small-signal threshold Large-signal threshold Nbefore Nafter

All 4095 0 0 0
Near 4095 3690 0 0

Window 3690 500 0 0
Far 500 0 0 0

Stretched Window 3690 500 10 100
(exclusive of Stretched Far)

Stretched Far 500 0 10 110

Table 4.3: Values of programmable FADC settings in the Compton DAQ during E06-014 for each of
the six accumulators. Thresholds are given in raw ADC units (r.a.u.); as a 12-channel FADC, the
input range runs from 4095 to 0 r.a.u. Nbefore and Nafter are given as numbers of samples, which
are taken every 5 ns.

4.3.4 Calibrations

Once the upgraded components of the Compton polarimeter were installed in the Hall, a Compton
spectrum and a rough spin asymmetry were quickly measured. However, the full commissioning
of the device required the testing and calibration of a variety of factors, from the behavior of the
Compton laser cavity to the response and alignment of the photon detector. In this section, we
report on the calibrations that were performed before extracting a final asymmetry and an electron
beam polarization.

4.3.4.1 Cavity State Identification

In order to measure an accurate asymmetry, there must be a clear distinction in the datastream
between intervals when the cavity is in resonance (in which case the photon detector sees both
Compton-scattered photons and photons from background processes) and intervals when the cavity
is out of resonance (in which case we measure only the products of background reactions). Since the
out-of-resonance measurements are used for background subtraction, any confusion between these
states will result in a diluted Compton asymmetry. (If a cavity-on interval is misidentified as cavity-
off, an asymmetric signal will be subtracted as background; if a cavity-off interval is misidentified
as cavity-on, the asymmetry measurement will include an interval without any Compton scattering
events.) When the cavity is in resonance, intervals with left-circular and right-circular photon
polarization must also be distinguished: since the asymmetries computed for the two polarization
states have opposite signs, contamination from the wrong polarization state will partially cancel the
Compton asymmetry.

During E06-014, two types of signals in the DAQ directly reported the cavity state. Two binary
logic signals in the Trigger Interface Register, read out synchronously with the data from each inter-
val, indicated the cavity’s resonance and polarization states. Each of these signals had a counterpart
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Figure 4.16: Current-normalized rates in the Compton photon detector as a function of time, over 10
minutes of running. The square-wave pattern in the photon rates reflects the characteristic pattern
of the cavity power. However, the logic signal encoding the resonance state of the cavity (shown in
the color coding) evidently does not report the true state of the cavity.

in the EPICS datastream (Section 3.3.7.2), entered asynchronously in the Compton data files as
special events roughly every 1.7 seconds. Ideally, the real-time logic signals could be used to make
the cavity state determination, with the EPICS signals providing confirmation.

This strategy worked quite well for distinguishing between the two polarization states, but proved
unworkable for telling one resonance state from the other. After ten years and an unknown number of
recablings, the real-time logic signal for the cavity power (derived from the output of the transmission
photodiode in Figure 4.10) had become unreliable. Figure 4.16 shows the photon rates as a function
of time for ten minutes of running. When the cavity is in resonance, we expect the photon rates
to be higher, since Compton events contribute in addition to the background; indeed, the photon
rates clearly display the square-wave pattern of the cavity power cycle. However, the cavity-state
identification from the real-time logic signal tells a different story. Each dot in Figure 4.16 is colored
according to the real-time report of the cavity resonance state during that MPS. These reports
clearly are not good matches to the actual cavity state, as reflected in the photon rates: when the
cavity is out of resonance, the real-time logic signal frequently and erroneously reports that it is in
resonance. Figure 4.17 shows the distribution of photon rates for each cavity state, as assigned by
this logic signal; the double-peaking of the in-resonance distribution shows that nearly 15% of the
signal contributing to the Compton asymmetry is actually contamination from the background.

Unfortunately, the EPICS cavity power signal is a poor substitute for a trustworthy real-time
signal, due to its asynchronous nature and relatively infrequent updates. A real-time analog cavity-
power signal was available through the original Compton DAQ from Saclay, fed through a voltage-
to-frequency converter and into a scaler; unfortunately, since the problems with the digital logic
signal were not discovered until after E06-014 had completed its run, this more trustworthy real-
time signal was not present in the integrating Compton DAQ during the experiment. (It was,
however, incorporated into the DAQ in time for the 2009-2010 Hall A parity program, beginning
with the HAPPEX-III experiment [224] in the fall of 2009.) In order to optimize the Compton data
for E06-014, a new way of retroactively making cavity state determinations was necessary.

The photon rates, which yield such a clean separation between the resonance states of the cavity,
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provided just such a method. Using the asynchronous EPICS signal and faulty real-time signal to
pre-sort the photon-rate data into approximate cavity-state classifications, we could fit a Gaussian
distribution to each peak in the photon rates. In the next stage of sorting, we assigned a preliminary
resonance state to each helicity pair based on where its average photon rate fell in relation to these
peaks: it was assigned to a cavity state if its rate was within 2.5σ of the mean rate for that state.
The final cavity-state assignment for each pair was made by considering the classifications of its
neighbors: a helicity pair was assigned to a particular resonance state if both the preceding and
the following pairs had rates within the allowed range for that state. If its neighbors did not meet
this condition, the helicity pair would be flagged as having an “indeterminate” resonance state and
would be excluded from the final analysis. Figure 4.18 shows the photon rate distribution for each
cavity state, as assigned by this method; the photon rates of a helicity pair’s neighbors are clearly
a good proxy for its own photon rate, while allowing us to avoid cutting on the signal we seek to
measure.

This method of cavity state identification prevents our asymmetry from being diluted by the
inclusion of background signal; the price of this purification is a reduction in statistics by up to 10%,
which is reflected in the statistical errors on the final measurements. If an abnormally low photon
rate is measured while the cavity is in resonance, or if an abnormally high rate is measured while the
cavity is out of resonance, our sorting algorithm may introduce contamination of its own, erroneously
classifying an out-of-resonance pair as in resonance or vice versa. We tested the prevalence of this
problem by applying our algorithm to Compton data taken during HAPPEX-III, some six months
later; in this data set, we were able to compare the cavity states assigned by our algorithm to the
actual cavity state reported by a reliable analog cavity power signal. We found that, while our
algorithm did discard a significant percentage of events, it made the more serious mis-assignment
error in only 0.006% of cases, making this a negligible source of systematic error.

4.3.4.2 False Asymmetries

Helicity-dependent changes in intensity can give rise to so-called false asymmetries – that is, to asym-
metries not due to the electron polarization. The beam-charge asymmetry is a direct measurement
of this effect. During E06-014, a charge asymmetry feedback system [225], which was developed and
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Figure 4.19: Time evolution of Compton photon polarization from EPICS readout. Though the
EPICS readout is not reliable in an absolute sense, it suffices to show the stability of Pγ over the
course of the experiment.

implemented by the HAPPEX collaboration [222], limited this beam charge asymmetry to within
100 ppm.

4.3.4.3 Photon Polarization

The photon polarization Pγ , computed from power meter measurements and knowledge of the optics
system’s transfer function (Section 4.3.2.3), is read out from the EPICS data stream every 1.7
seconds. This measurement is unreliable at low transmission powers (i.e. when the cavity is out
of resonance), but Pγ is not needed in background calculations, so out-of-resonance measurements
may be discarded. Transport through any of the optical elements on the Compton table may be
affected by the beam’s polarization direction, so the left- and right-circularly polarized states must
be treated separately.

Figure 4.19 shows the average Pγ EPICS readings for each run over the course of E06-014. While
these readings demonstrate the stability of the photon polarization on the level of 0.2%, they rely
on an undocumented transfer function that may be up to a decade old. Changes to the transfer
function and calibration – caused, for example, by degradation of the cavity mirrors, gain shifts
in the power meters, and changes in alignment – are inevitable over such a long period of active
running, rendering the EPICS polarization readouts untrustworthy as absolute measurements.

To solve this problem, we turned to the HAPPEX-III experiment [224], which ran in Hall A
six months after the conclusion of E06-014. One of the largest sources of systematic error for this
experiment was electron beam polarimetry, so the Compton polarimeter received special attention
during its run. In order to increase the photon power in the cavity and thus the Compton statistics,
the infrared laser was replaced before HAPPEX-III began, but both the cavity and the optics at
its entrance and exit were unchanged. Because of the polarizing beamsplitter between the laser
and the cavity entrance (Figure 4.10), the laser affects only the power of the light inside the cavity,
not its polarization; in the limit of the same alignment, then, Pγ should be the same for both
experiments. This, in turn, would allow E06-014 to take advantage of Kent Paschke’s careful optics-
table measurements of Pγ after HAPPEX-III.

We used data files produced by the original, Saclay-designed counting DAQ to compare polar-
ization values for the two experiments. First, we studied the relative gains of the two integrating
spheres by measuring the ratio of their maximum power readouts; this was constant to within 2%
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Polarization Direction Pγ

Right Circular 0.9884+0.0116
−0.0212

Left Circular 0.9879+0.0121
−0.0212

Table 4.4: Compton photon polarization Pγ during E06-014.

between E06-014 and HAPPEX-III. Next, using Equation 4.39, we computed the exit polarization
for both experiments. We found that the exit polarization during E06-014 was consistently about
0.2% lower than during HAPPEX-III; the relative values of the EPICS polarization readouts, using
an outdated transfer function, showed the same polarization shift. A discrepancy at this level may
be explained by a small change in the alignment of the laser spot: the transfer function is sensitive
to the spot’s position on the confocal cavity mirrors.

To determine the value of Pγ during E06-014, we therefore reduced the measured HAPPEX-III
polarization values [226] by 0.2%. Table 4.4 shows the results. The error of 2.15% represents the
2% uncertainty in the integrating-sphere gain ratios between the two experiments, combined with
an 0.8% uncertainty on the original HAPPEX-III measurement of Pγ .

4.3.4.4 Photon Detector Response Function

The signal-weighted analyzing power 〈WAl〉/〈W 〉 gives the Compton scattering asymmetry that we
would measure with our particular apparatus if both the electron and photon beams were perfectly
polarized. A determination of the analyzing power is necessary to use the experimentally measured
asymmetry to extract the longitudinal polarization Pe of the electron beam.

Our determination of Al relies on a simulation of a beam of Compton-backscattered photons
and the response of our apparatus to them. (The simulation algorithm will be described in detail in
Section 4.3.5). To perform the simulation, we used code written in Geant4 [227, 228], a C++-based
platform for Monte Carlo simulations of particles passing through, and interacting with, matter.
A program incorporating the characteristics of the incident photons, the geometry of the detector
and the chemical composition of GSO modeled the energy deposited in the detector, which is, at
least to first order, proportional to the measured integral of the electrical signal. (We used Poisson
statistics to model the actual number of photoelectrons produced in the PMT photocathode based
on the energy deposited in the crystal, and thus to convert from energy deposited to signal output.)
Figure 4.20(a) shows the result of a simple simulation of a small number of incident photons.

To confirm that our simulated photon detector responded to incident photons in the same way
as the actual GSO crystal, we brought the crystal to a high-energy gamma source for two days of
tests. The High-Intensity γ Source (HIγS) [229] is a facility jointly operated by the Duke Free
Electron Laser Laboratory (DFELL) and the Triangle Universities Nuclear Laboratory (TUNL)
on the Duke University campus. At HIγS, electrons are first accelerated to 0.18-0.28 GeV in a linear
accelerator; a booster synchrotron brings them up to a maximum energy of 1.2 GeV before injecting
them into a storage ring, where they pass through wigglers to generate free-electron laser light, which
is confined between two mirrors. The HIγS mechanism uses a symmetric two-bunch operating mode,
wherein each bunch is separated from the other by half the storage ring’s circumference, to generate
high-energy, high-intensity light by Compton backscattering: FEL photons generated by the first
bunch collide with electrons from the second bunch. The resulting photons are delivered to the
experimental hall, some 60 meters downstream, as a nearly monochromatic photon beam whose
energy and flux are tunable.

Along with a team from the Hall C Compton polarimetry group, we visited HIγS in October of
2008 to characterize the response of our GSO photon detector, two months before it was installed in
Hall A. We measured energy spectra in the crystal for incident photon energies of 20, 22, 25, 30 and
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(a) (b)

Figure 4.20: Geant4 simulations of GSO detector response. (a) Simulated particle trajectories in
GSO crystal, resulting from incident photons in the 1-20 MeV range. Green trajectories signify
electrically neutral particles, while blue trajectories belong to positively charged particles and red
trajectories to negatively charged particles. (b) Simulation of GSO detector response to 40-MeV
incident photons, compared to real data taken at HIγS.

40 MeV and compared these spectra to the results of our Geant4 simulations. Figure 4.20(b) shows
the measured spectrum at 40 MeV, compared to a simulation with an incident photon beam whose
energy distribution is Gaussian, with a mean of 40 MeV and a standard deviation of 3% (based
on the full width at half maximum of the beam profile calculated by HIγS staff). The simulated
spectrum is slightly wider than the measured one, which can be attributed to the fact that the
actual incident energy spectrum is more complicated than a simple Gaussian [230]. For the test’s
intended purpose – a proof-of-principle that our Geant4 model was a good approximation of the
photon detector – the agreement shown in Figure 4.20(b) was sufficient. As we will see, further
simulation tests in Hall A produced still better agreement.

Once the GSO crystal, its photomultiplier tube and base, and the supporting data acquisition
system were installed in the Hall, we made a careful measurement of the response function of the
entire apparatus. It is an idealization to state that the integrated signal is directly proportional to the
energy deposited in the crystal; a real apparatus will not have a perfectly linear response, and these
deviations from linearity are typically greatest at high energies. It is this region that contributes
the most to the integral of our signal and thus to our measured asymmetry, so understanding the
nonlinearity of our system was of crucial importance.

To measure the response function, Megan Friend designed and built a system of two pulsing
Light-Emitting Diodes (LEDs). One LED flashes with a fixed, small brightness; the other LED
produces flashes of variable brightness. A control box, popularly known as a “mini-Megan”, flashes
the LEDs in a set pattern: first the fixed, or delta, LED with brightness δ, then the variable LED
with brightness x, then the two LEDs together with brightness x+ δ. The sequence then repeats at
a new variable-LED brightness value. With the two LEDs affixed to the front of the GSO crystal, we
can thus measure the response of the photon detector and PMT to two pulses with closely separated
energy, x and x+ δ, as a function of x.

Figure 4.21(a) shows the result of this measurement. The horizontal axis shows the brightness
x of the variable LED as measured by our system in FADC units, scaled by a factor of b = 36688.3
in order to improve software performance. The vertical axis shows the measured finite difference
yS(x), scaled by the same factor. Where S(x) is the signal resulting from an incident brightness x,
the finite difference is given by
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Figure 4.21: Nonlinearity of photon detection system, measured in April 2009. (a) Measured finite
difference (Equation 4.42) as a function of incident brightness. The finite difference function of a
sixteenth-degree polynomial has been fit to the data. (b) Photon detector response as a function
of incident light energy from the mini-Megan LEDs. A line is drawn to show the deviation from
linearity at high incident brightness. Plots are from M. Friend [231].

yS(x) =
S(x+ δ)− S(x)

b
. (4.42)

The data in Figure 4.21(a) were then fit to the finite difference function yf(x) of a sixteenth-degree
polynomial f(x)

yf(x) = f(x+ δ)− f(x) (4.43)

where

f(x) = a0 + a1x+ a2x
2 + a3x

3 · · ·+ a15x
15 + a16x

16. (4.44)

The fit, shown as the red line in Figure 4.21(a), set the coefficients an of the nonlinearity function
f(x); these coefficients, as calculated by Megan Friend, are reported in Table 4.5. Figure 4.21(b)
plots the measured signal as a function of the incident light as determined from f(x).

The inclusion of the system’s nonlinearity improved our Geant4 simulations of Compton spectra
measured during the experiment. Figure 4.22 shows the Compton spectrum for each of the two
production energies, plotted as a function of the integrated signal in units of raw ADC units-
samples, which are ideally proportional to MeV. Two simulations were fit to the data with a single
parameter: a simulation incorporating the nonlinearity (red) and a simulation assuming a perfectly
linear system (blue). Including the nonlinearity clearly produces a more accurate simulation.

4.3.4.5 Alignment

On their way to the photon detector, backscattered photons pass through a 6-m beam pipe and a lead
collimator whose aperture is only 1 cm in diameter. The beam pipe is suspended from the ceiling;
the lead collimator is welded to supports that are bolted to the floor; a persistent groundwater leak
has changed the topography of the tunnel in the years since the system’s installation. Given these
facts, the relative alignment of the scattered photon beam, the collimator aperture, and the photon
detector cannot be assumed.

We saw in Equation 4.3 that, when initial conditions are held constant, the scattered photon
energy k′ has a one-to-one relationship with the photon’s scattering angle θγ : the larger the scattering
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Coefficient Value

a0 0
a1 1
a2 -0.240032
a3 3.7366
a4 -18.9917
a5 34.1222
a6 4.10522
a7 -88.0712
a8 82.3791
a9 26.4962
a10 -46.936
a11 -29.1891
a12 31.8129
a13 11.2298
a14 -4.71173
a15 -10.4581
a16 4.6505

Table 4.5: Coefficients of the nonlinearity function f(x), a sixteenth-degree polynomial of the form
a0 + a1x+ a2x

2 + · · ·+ a16x
16, as determined by M. Friend [231].
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Figure 4.22: Monte Carlo fits to Compton spectrum with and without nonlinearity function, for
4.74-GeV (a) and 5.90-GeV (b) electrons. Plots are from M. Friend [231].
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Figure 4.23: Transverse displacement of Compton-scattered photons for both production E06-014
electron energies, at the approximate location of the collimator (six meters from the Compton
interaction point).

angle, the lower the photon energy. At the collimator location six meters from the interaction point,
even photons with small scattering angles are significantly displaced from their central axis, as
shown in Figure 4.23. A slightly misaligned collimator aperture, then, may be expected to exclude
disproportionately more photons from the low-energy end of the Compton spectrum: the cone of
Compton-scattered light projects a circle onto the collimator plane, and less of the circumference
falls within its acceptance the lower k′ becomes.

Our integrating method of measurement limits our sensitivity to alignment problems, since the
affected parts of the spectrum are low energy and thus carry low weight in the integral, but, if
uncorrected, this is still a potential source of systematic error. To study this effect, we took a few
hours of triggered-mode data at each beam energy and compared the resulting Compton spectra
to the results of Geant4 simulations with varying degrees of misalignment. Figure 4.24 shows the
measured Compton spectrum, plotted in crosses, as well as fits of the Monte Carlo simulations with
aperture offsets ranging from two to four mm. (Due to the radial symmetry of the backscattered
photon beam, we could model offsets in a single, arbitrary direction.)

At the high-energy end of the Compton spectrum, we see that the five simulated spectra are
equivalent to each other, and fit the data equally well, as we would expect given the small scattering
angle of these photons. At the low-energy end of the spectrum, the models diverge, and we can
distinguish among them with the measured spectra. The 5.9-GeV data (Figure 4.24(b)) show almost
perfect agreement with the model assuming a 3.3-mm offset of the collimator aperture; in the 4.7-
GeV data (Figure 4.24(a)), the offset appears to fall between 3.3 mm and 3.7 mm. The slight
disagreement between the two data sets is not cause for concern; we will see in Section 4.3.5 that
displacements on the order of 0.1 mm have a negligible effect on the analyzing power.

During the experiment, the photon detector was aligned to the center of the collimator. Given
the GSO crystal’s six-centimeter diameter, the effects of millimeter-level misalignment of the photon
detector itself are negligible compared to the effects of collimator misalignment.
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Figure 4.24: Monte Carlo fits to Compton spectrum for varying collimator misalignment, for electron
beam energies of 4.74 GeV (a) and 5.90 GeV (b). Plots are from M. Friend [231].

4.3.5 Analyzing Power

The signal-weighted analyzing power, 〈WAl〉/〈W 〉, allows us to calculate the electron beam polar-
ization from our measured asymmetry in the integrated signal: it is the asymmetry that we would
measure with our particular apparatus if both the electron and photon beams were perfectly polar-
ized. Our Monte Carlo simulations of the photon detector system, done in Geant4, are crucial to
this calculation.

Our simulation includes both the GSO crystal and the latter part of the photon beamline: the
lead collimator, the millimeter-thick lead disk (placed immediately downstream of the collimator
aperture) that serves as a synchrotron radiation absorber, and the air between the collimator and
the crystal. (Nearly all of the six-meter distance traversed by the backscattered photons is in
vacuum.) We simulate a beam of incident photons with energy and spatial distributions that match
a Compton-backscattered beam with our kinematics, and allow each photon to travel through our
apparatus in turn. The effects of variations in shower formation, affecting photon collection statistics,
were encoded in the Monte Carlo by Vahe Mamyan and give a smearing effect of about 3%. The
simulation also includes the nonlinear detector response function f(x) (Section 4.3.4.4). The number
of photoelectrons released by the PMT cathode per MeV deposited in the crystal was assigned for
each event based on a Poisson distribution with a mean of 300.

The resulting statistics for the integrated signal of each pulse were weighted by the theoretical
Compton asymmetry Al (Equation 4.16), giving us the mean asymmetry as a function of integrated
signal that we would measure in our detector if the incident particles in the Compton interaction were
perfectly polarized. Our Monte Carlo, which takes into account the quirks of the photon beamline,
detector, PMT and DAQ, may thus be thought of as a means of converting an ideal theoretical
asymmetry calculated in the framework of quantum electrodynamics to a measurable asymmetry
unique to our apparatus.

The final stage of this computation was the computation of 〈WAl〉/〈W 〉, the signal-weighted
integral of Al, according to Equation 4.27. High-statistics simulations allowed us to achieve a
statistical error on 〈WAl〉/〈W 〉 of 0.074%.

During E06-014, we did not take enough pulse-by-pulse (triggered mode) data to test this Geant4
model empirically. For the HAPPEX-III experiment six months later, however, the Compton in-
tegrating DAQ was redesigned to include the integrated signal for a few dozen pulses each helicity
window, while still providing deadtime-less integrating-mode accumulator measurements. The re-
sulting high statistics in each photon energy bin allowed an experimental measurement of the differ-
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Figure 4.25: Measured and simulated Compton counting asymmetries during HAPPEX-III, plotted
as functions of deposited energy for right (a) and left (b) circular laser polarization. The data
points report the measured values for each energy bin; the smooth lines give the simulated Al curve,
fit to the data with a single ADC-scale parameter, up to the Compton edge. Plots are from G.
Franklin [148].

Source of Error Error (%)

Statistical 0.074
Collimator Misalignment 0.2
Beam Energy 0.2
Detector Response 1.0
Total Systematic 1.039

Total 1.042

Table 4.6: Errors on analyzing power 〈WAl〉/〈W 〉.

ential Compton asymmetry Al as a function of photon energy. Figure 4.25 compares this measured
asymmetry for both laser polarization states to the asymmetry function produced by the Monte
Carlo simulation. Although the collimator was replaced between E06-014 and HAPPEX-III, alter-
ing the photon beamline and necessitating changes to the Monte Carlo, the close agreement between
experiment and simulation for HAPPEX-III is strong support for the use of a similar model in the
E06-014 Compton analysis.

The imperfection of our calibrations corresponds to systematic error in the signal-weighted ana-
lyzing power from the Monte Carlo. Uncertainty in the nonlinearity of the photon detector response
function (Section 4.3.4.4), for example, corresponds to an error of less than 1% on the analyzing
power, while the 2.5-MeV uncertainty in the electron energy contributes about 0.2% [231].

As we saw in Section 4.3.4.5, the collimator misalignment was more difficult to measure precisely.
To determine the effect of this uncertainty, we ran five Monte Carlo calculations of the analyzing
power, one for each choice of misalignment from 2 mm to 4 mm. Figure 4.26 shows the analyzing
power as a function of collimator misalignment. Suppose that we assume that the offset falls between
3.3 and 3.7 mm, as Figure 4.24 indicates, and take the average of the analyzing powers at each end
of the range. The difference in analyzing powers over this range of offsets corresponds to a relative
uncertainty of only 0.2%.

Table 4.6 gives a breakdown of sources of error in the analyzing power. Table 4.7 shows the final
analyzing powers of integrating-mode Compton photon polarimetry for the E06-014 kinematics.
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Figure 4.26: Analyzing power as a function of collimator misalignment for 4.74-GeV (a) and 5.90-
GeV (b) electrons. Note that the vertical axis does not go to zero. Plots are from M. Friend [231].

Incident Electron Energy Analyzing Power

4.74 GeV 0.03853± 0.00040
5.90 GeV 0.04644± 0.00048

Table 4.7: Compton analyzing powers 〈WAl〉/〈W 〉 for E06-014.

4.3.6 Data Analysis

Our primary Compton data analysis process consisted of compiling and analyzing Compton data
separately for each individual run, as described in Section 4.3.6.1. Each run lasted, on average,
about two hours, resulting in a statistical error of about 3.5%.

The results of this analysis showed that the beam polarization was remarkably stable during each
of four distinct periods of production running. The statistical error on the beam polarization during
each run period could then be almost eliminated by combining runs to form a single polarization
measurement with a systematic error of 2.49%. We discuss this process in Section 4.3.6.2.

4.3.6.1 Run-by-Run Analysis

We developed a ROOT-based analysis suite to decode data from the CODA file for each run, ma-
nipulate the raw signal data (e.g. by performing pedestal subtraction), and group variables into
ROOT trees (saved to ROOT files) that would enable further analysis. A primary function of this
analysis package is background subtraction. The basic expression for the experimental asymmetry in
the energy-weighted integrated signal, given in Equation 4.26, is somewhat simplified. In actuality,
the signal S from Compton scattering is added to an underlying background signal B, which arises
largely from synchrotron and bremsstrahlung radiation. Figure 4.27 shows the measured photon
spectra for the two cavity states. The experimental asymmetry is thus properly represented as

Aexp =
(S+ +B+)− (S− +B−)

(S+ +B+) + (S− +B−)
. (4.45)

If B+ = B−, the background signal cancels in the numerator, but not in the denominator; the
background thus dilutes the measured asymmetry, reducing it from the asymmetry purely due to
Compton scattering. As we discuss in detail below, we may correct this dilution in our analysis
by taking measurements when the cavity is not in resonance. The underlying background B of the
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Figure 4.27: Compton-polarimeter spectra measured in triggered mode with the cavity in (blue) and
out (red) of resonance. The out-of-resonance spectrum has been scaled to correct for the duration
difference in the measurements. We see the distinctive Compton edge in the in-resonance spectrum,
which has not had background subtracted; in the out-of-resonance spectrum, we see the prevalence
of low-energy background.

in-resonance data is thus corrected using the measured background B from the out-of-resonance
data.

The analysis suite has two main tracks. The triggered-mode analysis track treats data photon-
pulse by photon-pulse, subtracting the pedestal from the signal and computing the pulse amplitude
and integral. The distribution of these integrated pulse signals gives us the energy spectrum for the
run, producing Compton spectrum plots like the ones in Figures 4.22 and 4.24. The analysis also
saves to the ROOT file a number of pulse snapshots, which preserve the entire waveform as shown
in Figure 4.14. This information is vital for determining ideal gain and threshold settings, as well
as for troubleshooting problems with electronics and wiring.

The integrating-mode analysis track operates helicity-pair by helicity-pair. The analysis begins
with the first full helicity-quartet; starting from that point, each pair of consecutive helicity windows
includes one window with negative helicity and one window with positive helicity. We first confirm
that the cavity state has not changed during the helicity pair, and that the windows that make up
the pair actually have opposite helicities. We then compute the average beam current and photon
rate over the pair, and compute the pedestal- and background-subtracted numerator (S+ − S−)
and denominator (S+ +S−) of the Compton asymmetry, using the Stretched Window Accumulator
(Accumulator 4). Figure 4.28 shows the distribution of the latter two variables over the course of a
typical two-hour run.

Once the first pass through the data has been completed and the corresponding ROOT trees
generated, a second pass is necessary in order to set a cut on beam current and identify the cavity
state for each helicity pair. Each of these functions requires an examination of the existing data –
in order to determine the distribution of beam current and photon rates over the course of the run
– and this cannot be done until the entire data file has been decoded. This second-pass analysis
generates a second set of ROOT trees, which are friends to the original ROOT trees and can thus
access all the data from the first-pass analysis. Trees from each analysis stage are then written to a
ROOT file for the run.

The cavity-state identification algorithm is described in detail in Section 4.3.4.1. The algorithm
for finding a beam-current cut – necessary because the energy-weighted integrated signal depends
on photon rates, which are unstable during recovery from a beam trip – is straightforward. The
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Figure 4.28: Distribution of the numerator (a) (measured signal difference) and denominator (b)
(measured signal sum) of the Compton asymmetry for helicity pairs in a representative two-hour
run, without background subtraction. The numerator distribution shows both the fact that the
background signal difference is consistent with zero (marked by the vertical dotted line) and the
sign change between the signal difference for left- and for right-circularly polarized photons. The
denominator distribution reflects the fact that cavity-in-resonance rates, which combine Compton
events with background events, are significantly higher than background rates alone.

algorithm searches for the beam-current setpoint by starting with a 1-µA window around the nominal
production current of 15 µA. If 4.3 minutes of Compton data – enough for a little more than one
complete laser cycle – are recorded within that current window, the algorithm takes 15 µA to be
the setpoint; if not, it steps down to 10 µA, one µA at a time, and looks for 4.3 minutes of data at
each step. Once the setpoint has been located, the cut requires the beam current to be within 5%
of the setpoint.

The final stage of the analysis, in which a Compton asymmetry is extracted for the run, is
performed on the ROOT file produced by the first two stages. We produce signal-difference and
signal-sum histograms, like the ones in Figure 4.28, for each of five cavity states: two in-resonance
states (one for each laser polarization direction) and three out-of-resonance states (one for each laser
polarization direction, and a third combining data for both directions). The separation of the two
polarization directions, even for background events, allows partial correction for beam drifts on a
time scale shorter than a laser cycle, as well as possible pedestal shifts in the DAQ electronics due
to the polarization-direction bit being high or low.

We treat events with left- and right-circularly polarized photons separately, giving us two in-
dependent asymmetry measurements for each run. The asymmetry for each polarization direction
is computed according to Equation 4.45, with signals assigned to S+ and S− solely based on the
electron helicity direction; consequently, the asymmetries measured for the two photon polarization
directions have opposite sign.

Since the Compton laser cycle allows us to take measurements of the background signal every
minute and a half, we may mitigate the dilution of the asymmetry by performing background
subtraction. In the numerator of Equation 4.45, we wish to subtract B+ − B−; if B+ = B−, this
is unnecessary (and has no effect), but B+ and B− may differ due to helicity-dependent changes in
beam tune or intensity, in which case the false asymmetry is partially canceled by the subtraction.
In the denominator, we wish to subtract B+ +B−, which is never zero. Of course, what we measure
is B±, which may differ from B± if the beam conditions are different; the two are related by the
ratio of the average beam currents during each cavity state.

To compute the asymmetry for a given polarization direction, we produce two histograms each
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of the signal sum (Figure 4.28(a)) and signal difference (Figure 4.28(b)): one set for helicity pairs
with the cavity in resonance ((S+ + B+) ± (S− − B−)), and one set for pairs with the cavity out
of resonance (B+ ± B−). Both sets of histograms include only pairs from the chosen polarization
direction. We then find the mean of each histogram and use these values to compute the asymmetry
over the entire run.

Let us represent the mean signal sum as µsum and the mean signal difference as µdiff. We will use
the subscripts in and out to represent cavity-in-resonance data and cavity-out-of-resonance data,
respectively. Recall that B represents the underlying background during in-resonance measurements
and B represents the measured background with the cavity out of resonance. We then have

µdiff
in = 〈(S+ +B+)− (S− +B−)〉

µdiff
out =

〈Iin〉
〈Iout〉

〈B+ − B−〉

µsum
in = 〈(S+ +B+) + (S− +B−)〉

µsum
out =

〈Iin〉
〈Iout〉

〈B+ + B−〉

(4.46)

where 〈Iin〉/〈Iout〉 is the ratio of the average electron beam current while the cavity is in resonance
to the average electron beam current while the cavity is out of resonance. Although the loose beam
current cut removes beam trips, random beam variations in the beam current can mean that the
background rate is mismatched between the two cavity states, especially during short runs. The
normalization factor corrects for this problem, allowing us to translate our measurements of B into
measurements of B.

The variable definitions in Equation 4.46 give us a simple expression for the background-subtracted
asymmetry

Aexp =
µdiff

in − µdiff
out

µsum
in − µsum

out

. (4.47)

The statistical error on Aexp is computed from the errors on the means.
Finally, the absolute magnitude of the asymmetry computed from Equation 4.47 is divided

by the photon polarization Pγ (Section 4.3.4.3) and the predicted analyzing power 〈WAl〉/〈W 〉
(Section 4.3.5) to obtain the electron polarization Pe. A single value of Pe for the run is extracted
by taking the weighted average of the measurements for the two photon polarization directions.

During E06-014, the insertable half-wave plate (Section 3.2.1) was periodically moved into and
out of position in the photon beamline at the polarized electron source. This inverts the meaning
of the electron helicity labels and is useful for controlling false asymmetries. In the Compton data,
a half-wave plate change flips the sign of Aexp, which serves as a check on our algorithm. When a
change occurs partway through a run, however, we must take special precautions to ensure that the
asymmetries from the two parts of the run do not cancel each other; in this special case, we give
the same sign to data from both half-wave plate states. The status of the half-wave plate is present
in the data stream as an EPICS variable, and is recorded as part of the Compton data. When our
code detects a change in status during a run, we fill one set of signal-difference histograms for each
half-wave plate state, and flip the sign of the half-wave-plate-in data before combining it with the
half-wave-plate-out data. The signal difference used in the asymmetry calculation then carries the
sign of data with the half-wave plate removed from the beamline.

Three of the accumulators described in Section 4.3.3.2 will yield a Compton asymmetry Aexp if we
apply the above algorithm to their signal. These are the All Accumulator, which integrates all signal
without thresholds; the Window Accumulator, which integrates signal while it falls between two
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Figure 4.29: Compton polarization measurements during E06-014. Measurements with the laser
right-circularly polarized are shown in red, while measurements with the laser left-circularly polarized
are shown in blue. Transitions between beam configurations (i.e. pass changes) are marked with
dashed lines. The errors shown are statistical only.

thresholds; and the Stretched Window Accumulator, which is much like the Window Accumulator,
but adds signal from short time windows before and after the pulse enters the integration window,
in order to include both tails of each pulse. The Stretched Window Accumulator also excludes the
tails of very large pulses whose peaks exceed a large-signal threshold.

In principle, the All Accumulator is the most straightforward choice, since its signal includes
the entire energy range of the Compton-scattered photons and since the resulting asymmetries are
not sensitive to errors in our knowledge of the pedestal. In practice, low-energy noise during E06-
014 made it impossible to rely on this accumulator; the ten-channel, near-pedestal threshold on
the Window Accumulators stabilized the measured asymmetries dramatically. (Recall that, in an
asymmetry in the energy-weighted signal, low-energy signals should make a small contribution.)

We used the Stretched Window Accumulators, which integrates the signal within a large window
as well as the pulse tails on either side of the near-pedestal threshold, to compute asymmetries for
E06-014. Data taken during HAPPEX-III, when shifts in the FADC pedestal could be measured
throughout the experiment and low-energy noise was better controlled, suggest that, over the course
of three months of running, the average pedestal value during a run varies over a range of about 0.3
channels. A 0.5-channel pedestal shift in the E06-014 data gives rise to a 0.7% systematic error on
Aexp [231].

4.3.6.2 Combining Data from Multiple Runs

Figure 4.29 shows the Compton measurements of Pe, with results from the two laser polarization
states shown separately. We see that each of E06-014’s four production run periods, separated from
its neighbors by pass changes, has a stable beam polarization. This allows us to combine data from
all runs in a run period in order to compute four values of Pe that describe the beam polarization
over the whole experiment.

For each run, we compute a single P run
e by taking the error-weighted average of its two Pe

measurements, one for each photon polarization direction. This average is formed according to
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Figure 4.30: Compton polarization measurements for each run period. The dashed red line and text
give their weighted average, the Pe measurement from Compton polarimetry for the run period.

x̄ =

N∑
i=1

xi/σ
2
i

N∑
j=1

1/σ2
j

(4.48)

where xi is ith measurement of the quantity of interest (in this case, Pe) and σi is the statistical
error on that measurement. The variance of x̄ is then given by

σ2
x̄ =

1
N∑
i=1

1/σ2
i

. (4.49)

We then repeat this procedure for each run period, taking the weighted average of the P run
e

values computed for each run. Again, we weight only according to the statistical error; for example,
a three-hour run receives more weight than a one-hour run. Figure 4.30 shows the one-dimensional
distribution of P run

e for each run period, along with the results of the weighted averages.
Finally, we apply a systematic error of 2.49% to each of the four Pe values. This error re-

flects systematic uncertainties in the photon polarization Pγ (Section 4.3.4.3); in the analyzing
power 〈WAl〉/〈W 〉 (Section 4.3.5); and in the experimental asymmetry Aexp arising from the use of
thresholds (Section 4.3.6.1). These errors are tabulated in Table 4.8.

Table 4.9 shows the final Pe results from Compton polarimetry.

4.4 Electron Beam Polarization Measurements

Our final Compton results for the electron beam polarization Pe have comparable uncertainty to
the Møller measurements of Pe (Table 4.1). Since the two polarimeters have entirely independent
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Source of Error Error (%)

Photon polarization Pγ 2.15
Analyzing power 〈WAl〉/〈W 〉 1.04
Experimental asymmetry Aexp 0.7
Total Systematic 2.49

Table 4.8: Systematic errors on Compton measurements of Pe.

systematics, we may reduce our overall uncertainty by combining the two sets of measurements.
For each run period, we computed the weighted average of the Compton polarization measure-

ments (Section 4.3.6.2) and the weighted average of the Møller polarization measurements, where
they existed. (No Møller measurements were taken during the second run period, when the beam
was nominally unpolarized.) We then combined the measurements from the two polarimeters in a
final weighted average. Table 4.9 shows Pe values from the Compton and from the Møller, as well
as the final combined values from the two polarimeters.

For run periods with both Compton and Møller polarimetry, we achieved a relative error of 1.56%
on the beam polarimetry. (In the second run period, our error was 5.24%.) Later experiments,
notably HAPPEX-III, were able to achieve beam polarimetry with subpercent accuracy [231] due
to an upgrade of the Møller DAQ and continued upgrades to the Compton polarimetry. Guided by
experiences during E06-014, the Compton team installed shielding to reduce the level of synchrotron
radiation in the photon detector, allowing signal integration without thresholds. The Compton
DAQ’s integrating mode was modified to allow a small number of pulse waveforms to be stored for
each MPS, as well as pulse area for a larger number of waveforms, advances which allowed a better
understanding of the analyzing power. A new collimator and photon-detector alignment system
mitigated the problem of scattered-photon misalignment. Better determination of the cavity state
improved statistics, as did a new infrared laser with greater output power, and careful study of
the photon polarization (both during and after the experiment) dramatically reduced the largest
source of systematic error. After HAPPEX-III and its sister experiment PVDIS [168], the entire
Compton laser system was replaced with a green (532-nm) laser and optics appropriate to the new
wavelength; at a stroke, this doubled the analyzing power at any given electron energy. E06-014 was
the first commissioning experiment for this suite of Compton upgrades; despite the fact that these
upgrades were unfinished, we were able to halve the proposal’s error budget for beam polarimetry
while preparing the ground for even more profound changes to the Compton system.

Run Period Beam Energy (GeV) Pe from Compton Pe from Møller Combined Pe Value

1 5.90 0.726± 0.018 0.745± 0.015 0.737± 0.012
2 4.74 0.210± 0.011 − 0.210± 0.011
3 5.90 0.787± 0.020 0.797± 0.016 0.793± 0.012
4 4.74 0.623± 0.016 0.628± 0.012 0.626± 0.010

Table 4.9: Final Pe measurements. No Møller measurement was taken during the second run period.
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Figure 4.31: Møller (red) and Compton (black) polarization measurements during E06-014. The
error bars reflect a combination of systematic and statistical errors. The blue, horizontal lines show
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Chapter 5

Target and Detector Calibrations

In Chapter 3, we described the apparatus – the polarized electron source, the beamline diagnostics,
the highly polarized 3He target, and the complicated spectrometers – that make the measurement
of An1 possible. It is not enough to have this equipment and confirm that it is in good working
order, however; conditions may change dramatically between and even during experiments, and the
transformation of thousands of detector signals into valid kinematics variables requires thorough
calibration. That is the subject of this chapter.

In Chapter 4, we delved into the calibration of the Compton polarimeter, which allows us to
extract the polarization Pe of the electron beam. A measurement of An1 also requires us to know
the polarization of the 3He target, which we discuss in Section 5.1. In Section 5.2, we discuss the
calibration of the BigBite spectrometer; the angles, momenta, and energies derived from BigBite
data form the basis of our A1 measurement. Finally, in Section 5.3, we give a brief discussion of the
problem of electron energy loss, which is otherwise neglected in this dissertation.

5.1 Target Calibrations

The polarized 3He target (Section 3.3.3) is a complex system. The gas density inside the target cell
is affected by beam heating (in the target chamber) and oven heating (in the pumping chamber).
Heating effects depolarize the target 3He, while continuous hybrid spin-exchange optical pumping
re-polarizes it. Changing density affects the interpretation of polarization measurements performed
during the experiment. In this section, we discuss the calibration of these essential aspects of the
target, beginning with the target density in Section 5.1.1 and continuing to the target polarization
(Section 5.1.2).

5.1.1 Target Density

While the number of 3He atoms in the target is constant, the 3He density in the two compartments
may vary due to heating by the beam (in the target chamber) and by the circularly polarized lasers
(in the pumping chamber). Since the 3He density is required in calculations of the target polarization
from both NMR and EPR measurements (Section 3.3.3.3), a full understanding of the density is
important. Seven resistive thermal devices (RTDs) are placed on the outside of the target and
pumping chambers in order to measure temperatures during the experiment; their output is part of
the EPICS datastream.

The target number density is measured in units of amagat (amg), the number of molecules of
an ideal gas present per unit volume at a pressure of 1 atm and a temperature of 0◦C. One amg
is equal to 2.687 × 1025 m−3. Two types of 3He density measurement are available. One, the fill
density, is the density measured during cell construction, while the target cell was initially filled

146
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Figure 5.1: 3He density as a function of BigBite production run number during E06-014 [235].

with 3He and other gases. For our production target cell, Samantha, this fill density was measured
to be 7.847± 0.070 amg [232].

The second type of density measurement exploits the fact that collisions with 3He atoms broaden
the D1 and D2 absorption lines of rubidium [152]. By measuring the width of the D1 and D2 line
shapes at varying temperatures and subtracting the 1% contribution of N2 to that linewidth, we
can measure the 3He density in the pumping chamber. Two such scans have been performed for
Samantha: a scan at the University of Virginia, done before the experiment, gave a density of
7.99± 0.01 amg. After the experiment, a measurement at Jefferson Lab by Lamiaa El Fassi yielded
a density of 8.099± 0.032 amg [233].

Where n0 is the room-temperature number density measured from broadening of the Rb ab-
sorption lines, V and T are the volume and temperature of a chamber, and the subscripts pc and
tc represent the pumping chamber and target chamber, respectively, we may write the following
expressions for the number density in each chamber:

ntc = n0

[
1 +

Vpc
Vtot

(
Ttc
Tpc
− 1

)]−1

(5.1)

npc = n0

[
1 +

Vtc
Vtot

(
Tpc
Ttc
− 1

)]−1

. (5.2)

Here, Vtot is the total internal volume of the target cell. These expressions arise from the ideal gas
law [234].

The target temperature, as measured by the RTDs, was stable to within 2◦C during production
running. Combining the calibrated temperature measurements, our knowledge of the cell geometry,
and the measurements of n0, Lamiaa El Fassi and Yawei Zhang used Equations 5.1 and 5.2 to extract
average density numbers for both chambers over the course of the experiment; Table 5.1 gives the
results. Figure 5.1 demonstrates that these values were extremely stable over the course of the
experiment.
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Chamber 3He Density (amg)

Pumping 6.93± 0.19
Target 10.81± 0.29

Table 5.1: Average 3He densities in target cell during E06-014 [233].

5.1.2 Target Polarization

As we saw in Section 3.3.3.3, the target polarization was measured in two complementary ways
during E06-014: electron-paramagnetic-resonance (EPR) measurements of the potassium in the
pumping chamber, and nuclear magnetic resonance (NMR) measurements of the 3He in the target
chamber. EPR measurements were performed infrequently, with several days separating each set of
measurements, while NMR measurements were performed every four hours, twice each shift.

In the EPR method, we measure the frequency shift of potassium level transitions in the presence
of polarized 3He; Equation 3.23 relates the frequency shift ∆νEPR to the target polarization P3He

∆νEPR =
4µ0

3

dνEPR
dB

κ0µ3HenpcP3He. (5.3)

The vacuum permeability µ0 and 3He magnetic moment µ3He are well known [236]. The derivative
of the EPR frequency with respect to the magnetic field, dνEPR/dB, may be parameterized based on
the g−factors of electrons and of the alkali atoms, the nuclear magneton, and the nuclear spin [237].
The enhancement factor κ0 has been measured over a range of alkali atoms and temperatures
in atomic-physics experiments [238]. The pumping-chamber number density npc averages out to
6.928 ± 0.002, as we saw in Section 5.1.1, but this value may also be computed on a run-by-run
basis using measured temperature data [239]. The frequency shift ∆νEPR, meanwhile, is what is
measured over the course of the experiment. Table 5.2 shows the error on each of these parameters,
combining for a total error of 4.08% on P3He as measured via EPR.

During each EPR measurement, NMR polarization measurements were performed simultane-
ously. Comparison of these results yields a conversion constant c′ between the NMR amplitude h
and the polarization as measured by EPR

c′ =
P3He

h
. (5.4)

This relationship allows an NMR measurement to be converted into an absolute number for the 3He
polarization. Independently, c′ may be calculated from a calibration with a water target; the final
NMR polarization number is then the weighted average of the polarization computed from the water
calibration and the polarization computed from the EPR calibration.

For E06-014, the water calibration has not yet been completed, but Yawei Zhang has computed
c′ for each of the ten EPR measurements (Table 5.3). By combining results from measurements with
the same polarization direction, he obtained average values of c′ for both longitudinal and transverse
target polarization (Table 5.4), with a combined systematic and statistical error of 4.9%. As shown
in Table 5.2, this error is dominated by uncertainties in the value of the enhancement factor κ0 and
in the value of the target density during E06-014 running. He applied these conversion constants to
the NMR measurements taken at four-hour intervals, and then performed a linear interpolation to
find the target polarization on a run-by-run basis. The result is shown in Figure 5.2. These results
are preliminary; once the water calibration analysis is finished, those data will be combined with
these in order to obtain final run-by-run values for P3He.
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Parameter Relative Uncertainty (%)

∆νEPR ∼ 0.6
µ0 negligible

dνEPR
dB negligible
κ0 3.0%
µ3He negligible
npc 2.7%
h ∼ 0.6

Table 5.2: Error breakdown for calculation of P3He and c′ from EPR measurements [239].

Date Polarization Direction P3He (%) c′ (%/mV)

7 February Longitudinal 42.92± 1.75 2.89± 0.12
7 February Longitudinal 41.39± 1.69 2.89± 0.12
9 February Transverse 47.64± 1.94 1.73± 0.07
17 February Transverse 60.29± 2.46 1.73± 0.07
17 February Transverse 54.73± 2.23 1.72± 0.07
23 February Longitudinal 52.32± 2.13 2.75± 0.11
11 March Transverse 53.45± 2.18 1.84± 0.08
11 March Transverse 50.90± 2.08 1.81± 0.07
16 March Transverse 56.84± 2.32 1.78± 0.07
16 March Transverse 52.11± 2.13 1.80± 0.07

Table 5.3: Results of EPR measurements of target polarization during E06-014 running [239]. All
measurements were designed to exploit the level splitting of potassium in the pumping chamber.

Polarization Direction c′ (%/mV)

Transverse 1.77± 0.09
Longitudinal 2.84± 0.14

Table 5.4: NMR-EPR conversion factors c′ [239].
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Figure 5.2: Preliminary target polarization during E06-014 [235], based on a linear interpolation of
NMR polarization measurements calibrated using EPR results. Red lines show the timing of spin
rotations between planes, i.e. a transition between transverse and longitudinal target polarization;
blue lines indicate 180◦ spin rotations within a polarization plane. The labels at the top of the
graph give the polarization direction for that time period: L+ is 0◦, T− is 90◦, and T+ is 270◦.
Two hardware changes also affected the target polarization: a laser with a broad linewidth was
replaced by a narrow-linewidth COMET laser around Run 1400, and a failure in the target oven led
to a marked depolarization near Run 2150. The target slowly repolarized after the replacement of a
heating element.

5.2 BigBite Calibrations

The BigBite spectrometer (Section 3.3.4) has four main components, which work together, online
and offline, to give us comprehensive information about a vast sample of scattered particles. The
BigBite magnet itself allows us to differentiate between particles with different momenta; the wire
chamber gives us the information necessary to tell how the particles behaved inside the magnet. The
shower and preshower calorimeters measure the energy deposited by a particle, while the Čerenkov,
which is sensitive to particle velocity, gives us a strong tool for particle identification.

Extensive calibration is necessary in order to combine data from these varied sources into a
coherent whole. We will begin, in Section 5.2.1, by describing how information from the wire
chambers gives us information about particle trajectories. The determination of scattering vertices
and particle momenta, by combining tracking information with our knowledge of the magnet, will
be the subject of Section 5.2.2. In Section 5.2.3, we discuss the interpretation of data from the gas
Čerenkov, while Section 5.2.4 gives a mechanism for extracting particle energies from the calorimeter
signals.
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5.2.1 Multi-Wire Drift Chambers

The three multi-wire drift chambers (MWDCs, Section 3.3.4.1) record a pattern of hits with high
position resolution as a charged particle makes its way through them. Manipulating this information
is computationally intensive, so MWDC signals are not used in forming the online trigger; in offline
analysis, however, they are crucial. By assembling information about the hits recorded during an
event, we can reconstruct the trajectory a particle followed on its way through the wire chambers
– its track. From the track, we may infer both the particle’s behavior before it reached the first
wire chamber – i.e. its point of origin and the way it curved in BigBite’s magnetic field (and thus
its momentum) – and its behavior afterward, i.e. which parts of the gas Čerenkov, preshower and
shower detectors the particle should have interacted with. Before we can determine this information
with any confidence, however, we must have both a solid understanding of the actual layout and
behavior of the wires, and an algorithm for transforming a hit pattern into a physically valid track.

5.2.1.1 Wire Positions

The low-level calibration of the wire chambers begins with a calibration of their timing and pro-
ceeds to the determination of the absolute position of each wire. For E06-014, this calibration was
performed by Matthew Posik, building on the E06-010 calibration by Xin Qian [170].

Each of the MWDC wires has a TDC channel for which the BigBite trigger controls the common
stop. The readout time tTDC ,i for the ith wire thus depends on two propagation times: the time
tsig,i that it takes for a particle passing near the ith wire to generate a signal in the TDC, and the
time ttrig it takes for the trigger signal to reach the TDC and generate the common stop. Following
Riordan [144], let us consider each of these times in turn.

Two physical processes contribute to tsig,i . In the wake of an ionizing particle in a drift chamber,
electrons resulting from the ionization of the gas take some time tdrift to reach the nearest wire and
produce a signal. Once they have reached the wire, the signal takes some time tdelay,i to propagate
from the wire to its TDC. We thus have

tsig,i = tdrift + tdelay,i . (5.5)

Meanwhile, the charged particle will take some finite time tflight to reach the trigger detector
(i.e. the shower) after causing a hit on the wire. (Variations in tflight for particles in the BigBite
acceptance are less than 1 ns [170, 240] and are neglected in this analysis; the TDC resolution is 0.5
ns.) Once the trigger condition has been satisfied, the trigger logic takes time to operate, and the
trigger signal must propagate from its source to the TDCs; we denote the combined time for these
processes as tlogic . This gives us

ttrig = tflight + tlogic . (5.6)

The recorded time tTDC ,i is the difference between tsig,i and ttrig

tTDC ,i = tdrift + tdelay,i − tflight − tlogic ≈ tdrift + t0,i (5.7)

where we have combined all times except the drift time into one offset, t0,i. Determining t0,i for
each wire thus allows us to find the drift time corresponding to any TDC reading.

The correct t0,i time offsets place the rising edge of each wire’s drift-time spectrum at 0, removing
the sensitivity of the timing to differences between wires. Figure 5.3(a) shows the combined drift-time
spectrum for the wires of one wire plane after the t0 calibration. These results allow us to convert
computed drift times to drift distances, which are inputs to the tracking algorithm. We approximate
the drift distance as the distance between the known position of the hit wire (from survey reports
and from prior calibrations [170]) and the position at which the reconstructed track intersects the
hit plane. By plotting this drift distance against the drift time for a given plane, as in Figure 5.3,
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Figure 5.3: MWDC time and distance calibrations. (a) Calibrated t0 spectrum for second V plane of
first MWDC in BigBite, shown for all hits (left) and for hits that are determined by software to be
part of tracks. (b) Data (black dots) and parameterization (red line) for time-to-distance conversion
in the second U plane of the first MWDC in BigBite. Figures from M. Posik [240].

we may parameterize the time-to-distance conversion function as a continuous function in many
sections, each section fitted with a polynomial. In the next iteration of the analysis, this conversion
function generates a drift distance for each hit that may be used to improve the performance of the
tracking algorithm.

To ensure that the wire positions are accurate in our analysis, we compute track residuals –
the distances between the calculated hit wire positions and the reconstructed track positions – for
each wire. This residual peak should be centered at zero; if it is not, the wire position is shifted to
place the peak at zero, and the whole process (t0,i and position calibration for the wire) is repeated.
Figure 5.4 shows the final residuals for the six U planes of the MWDCs; track residuals for all planes
range from 190 to 265 µm.

This iterative process is quite time- and data-intensive, but the bulk of the labor was performed
only once, by Xin Qian, for both the E06-010 and E06-014 experiments. Minor, E06-014-specific
corrections were made by Matthew Posik.

5.2.1.2 Tracking

As we saw in Section 3.3.4.1, the three multi-wire drift chambers in the BigBite stack contain eighteen
wire planes altogether. These planes have three orientations – U, V, and X – each of which makes
a different angle with the horizontal. The BigBite tracking algorithm, developed by Ole Hansen,
combines hit data from all eighteen planes to reconstruct straight-line particle tracks through the
wire chambers.

In the first stage of track reconstruction, each of the three orientation groups is considered
separately. A track through the six planes of the orientation is found using a tree-search pattern-
matching algorithm first proposed by Mauro Dell’Orso and Luciano Ristori in 1990 [241]. In this
system, we begin by comparing the measured hit pattern in the planes with a set of very low-
resolution templates of possible hit patterns, as shown in the top left panel of Figure 5.5; these
low-resolution templates may be obtained by ORing together series of wires. Once a match has been
found, the successful template is used to generate a set of templates with higher resolution, typically
two bins for every single bin in the parent template; these daughter templates are then searched
until the one that matches the hit pattern is found (top right panel). This successful daughter
template then generates its own daughters with still finer granularity, and the process continues
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Figure 5.4: Residuals for the six MWDC U planes; residuals for the X and V planes follow similar
distributions. Figure from M. Posik [240].
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572 R Mankel

Figure 11. Schematic illustration of the tree-search algorithm: in several steps (in this case four),
the track is matched with templates of increasing granularity and resolution. Each step descends
into the next level of template hierarchy.

and symmetry in the detector design, and therefore cannot be easily used in many complex
cases. In particular, inhomogeneous magnetic fields can complicate the application.

3.2. The fuzzy radon transform

In a very general sense, the observed hit density in the event can be described by a function
ρ(x), where x is a very general description of the measured set of hit quantities. In the absence
of stochastic effects, the expected hit density in the pattern space can be described by an integral

ρ(x) =
∫

P

ρp(x)D(p) dp (25)

where D(p) describes the prevalent population of the feature space, typically a sum of delta
functions centred at the parameters of the particles, and ρp(x) is the average response function
in pattern space for a particle with parameters p, including all detector layout and resolution
effects [36].

Pattern recognition can then be regarded as an inversion of the above integral from a
stochastically distorted ρ(x). The fuzzy radon transform of the function ρp(x) is defined as

D̃(p) =
∫

X

ρ(x)ρp(x) dx. (26)

This transformation requires a precise knowledge of the response function, in particular the
detector resolution. Track candidates are then identified by searching local maxima of the
function D̃(p).

This method will be illustrated using a simple example with a tracking system consisting
of 10 equidistant layers in two dimensions without a magnetic field. Tracks are parametrized
by an impact parameter x0 and a track slope tx = tan θx as defined in section 2.3.1. As the
measurement is 1D, each hit coordinate gives a linear warp-like constraint in the parameter

Figure 5.5: A schematic representation of the tree-search tracking algorithm used for BigBite, re-
produced from Mankel [242]. At each stage, increasingly higher-resolution templates are matched
to each track.

until it reaches templates with the same resolution as the detector (i.e. one bin per wire). If a match
is found at this final stage, we have a successful track reconstruction; if, at any stage, a template
cannot be found that matches the hit pattern, then the track finding has failed and the hit pattern
must be attributed to a random collection of hits. At all points in the process, at least five of six
planes must match for the algorithm to advance to the next stage.

This tree-search method offers a substantial improvement over a sequential search through all
possible templates at the highest granularity. In a sequential search, all patterns must be generated
and stored initially, and the average number of patterns that must be considered in finding a match
is O(n2), where n is the number of bins in each pattern. For a tree search, however, the number of
patterns (which is proportional to the time needed for the algorithm to complete) is O(log2(n)) [241].

Once the tree-search method has been used to find two-dimensional tracks, or roads, in each wire
plane orientation, the roads are combined and fit to reconstruct three-dimensional tracks. Clone or
ghost tracks are removed by allowing each road to contribute only to one track. A successful track
must include hits from at least fifteen wire planes (and hence has hits from all three orientations);
where two possible tracks are found, the one with the lower χ2 value is chosen.

In a Geant3 Monte Carlo study of the E06-010 BigBite data, Xin Qian found a software tracking
efficiency of 95%. Combined with an average hardware tracking efficiency (i.e. the rate at which
particles in the desired kinematic range produce enough hits for the software to generate a track) of
98%, this gives a total tracking efficiency of 93% [170]. As both experiments used the same tracking
software and the same MWDC configuration, this tracking efficiency figure is also applicable to
E06-014.

Despite the high rates observed in BigBite, high track multiplicity was not a problem during
E06-014. Of events for which any tracks were reconstructed at all, an average of 93% had exactly
one reconstructed track. The remainder were mostly events with two tracks; three- and four-track
events made up fewer than 0.3% of events with tracks.
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Figure 5.6: Charge separation in BigBite optics, shown with data from a run with 4.74-GeV electrons
incident on a polarized 3He target. The vertical position of the track is plotted against the track’s
vertical slope x′, both measured at the first wire chamber. Red points mark tracks assigned a
positive charge, while blue points mark tracks assigned a negative charge, based on vertical position
and slope. Tracks passing through the gap in the center cannot be assigned a charge.

5.2.2 Optics

The goal of an optics package is to take a track through the chambers and relate it to the trajectory of
the detected particle immediately after it scattered from the nuclear target. This is made challenging
by the fact that our charged particle has passed through an imperfectly understood magnetic field
between the target and our detectors. A careful modeling of the optics allows us to derive both a
position for the initial vertex (i.e. scattering interaction) and also the momentum of the particle just
after scattering, based on the position and direction of its observed track in the spectrometer.

We begin in Section 5.2.2.1 by describing how positively and negatively charged particles may be
distinguished from each other. In Section 5.2.2.2, we introduce a first-order model for the BigBite
optics, and we refine and calibrate that model in Section 5.2.2.3.

5.2.2.1 Charge Separation

When BigBite is configured with negative polarity, negatively charged particles bend upward in
the magnet, while positively charged particles bend downward; when BigBite is run with positive
polarity, the directions are reversed. The bend direction of a track can therefore be used to determine
the charge of the particle responsible for it.

As shown in Figure 5.6, we determine a track’s bend direction by comparing its vertical position
(x) at the first wire chamber with its vertical slope (x′) at the same location. This calibration was
done by Xin Qian for E06-010, and did not require modification for E06-014. Empirically, particles
that bend upward in the BigBite magnetic field – i.e. negatively charged particles (marked blue in
the figure) – have tracks that satisfy the inequality

x > 3.17x′ − 0.31 (5.8)

while downward-bending, or positively charged, particles (shown in red) have tracks that satisfy

x < 2.73x′ − 0.17. (5.9)
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Figure 5.7: A schematic of the effective bending plane model for BigBite. Angles are exaggerated
for clarity.

Tracks that satisfy neither inequality are so-called stiff tracks, high-momentum tracks that pass
through the magnet with little or no apparent bending. They must have a nonzero electrical charge,
or we would not be able to measure tracks for them at all, but they do not bend enough to distinguish
the sign of the charge.

The E06-014 optics package begins its analysis of each track by assigning it a charge according
to Equations 5.8 and 5.9. The vertex and momentum reconstruction processes for positively and
negatively charged particles are then handled separately. In the following sections, we will discuss
only the optics package for negatively charged particles.

5.2.2.2 First-Order Optics Model

The BigBite optics package takes the observed path of a particle traversing the wire chambers,
projects this path backward to the BigBite magnet, and then uses our knowledge of the magnetic
field to deduce where this trajectory originated (i.e. the scattering vertex) and how it curved in
response to the magnetic field (i.e. its momentum). To achieve this, we rely on a simple model with
a carefully defined geometry.

We begin with the assumption that the BigBite magnet is a perfect dipole – i.e. that its magnetic
field is uniform throughout its volume. The particle trajectory in the magnetic field therefore
describes an arc of a circle with radius R. Outside the volume of the magnet (defined by some
effective field boundary), we assume that the magnetic field is zero. Deviations from this model can
be corrected in later iterations of the optics calibration process.

We make a first-order approximation of the total particle trajectory by defining an effective bend
plane passing through the center of the magnet; we then project a straight-line track (the back track)
back from the wire chambers to the bend plane, and another straight-line track (the front track)
from the bend plane to the target [144].

Figure 5.7 defines the geometry of the first-order optics model as implemented for E06-010. The
solid line shows the actual trajectory of the charged particle; the dotted line shows the effective field
boundary of the magnet. The particle enters the magnetic field at point A and leaves it at point D.
We model its interactions as occurring at a single point C on the bend plane (thick dashed line);
its path through the magnetic field is then given by two straight-line segments AC and CD (red
dash-dotted lines). The center of the bending arc, part of a circle with radius R, is at point B. We
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also define ` = AC + CD, noting that AC = CD = `/2 since the bend plane bisects the bending
arc.

Because AC is tangent to the arc of curvature, it is perpendicular to the radius AB, making
angle 6 BAC a right angle. If we define θbend = 6 ABD as the angle through which the particle
trajectory bends in the plane perpendicular to the magnetic field, then θbend/2 = 6 ABC and we
can express the radius of curvature R as

R =
`

2 tan
(
θbend

2

) . (5.10)

We note that the deflection angle used in some similar models (e.g. Riordan [144]) is the supple-
mentary angle to 6 ACD as defined in Figure 5.7.

From the radius of curvature, we can derive the momentum component p⊥ perpendicular to the
magnetic field direction. For a magnetic field of magnitude B, this is

p⊥ = |q|BR =
|q|`B

2 tan
(
θbend

2

) . (5.11)

In order to compute the total momentum of the particle, rather than just that component
perpendicular to ~B, we require one more angle, not shown in Figure 5.7, to complete our picture. We
define Φ as the angle between the particle momentum and the magnetic field; in the approximation
of BigBite as a perfect dipole, Φ for any given track is fixed throughout the volume of the magnet.

cos Φ =
~B · ~p
|B||p| . (5.12)

The perpendicular momentum component p⊥ is related to the magnitude p of the total momentum
by p⊥ = p sin Φ. Equation 5.11 thus leads us to a first-order expression for the magnitude of the
complete electron momentum

p =
|q|`B

2 sin Φ tan
(
θbend

2

) . (5.13)

Determining the momentum according to this method requires a good first-order determination
of AC and thus of the front track and the vertex of the scattering interaction. This problem, too, is
simplified by the effective bending plane model. First, the back track reconstructed in the multi-wire
drift chambers is extrapolated back to find the point C where it intersects with the bend plane; the
front track must also intersect the bend plane at the same point. Furthermore, any valid front track
must make the same angle Φ with the magnetic field that the back track does. At this stage, the
complete set of possible solutions to the front-track problem forms a cone with an apex at C and
an opening angle of Φ.

This cone of solutions will intersect with the beamline; since Φ is fairly large, there will be only
one intersection point within a reasonable distance of the nominal target. This intersection point
defines the first-order interaction vertex, and the front track becomes the line connecting this vertex
to the bend plane at C [170]. From a back track measured in the wire chambers, we thus obtain a
front track that intersects with the beamline and the target – and the geometry of these two tracks
gives us the particle momentum.

5.2.2.3 Refinements to First-Order Optics Model

The first-order optics model is only a beginning: corrections to both the interaction vertex and
the momentum are necessary to account for deviations from our approximation. In E06-010, these
corrections were determined using data from both first-pass (1.2306 GeV) and second-pass (2.396
GeV), in a six-step process [170]. In E06-014, where BigBite was positioned at a different angle,
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there is enough optics data to redo the lower-order calibrations, but any higher-order calibration
constants must be taken directly from the E060-010 results or neglected entirely.

Correlation Variables In a non-uniform magnet, the trajectory of a charged particle will depend
on the particular regions of the magnetic field that it traverses. This manifests itself in the data as
correlations between reconstructed momentum or vertex and variables describing the location and
direction of the particle trajectory. We use a set of six variables to describe how and where the
particle passes through the magnetic field.

The first pair, x and y, define the hit position (in detector coordinates) of the reconstructed
track in the first wire chamber. The second pair, x′ and y′ (also known as, respectively, tan θ and
tanφ [144]), define the track’s direction in the detector coordinate system

x′ =
dxdet
dzdet

(5.14)

y′ =
dydet
dzdet

. (5.15)

The final pair of relevant variables are xbend and ybend , which specify the position of point C, the
location where the track intersects the effective bending plane. We note that these two variables are
in magnet coordinates, which means that the axes are reversed relative to detector coordinates. x,
x′, and ybend are vertical; y, y′, and xbend are horizontal.

Apparatus Locations The first step of our calibration was to determine the locations of the target
and of the BigBite magnet (via the sieve-slit position) from Hall A survey reports; without knowing
their relative positions, it would be impossible to reconstruct the front track. The survey reports
also gave initial values for the wire chamber positions, which allowed a more accurate first-order
optics model.

In the second step, the positions of the wire chamber were improved and finalized empirically,
using runs during which the BigBite magnet was turned off. Without any bending by the magnetic
field, the front track aligns perfectly with the back track, and a good reconstruction of the sieve
pattern indicates accurate positions for the wire chamber. This calibration was performed for E06-
014 by Xin Qian. The resulting sieve reconstruction is shown in Figure 5.8.

Vertex Calibration The third step was to improve the reconstruction of the interaction vertex,
using an iterative algorithm and software package developed by Xin Qian [170]. In runs with a
multifoil carbon target and the sieve-slit removed from the BigBite magnet face, the first-order

vertex-z position Z
(0)
v (in Hall A coordinates) could be compared to the absolute reference of that

foil’s surveyed position. The discrepancy in Zv may be correlated to one of the six correlation
variables. Studying these correlations allows us to define first- and second-order corrections for the
vertex-z position

Z(1)
v = Z(0)

v + b1 + a1y (5.16)
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Figure 5.8: (a) Photograph of BigBite sieve-slit, from Transversity Photo Diary [166]. (b) Recon-
struction of sieve pattern from data with the magnet turned off. Black points represent the positions
of all tracks in the sieve plane; red points correspond to those tracks which the optics software iden-
tifies as passing through a sieve slot.
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(5.17)

There is some redundancy in the expression of Equation 5.17: to show more clearly that the co-
efficients of each line of the equation are determined independently (in a separate calibration for
each variable), the amn terms have not been recombined, nor have coefficients which go to zero been
removed.

Optics corrections are an iterative process, and the procedure defined by Equation 5.17 was
immediately repeated to give the third-order vertex position Z3

v . At this stage, the discrepancies
were resolved as well as they could be using only the six variables describing the track position and
direction; the next phase of the vertex calibration required the inclusion of momentum-dependent
corrections. Using the front track defined by Z3

v , a first-order momentum p(0) was computed from
Equation 5.13. Then first- and second-order corrections – only approximate, due to the wide momen-
tum spectrum of scattering from a carbon-foil target – were defined, based on momentum variations
with the six track direction and position variables
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p(1) = p(0) ·
(
c0 + c1ybend + c2y

2
bend

)

· (d0 + d1xbend)

·
(
e0 + e1Z

(3)
v

)

·
(
f0 + f1x+ f2x

2
)

·
(
g0 + g1x

′ + g2x
′2)

·
(
h0 + h1y + h2y

2
)

·
(
i0 + i1y

′ + i2y
′2)

(5.18)

p(2) = p(1) ·
(
j0 + j1xbend + j2x

2
bend

)

·
(
k0 + k1ybend + k2y

2
bend

)

·
(
l0 + l1p

(1)
)
.

(5.19)

By examining the correlation of the vertex discrepancy with the approximate second-order mo-
mentum p(2), we can obtain coefficients for momentum-dependent vertex corrections

Z(4)
v = Z(3)

v − xbendZ(3)
v

(
m0 +m1p

(2)
)

+
(
n0 + n1Z

(3)
v

)(
o0 + o1p

(2)
)

+e(p0+p1p
(2))(q0+q1Z

(3)
v ).

(5.20)

A second round of momentum-dependent corrections, done according to Equation 5.20, resulted in

a fifth-order vertex position Z
(5)
v .

The final set of vertex corrections relied on a set of lookup tables. The three-dimensional phase
space described by (xbend, ybend, Zv) can be delineated by a fine grid. Any point within the phase
space is contained within a cubical volume defined by eight corners with various values of xbend, ybend,

and Z
(m)
v ; a linear interpolation between those corners gives the nth-order vertex position Z

(n)
v . Two

additional lookup tables are defined for the phase spaces
(
xbend, p

(2), Zv
)

and
(
ybend, p

(2), Zv
)
. The

final three orders of vertex positions are thus defined by

Z(6)
v = f1

(
xbend, ybend, Z

(5)
v

)
(5.21)

Z(7)
v = f2

(
xbend, p

(2), Z(6)
v

)
(5.22)

Z(8)
v = f3

(
ybend, p

(2), Z(7)
v

)
(5.23)

where f1, f2 and f3 are the linear interpolation functions.
In the analysis of each track, the vertex reconstruction begins with the first-order calculation

(Z
(0)
v ) and proceeds through each step to a final value given by Z

(8)
v . The bulk of the calibration,

including the look-up tables, was performed by Xin Qian for E06-010, and was extended to E06-014
with minor corrections by Matthew Posik. The calibration was performed with carbon-foil data
and 1.23-GeV electrons. Figure 5.9 shows a test of the calibration using carbon-foil data at the full
production energy of 5.9 GeV; even at these high energies, we observe 1.0-cm vertex resolution in
BigBite.
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BigBite 5-pass Negative Carbon Vertex

5-pass Negative Carbon Z-Vertex

Matthew Posik (Temple University) 3 / 13Figure 5.9: Test of vertex reconstruction with 5.90-GeV electrons on the carbon-foil target. Red
lines indicate the known positions of the foils. Figure is from M. Posik [240].

Angle Calibration The fourth step of the optics calibration, performed by Xin Qian, relied on
runs with both carbon and hydrogen gas targets, taken with the sieve-slit positioned in front of the
magnet. The goal was to improve on the first-order estimates of the angles Φ and θbend (defined
in Section 5.2.2.2), which are determined from the front track connecting the final vertex position
and the middle point C on the bend plane. At this calibration stage, the alignment of the measured
sieve pattern with the predicted sieve pattern is optimized via the inclusion of offsets and higher-
order corrections dependent on the vertex position. Once the actual and modeled patterns are in
agreement, the angles of the tracks may be taken as accurate to within 10 mrad.

Momentum Calibration With trustworthy values for the vertex position and angles in hand,
elastic scattering data from H2 target runs could be used to perform a calibration of the momentum.
The final momentum pelastic of an elastically scattered electron can be calculated exactly from its
initial momentum pi and its scattering angle θ

pelastic =
piM

M + pi (1− cos θ)
(5.24)

where M is the mass of the target particle. (The electron mass is assumed to be negligible compared
to p). The reconstructed momentum of an electron, of known incident momentum, that has under-
gone elastic scattering from a proton should match the expected momentum pelastic for its observed
scattering angle θ; if it does not, and if the angle measurements have already been calibrated, then
it is the momentum reconstruction that requires correction.

In the original E06-010 optics model [170], the first correction to the first-order momentum is a
linear correction applied to momenta below 0.9 GeV, according to

p =

{
p(0) for p(0) > 0.9 GeV

p(0) + 0.148
(
p(0) − 0.9 GeV

)
for p(0) ≤ 0.9 GeV.

(5.25)

The purpose of this correction was to align the secondary W peak in the H2 BigBite data (see
Figure 5.11) to the ∆ mass of 1.232 GeV. While the resulting momentum p(0) is continuous at the
boundary of p = 0.9 GeV, its first derivative is not, introducing a discontinuity in the reconstructed
momentum spectrum (Figure 5.10). Further corrections, based on an extensive lookup table, failed
to correct this unphysical behavior.
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Figure 5.10: Partial momentum spectrum for calibration events with 1.23-GeV electrons incident
on a hydrogen target, showing the momentum discontinuity at p = 0.9 GeV in the E06-010 optics
model.

Subsequently, a simplified Monte Carlo simulation of BigBite showed that the inelastic peak in
the W spectrum, which is affected by variations in Q2 and by the spectrometer acceptance, should
not coincide with the ∆ mass; instead, it should fall at 1.215 ± 0.005 GeV [148]. We therefore
removed the low-momentum correction in Equation 5.25 from the E06-014 optics package, as well
as the corrections based on lookup tables; we kept only E06-010’s first-order momentum model.

To fine-tune the overall scale factor, we combined data from five runs taken with 1.23-GeV
electrons on a hydrogen target. BigBite had negative polarity, so negatively charged particles were
bent upward in the magnet; we included only upward-bending particles in our sample. We also
excluded tracks that passed through portions of the magnet with large known field gradients, as well
as tracks whose scattering vertices were more than 17 cm from the nominal center of the target.
Finally, we required a T1 (low shower threshold) trigger for tracks in our sample, since this trigger
had the most uniform coverage of the BigBite acceptance.

Figure 5.11 shows the resulting W spectrum, after the overall scale factor from E06-010 has been
adjusted by a factor of 1.041. The high, narrow peak contains events for which the electron has
undergone elastic scattering from a proton; the low, broad inelastic peak is located at W = 1.212
GeV.

To measure the momentum resolution of our optics package, we calculated the discrepancy be-
tween the reconstructed momentum p and the predicted momentum pelastic (Equation 5.24) for
events in the elastic peak

δp

p
=
p− pelastic

p
. (5.26)

Figure 5.12 shows the result. We achieve a momentum resolution of 1.07%.

5.2.3 Gas Čerenkov

E06-014 was the commissioning experiment for the BigBite gas Čerenkov (Section 3.3.4.2), which
was used in the T2 and T7 triggers (Section 3.3.6). Particle identification was the primary purpose
of the gas Čerenkov: through the T2 trigger, the Čerenkov was responsible for removing the bulk of
incident pions from the online sample. Rates were higher than expected, on the order of 100 kHz on
the large-angle side of the Čerenkov and on the order of 1 MHz on the small-angle side. Nonetheless,
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Figure 5.11: W spectrum for 1.23-GeV electrons on a hydrogen target. The dotted red lines mark
the proton mass (0.938 GeV) and the predicted location of the inelastic peak.
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Figure 5.12: Momentum resolution for E06-014 optics package. We have plotted the discrepancy
between the reconstructed and predicted momentum (Equation 5.26) for elastic events. The fit
function is the sum of a Gaussian and a third-degree polynomial.
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Figure 5.13: ADC spectrum of a BigBite gas Čerenkov PMT for an LED run. Fits to the pedestal
and single-photoelectron peak allowed the latter to be aligned at the 30-channel mark. Figure from
M. Posik [240].

the inclusion of the Čerenkov in the T2 trigger reduced the trigger rate to the 2-3 kHz range, which
allowed data-taking to proceed without prescaling [171].

Including Čerenkov data in the offline analysis further improves our removal of pions from the
final sample. This offline analysis requires the calibration of three types of Čerenkov information:
ADC amplitudes, TDC timing ranges, and geometrical information about the acceptance of each
PMT.

5.2.3.1 ADC Spectra

Signals from the twenty PMTs of the gas Čerenkov, each with coverage of a slightly different region
of the detector, are calibrated using special LED runs performed during the experiment. Figure 5.13
shows a representative ADC spectrum from such a run. During the experiment, these data were
used to gain-match the PMTs to place the one-photoelectron peak at about 50 mV and the hardware
threshold at about the 1.5-photoelectron level; after the experiment, a more detailed analysis allowed
the measured spectra to be matched to higher precision in software.

We used a convolution of Gaussian and Poisson functions to fit the pedestal and the single-
photoelectron peak, allowing us to adjust our software settings to place the single-photoelectron
peak at thirty ADC channels above the pedestal. Any cut on the ADC signal may thus be expressed
in terms of number of photoelectrons, rather than in terms of ADC channels. This calibration was
performed by Matthew Posik for E06-014.

5.2.3.2 TDC Timing

Timing information for hits in each gas Čerenkov PMT, relative to the shower timing, is recorded
in a dedicated TDC channel. Each TDC has a resolution of 0.5 ns [243] and is capable of recording
timing information for up to 16 hits, but the hardware settings during E06-014 were such that only
the first hit could be used in forming the trigger. A hit recorded by a TDC might be an accidental,
or it might be responsible for forming the trigger for that event; to distinguish between these two
types of hit, we turn to the spectrum of recorded TDC times.

Figure 5.14 shows the TDC spectrum for PMT17. Atop the spectrum of accidentals, we see two
clear structures: a sharp peak, centered at 227 channels for this PMT, and a square-shaped shoulder
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Figure 5.14: Sample Čerenkov TDC spectrum in units of 0.5 ns. The region between the dashed red
lines is the trigger timing window used in our analysis.

region whose width is approximately equal to the width of the logic signal generated by T6 (a hit in
the shower). The shoulder arises from the fact that the T2 timing is set by the shower hit, rather
than by the hit in the Čerenkov: accidentals that fall within the T6 window may cause a T2 trigger.

The region enclosed by the dashed red lines in Figure 5.14 is the trigger timing window; it is
about 100 channels, or 50 ns, wide. The precise location of the window varies from PMT to PMT,
but is stable over a running period of at least a few weeks. Timing within the trigger window
is a necessary condition for associating a Čerenkov hit with the trigger, but it is not sufficient; a
significant percentage of hits within the window are accidentals.

5.2.3.3 PMT Acceptance

We wish to associate a particle track in the MWDCs with a hit in the Čerenkov (and, later, with hits
in the preshower and shower; see Section 5.2.4.4). If the particle we have tracked was responsible
for the T2 trigger, the high hardware thresholds make it more likely to have been an electron rather
than a pion. In order to make this determination, we must relate the geometry of the Čerenkov to
the trajectories of tracks measured in the MWDCs, so that we can determine which PMT should
have observed a particular track.

As we saw in Section 3.3.4.2, the acceptances of the twenty Čerenkov PMTs are defined by the
twenty spherical mirrors arranged in two columns in the tank, facing back toward the magnet. For
our acceptance study, we take the “Čerenkov plane”, or effective mirror plane, as being located 0.8
m downstream from the first MWDC, a somewhat arbitrary choice: we compare the track positions
projected forward from the MWDC to this plane, to the effective PMT acceptances on this plane.

Figure 5.15 shows the projected vertical and horizontal track positions on the Čerenkov plane
for events taken with the T2 trigger (for which the Čerenkov must fire). The rate difference between
the small- and large-angle sides is immediately apparent, as is a dead region in the top half of the
magnet. The boundary between the two columns may be seen in the sparse region running up and
down the center of the plane; some vertical boundaries between mirrors in each column may also be
distinguished.

In order to define the vertical acceptance of each PMT, we must associate the various regions in
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Figure 5.15: Projected track positions on the Čerenkov plane. These tracks are associated with
negative particles and T2 triggers. In accordance with Hall A convention, the top of this plot
corresponds to the bottom of the BigBite detector stack, and vice versa. The right side of the plot
is toward the beamline (“small-angle side”), while the left side is away from the beam (“large-angle
side”).

Figure 5.15 with their PMTs. We rely on TDC and ADC information to accomplish this identifi-
cation. If a PMT’s TDC has registered a hit in the trigger timing window, and if its ADC shows a
signal of at least three photoelectrons, then we assign the projected vertical position for that track
to that PMT. This assignment is not exclusive; the PMT may have seen an accidental, or the cone
of Čerenkov light associated with the primary track may have straddled the boundary between two
mirrors. In such cases, a single track might be associated with several PMTs.

Figure 5.16 shows the result of these assignments for PMTs in the small-angle-side column. Each
colored histogram represents the vertical positions, on the Čerenkov plane, for those tracks assigned
to a particular PMT. While each PMT clearly sees many accidentals, the division of the vertical
acceptance among the PMTs is clear, as well as the several centimeters of overlap between the
low-effeiciency edges of the acceptances of each pair of neighboring PMTs. Based on this plot, we
set loose boundaries around each vertical-acceptance peak, including the vertical range of tracks
that could shed light on each mirror while excluding the bulk of the accidentals; these acceptance
boundaries were also valid for the PMTs in the large-angle-side column. Only the topmost quartet
of PMTs – PMT08 and PMT09 on the small-angle side, and PMT18 and PMT20 on the large-angle
side – were excluded from this analysis, as they were outside the Čerenkov acceptance for negatively
charged particles.

The PMTs’ horizontal acceptances cannot be assigned with anything like this precision, since the
whole horizontal acceptance of the gas Čerenkov is divided between only two columns of mirrors.
Figure 5.17 shows the distribution of projected horizontal positions on the Čerenkov plane. The dip
near 0 marks the centerline of the mirror arrangement; the rate difference between the two columns
is reflected in the relative amplitudes of the positive and negative sides of the histogram.

Since a track passing near the center of the Čerenkov may register as a hit in both a small-angle-
side and a large-angle-side PMT, the final horizontal acceptances of the two columns must overlap.
We achieve this behavior by placing two boundary lines, bracketing the dip in acceptance at the
centerline. A track falls in the small-angle-side horizontal acceptance if its projected horizontal
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Figure 5.16: Determining the vertical positions of the small-angle-side Čerenkov mirrors. We have
projected the tracks to the Čerenkov plane and plotted the distribution of vertical positions in
meters, using TDC and ADC cuts to identify each distribution with the acceptance of a specific
PMT. The black histogram shows the vertical distribution of tracks for which any small-angle-side
PMT has fired; each of the colored histograms represents the vertical distribution of tracks for which
a different PMT has fired in particular. In the broad peaks rising an order of magnitude above the
accidentals, we can see the vertical distribution and geometrical overlap of the PMT acceptances,
from PMT00 at the top of the Čerenkov to PMT07 near the bottom.
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Figure 5.17: Definition of horizontal Čerenkov mirror position cuts. The red histogram shows the
distribution of horizontal positions on the Čerenkov plane for events in which one of the large-angle
Čerenkov TDCs has fired; for events in the blue histogram, one of the small-angle Čerenkov TDCs
has fired. In both cases, we see a sharp dropoff between the true horizontal acceptance of the PMTs
and the region populated only by accidentals. To match with a small-angle-side mirror, we require
that a track’s projected horizontal position fall to the right of the blue dashed line; to match with
an large-angle-side mirror, the track position must fall to the left of the red dashed line.
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position is more positive than the blue line; it falls in the large-angle-side horizontal acceptance if
that position is more negative than the red line.

With this division of the horizontal and vertical PMT acceptances, 99.93% of all tracks fall within
the acceptance of at least one PMT, but each track can be identified with a specific subset of PMTs,
at least one of which should have fired if the track belonged to a good electron.

5.2.4 Preshower and Shower

The preshower and shower detectors (Section 3.3.4.4) are used in the formation of the T1, T2 and
T6 triggers (Section 3.3.6) and in offline energy measurements of the scattered particles; the latter
functionality allows us to distinguish electrons from minimum ionizing particles, and to identify
possible problems in our data. The amplitude of the signal from each block is proportional to the
energy deposited in that block; a typical particle, however, deposits energy in two clusters of blocks,
one in each layer. To determine the total energy, we must combine signals from multiple shower
and preshower blocks, which requires us to calibrate the signal of each block to a known deposited
energy.

5.2.4.1 Rough Hardware Calibration

For a uniform trigger acceptance across the calorimeter, a given energy deposit must produce ap-
proximately the same ADC signal, no matter which block of the layer was involved. Each block
is mated to a single PMT, which produces a signal whose amplitude is proportional to the energy
deposited in the block. Achieving this behavior thus requires adjustment of the high voltage of each
PMT so as to equalize the gain across all blocks in a layer.

Cosmic rays are a useful tool in performing this calibration: since high-energy cosmic rays
at this altitude are primarily muons, they behave as minimum ionizing particles. For a muon
passing vertically through a calorimeter layer, the energy deposited in each block should then be
approximately the same. We identify cosmic rays via two plastic scintillators, one at the top of
the detector and one at the bottom, and each with two PMTs. A cosmic-ray trigger can then be
constructed through a logical AND of all four PMTs, so as to select particles passing vertically
down through the calorimeter. In an iterative procedure, the high voltages on the shower blocks
are adjusted to align the minimum energy-loss peak to ADC channel 120; the same peak in the
preshower blocks is aligned to ADC channel 240 [161]. This rough calibration, good to about 5-10
channels, was performed for E06-014 by Kalyan Allada.

5.2.4.2 Cluster Reconstruction

Before discussing the software calibration of the total energy measured by the calorimeter in Sec-
tion 5.2.4.3, we must first review the algorithm for reconstructing shower clusters. Since the shower
produced by an electron is not confined to a single block, we must combine data from several blocks
in order to measure the total energy that the electron has deposited in the calorimeter.

In the analysis of a BigBite event, the cluster reconstruction software begins by finding the shower
block that saw the largest energy deposit. This block is taken as the center of a 3× 3 cluster whose
total energy is the sum of the energies deposited in each of the nine blocks. The procedure is then
repeated for the preshower, identifying the 3×2 preshower cluster with the largest energy deposited.
In contrast to the E06-010 data analysis, only the clusters with the largest energy are saved.

Where N is the number of blocks in a cluster and Ei is the energy deposited in the ith block,
the total energy E of a preshower or shower cluster is calculated according to

E =

N∑

i=1

Ei. (5.27)
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The x and y positions of each cluster, which are used in data analysis to determine whether a
given track and preshower/shower cluster pair could have been produced by the same particle, are
computed as the energy-weighted average of the cluster’s block positions. Where the coordinates of
the ith block are given by (xi, yi), we thus have

x =
1

E

N∑

i=1

Eixi (5.28)

y =
1

E

N∑

i=1

Eiyi. (5.29)

5.2.4.3 Offline Energy Calibration

The cosmic-ray calibration of Section 5.2.4.1 gives only a rough calibration; to use the calorimeter
for particle identification, we must perform a more precise calibration. The result is a set of 243
coefficients Ci, one for each block in the preshower and shower, that transform the measured ADC
amplitude to an energy in MeV, according to

Ei = Ci(Ai − Pi) (5.30)

where Ai is the raw amplitude in the ith ADC and Pi is the ADC pedestal.
We compute all 243 coefficients simultaneously using a linear fit to minimize χ2, the square of

the difference between the reconstructed momentum p and the total energy reported by both the
preshower and the shower. Over M good electron tracks, χ2 is given by

χ2 =

M∑

i=1


pi −

Nps∑

j=1

Cpsij
(
Apsij − P psj

)
−
Nsh∑

k=1

Cshik
(
Ashik − P shk

)



2

(5.31)

where Nps = 6 and Nsh = 9 are the number of blocks in a preshower cluster and in a shower cluster,
respectively, and the pedestals are measured independently. Errors are assumed to be uniform. The
minimization procedure is detailed by Allada [161].

For E06-014, this calibration was performed by Matthew Posik on production data with an
incident beam energy of 4.74 GeV, using the reconstructed momentum with its 1.1% resolution as
the expected electron energy. Events selected for the calibration had track and shower positions
aligned within 3σ. Their tracks passed through understood portions of the BigBite magnet and had
an assigned charge of −1. The events passed an electron cut in the gas Čerenkov data as well as a
loose E/p cut to select the electron population. Figure 5.18 shows the resulting energy resolution of
8.4%.

5.2.4.4 Calorimeter Position

The calorimeter’s energy measurement is a potent tool in particle identification: for an electron,
E ' p, while E < p for a pion. In order to make a meaningful comparison between the energy
measured in the calorimeter and the momentum measured in the wire chambers, we must be able
to determine whether the same particle could have been responsible for the track through the wire
chambers and for the hits in the preshower and shower. As we will discuss in greater detail in
Section 6.2.1.4, we test this alignment by comparing the preshower and shower cluster positions to
the track position projected to the preshower and shower planes. The effective distance between
the first MWDC and each calorimeter plane must be determined in order for this projection to be
accurate.
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Figure 5.18: BigBite energy resolution for Ee = 4.74 GeV. The plot, showing the total energy (mea-
sured in preshower and shower) divided by the momentum (reconstructed by the optics package), is
from M. Posik [240].

The rough distances from the first MWDC to each calorimeter layer were known (1 m for the
preshower, and 1.2 m for the shower). In order to optimize the effective values of these distances, we
performed a study of the misalignment between the projected track position and the cluster position.
Let xcal be the x position of a shower or preshower cluster, as determined by Equation 5.28. Let xtr
and x′tr be the vertical position and slope, respectively, of the track at the first MWDC, the origin
of the detector coordinate system. We can then define the vertical misalignment ∆x according to

∆x = xcal − (xtr + d · x′tr) (5.32)

where d is the z position, in detector coordinates, of the calorimeter layer in question. A similar
equation may be defined for the horizontal misalignment ∆y

∆y = ycal − (ytr + d · y′tr) . (5.33)

Given the low position-resolution dictated by the shower and preshower blocks, the alignment
will necessarily be imperfect. If there is an error in d, however, then we will find that the alignment
will be systematically worse at larger track angles, since the projected track position will be more
and more at odds with the actual position of the particle at the calorimeter. An accurate value of
d, then, will eliminate the correlation of ∆x with x′tr and of ∆y with y′tr.

Figure 5.19 shows the results of a sample calibration for the shower. At the nominal distance
d = 1.2 m, ∆x is strongly correlated with x′tr; with a distance value of 1.28 m, however, the
correlation has disappeared. Table 5.5 shows the distances determined for the shower and for the
preshower.

Layer d (m)

Preshower 0.97
Shower 1.28

Table 5.5: Calibrated distances d between first MWDC and calorimeter layers.



CHAPTER 5. TARGET AND DETECTOR CALIBRATIONS 172

Figure 5.19: Determining the shower position in detector coordinates. We plot the vertical mis-
alignment ∆x between shower and projected track position as a function of the track slope x′tr.
The correct position d, at right, is the one for which ∆x is uncorrelated with x′tr. Positively and
negatively charged particles form two distinct populations in this figure. A horizontal line is drawn
at ∆x = 0 to guide the eye.

5.3 Energy Loss

In an idealized model, the electron beam would travel through vacuum before striking free 3He gas
in a windowless target, and scattered electrons would pass directly through the BigBite magnet
and into the detector stack with the same energy they had immediately after scattering. In a real
experiment, however, the 3He gas is contained in a glass cell, the experimental hall is not under
vacuum, and the electron beam must leave its pipe and enter the target cell before the desired
scattering interactions can take place. In traversing these obstacles, high-energy electrons naturally
tend to lose energy due to various processes, primarily bremsstrahlung. The radiation length X0 is
the characteristic scale length of these interactions; it is the mean distance in a material over which
a high-energy electron’s energy is reduced to 1/e of its initial value [11, 208].

Table 5.6 summarizes the materials encountered by the electron beam on its way out of the beam
pipe and into the center of the target; these comprise a total of 0.0029 radiation lengths. Scattered
electrons emerging from the side of the target toward BigBite, meanwhile, encounter about 0.0273
radiation lengths of material, as shown in Table 5.7; most of this is due to the side wall of the target.

The calculated energy-loss values can, in principle, be applied to the optics code as corrections
to the reconstructed momentum: the electrons interacting with 3He nuclei have slightly less than
their nominal energy, and scattered electrons detected in the wire chambers have slightly less energy
than they did immediately after scattering. The mean energy loss in these materials is about 2%,
but this dramatically overstates the problem: the mean is dominated by the unlikely occurrence of
very, very large energy losses. Geant4 simulations showed that the most likely energy loss for our
configuration was only about 0.1% [244], on the level of a few MeV. Applying event-by-event energy
loss corrections made no appreciable change to our momentum resolution, so we have ignored them
in this work.
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Object Material X0 (cm) Thickness (cm) Thickness (X0)

Beam pipe exit window Be 35.28 0.0254 0.00072
Gas in target enclosure 4He 5.281× 105 22.86 0.00004
Target cell entrance window GE-180 glass 7.038 0.0121 0.00172
Gas in first half of cell 3He 4.342× 104 19.8 0.00045

Table 5.6: Materials in the path of incoming electrons. X0 is the material’s radiation length.

Object Material X0 (cm) Thickness (cm) Thickness (X0)

Gas between vertex and sidewall 3He 4.342× 104 1.34 0.00003
Target sidewall GE-180 glass 7.038 0.156 0.02216
Gas in target enclosure 4He 5.281× 105 79.05 0.00015
Yellow cover Plastic 34.5 0.0889 0.00257
Open air Air 3.042× 105 150.0 0.00493

Table 5.7: Materials in the path of scattered electrons going to BigBite. X0 is the material’s radiation
length. Thicknesses are calculated for a nominal scattering angle of 45◦. The type of plastic in the
yellow cover is unknown; values were taken for polycarbonate, which has a relatively short radiation
length compared to many other plastics.



Chapter 6

Data Analysis

With our detectors calibrated (Section 5.2), we turn to the extraction of meaningful physics infor-
mation from the data we have collected on disk. In this chapter, we discuss the analysis of the
data collected with an incident beam energy of 4.74 GeV, during the final week and a half of the
experiment. Although this dataset represents less than half of our production data, it was collected
during a period of exceptionally stable running, with no changes to the trigger configuration. The
4.74-GeV data set is thus an ideal testbed for our analysis; we will extend the lessons learned here
to our 5.9-GeV dataset, making the necessary adjustments for run periods with different trigger
configurations or faulty PMTs.

We begin in Section 6.1 with a discussion of how we analyze our raw data files in order to produce
physically interpretable data. In Section 6.2, we give a detailed breakdown of our event selection,
which is extremely successful at removing pions and other sources of background from our sample.
In Section 6.3, we discuss the calculation of electron-nucleus scattering asymmetries and extract the
raw and physics asymmetries for all three target spin configurations in our 4.74-GeV data. Finally,
in Section 6.4, we extract the kinematic variables that define the dynamics of each x bin.

In Chapter 7, we will combine these asymmetries and these kinematic variables to form both
the electron-nucleus asymmetries A

3He
‖ and A

3He
⊥ , and the virtual photon-nucleus asymmetries A

3He
1

and A
3He
2 , at which point we will discuss the outlook for finalizing these measurements.

6.1 Analysis Procedure

The conversion of terabytes of raw data1 into usable, organized physical quantities is a delicate and
time-consuming process. For E06-014, the conversion of raw data in CODA files (Section 3.3.7.1)
to organized data in ROOT files (Section 3.4) was a two-step process taking advantage of Jefferson
Lab’s considerable batch computing resources.

The first step was the replay step, in which the Hall A Analyzer was used to perform the bulk of
the data processing. As described in Section 3.4, the Analyzer includes analysis packages for every
type of detector found in Hall A, and matches electronic signals to their hardware sources with the
aid of user-written database files. Calibrations performed on a small set of replayed runs gave us a
set of further database inputs to translate hardware signals into energies, currents, or positions; the
shower and preshower calibration coefficients (Section 5.2.4.3) comprise two such sets of database
inputs. With these inputs finalized, we used the Jefferson Lab batch farm to perform a full replay
of the entire BigBite data set with polarized 4.74-GeV beam.

A replay using the Hall A analyzer has three stages [144]. In the decoding stage, raw data from
a CODA event are converted to physical values; for example, a set of TDC values might be read

1The 4.7-GeV production data set alone accounts for about 2.2 TB in raw format.

174
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Figure 6.1: Performance of tracking cut over 4.74-GeV dataset. The vertical axis gives the rate at
which CODA events met the requirement that they include at least one reconstructed track. The
outlier is Run 2163; partway through this run, a poorly seated cable caused multiple pulsing of the
T8 (clock) trigger. Consequently, most triggers were not caused by physical particles, and we saw a
corresponding drop in the percentage of triggers associated with good tracks.

in from the event buffer, associated with their respective wires in the drift chamber, and converted
to drift times. The next stage is coarse processing, in which the software produces rough tracks
and does quick calculations of certain other detector variables. Some of these variables – such as
the measured beam position – are used as inputs for other detectors in the fine processing stage, in
which the final outputs for each detector – e.g. tracks, cluster positions, measured energies and hit
timing – are computed.

In order to limit the disk space required for the replayed ROOT files, we imposed a basic tracking
cut on our replay software: only events for which a valid track was found were written to disk as
part of a ROOT file. This requirement reduced the number of saved events, and consequently the
amount of required disk space, by 84% or better, as shown in Figure 6.1.

The second step in our analysis was the skim step. After some analysis of each replayed run (e.g.
to pinpoint beam problems, as described in Section 6.2.1.1), we computed kinematic variables (such
as x, W and Q2) and set boolean flags to enable later cuts on undesirable time periods. We then
copied the original replayed ROOT tree to a new file, grafting on these flags and kinematic variables.
The final analysis – background studies and the calculation of asymmetries – was performed on these
skim files.

6.2 Event Selection

Our goal is an inclusive measurement of an asymmetry in doubly-polarized deep inelastic scattering
of electrons from 3He nuclei. In this type of measurement, we must ensure that the scattering events
in our sample are valid examples of the events that we seek, in which an electron has scattered
somewhere in the volume of the target cell. Final-state hadrons form a significant potential back-
ground. So that we may accurately reconstruct the kinematics of the original scattering interaction,
the electron must have passed through a region of the BigBite magnet that we understand well,
it must have produced a signal in the gas Čerenkov and in the calorimeter, and it must not have
re-scattered in pole pieces, coil housings, or other structural components of the magnet and detector
stack. In this section, we describe the cuts with which we reduce terabytes of data to a relatively
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Figure 6.2: Beam-current readouts, converted to µA, in BigBite DAQ (left) and LHRS DAQ (right)
for the same period of time. The slower LHRS readout rate effectively averages out the noise.

clean electron sample. As this measurement is preliminary, these cuts are not yet fully finalized.

6.2.1 Data Quality

Our first set of cuts may be broadly described as data-quality cuts. They reject events taken during
times when the beam was unstable, electrons with scattering vertices outside the target volume (e.g.
in the beam-pipe exit window), and particles whose paths took them through poorly understood
parts of the magnet. They also impose the requirement that data from the MWDCs and the
calorimeter tell a coherent story, i.e. that the signals measured in both detectors could plausibly
have been generated by the same particle.

6.2.1.1 Beam Stability

Despite the generally high quality of Jefferson Lab’s electron beam, beam trips – brief interruptions
in beam delivery when the current drops suddenly to zero – were a frequent occurrence during E06-
014, especially during periods of extended accelerator problems (Section 3.5). When beam returned
after a trip, the current was ramped up to the set point over several seconds in order to avoid
damage to the target cell. During this ramp-up period, the beam position and charge asymmetry
were unstable compared to normal running [16], and the accumulated beam charge could not be
accurately measured since Hall A’s beam-current monitors (BCMs, Section 3.3.2.1) are not linear
at low currents [170]. For these reasons, beam trips and recoveries must be removed from our final
data set.

We identify beam trips using readouts from the u3 BCM scaler. Scaler values are read out and
stored in the CODA data stream once every 100 triggered reads [170]; 100 consecutive CODA events
thus share the same scaler reading before the next update. The scaler rate in Hz, and thus the beam
current, is calculated from the count difference between two consecutive scaler readings. In the
relatively low-rate scaler readout of the LHRS, the result is a fairly clean description of the beam
current as a function of time. The scaler readout rate for BigBite, however, is up to an order of
magnitude higher than that of the LHRS; due to the high readout rate, beam-current readings at a
setpoint of 15 µA have scatter ranging from 10 to 20 µA, as shown in Figure 6.2. This complicates the
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Figure 6.3: Identification of beam trips in BigBite. The plot is of single beam-current readouts,
converted to units of µA, as a function of time in second. Red points have been identified as
belonging to beam trips (or beam recovery periods) and are excluded from the final data analysis.
Green points have been identified as belonging to periods of stable running

problem of selecting and removing true beam trips: we wish to exclude the entire trip-and-recovery
period, without excluding normal variation on the reading of the current set-point.

Our solution is to reduce the noise by artificially reducing the readout rate. To produce beam-
current samples, BigBite scaler readings are averaged over groups of fifty consecutive readouts. We
then fit a Gaussian distribution to the histogram of beam-current samples. Any group of fifty
readouts whose average falls within 1.5σ of the overall high-current mean for the run is accepted
as belonging to a period of stable running; any group whose average falls outside that window is
rejected. We identify the edges of each beam trip with a pair of time stamps marking the transitions
between accepted and rejected readout groups. On average, fifty consecutive BigBite scaler readouts
account for about 1.25 seconds of runtime, so the identification of beam trips using this method is
still fairly fine-grained.

The identification of beam trips proceeds in two stages. First, the beam-current fits and the
identification of the acceptable current windows are performed automatically, and a database of the
time stamps defining each cut is generated. These functions are performed on a run-by-run basis,
since the beam-current setpoint may vary from run to run; for example, a high online deadtime
during one run may have led the shift crew to request a lower operating current for the next run.
Once this first stage is complete, a plot like Figure 6.3 is generated, overlaying the rejected beam-
current readouts onto the accepted ones. The second analysis stage consists of the visual examination
of these plots, checking for false positives or false negatives. The cut time stamps are then modified
so that every beam trip is fully accounted for and so that false beam trips (typically at the beginning
of the run) are removed.

During the skim stage of the global analysis, a flag is set for each event whose time stamp falls
within one of the beam-trip windows for that run. A cut on this flag removes these events from the
analysis.
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Figure 6.4: Scattering vertex reconstruction for a run with 4.74-GeV electrons incident on a polarized
3He target. All scattering events pictured have passed cuts designed to ensure that they are electrons
with valid tracking and optics information. If the reconstructed vertex position along the beamline
falls between the dashed red line, it passes the cut on vertex location.

6.2.1.2 Location of Scattering Vertex

We are interested in events in which electrons have scattered from 3He nuclei; the 3He in our target
is contained within a glass cell whose 40-cm axis is oriented along the beamline. Any scattering
events of interest, then, must originate within the volume contained by the glass cell. To limit
background rates from the windows of the target cell, a tungsten-powder collimator with a 10-cm
thickness was installed between each target window and the BigBite spectrometer [170]. Further
background reduction must be achieved via a software cut on the location of the scattering vertex,
as reconstructed by the optics package (Section 5.2.2).

Figure 6.4 shows a typical distribution of reconstructed vertex positions for apparent electrons.
As shown by the dashed red lines, we require the scattering vertex to fall within 17 cm of the nominal
target center at zv = 0 m.

6.2.1.3 Particle Paths Through Magnet

Our first-order optics model (Section 5.2.2.2) assumes a uniform magnetic field throughout the Big-
Bite magnet, but this is more accurate for some parts of the magnet than for others. In regions
where the field strength deviates significantly from our model, we must either make path-dependent
corrections to the momenta of the affected particles, or we must remove the regions from consider-
ation by cutting out particles whose tracks have passed through them. Given the high production
statistics in BigBite and the relatively small amount of elastic calibration data, as well as the fact
that the asymmetries we seek to measure do not depend on normalization, we elected to ignore
problematic regions of the magnet.

Optics Validity Cuts Tracking and optics reconstruction algorithms sometimes fail; depending
on the implementation of these algorithms, this failure may result in some physical quantity being
set either to zero or to some very large number. We remove such failed tracks from our analysis by
imposing a very loose cut on the reconstructed momentum
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Figure 6.5: Geometrical optics validity cuts. At left is the distribution of all track intersection points
with the bend plane during a typical production run; in the center are the track intersection points
that survive the first optics validity cut, based on track intersection with bend plane; and at right
are the track intersection points that also survive the second optics validity cut, based on front-track
slope. Per Hall A convention, the top of the magnet is at the bottom of each plot, and the beam
direction is to the right.

0 < p < 10 GeV/c. (6.1)

This removes both tracks with zero momentum (which should not be traveling through our wire
chambers at all) and tracks with putative momenta too high to have resulted from the scattering
from a fixed target of electrons with initial energy less than 6 GeV.

We also impose two geometric cuts ensure that we reject particles that have passed through
portions of the BigBite magnet where a high field gradient renders our optics reconstruction un-
trustworthy. The first geometric cut in the magnet is based on the position at which the projected
front and back tracks intersect with the bend plane, which bisects the magnet. If the particle passes
through an undesirable region near the edge of the bend plane, it may be inferred that it passed
through an undesirable part of the magnet volume as well. This cut was set by Xin Qian [170],
whose optics model for E06-010 is the basis for the E06-014 optics. The optics code sets a flag for
tracks that fail this cut. Figure 6.5 shows the distribution of track positions on the bend plane
before (left) and after (center) this cut.

For E06-014, we tightened this cut by adding a second geometric cut targeting the bottom of the
magnet. Even in the region accepted by the first cut, the field gradient is quite high and complicates
any attempts at a systematic correction; the resulting reconstructed momentum is thus overstated.
We found that a cut on x′tg, the vertical slope of the front track – the particle’s trajectory between
the scattering vertex and the magnet – is the cleanest way to remove tracks affected by this problem.
A study of elastic-scattering data led us to set this cut so as to require x′tg < 0.2, as this boundary
marks a sharp change in the reconstructed momentum. The rightmost panel of Figure 6.5 shows
the acceptance at the bend plane after applying both optics validity cuts.

Re-Scattering Cut The BigBite magnet is not entirely free of obstructions. If an electron strikes
an iron pole piece or coil housing, it will start to shower prematurely, resulting in an artificially
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Figure 6.6: Projected horizontal position of low-energy (E < 1 GeV), high-momentum (p > 1.5
GeV/c) particles on a plane 0.23 m upstream of the BigBite bend plane. The peaks at the extremes
presumably correspond to re-scattering locations. The re-scattering cut accepts only those tracks
whose projected horizontal positions on this plane fall between the dashed red lines.

low energy deposit measured in the calorimeter. If the electron re-scatters so as to strike the wire
chambers, vertex and momentum reconstruction will be affected; such tracks often mimic stiff, or
high-momentum, tracks.

To study this problem, we investigated the behavior of particles whose energies, measured in
the calorimeter, were less than 1 GeV, and whose reconstructed momenta were greater than 1.5
GeV/c. It emerged that such particles are disproportionately likely to intersect the bend plane at
its horizontal edges. By measuring the correlation between these track’s horizontal positions on the
bend plane and their horizontal slopes at the wire chambers, we determined that re-scattering likely
began on a plane 0.23 m upstream of the bend plane. When we plotted the projected horizontal
position on this plane, we found well-defined peaks at either extreme, as shown in Figure 6.6: low-
energy, high-momentum tracks are strongly associated with paths that cross the horizontal edges
of the bend plane. To remove these tracks from our sample, as well as re-scattered tracks that are
less severely affected, we placed a cut on the projected horizontal track position on the plane 0.23
m upstream of the bend plane. The boundaries of this cut are shown by the red lines in Figure 6.6:
tracks within the red lines are accepted, and tracks outside the red lines are rejected. Where ybend

is the horizontal position, in detector coordinates, of the track’s intersection point with the bend
plane, and y′ is the horizontal slope of the track in the wire chambers, this cut is defined by

− 0.097m < 0.23m · y′ − ybend < 0.13m. (6.2)

6.2.1.4 Track-Calorimeter Alignment

The energies measured in our calorimeter layers are crucial for particle identification and the subse-
quent removal of hadrons from our data set. In order to compare measured energies to reconstructed
momenta, however, we must ensure that the two quantities belong to the same particle. To do this,
we test the distance between the central position of the shower in each layer (as computed by Equa-
tions 5.28 and 5.29) and the track position projected to that layer. The projection distance for each
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Figure 6.7: Vertical (∆x, left) and horizontal (∆y, right) misalignment between the preshower
position and the track position projected to the location of the preshower detector. Tracks whose
∆x and ∆y fall between the appropriate set of dashed red lines are accepted by the track-preshower
misalignment cut defined in Table 6.1.

layer is its location in detector coordinates, from Table 5.5.
Recall from Section 5.2.4.2 that the preshower and shower cluster reconstruction are independent

of each other: the replay software simply looks for the cluster with the largest energy deposit in
each layer. Since data from both layers are combined to compute the total energy deposited by the
particle, we must check the misalignment of both the preshower and shower cluster positions with
the projected track position.

Figure 6.7 shows the vertical and horizontal misalignments (∆x and ∆y, computed according to
Equations 5.32 and 5.33, respectively) between the preshower cluster position and the track position
projected to the preshower detector. Tracks for which the preshower and projected track positions
are correlated make up the peaks near 0 in each distribution; we reject the broad, flat distribution of
accidentals by accepting only tracks for which ∆x and ∆y fall between the two red lines. Figure 6.8
shows the ∆x and ∆y distributions and cut definitions resulting from a similar analysis of the shower
detector.

Table 6.1 gives the final definition of the cuts on ∆x and ∆y for both calorimeter layers.

Layer Accepted ∆x range (m) Accepted ∆y range (m)

Preshower −0.192 < ∆x < 0.278 −0.18 < ∆y < 0.20
Shower −0.1 < ∆x < 0.1 −0.1 < ∆y < 0.1

Table 6.1: Definition of track position misalignment cuts for preshower and shower detectors.

6.2.1.5 Track Quality

The quality of a track may be determined from its residuals: how well does the computed track
position in each wire plane agree with the reconstructed hit position in that plane? Accordingly, we
may define a χ2 value for each track
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Figure 6.8: Vertical (∆x, left) and horizontal (∆y, right) misalignment between the shower position
and the track position projected to the location of the shower detector. Tracks whose ∆x and ∆y
fall between the appropriate set of dashed red lines are accepted by the track-shower misalignment
cut defined in Table 6.1.

χ2 =
∑

i

(
xreconstructed
i − xtrack

i

)2

R2
i

(6.3)

where the x values represent the track and hit positions in the ith plane (recall that each plane
produces a one-dimensional position measurement) and Ri is the plane resolution used in the tracking
software [161].

The fit for each track also has a certain number of degrees of freedom, Ndof . This value is equal
to the number of data points used in the track fit – i.e. the number of planes that fired – minus
the number of parameters adjusted by the fit. Each track has four independent parameters – the
positions x and y and the slopes x′ and y′ – so we have

Ndof = Nplanes − 4. (6.4)

As we saw in Section 5.2.1.2, the tracking algorithm is programmed to incorporate data from at
least fifteen planes in its analysis. For the majority of tracks, then, Ndof = 11.

Dividing χ2 by Ndof gives us χ2/Ndof , the classic measurement of fit quality. For good fits, this
value should be close to one. As we see in Figure 6.9, the quantity denoted χ2/Ndof by the BigBite
tracking software peaks at a value significantly less than one, as the assumed resolution values are
too high. This quantity is still a useful measure of track quality, but to avoid confusion with the
classic measurement, we will denote it k2/Ndof . Somewhat arbitrarily, we place our k2/Ndof cut at

k2/Ndof < 5 (6.5)

as shown by the dashed red line in Figure 6.9. The track k2/Ndof value does not seem to be correlated
with unusual or unphysical reconstructed particle behavior.
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Figure 6.9: k2/Ndof distribution for all tracks in a typical production run. The track-quality cut
accepts tracks whose k2/Ndof values are to the left of the dashed red line.

6.2.2 Particle Identification

The second category of cuts targets tracks that appear to be physically valid but may not belong
to electrons scattered from the target. These particles are typically pions, positrons, or protons;
electrically neutral particles are excluded by the requirement of valid tracking. To exclude particles
that are not electrons from our sample, we turn to charge information, trigger information, and
energy deposition profiles in the calorimeter.

6.2.2.1 Charge Cut

Since we seek an asymmetry in inclusive scattering, the only final-state particle we wish to measure
is the scattered electron. The most fundamental cut we can make is a requirement that any particle
included in our measurement have negative charge – that is, it bends upward in the BigBite magnet
in its standard, negative-polarity configuration. As discussed in Section 5.2.2.1, the sign of the
particle charge is determined as part of the replay software’s optics package. We require that the
charge be negative, which eliminates approximately 40% of tracks at a single stroke.

6.2.2.2 Trigger Cuts

Our next set of particle-identification cuts is related to the BigBite trigger. The primary trigger
during E06-014 production running was the T2 trigger; as we saw in Section 3.3.6.2, this trigger is
formed from a geometrical overlap of signals from the shower and from the gas Čerenkov. The latter
detector, which is sensitive to a particle’s velocity rather than to its total energy, removed most
pions from the online trigger by imposing a hardware threshold on the amount of light deposited in
a given PMT (Section 5.2.3).

In the offline analysis, our electron sample may be further improved via a requirement that the
particle under consideration could have been responsible for a T2 trigger. This removes particles
that were accepted due to other, prescaled triggers, as well as accidentals during T2 trigger windows.
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T2 Trigger Cut First, we require the T2 trigger to have fired during the CODA event in question.
This is enforced by means of the trigger word, a byte of information that encodes the value of each
trigger (1 if the trigger has fired, 0 if it has not) as a single bit. The existence of prescaling means
that the trigger bit need not be set to 1 every time the trigger condition is satisfied, but T2 data
were not typically prescaled during E06-014. By requiring that the T2 bit be set to 1, we ensure
that a T2 trigger is associated with every CODA event that contributes to our sample.

Gas Čerenkov Cuts The next question is whether a particular particle can have been responsible
for the T2 trigger. We combine gas Čerenkov and tracking data to find the answer. For each of the
twenty PMTs in the gas Čerenkov, we test three conditions:

1. Did the PMT record a hit in its TDC?

2. Did the timing of this hit fall within the trigger timing window for that TDC, as described in
Section 5.2.3.2?

3. When we project the track to the Čerenkov plane, does its position fall within the geometrical
acceptance of this PMT, as determined in Section 5.2.3.3?

If, for any PMT, the answer to all three of these questions is “yes”, then the track passes the gas
Čerenkov cuts: it can reasonably be supposed to have caused the trigger.

No cut on Čerenkov ADC levels is used; such a cut was found to reduce statistics fairly uniformly
across the board, without improving the characteristics of the sample. Low ADC levels tend to be
associated with tracks that pass near the edges of the PMT acceptance [240], so that the total signal
is shared between two or more PMTs (and their associated ADCs). This makes the use of a hard
threshold on a single ADC inappropriate.

6.2.2.3 Calorimeter Cuts

The two layers of the BigBite calorimeter, the preshower and shower, allow us to distinguish between
electrons and non-showering particles by means of their energy deposition profiles (Section 3.3.4.4).
In the preshower layer, with its depth of only 8.5 cm, particles that do not shower deposit only a
small amount of energy; in the calorimeter as a whole, electrons are the only negatively charged
particles that may be expected to deposit nearly all of their energy.

Preshower Energy Deposit The low preshower energy deposit characteristic of non-showering
particles gives us a powerful tool for studying pion contamination of the sample. Figure 6.10 shows
the pion energy spectra of three types of events, all of which have passed our charge cut (Sec-
tion 6.2.2.1) and our data-quality cuts (Section 6.2.1). If we consider only events that have been
rejected by the Čerenkov timing and acceptance cuts defined in Section 6.2.2.2, we see a spectrum
that is dominated by pions, with a strong peak at about 100 MeV. Applying the Čerenkov cuts
suppresses this peak dramatically; adding a cut on E/p (Equation 6.7 below) eliminates the visible
signs of pion presence in the sample.

We set a cut on preshower energy at

Eps > 200 MeV (6.6)

as marked by the dashed black line in Figure 6.10. Even without the assistance of the Čerenkov
cuts, this cut would eliminate the bulk of pions. Combining the preshower cut, Čerenkov cuts and
E/p cut renders pion contamination negligible.
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Figure 6.10: Definition of preshower energy cut. The three histograms, scaled to equal area, show
the distribution of deposited energy in the shower for three samples of events that have passed the
charge and data-quality cuts. Events that have been rejected by the Čerenkov cuts (red dashed
curve) show a strong pion peak, but this peak is almost entirely suppressed by the application of
the Čerenkov cuts (solid blue line). The addition of a cut on E/p (green dotted curve) removes this
final visible vestige of pions. The location of the preshower energy cut is marked by the vertical,
dashed black line.

Energy-Momentum Ratio In the kinematics of E06-014, the rest mass of the scattered electron
is negligible compared to its momentum. Since an electron should deposit nearly all of its energy in
our calorimeter via an electromagnetic cascade, we anticipate that such particles should have E ≈ p,
or E/p ≈ 1.

Figure 6.11 shows the distribution of E/p values for events that pass all the cuts described up to
this point. In order to place a cut on this variable, we fit a Gaussian distribution to the peak; only
events that fall within 2σ of the mean, as shown by the dashed red lines, are accepted. The cut is
defined as

0.833 <
E

p
< 1.158. (6.7)

6.2.3 Cut Performance

Taken together, the cuts defined in Sections 6.2.1 and 6.2.2 provide us with a remarkably clean
sample of scattered electrons. Figure 6.12 shows the cumulative effect of applying each cut to the
sample from five production runs; in the end, we are left with a clean, approximately Gaussian
distribution centered at E/p = 1. About 17.8% of tracks survive the complete set of cuts, including
the E/p cut.

Our resulting sample is extremely clean. To better understand the source of any remaining
background, we studied the black histogram in Figure 6.12: the E/p spectrum when all cuts, except
for the 2σ cut on E/p itself, have been applied. We divided the data in the range 0.1 < x < 1.0
into nine bins of uniform width and plotted the equivalent of the black histogram for each. We then
experimented with fitting various functional forms to the E/p spectrum in each x bin; the sum of
four Gaussian distributions, one of which is centered on the E/p peak, produced the best results.
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Figure 6.11: Definition of E/p cut. The blue line shows the fit to the electron peak; the dashed red
lines give the boundaries of the 2σ cut. Note the logarithmic scale.

Figure 6.13 shows the data and corresponding four-Gaussian fit for each x bin.
With a functional description of the E/p spectrum, we may attempt to separate signal from

background in the model, using the fit to the overall E/p peak shown in Figure 6.11. If one of the
Gaussian functions making up the binned fit function has a mean that falls within 3σ of the E/p
mean in the overall fit, we assume that it is signal; if the mean falls outside that range, we assume
that it is background of some kind. This relatively wide signal region prevents us from classifying
as background a sizeable population of events with E/p ∼ 1, based solely on a fit to fewer than 20
events at low E/p, in the 0.2 ≤ x < 0.3 bin. Figure 6.14 shows the resulting models for signal (blue)
and background (red) in each x bin.

We may use these results to estimate the degree to which background contaminates the final
sample. We integrate both the signal and background functions over the acceptance region defined
by the E/p cut (Equation 6.7). The relative amount of background contamination fbg is then the
ratio of the number of accepted events from the background function Nbg to the total number of
accepted events

fbg =
Nbg

Nbg +Nsig
. (6.8)

where Nsig is the number of accepted events from the signal function. The modeled fbg value for
each x bin is given in Table 6.2, along with the percentage of modeled signal events that are rejected
by the E/p cut.

This model of the background suggests that a negligible number of pions are present in the
final sample. We expect pions to have relatively low measured energy relative to their reconstructed
momenta, and to be more numerous at moderate values of x, like electrons. As we see in Figure 6.14,
it is only in the higher x bins that the dominant source of background has E/p < 1. Furthermore, we
expect pions of any momentum to deposit an approximately constant, low amount of energy in the
preshower layer, when compared to the energy deposited in the shower. Figure 6.15 shows, however,
that the background events that survive our cut on preshower energy do not show this relationship;
instead, in any given x bin, they look much more like electrons from a different x bin. We conclude
that errors in the reconstructed momentum comprise the dominant source of background in our
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Figure 6.12: Electron sample after cumulative application of each cut. The red histogram represents
the raw sample with no cuts applied; the light-green histogram shows the sample once a cut on
trigger type has been applied. Each successive cut, applied to those events that survive the previous
cuts, reduces the total number of events and reduces or eliminates a source of background. The final
cut, on the value of E/p, admits events in the black histogram that fall between the dashed lines.

final sample; in extreme cases, such errors may result in the assignment of an event to a radically
incorrect x bin. The resulting error on the asymmetry measured in a given x bin may be estimated
by multiplying the contamination factor fbg by the measured asymmetry in the most populated x
bin, i.e. the most likely source of mis-binned electrons. More detail about this determination will
be given in Section 6.3.5.

6.3 Asymmetries

Our goal is to measure an asymmetry in the scattering cross sections for two spin configurations. If
all other experimental parameters (e.g. cuts, acceptance, beam energy, beam and target polarization,
etc.) are held constant, the raw experimental asymmetry will manifest itself as an asymmetry in
observed counts
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Figure 6.13: Fit of the sum of four Gaussians (red curve) to the measured E/p spectrum (black
histogram) in nine x bins. Note the logarithmic scale. In the 0.0 < x < 0.1 range, there were
insufficient data to perform a fit.
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Figure 6.14: Signal (blue curve) and background (red curve) in the E/p fits shown in Figure 6.13.
The vertical scale is now linear. The dashed vertical lines show the location of the E/p cut.
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Figure 6.15: Evidence that events with mis-reconstructed momenta comprise the primary back-
ground in our sample. In each panel, we plot the energy deposited in the preshower layer versus the
energy deposited in the shower layer for a given population of events; the location of the preshower-
energy cut is marked by the dashed red line. In the left panel, we show events with 0.3 < x < 0.4
that have passed all cuts except the one on preshower energy (which has not been applied). The
central panel shows events from the same x range that have failed the cut on E/p, but have other-
wise passed the same cuts as in the left panel. A population of pions is visible as a horizontal band
outside the acceptance of the preshower-energy cut. The other background populations echo the
behavior of good electrons from other x bins. The right panel shows a sample of such events, which
have passed the E/p and other cuts. The population at left contains electrons with an assigned
range of 0.1 < x < 0.2; the population at right contains electrons from a range of 0.4 < x < 0.5.

x Range Background Contamination fbg (%) % Signal Rejected

0.1 ≤ x < 0.2 1.54 12.6
0.2 ≤ x < 0.3 0.72 7.20
0.3 ≤ x < 0.4 4.45 5.19
0.4 ≤ x < 0.5 4.37 5.26
0.5 ≤ x < 0.6 4.22 5.08
0.6 ≤ x < 0.7 5.84 4.99
0.7 ≤ x < 0.8 0.04 8.31
0.8 ≤ x < 0.9 0.002 8.76
0.9 ≤ x < 1.0 0.01 8.69

Table 6.2: Background contamination and signal rejection of final sample, computed in the four-
Gaussian model shown in Figures 6.13 and 6.14. Sharp changes between bins reflect the movement
of secondary Gaussian peaks into (or out of) the signal region.
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Araw =
N↓,S −N↑,S
N↓,S +N↑,S

(6.9)

where ↓ represents negative electron helicity, ↑ represents positive electron helicity, and S is the
target spin direction. We give a detailed discussion of our sign convention and spin-configuration
definitions in Section 6.3.1.

However, these raw counting asymmetries, measured for longitudinal and transverse spin config-
urations, are not the same as the physics asymmetries A‖ and A⊥ that we defined in Equations 1.34
and 1.35. The definitions of the physics asymmetries assume that the 3He target and electron beam
were perfectly polarized. They assume that electron scattering occurs from identical particles, but
the 3He in our target is diluted by the presence of N2 nuclei, which also undergo electron scattering2.
We may recover the physics asymmetry for electrons scattering from 3He by accounting for these
effects:

A
3He
phys =

Araw

PeP3HeDN2

. (6.10)

Here, Pe is the polarization of the electron beam, given in Table 4.9. P3He, the polarization
of the 3He nuclei inside the target, is given for the 4.74-GeV dataset by Table 6.5. The dilution
factor DN2 , which corrects for the dilution caused by the presence of N2 in the target, is calculated
according to the procedure described in Section 6.3.3; the resulting DN2

values for the 4.74-GeV
dataset are given for each x bin in Table 6.4. If we were computing Anphys , the physics asymmetry
for deep inelastic scattering from the neutron, we would need additional correction factors for the
polarization of the neutron within the 3He nucleus, and for the dilution and false asymmetry caused
by electrons scattering from protons rather than from neutrons.

We have assumed that particle detection efficiencies are independent of spin configuration. This
is not strictly true: the detector deadtime is correlated to rates. An asymmetry in the scattering
cross sections therefore means that there will be less deadtime during measurements of one spin
configuration than during measurements of the other. At the E06-014 kinematics, however, the raw
asymmetries are typically less than one percent, and the BigBite deadtime is on the order of ten
percent. The resulting subpercent correction due to an asymmetry in deadtime can, to first order,
be ignored.

In this section, we discuss the mechanics of computing raw and physics asymmetries. One
fundamental problem is that of sign convention: which beam-target spin configuration is positive,
and how do we know for certain which one holds during a given helicity window? We discuss this issue
in Section 6.3.1. In Section 6.3.2, we address the problem of so-called false asymmetries, which arise
from changes in beam tune or intensity rather than from changes in the scattering cross section. We
calculate the nitrogen dilution factor DN2

in Section 6.3.3, and discuss our methods for combining
data from multiple runs, which may have different target polarizations and accumulated beam
charges, in Section 6.3.4. In Section 6.3.5, we present the measured raw and physics asymmetries
for each of our three target spin configurations.

6.3.1 Asymmetry Sign

In order to avoid a sign error in our measured asymmetry, we must take care to define a consistent
sign convention: which spin configuration takes the negative sign, and which takes the positive sign,
in forming the asymmetry? We must also identify which data belong to which spin configuration,
which requires certain knowledge of the physical direction of the beam helicity and target spin.

As shown in Figure 6.16, E06-014 ran with three target spin configurations, one longitudinal
and two transverse, all in the horizontal plane. In Sections 6.3.1.1 and 6.3.1.2, we will define the

2Counts from N2 scattering cancel out in the numerator of Araw , but not in the denominator, artificially shrinking
(or diluting) the asymmetry.
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Figure 6.16: Definition of the three target spin directions used during E06-014. Looking down at
the hall, a target spin at 0◦ is longitudinal, while target spins of 90◦ and 270◦ are transverse.

signs of the spin configurations for the longitudinal and transverse asymmetries, respectively; it
then remains to classify our data according to those spin configurations. E06-014 ran with anti-
parallel optical pumping, so that the target spin direction during any given target configuration was
oriented opposite to that of the holding field. Information about the magnetic field, recorded at
each configuration change, can thus be used to determine the target spin orientation for a given set
of runs, according to the definition in Figure 6.16. As we will see in Section 6.3.1.3, the problem of
defining the beam helicity is more complex.

6.3.1.1 Longitudinal Asymmetry

Our electron beam is longitudinally polarized; when the target is longitudinally polarized as well,
the electron spin may be either parallel or antiparallel to target spin. Following the convention of
previous experiments (e.g. E99-117 [41]), the numerator of the longitudinal asymmetry is the number
of counts in the parallel spin configuration, subtracted from the number of counts in the antiparallel
spin configuration, as in Equation 1.34.

When the E06-014 3He target was longitudinally polarized, it was always configured so that its
spin was at 0◦ relative to the electron beam, i.e. its spin pointed downstream, toward the beam
dump. Counts with negative electron helicity – that is, with the electron spin pointing upstream
– are therefore given a positive sign in the numerator of the longitudinal asymmetry. Counts with
positive electron helicity are given a negative sign.

6.3.1.2 Transverse Asymmetry

When forming the transverse asymmetry (Equation 1.35), we again assign a positive sign to events
with negative-helicity electrons and a negative sign to events with positive-helicity electrons. We
have two choices of transverse spin configuration, however: one in which the target spin is oriented
at 90◦ (pointing to beam left), and one in which the target spin is oriented at 270◦ (pointing to
beam right) in the horizontal plane. Which sense of the target spin is positive?

As we saw in Section 1.3.2, ~k · Ŝ = 0 in either transverse spin configuration, so the target spin
enters into the cross section only through ~k′·Ŝ = E sin θ cosφ. (Recall that θ is the electron scattering
angle and φ is the angle between the scattering and polarization planes, as defined in Figure 1.5.)
Figure 6.17 shows the situation for φ = 0. We can see that the positive sense of the target spin is
the direction that points to the side of the beamline where the scattered electron is detected. In
these asymmetry measurements, we detect scattered electrons in BigBite, on beam right. When
combining asymmetries from the two transverse spin configurations, it is therefore the asymmetry
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Figure 6.17: Sign convention for transverse target spin Ŝ. The spin of the incident electron is parallel
or anti-parallel to its momentum ~k. The scattered electron has momentum ~k′.

measured with the target spin at 270◦ that takes the positive sign; if we were also measuring the
asymmetry using the LHRS, we would have to use the opposite sign convention for those data.

6.3.1.3 Beam Helicity Determination

As we saw in Section 3.2.1, polarized electrons emerge from the source with their polarization
direction set by the Wien filter. The helicity logic signal, used in the DAQ to assign a spin direction
to a given bunch of electrons, also originates at the source, as the polarization direction of the laser
light that released those electrons from the photocathode.

As the electrons are accelerated in the injector, in their passes through the linac sections, and
especially in the recirculation arcs and switchyard magnets, their spin precesses in the magnetic
fields. A careful choice of Wien angle, coupled with thorough studies of spin precession in the
accelerator, nonetheless allows delivery of beams with high longitudinal polarization to the halls.
However, beam configuration changes – especially changes in the number of passes through the linac
pair – can easily alter the precession angle enough to produce a reversal in the observed beam helicity
relative to the helicity logic signal [139].

Møller polarimetry measurements after a configuration change check not only the beam polar-
ization, but also the absolute helicity of electrons in Hall A: the sign of the Møller polarization
measurement gives the relationship of the actual helicity to the Møller standard. Suppose that
the insertable half-wave plate at the polarized electron source, which inverts the relationship of the
helicity logic signal to the helicity of the emitted electrons, were not a consideration. This measure-
ment would still be necessary to determine the relationship between the helicity logic signal and the
helicity of electrons delivered to the Hall.

In order to find the relationship between the helicity logic signal, as recorded in the BigBite DAQ,
and the Møller helicity standard, Matthew Posik performed a rough measurement of the asymmetry
in quasielastic scattering of longitudinally polarized electrons from longitudinally polarized 3He,
using calibration data taken with an incident beam energy of 1.23 GeV. With N↓⇑ representing
counts where the helicity logic signal indicates that the electron and target spins are anti-aligned,
and N↑⇑ the inverse, we calculated that we should measure a raw asymmetry at θ = 45◦ of [148]:

AQE
raw =

N↓⇑ −N↑⇑
N↓⇑ +N↑⇑

≈ +0.02 (6.11)

Although the measured asymmetry has not yet been finalized, due in part to trigger problems
during 1.23-GeV running, it is consistent with the predicted asymmetry to within a factor of 2,
and the sign is clearly positive [240]. During the measurement, then, with the insertable half-wave
plate out, the helicity logic signal measured in the BigBite DAQ (and, incidentally, the LHRS DAQ)
accurately reflected the helicity of the electrons arriving at the Hall A target. Meanwhile, the Møller
measurement for that beam configuration, conducted with the insertable half-wave plate in, gave
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Target Spin Direction Run Numbers Helicity Mapping (IHWP out)

0◦ 2024− 2053 +
90◦ 2056− 2086 +
270◦ 2107− 2195 −

Table 6.3: Mapping between actual helicity and helicity logic signal for 4.74-GeV target configura-
tions, reported as the sign of the Møller polarization. When the + mapping is used, the helicity
assigned to an electron bunch matches the helicity logic signal; when the − mapping is used, the
helicity logic signal must be inverted to find the electron helicity. When the insertable half-wave
plate (IHWP) is in, the helicity mapping shown here is inverted.

a negative beam polarization (Table 4.1). This result may be corrected for the status of the half-
wave plate through multiplication by -1 to give a positive beam polarization with the half-wave
plate out. We combine these observations to conclude that, when the half-wave plate is out of
the photon beamline at the polarized source, a positive Møller polarization measurement means
that BigBite events labeled as positive-helicity really do have positive helicity, and those labeled
as negative-helicity really do have negative helicity. This determination is consistent with similar
conclusions reached by Jin Huang for the experiments immediately before and after E06-014, which
used virtually the same DAQ wiring [245].

Our 4.74-GeV dataset was interrupted by a major configuration change, as recounted in Sec-
tion 3.5. We began our data-taking with electrons that had made four passes through the accelera-
tor. After several days, however, it became clear that water contamination in a trio of cryomodules
was critically degrading their performance. In a herculean effort, the accelerator team warmed these
cryomodules to room temperature and tuned the accelerator to deliver 4.74 GeV electrons in five
passes through the linacs. This pass change induced a reversal in the meaning of the helicity logic
signal, confirmed by both the Møller and Compton polarimeters. As it happens, this configuration
change coincided with a rotation of the target spin from 90◦ to 270◦, so that the same mapping
between helicity and helicity logic signal (defined for the out state of the insertable half-wave plate)
may be used within each target configuration.

6.3.2 False Asymmetries

As we saw in Section 4.3.4.2, a false asymmetry arises from helicity-correlated changes in the char-
acter of the electron beam, rather than from the spin dependence of the scattering interaction being
measured. The most problematic type of false asymmetry would be a beam-charge asymmetry, in
which the intensity of the electron beam differs between one helicity state and the other. Dur-
ing E06-014, a feedback loop controlled by a specialized DAQ [225], as described in Section 3.2.1,
controlled the charge asymmetry to within about 100 ppm.

Helicity-dependent changes in DAQ deadtime, as described at the beginning of Section 6.3, are
another potential source of false asymmetry. This asymmetry may be estimated at ∼ 1000 ppm or
less. Like the charge asymmetry, it is negligible compared to the statistical errors.

A false asymmetry could also be inadvertently introduced in software; for example, if the rates
are high enough, it may be more difficult to reconstruct good tracks for the higher-rate helicity state
than for the lower-rate one [144]. However, since track multiplicity was low during E06-014 - fewer
than 4% of CODA events with any tracks had more than one – we may conclude that our rates were
not high enough for this to be a concern.

Other potential sources of false asymmetry – e.g. slow drifts in beam tune or detector efficiency
– are mitigated by the fast, 30 Hz helicity flip of the electron beam: drifts on a longer time scale
affect both helicity states equally. For each target configuration, we took roughly equal amounts of
data with the IHWP (insertable half-wave plate) in and out of the photon beamline at the polarized
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electron source; since a change in IHWP status inverts the definition of the helicity logic signal
and thus the apparent sign of the physics asymmetry, combining data from the two IHWP states
cancels any false asymmetries that do not change sign with an IHWP change, such as those due to
electronics cross-talk [222].

6.3.3 Dilution Factor

Practical considerations dictate that our target cell cannot be filled with pure 3He: rubidium and
potassium atoms are necessary to polarize the 3He, and N2 is necessary as a buffer gas to keep
this process reasonably efficient. While rubidium and potassium may be confined to the pumping
chamber by means of a temperature gradient, N2 diffuses freely through both chambers just as 3He
does. The presence of N2 in the target chamber dilutes our measured asymmetry, since some of
the electrons we measure have scattered from a nitrogen nucleus rather than from a polarized 3He
nucleus.

We may find the correction for this dilution effect by taking data with a pure nitrogen target.
Knowing the relationship between the N2 density in the nitrogen target and that in the production
3He target, we may scale to find the number of counts due to e−N2 scattering in our production
running. During E06-014, we frequently took data using the reference cell filled with nitrogen
(Section 3.3.3.4), so that a nitrogen reference run would be available for each LHRS kinematic
point. For the BigBite analysis, we selected three representative nitrogen runs with a beam energy
of 4.74 GeV for our analysis.

Let ΣN2
be the total number of counts (in both beam helicity states) due to e−N2 scattering;

ΣN2
(3He) and ΣN2

(N2) are then the counts from nitrogen in the production and reference cells,
respectively. Let ρN2

(3He) and ρN2
(N2) be the nitrogen number densities in the two targets, and

Q(3He) and Q(N2) be the total charge incident on the two targets during data-taking. The number
of counts due to N2 in production data is then given by [144]

ΣN2
(3He) = ΣN2

(N2)
Q(3He)ρN2(3He)

Q(N2)ρN2
(N2)

. (6.12)

From the number of counts due to N2 scattering in our production cell, we may form a dilution
factor DN2

< 1, which appears in the denominator of the physics asymmetry in Equation 6.10. This
dilution factor should be the proportion of detected electrons that scattered from 3He nuclei. It is
thus equal to the difference between unity and the proportion of detected electrons that scattered
from N2 nuclei

DN2 = 1− ΣN2(3He)

Σtotal(3He)
= 1− ΣN2(N2)

Σtotal(3He)
· Q(3He)ρN2(3He)

Q(N2)ρN2
(N2)

(6.13)

where Σtotal(
3He) is the total number of counts, from 3He scattering and N2 scattering combined,

with the production target in position. We note that, in tallying the counts for each target, we
consider only those tracks that have passed all of the cuts described in Section 6.2.

While the reference cell is in the beam, typical values for its pressure and density are 116 psig
and 42◦C; the ideal gas law may then be used to extract a number density of ρN2

(N2) = 7.71 amg,
with an uncertainty of 2.2%, estimated by calculating the density for pressure and temperature
excursions of up to 2 psig and 2◦C. For ρN2(3He), we use an N2 density of 0.113 amg, as recorded
while the target was initially being filled; pressure-curve analyses conducted for E06-010 suggest
that this value is accurate to within about 3% [246], for an overall relative systematic error of 3.7%.

Figure 6.18 shows the evolution of DN2
in x, as computed according to Equation 6.13. The

x bins have a uniform size of 0.05; there are not enough data at x < 0.15 to make a meaningful
determination. The value of DN2 in each x bin is reported in Table 6.4. The only significant source
of statistical error is the number of counts in the N2 runs, δΣN2(N2) =

√
ΣN2(N2). The overall error

on DN2 in any x bin is then
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Figure 6.18: Nitrogen dilution factor DN2
as a function of x. Outer error bars show combined

statistical and systematic errors; inner error bars show statistical errors. In some bins, the statistical
error is too small to be seen in the graph.

δDN2
=

√√√√
(√

ΣN2
(N2)

Σtotal(3He)
· Q(3He)ρN2(3He)

Q(N2)ρN2
(N2)

)2

+ (0.037(1−DN2
))

2
. (6.14)

6.3.4 Combining Data from Multiple Runs

We saw in Section 4.4 that the electron beam polarization was remarkably stable during each of the
experiment’s beam configurations; we therefore use the same beam-polarization value Pe (Table 4.9)
for each run period. The target polarization, derived from EPR-calibrated NMR measurements, was
also fairly stable within its error bars, as we saw in Section 5.1.2. For this analysis, we have therefore
extracted a single target-polarization value P3He for each of the three target configurations during
the last run period. For a given target configuration, P3He represents the average of the run-by-run
polarizations for that run period, weighted by the amount of charge incident on the target during
data-taking for that run3. Table 6.5 shows the resulting values of P3He for each target polarization
direction.

Given the overall stability of conditions in the Hall during the 4.74-GeV data-taking, we computed
our asymmetries over all runs associated with each target spin configuration, rather than finding
asymmetries on a run-by-run (or even helicity-pair-by-helicity-pair) basis and then combining them.
We divided the range 0 ≤ x ≤ 1 into twenty uniform bins. For each run, we looped through the x
bins and counted the number of tracks in each that survived the event-selection cuts described in
Section 6.2, using the helicity logic signal to separate counts from the two electron-helicity states.
(Some tracks were detected during an MPS transition and thus had an indeterminate helicity state;

3This number excludes charge incident during beam trips and recoveries, since we have discarded those times from
our data set.
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Central x Value Dilution Factor DN2
Overall Error δDN2

0.175 0.9289± 0.0008stat ± 0.0026syst 0.0028
0.225 0.9216± 0.0004stat ± 0.0029syst 0.0029
0.275 0.9180± 0.0003stat ± 0.0030syst 0.0031
0.325 0.9169± 0.0002stat ± 0.0031syst 0.0031
0.375 0.9176± 0.0003stat ± 0.0031syst 0.0031
0.425 0.9181± 0.0003stat ± 0.0030syst 0.0031
0.475 0.9192± 0.0004stat ± 0.0030syst 0.0030
0.525 0.9201± 0.0004stat ± 0.0030syst 0.0030
0.575 0.9210± 0.0005stat ± 0.0029syst 0.0030
0.625 0.9233± 0.0006stat ± 0.0029syst 0.0029
0.675 0.9233± 0.0008stat ± 0.0028syst 0.0029
0.725 0.9233± 0.0009stat ± 0.0028syst 0.0030
0.775 0.9232± 0.0012stat ± 0.0029syst 0.0031
0.825 0.9179± 0.0016stat ± 0.0031syst 0.0034
0.875 0.9203± 0.0020stat ± 0.0030syst 0.0036
0.925 0.9234± 0.0025stat ± 0.0028syst 0.0038
0.975 0.9284± 0.0030stat ± 0.0027syst 0.0040

Table 6.4: Nitrogen dilution factor DN2
for each x value, including statistical and systematic errors.

these were flagged in the analysis software and discarded from our analysis.) This operation took
about four hours for the data set as a whole, and its results were stored in a text database for quick
access. For each x bin, we then summed up the number of surviving tracks for positive-helicity
windows over all runs, as well as the number of surviving tracks for negative-helicity windows. It is
from these global counts that we computed the asymmetry for that bin.

Changes in IHWP state were recorded during the experiment, both in an electronic logbook and
in the EPICS datastream. Since these transitions only occurred between runs, each run may be
assigned a definitive IHWP status, which – along with the helicity mapping defined in Table 6.3 –
defines which value of the helicity logic variable corresponds to positive electron helicity, and which
value corresponds to negative electron helicity. For each target configuration, the numerator of the
asymmetry is computed as the number of counts with negative helicity minus the number of counts
with positive helicity. Table 6.5 shows the IHWP state for runs during the 4.74-GeV dataset.

Target Spin Direction P3He (%) IHWP-Out Runs IHWP-In Runs

0◦ 58.4± 2.9 2024-2039 2040-2053
90◦ 59.3± 2.9 2081-2086 2056-2080
270◦ 58.2± 2.8 2107-2151 2156-2195

Table 6.5: Charge-weighted average target polarization, BigBite run numbers, and IHWP status for
each 4.74-GeV target spin configuration. Not all BigBite runs in each range were production runs.

6.3.5 Raw and Physics Asymmetries for Ee = 4.74 GeV

The raw asymmetries measured at Ee = 4.74 GeV for each of E06-014’s target spin configurations
(as defined in Figure 6.16) are shown in Figure 6.19, along with their statistical errors. We have
divided the range 0 ≤ x ≤ 1 into twenty x bins of uniform size; we have measured asymmetries in
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Figure 6.19: Raw asymmetries measured at Ee = 4.74 GeV for each of the three target spin config-
urations. Only statistical errors are shown.

seventeen of those x bins, covering 0.15 ≤ x ≤ 1. Bins with lower x values have insufficient statistics
for a measurement. We note that only data points with x ≤ 0.55 truly represent data from deep
inelastic scattering; at higher x, the scattering kinematics are in the resonance region.

We have computed these asymmetries according to the helicity sign convention discussed in Sec-
tion 6.3.1, subtracting positive-helicity counts from negative-helicity counts. We see in the central
and right panels of Figure 6.19 that the asymmetries measured for the two transverse spin configura-
tions have opposite sign; when these asymmetries are combined into a single transverse asymmetry
A⊥, it will take the sign of the asymmetries measured with a target spin at 270◦, as explained in
Section 6.3.1.2.

The statistical error on a raw asymmetry may be calculated based on the number of counts in
each configuration. We recall that the statistical error on N↓ counts is given by

√
N↓; likewise,

δN↑ =
√
N↑. The statistical errors on the two spin configurations are uncorrelated; we then use the

definition of the raw asymmetry in Equation 6.9 to derive

δA2
raw =

4N2
↓ (δN↑)

2 + 4N2
↑ (δN↓)

2

(N↓ +N↑)4
=

4N↓N↑
(N↓ +N↑)3

. (6.15)

For small asymmetries – that is, N↓ ∼ N↑ – the error on the asymmetry may be approximated as

1/
√
N , where N is the total number of counts in both helicity states. Figure 6.20 shows N in each

x bin for each of the three target configurations.
After computing the raw asymmetries for each target configuration, we then applied Equa-

tion 6.10 to compute the physics asymmetries, drawing the beam polarization Pe from Table 4.9,
the target polarization P3He from Table 6.5, and the nitrogen dilution factor DN2

(x) from Table 6.4.
Figure 6.21 shows the results, with statistical and systematic errors included.

We can bound the error due to mis-binning electrons in our computation (Section 6.2.3) by
calculating its effect on the measured physics asymmetry. This contribution from counts that belong
in different bins, δAmisbin

phys , is an additive effect. We have
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Figure 6.20: Total counts detected in each x bin at Ee = 4.74 GeV for each of the three target
spin configurations. This represents a total of 3.374 C incident on the target: 0.690 C in the 0◦

configuration, 0.804 C in the 90◦ configuration, and 1.879 C in the 270◦ configuration.

Aphys = Atrue
phys + δAmisbin

phys (6.16)

where Atrue
phys is the physics asymmetry we would measure if our binning were perfect. Let us suppose

that all of these mis-assigned counts properly belong to the same x bin. As they are good electrons
from that original bin, the asymmetry contribution δAmisbin

phys of these misassigned counts must then
be proportional to the physics asymmetry in the bin to which they belong – and the constant of
proportionality is the background contamination factor fbg from Table 6.2. In actuality, misassigned
counts need not all originate from the same x range, but we may nevertheless use this insight to
bound their contribution to the asymmetry

δAmisbin
phys ≤ fbg∆Amax

phys (6.17)

where ∆Amax
phys is the maximum difference in physics asymmetries measured between two bins with

x < 0.75. (At lower x values, bins have higher statistics and thus are more likely to be the source of
any misaligned electrons. At x > 0.75, the statistics are so low compared to other x bins that these
events cannot be said to be significant contributors to the background in other bins.) The values of
Amax

phys for each target spin orientation are given in Table 6.6.
The systematic errors on Aphys come in two varieties: multiplicative and additive. We combine

them to form the overall systematic error δAsyst
phys as follows:

δAsyst
phys

Aphys

∣∣∣∣∣
mult

=

√(
δPe
Pe

)2

+

(
δP3He

P3He

)2

+

(
δDN2

DN2

)2

(6.18)
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Figure 6.21: Physics asymmetries measured at Ee = 4.74 GeV for each of the three target spin
configurations. The error bars show combined statistical and systematic errors.

δAsyst
phys =

√√√√
(
Aphys

δAsyst
phys

Aphys

∣∣∣∣∣
mult

)2

+
(
fbgAmax

phys

)2

. (6.19)

Table 6.6 summarizes the sources of systematic error. The measured raw and physics asym-
metries, with their statistical and systematic errors, are given for each x bin and each target spin
orientation in Tables 6.7, 6.8, and 6.9.

6.4 Variables for Construction of A‖, A⊥, A1 and A2

The physics asymmetries we computed in Section 6.3.5 translate fairly readily to A‖ and A⊥; in

fact, A‖ = Aphys0 , and A⊥ is formed by combining Aphys90 and Aphys270 and correcting for the azimuthal
angle φ. Forming A1 and A2, however, requires some additional algebra. Recall the expressions for
the nucleon-virtual photon asymmetries given in Equations 2.30 and 2.31

A1 =
1

D (1 + ηξ)
A‖ −

η

d (1 + ηξ)
A⊥ (6.20)

A2 =
ξ

D (1 + ηξ)
A‖ +

1

d (1 + ηξ)
A⊥. (6.21)

To find A1 and A2 in a given x bin, we must determine the values of D, d, η, and ξ in each x bin.
We begin in Section 6.4.1 by examining the basic kinematic parameters – k′, x, Q2, θ, φ, and

ν – in each x bin. These parameters have been calculated for each event in the skim stage of our
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Source of Error Error Error Range Cross-Reference

Beam polarization 0.010 0.010 Table 4.9
N2 dilution δDN2(x) 0.0024− 0.0033 Table 6.4

0◦: 0.029 0.029
Target polarization 90◦: 0.029 0.029 Table 6.5

270◦: 0.028 0.028
0◦: ≤ 0.0487fbg(x) ≤ 0.0028

Mis-binning 90◦: ≤ 0.0449fbg(x) ≤ 0.0026 Table 6.2
270◦: ≤ 0.0167fbg(x) ≤ 0.001

Table 6.6: Sources of systematic error in physics asymmetry at Ee = 4.74 GeV, along with references
to the tables originally presenting them. Where the error varies depending on the target spin, we
report the value for each spin configuration. Where the error varies in x, the x-dependent quantity
may be found in the referenced table.

Target Spin at 0◦

〈x〉 Araw Aphys

0.187 −0.0016± 0.0049stat −0.0048± 0.0144stat ± 0.0008syst
0.229 −0.0057± 0.0021stat −0.0168± 0.0061stat ± 0.0009syst
0.277 −0.0034± 0.0015stat −0.0100± 0.0046stat ± 0.0006syst
0.325 −0.0032± 0.0014stat −0.0096± 0.0042stat ± 0.0022syst
0.374 0.0002± 0.0015stat 0.0007± 0.0045stat ± 0.0022syst
0.424 −0.0070± 0.0018stat −0.0209± 0.0053stat ± 0.0024syst
0.474 −0.0054± 0.0021stat −0.0160± 0.0063stat ± 0.0023syst
0.523 0.0004± 0.0025stat 0.0011± 0.0075stat ± 0.0021syst
0.574 0.0017± 0.0030stat 0.0050± 0.0091stat ± 0.0021syst
0.624 0.0081± 0.0037stat 0.0241± 0.0110stat ± 0.0031syst
0.673 0.0076± 0.0045stat 0.0225± 0.0135stat ± 0.0031syst
0.723 0.0094± 0.0056stat 0.0278± 0.0166stat ± 0.0014syst
0.773 −0.0027± 0.0071stat −0.0079± 0.0211stat ± 0.0004syst
0.823 −0.0103± 0.0090stat −0.0308± 0.0271stat ± 0.0016syst
0.873 −0.0049± 0.0117stat −0.0146± 0.0348stat ± 0.0008syst
0.923 −0.0133± 0.0152stat −0.0397± 0.0451stat ± 0.0021syst
0.972 0.0010± 0.0184stat 0.0030± 0.0545stat ± 0.0002syst

Table 6.7: Raw asymmetries Araw and physics asymmetries Aphys in E06-014 production data with
a target spin orientation of 0◦.
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Target Spin at 90◦

〈x〉 Araw Aphys

0.187 0.0055± 0.0050stat 0.0163± 0.0147stat ± 0.0011syst
0.229 −0.0056± 0.0020stat −0.0166± 0.0059stat ± 0.0009syst
0.277 0.0036± 0.0014stat 0.0109± 0.0043stat ± 0.0006syst
0.325 0.0006± 0.0013stat 0.0017± 0.0039stat ± 0.0020syst
0.374 0.0021± 0.0014stat 0.0062± 0.0042stat ± 0.0020syst
0.424 0.0009± 0.0016stat 0.0026± 0.0048stat ± 0.0020syst
0.474 0.0032± 0.0019stat 0.0097± 0.0057stat ± 0.0020syst
0.523 0.0008± 0.0023stat 0.0023± 0.0068stat ± 0.0019syst
0.574 0.0063± 0.0028stat 0.0188± 0.0082stat ± 0.0021syst
0.624 −0.0033± 0.0033stat −0.0099± 0.0100stat ± 0.0027syst
0.673 0.0095± 0.0041stat 0.0283± 0.0122stat ± 0.0030syst
0.723 0.0055± 0.0050stat 0.0165± 0.0150stat ± 0.0009syst
0.773 0.0109± 0.0063stat 0.0325± 0.0189stat ± 0.0017syst
0.823 0.0001± 0.0081stat 0.0004± 0.0244stat ± 0.0000syst
0.873 0.0140± 0.0106stat 0.0420± 0.0316stat ± 0.0022syst
0.923 −0.0037± 0.0132stat −0.0109± 0.0394stat ± 0.0006syst
0.972 0.0149± 0.0169stat 0.0442± 0.0502stat ± 0.0023syst

Table 6.8: Raw asymmetries Araw and physics asymmetries Aphys in E06-014 production data with
a target spin orientation of 90◦.

Target Spin at 270◦

〈x〉 Araw Aphys

0.187 −0.0041± 0.0031stat −0.0118± 0.0089stat ± 0.0007syst
0.229 0.0012± 0.0013stat 0.0034± 0.0037stat ± 0.0002syst
0.277 −0.0004± 0.0009stat −0.0012± 0.0027stat ± 0.0001syst
0.325 −0.0011± 0.0008stat −0.0031± 0.0024stat ± 0.0008syst
0.374 −0.0031± 0.0009stat −0.0090± 0.0026stat ± 0.0009syst
0.424 −0.0023± 0.0010stat −0.0066± 0.0031stat ± 0.0008syst
0.474 −0.0016± 0.0012stat −0.0047± 0.0037stat ± 0.0008syst
0.523 −0.0021± 0.0015stat −0.0062± 0.0044stat ± 0.0008syst
0.574 −0.0022± 0.0018stat −0.0064± 0.0053stat ± 0.0008syst
0.624 −0.0001± 0.0022stat −0.0004± 0.0064stat ± 0.0010syst
0.673 0.0009± 0.0027stat 0.0026± 0.0078stat ± 0.0010syst
0.723 −0.0045± 0.0033stat −0.0133± 0.0097stat ± 0.0007syst
0.773 −0.0070± 0.0042stat −0.0206± 0.0122stat ± 0.0011syst
0.823 0.0019± 0.0053stat 0.0055± 0.0158stat ± 0.0003syst
0.873 −0.0142± 0.0069stat −0.0418± 0.0203stat ± 0.0022syst
0.923 −0.0078± 0.0088stat −0.0227± 0.0257stat ± 0.0012syst
0.972 0.0117± 0.0109stat 0.0342± 0.0317stat ± 0.0018syst

Table 6.9: Raw asymmetries Araw and physics asymmetries Aphys in E06-014 production data with
a target spin orientation of 270◦.
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analysis. In Section 6.4.2, we review a parameterization that allows us to calculate the value of
R = σL/σT for each x bin. Finally, in Section 6.4.3, we calculate ε, D, d, η, and ξ in each x bin,
based on the values we have computed in Sections 6.4.1 and 6.4.2.

6.4.1 Kinematic Parameters by x Bin

Our computation of kinematic parameters over our x range is heavily dependent on the BigBite
optics reconstruction package (Section 5.2.2). From knowledge of the BigBite magnetic field, the
reconstructed track in the BigBite wire chambers, and the locations of the target and beam relative to
the spectrometer and detectors, this package computes the momentum ~k′ of the scattered electron,
the scattering angle θ, and the azimuthal angle φ between the scattering plane and polarization
plane (defined in Figure 1.5). The distributions of these variables in each of our x bins are plotted

in Figure 6.22 (|~k′| = E′), Figure 6.23 (θ), and Figure 6.24 (φ). Figure 6.24 highlights an apparent
hole in our φ acceptance, but the variation of these parameters otherwise appears smooth.

The incident energy E of the electron beam is taken from Tiefenback monitoring (Section 3.3.2.4),
which has an uncertainty of about 0.05%. Readouts from the beam position monitors (Section 3.3.2.2)
give the momentum direction of the electron beam. Combining this information about the incident
electron vector ~k with our reconstruction of the scattered electron vector ~k′, we may compute ν ac-
cording to Equation 1.3, Q2 according to Equation 1.5, and x according to Equation 1.7. Figure 6.25
shows the distributions of ν2 (this, rather than ν, is an input to the calculation of ε) in each x bin.
The Q2 and x distributions are plotted in Figures 6.26 and 6.27, respectively.

We take the mean value of each parameter in an x bin as the single, representative value for
that bin. Let us review the uncertainties on our determination of these parameters. Angular
measurements ultimately rely on survey reports of the BigBite detector stack [247], which give the
positions of the wire chambers relative to the nominal target center to mm-level accuracy. Since the
first (and closest) wire chamber is located 2.75 m from the origin, this corresponds to a systematic
uncertainty of about 0.4 mrad on θ and φ, which is negligible compared to the systematic 10-mrad
uncertainty in angle reconstruction [170]. We know the momentum of the scattered particle to about
1%; uncertainty in the momentum of the scattered particle dominates uncertainty about the incident
beam.

We may bound the uncertainty on each parameter by re-calculating it with a |~k′| increased by
1% and with θ and φ increased by 10 mrad. The result is bin-dependent; the maximum relative
deviation in each parameter is given in Table 6.10. The final mean values of each parameter in each
x bin, along with the corresponding resolution errors, are summarized in Table 6.11 and Figure 6.28.

Parameter Dependence Maximum Relative Error (%)

|~k′| = E′ |~k′| 1.0
θ θ 1.4

tan2(θ/2) θ 3.0
cosφ φ 0.02

x θ, |~k′| 4.6

ν2 |~k′| 1.5

Q2 θ, |~k′| 4.2

Table 6.10: Resolution errors on kinematic parameters used as input for A⊥, A1 and A2.
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Figure 6.22: Measured distribution of scattered momentum k′ in each x bin. Distributions are shown
in order of increasing x, left to right and top to bottom.

BB.optics.theta

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

50

100

150

200

250

300

0.150000 <= x < 0.200000

BB.optics.theta

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

200

400

600

800

1000

1200

0.200000 <= x < 0.250000

BB.optics.theta

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

200

400

600

800

1000

1200

1400

0.250000 <= x < 0.300000

BB.optics.theta

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

200

400

600

800

1000

1200

0.300000 <= x < 0.350000

BB.optics.theta

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

200

400

600

800

1000

0.350000 <= x < 0.400000

BB.optics.theta

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

100

200

300

400

500

600

700

800

0.400000 <= x < 0.450000

BB.optics.theta

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

100

200

300

400

500

0.450000 <= x < 0.500000

BB.optics.theta

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

50

100

150

200

250

300

350

400

0.500000 <= x < 0.550000

BB.optics.theta

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

50

100

150

200

250

0.550000 <= x < 0.600000

BB.optics.theta

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

20

40

60

80

100

120

140

160

180

200

0.600000 <= x < 0.650000

BB.optics.theta

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

20

40

60

80

100

120

0.650000 <= x < 0.700000

BB.optics.theta

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

10

20

30

40

50

60

70

80

0.700000 <= x < 0.750000

BB.optics.theta

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

10

20

30

40

50

0.750000 <= x < 0.800000

BB.optics.theta

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

5

10

15

20

25

30

35

40

0.800000 <= x < 0.850000

BB.optics.theta

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

5

10

15

20

25

0.850000 <= x < 0.900000

BB.optics.theta

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

2

4

6

8

10

12

14

16

18

0.900000 <= x < 0.950000

BB.optics.theta

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

2

4

6

8

10

0.950000 <= x < 1.000000

Figure 6.23: Measured distribution of scattering angle θ in each x bin.
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Figure 6.24: Measured distribution of φ, the azimuthal angle between the scattering plane and the
polarization plane, in each x bin. The acceptance hole is under investigation but does not appear
to be a problem.
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Figure 6.25: Measured distribution of ν2 in each x bin.
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Figure 6.26: Measured distribution of four-momentum transfer Q2 in each x bin.

x
0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21
0

100

200

300

400

500

0.15 <= x < 0.20

x
0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26
0

200

400

600

800

1000

1200

1400

1600

0.20 <= x < 0.25

x
0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31
0

500

1000

1500

2000

2500

0.25 <= x < 0.30

x
0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36
0

500

1000

1500

2000

2500

0.30 <= x < 0.35

x
0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41
0

500

1000

1500

2000

2500

0.35 <= x < 0.40

x
0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46
0

200

400

600

800

1000

1200

1400

1600

1800

0.40 <= x < 0.45

x
0.44 0.45 0.46 0.47 0.48 0.49 0.5 0.51
0

200

400

600

800

1000

1200

0.45 <= x < 0.50

x
0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56
0

100

200

300

400

500

600

700

800

900

0.50 <= x < 0.55

x
0.54 0.55 0.56 0.57 0.58 0.59 0.6 0.61
0

100

200

300

400

500

600

0.55 <= x < 0.60

x
0.59 0.6 0.61 0.62 0.63 0.64 0.65 0.66
0

50

100

150

200

250

300

350

400

450

0.60 <= x < 0.65

x
0.64 0.65 0.66 0.67 0.68 0.69 0.7 0.71
0

50

100

150

200

250

300

0.65 <= x < 0.70

x
0.69 0.7 0.71 0.72 0.73 0.74 0.75 0.76
0

20

40

60

80

100

120

140

160

180

200

0.70 <= x < 0.75

x

0.74 0.75 0.76 0.77 0.78 0.79 0.8 0.81
0

20

40

60

80

100

120

0.75 <= x < 0.80

x

0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.86
0

10

20

30

40

50

60

70

80

0.80 <= x < 0.85

x

0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91
0

10

20

30

40

50

0.85 <= x < 0.90

x

0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96
0

5

10

15

20

25

30

0.90 <= x < 0.95

x

0.94 0.95 0.96 0.97 0.98 0.99 1 1.01
0

5

10

15

20

25

30

0.95 <= x < 1.00

Figure 6.27: Measured distribution of Bjorken x in each x bin. The horizontal range of each
histogram is chosen to be slightly wider than the x bin.
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Figure 6.28: Mean values of kinematic parameters as functions of x. Error bars correspond to
resolution errors.

6.4.2 Determination of R = σL/σT

In Equation 2.20, we defined R = σL/σT , the ratio of the absorption cross sections for virtual photons
with longitudinal and transverse polarization. This ratio allows us to remove the dependence on F2

of our final result; it features in the calculation of D and d, two of the variables used in calculating A1

and A2. R has been measured experimentally over a wide range of x and Q2, and parameterizations
of the world data allow us to calculate its value at an arbitrary kinematic point.

The first such parameterization, performed by Whitlow et al. in 1990 [31, 248], was an average
of three three-parameter fits, each with a different functional form, and each of which was a good
fit to the available data; this final parameterization is typically denoted R1990. Their analysis also
led to the useful result that Rp = Rn = Rd; later, R was also found to be approximately constant
over a variety of nuclei [249, 250]. This equivalence allows a wide range of data, taken with different
targets, to be combined for the purposes of a world fit.

In 1999, the E143 collaboration, using their own new measurements of R as well as other world
data that had accumulated over the preceding years, updated the R1990 parameterization. The
resulting R1998 parameterization [80] is again the average of three functional forms, though these
have each been extended to six-parameter functions in order to better fit the data at low x. With
the final parameter values from the fit, these three functions – Ra, Rb, and Rc – are given by

Ra =
0.0485

ln(Q2/0.04)
Θ(x,Q2) +

0.5470
4
√
Q8 + 2.06214

[
1− 0.3804x+ 0.5090x2

]
x−0.0285 (6.22)

Rb =
0.0481

ln(Q2/0.04)
Θ(x,Q2) +

[
0.6114

Q2
− 0.3509

Q4 + 0.32

] [
1− 0.4611x+ 0.7172x2

]
x−0.0317 (6.23)
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Figure 6.29: R = σL/σT values for 4.74-GeV kinematics, based on a parameterization of world data
by the E143 collaboration at SLAC [80].

Rc =
0.0577

ln(Q2/0.04)
Θ(x,Q2) + 0.4644

[
1.82882 + (Q2 − 12.3708x+ 43.1043x2 − 41.7415x3)2

]−1/2

(6.24)
where Θ(x,Q2) is given by

Θ(x,Q2) = 1 + 12

(
Q2

Q2 + 1

)(
0.1252

0.1252 + x2

)
(6.25)

and the overall parameterization R1998 is the average of Ra, Rb, and Rc

R1998 =
Ra +Rb +Rc

3
. (6.26)

The approximate fitting error is

δR1998 = 0.0078− 0.013x+
0.070− 0.39x+ 0.70x2

1.7 +Q2
. (6.27)

We used the R1998 parameterization to calculate the value of R in each of our bins, using the
mean x and Q2 values from Table 6.11. Figure 6.29 and Table 6.12 give the results, with errors
calculated according to Equation 6.27. The resolution errors on 〈x〉 and 〈Q2〉 are negligible.

6.4.3 Construction of ε, D, η, d, and ξ

Armed with values of R (Table 6.12) as well as of E′, x, Q2, ν2, and tan2(θ/2) (Table 6.11), we
may compute the intermediate variables that enter directly into the calculation of A1 and A2. We
compute the ratio of the virtual photon’s longitudinal polarization to its transverse polarization,
ε, according to Equation 2.3. Expressions for the quartet of variables D, η, d, and ξ are given in
Equations 2.26, 2.27, 2.28, and 2.29, respectively.

Table 6.13 gives the resulting values of ε, D, η, d, and ξ in each x bin; these values are shown
graphically in Figure 6.30. Errors are derived from those in Tables 6.11 and 6.12.
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〈x〉 R

0.187 0.299± 0.012
0.229 0.274± 0.010
0.277 0.247± 0.008
0.325 0.222± 0.008
0.374 0.201± 0.008
0.424 0.184± 0.009
0.474 0.171± 0.010
0.523 0.162± 0.012
0.574 0.155± 0.015
0.624 0.151± 0.017
0.673 0.151± 0.020
0.723 0.154± 0.024
0.773 0.164± 0.028
0.823 0.178± 0.032
0.873 0.171± 0.036
0.923 0.144± 0.041
0.972 0.126± 0.046

Table 6.12: R(x,Q2) = σL/σT for each x bin, based on the parameterization by the E143 collabo-
ration at SLAC [80].
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Figure 6.30: Kinematic variables ε, D, η, d, and ξ as functions of x.
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〈x〉 ε D d η ξ

0.187 0.7702± 0.0055 0.7298± 0.0059 0.6808± 0.0053 0.2171± 0.0043 0.2494± 0.0048
0.229 0.7569± 0.0056 0.7330± 0.0049 0.6804± 0.0043 0.2371± 0.0048 0.2752± 0.0053
0.277 0.7379± 0.0058 0.7404± 0.0044 0.6823± 0.0037 0.2542± 0.0053 0.2993± 0.0060
0.325 0.7212± 0.0059 0.7469± 0.0042 0.6837± 0.0035 0.2693± 0.0057 0.3213± 0.0066
0.374 0.7116± 0.0060 0.7477± 0.0044 0.6818± 0.0036 0.2855± 0.0060 0.3434± 0.0070
0.424 0.7053± 0.0061 0.7450± 0.0048 0.6776± 0.0040 0.3019± 0.0063 0.3650± 0.0074
0.474 0.6995± 0.0062 0.7408± 0.0054 0.6721± 0.0045 0.3172± 0.0065 0.3854± 0.0077
0.523 0.6938± 0.0063 0.7353± 0.0062 0.6656± 0.0053 0.3314± 0.0067 0.4045± 0.0079
0.574 0.6880± 0.0065 0.7292± 0.0072 0.6584± 0.0062 0.3443± 0.0069 0.4223± 0.0082
0.624 0.6817± 0.0066 0.7228± 0.0083 0.6509± 0.0072 0.3558± 0.0071 0.4388± 0.0084
0.673 0.6758± 0.0067 0.7153± 0.0096 0.6424± 0.0083 0.3665± 0.0072 0.4544± 0.0086
0.723 0.6693± 0.0068 0.7072± 0.0108 0.6332± 0.0094 0.3758± 0.0073 0.4686± 0.0088
0.773 0.6631± 0.0070 0.6967± 0.0121 0.6222± 0.0105 0.3845± 0.0074 0.4822± 0.0089
0.823 0.6561± 0.0071 0.6859± 0.0134 0.6106± 0.0116 0.3918± 0.0075 0.4945± 0.0090
0.873 0.6503± 0.0073 0.6827± 0.0151 0.6061± 0.0131 0.3993± 0.0076 0.5067± 0.0092
0.923 0.6437± 0.0074 0.6890± 0.0172 0.6098± 0.0150 0.4053± 0.0077 0.5175± 0.0093
0.972 0.6377± 0.0076 0.6917± 0.0193 0.6104± 0.0168 0.4110± 0.0078 0.5277± 0.0094

Table 6.13: Kinematic variables for calculation of A1 and A2.



Chapter 7

Results

Building on the analysis presented in Chapter 6, we present results for two pairs of asymmetries – A‖
and A⊥ (Section 7.1) and A1 and A2 (Section 7.2) – measured on the 3He nucleus with an incident
beam energy of 4.74 GeV. In Section 7.3, we describe the strategy for finalizing these results and
outline a method of extracting the neutron asymmetries.

7.1 A‖ and A⊥ on 3He

In Section 6.3.5, we measured the physics asymmetry for each of the three target spin orientations:
0◦, 90◦, and 270◦, as defined in Figure 6.16. In order to compute A1 and A2, we must relate these
asymmetries to the parallel and perpendicular electron asymmetries, A‖ and A⊥, which we defined
in Equations 1.34 and 1.35, respectively. In the case of A‖, our work is already done: we have only

one longitudinal target spin orientation to consider, so A‖ = Aphys
0 .

The computation of A⊥ is slightly more involved. We must combine the data from the two
transverse spin orientations; as explained in Section 6.3.1.2, we take the sign from the physics
asymmetry measured with the target spin at 270◦. We find the magnitude of the total transverse
physics asymmetry by computing the weighted average of |Aphys

90 | and |Aphys
270 |, with weights given

solely by statistical errors.
In our BigBite data, the azimuthal angle φ varied over a range of about 0.4 radians. To correct

for this angle’s deviation from 0, we divide the transverse asymmetry by the mean cosφ value in each
x bin, drawn from Table 6.11. This value is quite close to 1 and its systematic error is negligible.
We thus have

A⊥ =
1

|〈cosφ〉|

A270

(δA270)2 − A90

(δA90)2

1
(δA270)2 + 1

(δA90)2

(7.1)

where we have dropped the phys superscript for simplicity.
Figure 7.1 and Table 7.1 show our measurements of A‖ and A⊥ in e-3He scattering for the

4.74-GeV dataset. Table 7.2 gives a breakdown of statistical and systematic errors in each bin.

7.2 A1 and A2 on 3He

The virtual photon-nucleus asymmetries A
3He
1 and A

3He
2 are formed from linear combinations of

A
3He
‖ and A

3He
⊥ . The exact expressions were given in Equations 2.30 and 2.31

A1 =
1

D (1 + ηξ)
A‖ −

η

d (1 + ηξ)
A⊥ (7.2)
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Figure 7.1: A
3He
‖ and A

3He
⊥ measured with Ee = 4.74 GeV.

〈x〉 A
3He
‖ A

3He
⊥

0.187 −0.0048± 0.0144stat ± 0.0008syst −0.0131± 0.0077stat ± 0.0009syst
0.229 −0.0168± 0.0061stat ± 0.0009syst 0.0072± 0.0032stat ± 0.0006syst
0.277 −0.0100± 0.0046stat ± 0.0006syst −0.0039± 0.0023stat ± 0.0004syst
0.325 −0.0096± 0.0042stat ± 0.0022syst −0.0027± 0.0021stat ± 0.0014syst
0.374 0.0007± 0.0045stat ± 0.0022syst −0.0083± 0.0022stat ± 0.0015syst
0.424 −0.0209± 0.0053stat ± 0.0024syst −0.0055± 0.0026stat ± 0.0014syst
0.474 −0.0160± 0.0063stat ± 0.0023syst −0.0062± 0.0031stat ± 0.0014syst
0.523 0.0011± 0.0075stat ± 0.0021syst −0.0051± 0.0037stat ± 0.0013syst
0.574 0.0050± 0.0091stat ± 0.0021syst −0.0101± 0.0045stat ± 0.0015syst
0.624 0.0241± 0.0110stat ± 0.0031syst 0.0026± 0.0054stat ± 0.0018syst
0.673 0.0225± 0.0135stat ± 0.0031syst −0.0064± 0.0066stat ± 0.0020syst
0.723 0.0278± 0.0166stat ± 0.0014syst −0.0143± 0.0082stat ± 0.0008syst
0.773 −0.0079± 0.0211stat ± 0.0004syst −0.0243± 0.0104stat ± 0.0014syst
0.823 −0.0308± 0.0271stat ± 0.0016syst 0.0038± 0.0133stat ± 0.0002syst
0.873 −0.0146± 0.0348stat ± 0.0008syst −0.0422± 0.0172stat ± 0.0022syst
0.923 −0.0397± 0.0451stat ± 0.0021syst −0.0128± 0.0217stat ± 0.0009syst
0.972 0.0030± 0.0545stat ± 0.0002syst 0.0119± 0.0270stat ± 0.0020syst

Table 7.1: A
3He
‖ and A

3He
⊥ for each x bin, with Ee = 4.74 GeV. A detailed error breakdown may be

found in Table 7.2.
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Errors on A
3He
‖ Errors on A

3He
⊥

〈x〉 Statistical Pe P3He DN2
fbg∆A Statistical Pe P3He DN2

fbg∆A

0.187 0.0144 0.0100 0.0286 0.0028 0.0007 0.0077 0.0100 0.0289 0.0028 0.0004
0.229 0.0061 0.0100 0.0286 0.0029 0.0004 0.0032 0.0100 0.0289 0.0029 0.0002
0.277 0.0046 0.0100 0.0286 0.0031 0.0004 0.0023 0.0100 0.0289 0.0031 0.0002
0.325 0.0042 0.0100 0.0286 0.0031 0.0022 0.0021 0.0100 0.0289 0.0031 0.0011
0.374 0.0045 0.0100 0.0286 0.0031 0.0022 0.0022 0.0100 0.0289 0.0031 0.0011
0.424 0.0053 0.0100 0.0286 0.0031 0.0021 0.0026 0.0100 0.0289 0.0031 0.0011
0.474 0.0063 0.0100 0.0286 0.0030 0.0021 0.0031 0.0100 0.0289 0.0030 0.0011
0.523 0.0075 0.0100 0.0286 0.0030 0.0021 0.0037 0.0100 0.0289 0.0030 0.0010
0.574 0.0091 0.0100 0.0286 0.0030 0.0021 0.0045 0.0100 0.0289 0.0030 0.0011
0.624 0.0110 0.0100 0.0286 0.0029 0.0028 0.0054 0.0100 0.0289 0.0029 0.0015
0.673 0.0135 0.0100 0.0286 0.0029 0.0028 0.0066 0.0100 0.0289 0.0029 0.0015
0.723 0.0166 0.0100 0.0286 0.0030 0.0000 0.0082 0.0100 0.0289 0.0030 0.0000
0.773 0.0211 0.0100 0.0286 0.0031 0.0000 0.0104 0.0100 0.0289 0.0031 0.0000
0.823 0.0271 0.0100 0.0286 0.0034 0.0000 0.0133 0.0100 0.0289 0.0034 0.0000
0.873 0.0348 0.0100 0.0286 0.0036 0.0000 0.0172 0.0100 0.0289 0.0036 0.0000
0.923 0.0451 0.0100 0.0286 0.0038 0.0000 0.0217 0.0100 0.0289 0.0038 0.0000
0.972 0.0545 0.0100 0.0286 0.0034 0.0000 0.0270 0.0100 0.0289 0.0034 0.0000

Table 7.2: Error breakdown for A
3He
‖ and A

3He
⊥ for each x bin, with Ee = 4.74 GeV.

A2 =
ξ

D (1 + ηξ)
A‖ +

1

d (1 + ηξ)
A⊥. (7.3)

The variables used in these expressions are taken from Table 6.13. The coefficients of A‖ and A⊥ in
the calculation of A1 and A2 are plotted for our kinematics in Figure 7.2, and recorded numerically
in Table 7.3. We see that A‖ has a larger contribution to A1 than A⊥ does, and that this relationship
is reversed in the calculation of A2.

Figure 7.3 and Table 7.4 give our final results: A
3He
1 and A

3He
2 . Following Equation 2.15, we

can use these results to form the structure-function ratio g
3He
1 /F

3He
1 , plotted in Figure 7.4. In

Figures 7.5 and 7.6, we plot our A1 and A2 measurements along with existing 3He data from the
E142 experiment at SLAC [51] and from the E99-117 experiment in Hall A of Jefferson Lab [41].
We note that, in these kinematics, our measurements are in the deep-inelastic scattering region only
up to about x ∼ 0.55; at higher x, we are in the resonance region. Our results are largely consistent
with previous measurements in this area; in the case of A

3He
2 , we have substantially improved the

accuracy of the available data.

7.3 Summary and Outlook

We have successfully commissioned a new detector, data acquisition system, and analysis method for
beam polarimetry in Hall A (Section 4.3), establishing an upgraded Compton polarimeter that will
improve beam polarimetry throughout the remainder of Hall A’s 6-GeV physics program. We have
measured the virtual photon asymmetries A1 and A2 on a 3He target for 0.15 ≤ x ≤ 1.0, in both the
deep-inelastic scattering region and the resonance region, for an incident beam energy of 4.74 GeV.
Additional analysis activities, conducted primarily by the two other students in the collaboration and
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Figure 7.2: Coefficients used in calculation of A1 and A2 at 4.74-GeV kinematics.

1 −η ξ 1

〈x〉 D(1 + ηξ) d(1 + ηξ) D(1 + ηξ) d(1 + ηξ)

0.187 1.2998± 0.0106 −0.3025± 0.0060 0.3242± 0.0062 1.3934± 0.0111
0.229 1.2808± 0.0089 −0.3271± 0.0062 0.3524± 0.0065 1.3798± 0.0093
0.277 1.2552± 0.0080 −0.3462± 0.0066 0.3757± 0.0069 1.3621± 0.0083
0.325 1.2323± 0.0078 −0.3625± 0.0068 0.3960± 0.0072 1.3461± 0.0081
0.374 1.2180± 0.0081 −0.3813± 0.0070 0.4182± 0.0075 1.3357± 0.0085
0.424 1.2090± 0.0088 −0.4013± 0.0072 0.4412± 0.0077 1.3293± 0.0093
0.474 1.2029± 0.0099 −0.4206± 0.0075 0.4636± 0.0080 1.3258± 0.0105
0.523 1.1992± 0.0113 −0.4390± 0.0078 0.4850± 0.0084 1.3249± 0.0120
0.574 1.1972± 0.0129 −0.4565± 0.0083 0.5056± 0.0089 1.3260± 0.0139
0.624 1.1966± 0.0148 −0.4728± 0.0089 0.5251± 0.0096 1.3289± 0.0160
0.673 1.1985± 0.0169 −0.4890± 0.0096 0.5445± 0.0104 1.3345± 0.0184
0.723 1.2024± 0.0193 −0.5046± 0.0105 0.5635± 0.0114 1.3427± 0.0211
0.773 1.2108± 0.0218 −0.5213± 0.0116 0.5838± 0.0126 1.3559± 0.0240
0.823 1.2212± 0.0246 −0.5376± 0.0128 0.6039± 0.0140 1.3719± 0.0271
0.873 1.2182± 0.0275 −0.5480± 0.0141 0.6173± 0.0155 1.3723± 0.0306
0.923 1.1997± 0.0305 −0.5494± 0.0155 0.6208± 0.0171 1.3556± 0.0340
0.972 1.1881± 0.0336 −0.5533± 0.0170 0.6270± 0.0189 1.3463± 0.0378

Table 7.3: Coefficients used in calculation of A1 and A2 for each x bin, with Ee = 4.74 GeV.
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Figure 7.3: A
3He
1 and A

3He
2 from 4.74-GeV dataset.
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〈x〉 A
3He
1 A

3He
2 g

3He
1 /F

3He
1

0.187 −0.002± 0.019stat ± 0.001syst −0.020± 0.012stat ± 0.001syst −0.004± 0.018
0.229 −0.024± 0.008stat ± 0.001syst 0.004± 0.005stat ± 0.001syst −0.021± 0.008
0.277 −0.011± 0.006stat ± 0.001syst −0.009± 0.004stat ± 0.001syst −0.011± 0.007
0.325 −0.011± 0.005stat ± 0.003syst −0.007± 0.003stat ± 0.002syst −0.010± 0.008
0.374 0.004± 0.006stat ± 0.003syst −0.011± 0.004stat ± 0.002syst 0.002± 0.009
0.424 −0.023± 0.006stat ± 0.003syst −0.017± 0.004stat ± 0.002syst −0.022± 0.011
0.474 −0.017± 0.008stat ± 0.003syst −0.016± 0.005stat ± 0.002syst −0.016± 0.012
0.523 0.004± 0.009stat ± 0.003syst −0.006± 0.006stat ± 0.002syst 0.001± 0.014
0.574 0.011± 0.011stat ± 0.003syst −0.011± 0.007stat ± 0.002syst 0.005± 0.016
0.624 0.028± 0.013stat ± 0.004syst 0.016± 0.009stat ± 0.003syst 0.025± 0.018
0.673 0.030± 0.016stat ± 0.004syst 0.004± 0.011stat ± 0.003syst 0.023± 0.020
0.723 0.041± 0.020stat ± 0.002syst −0.004± 0.014stat ± 0.001syst 0.027± 0.023
0.773 0.003± 0.026stat ± 0.001syst −0.038± 0.019stat ± 0.002syst −0.010± 0.027
0.823 −0.040± 0.034stat ± 0.002syst −0.013± 0.025stat ± 0.001syst −0.031± 0.032
0.873 0.005± 0.043stat ± 0.002syst −0.067± 0.032stat ± 0.003syst −0.020± 0.038
0.923 −0.041± 0.055stat ± 0.003syst −0.042± 0.041stat ± 0.002syst −0.041± 0.045
0.972 −0.003± 0.066stat ± 0.001syst 0.018± 0.050stat ± 0.003syst 0.005± 0.052

Table 7.4: Measured A
3He
1 , A

3He
2 and g

3He
1 /F

3He
1 values for Ee = 4.74 GeV. The error breakdown for

A
3He
‖ and A

3He
⊥ may be found in Table 7.2; Table 7.3 shows the errors from the coefficients of these

asymmetries.
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Figure 7.5: E06-014 measurement of A
3He
1 at 4.74 GeV, compared to world 3He data.
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Figure 7.6: E06-014 measurement of A
3He
2 at 4.74 GeV, compared to world 3He data.

currently underway, will extend our kinematic range and improve our understanding of systematics
within the next year or so.

Analysis of the beam polarization is complete (Section 4.4), but further work on the target
polarization analysis (Section 5.1.2) will add a second set of absolute polarization measurements
(water-calibrated NMR measurements) to our existing data; the final target polarization values will
be the weighted average of these new measurements and the EPR-calibrated NMR measurements
that we have used in this work. This change is not expected to shift the physics asymmetries
significantly, but will reduce the systematic error due to target polarization. A second, more careful
round of event selection analysis will give us a better understanding of systematic errors due to
background contamination and acceptance effects in our kinematic parameters. This, in turn, will
allow us to estimate the error due to these sources rather than setting upper bounds.

At low x, we must also account for an additional dilution factor due to pair production. The
initial scattering interaction may produce a π0, which decays to photons that may in turn produce
electron-positron pairs. Unlike electrons scattered directly from the target, pair-produced electrons
will not display the same helicity-dependent asymmetry, and so their inclusion in our sample changes
the measured asymmetry. The experience of prior experiments [41] suggests that this effect should be
small, but we can quantify (and correct for) the contribution of pair-produced electrons by measuring
the positron yield. We have data from both the LHRS and BigBite, operating with positive polarity
(reversed from the standard electron-detection mode), which will allow us to perform this study.

While the 3He results from the 4.74-GeV dataset from E06-014 constitute a complete and interest-
ing measurement by themselves, the full analysis of the 5.9-GeV dataset will be a useful complement
to them in the final, published data. By interpolating the measurements from the two datasets,
we may obtain asymmetry measurements varying in x but with Q2 held constant, with reduced
statistical errors.

Of course, the primary theoretical interest in a measurement of A
3He
1 is that it makes possible

a measurement of An1 . As we saw in Section 2.3, measurements of An1 , An2 , and consequently (from
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Equation 2.15) gn1 /F
n
1 have the potential to distinguish among a wide field of theories, models and

assumptions about nucleon spin structure, especially when combined with recent data on the proton
(Section 2.1.3). Our 3He results support the earlier Hall A observation that A

3He
1 becomes positive

at high x [41]; confirmation of a sign change in An1 would be an exciting result.
The extraction of neutron results from a measurement on 3He requires a careful theoretical

study of nuclear dynamics. The neutron polarized structure function gn1 need not be equal to g
3He
1 :

a range of nuclear effects, including spin depolarization, proton polarization, non-nucleonic degrees
of freedom, nuclear binding effects, and nucleon Fermi motion [251] induce differences between the
two. At finite values of Q2, structure-function smearing complicates the picture further, particularly
in the resonance region [252].

The previous An1 measurement in Hall A used the nuclear model of Bissey et al. [251], in which

An1 is expressed as a function of A
3He
1 and several quantities extracted from world data

An1 =
F

3He
2

PnFn2

(
1 + 0.056

Pn

)
(
A

3He
1 − 2

F p2
F

3He
2

PpA
p
1

(
1− 0.014

2Pp

))
. (7.4)

This model is valid only for deep-inelastic scattering in the large-x region and cannot be used for
measurements in the resonance region. Pn and Pp represent the effective polarizations of neutrons
and protons, respectively, inside the 3He nucleus. These values are computed from three-body
models of the 3He wave functions. The results of E05-102 [253], a Hall A experiment that ran in
2009 with the goal of settling discrepancies between Fadeev models of the 3He nucleus, are expected
to improve the accuracy of these values.

We have measured A
3He
1 in deep inelastic scattering and in the resonance region for an incident

beam energy of 4.74 GeV. Our treatment of the target polarization and other sources of systematic
error is being finalized, and the analysis of an additional data set with an incident beam energy of
5.9 GeV is underway. Our results appear to support the recent high-x data from E99-117 [41]. The
extraction of neutron asymmetries for our data, which awaits theoretical input and new data on
3He wave functions, will help test theoretical assumptions about nucleon spin structure and quark
orbital angular momentum. The proton spin puzzle has not been solved, but these measurements
will put another piece in place.
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