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Abstract 
Metal Additive Manufacturing (AM) promises an era of highly flexible part production, 

replete with unprecedented levels of design freedom and inherently short supply chains. But as 

AM transitions from a technology primarily used for prototyping to a viable manufacturing 

method, many challenges must first be met before these dreams can become reality. In order 

for machine users to continue pushing the design envelope, process space must be expanded 

beyond the limits currently recommended by the machine manufacturers. Furthermore, as 

usable process space expands and demands for reduced operator burden and mission-critical 

parts increase, in-situ monitoring of the processes will become a greater necessity.  

Processing space includes both the parameters (e.g. laser beam power and travel velocity) 

and the feedstock used to build a part. The correlation between process parameters and 

process outcomes such as melt pool geometry, melt pool variability, and defects should be 

understood by machine users to allow for increased design freedom and ensure part quality. In 

this work, an investigation of the AlSi10Mg alloy in a Laser Powder Bed Fusion (L-PBF) process is 

used as a case study to address this challenge. Increasing the range (processing space) of 

available feedstocks beyond those vetted by the machine manufacturers has the potential to 

reduce costs and reassure industries sensitive to volatile global supply chains. In this work, four 

non-standard metal powders are successfully used to build parts in an L-PBF process. The build 

quality is compared to that of a standard powder (supplied by the machine manufacturer), and 

correlations are found between the mean powder particle diameters and as-built part quality.  

As user-custom parameters and feedstocks proliferate, an increased degree of process 

outcome variability can be expected, further increasing the need for non-destructive quality 
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assurance and the implementation of closed-loop control schema. This work presents two 

Machine Learning-based Computer Vision algorithms capable of autonomously detecting and 

classifying anomalies during the powder spreading stage of L-PBF processes. While initially 

developed to serve as the monitoring component in a feedback control system, the final 

algorithm is also a powerful data analytics tool – enabling the study of build failures and the 

effects of fusion processing parameters on powder spreading. Importantly, many troubling 

defects (such as porosity) in AM parts are too small to be detected by monitoring the entire 

powder bed; for this reason, an autonomous method for detecting changes in melt pool 

morphology via a high speed camera is presented. Finally, Machine Learning techniques are 

applied to the in-situ melt pool morphology data to enable the study of melt pool behavior 

during fusion of non-bulk part geometries. 
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1 Introduction 

1.1 Additive Manufacturing (AM) 

As its name suggests, Additive Manufacturing (AM), colloquially known as 3D Printing, 

allows for the production of parts by successively adding layers of raw material on top of each 

other. This is in direct contrast to more traditional, subtractive, forms of manufacturing; a 

contrast that results in a wealth of new capabilities as well as many challenges which must first 

be addressed before these capabilities can be fully realized. Additive Manufacturing spans an 

incredibly wide range of materials and processes (Figure 1.1) and has been under development 

since 1982 [1]. Over the past two decades, AM technologies capable of producing metal parts 

have been transitioning from prototyping tools to viable manufacturing methods [2].  

This transition has been driven by increasingly favorable economics [3], [4] as well as the 

desire of companies, particularly in the aerospace, biomedical, energy, automotive, and tooling 

sectors [5]–[7], to exploit the increased design freedom that this technology promises [3], [8]. 

Design freedom in this context refers to not only the physical design of a part, but also the 

processing parameters that are used to build the part, and even the type of feedstock used as 

raw material. This freedom can allow for the creation of complex internal features such as 

cooling channels and lattice structures [2], [3], [9], production of assemblies as single parts [10], 

and monolithic parts with engineered material property gradients [11], [12]. Additionally, the 

opportunity to dramatically shorten the supply chain is inherent to AM [13]–[15] which could 

make additive technology ideal for producing mission-critical parts, on-demand, at remote 

locations [2], [16]. 
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Figure 1.1: The breadth of Additive Manufacturing technologies, including methods such as vat 
photopolymerization, material extrusion, material jetting, binder jetting, powder bed fusion, direct energy 
deposition, and sheet lamination [17]6. The blow-up region of this figure focuses on the metal AM processes. 

                                                      

6 Prior approval for use of this figure was obtained by the author from 3D Hubs’ copyright department. 
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Most metal AM processes can be broadly grouped into three categories: Binder Jetting 

(e.g. ExOne™ and Desktop Metal™), Direct Energy Deposition (DED), and Powder Bed Fusion 

(PBF). DED can be subdivided into Laser Engineering Net Shape (LENS) powder stream 

processes (e.g. OPTOMEC®), Electron Beam Additive Manufacturing (EBAM) wire feed 

processes (e.g. Sciaky Inc.), laser hot wire processes (e.g. Lincoln Electric®), and robotic arc-

welding process (e.g. TWI Ltd). Similarly, PBF can be subdivided into technologies that rely on a 

laser to melt the powder (e.g. EOS GmbH, SLM Solutions GmbH, ConceptLaser GmbH, and 

Renishaw®) and technologies that use an electron beam to perform the melting (e.g. Arcam®). 

It is worth noting that as metal AM continues to gain market acceptance, new processes are 

being developed which fall outside of these core technologies, such as Aerosol Jet Printing (e.g. 

OPTOMEC®) for electronics applications and magnetically-controlled molten metal droplet 

deposition (e.g. Vader Systems) for aluminum components. 

In Binder Jetting, unlike the other metal AM processes mentioned above, no melting occurs 

during the actual layer-wise printing operations; instead, sintering or infiltration of the metal 

powders occurs as a post-processing step [18], [19]. Some Binder Jetting machines operate by 

depositing sub-millimeter sized droplets of binder (i.e. glue) onto a bed of metal powder [18] 

while others extrude slurry of metal particles entrained within the binder [19]. After printing is 

complete, the part is considered “green” and one or more heat treatment cycles are used to 

harden the binder and then either sinter the metal powder particles or infiltrate the green part 

with a low melting temperature alloy such as bronze [18]. 
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The LENS process is derived from laser cladding technology and uses a laser beam to form 

a melt pool on a substrate; as the laser moves, material is added to the melt pool using a 

stream of metal powder entrained within a jet of inert gas [20]. The EBAM process uses an 

electron beam to form a melt pool into which material is added in the form of one or more 

metal wires [21]. Laser hot wire processes are relative newcomers to the AM arena and use a 

laser beam to form a melt pool into which a resistively pre-heated metal wire is fed [22]. DED 

AM also encompasses more traditional welding processes, such as arc welding, which are 

becoming increasingly automated [23]. DED processes offer a number of advantages, including 

high build rates [5], large build volumes [21], and in some cases the ability to build with 

multiple alloys simultaneously [11], [21]. However, parts produced using DED technologies are 

generally only considered to be “near net-shape” and often require extensive post-processing 

before use [5]. 

PBF processes operate by using either an electron beam or a laser beam to selectively melt 

regions of a bed of metal powder [24], [25]. Electron Beam PBF (EB-PBF) systems typically 

operate at higher build chamber temperatures and have higher material deposition rates than 

Laser PBF (L-PBF) machines [26]. Conversely, L-PBF generally offers higher achievable feature 

resolution and a wider range of available material systems than EB-PBF [27], [28]. L-PBF is 

described in further detail later in this chapter. 
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1.2 Process Space 

The material deposition behavior of DED and PBF technologies can be compared through 

the visualization of a “process space” [29] defined by the power and the travel velocity (PV) of 

their heat sources (i.e. the “beam”), as shown in Figure 1.2. It is readily apparent from Figure 

1.2 that the electron beam processes generally operate at higher powers than their laser 

counterparts while the PBF processes generally operate at higher beam velocities than the DED 

processes.  

 
Figure 1.2: PBF and DED processes plotted in process space. This figure was originally developed by Beuth et al. 
[29] and has been updated by Fox [30, Fig. 3], Francis [31, Fig. 1.1], Gregory Le Mon of Carnegie Mellon University, 
and the author to more accurately reflect the current state of the industry. 
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The concept of process space, as defined by the beam power and travel velocity, is used 

extensively throughout this thesis to motivate the understanding of melt pool geometry 

behavior and delineate process defect regimes. Specifically, “process mapping” is a technique 

developed by Beuth et al. [32] which defines curves of constant process outcomes (e.g. melt 

pool geometry and as-built microstructure) with respect to critical process parameters (e.g. 

beam power and travel velocity). These curves can then be used to describe the behavior of 

other process outcomes such as porosity, mechanical properties, and required build time [33]. 

In the stylized L-PBF process map shown in Figure 1.3, all of the beam power and velocity 

combinations which fall on the solid red line are expected to produce melt pools with similar 

cross-sectional areas (see the following section) while all of the beam power and velocity 

combinations which fall within the highlighted red region are expected to produce melt pools 

which experience keyhole-mode melting conditions. 

 
Figure 1.3: A stylization of L-PBF process space overlaid by three curves of constant melt pool cross-sectional area 
where A1 > A2 > A3 and one curve of constant melt pool length to cross-sectional width ratio. Some of the curves of 
constant melt pool geometry delineate regimes of process space for which the formation of certain processing 
defects can be expected. More details regarding these processing defects and desirable processing windows can 
be found in Chapters 2 and 6. 
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While dozens of process parameters impact the quality and performance of L-PBF 

manufactured parts, six are considered to have a controlling influence on melt pool geometry 

and as-built microstructure [29], [31], [32]. A common approach is to first study the influence of 

(1) beam power and (2) beam travel velocity for a given DED or PBF process and material 

system before performing targeted studies of the remaining critical process parameters. For 

example, work by Fisher [34], [35] demonstrates that melt pool size and the size scale of 

microstructural features increase as (3) background temperature7 increases. Francis [31] found 

that the (4) beam diameter can dramatically affect the shape of the melt pool while 

Montgomery [36] found that melt pool size increases with increasing (5) powder layer 

thicknesses. Finally, Fox [37] and Chapter 7 of this thesis study the influence of (6) local feature 

geometry on melt pool behavior and flaw formation. This work also considers the feedstocks 

(e.g. powders and wires) used in AM processes to be part of overall process space – a concept 

which is explored throughout Chapter 3. 

1.3 Laser Powder Bed Fusion (L-PBF) 

The work herein focuses on the L-PBF process – currently one of the mostly widely 

deployed and industry-relevant AM technologies [38]. This process operates by spreading a thin 

layer, typically 20 µm to 120 µm thick, of metal powder over a build plate using a recoater 

blade. After powder spreading, a laser beam is used to selectively melt the powder in locations 

corresponding to a 2D slice of a 3D part. The locally-molten region of the powder bed is 

                                                      

7 In this context, the term “background temperature” refers to the temperature of the material surrounding the 
melt pool. While this temperature is often directly related to the temperature of the build chamber, it can also be 
influenced by previous melt tracks [184] and previous layers [224]. 
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typically referred to as a “melt pool.” After the lasing is complete, the build plate is lowered, 

another layer of powder is spread (now over an existing powder bed), and the process repeats 

until the part is finished. The entire process of creating a part is often referred to as a “build” 

and occurs within a build chamber purged with an inert gas such as argon or nitrogen at a 

typical absolute pressure of approximately 1 atm [39]. A schematic representation of the EOS 

M290 L-PBF machine (EOS GmbH, Germany) [40] at Carnegie Mellon University’s (CMU) 

NextManufacturing Center is shown in Figure 1.4; this figure includes components and 

modifications relevant to this work and which will be discussed in detail, as appropriate, 

throughout this document. Figure 1.5 shows an image of the powder bed, taken from inside the 

EOS M290’s build chamber; the EOS M290 build plate measures 250 mm × 250 mm and the 

build volume extends to 325 mm in height [40]. The EOS M290 machine has a maximum 

nominal beam power of 370 W and a nominal D86 beam diameter of 100 µm [40]. 

 
 

Figure 1.4: A schematic representation of the EOS M290 
machine at CMU’s NextManufacturing Center. The arrows 
indicate the direction that the schematic components will 
move immediately following the lasing of the current layer. 

Figure 1.5: An image taken from inside of the EOS 
M290 build chamber using the “powder bed 
camera” shown in Figure 1.4. It is oriented such 
that it is looking down (negative z, Figure 1.4) at the 
powder bed. 
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Figure 1.6 shows a 3D Finite Element Model (FEM) of a melt pool for purely illustrative 

purposes. A schematic of two adjacent melt tracks is shown in Figure 1.7. L-PBF machines fuse 

each powder layer according to a prescribed “scan strategy” that governs the laser beam travel 

path. The default EOS M290 scan strategy [41] is shown schematically in Figure 1.8 and fuses 

the powder bed in a sequence of “stripes.” Each stripe is formed by rastering the laser beam 

across the width of the stripe, with each adjacent melt track separated by a distance referred to 

as the hatch spacing. For the EOS M290 it is also standard to apply one or more “contour 

passes” to the perimeters (both internal and external) of each part. During a contour pass, the 

laser beam path is conformal to the perimeter geometry of the part and is offset inwards by a 

distance that typically ranges between 0 µm and 100 µm. Additional scan strategies are 

implemented by other L-PBF machines but are not discussed in this thesis. 

 
 

Figure 1.6: A reference image taken from a 3D FEM to illustrate a 
melt pool. Specifically, this is an ABAQUS model based on the work 
of Solyemez [42] and is of an L-PBF-processed AlSi10Mg melt pool 
at an absorbed power of 200 W and a beam travel velocity of 1200 
mm/s. The molten region is delineated by the colored (non-gray) 
elements which are a temperature greater than the liquidus 
temperature. Note that the melt pool is sectioned along its 𝜉𝜉-axis 
line of symmetry. Unlike the x-axis, the 𝜉𝜉-axis is always parallel to 
the travel direction of the laser beam with an origin centered at 
the beam spot. 

Figure 1.7: A cross-sectional view of two 
idealized adjacent melt tracks with key 
dimensions annotated. These dimensions 
are referred to extensively in Chapters 2 and 
6. This figure is based on a similar figure 
presented by Narra [12, Fig. 5.8]. 
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Figure 1.8: A schematic of the default EOS M290 scan strategy. The powder layer is fused with a sequence of 
stripes, each of which is composed of adjacent melt tracks separated by the hatch spacing. The orientation of the 
scan strategy (i.e. the stripes) rotates by 67° every layer in order to improve inter-layer bonding [41]. 

1.4 Machine Learning (ML) 

The L-PBF process operates over an immense range of size and time scales. For example, 

while the melt pool and many defects are on the order of tens to hundreds of microns in size 

(and form in tens of microseconds), the laser beam path may meander for tens of kilometers 

(over a period of a week of more) within a single part. Effectively monitoring such behavior 

requires the analysis of complex and often poorly-understood datasets. Furthermore, as AM 

technologies evolve rapidly, so must any monitoring techniques. In other words, requiring a 

human programmer to substantially redesign a process monitoring algorithm every time a new 

AM machine or material system is developed would be unsustainable. Fortunately, the field of 

Machine Learning (ML) offers a powerful toolset which is well-equipped for tackling these data 

analysis challenges.  
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Fundamentally, all ML algorithms operate by extracting features from a set of training data 

provided by a human [43]. The extracted features are then analyzed: their frequencies in the 

training data are quantified and their similarities and differences are described [44]. In the case 

of Deep Learning, the algorithm will actually design its own optimized set of feature extraction 

tools, as opposed to only using the tools provided by the human programmer [43]. Once the 

feature extraction system is robust, a model for describing the input data (based on its features) 

is created [43]. Features are extracted from any new data (i.e. data a user wishes to analyze) 

and are input into the model allowing the algorithm to make a decision (e.g. whether or not a 

process anomaly is present) that is informed by the knowledge contained within the training 

database. Figure 1.9 shows a high-level schematic of a generic ML algorithm. While ML can 

theoretically be applied to any arbitrary data set, all of the ML algorithms presented in this 

work operate on visible-light image data, the features of which are extracted using well-

established Computer Vision (CV) techniques. 

 
Figure 1.9: A schematic of a generic Machine Learning algorithm. Features are extracted from the input data, 
analyzed, and used to create a model describing the training data. In Deep Learning, the feature extraction step 
may be optimized based on the efficacy of the model. Once a robust model is complete, the algorithm can make 
decisions about new, previously unseen, input data. 
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Finally, it should be noted that the aforementioned span of size and time scales 

necessitates the collection of highly resolved data over a long period of time. This requirement 

results in significant data storage and data transmission burdens, particularly if real-time 

process monitoring is desired. This additional challenge is addressed, where appropriate, 

throughout this thesis.  

1.5 Motivation 

The industries and applications for which Additive Manufacturing is most applicable are 

also industries and applications for which design freedom is highly valued, confidence in a 

robust supply chain is required, and quality assurance is paramount (Section 1.1). Currently, AM 

machine manufacturers offer only a limited set of “approved” processing parameters for each 

material [45], [46], limiting an end-user’s ability to design components to, for example, be 

resistant to fatigue failure [47], [48] or have specified microstructures [12], [49], [50]. PBF 

machine manufacturers also strongly recommend that their customers use only powders from 

vetted vendors, produced via specific processes, and with restrictive size distributions [51], 

which can increase the cost and risk of using the technology [3], [4], [52]. Finally, the required 

levels of quality assurance and process reliability are difficult to achieve with the systems 

currently on the market [2] and can likely only be achieved through the implementation of in-

situ process monitoring and closed-loop control schema [2]. 

As designers push the boundaries of the processing parameters, it becomes necessary for 

them to understand how those parameters impact the final part quality and what kinds of 

defects and degree of variability they can expect. Topic 1 (Chapter 2) addresses this challenge 
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with a case study of the effects of processing parameters on process outcomes in the AlSi10Mg 

aluminum alloy. Now consider a major aerospace corporation looking to protect its supply 

chain by sourcing powder from multiple vendors, or a United States Navy aircraft carrier docked 

at a foreign port and looking to take on additional feedstock so that it can continue producing 

critical replacement parts for aircraft while underway. Both of those events are only possible if 

the processing parameters can be adjusted to accommodate alternative powders and if their 

effects on part quality are understood. Topic 2 (Chapter 3) investigates this “powder space” 

through the successful use of four non-standard Powder Systems. 

Consider again the situation of additively producing replacement parts for aircraft at sea; it 

is of paramount importance that those parts be defect-free. Additionally, while a naval vessel 

may have the manpower to “babysit” an AM machine during printing, a scientific outpost in 

Antarctica or on Mars almost certainly would not. Real-time, autonomous monitoring of the 

powder bed has the potential to allow for increased quality assurance, increased process 

stability, and a reduced operator burden; Topic 3 (Chapters 4 and 5) presents a Machine 

Learning-based Computer Vision algorithm that tackles this challenge. Finally, many of the 

defects introduced by Topic 1 are too small to detect using the techniques observed by Topic 3 

and may still occur while building complex geometries even if the relationships between the 

processing parameters and the process outcomes are well understood. Because quality 

assurance is crucial in so many AM applications, Topic 4 (Chapters 6 and 7) presents a Machine 

Learning-based methodology for linking melt pool morphology, captured by a visible-light high 

speed camera, to process defects. The development of such a methodology is a crucial step on 

the path toward creating a practical feedback control system. It is the author’s hope that the 
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work presented in this thesis helps increase the acceptance of Additive Manufacturing as a 

viable manufacturing method, with a particular focus on enabling it to produce mission-critical 

components in remote locations.  

1.6 Organization and Major Contributions  

This thesis is organized around two key research themes: (1) expanding process space and 

(2) developing in-situ process monitoring methodologies. Each research theme guides two 

research topics and each topic is covered by either one or two chapters. Each topical chapter is 

designed to be self-contained, consisting of relevant background information, a literature 

review, applicable methods and theory, and a description and discussion of the completed 

work. A brief overview of each chapter (including the Introduction, Conclusions, and six topical 

chapters) as well as a preview of some contributions of this work are provided below: 

1. The first chapter introduces the reader to Additive Manufacturing and its current status 

in the greater manufacturing world. Motivation for the work presented in this thesis is 

provided and the structure and format of the document are summarized. 

2. The second chapter (Topic 1) explores L-PBF processing space for the AlSi10Mg 

aluminum alloy. Process maps are presented for critical melt pool geometric 

dimensions. The statistical distribution and variability of melt pool dimensions are 

analyzed across process space. Bulk porosity (produced by two different mechanisms) 

and 2D edge roughness are measured across process space. Finally, a robustly-defined 

process parameter window is proposed. The results presented in this chapter provide 
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designers and machine operators with information critical for choosing appropriate 

processing parameters for the AlSi10Mg material system.  

3. The third chapter (Topic 2) expands L-PBF process space by using four non-standard 

metal Powder Systems to successfully manufacture a standardized set of test artifacts. 

Note that the largest powders tested included particle sizes up to 2.4 times larger than 

those found in the manufacturer-recommended powder. For each Powder System, the 

quality of the powder layers is analyzed and the as-built part quality is quantified by 

measuring the 2D edge roughness and bulk porosity of the test artifacts. The powder 

layer and part quality results are compared to those of test artifacts built using a 

standard Powder System. Finally, while overall quality remained high across the tested 

Powder Systems, correlations between powder particle size and both powder layer 

quality and as-built part quality are identified. A portion of the work presented in this 

chapter is published in an America Makes report titled “A Database Relating Powder 

Properties to Process Outcomes for Direct Metal AM” [53]. 

4. The fourth chapter (Topic 3) discusses the development of two algorithms designed to 

autonomously analyze the powder spreading portion of the L-PBF process. Both 

algorithms apply Machine Learning and Computer Vision techniques to successfully 

detect and classify several types of millimeter-scale anomalies present on the powder 

bed. The first algorithm utilizes a “Bag of Words” approach while the second algorithm 

leverages transfer-learning to train a Convolutional Neural Network to analyze a multi-

scale dataset. Critically, the second algorithm methodology does not rely on human-

created heuristics and is therefore highly extensible to alternate material systems and 
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other powder bed-based AM technologies. The performances of the two algorithms are 

quantified and compared. Finally a case study is used to demonstrate the broad 

capabilities of the final algorithm. A significant portion of the work presented in this 

chapter is published in the Additive Manufacturing Journal under the title “Anomaly 

Detection and Classification in a Laser Powder Bed Additive Manufacturing Process 

using a Trained Computer Vision Algorithm” [54]. It is also worth noting that the 

presented Convolutional Neural Network analyzes data at multiple size scales – a 

technique not found commonly in the existing literature.  

5.  The fifth chapter continues Topic 3 by applying the final powder bed anomaly detection 

algorithm in a variety of case studies. In particular, the algorithm is shown to provide 

insights on the delamination of parts from the build plate, the printing of high aspect 

ratio, thin wall, and overhanging structures, and the influence of non-standard process 

parameters on the surrounding powder bed. Finally, the algorithm is shown to perform 

robustly for non-standard material systems and its hypothetical usage in a real-time 

environment is briefly discussed. A significant portion of the work presented in this 

chapter is published in the Additive Manufacturing Journal under the title “Anomaly 

Detection and Classification in a Laser Powder Bed Additive Manufacturing Process 

using a Trained Computer Vision Algorithm” [54]. 

6. The sixth chapter (Topic 4) develops a database of melt pool geometry in the presence 

of a powder layer for the Inconel 718 alloy across L-PBF process space. This database is 

based on ex-situ measurements and is used in the seventh chapter to correlate in-situ 

data with process outcomes. The size and composition of the database also allowed for 
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the analysis of the statistical distribution and variability of melt pool dimensions across 

process space. Based on comparisons to data in the literature, a brief discussion of the 

effects of a powder layer on melt pool dimensions is provided. Finally, melt pool 

behavior is compared between the Inconel 718 and AlSi10Mg (second chapter) material 

systems. Significant outliers in measured melt pool cross-sectional size are observed for 

both material systems and strongly motivate the need for additional work in this area.  

7. The seventh chapter is the heart of Topic 4. In-situ melt pool morphologies are 

extracted from high speed camera images using Computer Vision techniques while a 

“Bag of Words” Machine Learning approach is used to cluster the morphologies. The 

clusters are then linked to process flaws such as porosity and surface tension 

instabilities using the ex-situ database constructed in chapter six. This linkage is 

successful, demonstrating that certain in-situ melt pool morphologies arise only in 

particular regions of process space. Finally, the CV/ML methodology is applied to the 

preliminary study of melt pool morphology during the exposure of several non-bulk 

geometries including the edges of stripes, overhangs, and contours. The ability to study 

fusion of such geometries could allow for the design of optimized process parameters in 

the future. Note that much of the work presented in this chapter relies upon the use of 

a custom algorithm which transforms the collected melt pool data into an Eulerian 

reference frame – an operation with broad implications for the further study of melt 

pool dynamics. Some of the work presented in this chapter is published in the Society of 

Manufacturing Engineers Letters under the title “Using Coordinate Transforms to 
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Improve the Utility of a Fixed Field of View High Speed Camera for Additive 

Manufacturing Applications” [55].  

8. The eighth and final chapter summarizes the results from the six topical chapters and 

places them within a contextual framework to demonstrate their interdependence and 

make cross-topic conclusions. The implications of the presented work are discussed in 

the context of the motivations provided in the first chapter. Finally, significant and 

exciting future work is identified and motivated. 
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1.7 Formatting Standards 

The Additive Manufacturing terminology used in this document complies as closely as 

possible with ISO/ASTM 52900:2015 [56]. All of the figures presenting data relating to 

processing defects are colored either as shown in Figure 1.3 or presented in grayscale. 

Specifically, keyholing porosity is shown in red, lack-of-fusion porosity is shown in light blue 

(teal), balling is shown in purple (magenta) and desirable regions of process space are shown in 

green. The color scheme used to represent melt pool features in Figures 1.6 – 1.8 is also used 

throughout this document. A standardized, right-handed and self-consistent coordinate system 

(shown in Figures 1.4 – 1.8) is used throughout this document. Note that some of the images of 

the powder bed presented in Chapters 4 and 5 have the negative signs omitted from the y-axis 

for clarity. All of the algorithm architecture schematics for the presented ML methodologies 

adhere as closely as possible to the color scheme used in Figure 1.9, where input data are 

shown in gray, feature extraction tasks are shown in purple (magenta), feature analysis tasks 

are shown in orange, and components of the ML model itself are shown in light blue (teal). All 

acronyms, italicized words, and variables used in this thesis are defined in the Nomenclature 

section. 
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2 Topic 1: An Exploration of AlSi10Mg L-PBF Process Space 

2.1 Background and Literature Review 

In their endeavors to exploit the design freedoms that come with Additive Manufacturing, 

designers must push the boundaries of the machine processing parameters. It therefore 

becomes necessary for them to understand how those parameters impact the final part quality 

and what kinds of defects and degree of melt pool dimensional variability they can expect. 

Currently, AM machine manufacturers offer only a limited set of “approved” processing 

parameters for each material system [45], [46], limiting the design freedom of the end user. 

Process mapping is a technique developed by Beuth et al. [32] that enables the correlation of 

process parameters to process outcomes (e.g. melt pool geometry, porosity, and as-built 

microstructure) by plotting those outcomes across process space.  

This work applies the process mapping approach to the EOS AlSi10Mg (Al 87 – 90 wt-%, Si 

9.0 - 11.0 wt-%, Mg 0.2 – 0.45 wt-%, Fe ≤0.55 wt%, Mn ≤0.45 wt% [57]) aluminum alloy in an L-

PBF process. Aluminum alloys are highly attractive to many of the industries implementing 

Additive Manufacturing as a result of their high thermal conductivity (173 W/m-K at 20 °C for 

AlSi10Mg [57]) and high strength-to-mass ratio [58]. Relevant applications include lightweight 

heat exchangers for aircraft and spacecraft [59], [60] and engineered meshes for zero-gravity 

fuel tanks [61]. Aluminum alloys are notoriously difficult to manufacture additively due to their 

low absorptivity8, high thermal conductivity [62], propensity for vaporization of the aluminum 

and associated alloying elements [63], and susceptibility to hot-cracking [62]. Similar to 

                                                      

8 Approximately 12% at 300 °C and 40% at 1000 °C for a wavelength of 1060 nm (near the output of the EOS 
M290’s Yb: YAG laser [75]) [225, pp. 70–72]. 
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traditional casting alloys, AlSi10Mg is near the Al-Si eutectic composition (i.e. has a narrow 

melting range of approximately 40 K [64]) which reduces its susceptibility to hot-cracking during 

rapid solidification [62], [65]. 

While extensive bodies of process mapping work exist for other alloys [12], [29], [31], [32], 

[66]–[68], at the time of this research, AlSi10Mg was a relative newcomer to the AM 

community. Aboulkhair et al. [69] indirectly investigated the effect of beam travel speed on the 

microstructure of single melt tracks via micro-hardness testing. Read et al. [70] compared creep 

behavior in additively manufactured AlSi10Mg to traditionally-formed AlSi10Mg. Tang et al. [71] 

performed extensive work on the fatigue performance of additively manufactured AlSi10Mg 

and studied lack-of-fusion porosity at several process parameter combinations [72]. Most 

notably, Kempen et al. [58] worked to find optimal processing parameters for AlSi10Mg in an L-

PBF process but within a narrower power range than investigated in the work presented in this 

chapter. Many of the experiments that this work is based on were also used by Dr. Sneha 

Prabha Narra of CMU to control the as-built microstructure (cell spacing) of AlSi10Mg 

components produced via L-PBF [12, Ch. 5]. 

In this chapter, process maps are presented that correlate beam power and beam travel 

velocity to cross-sectional melt pool width, depth, area, and aspect ratio. Melt pool width 

results are compared to those reported by Narra [12, p. 96]. The presented melt pool geometry 

results are supported by a statistical analysis which also allows for statements to be made 

concerning the statistical distribution of melt pool dimensions and the variability of melt pool 

geometry across process space. While Francis [31, Fig. 4.5] and others [73] have characterized 

the variable behavior of melt pool depth during keyhole-mode melting, the existing literature is 
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relatively sparse with regards to the statistical study of general melt pool variability in the AM 

processes.  

The occurrences of two types of processing defects: lack-of-fusion and keyholing porosity, 

are investigated across process space. Porosity resulting from the lack-of-fusion mechanism 

occurs when there is insufficient overlap between melt pools and or the melt pools do not fully 

penetrate the powder layer (this case is also known as “under-melting”) [72], [74]. Keyhole-

mode melting occurs in the high energy density (high beam power, low beam velocity) region of 

process space, where periodic vaporization of the molten material can occur. Under certain 

conditions, the resultant vapor pocket may become trapped as porosity in the solidified melt 

pool [74]. Additionally, the as-built surface finish is explored across process space using several 

2D edge roughness measures. Finally, a process window based on the quantitative porosity 

analysis is presented, expanding on the window presented by Narra [12, p. 102]. The work 

presented in the chapter was supported by the Research for Advance Manufacturing in 

Pennsylvania program (prime award number FA8650-12-2-7230, sub-award number 543105-

78001) and through a donation from Mr. Richard Fieler (Carnegie Institute of Technology class 

of 1956). 

2.2 Experimental Design and Methods 

2.2.1 Build Conditions 

All of the experiments discussed in this section were performed on a 400 W version of an 

EOS M280 L-PBF machine at the Arconic (then Alcoa c.a. 2015) Technical Center in New 

Kensington, Pennsylvania. Three sets of relevant experiments were performed, including single 
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bead melt tracks with no added powder (0LSB9) (Figure 2.1), multiple adjacent melt tracks (19 

mm long × 9.5 mm wide) with no added powder (0LP10) (Figure 2.2), and 19 mm long × 9.5 mm 

wide × 13 mm tall solid blocks (MLP11) (Figure 2.3). Because it is difficult to procure AlSi10Mg 

plates an Al5083 base plate was used, with the 0LSB and 0LP experiments deposited on top of 

additively manufactured AlSi10Mg substrates. These AlSi10Mg substrates were built using the 

EOS-nominal AlSi10Mg parameters (Table 2.1) on the EOS M280. To enable measurement of 

the melt pools (Section 2.2.3), the substrates were built with melt tracks oriented exclusively 

perpendicular to the beam travel direction used for the 0LSB and 0LP experiments themselves 

and the standard beam track rotation [41] was disabled. Additionally, the substrates were first 

surfaced using a facing mill before being placed back inside the EOS M280 for the 0LSB and 0LP 

experiments.  

 
  

Figure 2.1: An example of a sample 
from the 0LSB experiments. 

Figure 2.2: An example of a sample 
from the 0LP experiments. 

Figure 2.3: An example of a sample 
from the MLP experiments. 

The results from the 0LSB experiments are reported by Narra [12, Ch. 5] and are only 

presented in this document in the form of Figure 2.13. A total of 24 different beam power and 

beam travel velocity combinations spanning the EOS L-PBF process space were chosen by Dr. 

                                                      

9 Zero Layer Single Bead (0LSB) experiments, i.e. zero layers of powder, single bead exposures. 
10 Zero Layer Pad (0LP) experiments, i.e. zero layers of powder, multiple single bead exposures immediately 
adjacent to each other in a pad. 
11 Multi-Layer Pad (MLP) experiments, i.e. multiple layers of powder, used to build a solid block or pad.  
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Sneha Prabha Narra of CMU for the 0LP and MLP experiments. The hatch spacing (distance 

between the melt tracks as shown in Figure 1.7) was adjusted for the 0LP and MLP experiments 

such that the overlap (Figure 1.7) between the melt tracks (as a percentage of the melt pool 

width) remained equal to or greater than 7% – the expected overlap for the EOS-nominal 

parameters based on the 0LSB experiment results [12, Ch. 5]. Table 2.1 lists the process 

parameter combinations for the 0LP and MLP experiments. Both the 0LP and MLP experiments 

were run at a chamber preheat of 35 °C and a nominal12 laser beam diameter of 100 µm [75]. 

The MLP samples were built with a nominal layer thickness of 30 µm, the EOS standard laser 

scan pattern rotation of 67° every layer [41] was used, but no contour13 beam passes were 

used. 

                                                      

12 No direct, independent, measurements of the laser beam spot size were performed. 
13 A “contour” refers to a laser beam pass which follows the perimeters (both internal and external) of a part. The 
contour passes are typically performed with different processing parameters than the bulk melt tracks. 



25 

Table 2.1: Process parameter combinations used for each 0LP and MLP sample on the EOS M280 L-PBF machine as 
well as the EOS-nominal parameter combination. 

Sample 
Number 

Beam 
Power (W) 

Beam Velocity 
(mm/s) 

Hatch 
Spacing (µm) 

EOS 
Nominal 370 1300 190 

1 100 200 60 
2 100 400 60 
3 100 600 60 
4 100 800 60 
5 100 1000 60 
6 200 200 130 
7 200 400 120 
8 200 600 110 
9 200 800 100 

10 200 1000 100 
11 200 1200 100 
12 200 1400 90 
13 300 400 310 
14 300 600 260 
15 300 800 240 
16 300 1000 130 
17 300 1200 150 
18 300 1400 100 
19 370 400 350 
20 370 600 300 
21 370 800 270 
22 370 1000 230 
23 370 1200 200 
24 370 1400 150 

2.2.2 Sample Preparation 

No post-build heat treatment was performed. The samples were sectioned (perpendicular 

to the beam travel direction) using a Wire EDM (Electrical Discharge Machine) at the Arconic 

facility. The EDM cutting process produces a relatively narrow heat-affected zone, reducing the 

influence of sectioning on measurements of the melt pools [76]. The sectioned samples were 

then hot-mounted, with the cut face visible, in Buehler® Konductomet sample pucks. After 

mounting, each sample was ground and polished according to ASTM E3-11, Table 7 [77]. To 

improve the visibility of the melt pool boundaries, the polished 0LP samples were etched using 

Barker’s agent (2% aqueous fluoroboric acid HBF4) for 45 to 60 seconds as described by Fulcher 
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et al. [62]. Finally, each polished sample was imaged using an Alicona Infinite-Focus optical 

microscope at an appropriate magnification. The 0LP magnifications are listed in Table 2.2 while 

all MLP samples were imaged at 5x magnification.  

2.2.3 0LP Measurement Techniques 

The 0LP melt pool widths, depths, and cross-sectional areas (Figure 1.7) were manually 

measured using the Image J software package [78]; Figure 2.4 shows an example micrograph 

from the 0LP experiments. Due to the proximity of the melt tracks to each other, in practice, 

“half-widths” and “half-areas” were measured, as shown in Figure 2.4. Between 12 and 35 melt 

tracks were measured for each of the 24 samples (Table 2.1), with generally fewer melt tracks 

available for larger melt pools due to space restrictions on the AlSi10Mg build substrates 

(Section 2.2.1). A selection of 0LP micrographs and the tabulated melt pool dimension 

measurements are provided in Appendix A. 

 
Figure 2.4: A representative 0LP micrograph, specifically from Sample #23 (370 W, 1200 mm/s). Note the half-
width and depth measurement notations; the cross-sectional half-area is the region enclosed by the dotted white 
polygon. The coloration difference between the lower and upper halves of the micrograph demarcates the 
boundary between the additively manufactured AlSi10Mg substrate and the Al5083 base plate. 
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Due to the close spatial proximity of the melt tracks, the effect of residual heating (from 

previously deposited adjacent melt tracks) on the melt pool geometry was a concern. For this 

reason, the measured melt pool dimensions were plotted as a function of distance across the 

build surfaces; no trends14 were observed, suggesting that residual heating did not influence 

the melt pool geometry. Note that the relatively high thermal conductivity of AlSi10Mg likely 

makes this alloy less sensitive to residual heating than other alloys such as Ti-6Al-4V. 

Additionally, no measurements were included from melt pools closer than three melt pool 

widths from the edges15 of the build substrates. To quantify the uncertainty in the manual 

measurement of melt pool dimensions, a representative melt pool at each magnification was 

measured 10 times consecutively. The results of the measurement error and other 

measurement anomalies are summarized in Table 2.2 and the associated footnotes. The 

measurement errors range from sample16 standard deviations that are 0.49% to 7.6% of the 

corresponding mean melt pool dimension.  

                                                      

14 If the residual heating from adjacent melt tracks was significant, it is expected that melt pools deposited last on 
the build substrates would be larger than melt pools deposited first, for the same processing parameters [184].  
15 The thermal conditions at the edges of the build substrates are expected to be different than those within in the 
bulk region due to the extremely low thermal conductivity of metal powder relative to fused material [100], [210]. 
16 In this context “sample” refers to the statistical term “sample of the population” and not the additively-
produced 0LSB, 0LP, or MLP samples. 
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Table 2.2: Corresponding measurement errors for the 0LP experiments. 

Magnification Corresponding 
Sample Numbers 

Std. Dev. of Half-
Width Measurements 

(µm, % of mean) 

Std. Dev. of Depth 
Measurements 

(µm, % of mean) 

Std. Dev. of Half-
Area Measurements 

(mm2, % of mean) 

10x 1317, 1417, 1517, 1917, 
2017, 2117, 22, 23 7.0, 4.1 1.4, 0.49 1.8×10-3, 5.5 

20x 618, 719, 8, 9, 10, 11, 
12, 16, 17, 18, 24 5.3, 7.4 0.67, 1.2 1.1×10-4, 3.9 

50x 1, 2, 3, 4, 5 2.2, 6.0 0.33, 1.7 3.9×10-5, 7.6 

2.2.4 MLP Measurement Techniques 

Bulk porosity was evaluated by first binarizing the optical micrographs (Figure 2.5) taken at 

5x magnification (Section 2.2.2); where the binarization threshold was determined upon 

inspection of a bimodal intensity histogram. The bulk region, i.e. a zone away from the edges, 

(Figure 2.6) was then selected on the binary micrographs and a custom MATLAB script was used 

to identify and classify all of the pores within the selected region. A selection of MLP 

micrographs is available in Appendix B. 

                                                      

17 The melt pools in these samples penetrated deeper than (or close to) the height of the ASi10Mg build 
substrates, i.e. into the Al5083 build plate. Because of the differing thermal properties between these two 
aluminum alloys, the measured melt pool dimensions may not be wholly representative of those expected for an 
exclusively AlSi10Mg substrate. For validation of the presented results, see the high-degree of agreement between 
the 0LSB (for which there are no penetration concerns) melt pool widths and the 0LP melt pool widths in Figure 
2.13. 
18 Seven (7) out of 27 melt pools from Sample #6 were discarded as outliers. All of the outliers were approximately 
twice the width of the non-outlier melt pools. It is strongly suspected that incorrect processing parameters were 
programmed for those melt tracks.  
19 One (1) out of 31 melt pools from Sample #7 was discarded as an outlier.  
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Figure 2.5: A representative MLP micrograph, 
specifically from Sample #24 (370 W, 1400 mm/s). The 
build direction (z-axis) is oriented upwards.  

Figure 2.6: An example of a selected bulk region, 
indicated by the gray rectangle overlaid on the 
binarized version of the micrograph shown in Figure 
2.5. The build direction (z-axis) is oriented upwards. 

Pores are grouped into two categories: Pores greater than 40 µm in effective circular 

diameter20 and at least 90% circular21 are considered to be the result of “keyholing-mode” melt 

pools [74]. Pores greater than 40 µm in effective circular diameter but less than 90% circular 

are considered “lack-of-fusion" flaws [74]. The described porosity binning thresholds are based 

on prior internal work and the work of Cunningham et al. [48], [79]. Pores with an effective 

circular diameter of less than 40 µm were not considered. This method also discussed in Section 

3.2.4 and the pore formation mechanisms are further discussed, in context, with the results in 

Section 2.3.4. 

                                                      

20 The effective circular diameter is defined as the diameter of a circular pore with the same cross-sectional area as 
detected pore. 
21 A pore is considered circular if greater than 90% of the pore pixels lie on top of the effective circular pore 
centered at the centroid of the original pore. 
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As-built 2D edge roughness was evaluated by first binarizing the optical micrographs 

(Figure 2.7) taken at 5x magnification (Section 2.2.2); where the binarization threshold was 

determined upon inspection of a bimodal intensity histogram. After binarization, internal 

porosity was automatically removed to prevent it from influencing the roughness calculations. 

The edge regions (two for each MLP sample) were then selected (Figure 2.8) and a custom 

MATLAB script was used to calculate four roughness measures: Ra (arithmetic average of 

absolute values) (2.1), Rq (root mean squared) (2.2), Rz (maximum peak-to-valley difference) 

(2.3), and Rsk (skewness) (2.4). Note that a negative Rsk value indicates the presence of sharp 

valleys (into the surface) while a positive Rsk value indicates the presence of sharp peaks (out 

of the surface) [80]. This methodology is also presented in Section 3.2.4. 
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Figure 2.7: A representative MLP micrograph, 
specifically from Sample #20 (370 W, 600 mm/s). The 
build direction (z-axis) is oriented upwards. 

Figure 2.8: An example of a selected edge region, 
indicated by the gray rectangle overlaid on the 
binarized version of the micrograph shown in Figure 
2.7. Note that the internal porosity has been 
automatically removed. The build direction (z-axis) is 
oriented upwards. 
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Where y is the distance of a protuberance from the "mean" edge, and n is the number of protuberances along the 
edge. 
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2.3 Results 

2.3.1 Melt Pool Geometry 

Application of the process mapping approach to the 0LP samples allowed for the 

generation of curves of constant melt pool geometries. Specifically, 2D linear interpolation was 

used to generate a dense matrix of melt pool geometry values (e.g. melt pool width) across 

beam power and beam travel velocity process space. This dense matrix was then queried such 

that a set of points in process space was produced at which the relevant melt pool geometry is 

the same. A smooth curve was then fitted to this set of points; in this case an exponential 

function of the form given in (2.5) is used. While it is common to fit linear curves to process 

maps in L-PBF and EB-PBF processes [29], the high thermal conductivity of AlSi10Mg shifts the 

process map into a heat transfer regime more commonly observed in the low power, low 

velocity LENS process (Figure 1.2) [31]. As such, the author felt that an exponential function was 

a more accurate representation of the underlying physics22, as well as providing better 

agreement with the data (see Table 2.3). A custom MATLAB script was used to automate the 

process described above. 

                                                      

22 For materials with a high thermal diffusivity (𝛼𝛼), such as AlSi10Mg, typical L-PBF process space may include a 
region where the laser beam travel velocity is slow enough to be comparable to the “speed” at which heat can 
diffuse away from the melt pool and into the surrounding bulk material. In this region, linear increases in beam 
power do not result in a linear increase in melt pool size, instead the relationship is better described by an 
exponential function. This region exists for lower 𝛼𝛼 materials (e.g. Ti-6Al-4V) in the LENS process owing to its lower 
laser beam velocity (Figure 1.2). The rate of thermal diffusion is described by the Fourier Number Fo = 𝛼𝛼𝑡𝑡/𝐿𝐿𝑐𝑐2  
where t is a measure of time and Lc is a spatial measure describing the relevant geometry. The author directs the 
curious reader to the treatment of the Fourier Number, and transient heat conduction in general, provided by 
Bergman et al. [226, Ch. 5] for additional details. 
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𝑃𝑃 = 𝑅𝑅𝑏𝑏𝑓𝑓 (2.5) 
 
Where P is the beam power, v is the beam travel velocity, and a and b are the fitting parameters. 
 

 

Table 2.3: Comparison between power and linear fits of AlSi10Mg process map data. 

Measurement R2 Value for Exponential Fit23 R2 Value for Linear Fit23 
Width 0.91 0.87 
Depth 0.90 0.87 

Area 0.87 0.80 
Aspect Ratio 0.95 0.94 

Figures 2.9 – 2.12 present process maps, respectively, for cross-sectional melt pool width, 

depth, area, and aspect ratio. The aspect ratio is defined as the depth divided by the half-width, 

e.g. an aspect ratio of 1.0 indicates a perfectly semicircular melt pool, an aspect ratio less than 

1.0 indicates a shallow melt pool, and an aspect ratio greater than 1.0 indicates a deep and 

narrow melt pool. As expected, the process maps show that higher beam powers and lower 

beam velocities produce larger melt pools while lower beam powers and higher beam velocities 

result in smaller melt pools.  

Figure 2.13 overlays the cross-sectional width results with the 0LSB above-view (i.e. along 

the length of the of the melt track) width results reported by Narra [12, p. 96]. Note that 

relatively good agreement between the melt pool width measurement results is observed. 

Confirmation of such agreement may be useful to researchers in the future because above-view 

widths are often easier to measure than cross-sectional widths (as sectioning and polishing are 

not required) and above-view widths can be observed with various in-situ monitoring 

techniques [81] (see Chapter 7).  

                                                      

23 The reported R2 values are calculated based the agreement between the models (e.g. exponential or linear fits) 
and the data from each 0LP sample with a measurement (e.g. melt pool width) within the range presented in the 
corresponding process map. For example, the reported R2 values for the melt pool width are based on data from 
the samples with a measured melt pool width between 100 µm and 250 µm (see the legend of Figure 2.9).  
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Figure 2.9: Process map of the cross-sectional melt 
pool width, developed from the 0LP experiment data. 
The error bars represent a 95% confidence interval 
about the mean. For the reader viewing the figure in 
grayscale, the top-bottom order of the lines of constant 
geometry matches the left-right order shown in the 
legend. 

Figure 2.10: Process map of the cross-sectional melt 
pool depth, developed from the 0LP experiment data. 
The error bars represent a 95% confidence interval 
about the mean. For the reader viewing the figure in 
grayscale, the top-bottom order of the lines of constant 
geometry matches the left-right order shown in the 
legend. 

  
Figure 2.11: Process map of the cross-sectional melt 
pool area, developed from the 0LP experiment data. 
The error bars represent a 95% confidence interval 
about the mean. For the reader viewing the figure in 
grayscale, the top-bottom order of the lines of constant 
geometry matches the left-right order shown in the 
legend. 

Figure 2.12: Process map of the cross-sectional melt 
pool aspect ratio, developed from the 0LP experiment 
data. For the reader viewing the figure in grayscale, the 
top-bottom order of the lines of constant geometry 
matches the left-right order shown in the legend. 
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Figure 2.13: A comparison between the 0LSB above-view melt pool widths reported by Narra [12, p. 96] (dashed 
lines) and the cross-sectional (C-S) 0LP melt pool widths reported in Figure 2.9 (solid lines). For the reader viewing 
the figure in grayscale, the top-bottom order of the lines of constant geometry matches the top-bottom order 
shown in the legend. 

2.3.2 Distribution of Melt Pool Geometries 

As a first step toward understanding the variability of melt pool geometry across process 

space, the measured size distributions (cross-sectional melt pool width, depth, and area) are 

shown as cumulative probability plots in Figures 2.14, 2.17, and 2.20. Normalization of the 

distribution curves was implemented by converting each individual measurement to its percent 

difference from the mean value for that power-velocity combination. Note the outlying 

measurements (first mentioned in Section 2.2.3) for Sample #6 and the single outlier for Sample 

#7; these measurements are not included in the analyses presented in Sections 2.3.1 and 2.3.3. 
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Normal probability plots24 are shown in Figures 2.15, 2.16, 2.18, 2.19, 2.21, and 2.22 for each 

geometry measure (melt pool width, depth, and cross-sectional area) at both the process 

parameter combination closest to the EOS nominal process parameter combination and the 

process parameter combination which deviated the most from a normal distribution (excepting 

Samples #6 and #7). It is evident from both the cumulative probability and normal probability 

plots that the melt pools which deviate most significantly from the normal distribution form an 

upper tail. That is, while most of the melt pools follow a normal distribution, in some 0LP 

samples several melt pools of a significantly larger size are present. The implications of this 

observation are discussed further in Section 2.4, and compared to the observed behavior of the 

Inconel 718 material system in Section 6.3.6.  

To provide context for the use of confidence intervals based on Student’s t-distribution 

[82, p. 419] in the previous section, the melt pool geometry data were quantitatively compared 

to their equivalent normal distribution. This comparison is shown graphically as the normal 

probability plots mentioned previously. The majority of the 0LP samples did not provide a 

sufficient number of measurements to perform a proper Chi-square (𝜒𝜒2) test25 [82, Ch. 10]; as a 

result, Table 2.4 and the legends of Figures 2.14, 2.17, and 2.20 instead report R2 fit values 

between each 0LP data set and its equivalent normal distribution, both of which have been 

                                                      

24 In a normal probability plot the data are sorted as they would be in a cumulative distribution plot and then they 
are plotted on a non-linear vertical axis representing the normal order statistic medians. If the data are samples 
which “come from a population with a normal distribution” [227] then they will fall along a straight line [227]. Note 
that in this context “sample” refers to the statistical term “sample of the population” and not the additively-
produced 0LSB, 0LP, or MLP samples. Note also that in the implementation [227] used to generate the normal 
probability plots in this document, the equivalent normal distribution is calculated using only data from the second 
and third data quartiles. 
25 The standard rule of thumb is that 5 – 8 bins containing a minimum of 5 measurements (i.e. 25 – 40 
measurements) are required to perform a valid Chi-square test [82, p. 307]. 
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linearized. The majority of the cross-sectional geometry measurements follow normal 

distributions with the outliers following the trend discussed above. Overall, the agreements of 

the depth and area cumulative distributions with their equivalent normal distributions are 

weaker than observed for the cross-sectional width measurements. 
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Figure 2.14: Normalized cumulative probability plots of cross-sectional melt pool widths for all 24 0LP samples. The 
five process parameter combinations that produced melt pools with variabilities deviating the most significantly 
from a normal distribution (see the discussion of R2 values in this section) are indicated in the legend and with 
heavier line weights.  

  
Figure 2.15: Normal probability plot of the measured 
widths for the process parameter combination closest 
to the EOS nominal process parameter combination 
(Sample #24). Experimental points far away from the 
line indicate a deviation from a normal distribution.  

Figure 2.16: Normal probability plot of the measured 
widths for the process parameter combination showing 
the greatest deviation from a normal distribution 
(Sample #22). 
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Figure 2.17: Normalized cumulative probability plots of cross-sectional melt pool depths for all 24 0LP samples. 
The five process parameter combinations that produced melt pools with variabilities deviating the most 
significantly from a normal distribution (see the discussion of R2 values in this section) are indicated in the legend 
and with heavier line weights.  

  
Figure 2.18: Normal probability plot of the measured 
depths for the process parameter combination closest 
to the EOS nominal process parameter combination 
(Sample #24). Experimental points far away from the 
line indicate a deviation from a normal distribution.  

Figure 2.19: Normal probability plot of the measured 
depths for the process parameter combination showing 
the greatest deviation from a normal distribution 
(Sample #12). 
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Figure 2.20: Normalized cumulative probability plots of cross-sectional melt pool areas for all 24 0LP samples. The 
five process parameter combinations that produced melt pools with variabilities deviating the most significantly 
from a normal distribution (see the discussion of R2 values in this section) are indicated in the legend and with 
heavier line weights.  

  
Figure 2.21: Normal probability plot of the measured 
area for the process parameter combination closest to 
the EOS nominal process parameter combination 
(Sample #24). Experimental points far away from the 
line indicate a deviation from a normal distribution.  

Figure 2.22: Normal probability plot of the measured 
areas for the process parameter combination showing 
the greatest deviation from a normal distribution 
(Sample #12). 
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Table 2.4: Goodness-of-fit between the measured melt pool distributions and their equivalent normal 
distributions. R2 values less than 0.80 are highlighted for convenience. 

Sample 
Number R2 (width) R2 (depth) R2 (area) 

1 0.95 0.90 0.85 
2 0.94 0.93 0.90 
3 0.91 0.92 0.96 
4 0.96 0.11 0.17 
5 0.87 0.86 0.79 
6 0.65 0.59 -43 
7 -2.8 -120 -84 
8 0.95 0.81 0.94 
9 0.93 0.92 0.76 

10 0.95 0.81 0.86 
11 0.88 0.74 0.94 
12 0.90 -2.8 -1.7 
13 0.94 0.67 0.91 
14 0.96 0.96 0.97 
15 0.80 0.92 0.95 
16 0.86 0.86 0.84 
17 0.93 0.81 0.82 
18 0.81 -0.60 -1.1 
19 0.91 0.98 0.84 
20 0.84 0.88 0.93 
21 0.92 0.87 0.92 
22 0.42 0.94 0.94 
23 0.97 0.83 0.95 
24 0.46 0.66 0.70 

2.3.3 Variability of Melt Pool Geometry across Process Space 

The variability of melt pool geometry across process space was also investigated. Figures 

2.23 – 2.25 show the standard deviation (as a percentage of the mean melt pool dimension) for, 

respectively, the 0LP cross-sectional melt pool width, depth, and area. The measured 

variabilities in melt pool width, depth, and area respectively range from approximately 3.8% – 

19%, 2.9% – 32%, and 3.5% – 44% of the mean melt pool dimension. With few exceptions, the 

melt pool dimension variabilities are as large as or larger than the measurement errors 

reported in Section 2.2.3. 
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Interestingly, no significant trend for this measure of variability presents itself, regardless 

of whether a function of beam power or beam velocity is considered. Note that there does 

appear to be a region of particularly high variability encompassing Samples #16 (300 W, 1000 

mm/s) and #17 (300 W, 1200 mm/s), the cause of which is unknown. The aforementioned lack 

of a trend in melt pool variability across process space may be more easily visualized using 2D 

linearly-interpolate heat maps, such as those presented in Figures 2.26 – 2.28.  

 
Figure 2.23: The variability (standard deviation) in the melt pool widths as a percentage of the mean width. 
Samples are grouped by beam velocity, with each beam power denoted by a different bar hue as shown in the 
legend. The error bars represent a 95% confidence interval about the sample26 (percent) standard deviation. 
 

                                                      

26 In this context the term “sample” refers to the statistical definition of a “sample of a population” and should not 
be confused with the 0LSB, 0LP, or MLP “samples.” 
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Figure 2.24: The variability (standard deviation) in the melt pool depths as a percentage of the mean depth. 
Samples are grouped by beam velocity, with each beam power denoted by a different bar color as shown in the 
legend. The error bars represent a 95% confidence interval about the sample26 (percent) standard deviation. 

 

 
Figure 2.25: The variability (standard deviation) in the melt pool areas as a percentage of the mean area. Samples 
are grouped by beam velocity, with each beam power denoted by a different bar color as shown in the legend. The 
error bars represent a 95% confidence interval about the sample26 (percent) standard deviation. 
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Figure 2.26: Interpolated heat map of the variability (standard 
deviation) in the melt pool widths as a percentage of the mean 
width. Note that geometric variability may not behave linearly 
across process space; the use of a heat map to display these 
data is primarily for visualization purposes. 

Figure 2.27: Interpolated heat map of the 
variability (standard deviation) in the melt pool 
depths as a percentage of the mean depth. Note 
that geometric variability may not behave 
linearly across process space; the use of a heat 
map to display these data is primarily for 
visualization purposes. 

  

 

 

Figure 2.28: Interpolated heat map of the variability (standard 
deviation) in the melt pool areas as a percentage of the mean 
area. Note that geometric variability may not behave linearly 
across process space; the use of a heat map to display these 
data is primarily for visualization purposes. 
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2.3.4 Bulk Porosity in As-Built MLP Samples 

The bulk porosity in the MLP samples was calculated and categorized as described in 

Section 2.2.4. Figure 2.29 is a 2D linearly interpolated heat map showing the porosity content 

attributed to the lack-of-fusion mechanism [74]. Because the hatch spacing was modified to 

ensure lateral overlap between the melt pools (Table 2.1), it is expected that any lack-of-fusion 

porosity is the result of the melt pools not penetrating sufficiently deep through the 30 µm 

thick powder layer (i.e. under-melting). For reference, the fitted curves of 30 µm and 40 µm 

deep melt pools are overlaid on top of the heat map.  

Tang et al. developed a model which predicts the regions of process space where lack-of-

fusion porosity can be expected [72]. The process parameter combinations which are predicted 

to produce lack-of-fusion porosity are indicated by the larger open white circles in Figure 2.29. 

It is clear that there is relatively poor agreement between the predictions and the measured 

amounts of lack-of-fusion porosity. Interestingly, the model results are highly sensitive to the 

measured melt pool depths and to an even greater extent, the melt pool widths. The smaller 

open white circles in Figure 2.29 indicate the predicted porosity threshold assuming that the 

melt pools in the MLP samples are 75% deeper and 10% wider than the corresponding melt 

pools in the 0LP samples. Such an increase in melt pool depth is similar to that observed for 

Inconel 718 in Section 6.3.4 when melt pools exposed on top of a powder layer are compared 

to those exposed on top of a bare substrate. While the data in Section 6.3.4 do not 

demonstrate a similar increase in melt pool width, this may be material-dependent and only a 

small increase in width is required for the Tang model to accurately predict the measured lack-

of-fusion porosity threshold. Therefore, the author hypothesizes that a melt pool produced by a 
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given set of process parameters would be larger during MLP experiments, and therefore less 

likely to result in lack-of-fusion porosity, than during 0LP experiments. It would be extremely 

worthwhile to perform 1LSB experiments (similar to those described in Section 6.2.1) for 

AlSi10Mg and compare them to the 0LP results presented in this chapter to determine if the 

above hypothesis is correct (see Section 8.3). The effects of a powder layer on melt pool 

geometry are discussed in more detail in Section 6.3.4. 

 
Figure 2.29: An interpolated heat map of the porosity content attributed to the lack-of-fusion mechanism. Note 
the overlaid lines of constant melt pool depth. The circles indicate process parameter combinations which are 
predicted to cause lack-of-fusion porosity based on the model proposed by Tang et al. [72] under two different 
sets of assumptions. Note that bulk porosity may not behave linearly across process space; the use of a heat map 
to display these data is primarily for visualization purposes. 
 

Figure 2.30 is a 2D linearly interpolated heat map showing the porosity content attributed 

to the keyholing mechanism [74]. Keyhole-mode melting occurs in the high energy density (high 

beam power, low beam velocity) region of process space, where periodic vaporization of the 

molten material can occur. Keyhole-mode melting is associated with high aspect ratio melt 
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pools [31], [83]. For reference, the fitted lines of melt pools with aspect ratios of 1.0 and 1.3 are 

overlaid on top of the heat map. Note that demarcating the region of process space sensitive to 

keyholing-induced porosity with a line of constant aspect ratio will likely produce a conservative 

estimate of usable process space at higher beam velocities. As is apparent in Figure 2.30, 

keyholing porosity is virtually non-existent for beam velocities higher than 800 mm/s, even for 

higher aspect ratio melt pools. Prior welding research [84] and a growing body of Additive 

Manufacturing research [85] indicate that regimes of stable keyhole-mode melt pools exist. In 

these regimes, the melt pool morphology is such that periodic collapse of the vapor pocket, and 

subsequent entrapment of the keyholing pore by the liquid front, is relatively infrequent. 

 
Figure 2.30: An interpolated heat map of the porosity content attributed to the keyholing mechanism. Note the 
overlaid lines of constant melt pool aspect ratio. Note that bulk porosity may not behave linearly across process 
space; the use of a heat map to display these data is primarily for visualization purposes. 
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2.3.5 Edge Roughness of As-Built MLP Samples 

Figures 2.31 – 2.34 show analyses of the edge roughness of 23 of the 24 MLP samples27 in 

the form of 2D linearly interpolated heat maps. Each reported value represents an average of 

the values determined for the two vertical (build direction) edges of each MLP sample. Each 

measured edge was approximately 1 cm in length. For reference, the fitted lines of 30 µm and 

40 µm deep melt pools are overlaid on top of the heat map. A region of relatively high edge 

roughness is evident in the low energy density regime of process space. In particular, the high 

edge roughness values for the Ra, Rq, and Rz metrics appear limited to the lack-of-fusion region 

(introduced in Section 2.3.4), where the melt pools are shallower than the 30 µm layer 

thickness.  

Notably, negative Rsk values are not limited to the lack-of-fusion region, indicating that 

sharp valleys on the surface may be caused by mechanisms in addition to surface-connected 

lack-of-fusion porosity. Internal modeling work by Christopher Kantzos of CMU has 

demonstrated that surface valleys are a significant source of stress concentrations (potential 

crack initiation sites) under certain tensile loading conditions. It can therefore be inferred that a 

highly negative Rsk value may indicate that a part has a decreased resistance to fatigue failure. 

Across process space, the Ra metric ranges from 22 µm to 130 µm, the Rq metric ranges from 

29 µm to 170 µm, the Rz metric ranges from 110 µm to 510 µm, and the Rsk metric ranges from 

-0.44 µm to 0.35 µm. 

                                                      

27 The edges of MLP Sample #12 were not available for measurement (see Appendix B). 
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Figure 2.31: An interpolated heat map of the Ra edge 
roughness measure. Note the overlaid lines of constant 
melt pool depth. Note that edge roughness may not 
behave linearly across process space; the use of a heat 
map to display these data is primarily for visualization 
purposes. 

Figure 2.32: An interpolated heat map of the Rq edge 
roughness measure. Note the overlaid lines of constant 
melt pool depth. Note that edge roughness may not 
behave linearly across process space; the use of a heat 
map to display these data is primarily for visualization 
purposes. 

  
Figure 2.33: An interpolated heat map of the Rz edge 
roughness measure. Note the overlaid lines of constant 
melt pool depth. Note that edge roughness may not 
behave linearly across process space; the use of a heat 
map to display these data is primarily for visualization 
purposes. 

Figure 2.34: An interpolated heat map of the Rsk edge 
roughness measure. Note the overlaid lines of constant 
melt pool depth. Note that edge roughness may not 
behave linearly across process space; the use of a heat 
map to display these data is primarily for visualization 
purposes. 
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2.3.6 A Robust Processing Window 

As discussed in Section 1.2, the primary goal of process mapping is to provide insight into 

the correlation between process parameters and process outcomes. Because bulk porosity is a 

major factor in a part’s final quality, particularly as it relates to fatigue life [79], [86], Figure 2.35 

presents a desirable processing window inside of which porosity due to lack-of-fusion and 

keyholing can be largely avoided when building the bulk region of a part. This processing 

window is bounded by a curve of minimum melt pool depth and a curve of maximum melt pool 

aspect ratio. Four representative MLP micrographs from across process space are also included 

for reference. This process map is an extension of the process map presented by Narra [12, p. 

102], further informed by a quantitative analysis of the bulk porosity content and the higher 

degree of confidence in the cross-sectional melt pool measurements. Note that this process 

window is contingent upon the controlled parameters such as hatch spacing (Table 2.1), 

powder layer thickness (30 µm), and build chamber temperature (35 °C). 
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Figure 2.35: A proposed processing window for AlSi10Mg, assuming that hatch spacing is controlled to ensure 
lateral overlap and 30 µm thick powder layers are used. Parts built with parameters located above the 40 µm melt 
pool depth curve and below the 1.3 aspect ratio curve are expected to have low levels of porosity due to lack-of-
fusion and keyholing. Four representative MLP micrographs are also shown. The black cross-mark at 370 W, 1200 
mm/s denotes the default EOS M290 process parameters for AlSi10Mg. 

2.4 Discussion and Summary 

In this chapter, correlations between process parameters (beam power and beam travel 

velocity) and cross-sectional melt pool geometry (width, depth, area, and aspect ratio) are 

presented in the form of process maps for the L-PBF-processed AlSi10Mg alloy. The process 

map developed for cross-sectional width is compared to the process map reported by Narra 

[12, Ch. 5] which was derived from above-view measurements of the melt tracks. Favorable 

agreement between these two maps was found suggesting that melt pool widths collected via 

certain in-situ process monitoring techniques could accurately represent melt pool dimensions 

which are more commonly measured through ex-situ destructive testing. 

Sample #24 
(370 W, 1400 mm/s)

Sample #13 
(300 W, 400 mm/s)

Sample #17 
(300 W, 1200 mm/s)

Sample #5 
(100 W, 1000 mm/s)

9.5 mm
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While process maps of L-PBF-processed AlSi10Mg cross-sectional melt pool geometry have 

been reported by Narra [12, Ch. 5], they were based on single measurements of each process 

parameter combination. The process maps presented in this chapter are based on data from 

multiple cross-sections at each process parameter combination – allowing for the presentation 

of process maps with an increased, and quantifiable, level of confidence. Additionally, the 

relatively large number of cross-sectional measurements allowed for an investigation of the 

statistical distribution of melt pool dimensions for each process parameter combination. 

Analysis of the distributions reveals that cross-sectional melt pool widths, depths, and areas 

primarily follow a normal distribution with the exception of a handful of outliers (at certain 

process parameter combinations) which clearly diverge from a normal distribution. 

Interestingly, the divergent melt pools almost exclusively formed an upper tail, that is, the 

divergent melt pools were significantly larger than the majority of the melt pools produced by 

that process parameter combination. The large sample size also allowed for the quantification 

of the variability of the melt pool dimensions across process space – critical information for 

designers as they work at the edges of viable L-PBF processing space. Notably, no correlation 

between variability and processing parameters was observed.  

The bulk porosity contents of L-PBF-processed AlSi10Mg samples are reported across 

process space. Pore categorization based on size and morphology allowed for the identification 

of regions of process space dominated by lack-of-fusion and keyholing flaw formation 

mechanisms. The experimentally-determined lack-of-fusion region was compared to the region 

predicted by the model proposed by Tang et al. [72]; the existence of a notable discrepancy 

suggests that 0LP melt pool geometry may not be fully descriptive of MLP melt pool geometry 
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due to the effects of the powder layer. The region of process space where keyholing porosity 

was observed is bounded by a curve of constant melt pool aspect ratio, although this boundary 

is likely conservative at higher beam velocities as discussed previously. Four 2D edge roughness 

measures were used to evaluate the as-built surfaces of the MLP samples; unsurprisingly, 

samples within the lack-of-fusion regime exhibited noticeably rougher surfaces although highly 

negative values of the skewness metric (Rsk) were also observed in regions outside of the lack-

of-fusion regime. It should be noted that while informative, the reported edge roughness 

values and trends are not necessarily indicative of the values and trends which would be 

observed if the MLP samples had (as is standard in most L-PBF systems) been built with 

contours instead of only bulk processing parameters and bulk laser scan strategies. 

Finally, the quantitative porosity results are combined to generate an L-PBF processing 

window that provides a range of processing parameters expected to produce AlSi10Mg parts 

with minimal bulk porosity due to lack-of-fusion or keyholing. This processing window may be 

treated as an extension of the window proposed by Narra [12, Fig. 5.24] with an increased level 

of fidelity. Given the lack of keyholing porosity at higher beam velocities, it is likely that 

AlSi10Mg parts could be built with higher beam powers and travel velocities than is currently 

standard for the EOS M90 without a detrimental decrease in part quality. Such a change would 

be advantageous as increases in beam power and velocity allow for an increased material 

deposition rate [33]. Note, however, that while neither an increase in melt pool variability nor a 
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change in melt pool morphology were observed at the higher beam velocities tested28, a 

surface tension instability phenomenon known as “balling” is generally known to occur at high 

beam velocities [87], [88], particularly in the presence of a powder layer [69]. Balling is 

discussed extensively throughout Chapter 6 and the behavior of AlSi10Mg melt pools is 

compared to the behavior of Inconel 718 melt pools in Section 6.3.6. 

                                                      

28 More specifically, the onset of balling occurs as the length to width ratio of the melt pool increases, i.e. as the 
melt pool gets narrower. Because of the high thermal diffusivity of AlSi10Mg, the melt pools tend to remain short 
relative to their width over the region of process space explored in this thesis. 
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3 Topic 2: The Effect of Non-Standard Metal Powders on L-PBF Part 
and Process Quality 

3.1 Background and Literature Review 

One of the primary impediments to the wide-spread adoption of additive technologies is 

the current cost and sourcing restrictions of the feedstock for PBF processes [3], [4]. Currently, 

machine manufactures strongly recommend that their customers use only powders from vetted 

vendors, produced via specific processes, and with restrictive size distributions [51]. These 

restrictions are intended to ensure production of parts with the quality and properties 

guaranteed by the machine manufacturers, as well as to prevent damage to the machines 

themselves.  

The work presented in this chapter seeks to demonstrate that a relatively wide range of 

metal powder types (e.g. size distributions and production methods) can be used to successfully 

build parts in an L-PBF system. This work specifically targets the use of larger-than-standard 

powders in L-PBF because the cost of a powder lot generally decreases (for a given material) as 

the Powder Size Distribution (PSD) widens to include the larger particles produced during most 

traditional powder production techniques. For example, less than 15% of a powder batch 

produced via gas atomization would be considered usable by L-PBF processes if a traditional 

size cutoff of 60 µm is used; but if powder particles up to 120 µm in diameter become 

acceptable for L-PBF, that fraction increases to almost 40% [89, Ch. 5].  

Most powders used in metal AM processes are produced by either gas or plasma 

atomization [51]; owing to the methods’ relatively low cost and ability to produce spherical 

powders [51]. Plasma Rotating Electrode Powder (PREP) is more expensive to produce, but is 
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generally considered to be of high purity and extremely spherical relative to other production 

methods [90]. Hydride-dehydride (HDH) is a powder production technique unique to titanium 

alloys; while it is substantially cheaper than either atomization or PREP, the powders tend to be 

irregular in shape [90], [91]. A degree of sphericity can be achieved with HDH powder if Plasma 

Spherodization (P-S) is performed as an additional step [90], [91]. 

The characteristics of the powder used can affect the ability of the recoater blade to spread 

the powder, the packing density of the powder [92], and the bulk porosity and surface 

roughness of the final parts. While there have been several studies investigating the 

spreadability and flow characteristics of AM powders, particularly from a Discrete Element 

Modeling (DEM) approach [93]–[95], the author has found only a limited body of work linking 

PSDs to final part quality. Specifically, Spierings et al. [96] investigated the influence of three 

different stainless steel 316L powders on surface roughness, bulk porosity, and tensile strength, 

finding variation across the Powder Systems but no clear trend with respect to the PSD. The 

transfer of porosity from powder particles to final parts was investigated by Cunningham et al. 

[48] in the L-PBF process. Saint John et al. [97] performed mechanical testing on components 

built with four different Inconel 718 powders and finding limited variation across the Powder 

Systems with the exception of the measured impact energy. Finally, Gu et al. [98] performed 

mechanical testing on components built with three different Ti-6Al-4V powders for which no 

significant differences in mechanical properties were found. The alternate Powder Systems 

investigated by Spierings et al. and Gu et al. did not exceed 50 µm in diameter; while the largest 

powder in the study performed by Saint John et al. had a mean particle diameter of 47 µm. In 
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contrast, the Powder Systems studied in this work contain particles up to 120 µm in diameter 

(Table 3.2). 

In this chapter, the effects non-standard Powder Systems (PS) on build and as-built part 

quality are explored. Specifically, three non-standard Ti-6Al-4V (Ti64) Powder Systems and one 

non-standard Inconel 718 (In718) Powder System are successfully used to build a standard set 

of test artifacts. The performance of these four non-standard Powder Systems is compared to 

that of the EOS nominal Ti64 Powder System. Qualitative observations of build quality as well as 

a quantitative in-situ analysis of powder spreading anomalies (using the methodology described 

in Chapter 4) are presented. Build quality is quantified by measurements of bulk porosity 

content and the 2D edge roughness of the as-built parts. The work presented in this chapter 

was supported by the America Makes project: “A Database Relating Powder Properties to 

Process Outcomes for Direct Metal Additive Manufacturing” (project number 4028.001). 
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3.2 Experimental Design and Methods 

3.2.1 Feedstock 

Standardized test artifacts were built with four non-standard and one standard (nominal) 

Powder Systems. The nominal characteristics of these powders are summarized in Table 3.1.  

Table 3.1: Nominal Powder System characteristics as reported by the powder manufacturers. 

Powder System29 PS #1 PS #2 PS #3 PS #4 PS #5 
Manufacturer EOS Standard A B B C 

Material Ti64 Ti64 Ti64 Ti64 In718 
Production Process Gas Atomized PREP HDH + P-S HDH + P-S Gas Atomized 

Mesh Size -230 -170 -200/+325 -140/+325 -170/+800 
Particle Diameter (µm) < 63 < 88 74 – 44 105 – 44 < 88 

In contrast, Table 3.2 shows volume-weighted Powder System characteristics as measured 

independently by collaborators. Specifically, the data reported for PS #1 were collected and 

analyzed by Ross Cunningham and Prof. Anthony Rollett of CMU while the data reported for PS 

#2 – #5 were collected and analyzed by Hengfeng Gu and Prof. Ola Harrysson of North Carolina 

State University (NCSU). Table 3.2 is included in this thesis solely to provide background to the 

readers and allow for the presentation of results in the context of the measured PSDs. 

Table 3.2: Volume-weighted Powder System characteristics as measured by collaborators at CMU and NCSU. 

 PS #1 PS #2 PS #3 PS #4 PS #5 
Lower 10% Threshold30 (µm) 20 50 60 35 15 

Mean (µm)  34 78 91 62 58 
Upper 10% Threshold31 (µm) 50 105 120 90 105 

                                                      

29If the reader wishes to compare any results reported in this thesis to the America Makes report [53], be advised 
that the Powder System numbering scheme is not consistent. Please refer to the following conversion key: thesis 
(America Makes), PS #1 (PS #8), PS #2 (PS #3), PS #3 (PS #4), PS #4 (PS #5), and PS #5 (PS #7). 
30 Approximately 10% of the powder particles (by volume) in the sample population have sizes smaller than the 
stated value, to the nearest available bin size. 
31 Approximately 10% of the powder particles (by volume) in the sample population have sizes larger than the 
stated value, to the nearest available bin size. 
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3.2.2 Build Conditions 

A CAD (Computer Aided Design) rendering of the test artifacts are shown in Figure 3.1. 

Each build consists of a single NIST part [99] located in the center of the build area and 

surrounded by eight vertical cylinders, each 2 cm tall and 2 cm in diameter. The builds were 

performed on an EOS M290 L-PBF machine at CMU’s NextManufacturing Center; no 

modifications (mechanical or software) were made to the powder spreading and handling 

mechanisms within the EOS M290. For each build, the test artifacts were built in the same 

orientation and location in the build area. Solid supports, 4.5 mm tall, were used for all builds; 

with a single layer skipped at the support-part interface.  

 

Figure 3.1: A CAD rendering of the test artifacts, consisting of a NIST part surrounded by eight cylinders. The square 
footprint of the NIST artifact is 10 cm long on each side and the cylinders are each 2 cm in diameter. 

The process parameters used for the five builds are listed in Table 3.3 and were chosen to 

enable proper spreading of the powders as well as mitigate the occurrence of bulk porosity. 

Specifically, the nominal powder layer thickness was first chosen such that the effective layer 

thickness would be greater than the diameter of the largest powder particles reported by the 

powder manufacturer32. Note that the effective layer thickness is larger than the nominal layer 

                                                      

32 Administrative restrictions prevented independent measurement of the PSDs (Table 3.2) prior to the start of the 
PS #1 – PS #5 builds. 

z
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thickness due to layer-wise post-fusion consolidation of the powder. Based on the work of 

Jacob et al. [92], a consolidation factor33 (𝜘𝜘) of 0.40 (40%) was chosen. Under these 

assumptions, nominal powder layer thicknesses of 30 µm and 60 µm result in effective powder 

layer thicknesses of 50 µm and 100 µm, respectively. Based on these predictions, a nominal 

powder layer thickness of 60 µm was considered sufficient for PS #1 – #5. An extensive 

discussion of layer-wise post-fusion powder consolidation is available in Section 6.2.1. 

Table 3.3: Processing parameters used for each build on the EOS M290 L-PBF machine. 

 PS #1 PS #2 PS #3 PS #4 PS #5 
Build Chamber Temperature (°C) 35 35 35 35 80 
Nominal Beam Diameter34 (µm) 100 100 100 100 100 

Starting Layer Thickness (µm) 60 60 60 60 60 
Nominal Layer Thickness35 (µm) 60 60 60 60 60 

Raster (bulk) Beam Power (W) 340 340 340 340 370 
Raster (bulk) Beam Velocity (mm/s) 1250 1250 1250 1250 1000 

Raster (bulk) Hatch Spacing (µm) 120 120 120 120 120 
Raster (bulk) Stripe Width (mm) 5 5 5 5 10 

Inner Post-Contour Beam Power (W) 190 190 190 190 270 
Inner Post-Contour Beam Velocity (mm/s) 1200 1200 1200 1200 800 

Outer Post-Contour Beam Power (W) 190 190 190 190 270 
Outer Post-Contour Beam Velocity (mm/s) 1250 1250 1250 1250 800 

Post-Contour Offset36 (µm) 30 30 30 30 12 

 

  

                                                      

33 Where the “consolidation factor” is defined as: 𝜘𝜘 = 1 – 𝜌𝜌𝑝𝑝𝑓𝑓𝑝𝑝𝑑𝑑𝑒𝑒𝑖𝑖/𝜌𝜌𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒𝑑𝑑, where 𝜌𝜌 is the density of the material.  
34 The D86 beam diameter was measured to be approximately 90 µm during the machine maintenance temporally 
closest to the builds enumerated in Table 3.3. 
35 Note that this is the nominal powder layer thickness; layer-wise post-fusion consolidation of the powder results 
in an effective powder layer thickness that is greater than the nominal value. For an assumed consolidation 
percentage of 40%, the effective layer thickness will be approximately 100 µm. In other words, the effective 
powder layer thickness is greater than the mean particle size for all of the Powder Systems. See Section 6.2.1 for a 
more detailed discussion of this topic. 
36 This is the separation distance (i.e. hatch spacing) between the two post-contour melt tracks. 
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EOS nominal parameters are available for 60 µm layers for the Ti64 material system and 

were used for the PS #1 – #4 builds. In contrast, the largest available EOS layer thickness for 

In718 is 40 µm, therefore custom process parameters were designed by the author. First, the 

beam power and beam travel velocity were chosen such that the melt pools in the bulk region 

would fully penetrate through the nominal layer thickness. This choice was informed by an 

experimental process map developed for the In718 material system in the EOS M290 machine 

by Narra [12, Ch. 6]. This process map is based on cross-sectional measurements of individual 

melt tracks exposed on a bare build substrate devoid of powder. A simplified version of this 

melt pool cross-sectional depth process map is shown in Figure 3.2. The chosen laser beam 

power (370 W) and travel velocity (1000 mm/s) result in an expected melt pool depth of 

approximately 100 µm. In order to ensure lateral overlap between adjacent melt tracks (Figure 

1.7), a conservative hatch spacing of 120 µm was chosen. This hatch spacing results in an 

expected overlap equal to 17% of the expected melt pool cross-sectional width (180 µm based 

on the experimental process maps reported in [12]). The EOS nominal stripe width of 10 mm 

was maintained. Finally, the contour process parameters were chosen to produce melt pools 

with a reduced depth (70 µm) as the differing thermal conditions near the edge of a part [100] 

are expected to increase the melt pool depth relative to its depth within a bulk region; this 

behavior is discussed further in Chapter 7. Note that as discussed in Section 6.3.4, the use of a 

process map based on experiments performed on a bare substrate likely resulted in 

conservative estimates of melt pool size in the presence of a powder layer. Additional details 

regarding desirable L-PBF processing windows and undesirable defects are available in Chapters 

2 and 6.  
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Figure 3.2: An experimental process map of melt pool cross-sectional depth for the In718 material system in the 
EOS M290 machine. This process map is based on data reported by Narra [12, Ch. 6] 

3.2.3 Sample Preparation 

All of the builds were stress-relieved (annealed) using the EOS-recommended furnace 

profiles, which are reported in Table 3.4. After the stress-relief, the test artifacts were removed 

from the build plate using a gravity-fed band saw.  

Table 3.4: The furnace profiles used for the stress-relief heat treatments. 

 Ti64 [101] In718 [102] 
Ramp Up (°C/min) +20 +20 

Soak Temperature (°C) 650 1065 
Soak Time (min) 180 60 

Nominal37 Ramp Down (°C/min) -20 -20 
Gas Environment argon argon 

                                                      

37 This was the target cool down rate; the achieved (i.e. actual) cool down rates ranged between –5 °C/min and –1 
°C/min. 
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After removal from the EOS build plate, five of the eight cylinders from each build were 

sectioned along their build (z-axis) using either a low-speed saw with diamond wafering blade38 

or a Wire EDM (Electrical Discharge Machine). One half of each of those cylinders was then hot-

mounted, with the cut face visible, in Buehler® Konductomet sample pucks. After mounting, 

each sample was ground and polished according to ASTM E3-11, Table 6 [77]. During 

preparation of the Ti64 samples, special care was taken to use 0.06 µm colloidal silica (Buehler® 

MasterMetTM) mixed with hydrogen peroxide (H2O2) in a 5:1 ratio as the lubricant for all of the 

polishing steps, per a procedure developed by Dr. Jason Fox of CMU. Finally, each polished 

sample was imaged using an Alicona Infinite-Focus optical microscope at 5x magnification. 

3.2.4 Cylindrical Sample Measurement Techniques 

Bulk porosity was evaluated by first binarizing the optical micrographs taken at 5x 

magnification (Figure 3.3); where the binarization threshold was determined upon inspection of 

a bimodal intensity histogram. The bulk region, i.e. a zone away from the edges, (Figure 3.4) 

was then selected on the binary micrographs and a custom MATLAB script was used to identify 

and classify all of the pores within the selected region. A selection of cylindrical sample 

micrographs is available in Appendix C. 

                                                      

38 It was later learned that abrasive blades (as opposed to diamond wafering blades) are recommended by Struers 
Inc. for sectioning Ti64 and In718 samples in order to decrease the cutting time and reduce the wear on the blade.  
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Figure 3.3: Original micrograph of a cylinder built with 
PS #2. The build direction (z-axis) is oriented upwards. 

Figure 3.4: An example of a selected bulk region, 
indicated by the gray rectangle overlaid on the 
binarized version of the micrograph shown in Figure 
3.3. The build direction (z-axis) is oriented upwards. 

As discussed by Saltykov [103], the 2D pore size distribution underestimates the true, 3D 

pore sizes for a given sample. While approximations of 3D pore size based on 2D cross-sectional 

data can be performed [104], these analyses make a variety of assumptions regarding pore 

sphericity and the behavior of the pores during polishing (Section 3.2.3) that the author felt 

were not necessarily well-matched to the experimental data. Therefore pore classification was 

performed based on the 2D pore size distribution, as described below. 

Pores are classified into four categories: Pores less than 20 µm in effective circular 

diameter39 are considered to have been natively present in the powder particles as a result of 

their production [74], [79]. Pores greater than 40 µm in effective circular diameter and at least 

                                                      

39 The effective circular diameter is defined as the diameter of a circular pore with the same cross-sectional area as 
detected pore. 
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90% circular40 are considered to be the result of “keyholing-mode” melt pools [74]. Pores 

greater than 40 µm in effective circular diameter but less than 90% circular are considered 

“lack-of-fusion" flaws [74]. Pores greater than 20 µm but less than 40 µm in effective circular 

diameter are left “unclassified,” due the overlap in the sizes of the pores formed by the 

mechanisms enumerated above. The described porosity binning thresholds are based on prior 

internal work and the work of Cunningham et al. [48], [79]. Pores with an effective circular 

diameter of less than 5 µm were not considered, given the resolving power41 of the microscope 

at the magnification used. Note that the classification of keyhole and lack-of-fusion pores is the 

same as in Section 2.2.4; further discussion of the lack-of-fusion and keyhole porosity formation 

mechanisms is available in Section 2.3.4. 

As-built 2D edge roughness was evaluated by first binarizing the optical micrographs taken 

at 5x magnification (Figure 3.5); where the binarization threshold was determined upon 

inspection of a bimodal intensity histogram. After binarization, internal porosity was 

automatically removed to prevent it from influencing the roughness calculations. The edge 

regions (two for each cylindrical sample) were then selected (Figure 3.6) and a custom MATLAB 

script was used to calculate four roughness measures: Ra (arithmetic average of absolute 

values) (3.1), Rq (root mean squared) (3.2), Rz (maximum peak-to-valley difference) (3.3), and 

Rsk (skewness) (3.4). Note that a negative Rsk value indicates the presence of sharp valleys 

                                                      

40 A pore is considered circular if greater than 90% of the pore pixels lie on top of the effective circular pore 
centered at the centroid of the pore. 
41 At 5x magnification, the resolving power was determined to be 3 µm based on visual inspection of a 1951 USAF 
resolution test target.  



66 

(into the surface) while a positive Rsk value indicates the presence of sharp peaks (out of the 

surface) [80]. This methodology also presented in Section 2.2.4. 

  
Figure 3.5: Original micrograph of a cylinder built with 
PS #2. The build direction (z-axis) is oriented upwards. 

Figure 3.6: An example of a selected edge region, 
indicated by the gray rectangle overlaid on the binarized 
version of the micrograph shown in Figure 3.5. Also note 
that the internal porosity has been automatically 
removed. The build direction (z-axis) is oriented upwards. 
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Where y is the distance of a protuberance from the "mean" edge, and n is the number of protuberances along the 
edge. 
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3.3 Results 

3.3.1 Qualitative Build Quality and Observations 

The non-standard powder spreadability was qualitatively evaluated in a “go/no-go” context. 

All of the Powder Systems in Table 3.1 spread reliably throughout their respective builds. 

During the building process, anomalies in the powder bed were noticed for several non-

standard Powder Systems. These anomalies42, shown in Figure 3.7, took the form of clumps of 

dark particles at the edges of the stripes (Figure 1.8) during melting. These anomalies were 

most prominent in PS #2 and PS #3, with some similar clumping observed during the PS #4 

build. No such anomalies were observed during either the PS #5 or PS #1 (EOS nominal) builds. 

 
Figure 3.7: Images taken through the operator window of the EOS M290 during the building process. 
(a): PS #1 (nominal), a desirable powder bed, no visible dark particles. 
(b): PS #2, note the ridges of large clumps of dark particles highlighted by the red oval. 
(c): PS #3, note the ridges of large clumps of dark particles. 
(d): PS #4, note the ridges of large clumps of dark particles. 
(e): PS #5, a desirable powder bed, no visible dark particles.  

                                                      

42 Note that in this context, “anomaly” is used as a general term for an observable disturbance on the powder bed 
and does not specifically refer to one of the powder bed anomalies enumerated in Chapter 4.  
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The test artifacts were successfully built with all of the tested Powder Systems (Figure 3.8). 

The discolorations visible in Figure 3.8 are a result of oxidation during the stress-relief process 

(this is mitigated by performing the heat treatment in an inert argon atmosphere, but it does 

not eliminate the oxidation completely). Normally, this oxidation layer would be easily removed 

by shot peening, but this has not been done in order to preserve the as-built surface finish for 

this study. The severe oxidation in Figure 3.8d is the result of an accidental loss of argon 

shielding during the stress-relief process.  

 
Figure 3.8: The test artifacts (NIST parts) built with the five Powder Systems listed in Table 3.1. 
(a): PS #1 (nominal). 
(b): PS #2. 
(c): PS #3. 
(d): PS #4, the heavy oxidation is due to an accidental loss of argon shielding during the stress-relief. 
(e): PS #5, the coloration for this In718 artifact is noticeably different than for the other, Ti64, artifacts. 

It should be noted that the PS #5 build failed approximately 75% of the way through the 

build height due to a machine error unrelated to either the part geometry or the powder being 

used (see Section 5.2.6). This failure is visible as several partially delaminated layers in Figure 

3.9. The PS #4 build experienced delamination and cracking on the NIST part (Figure 3.10), as 

well as several of the cylinders. After analyzing data recorded by a custom autonomous powder 

(b) (c)

(d) (e)

(a)
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bed monitoring system (Chapter 4), it was determined that the cracking and delamination 

occurred sometime after the build completed, but before it was removed from the build 

chamber. It should be noted that while the cause of this cracking is unknown, similar cracking of 

samples built with PS #4 was also observed by Hengfeng Gu at NCSU during the course of the 

America Makes project. 

 

  
Figure 3.9: A representative cylinder built with PS43 #5. 
The EOS M290 spontaneously failed to raise the powder 
dispenser (Figure 1.4), resulting in several layers of 
insufficient powder spreading and eventual 
delamination.  

Figure 3.10: Cracking (contiguous red oval) and 
delamination (dashed red oval) during the PS #4 build. 

All of the small-scale positive features (Figure 3.11) on the NIST part were built successfully 

in each Powder System tested, but there was a slight degradation in the resolution of the 

smallest-scale rectangular (vertical) negative feature for PS #3, relative to the other Powder 

Systems (Figure 3.12).  

                                                      

43 The “PS 7” label on the cylinder image references the original Powder System numbering scheme used for the 
America Makes report [53]. Please refer to the following conversion key: thesis (America Makes), PS #1 (PS #8), PS 
#2 (PS #3), PS #3 (PS #4), PS #4 (PS #5), and PS #5 (PS #7). 

z
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Figure 3.11: An example of successfully 
produced vertical positive features, 
specifically those from the NIST part 
produced using PS #5. 

 

Figure 3.12: Negative feature resolution on 
the NIST part built using PS #3; note the 
near merger of the two rectangles 
highlighted by the red circle.  

3.3.2 Quantitative Analysis of the Powder Spreading Process 

The images collected by the EOS M290’s EOSTATE PowderBed module [105] during each 

build were analyzed using the ML/CV methodology presented in Chapter 4. Specifically, a Multi-

scale Convolutional Neural Network (Section 4.4) was used to detect and classify anomalies 

located on the power bed throughout the height of the build. Figure 3.13 shows the occurrence 

of anomaly detections44 as a function of build layer for all five Powder System builds. It is 

immediately evident that PS #2 and PS #3 have dramatically higher numbers of anomaly 

detections than the other three Powder Systems. It is also evident that a strong periodicity in 

the anomaly detections exists for PS #2 and PS #3 while a less dramatic periodicity exists for PS 

#4. Manual review of the powder bed images, as well as in-person observations during the 

build (Figure 3.7), suggest that these anomaly detections are triggered by clumps of dark 

particles that appear at the edges of the stripes (Figure 1.8) during fusion of the powder layer. 

These dark particles are not readily apparent in the builds using PS #1 or PS #5.  

                                                      

44 Specifically, the anomaly detections reported in this section are a combination of detections of super-elevation 
and part damage, the descriptions for both of which can be found in Section 4.2.4. 

5 mm
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Figure 3.13: The number of pixels (as a percentage of the cross-sectional part area) that the Multi-scale 
Convolutional Neural Network has identified as anomalous at each layer of the build. 

A Fourier frequency analysis yielded a period of 5.37 layers/anomaly-peak for the PS #2 – 

PS #4 builds. The author hypothesizes that the periodicity is related to the default EOS M290 

laser scan strategy (Figure 1.8) rotation of 67° every layer [41]. This rotation strategy results in a 

“near-full” rotation (335°) every five layers; observe that (5.37 layers/anomaly-peak) × 

(67°/layer) = 360°/anomaly-peak, i.e. a full rotation. A review of the EOSPRINT [45] build file 

(Figure 3.14) indicates that the anomaly detections peak when the edges of the stripes exposed 

during the previous layer are perpendicular to the x-axis. While it is possible that there is an 

increased degree of interaction between the recoater blade (which travels along the x-axis), the 

new powder spread, and the dark particles, it is likely that the periodicity is an artifact of 

lighting conditions within the build chamber. Specifically, the lighting source is placed such that 

it illuminates the powder bed from the right to the left along the x-axis (as in Figures 1.4, 1.5, 

and 3.14). As a result, the lighting contrast that highlights elevation variations on the powder 

bed surface will be greatest for features which are oriented perpendicularly to the recoater 
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blade direction, i.e. the anomalies are easier or harder to detect depending on their orientation 

relative to the illumination source.  

 
Figure 3.14: First CAD geometry slice of the test artifacts as viewed in EOSPRINT. Note the vertical stripes 
(perpendicular to the illumination and recoater blade travel directions). Given the 67° rotation, the stripes will 
align with the y-axis every 5.3 layers. 

Based on the relationship between the dark particles and the stripe edges, it is likely that a 

significant percentage of the dark particles are a combination of ejecta from the melt pool and 

powder particles entrained by the intense fluid flows within the vapor plume, commonly 

referred to as spatter [39], [106], [107]. Recent studies have suggested that spatter lying on top 

of the powder bed has the potential to negatively influence the fusing of subsequent powder 

layers and overall part quality [106]. Part quality for each Powder System is evaluated in the 

following two subsections. 

3.3.3 Bulk Porosity of As-Built Cylindrical Samples 

Figure 3.15 shows the pores detected and categorized in an example micrograph. Figure 

3.16 shows the percentage of the of the bulk region that contains porosity of each type. Each 

reported Powder System measurement represents the average of the values determined for 

five cylinder samples. Average bulk porosity was measured to be less than 0.1% for all Powder 
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Systems. Cylinders built with PS #3 have the highest level of detected porosity (p-value45 of 

0.065), while the remaining Powder Systems (#2, #4, and #5) have porosity levels observably 

similar to that of the standard EOS powder (PS #1). The primary contributors to the increased 

porosity in the PS #3 samples are large, irregularly-shaped pores classified as the result of the 

lack-of-fusion mechanism. Given that the processing parameters were identical for the PS #1 – 

#4 builds (Table 3.3), the author suspects that some of this porosity may be the result of an 

interaction between the melt pool and the spatter particles accumulating at the edges of the 

stripes (Sections 3.3.1 and 3.3.2).  

 
Figure 3.15: A visual representation of the pore-classifications for the PS #2 micrograph shown in Figure 3.5. Note 
that the effective circular diameters of the detected pores have been increased by a factor of eight to improve 
visibility.  

                                                      

45 In a right-tail test the alternative hypothesis is that the mean of one population (PS #3) is larger than the mean 
of another population (in this case, PS #2 as it has the next highest level of bulk porosity). 
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Figure 3.16: The bulk porosity of the sectioned cylinders. The error bars represent 95% confidence intervals about 
the mean total porosity (the combined contribution of all four porosity types). 

Also of interest, PS #4 (which experienced cracking, see Figure 3.10) and PS #5 (the only 

In718 Powder System) appear to have a higher percentage of porosity caused by small pores, 

which are considered to originate from the powder itself, as compared to the other three 

Powder Systems. Internal work by Ross Cunningham at CMU utilized a synchrotron to perform 

high resolution X-Ray Computed Tomography (µCT) scans of both the cylindrical samples and a 

powder sample of each Powder System. The µCT results also indicated higher percentages of 

porosity due to sub 20 µm pores in in both the cylindrical and powder samples of PS #4 and, to 

an even greater extent, PS #5 (relative to the other three Powder Systems). For both PS #4 and 

#5, the powder samples contained on the order of 10 times more sub 20 µm pores than the 

corresponding cylindrical samples. 
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3.3.4 Edge Roughness of As-Built Cylindrical Samples 

Figure 3.17 shows an analysis of the 2D edge roughness of the cylinders. Each reported 

Powder System measurement represents the average of the values determined for the two 

build direction (z-axis) edges of each of five cylinders (i.e. ten total edges). Each measured edge 

was between 1 cm and 2 cm in length. While the roughness values for all of the Powder 

Systems are comparable, the use of PS #3 resulted in rougher test artifacts than the other 

Powder Systems (p-values46 of 0.0023, 0.0017, 0.0052, and 0.023 for the Ra, Rq, Rz, and Rsk 

metrics respectively). Notably, the mean Rsk value was negative for all of the Powder Systems. 

Internal modeling work by Christopher Kantzos of CMU has demonstrated that surface valleys 

are a significant source of stress concentrations (potential crack initiation sites) under certain 

tensile loading conditions. It can therefore be inferred that a highly negative Rsk value may 

indicate that a part has a decreased resistance to fatigue failure. 

                                                      

46 In a right-tail test the alternative hypothesis is that the mean of one population (PS #3) is larger than the mean 
of another population (PS #2 as it has the next largest roughness values). Note that a left-tail test was used for the 
Rsk metric. 
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Figure 3.17: The edge roughness of the sectioned cylinders. The error bars represent 95% confidence intervals 
about the mean. 

Across the five Powder Systems, the Ra metric ranges from 16 µm to 29 µm, the Rq metric 

ranges from 21 µm to 38 µm, the Rz metric ranges from 94 µm to 180 µm, and the Rsk metric 

ranges from -0.13 µm to -0.033 µm. The roughness of cylinders built with PS #5 is statistically 

indistinguishable from the roughness of cylinders built with PS #1, the standard EOS powder (p-

values47 of 0.16, 0.87, and 0.35) for the Rq, Rz, and Rsk metrics respectively). However the p-

value for the Ra metric is 0.062, indicating that PS #1 and PS #5 may be statistically 

distinguishable from each other according to this metric. Overall, the similarity between the PS 

#1 and PS #5 results suggest that in some cases a reasonably wide range of powder sizes (mean 

particle diameters ranging from 34 µm to 58 µm) could be used to fabricate L-PBF parts without 

an appreciable increase to the as-built edge roughness of the parts. 

                                                      

47 In a two-tail test the alternative hypothesis is that the means of the two populations are not equal. 
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3.3.5 Correlations between Build Quality and Powder Particle Size 

A general trend of worsening build and part quality as powder particle size increases is 

apparent throughout the results in Sections 3.3.2 – 0. For example, the largest powder (PS #3) 

consistently ranks the worst across all of the metrics examined. In Figure 3.13 the Multi-scale 

Convolutional Neural Network determined that the PS #3 build experienced the greatest 

occurrence of anomalies in the powder bed and both the bulk porosity and the edge roughness 

of the PS #3 cylinders are statistically higher than that of the other Powder Systems. The 

correlation between the build and part quality metrics with respect to mean particle size and 

maximum particle size (as defined by the upper 10% threshold, see Table 3.2) was quantified 

with a Pearson rank correlation test [108]. The results of the correlation test48, specifically the 

correlation coefficients (ρ) and the associated p-values, are presented in Tables 3.5 – 3.7.  

Table 3.5 demonstrates a correlation between the powder particle sizes and the powder 

bed anomalies detected by the Multi-scale Convolutional Neural Network. This correlation 

suggests that the Powder Systems with larger powder particles result in the generation of more 

(or more visible) spatter particles during fusion of the powder bed. Table 3.6 demonstrates a 

correlation between the powder particle size and several of the bulk porosity types. Note the 

lack of correlation in the case of the smaller porosity (attributed to the powder) and the case of 

the porosity attributed to the keyholing mechanism. This lack of correlation is expected as 

                                                      

48 A Pearson rank correlation test quantifies how well the relationship between two variables follows a monotonic 
function. In this application of the correlation test, high correlation coefficients and low p-values indicate strong 
correlations between the particle size characteristics and the quality metrics. The correlation coefficient ranges 
from ℝ[-1, 1], with a value of 1 indicating a monotonically increasing relationship and a value of -1 indicating a 
monotonically decreasing (i.e. inverse) relationship [108]. Note that the reported correlation metrics are for the 
mean measurement values (where applicable). 
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native powder porosity is primarily related to the powder production method and keyholing 

porosity is primarily related to the L-PBF processing parameters (see Chapters 2 and 6). Finally, 

Table 3.7 demonstrates a correlation between the powder particle size and several of the 

roughness measures. Note that the greatest correlation is found for the Rz metric, possibly 

because the magnitude of this value may be driven by unfused or partially-fused powder 

particles adhered to the surface of the cylindrical samples. Also note that no correlation is 

found for the Rsk metric. As the Rsk value describes the presence of sharp surface valleys, it is 

not surprising that it is not significantly influenced by the powder particle size. Advantageously, 

this lack of correlation suggests that the use of Powder Systems with larger powder particles 

does not necessarily result in as-built surfaces that are more susceptible to crack initiation 

under fatigue loading conditions (see Section 3.3.4). 

Interestingly, the correlations are markedly stronger with respect to mean particle size 

than with respect to maximum particle size. A potential contributing factor to this effect may be 

the use of effective powder layers (approximately 100 µm thick) that are thinner than the 

largest powder particles (approximately 120 µm in diameter). The powder layer thicknesses 

were determined based on the PSDs reported by the manufactures (Table 3.1) as powder 

characterization (Table 3.2) was not performed prior to the builds.  
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Table 3.5: Results from an application of the Pearson rank correlation test to the quantitative analysis of the 
powder spreading process. Table cells are shaded progressively darker for p-value cutoffs of 0.20, 0.10, and 0.05. 

 Average Powder Bed Anomaly 
Percentage 

Peak Powder Bed Anomaly 
Percentage 

 Particle Size (Mean) 
ρ 0.88 0.93 

p-value 0.049 0.020 
 Particle Size (Upper 10% Threshold) 

ρ 0.68 0.72 
p-value 0.21 0.17 

 

Table 3.6: Results from an application of the Pearson rank correlation test to the measured bulk porosity types. 
Table cells are shaded progressively darker for p-value cutoffs of 0.20, 0.10, and 0.05. 

 Native Porosity Keyholing 
Porosity 

Lack-of-Fusion 
Porosity 

Unclassified 
Porosity Total Porosity 

 Particle Size (Mean) 
ρ -0.12 0.65 0.74 0.84 0.88 

p-value 0.85 0.23 0.16 0.048 0.068 
 Particle Size (Upper 10% Threshold) 

ρ 0.26 0.36 0.52 0.98 0.81 
p-value 0.67 0.55 0.36 0.0043 0.099 

 

Table 3.7: Results from an application of the Pearson rank correlation test to the measured edge roughness 
metrics. Table cells are shaded progressively darker for p-value cutoffs of 0.20, 0.10, and 0.05. 

 Ra Rq Rz Rsk 
 Particle Size (Mean) 

ρ 0.85 0.86 0.90 -0.50 
p-value 0.068 0.061 0.038 0.39 

 Particle Size (Upper 10% Threshold) 
ρ 0.59 0.61 0.69 -0.55 

p-value 0.30 0.27 0.20 0.34 

 

  



80 

3.4 Discussion and Summary 

In this chapter, four non-standard Powder Systems were successfully used to build a 

standard set of test artifacts in an L-PBF process. The non-standard Powder Systems spanned 

two alloys (Ti64 and In718), three powder production techniques (Gas Atomization, PREP, and 

HDH + P-S), and had PSDs with maximum particle sizes up to 2.4 times larger than the largest 

particles found in the EOS nominal Ti64 Powder System. As a control, the test artifacts were 

also built using the EOS nominal Ti64 Powder System. 

The powder spreading and build qualities were evaluated qualitatively. Observations were 

made with respect to the resolution of a selection of the small-features on the test artifacts 

built with each Powder System. Post-build cracking of the PS #4 artifacts was observed, the 

cause of which is unknown at this time. Quantitative evaluation of the powder spreading 

process was performed using the powder bed monitoring methodology (Multi-scale 

Convolution Neural Network) presented in Chapter 4. The algorithm detections indicate that 

powder bed anomalies, in the form of dark particles, were more common in PS #2 – PS #4 than 

the nominal Powder System. Additionally, it was shown that the spatial distribution of the 

anomalies is related to the laser scan strategy, suggesting that the dark particles may be 

partially composed of spatter particles – further motivating the need for robust in-situ process 

monitoring methodologies such as those presented in Chapters 4 and 7. 

As-built part quality was evaluated for each Powder System via measurements of bulk 

porosity and 2D edge roughness. The average bulk porosity remained below 0.1% for all of the 

Powder Systems, although the porosity is noticeably higher for PS #3. Based on the morphology 
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(large and irregular) of many of the pores in PS #3, it is conceivable that the increased porosity 

is related an interaction between the melt pool and the accumulated spatter particles on top of 

the powder bed. The edge roughness values of the cylindrical samples built with the non-

standard Powder Systems are similar to those of the cylindrical samples built with the nominal 

Powder System; note, however, that the edge roughness is statistically highest for the PS #3 

sample relative to the other Powder Systems. 

A rank correlation analysis revealed a trend of worsening powder layer and as-built part 

quality with increasing mean powder particle size. Specifically, correlations were found 

between mean powder particle size and the detected powder bed anomalies, some of the bulk 

porosity types, and some the of edge roughness measures. Advantageously, no correlation was 

found between powder particle size and the edge roughness measure most closely linked to the 

formation of near-surface stress concentrations. Interestingly, only weaker correlations were 

found between the various quality metrics and the maximum powder particle sizes. Despite the 

observed trend, the overall magnitudes of the quality metrics suggest that parts of acceptable 

quality (for many applications) can be built in L-PBF processes using non-standard Powder 

Systems with dramatically larger particle sizes than the Powder Systems currently 

recommended by the machine manufacturers. 
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4 Topic 3: Autonomous Powder Bed Anomaly Detection and 
Classification in an L-PBF Process using Machine Learning Techniques 

4.1 Background and Literature Review 

The applications best suited for Additive Manufacturing require a degree of part quality 

assurance and process reliability that are difficult to achieve with the systems currently on the 

market [2]. It is commonly recognized that implementation of in-situ process monitoring and 

closed-loop control is necessary to meet the stringent requirements of these applications [2]. 

In-situ process monitoring of builds has become a major research focus for the AM community 

over the last several years. Monitoring efforts for the PBF and DED AM processes have variously 

focused on detecting macro-scale flaws (e.g. part delamination and residual stress-induced 

warping) [109], [110], detecting micro-scale flaws (e.g. porosity), measuring temperature fields 

and histories [109], [110], measuring shielding gas quality [111], and understanding melt pool 

dynamics [109], [110]. An impressive range of sensor modalities have been explored including 

those enumerated in the remainder of this paragraph. High speed pyrometers and high speed 

thermal imaging to measure melt pool temperatures [112]–[114]. Low speed pyrometers and 

low speed thermal imaging to measure powder bed temperatures [34], [115]–[117]. Embedded 

thermocouples to measure build substrate temperatures [118]. High speed visible-light imaging 

(see Chapter 7 for a more detailed treatment) [81], [119]–[124], high speed X-Ray imaging [85], 

[125], and interferometric coherence imaging [126] to monitor melt pool, spatter, and vapor 

plume sizes and shapes. Strain gages to directly measure part distortion [118], [127]. And 

perhaps most recently, active [128], [129], passive [130], [131], and spatially resolved acoustic 

[132], [133] sensing to detect a variety of flaw signatures. 
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Many of the flaws in a final part, as well as the overall reliability and stability of the L-PBF 

build process, are directly related to interactions between the recoater blade and the powder 

bed. The various powder bed anomalies identified in the literature and studied in this chapter 

are summarized in Table 4.1. These anomalies range in severity from recoater hopping which 

may only indicate the onset of a more severe problem, to super-elevation which can impact the 

stability of the entire build. Some anomalies (such as part damage) may indicate flaws in the 

final part, while others, such as recoater streaking, suggest damage to the machine itself; 

further descriptions of the anomalies are provided in Section 4.2.4. 

As a result, several groups have begun paying special attention to this stage of the L-PBF 

process using low speed visible-light imaging of the powder bed [134]–[140], in some cases in 

conjunction with flash-bulb illumination [141], [142], or structured light (i.e. fringe projection) 

[143]. Detection of recoater streaking has been explored by Craeghs et al. [136] and various 

methods for detecting super-elevation (albeit at a different size scale) have been proposed by 

Jacobsmühlen et al. [140]. Work by Foster et al. [141], Abdelrahman et al. [142], and 

Aminzadeh [138] demonstrates layer-wise geometric measurements and detection of general 

flaws via comparison of post-fusion visible-light powder bed images with the CAD model; 

similar work has also been performed by Cooke et al. [144] but for a Polymer Binder Jetting 

system. Finally, it is worth noting that L-PBF machine manufacturers (including EOS GmbH [145] 

and ConceptLaser GmbH [146]) are now releasing process monitoring solutions that include 

analyses of the powder bed. Unfortunately, such details as would be necessary to 

independently validate and improve upon the methodologies used by these systems are 

considered proprietary and are currently unavailable to the author.  
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Table 4.1: Descriptions of powder bed anomaly classifications and their respective color codes used throughout 
this chapter and Chapter 5. Additional descriptions of the anomaly types can be found in Section 4.2.4. Referring to 
the L-PBF background information provided in Section 1.1 may be useful. 

Anomaly Description Overlay Color 
Codes 

Non-Overlay 
Color Codes 

Okay No significant anomalies in the powder bed. Transparent Green 

Recoater 
Hopping 

Caused by the recoater blade striking a part, characterized 
by repeated vertical (parallel to the y-axis) lines [141]. 

Light Blue 
(Teal) 

Light Blue 
(Teal) 

Recoater 
Streaking 

Caused either by the recoater blade dragging a 
contaminant across the powder bed or by damage to the 
recoater blade. Characterized by horizontal (parallel to the 
x-axis) lines [136]. 

Dark Blue Dark Blue 

Debris Debris or other small to mid-sized discrepancies located in 
the powder bed but not directly over any parts [141]. White Black 

Super-Elevation 
Occurs when a part warps or curls upwards out of the 
powder layer [140]. Typically the result of a buildup of 
residual thermal stresses [118] or swelling [147]. 

Red Red 

Part Damage General classification for any significant damage to a part. 
Characterized by a variety of signatures.  

Purple 
(Magenta) 

Purple 
(Magenta) 

Incomplete 
Spreading 

Occurs when an insufficient amount of powder is 
repeatedly fetched from the powder dispenser [146]. 
Results in a lack of powder, the severity of which is highest 
nearest the powder collector. 

Yellow Yellow 

The powder bed monitoring approaches reported in the literature have a number of critical 

limitations: In all of the reported work, either only one anomaly type is detected by a given 

algorithm, or all of the detected anomalies are treated as generic “flaws.” Such an approach is 

inherently limiting with respect to future feedback control applications as different anomalies 

require different mitigation strategies (Section 5.3). Additionally, much of the reported work 

requires relatively high effective camera resolutions49 and therefore cannot be easily used to 

monitor the entire powder bed [138]–[140] and only a few authors have demonstrated the 

ability to reconstruct layer-wise data for an entire build [141], [142]. Furthermore, all of the 

reported work has required the installation of additional hardware beyond what is provided by 

the machine manufacturers. Of greatest importance, however, is the reliance of the existing 

                                                      

49 In this context, the “effective camera resolution” refers to the number of camera pixels covering a given area. It 
can be considered the inverse of the Field-of-View of each pixel. 
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work on human-created detectors50. For example, line profiles [136] and segmentation [138], 

[141], [142] have been used extensively. Such a human-dependent approach is severely 

limiting, as time-consuming human intervention would be required to modify the anomaly 

detection algorithm(s) as L-PBF machines evolve, new material systems become available, and 

new part geometries interact with the powder bed in unique ways. 

Fortunately, Machine Learning enables an algorithm to create its own detectors and 

models – allowing its anomaly detection capabilities to improve and evolve as new training data 

are provided. Indeed, it is for this reason that ML has become extremely popular in the 

Computer Vision community, though many of the methods are typically applied to entire 

images [148]. This presents a challenge as each powder bed image may contain hundreds of 

uniquely-identifiable anomalies. The problem of classifying multiple objects within a single 

image has been addressed by many groups who used methods including: Bag of Words applied 

to patch-wise classification [149], pixel-wise classification using a sliding window approach 

[150], and Multi-scale Convolutional Neural Networks [151]. It should also be noted that recent 

work by Jacobsmühlen et al. [140] used various ML techniques to detect super-elevation in 

post-fusion images with a very high effective resolution visible-light camera. Specifically, 

HOG/DAISY51 features were used to describe the imaged part geometries and models for 

predicting super-elevation were learned using SVM (Support Vector Machines), RF (Random 

Forests), and SGD (Stochastic Gradient Descent) techniques. Note that HOG/SIFT is conceptually 

                                                      

50 In this context, “detectors” refers to algorithmic solutions to identifying and classifying powder bed anomalies, 
not hardware-based detectors (i.e. sensors).  
51 In this usage, the DAISY descriptor was modified to be rotationally-invariant. 
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similar to DAISY and is discussed in Section 7.3; SGD is discussed in Section 4.4.6; SVMs are 

discussed in Section 7.3.6. 

In this chapter, the six powder bed anomalies presented in Table 4.1 are automatically 

detected and classified in a commercially-available L-PBF process via analysis of post-spreading 

(as opposed to post-fusion) powder bed images. Two different supervised ML methods are 

used to perform this task. The first ML method utilizes a Bag of Words (or Keypoints) [44] 

approach similar in concept to the patch-wise object classification reported by Winn et al. 

[149]. The second ML method utilizes transfer learning [152] to retrain the existing AlexNet 

Convolutional Neural Network (CNN) [153] to classify the powder bed anomalies. In addition to 

retraining, the AlexNet CNN was also configured such that the input data structure is composed 

of multi-scale patches, that is, regions of the powder bed at varying size scales. Intriguingly, the 

use of CNNs with multi-scale patches has, to the author’s knowledge, only been reported once 

in the literature – work by Shen et al. [151] leveraged this approach (which they referred to as 

MCNNs) to classify cancerous nodules in the human lung based on thoracic Computed 

Tomography (CT) scans. 

Theoretical concepts relevant to the two ML techniques are covered and the specific 

methodologies used in both cases are presented in detail. The performances of each ML 

methodology are evaluated and compared. Specifically, the guessing accuracies are measured 

using both validation and testing data sets, the sensitivity to training database size is reported 

for the CNN, and approximate computational burdens are reported. Based on the comparison 

of the aforementioned performance metrics, and additional qualitative considerations, a 
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decision is made regarding the relative efficacy of each ML approach as it relates to the powder 

bed monitoring application. 

A single build is then used as a case study to demonstrate the capabilities of the final ML 

algorithm. Through this case study, it is shown that the final ML algorithm provides valuable 

information regarding part quality and overall build stability. The work presented in this chapter 

is further extended in Chapter 5 in which numerous builds are analyzed using the final ML 

methodology and additional conclusions are drawn regarding the influence of part geometry 

and process parameters on build stability and powder layer deposition. The work presented in 

this chapter was not directly supported by any funding agencies in the public, commercial, or 

not-for-profit sectors. 

4.2 Experimental Design and Methods 

4.2.1 Programming Environment 

Unless otherwise noted, all software was developed within the MATLAB R2015a, R2016a, 

or R2017a environments. The above MATLAB versions also included the following add-on 

packages: the Image Processing Toolbox, MATLAB Compiler, the Neural Network Toolbox, and 

the Statistics Toolbox. 

4.2.2 Powder Bed Camera 

All of the work presented in this chapter is performed on an EOS M290 L-PBF machine 

(Figure 1.4) and uses only the stock powder bed camera and lighting configuration. Images of 

the build plate and powder bed are taken through a viewport located (almost) directly above 
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the build chamber. Grayscale images with a resolution of 1280 pixels × 1024 pixels are 

automatically captured immediately after a new powder layer is spread; the images are later 

accessible through EOSTATE [45]. During printing, the powder bed is illuminated by a single 

bank of white LEDs on the right-hand side of the build chamber. Figure 4.1 shows an example 

raw image taken by the powder bed camera. 

4.2.3 Image Pre-Processing  

The raw images (Figure 4.1) captured by the EOS M290 present several difficulties that 

prevent their direct usage in a ML-based algorithm. Fortunately, the camera mounting and 

lighting conditions remain consistent throughout a build as well as between different builds, so 

many of the required image adjustments can be greatly simplified. 

Out of the necessity of avoiding the laser optic train, the powder bed camera is mounted 

such that its axis is not parallel to the normal vector of the build plate (z-axis). The resulting 

distortion is corrected using a fully-constrained Homography matrix [154] to apply an affine 

warp to the raw image such that a square build plate in the initial image will appear square in 

the final image. Because the camera positioning and orientation are fixed, measurements of a 

powder-free build plate (within the camera’s field of view) were performed manually and no 

automatic fiducial (e.g. corner) detection is implemented to inform the Homography matrix. For 

the case of a non-fixed powder bed camera, work by Jacobsmühlen et al. proposes the use of 

robust fiducials exposed on the powder bed itself [134]. The image is then cropped to include 

only the region of the powder bed directly above the build plate. The spatial resolution (not 
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synonymous with resolving power [155]) of the camera setup is between52 290 µm/pixel and 

340 µm/pixel. After the described warping and cropping, the image is 900 pixels × 900 pixels 

with each pixel representing a 280 µm × 280 µm field of view. 

The highly directional side lighting of the powder bed increases (compared to top lighting) 

the contrast of any 3D features (e.g. hills and valleys). Overall contrast within the image is 

further increased by a remapping of the pixel intensities such that 1% of the pixels at each 

intensity extreme are saturated [156]. A side effect of the lighting configuration is a haloing 

effect (visible in Figure 4.2) in the images that is detrimental to the ML training process. To 

remedy the uneven lighting conditions, an anomaly-free powder bed image is used to generate 

a baseline intensity mask. Stochastic noise present in the mask is reduced using a Gaussian filter 

with a standard deviation of 8 pixels. This mask (Figure 4.2) is applied to each future powder 

bed image to levelize the lighting across the powder bed. Figure 4.3 shows a fully pre-processed 

image which has been warped, undergone a contrast adjustment, and had the lighting 

levelized. Note that the calibration information (i.e. the Homography matrix and the lighting 

adjustment mask) should be expected to vary across EOS M290 machines due to manufacturing 

and assembly differences. 

                                                      

52 The existence of a range of resolutions is the result of the misalignment between the camera axis and the 
normal vector of the build plate. 
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Figure 4.1: Raw powder bed image collected by the EOS 
M290.  

Figure 4.2: The illumination mask generated during the 
calibration process. The center of the powder bed is 
brightest and requires the least illumination correction, 
while the left-upper and left-lower edges require the 
most significant illumination correction. 

 

 

Figure 4.3: Figure 4.1 after pre-processing.  

4.2.4 Powder Bed Anomaly Types 

The powder bed anomaly classifications chosen for this work are briefly introduced in 

Table 4.1 and further described in this subsection. Importantly, the operations of the ML 

methodologies presented in Sections 4.3 and 4.4 are not dependent upon the specific anomaly 

classifications chosen by the author; the ML approach only requires that the chosen anomaly 
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types are self-consistent and sufficiently distinct from each other. Of course, a sufficiently large 

number of training examples must be available for each anomaly type. The specific anomaly 

classes (and their nomenclature) used in this work were chosen based on existing studies in the 

literature, the experiences of the author with operating the EOS M290, and feedback from 

multiple internal and external users of the developed powder bed monitoring methodologies. 

For the purposes of the consolidation heuristics described in Section 4.3.6 and the discussion in 

Section 5.3, the powder bed anomaly types in order of increasing severity are: recoater 

hopping, recoater streaking, debris, super-elevation, part damage, and incomplete spreading. 

Recoater hopping typically occurs when the recoater blade (relatively) lightly strikes a part 

just below the powder layer. Such a strike results in a periodic “chatter” of the recoater blade 

which is visible as repeated vertical lines in the powder bed as shown in Figure 4.4a. Recoater 

streaking occurs either when the recoater blade is damaged (i.e. “nicked”) or when the 

recoater blade drags a piece of debris or a clump of powder across the powder bed. Recoater 

streaking is visible as individual horizontal lines in the powder bed (Figure 4.4b). In many cases, 

these horizontal lines are only a few pixels wide in the powder bed camera image – increasing 

the challenge of robust detection. The debris classification encompasses many of the general 

disturbances to the powder bed that are not located directly over a part. Figure 4.4c shows 

several examples of debris. 
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Super-elevation occurs when a part visibly warps up above the powder layer [140]; the 

warping is often the result of a buildup in residual thermal stresses53 within the part [118] or 

swelling [147]. Super-elevation anomalies have a wide range of appearances due to the wide 

range of extant part geometries, but all generally contain long edges at varying orientations. 

Figure 4.4d shows several representative examples of super-elevation. Part damage 

encompasses significant disturbances to the powder bed directly over a part and generally 

indicates damage to a part caused by a major strike by the recoater blade. Unlike super-

elevation, long edges are typically not present as the part has sustained damage; Figure 4.4e 

shows several examples of part damage. Finally, incomplete spreading occurs when insufficient 

powder is fetched from the powder dispenser and spread across the build plate54. This results 

in large disturbances to the powder bed, which initially occur near the powder collector (left-

hand side of the powder bed, Figure 1.4). Over the duration of a build, disturbances due to 

incomplete spreading may encroach further and further into the powder bed; Figure 4.4f shows 

an example of incomplete spreading. Finally, any regions of the powder bed not containing one 

of the six anomalies described above is considered to be okay. 

                                                      

53 The large temperature gradient between the liquid melt pool and the EOS M290 build chamber (typically held at 
between 35 °C and 200 °C [45]) results in rapid solidification of the molten material and commensurately rapid and 
“non-uniform thermal expansions and contractions” [184] which induce residual stress within the part. Over the 
course of a build, the magnitude of the residual stress may exceed the local yield stress of the part, resulting in 
deformation – often expressed by the part “curling” or “warping” up above the powder bed [184]. 
54 The amount of powder spread each layer is typically referred to as the “dosing factor.” 
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Figure 4.4: Representative examples of the six different powder bed anomaly classes chosen by the author. Note 
that the relative sizes between the anomalies have been preserved. Specifically, the anomalies are: (a) recoater 
hopping, (b) recoater streaking, (c) debris, (d), super-elevation, (e) part damage, and (f) incomplete spreading. 

4.2.5 Extraction of Part Geometry Information 

To improve the utility of autonomous detection and classification of powder bed images, 

information about the nominal Computer Aided Design (CAD) geometry of the parts being built, 

as well as their location and orientation on the build plate, are overlaid on top of the powder 

bed images. This information enables the 3D reconstruction of parts with any anomalous 

regions highlighted (Section 4.6.5). Furthermore, as demonstrated throughout Chapter 5, this 

information also allows for the study of the influence of part geometry on powder spreading 

and process stability. Finally, part location on the build plate is a factor in certain anomaly 

classifications (as discussed in Section 4.2.4) such as debris, super-elevation, and part damage. 

All of the required part information is contained within the EOSPRINT slice (.SLI) files [45]. 

Because the data within the slice files are encrypted [157], a CV approach was used to extract 
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information from within the EOSPRINT v1.3 [45] environment. First, a Microsoft® Windows® 10 

script, written using AutoIt [158], automatically takes a screenshot of each layer of the build as 

it is displayed in EOSPRINT; Figure 4.5 shows an example screenshot. After all of the 

screenshots are collected, the build area is identified based on the white grid markings (Figure 

4.5), the extraneous information is removed via cropping, and binary segmentation of the parts 

is performed based on the standard color pallet used by EOSPRINT. At this stage, the binary 

image is rescaled with bicubic interpolation [159] such that it is also 900 pixels × 900 pixels in 

size and can be directly overlaid on top of the warped powder bed images (Section 4.2.3). 

Finally, three dilation operations followed by three erosion operations are applied to the binary 

image in order to, respectively, “fill in” and remove noise from the part segmentations. Both 

the dilation and erosion operations utilize a 3 pixels × 3 pixels window. Figure 4.6 shows a final 

binary image encoding the part locations on the build plate. 
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Figure 4.5: A screenshot of a single layer as displayed in the EOSPRINT environment. The build area is indicated by 
the white grid and the part locations are shown in green and blue. 
 

 

 

Figure 4.6: The final binary image encoding the part 
geometries and their locations on the build plate. 

 

The layer-wise part location information for an entire build is converted from a 3D point 

cloud to a compressed data format in which a number triplet encodes the location of each “on-

part” pixel in 3D space while the locations of the “off-part” pixels are not explicitly stored. 

x

y
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Because the part location information is always used in a layer-wise fashion, the speed of data 

decompression is improved by independently storing the location of the first on-part pixel in 

each layer within the compressed data structure. Explicit registration (alignment) between the 

powder bed images and the part CAD geometries, as discussed by Abdelrahman et al. [142], is 

not performed. Interestingly, another CV approach to slice extraction for AM has been 

presented by Vaidya et al. [160], although it was used for the purpose of converting NURBS-

defined CAD geometry directly into slices without the use of an intermediate STL 

(Stereolithography) file format. 

4.3 Bag of Words (BoW) Methodology and Theory 

4.3.1 Overview 

The methodology presented in this section is an application of a widely-used ML technique, 

known as Bag of Words (or Keypoints) (BoW) [44], often applied to CV problems. In this 

implementation, the training data consist of relatively small patches or regions of powder bed 

images which have been labeled by a human based on the anomalies they contain. While the 

BoW technique can be applied to multiple feature types, the author chose to use filter 

responses for their ability to preserve scale information (i.e. the size of a potential anomaly 

influences its filter response). This behavior is in contrast to the SIFT features described in 

Section 7.3. This section is intended to provide an overview of this methodology along with 

relevant ML and CV theory. Figure 4.7 is a flowchart of this ML methodology and is referred to 

extensively throughout this section. 
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Figure 4.7: Flowchart of the implementation of the BoW ML technique discussed in this section. 

4.3.2 Selection of the Training Data 

Each powder bed image may contain hundreds of distinct examples of different anomalies 

and okay regions. For this reason, training of the BoW ML algorithm is performed using image 

patches: sub-regions of the full powder bed images similar in concept to those shown in Figure 

4.4. To develop the training database, a human manually selects rectangular image patches 

from multiple powder bed images captured during multiple builds. Note that, in general, only a 

subset of all of the possible patches within a powder bed image are selected for training. Also 

note that while the exact size of the training image patches is not constrained, they were 

selected such that they are similar in size to the patches used by the algorithm for anomaly 
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classification (see Section 4.3.5). Prior to patch selection, the powder bed images are pre-

processed as described in Section 4.2.3. A human labels each patch with a “ground-truth” 

anomaly classification (Section 4.2.4). The patches and their attached labels are stored in a 

database for access by the BoW ML algorithm. The training database includes a total of 2,402 

image patches, composed of 1,040 okay patches, 264 recoater hopping patches, 228 recoater 

streaking patches, 187 debris patches, 314 super-elevation patches, 264 part damage patches, 

and 105 incomplete spreading patches. 

4.3.3 Filter Bank 

This implementation of the BoW ML algorithm extracts features using a set of filters. In this 

context, a filter refers to a discretized, 2D function or pattern; three examples of filters can be 

seen within the representative filter bank shown in Figure 4.7a. These filters are “passed over,” 

or convolved with, an image (either a training image patch or a powder bed image). A 

convolution operation, shown graphically in Figure 4.8, is simply the summation of the element-

wise multiplication of two matrices. The output of the convolution operation is an image with 

the same dimensions as the original image. The value of each pixel of the output image is the 

response of the original image to the convolution with the applied filter – its value depends 

upon the values of the corresponding pixel and its surrounding pixels in the original image.  
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Figure 4.8: A graphical representation of 2D convolution. In this example, a vertical edge filter is convolved with 
two regions of an image. One region (solid magenta box) contains a vertical edge and produces a high response 
while the other region (dashed magenta box) does not include a vertical edge and produces a low response. 

Different filters produce either stronger or weaker responses depending on the distribution 

of the information encoded in the original image. For example, a Gaussian filter (e.g. filter 1 in 

Figure 4.7a) produces a strong response when convolved with pixels in the vicinity of a dark 

blob, while an asymmetric first derivative filter (e.g. filter 2 in Figure 4.7a) produces a strong 

response centered on any dark, vertical edges. The response of each pixel to each filter in the 

filter bank is stored in a vector, represented by the vertical bars in Figure 4.7b; the three 

colored segments of each bar represent the responses to the three filters in the representative 

filter bank. These response vectors are the format for the features on which this ML algorithm 

operates.  

The filter bank used in this section contains a total of thirty-seven filters, each of size 25 

pixels × 25 pixels, and enumerated in Table 4.2. Multiple trials were performed to determine 

an effective filter bank size and composition. To mitigate the impact of edge effects on the 

training process, the borders of the image patches are padded with the pixels surrounding that 

patch while the borders of the powder bed images are padded with replicated pixels [161]. 

1 0 0 0 1

0 0 0 2 3

1 1 0 3 3

1 1 1 2 4

0 0 1 4 5

-1 0 1

-1 0 1

-1 0 1

0 0 3

0 0 3

-1 0 4

0 0 0

-1 0 0

-1 0 1
0

9

vertical edge
filter 

image

element-wise
multiplication

summation

summation

response at not
a vertical edge

response at
a vertical edge



100 

Table 4.2: A brief description of the composition of the filter bank. 

Filter Type Description Num. of Size 
Scales/Variants 

Gaussian Standard filters, designed to detect blobs. 3 

Uniform 
Averaging Disk 

Standard filters, designed to detect blobs. Their responses are generally 
stronger than those of a Gaussian filter for blobs of particularly uniform 
intensity (i.e. darkness). 

1 

Difference of 
Gaussian (DoG) Standard filter, designed to detect edges at all orientations. 3 

Oriented Edge 
Detectors 

Standard, asymmetric first derivative filters designed to detect edges at 
specific orientations (0° and 90°). 6 

Oriented Line 
Detectors 

Non-standard combinations of oriented edge detectors designed to detect 
lines at specific orientations (26°, 45°, 64°, 116°, 135°, and 154°). Particularly 
effective at detecting super-elevation anomalies. 

18 

Streak Detectors Non-standard combinations of oriented edge detectors designed to detect 
recoater streaking and recoater hopping anomalies. 4 

Gabor [162] Standard filters designed to produce strong responses when convolved with 
an image containing spatially-encoded frequency information55.  2 

4.3.4 Training 

The filter bank described in Section 4.3.3 is passed over every training image patch, such 

that there is a response vector for every pixel in every image patch. No subsampling of the 

training data is performed, i.e. all of the response vectors are included in the training process. 

Response vectors with similar values in each element are grouped together using a standard k-

means unsupervised clustering algorithm [163], represented by Figure 4.7c. For this work, 

cluster initialization was performed using random seeding, with preference given to a uniform 

spacing between clusters. The requested number of clusters was systematically increased until 

the final anomaly classification results ceased to noticeably improve; the final clustering 

produces 100 groups. Cluster seeding is repeated 100 times to reduce the chance of the 

algorithm converging to a poor solution; e.g. a shallow local minimum instead of a global, or at 

least a deeper local, minimum.  

                                                      

55 Only the numerically real component is considered in this implementation. 
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Each group is represented by a mean response vector. The 100 mean response vectors are 

commonly referred to as visual words, and are stored in a dictionary, represented by Figure 

4.7d. The visual words are the features that will be searched for in future data sets (i.e. new 

powder bed images). After the dictionary is constructed, the filter bank is again convolved with 

each training image patch. But this time the filter response vectors at each pixel are matched to 

the closest (pair-wise distance [164]) visual word in the dictionary (Figure 4.7e). For each 

training image patch, the percentage of pixels matched to each visual word is calculated. This 

information can be represented by a histogram (Figure 4.7f). As it semi-uniquely identifies each 

image patch, it is often referred to as a fingerprint. The fingerprint of each training image patch 

is stored in a table (Figure 4.7g). Ideally, training images containing similar anomalies will have 

similar fingerprints, while training images containing different anomalies will have dissimilar 

fingerprints. The final output of the training process is a table containing 2,402 fingerprints (one 

for each training image patch) that are each 100 elements long. The corresponding ground-

truth anomaly labels for each fingerprint are stored in the training database (Section 4.3.2).  

4.3.5 Patch-wise Classification 

The steps described in Section 4.3.4 are only performed during training. During the 

classification of new data, the filter bank is convolved with the entire powder bed image and 

each pixel is assigned its closest-matching visual word. The layer image is then broken up into 

patches (Figure 4.7h). Performing the convolution operations on the entire powder bed image 

prior to patch delineation is computationally advantageous as it avoids duplicate computations 

that would otherwise be performed on the patch padding (Section 4.3.3). 
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Unlike the training patches in Section 4.3.2, the sizes of these anomaly classification 

patches are strictly defined. The patches are rectangular but vary in size and aspect ratio to 

better detect specific anomalies. A total of three different patch types are used: a 20 pixels × 

20 pixels square that is expected to detect most anomaly types, a 10 pixels × 40 pixels 

rectangle designed to detect recoater streaking, and a 100 pixels × 100 pixels square designed 

to detect incomplete spreading. Note that these anomaly classification resolutions correspond 

to minimum classifiable powder bed anomaly sizes of 5.6 mm × 5.6 mm, 2.8 mm × 11 mm, and 

28 mm × 28 mm, respectively (refer to Section 4.2.3). A fingerprint for each patch is generated 

and compared (using a binary singleton expansion function [164]) to the table of fingerprints 

(Figure 4.7i). It is at this stage that the labels associated with each fingerprint in the table are 

recalled from the training database. 

The three training fingerprints closest to the fingerprint of the patch are considered during 

this step of the classification process. Specifically, the top three matches are weighted 

according to their respective degree of agreement and the patch is classified as the anomaly 

with the highest total weighting among the top three matches. For example, if the top match is 

for recoater hopping, but the next two matches are for recoater streaking, the algorithm would 

classify the patch as recoater streaking if the second and third matches have a stronger 

combined agreement than the first match individually. This approach was experimentally 

shown to produce more accurate results, possibly by mitigating the impact of over-fitting [165]. 

Additionally, if any of the top three matches are an okay case, the patch is always classified as 

okay. This restriction reduces the number of false anomaly classifications (i.e. false positives), 

which were deemed more problematic than false negatives as machine operators may be 
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reticent to use an overly-sensitive powder bed monitoring algorithm. The final anomaly 

classification for that patch is then applied to every pixel within that patch. 

4.3.6 Layer-wise Classification and Contextual Heuristics 

The overlapping results from the three patch type analyses are combined with relevant 

part geometry information (Section 4.2.5) using a series of contextual heuristics to determine 

the appropriate anomaly classification for each pixel in the powder bed image (Figure 4.7j). The 

inclusion of the heuristics layer allows information about the location of the anomaly 

detections with respect to the build plate, the parts, and the surrounding anomaly detections 

to factor into the final anomaly classification decisions made by the algorithm. Each of the 

heuristic rules is discussed in the following two paragraphs. 

If the initial classification of a pixel not lying on top of a part (as defined by the extracted 

part geometry information) is either part damage or super-elevation, the classification is 

converted to the debris category as it can be visually similar to the aforementioned anomalies, 

which, by definition (Section 4.2.4), can only occur on top of a part. Similarly, any pixels lying on 

top of a part and initially classified as debris, are converted to the part damage category. 

Because incomplete spreading anomalies are detected with the largest scale patches, not all of 

the pixels labeled as incomplete spreading may be truly anomalous. To increase the chances 

that as-built part quality is accurately reflected by the BoW algorithm output, any pixels lying 

on top of a part and initially labeled as incomplete spreading are retroactively un-labeled. In 

other words the results from the largest patches are not included in the final, multi-patch 

consolidation process for the pixels lying on top of parts. An additional constraint is imposed 
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upon the incomplete spreading category to reduce the occurrence of false positives: Extremely 

large disturbances to the powder bed may appear visually similar to incomplete spreading 

despite being the result of a different mechanism (such as a severe impact of a recoater blade 

with a part). Therefore, incomplete spreading detections are ignored if there are no incomplete 

spreading detections near the left-hand edge of the build plate (see Section 4.2.4 for 

reasoning). 

At this point in the implementation of the heuristics, the results from the three different 

patch types are combined. Because the patch results overlap and may be in disagreement, 

consolidation is effected by classifying each pixel as the highest possible severity anomaly, 

according the severity ranking listed in Section 4.2.4. After consolidation, the false positive 

rates for recoater hopping are reduced by confirming that multiple detections (a minimum of 

80 pixels) are present in a vertical line (i.e. parallel to the y-axis). A similar approach is pursued 

for recoater streaking, except multiple detections (a minimum of 80 pixels) in a horizontal line 

(i.e. parallel to the x-axis) are required. To reduce the computational burden of the heuristic 

layer, many of the context rules are implemented by convolution of a mask of the initial 

anomaly detections with various templates and filters. In this case, the filters are conceptually 

similar to, but not the same as, the filters described in Section 4.3.2. 

Finally, the layer-wise anomaly classifications for an entire build are converted from a 3D 

point cloud to a compressed data format in which a number quadruplet encodes the type of 

anomaly and its location in 3D space while the locations of the okay pixels are not explicitly 

stored. Because the anomaly classification information is always used in a layer-wise fashion, 
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the speed of data decompression is improved by independently storing the location of the first 

anomalous pixel in each layer within the compressed data structure. 

4.4 Multi-scale Convolutional Neural Network (MsCNN) Methodology and Theory 

4.4.1 Overview 

The methodology presented in this section makes use of a pre-trained Convolutional 

Neural Network (CNN). CNNs have become increasingly popular in the CV community as they 

typically demonstrate high classification accuracies while leveraging prior knowledge about the 

input data (i.e. that the data are images) in order to simplify the algorithm architecture and 

reduce the training burden [153]. CNNs are an example of Deep Learning and require large data 

sets (on the order of 105 – 106 samples) and significant computational resources to train [152]; 

fortunately, transfer learning allows for a pre-designed and pre-trained CNN to be applied to a 

unique classification problem [152]. Specifically, the version of the AlexNet CNN architecture, 

originally developed by Krizhevsky et al. [153], implemented by MATLAB [166] was applied to 

the patch-wise classification of powder bed anomalies. The AlexNet architecture and transfer 

learning are discussed further in Sections 4.4.3 – 4.4.5 and 4.4.6, respectively. As will be 

discussed in Section 4.4.3, the input data for AlexNet are typically color images, while the data 

structures in this work are grayscale patches at multiple size scales. For this reason, the ML 

algorithm presented in this section is referred to as a Multi-scale CNN (MsCNN) – a 

nomenclature borrowed from Shen et al. [151]. Figure 4.9 is a flowchart of this ML 

methodology and is referred to extensively throughout this section. 
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Figure 4.9: Flowchart of the implementation of the MsCNN ML technique discussed in this section. For clarity, 
architecture relating to the implemented parallelization has been omitted, as has an additional rectifier layer 
between (f) and (g). 

4.4.2 Selection of the Training Data 

Each powder bed image may contain hundreds of distinct examples of different anomalies 

and okay regions. For this reason, training of the MsCNN ML algorithm is performed using 

image patches: sub-regions of the full powder bed images similar in concept to those shown in 

Figure 4.4. To develop the training database, a human manually selects square image patches 

from multiple powder bed images captured during multiple builds. Note that unlike the BoW 

approach (Section 4.3.2), the size of each image patch used by the MsCNN is pre-defined as 25 

pixels × 25 pixels. Therefore, there are 1,296 image patches in each powder bed image. As will 

be addressed in the following subsection (4.4.3), the input data structure for the MsCNN 

consists of a multi-scale patch composed of three related patches, each at a different size scale. 

Specifically, the “Level 1” patch is the aforementioned 25 pixels × 25 pixels region. The “Level 

2” patch is a 100 pixels × 100 pixels region with the same center as the Level 1 patch. Finally, 
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the “Level 3” patch is the entire 900 pixels × 900 pixels powder bed image resized to 200 pixels 

× 200 pixels using bicubic interpolation [159]. An example of each patch level is shown in Figure 

4.9. Note that the powder bed images are pre-processed as described in Section 4.2.3 prior to 

multi-scale patch selection. 

The observant reader may notice that centering a Level 2 patch on a Level 1 patch at the 

edge of the powder bed image is non-trivial, as the centered Level 2 patch will extend beyond 

the boundary of the powder bed image. This issue is addressed by padding the entire powder 

bed image with symmetric pixels [167] out to a distance equal to half of the Level 2 patch size 

(i.e. 50 pixels) at each edge. Furthermore, as first noted in Section 4.3.3, the use of small 

patches, relative to the filter size (i.e. the region over which a feature is extracted) requires that 

edge-effects be carefully considered. To mitigate the influence of these edge-effects, each 

patch is padded by 13 pixels on a side. In regions away from the edges of the powder bed 

image, padding is composed of the pixels surrounding that patch while at the borders of the 

powder bed image patches are padded with symmetric pixels [167]. This padding occurs 

subsequent to the padding applied to the edge-case Level 2 patches and results in padded 

patch sizes of 51 pixels × 51 pixels, 126 pixels × 126 pixels, and 226 pixels × 226 pixels for the 

Level 1, Level 2, and Level 3 patches, respectively. The choice of the padding size (13 pixels) was 

informed by the filter size and filter stride56 of the first convolutional layer (Section 4.4.4). 

A human applies each “ground-truth” anomaly classification (Section 4.2.4) to each multi-

scale patch. Note that the ground-truth anomaly classification only indicates the anomaly 

                                                      

56 The stride of a filter specifies the spatial distance between the centers of the convolution operations. 
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present within the region covered by the Level 1 patch. The multi-scale patches and their 

attached labels are stored in a database used by the MsCNN algorithm during training (Section 

4.4.6). The training database includes a total of 10,071 multi-scale patches, composed of 3,827 

okay patches, 1,896 recoater hopping patches, 527 recoater streaking patches, 666 super-

elevation patches, 1,297 disturbance57 patches, and 1,858 incomplete spreading patches. The 

training multi-scale patches were extracted from a total of 89 powder bed images captured 

during a total of 14 builds.  

4.4.3 Input Layer 

All CNNs operate on data stored in an input layer (Figure 4.9a), or more strictly, an input 

volume of size width × height × depth [168]. The input layer of the AlexNet CNN was originally 

designed to operate on color images from the ImageNet dataset [169] and is of size 227 pixels 

× 227 pixels × 3 pixels, where the depth spans the three color channels (red, green, and blue) 

[153], [166]. When applying transfer learning to a pre-trained CNN, the CNN architecture, 

including the size of the input layer, must remain unchanged.  

Typically, grayscale images (such as those captured by the powder bed camera) would be 

inserted into the AlexNet input layer by duplication of the grayscale data across all three color 

channels. This implementation is not ideal as redundant calculations will be performed on the 

input layer throughout the depth58 of the CNN. Therefore the author chose to utilize the 

additional color channels to encode multi-scale information in the form of the multi-scale 

                                                      

57 The disturbance anomaly classification encompasses both the debris and part damage anomaly types, see 
Section 4.4.7 for more details. 
58 In this usage, “depth” refers to the set of layers composing the CNN [168]. 
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patches introduced in the previous subsection. Note that each Level patch is resized to 227 

pixels × 227 pixels using bilinear59 interpolation [159] before being inserted into one of the 

color channels. This approach was inspired by the utility of the contextual heuristics and 

variously-sized patches implemented in the BoW methodology (Sections 4.3.5 and 4.3.6). 

Broadly, the contextual heuristics and multiple patch sizes allowed information about the size 

of the powder bed disturbances, adjacent anomalies, and the overall state of the powder layer 

to inform the layer-wise anomaly classifications. The goal of the multi-scale patches structure is 

to allow the CNN to learn those contextual relationships as opposed to the methodology relying 

on human-designed heuristics. Refer to Section 4.5.3 for validation of this desired behavior. 

Specifically, the Level 2 patch is designed to encode information about the size of the 

disturbance on the powder bed and the region surrounding the Level 1 patch. Its size was 

chosen based on the author’s experience with the 100 pixels × 100 pixels patch used by the 

BoW methodology to classify incomplete spreading, as well as the 80 pixel minimum length 

requirements used to reduce false classifications of recoater hopping and recoater streaking. 

The Level 3 patch is designed to encode information about the overall powder layer. 

Specifically, it is intended to serve the same purpose as the heuristic employed to reduce false 

classifications of incomplete spreading based on the presence (or lack-there-of) of significant 

disturbances on the left-hand edge of the powder bed. Additional reasoning for the multi-scale 

patch structure and the motivating contextual heuristics can be found in Section 4.2.4.  

                                                      

59 In this application, bilinear interpolation is only slightly less accurate than bicubic interpolation but allows for a 
significant reduction in computation time. 
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4.4.4 Hidden Layers 

Once the data are stored in the input layer, mathematical operations are applied to the 

data in a sequence of “hidden layers,” so named because the operations learned by the CNN 

during training (i.e. the feature extraction tools) [43] and their outputs are difficult for humans 

to interpret and often non-trivial to describe [170]. The AlexNet CNN, and therefore the MsCNN 

used in this work, has a total depth of 25 layers [153], [166], 21 of which are considered hidden 

for the purposes of this subsection. This subsection broadly describes the various types of 

hidden layers used by the MsCNN; for a full accounting of the AlexNet architecture please refer 

to [153], [166]. 

As shown in Figure 4.9, the data stored in the input layer are first operated on by a 

convolution (CONV) layer; or more strictly, the results (or responses) of the convolution 

operations are stored in the CONV layer (Figure 4.9b). The convolution operations extract 

features using filters, conceptually identical to those introduced in Section 4.3.3. Critically, 

these filters are not chosen by a human, rather they are learned by the CNN during training 

(Section 4.4.6). For this reason, one may consider the CONV layer to be an optimized filter bank. 

Interestingly, the filters learned by CNNs for the first CONV layer are typically highly similar 

regardless of the specific classification application [152], [168], indeed this commonality 

provides the basic justification for the use of transfer learning [152].  

The filters used in the first CONV layer of the MsCNN are of size 11 pixels × 11 pixels × 3 

pixels [153], [166]; as is typical, each filter operates on the full depth of the layer (i.e. all three 

channels of the input layer) [168]. The size of the filter specifies the area of the input data over 
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which the convolution is performed while the “stride” of the filter specifies the spatial distance 

between the centers of the convolutions. In other words, for a stride of one, the convolution 

area moves one pixel in a given direction between operations (the filters in Section 4.3.3 are 

implemented with a stride of one). In the first CONV layer of the MsCNN, the stride is four 

[153], [166], i.e. the convolution area moves four pixels in a given direction between 

operations. A larger stride reduces the dimensionality of the CONV layer (a boon to 

computation time) but reduces the spatial resolution at which features are extracted 

(potentially detrimental to classification accuracy). The convolution operations result in a data 

volume with a depth equal to the number of filters and a width (Wo) and height given by (4.1). 

The volume of the first CONV layer in the MsCNN is 55 pixels × 55 pixels × 96 pixels [153], 

[166]. Because these filters operate through the depth of the input data volume, they are often 

referred to as kernels60 [168]. 

𝑊𝑊𝑓𝑓 = �
𝑊𝑊𝑖𝑖 − 𝐹𝐹 + 2𝑃𝑃

𝑆𝑆
� + 1 

 

(4.1) 

Where Wo is the output layer width (or height), Wi is the input layer width (or height), F is the spatial width 
(or height) of the kernel, S is the stride of the kernel in the width (or height) direction, and P is the number 
of padding pixels explicitly used during the convolutions of the input data. Note that in the first CONV layer 
of the MsCNN, P is set to zero [153], [166] and padding is handled a priori (Section 4.4.2). Also note that 
the output size of a pooling operation can also be computed using this equation. 

 

 

  

                                                      

60 Some readers may be familiar with the “human brain” analogy often used to describe the operation of CNNs. In 
this analogy, each kernel may be considered a neuron viewing a given receptive field (area) of the input data 
volume. The output (response) of each neuron may be considered an activation which is stored within the volume 
of the CONV layer. 
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Substantial work by the ML community has found that CNN training performance can be 

greatly improved by applying a non-linear positive-feedback61 operation to the output of each 

kernel [153], [171]. While hyperbolic tangent functions are often applied to the kernel outputs, 

Krizhevsky et al. [153] and others have determined that far superior training speeds can be 

obtained through the use of Rectified Linear Units (ReLU) which are defined in (4.2). The first 

ReLU layer in the MsCNN is represented schematically in Figure 4.9c. Note that the ReLU layer 

does not alter the size of the data volume, i.e. the output of the first ReLU layer in the MsCNN is 

of size 55 pixels × 55 pixels × 96 pixels. 

𝑅𝑅𝑅𝑅𝐿𝐿𝑅𝑅(𝜙𝜙) = max (0,𝜙𝜙) 
 

(4.2) 

Where ReLU is the output of the ReLU operation and 𝜙𝜙 is the output of the kernel, i.e. the response of the 
convolution. 

 

After rectification, Krizhevsky et al. [153] apply a Local Response Normalization (LRN)62; in 

the MATLAB implementation of AlexNet this normalization occurs channel-wise [166]. The 

purpose of LRN is to further accentuate the spatially-local maximum kernel responses, thereby 

increasing the detection sensitivity of the CNN for spatially-small features [172]. Krizhevsky et 

al. [153] found that the inclusion of LRN layers boosted classification accuracy, although such 

layers have more recently fallen out of favor with the ML community [168]. The first LRN layer 

in the MsCNN is represented schematically in Figure 4.9d. Note that the LRN layer does not 

                                                      

61 The inclusion of positive-feedback operations in CNNs is motivated by the behavior of neurons in the human 
brain, the activations of which are often modeled by a hyperbolic tangent function. It is believed that their 
inclusion improves CNN training performance by introducing instabilities which allow different sets of neurons to 
become active as their weights are adjusted during training.  
62 The use of LRN is considered analogous to “lateral inhibition” in the human brain; a process by which a highly-
excited neuron suppresses the activations of its surrounding neurons [172]. 
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alter the size of the data volume, i.e. the output of the first LRN layer in the MsCNN is of size 55 

pixels × 55 pixels × 96 pixels. 

The dimensionality of a CNN (i.e. the size of the data volume) would increase unsustainably 

through the depth of the CNN (see the following paragraph) without down-sampling (pooling) 

the responses from the lower layers. There are several methods by which down-sampling may 

be achieved63, but all of them operate spatially, i.e. dimensionality is reduced along the width 

and height of the data volume without affecting the depth of the volume [168]. In the 

presented MsCNN, down-sampling is accomplished via a Max Pooling layer (Figure 4.9e) [153], 

[166]. Max Pooling operates by only passing the maximum response within a given window on 

to the next layer. For example, the window size of the first Max Pooling layer of the MsCNN is 3 

pixels × 3 pixels [153], [166], therefore only the maximum of the nine responses within a 

window is passed on to the next layer [168]. Interestingly, while pooling windows are 

traditionally non-overlapping, all of the Max Pooling layers in AlexNet utilize windows of size 3 

pixels × 3 pixels and a stride of two and therefore operate on overlapping regions [153]. In 

addition to reducing the dimensionality of the CNN, pooling operations have also been shown 

to mitigate overfitting64 [153], [168]. 

Following the input layer, CONV layer, ReLU layer, LRN layer, and Max Pooling layer, the 

data volume is once again convolved with a set of kernels and the responses are stored in a 

second CONV layer. Notably, while the first CONV layer extracts low-level features such as 

                                                      

63 For example, the Average Pooling method takes the mean of the responses within the pooling window [168].  
64 The dimensionality of a CNN is analogous to the degrees of freedom available to a fitted model. Therefore it is 
not surprising that high-dimensional CNNs may be sensitive to overfitting [165]. Down-sampling via Max Pooling 
reduces the degrees of freedom of the model and slightly perturbs the training data in the spatial dimensions. 
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blobs, edges, and lines (Table 4.2), the second CONV layer extracts higher-level features [152]. 

For example, the second CONV layer’s analysis of the data volume (containing the responses 

from vertical and horizontal lines) may allow for the detection of intersections of vertical and 

horizontal lines, e.g. corners. This process is repeated through the depth of the MsCNN for a 

total of five CONV layers (including the initial CONV layer) with each CONV layer extracting 

higher and higher level features65. While each of the four subsequent CONV layers in AlexNet 

and the presented MsCNN are followed by ReLU layers, only some of the ReLU layers are 

followed by an LRN layer or a Max Pooling layer [153], [166]. 

After the final CONV layer and associated ReLU layer, a fully connected (FC) layer (Figure 

4.9f) is constructed of size 1 pixel × 1 pixel × 4096 pixels. An FC layer is equivalent to a CONV 

layer in which each kernel has a spatial size (width and height) equal to that of the input data 

volume66; therefore each convolution operation produces a single response [168]. Finally, a 

dropout layer (Figure 4.9g) randomly assigns a subset67 of the elements within the prior FC 

layer a value of zero [173]. While not an immediately intuitive operation, the incorporation of 

dropout layers has been experimentally shown to improve the robustness68 of the learned 

features [153] . It is worth noting the CNN architecture originally described by Krizhevsky et al. 

                                                      

65 Note that the higher-level features are likely to be more specific to the type of data and classifications used 
during training than the lower-level features [152]. In other words, while the kernels learned for the first CONV 
layer are highly similar between trained CNNs, the kernels learned for the fifth CONV layer may be quite different 
between a CNN trained to classify dog breeds and a CNN trained to classify tumors. 
66 The nomenclature of the FC layer emerges from the concept that each neuron (element in the 1 pixel × 1 pixel × 
n pixels vector) is connected to everyone neuron in the preceding layer. In other words, the receptive field of each 
neuron in the FC layer spans the entire input volume and therefore the response of each neuron is dependent upon 
the distribution of the responses of every neuron in the input volume. 
67 In this case the set of elements is of size 2048 and is composed of unique values ⊆ ℤ[1, 4096]. 
68 Increased feature robustness is achieved because the dropout operation disrupts the co-dependences between 
neurons thereby encouraging the learning of neurons (kernels) which do not rely upon the responses of other 
neurons. 
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[153] implemented FC layers slightly differently than explained above in order to facilitate 

parallelization of the CNN across multiple GPUs. For the sake of clarity, this parallelization has 

been implicitly ignored throughout this subsection. 

4.4.5 Patch-wise Classification 

The 1 pixel × 1 pixel × 4096 pixels data volume which exists following the final dropout 

layer (Figure 4.9h) represents the position of the input data (i.e. the current multi-scale patch) 

in high dimensional feature space. In other words, this data volume can be thought of as 

describing the location of the input data along 4,096 axes, with each axis corresponding to a 

feature which has been learned during the training of the AlexNet CNN. Assuming that robust 

features have been learned, it is expected that visually similar input data will have coordinates 

in common regions of feature space while visually distinct input data will have coordinates in 

separate regions of feature space.  

The final layers of the MsCNN convert this coordinate in feature space into the powder bed 

anomaly classifications. This conversion is achieved through the application of another FC layer 

(Figure 4.9i) with a depth equal to the number of classification categories; in the case of the 

MsCNN, the final FC layer is of size 1 pixel × 1 pixel × 6 pixels. Recall that each element in a FC 

layer stores the response of a single kernel convolved with the entirety of the input volume. 

Therefore, ideally, the kernel learned for the first element of the final FC layer will only produce 

a high response when convolved with a feature space coordinate representing an input data 

belonging to the first classification category. For example, the learned kernel corresponding to 

the third element of the final FC layer nominally produces high responses when the input multi-
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scale patch contains recoater streaking but nominally produces low responses when recoater 

streaking is not present in the input multi-scale patch. 

Finally, a softmax layer (Figure 4.9j) [174] is used to convert the responses (of arbitrary 

magnitude) stored in the final FC layer into a pseudo-probability for each classification 

category. In the implementation used in this work, the classification category with the largest 

response will have the highest pseudo-probability; the sum of the pseudo-probabilities across 

the six anomaly classes is always equal to unity. Classification of the input multi-scale patch is 

now trivial. Two classification schemes are explored in this work: (1) Direct classification based 

solely on the most probable anomaly class (this is shown in Figure 4.9 and is used throughout 

this chapter and Chapters 3 and 5 unless otherwise specified). (2) Classification based on the 

two most probable anomaly classes (this is discussed further in Section 4.6.6). Note that unlike 

the BoW methodology, anomaly classification via the MsCNN methodology operates using a 

single patch (Level 1) of size 25 pixels × 25 pixels which corresponds to a minimum classifiable 

powder bed anomaly size of 7.0 mm × 7.0 mm (refer to Section 4.2.3). 

4.4.6 Training 

The previous three subsections describe the architecture of the MsCNN and the operations 

performed on the input data during classification. This subsection is intended to provide a brief 

overview of the training process for the original AlexNet CNN as well as the application of 

transfer learning used to convert it to an MsCNN capable of classifying powder bed anomalies. 

Only the training parameters used by the author for transfer learning are provided below; refer 

to [153] for a more complete discussion regarding the training of the AlexNet CNN. 
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CNN training operates using a process known as backpropagation [175]. Initially, all of the 

weights of all of the kernels throughout the depth of a CNN are randomized [175]. While not 

previously discussed explicitly, weights are simply the element-wise values composing a filter or 

kernel. Example weights are shown for the vertical edge filter in Figure 4.8. During the “forward 

pass” stage of backpropagation, the training data are passed through the depth of the CNN; 

because the kernel weights are initially randomized, the classification performance will initially 

be extremely poor. 

Fortunately, because the training data are labeled with ground-truth classifications 

(Section 4.4.2), the performance of the untrained CNN can be quantified. Recall from the 

previous subsection that the output of the softmax layer is a vector of size 1 × 1 × 6 with 

values of the set ℝ[0,1], the sum of which is unity. Therefore, the nominal softmax output for 

an input multi-scale patch containing recoater streaking is [0,0,1,0,0,0]. The error (E) between 

this nominal softmax output and the softmax output of the untrained CNN can be defined using 

a variety of energy functions69. The error (or loss) is a function of the set of weights (𝛺𝛺); Figure 

4.10 shows a graphical representation of a loss function in the simplified case of only two 

weights (𝜔𝜔1,𝜔𝜔2). 

                                                      

69 Perhaps the simplest energy function is Mean Square Error (MSE), though the MATLAB implementation of 
AlexNet calculates the error using a “cross entropy function for mutually exclusive classes” [177]. 
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Figure 4.10: A generalized loss function for the case of 𝛺𝛺[𝜔𝜔1,𝜔𝜔2] represented by a concave surface in 3D space. 
Refer to the proceeding and following paragraphs for discussion and variable definitions. This figure is a modified 
version of the figure presented by Deshpande [175]. 

The current, non-optimized weights are shown in Figure 4.10 as point 𝛺𝛺𝑖𝑖  on the surface of 

the loss function. As the goal is to reduce the classification error, it is desirable to adjust the 

weights in the direction opposite to the gradient of the loss function (𝛻𝛻𝐸𝐸) – the calculation of 

the gradient is considered the “backward pass” stage of the backpropagation process [175]. 

Both AlexNet and the MsCNN utilize a method, defined in (4.3), known as Stochastic Gradient 

Descent with a Momentum term (SGDM) to calculate the weight adjustment [153], [166]. Each 

update to the weights is known as an iteration (𝑖𝑖) and is often referred to as the “parameter 

update” stage of the backpropagation process [175]. 

𝛺𝛺𝑖𝑖+1 = 𝛺𝛺𝑖𝑖 − 𝜂𝜂𝛻𝛻𝐸𝐸(𝛺𝛺𝑖𝑖) +  𝛾𝛾(𝛺𝛺𝑖𝑖 − 𝛺𝛺𝑖𝑖−1) 
 

(4.3) 

Where 𝛺𝛺𝑖𝑖+1 is the updated set of weights, 𝛺𝛺𝑖𝑖  is the current set of weights, 𝜂𝜂 is the learning rate, 𝛻𝛻𝐸𝐸(𝛺𝛺𝑖𝑖) is 
the gradient of the loss function evaluated at the current set of weights, 𝛾𝛾 is the momentum coefficient, 
and 𝛺𝛺𝑖𝑖−1is the set of weights during the previous iteration. 
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While the direction to adjust the weights is derived from the gradient of the loss function, 

the magnitude of the weight adjustment in the derived direction is defined a priori and is 

known as the “learning rate” (𝜂𝜂). A higher learning rate has the potential to increase the 

learning speed70 but if the learning rate is too high, learning may become unstable and 

convergence to a local minimum may not occur [175]. It is also common for the gradient to 

oscillate between iterations; one approach to mitigate this oscillation is to incorporate a 

“momentum” term which biases the calculated gradient in the direction of the gradient 

calculated during the previous iteration. The impact the momentum term on the calculation of 

the current weight adjustment is controlled by the coefficient 𝛾𝛾. In traditional GD, the loss 

function is defined for the entirety of the training dataset. While this approach can produce 

high classification accuracies, it is too computationally expensive to be used for 

backpropagation through the depth of a CNN [176]. For this reason, AlexNet utilizes SGD which 

defines the loss function only over a subset of the training dataset [153], [166]. Each subset of 

the training dataset is known as a “mini-batch” and is randomly (hence the “stochastic” 

nomenclature) delineated at runtime [177]. Each time convergence is achieved for the set of 

mini-batches covering the entire dataset, the entire backpropagation process is repeated; each 

repetition is referred to as an “epoch.” During subsequent epochs, the initial weights are those 

learned during this previous epoch, i.e. they are not randomized. 

                                                      

70 One method of increasing the training speed without risking divergence is to start the training process with an 
initial learning rate that is relatively low. Then, because the initial weights improve during the training process (i.e. 
the initial guesses lie increasingly close to the local minimum), the learning rate can be increased (from its initial 
value) at the start of subsequent epochs without causing divergence; this approach is often referred to as 
“scheduling” the learning rate [176], [177].  
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During the training of a full CNN such as presented by Krizhevsky et al. [153] all of the 

weights are initialized randomly and backpropagation is applied through the depth of the CNN. 

As previously mentioned, such a task is computationally expensive; fortunately, transfer 

learning allowed the presented MsCNN to begin its training with many of the lower-level 

weights already learned. Specifically, only the final FC layer of size 1 pixel × 1 pixel × 6 pixels 

(Figure 4.9i) and the softmax layer (Figure 4.9j) are trained on the training database of multi-

scale patches; all of the weights throughout the rest of the depth of the MsCNN remain 

identical to the weights of the pre-trained AlexNet CNN. For training of the final two layers a 

constant (i.e. unscheduled) learning rate71 of 0.001 was used and a total of 20 epochs were 

executed. A momentum coefficient of 0.9 was used and each mini-batch72 contained 64 multi-

scale patches from the training database. All other training parameters were set to the defaults 

listed in [177]. 

Finally, it should be noted that during the described training process, only the kernel 

weights are learned. In other words, the architecture of the CNN remains static and is not 

automatically optimized. During the CNN design process a human programmer manually 

modifies the CNN architecture in order to achieve improved validation performance (Section 

4.5.2). Common architecture adjustments are often referred to as hyperparameters and include 

the overall depth of the CNN, the types of layers, the size and stride of the kernels, and even 

the pre-processing applied to the input data [152], [153]. Because transfer learning was only 

                                                      

71 An appropriate learning rate was determined by starting with a rate of 0.1 and reducing the rate by factors of 
ten until stable convergence during training was achieved. 
72 The mini-batch size was limited by the amount of RAM onboard the GPU as discussed in Section 4.5.4. 
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applied to the final two layers of the AlexNet CNN, hyperparameter tuning was not explored in 

this work. An excellent discussion of this topic is presented in [153]. 

4.4.7 Layer-wise Classification 

In contrast to the BoW methodology, only two contextual heuristics are implemented. The 

observant reader may have noticed that while there are seven classification categories 

presented in Section 4.2.4, the MsCNN only produces pseudo-probabilities for six classification 

categories. Due to the visual similarity between some patches containing debris and some 

patches containing part damage, the two categories were combined into the disturbance 

classification for the purposes of MsCNN training and classification. Final differentiation 

between the debris and part damage anomaly types is implemented layer-wise and is based 

solely on the location of the part geometry cross-sections in the current layer. Specifically, if a 

pixel not lying on top of a part (as defined by the extracted part geometry information) is 

classified by the MsCNN as disturbance, it will be re-labeled as debris. Conversely, if a pixel lying 

on top of a part is classified by the MsCNN as disturbance, it will be re-labeled as part damage. 

Additionally, if a pixel not lying on top of a part is classified as super-elevation, it will be re-

labeled as debris (see Section 4.2.4 for justification). 

Finally, the layer-wise anomaly classifications for an entire build are converted from a 3D 

point cloud to a compressed data format in which a number quadruplet encodes the type of 

anomaly and its location in 3D space while the locations of the okay pixels are not explicitly 

stored. Because the anomaly classification information is always used in a layer-wise fashion, 
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the speed of data decompression is improved by independently storing the location of the first 

anomalous pixel in each layer within the compressed data structure. 

4.5 Performance of the ML Methodologies 

4.5.1 Confusion Matrices 

At this point, the reader is encouraged to recall the high-level discussion of ML provided in 

Section 1.4. It is common to evaluate ML algorithms using a metric known as a confusion matrix 

[178]. Fundamentally, a confusion matrix compares a ML algorithm’s classifications to the 

ground truth classifications made by a human. In all implementations, the data used to 

generate a confusion matrix must be separate from the data used to train the ML algorithm. 

Traditionally, the entire available dataset (i.e. the training database in Sections 4.3.2 and 4.4.2) 

is divided into three subsets known as training, validation, and testing datasets [179]. During 

the training process, the ML model is fit to the training data set. The performance of the model 

can then be evaluated using the validation dataset and the human programmer may decide to 

modify the design of the model based on these results. Common modifications may include 

alterations to the input data format (e.g. patch padding or lighting calibrations), increasing the 

amount of training data, or tuning hyperparameters such as those described in Section 4.4.6. 

Once the design of the ML algorithm and any accompanying methodology is complete, the true 

performance can be estimated using the testing dataset. The testing dataset also serves as a 

final check that the model has not been over-fit to the training data [165]. 

Due to the layer-wise (as opposed to patch-wise) nature of the final anomaly classifications 

produced by the BoW methodology, creation of a meaningful validation data set is not possible. 
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In other words, because the contextual heuristics (Section 4.3.6) play a key role in anomaly 

classification, the performance of the BoW ML model cannot be independently validated. 

Similarly, the testing performance must be evaluated on a layer-wise basis. Layer-wise ground 

truths were generated via the manual classification of hundreds of thousands of pixels across 

twenty representative powder bed images (provided in Appendix D). These ground truth 

classifications are then compared, pixel-wise, across the entire layer with the classifications 

produced by the BoW methodology. In order to enable direct comparison between the testing 

performances of the BoW and MsCNN methodologies, the same layer-wise ground truths and 

evaluation procedure are used for both methodologies. It should be noted that because ground 

truth anomaly classification across an entire powder bed often necessitates judgment calls (on 

the part of the human) for ambiguous regions (which would typically not be included in a 

training or validation dataset), the reported testing performance is expected to be lower than 

the validation performance as well as the testing performances reported in the literature for 

more “typical” CV applications of ML algorithms. 

4.5.2 Validation Accuracy 

The values along the left-to-right diagonal of the confusion matrices (Figures 4.11 and 4.12) 

represent the percentage of patches for which the ML algorithms make classifications identical 

to those of the human. In other words, if an algorithm evaluates the validation dataset exactly 

the same as the human, all of the diagonal values will be 100%. All of the diagonal values less 

than 100% represent the degree to which the ML algorithm has been “confused” with regards 

to classification of specific anomaly. The validation dataset in this work is produced via a 
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random partitioning of the training database (Section 4.4.2) such that 90% of the patches within 

the training database are used for training and the remaining 10% of patches are used for 

validation.  

The validation accuracies are reported for both the MsCNN described in Section 4.4 as well 

as a CNN which does not utilize multi-scale input data. Specifically, the Level 1 patch is 

duplicated across all three input channels (Figure 4.9). The CNN is otherwise structurally 

identical to the MsCNN. Curiously, the validation performances are not significantly different 

between the CNN and MsCNN algorithms; the testing accuracies, and a more expansive 

discussion, are reported in the following subsection. As noted in Section 4.4.1, the use of 

transfer learning precluded the possibility of tuning the MsCNN hyperparameters based on the 

validation performance results. 
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Figure 4.11: A confusion matrix 
developed from the validation dataset 
and reporting the percentage of 
patches classified correctly by the CNN 
algorithm for each anomaly type. The 
absolute numbers of patches classified 
by the human as each anomaly type are 
shown in parentheses on the vertical 
axis. 

Figure 4.12: A confusion matrix 
developed from the validation dataset 
and reporting the percentage of 
patches classified correctly by the 
MsCNN algorithm for each anomaly 
type. 

To determine the dependence of the MsCNN classification accuracy on the size of the 

training database, Figure 4.13 reports the validation performance for the MsCNN trained using 

the entirety of the available training database as well as for the MsCNN trained using only 10% 

of the available training database. To ensure robust measures of validation performance, k-fold 

cross-validation [179], [180, p. 78] was performed using ten segments73 to generate “average” 

validation classification accuracies for each anomaly type. Overall, the validation performance 

                                                      

73 Specifically, k-fold cross-validation was implemented by randomly partitioning the training database into 10 
equally-sized segments. During the first k-fold iteration, training was performed using the patches within segments 
#2 – #10 while validation was performed using the patches within segment #1. During the second k-fold iteration, 
training was performed using the patches within segments #1 and #3 – #10 while validation was performed using 
the patches within segment #2. A total of 10 iterations were performed such that the segments were used for 
training and validation in all possible combinations. 
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remained remarkably robust despite an order of magnitude decrease in the size of the training 

database. The most significant performance drops were observed for recoater streaking (the 

anomaly with the fewest available patches in the training database), disturbances, and super-

elevation (arguably the anomalies with the highest degree of variability in their appearance). 

The performance drops (in absolute percentage points) are 7%, 13%, and 3%, respectively. 

 
Figure 4.13: Sensitivity of the MsCNN algorithm to training database size. The reported accuracy percentages are 
the average generated by the described k-fold cross-validation procedure. The error bars represent 95% 
confidence intervals about the mean. 

4.5.3 Testing Accuracy 

As in the previous section, the values along the left-to-right diagonal of the confusion 

matrices (Figures 4.14 – 4.19) represent the percentage of pixels for which the ML 

methodologies make classifications identical to those of the human. In other words, if a 

methodology evaluates the testing dataset exactly the same as the human, all of the diagonal 
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values will be 100%. All of the diagonal values less than 100% represent the degree to which 

the ML methodology has been “confused” with regards to classification of specific anomaly. 

The percentages of “anomalies classified correctly” are reported in Figures 4.14 – 4.16 for 

the BoW, CNN, and MsCNN methodologies, respectively. For example, 94.2% of the pixels 

classified by a human as part damage are correctly classified by the MsCNN methodology as 

part damage. Essentially, these three confusion matrices represent how well the three 

methodologies classify each anomaly. It is immediately apparent that the CNN methodology 

performs drastically worse than either the BoW or MsCNN methodologies. This is to be 

expected as, unlike the other two methodologies, no data about the broader region 

surrounding a patch are incorporated in the classification process. It is worth noting that the 

low testing performance of the CNN methodology lies in stark contrast its relatively high 

validation performance. As recognized in the literature, such a discrepancy is often an 

indication that the ML model has been over-fit to the training data [179]. This discrepancy also 

suggests that there is a degree of patch variation present in the testing data which is not well-

represented within the training or validation data sets. The performance of the CNN was only 

lightly investigated by the author as the primary focus of this chapter is on the BoW and MsCNN 

methodologies.  

Due to their small size (relative to the camera resolution) recoater hopping and recoater 

streaking were among the most difficult anomalies for both the BoW (62.7%, 39.5%) and the 

MsCNN (72.7%, 76.9%) methodologies to classify. For the MsCNN methodology, the 

classification accuracy for super-elevation (73.0%) was also low relative to the other 

classification accuracies. However, in contrast to the BoW methodology, the majority of the 
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MsCNN miss-classifications of super-elevation are classified as part damage (16.4% out of 

27.0%) which often occurs concurrently with super-elevation. Similarly, the majority of MsCNN 

miss-classifications of recoater streaking are classified as debris (13.5% out of 23.1%) which is 

often co-located with recoater streaking. The lowest classification accuracies are 39.5%, 0.0%, 

and 72.7% for the BoW, CNN, and MsCNN methodologies, respectively. The performance of the 

MsCNN is superior for all of the anomaly types. 
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Figure 4.14: A confusion matrix74 
developed from the testing 
dataset and reporting the 
percentage of pixels classified 
correctly by the BoW 
methodology for each anomaly 
type. 
 

Figure 4.15: A confusion matrix 
developed from the testing 
dataset and reporting the 
percentage of pixels classified 
correctly by the CNN 
methodology for each anomaly 
type. 
 

Figure 4.16: A confusion matrix 
developed from the testing 
dataset and reporting the 
percentage of pixels classified 
correctly by the MsCNN 
methodology for each anomaly 
type. 
 

 

For clarity purposes, the labels on the vertical axis have been neglected. The anomaly types and the 
corresponding number of pixels classified by the human are as follows, from top to bottom: okay 
(10,651,250), recoater hopping (478,750), recoater streaking (40,625), debris (262,244), super-elevation 
(130,874), part damage (47,131), and incomplete spreading (263,125). 

 

  

                                                      

74 The testing accuracies reported in this figure are lower than those reported by the author in Scime et al. [54, Fig. 
5]. Note that the while the powder bed images used for testing are identical in both works, in this thesis the testing 
images have been more fully classified by the human in order to decrease potential bias. As a result, more 
ambiguous regions of the powder bed have been included the in the performance characterization, resulting in a 
more aggressive testing performance metric than used previously. 
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Alternatively, the percentages of “anomaly classifications that are correct” are reported in 

Figures 4.17 – 4.19 for the BoW, CNN, and MsCNN methodologies, respectively. For example, 

63.7% of the pixels classified by the MsCNN methodology as part damage are truly part 

damage (as defined by the human classification). In other words, while the MsCNN is likely to 

catch 94.2% of part damage regions, 36.8% of its part damage classifications are incorrect 

(30.3% out of those 36.8% are instead instances of super-elevation as defined by the human 

classification). Essentially, these confusion matrices represent how well the ML methodologies 

avoid false-classifications75 of each anomaly. As in the previous confusion matrices, the CNN 

methodology performed dramatically worse than the other methodologies while the MsCNN 

methodology performed the best in the case of all anomalies except for part damage, for which 

the BoW mythology avoided false classifications at a notably higher rate (74.6% to 63.7%). 

                                                      

75 Certain modifications to the ML methodology or the composition of the training database may improve the 
classification accuracy of a targeted anomaly type to the detriment of the classification of other anomaly types. In 
such a situation, the diagonal percentage in Figure 4.14 (or 4.15 or 4.16) corresponding to the targeted anomaly 
would increase, while the corresponding diagonal percentage in Figure 4.17 (or 4.18 or 4.19) would decrease, i.e. 
the rate of false-classifications for that anomaly would increase. 
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Figure 4.17: A confusion matrix76 
developed from the testing 
dataset and reporting the 
percentage of pixel classifications 
made by the BoW methodology 
that are correct.  

Figure 4.18: A confusion matrix77 
developed from the testing 
dataset and reporting the 
percentage of pixel classifications 
made by the CNN methodology 
that are correct.  

Figure 4.19: A confusion matrix 
developed from the testing 
dataset and reporting the 
percentage of pixel classifications 
made by the MsCNN 
methodology that are correct. 
 

 

For clarity purposes, the labels on the vertical axis have been neglected. The anomaly types and the 
corresponding number of pixels classified by the human are as follows, from top to bottom: okay 
(10,651,250), recoater hopping (478,750), recoater streaking (40,625), debris (262,244), super-elevation 
(130,874), part damage (47,131), and incomplete spreading (263,125). 

 

  

                                                      

76 The testing accuracies reported in this figure are lower than those reported by the author in [54, Fig. 6]. Note 
that the while the powder bed images used for testing are identical in both works, in this thesis the testing images 
have been more fully classified by the human in order to decrease potential bias. As a result, more ambiguous 
regions of the powder bed have been included the in the performance characterization, resulting in a more 
aggressive testing performance metric than used previously. 
77 The column of undefined (NaN) values is the result the CNN’s failure to classify any instances of recoater 
streaking in the testing dataset. 
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A common metric for ML methodology testing performance is the overall guessing 

accuracy, which in this case would be defined as the percentage of pixels that the ML 

methodologies classified the same as the human. However, because the overwhelming majority 

(90%) of the pixels in the testing dataset are okay, the author does not consider this metric to 

be fully informative in this situation. Therefore, two additional performance metrics are also 

considered: The anomaly detection accuracy, i.e. with what accuracy is the presence of an 

anomaly (i.e. a non-okay pixel) detected by the ML methodology. And the total classification 

accuracy among the anomalies, i.e. if a pixel is correctly classified as anomalous (i.e. non-okay), 

with what accuracy is the pixel correctly classified by the ML methodology. These three metrics 

are summarized in Table 4.3 for the two primary ML methodologies. 

Table 4.3: Overall testing data classification accuracy metrics.  

Accuracy Metric BoW MsCNN 
Overall Accuracy 95% 97% 

Anomaly Detection Accuracy 73% 85% 
Accuracy among the Anomalies 88% 93% 

4.5.4 Computational Burden 

All of the following computational calculations were performed on a system with the 

specifications listed in Table 4.4. Processing times on a per layer basis for both of the primary 

ML methodologies as well as the ancillary operations are reported in Table 4.5. The typical 

training times for the final BoW and MsCNN algorithms are 15 hours and 1 hour, respectively. 

Due to the design of the compression algorithm, the number of analyzed layers does not 

correspond directly to the memory burden of the build analysis. The largest analyzed build by 

number of layers is 5,452 layers tall and requires 37 MB on the hard disk and 2 GB when loaded 
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into RAM, while the largest analyzed build by memory requirement is only 1,067 layers tall but 

requires 96 MB on the hard disk and 2.7 GB when loaded into RAM. 

Table 4.4: Computer system specifications. 

 Specification Value  
 Operating System Microsoft® Windows® 10  
 System RAM HyperX® 4 × 8 GB (DDR4)  
 Processor Type (CPU) Intel® i7-6700K (4 cores)  
 Processor Speed (CPU) 4.00 GHZ  
 Graphics Card (GPU) NVIDIA® GeForce GTX 950  
 Dedicated/On-Board RAM (GPU) 2 GB  

 
Table 4.5: Approximate computation time for selected layer-wise operations. 

 Layer-wise Operation Computation Time 
(seconds/layer) 

 

 EOSPRINT Screenshot Capture 5  
 Part Geometry Extraction 0.2  
 3D Data Decompression 0.02  
 BoW Classification 4  
 MsCNN Classification 7  

The computation speed of the BoW algorithm could be further increased via explicit 

parallelization of the layer analysis process – while some of the utilized MATLAB functions may 

be implicitly parallelized, the implementation described in this work only explicitly uses one 

CPU core to perform the calculations. As the patch-wise classifications are independent from 

each other, threading these calculations78 would be trivial. The computation speed of the 

MsCNN algorithm could be further increased though the use of a research-grade GPU or even 

an array of multiple graphics cards. Of note, the current system’s limiting specification appears 

to be the RAM on-board the Graphics Card as opposed available GPU clock cycles. More on-

                                                      

78 This could be implemented by each available core performing patch-wise classification on a different set of 
patches from the same layer. 
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board RAM would allow for larger mini-batch sizes which would allow for a higher utilization of 

the GPU itself79.  

Powder spreading in the EOS M290 requires approximately six seconds and exposure of a 

typical layer requires on the order of several minutes. Therefore, the current implementations 

of both the BoW and the MsCNN algorithms operate fast enough to be considered “real-time.” 

The use of powder bed anomaly classification in a real-time environment is discussed in Section 

5.3 and the benefits of increased computation speeds are discussed in Section 8.3. 

4.5.5 Comparison of the Machine Learning Methodologies 

The MsCNN methodology was determined by the author to be superior to the BoW 

methodology for the reasons enumerated below. Therefore, the MsCNN methodology is the 

sole ML methodology used for the remainder of this chapter as well as the entirety of Chapter 

5; for convenience it is henceforth often referred to as “the MsCNN.” 

1. The confusion matrices reported earlier in this section clearly demonstrate that the 

MsCNN methodology provides far superior anomaly classification performance, relative 

the BoW methodology, in nearly all cases.  

2. The MsCNN methodology’s uniform anomaly classification resolution of 25 pixels × 25 

pixels (defined by the patch size, Section 4.4.2) is comparable to the finest resolution 

offered by the BoW methodology (20 pixels × 20 pixels) and it is substantially finer than 

the BoW methodology’s 100 pixels × 100 pixels incomplete spreading resolution.  

                                                      

79 The mini-batch size during classification is limited to 256 multi-scale patches of the powder bed image due to the 
RAM available onboard the GPU. Because there are a total of 1,296 multi-scale patches in each powder bed image, 
a mini-batch size of 1,296 would be the most computationally efficient for the presented implementation.  
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3. The pseudo-probabilistic classifications produced by the MsCNN’s softmax layer (Section 

4.4.5 and 4.6.6) have the potential to provide an operator or a feedback control 

algorithm with valuable information not provided by the BoW methodology. 

4. The lack of human-designed components such as the filter bank and the contextual 

heuristics endows the MsCNN methodology with greater flexibility during retraining 

(e.g. if the camera resolution is altered or a different L-PBF machine is used) than the 

BoW methodology.  

Note that while layer-wise anomaly classification via the MsCNN methodology is slightly 

slower than via the BoW methodology, its computation speed can be dramatically improved as 

described in the previous subsection. Finally, the respective training times of the two ML 

methodologies were not considered in the above decision process as they are highly dependent 

upon the exact training parameters used (Sections 4.3.4 and 4.4.6). 

4.5.6 Portability between Material Systems and L-PBF Machines 

The MsCNN methodology has been used to analyze builds using multiple material systems 

including: AlSi10Mg, bronze, Inconel 625, Inconel 718 (two Powder Systems), stainless steel 

316L, stainless steel 17-4 PH, and Ti-6Al-4V (four Powder Systems). Performance of the MsCNN 

is robust across all of the material systems and there is no evident need for material system-

specific training databases. The training database includes data from builds using most, but not 

all, of the above material systems. Additional details about the use of bronze (the most visually-

distinct material system) and AlSi10Mg (the material system with the highest background level 
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of anomaly detections) are provided in Section 5.2.4. The use of the MsCNN methodology to 

correlate powder bed anomalies with powder particle size is reported in Section 3.3.2. 

While the vast majority of the 51 builds analyzed by the MsCNN were performed on the 

EOS M290 machine at CMU’s NextManufacturing Center, two builds performed on the EOS 

M290 at Eaton’s® Additive Manufacturing Center of Excellence facility in Southfield, Michigan 

were also analyzed. No structural changes to the MsCNN or retraining were performed; 

successful analysis of the builds only required a machine-specific calibration, to compensate for 

differing camera positons and lighting conditions, as outlined in Section 4.2.3. Additionally, 

powder bed images captured during a build performed on an SLM 280 (SLM Solutions GmbH, 

Germany) L-PBF machine at Arconic’s Production Center in Austin, Texas were also successfully 

analyzed. Note that in this case several manual lighting adjustments were required in addition 

to the standard calibration procedure. The author suspects that such manual adjustments 

would not be necessary if the MsCNN were retrained with data specific to SLM 280 machines. 

Overall, over 70,000 powder bed images have been analyzed using the MsCNN. 

Finally, it is worth noting that the entire MsCNN methodology is sufficiently robust to be 

operated as a set of standalone executables. Indeed, the software pipeline has been designed 

such that it can be installed on a computer without MATLAB, although the free MATLAB 

runtime environment is still required [181]. Internal tests have demonstrated that the software 

can allow a user with minimal knowledge of L-PBF, CV, or ML to perform the necessary 

calibrations, retrain the MsCNN, analyze a build, and interpret the analysis results. Figure 4.20 

shows a screenshot of the user interface for a portion of the standalone software package. 
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Figure 4.20: A screenshot of the Graphical User Interface for a portion of the installed powder bed anomaly 
classification software package. 

4.6 Results 

4.6.1 Case Study Overview 

In this chapter, a single case study is used to illustrate the capabilities of the MsCNN 

methodology. Additional case studies are explored in Chapter 5. The build examined in this 

section was performed in December of 2016 for Dr. Samikshya Subedi and Prof. Anthony Rollett 

of CMU’s Materials Science and Engineering Department under a US Department of Energy 

grant (DE-FE0024064) and in collaboration with Oregon State University and Prof. Vinod 

Narayanan at the University of California Davis. Figure 4.21 shows a CAD rendering of the heat 

exchanger built for this project out of Inconel 718 (In718) using 20 µm thick layers. 
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Figure 4.21: A CAD rendering of one of the 
heat exchangers included in the build 
discussed in this section. 

4.6.2 Analysis of a Single Layer 

Figure 4.23 shows the raw powder bed image taken at layer 2,709 of the heat exchanger 

build. The approximate location of this layer is indicated by the solid blue line in Figure 4.21. 

The heat exchanger of interest is shown within the solid blue bounding box. Note that an 

identical heat exchanger, within the dotted blue bounding box, was deactivated after layer 

1,894 – an event discussed in the following subsection. A number of different powder bed 

anomalies are present, a selection of which have been annotated for clarity. For example, in 

several locations the heat exchanger and surrounding parts have warped up above the powder 

bed due to a buildup of residual thermal stresses (super-elevation). This distortion has allowed 

the recoater blade to impact the heat exchanger resulting in vertical (parallel to the y-axis) 

markings characteristic of recoater hopping. This impact has also resulted in substantial part 

damage and significant quantities of debris in the surrounding powder bed. Evidence of 

recoater streaking due to a combination of damage to the recoater blade and the dragging of 

debris is also visible. Finally, to conserve In718 powder, the dosing factor (the amount of 

layer 
2,709
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powder fetched from the powder dispenser and spread for each layer) was reduced, resulting 

in incomplete spreading toward the left-hand extreme of the powder bed. 

 
Figure 4.22: Layer 2,709 (54.18 mm above the build plate) with selected instances of powder bed anomalies 
manually annotated. The heat exchanger of interest is inside the solid blue bounding box while the heat exchanger 
within the dotted blue bounding box was disabled earlier in the build by the operator.  

Each layer of a build is analyzed by the MsCNN as described in Section 4.4. Figure 4.23 

shows the MsCNN analysis of layer 2,709. The regions of super-elevation are highlighted in red 

and the majority of the recoater hopping is highlighted in teal. Instances of part damage are 

highlighted in magenta and many instances of debris are highlighted in white. Many of the 

instances of recoater streaking are highlighted in blue, although as suggested by the confusion 

matrices in Section 4.5.3, some of the instances of recoater streaking are not detected by the 

MsCNN. Finally, the regions experiencing incomplete spreading are highlighted in yellow; note 

that as suggested by the confusion matrices in Section 4.5.3, incomplete spreading is 

occasionally miss-classified as debris. 

incomplete spreading

part damage

recoater 
hopping

super-
elevation

debris

recoater streaking

x

y
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Figure 4.23: Layer 2,709 (54.18 mm above the build plate) with the powder bed anomalies classified by the 
MsCNN. The green pixels indicate the CAD outline of the parts at this layer.  

4.6.3 Global and Local Build Reports 

After each layer has been analyzed, the percentage of each anomaly classification in each 

layer can be displayed as a function of build height in a build report. Figure 4.24 shows a 

simplified (only containing two anomaly types) global build report. Note the anomaly spikes 

around layer 2,709 (Figure 4.23) and the spike at layer 1,894 that corresponds to the operator 

intervening in the build process and deactivating the second heat exchanger (dotted blue 

bounding box in Figure 4.23). 
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Figure 4.24: A global build report showing the number of pixels (as a percentage of part area, based on the CAD 
geometry) classified as super-elevation and part damage anomalies at each layer of the build. Note layers 1,894 
and 2,709 which are discussed in this and previous subsections. 

Local build reports can also be created, showing only the anomaly classifications results 

within a specified region of the powder bed; this is particularly useful if there are multiple parts 

in a build. Figure 4.25 shows a local build report covering the region bounded by the solid blue 

box in Figure 4.22. The lower subplot (green) of Figure 4.25 shows the percentage of pixels 

within the specified region that lie on top of the heat exchanger itself (based on CAD geometry) 

as a function of build height. In other words, the lower subplot shows the percentage of the 

bounded area that was fused in the previous layer. Equivalently, the lower subplot shows the 

amount of fused material covered by only one layer of powder. Recognize that an increase in 

this percentage indicates an overhanging region, and a sharp increase implies a largely 

unsupported overhang. Overhanging regions are discussed in more detail throughout Chapter 

5. Note that many of the anomaly detections (layers 2,500 – 3,000) coincide with the relatively 

rapid geometry changes, including the construction of an overhang, that occur between 50 mm 

and 60 mm of build height.  
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Figure 4.25: Local build report and vertical part profile for the heat exchanger of interest. The anomaly 
classifications in the upper subplot are presented as percentages of the area of the specified region.  

4.6.4 Cumulative Anomaly Classifications 

The cumulative occurrences of anomalies throughout the height of the build can be 

displayed as heat maps; this representation can be effective at highlighting regions of the 

powder bed (i.e. specific parts) that consistently experienced problems throughout the build 

height. Figure 4.26 shows a heat map of part damage anomaly classifications over the course of 

the entire build. The region that stands out (part damage occurred for 4% of layers in this 

location) is the same region discussed in the following subsection and highlighted in magenta in 

Figure 4.23. Figure 4.27 shows a heat map of incomplete spreading classifications over the 

course of the entire build. As expected, these detections occur near the left-hand extreme of 

the powder bed. 
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Figure 4.26: A heat map showing the percentage of 
layers (throughout the build height) in which part 
damage was detected at each pixel. The footprints 
(CAD geometry boundaries at the first layer) of each 
part are shown as white outlines.  

Figure 4.27: A heat map showing the percentage of 
layers (throughout the build height) in which 
incomplete spreading was detected at each pixel. The 
footprints (CAD geometry boundaries at the first layer) 
of each part are shown as white outlines. 

4.6.5 3D Renderings 

The anomalies classified in each layer can be mapped onto a 3D model of the build or a 

specific part as shown in Figure 4.28, where the detected regions of part damage are indicated 

in magenta. Figure 4.29 shows the as-built heat exchanger; significant damage to the part is 

clearly visible (within the red bounding box) in the same locations indicated in the 3D 

rendering. 
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Figure 4.28: A 3D rendering of the heat exchanger of interest 
with the detected regions of part damage indicated in magenta. 

Figure 4.29: The as-built heat exchanger with 
the visible defects highlighted by a red 
bounding box. 

4.6.6 Pseudo-Probabilistic Anomaly Classifications 

As discussed in Section 4.4.7, the final layer of the MsCNN utilizes a softmax function. That 

is, a pseudo-probability (between 0% and 100%) is assigned to each anomaly type. The 

classifications reported in Figure 4.23 are based only on the most probable anomaly type – 

essentially, the additional information provided by the softmax function is ignored. Conversely, 

the classifications shown in Figure 4.30 incorporate the probability information. Specifically, if 

the most probable anomaly type for a given patch has a pseudo-probability less than 75%, then 

both the most probable and the second most probable classifications are displayed 

simultaneously. In this situation, the patch is highlighted by alternating vertical stripes, the 

colors of which indicate the two most probable anomaly classifications. 

The visualization of the classification pseudo-probabilities demonstrates the types of 

situations which the MsCNN finds most ambiguous. For example, in some cases the MsCNN 
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finds the distinction between debris and either incomplete spreading or recoater streaking to 

be ambiguous. Additionally, some of the less severe cases of recoater hopping appear similar to 

okay regions. Interestingly, the vast majority of the anomaly classifications made for this 

powder bed image have a pseudo-probability of greater than 75%, that is, the MsCNN is 

relatively certain of its classification of most patches. 

 
Figure 4.30: Layer 2,709 (54.18 mm above the build plate) with the powder bed anomalies classified by the 
MsCNN. Anomaly classifications with a pseudo-probability less than 75% are shown as a patch with hatched 
coloring. Specifically, within those patches alternating vertical stripes are used to indicate the highest and second 
highest probably anomaly classification. The green pixels indicate the CAD geometry outline of the parts at this 
layer. 
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4.6.7 Additional Analysis Visualization Modalities 

The anomaly classifications produced by the MsCNN can be viewed in several additional 

formats including layer-by-layer time-lapses of the build as well as movies showing the layer-by-

layer 3D rendering of the build – thereby allowing the observation of anomalies internal to the 

part geometry. Also of interest, a Fourier frequency analysis can be applied to a global or local 

build report. For example, such an analysis of the recoater hopping classifications in Figure 4.25 

results in an anomaly recurrence period of 250 layers; this is correlated with the periodic 

geometry changes (part profile subplot) also shown in Figure 4.25. These geometry changes are 

related to the design of the internal cooling channels within the heat exchanger. Other, more 

illuminating, examples of frequency analyses are presented in Sections 3.3.2 and 5.2.4 where it 

enables the correlation of powder bed anomalies with powder particle size, laser scan strategy, 

and layer-wise energy density. 

4.7 Discussion and Summary 

In this chapter, autonomous powder bed anomaly detection and classification is achieved 

through the use of contemporary Machine Learning and Computer Vision techniques. Layer-

wise powder bed images are captured throughout each build using a relatively low-resolution 

(1 MP) camera. Notably, no modifications were made to the camera or lighting system provided 

by the L-PBF machine manufacturer (EOS GmbH). Successful use of the images produced by the 

manufacturer-provided system required the development a robust, machine-specific calibration 

process. Six different millimeter-scale powder bed anomaly types are described – while several 

of these anomaly types have been reported in prior literature, to the author’s knowledge, this 
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thesis provides the most comprehensive accounting of L-PBF powder bed anomalies. In order to 

improve the utility of the autonomous anomaly classifications, part geometry and build layout 

information are extracted layer-wise from the EOSPRINT software environment using a custom 

CV algorithm. 

Two anomaly classification methodologies are presented, each relying on a different ML 

algorithm. The first ML algorithm is an application of the well-established Bag of Words 

approach. While relatively easy to implement, the BoW methodology relies on human-created 

feature extraction tools and requires human-defined contextual heuristics to achieve 

reasonable classification accuracies for several of the anomaly types. The second ML algorithm 

uses transfer learning to apply the AlexNet CNN to the powder bed anomaly classification 

problem. Modern CNNs were developed more recently than the BoW approach and learn their 

own “optimal” feature extraction tools. Furthermore, through the use of multi-scale patches 

the need for contextual heuristics was eliminated. 

Interestingly, the author has found extremely few prior examples of analyzing data 

structures containing multi-scale information with CNNs. This suggests that the use of MsCNNs 

has significant unexplored potential both in AM and other fields; Chapter 8 discusses some of 

the other potential AM applications for MsCNNs. Somewhat surprisingly, the re-trained AlexNet 

CNN provides high classification performance despite the fact that the kernels in the first CONV 

layer were initially trained to extract useful information from three-channel color images 

instead of three-channel multi-scale images. The author proposes one possible explanation for 

this pleasant surprise. As can be seen in [153, Fig. 3], many of the kernels in AlexNet’s first 

CONV layer are either grayscale (i.e. channel-agnostic) or only produce high responses on 
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channel-defined colors (i.e. red, green, or blue). The grayscale and color-specific kernels may 

reside in relatively distinct regions of the final 4,096 dimensional feature space and therefore 

the six kernels in the final FC layer (which are retrained during transfer learning) can “cleanly” 

operate on only the channel-agnostic region of feature space. Importantly, Krizhevsky et al. 

[153, p. 7] observed that while the kernels learned on one GPU routinely exhibited color-

agnosticism the kernels on the second GPU were routinely color-specific; due to their 

implementation of GPU parallelization it is conceivable that this differentiation propagated into 

the final feature space. 

Validation and testing performances were reported for the BoW, MsCNN, and CNN (the 

AlexNet CNN trained on only Level 1 patches) methodologies. The final MsCNN has higher 

testing anomaly classification accuracies than the other two methodologies, particularly for the 

recoater streaking, debris, super-elevation, and part damage anomaly types. For the final 

MsCNN, the overall, anomaly detection, and anomaly differentiation accuracies are 97%, 85%, 

and 93%, respectively. While not explored in this work, overall testing accuracy may be 

increased if the MsCNN is trained on a balanced dataset, that is, a dataset containing an equal 

number image patches labeled as each anomaly type. Note that the extremely high mini-batch 

accuracies observed during the later training epochs suggest that convergence is not currently 

an issue and that the final learned kernels are not disproportionately biased toward the 

anomaly classes with the greatest number of examples in the training dataset. While the BoW 

methodology requires less computation time per layer than the MsCNN methodology (4 

seconds vs. 7 seconds) this advantage is system-specific and substantially more powerful GPUs 

than used in this work are commercially available. The higher classification accuracy, higher 
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incomplete spreading classification resolution, and increased flexibility of the MsCNN over the 

BoW methodology demonstrated its superior performance for this application. 

The final MsCNN methodology was shown to perform robustly across a wide range of 

material systems and was able to successfully analyze data captured by an alternate EOS M290 

machine as well as an SLM 280 machine. The presented methodology was used to analyze over 

70,000 powder bed images, producing almost 100 million patch-wise anomaly classifications 

and can be operated by external users as a stand-alone software package. A case study was 

used to demonstrate the utility of the autonomous anomaly classifications for build failure 

analysis. Additional case studies spanning a wide range of build geometries, material systems, 

and processing conditions are explored in Chapter 5.  

The classification results can be viewed in a variety of formats including anomaly 

classifications as a function of build height, cumulative heat maps, 3D renderings of the part 

geometries, and time-lapse videos. As demonstrated in Chapter 3, a frequency analysis of the 

anomaly detections can provide valuable insight into the interaction between the laser scan 

strategy, the powder feedstock, and disturbances to the powder bed. While only briefly 

discussed in this chapter, the pseudo-probabilistic non-exclusive anomaly classification 

capability provided by the MsCNN’s softmax layer should be further explored. 

Critically, the presented approach performs layer-wise anomaly classification at a speed 

fast enough to enable its implementation in a real-time environment; such an implementation 

is further discussed in Chapter 5. Finally, the author does not consider it possible to directly 

extend this work to the detection of micron-scale flaws, such as those discussed in Chapters 2 
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and 3, using a single, stationary camera80 monitoring the entire powder bed. Indeed, it is this 

fundamental limitation which provided significant motivation for the melt pool monitoring 

work presented as the final topic of this thesis (Chapters 6 and 7). 

                                                      

80 For a visible-light camera, the physical sensor pixel can be no smaller than the wavelength of visible light (0.4 µm 
to 0.7 µm [205]). As a result, assuming an ideal camera with 1 µm square pixels, achieving a 10 µm spatial 
resolution across the 250 mm × 250 mm EOS build plate would require a 625 MP sensor, at least 25 mm × 25 mm 
in size. Furthermore, if reliable detection of a flaw requires approximately 10 pixels × 10 pixels of data (a 
reasonable assumption based on the patch sizes used in this chapter) then the sensor size increases to that of the 
build plate itself. 
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5 Topic 3: L-PBF Build Analyses using Autonomous Powder Bed 
Anomaly Detection and Classification 

5.1 Background 

The development of the ML methodologies presented in Chapter 4 enabled the fruitful 

analysis of multiple L-PBF builds performed on the EOS M290 at CMU’s NextManufacturing 

Center. This chapter presents analyses from ten case studies, each of which focuses on a unique 

aspect of part quality or build stability. Additionally, several of these analyses have been used 

by both internal and external users of the EOS M290 to understand build failure modes and 

redesign components for future builds. Particular attention is paid to the discussion of 

geometries which are traditionally difficult to manufacture additively, such as overhangs [182] 

and thin wall structures [183]. Correlations between fusion processing parameters (e.g. laser 

beam power, travel speed, and hatch spacing) and powder bed anomalies are studied. The 

impact of non-standard material systems on anomaly detections is explored and a mid-build 

malfunction of the EOS M290 is identified. Finally, potential strategies for real-time mitigation 

of powder bed anomalies are briefly discussed. 

Importantly, many of the conclusions presented in this chapter could not have been 

reached without the autonomous analysis of in-situ process monitoring data. Many of the 

detected flaws occur within the volume of the parts and could not be identified ex-situ; 

furthermore, the data sets are far too large (many thousands of layers) for manual analysis of 

the powder bed images to be feasible. While the work in Chapter 4 was originally envisioned as 

a step toward real-time process feedback control, the developed methodology has also proven 

to be a powerful offline data analytics tool. 
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All of the analyses presented in this chapter were produced using the final Multi-scale 

Convolutional Neural Network (MsCNN) presented and characterized in Chapter 4. Many of the 

analysis visualization modalities in this chapter are presented without pretext; please refer to 

Section 4.6 for details regarding the interpretation of these figures. While the work presented 

in this chapter was not directly supported by any entity, the funding sources and collaborators 

for each of the presented case studies are indicated in the body of the text. 

5.2 Results 

5.2.1 Overhangs and Sudden Delamination 

Many of the process stability issues observed during L-PBF are related to mid-build 

deformation of the printed parts due to residual thermal stresses [118]. Such stresses can result 

in the warping of an unsupported overhang region up above the powder bed as well as the 

sudden delamination of a part from its support structures or the build plate itself. This 

subsection presents two examples of each thermal stress-induced failure mode across three 

different case studies. 

In April of 2016, several robotic arm components were built out of AlSi10Mg for Ben Brown 

of CMU’s Robotics Institute. Figure 5.1 shows a Computer Aided Design (CAD) rendering of one 

of the components which possesses a relatively large unsupported overhang. Unfortunately, 

these overhanging regions began to warp and were impacted by the recoater blade – resulting 

in a failure of the entire build. Figure 5.2 shows several layers both before and after the 

warping began. Note that several of the components were manually deactivated by the 

operator after layer 520.  
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Figure 5.1: A CAD rendering of the robotic arm component. Eight of these components were built out of AlSi10Mg 
on a single build plate. 

z
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Figure 5.2: Images of the powder bed ranging from 15.21 mm to 15.69 mm above the build plate. Powder is first 
spread over the overhang region at layer 508. The three furthest-right components were manually deactivated by 
the operator after layer 520 in an attempt to preserve the remainder of the build. The entire build was manually 
aborted by the operator after layer 523. 

Layer 507

Layer 508 Layer 516

Layer 520 Layer 523
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In a real-time implementation of the MsCNN (see Section 5.3), the detection of a relatively 

low severity anomaly may be used to automatically trigger mitigation strategies in order to 

prevent the occurrence of more severe anomalies in subsequent layers. Toward that goal, 

Figure 5.3 demonstrates a correlation (in this build) between detections of super-elevation and 

detections of part damage in subsequent layers. Specifically, Figure 5.3 plots the percentage of 

super-elevation pixels at each layer which are later classified as part damage. For example, 66% 

of the pixels classified as super-elevation in layer 508 are classified as part damage in at least 

one layer between layers 509 and 523. Note that the downward trend in “future” part damage 

“predictions” is due to the fact that the five components on the left-hand side of the build plate 

did not fail before the build was manually aborted by the operator after layer 523 (see Figure 

5.2). It is considered likely by the author that the remainder of the components would have 

eventually failed had the build been allowed to continue. Finally, note that the proper design of 

feedback control heuristics to enable mitigation of “future” part damage would require a 

substantial amount of additional research in this area (see Section 8.3).  
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Figure 5.3: A simplified global build report showing the detections of super-elevation and part damage between 
layer 500 and layer 523. The vertical part profile is shown in green (see Section 4.6.3 for details) and indicates the 
presence of an unsupported overhang at layer 508. The line labeled “Future Part Damage” reports the percentage 
of super-elevation pixels at each layer which are eventually classified as part damage in a subsequent layer. 

In June of 2016, CMU’s NextManufacturing Center was commissioned to build two 

models81 of CMU’s Hamerschlag Hall out of Ti-6Al-4V (Ti64) for the groundbreaking of the new 

ANSYS Mechanical Engineering building. The build was performed using a chamber preheat of 

35 °C and a (nominal) powder layer thickness of 30 µm. Figure 5.4 shows a CAD rendering of 

one of the models. This build provides an example of part damage due to relatively small scale 

overhangs as well as sudden delamination of a part from its support structures. Figure 5.5 

shows a simplified global build report; anomaly detection spikes are visible at several layers; 

two of these layers, 760 and 1,954 are discussed in detail below.  

                                                      

81 The models were originally designed by Michelle Ma, Eric Myers, and Ryan Pearce for their final project in the 
course “Additive Manufacturing for Engineers” (24-210) at CMU and later modified by Dr. Zachary Francis, also of 
CMU. 
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Figure 5.4: A CAD rendering of 
Hamerschlag Hall, the home of the 
NextManufacturing Center’s metal 
Additive Manufacturing Laboratory. 
Two sub-scale models of the building 
were built out of Ti64 on a single build 
plate. 

 
Figure 5.5: A global build report showing the number of pixels (as a percentage of part area, based on the CAD 
geometry) classified as super-elevation and part damage anomalies at each layer of the build. Note the annotated 
spikes in part damage classifications. 

The spike in part damage classifications at layer 760 (Figure 5.6) is a detection of a sudden 

delamination that occurred during the build. At this layer, the residual thermal stresses [118] 

within the right Hamerschlag Hall model were sufficient to tear it from some of the supports 

anchoring it to the build plate. This sudden delamination “tossed” powder off of the part, and 

the resultant severe lack of powder is correctly classified as part damage (magenta). The 

disturbances to the surrounding powder bed are primarily, and correctly, classified as debris 

(white). However some the patches are incorrectly classified as incomplete spreading which can 

rotunda 
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be visually similar to debris. Note that the left Hamerschlag Hall model does not experience 

delamination.  

At layer 1,954 (Figure 5.7) the algorithm detects multiple instances of part damage 

(magenta) which correspond to observed collapses in the rotunda windows (overhang regions) 

in the final part. The recoater impacted the rotunda region leading to detectable levels of 

recoater hopping (vertical teal line). Part damage is primarily detected on the right 

Hamerschlag Hall model and this is consistent with the post-build analysis of the final parts. This 

difference is particularly observable in the heat map shown in Figure 5.8; note that the rotunda 

on the right model has a high percentage of instances of part damage. The other regions where 

a large number of instances of part damage are detected correspond to the open doorways of 

both models; these doorways represent significant unsupported overhangs and the quality of 

the final part was noticeably poor in those locations82. 

                                                      

82 The Hamerschlag Hall models were built for an external customer and are no longer available to the author. No 
appropriate images of the as-built models were taken at the time the models were built. 
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Figure 5.6: Layer 760 (22.80 mm above the build 
plate). The green pixels show the CAD geometry 
outline of the parts at that layer. 

Figure 5.7: Layer 1,954 (58.62 mm above the 
build plate). The green pixels show the CAD 
geometry outline of the parts at that layer. 

 

 

 
Figure 5.8: A cumulative heat map showing the percentage of layers (throughout the build height) in which part 
damage was detected at each pixel. The positions of the parts on the build plate are shown as white outlines of 
their footprints. The sporadic white dots are artifacts present in the EOSPRINT environment which were captured 
during extraction of the part geometries (Section 4.2.5). 
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In January of 2018, Brian Fisher of CMU conducted two builds of identical turbine blades 

made out of Ti-6Al-4V. One build was performed using the EOS nominal chamber preheat of 35 

°C while the other build was performed at a chamber preheat of 500 °C; the higher preheat was 

made possible through the use of a custom “heated build plate insert” designed by Fisher [34]. 

These two builds were performed in order to demonstrate reduced residual stresses at higher 

background temperatures [34]. Ex-situ observations by Fisher determined that while the 

turbine blade with the weakest support structure delaminated during the 35 °C build, no such 

failure occurred for the corresponding turbine blade during the 500 °C build [34]. These exciting 

results are also borne out by the MsCNN analyses of the in-situ powder bed images. Figure 5.9 

shows the local build reports for the relevant turbine blade during each build. While a sudden 

spike in anomaly detections due to a large disturbance of the powder bed (Figure 5.10) is visible 

at the time (layer 386) of delamination during the 35 °C build, no such spike is observed for the 

500 °C build. While delamination did not occur at the higher chamber preheat temperature, a 

substantial increase in detections of super-elevation is evident. The author hypothesizes that 

these detections are the result of swelling [115], [147, p. 28] of the turbine blade. The 

relationship between swelling and super-elevation is discussed in detail in Section 5.2.4.  
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Figure 5.9: The delamination event during the low preheat temperature (35 °C) turbine blade build is indicated by 
the spike in anomaly detections at layer 386. Note that this delamination occurred well above the support-part 
interface at 2.55 mm of build height. Also note the increased number of super-elevation detections during the high 
preheat temperature (500 °C) turbine blade build. The detections of incomplete spreading and debris during the 
500 °C turbine blade build are artifacts caused by the “heated build plate insert” described by Fisher [34]. 
 

 

Figure 5.10: Layer 386 (11.58 mm 
above the build plate) of the low 
preheat temperature (35 °C) turbine 
blade build. The turbine blade of 
interest lies within the blue bounding 
box. The delamination event resulted 
in a significant disturbance in the 
powder bed, similar to that observed 
in Figure 5.6. The green pixels show 
the CAD geometry outline of the 
parts at that layer. 

It is evident from the part profile (green line) reported in Figure 5.9 that the delamination 

event occurred well above (i.e. at a later layer than) the support-part interface (11.58 mm 

versus 2.55 mm above the build plate). Note that this same behavior was observed during the 

delamination of the Hamerschlag Hall model discussed previously. Therefore, while the 
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“timings” of the delamination events were properly captured by the MsCNN analysis, the layer 

at which structural failure occurred could not be identified and flagged by the algorithm. 

Indeed, this is a fundamental limitation of using the analysis of powder images to identify 

spatially-accurate macro-scale defect locations for part quality assurance applications. 

Furthermore, it is likely that the delamination event itself will become more difficult to detect 

via powder bed imaging the greater the depth of powder separating the delamination layer 

from the surface of the powder bed. In such cases, passive acoustic monitoring [130] of the 

build process may be an appropriate defect detection alternative. 

5.2.2 High-Aspect Ratio Components 

In September 2016, multiple “dog bone” tensile specimens83 were built out of stainless 

steel 316L (SS 316L), in varying orientations and with different support schemes, for the Bettis 

Naval Nuclear Laboratory. The build was performed using a chamber preheat of 80 °C, a and 

(nominal) powder layer thickness of 20 µm. Figure 5.11 shows a 3D reconstruction of the entire 

build. In this subsection, two different tensile specimens (one oriented horizontally, the other 

vertically) are discussed in detail. Note that while all 25 of the tensile specimens and cylindrical 

witness coupons are visible as green outlines in Figures 5.13 and 5.16, the specific tensile 

specimens being discussed are bounded by blue boxes. 

                                                      

83 The tensile specimens were designed by Dr. Colt Montgomery of CMU. 
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Figure 5.11: A 3D rendering of the tensile specimen build with the detected part damage highlighted in magenta. 

The horizontally-oriented tensile specimen used minimal support structures underneath 

the gage section in an attempt to reduce their influence on measured part properties during 

mechanical testing. From the local build report in Figure 5.12, it is clear that significant part 

damage (magenta, Figure 5.13) is detected as soon as the component transitions from the 

support material to the tensile specimen itself. This occurs at 5.06 mm of build height, or layer 

253. The lower subplot (green) of Figure 5.12 shows the percentage of pixels within the blue 

bounding box (Figure 5.13) that lie on top of the tensile specimen itself as a function of build 

height. Recall that an increase in this percentage represents an overhanging region, and a sharp 

increase implies a largely unsupported overhang. It is inferred that the support structures were 

insufficient for the substantial overhangs presented by the horizontally-oriented tensile 

specimen. As a result, failure of the supports occurred once the recoater blade passed back 

over that region of the powder bed, striking the first layer of the tensile specimen itself (i.e. 

above the supports). Figure 5.14 shows the as-built horizontally-oriented tensile specimen. 
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Figure 5.12: Local build report and vertical part profile for the horizontally-oriented tensile specimen of interest. 

 
 

Figure 5.13: (left) Note the instances of part damage (magenta) detected at layer 253 (5.06 mm of build height) 
within the blue bounding box. The green pixels show the CAD geometry outline of the parts at that layer. 
Figure 5.14: (right) The as-built horizontal tensile specimen with visible defects highlighted by a red bounding box. 
Note that the regions encompassed by the blue and red bounding boxes are nominally identical. 
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From Figure 5.15 it is apparent that the vertically-oriented tensile specimen built 

successfully throughout most of its height, but instances of part damage (magenta) are 

suddenly detected around layer 3,524 (70.48 mm of build height). This corresponds to the 

tensile specimen transitioning from the gage section into the upper grip section, a period 

during which a large overhang is produced. Based on Figures 5.16 – 5.18, it is surmised that the 

unsupported overhang warped upwards (due to residual thermal stress [118]) enough to be 

impacted by the recoater blade. This impact is highlighted by the extensive recoater hopping 

classifications (vertical teal line). The impact caused the tensile specimen to bend and then 

“spring back,” tossing powder away and leaving a powder cavity to the right of the tensile 

specimen (highlighted by debris classifications in white). This cavity prevented proper powder 

coverage of this region in subsequent layers, worsening the situation. Analysis results, including 

those presented in this subsection, informed many of the design changes incorporated into a 

subsequent build at CMU’s NextManufacturing Center, which was also supported by the Bettis 

Naval Nuclear Laboratory.  
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Figure 5.15: Local build report and vertical part profile for a vertically-oriented tensile bar. 

Figure 5.16: (left) Note the instances of part damage (magenta) detected at layer 3,524 within the blue bounding 
box. Also note the debris (white) classifications indicating the powder cavity to the right of the vertical tensile 
specimen. The green pixels show the CAD geometry outline of the parts at that layer. 
Figure 5.17: (center) A 3D rendering of the vertical tensile specimen with part damage highlighted in magenta. 
Figure 5.18: (right) The as-built vertical tensile specimen with the visible defects bounded by a red box. 
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5.2.3 Critical Orientations of Thin Wall Structures 

In October 2016, an impeller84 was built out of stainless steel 316L (SS 316L) to 

demonstrate the capabilities of the EOS M290 and as part of CMU’s NextManufacturing Center 

industry training initiative. The build was performed using a chamber preheat of 80 °C and a 

(nominal) powder layer thickness of 20 µm. The thin impeller blades and thin powder layers 

make this part a challenge to build successfully. Figure 5.19 shows the as-built impeller blade. 

Note that while one half of the impeller built correctly (Type A blade orientation), the blades on 

the other half collapsed (Type B blade orientation). The MsCNN was employed to determine 

the possible reason(s) for the partial build failure and identify any potential strategies for 

improving build quality in the future.  

 

Figure 5.19: The as-built 
impeller after being cut in 
half with a Wire Electrical 
Discharge Machine (EDM) 
to preserve only the half 
that built correctly. 

                                                      

84 The original CAD model of the impellor was downloaded from an online source by Dr. Colt Montgomery of 
CMU. 
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While it was immediately clear that the thin impeller blades failed due to repeated impacts 

with the recoater blade, it was initially unclear why only the impeller blades on one half to fail. 

Figure 5.20 indicates that super-elevation occurred on both halves of the impeller – suggesting 

that the recoater blade likely impacted most of the impeller blades, including many that did not 

ultimately fail. Figure 5.21 highlights the impeller blades that collapsed during the build, note 

that only impeller blades with their leading-edge pointed away from the direction of the 

incoming recoater blade (Type B) failed to build correctly.  

Figure 5.20: A cumulative heat map showing the percentage of 
layers (throughout the build height) in which super-elevation 
was detected at each pixel. The positions of the parts on the 
build plate are shown as white outlines of their footprints. 

Figure 5.21: A cumulative heat map showing the 
percentage of layers (throughout the build 
height) in which instances of part damage were 
detected at each pixel. The positions of the parts 
on the build plate are shown as white outlines of 
their footprints. 

Based on Figures 5.20 and 5.21, the author hypothesizes that some plastic deformation 

occurred when the impeller blades were struck by the recoater blade. For the impeller blades 

that built correctly (Type A), this deformation would be in approximately the same direction as 

the shift in blade CAD geometry in the subsequent layer, while the deformation and geometry 

shift would be in opposite directions for Type B blades. In this context, “geometry shifts” refer 

successful half
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to the discrete, layer-wise, in-plane shifts that are used to construct the smooth 3D curvature 

(defined by the CAD geometry) of the impeller. As a result, plastic deformation inflicted on the 

Type A impeller blades would be less likely to cause cascading failures in subsequent layers than 

the same deformation inflicted on the Type B impeller blades. Figure 5.22 shows this hypothesis 

schematically. 

 
Figure 5.22: A schematic representation of the two extreme impeller blade orientations. In the case of the Type A 
blade orientation, any plastic deformation due to a recoater strike occurs in the same direction as the geometry 
shift in the subsequent layer. In the case of the Type B blade orientation, the opposite is true – plastic deformation 
occurs in the opposite direction as the geometry shift in the subsequent layer. As a result, the Type B impeller 
blades are less likely to recover from a recoater strike, as the following layer will likely be largely deposited on a 
bed of unfused powder, with no substantial connection to the previous layer of the impeller.  

Because of this powder bed anomaly analysis, only half-impellers (of Type A) were built for 

the subsequent industry training event; complete collapses of the impeller blades due to 

recoater impacts were not observed for this subsequent build. Successfully building an entire 

impeller of this design would likely require a combination of approaches which might include: 

increasing the thickness of the impeller blades, increasing the powder layer thickness (to 

reduce the likelihood of recoater impacts due to super-elevation), and modifying the process 
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parameters (e.g. laser beam power and laser beam travel velocity) to reduce swelling of the 

part [147].  

5.2.4 Impact of Fusion Processing Parameters on Powder Layer Deposition 

Much of this chapter focuses on the effects of part geometry and orientation on the 

appearance of the powder layer. Intriguingly, the parameters used to fuse the part geometry 

can also impact the powder spreading process. For example, a correlation between the laser 

scan strategy and the spatial distribution of spatter particles is identified in Section 3.3.2. In this 

subsection, preliminary correlations between the occurrence of super-elevation and laser beam 

power, travel velocity, and hatch spacing are observed for two builds. 

In August of 2017, members of CMU’s NextManufacturing Consortium (including General 

Electric, General Motors, and Arconic) supported a build of 40 tensile specimens85 (Figure 5.23) 

in the EOS standard AlSi10Mg material system. A total of eight tensile specimens were built 

using each of the five process parameters combinations86 enumerated in Table 5.1. The build 

was performed with a chamber preheat of 200 °C, a (nominal) powder layer thickness of 30 µm, 

and a (nominal) beam diameter of 100 µm. From Figure 5.24 it is immediately evident that 

detections of super-elevation were far more prevalent for some tensile specimens than others. 

Furthermore, the detected instances of super-elevation are indeed representative of the true 

situation; as shown in Figure 5.25 the edges of the tensile specimens are visibly extending 

above spread powder layer. 

                                                      

85 The tensile specimens were designed by the author and Brian Fisher of CMU. 
86 The process parameters were chosen by Brian Fisher and Dr. Sneha Prabha Narra of CMU. 
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Figure 5.23: A CAD rendering of a tensile specimen with 
a non-contact thermal support separated from the 
specimen by 500 µm throughout the height of the build. 
Forty identical tensile specimens were built out of 
AlSi10Mg on a single build plate. 

X_X 

Table 5.1: Process parameter combinations for the AlSi10Mg tensile specimens. 

Parameter Number Beam Power (W) Beam Velocity 
(mm/s) Hatch Spacing (µm) Layer-wise Energy 

Density (mJ/mm2) 
1 370 1300 190 1.50 
2 370 1300 220 1.29 
3 370 600 230 2.68 
4 250 1000 100 2.50 
5 370 1300 110 2.59 
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Figure 5.24: A cumulative heat map showing the 
percentage of layers (throughout the build height) in 
which super-elevation was detected at each pixel. 
The positions of the parts on the build plate are 
shown as white outlines of their footprints. 

Figure 5.25: Layer 3,483 (104.49 mm above the build 
plate). The green pixels show the CAD geometry outline of 
the parts at that layer. Note that the circular perimeters of 
some tensile specimens are visible above the powder layer. 

When plotted in a process space defined by only the beam power and velocity, no trends 

in the super-elevation detections are apparent. However, when the average detections 

(throughout the height of the build) of super-elevation are plotted with respect to the layer-

wise energy density87 (5.1), as shown in Figure 5.26, a correlation is apparent. This correlation 

can be quantified using a Pearson rank correlation test [108]. The correlation coefficients88 (ρ) 

for detections of super-elevation and part damage with respect to layer-wise energy density are 

0.93 and 0.70, respectively. The corresponding p-values are 0.021 and 0.18, respectively. 

Because super-elevation can often be associate with, and miss-classified as, part damage 

(Sections 4.2.4 and 4.5.3) it is worthwhile to also consider the correlation coefficient and p-

                                                      

87 This avenue of exploration was initially suggested by Brian Fisher of CMU. 
88 A Pearson rank correlation test quantifies how well the relationship between two variables follows a monotonic 
function. In this application of the correlation test, high correlation coefficients and low p-values indicate strong 
correlations between the particle size characteristics and the quality metrics. The correlation coefficient ranges 
from ℝ[-1, 1], with a value of 1 indicating a monotonically increasing relationship and a value of -1 indicating a 
monotonically decreasing (i.e. inverse) relationship [108]. Note that the reported correlation metrics are for the 
mean measurement values. 
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value for the combination of the two anomaly detections which are 0.94 and 0.016, 

respectively. 

𝑢𝑢 =
𝑃𝑃
𝑣𝑣ℎ

 (5.1) 

Where u is the layer-wise energy density, P is the beam power, v is the beam travel velocity, and h is the 
hatch spacing. 

 

X_X 

 
Figure 5.26: Average detections of super-elevation and part damage throughout the build height as a function of 
layer-wise energy density. The error bars represent 95% confidence intervals about the mean value; where each 
mean value is an average of the anomaly detections for the eight tensile specimens built with each process 
parameter combination. The three sets of tensile specimens built with the EOS nominal beam power and travel 
velocity (but various hatch spacings) are indicated by the cross marks. The EOS nominal hatch spacing is 190 µm. 

Similar behavior to that described above was also observed during a build performed in 

October 2016 by Dr. Sneha Prabha Narra of CMU. In this case, the build consisted of 30 blocks 

(similar to the MLP samples introduced in Section 2.2.1) of material built with the EOS standard 

Inconel 718 (In718) material system. Each block of material was exposed using a different set of 

process parameters (laser beam power, travel velocity, and hatch spacing) as reported in [12, 

Fig. 6.7]. The build was performed using a chamber preheat of 80 °C, a (nominal) powder layer 

thickness of 20 µm, and a (nominal) beam diameter of 100 µm. From Figure 5.27 it is 
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immediately evident that detections of super-elevation and part damage were far more 

prevalent for some blocks than others. Furthermore, the detected instances of super-elevation 

and part damage are indeed representative of the true situation; as shown in Figure 5.28 the 

corners of the blocks are visibly extending above spread powder layer. Note that due to 

significant confusion between detections of super-elevation and part damage for this build (the 

super-elevated corners are visually similar to small-scale part damage defects, see Sections 

4.2.4 and 4.5.3) the following analyses are based on the combined detections of the two 

anomaly types. 

  
Figure 5.27: A cumulative heat map showing the 
percentage of layers (throughout the build height) in 
which super-elevation or part damage was detected 
at each pixel. The positions of the parts on the build 
plate are shown as white outlines of their footprints.  

Figure 5.28: Layer 223 (4.46 mm above the build plate). 
The green pixels show the CAD geometry outline of the 
parts at that layer. The outermost square part outline is an 
artifact present in the EOSPRINT environment which was 
captured during extraction of the part geometries (Section 
4.2.5). 

When plotted in a process space defined by only the beam power and velocity, no trends 

in the super-elevation or part damage detections are apparent. However, when the average 

detections (throughout the height of the build) of super-elevation and part damage are plotted 

with respect to the layer-wise energy density, as shown in Figure 5.29, a weak correlation may 

be present. As quantified by a Pearson rank correlation test, the correlation coefficient and p-
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value are respectively 0.46 and 0.010 for detections of super-elevation and part damage with 

respect to layer-wise energy density. 

 
Figure 5.29: Average detections of super-elevation and part damage throughout the build height as a function of 
layer-wise energy density. Each data point represents one of the 30 sample blocks. Note that the EOS nominal 
process parameters for In718 using 20 µm powder layers (and the corresponding layer-wise energy density) are 
not available to the author. 

In the case of the AlSi10Mg tensile bars there is a strong and statistically-significant 

correlation between the layer-wise energy density and detections of super-elevation. This 

statistical relationship is further bolstered by the fact that three of the five studied parameter 

combinations have the same beam power and travel velocities and only differ with regards to 

their hatch spacing. This suggests that it is indeed the layer-wise energy input which is affecting 

the surface of the fused parts and not just the beam power and travel velocity. A substantially 

weaker correlation is observed between powder bed anomalies and layer-wise energy density 

in the case of the In718 blocks; however note that while weak, the correlation is still 

statistically-significant. Notably, the link between energy density and non-overhang part 

deformation has been explored by Sames [147, pp. 160–167] who referred to the flaw as 
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“swelling.” Swelling was observed ex-situ for Inconel 625 parts fused using high-energy 

densities in the Arcam EB-PBF process [147, Fig. 77]. It is believed to be related to surface 

tension effects within the melt pool (as well as the surrounding area) when the local 

background temperature is elevated [115], [147, p. 28]. 

Indeed, this correlation, and swelling defects in general, should be studied further as there 

is limited prior work in the literature. Furthermore, swelling severe enough to lead to super-

elevation can indeed become a concern for process stability, as indicated by the recoater strikes 

(recoater hopping) visible in Figure 5.25. Interestingly, swelling during the AlSi10Mg tensile 

specimen build appears to be limited to the side of the specimens furthest from the non-

contact support structure (Figures 5.23 and 5.24). As those structures were intended to draw 

heat away from the specimens, it is possible that their presence reduced the local background 

temperatures enough to mitigate swelling even during exposure using high energy density 

process parameters. 

Finally, a periodicity in the combined super-elevation and part damage detections was 

observed throughout the build height of the In718 blocks. A Fourier frequency analysis yields 

strong peaks at 3.90 layers/anomaly-peak and 2.69 layers/anomaly-peak as shown in Figure 

5.30. As discussed in Section 3.3.2, such periodicities may be related to the default EOS M290 

laser scan strategy (Figure 1.8) rotation of 67° every layer [41]. Operating under this 

assumption, these layer-wise periods translate to respective scan strategy rotation periods of 

260°/anomaly-peak and 180°/anomaly-peak. However the presence of two peaks in frequency 

space suggests that the critical orientation of the scan strategy may precess during the build.  
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Figure 5.30: The results of a Fourier frequency analysis of the combined detections of super-elevation and part 
damage throughout the height of the build containing the In718 blocks. Two peaks in frequency space are 
prominent.  

This behavior is substantially more complex than that observed in Section 3.3.2 and its 

detailed study is beyond the scope of this work. Nonetheless, the author speculates that the 

observed periodicity may be the result of an interaction between the stripes and the corners of 

the blocks. Figure 5.31 demonstrates that at certain orientations (Case A) the geometry of the 

block does not influence the stripe width whereas in other orientations (Case B) the stripe 

width narrows as it approaches the corners. Such a narrowing of the stripe width is expected to 

increase the local background temperature [184] and increase the potential for swelling to 

occur. Indeed, this corner behavior (for a non-rotating scan strategy) was also observed ex-situ 

by Sames [147, Fig. 77]. The effects stripes intersecting with part geometry are explored further 

in Chapter 7. 
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Figure 5.31: Examples of two different interactions between the laser scan strategy (stripes) and the corners of the 
In718 blocks. The Case B situation (approximately) repeats every four layers. Observe that a similar situation will 
also be present when each of the Case B layers has rotated approximately 180°. 

5.2.5 Material Systems with Distinct Appearances  

The MsCNN algorithm has been used to analyze several builds making use of non-standard 

material systems. One example of this is reported in Section 3.3.2 and another example is 

discussed, briefly, below. Bronze is not currently a material system supported by EOS [27]; in 

November of 2016, Matthews International Corporation (Bronze Division) supported two builds 

on the EOS M290 at CMU’s NextManufacturing Center using non-standard bronze powder. 

Despite the dramatically different visual appearance of bronze powder compared to other 

metal powders (Figure 5.32), the algorithm performed robustly, with no re-training required. 

This robustness may be partially the result of the substantially reduced visual difference 

between bronze powder and other metal powders when viewed in grayscale (Figure 5.33). 

Figure 5.34 shows a 3D rendering of the anomalies detected during the construction of a model 

DNA helix, just 10 mm in diameter. Unfortunately, the relatively fragile helix failed to build 

correctly (due to impacts by the recoater blade), but this failure was successfully identified by 

the MsCNN algorithm. 

x

y

Layer 1
(Case A)

Layer 2
(Case B)

Layer 2 + 4
(Case B)

Layer 2 + 8
(Case B)
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Figure 5.32: A color image taken of the bronze 
powder after completion of the first build 
supported by Matthews International Corporation. 
Note the characteristic yellow/gold color. 

Figure 5.33: A grayscale image captured by the EOS M290’s 
powder bed camera during the second build supported by 
Matthews International Corporation. This image was taken 
at layer 685 (20.5 mm of build height) and also shows the 
MsCNN anomaly classifications. The green pixels show the 
CAD geometry outline of the parts at that layer. 
 

 

Figure 5.34: A 3D rendering of the model DNA 
helix manufactured during the second build 
supported by Matthews International 
Corporation. Instances of part damage are 
highlighted in magenta. 
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While the trained MsCNN algorithm has proven itself robust during analyses of builds using 

a wide range of material systems, several behavioral differences between material systems 

have been observed. Most notably, powder particle size has been correlated with powder bed 

anomaly detections as described in Section 3.3.2. Also of interest, the EOS standard89 AlSi10Mg 

material system has a higher level of background (i.e. not related to the parts being built) 

anomalies than the other standard material systems as reported in Table 5.2. The reported 

layer-wise anomaly detection averages are based on rectangular regions of the powder bed 

ranging in size from 2500 mm2 to 6250 mm2 and extending from the extreme upper-right 

corner90 of the build area. Each region was selected such that part fusion would not be 

expected to influence the appearance of the powder bed within the region; Figure 5.35 shows 

an example selected region. Finally, full powder layer coverage of the build plate requires 

between 22 layers and 61 layers for the AlSi10Mg material system while less than five layers are 

required for the other material systems studied. Figure 5.36 shows the simplified global build 

reports for the four representative AlSi10Mg builds studied in this subsection.  

                                                      

89 Note that all of the AlSi10Mg builds studied in this chapter were built using EOS standard AlSi10Mg powder 
purchased prior to July 31st, 2017. The AlSi10Mg powder currently (c.a. 2018) available through EOS has not been 
studied by the author. 
90 The upper-right corner of the build area is expected to be the region of the powder bed least affected by part 
fusion. As the argon shielding gas flow is antiparallel to the y-axis, spatter is less likely to fall along the upper edge 
than elsewhere on the powder bed. Because the recoater blade spreads powder in the direction antiparallel to the 
x-axis, debris from damaged parts is less likely to be deposited along the right edge than elsewhere on the powder 
bed. See Figure 1.4 for additional clarification. 
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Table 5.2: Background powder bed anomaly detections for selected material systems. 

Material System Combined Average Debris and 
Recoater Streaking Detections Number of Builds Analyzed 

EOS AlSi10Mg 1.3% – 2.8% 4 
EOS Stainless Steel 316L <0.05% – 0.1% 4 

EOS Ti-6Al-4V <0.05% 2 
EOS Inconel 718 <0.05% 4 
EOS Inconel 625 <0.05% 1 

Matthews International Corporation Bronze <0.05% 2 

X_X 

 
Figure 5.35: The selected region of the powder bed is shown in light gray and extends from 225 mm to 250 mm 
along the x-axis and from 0 mm to -250 mm along the y-axis. 
 



182 

 
Figure 5.36: Global build reports from four different AlSi10Mg builds showing the detections of recoater streaking 
and debris. The layers at which full powder coverage of the build plate is achieved are indicated by solid vertical 
black lines. Full powder coverage is considered to occur once the anomaly detections have reached their 
(approximatly) steady state value based on visual observation. Note that for clarity, the y-axes of each subplot do 
not span the same detection range. 

5.2.6 Detection of L-PBF Machine Malfunctions 

In a real-time monitoring implementation, the MsCNN algorithm has the potential to 

detect certain malfunctions of the L-PBF machine. In July of 2016 a heat exchanger (similar to 

that presented in Section 4.6.1) was built for Dr. Samikshya Subedi and Prof. Anthony Rollett of 

CMU’s Materials Science and Engineering Department under a US Department of Energy grant 

(DE-FE0024064) and in collaboration with Oregon State University and Prof. Vinod Narayanan 

at the University of California Davis. Unfortunately, at layer 619 the EOS M290 machine failed 

to raise the powder dispenser before spreading the next layer. The root cause of this failure 

remains unknown although a similar issue occurred during the PS #5 as discussed in Section 

3.3.1. As no powder was spread over the parts, a dramatic increase in super-elevation 
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detections is evident in Figures 5.37 and 5.38. While the EOS M290 began spreading powder 

again starting at layer 655 the initial disruption eventually lead to a complete failure of the 

build at layer 668 as shown in Figure 5.39. 

 
Figure 5.37: A global build report showing detections of super-elevation and part damage throughout the build. 
The powder spreading failure is clearly visible as a rapid increase in the detections of super-elevation. 
 

  
Figure 5.38: Layer 619 (12.38 mm above the build 
plate). Severe super-elevation is indicated in red. 
The green pixels show the CAD geometry outline 
of the parts at that layer. 

Figure 5.39: Layer 668 (13.36 mm above the build plate). 
Severe part damage is indicated in magenta. At this layer, the 
powder bed is approximately 1 mm lower than the powder 
dispenser (versus the nominal gap of 20 µm). As a result, 
insufficient powder is fetched from the powder dispenser to 
completely cover the build area. Indeed, the maximum 
horizontal (x-axis) extent of the powder spread is visible as 
the vertical line of debris classifications in white. 
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5.3 Proposed Anomaly Mitigation Strategies for Real-Time Implementations 

As observed in Section 4.5.4, the final MsCNN methodology is capable of classifying an 

entire powder bed image in approximately the same amount of time it takes for the EOS M290 

to spread a single layer of powder. Therefore there are no fundamental impediments to 

implementing powder bed anomaly classification on-line, in real-time. Unfortunately, 

restrictions imposed by the machine manufacturer prevent trivial real-time acquisition of 

images from the powder bed camera and completely prevent automatic changes to the EOS 

M290’s operation during a build. Such restrictions are not imposed by all L-PBF machine 

manufactures with the same degree of strictness (and EOS GmbH may reduce their own 

restrictions in the future), therefore it is worthwhile to consider a hypothetical real-time 

implementation of the methodology presented in Chapter 4. 

The logical “first step” toward a real-time implementation would be utilizing anomaly 

classification in a purely supervisory capacity. For example, an operator could be automatically 

notified if anomaly detections in a single layer (or over the course of multiple layers) exceeded 

a specified threshold. It is even conceivable that, given an appropriate dataset, ML could be 

employed to identify the appropriate notification thresholds based on historical operator 

behavior. In other words, operators manufacturing aerospace components may desire a lower 

notification threshold than those manufacturing non-safety-critical components. Beyond 

monitoring the powder bed, there are also several potentially viable methods for mitigating 

flaws detected during the build. 
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Incomplete spreading is trivially addressed by increasing the amount of powder spread 

each layer (the dosing factor). Indeed, ConceptLaser’s QM Coating system is now on the market 

and automatically corrects for incomplete spreading [146]. Similarly, isolated instances of 

recoater streaking can often be mitigated by re-spreading the powder layer. If, however, 

recoater streaking is detected in the same region of the powder bed over the course of several 

layers it may be an indication that the recoater blade should be cleaned or replaced. While 

cleaning the recoater blade currently requires operator intervention in all L-PBF machines 

known to the author, it could hypothetically be performed robotically with relative ease.  

 If the detected instances of part damage for a given part exceed a specified threshold 

(beyond which the part designers, process engineers, and operators believe the part will not be 

functional and/or safe to use) that part could be automatically “deactivated,” allowing the rest 

of the build to continue without wasting resources (e.g. build time and feedstock) on a part 

destined to fail (Section 5.2.1). Similarly, deactivating a failing part may prevent debris from 

impacting “downstream” parts which are otherwise undamaged. Figures 5.13 and 5.16 show 

examples of debris, originating from a damaged part, being dragged from right-to-left across 

the powder bed by the recoater blade during powder spreading. This debris behavior is 

particularly visible when viewing layer-by-layer time-lapses of the building process (Section 

4.6.7). 

If super-elevation or recoater hopping can be detected in real-time, it may be possible to 

avoid severe part-recoater blade impacts. In some situations, increasing the powder layer 

thickness for subsequent layers (and modifying the fusion processing parameters as in Chapter 

3) may be viable. Adjusting fusion process parameters such as the stripe width (Figure 1.8) may 
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increase the local pre-heat temperature [184] and decrease the internal residual stresses [34], 

[118], [140] thereby mitigating super-elevation due to warping directly. Conversely, if the 

detected super-elevation is the result of swelling instead of warping, a reduction in layer-wise 

energy density (possibly by increasing the hatch spacing) may be appropriate [147]. Note that a 

substantial amount of research on this type of process control would be required to determine 

the viability of this mitigation strategy. 

5.4 Discussion and Summary 

In this chapter, the Multi-scale Convolutional Neural Network presented in Chapter 4 is 

used as a powerful data analytics tool to study the layer-wise powder spreading and fusion 

processes in an L-PBF machine. The results presented in this chapter not only provide a 

qualitative representation of the performance of the final MsCNN methodology, but also 

include several unique insights based on the autonomous analysis of thousands of powder 

layers. A total of ten case studies are explored in detail in order to draw conclusions relating to 

build geometry, fusion process parameters, laser beam scan strategy, powder spreadability, 

and process stability. 

In Section 5.2.1, large unsupported overhangs are observed to warp upwards out of the 

powder layer due to residual thermal stresses. This deformation, originally classified as super-

elevation is classified as part damage in subsequent layers after the warped regions of the parts 

are impacted by the recoater blade. Depending on the size of the overhangs and the severity of 

the warping, such deformation may result in the failure of the entire build. Delamination events 

were observed at the support-part interface during two builds. Delamination is also the result 
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of residual thermal stresses; however the event tends to occur during the fusion of a layer well 

above the layer at which the failure physically occurs – making detection a challenge. Identical 

parts (and support structures) were built at two different chamber preheat temperatures; while 

delamination was observed during the low temperature build it did not occur during the high 

temperature build. This difference in behavior can be attributed to the reduced level of residual 

thermal stress present within a part when fusion occurs at a higher background temperature 

[34]. 

In Sections 5.2.2 and 5.2.3, high-aspect ratio and thin wall part geometries are shown to 

have unique failure modes. In the case of thin, vertical tensile specimens, an impact from a 

recoater blade can elastically deform the part such that it “springs back” after the recoater 

blade passes over it. This motion can “toss” powder away from the tensile specimen and create 

a cavity which prevents proper powder coverage of the specimen in subsequent layers. The 

build stability of certain thin wall structures may be dramatically dependent upon their 

orientations relative to the motion of the recoater blade. Specifically, minor plastic deformation 

caused by an impact with the recoater blade may have either a minimal or a significant effect 

on the fusion and spreading of subsequent layers depending on the orientation of the part. 

In Section 5.2.4, fusion parameters (laser beam power, travel velocity, and hatch spacing) 

are shown to correlate with detections of super-elevation. Specifically, a high layer-wise energy 

density results in increased detections of super-elevation due to swelling of the fused material. 

These observations are compared to ex-situ swelling observed in the literature [147] for the EB-

PBF process. Of great interest, a correlation is also observed between swelling (quantified by 

detections of super-elevation), laser scan strategy, and part geometry. Specifically, the raster 
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length of the laser beam is dependent on part geometry (e.g. corners) only at certain stripe 

rotation angles and therefore only at certain layers. During fusion of such layers, the stripe 

width decreases near part corners thereby increasing the local background temperature and 

leading to an increased amount of detected part swelling. 

In Section 5.2.5, the MsCNN is shown to perform robustly for a non-standard material 

system (bronze) with a significantly different visual appearance. The higher background rates of 

recoater streaking and debris detections for the EOS standard AlSi10Mg material system are 

also quantified. In Section 5.2.6 the MsCNN demonstrates the ability to detect a mid-build 

malfunction of the EOS M290 L-PBF machine. Finally, potential strategies for real-time 

mitigation of certain powder bed anomalies are proposed and discussed in Section 5.3. 
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6 Topic 4: Ex-Situ Melt Pool Morphology across Inconel 718 L-PBF 
Process Space  

6.1 Background and Literature Review 

Meaningful interpretation of data from in-situ process monitoring schema often requires 

an assessment of, and correlation with, data from ex-situ analyses. This is especially true for 

Machine Learning-based approaches including the in-situ melt morphology classification work 

presented in Chapter 7. This chapter describes the creation of a well-controlled ex-situ dataset 

designed specifically to enable the linkage of in-situ melt pool morphologies to process 

outcomes. In particular, the morphologies of interest in this work are those characteristic of 

process outcomes such as porosity formed by the keyholing mechanism [74], under-melting 

[74], and the surface tension-related balling phenomenon [87], [88]. Keyhole-mode melting 

occurs in the high energy density (high beam power, low beam velocity) region of process 

parameter space, where periodic vaporization of the molten material can occur. Under certain 

conditions, the resultant vapor pocket may become trapped as porosity in the solidified melt 

pool [74]. Under-melting occurs when the melt pool does not fully penetrate the powder layer 

[74]. Balling occurs in the higher beam velocity and beam power regime of process space [31]. 

Specifically, as the melt pools lengthen relative to their widths, Rayleigh instabilities driven by 

surface tension forces91 cause the tail of the melt pool to first form “humps” and eventually 

cease to be a continuous melt track, instead breaking up into discrete “balls” [88]. 

                                                      

91 This phenomenon is also visible as a stream of water falls from spigot. The initially-contiguous water stream 
lengthens, and correspondingly narrows, as its velocity increases. Eventually, the diameter of the water stream 
becomes small enough relative to its length that surface tension forces are sufficiently high to break the 
continuous stream into discrete droplets of water. 
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This work constructs a statistically significant database of melt pool geometry and 

morphology across L-PBF process space for the EOS Inconel 718 (In718) alloy (Ni 50 – 55 wt%, 

Cr 17.0 – 21.0 wt%, Nb 4.75 – 5.5 wt%, Mo 2.8 – 3.3 wt%, Ti 0.65 – 1.15 wt% [102]). In718 is a 

nickel super-alloy with excellent high temperature performance and corrosion resistance [185], 

[186]. As a result, it has multiple applications in the aerospace [187] and energy sectors [186] 

but is difficult to machine via traditional processes [188]. Also of importance, prior work by 

Brian Fisher at CMU [34] confirmed that L-PBF In718 melt pools emit a sufficient amount of 

visible-spectrum light for the available high speed camera setup (Section 7.2.2) to collect useful 

data over a relatively wide range of camera settings. 

Process mapping is a technique developed by Beuth et al. [32] that enables the correlation 

of process parameters to process outcomes (e.g. melt pool geometry, porosity, and as-built 

microstructure) by plotting those outcomes across process space. While process mapping [32] 

of L-PBF-processed In718 has already been performed by Dr. Sneha Prabha Narra of CMU [12, 

Ch. 6], several factors preclude the usage of those data for this application. One of the goals of 

the work presented in Chapter 7 is the observation of melt pools during the construction of 

“real” parts, a corollary of which is the observation of melt pools on top of a powder layer. 

Because melt pool morphology can vary significantly depending the presence of powder (vs. no 

powder) [36], [69] the use of the no-added powder experiments performed by Narra [12, Ch. 6] 

in this work would not be appropriate. One particularly relevant example of this powder 

dependence is the onset of the balling phenomenon which can occur over a greater range of 

processing parameters when powder is present [69].  
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Furthermore, the characteristic keyholing and balling morphologies are known to occur 

with varying degrees of periodicity within a single melt track [31], [85], [189]. This variability 

necessitates the analysis of a statistically-significant number of melt pool cross-sections if the 

ex-situ data are to be linked to the in-situ data. Such data are not available from the work of 

Narra [12, Ch. 6] as the melt pool geometry analyses are based on single cross-sections of each 

process parameter combination. Of additional interest, the combination of this database with 

the AlSi10Mg results from Chapter 2 allows for an in-depth discussion of the statistical 

distribution and variability of L-PBF melt pool geometry. While Francis [31, Fig. 4.5] and others 

[73] have characterized the variable behavior of melt pool depth in keyhole-mode melting, the 

existing literature is relatively sparse with regards to the statistical study of general melt pool 

variability in the AM processes. The work presented in this chapter was supported by CMU’s 

Manufacturing Futures Initiative (MFI) (internal grant number 062900.005.105.100020.01). 

6.2 Experimental Design and Methods 

6.2.1 Build Conditions 

The experiment described in this section is referred to as “Experiment 1 (E1)” in Chapter 7 

to maintain a consistent nomenclature. The experiment was performed on an EOS M290 L-PBF 

machine at CMU’s NextManufacturing Center and consisted of 10 single melt tracks at each of 

36 different process parameter combinations (Table 6.1). The melt tracks were exposed on a 6 

in × 6 in × 0.25 in In718 plate sourced from McMaster-Carr (P/N: 1099N8). Each melt track is 
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20 mm long to ensure steady-state92 melt pool conditions in the cross-sectioned regions. The 

layout of the single melt tracks is shown in Figure 6.1 and is such that all of the melt tracks for 

three parameter sets fit within a single sample puck (Section 6.2.2). Unlike the 0LP experiments 

described in Chapter 2, the melt tracks in this chapter were exposed on top of a single layer of 

powder as opposed to a bare substrate and were spaced sufficiently far apart (500 µm) to avoid 

any overlap between adjacent melt pools. Due to the importance of a consistent powder layer 

for these experiments, denudation of the region around the melt track is also an important 

consideration. Work by Matthews et al. [39] finds that the denudation zone extends between 

100 µm and 200 µm from the center of the melt track for processing conditions similar to those 

explored in this chapter. Therefore the denudation zones of adjacent 1LSB melt tracks are not 

expected to have influenced the observed melt pool morphologies although a larger safety 

margin (spacing between adjacent 1LSB melt tracks) may be appropriate for future work. As 

such, they are designated 1LSB samples93. To mitigate the effects of residual heating due to 

adjacent melt tracks [122] the exposure order of the 1LSB melt tracks was adjusted such that a 

minimum of 1.6 seconds elapsed between the lasing of adjacent melt tracks. Because the melt 

tracks are spatially distributed across the build plate, the high speed camera was not able to 

observe the lasing in-situ. The experiments used to collect the in-situ data are described in 

Section 7.2. 

                                                      

92 Work by Fox [30] indicates that the response distance is proportional to the initial and final steady-state melt 
pool sizes. Specifically, it was found a melt pool should reach steady-state conditions within a travel distance of 
approximately three melt pool (final) depths. The deepest measured melt pools were on the order 500 µm, 
suggesting a response distance of approximately 1.5 mm. Alternatively, the largest steady-state melt pool length 
predicted by the Rosenthal model (6.1) is on the order of 900 µm. Both of these measures for response distance 
are substantially shorter than the approximately 10 mm distance from the end of the melt track to the cross-
sectioning point. 
93 One Layer Single Bead (1LSB) experiments, i.e. one layer of powder, single bead exposures. 
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Figure 6.1: The layout of the 1LSB melt tracks; there are 36 different beam power and velocity combinations. Note 
that the exposure order follows the parameter naming convention, that is, the first melt track of PV #1 was 
exposed first, followed by the first melt track of PV #2 through PV #36. After the first 36 melt tracks are exposed, 
the exposure sequence is repeated for the second through tenth melt tracks of each parameter combination. The 
four circles indicate the thru-holes used to mount the In718 plate to a modified steel build plate originally sourced 
from EOS. 

All of the 1LSB melt tracks were exposed with a preheat temperature of 80 °C and a 

nominal94 beam diameter of 100 µm. The 36 processing parameter combinations (Table 6.1) 

were chosen based on prior L-PBF In718 work performed by Narra [12, Ch. 6] as well as an 

analytical heat transfer model of a moving point heat source known as the Rosenthal Equation 

[190]. The Rosenthal model (6.1) by no means fully describes the physics driving melt pool 

                                                      

94 The D86 beam diameter was measured to be approximately 90 µm during the machine maintenance temporally 
closest to the 1LSB experiments. 
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formation95 but when fitted to experimental data96 it is sufficient to inform experiment design 

decisions. Specifically, the Rosenthal results were combined with the work of Narra [12, Ch. 6] 

and the balling threshold presented by Francis [31, Ch. 4] to ensure that the test region of 

process space would include multiple instances of keyholing and balling anomalies. 

Additionally, the Rosenthal results allowed for the estimation of a maximum expected melt 

pool width (350 µm), length (860 µm), and depth (175 µm) thus enabling the determination of a 

conservative97 hatch spacing (500 µm) and melt track length (20 mm) for the 1LSB samples. A 

custom MATLAB script was developed to perform the Rosenthal analysis described above.  

𝑇𝑇 = 𝑇𝑇0 +
𝑄𝑄

2𝜋𝜋𝑘𝑘𝑟𝑟
× e𝑥𝑥𝑥𝑥 �−

𝑣𝑣(𝑟𝑟 + 𝜉𝜉)
2𝛼𝛼

� (6.1) 

Where T is the temperature as a function of the spatial distance r which is defined in (6.3). The term T0 is 
the background temperature98, Q is the absorbed laser beam power, k is the thermal conductivity, v is the 
laser beam travel velocity, and 𝛼𝛼 is the thermal diffusivity defined in (6.2). The term 𝜉𝜉 is discussed in (6.3). 
 

 

𝛼𝛼 =
𝑘𝑘
𝜌𝜌𝑐𝑐𝑝𝑝

 
(6.2) 

Where k is the thermal conductivity, 𝜌𝜌 is the density, and 𝑐𝑐𝑝𝑝 is the heat capacity. 
 

 

𝑟𝑟 = (𝜉𝜉2 + 𝑦𝑦2 + 𝑧𝑧2)1 2�  (6.3) 
Where 𝜉𝜉 is the distance along the beam travel direction with an origin located at the location of the point 
heat source (i.e. the laser beam). The dimensions y and z form a right-hand coordinate system with 𝜉𝜉 and 
can be aligned with the standard coordinate system used throughout this document (Figure 1.6). 

 

                                                      

95 The Rosenthal model assumes steady-state conditions and a point heat source [31]. Additionally, the model 
neglects temperature-dependent material properties, the latent heat of fusion, and all non-conduction heat 
transfer mechanisms including fluid flow within the melt pool itself. 
96 A laser beam absorptivity of 50% and temperature-dependent material properties [228] evaluated at 1427 °C 
were used to roughly fit the Rosenthal results to the measured melt pool dimensions determined by Narra [12, Ch. 
6]. Note that existing work supports the choice of evaluating temperature-dependent material properties near the 
melting temperature of the material [229]. A preheat temperature of 80 °C was used and the melt pool dimensions 
were calculated based on the liquidus isotherm of 1336 °C. 
97 In this context the adjective “conservative” indicates that the single melt tracks are spread apart from each other 
(spatially) to ensure that clear ex-situ cross-sectional measurements can be made and that they are long enough to 
ensure steady state melt pool conditions in the cross-sectioned regions. The spatial separation also reduces the 
chance that a melt track will denude the build surface of powder before the adjacent melt track is exposed. 
98 In this context, the term “background temperature” refers to the temperature of the material surrounding the 
melt pool. While this temperature is often directly related to the temperature of the build chamber, it can also be 
influenced by previous melt tracks [184] and previous layers [224]. 
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Table 6.1: Process parameter combinations used for each 1LSB melt track on the EOS M290 L-PBF machine. 

Sample Number Beam Power (W) Beam Velocity (mm/s) 

(EOS Nominal) 1 285 960 

2 100 200 
3 100 400 
4 100 600 
5 100 800 
6 100 1000 
7 150 200 
8 150 400 
9 150 600 

10 150 800 
11 150 1000 
12 150 1200 
13 200 200 
14 200 400 
15 200 600 
16 200 800 
17 200 1000 
18 200 1200 
19 250 200 
20 250 400 
21 250 600 
22 250 800 
23 250 1000 
24 250 1200 
25 250 1400 
26 300 400 
27 300 600 
28 300 800 
29 300 1000 
30 300 1200 
31 300 1400 
32 370 400 
33 370 800 
34 370 1000 
35 370 1200 
36 370 1400 

To maintain a consistent powder layer thickness for all of the 1LSB melt tracks, the In718 

plate was mounted to a modified steel EOS build plate and surface ground. Because the In718 

plate had to be removed from the modified steel EOS build plate before being placed inside of 

the EOS M290, their relative orientations during surface grinding were recorded. As shown in 

Figure 6.2, layer-wise post-fusion consolidation of the metal powder results in an effective 
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powder layer thickness that is greater than the thickness of the layers within the additively 

manufactured part (i.e. the nominal layer thickness). Therefore, in order to better match the 

nominal 40 µm thick layers used during the in-situ monitoring experiments described in Section 

7.2, a 70 µm ± 20 µm thick powder layer was used for the 1LSB experiment. The uncertainty99 

in powder layer thickness was quantified by measuring the change in the separation distance 

between recoater blade and the build plate over the entire area of the build plate; relative gap 

measurements were performed using a Käfer dial depth gauge. A consolidation factor100 (𝜘𝜘) of 

0.4 (40%) was used in Figure 6.2 based on the density of stainless steel 17-4 PH powder 

deposited by an L-PBF recoater blade relative to the fused density of the material [191] as 

reported by Jacob et al. [92]. Note that the true consolidation percentage is dependent upon 

the particle size distribution of the specific powder system used; however such a measurement 

is beyond the scope of this thesis. Figure 6.3 shows the powder layer covering the In718 plate 

during the 1LSB experiments.  

                                                      

99 Systematic error in the powder layer thickness is assumed to be minimal (less than 10 µm) as a result of the 
procedure used to determine the gap between the recoater blade and the In718 plate: After leveling of the plate 
with the dial profilometer was complete, the gap was systematically decreased in increments of 1 µm until the 
recoater blade was unable to travel across the In718 plate. At this point, the plate was dropped 70 µm relative to 
the recoater blade. 
100 Where the “consolidation factor” is defined as: 𝜘𝜘 = 1 – 𝜌𝜌𝑝𝑝𝑓𝑓𝑝𝑝𝑑𝑑𝑒𝑒𝑖𝑖/𝜌𝜌𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒𝑑𝑑, where 𝜌𝜌 is the density of the material.  
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Figure 6.2: A plot showing the convergence of the 
nominal powder layer thickness to a larger, effective 
powder layer thickness. Note that the layer-wise 
thickness of the deposited material rapidly approaches 
the nominal powder layer thickness. The data points 
presented in this plot were artificially generated in 
MATLAB, i.e. they are extracted from a mathematical 
relationship101 describing the layer-wise post-fusion 
powder consolidation process and not from experimental 
results. 

Figure 6.3: An image taken through the EOS viewing 
window of the powder layer covering the In718 plate 
after the 1LSB melt tracks were exposed. 

6.2.2 Sample Preparation 

 The 1LSB samples were sectioned (perpendicular the laser beam travel beam direction) 

using a Wire EDM (Electrical Discharge Machine). The EDM cutting process produces a relatively 

narrow heat-affected zone [76], reducing the influence of sectioning on measurements of the 

melt pools. The sectioned samples were then hot-mounted, with the cut face visible, in 

Buehler® Konductomet sample pucks. Each puck contains 10 melt tracks from each of three 

process parameter combinations. Both halves of the melt tracks were mounted together, 

                                                      

101 The relationship is defined recursively as: 𝑙𝑙𝑒𝑒,𝑖𝑖+1 = 0 − 𝐻𝐻𝑖𝑖, where 𝑙𝑙𝑒𝑒,𝑖𝑖+1 is the effective layer thickness at the next 
layer and 𝐻𝐻𝑖𝑖  is the negative of the height of the build and is given by: 𝐻𝐻𝑖𝑖 = 𝐻𝐻𝑖𝑖−1 + 𝑙𝑙𝑒𝑒,𝑖𝑖(1 − 𝜘𝜘) − 𝑙𝑙𝑛𝑛, where 𝐻𝐻𝑖𝑖−1 is 
the negative of the height of the build at the time of powder spreading, 𝑙𝑙𝑒𝑒,𝑖𝑖  is the effective thickness of the powder 
layer spread at the current layer, 𝜘𝜘 is the consolidation factor, and 𝑙𝑙𝑛𝑛 is the nominal layer thickness of 40 µm. 
During the first iteration, 𝐻𝐻𝑖𝑖−1 is initialized as -40 µm and 𝑙𝑙𝑒𝑒,𝑖𝑖  is initialized as +40 µm. 

x

y
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therefore 20 cross-sections were available for each process parameter combination. After 

mounting, each sample was ground and polished according to ASTM E3-11, Table 6 [77]; special 

care was taken to use an ApexTM Hercules S Pad102 during the 9 µm diamond solution polishing. 

To improve the visibility of the melt pool boundaries, the samples were electro-etched using 10 

wt% oxalic acid (C2H2O4) for 15 seconds at 6 V as described by Ramkumar et al. [192]. Note that 

additional polishing using 0.06 µm colloidal silica (Buehler® MasterMetTM) for 30 seconds to 45 

seconds was performed immediately prior to electro-etching in order to the remove the 

aggressive oxide layer [193] from the samples. Finally, each polished sample was imaged using 

an Alicona Infinite-Focus optical microscope at an appropriate magnification. The 

magnifications used for each 1LSB sample are listed in Table 6.2. 

6.2.3 1LSB Measurement Techniques 

The 1LSB melt pool widths, depths, and cross-sectional areas (Figure 1.7) were manually 

measured using the Image J software package [78]; Figure 6.4 shows an example micrograph 

from the 1LSB experiments. Unlike the melt pools in Chapter 2, the full dimensions were 

measured directly and residual heating was not a concern (see Section 6.2.1). A total of 20 

cross-sections were measured for each of the 36 samples (Table 6.1). A selection of 1LSB 

micrographs and the tabulated melt pool dimension measurements are provided in Appendix E. 

                                                      

102 Note that Buehler® now recommends a TriDentTM Pad for this step when preparing nickel-based superalloys 
[230]. 
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Figure 6.4: A representative 1LSB micrograph, specifically from Sample #1 (285 W, 960 mm/s). Note the width and 
depth measurement notations; the cross-sectional area is the region enclosed by the dotted white polygon. 

To quantify the uncertainty in the manual measurement of melt pool dimensions, a 

representative melt pool at each magnification was measured 10 times consecutively. The 

results of the measurement error are summarized in Table 6.2. The measurement errors range 

from sample103 standard deviations that are 0.35% to 0.75% of the corresponding mean melt 

pool dimension. The measurement errors are substantially smaller for the In718 melt pools 

than those reported for AliS10Mg (Table 2.2) owing to their better-defined boundaries post-

etching and the ability to measure the full (instead of half) dimensions.  

Table 6.2: Corresponding measurement errors for the 1LSB experiments. 

Magnification Corresponding 
Sample Numbers 

Std. Dev. of Half-
Width Measurements 

(µm, % of mean) 

Std. Dev. of Depth 
Measurements 

(µm, % of mean) 

Std. Dev. of Half-
Area Measurements 

(mm2, % of mean) 

10x 1, 2, 3, 7, 8, 9, 13, 14, 
15, 19, 20, 21 0.91, 0.59 1.2, 0.75 6.9×10-5, 0.45 

20x 

4, 5, 6, 10, 11, 12, 16, 
17, 18, 22, 23, 24, 25, 
26, 27, 28, 29, 30, 31, 

32, 33, 34, 35, 36 

0.55, 0.57 0.64, 0.68 2.3×10-5, 0.35 

                                                      

103 In this context “sample” refers to the statistical term “sample of the population” and not the additively-
produced 1LSB samples. 
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Based on the 1LSB cross-sections, the 36 power and velocity combinations were each 

categorized as producing one or more of five different types of melt pools: desirable, balling, 

severe keyholing, keyholing porosity, or under-melting using both qualitative and quantitative 

measures. Specifically, balling melt pools were defined as those exhibiting the characteristic 

balling morphology [31], [88]. Processing parameters were considered to produce severely 

keyholed melt pools if the average aspect ratio (defined as the depth over the half-width) was 

greater than 2.5. Note that in the literature keyhole-mode melting is strictly defined as 

occurring for any aspect ratio greater than 1.0 as that is the largest aspect ratio achievable 

under purely conduction-mode melting conditions [31], [83]. Because all of the tested process 

parameter combinations produced melt pools with an average aspect ratio greater than 1.0 

(see Figure 6.8 in the following section), the 2.5 threshold was used as a means of 

differentiating cross-sectional melt pool morphologies. If any of the melt pool cross-sections for 

a given power and velocity combination showed examples of keyholing porosity, that process 

parameter combination was categorized as producing keyholing porosity. Process parameter 

combinations producing melt pools with average depths less than the powder layer thickness of 

70 µm were considered to be under-melting. Note that building a bulk part with these 

parameters would not necessarily result in under-melting porosity as seen in Section 2.3.4 

because the melt pool depths may still be greater than the nominal powder layer thickness of 

40 µm. For the purposes of Chapters 6 and 7, “under-melting” is used only to indicate that the 

depth of a melt pool is less than or similar to the depth of the effective powder layer. Finally, 

any melt pools not otherwise categorized were considered to be desirable. 
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6.3 Results 

6.3.1 Melt Pool Geometry 

Application of the process mapping approach to the 1LSB samples allowed for the 

generation of lines of constant melt pool geometries. Specifically, 2D linear interpolation was 

used to generate a dense matrix of melt pool geometry values (e.g. melt pool width) across 

beam power and beam travel velocity process space. This dense matrix was then queried such 

that a set of points in process space was produced at which the relevant melt pool geometry is 

the same. A smooth curve was then fit to this set of points; in this case a linear function is used; 

note that this in contrast to the power function used in Section 2.3.1 (refer to that section for a 

detailed discussion). Table 6.3 shows the R2 fitting metric between the linear functions and the 

data for the melt pool geometry process maps. A custom MATLAB script was used to automate 

the process described above. 

Table 6.3: Goodness-of-fit metrics for the In718 melt pool geometry process maps. 

Measurement R2 Value for Linear Fit104 
Width 0.92 
Depth 0.97 

Area 0.99 
Aspect Ratio N/A 

Figures 6.5 – 6.7 present process maps, respectively, for cross-sectional melt pool width, 

depth, and area. As expected, the process maps show that higher beam powers and lower 

beam velocities produce larger melt pools while lower beam powers and higher beam velocities 

104 The reported R2 values are calculated based the agreement between the model (e.g. linear fit) and the data 
from each sample (Table 6.1) with a measurement (e.g. melt pool width) within the range presented in the 
corresponding process map. For example, the reported R2 values for the melt pool width are based on data from 
the samples with a measured melt pool width between 100 µm and 200 µm (see the legend of Figure 6.5).  
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result in smaller melt pools. While the melt pool aspect ratios do follow a trend across process 

space that is similar to the trend observed in Section 2.3.1, the trend is not well-described by 

simple functional relationships (e.g. linear or exponential fits). Therefore, Figure 6.8 presents 

the aspect ratio measurements as a 2D linearly-interpolated heat map. The aspect ratio is 

defined as the depth divided by the half-width, e.g. an aspect ratio of 1.0 indicates a perfectly 

semicircular melt pool, an aspect ratio less than 1.0 indicates a shallow melt pool, and an aspect 

ratio greater than 1.0 indicates a deep and narrow melt pool.  

  
Figure 6.5: Process map of the cross-sectional melt 
pool width, developed from the 1LSB experiment data. 
The error bars represent a 95% confidence interval 
about the mean. For the reader viewing the figure in 
grayscale, the left-right order of the lines of constant 
geometry matches the left-right order shown in the 
legend. 

Figure 6.6: Process map of the cross-sectional melt pool 
depth, developed from the 1LSB experiment data. The 
error bars represent a 95% confidence interval about the 
mean. For the reader viewing the figure in grayscale, the 
left-right order of the lines of constant geometry 
matches the left-right order shown in the legend. 
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Figure 6.7: Process map of the cross-sectional melt 
pool area, developed from the 1LSB experiment data. 
The error bars represent a 95% confidence interval 
about the mean. For the reader viewing the figure in 
grayscale, the left-right order of the lines of constant 
geometry matches the left-right order shown in the 
legend. 

Figure 6.8: Interpolated heat map of the cross-sectional 
melt pool aspect ratio, derived from the 1LSB 
experiment data. Note that cross-sectional melt pool 
aspect ratio may not behave linearly across process 
space; the use of a heat map to display these data is 
primarily for visualization purposes. 

6.3.2 Distribution of Melt Pool Geometries 

As a first step toward understanding the variability of melt pool geometry across process 

space, the measured size distributions (melt pool cross-sectional width, depth, and area) are 

shown as cumulative probability plots in Figures 6.9, 6.12, and 6.15. Normalization of the 

distribution curves was implemented by converting each individual measurement to its percent 

difference from the mean value for that power-velocity combination. Normal probability 
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plots105 are shown in Figures 6.10, 6.11, 6.13, 6.14, 6.16, and 6.17 for each geometry measure 

(cross-sectional melt pool width, depth, and area) for both the EOS nominal process parameter 

combination and the process parameter combination which deviated the most from a normal 

distribution. It is evident from both the cumulative probability and normal probability plots that 

the melt pools which deviate most significantly from the normal distribution form a lower tail. 

That is, while most of the melt pools follow a normal distribution, in some 1LSB samples several 

melt pools of a significantly smaller size are present. The implications of this observation are 

discussed further, and compared to the behavior of the AlSi10Mg alloy, in Section 6.3.6. 

To provide context for the use of confidence intervals based on Student’s t-distribution 

[82, p. 419] in the previous section, the melt pool geometry data were quantitatively compared 

to their equivalent normal distribution. This comparison is shown graphically as the normal 

probability plots mentioned previously. The 1LSB samples did not provide a sufficient number 

of measurements to perform a proper Chi-square (𝜒𝜒2) test106 [82, Ch. 10]; as a result, Table 6.4 

and the legends of Figures 6.9, 6.12, and 6.15 instead present R2 fit values between each 1LSB 

data set and its equivalent normal distribution, both of which have been linearized. The 

majority of the cross-sectional geometry measurements follow normal distributions with the 

outliers following the trend discussed above. 

                                                      

105 In a normal probability plot the data are sorted as they would be in a cumulative distribution function and then 
they are plotted on a non-linear vertical axis representing the normal order statistic medians. If the data are 
samples which “come from a population with a normal distribution” [227] then they will fall along a straight line 
[227]. Note that in this context “sample” refers to the statistical term “sample of the population” and not the 
additively-produced 1LSB samples. Note also that in the implementation [227] used to generate the normal 
probability plots in this manuscript, the equivalent normal distribution is calculated using only data from the 
second and third data quartiles. 
106 The standard rule of thumb is that 5 – 8 bins containing a minimum of 5 measurements (i.e. 25 – 40 
measurements) are required to perform a valid Chi-square test [82, p. 307]. 
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Figure 6.9: Normalized cumulative probability plots of cross-sectional melt pool widths for all 36 1LSB samples. The 
five process parameter combinations that produced melt pools with variabilities deviating the most significantly 
from a normal distribution (see the discussion of R2 values in this section) are indicated in the legend and with 
heavier line weights.  

  
Figure 6.10: Normal probability plot of the measured 
widths for the EOS nominal process parameter 
combination (Sample #1). Experimental points far away 
from the line indicate a deviation from a normal 
distribution.  

Figure 6.11: Normal probability plot of the measured 
widths for the process parameter combination showing 
the greatest deviation from a normal distribution 
(Sample #4). 
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Figure 6.12: Normalized cumulative probability plots of cross-sectional melt pool depths for all 36 1LSB samples. 
The five process parameter combinations that produced melt pools with variabilities deviating the most 
significantly from a normal distribution (see the discussion of R2 values in this section) are indicated in the legend 
and with heavier line weights. 

  
Figure 6.13: Normal probability plot of the measured 
depths for the EOS nominal process parameter 
combination (Sample #1). Experimental points far away 
from the line indicate a deviation from a normal 
distribution. 

Figure 6.14: Normal probability plot of the measured 
depths for the process parameter combination showing 
the greatest deviation from a normal distribution 
(Sample #28). 
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Figure 6.15: Normalized cumulative probability plots of cross-sectional melt pool areas for all 36 1LSB samples. The 
five process parameter combinations that produced melt pools with variabilities deviating the most significantly 
from a normal distribution (see the discussion of R2 values in this section) are indicated in the legend and with 
heavier line weights. 

  
Figure 6.16: Normal probability plot of the measured 
areas for the EOS nominal process parameter 
combination (Sample #1). Experimental points far away 
from the line indicate a deviation from a normal 
distribution. 

Figure 6.17: Normal probability plot of the measured 
areas for the process parameter combination showing 
the greatest deviation from a normal distribution 
(Sample #26). 
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Table 6.4: Goodness-of-fit between the measured melt pool distributions and their equivalent normal 
distributions. R2 values less than 0.80 are highlighted. 

Sample 
Number R2 (width) R2 (depth) R2 (area) 

1 0.85 0.92 0.96 
2 0.80 0.96 0.94 
3 0.95 0.95 0.97 
4 0.25 0.93 0.98 
5 0.81 0.70 0.65 
6 0.98 0.98 0.92 
7 0.88 0.84 0.90 
8 0.98 0.96 0.97 
9 0.92 0.91 0.99 

10 0.95 0.96 0.91 
11 0.88 0.85 0.92 
12 0.72 0.88 0.93 
13 0.49 0.91 0.97 
14 0.55 0.75 0.96 
15 0.97 -0.41 0.12 
16 0.73 0.94 0.67 
17 0.77 0.57 0.90 
18 0.89 0.90 0.90 
19 0.92 0.62 0.86 
20 0.95 0.86 0.93 
21 0.88 0.88 0.96 
22 0.95 0.97 0.97 
23 0.95 0.94 0.94 
24 0.83 0.90 0.87 
25 0.94 0.86 0.88 
26 0.97 0.03 -13 
27 0.93 0.88 0.87 
28 0.75 -0.55 -0.65 
29 0.94 0.91 0.94 
30 0.97 0.78 0.98 
31 0.29 0.98 0.96 
32 0.86 0.84 0.90 
33 0.89 0.64 -0.36 
34 0.97 0.95 0.94 
35 0.84 0.81 -0.86 

 36 0.90 0.87 0.97 
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6.3.3 Variability of Melt Pool Geometry across Process Space 

The magnitude of the variability of melt pool geometry across process space was also 

investigated. Figures 6.18 – 6.20 show the standard deviation (as a percentage of the mean 

melt pool dimension) for, respectively, the 1LSB cross-sectional melt pool width, depth, and 

area. The measured variabilities in melt pool width, depth, and area respectively range from 

approximately 2.9% – 14%, 4.5% – 37%, and 3.8% – 26% of the mean melt pool dimension. In all 

cases, the melt pool dimension variations are at least one order of magnitude larger than the 

measurement errors reported in Table 6.2.  

The variability, particularly of melt pool depth, is notably higher for the melt pools 

produced using high beam powers and low beam velocities (the severe keyholing regime of 

process space), a phenomenon which has been reported previously in the literature for multiple 

material systems and processes [31], [84]. To a lesser degree, a higher amount of variability, 

particularly of melt pool area, is also observed for the melt pools produced using the highest 

beam velocities; this region lies within the balling regime of process space. Section 6.1 provides 

background on both the keyholing and balling regimes of process space. The aforementioned 

trends in melt pool variability across process space may be more easily visualized using 2D 

linearly-interpolated heat maps, such as those provided in Figures 6.21 – 6.23.  
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Figure 6.18: The variability (standard deviation) in the melt pool widths as a percentage of the mean width. 
Samples are grouped by beam velocity, with each beam power denoted by a different bar hue as shown in the 
legend. The error bars represent a 95% confidence interval about the sample107 (percent) standard deviation. 

 
Figure 6.19: The variability (standard deviation) in the melt pool depths as a percentage of the mean depth. 
Samples are grouped by beam velocity, with each beam power denoted by a different bar color as shown in the 
legend. The error bars represent a 95% confidence interval about the sample107 (percent) standard deviation. 

                                                      

107 In this context “sample” refers to the statistical term “sample of the population” and not the additively-
produced 1LSB samples. 
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Figure 6.20: The variability (standard deviation) in the melt pool areas as a percentage of the mean area. Samples 
are grouped by beam velocity, with each beam power denoted by a different bar color as shown in the legend. The 
error bars represent a 95% confidence interval about the sample107 (percent) standard deviation. 
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Figure 6.21: Interpolated heat map of the variability 
(standard deviation) in the melt pool widths as a 
percentage of the mean width. 

Figure 6.22: Interpolated heat map of the variability 
(standard deviation) in the melt pool depths as a 
percentage of the mean depth. 

  

 

 

Figure 6.23: Interpolated heat map of the variability 
(standard deviation) in the melt pool areas as a 
percentage of the mean area. 
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6.3.4 A Cursory Analysis of the Effects of a Powder Layer on Melt Pool Geometry 

As mentioned in Section 6.1, the single bead experiments presented in this chapter were 

exposed on top of a layer of powder to ensure that the ex-situ data were collected under 

conditions as close as possible to the in-situ monitoring experiments (Section 7.2) that are the 

focus of this topic. To demonstrate the importance of considering powder effects under certain 

conditions (e.g. powder layer thickness, material systems, and processing parameters) the melt 

pool geometry process maps presented in Section 6.3.1 are compared to the In718 0LSB (single 

beads without powder) process maps reported by Narra [194, Ch. 6] in Figures 6.24 – 6.26. 

Note that the 0LSB experiments were performed on the same EOS M290 L-PBF machine as the 

1LSB experiments presented in this chapter.  

 
Figure 6.24: A comparison between the 0LSB (no powder) melt pool widths reported by Narra [12, p. 136] (dashed 
lines) and the 1LSB (with powder) melt pool widths reported in Figure 6.5 (solid lines). For the reader viewing the 
figure in grayscale, the lines of constant geometry appear in the same left-right order as the top-bottom order 
shown in the legend. 
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Figure 6.25: A comparison between the 0LSB (no powder) melt pool depths reported by Narra [12, p. 137] (dashed 
lines) and the 1LSB (with powder) melt pool depths reported in Figure 6.6 (solid lines). For the reader viewing the 
figure in grayscale, the lines of constant geometry appear in the same left-right order as the top-bottom order 
shown in the legend. 

 
Figure 6.26: A comparison between the 0LSB (no powder) melt pool areas reported by Narra [12, p. 137] (dashed 
lines) and the 1LSB (with powder) melt pool areas reported in Figure 6.7 (solid lines). For the reader viewing the 
figure in grayscale, the lines of constant geometry appear in the same left-right order as the top-bottom order 
shown in the legend. 
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While there is reasonably good agreement between the powder versus no-powder lines of 

constant cross-sectional width, there is significant disagreement between the lines of constant 

cross-sectional depth and, as a corollary, the lines of constant cross-sectional area. The 

comparison indicates that in the presence of a powder layer, the melt pools require less beam 

power to maintain the same size as the melt pools observed in the no powder case. 

Equivalently, the same beam power and velocity combination produces a larger melt pool in 

the powder case than in the no-powder case. This result is not unexpected as the dramatically 

lower thermal conductivity of the powder (relative to the fused material) [100] slows the 

transfer of heat from the melt pool to its surroundings as mentioned by Montgomery [36]. 

It is also evident from Table 6.5 that the disagreement is most pronounced for the smaller 

melt pools with depths less than or similar to the depth of the powder layer, a trend also 

apparent in simulations reported by Montgomery [36]. Note that more experiments, 

specifically designed to study this research topic, would be required to robustly quantify the 

trend. It should be noted that experimental results by Montgomery et al. [195] and 

Montgomery [36, Ch. 4] indicate that powder layer thicknesses between 20 µm108 and 70 µm 

do not measurably influence the melt pool cross-sectional area for the Inconel 625 material 

system in L-PBF. The reason for this discrepancy in powder layer influence on cross-sectional 

area is unknown at this time. A direct comparison between measured depths (which saw the 

largest powder layer dependence) is not possible as melt pool depth values for the no powder 

case were not reported by Montgomery [36]. Finally, data presented in Section 2.3.4 suggest 

                                                      

108 Note that building a part with an effective layer thickness of 20 µm would require a nominal layer thickness of 
approximately 10 µm (see the discussion of Figure 6.2) which is not currently standard for any material systems on 
the EOS M290 L-PBF machine [231] as it would further restrict the usable Powder Systems (see Section 3.2.1).  
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that the presence of a powder layer may increase melt pool dimensions for the AlSi10Mg 

material system as well. 

Table 6.5: A quantification of the effect of a 70 µm thick powder layer on melt pool depth for In718. 

Melt Pool Depth (µm) Melt Pool Depth (percentage of 
effective layer thickness) 

Approximate Effective Power 
Difference109 

50 70% 50% 
100 140% 60% 
200 290% 70% 
300 430% 90% 

6.3.5 Melt Pool Morphology Classifications 

Figure 6.27 includes examples of all of the melt pool morphology types mentioned in 

Section 6.2.3. Figure 6.27a shows an example of a desirable melt pool cross-sectional 

morphology. Figure 6.27b shows an example of a balling melt pool. Figure 6.27c shows an 

example of a shallow melt pool that may result in under-melting. Figure 6.27d shows an 

example of a severely keyholed melt pool. Figure 6.27e shows an example of a melt pool 

containing keyholing porosity.  

                                                      

109 In this context, the effective power difference is defined as the ratio of the beam power required to maintain a 
melt pool of a given depth in the powder case versus the beam power required to maintain a melt pool of the 
same depth in the no powder case. It is given by: 𝑃𝑃𝑒𝑒𝑓𝑓𝑓𝑓𝑒𝑒𝑐𝑐𝑡𝑡𝑖𝑖𝑓𝑓𝑒𝑒 = 100% × (𝑃𝑃𝑝𝑝𝑓𝑓𝑝𝑝𝑑𝑑𝑒𝑒𝑖𝑖/𝑃𝑃𝑛𝑛𝑓𝑓 𝑝𝑝𝑓𝑓𝑝𝑝𝑑𝑑𝑒𝑒𝑖𝑖). 
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Figure 6.27: Representative examples of cross-sectional melt pool morphologies.  
(a): A desirable melt pool from Sample #1 (285 W, 960 mm/s.  
(b): A balling melt pool from Sample #35 (370 W, 1200 mm/s). 
(c): A under-melting melt pool from Sample #6 (100 W, 1000 mm/s). 
(d): A severe keyholing melt pool from Sample #20 (250 W, 400 mm/s). 
(e): A melt pool containing keyhole porosity from Sample #7 (150 W, 200 mm/s). 

Figure 6.28 shows the distribution of the ex-situ melt pool morphology classifications 

across process space and will be referred to extensively in Chapter 7. It is worth noting that 

even the most extreme keyholing porosity and balling process parameter combinations do not 

always produce melt pool cross-sections that exhibit those defects. Indeed, for the parameter 

combinations characterized as balling, only between 5% and 85% of the cross-sections 

exhibited a balling morphology and for the parameter combinations characterized as producing 

keyholing porosity, only between 5% and 55% of the cross-sections included keyholing porosity. 

This is not surprising as both of these flaw formation mechanisms are known in the literature to 

be periodic in nature (Section 6.1). For this reason it should be expected that these process 

parameters will produce melt pools of multiple in-situ morphologies imaged by the process 

200 µm

(a) (b)

(e)

(c)

(d)



218 

monitoring setup presented in Chapter 7. It is also worth noting that despite all of the tested 

process parameter combinations producing melt pools with aspect ratios great than 1.0 

(indicating keyhole-mode melting [83]), keyholing porosity was only observed in melt pools 

produced by four of the thirty-six process parameter combinations. As discussed in Section 

2.3.4, this suggests the existence of a stable keyholing regime, where even high aspect ratio 

melt pools are unlikely to generate keyholing porosity. 

 
Figure 6.28: Process space annotated with the ex-situ melt pool morphologies as determined by analysis of the 
1LSB cross-sections. The annotations indicate the percentage of melt pool cross-sections which had either 
keyholing porosity or exhibited the balling morphology. For reference, the EOS nominal parameter combination is 
indicated and two lines of constant melt pool geometry are overlaid. The line of constant melt pool depth is based 
on experimental measurements and was calculated as described in the discussion of 6.3.1. The line of constant 
melt pool length to width ratio is based on the Rosenthal model110. 

                                                      

110 Specifically, the Rosenthal model (6.1) (using the material properties specified in Section 6.2.1) was used to 
calculate melt pool lengths and widths across beam power and velocity process space. Then lines of constant 
length over width ratio were calculated as described in Section 6.3.1, except that instead of a linear curve fit, an 
exponential function of the following form was used: 𝑃𝑃 = 𝑅𝑅𝑅𝑅𝑏𝑏𝑓𝑓, where P is the beam power, v is the beam travel 
velocity, and a and b are the fitting parameters. A curve was then qualitatively selected such that the length to 
width ratio dependence of the balling phenomenon is apparent to the reader. Notably, the chosen ratio of 0.24 
agrees well with the balling threshold ratio of 0.26 suggested by Yadroitsev et al. [88] and the threshold range of 
0.26 – 0.32 determined experimentally (for multiple material systems and AM processes) by Francis [31]. 
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6.3.6 A Comparison of In718 and AlSi10Mg Melt Pool Behaviors 

Comparisons between the behavior of the L-PBF-processed In718 discussed in this chapter 

and the L-PBF-processed AlSi10Mg discussed in Chapter 2 revealed several noteworthy 

differences and similarities. The noted differences include: 

1. While curves of constant cross-sectional aspect ratio were found for the AlSi10Mg alloy, 

equivalent curves could not be identified for the In718 alloy. Specifically, neither linear 

nor power curves provided fits with reasonably high R2 values. Further investigation of 

other L-PBF-processed alloys would be required to determine whether or not such 

curves can be identified for the majority or only the minority of material systems. 

Speculatively, the more complex aspect ratio trends observed for In718 may be caused 

by the fact that all of the tested parameter combinations lie within the keyholing regime 

of process space (this is not the case for the AlSi10Mg work), where the dynamics of the 

vapor pocket may have a strong influence on the cross-sectional aspect ratio.  

2. The melt pool dimension distribution analyses indicate that occasional deviations from a 

normal distribution occurred for both alloys, however, in the AlSi10Mg material system 

the outlier melt pools were larger than average while the outliers were smaller than 

average in the In718 material system. The precise driver(s) for these outlier melt pools is 

unknown and warrants further study, however the literature suggests two possibilities: 

(1) Because AlSi10Mg has a relatively low absorptivity (Section 2.1), any transitory 

changes to the morphology of the keyhole vapor cavity could significantly increase the 

amount of absorbed beam power which would in turn further increase the amount of 

absorbed beam power [83], [84]. (2) A plausible driver for the smaller In718 outlier melt 
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pools is the highly dynamic interaction between the vapor plume and the incident laser 

beam; recent work has suggested that vapor plumes can significantly reduce the 

amount of beam power absorbed by the substrate [106]. 

The noted similarities include: 

1. The magnitude of the observed variabilities in cross-sectional melt pool width and 

depth (defined as the standard deviation as a percentage of the mean value) were 

highly similar between the material systems. It should be noted that the 

measurement error was significantly higher for the AlSi10Mg melt pool dimensions 

than for the In718 melt pool dimensions (see Sections 2.2.3 and 6.2.3) and this 

difference may have contributed to the higher measured variability in cross-

sectional area for the AlSi10Mg material system compared to the In718 material 

system.  

2. Data for both the In718 material system (Section 6.3.4) and the AlSi10Mg material 

system (Section 2.3.4) suggest that melt pool geometry is substantially altered in the 

presence of a powder layer. Specifically, the reported data indicate that for a given 

process parameter combination the melt pool size is larger when exposure occurs on 

top of a powder layer as opposed to a bare substrate. Critically, this difference can 

have major consequences for predicted melt pool cross-sectional aspect ratios and 

lack-of-fusion porosity. 

3. As discussed in Section 2.3.4, stable keyholing regimes (where keyholing porosity is 

not present despite high cross-sectional aspect ratios) appear to be present for both 

material systems. Although MLP experiments, similar to those presented in Chapter 
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2, for the In718 material system would be required to confirm and better quantify 

this observation. 

6.4 Discussion and Summary 

The primary purpose of this chapter is the ex-situ characterization of L-PBF-processed 

Inconel 718 melt pool morphologies in the presence of a powder layer. These characterizations 

are used throughout Chapter 7 to enable the interpretation of in-situ melt pool morphologies 

imaged by a high speed visible-light camera. The data collected for this task also enabled 

several tangential analyses of interest, the results of which are also summarized here. 

In this chapter, correlations between process parameters (beam power and beam travel 

velocity) and cross-sectional melt pool geometry (width, depth, and area) are presented in the 

form of process maps for the L-PBF-processed In718 alloy. The correlation between process 

parameters and aspect ratio is presented as a 2D interpolated heat map because curves of 

constant aspect ratio were not identifiable. While correlations between process parameters 

and cross-sectional melt pool geometry have previously been reported for this material system 

by Narra [12, Ch. 6], those cross-sectional results were based on single measurements of each 

process parameter combination and the experiments were performed without a powder layer. 

Because the process maps presented in this chapter are based on data from multiple melt 

pool cross-sections at each process parameter combination, the presented process maps have 

an increased, and quantifiable, level of confidence. Additionally, the relatively large number of 

cross-sectional measurements allowed for an investigation of the statistical distribution of melt 

pool dimensions for each process parameter combination. Analysis of the distributions revealed 
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that cross-sectional melt pool widths, depths, and areas primarily follow a normal distribution 

with the exception of a handful of outliers (at certain process parameter combinations) which 

clearly diverge from a normal distribution. Interestingly, the divergent melt pools almost 

exclusively formed a lower tail, that is, the divergent melt pools were significantly smaller than 

the majority of the melt pools produced by that process parameter combination. The large 

sample size also allowed for the quantification of the variability of the melt pool dimensions 

across process space – critical information for designers as they work at the edges of viable L-

PBF processing space. As has been reported for multiple material systems in the literature [31], 

[84], melt pool depth variability was highest for process parameters within the severe keyholing 

regime. 

The presented process maps for cross-sectional width, depth, and area were compared to 

their equivalent no-powder process maps reported by Narra [12, Ch. 6]. While there is 

reasonably good agreement between the powder versus no-powder lines of constant cross-

sectional width, there is significant disagreement between the lines of constant cross-sectional 

melt pool depth and area. The comparison indicates that the same beam power and velocity 

combination produces a larger melt pool in the powder case than in the no-powder case. While 

this trend has been reported by Montgomery [36], the magnitude of the observed 

disagreement was substantially higher than reported by Montgomery for L-PBF-processed 

Inconel 625. The reason for this discrepancy in powder layer influence on cross-sectional area is 

unknown. It was also observed that the influence of the powder layer increases as the melt 

pool depth decreases and approaches the thickness of the effective powder layer.  
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Each process parameter combination was classified based on the size and morphology of 

its melt pool cross-sections. The melt pool categories are not mutually exclusive and were 

comprised of: desirable, balling, under-melting, severe keyholing, and keyholing porosity melt 

pools. As anticipated, even the most extreme keyholing porosity and balling process parameter 

combinations did not always produce melt pool cross-sections exhibiting those defects. These 

ex-situ classifications and defect frequencies are summarized in Figure 6.28 which is referred to 

extensively in Chapter 7. Finally, the behavior of L-PBF-processed In718 is briefly compared to 

the behavior of L-PBF-processed AlSi10Mg (Chapter 2) and several noteworthy differences and 

similarities are identified. One such similarity was the occasional drastic departure of melt pool 

dimensions from a normal distribution – such unpredictable occurrences further motivate the 

need for the creation of robust in-situ process monitoring methodologies in order to ensure 

part quality for critical applications.  
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7 Topic 4: Linking In-Situ and Ex-Situ Melt Pool Morphologies using 
Machine Learning Techniques in an L-PBF Process 

7.1 Background and Literature Review 

The applications best suited for Additive Manufacturing require a degree of part quality 

assurance and process reliability that are difficult to achieve with the systems currently on the 

market [2]. It is commonly recognized that implementation of in-situ process monitoring and 

closed-loop control is necessary to meet the stringent requirements of these applications [2]. 

In-situ process monitoring of builds has become a major research topic for the AM community 

over the last several years. Monitoring efforts for the PBF and DED AM processes have variously 

focused on detecting macro-scale flaws (e.g. part delamination and residual stress-induced 

warping) [109], [110], detecting micro-scale flaws (e.g. porosity), measuring temperature fields 

and histories [109], [110], measuring shielding gas quality [111], and understanding melt pool 

dynamics [109], [110]. An impressive range of sensor modalities have been explored including 

those enumerated in the remainder of this paragraph. High speed pyrometers and high speed 

thermal imaging to measure melt pool temperatures [112]–[114]. Low speed pyrometers and 

low speed thermal imaging to measure powder bed temperatures [34], [115]–[117]. Embedded 

thermocouples to measure build substrate temperatures [118]. Low speed visible-light imaging 

of anomalies on the powder bed [134]–[140], in some cases in conjunction with flash-bulb 

illumination [141], [142], or structured light (i.e. fringe projection) [143] (see Chapter 4 for a 

more detailed treatment). High speed X-Ray imaging [85], [125] and interferometric coherence 

imaging [126] to monitor melt pool sizes and shapes. Strain gages to directly measure part 
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distortion [118], [127]. And perhaps most recently, active [128], [129], passive [130], [131], and 

spatially resolved acoustic [132], [133] sensing to detect a variety of flaw signatures. 

While the powder bed monitoring method presented in Chapter 4 serves an important 

role, it is fundamentally incapable111 of detecting many of the smaller (on the order of 50 µm in 

size) defects that are of great concern to the AM community. Defects such as porosity formed 

by the keyholing mechanism [74] and the surface tension-related balling phenomenon [87], 

[88] are on the same size scale as the melt pool and occur along the melt tracks themselves. 

Both of these defect types are discussed in detail in Section 6.1 and throughout Chapters 2, 3, 

and 6. For these reasons, the author considers in-situ monitoring of the melt pool itself to be 

critical for ensuring part quality. 

This view is also shared by many in the AM community, and a substantial body of work now 

exists relating to the observation of melt pools in L-PBF and DED AM processes using high speed 

visible-light and thermal imaging. Much of the existing work has focused on monitoring the 

dimensions of the melt pool. For example, Tan et al. [196] measured melt pool dimensions in a 

welding process using a coaxially aligned high speed camera and Heigel et al. [123] measured 

melt pool length in L-PBF using a high speed thermal camera. Impressively, Clijsters et al. [81] 

developed a real-time system capable of measuring the in-situ melt pool dimensions for an L-

PBF process and similar systems are now in use by several L-PBF machine manufacturers [145], 

                                                      

111 For a visible-light camera, the physical sensor pixel can be no smaller than the wavelength of visible light (0.4 
µm to 0.7 µm [205]). As a result, assuming an ideal camera with 1 µm square pixels, achieving a 10 µm spatial 
resolution across the 250 mm × 250 mm EOS build plate would require a 625 MP sensor, at least 25 mm × 25 mm 
in size. Furthermore, if reliable detection of a flaw requires approximately 10 pixels × 10 pixels of data (a 
reasonable assumption based on the patch sizes used in this chapter) then the sensor size increases to that of the 
build plate itself. 
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[146]. Fisher et al. [197] worked to correlate temperature information (collected using a visible-

light camera) with melt pool dimensions in an L-PBF process.  

Qualitative and quantitative observation of L-PBF melt pool dynamics has been performed 

by Gunenthiram et al. [198], Criales et al. [199], and Bertoli et al. [200] although none of these 

groups sought to directly detect defect formation. Alternate but related sensor modalities have 

also been used to investigate the melt pool. For example, spectrographic imaging of the vapor 

plume has been utilized to detect processing defects in the LENS process by Nassar et al. [119]. 

While Islam et al. [113] attempted to use a combination of a high speed pyrometer and a high 

speed camera to detect balling via observation of the temperature profile of the melt pool and 

the surrounding area.  

Of most relevance, some work has also applied traditional statistical analysis methods and 

rudimentary Machine Learning and Computer Vision techniques to the task of defect detection. 

Luo et al. [201] leveraged a Neural Network to identify the correlation between process 

parameters and keyhole formation in laser beam welding using data collected from a high 

speed camera. Grasso et al. (2016) [124] detected off-nominal melting via statistical 

comparisons between the pixel-wise trans-layer emitted light intensity profiles. Repossini et al. 

[121] and Grasso et al. (2018) [122] correlated traditional statistical descriptors of spatter (e.g. 

number and size of spatter particles) and the vapor plume (e.g. emission intensity) with 

processing parameters (three different energy densities), laser beam scan direction, and 

catastrophic flaw formation in L-PBF processes. Finally, Khanzadeh et al. [202], [203] presented 

a method for detecting porosity in the LENS DED process by autonomously clustering different 
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melt pool morphologies, where the morphologies are defined by a radial function that traces 

the melt pool boundary as detected by a thermal camera.  

The melt pool monitoring approaches reported in the literature have a number of critical 

limitations: First and foremost, few focus on in-situ flaw detection and many of those that do 

operate on DED AM processes. In DED, the beam travel velocities are approximately one order 

of magnitude slower than those used in L-PBF and the melt pool dimensions are approximately 

one order of magnitude larger than those found in L-PBF (see Section 1.1) – overall DED is a 

much more conducive environment for in-situ melt pool monitoring than L-PBF. While 

Khanzadeh et al. [202], [203] utilized unsupervised ML to differentiate between LENS melt pool 

morphologies, the chosen descriptor of melt pool shape was neither scale invariant nor capable 

of incorporating information about the spatter or vapor plume. While statistical learning was 

used by Repossini et al. [121] and Grasso et al. (2018) [122] to characterize spatter and the 

vapor plume, the work ignored the morphology of the melt pool itself and relied on 

segmentation rather than more advanced CV feature extraction techniques. Additionally, the 

work of Grasso et al. (2016) [124] requires either comparisons between data collected at 

different layers or a “clean” signal from a successful build of the same geometry – limiting its 

applicability to many situations. Finally, none of the work in the literature leverages knowledge 

of process space to enable the use of supervised ML techniques for melt pool classification and 

none seek to differentiate between flaw types (i.e. prior work focuses only on detecting “off-

nominal” melt pools as opposed to specific defect generation mechanisms). 

In this chapter, a high speed, off-axis, visible-light camera with a fixed Field of View is used 

to image Inconel 718 (In718) melt pools in a commercially-available L-PBF process. In this work, 
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in-situ melt pool morphology is studied and classified using CV and ML techniques in order to 

identify in-situ flaw formation signatures. It is worth noting that the high speed camera system 

used in this work detects the thermal emissions from both the melt pool as well as any hot 

material in the surrounding region (see Section 7.2.2). Therefore the in-situ data are not well 

predicted by existing simulations – motivating the usage of CV and ML techniques to describe 

these data. Because the melt pool size often does not correlate to ex-situ flaws, a scale-agnostic 

description of melt pool morphology is created by applying the Bag-of-Words (or Keypoints) 

[44] ML technique to features extracted using SIFT [204]. The presented description of melt 

pool morphology explicitly incorporates information regarding the shape of the melt pool itself, 

the vapor plume, and spatter in order to improve differentiation between in-situ morphologies. 

Acquiring ground-truth information about in-situ melt pool morphology in a commercially-

available L-PBF system is extremely non-trivial. Therefore, the ex-situ melt pool morphology 

data collected in Chapter 6, combined with fundamental knowledge of process space [29], are 

used to bridge the gap between unsupervised and supervised Machine Learning. This novel, 

human-in-the-loop, ML approach enables not only the identification of similar and dissimilar 

melt pool morphologies, but also the preliminary classification of melt pools based on observed 

in-situ flaw signatures. Specifically, the presented ML methodology is capable of classifying melt 

pool morphologies into four categories: desirable, balling, under-melting, and keyholing 

porosity which are defined in Chapter 6 as well as an additional category referred to as spatter 

which is defined in Section 7.3.6. 

Furthermore, while the work presented in Chapters 2 and 6 demonstrates that process 

parameters can be chosen to reduce the likelihood of melt pool-scale defects, the approach is 
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not easily extensible to non-bulk geometries. In other words, even if process parameters are 

chosen to reside within a desirable processing window based on bulk data (e.g. Figures 2.35 and 

6.28), defects may still occur during the printing of certain geometries such as narrowing stripes 

(Figure 7.1a), thin wall structures [183], unsupported overhangs [182] (Figure 7.1b), and 

contours (Figure 7.1c). As a result, the only way to assure machine users that melt pool-scale 

flaws are not occurring is through the implementation of in-situ process monitoring or 

prohibitively-expensive ex-situ testing [52]. To address this issue, the high speed camera is used 

to collect data during the printing of test artifacts containing the four non-bulk geometries 

listed above. The imaged melt pools are then analyzed using the trained ML methodology and 

flaw formation triggered by local build geometry is observed for some test artifacts. 
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Figure 7.1: Simplified representations of three different non-bulk geometries. (a) A stripe decreasing in width as it 
intersects the edge of a part at an angle. As the width decreases, residual heating from adjacent melt tracks [184] 
is expected to influence the morphology of the melt pool. (b) An unsupported overhang. As the melt pool passes 
over the bed of un-fused powder, the differing thermal conditions [36], [100] are expected to influence the 
morphology of the melt pool. (c) A contour pass conforming to the exterior geometry of a part. The differing 
thermal conditions near the edge of the part [100] are expected to affect the morphology of the melt pool.  

Finally, the high data burden associated with the real-time monitoring of the melt pool 

throughout an entire build is not ignored112, and possible, albeit not immediate, real-time 

solutions are briefly discussed. The work presented in the chapter was supported by CMU’s 

Manufacturing Futures Initiative (internal grant number 062900.005.105.100020.01) and the 

purchase of the high speed camera and associated optics was supported by a Carnegie Institute 

of Technology Dean’s Equipment Grant, FY 2016. 

                                                      

112 At 6,400 fps and a resolution of 1024 pixels × 1024 pixels a high speed camera would produce approximately 13 
Gb of data per second. As a result, over the course of a relatively short, 24 hour L-PBF build, on the order of 1000 
Tb of data would be generated. Such a data burden is currently unmanageable both in terms of data storage 
capacity as well as data transmission times. 
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7.2 Experimental Design and Methods 

7.2.1 Programming Environment 

Unless otherwise noted, all software was developed within the MATLAB R2016a or R2017a 

environments. The above MATLAB versions also included the following add-on packages: the 

Image Processing Toolbox and the Statistics Toolbox. 

7.2.2 High Speed Camera 

The in-situ melt pool images analyzed in this thesis were captured by a Photron FASTCAM 

Mini AX200 high speed camera mounted to the EOS M290 at CMU’s NextManufacturing Center 

as shown in Figures 1.4 and 7.2. The author would like to note that this setup was developed 

and characterized by Brian Fisher [34] at CMU; as such, all of the information presented in this 

subsection is for reference only. The light captured by the camera sensor is approximately 

within the visible range and originates as thermal emissions113 from the melt pool and 

surrounding material. The high melt pool temperatures (Section 6.1) allow for sufficient 

emission in the visible spectrum [205] for the use of a visible-light camera to be practical. 

Additionally, traditional thermal cameras (sensitive to frequencies of light in the infrared [205]) 

are typically more expensive and limited to lower frame rates than visible-light cameras.  

The high speed camera is equipped with a 1024 pixels × 1024 pixels (1 MP) sensor with a 

depth (dynamic range) of 12 bits. It is capable of maximum recording speeds of between 6,400 

                                                      

113 It is worth reiterating that this implies that the true melt pool boundaries are unknown when viewing the melt 
pool images. Further characterization of the system is explored by Fisher [34] which enables the estimation of melt 
pool size under certain conditions. Nonetheless, the inability to precisely identify the true melt pool boundary is 
not a hindrance to the presented study of melt pool morphology. 
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fps and 900,000 fps, depending on the percentage of active pixels, and an exposure time as low 

as 260 ns. Data are recorded on an onboard 16 GB circular RAM buffer. For the experiments 

presented in this chapter, camera recording was triggered114 either manually by the author or 

automatically by the Photron PFV software package [206] based on the sudden increase in 

brightness corresponding to a melt pool entering the Field of View (FoV). The optical train that 

is used in this work provides a maximum field of view of 6.35 mm × 6.35 mm, with each pixel 

covering a 6.2 µm × 6.2 µm area. The resolving power of the system is approximately 50 line-

pairs per millimeter as determined by visual inspection of a negative 1951 USAF resolution test 

target supplied by Thorlabs.  

 
Figure 7.2: The high speed camera setup mounted to CMU’s EOS M290; Figure 1.4 shows this setup schematically. 
This image of the high speed camera was taken by Brian Fisher of CMU. 

                                                      

114 Strictly, the trigger point actually stops the recording, preventing the information stored in the circular buffer 
from being overwritten. 
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7.2.3 Camera Calibration Procedure 

The location of the available chamber viewport (Figure 7.2) necessitates that the high 

speed camera be mounted such that its axis is not parallel to the normal vector of the build 

plate (z-axis). The resulting distortion is corrected using a fully-constrained Homography matrix 

[154] to apply an affine warp to the raw image such that a rectangular object in the initial 

image will appear rectangular (in the correct proportions) in the final image. In order to 

determine the appropriate Homography matrix, a rectangular fiducial exposed using the 

nominal EOS parameters (Table 6.1) was imaged using both the high speed camera (Figure 7.3) 

and an Alicona Infinite-Focus optical microscope (Figure 7.4). Specifically, the four interior 

corners of the fiducial were used to map the high speed camera image to the “true” dimensions 

as measured from the microscope image. As expected, the camera distortion was minimal, 

given the relatively small FoV and shallow camera angle (relative to the z-axis). A similar 

procedure is also described in Section 4.2.3. 

  
Figure 7.3: The rectangular fiducial as imaged by the 
high speed camera. 

Figure 7.4: The rectangular fiducial as imaged by the 
Alicona Infinite-Focus microscope. 

2 mm
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The frame rate of the high speed camera was chosen a priori to be 6,400 fps – the 

maximum frame rate for which the entire FoV (1024 pixels × 1024 pixels) can be captured. At 

this frame capture rate the 16 GB RAM buffer on the high speed camera can record data for 

approximately 1.7 seconds. An exposure time of 5.00 µs was chosen based on visual 

observation of melt pools produced using four different power and velocity combinations 

spanning the process space of interest. Specifically, melt pools produced using PV #1 (nominal 

EOS parameters), PV #19 (high energy density regime), PV #6 (low energy density regime), and 

PV #36 (balling regime) were imaged at multiple exposure times (see Table 6.1). The final 

exposure time was chosen such that the low energy density melt pool was visible while the 

vapor plume of high energy density melt pool did not completely obscure the melt pool itself. 

During a 5.00 µs exposure time a melt pool traveling at the maximum tested velocity of 1400 

mm/s will travel 7 µm, or approximately one pixel; therefore motion blur can be considered 

negligible under these conditions. At a frame rate of 6,400 fps the melt pool will travel between 

30 µm and 220 µm (over the range of beam velocities tested) between camera frames. These 

inter-frame travel distances are comparable to the length of the melt pool (Section 6.2.1). Brian 

Fisher of CMU lent their significant expertise in this content area to help the author determine 

the appropriate camera settings. 

7.2.4 Coaxial Melt Pool Transformation 

The high speed camera configuration described in Section 7.2.1 provides a stationary FoV; 

as a result, the melt pool data are collected in an Eulerian frame of reference. This increases the 

difficulty of comparing data between melt pool images, and for this reason a Lagrangian frame 
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of reference is preferred. While this can be accomplished via a coaxially-aligned optical 

configuration as demonstrated by Clijsters et al. [81] and Lane et al. [120], such an 

implementation is extremely non-trivial for an AM machine user that is not also an AM machine 

manufacturer. Therefore, in this chapter, a custom software solution is pursued that is capable 

of transforming the collected melt pool data into data that appears to have been collected via 

coaxially-aligned imaging. Figure 7.5 shows a representative image collected by the fixed FoV 

high speed camera. Figure 7.6 shows the same image after the melt pool has been transformed 

into the coaxial (Lagrangian) reference frame.  

 

 
Figure 7.5: A representative melt pool image from the high speed camera 
with a fixed (Eulerian) reference frame. The approximate travel path of 
the melt pool is indicated by the dashed lines; the spacing between the 
dashed lines is not necessarily equal to the hatch spacing. The false-color 
intensity map was chosen to increase the visibility of the data given its 
spread across a relatively wide dynamic range. 

Figure 7.6: The melt pool image from 
Figure 7.5 after transformation. The 
reference frame is coaxial, i.e. 
Lagrangian. The nose, tail, and 
centerline (dotted line) of the melt 
pool are indicated.  
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High speed camera data are first warped using the Homography matrix described in the 

previous subsection (7.2.3). Then each frame is binarized using a manually-determined intensity 

threshold intended to remove (only) sensor noise. A connected-components [207] analysis is 

performed to differentiate the melt pool itself from other bright objects such as spatter [208]. 

All but the largest connected component are removed to prevent spatter from influencing the 

transformation calculations. The first transformation parameter calculated is the in-plane 

rotation angle; this task is accomplished by locating the centroid of the melt pool in Figure 7.5 

and comparing its relative motion with respect to the centroid of the melt pool in a subsequent 

camera frame. The stability of this calculation is further improved by additional thresholding 

such that only the brightest region of the melt pool is considered.  

Once the in-plane rotation has been determined, it is applied to the binarized (noise 

threshold) melt pool image (with spatter removed). At this stage the “nose” (Figure 7.6) of the 

melt pool is identified and used to place the melt pool within a consistent, coaxially viewed 

bounding box. The nose coordinates are defined as the centroid of the melt pool along the axis 

perpendicular to the travel direction (i.e. the line of symmetry of the melt pool) and the leading 

edge of the melt pool along the axis parallel to the travel direction (i.e. the 𝜉𝜉-axis). The choice 

of using the nose to define the melt pool position was made due to the relative temporal 

stability of the nose, compared to the melt pool centroid, which is affected by the highly 

variable melt pool tail (Figures 7.6 and 7.7). 

The in-plane rotation and bounding box transformation parameters are now applied to the 

original camera data to isolate the melt pool. Figure 7.7 shows subsequent frames taken by the 

high speed camera. Each frame underwent the coordinate transform described above such that 
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the melt pool in each frame appears in the same spatial location as the melt pool in the prior 

frame. At this point additional operations can be applied, e.g. the spatter can be removed (as 

described above), the spatter can be isolated (by removing the largest connected component), 

thresholds designed to extract the vapor plume can be used, etc. While sudden changes in melt 

pool travel direction are handled naturally by the described methodology, special care must be 

taken if the melt pool passes out of the FoV of the camera entirely or “disappears” as is 

common if skywriting [209] is implemented at the edges of raster melt tracks. Design of 

appropriate heuristics for these situations is beyond the scope of this thesis and such cases 

were handled manually. 

 
Figure 7.7: Eight subsequent high speed camera frames, transformed such that the melt pool appears to be 
spatially stationary and varying temporally. The relative size scale is preserved between all of the images. 

7.2.5 Experiment Sequence Overview 

Data used in this chapter were collected over the course of five different sets of 

experiments (not counting the previously described Homography fiducial). As discussed in 

Section 7.1, information regarding ex-situ melt pool morphology is required to enable the 

linkage of in-situ melt pool morphology to processing defects. The necessary ex-situ data were 

collected and analyzed in Chapter 6 which is collectively referred to as Experiment 1 (E1) 

throughout the rest of this chapter. During Experiment 2 (E2), the high speed camera was used 

𝜉𝜉
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to image melt pools produced by 36 different process parameter combinations spanning the 

process space of interest. These data were then used to train the ML algorithm presented in 

Section 7.3. Finally, Experiments 3a – 3c (E3a – E3c) investigated melt pool morphology during 

exposure of non-bulk geometries. Specifically, the high speed camera was used to image melt 

pools as the laser beam approached the edge of a stripe (E3a), as the laser beam passed over 

an unsupported overhang (E3b), and as the laser beam exposed contours (i.e. traveled along 

the edge of a part) (E3c). Experiments E2, and E3a – E3c are described in the following two 

subsections. All of the experiments were performed on an EOS M290 L-PBF machine at CMU’s 

NextManufacturing Center and utilized low carbon steel build plates of size 1.5 in × 6 in (visible 

in Figures 7.8 and 7.9). The use of these sub-size build plates allowed for a decrease in 

turnaround time between the E2 and E3 experiments.  

7.2.6 Collection of In-Situ Training Data (Experiment 2) 

As described in Section 7.2.2, the high speed camera is only able to image a single, fixed 

FoV; therefore in-situ data collection during E1 could not be performed. To overcome this 

challenge, the same 36 process parameter combinations used in E1 and enumerated in Table 

6.1 were exposed within the FoV of the high speed camera during E2. Specifically, for each 

parameter combination a set of 10 mm long 1LSB115 melt tracks were exposed within a 

rectangular region116 of size 10 mm × 20 mm. Each melt track was separated by a hatch spacing 

                                                      

115 One Layer Single Bead (1LSB) experiments, i.e. one layer of powder, single bead exposures. 
116 The width (20 mm) of the rectangular exposure area was designed to be substantially larger than the width of 
the FoV (6.2 mm) because it was not known a priori how challenging it would be to align the high speed camera 
such that its FoV would cover the region of interest. Future experiments of this type can make use of a significantly 
reduced alignment safety margin. 
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of 500 µm and adjacent melt tracks were not exposed subsequently i.e. at least 140 ms elapsed 

between the exposures of adjacent melt tracks. As in E1, the chamber preheat was 80 °C, the 

nominal117 beam diameter was 100 µm, and the nominal powder layer thickness was 40 µm 

(resulting in an approximately 70 µm effective layer thickness, see Section 6.2.1).  

After the exposure of the 1LSB melt tracks for a given parameter combination, the 

rectangular region was re-exposed (without the addition of another powder layer) using the 

EOS nominal parameters (PV #1) and the nominal hatch spacing of 110 µm. Then, an additional 

11 layers of material were built using the EOS nominal parameters such that each set of 1LSB 

melt tracks were vertically separated by a 440 µm tall block of nominally-processed material. 

Vertical separation was implemented to ensure that the observed melt pool morphologies were 

not influenced by an interaction with porosity (or other defects) left behind by previously 

tested process parameter combinations. The initial set of 1LSB melt tracks were separated from 

the sub-size steel build plate118 by approximately 1 mm of nominally-processed material. Figure 

7.8 shows a Computer Aided Design (CAD) rendering of the E2 experiment and Figure 7.9 shows 

the as-built E2 block of material. 

                                                      

117 The D86 beam diameter was measured to be approximately 90 µm during the machine maintenance temporally 
closest to the E2 experiments. 
118 A sub-size low-carbon steel plate (McMaster-Carr P/N: 1388K311) mounted to a modified EOS build plate was 
used to decrease the turnaround time between the sequence of experiments described in Section 7.2.5. 
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Figure 7.8: A CAD rendering of the E2 rectangular 
exposure region built up over many sets of 1LSB melt 
tracks and separation layers. Note the FoV of the high 
speed camera. 

Figure 7.9: The as-built material deposited over the 
course of E2.  

The 10 mm length of each 1LSB melt track was chosen such that the melt pool was always 

a minimum of 2 mm away from the end of the melt track while it was in view of the camera. 

More discussion of steady state melt pool lengths is available in Section 6.2.1. The hatch 

spacing was determined as described in Section 6.2.1 and the vertical buffer distance between 

sets of 1LSB melt tracks was informed by the maximum expected melt pool depth119 of 175 µm 

reported in Section 6.2.1. To support robust training of the ML methodology, a substantial 

amount of training data are required – a minimum of 500 camera frames for each of the 36 

power and velocity combinations was deemed sufficient for this task based on prior ML work by 

the author (Sections 4.3.2 and 4.4.2). The approximate number of frames expected to be 

captured by the camera per set of 1LSB melt tracks can be calculated using (7.1) – (7.4) as 

discussed below.  

                                                      

119 The buffer depth was chosen based on the maximum predicted melt pool depth of 175 µm and the depths 
reported by Narra [12, Ch. 6]. The maximum measured depth of any melt pool was 600 µm. This only barely 
exceeds the sum of the vertical separation depth (440 µm) and the penetration depth of the melt pools produced 
with the nominal parameters (150 µm). 
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(7.1) 

Where N is the number of recorded camera frames, Ltot is the total length of the exposure rectangle (10 
mm), Lfov is the length of the melt track within the FoV (6.2 mm), tdata is the data collection time given by 
(7.2), and f is the camera frame rate (6,400 fps). 
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Where tinframe is the amount of time the melt pool spends within the FoV given by (7.3) and tmaxrecord is the 
maximum recording time for the camera (1.7 seconds). While not the case for any of the tested process 
parameter combinations, special care must be taken if ttot exceeds tmaxrecord. In the case of (𝑡𝑡𝑚𝑚𝑅𝑅𝑥𝑥𝑟𝑟𝑅𝑅𝑐𝑐𝑚𝑚𝑟𝑟𝑚𝑚 −
𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡) <  𝑡𝑡𝑖𝑖𝑛𝑛𝑓𝑓𝑟𝑟𝑅𝑅𝑚𝑚𝑅𝑅 a conservative tdata estimate is produced. 
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Where ttot is the total time it takes expose the entire rectangular region, v is the laser beam velocity, Wtot is 
the total width of the exposure rectangle (20 mm), and h is the hatch spacing (0.5 mm). 
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(7.4) 

All of the variables have been previously defined.  

Using the equations above, it was determined that for several of the process parameter 

combinations more than one set of 1LSB melt tracks would be required to generate the 

required 500 frames of training data. The observant reader may notice that the E2 1LSB melt 

track length (10 mm) is shorter than that used for E1 (20 mm). This reduction in track length 

was motivated by the need to reduce the total experiment time which was substantially 

dependent upon the number of sets of 1LSB melt tracks required for each parameter 

combination120.  

The number of frames of training data collected for a single process parameter 

combination ranged from 504 to 1,394. A total of 24,484 frames of usable data were collected 

across 29 of the 36 process parameter combinations. Data from four of the parameter 

                                                      

120 As can be seen in (7.2) and (7.3), if the total length of the melt track is too long (Ltot) the maximum camera 
recording time (tmaxrecord) will dominate the time for which data can be collected (tdata) thereby reducing the 
number of frames collected for each set of 1LSB melt tracks (N). 
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combinations in the low energy density regime (PV #5, #6, #12, and #18) were not collected as 

the apparent melt pool size (brightness) was too small to automatically trigger the high speed 

camera’s recording feature. Data from a further three parameter combinations (PV #27, 28, and 

#29) were inadvertently recorded using an incorrect exposure time and were therefore not 

used for training. A selection of high speed camera images from across process space 

is available in Appendix F. 

7.2.7 Non-Bulk Geometries (Experiments 3a – 3c) 

Experiment 3a was designed to investigate melt pool behavior near the edges of a stripe. 

As shown in the CAD rendering of the test artifact in Figure 7.10, the FoV is centered on the 

boundary of a rectangular region of size 10 mm × 20 mm. In other words, this configuration 

allowed imaging of melt pools as they approached (and departed from) a stripe boundary with 

the specific hope of observing any morphology changes triggered by local preheating from 

adjacent melt tracks [184]. In order to determine the effect of stripe width on near-edge 

morphology, data were collected for several stripe widths ranging from 10 mm to 0.5 mm. 

Before data collection (and stripe width reduction) began, the test artifact was vertically 

separated from the sub-size build plate by a block of nominally-processed material (PV #1 with 

a hatch spacing of 110 µm) approximately 400 µm in height. 

Finally, a thin wall structure of size 0.5 mm × 20 mm was built to a height of 5 mm while 

in-situ imaging data were collected at wall-height intervals of 1 mm. Note that this thin wall was 

exposed using a sequence of adjacent melt tracks running the length of the short dimension (as 

shown for the stripes in Figure 7.10) while thin walls are more typically exposed using adjacent 
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melt tracks running the length of the long dimension. The E3a test artifact was exposed with 

the EOS nominal parameters (PV #1) and a hatch spacing of 110 µm. As in E1 and E2, the 

chamber preheat was 80 °C, the nominal beam diameter was 100 µm, and the nominal powder 

layer thickness was 40 µm. Figure 7.11 shows the as-built test artifact after completion of E3a. 

Over the course of E3a, at least 30 frames of data were collected for each stripe width. 

 

 

Figure 7.10: A CAD rendering of the completed E3a test 
artifact. Note the FoV of the high speed camera. 

Figure 7.11: The as-built test artifact deposited over 
the course of E3a. 

Experiment 3b was designed to investigate melt pool behavior during the fusion of an 

unsupported overhang. Specially, the goal was to observe any melt pool morphological changes 

triggered by the differing thermal conditions present due to the low thermal conductivity of the 

unfused powder [100], [210] below the overhang. As shown in Figure 7.12, the FoV is centered 

on an overhang spanning a gap of 5 mm. To decrease the turnaround time between the 

experiments (Section 7.2.5) a channel was milled into several of the sub-size plate – thereby 

reducing the build time and allowing additional E3b test artifacts to be fabricated in the event 

of a build or data capture failure. Pads 160 µm in height121 were built using nominal parameters 

                                                      

121 Note that this height exceeds the predicted PV #1 melt pool depth of 70 µm and is slightly greater than the 
average measured depth of 150 µm. 
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(PV #1) and a hatch spacing of 110 µm on either side of the pre-cut channel in order to ensure 

appropriate bonding between the overhanging layers of interest and the sub-size plate. 

Data were collected for a total of 5 layers spanning the channel. The first observed layer 

was exposed directly on top of a bed of unfused powder while the fifth layer was exposed on 

top of (nominally) 160 µm of fused material. The E3b test artifact was exposed with the EOS 

nominal parameters (PV #1) and a hatch spacing of 110 µm. As in E1 and E2, the chamber 

preheat was 80 °C, the nominal beam diameter was 100 µm, and the nominal powder layer 

thickness was 40 µm. Figure 7.13 shows the as-built test artifact after completion of E3b. Over 

the course of E3b, approximately 1,500 frames of data were collected for each of the five 

overhanging layers. 

 

 

Figure 7.12: A CAD rendering of the completed E3b test 
artifact. Note the FoV of the high speed camera. 

Figure 7.13: The as-built test artifact deposited over 
the course of E3b. 

Experiment 3c was designed to investigate melt pool behavior during the exposure of 

contours. Specially, the goal was to observe any melt pool morphological changes triggered by 

the differing thermal conditions present due to the low thermal conductivity of the unfused 

powder [100], [210] surrounding the part. As shown in Figure 7.14, the FoV is centered on the 
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edge of a rectangular test artifact of size 20 mm × 10 mm such that the melt pool could be 

imaged as it traveled along the edge of the test artifact. The E3c contours were exposed with 

two different sets of process parameters enumerated in Table 7.1. The first set of contour 

parameters are simply the EOS nominal122 bulk parameters (PV #1) while the second set of 

parameters were designed by the author and Dr. Sneha Prabha Narra of CMU to mitigate near-

surface keyholing porosity123. The offset distances between the first set of contours and the 

edge of the rectangular test artifact are half of the predicted (Section 6.2.1) melt pool width 

(140 µm for PV #1). 

Table 7.1: Process parameter combinations used for each set of contours imaged during E3c. 

Contour Parameter Set #1 
Outer Contour Middle Contour Inner Contour 

Beam 
Power 

(W) 

Beam 
Velocity 
(mm/s) 

Distance 
from Part 
Edge (µm) 

Beam 
Power 

(W) 

Beam 
Velocity 
(mm/s) 

Distance 
from Part 
Edge (µm) 

Beam 
Power 

(W) 

Beam 
Velocity 
(mm/s) 

Distance 
from Part 
Edge (µm) 

285 960 0 285 960 75 285 960 150 
Contour Parameter Set #2 

110 300 0 125 300 70 125 300 140 

The initial set of E3c contour melt tracks were vertically separated from the sub-size steel 

build plate by a block of nominally-processed material (PV #1 with a hatch spacing of 110 µm) 

approximately 1 mm in height. Both sets of contour parameter combinations were exposed and 

imaged twice in order to collect additional data. As in E2, each set of exposures were vertically 

separated with 440 µm of nominally-processed material. As in E1 and E2, the chamber preheat 

was 80 °C, the nominal beam diameter was 100 µm, and the nominal powder layer thickness 

                                                      

122 EOS nominal contour parameter combination for In718 is 138 W, 300 mm/s.  
123 This contour development work was performed for General Electric as part of a project through CMU’s 
NextManufacturing Center. 
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was 40 µm. Figure 7.15 shows the as-built test artifact after completion of E3c. Over the course 

of E3c, at least 65 frames of data were collected for each contour. 

 

 

Figure 7.14: A CAD rendering of the completed E3c test 
artifact. Where Δ is the distance from the contour melt 
track to the edge of the part. Note the FoV of the high 
speed camera. 

Figure 7.15: The as-built test artifact deposited over 
the course of E3c. 

7.3 Bag of Words (BoW) Methodology and Theory 

7.3.1 Overview 

The methodology presented in this section is an application of a widely-used ML technique, 

known as Bag of Words (or Keypoints) (BoW) [44], often applied to CV problems. In this 

implementation, the training data consist of frames of data captured by the high speed camera 

during E2 and transformed such that the melt pool appears to be in a Lagrangian (coaxial) 

reference frame (Section 7.2.3). The only human-applied labels associated with the training 

data are the process parameter combinations used to produce each observed melt pool. While 

the BoW technique can be applied to multiple feature types, the author chose to use SIFT 

features for their ability to be agnostic to scale information. Such agnosticism was deemed 

important as melt pool size does not necessarily correlate with the ex-situ flaws identified in 
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Chapter 6. This section is intended to provide an overview of this methodology along with 

relevant ML and CV theory. Figure 7.16 is a flowchart of this ML methodology and is referred to 

extensively throughout this section.  

 
Figure 7.16: Flowchart of the implementation of the BoW ML technique discussed in this section. The 
representative micrographs shown in step (i) are also shown in Figure 6.27. The human “stick figure” shown in 
between steps (h) and (i) was inspired by the XKCD web comic series created by Randall Munroe [211]. 

7.3.2 Selection of the Training Data 

Training data were collected during E2 as described in Section 7.2.6 – the high speed 

camera was used to image melt pools produced using a total of 29 different process parameter 

combinations spanning the EOS M290 process space. Each of the 24,484 frames of usable data 

were warped and coaxially transformed as described in Sections 7.2.3 and 7.2.4. To improve the 
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robustness of the coaxial transformation during construction of the training database, the 

appropriate in-plane rotation angle was determined a priori using a subset of training images 

and then applied to all of the subsequent training images. Unlike in Sections 4.3.2 and 4.4.2, the 

morphology of each training image is not labeled with a “ground truth” classification by the 

author. Such an action is impossible as the correlations between the in-situ appearance of a 

melt pool and ex-situ outcomes are not known. Indeed, this challenge necessitated the 

development of the ex-situ database in Chapter 6 and the identification of linkages between 

the in-situ and ex-situ melt pool morphologies is a primary goal of this chapter. The labels 

associated with each training melt pool image only indicate the process parameter combination 

used to generate the corresponding melt pool; the usage of these labels is discussed in Section 

7.3.6. The final training database is composed of a total of 24,385 coaxially-transformed melt 

pool images labeled with their associated process parameters. 

7.3.3 Scale Invariant Feature Transform (SIFT) 

This implementation of the BoW ML technique extracts features using the SIFT algorithm. 

SIFT features, as their name (Scale Invariant Feature Transform) might suggest, are considered 

robust even when the objects of interest in an image (or across images) may be of varying sizes. 

First developed by Lowe [204], they are commonly used when it is an object’s overall shape 

that is of interest. The potential for scale agnosticism is considered by the author to be critical, 

as melt pool size often does not correlate to ex-situ flaws. For example, two different process 

parameter combinations may produce melt pools with similar widths, however their 

morphologies could be radically different with one melt pool considered desirable and the 
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other prone to generating keyholing porosity. Interestingly, this is not SIFT’s first foray into the 

AM community as DeCost et al. [212] have used SIFT to classify metal powders for AM 

applications and a conceptually-similar feature known as DAISY has been used by Jacobsmühlen 

et al. [140] to detect super-elevation. 

SIFT features characterize the gradient field surrounding each pixel in an image. In this 

work, gradient orientations within a 2 pixels × 2 pixels window are considered. That is, a 

coaxially-transformed melt pool image (Section 7.3.2) is broken into non-overlapping windows 

(Figure 7.16b), each containing 4 pixels. The gradient orientations are grouped into nine, 

unsigned bins, e.g. one of the bins encompasses all gradients with the following orientations: 0° 

– 20° and 180° – 200°. Note that unlike the filter convolution operation (with stride of 1) 

described in Section 4.3.3, the output of this process is an image with a spatial resolution that 

has been reduced by a factor of two in each direction. While it is common practice to only 

calculate SIFT features at interest points124 (a.k.a. keypoints) in an image [213], in this 

implementation, a dense field of SIFT features is calculated at every strong edge. Where a 

“strong edge” is defined as any pixel at which the magnitude of the gradient is at least 10% of 

the magnitude of the strongest gradient in the image. Figure 7.18 shows a visualization of the 

SIFT descriptors applied to a coaxially-transformed melt pool image (Figure 7.17). 

                                                      

124 Corners are commonly used as keypoints because they can be detected robustly in most “every-day” images 
[213]. Common applications of feature extraction at corners include panorama stitching and object matching 
within a scene. 
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Figure 7.17: An example false-color and coaxially-
transformed image of a melt pool produced using PV 
#36. 

Figure 7.18: The SIFT features extracted from the melt 
pool shown in Figure 7.17. This visualization of the SIFT 
features was generated using a MATLAB script written 
by Dollar [214]. 

7.3.4 Histogram of Oriented Gradients (HOG) 

SIFT features are traditionally considered highly specific, that is, they have a dimensionality 

equal to the number of orientation bins (i.e. nine) with values in each dimension spanning a 

subset125 of ℝ. For this reason, SIFT algorithms are often used for template matching 

applications [213] and less often for classification. A variety of techniques are available to 

artificially reduce the specificity126 of the SIFT features. Additionally, although not pursued in 

this chapter, the dimensionality of a feature can also be reduced using methods such as PCA 

(Principle Component Analysis) [215]. For this work, specificity reduction was accomplished 

using an unsupervised clustering approach similar to that described in Section 4.3.4. 

                                                      

125 Only numbers of the set ℤ[0,𝑊𝑊]/𝑊𝑊 are possible, where W is the window size (i.e. four pixels). 
126 A simple method for specificity reduction is rounding a given value to a set number of digits after the decimal 
point. For example, reducing the ℝ space to the subspace of ℤ/10 would eliminate the distinction between the 
values 42.14 and 42.13. 
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In order to utilize a pre-existing high-dimensional clustering method, the SIFT features 

were first converted into a standard vectorized format known as Histogram of Oriented 

Gradients (HOG) [216] (Figure 7.16c). Specifically, the number of gradients within the SIFT 

window falling into each orientation bin is counted and stored in the corresponding element in 

the HOG vector (i.e. for nine orientation bins the HOG vector will be nine elements long). The 

values in each element of the HOG vector are then normalized such that they range in 

magnitude from ℝ [0, 1]. SIFT features (and their HOG equivalents) were collected from all of 

the melt pool images in the training database. Note that these features were extracted from 

each training image under three different contrast adjustments which are further discussed in 

the following subsection. Note that no subsampling of the training data is performed, i.e. all of 

the extracted SIFT features are included in the training process. 

Once collected, HOG vectors with similar values in each element (i.e. vectors that describe 

a similar gradient field) are grouped together using a standard k-means unsupervised clustering 

algorithm [163], represented by Figure 7.16d. For this work, cluster initialization was performed 

using random seeding, with preference given to a uniform spacing between clusters. During 

development of this ML methodology, the requested number of clusters was varied between 

25 and 200; satisfactory performance was achieved with 50 clusters. Each cluster is represented 

by a mean HOG vector. The 50 mean HOG vectors are commonly referred to as visual words, 

and are stored in a dictionary, represented by Figure 7.16e.  

After the dictionary is constructed, each HOG vector in each training image can be 

matched to the closest (pair-wise distance [164]) visual word in the dictionary (Figure 7.16f). 

Note that this operation has reduced the set of possible values of the SIFT features to the set 
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ℤ[1, 50]. For each training image, the percentage of SIFT features matched to each visual word 

is calculated. This information can be represented by a histogram of size 1 × 50 (Figure 7.16g). 

These histograms are referred to as fingerprints. Ideally, melt pools with similar in-situ 

appearances will have similar fingerprints, while melt pools with dissimilar appearances will 

have dissimilar fingerprints. The observant reader may have noticed that in addition to the loss 

of scale information (desired), the method presented above also loses information about the 

relative spatial positions of the SIFT features (not desired). To mitigate this side-effect, the 

spatial relationships are partially represented by a multi-modality histogram which is detailed in 

the following subsection. While not explored in this work, another method for representing 

visual word occurrences known as VLAD (Vector of Locally Aggregated Descriptors) [217] may 

also be effective for this application. 

7.3.5 Multi-Modality Representation of Melt Pool Morphology 

While each melt pool could potentially be represented by a single histogram of visual word 

occurrences (as is the case for each patch in Section 4.3), such a representation was found to 

provide relatively poor differentiation between certain in-situ melt pool appearances. To 

improve differentiation, additional information contained within the original melt pool images 

was incorporated into the melt pool morphology representation by appending multiple 

histograms of visual word occurrences (Figure 7.16g); where the calculation of each histogram 

was preceded by a different set of pre-processing operations performed on the original 

(coaxially-transformed) melt pool image. 
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As noted in Section 7.2.2, the information of interest in each melt pool image spans a wide 

dynamic range. In order to capture gradient fields across this dynamic range, three different 

contrast adjustments [156] are applied to each melt pool image in the training database. 

Specifically, the pixel-wise data in each image are scaled using gamma values127 of 1 (no 

change), 0.75 (decreased contrast), and 10 (increased contrast). Physically, decreasing the 

contrast allows gradient fields to be captured for the lower temperature (strictly, lower 

emitting) regions of the image while increasing the contrast emphasizes the gradient fields in 

the higher temperature (strictly, higher emitting) regions of the image. In other words, the 

diffuse vapor plume and colder spatter particles may be more visible in the lower contrast 

image, while only the melt pool body and the hottest spatter particles will be visible in the high 

contrast image. Note that this difference in “visibility” is also dependent upon the gradient 

magnitude threshold used to define a “strong edge” (see Section 7.3.3). 

Recall that the fingerprint presented in the previous subsection contains no information 

about the relative spatial configuration of the SIFT features. In order to preserve some of this 

spatial information, each of the three contrast-adjusted melt pool images is segmented into 

three different components. First, the spatter is isolated using the same connected-

components algorithm described in Section 7.2.4. Then the main melt pool body (i.e. everything 

that is not considered spatter) is separated into the “tail” region and the “nose” region. These 

two regions are delineated by the line perpendicular to the 𝜉𝜉-axis at the point of maximum 

melt pool width. This process, shown schematically in Figure 7.19, produces nine distinct 

                                                      

127 The pixel-wise scaling is accomplished using a non-linear function of the form: 𝐼𝐼𝑓𝑓𝑓𝑓𝑡𝑡 = 𝐼𝐼𝑖𝑖𝑛𝑛𝛤𝛤 , where 𝐼𝐼𝑖𝑖𝑛𝑛 is the 
original value of the pixel, 𝐼𝐼𝑓𝑓𝑓𝑓𝑡𝑡  is the adjusted value of the pixel, and the shape of the curve is defined by 𝛤𝛤 [156]. 
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fingerprints (calculated as described in Section 7.3.4) for each training image. All nine 

fingerprints are combined (appended) to form the final multi-modality representation of the 

melt pool which is of size 1 × 450. Note that programmatically all of the SIFT features are first 

calculated across the entirety of each contrast-adjusted melt pool image before segmentation 

in order to avoid the creation of artifacts at the boundaries of the segmented images. 

 
Figure 7.19: False-color and coaxially-transformed images of a melt pool produced using PV #1. The top row shows 
the melt pool image after three different contrast adjustments. The middle row shows each contrast-adjusted 
image segmented into spatter, the nose region, and the tail region. The bottom row shows a visualization of the 
SIFT features generated using a MATLAB script written by Dollar [214]. 

While the choice of the three segmentation regions (spatter, nose, and tail) is informed by 

knowledge of melt pool dynamics (e.g. that spatter is likely to occur when a deep keyhole is 

present [121] and balling affects the morphology of the tail [88], [107]), the choices of the exact 

reduced contrast 𝜉𝜉

no contrast adjustment

increased contrast

nose nose nosespatter spatter spattertail tail tail
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contrast adjustments128, SIFT window size, and number of visual words, are less informed. 

Therefore the author suspects that an improved representation of the in-situ melt pool 

appearance could be developed through the use of Deep Learning techniques and this topic is 

discussed further in Section 8.3. 

7.3.6 Training 

Unlike in Chapter 4, the ground-truths in this work are not known a priori. That is, the 

author does not know what groupings are appropriate to describe the melt pool morphologies; 

much less which specific in-situ melt pool appearances should correspond to each label. When 

confronting an “unsupervised” ML task, it is often useful to visualize the locations of the final 

feature vectors (in this case the fingerprints) of each training datum in feature space. Because 

feature space is typically high-dimensional (in this case 450D) direct visualization is not possible 

and a low-dimensional approximation of feature space must be used instead. A common 

algorithm for constructing this low-dimensional approximation is t-SNE (t-distributed Stochastic 

Neighbor Embedding) [218]. In a low-dimensional t-SNE visualization the relative distances 

                                                      

128 An informed choice of the low contrast adjustment value was attempted by converting the pixel intensity values 
to emissive temperatures using the inverse Sakuma-Hattori equation [232] as described by Fisher [34]. However 
this adjustment was found to be detrimental to differentiation between the in-situ appearances of the melt pools 
and was not included in the final multi-modality fingerprint. 
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between the feature vectors are preserved129 (albeit non-linearly), however the absolute 

distances between data and their relative positions are lost [218]. In other words, fingerprints 

that are close in 450D space will be close in t-SNE 2D space and fingerprints that are far apart in 

450D space will be far apart in t-SNE 2D space, but no other conclusions about their relative 

distribution can be inferred. For this reason, t-SNE visualizations are often used to identify 

natural clusters of high-dimensional feature vectors [218]. Figure 7.20 shows a t-SNE 

visualization of the 24,385 training fingerprints in which each datum has been color-coded using 

the only label available – the dominant ex-situ morphological characteristics for the given 

parameter combination (see Section 6.3.5). 

                                                      

129 Preservation of the relative distances between high-dimensional data is accomplished using statistical 
operations [218]. Conceptually, consider the following: You are “standing” at a datum in high-dimensional space 
and you wish to reach out your hand and grab a different datum. Now, if you describe your ability to grab a specific 
datum using a high-dimensional Gaussian function, then you will be more likely to grab a datum near you than a 
datum farther away from you. Therefore, in order to map the relative distances between data to low-dimensional 
space this behavior should be similar in both representations. That is, if you stand on the same datum in low-
dimensional space and reach out your Gaussian-determined hand, the probability of you grabbing each of the 
surrounding data should be similar to the probabilities found in the original high-dimensional space for those same 
surrounding data. 
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Figure 7.20: A t-SNE visualization of all of the training fingerprints with each datum color-coded according to the 
dominate ex-situ morphology of melt pools produced using the same process parameter combination. While t-SNE 
visualizations are sometimes presented with axes, they have been removed from this figure as neither their 
magnitudes nor their relative values carry any physical meaning. The t-SNE algorithm was executed with a 
perplexity of 75 while all other parameters were set to their default value [218] and no dimensionality reduction 
using PCA was implemented.  

Perhaps unsurprisingly, the above t-SNE visualization is not particularly illuminating. For 

example, fingerprints of melt pools produced using desirable process parameters overlap 

extensively with fingerprints of melt pools produced using balling and keyholing porosity 

process parameters. As discussed in Chapter 6, many of the ex-situ flaws such as keyholing 

porosity and balling are periodic in nature, therefore it is to be expected that each process 

parameter combination will produce a range of in-situ melt pool morphologies.  

A far more effective approach is to visualize the regions in process space for which a given 

set of fingerprints appear. In order to accomplish this, “sets” of similar fingerprints must first be 

identified and delineated. Grouping of similar fingerprints was performed using a standard k-

means unsupervised clustering algorithm [163], represented by Figure 7.16h. For this work, 
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cluster initialization was performed using random seeding, with preference given to a uniform 

spacing between clusters. Ideally, the number of requested clusters could be informed by the t-

SNE visualization in Figure 7.20, unfortunately, very few distinct clusters are evident. Instead, 

many of the melt pool fingerprints appear to exist on a continuum. Therefore, a total of 30 

clusters were requested; while this value is somewhat arbitrary, poor differentiation between 

in-situ melt pool appearances was observed when fewer than 20 clusters were delineated while 

additional meaningful differentiations did not appear when more than approximately 30 

clusters were delineated. Cluster seeding is repeated 10 times to reduce the chance of the 

algorithm converging to a poor solution; e.g. a shallow local minimum instead of a global, or at 

least a deeper local, minimum.  

Figure 7.21 shows the percentage of E2 melt pools at each of the 29 process parameter 

combinations with fingerprints belonging to one of the 30 clusters. Observe that this set 

(cluster) of fingerprints is far more prevalent in the keyholing porosity regime than elsewhere in 

process space. Therefore this set of fingerprints (i.e. this in-situ melt pool appearance) can be 

linked to keyholing porosity. This linkage process (Figure 7.16i) is performed by a human and is 

repeated for all 30 sets (clusters) of fingerprints. Over the course of this work it was observed 

that no clusters of fingerprints could be associated with only the severe keyholing region of 

process space, implying that the depth of the keyhole-mode melting vapor cavity does not have 

a controlling influence on the in-situ appearance of the melt pool. Furthermore, it was observed 

that a side-effect of the multi-modality fingerprint histogram is the occurrence of clusters of 

fingerprints with locations in high-dimensional space that are driven primarily by the 

morphology of the spatter, which is not necessarily correlated with any ex-situ flaws (Section 
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6.3.5). Clusters of this type were labeled spatter are discussed in more detail in Section 7.4.1. 

The implications of this side-effect and possible solutions are discussed in Section 8.3.  

 

 
Figure 7.21: A heat map showing the 
prevalence of a given set (cluster) of 
melt pool fingerprints across process 
space. Values within the text boxes 
indicate the percentage of melt pools 
imaged during E2 (at each process 
parameter combination) with 
fingerprints belonging to the given 
cluster. The ex-situ morphology 
information from Chapter 6 is overlaid 
on top of the heat map. In-situ data 
were not collected for the seven 
parameter combinations (circles) 
without an associated text box (see 
Section 7.2.6). 

Once unsupervised ML techniques have been used to understand and label the in-situ 

appearances of the E2 melt pools, supervised ML techniques can be employed to classify melt 

pools not included in the training database. It is extremely important to note that any 

classifications based on this approach are not tied directly to ex-situ outcomes. In other words, 

even if a melt pool is classified as keyholing porosity it cannot be concluded that keyholing 

porosity was indeed generated by that melt pool – even within some degree of uncertainty. 

Instead, such a classification only indicates that a given melt pool has an in-situ fingerprint 

which is similar to fingerprints found most prevalently (or ideally, exclusively) in the keyholing 

porosity regime of process space. 

Classification of the melt pool morphologies (i.e. the 450 element fingerprints) is 

performed using a multi-class Support Vector Machine (SVM) [219], [220] which is shown 
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graphically in Figure 7.16j. In its original formulation, an SVM is a binary classifier capable of 

distinguishing between only two different classes [220]. During training an SVM learns a 

hyperplane which bisects the high-dimensional feature space such that all of the feature 

vectors belonging to one class lie on a different side of the hyperplane than all of the feature 

vectors belonging to the other class (with the minimum error possible) [220]. A variety of 

methods are available to apply SVMs to non-binary (i.e. multi-class) classification problems. 

Perhaps the simplest such method converts a multi-class problem into a set of binary 

classification problems such that binary classifiers can be trained to distinguish between each 

class and “all of the other classes” [221]. The multiple binary classifiers can then be combined 

to form the multi-class SVM. All of the training parameters for the multi-class SVM were set to 

the default values listed in [219].  

7.3.7 Melt Pool Classification and Performance of the ML Methodology 

Once the training of the ML methodology is complete, melt pool images captured during 

E3a, E3b, and E3c can be classified as one of five melt pool types: desirable, balling, under-

melting, keyholing porosity, or spatter (Figure 7.16k). Each E3 melt pool image is first warped 

and transformed as described in Sections 7.2.3 and 7.2.4. Note that the appropriate in-plane 

rotation angle was determined a priori to improve the robustness of the transformation 

operation. After the coaxial transformation, the multi-modality fingerprint is calculated 

(Sections 7.3.3 – 7.3.5) and classified by the trained SVM (Section 7.3.6). The results of these 

classifications are presented in Sections 7.4.2 – 7.4.4. 
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The classification process requires approximately 0.4 seconds per frame on a single Intel® 

i7-6700K 4.00 GHz processor. It is important to note that in the absence of ground-truth labels, 

quantifying the overall performance of the presented ML methodology is not possible. 

However, 10-fold cross-validation [179], [180, p. 78] was performed during training of the 

multi-class SVM and reported a classification accuracy of 85.1%. In other words, the 

hyperplanes learned by the SVM are able to properly delineate the fingerprints contained 

within the E2 training database according to the labels applied in Section 7.3.6 with an accuracy 

of 85.1%. Additional details regarding k-fold cross-validation and other ML performance metrics 

are available in Section 4.5. 

7.4 Results 

7.4.1 Melt Pool Morphologies across Process Space (Experiment 2) 

At this point the reader is encouraged to review the ex-situ melt pool morphologies 

discussed in Section 6.3.5. The prevalence of a particular in-situ melt pool appearance 

throughout process space can be visualized by considering the cluster assignments at each 

tested process parameter combination. In other words, for each parameter combination 

imaged during E2, a certain percentage of the captured melt pool frames will belong to a given 

set (cluster) of fingerprints described in Section 7.3.6. For the remainder of this chapter, a set of 

similar fingerprints is referred to as a morphology. While the example heat map shown in 

Section 7.3.6 (Figure 7.21) contains information about only one of the morphologies, Figures 

7.22, 7.24, 7.26, 7.28, and 7.30 show the percentage of E2 melt pools (at each process 

parameter combination) belonging to the morphologies associated with a given ex-situ 
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morphology. Also as in Section 7.3.6, the ex-situ morphology results are overlaid on top the 

heat map. 

Figure 7.22, for example, shows the distribution of the six melt pool morphologies (i.e. six 

sets of similar fingerprints) associated with desirable outcomes. Observe that the desirable 

morphologies are most prevalent in the “center” of studied processing space – away from the 

high energy density, low energy density, and balling regimes. The occurrence of these desirable 

morphologies ranges from 21% at PV #19 (250 W, 200 mm/s) to 77% at PV #22 (250 W, 800 

mm/s). During E2, 76% of the melt pools produced using the EOS nominal PV #1 parameters 

(285 W, 960 mm/s) had fingerprints associated with desirable outcomes. More strictly, 76% of 

these melt pools had fingerprints belonging to one of the six clusters associated with desirable 

outcomes. Figure 7.22 shows several examples of desirable melt pools. 

 

 
Figure 7.22: A heat map showing the 
prevalence of melt pool morphologies 
associated with desirable ex-situ 
outcomes. Values within the text 
boxes indicate the percentage of melt 
pools imaged during E2 (at each 
process parameter combination) with 
desirable morphologies. The ex-situ 
morphology information from 
Chapter 6 is overlaid on top of the 
heat map. In-situ data were not 
collected for the seven parameter 
combinations (circles) without an 
associated text box (see Section 
7.2.6). 
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Figure 7.23: A selection of false-color melt pool images captured by the high speed camera during E2. All three 
melt pools have fingerprints associated with desirable ex-situ outcomes. 

Figure 7.24 shows the distribution of the single melt pool morphology associated with 

balling. Observe that the balling morphology is most prevalent in the high beam power and 

high beam velocity regime of process space. The occurrence of this balling morphology ranges 

from 2% for PV #7 (150 W, 200 mm/s) to 26% at PV #36 (370 W, 1400 mm/s). During E2, 19% of 

the melt pools produced using the EOS nominal PV #1 parameters (285 W, 960 mm/s) had 

fingerprints associated with balling. Figure 7.25 shows several examples of balling melt pools. In 

general, the balling melt pools are more elongated than the desirable melt pools (this 

difference is expected as discussed in Section 6.1). In some of the high speed images (Figure 

7.25) the balling instability itself is visible as small circle separated from the main melt pool 

body and located directly behind (negative 𝜉𝜉-axis) the melt pool tail.  

250 µm

𝜉𝜉
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Figure 7.24: A heat map showing the 
prevalence of melt pool morphologies 
associated with balling. Values within 
the text boxes indicate the percentage 
of melt pools imaged during E2 (at 
each process parameter combination) 
with balling morphologies. The ex-situ 
morphology information from Chapter 
6 is overlaid on top of the heat map. 
In-situ data were not collected for the 
seven parameter combinations 
(circles) without an associated text 
box (see Section 7.2.6). 

 
Figure 7.25: A selection of false-color melt pool images captured by the high speed camera during E2. All three 
melt pools have fingerprints associated with balling. Note the balling instabilities visible just behind the melt pool 
tail in the left and center images. 

Figure 7.26 shows the distribution of the two melt pool morphologies associated with 

under-melting. Observe that the under-melting morphologies are most prevalent in the low 

beam power regime of process space. Interestingly, these morphologies extend well into the 

regions of process space producing melt pools with depths greater than the 70 µm effective 

powder layer thickness. As noted in Section 7.2.6, in-situ data were not successfully collected 

250 µm

𝜉𝜉
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for much of the under-melting region; more in-situ data may allow for a more robust 

understanding of morphologies associated with under-melting. The occurrence of these under-

melting morphologies ranges from 0% at many parameter combinations to 3% at PV #4 (100 W, 

600 mm/s). During E2, 1% of the melt pools produced using the EOS nominal PV #1 parameters 

(285 W, 960 mm/s) had fingerprints associated with under-melting. Figure 7.27 shows several 

examples of under-melting melt pools. In general, under-melting melt pools exhibit a 

“fragmented” appearance composed of multiple irregular bodies of comparatively similar size. 

 

 
Figure 7.26: A heat map showing the 
prevalence of melt pool morphologies 
associated with under-melting. Values 
within the text boxes indicate the 
percentage of melt pools imaged 
during E2 (at each process parameter 
combination) with under-melting 
morphologies. The ex-situ morphology 
information from Chapter 6 is overlaid 
on top of the heat map. In-situ data 
were not collected for the seven 
parameter combinations (circles) 
without an associated text box (see 
Section 7.2.6). 
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Figure 7.27: A selection of false-color melt pool images captured by the high speed camera during E2. All three 
melt pools have fingerprints associated with under-melting. 

Figure 7.28 shows the distribution of the three melt pool morphologies associated with 

keyholing porosity. Observe that the keyholing porosity morphologies are most prevalent in the 

low beam velocity regime of process space – particularly at higher beam powers. Refer to 

Section 6.3.5 for a discussion of keyholing porosity versus keyhole-mode melting. The 

occurrence of these keyholing porosity morphologies ranges from 0% at PV #36 (370 W, 1400 

mm/s) to 66% at PV #19 (250 W, 200 mm/s). During E2, 0% of the melt pools produced using 

the EOS nominal PV #1 parameters (285 W, 960 mm/s) had fingerprints associated with 

keyholing porosity. Interestingly, no in-situ morphologies could be associated with the severe 

keyholing melt pools discussed in Section 6.3.5. This suggests that the keyholing porosity 

morphologies are detectable due to the instability, and not the depth, of the vapor cavity 

present during keyhole-mode melting [85]. Figure 7.29 shows several examples of keyholing 

porosity melt pools. In general, keyholing porosity melt pools are more radially symmetric and 

less elongated than either desirable or balling melt pools. 

250 µm

𝜉𝜉
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Figure 7.28: A heat map showing the 
prevalence of melt pool morphologies 
associated with keyholing porosity. 
Values within the text boxes indicate 
the percentage of melt pools imaged 
during E2 (at each process parameter 
combination) with keyholing porosity 
morphologies. The ex-situ morphology 
information from Chapter 6 is overlaid 
on top of the heat map. In-situ data 
were not collected for the seven 
parameter combinations (circles) 
without an associated text box (see 
Section 7.2.6). 

 
Figure 7.29: A selection of false-color melt pool images captured by the high speed camera during E2. All three 
melt pools have fingerprints associated with keyholing porosity. 

Figure 7.30 shows the distribution of the eighteen melt pool morphologies associated with 

spatter. Strictly, spatter is not a melt pool morphology identified by the ex-situ analysis 

presented in Chapter 6. Indeed, its appearance as unique in-situ morphologies is an artifact of 

the multi-modality melt pool representation discussed in Section 7.3.5. While independent 

calculation of a spatter fingerprint was observed to improve overall classification performance, 

it occasionally allows the morphology of the spatter to “overpower” information about the 

250 µm

𝜉𝜉
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shape of the melt pool itself – resulting in the aforementioned spatter morphologies. Potential 

approaches for addressing this challenge are discussed in Section 8.3. In general, spatter 

appears least frequently in the region of process space associated with desirable melt pool 

morphologies. The occurrence of these spatter morphologies ranges from 3% at PV #33 (370 W, 

800 mm/s) to 12% at several parameter combinations. During E2, 4% of the melt pools 

produced using the EOS nominal PV #1 parameters (285 W, 960 mm/s) had fingerprints 

considered to be driven by their spatter morphology. Figure 7.31 shows several examples 

spatter melt pools. Observe that the melt pool bodies exhibit dramatically different melt pool 

morphologies while the primary commonality between the selected images is the presence of 

spatter. 

 

 
Figure 7.30: A heat map showing the 
prevalence of melt pool morphologies 
associated with spatter. Values within 
the text boxes indicate the percentage 
of melt pools imaged during E2 (at 
each process parameter combination) 
with spatter morphologies. The ex-situ 
morphology information from Chapter 
6 is overlaid on top of the heat map. 
In-situ data were not collected for the 
seven parameter combinations 
(circles) without an associated text 
box (see Section 7.2.6). 
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Figure 7.31: A selection of false-color melt pool images captured by the high speed camera during E2. All three 
melt pools have fingerprints associated with spatter. 

The melt pool fingerprints themselves (i.e. the histograms of size 1× 450) can be plotted in 

low-dimensional space using the t-SNE algorithm (first introduced in Section 7.3.6). While the 

fingerprints shown in Figure 7.20 are color-coded based the dominant ex-situ morphological 

characteristics for the given parameter combination, the fingerprints in Figure 7.32 are instead 

color-coded based on their associated in-situ melt pool morphology. Because the fingerprints 

have been color-coded based on the cluster to which they belong, it is wholly unsurprising that 

groupings of color are readily apparent in the figure below. Indeed, the reader should be 

careful to not draw any conclusions based solely on the fact that clusters are extant. 

Nonetheless, this t-SNE representation is illuminating on several fronts. For example, while 

multiple distinct morphologies (clusters) were found to be indicative of specific types of melt 

pools (i.e. three clusters are associated with keyholing porosity melt pools), fingerprints 

belonging to those morphologies tend to lie close to fingerprints belonging other morphologies 

associated with that ex-situ melt pool type. For example, the several keyholing porosity 

morphologies are closer to each other than to the balling morphologies, as evidenced by the 

relatively contiguous grouping of red-colored fingerprints. Conversely, not only are the unique 

250 µm

𝜉𝜉
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spatter morphologies numerous and highly distinct from the other morphologies, they are also 

quite different from each other. This is not surprising given the origin of the spatter 

morphologies which is discussed earlier in this subsection. 

 
Figure 7.32: A t-SNE visualization of all of the training fingerprints with each datum color-coded according its in-situ 
morphology. While t-SNE visualizations are sometimes presented with axes, they have been removed from this 
figure as neither their magnitudes nor their relative values carry any physical meaning. The t-SNE algorithm was 
executed with a perplexity of 75 while all other parameters were set to their default value [218] and no 
dimensionality reduction using PCA was implemented. 

Finally, Figure 7.33 shows the occurrence of the various melt pool morphologies for several 

selected process parameter combinations. As hypothesized and discussed in Chapter 6, every 

process parameter combination produces melt pools with a range of in-situ appearances. For 

example, even the parameter combination producing the most keyholing porosity melt pools 

(PV #19) also produces melt pools with desirable morphologies in 21% of frames. This behavior 

further illustrates the difficulties associated with directly using the annotated t-SNE plot in 

Figure 7.20 to train the melt pool classification algorithm. 
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Figure 7.33: The melt pool morphologies produced by four different process parmeter combinations during E2. PV 
#1 is the EOS nominal parameter combination. PV #36 produced the largest percentage of balling melt pools. PV 
#4 produced the largest percentage of under-melting melt pools. PV #19 produced the largest percentage of 
keyholing porosity melt pools. 

7.4.2 Stripe Edges (Experiment 3a) 

Figure 7.33 reports the melt pool morphology classifications near the edge of a 10 mm 

wide stripe. As discussed in Section 7.2.7, during E3a the FoV was centered on the stripe edge, 

allowing data collection over a beam travel distance of approximately 3.5 mm. Data were 

collected from multiple adjacent melt tracks as the laser beam propagated along the stripe 

direction (Figure 1.8). Each data bar reports the classifications for all of the melt pools within a 

certain distance of the stripe edge (indicated by the vertical dashed line); data are binned in 

increments of approximately 500 µm. Data were collected for melt pools traveling both toward 

and away from the stripe edge with each classification average based on between 19 and 45 

frames of data. No significant morphological differences are apparent between melt pools 3.0 
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mm to 3.5 mm and 0.0 mm to 0.5 mm away from the edge. Notably, however, the E3a melt 

pools were much more likely to be classified as keyholing porosity and much less likely to be 

classified as balling than the E2 melt pools produced using the same EOS nominal process 

parameter combination (PV #1) (see Figure 7.33). Therefore it is possible that the stripe edge 

influences melt pool morphology at a distance exceeding 3.5 mm, and therefore the transition 

of interest occurred outside of the high speed camera’s FoV.  

 
Figure 7.34: Melt pool morphology classifications near the edge of a stripe that is 10 mm wide. Each data bar bins 
classifications in 500 µm increments from the stripe edge (indicated by the vertical dashed line). The values in 
parantheses indicate the number of melt pools classifications included in the corresponding bin. The indicated 
positive y-axis corresponds to the global coordinate system used throughout this thesis. 

Figure 7.35 reports the melt pool morphology classifications near the edges of stripes 

ranging in width from 10 mm (EOS nominal) to a width of only 0.5 mm. Data were collected for 

melt pools traveling both toward and away from the stripe edges. Note that fewer data are 

available as the stripe width decreases and that the upper bar plot is a simplified duplicate of 

the plot shown above in Figure 7.34. No significant morphological differences are apparent 

between melt pools rastering within the 10 mm stripe and melt pools rastering within the 0.5 
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mm stripe. Just as observed for the 10 mm wide stripe, the melt pools were much more likely 

to be classified as keyholing porosity and much less likely to be classified as balling than the E2 

melt pools produced using the same EOS nominal process parameter combination (PV #1) (see 

Figure 7.33).  

 
Figure 7.35: Melt pool morphology classifications near the edge of stripes that are between 10 mm and 0.5 mm in 
width. Each data bar bins classifications in 500 µm increments from the stripe edge (indicated by the vertical 
dashed lines). Note that the annotated locations of the stripe edges are approximate and may be shifted slightly 
relative to the data bars. This approximation may be partially responsible for the appearance of melt pools existing 
beyond the nominal stripe boundaries in the case of the 0.5 mm wide stripe. The values in parantheses indicate 
the number of melt pools classifications included in the corresponding bin. The indicated positive y-axis 
corresponds to the global coordinate system used throughout this thesis. 

Finally, Figure 7.36 reports the melt pool morphology classifications at several heights 

during the printing of a thin wall structure that is 0.5 mm in width. Note that the data collected 

at the thin wall height of 0 mm are the same data reported above in Figure 7.35 for the 0.5 mm 

wide stripe. Data were collected for melt pools traveling in both directions with each 

classification average based on between 31 and 37 frames of data. No significant morphological 

differences are apparent between the melt pools used to fuse the first layer of the thin wall and 

the melt pools used to fuse the final layer of the thin wall – 5 mm above the bulk E3a test 
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artifact. As in the previous E3a results, the melt pool morphologies differed from those 

observed during E2 for the same EOS nominal process parameter combination (PV #1) (see 

Figure 7.33).  

 
Figure 7.36: Melt pool morphology classifications during the construction of a thinwall structure that is 0.5 mm in 
width. Each data bar reports classifications at heights ranginging from 0 mm to 5 mm above the bulk E3a test 
artifact. The values in parantheses indicate the number of melt pools classified for the corresponding build layer. 
The indicated positive z-axis corresponds to the global coordinate system used throughout this thesis. 

Whether the observed differences between the E3a morphologies and the equivalent E3 

morphologies ae due to the proximity of the melt pools to the stripe edge (within 3.5 mm) or 

the minimal spatial and temporal separation between adjacent melt tracks compared to those 

in E2 (110 µm versus 500 µm and a minimum 140 ms delay) is unknown at this time. It is worth 

noting that, at the current camera frame rate, the nominal melt pool travels 150 µm between 

each frame. Additionally, it is possible that significant morphological changes triggered by 

proximity to the edge of the stripe may occur over distances comparable to, or less than 150 

µm. Therefore it may be advantageous to study this particular non-bulk geometry using a 
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higher camera frame rate. Furthermore, the nominal parameter combination’s distance from 

the keyholing porosity regime (Figure 6.28) suggests that it may not be an ideal candidate130 for 

observing morphological changes due to local preheating from adjacent melt tracks [184]. 

7.4.3 Overhang Region (Experiment 3b) 

Figure 7.37 reports the melt pool morphology classifications during fusion of the first layer 

of a 5.0 mm wide unsupported overhang. Recall that in the first layer of an overhang there is no 

fused material below the melt pool, only unfused powder. Data were collected from multiple 

adjacent melt tracks as the layer was fused. Each data bar reports the classifications for all of 

the melt pools that are certain distance across the width of the overhang; data are binned in 

increments of approximately 500 µm. The edges of the overhang are indicated by the vertical 

dashed lines. Note that the left-most and right-most data bars report data corresponding to 

melt pools beyond the extents of the overhang, i.e. those melt pools are, at least partially, on 

top of fused material. Data were collected for melt pools traveling in both directions across the 

overhang with each classification average based on between 60 and 129 frames of data. It is 

readily apparent that the melt pools transition from primarily desirable to primarily keyholing 

porosity as the melt pool travels from the edge of the overhang to its center. A symmetric 

transition back to desirable classifications occurs as the melt pool exits the overhang region and 

returns to previously-fused material. This behavior is fully expected as the low thermal 

conductivity [100], [210] of the unfused powder is expected to result in a much deeper and 

                                                      

130 It was not known a priori that the nominal parameters would be so far removed from the keyholing porosity 
regime. The prior work in the literature [12, Ch. 6] focused primarily on delineating the keyhole-mode melting 
regime (without the presence of a powder layer) and did not explore stable, non-porosity induced keyholing-mode 
melting. 
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more unstable keyhole vapor pocket than is otherwise produced by the EOS nominal process 

parameter combination (PV #1). 

 
Figure 7.37: Melt pool morphology classifications across the 5.0 mm width of the first layer of an unsupported 
overhang. Each data bar bins classifications in 500 µm increments along the melt tracks spanning the width of the 
overhang. The extents of the overhang are indicated by the vertical dashed lines.The values in parantheses 
indicate the number of melt pool classifications included in the corresponding bin. The indicated positive x-axis 
corresponds to the global coordinate system used throughout this thesis. 

Figure 7.38 reports the melt pool morphology classifications during fusion of the first five 

layers of a 5.0 mm wide unsupported overhang. For the first three to four layers, the observed 

melt pool behavior is similar to that discussed above. That is, a substantial percentage of the 

melt pools transition from desirable to keyholing porosity as they pass over the unsupported 

overhang. Note that that the upper bar plot is a simplified duplicate of the plot shown above in 

Figure 7.37. As expected, the melt pools spanning the overhang are increasingly classified as 

desirable as subsequent layers are built. In other words, the morphology of the melt pools 

improves as the E3b test artifact approaches bulk geometry. Indeed, by the fifth layer melt pool 

behavior in the center of the overhang is quite similar to melt pool behavior near the edges. 
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Interestingly, the melt pools fusing the fifth layer were approximately 160 µm above the 

powder bed and the average melt pool depth for the EOS nominal process parameter 

combination (PV #1) was measured to be 150 µm. This suggests that the thermal influence of 

an overhang may extend a vertical distance comparable to the nominal depth of the melt pool. 

 
Figure 7.38: Melt pool morphology classifications across the 5.0 mm width of the first five layers of an unsupported 
overhang. Each data bar bins classifications in 500 µm increments along the melt tracks spanning the width of the 
overhang. The extents of the overhang are indicated by the vertical dashed lines. The indicated positive x-axis 
corresponds to the global coordinate system used throughout this thesis. 

7.4.4 Contours (Experiment 3c) 

Figure 7.39 reports the melt pool morphology classifications for the exposure of three 

contour passes using the EOS nominal bulk process parameter combination (PV #1). The 

contour passes ranged from 0 µm to 150 µm from the nominal edge of the E3c test artifact. 

Each data bar reports the classification of 65 frames of data captured over two sets of contour 

exposures as described in Section 7.2.7. No significant morphological differences are apparent 

between melt pools on the edge of the E3c test artifact versus melt pools 150 µm from the 
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edge. Furthermore, the morphology classifications are similar to those observed for the same 

parameter combination (PV #1) during E2 (see Figure 7.33). Such a lack of differentiation is 

perhaps surprising given the differing thermal conditions near the free edge (due to the low 

thermal conductivity of the powder [100], [210]). However, as noted previously, the EOS 

nominal parameter combination is well distant from the keyholing porosity regime and 

therefore it may not be an ideal candidate131 for observing morphological changes induced by a 

melt pool’s proximity to a free edge.  

Figure 7.40 reports melt pool morphology classifications during the exposure of three 

subsequent contour passes using a set of process parameter combinations designed by the 

author and Dr. Sneha Prabha Narra of CMU to mitigate near-surface keyholing porosity. The 

contour passes ranged from 0 µm to 140 µm from the nominal edge of the E3c test artifact. 

Each data bar reports the classification of between 249 and 252 frames of data captured over 

two sets of contour exposures as described in Section 7.2.7. Despite the stated design 

intention, a substantial percentage of the melt pools are indeed classified as keyholing porosity. 

Upon further review, it was determined that the designed process parameters lie very near to 

the keyholing porosity regime reported in Figure 6.28. Furthermore, it is considered likely that 

the proximity of the melt pools to a free edge increased the depth of the keyholing vapor 

pocket, further exacerbating the problem. The design of these process parameters was 

originally informed by the process map reported by Narra [12, Ch. 6], based on which they were 

                                                      

131 It was not known a priori that the nominal parameters would be so far removed from the keyholing porosity 
regime. The prior work in the literature [12, Ch. 6] focused primarily on delineating the keyhole-mode melting 
regime (without the presence of a powder layer) and did not explore stable, non-porosity induced keyholing-mode 
melting. 



279 

expected to be well removed from the keyholing regime. These results further motivate the 

need for careful study of the effects of powder on melt pool size and morphology (Section 

6.3.4) as well as the necessity of in-situ monitoring of the process.  

  

 

Figure 7.39: Melt pool morphology 
classifications for three contour passes 
ranging from 0 µm to 150 µm from the free 
edge. All of the contours were exposed using 
PV #1. The values in parantheses indicate 
the number of melt pool classifications for 
the corresponding contour pass. The process 
parameter combinations are also noted.  

Figure 7.40: Melt pool morphology 
classifications for three contour passes 
ranging from 0 µm to 140 µm from the free 
edge. The process parameter combinations 
were originally designed to mitigate near-
surface keyholing porosity. The values in 
parantheses indicate the number of melt 
pool classifications for the corresponding 
contour pass. The process parameter 
combinations are also noted.  

 

7.5 Proposed Real-Time Implementation Strategies 

While the work presented heretofore in this chapter provides valuable insight into melt 

pool-scale flaw formation mechanisms in L-PBF, it is not immediately deployable as a 

component in a real-time closed-loop control system. The extremely high data rates and the 

computational burden of the presented methodology preclude such a direct implementation. 
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Indeed, the 0.4 seconds required to classify a melt pool (Section 7.3.7) is three to four orders of 

magnitude too slow for a real-time application. However, it is the author’s opinion that much of 

the algorithm could conceivably be implemented in hardware (i.e. circuitry) which would 

dramatically reduce the computation time required to convert a melt pool image (on the order 

of 104 to 106 integers) to a fingerprint describing its morphology. This single vector could then 

be used in a control loop even at high sampling rates (on the order of 10 kS/s to 100 kS/s). In 

fact, the real-time calculation of L-PBF in-situ melt pool size has already been demonstrated by 

Clijsters et al. [81] and similar systems, combined with high speed pyrometer data (also a single 

number per sample), are currently being used by several L-PBF machine manufacturers for 

process control [145], [146]. While a complete hardware implementation of the proposed 

methodology is well beyond the scope of this thesis, a potential FPGA (Field Programmable 

Gate Array) [222] architecture is outlined below. 

Figure 7.41 provides a high-level schematic of a potential FPGA implementation. Pixel-wise 

data are pulled directly off the camera sensor and are buffered by a latch. When triggered, the 

output pins of the latch are updated and read by the FPGA (Figure 7.41a). At this point, the 

horizontal and vertical gradients at each pixel are calculated simultaneously; that is, if there are 

106 pixels, 2×106 gradient calculations will be performed in parallel. The pixel-wise gradient 

magnitudes and orientations are also calculated in parallel. The pixel-wise orientations at 

strong gradients are binned as described in Section 7.3.3. Next (Figure 7.41b), the SIFT 

descriptors are calculated and converted into HOG vectors in a window-wise fashion; that is, if 

each window is of size 2 pixels × 2 pixels, 2.5×105 HOG vectors will be constructed 

simultaneously. The error between each HOG vector and each visual word in the dictionary is 
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then calculated and the closest visual word is identified; the author expects that this operation 

will be the most computationally expensive of all of the proposed parallelized calculations. 

After the nearest visual word is assigned to each SIFT window (Figure 7.41c), the occurrence of 

each visual word in the melt pool image is counted and stored in the final fingerprint describing 

the melt pool morphology. This fingerprint is then sent from the FPGA to an SVM classifier 

implemented on a standard CPU (Figure 7.41d). Observe that if the fingerprint is of size 103, a 

103 fold reduction in data transmission burden has been achieved versus the direct transmission 

of a raw of image of size 106 pixels. Finally, the classification of the melt pool morphology may 

then be used to inform a feedback controller in order to flag a potential defect or even trigger 

an autonomous “re-work” [133] strategy. 
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Figure 7.41: A high-level schematic for a potential FPGA implementation of the presented melt pool morphology 
classification methodology.  

Also of note, work is ongoing at CMU by the author, Dr. Zhou Chen, Prof. Mahadev 

Satyanarayanan, and Prof. Jack Beuth to use “cloudlet computing” to enable real-time 

classification of melt pools at a reduced frame rate. In other words, while the high speed 

camera’s exposure time would remain low, the effective classification rate would be on the 
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order of only 10 fps. Such a system may allow for useful information to be gleaned, in real-time, 

about melt pool behavior during a build without the development of an FPGA architecture. 

7.6 Discussion and Summary 

In this chapter, In718 L-PBF melt pools were imaged using a high speed, visible-light 

camera with a fixed Field of View. Analysis of the melt pool images required the development 

of a custom algorithm to transform the imaged melt pools from an Eulerian reference frame to 

a Lagrangian (coaxial) reference frame. High speed camera data collected from across process 

space were analyzed using contemporary Computer Vision feature extraction methods and 

unsupervised Machine Learning techniques. These data were then used to link in-situ melt pool 

morphologies to the ex-situ melt pool morphologies and processing defects characterized in 

Chapter 6. These linkages allowed for the identification of potential in-situ flaw formation 

signatures and the training of a melt pool classification algorithm. 

Feature extraction was performed using SIFT and the BoW ML technique – resulting in a 

scale-invariant representation of the in-situ melt pool morphology. The need for scale-

invariance is well demonstrated by Figure 7.23, in which melt pools of dissimilar size are linked 

to similar ex-situ outcomes. In order to compensate for the loss of spatial information during 

feature extraction as well as the large dynamic range of the input images, the final fingerprint 

describing melt pool morphology is composed of nine different segments. Each segment 

describes the gradient fields under different contrast adjustments and in different regions of 

the melt pool. While effective at differentiating between melt pools of differing in-situ 

appearances, many of the parameters controlling the architecture of the final morphology 
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descriptor remain un-optimized; Deep Learning techniques (such as those described in Section 

4.4) may be well suited for developing an even more robust representation of in-situ melt pool 

morphology. 

Several in-situ melt pool appearances were successfully linked to the ex-situ melt pool 

types identified in Chapter 6: (1) A set of in-situ morphologies were found to occur almost 

exclusively at keyholing porosity parameter combinations (Figure 7.28). (2) Conversely, no in-

situ morphologies were found to be associated with severe keyholing. (3) A set of in-situ 

morphologies were found to occur more frequently in the balling region of process space 

(Figure 7.24). (4) Interestingly, the set of in-situ morphologies most closely linked to under-

melting extended well throughout the low power regime of process space (Figure 7.26). (5) 

Several melt pool morphologies were associated with desirable ex-situ outcomes (Figure 7.22). 

(6) As discussed in Section 7.3.6, an additional set of morphologies were associated with the 

presence of spatter, as opposed to a specific ex-situ outcome (Figure 7.30). The periodic nature 

of many of the flaws (Chapter 6) was observed in-situ, as each process parameter combination 

produced melt pools with fingerprints associated with a range of ex-situ morphologies. Using a 

unique approach, the associations determined via unsupervised learning were used as the 

inputs for a supervised learning technique; thereby enabling the classification of melt pools not 

studied during training.  

Specifically, melt pools were imaged during the printing of three different test artifacts, 

each of which demonstrated a different non-bulk geometry. (1) The first test artifact (E3a) 

investigated the behavior of melt pools approaching a stripe boundary for stripes of varying 

widths. No significant morphological changes were observed either as the melt pools 
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approached the stripe edge (Figure 7.34) or as the stripe narrowed (Figure 7.35). Because 

morphological changes were anticipated, the author suggests that stripe boundaries be 

explored further using a variety of parameter combinations and a higher camera frame rate. (2) 

The second test artifact (E3b) investigated melt pools traveling across an unsupported 

overhang. Significant morphological changes were observed as the melt pools traveled away 

from the bulk region and across the overhang (Figure 7.37). After the overhang reached a 

thickness exceeding the nominal depth of the melt pool, the in-situ morphological behavior 

approached that observed in the bulk (Figure 7.38). (3) The third test artifact (E3c) investigated 

melt pool behavior during a contour pass. Morphological differences were not observed 

between the contours at the part edge and the contours 150 µm away from the edge (Figure 

7.39); however this non-bulk geometry should be studied further with a variety of parameter 

combinations. Additionally, this analysis provides evidence that a specific set of process 

parameters originally designed to reduce near-surface porosity may still generate keyholing 

porosity (Figure 7.40); these results are also supported by the process map reported in Figure 

6.28. 

It is worth reiterating that any classifications based on the presented approach are not tied 

directly to ex-situ outcomes. In other words, even if a melt pool is classified as keyholing 

porosity it cannot be concluded that keyholing porosity was indeed generated by that melt pool 

– even within some degree of uncertainty. Instead, such a classification only indicates that a 

given melt pool has an in-situ fingerprint which is similar to fingerprints found most prevalently 

in the keyholing porosity regime of process space. Opportunities for improving the fidelity of 
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the classification methodology are discussed in Section 8.3. Finally, possible real-time 

implementations of the presented melt pool classification methodology are briefly discussed. 
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8 Conclusions 

8.1 Summary 

In order for Additive Manufacturing to successfully transition from a prototyping tool to a 

widely-deployed means of production, several obstacles must first be overcome. The 

Introduction of this thesis motivates two of these challenges: (1) increasing design freedom by 

expanding process space and (2) improving process stability, reducing operator burden, and 

ensuring part quality through the development of in-situ process monitoring methodologies. In 

this thesis, the expansion of Laser Powder Bed Fusion process space is studied via process 

mapping of the AlSi10Mg material system and the quantification of the effects of powder 

particle size on part quality and process stability. Contemporary Machine Learning and 

Computer Vision techniques are used to detect and classify L-PBF powder spreading anomalies 

– not only paving the way for real-time feedback control but also providing a powerful data 

analytics tool for studying the build process. Finally, process mapping of the Inconel 718 

material system is combined with ML and CV analyses of visible-light high speed camera images 

in order to link in-situ melt pool morphologies with ex-situ process outcomes and study the 

fusion of non-bulk geometries. 

In the second chapter, laser beam power and travel velocity are varied to develop process 

maps (with quantified levels of confidence) of cross-sectional melt pool geometry for the 

AlSi10Mg material system in an L-PBF process (Section 2.3.1). The variability and statistical 

behavior of melt pool geometry are studied across processing space and outliers are identified 

(Sections 2.3.2 and 2.3.3). Edge roughness is measured, although no trends were identified 

across process space (Section 2.3.5). Finally, bulk porosity arising from both the lack-of-fusion 
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and keyholing mechanisms is measured (Section 2.3.4) and combined with the aforementioned 

process maps in order to generate a robust processing window of process parameter 

combinations that are expected to produce parts with minimal porosity caused by either the 

lack-of-fusion or keyholing mechanisms (Section 2.3.6).  

In the third chapter, the effects of three non-standard (i.e. not supplied by the machine 

manufacturer) Ti-6Al-4V powders and one non-standard Inconel 718 powder on L-PBF part and 

process quality are studied. Specifically, process parameters are modified in order to 

demonstrate successful manufacture of test specimens using powders with particle sizes up to 

2.4 times larger than the largest particles found in the manufacturer-supplied Ti64 powder 

(Section 3.2.2). Part and build quality are both evaluated qualitatively. Powder spreading 

anomalies are quantified and a link between their spatial distributions and laser scan strategy is 

identified using the process monitoring approach presented in chapter four (Section 3.3.2). Bulk 

porosity produced via three different mechanisms is measured and four different edge 

roughness measures are calculated (Sections 3.3.3 and 3.3.4). Importantly, a correlation is 

identified between mean powder particle size and many of the reported build and part quality 

metrics (Section 3.3.5). 

In the fourth chapter, autonomous powder bed anomaly detection and classification of 

several anomaly types is achieved through the use of Machine Learning and Computer Vision 

techniques applied to data collected by a low-resolution visible-light camera provided by the L-

PBF machine manufacturer. Two different ML algorithms are applied to this problem: (1) the 

well-established Bag of Words approach (Section 4.3) and (2) a contemporary pre-trained 

Convolutional Neural Network (Section 4.4). Uniquely, the pre-trained CNN was modified 
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(MsCNN) in order to analyze data at multiple size scales, thereby dramatically improving 

anomaly classification accuracy. The performances of the two different ML methodologies are 

compared with the final MsCNN reporting an anomaly differentiation accuracy of 93% and a 

layer-wise analysis time of only 7 seconds (Sections 4.5.2 – 4.5.4). A single case study is 

presented in order to demonstrate the capabilities of the final methodology (Section 4.6). 

In the fifth chapter, the powder bed monitoring work of chapter four is applied to ten 

different case studies in order to demonstrate the capabilities of the final methodology as well 

as to provide unique insights into the L-PBF building process. Specifically, thermal warping of 

small and large overhang structures is studied and linked to eventual part damage (Section 

5.2.1). Delamination at the support-part interface (due to residual thermal stresses) is 

successfully detected even when the point of failure is well below the powder surface (Section 

5.2.1). Build failure modes unique to high-aspect ratio and thin wall structures are identified 

(Sections 5.2.2 and 5.2.3). A correlation between detections of super-elevation and layer-wise 

energy density during fusion is observed for both the AlSi10Mg and In718 material systems 

(Section 5.2.4). Super-elevation is also linked to interactions between laser scan strategy and 

part geometry (Section 5.2.4). Finally, the general appearance of the powder bed across 

multiple material systems is explored (Section 5.2.5) and detection of an L-PBF machine 

malfunction via powder bed monitoring is demonstrated (Section 5.2.6). 

In chapter six, a database of ex-situ melt pool morphology is developed for the Inconel 718 

material system in an L-PBF process (Section 6.3.5). Unlike prior work in the literature, the 

studied melt pools were exposed in the presence of a powder layer. Special attention is given to 

the prevalence of processing flaws such as keyholing porosity and balling throughout process 
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space, as this information is critical for the development of the melt pool morphology 

classification algorithm presented in chapter seven. As in chapter two, the collection of data 

from multiple melt pool cross-sections allowed for the development of melt pool geometry 

process maps with quantified levels of confidence (Section 6.3.1) and the study of melt pool 

dimensional variability and statistical behavior (Sections 6.3.2 and 6.3.3). Finally, comparison of 

the developed process maps with In718 process maps reported in the literature suggests that 

the presence of a powder layer can have a significant effect on the cross-sectional depth of the 

melt pool (Section 6.3.4). 

In chapter seven, classification of in-situ melt pool morphology (as captured with a high 

speed visible-light camera) was achieved by combining the ex-situ data collected in chapter six 

with ML and CV techniques. Specifically, the well-established Bag of Words approach was used 

to develop scale-invariant descriptions of in-situ melt pool morphology (Section 7.3). By 

combining unsupervised ML with fundamental knowledge of process space, links were made 

between unique in-situ melt pool morphologies and ex-situ outcomes such as keyholing 

porosity and balling (Section 7.4.1, Figures 7.22 – 7.31). Once determined, these linkages 

enabled the training of a melt pool morphology classification algorithm. Finally, the developed 

classification algorithm was used to study the exposure of non-bulk geometries including the 

edges of stripes (Section 7.4.2), unsupported overhangs (Section 7.4.3), and contours (Section 

7.4.4). 
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8.2 Implications 

Many of the results presented in this thesis have broader implications which are presented 

below. Implications relating to the expansion of process space are enumerated first, followed 

by implications relating to the development of in-situ process monitoring methodologies. 

9. The collection of data from multiple AlSi10Mg melt pool cross-sections and the 

quantification of bulk porosity enabled the development of an AlSi10Mg L-PBF 

processing window that is more robust than those currently available in the literature. 

10. Analysis of the statistical behavior of AlSi10Mg and In718 melt pool behavior indicates 

that while the geometry of the majority of melt pools follow a normal distribution, 

unexplained outliers do exist. Such behavior implies that selection of conservative 

processing parameters (e.g. laser beam power, travel velocity, and hatch spacing) based 

on simple variability metrics (e.g. standard deviation) may not be sufficient to ensure 

part quality (e.g. a lack of porosity). Indeed, this observed melt pool behavior further 

motivates the development of in-situ monitoring methodologies.  

11. Comparison of In718 melt pools exposed on a powder layer to In718 melt pools exposed 

on a bare substrate [12] suggests that melt pool geometry, particularly cross-sectional 

depth, may be significantly altered in the presence of a powder layer. Similar behavior is 

also suggested by the comparison of measured AlSi10Mg lack-of-fusion porosity to that 

predicted by analytical models reported in the literature [72]. 

12. Study of multiple In718 melt pool cross-sections confirms, as has been reported in the 

literature, that certain processing flaws such as keyholing porosity and balling occur 

irregularly and therefore analysis of a single melt pool cross-section is often insufficient 
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to properly characterize melt pool morphology for a given process parameter 

combination. This work, combined with the bulk porosity analysis presented for 

AlSi10Mg, also suggests the existence of a stable keyholing regime at higher beam travel 

velocities. In this regime, keyhole-mode melting occurs without the formation of 

keyholing porosity. The existence of such a regime has been previously noted in the 

welding literature [84]. 

13. The successful manufacture of test artifacts using non-standard powders in an L-PBF 

process has the potential to dramatically improve the robustness of the feedstock 

supply chain and reduce part production costs [89]. Furthermore, while a correlation 

between mean powder particle size and worsening part quality was identified, overall 

part quality remained high for all of the tested Powder Systems. Bulk porosity did not 

exceed 0.1% for any of the powder systems and no trend was observed for one of the 

edge roughness metrics most likely to affect the fatigue life of a part (based on internal 

research at CMU by Christopher Kantzos). 

14. The development of an L-PBF powder bed anomaly detection and classification 

algorithm paves the way for real-time feedback control of the process. Furthermore, the 

developed methodology does not rely on human-created heuristics and is therefore 

highly extensible to alternate material systems and other powder bed-based AM 

technologies.  

15. The novel usage of a pre-trained CNN to analyze input data at multiple size scales in 

order to improve patch-wise classification accuracy is a promising new avenue for ML 

applications in the AM arena. Indeed, such an approach may also be effective in other 
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manufacturing applications and fields as disparate as microstructure analysis and 

medical imaging [151]. 

16. While initially developed for process monitoring applications, the presented powder bed 

anomaly classification algorithm has proven to be an extremely powerful data analytics 

tool. Used offline (i.e. post build-completion) it can be, and has been, used to 

understand complex build failure modes and inform the redesign of parts to improve 

the chance of success in subsequent builds. It has also demonstrated the potential to 

quickly correlate powder spreading anomalies and part deformation with fusion process 

parameters and laser scan strategy – enabling several new avenues of L-PBF research. 

17. While initially developed strictly to enable the study of in-situ melt pool morphology 

with a fixed Field of View high speed camera, the presented coaxial transformation 

algorithm is broadly applicable. Specifically, it has the potential to benefit the work of 

other researchers studying L-PBF melt pool dynamics and has already been used by 

Fisher [34] to facilitate the measurement of melt pool temperature fields, cooling rates, 

and thermal gradients. 

18. Unsupervised ML techniques applied to melt pool (emitted light) images captured using 

a high speed visible-light camera revealed the existence of multiple in-situ morphologies 

unique to certain regions of L-PBF process space. Furthermore, these unique 

morphologies can be tentatively linked to ex-situ flaws such as keyholing porosity and 

balling. Previously, work in the literature has only correlated in-situ melt pool 

morphologies with keyholing porosity in the LENS DED AM process using a non-scale 

invariant and spatter-agnostic description of in-situ melt pool morphology [202]. 
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19. The successful linkage of in-situ and ex-situ melt pool morphologies enabled the usage 

of supervised ML techniques for melt pool classification. As preliminarily demonstrated 

in this thesis, this methodology allows for the study of fusion of non-bulk geometries 

and the identification of melt pool-scale flaws triggered by local build geometry. Such a 

capability would be invaluable for the future development of process parameters 

optimized for the production of defect-free non-bulk geometries. 

8.3 Future Work 

The results presented in this thesis suggest numerous exciting avenues for future research 

topics, many of which have the potential to significantly impact metal Additive Manufacturing 

for years to come. A selection of suggested future research topics is presented below. 

1. Analyze the geometry of AlSi10Mg melt pools exposed on a layer of powder in order to 

determine if the observed disagreement between the bulk porosity measurements and 

the literature lack-of-fusion model is due to a difference in melt pool size between the 

powder and no powder environments. 

2. Sample additional melt pool cross-sections to better characterize the outlier behavior 

observed for the AlSi10Mg and In718 material systems. Such an analysis combined with 

in-situ monitoring of the melt pool may also allow for the identification of the root 

cause(s) of these outliers.  

3. Perform mechanical testing on artifacts built using non-standard powder systems in 

order to directly quantify the effects of powder particle size on as-built part 

performance. 



297 

4. Utilize a testbed L-PBF machine, such as the AMMT at the National Institutes of 

Standards and Technology (NIST) [223] to implement the presented powder bed 

anomaly detection and classification algorithm in a real-time environment. Once 

implemented, develop appropriate heuristics and material “re-work” strategies [133] in 

order to mitigate detected millimeter-scale flaws. 

5. Retrain the presented MsCNN algorithm to detect and classify powder bed anomalies in 

other powder bed-based AM processes such as Metal Binder Jetting and EB-PBF in order 

to further demonstrate the flexibility of the developed ML architecture. 

6. The current CNN utilizes a three channel input layer – one for each of the three size 

scales. A custom CNN architecture could be designed with many input channels in order 

to accept data not just at different size scales but also from different sensor modalities 

(e.g. a near-infrared camera) and different time periods (e.g. previous layers). The 

simultaneous analysis of these disparate data streams may improve anomaly detection 

and classification accuracies. 

7. Utilize a higher resolution camera for monitoring the powder bed in order to enable 

detection of smaller-scale anomalies. Utilize multiple light sources to mitigate anomaly 

detection artifacts such as those observed in Section 3.3.2. Note that lighting should 

remain unidirectional for each powder bed image as many anomalies are visible 

primarily due to the casting of shadows; the results from multiple images captured 

under differing lighting conditions can then be combined. 

8. Utilize the presented MsCNN to further investigate the observed correlation between 

super-elevation (and other powder bed anomalies) and fusion process parameters such 
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as hatch spacing and laser scan strategy. Utilize the presented MsCNN to study the 

behavior of difficult-to-spread powder systems such as the EOS standard AlSi10Mg 

powder and optimize process parameters such as the recoater blade travel speed in 

order to reduce the occurrence of powder bed anomalies. 

9. The presented melt pool morphology classification algorithm relies on a combination of 

unsupervised ML and expert human input in order to train a classifier. As a result, while 

reasonably strong statements can be made regarding the statistical behavior of a large 

set of melt pool images, only weak statements can be made regarding the classification 

of an individual melt pool. Addressing this limitation requires the collection of training 

data connected to ground truth information in order to enable direct usage of 

supervised ML techniques. Collection of such a dataset may be possible by simultaneous 

above-view imaging of a melt pool using the presented high speed camera setup and 

side-view imaging of the melt pol using a Dynamic X-Ray (DXR) setup such as that at 

Argonne National Lab [85]. 

10. As discussed in Chapter 7, much of the feature extraction procedure used to describe in-

situ melt pool morphology remains un-optimized. If appropriate ground-truth 

information can be collected, Deep Learning techniques (such as those used in Chapter 

4) may allow for the development of a substantially more robust description of in-situ 

melt pool morphology. Such methods could enable improved differentiation between 

in-situ melt pool appearances.  

11. While in-situ melt pool morphology was studied for several non-bulk geometries in this 

thesis, an enormous number of non-bulk situations remain unexplored. Of particular 
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interest may be thin wall structures (exposed using a melt track traveling along the long 

dimension of the structure) and the influence of shielding gas flow with respect to melt 

pool travel direction. Furthermore, the presented works focuses primarily on the In718 

EOS nominal parameter combination and does not explore process parameter 

optimization for non-bulk geometries. 
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Appendices 
For clarification purposes, additional information and details have been provided in the 

appendices that follow. In the event of a discrepancy between the information or nomenclature 

in the appendices and the corresponding information in the body of the manuscript, the body 

text takes precedence.  
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Appendix A: Selected AlSi10Mg 0LP Micrographs and Measurements 

Average AlSi10Mg 0LP melt pool cross-sectional measurements 

Sample 
Number 

Beam Power 
(W) 

Beam 
Velocity 
(mm/s) 

Width (µm) Depth (µm) Area (mm2) Aspect Ratio 

1 100 200 71.6 18.4 0.00097 0.51 
2 100 400 60.2 15.4 0.00065 0.51 
3 100 600 58.6 14.6 0.00062 0.50 
4 100 800 58.0 13.9 0.00056 0.48 
5 100 1000 57.8 13.0 0.00056 0.45 
6 200 200 141.0 60.0 0.00623 0.85 
7 200 400 122.3 51.2 0.00478 0.84 
8 200 600 115.6 46.1 0.00392 0.80 
9 200 800 121.0 39.9 0.00366 0.66 

10 200 1000 92.9 37.2 0.00263 0.80 
11 200 1200 97.3 32.0 0.00239 0.66 
12 200 1400 80.0 29.4 0.00181 0.74 
13 300 400 367.2 294.6 0.07117 1.60 
14 300 600 277.9 220.3 0.04234 1.59 
15 300 800 237.6 171.4 0.02796 1.44 
16 300 1000 187.9 115.4 0.01556 1.23 
17 300 1200 142.4 61.6 0.00747 0.87 
18 300 1400 101.7 45.6 0.00383 0.90 
19 370 400 405.7 418.8 0.11406 2.06 
20 370 600 326.2 282.7 0.06150 1.73 
21 370 800 332.7 234.1 0.05431 1.41 
22 370 1000 248.1 176.4 0.02953 1.42 
23 370 1200 206.2 136.2 0.02039 1.32 
24 370 1400 163.2 87.6 0.01036 1.07 
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AlSi10Mg 0LP Sample #1 

 

 
AlSi10Mg 0LP Sample #2 

 

 
AlSi10Mg 0LP Sample #3 

 

 
AlSi10Mg 0LP Sample #4 
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AlSi10Mg 0LP Sample #5 

 

 
AlSi10Mg 0LP Sample #6 

 

 
AlSi10Mg 0LP Sample #7 

 

 
AlSi10Mg 0LP Sample #8 
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AlSi10Mg 0LP Sample #9 

 

 
AlSi10Mg 0LP Sample #10 

 

 
AlSi10Mg 0LP Sample #11 

 

 
AlSi10Mg 0LP Sample #12 
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AlSi10Mg 0LP Sample #13 

 

 
AlSi10Mg 0LP Sample #14 

 

 
AlSi10Mg 0LP Sample #15 

 

 
AlSi10Mg 0LP Sample #16 
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AlSi10Mg 0LP Sample #17 

 

 
AlSi10Mg 0LP Sample #18 

 

 
AlSi10Mg 0LP Sample #19 

 

 
AlSi10Mg 0LP Sample #20 
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AlSi10Mg 0LP Sample #21 

 

 
AlSi10Mg 0LP Sample #22 

 

 
AlSi10Mg 0LP Sample #23 

 

 
AlSi10Mg 0LP Sample #24 
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Appendix B: Selected AlSi10Mg MLP Micrographs 

  
AlSi10Mg MLP Sample #1 

 
AlSi10Mg MLP Sample #2 

 

  
AlSi10Mg MLP Sample #3 

 
AlSi10Mg MLP Sample #4 
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AlSi10Mg MLP Sample #5 

 
AlSi10Mg MLP Sample #6 

 

  
AlSi10Mg MLP Sample #7 

 
AlSi10Mg MLP Sample #8 
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AlSi10Mg MLP Sample #9 

 
AlSi10Mg MLP Sample #10 

 

  
AlSi10Mg MLP Sample #11 

 
AlSi10Mg MLP Sample #12 
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AlSi10Mg MLP Sample #13 

 
AlSi10Mg MLP Sample #14 

 

  
AlSi10Mg MLP Sample #15 

 
AlSi10Mg MLP Sample #16 
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AlSi10Mg MLP Sample #17 

 
AlSi10Mg MLP Sample #18 

 

  
AlSi10Mg MLP Sample #19 

 
AlSi10Mg MLP Sample #20 
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AlSi10Mg MLP Sample #21 

 
AlSi10Mg MLP Sample #22 

 

  
AlSi10Mg MLP Sample #23 

 
AlSi10Mg MLP Sample #24 
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Appendix C: Selected Cylindrical Sample Micrographs 

  
Ti64 PS #1 Cylindrical Sample 

 
Ti64 PS #2 Cylindrical Sample 

 

  
Ti64 PS #3 Cylindrical Sample 

 
Ti64 PS #4 Cylindrical Sample 
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In718 PS #5 Cylindrical Sample 
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Appendix D: Powder Bed Images Used for Testing 

 
 

The above legend applies to all 20 testing powder bed images presented below. 
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Appendix E: Selected In718 1LSB Micrographs and Measurements 

Average In718 1LSB melt pool cross-sectional measurements 

Sample 
Number 

Beam Power 
(W) 

Beam 
Velocity 
(mm/s) 

Width (µm) Depth (µm) Area (mm2) Aspect Ratio 

1 285 960 151.8 150.4 0.0149 2.0 
2 100 200 177.4 166.4 0.0175 1.9 
3 100 400 126.0 95.9 0.0079 1.5 
4 100 600 103.2 69.1 0.0048 1.3 
5 100 800 91.3 56.7 0.0035 1.2 
6 100 1000 81.2 46.8 0.0025 1.2 
7 150 200 227.1 293.5 0.0350 2.6 
8 150 400 170.0 177.3 0.0185 2.1 
9 150 600 147.3 109.2 0.0103 1.5 

10 150 800 114.9 78.7 0.0062 1.4 
11 150 1000 99.0 66.2 0.0047 1.3 
12 150 1200 93.9 61.6 0.0039 1.3 
13 200 200 265.4 403.5 0.0508 3.0 
14 200 400 184.8 245.7 0.0260 2.7 
15 200 600 167.1 152.5 0.0165 1.8 
16 200 800 140.6 115.0 0.0106 1.6 
17 200 1000 116.5 97.0 0.0078 1.7 
18 200 1200 104.5 86.7 0.0061 1.7 
19 250 200 277.7 521.4 0.0666 3.8 
20 250 400 203.1 302.6 0.0336 3.0 
21 250 600 174.9 199.2 0.0227 2.3 
22 250 800 155.1 140.2 0.0143 1.8 
23 250 1000 124.8 117.3 0.0105 1.9 
24 250 1200 114.3 106.3 0.0085 1.9 
25 250 1400 109.6 100.4 0.0076 1.8 
26 300 400 228.2 282.7 0.0362 2.5 
27 300 600 189.2 210.6 0.0256 2.2 
28 300 800 169.2 167.5 0.0184 2.0 
29 300 1000 149.2 140.8 0.0138 1.9 
30 300 1200 122.5 130.9 0.0116 2.1 
31 300 1400 115.3 116.4 0.0092 2.0 
32 370 400 243.8 362.8 0.0483 3.0 
33 370 800 171.8 227.8 0.0257 2.7 
34 370 1000 158.9 182.8 0.0194 2.3 
35 370 1200 130.9 157.8 0.0148 2.4 
36 370 1400 123.0 142.9 0.0124 2.3 
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In718 1LSB Sample #1 

 

 
In178 1LSB Sample #2 

 

 
In718 1LSB Sample #3 

 

 
In718 1LSB Sample #4 

 

 
In718 1LSB Sample #5 
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In718 1LSB Sample #6 

 

 
In718 1LSB Sample #7 

 

 
In718 1LSB Sample #8 

 

 
In718 1LSB Sample #9 
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In718 1LSB Sample #10 

 

 
In718 1LSB Sample #11 

 

 
In718 1LSB Sample #12 

 

 
In718 1LSB Sample #13 
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In718 1LSB Sample #14 

 

 
In718 1LSB Sample #15 

 

 
In718 1LSB Sample #16 

 

 
In718 1LSB Sample #17 
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In718 1LSB Sample #18 

 

 
In718 1LSB Sample #19 

 

 
In718 1LSB Sample #20 

 



343 

 
In718 1LSB Sample #21 

 

 
In718 1LSB Sample #22 

 

 
In718 1LSB Sample #23 

 

 
In718 1LSB Sample #24 
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In718 1LSB Sample #25 

 

 
In718 1LSB Sample #26 

 

 
In718 1LSB Sample #27 

 

 
In718 1LSB Sample #28 

 

 
In718 1LSB Sample #29 
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In718 1LSB Sample #30 

 

 
In718 1LSB Sample #31 

 

 
In718 1LSB Sample #32 
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In718 1LSB Sample #33 

 

 
In718 1LSB Sample #34 

 

 
In718 1LSB Sample #35 

 

 
In718 1LSB Sample #36 
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Appendix F: Selected In-Situ High Speed Camera Images 

Note that the relative spatial scale is preserved between all of the melt pool images presented below. 
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