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ABSTRACT 

 

A variety of diseases, including Hereditary Spastic Parapalegia (HSP), are associated 

with defects in Endoplasmic Reticulum (ER) morphogenesis, highlighting the 

significance of forming and maintaining proper ER structure in the context of human 

health. While the overall shape and structure adopted by the ER is mainly influenced by 

the lipid and protein composition of its membrane, fusion plays an equally important role. 

Recent studies have implicated a conserved family of proteins called atlastin/Sey1 as the 

fusion machinery responsible for generating three-way junctions within the peripheral 

ER; however, the actual mechanism used by atlastin (ATL) to catalyze homotypic 

membrane fusion remains to be clarified. Structural and biochemical studies performed 

largely with the soluble domain of ATL, suggested that GTP binding facilitated 

membrane tethering between ATLs anchored in opposing membranes (pre-fusion), 

followed by GTP hydrolysis catalyzing a crossover conformational change that pulled 

opposing membranes together for fusion (post-fusion). Through structure-function 

analysis, I identified key residues that are required for stabilizing the post-fusion 

conformation, which assisted in elucidating the energy requirements for achieving the 

post-fusion conformational state of the ATL soluble domain. Using various nucleotides 

and analogs, I discovered that the soluble domain of ATL was capable of adopting the 

post-fusion dimer in the absence of GTP hydrolysis, suggesting that GTP hydrolysis may 

be required for another discrete step within the ATL fusion cycle, such as disassembly. 

However, this result appeared to be inconsistent with the requirement for GTP hydrolysis 

in the ATL-mediated fusion of synthetic liposomes and may perhaps be attributed to the 

different behaviors exhibited by the soluble domain verses membrane-anchored ATL 

molecules. Therefore, I extended our initial analysis of the ATL soluble domain to 

membrane-anchored ATL, specifically focusing on identifying the energetic and 

conformational requirements for ATL-mediated tethering. My investigation revealed that 

membrane tethering depended on GTP hydrolysis; but, unlike fusion, it did not depend on 

crossover. 

 
 
 



 

TABLE OF CONTENTS 

Chapter 1: Introduction 

Biological Membranes             1 

ER Structure and Function          1-2 

ER Structuring Determinants          2-3 

Membrane Fusion           3-4 

Cell-Cell Fusion               4 

Viral Fusion             4-5 

Soluble NSF attachment protein receptor (SNARE) - Mediated Fusion     5-6 

ATL GTPase            7-10 

References          11-14 

 

Chapter 2: An Intramolecular Salt Bridge Drives the Soluble Domain of GTP-

bound Atlastin Into the Postfusion Conformation 

Abstract               15 

Introduction          16-18 

Materials and Methods        19-23 

Results           24-31 

Figures          32-42 

Discussion          43-45 

References          46-47 

 

Chapter 3: Membrane Tethering by the Atlastin GTPase Depends on GTP 

Hydrolysis but Not on Forming the Cross-over Configuration 

Abstract               48 

Introduction          49-51 

Materials and Methods        52-56 

Results           57-65 

Figures          66-76 

Discussion          77-80 

References          81-82 



 

Chapter 4: Conclusions and future directions     83-84 

References               85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

LIST OF FIGURES 
 
Figure 1-1 Structure based model for Atlastin mediated fusion           9 
 
Figure 2-1 Identification of ATL2 middle domain residues required  
  for its ER network branching function.         32 
 
Figure 2-2 View of required ATL2 residues in the prefusion and postfusion  
  conformer.             33 
 
Figure 2-3 The K372-E380 salt bridge is required for ATL2 function.       34 
 
Figure 2-4 The K372-E380 salt bridge is not required for either  
  nucleotide binding or hydrolysis.           35 
 
Figure 2-5 The K372-E380 contact is required for GMPPNP-dependent  
  stable dimer formation.           36 
 
Figure 2-6 GTP hydrolysis is not required for the prefusion to postfusion   
  conformational change.           37 
 
Figure S2-1 Depletion of both ATL2 and ATL3 causes a reduction  
  in ER network branch points.            38 
 
Figure S2-2 Middle domain ATL2 residues required for function  
  lie near the GTPase head.           39 
 
Figure S2-3 Linearity of GTPase assay and ATL2 GTPase activity are  
  not further stimulated at high ATL2 concentrations.         40 
 
Figure S2-4 Stable dimerization of the soluble domain of ATL2 depends  
  on nucleotide binding.            41 
 
Figure S2-5 EM of the GMPPNP-bound ATL2 GTPase.         42 
 
Figure 3-1 Tailless and single TM D-ATL are fusion incompetent.        66 
 
Figure 3-2 Fusion-incompetent D-ATL is capable of tethering membranes.       67 
 
Figure 3-3 Cryo-EM visualization of vesicle tethering by D-ATL.        68 
 
Figure 3-4 Tethering depends on GTP hydrolysis.          69 
 
Figure 3-5 Fusion but not tethering depends on a K320-E328 salt bridge.       70 
 
Figure 3-6 Tethering does not require cross-over.          71 



 

Figure 3-7 Working model for D-ATL–catalyzed membrane tethering 
  and fusion.              72 
 
Figure S3-1 DLS analysis of single TM D-ATL vesicles.         73 
 
Figure S3-2 The non-hydrolysable GTP analogue GTPγS fails to  
  support vesicle tethering.           74 
 
Figure S3-3 Crossover defective D-ATL mutant variants co-localize  
  with the ER marker REEP5 and perturb ER morphology.       75 
 
Figure S3-4 Cysteine substitutions do not impair D-ATL fusion activity.       76 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  1 

 CHAPTER 1 

 

INTRODUCTION 

 

Biological Membranes 

 Regardless of their functional and structural differences, all cells possess 

biological membranes that define and control the composition of the cell (Martens and 

McMahon, 2008). These biological membranes are largely comprised of amphipathic 

phospholipids, which possess a hydrophilic polar head group and hydrophobic fatty-acid 

chains that spontaneously form into an energetically favorable lipid bilayer structure that 

surrounds the entire cell and serves as a barrier between the cell and the external 

environment. This particular arrangement of lipids is energetically favorable because it 

ensures that the hydrophobic fatty-acid chains are shielded from the aqueous 

environment, while the hydrophilic polar head groups are exposed to the aqueous 

environment. In addition to the outer cell membrane, often referred to as the plasma 

membrane, cells also possess intracellular membrane-enclosed organelles that include:  

the nucleus, endoplasmic reticulum (ER), Golgi apparatus, lysosomes, endosomes and 

mitochondria (Heald and Cohen-Fix, 2014). Whether external or internal, biological 

membranes serve two main functions. First, they serve as physical barriers, allowing 

them to define the shape and structure of the space they enclose, while also regulating the 

entry and exit of molecules (Heald and Cohen-Fix, 2014). Second, they permit 

intracellular compartmentalization, which allows for diverse cellular processes to occur 

simultaneously and with high fidelity under optimal environmental conditions (Shibata et 

al., 2006). The continuous, interconnected membrane network of the ER exemplifies the 

role of membranes in defining an organelle’s structure and for isolating organelle-specific 

processes. 

 

ER Structure and Functions 

 The ER is composed of relatively flat cisternal sheets and highly curved tubules that 

extend throughout the cell (Shibata et al., 2010). While both membrane and luminal 

continuity are maintained, the general partitioning of cisternal sheets near the nuclear 
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envelope and highly curved tubules towards the cell periphery ensures that the ER is able 

to carry out numerous cellular processes effectively within discrete sub-domains. These 

processes include: secretory and membrane protein biosynthesis, lipid synthesis, drug 

detoxification and the regulation of intracellular calcium (Baumann and Walz, 2001). The 

expansive reach of the peripheral ER is especially important for establishing contacts 

between the ER and other intracellular organelles, including:  mitochondria, peroxisomes, 

chloroplasts, Golgi and the plasma membrane (Daniele and Schiaffino, 2014). These 

diverse associations are implicated in a variety of functional roles, such as non-vesicular 

transport of ER-synthesized lipids and calcium homeostasis (Toulmay and Prinz, 2011). 

Furthermore, a variety of diseases, including Hereditary Spastic Parapalegia (HSP), are 

associated with defects in ER morphogenesis (Blackstone, 2012), highlighting the 

significance of forming and maintaining proper ER structure in the context of human 

health. 

 

ER Structuring Determinants 

 The overall shape and structure adopted by the ER is mainly influenced by the 

lipid and protein composition of its membrane (Shibata et al., 2009). ER membranes are 

largely composed of phospholipids, including glycerophospholipids and sphingolipids 

that are symmetrically distributed between both leaflets, which results in the loose 

packing of ER membrane lipids (Meer et al., 2008). This particular lipid arrangement is 

necessary for proper insertion and transport of newly synthesized lipids and proteins via 

the secretory pathway (Fagone and Jackowski, 2009). In addition to lipid composition, 

membrane-shaping proteins are important for establishing and maintaining the overall 

structure of the ER. For instance, the integral membrane protein Climp-63 is responsible 

for conferring the characteristic flat morphology of ER cisternal sheets. It has been 

proposed that Climp-63 causes cisternal sheets to adopt a more flattened morphology 

because it serves as a scaffold, linking two separate membrane regions through the 

lumen, resulting in a characteristic sheet thickness of 50nm in mammalian cells (Shibata 

et al., 2006). Unlike ER cisternal sheets, peripheral ER membrane tubules are enriched 

with integral membrane proteins belonging to the reticulon and DP1 families (Heald et 

al., 2014).  Reticulons and DP1 have an unusual topology in that they do not fully 
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penetrate the bilayer, causing the formation of hairpin-like structures in the membrane 

that induce positive membrane curvature (Voeltz et al., 2006). Initial deletion studies of 

RTN1 and RTN2 in S. cerevisiae had no discernable effect on the ER network; however, 

simultaneous deletion of DP1, RTN1 and RTN2 in S. cerevisiae resulted in a loss of 

cortical ER tubules (Voeltz et al., 2006). Furthermore, reconstitution of purified reticulon 

and DP1 proteins into synthetic liposomes was sufficient to generate highly curved 

membrane tubules (Hu et al., 2009). 

 In addition to membrane shaping proteins, the formation, maintenance and 

movement of the highly dynamic peripheral ER network is also partially dependent upon 

microtubules (Terasaki et al., 1986; Lee and Chen, 1988), with new ER tubules 

frequently extending outwards along preformed microtubule tracks (Terasaki et al., 1986; 

Lee and Chen, 1988), likely via kinesin-1 motor proteins (Shibata et al., 2009). ER 

tubules were also found to be associated with the growing ends of microtubules via the 

tip attachment complex (TAC) (Shibata et al., 2009; Lee and Chen, 1988; Waterman-

Storer and Salmon, 1998). Upon extension, the majority of ER tubules proceed to fuse 

with pre-existing ER tubules, generating new three-way junctions within the network 

(Baumann and Walz, 2001). However, these three-way junctions are frequently lost 

through sliding movements (Shibata et al., 2009; Friedman et al., 2010). Therefore, 

maintenance of the peripheral ER tubular network requires that homotypic ER fusion 

events offset sliding events (Lee and Chen, 1988). Recent studies have revealed that a 

conserved family of proteins called atlastin/Sey1 (Orso et al, 2009; Anwar et al., 2012) 

generates three-way junctions in the ER by homotypic membrane fusion; however the 

actual mechanism used by atlastin (ATL) to fuse membranes remains to be clarified. 

 

Membrane Fusion 

 As described above, while lipid composition, membrane-shaping proteins and the 

cytoskeleton greatly influences the shape and structure of the ER, homotypic membrane 

fusion is equally important. Membrane fusion is defined as the merging of two separate 

lipid bilayers, followed by the mixing of their respective aqueous contents (Martens and 

McMahon, 2008). In cells, membrane fusion is not a spontaneous process because it 

requires a substantial amount of energy to draw two separate membranes, with repulsive 
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membrane charges, in close apposition while also minimizing the exposure of the 

hydrophobic portion of the bilayer to the aqueous environment during lipid mixing en 

route to fusion (Jahn et al., 2003). Although highly curved membranes can overcome 

some of these energy barriers, it is largely accepted that fusion proteins provide the 

remaining energy necessary for productive fusion events within the cell (Martens and 

McMahon, 2008). As mentioned, while studies have identified ATL/Sey1 (Orso et al., 

2009; Anwar et al., 2012) as the fusion machinery required for homotypic membrane 

fusion at the ER, the actual mechanism used by ATL to fuse membranes remains to be 

clarified. Insights into how ATL might fuse membranes can be gained from other 

characterized membrane fusion mechanisms, which include:  (1) cell-cell fusion, (2) viral 

fusion and (3) intracellular fusion, allowing for the formulation of testable ATL-mediated 

fusion models. 

 

Cell-Cell Fusion 

 The process of cell-cell fusion has been observed in many fundamental cellular 

processes, including: mating, epithelial development, fertilization, myogensis and 

osteoclast/giant cell formation (Chen et al., 2007). Although the fusion machinery and the 

molecular mechanisms involved in each of these cell-cell fusion events remain poorly 

characterized, it is evident that cell-cell fusion events share some common features. For 

the most part, cells fated to fuse will initially send out signals that allow them to enter 

into a pre-fusion state, followed by the formation of adhesive interactions, usually 

mediated by specialized transmembrane proteins, between the plasma membranes of the 

two cells. These interactions can either directly catalyze fusion or they can stabilize 

opposing membranes en route to fusion (Chen et al., 2007). Similarly to cell-cell fusion, 

it is possible that ATL fuses membranes by adopting a pre-fusion state initiated by an 

external cue, followed by a stable interaction between opposing membranes, perhaps in 

combination with ATL-interacting partners, that either directly or indirectly permits 

fusion. 

 

Viral Fusion 

 Although viruses utilize different mechanisms to gain entry and infect host cells, 
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the entry of the influenza virus via hemagglutinin (HA) employs arguably the most well 

characterized viral fusion mechanism to date (Podbilewicz, 2014). In the context of the 

viral fusion mechanism, HA serves two distinct roles. First, it facilitates attachment of the 

virus to the host cell and second, it promotes fusion of the viral membrane with the host 

cell membrane, ensuring that the viral genome enters the host cell (Skehel and Wiley, 

2000). For attachment, the viral HA protein recognizes and binds sialic acid containing 

receptors located within the host cells plasma membrane (Skehel and Wiley, 2000). Upon 

attachment, the virus enters the cell via receptor-mediated endocytosis and is enclosed 

within an endosome that proceeds to acidify in order to effectively degrade the contents 

of the endosomal compartment; however, once the pH within the endosome reaches 6.0, 

the overall structure of the HA protein changes dramatically. Structurally, the HA protein 

transitions from its originally folded structure to a partially unfolded one that results in 

the release of a hydrophobic peptide and leads to the alignment of three alpha helices, 

predicted to form a trimeric coiled-coil (Bullough et al., 1994). While the hydrophobic 

peptide inserts itself into the endosomal membrane, thereby tethering the viral and host 

cell membranes together, the three alpha helices assemble into a coiled-coil pulling the 

viral membrane and endosomal membrane together, resulting in fusion (Carr and Kim, 

1993). Once fusion has occurred, the genomic content of the virus is deposited within the 

host-cell cytoplasm and additional viral particles are synthesized using the host-cell’s 

cellular machinery (Samji, 2009). Similarly to the viral fusion mechanism, it is possible 

that ATL undergoes a large conformational change triggered by either an external or 

internal cue that provides enough energy to draw opposing membranes together, thereby 

permitting fusion. 

 

Soluble NSF attachment protein receptor (SNARE) - Mediated Fusion 

 Although evolutionarily distinct, the mechanism of viral fusion and SNARE-mediated 

fusion are remarkably similar in that a protein folding reaction, involving coiled-coil 

forming transmembrane proteins, provides the necessary energy required to drive 

membrane fusion (Mozdy and Shaw, 2003). Traditionally, SNARE proteins were 

classified as v-SNAREs or t-SNAREs depending on whether they were present on vesicle 

or target membranes respectively. More recently they have been re-classified based on 
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sequence and structural analysis as either Q-SNAREs or R-SNAREs depending upon the 

identity of the amino acid located at the center of the SNARE motif; Q-SNAREs have a 

glutamine (Q) located at the center of the SNARE motif, whereas R-SNAREs have an 

arginine (R) (Fasshauer et al., 1998). The SNARE motif consists of homologous coiled-

coil regions of approximately 60 residues in length that is located adjacent to their 

respective C-terminal membrane anchors (Jahn and Sudhof, 1999). Most SNARE 

complexes are composed of three Q-SNAREs and one R-SNARE. It is generally 

accepted that SNAREs fuse membranes through a “zippering” mechanism, where 

partially unfolded Q-SNAREs located on one membrane and the cognate R-SNARE, 

located on another membrane come into contact and once paired, the alpha helices 

“zipper” together to form a stable, fully folded coiled-coil (Chen and Scheller, 2001). It is 

the formation of this stable SNARE complex that provides the energy to pull opposing 

membranes together for fusion. While recent reports have suggested that SNAREs are the 

minimal machinery required for SNARE-mediated membrane fusion in vitro (Shi et al., 

2012), it appears that additional proteins, including Rabs and Sec1/Munc18 are necessary 

for vesicle docking and fusion in vivo (Rizo and Sudhof, 2002). Regardless, once fusion 

has occurred, the stable SNARE complex must be disassembled and recycled for further 

rounds of fusion. Using energy derived from ATP hydrolysis, N-ethylmaleimide sensitive 

fusion protein (NSF) and its co-factor alpha-SNAP, disassembles the SNARE complex, 

thereby re-priming SNAREs for further rounds of fusion (Mayer, 2001). While most 

intracellular fusion events are SNARE-mediated, including a recent report of SNARE-

mediated ER-ER fusion at the nuclear envelope in yeast cells (Rogers et al., 2014), there 

is little evidence to suggest that homotypic fusion of peripheral ER membranes is 

SNARE-mediated. Instead, recent studies suggest that ATL is the primary fusion 

machinery at the ER and is required for establishment and maintenance of the peripheral 

ER network. Nevertheless, it is feasible that the ATL fusion mechanism shares some 

features with the SNARE fusion mechanism either with regards to drawing opposing 

membranes together via the formation of a stable complex through a conformational 

rearrangement and/or possibly in the context of hydrolysis-driven disassembly for re-

priming the fusogenic proteins for further rounds of fusion. 
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ATL GTPase 

 ATLs are large GTPases that belong to the dynamin superfamily (Praefcke and 

McMahon, 2004). Humans express three isoforms of ATL (ATL1, ATL2 and ATL3). 

ATL2 and ATL3 are expressed ubiquitously and are generally ER localized; whereas, 

ATL1 is mainly found in the central nervous system, predominantly in neurons of the 

corticospinal tract as well as the cerebral cortex and hippocampus and is localized to the 

cis-Golgi and to a lesser extent in the ER (Zhu et al., 2006; Rismanchi et al., 2008). 

Various mutations within ATL1 have been identified in patients suffering from hereditary 

spastic paraplegia (HSP), a neurodegenerative disorder affecting motor neuron function 

in the lower extremities (Fink, 2006). 

 ATLs potential role in ER network formation was initially identified in expression 

studies performed across different cells lines. In HeLa cells, knock down of endogenous 

ATL2/3 expression resulted in long unbranched ER tubules (Hu et al., 2009). It should be 

noted that Golgi apparatus fragmentation was also observed, but this fragmentation was 

not functionally significant, as VSVG trafficking was not impaired in cells knocked down 

for both ATL2/3 (Rismanchi et al., 2008). Overexpression of various ATL2/3 mutants 

also caused severe perturbations in ER morphology (Rismanchi et al., 2008). Separate 

depletion studies of ATL by RNAi in Drosophila, which possess a single, highly 

conserved ATL orthologue (D-ATL), resulted in ER fragmentation, inconsistent with the 

finding of Hu et al. (Orso et al., 2009). Furthermore, overexpression of D-ATL in flies 

caused enlargement of the ER, possibly due to excessive fusion of ER membranes (Orso 

et al., 2009), but the observed phenotype could also be attributed to aggregation. 

Collectively, these studies suggested that ATL could be involved in ER network 

formation either in the context of tubule formation/extension, membrane curvature, 

tethering, and/or fusion (Shibata et al., 2006). However, the remarkable finding that D-

ATL was capable of fusing synthetic liposomes in vitro when hydrolysable GTP was 

present in the reaction solidified its role as the fusion machinery of the peripheral ER 

(Orso et al., 2009). Interestingly, unlike the D-ATL orthologue and the more distantly 

related yeast SEY1 and Arabidopsis RHD3 orthologues, the three human ATL isoforms 

have not been shown to fuse synthetic liposomes in vitro (Anwar et al., 2012; Zhang et 

al., 2013). 
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 Despite the identification of ATL, the molecular mechanism of ATL-mediated ER 

fusion still remains unclear. To understand how ATL might fuse membranes, two key 

questions needed to be addressed: (1) how does ATL molecules in opposing membranes 

interact to draw two separate membranes together for fusion and (2) what is the role of 

GTP hydrolysis in the ATL fusion cycle. Fortunately, the recently solved ATL1 crystal 

structures of the soluble domain provided some insight into how the molecules might 

interact to draw membranes together for fusion. Two striking features of the solved 

structures were that (1) the structures were dimeric, with the globular GTPase head 

domains interacting in a head-to-head fashion with bound nucleotides near the dimer 

interface and that (2) there were two different dimer forms. In the first form, designated 

as the pre-fusion dimer, a head-to-head dimer, with each transmembrane (TMB) segment 

expected to reside in separate and opposing membranes was observed; whereas, the 

second form, designated as the post-fusion dimer, a head-to head dimer, with TMB 

segments expected to reside within the same membrane due to rotation about a linker 

region between the GTPase head domain and the middle domain was observed (Bian et 

al., 2011; Brynes and Sondermann, 2011). The two distinct dimer structures suggested 

the following sequence of events as outlined in Figure 1-1, where: (1) ATL monomers, 

within opposing membranes (Figure 1-1A) would form a nucleotide-dependent dimer in 

trans for membrane tethering (pre-fusion dimer) (Figure 1-1B), followed by a (2) 

conformational change that resulted in the monomers crossing over (Figure 1-1C), 

allowing for the (3) two membranes to be drawn together for fusion (post-fusion dimer) 

(Figure 1-1D) (Bian et al., 2011; Byrnes and Sondermann, 2011). While the crystal 

structures revealed how ATL molecules might interact to draw membranes together for 

fusion, they failed to account for the role of the TMB domains and the tail in the fusion 

reaction. 

 Subsequent studies showed that both the TMB domains and the tail were required 

for fusion (Liu et al., 2012). Deletion of either of the two TMB domains or replacement 

with the Sec61beta TMB domain inhibited fusion (Liu et al., 2012), suggesting that the 

ATL TMB domains played an important role in the fusion reaction cycle. Similarly, 

deletion of the tail inhibited fusion (Moss et al., 2011; Liu et al, 2012) and this 

requirement was attributed to an amphipathic helix within the tail located adjacent to the 
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second TMB domain. A synthetic peptide corresponding to this amphipathic helix was 

shown to insert into membranes and when added in trans to the tail-delete variant, 

restored fusion (Liu et al., 2012). Accordingly, it was proposed that the amphipathic helix 

within the tail plays an important role in destabilizing the membranes for fusion. 

Separately, the crystal structures also failed to address the role of GTP hydrolysis in the 

fusion cycle, since both the pre-fusion and post-fusion crystal structures only possessed  

GDP in their respective nucleotide binding pockets, despite crystallization with various 

nucleotides and analogs (Bian et al., 2011; Byrnes and Sondermann, 2011). 

 

 

Figure 1-1. Structure based model for Atlastin mediated fusion. 
 

 
(A) ATL monomers present within opposing membranes (B) ATL monomers form a 
nucleotide-dependent dimer in trans to tether opposing membranes (pre-fusion dimer), 
followed by a (C) conformational change that resulted in the monomers crossing over, 
allowing for the (D) two membranes to be drawn together for fusion (post-fusion dimer). 
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 Therefore, I investigated the role of GTP hydrolysis in the ATL-mediated fusion 

mechanism, specifically focusing on the coupling of the GTP hydrolysis cycle to the 

different conformational states of ATL.  Chapter 1 describes the energetic and structural 

requirements for achieving the post-fusion conformation for the soluble domain of ATL. 

In this study, I identified key residues required for stabilization of the post-fusion 

conformation and also determined that the post-fusion conformation could be achieved in 

the absence of GTP hydrolysis, suggesting that GTP hydrolysis may not be required for 

fusion, but rather for another discrete step within the ATL fusion cycle, such as 

disassembly of ATL trans dimers after fusion for ATL subunit recycling. However, due 

to the requirement of GTP hydrolysis in ATL-mediated fusion of synthetic liposomes 

(Orso et al., 2009), it was difficult to reconcile that the post-fusion conformation could be 

achieved in the absence of GTP hydrolysis. One possible explanation was that the soluble 

domain exhibited behaviors that did not necessarily reflect that of the membrane 

anchored full-length molecule. Therefore, I set out to resolve this discrepancy, as outlined 

in chapter 2, by extending our initial studies to membrane-anchored ATL. This 

investigation resulted in the identification of a putative ATL tethering intermediate, 

which I characterized in collaboration with Peijun Zhang’s lab (University of Pittsburgh). 

Our analysis revealed that GTP hydrolysis was required for trans dimer formation of 

membrane-anchored ATL, revealing that the constraints of membrane anchoring 

increased the energy input required to bring two opposing ATL molecules together in 

trans. Furthermore, we found that trans dimer formation was not strictly dependent on 

crossover. Collectively, my work has revealed that membrane tethering of opposing ATL 

molecules in trans requires GTP hydrolysis; whereas, formation of the post-fusion dimer 

conformation appears to be more closely associated with lipid mixing en route to full 

fusion. 
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CHAPTER 2 

 

An Intramolecular Salt Bridge Drives the Soluble Domain of GTP-bound  

Atlastin Into the Post-fusion Conformation* 

 

ABSTRACT 

 

Endoplasmic reticulum (ER) network branching requires homotypic tethering and fusion 

of tubules mediated by the atlastin (ATL) guanosine triphosphatase (GTPase). Recent 

structural studies on the ATL soluble domain reveal two dimeric conformers proposed to 

correspond to a tethered pre-fusion state and a post-fusion state. How the pre-fusion 

conformer transitions to the post-fusion conformer is unknown. In this paper, we identify 

an intramolecular salt bridge mediated by two residues outside the GTPase domain near 

the point of rotation that converts the pre-fusion dimer to the post-fusion state. Charge 

reversal of either residue blocked ER network branching, whereas a compensatory charge 

reversal to reestablish electrostatic attraction restored function. In vitro assays using the 

soluble domain revealed that the salt bridge was dispensable for GTP binding and 

hydrolysis but was required for forming the post-fusion dimer. Unexpectedly, the post-

fusion conformation of the soluble domain was achieved when bound to the 

nonhydrolyzable GTP analogue guanosine 5ʹ-[β, γ-imido]triphosphate, suggesting that 

nucleotide hydrolysis might not be required for the pre-fusion to post-fusion 

conformational change. 

 
* This manuscript appeared as an article in the Journal of Cell Biology, and is reprinted here. 

Morin-Leisk J, Saini SG, Meng X, Makhov AM, Zhang P, and Lee TH. JCB. 2011. 195(4): 605-615. 

 

Saini SG’s contribution to this work involved designing a post-fusion ATL dimer crosslinking assay, which 

enabled the elucidation of the energy requirements for achieving the post-fusion conformational state of the 

ATL soluble domain (Figure 2-6).  Additionally, Saini SG performed extensive mutational analysis on 

residues predicted to stabilize the post-fusion conformation, which led to the identification of a key salt-

bridge required for adopting the post-fusion conformation (Figures: 2-1, 2-3 and S2-2).  
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INTRODUCTION 

 

 The membrane-anchored atlastin (ATL) proteins belong to the dynamin 

superfamily of large GTPases (Zhu et al., 2003; Praefcke and McMahon, 2004). In 

humans, the neuron-specific isoform ATL1/SPG3A is enriched in the cis-Golgi 

apparatus, and mutations in it are linked to motor neurological deficits associated with 

hereditary spastic paraplegia (Zhu et al., 2003). ATL2 and ATL3, 62 and 60% identical to 

ATL1, respectively, are expressed in most, if not all, tissues and primarily ER localized 

(Rismanchi et al., 2008). siRNA-mediated depletion of isoforms 2 and 3 from HeLa cells, 

expressing little, if any, isoform 1 (Rismanchi et al., 2008), leads to an unbranched ER 

morphology, implying a function for ATL2/3 in ER network branching (Hu et al., 2009). 

This requirement could reflect a role for the molecule in tubule formation, extension, 

tethering, and/or fusion (Lee et al., 1989; Baumann and Walz, 2001). Though, based on 

the remarkable finding that the single Drosophila melanogaster orthologue of ATL, 

purified and incorporated into artificial liposomes, is sufficient to drive membrane 

tethering and fusion, ATLs have been proposed to mediate the homotypic tethering and 

fusion of membranes that underlies the branched ER network (Orso et al., 2009). 

Recently, two groups have solved the x-ray crystal structure of the soluble domain of 

human ATL1 (Bian et al., 2011; Byrnes and Sondermann, 2011). The structures reveal a 

globular GTPase head connected through an eight–amino acid linker to a middle domain 

comprised of a three-helix bundle. As expected, the GTPase domain has an overall fold 

similar to that of GBP1 (Prakash et al., 2000), the closest relative of ATL1–3 in the 

dynamin superfamily (14, 14, and 16% identical to ATL1, ATL2, and ATL3, 

respectively). Dynamin superfamily members undergo conformational changes in a 

manner dependent on their nucleotide-bound state (Ghosh et al., 2006; Chappie et al., 

2010). Accordingly, ATL1 crystallization by both groups was performed in the presence 

of a variety of GTP analogues. Both groups observed two strikingly distinct ATL1 

conformers, indicating that, like GBP1 and dynamin, ATL1 indeed undergoes discrete 

conformational changes during its reaction cycle. Moreover, both structures showed 

ATL1 as a head to head dimer, reminiscent of the head to head dimers observed in crystal 

structures of the GTPase domains of dynamin bound to the transition state analogue GDP 
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+ AlFx (Chappie et al., 2010), and GBP1 bound to either guanosine 5’-[β ,γ-

imido]triphosphate (GMPPNP) or GDP + AlFx (Ghosh et al., 2006). Curiously, only 

GDP was observed in the nucleotide-binding pocket of the structures obtained, possibly 

because of either slow hydrolysis or increased mobility of the terminal phosphate of 

GMPPNP and other analogues (Bian et al., 2011; Byrnes and Sondermann, 2011). 

Therefore, how changes in the nucleotide-bound state of ATL1 relate to changes in its 

conformation remains to be clarified. 

 In the first of the two ATL1 dimer conformers (form 2), the monomers interact in 

a head to head fashion with an interfacial area of 756 Å2 because of contacts solely 

between the GTPase domains. The α-helical bundles of the respective middle domains 

point away from the dimer interface, and although not present in the crystal structures, 

the trans-membrane segments would be expected to anchor the interacting subunits in 

opposing membranes. In the second conformer (form 1), a similar head to head 

configuration is observed as in the form 2 dimer, though additional contacts increase the 

interfacial area between the GTPase domains to 1,226 Å2. In addition, the α-helical 

bundles of the middle domains are crossed over with respect to the head domains caused 

by a 90° rotation about a central conserved proline residue in the linker. In this crossed 

dimer configuration (form 1), a new set of contacts are made between the middle 

domains and the opposing heads. As a consequence of the crossover, the C termini of the 

two subunits of the form 1 dimer are within 14 Å of one another, necessarily placing the 

transmembrane segments of the interacting subunits in the same membrane. Based on the 

orientation of the molecules relative to the presumed orientation of the lipid bilayer, the 

form 2 and form 1 dimers have been designated pre- and post-fusion states, respectively 

(Bian et al., 2011; Byrnes and Sondermann, 2011;Daumke and Praefcke, 2011). 

 The dimer pairs suggest a compelling model for membrane tethering and fusion. 

First, head to head dimerization of ATL in trans (form 2) would initiate membrane 

tethering. Once tethered, crossover of the middle domains would catalyze membrane 

fusion, presumably by bringing opposing lipid bilayers into tight apposition and 

deforming them, consequently reducing the activation barrier for membrane fusion (Bian 

et al., 2011; Daumke and Praefcke, 2011). In part because dimerization of ATL1 in 

solution is nucleotide dependent (Bian et al., 2011; Byrnes and Sondermann, 2011), GTP 
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binding has been suggested to form the pre-fusion dimer for the membrane-tethering step, 

whereas GTP hydrolysis and Pi release has been hypothesized to trigger the 90° rotation 

and crossover of the middle domains to achieve the fused state (Bian et al., 2011). 

According to this scenario, a cycle of GTP binding and hydrolysis would drive both 

membrane tethering and fusion, though how the post-fusion complex is disassembled for 

further rounds of fusion remains to be clarified. 

 If the crossed dimer conformation indeed represents the post-fusion state, contacts 

unique to this conformer should be important for driving membrane fusion. Conversely, 

inhibiting such contacts should block the conversion of pre-fusion dimers to the post-

fusion state. Here, we report a functional analysis of residues within the middle domain 

of ATL2 in search of ones that might be involved in the pre-fusion to post-fusion 

transition. We then focus on a pair of residues that appear to mediate a post-fusion 

conformer-specific salt bridge. We show that the salt bridge is not required for either 

GTP binding or hydrolysis but is necessary for transitioning to the post-fusion dimer 

conformation. Furthermore, although GTP hydrolysis has been suggested to be required 

for formation of the post-fusion conformation of the soluble domain, our results indicate 

that hydrolysis is not required, at least in the context of the soluble domain. The potential 

implications of this finding with regard to the ATL fusion mechanism are discussed. 
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MATERIALS AND METHODS 

 

Cells, constructs, antibodies, and reagents 

 All experiments were conducted on HeLa cells maintained at 37°C in a 5% CO2 

incubator in MEM (Sigma-Aldrich) and 10% FBS (Atlanta Biologicals) with 1% 

penicillin/streptomycin (Thermo Fisher Scientific). The N-terminally HA-tagged ATL2 

isoform 2 construct was contributed by C. Blackstone (National Institutes of Health, 

Bethesda, MD). All ATL2 variant constructs were generated by PCR-mediated site-

directed mutagenesis (QuikChange; Agilent Technologies). The siRNA-immune HA-

ATL2 construct was generated using QuikChange to replace the 21 nucleotides targeted 

by the ATL2 siRNA 5ʹ-GGAGCTATCCTTATGAACATTCATA-3ʹ with 5 ʹ-

GGAGCTATCCGTACGAACACTCATA-3ʹ. N-terminally Myc-tagged PRA2 and DP1 

constructs were generated by PCR amplification of a HeLa cDNA library and cloning 

into the pCS2 Myc vector at the EcoRI and XbaI sites and the XbaI site, respectively. All 

constructs used herein were fully verified by sequencing (Genewiz). An mAb used to 

detect protein disulfide isomerase (Abcam) and the HA epitope (Sigma-Aldrich) were 

purchased, and the 9E10 mAb was used to detect the Myc epitope. The rhodamine anti–

mouse secondary antibody was also purchased (Invitrogen). GTP, GDP, and GMPPNP 

were purchased (Sigma-Aldrich), reconstituted to 100 mM stocks in 10 mM Tris, pH 8.0, 

and 1 mM EDTA, and stored at -80°C. 

 

Knockdown replacement assay 

 Cells plated on 60-mm culture dishes were transfected with ~5µg of the indicated 

HA-ATL2 replacement constructs using transfection reagent (jet-PEI; VWR). Myc-

tagged PRA2 and Myctagged DP1, both ER-localized proteins, served as negative 

controls. Neither affected either the percentage of cells showing the unbranched ER 

phenotype or the extent of loss of network branching relative to siRNA treatment alone. 

24 h after DNA transfection, cells were trypsinized and replated onto 12-mm glass 

coverslips in a 24-well plate. siRNA treatment targeting both ATL2 and ATL3 was 

performed the next day using transfection reagent (Oligofectamine; Invitrogen) according 

to manufacturer’s recommendations. The ATL2 (#1) and ATL3 (#2) siRNAs were 
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identical in sequence to those previously published (Rismanchi et al., 2008). 72 h after 

knockdown, cells were fixed in ice-cold methanol and processed for 

immunofluorescence. In brief, primary (1h at RT) and secondary (30 min at RT) antibody 

incubations were performed in a blocking solution consisting of PBS + 2.5% calf serum + 

0.1% Triton X-100, and washes were with 5x 1ml PBS. All images were obtained using a 

spinning-disk confocal scanhead (Yokagawa; PerkinElmer) mounted on a microscope 

(Axiovert 200; Carl Zeiss) with a 100x 1.4 NA objective (Carl Zeiss) and acquired using 

a 12-bit camera (ORCA-ER; Hamamatsu Photonics). Maximal value projections of 

sections at 0.2-µm spacing (approximately six per cell) were acquired using Imaging 

Suite software (PerkinElmer) and imported as 8-bit images into Photoshop (Adobe). 

Quantification of functional replacement was performed manually on a wide-field 

fluorescence microscope (Axioplan; Carl Zeiss) with a 40x 1.4 NA objective. Images 

were acquired using a 12-bit camera (ORCA-ER) and QED software (Media 

Cybernetics). For quantification of functional replacement, the fraction of cells 

expressing the indicated HA-ATL2 that showed a loss of ER network branching (among 

≥100 cells per experiment) was counted. Some of the HA-ATL2 variants, when 

expressed at high levels, exhibited a dominant-negative ER phenotype (even without 

ATL knockdown). For these variants, a threshold level of HA-ATL2 

immunofluorescence below which expression of the replacement construct alone did not 

confer an ER phenotype was determined. Quantification of functional replacement was 

then restricted to those cells expressing the HA-ATL2 variant below the predetermined 

threshold. 

 

Protein expression and purification 

 The 6His-tagged cytoplasmic domain of ATL2 was generated using PCR 

amplification of nucleotides encoding amino acids 1–467 from HA-ATL2 and cloned 

into the pRSETB vector at NheI and EcoRI sites. Variants were generated using 

QuikChange mutagenesis and sequence verified. Protein expression was induced with 0.5 

mM IPTG in BL21(DE3)pLysS cells at 23°C for 16 h, and purification used standard 

protocols for purification of 6His-tagged proteins on Ni+2 agarose beads (QIAGEN). 

Proteins, eluted in 50 mM Tris, pH 8.0, 250 mM imidazole, 100mM NaCl, 5 mM MgCl2 , 
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and 10% glycerol, were typically 8–24 mg/ml, >95% pure, flash frozen in liquid N 2 , 

and stored at -80°C. 

 

GTPase assay 

 Purified 6His-ATL2 variant proteins, dialyzed into SEC and precleared by 

centrifugation in a rotor (TLA-100; Beckman Coulter) at 100,000 rpm for 15 min, were 

diluted to various concentrations in the same buffer. GTP at the indicated concentrations 

was added to the protein and incubated at 37°C for varying times. After quenching with 5 

mM EDTA, 160 µl of each reaction was then added to 40 µl malachite green phosphate 

assay reagent (Accurate Chemical & Scientific Corp.) in a 96-well transparent flat-

bottomed dish (Costar; Thermo Fisher Scientific) and developed for 10 min at 25°C 

before measuring the absorbance at 650 nm. Phosphate release was calculated using a 

standard curve according to the manufacturer’s instructions. 

 

KM and kobs determinations 

 1 µM dialyzed and precleared 6His-ATL2 variant proteins were incubated with 5, 

10, or 20 µM GTP at 37°C for varying times, quenched, and assayed for phosphate 

release (see previous paragraph). Initial velocities for each ATL2 variant were plotted 

against substrate concentration on a double reciprocal scatter plot, and the KM for each 

ATL2 variant was extracted from the x intercept of its best-fit line (R2 = 0.99 － 1; x 

intercept = －1/KM). For kobs determinations at differing protein concentrations, varying 

concentrations of 6His-ATL2 variants were incubated with 0.2 mM GTP (determined to 

be saturating for ≤2 µM ATL2) for 5 min at 37°C. During this time, product formation 

was predetermined to be linear with time. Samples were quenched and assayed for 

phosphate release (see previous paragraph). When assaying GTPase activity at high 

concentrations (3 and 30 µM ATL2), GTP was added at 1 mM in the reaction and 

incubated for 1 min at 37°C. Thereafter, samples were diluted 10-fold before assaying for 

phosphate release. 

 

SEC 

 Purified 6His-ATL2 variant proteins, dialyzed into SEC buffer + 0.5 mM DTT 
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and precleared by centrifugation in a rotor (TLA-100) at 100,000 rpm for 15 min, were 

diluted to 10 or 30 µM and incubated with or without 2 mM GMPPNP for 30 min at RT. 

100 µl of each sample was then injected onto a fast protein liquid chromatography 

column (Superdex 200; GE Healthcare) preequilibrated in SEC buffer + 0.5 mM DTT 

and separated at a flow rate of 0.5 ml/min at 4°C. 0.5-ml fractions within the included 

volume of 24 ml were collected, precipitated with TCA using 0.5% Triton X-100 as a 

carrier, resuspended in reducing sample buffer, resolved by SDS-PAGE, and stained 

using Coomassie blue. Where indicated, wild-type ATL2 was incubated with 5 mM GDP 

for 30 min at RT and resolved on the same column, except that 1 mM GDP was also 

included in the column buffer. 

 

Cross-linking 

 Purified 6His-ATL2 variant proteins were dialyzed into SEC buffer, pH 7.0, at 

4°C and precleared by centrifugation in a rotor (TLA-100) at 100,000 rpm for 15 min. 20 

µM of each protein was incubated at RT in SEC buffer, pH 7.0, in the absence or 

presence of 2 mM GMPPNP, GDP, or GTP. After 30 min at RT, the reaction was diluted 

fivefold into SEC (to 4 µM ATL2) in the absence or presence of 12 µM BMOE (Thermo 

Fisher Scientific) and incubated for 1 h at RT. Samples were then quenched with 20 mM 

DTT for 15 min, mixed with reducing sample buffer, and resolved by SDS-PAGE. 

 

EM 

 20 µM purified 6His-ATL2 in buffer containing 25 mM Tris-HCl, pH 7.5. 100 

mM NaCl, 5 mM MgCl2, 2 mM EGTA, 5% glycerol, and 0.5 mM DTT was diluted 

twofold in the same buffer without glycerol in the presence of 1 mM GMPPNP. After 30 

min at RT, the reaction mixture was further diluted 30-fold into the same buffer and 

immediately applied onto glow-charged thin carbon foil grids, blotted with a filter paper, 

and stained with a 2% solution of uranyl acetate in water. The grids were examined at 

120 kV with an electron microscope (Tecnai 12; FEI). Images were recorded with a 2,000 

× 2,000 charge-coupled device camera (UltraScanT 1000; Gatan, Inc.) at a nominal 

magnification of 52,000. 
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Image processing and model docking 

 EM images were processed using the EMAN image analysis software (National 

Center for Macromolecular Imaging; Ludtke et al., 1999; Tang et al., 2007). Individual 

particles were boxed manually with 80 × 80 pixels (2.17 Å/pixel), normalized, and 

combined to yield one raw image stack file. A total of 571 individual particle images 

were collected, band-pass filtered, and aligned with respect to their center of mass. To 

test the likelihood of the conformations that the ATL GTPase could adopt, two simulated 

3D density maps were computed with Chimera (version 3; University of California, San 

Francisco) from the atomic models of two conformers (shown in Fig. 2-6 A), pre-fusion 

(Protein Data Bank accession no. 3QOF) and post-fusion (Protein Data Bank accession 

no. 3QNU). These two density maps were then used as initial references for the 

reference-based projection matching of the particle images followed by the reconstruction 

of particle images in EMAN2. The iterative refinement cycles were ended when the 

calculated Fourier shell correlation between the 3D models generated in two consecutive 

iterations showed no further improvement. This indicated that the 3D reconstruction was 

converging to a stable optimum, and the final 3D density maps were calculated. For 

model docking, the atomic models of pre-fusion and post-fusion were fitted into the 

reconstructed EM density map using the feature Fit model in map implemented in 

Chimera. Cross-correlation values between the final density maps and the simulated 3D 

density maps from two conformers were calculated. The value was 0.293 for the pre-

fusion conformer and 0.425 for the post-fusion conformer, with 55% volume included. 
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RESULTS 

 

Loss of ER network branching upon ATL2/3 knockdown is rescued by wild-type 

ATL2 expression 

 To identify ATL residues that participate in the inter-conversion between pre- and 

post-fusion conformers, we used an RNAi knockdown replacement assay. The assay is 

based on the previously reported requirement for ATL2/3 in ER network branching in 

HeLa cells (Hu et al., 2009). As anticipated, treatment of HeLa cells with siRNAs 

identical to those previously shown to knock down ATL2 and ATL3 (Rismanchi et al., 

2008) resulted in an abnormal ER morphology characterized by a notable reduction in 

network branch points (Fig. S2-1, A–C). In contrast to control knockdown cells with 

200–400 ER network branch points per cell, ATL2/3 knockdown cells typically had <100 

network branch points per cell (Fig. S2-1, C and D). Also consistent with a previous 

study, knockdown of both isoforms was required to elicit the unbranched phenotype (Fig. 

S2-1 A), indicating that either ATL2 or ATL3 is sufficient to maintain normal network 

morphology (Hu et al., 2009). To assess whether the unbranched ER phenotype is a 

specific consequence of ATL2/3 loss, the ATL2/3 siRNA was cotransfected with either a 

negative control DNA construct or an siRNA-immune HA-tagged ATL2 replacement 

construct. Whereas ~50% of cells expressing the negative control construct displayed a 

largely unbranched network (<100 branch points per cell), few, if any, cells expressing 

wild-type HA-ATL2 displayed the phenotype (Fig. 2-1, A and B). Therefore, the 

unbranched ER phenotype can be attributed specifically to the loss of ATL2/3. 

 

Specific middle domain residues are required for ATL2 activity 

 As our analysis was initiated before the recent determination of the ATL1 crystal 

structure, we started with a computationally derived ATL2 structure model based on its 

similarity to GBP1 (Prakash et al., 2000; Pieper et al., 2011). Domain boundaries defined 

by the model were applied to first test the importance of the middle domain. As 

anticipated, the HA-tagged variant ATL2Δ377–463 (or ATL2Δmiddle), lacking the entire 

middle domain, was stably expressed but failed to functionally replace endogenous 

ATL2/3 (Fig. 2-1, A and B). Then, several conserved middle domain residues were 
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screened. RNAi knockdown replacement using ATL2 variants with either single or 

double amino acid substitutions to alanine revealed required residues within the middle 

domain (Fig. 2-1, A and B). Substitutions that blocked ATL2 function include E380A, 

L384D, K433A, K434A, M435A, F440A, and Y444A. Most of the residues identified by 

our analysis are located near the GTPase head (Fig. S2-2, A and B). Notably, M435 is 

equivalent to M408 in ATL1, which, when mutated, is associated with hereditary spastic 

paraplegia (Zhu et al., 2003), though the mutations have been reported to have only 

modest effects on the GTPase activity of ATL1 (Bian et al., 2011; Byrnes and 

Sondermann, 2011). Also, E380 is equivalent to residue E328 in the Drosophila 

homologue, whose charge reversal inhibits the in vitro liposome fusion reaction by 75% 

(Bian et al., 2011). 

 ER network morphology after replacement with the various ATL2 proteins 

appeared somewhat distinct, not only from one another but also from the morphology 

seen after knockdown. The exception was ATL2Δmiddle, whose network morphology 

was similar to the knockdown. The significance of these differences is unclear but may 

reflect a differing ability of each variant to engage in the ATL2 reaction cycle, with 

ATL2Δmiddle being the least functional. Many of the single alanine substitutions that 

blocked ER network branching were in highly conserved residues (Fig. S2-2 A), though 

substitution of at least one conserved residue, E454, had no apparent effect (Fig. 2-1, A 

and B). Less conserved or nonconserved surface residues, such as Q447 and S431, 

respectively, could also be substituted (Fig. 2-1, A and B). 

 Finally, many of the nonfunctional ATL2 variants, when expressed at high levels, 

exerted a dominant-negative effect on ER morphology that could be observed even in the 

presence of endogenous ATL2/3 (Fig. S2-2 C). To avoid the potentially complicating 

effects of such high level expression, only cells expressing each variant below a 

predetermined threshold level were included for quantification of functional replacement 

(see Materials and methods). 

 

Middle domain mutations fall into three classes 

 The two dimer crystal forms of ATL1 (Bian et al., 2011; Byrnes and Sondermann, 

2011) allowed us to analyze the positions of our mutations. Because ATL2 is 73% 
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identical to ATL1 in its cytoplasmic domain, its overall fold is likely very similar to 

ATL1 with only minor differences in the precise placement of the backbone and side 

chains. To aid in the analysis, computational models for ATL2 in both the pre- and post-

fusion conformation were derived based on the ATL1 structures (Pieper et al., 2011). 

Inspection revealed that the required residues fall into three categories (Fig. 2-2, A and 

B). The first category consists of L384, Y444, and F440 (Fig. 2-2, A and B, box 1). These 

residues pack together near the surface of the middle domain in the pre-fusion conformer, 

and the packing interactions remain relatively unchanged in the post-fusion conformer. 

The second category consists of K433 and M435 (Fig. 2-2, A and B, box 2). These 

residues are in a loop connecting two helices (α8 and α9) of the middle domain. In the 

pre-fusion conformer, K433 and M435 contact residues within the head domain of the 

same monomer. In the post-fusion conformer, K433 and M435 alter their contacts to 

residues in the head domain of the opposing monomer. The third and final category, 

consisting of E380 and K372, was of particular interest, as it pointed to residues 

appearing to make substantial contacts only in the post-fusion conformer (Fig. 2-2, A and 

B, box 3). In the pre-fusion conformer, the nonpolar portion of the E380 side chain may 

be involved in a set of middle domain packing interactions, and K372 exhibits no obvious 

contacts. Significantly, K372 is immediately adjacent to the point of 90° rotation that 

converts the pre-fusion dimer to the post-fusion dimer conformer, and in the post-fusion 

conformer, it becomes involved in a salt bridge with E380. 

 

A salt bridge specific to the post-fusion dimer is required for ATL2 activity 

 To test the functional significance of the K372-E380 salt bridge seen in the post-

fusion structure, we first examined the effect of charge reversal of either residue on the 

ER network branching function of ATL2. For this, two new variants, ATL2 K372E and 

ATL2 E380R, were generated. Each variant was stably expressed, but neither functioned 

in ER network branching (Fig. 2-3, A and B), confirming the importance of the 

respective charges at the two positions. Indeed, at high expression levels, both variants 

exerted a dominant-negative phenotype such that an abnormal network branching pattern 

was seen even in the presence of endogenous ATL2/3 (Fig. 2-3 C). Notably, although 

K372 and E380 are each seen to make an additional polar contact in the post-fusion 
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dimer structure with E275 and Q376, respectively, neither charge reversal of E275 nor 

alanine substitution of Q376 interfered with ATL2 function (Fig. 2-3, A–C). Thus, the 

latter contacts appear dispensable. Finally, to test whether the inability of ATL2 E380R 

and ATL2 K372E to function might indeed be caused by their inability to form a salt 

bridge, the double mutant variant ATL2 K372E,E380R was constructed. We reasoned 

that combining the mutations in the same molecule might serve a compensatory function, 

restoring electrostatic attraction. Remarkably, this variant functioned indistinguishably 

from wild-type ATL2 in ER network branching (Fig. 2-3, A and B) and exhibited no 

dominant-negative phenotype (Fig. 2-3 C). Thus, the salt bridge between K372 and E380, 

specific to the post-fusion conformer, is required for ATL2 function. 

 

The K372-E380 salt bridge is not required for either GTP binding or hydrolysis 

 Because the K372-E380 contact is specific to the post-fusion dimer conformer, 

we anticipated that the most upstream steps of the proposed ATL reaction cycle, namely 

GTP binding, formation of the pre-fusion dimer, and nucleotide hydrolysis, would all be 

normal in the single charge reversal mutants. To assess the biochemical properties of the 

mutant proteins, the soluble cytoplasmic domain of the relevant ATL2 variants—wild 

type, K372E, E380R, and the double mutant as well as the nucleotide binding–deficient 

K107A—were expressed, purified, and subjected to GTP hydrolysis assays. 

 Members of the dynamin superfamily of large GTPases possess a core GTPase 

domain with a globular fold similar to that of Ras and other small GTPases (Prakash et 

al., 2000; Niemann et al., 2001), but their biochemical properties differ in significant 

ways. In contrast to Ras superfamily small GTPases that require guanine nucleotide 

exchange factors for GTP loading because of their high, subnanomolar nucleotide affinity 

(Neal et al., 1988), dynamin-related GTPases have a relatively low affinity for 

nucleotides (Song and Schmid, 2003). 

 To assess nucleotide binding by ATL2 and how the K372-E380 salt bridge might 

influence it, the ability of each variant to bind and hydrolyze GTP was measured over a 

range of substrate concentrations (Fig. 2-4 A). When analyzed using a linearized form of 

the Michaelis–Menton equation (Fig. 2-4 B), wild-type ATL2 had an expected relatively 

high apparent Michaelis constant (KM) for GTP of 34 µM, well within the range of the 
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10–100-µM KM exhibited by other dynamin-related GTPases (Song and Schmid, 2003; 

Song et al., 2004). Under these conditions, K372E, E380R, and the double mutant ATL2 

each exhibited a KM for GTP close to that of wild-type ATL2: 38, 35, and 44 µM for 

K372E, E380R, and the double mutant, respectively (Fig. 2-4, A and B). Therefore, the 

inability to form the K372-E380 contact appeared to have little impact on nucleotide 

binding. 

 Dynamin-related GTPases are also distinguished from Ras superfamily GTPases 

by their relatively high intrinsic catalytic activity, which renders them independent of an 

external GTPaseactivating protein (Song and Schmid, 2003). In the case of dynamin, 

self-assembly into higher order oligomers further stimulates hydrolysis by as much as 

100-fold, in a manner dependent on its associated GTPase effector domain (Stowell et al., 

1999; Song and Schmid, 2003). Other dynamin-related GTPases, such as GBP1, have 

intrinsic GTPase activity but do not undergo higher order assembly (Prakash et al., 2000). 

Consequently, these GTPases do not exhibit the dramatic assembly stimulated increase in 

activity that is observed for dynamin. Nevertheless, the basal GTPase activity of full-

length GBP1 is stimulated three- to fivefold upon dimer formation, with a dimerization 

constant of 0.4 µM (Prakash et al., 2000; Ghosh et al., 2006). Notably, dimerinduced 

stimulation of GBP1 catalytic activity is observed even for truncated molecules retaining 

only the GTPase head domain, implying that stimulation by dimer formation requires 

only the head to head binding interface (Ghosh et al., 2006). 

 To assess the extent to which the ATL2 GTPase is stimulated by dimer formation, 

the ability of the wild-type ATL2 soluble domain to hydrolyze GTP was measured at 

saturated GTP concentrations under initial velocity conditions (Fig. S2-3 A) over a range 

of protein concentrations. As anticipated, the catalytic rate constant, kobs, was stimulated 

approximately twofold with an apparent dimerization constant of ~0.2 µM (Fig. 2-4 C), 

presumably caused by enhancement of GTP binding by formation of the head to head 

dimer. kobs began to level off at 0.3–0.5 µM ATL2, suggesting that ATL2 was largely 

dimeric above this concentration. No further stimulation of the GTPase activity was 

observed, even at concentrations as high as 30 µM ATL2 (Fig. S2-3 B), consistent with a 

lack of higher order assembly under these conditions. Next, to determine the impact of 

the K372-E380 salt bridge on catalytic activity, the ability of both wild-type and mutant 
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variants to hydrolyze GTP was measured over a range of protein concentrations at which 

the wild-type protein was expected to be dimeric. kobs for wild-type ATL2 was ~6 min－1, 

consistent with previous measurements for ATL1 (Bian et al., 2011; Byrnes and 

Sondermann, 2011), and it did not vary significantly between 0.3 and 1.25 µM ATL2 

(Fig. 2-4 D). As expected, the nucleotide binding–deficient K107A ATL2 exhibited only 

low activity, with a kobs of ~0.6 min－1. Under these conditions, kobs for K372E and E380R 

ATL2, as well as the double mutant variant, was indistinguishable from that of the wild 

type. Therefore, the ability of ATL2 to bind GTP and form a head to head dimer as well 

as hydrolyze GTP does not appear to depend on the K372-E380 salt bridge. 

 

The K372-E380 ionic contact is required for stable dimer formation 

 The undiminished ability of K372E ATL2 and E380R ATL2 to bind and 

hydrolyze GTP suggested that pre-fusion (head to head) dimer formation was normal. 

Formation of a GMPPNP dependent dimer, as detected by size exclusion chromatography 

(SEC), has been suggested previously by others to reflect formation of the GTP-bound 

pre-fusion state (Bian et al., 2011; Byrnes and Sondermann, 2011). Therefore, we next 

subjected each variant to SEC analysis. 

 Consistent with previous studies (Bian et al., 2011; Byrnes and Sondermann, 

2011), the soluble domain of wildtype ATL2 formed dimers in the presence, but not in 

the absence, of GMPPNP (Fig. 2-5). No ATL2 dimerization was observed with GDP, 

consistent with previous studies for ATL1 (Byrnes and Sondermann, 2011; Moss et al., 

2011), though contrasting with another (Bian et al., 2011). Also as expected, stable dimer 

formation was diminished for the nucleotide binding–deficient ATL2 K107 (Fig. S2-4). 

Under these conditions, both ATL2 K372E and ATL2 E380R were expected to form 

stable dimers. To our surprise, the level of ATL2 K372E and ATL2 E380R in the dimer 

fractions was negligible, regardless of whether they had been incubated with GMPPNP 

(Fig. 2-5). Remarkably, however, the compensatory charge reversal mutation in ATL2 

K372E,E380R fully restored GMPPNP-dependent dimer formation. Thus, in contrast to 

expectations, the K372-E380 salt bridge is required to form a stable GMPPNP dimer. 

 

The soluble domain of ATL2 adopts the post-fusion conformation in the GMPPNP- 
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bound (GTP bound) state 

 The inability of ATL2 K372E and ATL2 E380R to form the GMPPNP-dependent 

solution dimer raised the possibility that the GMPPNP solution dimer actually 

corresponds to the post-fusion, rather than pre-fusion conformer. The implications of this 

hypothesis are significant, as it would imply that the ATL2 soluble domain achieves the 

post-fusion conformation in the GTP-bound state, not requiring nucleotide hydrolysis. To 

test this possibility, we used two independent means to probe the conformational state of 

ATL2 in the presence of various nucleotide analogues. 

 First, we attempted to visualize the GMPPNP-bound ATL2 solution dimer by 

single-particle EM of negatively stained samples. EM images of GMPPNP-bound ATL2 

particles were processed, and a total of 571 individual particle images were boxed 

manually, band-pass filtered, and aligned with respect to their center of mass. To test 

whether GMPPNP-bound ATL2 adopts the pre-fusion or post-fusion conformation, two 

3D density maps from the same set of particle images were reconstructed using two 

different initial reference maps calculated from the atomic models of the pre-fusion 

(Protein Data Bank accession no. 3QOF) and post-fusion (Protein Data Bank accession 

no. 3QNU) ATL1 conformers (shown in Fig. 2 A). The resulting 3D maps resembled the 

post-fusion conformation more than the pre-fusion one (Fig. S2-5). Cross-correlation 

values between the final density maps and their respective initial references were 0.293 

for the pre-fusion map and 0.425 for the post-fusion map, indicating that the GMPPNP-

bound ATL2 dimer more likely adopts the post-fusion configuration. 

 The second method was cross-linking. Bismaleimidoethane (BMOE) is a short 

bifunctional sulfhydryl cross-linker capable of conjugating two cysteine residues to one 

another if they lie in close enough (~10 Å) proximity. ATL2 has three surface-exposed 

cysteines. Two are in the head (C59 and C144) and one is in the middle domain (C395). 

Of these, only the middle domain C395 residue is in a position to mediate cross-linking 

of one monomer to the other to form a covalently conjugated dimer. Importantly, C395-

mediated dimer conjugation is predicted to occur in the post-fusion state but not in the 

pre-fusion state (Fig. 2-6 A). This is because the C395 residues of the two monomers are 

<20 Å apart in the post-fusion dimer, but they are >100 Å apart in the pre-fusion dimer. 

In contrast to C395, the other two cysteines in the head are too far apart, >50 Å, in either 
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dimer configuration. Nevertheless, they may mediate crosslinking within the monomer, 

likely leading to the slightly more rapidly migrating species of the monomer seen even in 

the absence of nucleotide. Significantly, cross-linker–dependent dimer conjugation was 

observed only in the presence of GMPPNP (Fig. 2-6 B). Dimer formation was not 

observed in the absence of nucleotide or in the presence of GDP or GTP, indicating that 

the post-fusion conformation is specific to the GMPPNP-bound (or GTP bound) state. 

Presumably, post-fusion dimer formation also occurs transiently with bound GTP, but 

subsequent hydrolysis returns it to the monomer state. As a control to confirm that the 

GMPPNP dimer is cross-linked through the middle domain C395 residue, an ATL2 

variant lacking the C395 sulfhydryl (ATL2 C395N) was tested. As predicted, it failed to 

form dimers either in the presence or absence of GMPPNP. To further validate our assay 

for post-fusion dimer formation, ATL2 K372E and ATL2 E380R were each subjected to 

the same assay. As predicted by their behavior in SEC, neither of the single mutant 

variants formed the GMPPNP-dependent cross-linked dimer, whereas the compensatory 

double mutation restored dimer formation (Fig. 2-6 C). These results argue that the 

soluble domain of ATL2 adopts the post-fusion conformation exclusively in the 

GMPPNP-bound (or GTP bound) state. Moreover, although nucleotide hydrolysis is 

dispensable for achieving the post-fusion state, at least for the soluble domain, formation 

of the K372-E380 salt bridge is not. 
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FIGURES 

 

Figure 2-1. Identification of ATL2 middle domain residues required for its ER 
network branching function. 
 

 
 
(A) Knockdown replacement assay. 48 h after transfection with a Myc-tagged DP1 negative control (neg 
con) construct, wild-type HA-ATL2, or each of the indicated HA-tagged ATL2 variants, cells were 
transfected with siRNAs targeting ATL2 and ATL3. 72 h after knockdown, cells were fixed and stained 
using an antibody against the Myc or HA epitope and viewed by confocal microscopy. Bar, 10 µm. (B) 
Quantification of the fraction of cells expressing the indicated proteins that had the unbranched ER 
phenotype. Values represent the means of three independent experiments ± SD. *, P < 0.0005 with respect 
to wild type; **, P < 0.0005 with respect to the Myc-DP1 negative control. 
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Figure 2-2. View of required ATL2 residues in the pre-fusion and post-fusion 
conformer.  
 

 
 
Required residues identified by knockdown replacement (Fig. 1) are shown in cartoon and stick form. The 
Protein Data Bank coordinates for the pre-fusion (3QOF) and post-fusion (3QNU) ATL1 conformers were 
downloaded from the RCSB Protein Data Bank database (Bian et al., 2011) and rendered in PyMOL 
(DeLano Scientific LLC). One subunit is green, and the other is blue. Bound GDP is highlighted in sticks. 
(A) The location of the three categories of required residues in both pre- and post-fusion dimer conformers 
are boxed and numbered (1–3). (B) A close-up view of the required residues boxed (1–3) in A. Key 
residues are numbered by their position in the ATL2 sequence and shown in stick form. See the Results 
under Middle domain mutations fall into three classes for details. 
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Figure 2-3. The K372-E380 salt bridge is required for ATL2 function. 
 

 
 
(A) Cells transfected with the indicated HA-ATL2 variants were treated 48 h later with siRNAs against 
ATL2 and ATL3. 72 h after knockdown, cells were fixed and stained with antibodies against the HA 
epitope and viewed by confocal microscopy. (B) Quantification of the fraction of cells expressing the 
indicated proteins that had the unbranched ER phenotype. Values represent the means of three independent 
experiments ± SD. *, P < 0.0005. (C) High level expression of the indicated nonfunctional HA-ATL2 
variants also confers a dominantnegative ER phenotype seen here even without ATL2/3 knockdown. Bars, 
10 µm. 
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Figure 2-4. The K372-E380 salt bridge is not required for either nucleotide binding 
or hydrolysis.  
 

 
 
(A) 1 µM of the purified cytoplasmic domains (ATL2 1–467) of the indicated proteins were incubated with 
5 µM (circles), 10 µM (squares), or 20 µM (triangles) GTP and assayed for phosphate release at the 
indicated times. Each point represents the means of two independent measurements. (B) A Lineweaver–
Burk plot based on initial velocities from A was used to extract the KM of the indicated ATL2 proteins for 
GTP. (C) The indicated concentrations of wild-type ATL2 were incubated with 0.2 mM GTP followed by 
assaying for phosphate release. (D) 0.3, 0.6, or 1.25 µM of the indicated ATL2 variants was incubated with 
0.2 mM GTP followed by an assay for phosphate release. Values represent the means of three independent 
measurements ± SD. v, initial velocity. 
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Figure 2-5. The K372-E380 contact is required for GMPPNP-dependent stable 
dimer formation. 
 

 
 
The purified cytoplasmic domains of the indicated ATL2 variants (30 µM) were incubated with no 
nucleotide (−), 5 mM GDP, or 2 mM GMPPNP for 30 min at RT. Thereafter, samples were resolved on a 
Superdex 200 column. The Coomassie-stained proteins (~60 kD) present in monomer (~70 kD) and dimer 
peak (~150 kD) positions from each column run are shown after SDS-PAGE. Also shown is a surface 
rendering of pre- and post-fusion dimer conformers with K372 and E380 highlighted in blue and red, 
respectively. Models were drawn in PyMOL from Protein Data Bank no. 3QOF and 3QNU. 
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Figure 2-6. GTP hydrolysis is not required for the pre-fusion to post-fusion 
conformational change. 
 

 
 
(A) Location of the C395 residue in ATL2 used to report on the post-fusion conformation. The C395 side 
chain in ATL2 is highlighted as spheres in both pre- and post-fusion ATL1 dimer structures rendered as 
detailed in Fig. 2. (B) The purified cytoplasmic domain of wild-type or C395N ATL2 (20 µM) was 
incubated in the presence or absence of the indicated nucleotides for 30 min at RT. Thereafter, samples 
were diluted, further incubated with or without BMOE for 1 h at RT, resolved by SDS-PAGE, and stained 
with Coomassie blue. The positions of non–cross-linked monomer and covalently cross-linked dimer ATL2 
are indicated by single and double asterisks, respectively. The open circle indicates the position of ATL2 
likely to have cysteine modifications not leading to dimer formation. (C) The purified cytoplasmic domains 
of the indicated ATL2 variants were subjected to the assay as described in B. Molecular masses are given 
in kilodaltons. 
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SUPPLEMENTAL FIGURES 
 

Figure S2-1. Depletion of both ATL2 and ATL3 causes a reduction in ER network 
branch points.  
 

 
 
(A) Cells transfected with a PRA2 control (con) siRNA, ATL2 siRNA, ATL3 siRNA, or ATL2/3 siRNA 
were fixed, stained using an antibody against the ER marker protein disulfide isomerase, and viewed by 
confocal microscopy. Bar, 10 µm. (B) Maximal z projections of confocal images from A were thresholded 
and skeletonized in ImageJ (National Institutes of Health). Asterisks indicate corresponding images in A. 
(C) Quantification of the mean number of three-way junctions in 10 skeletonized images from PRA2 
control and ATL2/3 siRNA–treated cells. (D) Quantification of the percentage of cells transfected with a 
control siRNA or ATL2/ATL3 siRNA showing the unbranched ER phenotype, defined as having <100 
branch points per cell. Values represent the means of three independent experiments ± SD. (E) Immunoblot 
showing ATL2 knockdown. Cells transfected with an siRNA-sensitive HA-ATL2 construct were 
subsequently treated with a PRA2 control siRNA or ATL2/3 siRNA and processed for immunoblotting 
using antibodies against the HA epitope. Molecular masses are given in kilodaltons. 
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Figure S2-2. Middle domain ATL2 residues required for function lie near the 
GTPase head. 
 

 
 
(A) Alignment of middle domain amino acids of human ATL1–3 and Drosophila ATL, with conserved 
residues shaded. Residues shown to be functionally required are labeled with asterisks, and residues shown 
to be nonessential are labeled with open circles. (B) Residues marked in A are labeled and highlighted as 
spheres in both pre-fusion and post-fusion ATL1 dimer structures (L384 was an exception as it was 
replaced by D384). Functionally required side chains are labeled with carbon in cyan, and nonessential side 
chains with carbon are in gray. The numbering is according to the ATL2 sequence. The Protein Data Bank 
coordinates for the pre-fusion (3QOF) and post-fusion (3QNU) ATL1 conformers were downloaded from 
the RCSB Protein Data Bank database (Bian et al., 2011) and rendered in cartoon form in PyMOL. One 
subunit is green, and the other is blue. GDP is highlighted in sticks. (C) High level expression of certain 
ATL2 variants with an alanine substitution in a functionally required residue results in a dominant-negative 
effect on ER morphology. Cells transfected with wild-type (wt) HA-ATL2 or various point mutant 
HAtagged ATL2 variants and expressing high levels of the protein were fixed, stained using an antibody 
against the HA epitope, and viewed by confocal microscopy. Endogenous ATL2/3 is present in these cells, 
as no knockdown was performed. Bar, 10 µm. 
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Figure S2-3. Linearity of GTPase assay and ATL2 GTPase activity are not further 
stimulated at high ATL2 concentrations.  
 
 
 

 
 
(A) 1 µM ATL2 was incubated with 0.2 mM GTP at 37°C for the indicated times followed by quenching 
with EDTA and assaying for phosphate release. (B) 3 or 30 µM ATL2 was incubated with 1 mM GTP at 
37°C for 1 min, quenched, and diluted 10-fold before assaying for phosphate release. Data represent the 
means of four independent measurements ± SD. P = 0.57. 
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Figure S2-4. Stable dimerization of the soluble domain of ATL2 depends on 
nucleotide binding.  
 

 
 
The purified cytoplasmic domain of wild type or the nucleotide binding–deficient K107A ATL2 variant (10 
µM) was incubated with no nucleotide (−), 2 mM GMPPNP, or 5 mM GDP for 30 min at RT. Thereafter, 
samples were resolved on a Superdex 200 column. The Coomassie-stained proteins (60 kD) present in 
monomer (~70 kD) and dimer peak (~150 kD) positions from each column run are shown after SDS-
PAGE. 
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Figure S2-5. EM of the GMPPNP-bound ATL2 GTPase. 
 

 
 
Representative raw particle images of GMPPNP-bound ATL2 boxed out from electron micrographs of 
negatively stained samples. Bar, 8 nm. (B) 3D reconstruction of dimeric ATL2 density maps using two 
atomic models representing the two ATL1 conformers, form 1 (Protein Data Bank accession no. 3QNU) 
and form 2 (Protein Data Bank accession no. 3QOF) as initial references. 
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DISCUSSION 
 

 Our findings reveal an intramolecular salt bridge required for the ER network 

branching function of ATL2. The importance of the K372-E380 ionic interaction for 

ATL2 function is likely caused by its stabilization of the post-fusion dimer conformation. 

This might seem surprising given that the charge interaction occurs intramolecularly, 

within each monomer subunit of the dimer. Based on the position of the salt bridge in the 

context of the post-fusion dimer, we speculate that the ionic contact constrains the linker 

in a kinked conformation relative to the head and middle domains. In so doing, it may 

serve to position M374 and L375, two intervening nonpolar residues that need to pack 

extensively against the opposing head, to form the post-fusion conformation. In the 

absence of the salt bridge, the linker may be rendered too flexible, reducing the ability of 

M374 and L375 to pack effectively. 

 Previous observations are consistent with the K372-E380 salt bridge being 

required for ATL-catalyzed membrane fusion. A Drosophila ATL variant bearing a 

mutation equivalent to E380R is significantly reduced in its ability to catalyze liposome 

fusion (Bian et al., 2011), though neither its GTPase activity nor its ability to dimerize 

has been reported. In addition, a Drosophila variant with a mutation equivalent to K372E 

lacks fusion activity (Bian et al., 2011). Thus, the opposing charge carried by the two 

residues appears functionally important. Whether the salt bridge, per se, is required for 

fusion activity remains to be determined. But based on the cumulative evidence, it seems 

likely that the ability of the two residues to engage in a salt bridge will be required for 

stabilizing the post-fusion dimer and hence for membrane fusion, even in the more 

distantly related organism. 

 Our finding that the ATL2 soluble domain can achieve the post-fusion 

conformation in the GMPPNP (or GTP)-bound state without nucleotide hydrolysis 

contrasts with the conclusions from an earlier study. In that study, biochemical analyses 

performed on the ATL1 soluble domain were used to arrive at the opposite conclusion: 

that ATL1 adopts the pre-fusion conformation in the GTP-bound state and the post-fusion 

conformation in the GDP-bound state (Bian et al., 2011). This has contributed, at least in 

part, to the current model for ATL proposing that the pre-fusion to post-fusion 

conformational change is directly coupled to GTP hydrolysis and Pi release. The reasons 
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for the conflicting results and conclusions remain unclear, and further work will be 

needed to resolve the discrepancy. Nevertheless, the results presented herein clearly 

indicate that GTP binding, in the absence of hydrolysis, is sufficient to induce the pre-

fusion to post-fusion conformational change, at least for the ATL2 soluble domain. 

 As shown previously for GBP1 (Prakash et al., 2000; Ghosh et al., 2006), we 

observed a modest concentration dependent stimulation of the ATL2 soluble domain 

GTPase activity in the submicromolar range. By analogy to GBP1, this is likely caused 

by enhancement of GTP binding by formation of the head to head dimer. As the K372-

E380 salt bridge is not present in the crystal structure of the initial nucleotide-bound pre-

fusion dimer (Bian et al., 2011; Byrnes and Sondermann, 2011), mutations hindering 

formation of the salt bridge would not be predicted to impair the initial dimer-induced 

stimulation of GTP binding and hydrolysis. As expected, neither the K372E nor E380R 

mutant variants were diminished in their ability to bind or hydrolyze GTP. This result 

underscores the specificity of the defect in the K372E and E380R mutant ATL2 variants: 

they are likely able to form the initial head to head contact and bind GTP as well as the 

wild-type protein, yet they fail to transition to the post-fusion conformation. 

 Our observation that GTP hydrolysis is neither required for, nor dependent on, 

formation of the post-fusion conformation is somewhat surprising. It will be important to 

determine whether this behavior of the soluble domain reflects that of the full-length 

molecule in membranes. Finally, the interpretation of our findings with respect to the role 

of GTP hydrolysis in the ATL fusion mechanism also needs to be tempered by the 

uncertainty of whether the behavior of the ATL2 soluble domain, observed herein, 

reflects the behavior of the full-length, membrane-anchored protein. A possibility 

deserving of consideration is that membrane-anchored ATL is more conformationally 

constrained than its soluble counterpart. That is, whereas the soluble domain is 

sufficiently flexible to adopt the post-fusion conformation when restricted to the GTP-

bound state, membrane-anchored ATL may require an additional input of energy, 

provided perhaps by the hydrolysis of GTP within the pre-fusion dimer. A requirement 

for nucleotide hydrolysis for formation of the membrane-anchored post-fusion dimer 

would serve to explain the requirement for GTP hydrolysis in ATL-catalyzed liposome 

fusion (Orso et al., 2009). On the other hand, this scenario depends on the membrane-
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anchored pre-fusion dimer being compatible with the GTP-bound state and the post-

fusion dimer being compatible with the GDP-bound state. This seems counterintuitive, 

given that the post-fusion conformation of the soluble domain is clearly compatible with 

the GMPPNP (or GTP)-bound state but most likely not with the GDP-bound state (Fig. 6 

B). 

 An alternative possibility is that the behavior of the soluble domain does indeed 

reflect the behavior of the membrane-anchored full-length protein. In the latter scenario, 

we would propose that nucleotide hydrolysis is not directly coupled to the pre-fusion to 

post-fusion conformational change but rather that the energy released from hydrolysis is 

harnessed to drive another discrete step in the ATL reaction cycle. Whatever the identity 

of that hydrolysis-dependent step, it should explain the observed requirement for GTP 

hydrolysis in the in vitro fusion assay (Orso et al., 2009). Further work to determine the 

conformational states of GTP- and GDP-bound membrane-anchored ATL2, as well as the 

impact of the salt bridge identified herein on the catalytic properties of full-length and 

membrane-anchored ATL2, promises to more clearly delineate the role of nucleotide 

hydrolysis in the ATL2 mechanism. 
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CHAPTER 3 

 

Membrane Tethering by the Atlastin GTPase Depends on GTP Hydrolysis but  

Not on Forming the Crossover Configuration* 

 

ABSTRACT 

 

The membrane-anchored atlastin GTPase couples nucleotide hydrolysis to the catalysis of 

homotypic membrane fusion to form a branched endoplasmic reticulum network. Trans 

dimerization between atlastins anchored in opposing membranes, accompanied by a 

crossover conformational change, is thought to draw the membranes together for fusion. 

Previous studies on the conformational coupling of atlastin to its GTP hydrolysis cycle 

have been carried out largely on atlastins lacking a membrane anchor. Consequently, 

whether fusion involves a discrete tethering step and, if so, the potential role of GTP 

hydrolysis and crossover in tethering remain unknown. In this study, we used membrane-

anchored atlastins in assays that separate tethering from fusion to dissect the requirements 

for each. We found that tethering depended on GTP hydrolysis, but, unlike fusion, it did 

not depend on crossover. Thus GTP hydrolysis initiates stable head-domain contact in 

trans to tether opposing membranes, whereas crossover formation plays a more pivotal 

role in powering the lipid rearrangements for fusion. 

 
* This manuscript appeared as an article in the Molecular Biology of the Cell, and is reprinted here. 

Saini SG, Liu C, Zhang P, and Lee TH. MBoC. 2014. 25 (24): 3942-3953 

 

All experiments were performed by Saini, SG and analyzed by Saini, SG and Lee, TH, with the exception of 

the CryoEM experiments, which were performed and analyzed by Liu C and Zhang P. The manuscript was 

written by Saini, SG, Lee, TH and Zhang P. 
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INTRODUCTION 

 

 Atlastin (ATL) is a large membrane-anchored GTPase required to form the 

branched endoplasmic reticulum (ER) network in organisms ranging from yeast to human 

(Park and Blackstone, 2010; McNew et al., 2013). The requirement for ATL in ER 

network formation may reflect its role in one or more membrane-shaping processes, 

including membrane curvature, tubule extension, and/or membrane fusion (Lee and 

Chen, 1988; Lee et al., 1989; Allan, 1991; Waterman-Storer, 1998; Friedman et al., 2010; 

Shibata et al., 2010). However, the remarkable finding that Drosophila melanogaster 

ATL (D-ATL), as well as the distantly related yeast SEY1 and Arabidopsis RHD3 

orthologues, can catalyze GTP-dependent fusion when purified and inserted into 

synthetic liposomes is most consistent with a direct role for ATL in homotypic membrane 

fusion (Orso et al., 2009; Anwar et al., 2012; Zhang et al., 2013). 

 Current models for the ATL fusion mechanism are based on several key findings. 

First, fusion depends strictly on GTP hydrolysis. The nonhydrolyzable GTP analogue 

guanosine 5-O-[gamma-thio]triphosphate (GTPγS) failed to substitute for GTP (Orso et 

al., 2009; Moss et al., 2011), and the hydrolysis-defective R48A D-ATL variant failed to 

catalyze fusion even when GTP was provided (Pendin et al., 2011; Byrnes et al., 2013). 

Second, x-ray crystal structure determinations of the ATL1 soluble domain initially 

revealed two distinct dimer configurations (Bian et al., 2011; Byrnes and Sondermann, 

2011). Both configurations had the GTPases interacting in a head-to-head manner with 

bound nucleotides near the dimer interface. However, the conformers also differed from 

one another markedly. In one (form 2), the three-helix bundle (3HB) comprising the 

middle domain of each subunit was bent back away from the dimer interface axis, 

packing against a helix (α6) within the GTPase head of the same subunit (Bian et al., 

2011; Byrnes and Sondermann, 2011). By contrast, the other conformer (form 1) lacked 

the intramolecular 3HB-head interactions observed in the form 2 conformer, due to the 

release of the 3HB from the head and a subsequent rigid body rotation about a conserved 

proline within the linker connecting the 3HB to the head. The rotation of the 3HB causes 

the middle domains to cross over one another, bringing the 3HBs, pointing away from 
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one another initially in an extended configuration, into close parallel alignment (Bian et 

al., 2011; Byrnes and Sondermann, 2011; Byrnes et al., 2013). Additionally, crossover 

buries a much larger surface area (>3.5-fold) between subunits, creating a more stable 

configuration (Bian et al., 2011; Byrnes and Sondermann, 2011; Byrnes et al., 2013). 

 In addition to conformational changes within the GTPase and 3HB domains, a 

requirement for the cytoplasmic tail of ATL was also demonstrated (Moss et al., 2011; 

Liu et al., 2012). Though the tail primary sequence is not well conserved, it is 

characterized by a predicted amphipathic helix just proximal to the second membrane-

spanning segment. A peptide derived from this helix in D-ATL penetrated into the lipid 

bilayer, and this ability correlated with fusion activity in vitro (Liu et al., 2012). Thus tail 

insertion was proposed to contribute a key lipid-destabilizing force necessary for fusion. 

 Based on the above findings, a consensus model for the ATL mechanism has 

emerged: GTP binding and hydrolysis, with help from the C-terminal tail, drives fusion 

by drawing opposing membrane-anchored ATL soluble domains together in trans and 

inducing crossover formation. Yet there is still little agreement on the details of the 

fusion mechanism. At first, the lack of consensus was attributed to the uncertainty of the 

nucleotide-bound state for each of the initial crystal structure dimer conformers. 

Irrespective of the nucleotide analogue used during crystallization, only GDP was 

observed in the active site (Bian et al., 2011; Byrnes and Sondermann, 2011). Despite 

this, dimers were suggested to form in the GTP-bound state independent of nucleotide 

hydrolysis, because stable dimers were recovered after incubation with the 

nonhydrolyzable GTP analogue GMPPNP, even though they were also recovered with 

the transition-state analogue GDP-AlF4
−

 (Byrnes and Sondermann, 2011; Morin-Leisk et 

al., 2011; Moss et al., 2011). Subsequent chemical cross-linking and cryo-electron 

microscopy (cryo-EM) analysis revealed that the GMPPNP dimers were in the crossover 

configuration (Morin-Leisk et al., 2011). This observation was confirmed by more recent 

x-ray crystal structure determinations revealing an additional form 3 crossover dimer 

conformer resembling the previously observed form 1 conformer, though with clear 

differences in the active site and also exhibiting more tightly packed interactions overall 

(Byrnes et al., 2013). The form 3 dimer, produced upon crystallization with either 

GMPPNP or GDP-AlF4
−, retained the respective analogues in the active site, indicating 
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that ATL1 is capable of adopting the tightly packed crossover configuration in at least 

two distinct nucleotide-bound states. Collectively the observations failed to resolve 

whether dimer formation and/or crossover require nucleotide hydrolysis. 

 Fortunately, recent kinetic measurements revealed that both dimer formation and 

crossover, at least in the soluble phase, are catalyzed by nucleotide hydrolysis. Using 

fluorescence resonance energy transfer–based probes to independently monitor head-to-

head contact and crossover formation within the truncated ATL1 soluble domain, 

Sondermann and colleagues observed relatively efficient head contact and crossover with 

GMPPNP, as predicted from earlier studies. Remarkably, however, both head contact and 

crossover were accelerated two orders of magnitude (from t1/2 ~100 s to t1/2 ∼1 s) in the 

presence of hydrolyzable GTP (Byrnes et al., 2013). 

 Of significance, previous studies probing the conformational coupling of ATL to 

its GTP hydrolysis cycle have largely been carried out in the soluble phase, using 

molecules lacking a membrane anchor (Bian et al., 2011; Byrnes and Sondermann, 2011; 

Byrnes et al., 2013; Morin-Leisk et al., 2011; Moss et al., 2011). This might present a 

serious caveat if the soluble domain were to behave differently from its membrane-

anchored counterpart, possibly due to greater flexibility in the absence of membrane 

anchoring. To address this issue, we used membrane-anchored ATL to analyze the 

requirement for both GTP hydrolysis and for crossover in the context of both membrane 

tethering and membrane fusion reactions. Similar to the recent model put forth by 

Sondermann and colleagues, in which energy input is required at the earliest trans pairing 

step of the fusion reaction (Byrnes et al., 2013), our results revealed a clear requirement 

for nucleotide hydrolysis in the stable trans pairing of ATL molecules during vesicle 

tethering. However, unlike the recently proposed model, our findings also revealed that 

crossover can be uncoupled from tethering by mutation. Thus crossover formation, 

though possibly catalyzed in concert with tethering by nucleotide hydrolysis as put forth 

recently (Byrnes et al., 2013), nevertheless plays a more pivotal role in driving membrane 

fusion than in membrane tethering. 
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MATERIALS AND METHODS 

 

Cells, constructs, and reagents 

 Cell expression studies were conducted on Cos-7 cells maintained at 37°C in a 

5% CO2 incubator in DMEM (Sigma-Aldrich) and 10% FBS (Atlanta Biologicals) with 

1% penicillin/streptomycin (Thermo Fisher Scientific). N-terminally eYFP tagged D-

ATL was kindly provided by James McNew (Rice University, TX). The 6xHis-tagged 

Drosophila melanogaster atlastin (D-ATL) was constructed for protein production using 

PCR amplification of nucleotides encoding amino acids 1–541 of D-ATL from eYFP-

DATL and cloned into the pRSETB vector at NheI and EcoRI sites. Mutations specific to 

this study were generated using QuikChange mutagenesis (QIAGEN) and fully verified 

by sequencing (Genewiz). With the exception of Fig 3-6, all variants used for protein 

production in this study, including the wild type, had the following additional amino acid 

changes G343C, C350A, C429L, C452L, C501A. These substitutions were introduced at 

the outset for the express purpose of restricting the reactivity of the sulfhydryl-reactive 

cross-linker BMOE to the G343 position. Notably, a D-ATL version containing all of the 

indicated substitutions had fusion activity similar to that of the unaltered D-ATL (Fig S3-

4). The variants used in Fig 3-6 had none of the above cysteine substitutions. The Myc-

REEP5 construct was previously described (Morin-Leisk et al., 2011). All lipids were 

purchased from Avanti Polar Lipids. GTP, GDP, GMPPNP and GTPγS were purchased 

(Sigma-Aldrich), reconstituted to 100 mM stocks in 10 mM Tris, 1 mM EDTA pH 8.0, 

and stored at -80°C. 

 

Protein expression and purification 

 Protein expression was induced with 0.2 mM IPTG in BL21(DE3)pLysS cells at 

16°C for 2.5 hrs. Cells were lysed in 4% Triton-X 100 (Roche) in a standard lysis buffer 

and 6xHis-tagged proteins purified using standard protocols on Ni+2 agarose beads 

(QIAGEN). Bound protein was eluted in 50 mM Tris, pH 8.0, 250 mM imidazole, 100 

mM NaCl, 5 mM MgCl2, 10% glycerol, 2 mM β-mercaptoethanol, 0.1% Anapoe-X 100 

(Affymetrix), 1mM EDTA. Protein yields were typically 4–8 mg/ml (~1 mg per liter of 
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culture), >85% pure, flash frozen in liquid N2, and stored at -80°C. 

Proteoliposome production 

 Lipids in chloroform dried down by rotary evaporation were hydrated by 

resuspension in A100 Buffer (25 mM HEPES pH 7.4, 100 mM KCl, 10% glycerol, 2 mM 

β-mercaptoethanol, 1 mM EDTA) (Moss et al., 2011), final lipid concentration ~10 mM, 

and subjected to 12 freeze thaw cycles in liquid N2 and room temperature water. 100-300 

nm diameter liposomes were formed by extrusion through 100 nm polycarbonate filters 

using the LipoFast LF-50 extruder (Avestin) and checked for size by DLS (as described 

below and Fig S3-1). Unlabeled liposomes consisted of POPC:DOPS (85:15) and labeled 

liposomes had POPC:DOPS:NBD-DPPE:rhodamine-DPPE (82:15: 1.5:1.5). D-ATL in 

0.1% Anapoe-X 100 was reconstituted into pre-formed 100 nm liposomes as previously 

described (Moss et al., 2011; Orso et al., 2009). In brief, all reconstitutions were carried 

out at a protein to lipid ratio of 1:300 at an effective detergent-to-lipid ratio of ~0.7 as 

previously described (Moss et al., 2011). Protein and lipid were incubated at 4°C for 1 h. 

Detergent was removed by SM-2 Bio-Beads (BioRad) at 70 mg Triton-X 100 per 1 g of 

beads. Insoluble protein aggregates were pelleted by centrifugation of the samples in a 

microcentrifuge for 10 min at 16,000 x g. Thereafter, reconstituted D-ATL 

proteoliposomes were adjusted to 50% Nycodenz and separated from unincorporated 

protein by flotation of proteoliposomes through a (50%/45%/0%) Nycodenz (Axis- 

Shield) 5 ml step gradient. All Nycodenz solutions were made in A100 Buffer without 

glycerol. After centrifugation at 40 k rpm for 16 h at 4°C in a SW-50.1 rotor, the gradient 

was fractionated and analyzed by SDS-PAGE stained with Coomassie Blue to assess 

insertion efficiency. The proteoliposomes typically migrated to the 45%/0% Nycodenz 

interface. Finally, the floated fraction was desalted over a 2.4 ml Sephadex A (GE 

Healthcare) column into A100 Buffer, stored at 4°C and used within 72 hr. 

 

Fusion Assay 

 Fusion assays were performed as previously described (Moss et al., 2011), except 

that donor and acceptor proteoliposomes were mixed at a molar ratio of 1:2. In brief, 

labeled donor proteoliposomes (0.2mM) were mixed with unlabeled acceptor 

proteoliposomes (0.4mM) in A100 Buffer in the presence of 5 mM MgCl2 in a total 
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volume of 200 µl per reaction. The reaction mixture was transferred into a clear, flat-

bottomed polystyrene 96- well plate (Corning) and incubated at 37°C for 10 min. The 

fusion reaction was started by addition either of 2 mM GTP, 2 mM GMPPNP (final 

concentration), or buffer. NBD fluorescence (excitation 460 nm, emission 538 nm) was 

measured at 1-min intervals with a 1 sec shaking after every read. After 60 min, 10 µl of 

10% Anapoe-X 100 was added to determine the total fluorescence in the sample. All 

measurements, reported as the percent of total fluorescence after solubilization in Anope-

X 100, were acquired on a Tecan Safire II fluorescence plate reader using Microsoft 

Excel. 

 

Dynamic light scattering (DLS) 

 Proteoliposomes (1 mM total lipid) in A100 Buffer were incubated in the absence 

or presence of 2 mM GTP, GDP, or GMPPNP all in the presence of 5 mM MgCl2. 

Incubations were for 10 min at 37°C unless indicated otherwise. Only for P319G,K320E 

D-ATL, the MgCl2 concentration was lowered to 3 mM to reduce a low level of size shift 

seen in the absence of nucleotide. Thereafter, the reaction was diluted tenfold (0.1 mM 

total lipid) into A100 Buffer + 5 mM MgCl2 in a disposable polystyrene cuvette (Thermo 

Fisher Scientific). Measurements were acquired on a Malvern ZetaSizer Nano Series 

(Model#Zen3600) instrument. Parameters were set automatically by the instrument 

software (Dispersion Technology Software version 5). Where indicated, EDTA was 

added to samples after the initial measurement to a final concentration of 40 mM and the 

measurements repeated after 10 min. The average of three measurements per sample was 

used to represent the z-average of the vesicles. 

 

Cryo-EM 

 Proteoliposomes in A100 Buffer + 5 mM MgCl2 were incubated in the absence or 

presence of 2 mM GTP for 20 min at RT. Reaction solutions (4 µl) were applied onto R 

2/1 Quantifoil® R2/1 holey carbon EM grids (Quantfoil Micro Tools GmbH, Jena, 

Germany), blotted from the backside of the grid for 3-4 sec and manually plunge-frozen 

into liquid ethane. The frozen grids were loaded onto a Gatan 626 single tilt liquid N2 

cryo-holder (Gatan Inc., Warrendale, PA) and imaged at 200 kV with an FEI TF20 
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microscope (FEI Corp., OR). Low-dose (~20 electron/Å2) projection images were 

recorded on a 4k x 4k UltraScan 4000 CCD camera (Gatan, Inc., Warrendale, PA) at 

under focus of ~2 µm and nominal magnifications of 50,000x. A total of 70-100 images 

were recorded from randomly selected areas in each cryo-specimen. The width of the 

zipper-like structures was determined by measuring the distance between the two outer 

dark density peaks from opposing membranes using the line profile function in the 

Digital Micrograph software (Gatan Inc., Warrendale, PA). Only the images recorded 

under similar defocus values were used for the analysis. The average width was 

calculated from 10-15 straight “zipper” profiles. 

 

Fluorescence microscopy 

 Cos-7 cells on 12 mm glass coverslips (24-well plate) were transfected with 100 

ng of the indicated eYFP-D-ATL plasmids and 1.5 µl Lipofectamine 2000 transfection 

reagent (Life Technologies) according to manufacturer’s instructions. 48 hrs following 

transfection, cells were fixed in 3% paraformaldehyde in PBS, washed, and mounted 

directly. For REEP5 co-localization, cells were co-transfected with 50 ng eYFP-D-ATL 

and 50 ng Myc-REEP5, fixed in ice cold MEOH and stained as previously described 

(Morin-Leisk et al., 2011) with the 9E10 monoclonal antibody against the Myc epitope 

followed by Alexa 568-conjugated goat anti-mouse secondary antibody (Life 

Technologies). Images were obtained using a spinning-disk confocal scanhead 

(Yokagawa; PerkinElmer) mounted on an Axiovert 200 microscope (Zeiss) with a 100x 

1.4 NA objective (Zeiss) and acquired using a 12-bit ORCA-ER camera (Hamamatsu 

Photonics). Maximal value projections of sections at 0.2-µm spacing were acquired using 

Micro-manager open source software (UCSF). 

 

Cross-linking 

 Purified 6xHis-tagged D-ATL (residues 1 to 415) and variant proteins were 

dialyzed into SEC buffer (25 mM Tris-HCl pH 7.0, 100 mM NaCl, 5 mM MgCl2, 2 mM 

EGTA) at 4°C and pre-cleared by centrifugation at 100,000 rpm for 15 min (TLA100). 

5µM of each protein was incubated at RT in SEC buffer, pH 7.0, in the absence or 

presence of 2 mM GMPPNP, GDP, GTP, GDP-AlF4
- (2 mM GDP/2 mM AlCl3/20 mM 
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NaF) or AlF4- only (2 mM AlCl3/20 mM NaF). After 30 min at RT, the reaction was 

diluted 2.5-fold into SEC (to 2 µM D-ATL) in the absence or presence of 6 µM BMOE 

(Thermo Fisher Scientific) and incubated for 1 h at RT. Samples were then quenched 

with 20 mM DTT for 15 min, mixed with reducing sample buffer, resolved by SDS-

PAGE and stained with Coomassie Blue. 

 

GTPase Assay 

 Purified 6xHis-tagged D-ATL (residues 1 to 415) and variant proteins were 

dialyzed into 50 mM Tris-HCl, pH 7.5, 100 mM NaCl, 1 mM MgCl2 at 4°C and pre-

cleared by centrifugation at 100,000 rpm (TLA100) at 4°C for 15 min. GTPase activity 

was measured using the Enzchek Phosphate Assay kit (Life Technologies). A standard 

reaction for GTPase measurements involved mixing 1 U/ml purine nucleoside 

phosphorylase (PNP), 0.2 mM 2-amino-6-mercapto-7-methylpurine riboside (MESG) in 

the provided buffer (50 mM Tris–HCl, pH 7.5, 1 mM MgCl2, 0.1 mM sodium azide) 

supplemented with 100 mM NaCl and 0.5 mM GTP in a total volume of 200 ml. After 10 

min at 37°C, reactions were transferred to a 96-well plate (Costar) and started by addition 

of either buffer or 6xHis-tagged D-ATL variants at a final concentration of 1 or 2 mM. 

Absorbance at 360 nm was monitored at 30 s intervals for 30 min at 37°C in a plate 

reader (Tecan, Safire 2). Data were normalized to a phosphate standard and initial 

velocities calculated using the early linear portion of each curve. 

 

 

 

 

 

 

 

 

 

 

 



  57 

RESULTS 

 
Membrane-tethering assay 

 To clarify the energetics of trans dimer formation in the context of membranes, 

we set out to establish an assay that would independently evaluate the requirements for 

ATL-mediated membrane tethering, apart from fusion. For the tethering assay, we 

wanted to adhere closely to fusion conditions to maximize the relevance of our findings. 

However, because fusion could complicate the evaluation of tethering, we expressly 

prevented fusion, at least at the outset, by using membrane-anchored versions of ATL 

with small C-terminal truncations removing the cytoplasmic tail and/or the second 

transmembrane (TM) helix. Truncation had previously been reported to block fusion 

(Moss et al., 2011; Liu et al., 2012), but we reasoned that it might not adversely impact 

tethering, because trans interactions between TM helices or the tail had not been 

reported. Furthermore, because human ATL had not yet been reported to catalyze fusion, 

we used D-ATL, which catalyzes fusion robustly in a GTP hydrolysis–dependent manner 

and is ~50% identical to ATL1/2/3 (Orso et al., 2009; Bian et al., 2011). To first confirm 

that the truncated constructs were fusion incompetent under our assay conditions, we 

assessed their fusion kinetics relative to the full-length (FL) protein. As expected, fusion 

by FL D-ATL was strictly dependent on GTP hydrolysis, with no fusion signal either in 

the absence of nucleotide or in the presence of GMPPNP (Figure 3-1). Also as 

anticipated (Moss et al., 2011; Liu et al., 2012), both the tailless protein and a further 

truncated protein, containing just the first TM helix (single TM D-ATL; Liu et al., 2012), 

were entirely defective for fusion (Figure 3-1). 

 

Membrane tethering assessed by dynamic light scattering 

 On the basis of our expectation that tethering of individual proteoliposomes in the 

absence of fusion should generate larger proteoliposome clusters, we used dynamic light 

scattering (DLS), which is well-suited to detecting such size changes (Arac et al., 2006). 

Proteoliposomes for the tethering assay were prepared in the same manner as for the 

fusion assay. Single TM D-ATL proteoliposomes, confirmed to be fusion incompetent 

(Figure 3-1), were incubated with GTP-Mg+2 at 37°C for varying times, and the mean 
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hydrodynamic diameters of both the starting and resulting liposome populations were 

monitored. The starting proteoliposomes were relatively monodisperse with a 200- to 

300-nm mean hydrodynamic diameter (z-average; Supplemental Figure S3-1 and Figure 

3-2A). On addition of GTP-Mg+2, the samples became polydisperse and the z-average 

increased rapidly, reaching values on the order of several microns by 10 min (Figure 3-

2A). The observed size shift was temperature dependent and reversed by EDTA 

treatment, consistent with GTP-Mg+2 dependence (Figure 3-2B). Notably, even without 

EDTA treatment, the GTP-Mg+2–induced size shift was reversed after prolonged 

incubation, driven possibly by dimer disassembly after GTP depletion (Figure 3-2C; 

Morin-Leisk et al., 2011; Byrnes et al., 2013). 

 

GTP-dependent membrane tethering visualized by cryo-EM 

 To complement the DLS assay, we also performed cryo-EM analysis, which 

revealed the morphology of a putative GTP-dependent ATL-tethered intermediate 

(Figure 3-3). After brief incubation with or without GTP, samples were deposited onto 

EM grids and immediately subjected to plunge freezing. Overview images taken at low 

magnification showed large clusters of vesicles in the GTP sample, often 1 to 2 µm in 

length, compared with a more dispersed arrangement in the absence of GTP (Figure 3-

3A). D-ATL–mediated vesicle tethering was directly visualized as zipper-like parallel-

aligned membrane interfaces within each cluster in the GTP sample (Figure 3-3B, with a 

further enlarged image shown in Figure 3-3C, left panel). These structures were likely 

formed through extended interactions between single TM D-ATL in opposing 

proteoliposomes. Importantly, the zipper-like structures were seen more frequently with 

GTP than without, consistent with the DLS results (Figure 3-3D, WT, black vs. gray 

bars). 

 

Tethering depends on GTP hydrolysis 

 Next we assessed the dependence of tethering on GTP hydrolysis. The 

nonhydrolyzable analogue GMPPNP was used, because it promoted stable dimer 

formation of the truncated ATL1/2 soluble domain (Byrnes and Sondermann, 2011; 

Byrnes et al., 2013; Morin-Leisk et al., 2011), albeit more slowly than GTP (Byrnes et 
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al., 2013). Moreover, the form 3 ATL1 dimer structure was crystallized with GMPPNP 

and clearly retained the analogue within the active site (Byrnes et al., 2013). Based on 

prior soluble-phase data, including our own (Morin-Leisk et al., 2011), our expectation 

was that tethering would occur readily with GMPPNP but possibly more slowly than with 

GTP. Strikingly, there was robust tethering of single TM D-ATL proteoliposomes only in 

the presence of GTP. Neither GDP nor GMPPNP could promote it, indicating a strict 

dependence on nucleotide hydrolysis (Figure 3-4). Similar results were obtained using a 

version of D-ATL lacking the tail but retaining the second TM helix (Figure 3-4). 

Additionally, another nonhydrolyzable analogue (GTPγS) also failed to support tethering 

(Supplemental Figure S3-2). 

 We were struck by the apparent lack of tethering in the absence of nucleotide 

hydrolysis. Unfortunately, AlF4
−

 by itself caused membranes to aggregate, rendering a 

test of the transition-state analogue GDP-AlF4
−

 unfeasible in this assay. Instead, we 

sought an independent means of confirming the nucleotide hydrolysis requirement. For 

this, we took advantage of D-ATL variants with mutations in a key conserved catalytic 

residue R48, which when mutated to R48E or R48A, abolishes GTPase activity (Bian et 

al., 2011; Byrnes and Sondermann, 2011; Pendin et al., 2011). In the form 3 dimer 

conformer, the R48 side chain was observed to point in toward each respective active 

site, functioning as an intramolecular arginine finger to stabilize the negatively charged 

hydrolytic transition state (Byrnes et al., 2013). However, in the form 1 and 2 dimer 

conformers, the same side chain was observed to point out toward the dimer interface 

(Bian et al., 2011; Byrnes and Sondermann, 2011). Thus R48 may swing away from the 

dimer interface en route to hydrolysis, moving in toward the active site to perform its 

catalytic function. A similar dimer-dependent rearrangement of the same R48 catalytic 

residue occurs in the closely related human guanylate-binding protein 1 (Ghosh et al., 

2006). Accordingly, charge reversal to R48E (R77E in ATL1) blocked GTP hydrolysis as 

well as stable dimer formation with either GMPPNP or GDP-AlF4
−, presumably by 

introducing charge repulsion at the dimer interface (Byrnes and Sondermann, 2011). In 

contrast, charge removal to alanine (R48A) did not impair GMPPNP-dependent stable 

dimer formation in the soluble phase, likely because the remaining head contacts were 

sufficient for dimerization (Pendin et al., 2011; Byrnes et al., 2013). However, 
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elimination of the positive charge within the active site, normally provided by the 

arginine finger, nearly eliminated hydrolytic activity (Pendin et al., 2011; Byrnes et al., 

2013). Confirming our results with GMPPNP (Figure 3-4) and GTPγS (Supplemental 

Figure S3-2), neither the R48A nor R48E variant was capable of tethering vesicles 

(Figure 3-4). It is worth mentioning that ATL is consistently monomeric in the absence of 

nucleotide or in the presence of GDP (Byrnes and Sondermann, 2011; Morin-Leisk et al., 

2011; Moss et al., 2011), and because our membrane-anchored D-ATL was prepared in 

the absence of nucleotide, it was unlikely that hydrolysis was serving to break up 

preexisting ATL crossover dimers. Altogether these results established, for the first time, 

that tethering by membrane-anchored D-ATL requires energy input from GTP 

hydrolysis. Notably, the lack of any detectable vesicle tethering with GMPPNP 

contrasted with previously observed formation of GMPPNP-induced stable, truncated, 

soluble-domain dimers (Byrnes and Sondermann, 2011; Morin-Leisk et al., 2011). The 

difference, though it remains to be demonstrated, may reflect further slowing of 

hydrolysis-independent crossover (observed with truncated ATL) by the conformational 

constraints imposed by membrane anchoring. 

 

Tethering does not depend on a salt bridge required for fusion 

 On the basis of the hydrolysis requirement for tethering (Figure 3-4) combined 

with the prior observation that hydrolysis catalyzed concerted head contact and crossover 

in the soluble phase (Byrnes et al., 2013), we anticipated that crossover formation would 

also be required for tethering (Byrnes et al., 2013). Work from our lab had previously 

shown that the crossover dimer configuration of soluble ATL2 depends on an 

intramolecular salt bridge between two oppositely charged residues at the heart of the 

crossover in the ATL1 crystal structures (Morin-Leisk et al., 2011). One residue, K372, is 

in the linker connecting the GTPase head to the 3HB; and the other residue, E380, is 

nearby at the start of the 3HB (Figure 3-5A). Though the K372-E380 salt bridge is 

intramolecular, it likely stabilizes a kinked conformation of the linker in each monomer; 

the kink in turn promotes crossover dimer formation by facilitating intermolecular 

packing interactions. Supporting this hypothesis, charge reversal of either of the residues 

(K372E or E380R) impaired formation of a cross-linked product predicted to depend on 
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crossover (Morin-Leisk et al., 2011). These mutations also had functional consequences, 

blocking the ability of ATL2 to support ER network formation in cells (Morin-Leisk et 

al., 2011). Attesting to the specificity of the charge-reversal mutations, the inhibitory 

effects of each single charge-reversal mutation were fully rescued in the compensatory 

double mutant (K372E,E380R; Morin-Leisk et al., 2011). Of relevance to this work, 

K372 and E380 are conserved not only between ATL1 and ATL2, but also in D-ATL. 

Moreover, charge reversal of either of the corresponding residues in D-ATL (K320E and 

E328R) had previously been reported to block fusion (Bian et al., 2011). Consequently 

we reasoned that the corresponding salt bridge in D-ATL would be essential for fusion 

and that mutations perturbing it might prove useful for testing the dependence of 

membrane tethering on crossover. 

 To assess whether K320 and E328 form a required salt bridge for D-ATL, we first 

expressed each charge-reversal mutation in the context of FL D-ATL. Like ATL2, wild-

type D-ATL expression did not adversely affect the branched ER network morphology in 

Cos-7 cells (Figure 3-5B, quantified in 3-5C). In contrast, and as previously observed for 

ATL2 (Morin-Leisk et al., 2011), expression of either the K320E or E328R D-ATL 

variant led to dominant-negative perturbations of the ER, including loss of the tubular 

network in the periphery and collapse into bundles or aggregates of ER membrane 

(Figure 3-5B, quantified in 3-5C). Although the perturbations were stronger for K320E 

than for E328R (Figure 3-5C), the dominant-negative effects of either mutation were 

fully rescued in the double-mutant variant (Figure 3-5B, quantified in 3-5C), again 

attesting to the importance of the salt bridge for in vivo functionality. Up to this point, the 

analogous mutations in D-ATL seemed to behave similarly to those in ATL2, consistent 

with conservation of the salt bridge as a stabilizing force for forming the crossover dimer. 

That these and other D-ATL variants were correctly ER targeted was confirmed by 

counterstaining for cotransfected REEP5, a tubular ER marker (Hashimoto et al., 2014; 

Supplemental Figure S3-3). 

 For confirming the importance of the K320-E328 salt bridge for fusion, both 

single- and double-mutant variants were constructed in the context of FL D-ATL and 

incorporated into liposomes for the fusion assay. Neither the K320E nor the E328R 

variant had fusion activity, as anticipated (Figure 3-5D; Bian et al., 2011). Remarkably, 
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the double-mutant variant catalyzed fusion to a similar extent as wild-type, though with 

slowed kinetics (Figure 3-5D). This result confirmed the importance of the K320-E328 

salt bridge for fusion. Whether the compensatory mutation restored full lipid bilayer 

fusion, rather than selectively restoring outer leaflet mixing, remains to be determined, 

requiring additional assays that measure inner leaflet and content mixing (Orso et al., 

2009; Liu et al., 2012). 

 Having established the importance of the K320-E328 salt bridge for fusion, we 

asked whether tethering would also depend on the salt bridge. The single TM D-ATL 

variants containing either the K320E or E328R mutation were assessed for tethering by 

DLS. To our surprise, both variants tethered membranes robustly and in a manner that 

depended on hydrolyzable GTP, contrasting with the nucleotide binding–defective R48E 

variant, which failed to tether under any condition (Figure 3-5E). Similar results were 

obtained with FL versions of the K320E and E328R mutant variants retaining the second 

TM helix and tail (Figure 3-5E). Thus, although membrane fusion depended considerably 

on the K320-E328 salt bridge, tethering did not. 

 

Disruption of the D-ATL K320-E328 salt bridge does not abolish crossover 

 Our results thus far suggested that tethering might be crossover independent. 

Notably, though, our earlier work demonstrating the dependence of crossover on the 

identified salt bridge had been carried out exclusively on ATL2. Consequently we needed 

to confirm the effect of the corresponding mutations on D-ATL crossover. We therefore 

subjected the K320E variant of the D-ATL soluble domain to the same cross-linking 

analysis used previously to monitor ATL2 crossover (Morin-Leisk et al., 2011). 

 The 8Å homobifunctional sulfhydryl cross-linker BMOE, is ideal for capturing 

ATL2 crossover dimers, because two sulfhydryl 3HB residues (C395) come to within ∼8 

Å of one another uniquely in the crossover dimer configuration (Bian et al., 2011; Byrnes 

and Sondermann, 2011; Byrnes et al., 2013; Morin-Leisk et al., 2011). D-ATL has a 

glycine at the same position, and replacing it with cysteine to generate G343C D-ATL 

did not at all impair fusion activity (Supplemental Figure S3-4). As anticipated (Morin-

Leisk et al., 2011), cross-linked D-ATL soluble-domain dimers were captured in the 

presence of GMPPNP and also with GTP (albeit less so), but not with either GDP or in 
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the absence of nucleotide (Figure 3-6A). Presumably, a lower level of crossover dimers 

were captured after incubation with GTP, because the dimers form rapidly (t1/2 ~1 s) but 

also undergo disassembly upon GTP consumption (Byrnes et al., 2013), rendering them 

harder to capture in the subsequent cross-linking step. A higher percentage of crossover 

dimer capture was seen with D-ATL (~66%) than was previously seen with ATL2 

(~32%), possibly because the D-ATL crossover dimer is more stable than its ATL2 

counterpart. Finally, crossover dimers were also captured efficiently with GDP-AlF4
−. 

This was anticipated, based on the idea that crossover is catalyzed by GTP hydrolysis, as 

well as the observation that ATL1 crystals formed with the transition-state analogue 

produced the crossover dimer configuration (Byrnes et al., 2013). 

 We next tested the ability of the salt bridge variant K320E D-ATL (with G343C) 

to undergo crossover. As anticipated (Morin-Leisk et al., 2011), GMPPNP-dependent 

cross-linking was inhibited for this variant. But to our surprise, GDP-AlF4
−-dependent 

cross-linking was not (Figure 3-6A). GDP-AlF4
−

 was not tested in our previous analysis 

(Morin-Leisk et al., 2011); therefore it remains to be clarified whether the same lack of 

sensitivity would also be observed for ATL2. Regardless, it was clear that the K320E 

mutation may impair but does not altogether block D-ATL crossover. 

 

Identifying new D-ATL mutations that abolish crossover 

 The ability of the K320E variant to undergo crossover, albeit reduced, raised an 

obvious concern that this variant retained activity in the tethering assay (Figure 3-5E), not 

because of a lack of requirement for crossover in tethering, but because the K320E 

mutation only partially impaired crossover. To address this concern, we searched for a 

second mutation in a nearby residue that might eliminate crossover altogether. Two 

proline residues in the linker connecting the 3HB to the GTPase head (P317 and P319) at 

or near the pivot point of the 3HB rotation (Figure 3-6B) seemed good candidates for 

mediating this rotation (Bian et al., 2011; Byrnes and Sondermann, 2011). When 

expressed in Cos-7 cells, both P317G and P319G D-ATL variants, like the K320E 

variant, perturbed the ER network, indicating a loss of ER network–forming functionality 

(Figure 3-6C, quantified in 3-6D). As before, ER targeting was confirmed by 

counterstaining for cotransfected REEP5 (Supplemental Figure S3-3). In the cross-
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linking assay, the P317G mutation only slightly affected crossover, whereas the P319G 

mutation had an inhibitory effect on par with the K320E mutation, inhibiting GMPPNP-

dependent but not GDP-AlF4
−–dependent crossover (Figure 3-6A). Encouraged by the 

partial inhibition of crossover caused by the P319G mutation, we tested whether it might 

result in a more potent block when combined with the K320E mutation. As expected, the 

double-mutant P319G,K320E variant in Cos-7 cells also perturbed ER network 

morphology (Figure 3-6C, quantified in 3-6D). Strikingly, and in contrast to the single-

mutant variants, the double-mutant variant displayed a complete block in our cross-

linking assay, even in the presence of GDP-AlF4
−

 (Figure 3-6A). The cross-linking assay 

was also attempted on membrane-anchored molecules, but technical issues hindered the 

analysis. Still, given the complete block exhibited by the double-mutant soluble domain, 

it was difficult to envision any crossover capability on the part of the more constrained 

membrane-anchored counterpart. In sum, the combined P319G,K320E mutations were 

likely to provide an effective means of blocking crossover. 

 One final concern was that the double P319G,K320E mutations might not only 

block crossover but also impair GTP hydrolysis. Recent work had revealed a sensitivity 

of GTP loading to mutations in 3HB residues outside the GTPase domain, presumably 

because the mutations impeded packing of the 3HB against the α6 helix within the head 

(Byrnes et al., 2013). Therefore it was imperative that any effect of the P319G,K320E 

mutation on GTP loading or GTP hydrolysis be ruled out. GTPase assays revealed that all 

variants, including P319G,K320E, were as active as the wild-type protein in their ability 

to hydrolyze GTP, confirming that the mutations selectively impaired crossover (Figure 

3-6E). 

 

Tethering does not depend on crossover 

 Finally, we tested for the ability of the hydrolysis-active, but crossover–defective, 

P319G,K320E variant to mediate tethering. As with either the single TM or FL versions 

of the K320E variant (Figure 3-5E), the double-mutant P319G,K320E FL variant still 

tethered membranes robustly and in a manner dependent on hydrolyzable GTP (Figure 3-

6F). As also seen for the K320E FL variant, the P319G,K320E FL variant lacked any 

detectable fusion activity (Figure 3-6G). On the basis of the lack of impairment of 
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tethering by either the K320E or P319G,K320E mutations, we were compelled to 

conclude that membrane tethering by D-ATL depends strictly on GTP hydrolysis but not 

on forming the crossover configuration. Importantly, tethering by either the K320E or 

P319,K320E mutant variants, both of which retained the second TM helix and tail, was 

morphologically similar to that seen with single TM D-ATL, with zipper-like parallel-

aligned membrane interfaces (Figure 3-3C) that were seen more frequently with GTP 

than without (Figure 3-3D). In addition, although further structural work will be required 

to fully resolve the difference, “zippers” formed with the crossover–defective 

P319G,K320E variant appeared slightly wider than those formed with either the partially 

crossover–defective (K320E) or crossover–competent (single TM) variants, suggestive of 

a more extended tether in the absence of crossover (Figure 3-3D). 
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FIGURES 

 

Figure 3-1: Tail less and single TM D-ATL are fusion incompetent.  

 

 
Full length (FL), tail less (residues 1–471), or single TM (residues 1–447) D-ATL was reconstituted into 
donor and acceptor vesicles. Fusion was monitored by the de-quenching of NBD-labeled lipid present in 
the donor vesicles after addition of GTP or GMPPNP or in the absence of nucleotide. 
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Figure 3-2: Fusion-incompetent D-ATL is capable of tethering membranes.  

 

 
(A) Tethering is time dependent. Single TM D-ATL was reconstituted into vesicles and incubated with 
GTP at 37°C for the indicated times before DLS measurements. (B) Tethering is temperature dependent. 
Vesicles were incubated at the indicated temperatures in the absence of GTP (37°C) or presence of GTP at 
the indicated temperatures for 10 min; this was followed by DLS. The 37°C GTP samples were further 
treated with EDTA and re-measured by DLS. (C) Tethering is reversible. Prolonged incubation at 37°C led 
to reversal of tethering as indicated by DLS. In each case, the average of three independent measurements ± 
SD is shown. 
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Figure 3-3: Cryo-EM visualization of vesicle tethering by D-ATL.  

 

 
(A and B) Single TM D-ATL reconstituted into vesicles was incubated at RT for 20 min in the absence or 
presence of GTP and imaged with cryo-EM at low (A) and high (B) magnification. Scale bars: (A) 1 µm; 
(B) 100 nm. Arrowheads (B) mark zipper-like structures formed between opposing membranes. (C) 
Enlarged views of the zipper-like structures from wild-type single TM (left), P319G,K320E FL (middle), 
and K320E FL (right) D-ATL. Arrows indicate where two membranes are “zippered” together. Scale bar: 
20 nm. (D) Comparison of the average number of tethered structures per micrograph, in the absence (black) 
and presence (gray) of GTP. Data shown are from 70–100 micrographs per sample. Also shown is a 
comparison of the average width of the “zippers” (green) in the presence of GTP from wild-type single 
TM, P319G,K320E FL and K320E FL D-ATL samples. Measurements are derived from >10 “zippers” for 
each, ± SD. The indicated p values were determined using an unpaired Student’s t test. 
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Figure 3-4: Tethering depends on GTP hydrolysis.  

 

 
 
Wild-type, R48E (both dimerization incompetent and hydrolysis defective), or R48A (dimerization 
competent but hydrolysis defective) mutant variants of single TM D-ATL were reconstituted into vesicles 
and incubated at 37°C for 10 min in the presence or absence of the indicated nucleotides and subjected to 
DLS. A tail less version of wild-type D-ATL is also shown. The average of three independent 
measurements ± SD is shown for each condition. 
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Figure 3-5: Fusion but not tethering depends on a K320-E328 salt bridge.  

 

 
(A) The position of the K320-E328 salt bridge is superimposed onto a PyMOL rendering of the ATL1 
crossover dimer PDB 3QNU. (B) Expression of the individual K320E and E328R FL D-ATL variants but 
not the compensatory double-mutant (K320E,E328R) variant leads to abnormal ER network structure in 
Cos-7 cells. Cells transfected with the indicated eYFP-tagged variants were imaged 48 h later by confocal 
microscopy. Scale bar: 10 µm. (C) Quantification of the percent of expressing cells displaying a normal 
branched ER, >100 cells per measurement, average of three independent measurements ± SD. (D) The 
K320-E328 salt bridge is required for fusion. Wild-type, K320E, E328R, or the double-mutant 
(K320E,E328R) variant of FL D-ATL were reconstituted into donor and acceptor vesicles. Fusion was 
monitored by the dequenching of NBD-labeled lipid present in the donor vesicles in the presence or 
absence of GTP. (E) The K320-E328 salt bridge is not required for tethering. Either single TM or FL 
versions of either K320E or E328R D-ATL were incorporated into vesicles and incubated at 37°C for 5 min 
with the indicated nucleotides. Thereafter samples were subjected to DLS. For comparison, tethering by the 
single TM R48E D-ATL variant is also shown. The average of three independent measurements ± SD is 
shown for each condition. 
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Figure 3-6: Tethering does not require crossover.  

 

 
 

(A) The K320E mutation partially inhibits crossover, but the double mutation P319G,K320E abolishes it. 
The soluble domain of wild-type, K320E, P317G, P319G, or P319G,K320E D-ATL was incubated at RT 
for 20 min in the presence or absence of the indicated nucleotides and then subjected to BMOE cross-
linking. The single asterisk marks the soluble-domain monomer and the double asterisk marks the cross-
linked dimer. All variants had the G343C substitution. (B) The positions of linker mutations made to block 
D-ATL crossover superimposed onto a PyMOL rendering of the ATL1 crossover dimer PDB 3QNU. (C) 
Expression of linker mutant variants in Cos-7 cells perturbs ER network morphology. Cells transfected 
with the indicated FL eYFP-tagged D-ATL mutant variants were visualized 48 h later by confocal 
microscopy. Scale bar: 10 µm. (D) The percent of cells expressing each variant and showing a normal 
branched ER, >100 cells per measurement, average of three independent measurements ± SD are 
quantified. The dimerization- and hydrolysis-defective R48E D-ATL is also shown for comparison. (E) 
Mutations that block crossover do not impair GTPase activity. The soluble domain of each crossover–
defective variant was assayed for GTPase activity. The average of three independent measurements ± SD is 
shown. R48E is shown for comparison. (F) Crossover–defective P319G,K320E D-ATL can tether. Vesicles 
containing P319G,K320E FL D-ATL were assessed for tethering by DLS after incubation at 37°C for 10 
min in the presence or absence of the indicated nucleotides. The average of three independent 
measurements ± SD is shown for each condition. (G) The P319G,K320E mutations block fusion. Wild-type 
or P319G,K320E D-ATL was reconstituted into donor and acceptor vesicles. Fusion was monitored by the 
dequenching of NBD-labeled lipid present in the donor vesicles in the presence or absence of GTP. 
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Figure 3-7: Working model for D-ATL–catalyzed membrane tethering and fusion.  

 

 
 
(A) GAP-like intermolecular interactions between GTP-bound subunits on opposing membranes triggers 
GTP hydrolysis. (B) Hydrolysis initiates conformational changes in the GTPase head (a short-lived 
hypothetical intermediate is shown in brackets) to simultaneously stabilize head-to-head contact for stable 
trans pairing (i) and release the 3HB for crossover (ii). Stable trans pairing tethers opposing membranes to 
one another, while crossover, with assistance from the tail, powers fusion (C). After fusion, Pi release may 
trigger dimer disassembly for subunit recycling (D). Both tethering and fusion are inhibited when 
hydrolysis is blocked by either GMPPNP or the catalytic R48A mutation. C′ and C″ depict tethered 
intermediates (bracketed in red) that accumulate either when crossover is blocked by P319G,K320E 
mutation (C′) or when the absence of the tail permits crossover but not lipid mixing (C″). 
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SUPPLEMENTARY FIGURES 

 

Figure S3-1: DLS analysis of single TM D-ATL vesicles. 

 

 
 
(A) Representative raw data showing the decay of the autocorrelation function with delay time for a sample 
containing single TM D-ATL vesicles prior to any treatment. (B) Intensity size distribution of the starting 
vesicles based on the correlation data. 
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Figure S3-2: The non-hydrolysable GTP analogue GTPγS fails to support vesicle 

tethering. 

 

 

 
 
Tail less D-ATL (residues 1-471) reconstituted into vesicles was incubated at 37°C for 10 min in the 
presence or absence of GTP or GTPγS and subjected to DLS. The average of 3 independent measurements 
± S.D. is shown for each condition. 
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Figure S3-3: Crossover defective D-ATL mutant variants co-localize with the ER 

marker REEP5 and perturb ER morphology. 

 

 
 
Cells co-transfected with the indicated eYFP-tagged full-length D-ATL variants and the Myc-tagged ER 
marker REEP5 were fixed and stained 48 hrs later using antibodies against the Myc epitope and viewed by 
confocal microscopy. The nucleotide-binding mutant variant R48E is also shown for comparison. Scale 
bar, 10µM. 
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Figure S3-4: Cysteine substitutions do not impair D-ATL fusion activity. 

 

 
 
For technical reasons a G343C, as well as four additional substitutions (cysteine to alanine/leucine), were 
made in D-ATL proteins used throughout this study (see Materials and methods for details). None of these 
substitutions impaired D-ATL fusion activity. To illustrate this point, the fusion kinetics of unaltered D-
ATL is compared to that of D-ATL with all of the substitutions used. 
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DISCUSSION 

 

GTP hydrolysis catalyzes stable trans pairing for tethering 

 We observed trans pairing between opposing membrane-anchored D-ATL, as 

defined by vesicle tethering, to be GTP dependent under a variety of conditions: either 

when D-ATL was anchored by a single TM helix (Figure 3-4), two TM helices (Figures 

3-4 and 3-5E), or both TM helices and the C-terminal tail (Figures 3-5E and 3-6F). 

Furthermore, under no condition did the nonhydrolyzable analogue GMPPNP (or GTPγS, 

Supplemental Figure S3-2) substitute for GTP. Also consistent with a requirement for 

hydrolyzable GTP, the R48A variant, defective specifically for nucleotide hydrolysis 

(Pendin et al., 2011; Byrnes et al., 2013), failed to tether (Figure 3-4). 

 The implication that nucleotide hydrolysis might be a prerequisite for, rather than 

a consequence of, stable trans pairing may seem counterintuitive, especially because 

stable truncated ATL dimers were readily captured with the nonhydrolyzable GTP 

analogue GMPPNP (Byrnes and Sondermann, 2011; Morin-Leisk et al., 2011; also 

Figure 3-6A). However, given the recent observation that dimer formation and crossover 

were both 100-fold faster with hydrolysis than without (Byrnes et al., 2013), it is now 

evident that the ready accumulation of truncated stable dimers in the absence of 

hydrolysis was likely a reflection of the stability of the crossover dimer configuration 

rather than a reflection of the GTP-bound state triggering crossover. Indeed, the form 1 

crossover dimer was initially crystallized in the presence of GDP (Bian et al., 2011), 

which generally fails to induce dimer formation in solution (Byrnes and Sondermann, 

2011; Morin-Leisk et al., 2011; Moss et al., 2011). Thus the physiological trigger for 

stable dimer formation is likely not the binding but rather the hydrolysis of GTP. As 

alluded to in the Results section, we speculate that hydrolysis may be triggered by an 

initial low-affinity trans interaction between GTP-bound heads, which may stimulate 

hydrolysis in a GAP-like manner through rearrangement of an arginine finger within each 

head, with hydrolysis in turn generating the high-affinity head-to-head contacts necessary 

for a productive fusion event. 

 Collectively our findings are most consistent with the role of GTP hydrolysis in 

the model put forth recently by Sondermann and colleagues, in which GTP catalyzes the 
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formation of head contacts required to tether opposing membranes in preparation for 

fusion (Byrnes et al., 2013). This aspect of their model, based solely on conformational 

analysis of the ATL1 soluble domain, is now well supported for membrane-anchored D-

ATL in the context of the fusion reaction. However, in contrast to another aspect of their 

model, in which crossover serves primarily to tether opposing membranes in trans 

(Byrnes et al., 2013), our findings indicate that crossover is dispensable for tethering in 

the context of the fusion reaction. 

 

Crossover formation is not required to tether membranes 

 We concluded that trans pairing is independent of crossover configuration 

formation, because robust tethering was observed by D-ATL variants that were 

essentially crossover defective (Figure 3-6, A and F). Two potential caveats to this 

interpretation are worth consideration, however. First, because our assay for crossover 

competency is a soluble-phase assay, there is a formal possibility that the membrane-

anchored P319G,K320E variant is able to achieve the crossover configuration, even 

though the truncated molecule cannot. We consider this possibility unlikely, because 

membrane anchoring would be more likely to impede rather than promote crossover. The 

absence of any detectable cross-linked product, even under the relatively permissive 

conditions of our soluble-phase assay, which captures both slow and fast crossover events 

(Byrnes et al., 2013), likely reflects complete or near-complete loss of crossover 

capability on the part of the P319G,K320E variant. A second caveat pertains to the 

definition of crossover. Dimer capture with BMOE, with its 8Å spacer arm, is expected 

to depend on close parallel 3HB alignment. A hybrid conformation, with the 3HBs 

neither fully extended nor fully parallel aligned, could form and yet escape capture by 

BMOE cross-linking. Therefore our conclusions are necessarily limited to assessing the 

requirement for the fully parallel-aligned crossover conformation. Regardless, our results 

provide compelling evidence that the ability of D-ATL to undergo full crossover is not a 

prerequisite for tethering. 

 

Crossover formation may power lipid mixing 
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 Even though full crossover formation was not essential to tethering, it is likely 

necessary for membrane fusion. The K320E D-ATL variant, only partially defective for 

crossover (Figure 3-6A), was nevertheless fusion incompetent (Figure 3-5D; Bian et al., 

2011). Similarly, the P317G and P319G mutations each only mildly or partially impairing 

crossover (Figure 3-6A), respectively, exerted dominant-negative effects on ER 

morphology consistent with a fusion defect (Figure 3-6, C and D). These observations 

suggest that membrane fusion may require formation of most or all of the contacts 

observed in the form 3 conformer, with loss of even a subset of stabilizing contacts 

impairing fusion activity. We speculate that the binding energy of crossover therefore 

contributes substantially to catalyzing lipid mixing for fusion. 

 

A working model for ATL-catalyzed fusion 

 On the basis of the information at hand, we suggest the following working model 

for the ATL fusion reaction cycle (Figure 3-7). The model starts with ATL molecules on 

opposing membranes encountering one another in the GTP-bound state (Figure 3-7A), 

followed by GAP-like interactions between heads in trans. Because tethering was not 

observed with nonhydrolyzable GTP or with the R48A hydrolysis-defective variant, we 

speculate that these GAP-like interactions are weak head contacts that nevertheless are 

sufficient to induce rearrangement of catalytic residues required for hydrolysis (Figure 3-

7B). We suggest that GTP hydrolysis in turn catalyzes conformational changes within the 

head that 1) strengthen the initial head contact, resulting in a stably engaged trans dimer 

for tethering; and 2) simultaneously release the 3HBs from the heads to enable crossover 

for fusion (Figure 3-7C). Though our results are also compatible with tethering occurring 

upstream of crossover formation, the concerted tethering and crossover depicted in the 

model are more consistent with the recent observation that head contact and crossover are 

both triggered near simultaneously in the soluble phase (Byrnes et al., 2013). Once fusion 

has occurred, we further speculate that Pi release induces disassembly of the crossover 

dimer for subunit recycling (Figure 3-7D). Many of the details of our working model 

remain to be clarified, particularly with regard to the upstream trans interactions that lead 

to hydrolysis and the downstream steps that drive dimer disassembly. Yet the model 

provides a framework that is largely consistent with observations made within this study 
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and previous observations by others. For instance, inhibition of nucleotide hydrolysis 

blocks the reaction cycle before tether formation (Figure 3-4). In contrast, inhibition of 

crossover formation does not impede tether formation, though it does block fusion 

(Figure 3-6, F and G). Finally, truncation of the molecule to remove the lipid-

destabilizing effects of the tail blocks fusion (Moss et al., 2011; Liu et al., 2012) but still 

enables tethering (Figures 3-1 and 3-2). In the latter two cases, the putative tethered 

intermediates that accumulate as a consequence of mutation have been visualized directly 

by cryo-EM (Figure 3-3). In the case of the single TM variant lacking the tail, the 

tethered bilayers were tightly opposed, as would be predicted by stable trans interaction 

involving crossover. Remarkably, the presumptive tethered membrane interfaces formed 

without crossover (P319G,K320E) were slightly wider, corresponding to a somewhat 

longer distance between inner leaflet densities. This would be consistent with the 

formation of a more extended tether in the absence of crossover formation. However, 

further analysis will be required to fully resolve these structural differences. 

 In summary, our findings provide new insights into the conformational coupling 

of membrane-bound ATL to its GTP hydrolysis cycle and begin to reveal the role of the 

crossover conformation change in the fusion mechanism. Future work should enable 

continued refinement of our understanding of how the ATL mechanochemical cycle 

powers the fusion of ER membranes. 
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CHAPTER 4 

 

CONCLUSION AND FUTURE DIRECTIONS 

 

 Despite our advancement in understanding the role of ATL in structuring the ER, 

the actual mechanism of ATL-mediated fusion still remains to be clarified. For instance, 

while our work has clarified the upstream steps within the ATL fusion cycle by revealing 

that GTP-hydrolysis facilitates stable engagement of GTP-bound ATL head groups in 

opposing membranes and that this initial trans-pairing could be uncoupled from crossover 

by mutation, suggesting that crossover is not required for membrane tethering, we were 

not able to resolve whether crossover occurred in concert with or subsequent to this initial 

membrane-tethering step. Therefore, further refinement of our model could be achieved 

through kinetic-based experiments, such as FRET-based stop-flow analysis on 

membrane-anchored, full-length ATL molecules by measuring and comparing the rates 

of initial trans pairing, crossover and GTP-hydrolysis. Similar rates between initial trans 

pairing, crossover and GTP-hydrolysis would suggest a more concerted reaction 

mechanism; whereas, a delay between trans-pairing and crossover might be suggestive of 

a more sequential reaction mechanism. 

 Separately, many of the downstream steps within the ATL fusion cycle, including 

the actual lipid-mixing step and disassembly remain to be explored. Although, we 

speculate that Pi release might catalyze disassembly, this has yet to be demonstrated for 

membrane-anchored, full-length ATL molecules. Blocking Pi release either chemically or 

through the identification of ATL variants would be informative in elucidating the role of 

Pi release in the ATL-mediated fusion reaction, either in the context of disassembly or 

some other discrete step within the ATL-fusion cycle. 

 Another important component in understanding the ATL fusion cycle is through 

the characterization of identified ATL-interacting proteins. Although various ATL 

isoforms have been reported to bind to a number of other ER-localized proteins including 

reticulons, DP1, spastin, REEP1, and protrudin (Blackstone et al., 2011, Chang et al., 

2013); the functional significance of these putative interactions remains unknown.  

Moreover, mutations in ATL and several of these ATL-interacting proteins are associated 
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with the disease hereditary spastic paraplegia (HSP), a motor neurological disorder that is 

characterized by weakness and spasticity in the lower limbs of affected individuals (Fink, 

2006), highlighting the need to understand the physiological significance of these 

putative interactions not only for ER biogenesis, but also in the context of human health.   

 Lastly, because HSP is associated with mutations in ATL1, one of the human 

isoforms, it will be vital to understand why the human isoforms of ATL are incapable of 

fusing synthetic liposomes. While it is possible that the human isoforms require an 

interacting partner, whereas D-ATL does not, it is equally possible that the human 

isoforms possess a yet unidentified auto-inhibitory domain or some other form of 

modification that inhibits its fusion capability in vitro. Identification of either the 

interacting partner or the structural elements/modifications would be highly informative 

in understanding the regulation of ATL and might lead to the establishment of an ideal 

assay system for understanding and treating patients suffering from HSP as a result of 

mutations in ATL1. 

 I am certain that many of these unexplored areas will be addressed in the near 

future, leading to a more comprehensive understanding of the ATL fusion mechanism 

and its role in ER biogenesis. 
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