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Abstract
We calculate the stress response, or rheology, of a micro-mechanical model suspension of rigid,

Brownian spheroids in a Newtonian fluid in an oscillatory shear flow. The straining and rotation

components of a linear flow affects the microstructure, or particle orientation in space and time,

and thus, the suspension stress. A statistical description of the microstructure is given by an ori-

entation probability distribution function, which quantifies the likelihood of a particle possessing

a particular orientation at an instance in time. The evolution of the microstructure results from the

memory of the material, advection from the flow, and rotational Brownian motion. The macro-

scopic stress response is calculated from ensemble averages of the stresslet weighted by the ori-

entation distribution function. First, we calculate the linear stress response of a dilute suspension

of rigid, spheroidal, self-propelled particles under a small-amplitude oscillatory shear deformation

using regular perturbation theory. The particle activity leads to a direct contribution to the ma-

terial stress, via self-propulsion, and an indirect contribution due to correlated tumbling events.

The mechanism and strength of self-propulsion and correlation between tumbling events can be

determined from the linear stress response of an active suspension. Next, we develop a frame-

work for determining the relaxation moduli of a viscoelastic material through the combination of

a memory integral expansion and a multimode-frequency oscillatory shear flow. We analytically

determine the first nonlinear relaxation modulus of the model suspension through a comparison of

the second normal stress difference from the microstructural stress response, calculated via regular

perturbation theory, and a co-rotational memory integral expansion. The stress response of the

system is reconstructed for the start-up and cessation of steady simple shear and uniaxial exten-

sion. Finally, we numerically calculate the nonlinear viscoelasticity of the model system subject

to a large-amplitude oscillatory shear flow. In a sufficiently strong flow with oscillation frequency

comparable to the material relaxation rate, secondary overshoots in the stress response occur. We

attribute the origin of secondary overshoots to particles undergoing a Jeffery orbit during a (half)

cycle of the oscillation, analogous to the case of non-Brownian spheroids in steady shear flow.
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1. Introduction
The central theme of this thesis is to calculate the stress response, or rheology, of a micro-

mechanical model suspension of a monodisperse, rigid, Brownian spheroidal particles in a New-

tonian fluid subject to an oscillatory shear flow. This is accomplished through a combination of

perturbation theory and numerical computation. The particles are force- and torque-free, and the

suspension is assumed dilute such that hydrodynamic interparticle interactions can be neglected.

We also assume that the Reynolds number, defined by the size of a particle, is vanishingly small;

thus, the Stokes equations describe the disturbance to the ambient flow caused by a particle. A

spheroidal particle is characterized by a symmetry (major) axis of length 2`, and two equivalent

semi-axes if length 2a; the ratio of the length of the major to semi-axis is the aspect ratio, r = `/a.

Prolate spheroids have r > 1, whereas oblate spheroids have r < 1 (Figure 1.1); nearly-spherical

particles are defined as r ≈ 1. This micro-mechanical model system is relevant as many sus-

pensions are comprised of non-spherical, (roughly) axisymmetric particles1, such as glass fibers2,

actin filaments3, and kaolin clay4. Furthermore, for particles of (effectively) infinite aspect ratio

(r → ∞), this micro-mechanical model reduces to the rigid dumbbell model used in polymer

kinetic theory, which has been studied extensively5–8.

Figure 1.1: Schematic of (a) prolate (r > 1) and (b) oblate spheroid (r < 1). The aspect ratio of a spheroid
is the ratio of the major (symmetry) axis to the minor axis, r = `/a.

In a linear flow field, a non-spherical particle is effected by both the straining and vorticity

components of the flow. The straining component of the flow acts to align the particle along the

principal axes of strain, whereas the vorticity component of the flow acts to rotate the particle.
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Here, we are considering rigid particles that are unable to stretch or deform, which leads to a force

dipole (stresslet) exerted by the particle onto the fluid, affecting the stress of the suspension. The

imposed flow, however, cannot orient spherical particles and they will simple translate with the flow

and rotate at half the ambient vorticity. Jeffery 9 determined (analytically) that the orientation of a

non-Brownian spheroidal particle, characterized by an orientation unit vector, p, in a steady shear

flow will rotate indefinitely along a closed path that traces the surface of a unit sphere, referred to as

a Jeffery orbit. The specific orbit a particle traces is dependent upon its initial orientation. However,

most colloidal suspensions are comprised of sufficiently small particles that are affected by random

thermal collisions with solvent molecules, and are thus subject to Brownian forces and torques.

The model suspension is homogeneous and thus translational Brownian motion does not impact

the overall material stress. Rotational Brownian motion acts to randomize the microstructure of the

suspension, and has a direct contribution to the stress. This leads to a steady orientation probability

distribution, and steady stress, for axisymmetric particles in a steady shear flow10,11.

With the inclusion of rotational Brownian motion, the orientation of a particle is no longer de-

terministic and a statistical description of the microstructure, which refers to the spatio-temporal

orientation evolution, is required. We describe the microstructure of the suspension as an ensemble

via an orientation probability distribution function, ψ(p, t), which quantifies the relatively likeli-

hood of a particle oriented along p at a given time, t12. The orientation probability distribution

function satisfies the Fokker-Planck equation, which is a conservation equation that balances the

effects of the memory of the material, advection arising from the imposed flow, and relaxation via

rotational Brownian motion6,12,13. The particle contribution to the stress of the suspension is de-

termined from the moments of the orientation probability distribution function12,14,15. Thus, from

a statistical description of the microstructure we can calculate the macroscopic stress response of

the model micro-mechanical suspension.

Most complex fluids, including suspensions of rigid, anisotropic particles, are viscoelastic,

meaning that they simultaneously exhibit viscous (liquid-like) and elastic (solid-like) character-

istics when deformed. Quantifying the viscoelasticity of a material over varied types and rates

2



of deformations is important, for instance, in polymer melt processing. A melt will pass through

numerous processing operations, such as die extrusion or film blowing, all of which will involve

different geometries and likely occur over varying time-scales16. Thus, an overarching goal of

rheologists is to develop a general stress-strain relationship, or constitutive equation, for a mate-

rial, which quantifies viscoelasticity, such that the behavior of the material is predictable over a

wide range of conditions (i.e. flow type/geometry and flow strength). A common method of char-

acterizing the viscoelasticity of a material is to subject it to an oscillatory simple shear flow and

calculate (or measure) the stress response of the material17. Here, the material is subjected to a

sinusoidal strain, γ = γ0 sin(ω t), where γ0 is the strain amplitude, ω is the oscillation frequency,

and t is time. An experimental advantage of oscillatory shear rheology is that one can average the

measured response over multiple oscillation cycles, mitigating experimental noise associated with

the start-up or cessation of a flow.

The magnitude of the strain amplitude indicates the extent of the deformation. In general, when

γ0 � 1 the material is subjected to a small deformation and only slightly shifted out of equilibrium.

Conversely, when γ0 � 1, the material is undergoing a large deformation and is likely far from

equilibrium. In experimental work, the strain amplitude is typically reported as a percentage as

opposed to a fraction; for example, γ0 = 0.5 = 50%. There are two relevant time scales for

this type of deformation: the oscillation time scale, 1/ω, and the flow time scale, 1/γ̇0, where

γ̇0 = ωγ0 is the strain-rate amplitude. Here the strain-rate is, dγ/dt ≡ γ̇ = γ̇0 cos(ω t). From

these time scales, two dimensionless groups can be formed: a Weissenberg number, Wi = γ̇0λ,

and a Deborah number, De = ωλ, where 1/λ is a characteristic rate of relaxation of a material.

The strain-amplitude is then given by, γ0 = Wi/De. Most materials have a spectrum of relaxation

rates, the smallest being the most relevant for the long-time rheological response. For simplicity,

we assume a single relaxation time.

Wi is the ratio of the rate of deformation to the rate of relaxation within a material. For

Wi � 1, the rate of deformation is small relative to the intrinsic material relaxation rate, and

the material remains in a near-equilibrium state; this regime is typically referred to as the linear

3



Figure 1.2: Viscoelastic phase map of theWi−De space for a general complex fluid, such as a colloidal sus-
pension or polymer solution. This generalization, for example, would likely not apply to a liquid-crystalline
material, which is non-isotropic at rest, or yield-stress fluid, which only deforms about a critical stress.

viscoelastic regime. For Wi� 1, the rate of deformation is large relative to the rate of relaxation

of the material, and the material is shifted far from equilibrium. De is the ratio of the frequency

of an oscillation cycle to the rate of relaxation within the material. For De � 1, the oscillation

frequency is much less than the rate of relaxation of the material, and the deformation is quasi-

steady; De ≡ 0 is equivalent to a steady shear deformation. For De� 1, the oscillation frequency

is much greater than the rate of relaxation of the material. In this limit, the imposed flow oscillates

so rapidly that the material is not given sufficient time to deform, leaving the material in a near-

equilibrium state. However, when De ∼ O(1), the oscillation frequency is comparable to the rate

of relaxation of the material and the unsteady viscoelasticity of the material is probed. A general

viscoelastic phase map of the Wi−De parameter space is given in Figure 1.2.

Under a small amplitude oscillatory shear (SAOS) deformation, Wi� 1, the linear viscoelas-

ticity of a material is probed over a range of De. Here, the shear stress, τ SAOS
yx , is linear in the

strain-rate amplitude (and also the strain amplitude) and has a frequency-dependent component

in-phase and out-of-phase with the imposed flow,

τ SAOS
yx = γ̇0

[
η′(De) cos(De t) + η′′(De) sin(De t)

]
, (1.1)
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where, η′ is the viscous (dynamic) component of the complex viscosity and η′′ is the elastic (loss)

component of the complex viscosity. Higher order contributions (i.e. O(Wi2)) to the stress, which

would contribute to normal stress differences, are negligible. The linear relaxation modulus can

then be determined from an inverse Fourier transform of either the viscous or elastic components of

the complex viscosity. From the linear relaxation modulus, one can predict the linear viscoelastic

response of the material under any small amplitude deformation, such as the start-up of steady shear

or planar extensional flow. By probing the linear viscoelasticity of a material, one can determine,

for example, the time-scale of stress relaxation or the time (frequency)-dependent configuration of

the microstructure17. For instance, a dilute suspension of polymer molecules can be in a random-

coil or rod-like configuration, giving rise to markedly different frequency-dependent components

of the complex viscosity17. However, the linear relaxation modulus is incapable of predicting the

nonlinear material stress response beyond the small Wi regime.

Having laid out a general introduction, we now proceed to describe the chapters of this thesis.

Active, or self-propelled, particles, such as synthetic colloidal motors or biological microorgan-

isms, have recently received much attention for their potential applications in micro- or nano-scale

batteries, chemical and biological sensors, and drug delivery, to name a few18–23. One question that

naturally arises in these applications is: How does the activity of a self-propelled particle change

the rheology of a material? Furthermore, what can the stress of an active suspension tell us about

the individual particles? To address these questions, in Chapter 224, the linear viscoelasticity of a

dilute suspension of active rigid spheroidal particles is calculated under a SAOS deformation. The

microstructure relaxes via two independent mechanisms: rotational Brownian motion and corre-

lated tumbling; the combination of which results in an increased rate of stress relaxation, relative

to a suspension that relaxes solely by either mechanism. Tumbling is the act of a particle abruptly

changing its orientation, which is fundamentally different from a change in orientation due to an

imposed flow or rotary Brownian motion. We assume tumbling events are correlated, meaning that

the change in orientation is dependent upon the previous orientation and any magnitude of change

can occur; uncorrelated tumbling is restricted to 90 o changes in orientation. We explicitly cal-

5



culate the non-equilibrium orientational microstructure due to the SAOS deformation, rotational

diffusion, and tumbling. From this, we determine the linear viscoelasticity of the suspension from

the orientationally averaged stresslet, which arises from the imposed flow, rotational diffusion,

and particle activity (self-propulsion). Next, we demonstrate that a modified Cox-Merz rule is

applicable to a dilute, active suspension via a comparison of our linear viscoelasticity results to

a theoretical prediction of the steady shear viscosity of active, slender rods25. Finally, through a

comparison of our results to experiments on E. coli26, we show that the linear viscoelasticity of an

active suspension can be utilized to determine the mechanism of self-propulsion, and estimate the

strength of self-propulsion and correlation between tumbling events.

Commonly, complex fluids are processed or utilized at conditions far from equilibrium, such

as in polymer melt processing16, impact-resistant suits and armor27,28, or chewing food29. All

of these instances involve deformations far beyond the linear viscoelastic regime. However, one

cannot predict nonlinear phenomena, such as shear-rate dependent viscosity or normal stress dif-

ferences, from linear viscoelasticity. Thus additional information about a material is required. One

approach to modeling the nonlinear, transient stress response of a material is to employ a mem-

ory integral expansion, which expresses the stress response of a material as a series of integrals

of the deformation history, which depend upon material-specific relaxation moduli30. A memory

integral expansion can be useful when probing the weakly nonlinear stress response of a material,

where the stress response is asymptotic in Wi, as Wi → 0. The first term in a memory integral

expansion encodes the linear viscoelasticity of the material. The subsequent terms account for

the weakly nonlinear material response, and we generally refer to the relaxation moduli in these

terms as the nonlinear relaxation moduli. In Chapter 331, a framework for determining the first

nonlinear relaxation modulus of a viscoelastic fluid from a medium-amplitude oscillatory shear

(MAOS) deformation is constructed. The MAOS regime is defined as byWi� 1, where the shear

stress scales as Wi and normal stress differences are non-zero and scale as Wi2. Knowledge of

this “MAOS relaxation modulus” allows one to predict the weakly nonlinear stress response of a

material under an arbitrary transient deformation via a memory integral expansion. Our framework

6



is demonstrated by explicitly determining the MAOS relaxation modulus for a dilute suspension

of Brownian spheroids subject to a dual-frequency oscillatory shear flow. We first calculate the

second normal stress difference for such a deformation from a co-rotational memory integral ex-

pansion. Second, the microstructural stress response of the model system of Brownian spheroids is

determined via a regular perturbation expansion of the orientation probability distribution function

forWi� 1. An analytical expression for the MAOS relaxation modulus is resolved by comparing

the second normal stress difference results of the memory integral expansion and microstructural

stress calculation. Finally, using the MAOS relaxation modulus, we reconstruct the stress response

of the model system for the start-up and cessation of simple shear and uniaxial extension. This

framework offers an approach to utilizing medium-amplitude oscillatory shear results to predict

nonlinear stress dynamics of viscoelastic fluids in other transient flows.

Large amplitude oscillatory shear (LAOS) has become a popular rheological tool for probing

the transient, nonlinear viscoelasticity of material and has been applied to a variety of systems,

such as polymer solutions16,32,33, colloidal dispersions34–36, and worm-like micelles37–40. An ad-

vantage of LAOS is that one is able to discern microstructural differences between materials that

may be unpronounced in the linear or weakly nonlinear viscoelastic regime. For instance, the lin-

ear viscoelastic and nonlinear steady shear response of a suspension of linear polystyrene and a

suspension of star-branched polystyrene are nearly indistinguishable, even though their molecu-

lar architecture is quite different. However, the LAOS response of the two materials is markedly

unique due to differences in the extent of branching and reptation41.

In Chapter 4 the nonlinear viscoelasticity of a dilute suspension of Brownian spheroids subject

to a LAOS deformation is calculated numerically. This is achieved by solving the Fokker-Planck

equation for the orientation probability distribution function using a numerical solution method that

combines a finite-difference approximation in space and a Fourier series in time. From an ensemble

average of moments of the orientation probability distribution function, the entire stress tensor and

relevant birefringence parameters, namely the average orientation angle and linear dichroism, are

calculated over a range of Wi and De. This approach is demonstrated for prolate spheroids of
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aspect ratio r = 20; however, our methodology is general and can be applied to spheroids of

arbitrary aspect ratio. We provide results in four viscoelastic regimes: linear viscoelastic (Wi �

1), quasi-linear viscoelastic (Wi > 1 and Wi/De � 1), quasi-steady viscoelastic (De → 0), and

finally the nonlinear viscoelastic regime (Wi & 1 and Wi/De & 1), which is our main emphasis.

For Wi > 1 and De ∼ O(1), where the nonlinear and unsteady viscoelasticity of the material

is probed, multiple overshoots are observed in the shear stress and first normal stress difference.

We demonstrate that the origin of these secondary (and potentially additional) stress overshoots is

analogous to a particle undergoing a Jeffery orbit under steady shear in the absence of Brownian

motion. This is achieved by simultaneously analyzing the microstructure, shear stress, first normal

normal stress difference, and birefringence parameters specifically for Wi = 20 and De = 1. In

this case, the period of a Jeffery orbit is comparable to the period of an oscillation cycle, allowing

sufficient time for a single Jeffery orbit to occur during an oscillation half-cycle. Finally, we

briefly provide results for oblate spheroids of aspect ratio r = 0.05 and compare to the results

for r = 20. We find that the Brownian shear stress is qualitatively similar for both prolate and

oblate suspensions. However, a suspension of oblate spheroids tend to have less hydrodynamic

viscoelasticity compared to a suspension of prolate particles. The work detailed in Chapter 4

is the first instance in which the (macro-scale) nonlinear oscillatory shear rheology of a micro-

mechanical complex fluid model has been computed over essentially the entire range of Wi and

De.

Finally, in Chapter 5 we conclude with an overall summary of our work and potential future

ideas. Chapters 2–4 are self-contained works and can be read independently from the rest of the

thesis. These chapters are also published in, or nearing submission to, peer-reviewed journals:

Chapter 2 is published in Rheologica Acta24; Chapter 3 is published in the Journal of Rheology31;

and Chapter 4 is in preparation to be submitted to the Journal of Rheology.
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2. Linear Viscoelasticity of a Dilute Suspen-

sion of Active Particles

2.1 Introduction

Recently, there has been an intense interest in the dynamics of active, self-propelled particles, such

as biological micro-organisms and synthetic colloidal motors18–23. Self-propelled particles have

potential biomedical applications, including targeted drug delivery42–44, where a drug is transported

in or on an active particle through the bloodstream directly to a predetermined location: e.g. a

cancerous tumor or region of inflammation. Furthermore, suspensions of self-propelled micro-

scale particles serve as a paradigmatic model for active matter, which is inherently out of thermal

equilibrium due to the activity of the particles45–48. A natural question that arises is: How does the

activity of the particles impact the rheology, or state of the stress, in a flowing suspension? For

example, how would the addition of active particles, for use in drug delivery, impact the rheology

and subsequent blood flow in a patient? Conversely, what can the stress of an active suspension tell

us about the activity (e.g. mechanism or strength of self propulsion) of the particles in suspension?

In general, micro-scale self-propelled particles, at low Reynolds number, can be divided into

two categories: pullers and pushers. Pullers, such as Chlamydymonus reinhardtii (CR), generate

thrust from the front of their body; whereas, pushers, such as Escherichia coli (E. coli) or Bacillus

subtilis (B. subtillis), generate thrust from their rear49. Steady shear experiments on a dilute sus-

pension of CR have shown that the effective viscosity of the suspension is increased, relative to

both the viscosity of the suspending medium and the viscosity of a suspension of the same immotile

(i.e. dead) bacteria50,51. Experiments conducted on dilute suspensions of pushers, E. coli26,52 and

B. subtilis53, reported a steady shear viscosity less than that of a suspension of the same immotile

bacteria and, more surprisingly, also less than the steady shear viscosity of the suspending medium.

This indicates a negative particle contribution to the overall suspension viscosity.
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From these experimental results, it is evident that the activity of the particles affects the stress

in the suspension. The activity of the particles has an indirect effect on the stress by altering the

microstructure, or spatio-temporal arrangement, of the suspension through tumbling, which acts to

randomize the particle orientation, as observed in E. coli54. The activity of the particles also has

a direct effect on the stress via the force dipole (stresslet) generated from self-propulsion25,47,48.

One methodology to predict the stress of an active suspension is to calculate the disturbance flow

created by the active particles. Then, from the energy dissipation associated with this, the effective

viscosity can be inferred. Haines et al. 55 utilized a two-dimensional hydrodynamics simulation to

calculate the disturbance flow, and hence rheology, of a dilute, active suspension of disks. Hat-

walne et al. 56 utilized a coarse-grained model based on the field theory of nematic liquid crystals

to predict the linear viscoelasticity of a dilute suspension of active disks or rods. Alternatively, one

can explicitly determine how the activity of the particles affects the microstructure of the suspen-

sion and from there predict the microstructurally-averaged stress. In this vein, Saintillan 25 utilized

a kinetic theory model to calculate the change in the orientational microstructure of a dilute sus-

pension of active, slender rods, resulting from an imposed steady shear flow, rotational Brownian

motion, and uncorrelated tumbling events (i.e. 900 changes in orientation due to tumbling). Bo-

zorgi and Underhill 57 calculated the stress in a dilute suspension of slender, active rods subject to

a large-amplitude oscillatory shear (LAOS) deformation. They assumed that the tumbling events

did not affect the microstructure of the suspension, but did include the direct stress contribution

arising from the particle activity.

In this work, we calculate the linear viscoelasticity of a dilute suspension of active, spheroidal

particles, of arbitrary aspect ratio, subject to a small-amplitude oscillatory shear (SAOS) deforma-

tion. We explicitly account for microstructural relaxation due to both rotational Brownian motion

and correlated tumbling, as this is relevant for many biological systems. For instance, E. coli are

Brownian, prolate bodies with an average change in orientation due to tumbling of 58 ± 40°54.

Oscillatory shear experiments are useful in that they allow for one to average the measured signal

over multiple oscillation cycles and avoid step changes that occur during the start-up and cessation
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of a steady flow. SAOS experiments effectively allow one to take a spectral fingerprint of the linear

response of a material. The frequency-dependent results obtained from a SAOS deformation can

be used to predict steady shear behavior via the empirical Cox-Merz rule, which states that the

magnitude of the frequency dependent complex viscosity is equivalent to steady shear viscosity58.

Thus, information from a SAOS deformation can be utilized to predict the steady shear viscosity of

a material, which is advantageous as it is typically simpler to experimentally perform a frequency-

sweep as opposed to a shear-rate sweep17. This could be especially true for active suspensions

of biological organisms, where large shear rates could be detrimental to the organisms and inhibit

activity. Gachelin et al. 52 observed that the effective steady shear viscosity of both a motile and

immotile dilute suspension of E. coli were equivalent at high shear rates, indicating that the active

contribution to the steady shear viscosity is negligible compared to the passive contribution in this

regime. There are cases where the Cox-Merz rule breaks down, namely colloidal dispersions at

high shear rate and frequency59, and thus it should be viewed as a ‘rule-of-thumb’ rather than a

strict rule.

For a homogeneous, oscillatory shear deformation, the strain-rate is given by γ̇ = γ̇0 cos(ωt),

where γ̇0 is the strain-rate amplitude and ω is the oscillation frequency. Two time-scales arise:

1) the oscillation time scale, 1/ω; and 2) the flow time scale, 1/γ̇0. The active suspension is

also characterized by two independent relaxation mechanisms: Brownian rotation and tumbling.

Therefore, we can form two ratios of the flow to relaxation time scales, or Weissenberg numbers:

WiD = γ̇0/Dr andWi = γ̇0/τ
−1, whereDr is the rotary diffusion coefficient and τ−1 is frequency

of tumbling. Furthermore, a relative rate of relaxation can be defined as λ = Wi/WiD = Dr/τ
−1.

For a dilute suspension of E. coli, λ ∼ 0.1 (using Dr ∼ 0.1 s−1 and τ−1 ∼ 1 s−1 10,52) and

tumbling is therefore the dominant mode of microstructural relaxation. SAOS requires that the rate

of relaxation is much greater than the rate of deformation,Wi� 1. Thus, the linear viscoelasticity

of a dilute suspension of active spheroids is examined in this regime.

In Section 2.2 we detail the governing equations required to calculate the microstructure and

linear viscoelasticity of the active suspension. In Section 2.3 a solution for the microstructure is
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obtained via an asymptotic analysis forWi� 1. In Section 2.4 the deviatoric particle contribution

to the suspension stress is calculated, and the combined effects of the imposed flow, Brownian

rotation, and tumbling are discussed. Finally, in Section 2.5 we demonstrate that a Cox-Merz rule

can be applied to an active particle suspension by comparing our linear viscoelastic results to: 1)

a theoretical prediction of the steady shear viscosity of active, slender rods25 and 2) experimental

data for the steady shear viscosity of a dilute suspension of E. coli26. We also demonstrate that

from the linear viscoelasticity one can determine the method of self-propulsion (pusher or puller),

and estimate the strength of self-propulsion and correlation between tumbling events.

2.2 Governing Equations

A suspension of active particles is modeled as an ensemble of Brownian, rigid spheroids in a

Newtonian fluid of viscosity µs and density ρ. The particles are assumed to be free of any externally

applied force or torque and are characterized by an aspect ratio, r, defined as the ratio of the major

(`) to minor (a) axes, r = `/a. The hydrodynamic sphericity of the particles is given by the

Bretherton constant,

B =
r2 − 1

r2 + 1
, (2.1)

which is negative for oblate spheroids, positive for prolate spheroids, and zero for spheres. The

suspension is assumed to be dilute, such that interparticle interactions can be neglected. Thus,

c = 4πn`a2/3 � 1, where c is the particle volume fraction and n is the number density. We will

consider an oscillatory shear flow with velocity field v = γ̇0y cos(αt̃ )ex, and velocity gradient

∇v = γ̇0 cos(αt̃ )eyex, where ex, ey, ez are Cartesian unit vectors in the flow, flow-gradient, and

vorticity directions, respectively, α is the dimensionless oscillation frequency , and t̃ is dimension-

less time (α = ωτ , t̃ = t/τ ).

The microstructure of the suspension is characterized by the orientation distribution function,

ψ(p, t), where ψ(p, t) sin θdθdφ represents the probability of finding a particle ensemble in a dif-

ferential region about (θ, φ)11,12. Here, p is a unit vector along the particle axis of symmetry, in

spherical coordinates, and θ and φ are the polar and azimuthal angles, respectively. The orientation
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distribution function satisfies a conservation, or Fokker-Planck, equation60,

∂ψ

∂t
+∇p · (ṗψ) = Dr∇2

pψ − τ−1
(
ψ −

∫
K(p|p′)ψ(p′, t̃ )dS ′

)
, (2.2)

where ∇p is the surface gradient operator, and ṗ is the deterministic evolution of the particle

orientation due to the ambient shear9,12,13,

ṗ = B(I− pp) ·H · p, (2.3)

where I is the identity tensor and H = B−1Ω + E. Here, Ω is the vorticity tensor and E is the rate

of strain tensor, such that ∇v = E + Ω. For an oscillatory shear deformation, H = γ̇0 cos(αt̃ )Ȟ,

where,

Ȟ =
1

2

[
(1−B−1)exey + (1 +B−1)eyex

]
. (2.4)

The first term on the right-hand-side (RHS) of (2.2) accounts for the randomization of particle

orientation due to rotational Brownian diffusion. The last terms on the RHS, in parentheses, of

(2.2) model the randomization of particle orientation due to tumbling events. Specifically, tum-

bling events are treated as a Poisson process60. Here, K(p|p′) is a conditional probability density

function characterizing a tumble from orientation p′ to orientation p, where the apostrophe indi-

cates the pre-tumble orientation, and dS ′ = sin θ′dθ′dφ′ is the pre-tumble differential solid angle.

Conservation of probability requires that,

∫
K(p|p′)dS =

∫
K(p|p′)dS ′ = 1 . (2.5)

Following Subramanian and Koch 60 , we choose

K(p|p′) =
β

4π sinh β
exp (β p · p′) , (2.6)
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where β is parameter that gauges the correlation between pre- and post-tumble configurations. In

the limit of β → 0, K = 1/4π, corresponding to uncorrelated tumbles (90° changes in orienta-

tion), and the term in parentheses on the RHS of (2.2) reduces to the relaxation-time approximation

used in the kinetic theory of gases61,62. This limit was previously investigated by Saintillan 25 for

slender, active rods in steady shear. In the limit of β → ∞, each tumbling event results in an

infinitesimal change in orientation, and thus microstructural relaxation is dominated by rotational

diffusion. This regime was investigated by Bozorgi and Underhill 57 . The inclusion of finite, non-

zero values of β allows one to account for correlated tumbles. For instance, the average change in

orientation due to tumbling (< θ >) for an E. coli cell is 58±40°54, which corresponds to β ∼ 1.5,

where60,

< θ > =
β

2 sinh β

∫ π

0

eβ cos θθ sin θdθ. (2.7)

A dimensionless conservation equation can be obtained by normalizing H by the strain-rate

amplitude (H = γ̇0H̃). Substitution of (2.3) into (2.2) yields,

∂ψ

∂t̃
+BWi∇p ·

[
(I− pp) · H̃ · pψ

]
= λ∇2

pψ −
(
ψ −

∫
K(p|p′)ψ(p′, t̃ )dS ′

)
, (2.8)

The orientation distribution function is also subject to a normalization condition,
∫
ψ(p, t)dS = 1.

2.3 Asymptotic Expansion for Linear Viscoelasticity

The conservation equation (2.8) is to be addressed in the limit of weak deformation rate, Wi� 1.

In this regime, the microstructure remains in a near-equilibrium state, and the orientation distribu-

tion function can be expressed as a regular perturbation expansion,

ψ(p, t) =
1

4π

(
1 +Wiψ1(p, t) +O(Wi2)

)
, (2.9)
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where Wiψ1 represents the leading order departure from equilibrium. Substitution of (2.9) into

(2.8) yields,

∂ψ1

∂t̃
= 3B cos(αt̃ ) pp : Ě + λ

[
(I− pp) :

∂2ψ1

∂p∂p
− 2p · ∂ψ1

∂p

]
−
(
ψ1 −

∫
Kψ1(p

′, t̃ )dS ′
)
,

(2.10)

subject to
∫
ψ1dS = 0. Here, E = γ̇0 cos(αt̃ )Ě and Ě = 1

2
(exey + eyex). The solution to (2.10)

should oscillate at the input frequency, α, and linearly depend on the imposed flow through the

quadrupolar forcing 3B cos(αt̃ ) pp : Ě, which acts to align the microstructure along the principle

axes of strain. Hence, we pose,

ψ1(p, t̃ ) =
(
h1eiαt̃ + ĥ1e−iαt̃

)
pp : Ě, (2.11)

where hatted quantities indicate complex conjugates. Substitution of (2.11) into (2.10) yields an

algebraic equation for h1, with solution,

h1 =
3B

2

[
1− J(β) + 6λ− iα

α2 +
(
1− J(β) + 6λ

)2
]
, (2.12)

where i =
√
−1 and

J(β) =
(3 + β2) sinh β − 3β cosh β

β2 sinh β
. (2.13)

To determine (2.12) and (2.13), we have used the result:
∫
Kp′p′ : Ě dS ′ = J(β)pp : Ě. A

derivation of this relation can be found in Appendix B of Subramanian and Koch 60; in their equa-

tion (B8), the coefficient of sinh β is incorrect and should read −(3β2 + 6). The expression in

(2.13) is even and is bounded by J(β) = [0, 1), corresponding to β = [0,±∞). Next, we utilize

our asymptotic solution to the orientation distribution function to calculate the linear viscoelasticity

of the suspension.
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2.4 Linear Viscoelasticity

The particle contribution to the deviatoric stress of the suspension (τ p) is obtained from an ensem-

ble average of the stresslet, which can be decomposed into three contributions arising from: the

imposed flow (τ F ), rotational Brownian motion (τB), and the active nature (self-propulsion) of

the particles (τA),

τ p = τ F + τB + τA. (2.14)

The contribution from the imposed flow is given by11,12,

τ F

2µsc
= 2AH〈pppp〉 : E + 2BH

(
E · 〈pp〉+ 〈pp〉 · E +

2 I

3
E : 〈pp〉

)
+ CHE (2.15)

where the angled brackets are orientational averages,

〈pp〉 =

∫
ppψ(p, t̃ )dS, (2.16)

and similarly for 〈pppp〉. The torque generated from rotational Brownian motion leads to the

following stress contribution11,12,

τB = 2µscFHDr

(
〈pp〉 − I

3

)
. (2.17)

Here, AH , BH , CH , and FH are known scalar functions of the particle aspect ratio, r,11,12. Finally,

the self-propulsion of the particles exerts a force-dipole onto the fluid, resulting in the active stress

contribution63,

τA = nσ0

(
〈pp〉 − I

3

)
, (2.18)

16



where σ0 is a scalar dipole strength, in units of energy. The sign of σ0 indicates the mechanism of

self-propulsion (i.e. σ0 < 0 for pushers and σ0 > 0 for pullers) and the magnitude of σ0 scales

with the swimming speed of the particle63.

Substitution of (2.11) and (2.12) into (2.15), (2.17), and (2.18) yields for the shear component

of the stress, τyx,

τFyx
γ̇0µsc

=

(
4AH
15

+
2BH

3
+ CH

)
cos(αt̃ ) +O(Wi), (2.19)

τByx
γ̇0µsc

=
2FHBλ

5

[
1− J(β) + 6λ

α2 +
(
1− J(β) + 6λ

)2 cos(αt̃ ) (2.20)

+
α

α2 +
(
1− J(β) + 6λ

)2 sin(αt̃ )

]
+O(Wi),

and

τAyx
γ̇0µsc

=
zB

5

[
1− J(β) + 6λ

α2 +
(
1− J(β) + 6λ

)2 cos(αt̃ ) (2.21)

+
α

α2 +
(
1− J(β) + 6λ

)2 sin(αt̃ )

]
+O(Wi).

Note that the shear component of the stress is all that is obtained from linear viscoelasticity; normal

stress differences can be obtained at O(Wi2), requiring knowledge of ψ2. Here, z = σ0τ/µsVp

is a dimensionless dipole moment and Vp is the volume of a single particle. For λ < 1 (λ > 1),

the frequency of tumbling is greater (less) than the frequency of rotational Brownian motion; the

dominant relaxation mechanism is tumbling (rotational Brownian motion). The overall particle

contribution to the deviatoric stress can be expressed as the sum of a viscous and elastic response,

τ pyx
γ̇0

= η′(α) cos(αt̃ ) + η′′(α) sin(αt̃ ) +O(Wi), (2.22)

where η′ and η′′ are the viscous and elastic components of the complex viscosity (η∗ = η′ + iη′′),
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Figure 2.1: Effect of correlated tumbling (β 6= 0) on: (a) the viscous and (b) elastic components of the
complex viscosity for λ = 0.5. Here, η′∞ = 4AH/15 + 2BH/3 + CH is the viscous complex viscosity in
the limit of α → ∞. Correlated tumbling events increase the magnitude of the Brownian and active stress
contribution at small to moderate frequency values (α . 10), resulting in an increased magnitude of the
viscous and elastic components.

respectively, which are given by,

η′

µsc
=

4AH
15

+
2BH

3
+ CH +

B

5
(2FHλ+ z)

1− J(β) + 6λ

α2 +
(
1− J(β) + 6λ

)2 , (2.23)

and

η′′

µsc
=
B

5
(2FHλ+ z)

α

α2 +
(
1− J(β) + 6λ

)2 . (2.24)

Figure 2.1 shows the effect of correlated tumbling (β 6= 0) on the magnitude of the viscous and

elastic components of the complex viscosity. Correlated tumbling events increase the magnitude

of the Brownian and active stress response, compared to uncorrelated tumbling events, at small

and moderate frequency values (α ≤ O(10)).

Since z can be positive or negative, depending on the mechanism of self-propulsion, we can

define a critical dipole strength, z∗, at which the particle contribution to the zero-frequency viscous
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complex viscosity is zero (η′(0) = 0),

z∗ =
5

B
(
1− J(β) + 6λ

) (4AH
15

+
2BH

3
+ CH

)
+ 2FHλ, (2.25)

which is positive for prolate spheroids and negative for oblate spheroids, the latter sinceB, FH < 0

for r < 1. Thus, a dispersion of prolate pushers with dipole strength z < −z∗ can have a neg-

ative contribution to the overall viscosity of the suspension, as previously predicted25,55,56 and

observed26,52,53. However, we are not aware of prior experimental work indicating a negative con-

tribution to the overall viscosity for oblate pullers, as is predicted here.

Figure 2.2 shows a schematic representation of the stresslet (force dipole exerted by the par-

ticle onto the fluid) for a prolate spheroid subject to a shear flow. The passive contribution to

the stresslet, resulting from the imposed flow and Brownian rotation, always results in a com-

pressional stresslet and therefore a positive contribution to the suspension viscosity. However,

the active contribution, arising from the thrust force and compensating drag force generated from

self-propulsion, can result in either a compressional or extensional stresslet, depending on the

mechanism of self-propulsion. Prolate pullers, which generate thrust from the front, always have

a compressional active stresslet, and therefore a compressional overall stresslet (Figure 2.2a) and

positive contribution to the suspension viscosity. Weak prolate pushers, which generate thrust from

behind and are characterized by the dipole strength −z∗ < z < 0, will have an extensional active

stresslet, but a compressional overall stresslet (Figure 2.2b). This results in a positive contribution

to the suspension viscosity, but the magnitude of the viscosity increase is less than that of a passive

suspension. Strong prolate pushers, characterized by z < −z∗ < 0, will have an extensional active

stresslet of greater magnitude than the passive stresslet contribution, resulting in an extensional

overall stresslet (Figure 2.2c) and a negative contribution to the suspension viscosity. Note that the

overall viscosity of the suspension (η), which includes the contribution of the suspending medium

(µs), will remain positive for a dilute suspension of prolate pullers or pushers, regardless of the

magnitude of the dipole, as η = µs + c ηp, where ηp is the particle contribution to the overall
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viscosity and c (� 1) is the particle volume fraction

The linear relaxation modulus, GI(s), is defined as17,

GI(s) =
2

π

∫ ∞
0

η′(α) cos(αs)ds, (2.26)

and can be determined from (2.23) to be,

GI(t̃ ) =
(8AH

15
+

4BH

3
+ 2CH

)
δ(t̃ ) +

B

5

(
2FHλ+ z

)
e−
(
1−J(β)+6λ

)
t̃. (2.27)

The linear relaxation modulus has the functional form of the Jeffrey’s model: an instantaneous

response combined with stress relaxation via an exponentially fading memory, similar to that of

passive spheroids31,64,65. In contrast to a suspension of passive spheroids, the rate of stress relax-

ation, 1/tr, which is defined from the argument of the exponential in (3.55), is

1

tr
=

1

tT
+

1

tB
, (2.28)

where tT = τ/
[
1 − J(β)

]
is the time-scale of tumbling events and tB = 1/6Dr is the time-

scale of rotational Brownian motion. This combination of two stress relaxation mechanisms is

analogous to a pair of resistors in parallel in an electrical circuit, where the overall resistance of

the system (Rtotal) is the reciprocal of the sum of the reciprocal resistance of each resistor (Ri),

1/Rtotal =
∑

i 1/Ri. Here, the overall rate of stress relaxation is the sum of the reciprocal of

the time-scale of each relaxation mechanism. The combination of stress relaxation from tumbling

events and rotational Brownian motion increases the overall rate of stress relaxation, relative to a

suspension of non-Brownian, active particles or a suspension of Brownian, inactive particles.

Figures 2.3 and 2.4 depict the complex viscosity of a dilute suspension of prolate (r = 3)

and oblate (r = 0.25) spheroids, respectively, as a function of self-propulsion mechanism, z, and

relative importance of tumbling to rotational Brownian motion, λ. For both prolate and oblate

spheroids, the plateau frequency, which is defined as the frequency at which the material response
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Figure 2.2: Schematic of the stresslet for a prolate spheroid in steady shear flow for different self-propulsion
mechanisms: (a): Puller (0 < z), (b): Weak Pusher (−z∗ < z < 0), and (c): Strong Pusher (z < −z∗ < 0).
The solid black lines represent the straining component of the flow and the dashed black lines the principle
axes of strain. In the limit of Wi � 1, the flow, to leading order, acts to align the microstructure along
the principle axes of strain. The passive contribution (left, red) to the stresslet, from the imposed flow
and rotational Brownian motion, always results in a compressional force-dipole from the particle onto the
fluid. However, the active contribution (middle, green and blue) to the stresslet can be either compressional
or extensional, depending on the mechanism of self-propulsion. Thus, for pullers and weak pushers, the
overall stresslet (right, magenta) is compressional. Whereas, for strong pushers, the overall stresslet is
extensional, resulting in a negative viscosity contribution. Here, us indicates the self-propelled swimming
speed of particle.
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Figure 2.3: Viscous (η′, top) and elastic (η′′, bottom) components of the complex viscosity for a dilute
suspension of active prolate spheroids (r = 3) for 1) a puller: z = 50, 2) a weak pusher: z = −50, and 3)
a strong pusher: z = −200. Here, the ratio of tumbling frequency to rotational Brownian motion is varied:
(a): λ = 0, (b): λ = 0.1, and (c): λ = 1 and z∗ = −150.4, using λ = 1 and β = 1.

no longer changes, increases as the strength of rotational Brownian motion increases (i.e. as λ

increases). Furthermore, we also observe that prolate pullers and oblate pushers will always have

a positive viscous and elastic response, independent of frequency. Whereas, prolate pushers and

oblate pullers with a dipole strength greater than the critical dipole strength, defined in (2.25), can

have a negative viscous and elastic response at low frequency.

2.5 Comparison to Previous Work

2.5.1 Steady shear of active, slender rods (r →∞)

The particle contribution to the steady shear viscosity of a dilute suspension of active, slender rods

(r →∞) was previously calculated by Saintillan 25 for uncorrelated tumbling events (β = 0). We
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Figure 2.4: Viscous (η′, top) and elastic (η′′, bottom) components of the complex viscosity for a dilute
suspension of active oblate spheroids (r = 0.25 ) for 1) a pusher: z = −50, 2) a weak puller: z = 50, and
3) a strong puller: z = 200. Here, the ratio of tumbling frequency to rotational Brownian motion is varied:
(a): λ = 0, (b): λ = 0.1, and (c): λ = 1 and z∗ = 198.5, using λ = 1 and β = 1.

can compare these steady shear results to our linear viscoelastic response, via the Cox-Merz rule,

η(Wi) = |η∗|(α), (2.29)

which states that, forWi = α, the steady shear viscosity is equal to the magnitude of the frequency-

dependent complex viscosity. Figure 2.5 shows a comparison of the linear viscoelasticity and the

steady shear viscosity for a puller and a pusher at λ = 0.5. In Figure 2.5a, we observe that the Cox-

Merz rule holds fairly well for prolate pullers, with a qualitative agreement overall all frequencies.

For prolate pushers, which have a negative contribution to the overall viscosity of the suspension,

the Cox-Merz rule does not hold, as the magnitude of the complex viscosity is always a positive

quantity (Figure 2.5b). However, we observe agreement between the steady shear viscosity and the
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Figure 2.5: Cox-Merz rule for active suspensions. Here, we compare our theoretical prediction to that of25

(see his Figure 5a) for r →∞, β = 0, λ = 0.5 (corresponding to τ̃ = 5 and d̃r = 0.1 in the notation of25)
for (a): puller (z = 4AH ) and (b): pusher (z = −4AH ). The symbols (©, �) are the digitized numerical
results for the steady shear viscosity from Saintillan 2010. The solid line is the magnitude of the complex
viscosity, from (2.23)-(2.24), and the dot-dashed line is the viscous component of the complex viscosity,
from (2.23).

viscous component of the complex viscosity up to O(10) in the shear rate (Wi) or frequency (α).

This indicates that the particle contribution to the steady shear viscosity is akin to the linear viscous

response for an active suspension, up to moderate shear rate. That is, η(γ̇0) = η′(ω) is applicable

beyond the zero-shear and zero-frequency limit and can be viewed as a modified Cox-Merz rule

for active suspensions with a negative viscosity increment. The deviation between the steady shear

and both the viscous complex viscosity and magnitude of the complex viscosity, at larger Wi and

frequency, is consistent with passive colloidal systems59.

2.5.2 Experimental results for suspensions of E. coli

Now that we have demonstrated that a modified Cox-Merz rule is applicable to a dilute, active

suspension, at least to moderate frequency and shear rate, we can extend our comparison to an

experimental system. In Figure 2.6 we show the digitized steady shear viscosity measurements of

López et al. 26 for E. coli suspensions (symbols), which includes the contribution of the suspending

medium, compared to the viscous component of the complex viscosity (2.23), at varied volume

24



Figure 2.6: Comparison of the linear viscoelasticity of a suspension of pushers to experimental measure-
ments of the steady shear viscosity of E. coli, which include the contribution of the suspending medium, for
cell volume fractions, c, of (a): 0.11%, (b): 0.21%, (c): 0.44%, and (d): 0.67%. The symbols are experi-
mental data from López et al. 26 (see their Figure 1b) for µs = 1.4 mPa, and T = 298. The solid line is the
viscous complex viscosity in (2.23) using r = 20, τ = 0.1 s, λ = 9×10−4, and the appropriate β and z val-
ues from Table 2.1. The volume fraction-dependent values of β and z were obtained from the steady shear
viscosity measurements at Wi = 0.002 and Wi = 0.007. The dotted line is the viscous complex viscosity
from (2.23), now using β = 1.64, which was obtained from fluorescence microscopy54, and z = −155.5,
which was obtained from optical trapping measurements66.
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fractions (solid lines). The experimental parameters reported by López et al. 26 utilized in (2.23)

are: τ−1 = 10 Hz, T = 298 K, and µs = 1.4 mPa. To determine the relative frequency of

Brownian rotation to tumbling (λ), we first calculated the rotational diffusion coefficient for a

single particle10,

Dr =
kBT

4µsVp

(
r2K3(r) +K1(r)

r2 + 1

)
, (2.30)

where,

K1(r) ≡
∫ ∞
0

r ds

(r2 + s)1/2 (1 + s)2
, (2.31)

K3(r) ≡
∫ ∞
0

r ds
(r2 + s)3/2(1 + s)

, (2.32)

and kB is the Boltzmann constant. Substitution of the given values for temperature and suspending

medium viscosity, along with an estimate of aspect ratio of an E. coli cell, r = 20 (` ∼ 5 µm

and a ∼ 0.25 µm26,52,67), into (2.30) yields Dr = 0.009 s−1. Thus, λ = Dr/τ
−1 = 9 × 10−4

and tumbling is the dominant mode of microstructural relaxation. Here, the estimate of the aspect

ratio of an E. coli cell includes the length of the flagella tail that is responsible for self-propulsion

and tumbling. Next, we utilized the steady shear viscosity measurements at Wi = 0.002 and

Wi = 0.007 and the modified Cox-Merz rule via (2.23) to obtain a system of two equations

and two unknowns (β and z); solving this system of equations simultaneously obtains β and z,

which are listed for each volume fraction in Table 2.1. The dotted line in Figure 2.6 is the viscous

complex viscosity given in (2.23) for β = 1.64, corresponding to < θ >= 58°54, and z = −155.5,

corresponding to a thrust force, Fthrust = σ0/` = 0.57 pN66.

From Figure 2.6 we see a qualitative agreement between the steady shear viscosity measure-

ments of López et al. 26 and our prediction of the linear viscoelasticity, using the values of β and

z in Table 2.1 at all values of Wi and α. However, the use of β obtained from fluorescence mi-
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Table 2.1: Volume fraction-dependent self-propulsion parameters of E. coli. The values of β and z were
obtained by applying the modified Cox-Merz rule discussed in Section 5.1 and equating the steady shear
viscosity measurements of López et al. 26 atWi = 0.002 and 0.007 to the viscous component of the complex
viscosity, given in (2.23), for r = 20, τ−1 = 10 Hz, λ = 9× 10−4, µs = 1.4 mPa, and T = 298 K.

c β < θ > z Fthrust (pN)
0.11% ∞ 0° -4.2 0.015
0.21% 223 4.8° -16.9 0.062
0.44% 233 4.7° -14.5 0.053
0.67% 96 7.3° -22.9 0.084

croscopy54 and z from optical trapping of a single cell66 does not provide a reasonable agreement to

the experimental data. This suggests that the measured self-propulsion characteristics of an active

suspension are sensitive to the volume fraction of particles. Furthermore, the cell volume fractions

utilized by26 are arguably beyond the dilute regime, where hydrodynamic interactions between

cells is negligible; collective motion has been observed in suspensions of E. coli for n = O(108)

cells/mL68, which corresponds to c ∼ 0.01%. Despite the fact that the data reported by López

et al. 26 is at volume fractions above this threshold, we surprisingly observe good agreement be-

tween their experimental results and our dilute theory. Thus, the results from the SAOS of a dilute,

active suspension are able to provide the self-propulsion characteristics of active particles; namely,

the self-propulsion mechanism (pusher or puller), dipole strength (|σ0|), and correlation between

tumbling events (β).

2.6 Summary

We calculated the linear viscoelasticity of a dilute suspension of active spheroids of arbitrary as-

pect ratio subject to a SAOS deformation. The active suspension is characterized by two relax-

ation mechanisms: rotational Brownian motion and correlated tumbling. For weak deformation

(Wi � 1), the particle contribution to the stress was determined from ensemble averages of the

stresslets due to the imposed flow, rotational Brownian motion, and tumbling. From a compari-

son to the steady shear result of Saintillan 25 for slender rods, we show that a modified Cox-Merz

rule is applicable to a dilute active suspension. Furthermore, through a comparison with the ex-
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perimental results of López et al. 26 for E. coli, we demonstrated that from the SAOS of an active

suspension, one can determine the mechanism of self-propulsion (pusher or puller) and estimate

the strength of the dipole moment (|σ0|) and correlation between tumbling events (β) of the parti-

cles. A natural extension to the present work would be to quantify how correlated tumbling affects

the nonlinear rheology of an active suspension: e.g. shear-thinning (or thickening) and normal

stress coefficients.
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3. Nonlinear Relaxation Modulus via Dual-

Frequency Medium Amplitude Oscillatory

Shear

3.1 Introduction

The viscoelasticity of complex fluids is most commonly measured using oscillatory shear rheome-

try, where a fluid is subjected to a sinusoidal, simple shear deformation17. Oscillatory testing is ex-

perimentally useful as it allows one to average signals over multiple periods and avoid step changes

such as in the start-up or cessation of a flow. The strain is typically given by γ = γ0 sin(ωt), where

γ0 is the strain amplitude, ω is the oscillation frequency, and t is time. For this deformation, two

time-scales arise: 1) the flow time scale, 1/γ̇0, where γ̇0 = γ0ω is the strain-rate amplitude; and 2)

the oscillation time scale, 2π/ω. Assuming that the material is characterized by a single relaxation

time, λ, two dimensionless numbers can be obtained, which characterize the state of the stress in

the material. The first is the ratio between the relaxation and oscillation time scales, or the Deb-

orah number De = λω. The second is the ratio of the relaxation to the flow time scales, or the

Weissenberg number Wi = λγ̇0. Small amplitude oscillatory shear (SAOS) requires Wi � 1,

where the rate of relaxation (1/λ) is much greater than the rate of deformation (γ̇0), and the system

remains in a near-equilibrium state. The linear viscoelasticity of the material is probed over a range

of Deborah numbers (in practice by varying ω). In this regime, the measured stress is proportional

to the strain amplitude and will have a component in-phase and out-of-phase with the oscillatory

strain17,69.

Complex fluids are also subjected to strong deformations, where Wi is not small and nonlinear

stress responses are observed. Here, the stress is not proportional to the strain amplitude. For

example, large amplitude oscillatory shear (LAOS) has gained recent interest as a means of char-
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acterizing the nonlinear, transient stress response of complex fluids; for a sinusoidal input strain

one often observes stress waveforms with multiple frequency overtones70,71. The LAOS regime

requires that the rate of deformation is comparable to or larger than the rate of relaxation, Wi > 1.

Furthermore, the strain amplitude, γ0 = Wi/De, cannot be small. If Wi/De � 1, the rate of os-

cillation is much greater than the rate of deformation and the resulting material response is linear

in the strain amplitude72. LAOS experiments can be used to determine the nonlinear model pa-

rameters of constitutive equations, such as the Giesekus model37,73, the Doi-Edwards model74, and

the Phan-Thien/Tanner model75. LAOS can also be utilized to measure the degree of long chain

branching in polymer melts, where branching causes a resistance to the stretching of a polymer, or

strain hardening33. The combination of LAOS and 2D-SAXS allows for the kinetic study of the

orientation/reorientation in microphase-separated lamellae of block copolymers76,77. Furthermore,

LAOS can be utilized to probe the dynamics of shear banding in soft entangled materials, such as

worm-like micelle solutions37,38,78.

However, it is unclear how to utilize the information obtained from a LAOS experiment to pre-

dict the material stress response under other transient, nonlinear deformations. The primary goal

of the present paper is to address this issue. In the SAOS regime, one can determine the linear

relaxation modulus from either the in-phase or out-of-phase shear stress response via an inverse

Fourier transform17. The linear relaxation modulus can then be utilized to determine the stress re-

sponse under any small amplitude deformation history65. Beyond the small amplitude regime, the

stress response is strongly dependent on flow type. For example, a dilute suspension of orientable

particles will exhibit shear thinning behavior, but also extensional thickening of the effective vis-

cosity79. Therefore, one should not expect the response of a material subject to LAOS to be directly

applicable to predicting the response in other transient, nonlinear deformations. Thus, our goal is

to develop a framework for translating LAOS data to other time dependent deformations, which

would naturally broaden the utility of LAOS. This could be beneficial, for example, in polymer

melt processing, where the processibility of a new melt is empirically tested using industrial-scale

equipment along the entire process, which includes transient, large amplitude shear and extensional
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flows16.

One approach to modeling the nonlinear transient stress response of a complex fluid is to uti-

lize the co-rotational memory integral expansion65,80, which is applicable to “simple fluids”81. A

simple fluid satisfies four postulates: 1) the stress in a material element is solely dependent on

the past deformation of that material element; 2) the stress-deformation relationship is indepen-

dent of a rigid-body rotation (material frame indifference); 3) the material has a fading memory;

and 4) the material is isotropic at rest. Many constitutive equations satisfy these postulates, such

as the second-order fluid model, co-rotational Jeffreys model, Oldroyd eight-constant model, and

the Giesekus model1,65,82. Liquid crystalline materials, for example, would not be considered a

simple fluid as they are non-isotropic at equilibrium. The stress from the co-rotational memory in-

tegral expansion is a function of the rate of strain tensor (in a co-rotational frame of reference) and

nonlinear relaxation moduli, which are, in general, unknown for specific materials or constitutive

equations. The main result of our work is a general methodology for determining the first nonlinear

relaxation modulus from a medium amplitude oscillatory shear (MAOS) deformation. The MAOS

regime is defined by small Weissenberg number, Wi� 1, where the shear stress scales as Wi and

the normal stress differences scale asWi2; hence, the stress is asymptotically expanded inWi83,84.

We showcase our approach for a micro-mechanical model system composed of a dilute suspension

of rigid, Brownian spheroids homogeneously dispersed in a Newtonian fluid. For this model sys-

tem, we demonstrate that that a dual-frequency MAOS deformation can exactly recover the first

nonlinear relaxation modulus, referred to here as the MAOS relaxation modulus. Importantly, we

suggest that our methodology is not limited to this specific micro-mechanical model; in particular,

it could be used for other micro-mechanical models, constitutive relations, or experimental data.

This article is organized as follows. In Section 3.2 the pertinent information regarding the

co-rotational memory integral expansion is reviewed. In Section 3.3 we detail the general method-

ology for determining the MAOS relaxation modulus from a dual-frequency MAOS deformation

using specific calculations for our model system of Brownian spheroids. Using the MAOS relax-

ation modulus, we reconstruct the stress response of our model system for the start-up and cessation
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of simple shear and uniaxial extension. In Section 3.5 we discuss the experimental feasibility and

general applicability of our methodology.

3.2 Memory Integral Expansion and Nonlinear Viscoelasticity

In order to predict the nonlinear stress response of a material, a nonlinear constitutive equation that

relates the material stress response to the deformation history is required. This can be achieved by

utilizing a co-rotational memory integral expansion65,

τ (x, t) = 2

∫ t

−∞
GI(t− t′)Ě′dt′ + 2

∫ t

−∞

∫ t

−∞
GII(t− t′, t− t′′)

(
Ě′ · Ě′′ + Ě′′ · Ě′

)
dt′′dt′

(3.1)

+ 4

∫ t

−∞

∫ t

−∞

∫ t

−∞

[
2GIII(t− t′, t− t′′, t− t′′′)

(
Ě′ : Ě′′

)
Ě′′′

+ GIV (t− t′, t− t′′, t− t′′′)
(
Ě′ · Ě′′ · Ě′′′ + Ě′′′ · Ě′′ · Ě′

) ]
dt′′′dt′′dt′ + . . . ,

where τ (x, t) is the deviatoric stress at the current position x of a material element at time t;

GI , GII , GIII, . . . . are relaxation moduli, which are material parameters and independent of the

imposed deformation; Ě is the rate of strain tensor in a co-rotating frame of reference (Figure 3.1);

and t′, t′′, t′′′, . . . . are sequential past times in the deformation history (−∞ < t′′′ ≤ t′′ ≤ t′ < t).

The nonlinearity in (3.1) arises due to the contractions of the co-rotational rate of strain tensors.

The co-rotational rate of strain tensor is,

Ě′ = Ě(x, t, t′) = R(x, t, t′) · E(x, t′) ·RT (x, t, t′), (3.2)

where the superscript “T ” denotes the matrix transpose and E(x, t′) is the rate of strain tensor in a

fixed Cartesian frame,

E(x, t′) =
1

2

[
∇v(x, t′) + (∇v(x, t′))T

]
. (3.3)

Here, v(x, t′) is the velocity of a fluid element in a fixed Cartesian frame at past time t′. Finally,

R is a matrix that describes the rotation of a fluid element x from time t′ to t. The rotation matrix
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is defined as,

R(x, t, t′) = I−
∫ t

t′
Ω′′dt′′ +

∫ t

t′

∫ t

t′′
Ω′′′ ·Ω′′dt′′′dt′′ (3.4)

−
∫ t

t′

∫ t

t′′

∫ t

t′′′
Ωiv ·Ω′′′ ·Ω′′dtivdt′′′dt′′ + . . . .

Here, I is the identity matrix and Ω′′ = Ω(x, t′′) is the vorticity tensor (∇v = E + Ω) of a fluid

element at a past time t′′.

Figure 3.1: Sketch of velocity streamlines for steady simple shear in a fixed frame (v = γ̇0yex) and co-
rotational frame (v = (γ̇0/2)

[(
x sin(γ̇0t) + y cos(γ̇0t)

)
ex +

(
x cos(γ̇0t)− y sin(γ̇0t)

)
ey
]
). An observer in

the co-rotational frame of reference moves with the local fluid vorticity, ensuring that the reported stress is
independent of a rigid-body rotation65. In steady shear the observer sees a time dependent extensional flow
that oscillates with period 2π/γ̇0.

Equation (3.1) is capable of describing rheological phenomena for many “simple fluids,” as

discussed above, including materials of practical interest: e.g. colloidal dispersions or polymer

solutions. However, the main challenge is in determining – either experimentally or theoretically

– the relaxation moduli for a given material. In the linear viscoelastic regime, Wi � 1, (3.4) can
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be approximated as the identity matrix, to leading order. Thus, (3.1) simplifies to,

τ (t) = 2

∫ t

−∞
GI(t− t′)E(t′)dt′ +O(|E|2), (3.5)

where GI is commonly known as the linear relaxation modulus, which can be determined from a

small amplitude oscillatory shear (SAOS) deformation with rate of strain tensor,

E(t′) =
γ̇0

2
cos(ωt′) (exey + eyex) , (3.6)

where ex, ey, and ez are Cartesian unit vectors in the flow, flow-gradient, and vorticity directions,

respectively. Substitution of (3.6) into (3.5) yields for the shear stress,

τyx = γ̇0

[
η′(ω) cos(ωt) + η′′(ω) sin(ωt)

]
+O(γ̇20 ), (3.7)

where,

η′(ω) =

∫ ∞
0

GI(s) cos(ωs)ds, (3.8)

and

η′′(ω) =

∫ ∞
0

GI(s) sin(ωs)ds. (3.9)

Here, η′(ω) and η′′(ω) are the real and imaginary components of the complex viscosity and are

related to the viscous and elastic nature of the material, respectively. The relations in (3.8) and

(3.9) are the Fourier cosine and sine transforms, respectively, of the linear relaxation modulus.

Therefore, the shear stress response from a SAOS deformation can be used to determine the linear

relaxation modulus by an inverse Fourier cosine (sine) transform of the out-of-phase (in-phase)
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Table 3.1: Viscometric functions for three steady flows determined from (3.1). The fluid velocity is defined
as follows. Simple shear, v = γ̇0(y, 0, 0); planar extension, v = ε̇(x/2,−y/2, 0); and uniaxial extension,
v = (ε̇/2

√
3)(−x,−y, 2z). The viscosity is defined in (3.11) and the normal stress differences, N1 and N2,

are defined as, N1 = τxx − τyy and N2 = τyy − τzz . The linear relaxation modulus, GI , only gives the
leading order expression for these functions. The MAOS relaxation modulus, GII , provides a correction to
N2 in simple shear and µe in uniaxial extension.

Steady Flow Viscometric Function

Simple
Shear

µ =

∫ ∞
0

GI(s) cos(γ̇0s)ds+O(γ̇20 )

N1 = 2γ̇0

∫ ∞
0

GI(s) sin(γ̇0s)ds+O(γ̇30 )

N2 = −γ̇0

∫ ∞
0

GI(s) sin(γ̇0s)ds+ γ̇20

∫ ∞
0

∫ ∞
0

GII(s, q) cos[γ̇0(q − s)]dqds

+O(γ̇30 )

Planar
Extension

µe =

∫ ∞
0

GI(s)ds+O(ε̇2)

Uniaxial
Extension

µe =

∫ ∞
0

GI(s)ds+
ε̇√
3

∫ ∞
0

∫ ∞
0

GII(s, q)dqds+O(ε̇2)

frequency-dependent stress response. That is,

GI(s) =
2

π

∫ ∞
0

η′(ω) cos(ωs)dω =
2

π

∫ ∞
0

η′′(ω) sin(ωs)dω. (3.10)

The results from SAOS (η′ or η′′) can be utilized to recover GI(t), which can then be used in (3.5)

to determine the material stress response to an arbitrary small amplitude deformation history. How-

ever, the linear relaxation modulus cannot describe the stress response beyond the small amplitude

limit. For example, Table 3.1 shows the relevant viscometric functions for three steady flows: sim-

ple shear, planar extension, and uniaxial extension, as calculated from (3.1). The viscosity of each

flow is defined as,

µ =
τ : E

2(E : E)
(3.11)
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where
√

2(E : E) is the characteristic rate of deformation, which is the strain-rate amplitude, γ̇0,

for shear flow and the rate of extension, ε̇, for extensional flows79. It is evident that the linear re-

laxation modulus, GI , gives the leading order terms of the second normal stress difference in shear

and the extensional viscosity from uniaxial extension. However, the MAOS relaxation modulus,

GII , is required to determine higher order contributions in the strain-rate amplitude. A general

methodology to determine GII , from a MAOS deformation, is the main outcome of this work.

Note that Table 3.1 gives the steady viscometric functions for three idealized flows that are con-

venient for experimental testing. However, in practical applications one would likely have mixed,

transient flows for which, in general, GII provides the first nonlinear stress response.

The linear relaxation modulus, which is a function of a single past time of the deformation

history, can be determined from (3.5)-(3.10) via a single frequency-dependent input strain and 1-

D inverse Fourier Transform, as discussed above. From (3.1), it is evident that the next term in

the co-rotational memory integral expansion requires a relaxation modulus that is a function of two

independent past times of the deformation history,GII(t−t′, t−t′′). Therefore, we require a defor-

mation that oscillates at two independent frequencies, such that a two-dimensional inverse Fourier

Transform can be applied. We will consider a parallel superposition, dual-frequency oscillatory

shear deformation,

E(t′) =
γ̇0

2

[
cos(ω1t

′) + cos(ω2t
′)
]

(exey + eyex) , (3.12)

where ω1 and ω2 are chosen such that the flow is described by a single strain-rate amplitude,

γ̇0 = γ1 ω1 = γ2 ω2. Here, γ1 and γ2 are the individual harmonic strain amplitudes, such that

the overall strain is given by, γ(t) = γ1 sin(ω1t) + γ2 sin(ω2t).

When a linear amplifier is subjected to an input oscillation at two frequencies, ω1 and ω2, the

output response will oscillate at the frequencies ω1 and ω2. However, a nonlinear amplifier will

have both a linear and nonlinear output response. The linear response will, again, oscillate at the

applied frequencies ω1 and ω2. In contrast, the nonlinear response will oscillate at twice the applied
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frequencies, 2ω1 and 2ω2, along with oscillations at “combination tones,” ω1±ω2. This phenomena

is commonly observed in musical instruments and the cochlea of the inner ear85,86. Complex

fluids, when subjected to an oscillating input strain above a critical strain amplitude, also exhibit

a nonlinear stress response. This is observed, for instance, in electrorheological (ER) fluids87,

solutions of tri-block copolymers88, and suspensions of worm-like micelles89. In the following

sections we demonstrate that it is the stress response of a complex fluid at these combination tones

that allow one to determine the MAOS relaxation modulus. Briefly, the general methodology

for determining the MAOS relaxation modulus, GII , is: 1) Evaluate the co-rotational memory

integral expansion in (3.1) for a dual-frequency MAOS deformation (Section 3.3.1); 2) Calculate

(or measure) the shear stress and second normal stress difference of the material subjected to

a dual-frequency MAOS deformation (Section 3.3.2); 3) Compare the calculated (or measured)

stress response to the co-rotational memory integral expansion to determine GI and GII (Section

3.3.3). Once the relaxation moduli are determined, one can then predict nonlinear rheological

properties in other transient flows (Section 3.4).

Before continuing, we note that a co-rotational frame of reference is not the only objective

frame that can be used in a memory integral expansion. One can also use a co-deformational (or

convective) memory integral expansion90–92 for which the stress is,

τ (x, t) =

∫ t

−∞
GI(t− t′)γ [1]′dt′+ (3.13)

1

2

∫ t

−∞

∫ t

−∞
GII(t− t′, t− t′′)

(
γ [1]′ · γ [1]′′ + γ [1]′′ · γ [1]′

)
dt′′dt′+

1

2

∫ t

−∞

∫ t

−∞

∫ t

−∞

[
2GIII(t− t′, t− t′′, t− t′′′)γ [1]′

(
γ [1]′′ : γ [1]′′′

)
+ GIV (t− t′, t− t′′, t− t′′′)

(
γ [1]′ · γ [1]′′ · γ [1]′′′ + γ [1]′′′ · γ [1]′′ · γ [1]′

) ]
dt′′′dt′′dt′ + . . . ,

where, γ [1]′ = γ [1](x, t, t′) is the rate of strain tensor in a frame of reference deforming with a

fluid element65. For example, for a transient shear flow of the form vx = f(t)y, vy = vz = 0, the
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co-deformational rate of strain tensor is,

γ [1]′ = f(t′)

(
exey + eyex + 2 eyey

∫ t′

t

f(s)ds

)
. (3.14)

For a dual-frequency MAOS deformation, the shear stress and second normal stress difference

from the co-rotational and co-deformational memory integral expansions are equivalent toO(Wi2)

in the weakly nonlinear regime. In the following sections, we demonstrate that the linear and

MAOS relaxation moduli are determined from the shear stress and second normal stress difference,

respectively. Therefore, one can determine the linear and MAOS relaxation moduli by using the

memory integral expansion in either frame of reference, since both will recover the same results.

However, when predicting the stress response, the choice of frame of reference becomes important.

Both expansions represent the stress of a rheologically simple fluid and will predict the same

stress response if an infinite number of terms in the expansions could be retained. Obviously, this is

impractical and only a finite number of terms in either expansion can be retained (or even obtained),

resulting in a different stress response for each expansion, as the scalar products of the rate of strain

tensors in each frame of reference are, in general, unequal. The convergence properties of (3.1)

and (3.13) were analyzed by Bird et al. 93 for a dilute suspension rigid dumbbells in steady simple

shear and steady uniaxial extension. They found that the co-rotational memory integral expansion

has a higher rate of convergence than the co-deformational memory integral expansion under both

flow conditions; that is, fewer relaxation modulii in the co-rotational expansion, compared to the

co-deformational expansion, are required to achieve a qualitatively accurate result, compared to

a numerical approximation94. We suggest that the co-rotational frame of reference in (3.1) might

be best suited for materials composed of a rigid microstructure, such as rigid Brownian spheroids,

considered herein, where the particles are affected by the rotation and strain of the imposed flow,

but are incapable of stretching. Whereas, the co-deformational frame of reference in (3.13) might

be best suited for materials composed of a deformable microstructure, such as a polymer solution,

where the flexible polymer chains are also capable to stretch or deform under an imposed flow.
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3.3 General Framework

3.3.1 Co-rotational Memory Integral Expansion for Dual-Frequency MAOS

The rotation matrix, R(x, t, t′) for a homogenous, unsteady shear flow of the form vx(t) = f(t)y,

vy = vz = 0 is65,

R(t, t′) = cos

(
1

2

∫ t

t′
f(s)ds

)
(exex + eyey) + (3.15)

sin

(
1

2

∫ t

t′
f(s)ds

)
(exey − eyex) + ezez.

For a dual-frequency MAOS deformation, f(t) = γ̇0 [cos(ω1t) + cos(ω2t)] and (3.15) becomes,

R(t, t′) = cos

(
γ̇0

2
P ′
)

(exex + eyey) + sin

(
γ̇0

2
P ′
)

(exey − eyex) + ezez, (3.16)

where

P ′ = P (t, t′) =
sin(ω1t)− sin(ω1t

′)

ω1

+
sin(ω2t)− sin(ω2t

′)

ω2

. (3.17)

Substitution of (3.12) and (3.16) into (3.2) yields the co-rotational rate-of-strain tensor for a dual-

frequency MAOS deformation,

Ě(t, t′) =
f(t′)

2

{
sin (γ̇0P

′) (exex − eyey) + cos (γ̇0P
′) (exey + eyex)

}
. (3.18)

The shear stress, τyx, is determined by substituting (3.18) into (3.1) and performing a Taylor ex-

pansion about small strain amplitude (γ̇0/ω1 � 1 and γ̇0/ω2 � 1), yielding

τyx
γ̇0

= cos(ω1t)

∫ ∞
0

GI(s) cos(ω1s)ds+ sin(ω1t)

∫ ∞
0

GI(s) sin(ω1s)ds (3.19)

+ cos(ω2t)

∫ ∞
0

GI(s) cos(ω2s)ds+ sin(ω2t)

∫ ∞
0

GI(s) sin(ω2s)ds+O(γ̇20 ).
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Similarly, the second normal stress difference (N2 = τyy − τzz) is determined from (3.1) and

(3.18) as,

N2(ω1, ω2, t) = F0(ω1, ω2) (3.20)

+ F1(ω1, ω2) cos(2ω1t) +H1(ω1, ω2) sin(2ω1t)

+ F2(ω1, ω2) cos(2ω2t) +H2(ω1, ω2) sin(2ω2t)

+ F3(ω1, ω2) cos
[
(ω1 + ω2)t

]
+H3(ω1, ω2) sin

[
(ω1 + ω2)t

]
+ F4(ω1, ω2) cos

[
(ω1 − ω2)t

]
+H4(ω1, ω2) sin

[
(ω1 − ω2)t

]
+O(γ̇30 ),

where Fi and Hi are scalar coefficients that depend on the input frequencies, ω1 and ω2, and the

relaxation moduli. Full expressions for these coefficients can be found in Appendix 3.A.1. The

relevant coefficient, for the purposes of this work, is the term proportional to the combination tone

cos[(ω1 + ω2)t]; specifically,

F3

γ̇0/2
=

(
1

ω1

+
1

ω2

)∫ ∞
0

GI(s) sin
[
(ω1 + ω2)s

]
ds−

∫ ∞
0

GI(s)

(
sin(ω2s)

ω1

+
sin(ω1s)

ω2

)
ds

+

∫ ∞
0

∫ ∞
0

GII(s, q)
[

cos(ω1s+ ω2q) + cos(ω1q + ω2s)
]
dsdq (3.21)

The first two terms in equation (3.21) depend on the linear relaxation modulus, which can be deter-

mined from the shear stress response in (3.19). The last term in equation (3.21) is the summation

of two two-dimensional Fourier cosine transforms of GII . Therefore, GII can be determined from

a two-dimensional inverse Fourier cosine transform of the scalar function F3, less the dependence

on GI , as detailed in Section 3.A.3,

GII(s, q) =
4

π2

∫ ∞
0

∫ ∞
0

F (ω1, ω2)
[

cos(ω1s+ ω2q) + cos(ω2s+ ω1q)
]
dω2dω1, (3.22)
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where,

F =
F3

γ̇0/2
+

∫ ∞
0

GI(s)

(
sin(ω2s)

ω1

+
sin(ω1s)

ω2

)
ds (3.23)

−
(

1

ω1

+
1

ω2

)∫ ∞
0

GI(s) sin[(ω1 + ω2)s]ds.

The key point is that it is the second normal stress difference in simple shear that contains informa-

tion aboutGII . Therefore, one requires the ability to determine the second normal stress difference

under a dual-frequency MAOS deformation in order to recover GII for a given material. A com-

plimentary analysis, where the overall strain is the difference between two independent sinusoidal

strains, γ = γ1 sin(ω1t) − γ2 sin(ω2t), can be utilized to recover the same MAOS relaxation mod-

ulus. In this case, the relevant coefficient is F4(ω1, ω2), but the subsequent analysis would remain

unchanged. Next, we determine the stress response of a dilute suspension of Brownian spheroids

subject to a dual-frequency MAOS deformation; specifically, the shear stress and second normal

stress difference.

3.3.2 Micromechanics of a Dilute Suspension of Rigid Spheroids

Problem Set-up

The model system utilized is a dilute, homogeneous ensemble of force and couple-free, Brownian,

rigid spheroids in a Newtonian fluid of viscosity µs and density ρ. The spheroidal particles are

characterized by an aspect ratio, r, defined as the ratio of the major (`) to minor (a) axes, r = `/a.

The hydrodynamic sphericity of the particles is characterized by the Bretherton constant,

B =
r2 − 1

r2 + 1
, (3.24)

which is positive for prolate spheroids, negative for oblate spheroids, and zero for spheres. The

suspension is assumed to be dilute, c = 4πn`a2/3 � 1, where c is the particle volume fraction

and n is the number density of particles, such that interparticle interactions can be neglected.
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The stochastic nature of the Brownian forces on the spheroidal particles requires a statistical

description of the microstructure. A useful measure is the orientation distribution function, ψ(p, t),

where the quantity ψ(p, t) sin θdθdφ represents the probability of finding a particle ensemble in a

differential region about (θ, φ)11,12,65. Here, p is the orientation unit vector parameterized in spher-

ical polar coordinates. The orientation distribution function satisfies a conservation, or Fokker-

Planck, equation,
∂ψ

∂t
+∇p · (ṗψ) = 0, (3.25)

where ∇p is the surface gradient operator and ṗ is the temporal evolution of the particle orienta-

tion12,13,

ṗ = B(I− pp) ·H · p−Dr∇p lnψ. (3.26)

Here, I is the identity matrix, Dr is the rotary diffusion coefficient, and H = B−1Ω + E. For a

dual-frequency MAOS deformation, H = γ̇0 [cos(ατ) + cos(βτ)] G, where,

G =
1

2

[ (
1−B−1

)
exey +

(
1 +B−1

)
eyex

]
(3.27)

and α and β are the oscillation frequencies scaled by the rotary diffusion coefficient (α = ω1/Dr,

β = ω2/Dr), and τ is dimensionless time (τ = tDr). A dimensionless conservation equation can

be obtained by normalizing H by the shear rate amplitude (H̃ = H/γ̇0). Furthermore, substitution

of (3.26) into (3.25) yields,

∂ψ

∂τ
+Wi∇p ·

[
(I− pp) · H̃ · pψ

]
= ∇2

pψ, (3.28)

where Wi = Bγ̇0/Dr is a Weissenberg number whose magnitude describes the extent to which

the system is disturbed from equilibrium by the imposed deformation. Note that Wi is signed

because of its dependence on B, where B = [−1, 1]. At small |Wi|, where Brownian rotation

acts on a faster time scale than the imposed flow, the particle orientation is nearly uniform. At

large |Wi|, the imposed flow acts on a faster time scale than Brownian rotation and the particles
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essentially follow Jeffery orbits in the imposed flow, leading to a highly non-uniform orientation

distribution10. Finally, the orientation distribution function satisfies the normalization condition,

∫ 2π

0

∫ π

0

ψ(p, τ) sin θdθdφ = 1. (3.29)

Regular Perturbation Expansion

The conservation equation (3.28) is to be addressed in the limit of weak deformation rate, |Wi| �

1. In this regime, the system is only slightly disturbed by the imposed deformation and Brow-

nian rotation dominates to achieve a near-equilibrium microstructure. Therefore, the orientation

distribution function can be written as a regular perturbation expansion about small Wi,

ψ(p, t) =
1

4π

(
1 +Wiψ1 +Wi2 ψ2

)
+O(Wi3), (3.30)

where ψ1 and ψ2 represent the linear and weakly nonlinear departures from equilibrium, respec-

tively. Substitution of (3.30) into (3.28) yields a hierarchy of equations for each term in the expan-

sion95,

∂ψi
∂τ
−∇p ·

∂ψi
∂p

+ 2p · ∂ψi
∂p

= (pp : H)

(
3ψi−1 + p · ∂ψi−1

∂p

)
− (H · p) · ∂ψi−1

∂p
, (3.31)

subject to, ∫ 2π

0

∫ π

0

ψi sin θdθdφ = 0, (3.32)

for i = 1, 2, . . . .

The linear solution to (3.31) (i = 1) should oscillate at the input frequencies, α and β, such

that,

ψ1 = f1,αe
iατ + f̂1,αe

−iατ + f1,βe
iβτ + f̂1,βe

−iβτ , (3.33)
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where hatted quantities indicate complex conjugates. Substitution of (3.33) into (3.31) yields,

ψ1 =
(
h1(α)eiατ + ĥ1(α)e−iατ + h1(β)eiβτ + ĥ1(β)e−iβτ

)
pp : G, (3.34)

where,

h1(α) =
3

2

6− iα
α2 + 36

. (3.35)

Unsurprisingly, the first order approximation to the orientation distribution function for a dual-

frequency MAOS deformation is a linear superposition of the solution obtained for a single-

frequency SAOS deformation at each frequency. Here, the material is acting as a ‘linear amplifier.’

Substitution of (3.34) into (3.31) for i = 2 yields,

∂ψ2

∂τ
+ (2p−∇p) · ∂ψ2

∂p
= h(α, β, τ)

[
5

2
(pp : S)2 − (p · S · S · p)− (p · S ·A · p)

]
, (3.36)

where,

h = h1(α)
(

1 + e2iατ + ei(α+β)τ + ei(α−β)τ
)

+ ĥ1(α)
(

1 + e−2iατ + e−i(α+β)τ + e−i(α−β)τ
)

(3.37)

+ h1(β)
(

1 + e2iβτ + ei(α+β)τ + e−i(α−β)τ
)

+ ĥ1(β)
(

1 + e−2iβτ + e−i(α+β)τ + ei(α−β)τ
)
,

and S and A are the symmetric and anti-symmetric components of G, respectively. From (3.36)

and (3.37) we postulate that ψ2 to be of the form,

ψ2 = f2,0 + f2,αe
2iατ + f2,βe

2iβτ + f2,se
i(α+β)τ + f2,de

i(α−β)τ + c.c. , (3.38)

where, ‘c.c.’ denotes complex conjugate solutions. Substitution of (3.38) into (3.36) yields,

ψ2 = T (α, β, τ)(S : S) + U(α, β, τ)(p · S · S · p) (3.39)

+ V (α, β, τ)(p · S ·A · p) +W (α, β, τ)(pp : S)2,
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where,

T (α, β, τ) = T0 + Tαe
2iατ + Tβe

2iβτ + Tse
i(α+β)τ + Tde

i(α−β)τ + c.c. , (3.40)

and similarly for U(α, β, τ), V (α, β, τ), and W (α, β, τ). Expressions for the scalar coefficients

Tk, Uk, Vk, and Wk can be found in Section 3.A.2. Next, we utilize our asymptotic solution to

the orientation distribution function to determine the deviatoric stress response arising from the

particles.

Stress Response

The deviatoric stress due to the addition of particles (τ p) is determined from an ensemble average

of the stresslet12,

τ p

2µsc
= 2AHE : 〈pppp〉+ 2BH

(
E · 〈pp〉+ 〈pp〉 · E +

2

3
E : 〈pp〉I

)
(3.41)

+ CHE + FHDr

(
〈pp〉 − 1

3
I

)
,

where the angled brackets denote orientational averages,

〈pp〉 =

∫ 2π

0

∫ π

0

ppψ(p, τ) sin θdθdφ, (3.42)

and

〈pppp〉 =

∫ 2π

0

∫ π

0

ppppψ(p, τ) sin θdθdφ. (3.43)

The coefficients AH , BH , CH , and FH are known scalar functions of the particle aspect ratio11,12.

Substitution of (3.34) and (3.39) into (3.41) yields,

τ p

2µscγ̇0

= S1Ẽ +Wi
[
S2(Ẽ · Ẽ) + S3

(
Ẽ · Ω̃ + Ω̃

T · Ẽ
) ]

+O(Wi2) (3.44)
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where, Ẽ and Ω̃ are the spatial components of the rate of strain and vorticity tensors, respectively,

defined as,

E = γ̇0

[
cos(ατ) + cos(βτ)

]
Ẽ (3.45)

and

Ω = γ̇0

[
cos(ατ) + cos(βτ)

]
Ω̃. (3.46)

For a shear deformation, Ẽ = (eyex + exex)/2 and Ω̃ = (eyex− exex)/2 . The scalar coefficients

in (3.44), S1, S2, and S3, are given by,

S1 =

(
4AH
15

+
4BH

3
+ CH

)[
cos(ατ) + cos(βτ)

]
(3.47)

+
2FHB

5

[
6 cos(ατ) + α sin(ατ)

α2 + 36
+

6 cos(βτ) + β sin(βτ)

β2 + 36

]
,

S2 =

(
8AH
105

+
4BH

15

)
h(α, β, τ) +

2FHB

105

(
7U(α, β, τ) + 4W (α, β, τ)

)
, (3.48)

and

S3 =
FH
15
V (α, β, τ). (3.49)

From (3.44) and (3.47)–(3.49) the shear stress is S1/2 and the second normal stress difference

is,

N2 =
µscγ̇0Wi

15

{(
4AH

7
+ 2BH

)
h+ FH

[
B

(
U +

4W

7

)
− V

]}
+O(Wi2), (3.50)
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which can be expanded as,

N2

µscγ̇0Wi
= K0 +K1 cos(2ατ) + L1 sin(2ατ) + K2 cos(2βτ) + L2 sin(2βτ) (3.51)

+ K3 cos[(α + β)τ ] + L3 sin[(α + β)τ ] +K4 cos[(α− β)τ ] + L4 sin[(α− β)τ ],

where Ki and Li are frequency-dependent coefficients that can be determined from the definitions

of h(α, β, τ), U(α, β, τ), V (α, β, τ), and W (α, β, τ) given in (3.37) and Section 3.A.2. From the

co-rotational memory integral expansion, specifically (3.20) and (3.21), the relevant contribution

to N2 is the term proportional to cos[(α + β)τ ]; namely K3,

K3 =

(
24AH

35
+

12BH

5

)
α2 + β2 + 72

(α2 + 36)(β2 + 36)
(3.52)

+
FH
5

(
1 +

3B

7

)[
2592− αβ[(α + β)2 + 72]

(α2 + 36)(β2 + 36) [(α + β)2 + 36]

]
.

Now that the shear stress and second normal stress difference for a dilute suspension of Brownian

spheroids subjected to a dual-frequency MAOS deformation have been determined, the linear and

MAOS relaxation moduli of this material can be resolved.

3.3.3 Determining the Relaxation Moduli

From the co-rotational memory integral expansion, the shear stress is given by (3.19), which can

be rewritten in terms of dimensionless time and frequency,

τyx
γ̇0/Dr

= cos(ατ)

∫ ∞
0

GI(s̃) cos(αs̃)ds̃+ sin(ατ)

∫ ∞
0

GI(s̃) sin(αs̃)ds̃ (3.53)

+ cos(βτ)

∫ ∞
0

GI(s̃) cos(βs̃)ds̃+ sin(βτ)

∫ ∞
0

GI(s̃) sin(βs̃)ds̃+O(γ̇30 ),
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where, s̃ = (t − t′)Dr. The shear stress determined for the micro-mechanical model system is

S1/2, given in (3.47). Comparison of the terms proportional to cos(ατ) yields,

∫ ∞
0

GI(s̃) cos(αs̃)ds̃ = µscDr

[
4AH
15

+
4BH

3
+ CH +

2FHB

5

(
6

α2 + 36

)]
, (3.54)

which is a one-dimensional Fourier Cosine transform of GI(s̃). Thus, GI(s̃) can be found by

applying the inverse Fourier Cosine transform to the right-hand-side of (3.54), which yields

GI(s̃)

µscDr

=

(
8AH
15

+
8BH

3
+ 2CH

)
δ(s̃) +

2FHB

5
e−6s̃. (3.55)

(3.55) has the functional form of a Jeffery’s model, which is the three-element mechanical equiva-

lent of a dashpot in series with a parallel dashpot and spring65, where rotary diffusion is acting as

the (entropic) spring.

The second normal stress difference defined from the co-rotational memory integral expansion

is given in (3.20) and the term proportional to cos[(α + β)τ ] is given by (3.21). Substitution of

(3.55) into (3.21) and normalizing time and frequency by the rotary diffusion coefficient yields,

F3 =
µscγ̇0WiFH

5

[
2592− αβ

[
72 + (α + β)2

]
(α2 + 36)(β2 + 36)

[
(α + β)2 + 36

]] (3.56)

+
γ̇20

2D2
r

∫ ∞
0

∫ ∞
0

GII(s̃, q̃)
[

cos(αs̃+ βq̃) + cos(αq̃ + βs̃)
]
ds̃dq̃,

where, q̃ = (t− t′′)Dr. Equating (3.56) to the micro-mechanical model system result (3.52) yields,

µscBDr

5

{(
8AH

7
+ 4BH

)( 6

α2 + 36
+

6

β2 + 36

)
(3.57)

+
3FHB

7

[
2592− αβ [(α + β)2 + 72]

(α2 + 36)(β2 + 36) [(α + β)2 + 36]

]}

=

∫ ∞
0

∫ ∞
0

GII(s̃, q̃)
[

cos(αs̃+ βq̃) + cos(βs̃+ αq̃)
]
ds̃dq̃.

The MAOS relaxation modulus, GII , can be resolved from the left-hand-side of (3.57) by applying
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a symmetric two-dimensional inverse Fourier Transform, as detailed in Section 3.A.3. We require

a symmetric transform as α and β are interchangeable, which is a result of prescribing a single

strain-rate amplitude (γ̇0 = γ1αDr = γ2βDr). The left-hand-side of (3.57) can be exactly inverted

to yield,

GII(s̃, q̃) =
µscDrB

5

{[(
16AH

7
+ 8BH

)
δ(s̃) +

3FHB

7
g(s̃, q̃)

]
e−6q̃

}
, (3.58)

where,

g(s̃, q̃) =

 1 s̃ ≤ q̃ <∞

0 0 ≤ q̃ < s
. (3.59)

The condition in (3.59) arises because we require each additional past time in the deformation

history to be sequentially further in the past (t′′ ≤ t′). The MAOS relaxation modulus, in the

frequency and time domain, is depicted in Figure 3.2.

Figure 3.2: MAOS relaxation modulus of a dilute suspension of Brownian rods (B = 1) in (a): frequency-
domain (left-hand-side of (3.57)) and (b): (dimensionless) time-domain, given in (3.58). In the frequency
domain there is a symmetry about α = β since α and β are interchangeable. In the limit of large frequencies,
we observe that the combination tone response decays to zero, indicating a linear material stress response.
In the time domain we observe that GII decays to 0 at long times and GII = 0 for s̃ > q̃, resulting from the
constraint that all additional past times in the deformation history must be subsequently further in the past
(t′′ ≤ t′).
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Thus, we have shown that a dual-frequency MAOS deformation can be used to recover the first

nonlinear relaxation modulus, GII , which we call the MAOS relaxation modulus. The above result

for GII is given by Abdel-Khalik et al. 64 for the particular case of rods (B = 1), albeit using a

different method than ours. They determined GII , along with higher order moduli, by consider-

ing only irrotational flows for which the rate of strain tensor in a fixed and co-rotational reference

frame are equivalent (E = Ě). However, if one were to use a co-deformational memory integral

expansion, as mentioned previously, this simplification would not be valid as the co-deformational

and fixed reference frame rate of strain tensors are not equivalent for an irrotational flow. Moreover,

from an experimental perspective, their approach would require a nonlinear, transient extensional

deformation, which is more difficult to obtain and maintain than an oscillatory shear deforma-

tion. In contrast, our methodology is not subject to such restrictions and thus can be utilized to

determine the MAOS relaxation modulus – either theoretically or experimentally – for a variety

of “simple fluids” via either memory integral expansion. Thus, we have not only generalized the

results of Abdel-Khalik et al. 64 to spheroids of arbitrary aspect ratio, but we have also utilized this

micro-mechanical model as a proof-of-concept for a general procedure of determining the MAOS

relaxation modulus of a “simple fluid.” This allows MAOS data to be used for the prediction of

the material stress response under arbitrary transient, weakly nonlinear deformations, which is

exemplified in the following section.

3.4 Prediction of Nonlinear Stress Response from MAOS Re-

laxation Modulus

Now that we have determined the linear and MAOS relaxation moduli (GI andGII), we are able to

predict the stress response of the model system to an arbitrary deformation via (3.1). However, it

is not clear a priori as to what value of the strain-rate amplitude, Wi, this prediction gives accurate

results, since, in principle, one requires many relaxation moduli93. As a basis of comparison, a nu-

merical solution to (3.28) for a transient linear flow is obtained by applying a Galerkin method79,96

and computing the stress tensor via (3.41).
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3.4.1 Start-up and Cessation of Simple Shear Flow

The co-rotational rate of strain tensor for the start-up of simple shear (v = γ̇0yex) at time τ = 0 is,

Ě+(τ, τ ′) =
γ̇0

2

{
sin

[
γ̇0

Dr

(τ − τ ′)
]

(exex − eyey) + cos

[
γ̇0

Dr

(τ − τ ′)
]

(exey + eyex)

}
, (3.60)

which is valid for 0 < τ ′ < τ . The superscript ‘+’ denotes the start-up condition. Substitution of

(3.55), (3.58), and (3.60) into (3.1) yields,

τ+yx
2µscγ̇0

=
2AH
15

+
2BH

3
+
CH
2

(3.61)

+
FHB

30

{
1− e−6τ

[
cos

(
Wi

B
τ

)
− Wi

6B
sin

(
Wi

B
τ

)]}
+O(Wi2),

N+
1

µscγ̇0

=
FHB

45

{
Wi

B
−e−6τ

[
Wi

B
cos

(
Wi

B
τ

)
+ 6 sin

(
Wi

B
τ

)]}
+O(Wi3), (3.62)

and

N+
2

µscγ̇0

=
−N+

1

2µscγ̇0

+Wi

{(
4AH
105

+
BH

30

)(
1− e−6τ

[
cos

(
Wi

B
τ

)
+
Wi

6B
sin

(
Wi

B
τ

)])

+
FHB

420

(
1− e−6τ

[
cos

(
Wi

B
τ

)
+

6B

Wi
sin

(
Wi

B
τ

)])}
+O(Wi3), (3.63)

where the normal stress differences are defined as N1 = τxx − τyy and N2 = τyy − τzz. The

leading order result for the second normal stress difference (N2 = −N1/2) is the classical result

for the co-rotational Jeffrey’s model, which is valid in the linear viscoelastic limit65. Extending the

co-rotational memory integral to the MAOS regime allows for a correction to this classical result,

which depends on GII .
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For the cessation of steady shear flow at time τ = τ ∗, the co-rotational rate of strain tensor is,

Ě−(τ, τ ′) =
γ̇0

2

{
sin

[
γ̇0

Dr

(τ ∗ − τ ′)
]

(exex − eyey) + cos

[
γ̇0

Dr

(τ ∗ − τ ′)
]

(exey + eyex)

}
,

(3.64)

which is valid for −∞ < τ ′ < τ ∗. The superscript ‘−’ denotes the cessation condition. Substitu-

tion of (3.55), (3.58), and (3.64) into (3.1) yields,

τ−yx
2µscγ̇0

=
2AH
15

+
2BH

3
+
CH
2

+
FHB

30
e−6(τ−τ

∗) +O(Wi2), (3.65)

N−1
µscγ̇0

=
FHWi

45
e−6(τ−τ

∗) +O(Wi3), (3.66)

and

N−2
µscγ̇0

=
−N−1
2µscγ̇0

+ Wi

(
4AH
105

+
BH

30
+
FHB

420

)
e−6(τ−τ

∗) +O(Wi3). (3.67)

The MAOS reconstruction results for the second normal stress difference, given in (3.63) and

(3.67), are depicted in Figure 3.3 for Wi/B = 0.5 and 3 for a dilute suspension of rods (B = 1)

and disks (B = −1). These results are also compared to a numerical solution of (3.28) and the

leading order contribution, neglecting GII (N2 = −N1/2). Here, we see that GII is required for

an accurate prediction of N2 beyond small |Wi|. For both rods and disk, qualitative agreement

between the MAOS reconstruction and numerical results is observed. Surprisingly, for rods, we

observe near quantitative agreement at Wi/B = 3, which is not small compared to unity and thus

arguably beyond the ‘weakly nonlinear’ regime.
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Figure 3.3: Second normal stress difference (N2 = τyy − τzz) for a dilute suspension of a): rigid rods (B
= 1) and (b): rigid disks (B = −1) for the start-up and cessation of simple shear flow for Wi/B = 0.5 and
Wi/B = 3. The flow is started at τ = 0 and the stress is allowed to reach a steady value. At τ = 3, the
flow is stopped and the stress relaxes back to equilibrium. The solid lines are the numerical solution to the
conservation equation and particle stress response, given in (3.28) and (3.41). The symbols are generated
from the reconstruction results that utilize the linear and MAOS relaxation moduli, given in (3.61) and (3.65).
The dashed line represent the leading order contribution to the second normal stress difference in (3.61) and
(3.65) forWi/B = 3, which one would obtain by neglecting the contribution ofGII

(
N2(t) = −N1(t)/2

)
.

3.4.2 Start-up and Cessation of Uniaxial Extensional Flow

The co-rotational rate-of-strain tensor for the start-up of steady uniaxial extensional flow at time

τ = 0 is,

Ě(τ, τ ′) =
ε̇

2
√

3
(2 ezez − exex − eyey) , (3.68)

which is valid for 0 < τ ′ < τ . Note that (3.68) is equivalent to the rate-of-strain tensor in a fixed

frame of reference because uniaxial extension is an irrotational flow (Ω = 0). Substitution of

(3.55), (3.58), and (3.68) into (3.1) yields,

µ+
e

2µsc
=

2AH
15

+
2BH

3
+
CH
2

+
FHB

30

(
1− e−6τ

)
(3.69)

+
Wi

60
√

3

[(
8AH

7
+ 4BH

)(
1− e−6τ

)
+
FHB

14

(
1− e−6τ − 6τ e−6τ

)]
+O(Wi2),
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where the extensional viscosity is defined as, µe = (τzz− τxx)/2
√

3ε̇. For the cessation of uniaxial

extensional flow at time τ = τ ∗, the co-rotational rate-of-strain tensor is again given by (3.68),

which is valid for −∞ < τ ′ < τ ∗. Substitution of (3.55), (3.58), and (3.68) into (3.1) yields,

µ−e
2µsc

=
2AH
15

+
2BH

3
+
CH
2

+

[
FHB

30
+

Wi

60
√

3

(
8AH

7
+ 4BH +

FHB

14

)]
e−6(τ−τ

∗) (3.70)

+ O(Wi2).

The MAOS reconstruction results of (3.69) and (3.70) are depicted in Figure 3.4 for Wi/B =

0.75 and 3 for a dilute suspension of rods (B = 1) and disks (B = −1). These results are also

compared to a numerical solution to (3.28) and the leading order contribution, neglecting GII .

Here, the leading order contribution to the extensional viscosity is independent of Wi, making the

contribution of GII increasingly important as the strength of the flow is increased. A qualitative

agreement between the MAOS reconstruction and numerical results is obtained for both rods and

disks. Here, we observe near quantitative agreement at Wi/B = 3 for both rods and disks, which

is, again, beyond the ‘weakly nonlinear’ regime.
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Figure 3.4: Extensional viscosity of a dilute suspension of (a): rigid rods (B = 1) and (b): rigid disks (B
= -1) for the start-up and cessation of uniaxial extension for Wi/B = 0.75 and 3. The flow is started at
τ = 0 and the stress is allowed to reach a steady value. At time τ = 3, the flow is stopped and the stress is
allowed to relax back to equilibrium. Here, the extensional viscosity at τ = 0 and τ = 6 is not equal to zero,
due to an equilibrium contribution to the bulk stress solely arising from the addition of particles. The solid
lines are the numerical solution to the conservation equation and particle stress response, given in (3.28)
and (3.41). The symbols are generated from the reconstruction results that utilize the linear and MAOS
relaxation moduli, given in (3.69) and (3.70). The dashed line represents the leading order contribution to
the extensional viscosity in (3.69) and (3.70), which one would obtain by neglecting the contribution ofGII .

3.5 Discussion

We have determined the MAOS relaxation modulus for a dilute suspension of Brownian spheroids.

This is accomplished by subjecting the material to a dual-frequency MAOS deformation. From the

resulting shear stress and second normal stress difference, the linear (GI) and MAOS relaxation

moduli (GII), respectively, can be determined. This allows one to predict the stress response of

the system under a transient deformation of arbitrary flow type by use of the co-rotational memory

integral expansion. In principal, one could determine higher order moduli in the co-rotational

memory integral expansion by use of a multi-frequency oscillatory shear deformation (e.g. tri-

frequency for GIII and GIV
97). However, we have limited our analysis to the weakly nonlinear,

dual-frequency, MAOS regime. Following Swan et al. 97 , it is evident that the MAOS regime

encodes information on the ‘weakly nonlinear’ memory of a viscoelastic fluid.
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The co-rotational memory integral expansion is useful because of its general applicability to

simple fluids64,81,93. We have demonstrated this for a dilute suspension of Brownian spheroids,

whose microstructure is governed by the Fokker-Planck equation. The eigenfunctions of the

Fokker-Plank equation in space and time are decoupled, which allows for one to determine analyt-

ical expressions for GI and GII . A similar procedure can be employed for a dilute colloidal dis-

persion of mono-disperse hard-spheres, whose microstructure is governed by a two-body Smolu-

chowski equation98,99,

∂g

∂t
+ ∇r · [urg − (Dr ·∇r)g] = 0, (3.71)

where r is the separation distance between two particles, ∇r is the relative gradient operator,

ur = u2−u1 is the relative velocity of the two particles, and Dr is the relative diffusivity tensor100.

Here, g = g(r, t) is the pair distribution function that describes the likelihood of finding a particle

at position r, relative to a second particle. One can solve (3.71) for a single-frequency oscillatory

shear flow in the SAOS regime, analogously to what is done here in Section 3.3.2. The leading

order contribution to the pair distribution function, g = 1 + Wi f1 + O(Wi2), is of the same

structural form as (3.34); namely98,

f1(r, t) = −1

2
f(r)e−iω̃td · E · d, (3.72)

where, f1(r, t) is analogous to ψ1(p, t) herein, ω̃ is a dimensionless frequency, r = |r| is the

magnitude of particle separation distance, d = r/r is a unit vector connecting the particle centers,

and E is the rate of strain tensor. In the limit of no hydrodynamic interactions, f(r) is governed by

the ordinary differential equation,

1

r2
d
dr

(
r2

df
dr

)
− 6

f

r2
− iω̃f = 0, (3.73)

where (3.73) is a Bessel’s equation and can be solved exactly for non-zero ω̃ (see equation (56) in
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Brady 98). To determine the MAOS relaxation modulus for a dilute colloidal dispersion, one would

need to determine the linear and weakly nonlinear contributions to the pair distribution function

for a dual-frequency MAOS deformation, which is analogous to determining ψ1 and ψ2 in this

work; compute the resultant stress response; and compare the stress response to the result of the

co-rotational memory integral expansion in Section 3.2. We leave this as an interesting problem

for future work.

The framework presented here can also be applied to constitutive equations, such as the Giesekus

model for concentrated polymer solutions30,37,73, for the which the polymer stress, τ p evolves as,

5
τ p = 2GE− 1

λ
τ p −

ξ

λG
τ p · τ p, (3.74)

where,
5
τ p =

∂τ p

∂t
+ v · ∇τ p − (∇v)T · τ p − τ p · ∇v, (3.75)

is the upper convective (Maxwell) derivative, λ is the characteristic relaxation time, and G is the

elastic modulus. The final term in (3.74) accounts for anisotropic drag arising from the hydrody-

namic interaction between polymer chains and is tuned by a “nonlinearity parameter,” ξ, where

ξ = [0, 1]. One can determine the linear and MAOS relaxation moduli by substituting the def-

inition for the dual-frequency, oscillatory rate-of-strain tensor, given in (3.12), into (3.74), and

expanding τ p accordingly. In the MAOS regime, the shear stress response will oscillate at the in-

put frequencies (ω1, ω2), to leading order in Wi. The linear relaxation modulus can be determined

by a comparison of the shear stress response of the Giesekus model to that of the memory integral

expansion given in (3.19). Furthermore, the leading order second normal stress difference from

τ p will oscillate a frequencies 2ω1, 2ω2, ω1 − ω2, and ω1 + ω2. A comparison of the second nor-

mal stress difference to the memory integral expansion in (3.20) and (3.21) will yield the MAOS

relaxation modulus for the Giesekus model.

The MAOS relaxation modulus could be determined experimentally, in principle. First, one

would need to perform a strain rate sweep to precisely define the weakly nonlinear regime, where
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the shear stress and normal stress differences vary linearly and quadratically with the strain rate

amplitude, respectively (e.g. τyx ∝ Wi and N1, N2 ∝ Wi2). One experimental apparatus that

can be used is a cone-and-plate rheometer with a monolithic plate fitted with miniature capacitive

pressure sensors101 and a computer program capable of applying a parallel superposition strain to

the material, specially a dual-frequency oscillatory deformation. Here, the shear stress is calculated

in the standard manner from the measured torque, which can be decomposed to determine the

components of the complex viscosity, as given in (3.7). The linear relaxation modulus can then

be determined from the discrete complex viscosity by one of three methods: 1) fitting the data to

a generalized Maxwell model and performing the 1-D inverse Fourier Cosine Transform (FCT)

on the fit102; 2) numerically evaluate the inverse FCT equation given in (3.10)103; 3) perform a

discrete inverse Fourier Transform (DFT)104. The third method requires that the complex viscosity

is known at evenly spaced frequency values. Generally, the frequency values are logarithmically

spaced and a suitable interpolation technique must be applied in order to use DFT. In this set-up,

the second normal stress difference is determined from the pressure measurement, P , where

P = −(N1 + 2N2) ln(r/R)−N2, (3.76)

R is the rheometer plate radius, and r is the radial position of the measurement101. A linear regres-

sion analysis can be applied to the discrete pressure measurements as a function of the logarithm

of the radial position scaled by the plate radius. From this, −N2 is the intercept, i.e. the pressure

measurement extrapolated to the plate edge. Also, N1 can be determined from the normal force on

the plate, which, when combined with the slope of the linear regression analysis, provides an addi-

tional measurement of N2. N2 can then be decomposed into its harmonic contributions, as given in

(3.20). Again, it is the harmonic contribution at cos[(ω1 + ω2)t] that is important for our purposes,

which is given in (3.21). The first three terms on the right-hand-size of (3.21) can be determined,

from the linear relaxation modulus, and subtracted from F3, as given in (3.23). Then, by applying

a 2-D inverse FCT to this quantity, one can determine the MAOS relaxation modulus, as shown
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in (3.22). Similar to the linear relaxation modulus, GII can be determined by either 1) fitting data

and performing a 2-D inverse FCT; 2) numerically evaluating the 2-D symmetric, inverse FCT; or

3) performing a discrete 2-D FCT at evenly spaced frequency values. The second normal stress

difference can also be measured using other techniques105, such as as a partitioned cone-and-plate

rheometer106 and pressure distribution parallel-plate rheometer107. We acknowledge that practical

difficulties will undoubtably arise in an experimental setting, particularly with regard to noise. At

low frequencies, the long time dynamics of the material are probed; since the linear and MAOS

relaxation moduli decay in time, we do not foresee noise being an issue in this regime. However,

at large frequencies, where the short time dynamics of the material are probed, noise could pose a

potential issue. However, we hope that our work will prompt experimental consideration.

In summary, if one is able to determine the shear stress and second normal stress difference

of a complex fluid subject to a dual-frequency oscillatory shear flow, whether that material is

considered experimentally, via a micro-mechanical model, or a constitutive equation, we suggest

that the first nonlinear ‘MAOS’ relaxation modulus can be determined by use of the co-rotational

memory integral expansion. From the MAOS relaxation modulus, the weakly nonlinear, transient

stress response of a material under an arbitrary deformation can be predicted.

3.A Appendix

3.A.1 Coefficients of N2 from the co-rotational memory integral expansion

Below are the coefficients of N2 given in (3.20) for a dual-frequency MAOS deformation.

F0(ω1,ω2) =
1

ω2

∫ ∞
0

GI(s) sin(ω1s)ds +
1

ω1

∫ ∞
0

GI(s) sin(ω2s)ds (3.77)

−
∫ ∞
0

∫ ∞
0

GII(s, q) cos
[
ω1(s− q)

]
dsdq +

∫ ∞
0

∫ ∞
0

GII(s, q) cos
[
ω2(s− q)

]
dsdq
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H1(ω1, ω2) =
1

ω1

∫ ∞
0

GI(s) cos(ω1s)ds +
1

ω2

∫ ∞
0

GI(s) cos(ω2s)ds (3.78)

−
∫ ∞
0

∫ ∞
0

GII(s, q) sin
[
ω1(s+ q)

]
dsdq

F1(ω1, ω2) =
−1

ω1

∫ ∞
0

GI(s) sin(ω1s)ds − 1

ω2

∫ ∞
0

GI(s) sin(ω2s)ds (3.79)

−
∫ ∞
0

∫ ∞
0

GII(s, q) cos
[
ω1(s+ q)

]
dsdq

H2(ω1, ω2) =
1

ω1

∫ ∞
0

GI(s) cos(ω1s)ds +
1

ω2

∫ ∞
0

GI(s) cos(ω2s)ds (3.80)

−
∫ ∞
0

∫ ∞
0

GII(s, q) sin
[
ω2(s+ q)

]
dsdq

F2(ω1, ω2) =
1

ω1

∫ ∞
0

GI(s) sin(ω1s)ds +
1

ω2

∫ ∞
0

GI(s) sin(ω2s)ds (3.81)

−
∫ ∞
0

∫ ∞
0

GII(s, q) cos
[
ω2(s+ q)

]
dsdq

H3(ω1, ω2) =
1

ω1

∫ ∞
0

GI(s) cos(ω2s)ds +
1

ω2

∫ ∞
0

GI(s) cos(ω1s)ds + (3.82)(
1

ω1

+
1

ω2

)∫ ∞
0

GI(s) cos
[
(ω1 + ω2)s

]
ds −∫ ∞

0

∫ ∞
0

GII(s, q)
[

sin(ω1s+ ω2q) + sin(ω1q + ω2s)
]
dsdq

F3(ω1, ω2) =
−1

ω1

∫ ∞
0

GI(s) sin(ω2s)ds − 1

ω2

∫ ∞
0

GI(s) sin(ω1s)ds (3.83)

+

(
1

ω1

+
1

ω2

)∫ ∞
0

GI(s) sin
[
(ω1 + ω2)s

]
ds

−
∫ ∞
0

∫ ∞
0

GII(s, q)
[

cos(ω1s+ ω2q) + cos(ω1q + ω2s)
]
dsdq
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H4(ω1, ω2) =
1

ω1

∫ ∞
0

GI(s) cos(ω2s)ds − 1

ω2

∫ ∞
0

GI(s) cos(ω1s)ds (3.84)

+

(
1

ω1

− 1

ω2

)∫ ∞
0

GI(s) cos
[
(ω1 − ω2)s

]
ds −

−
∫ ∞
0

∫ ∞
0

GII(s, q)
[

sin(ω1s− ω2q) + sin(ω2s− ω1q)
]
dsdq

F4(ω1, ω2) =
1

ω1

∫ ∞
0

GI(s) sin(ω2s)ds +
1

ω2

∫ ∞
0

GI(s) sin(ω1s)ds (3.85)

+

(
1

ω1

− 1

ω2

)∫ ∞
0

GI(s) sin
[
(ω1 − ω2)s

]
ds

−
∫ ∞
0

∫ ∞
0

GII(s, q)
[

cos(ω1s− ω2q) + cos(ω2s− ω1q)
]
dsdq

3.A.2 Frequency-dependent coefficients of ψ2

Below are the frequency-dependent coefficients, f2,0, f2,α, f2,β , f2,s, and f2,d of ψ2 given in (3.38).

First,

f2,0 = T0(S : S) + U0(p · S · S · p) + V0(p · S ·A · p) +W0(pp : S)2, (3.86)

where,

T0 =
−3

10

(
1

α2 + 36
+

1

β2 + 36

)
, (3.87a)

U0 = 0, (3.87b)

V0 = −3

(
1

α2 + 36
+

1

β2 + 36

)
, (3.87c)

W0 =
9

4

(
1

α2 + 36
+

1

β2 + 36

)
. (3.87d)

Second,

f2,α = Tα(S : S) + Uα(p · S · S · p) + Vα(p · S ·A · p) +Wα(pp : S)2, (3.88)
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where,

Tα =
−3i

4 [α3 − 108α + i(180− 19α2)]
, (3.89a)

Uα =
3α

4 [α3 − 108α + i(180− 19α2)]
, (3.89b)

Vα =
3

4 (α2 − 18− 9iα)
, (3.89c)

Wα =
−15

8 (α2 − 60− 16iα)
. (3.89d)

Third,

f2,β = Tβ(S : S) + Uβ(p · S · S · p) + Vβ(p · S ·A · p) +Wβ(pp : S)2, (3.90)

where,

Tβ =
−3i

4 [β3 − 108β + i(180− 19β2)]
, (3.91a)

Uβ =
3α

4 [β3 − 108β + i(180− 19β2)]
, (3.91b)

Vβ =
3

4 (β2 − 18− 9iβ)
, (3.91c)

Wβ =
−15

8 (β2 − 60− 16iβ)
. (3.91d)

Fourth,

f2,s = Ts(S : S) + Us(p · S · S · p) + Vs(p · S ·A · p) +Ws(pp : S)2, (3.92)
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where,

Ts =
−3i (α + β − 12i)

(α− 6i)(β − 6i)(α + β − 6i)(α + β − 20i)
, (3.93a)

Us =
3 [α2 + 2α(β − 6i) + β(β − 12i)]

(α− 6i)(β − 6i)(α + β − 6i)(α + β − 20i)
, (3.93b)

Vs =
3 (α + β − 12i)

2(α− 6i)(β − 6i)(α + β − 6i)
, (3.93c)

Ws =
−15 (α + β − 12i)

4(α− 6i)(β − 6i)(α + β − 20i)
. (3.93d)

Finally,

f2,d = Tβ(S : S) + Ud(p · S · S · p) + Vd(p · S ·A · p) +Wd(pp : S)2, (3.94)

where,

Td =
3i (α− β − 12i)

(α− 6i)(β + 6i)(α− β − 6i)(α− β − 20i)
, (3.95a)

Ud =
−3 [α2 − 2α(β + 6i) + β(β + 12i)]

2(α− 6i)(β + 6i)(α− β − 6i)(α− β − 20i)
, (3.95b)

Vd =
−3 (α− β − 12i)

2(α− 6i)(β + 6i)(α− β − 6i)
, (3.95c)

Wd =
15 (α− β − 12i)

4(α− 6i)(β + 6i)(α− β − 20i)
. (3.95d)

3.A.3 Two-dimensional inverse Fourier cosine transform to determine GII

The two-dimensional Fourier Cosine Transform (FCT) of an even functionZ(ω1, ω2) = Z(−ω1,−ω2)

and Z(−ω1, ω2) = Z(ω1,−ω2), is defined as108,

Z(ω1, ω2) =

∫ ∞
0

∫ ∞
0

z(t1, t2) cos(ω1t1 + ω2t2)dt1dt2, (3.96)

with inverse,

z(t1, t2) =
4

π2

∫ ∞
0

∫ ∞
0

Z(ω1, ω2) cos(ω1t1 + ω2t2)dω1dω2. (3.97)
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Here, (3.97) is transforming a frequency-dependent function, Z, to a time-dependent function, z,

by mapping all information from ω1 to only t1 and ω2 to only t2.

We can rewrite (3.57) as,

κ(α, β) =

∫ ∞
0

∫ ∞
0

GII(s̃, q̃)
[

cos(αs̃+ βq̃) + cos(βs̃+ αq̃)
]
ds̃dq̃, (3.98)

where,

κ =
3µscBDr

5

{(
16AH

7
+ 8BH

)
α2 + β2 + 72

(α2 + 36)(β2 + 36)
(3.99)

+
FHB

7

[
2592− αβ [(α + β)2 + 72]

(α2 + 36)(β2 + 36) [(α + β)2 + 36]

]}

Recall that the oscillation frequencies, α and β, are interchangeable because we have required that

the imposed deformation be described by a single strain-rate amplitude, γ̇0 = γ1αDr = γ2βDr.

Therefore, κ(α, β) = κ(β, α). The form of the right-hand-side of (3.57) and (3.98) also arises due

to fact that α and β are interchangeable and cannot solely map to each time-domain variable (i.e.

s̃ and q̃ are mapped by both α and β). GII can be resolved from (3.98) by applying the inverse

Fourier Cosine Transform, given in (3.97), for interchangeable frequency values,

GII(s̃, q̃) =

∫ ∞
0

∫ ∞
0

κ(α, β)
[

cos(αs̃+ βq̃) + cos(βs̃+ αq̃)
]
dαdβ, (3.100)

Evaluating the integrals in (3.100) for the first term of (3.99) yields,

4

π2

∫ ∞
0

∫ ∞
0

α2 + β2 + 72

(α2 + 36)(β2 + 36)

[
cos (αs̃+ βq̃) + cos (βs̃+ αq̃)

]
dαdβ =

1

3
δ(s̃)e−6q̃. (3.101)

64



The quantity in square brackets in (3.99) can be expanded as,

2592− αβ [(α + β)2 + 72]

(α2 + 36)(β2 + 36)[(α + β)2 + 36]
= (3.102)

36− α(α + β)

(α2 + 36)[(α + β)2 + 36]
+

36− β(α + β)

(β2 + 36)[(α + β)2 + 36]
,

where,

36− β(α + β)

(β2 + 36)[(α + β)2 + 36]

[
cos(αs̃+ βq̃) + cos(βs̃+ αq̃)

]
(3.103)

=
36− α(α + β)

(α2 + 36)[(α + β)2 + 36]

[
cos(βs̃+ αq̃) + cos(αs̃+ βq̃)

]
,

for α = β. Therefore, applying the symmetric two-dimensional inverse FCT to (3.102) yields,

4

π2

∫ ∞
0

∫ ∞
0

2592− αβ [(α + β)2 + 72]

(α2 + 36)(β2 + 36)[(α + β)2 + 36]

[
cos(βs̃+ αq̃) + cos(αs̃+ βq̃)

]
dαdβ

=
8

π2

∫ ∞
0

∫ ∞
0

36− β(α + β)

(β2 + 36)[(α + β)2 + 36]

[
cos(αs̃+ βq̃) + cos(βs̃+ αq̃)

]
dαdβ. (3.104)

Evaluating the right-hand-side of (3.104) yields,

8

π2

∫ ∞
0

∫ ∞
0

36− β(α + β)

(β2 + 36)[(α + β)2 + 36]

[
cos(αs̃+ βq̃) + cos(βs̃+ αq̃)

]
dαdβ = e−6q̃, (3.105)

for q − s > 0 and s > 0. Substitution of (3.101) and (3.105) into (3.100) yields (3.58).
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4. Nonlinear Viscoelasticity of a Dilute Sus-

pension of Brownian Spheroids in Oscil-

latory Shear

4.1 Introduction

Complex fluids are viscoelastic materials that simultaneously exhibit viscous (liquid-like) and elas-

tic (solid-like) characteristics under mechanical strain. For instance, Silly-Putty™ will behave

viscously and spread, or flow, when allowed to rest. Silly-Putty™ will also behave elastically

and bounce when dropped onto a solid surface, much like a rubber ball would. These different

responses of the material are due to its microstructure, which in this case refers to the arrangement

of the polymer chains in space and time. When the material is probed over sufficiently small time

scales, seconds in this case, the polymer chains are not given sufficient time to relax and effectively

become rigid, allowing for the material to bounce like a solid. Conversely, when the material is

probed over much longer time scales, say tens of minutes, the polymer chains are given sufficient

time to relax and reorient to minimize the stress in the material. This results in a viscous-like

material which will spread outward on a solid surface. The viscoelasticity of a material is com-

monly characterized using a small amplitude oscillatory shear (SAOS) deformation17. Here the

material is subjected to a sinusoidal strain, γ = γ0 sin(ω∗t∗), where γ0 is the strain amplitude, ω∗

is the oscillation frequency, and t∗ is time; the asterisk superscript indicates a dimensional quan-

tity. An experimental advantage of oscillatory rheometry is that one can average the response over

numerous periods and avoid step changes that would occur in the start-up and cessation of a flow.

There are two relevant time-scales for this deformation: the oscillation time scale, 2π/ω∗, and

flow time-scale, 1/γ̇∗0 , where γ̇∗0 = γ0ω
∗ is the strain-rate amplitude. Two dimensionless groups

can be obtained from these time scales: a Weissenberg number, Wi = γ̇∗0λ
∗, or dimensionless
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strain-rate amplitude, and a Deborah number, De = ω∗λ∗, or dimensionless oscillation frequency;

here, λ∗ is a characteristic relaxation time of the material. Under a small-amplitude deformation,

the rate of deformation is small relative to the relaxation rate, Wi � 1, the material remains in

a near-equilibrium state, and the linear viscoelasticity of the material is determined in terms of

the frequency-dependent elastic (storage) and viscous (loss) moduli, G′ and G′′, respectively. In

this regime, the material is probed over a range of De and the resultant shear stress response is

linearly proportional to the strain amplitude with a component in-phase and out-of-phase with the

oscillatory deformation. The linear relaxation modulus of the material can be determined from an

inverse Fourier transform of the elastic or viscous modulus17,30. Knowledge of the linear relax-

ation modulus enables ones to determine the linear viscoelastic response of the material under an

arbitrary small-amplitude deformation history (e.g. start-up or cessation of simple shear)30.

Complex fluids are, however, commonly processed or utilized at conditions far from equilib-

rium, such as in plastics or polymer melt processing16, chewing food29, and impact-resistant suits

and armor27,28. In these examples, Wi is typically not small and the resultant stress response is

no longer a linear function of the strain amplitude. The results of a SAOS deformation cannot be

utilized to predict the nonlinear stress response of a material, and thus additional techniques are

required. In general, the nonlinear response of a material is probed when both the rate of deforma-

tion is not small, Wi & O(1), and the extent of deformation is not small, γ0 = Wi/De & O(1).

Equivalently, when Wi ∼ O(1) or larger and De ∼ O(1), the relaxation time of the material is

comparable to the time-scale of the flow (λ ∼ 1/ω), and thus the nonlinear and unsteady viscoelas-

ticity of the material is probed. Again, this regime is of practical importance, but relatively little,

in comparison to linear viscoelasticity, is known on how to systematically interpret and predict the

stress response of a material109.

Large amplitude oscillatory shear (LAOS) has become a popular rheological technique for

probing the nonlinear viscoelasticity of a material. LAOS has been applied to a variety of differ-

ent systems such as colloidal dispersions34–36, polymer solutions or melts16,32,33, and worm-like

micelles37–40, among many others. An advantage of LAOS is that it is sensitive to the molecular
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architecture of a material, which other techniques may be unable to discern. For instance, LAOS is

capable of distinguishing between a suspension of linear polystyrene and star-branched polystyrene

due to differences in the extent of branching and reptation; these differences in the microstructure

of the two materials are unpronounced in the SAOS and nonlinear steady shear response41. LAOS

has also been combined with other techniques to provide a comprehensive picture of how the mi-

crostructure of a material evolves under a strong, transient deformation. Some examples include

the combination of LAOS with: small-angle X-ray scattering (SAXS) to study the orientation and

reorientation of lamellar block-copolymers76,77; particle image velocimetry (PIV) for observing

spatially heterogeneous microstructures that occur in shear banding38 and the gelation of waxy

crude oils110; small-angle neutron scattering (SANS) for studying the impact of nanoparticles on

micellar packing111, concentration dependent particle alignment112, or shear banding of worm-

like micelles40,113; flow-induced birefringence (or rheo-optics) of the dynamic drop deformation of

polydimethylsiloxane (PDMS) in a polyisobutylene (PIB) matrix114; and Raman spectroscopy for

studying the conformational changes during polymer crystallization or gelation115.

Under a LAOS deformation, the material is still subjected to an oscillating shear flow at a

single frequency, ω∗, but the strength of the deformation is large, Wi > 1, and the extent of

deformation is not small, Wi/De & 1. The resulting periodic stress response will oscillate at

multiple frequencies, a hallmark of a nonlinear response to an oscillatory forcing; typically the

shear stress will oscillate at odd overtones (ω∗, 3ω∗, 5ω∗, etc.) and the normal stress will oscillate

at even overtones (0ω∗, 2ω∗, 4ω∗, etc.). However, it is not guaranteed that the response will be

periodic in time or spatially homogeneous. For example, the existence of even harmonics in the

shear stress has been predicted in polymer blends116 and observed in colloidal dispersions35 and

worm-like micelles38. Quasi-periodic and chaotic stress dynamics have been observed in poly-

mer melts117,118 and predicted in the Geisekus model and Johnson-Segalman model116. Graham 119

showed that quasi-periodic stress dynamics can also arise due to the coupling of the viscoelasticity

of a material and dynamic wall-slip at zero Reynolds number. Various methods have been pro-

posed to decompose a LAOS stress waveform, such as Fourier-Transform Rheology120, expansion
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with Chebyshev polynomials as a basis set121, a geometric decomposition into elastic and viscous

contributions122, and as a sequence of physical processes123.

Theoretical work has included utilizing LAOS to determine nonlinear model parameters in con-

stitutive equations such as the Giesekus model37, the Doi-Edwards model74, the Phan-Thien/Tanner

(PTT) model75, the co-rotational Maxwell model124,125, and co-rotational ANSR model126. In

these works, the LAOS dynamics are computed via a regular perturbation expansion about either

small Wi or small γ0 = Wi/De. This approach leads to predictions of the stress response that

are asymptotic as either Wi → 0 or Wi/De → 0, and neither condition can describe the mate-

rial dynamics in the truly nonlinear, viscoelastic regime of Wi � 1 and Wi/De > 1. Recent

work by Khair 73 utilized singular perturbation theory to determine an asymptotic solution to the

Giesekus constitutive model at Wi � 1 and Wi/De � 1. An alternative approach is to employ

a micro-mechanical model to connect the micro-scale dynamics of a material to its macroscopic

stress response under LAOS. This approach has be utilized, for example, in cases of semi-dilute,

hard-sphere colloidal dispersions84, dilute dispersions of Brownian rods7,8, and a dilute dispersion

of surfactant-laden drops127. In the aforementioned works, the LAOS dynamics were determined

either by numerical integration or a regular perturbation expansion about small Wi. Again, the

later approach cannot describe a material that is strongly shifted out of equilibrium. Recent work

by Leahy et al.128,129 on a dilute suspension of rod-like, Brownian particles and by Khair 130 on a

dilute suspension of nearly-spherical, Brownian particles employed a singular perturbation theory

to analyze the LAOS dynamics at Wi→∞ and Wi/De� 1.

In this work, we quantify the nonlinear viscoelasticity of a dilute suspension of Brownian

spheroids subject to a LAOS deformation. For this model micro-mechanical system, we numer-

ically calculate the entire stress tensor – shear stress and normal stress differences, N1 and N2 –

along with birefringence parameters - linear dichroism and average orientation angle. This allows

us to directly connect changes in the mechanical and optical response of the suspension to rear-

rangements in the microstructure. Here, the microstructure refers to the orientation dynamics of

the particles in the oscillatory shear flow. Previous work has investigated the LAOS response of
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dilute rigid-dumbbell suspensions, which consist of particles of infinite aspect ratio, that are ei-

ther active (self-propelled)57 or passive7,8. These works investigated the weakly nonlinear stress

response of the material by employing a regular perturbation scheme about either small γ0 or Wi.

Again, this approach limits the applicability of the results to the asymptotic limit of either γ0 → 0

or Wi→ 0, which cannot be utilized to infer the strongly nonlinear and unsteady response. Swan

et al. 72 theoretically investigated the microrheology of a dilute colloidal suspension deformed by

an oscillating probe at arbitrary force amplitude (or Péclet number, Pe) and frequency (De). They

were able to probe essentially the entire Pe−De space, akin to theWi−De space considered here,

including the nonlinear, unsteady mechanical response of the material. However, their approach is

unable to be predict the full stress tensor of the material, due to the axisymmetric microstructure

deformation produced by the motion of the spherical probe. Interestingly, Swan et al. 72 determined

a “hypo-viscous” regime where the rate of viscous dissipation is less than that of the undeformed

state; this regime occurs when Pe� 1, De� 1, and Pe/De� 1. In this nonlinear, viscoelastic

regime, the probe particle moves so strongly and quickly that the wake behind it, voided of bath

particles, does not have time to relax and refill with bath particles before the probe particle passes

through the region again.

Here we will probe essentially the entire Wi−De parameter space while also determining the

full stress tensor along with other experimentally measurable properties of the material, such as

birefringence parameters. The stress response of a typical viscoelastic material in the Wi − De

parameter space is schematically depicted in Figure 4.1; a yield stress fluid, for example, is not

accurately depicted by Figure 4.1 as it requires a finite stress in order to flow. There are four

regimes addressed in this work: 1) the linear viscoelastic regime (Wi � 1); 2) the quasi-linear

viscoelastic regime (Wi > 1 and De � 1); 3) the quasi-steady viscoelastic regime (Wi > 1 and

De � 1); and 4) the nonlinear viscoelastic regime (Wi > 1 and Wi/De > 1). In the quasi-

linear viscoelastic regime, the oscillation time scale (1/ω∗) is much less than both the relaxation

time-scale of the material and the flow time-scale. Here, the material is not given ample time to

deform, even if the flow is strong, resulting in a nearly linear material response. We characterize
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this regime as quasi-linear because the shear stress response does contain higher order harmonics,

which cannot occur in the linear viscoelastic regime. In the quasi-steady viscoelastic regime the

oscillation time scale is much greater than the relaxation time scale. Here, the microstructure is

given ample time to relax and each oscillation cycle resembles a step-strain deformation. Finally,

in the nonlinear viscoelastic regime, the transient, nonlinear response of the material is probed.

When Wi > 1 and De ∼ O(1), the material is unable to fully relax over an oscillation cycle

and overshoots are observed in the shear stress and normal stress differences, which result from

significant microstructural changes.

Figure 4.1: Schematic of the stress response of a material in theWi−De parameter space. WhenWi� 1,
the linear viscoelastic response of the material is probed. Under strong deformation (Wi � 1), but small
oscillation frequency (De � 1) the quasi-steady nonlinear response is interrogated, similar to a step-strain
deformation. In the limit of large oscillation frequency (De � 1) the material is not given sufficient time
to deform and a quasi-linear material response can be obtained, even if the strength of the deformation is
large (Wi � 1). In general, when Wi � 1 and Wi/De & 1, the nonlinear viscoelasticity of the material
is probed.

This article is organized as follows. In Section 4.2 the micro-mechanical model of a dilute

suspension of Brownian spheroids is presented. In Section 4.3 we employ a Fourier series in

time and a finite difference discretization in space to numerically calculate the microstructure,

parameterized by the non-equilibrium orientation distribution function. In Section 4.4 the results
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of our numerical approach, namely the non-equilibrium orientation distribution function, stress,

and birefringence parameters, are given for prolate rods of aspect ratio r = 20 over a range of Wi

and De. Finally, in Section 4.5 we discuss the microstructural origins of multiple stress overshoots

in the nonlinear viscoelastic regime, provide additional results for oblate particles, and discuss the

overall conclusions of this work.

4.2 Micro-mechanical Model

4.2.1 Problem setup

The micro-mechanical model utilized is a homogeneous, monodisperse, dilute suspension of force

and couple-free, Brownian spheroids. The suspending medium is a Newtonian fluid with viscosity

µs and density ρs. This well studied model has the advantage that the macroscopic suspension

rheology can be directly calculated from the micro-dynamics of the particles. The spheroidal

particles are characterized by a major (rotation) axis, `, and two equivalent minor axes, a. The

ratio of the major axis, to minor axes is the aspect ratio, r = `/a. The particles are sufficiently

small such that inertia can be neglected. The Bretherton constant, a measure of the hydrodynamic

sphericity of the particles, is defined as

B =
r2 − 1

r2 + 1
, (4.1)

which is zero for spheres, between zero and unity for prolate spheroids, and between zero and

negative unity for oblate spheroids12. The suspension is assumed dilute, such that all interparticle

interactions are negligible. For nearly spherical particles (` ≈ a), this simply requires that the

volume fraction of particles is much less than unity, nVp � 1, where n is the number density of

particles and Vp = 4π`a2/3 is the volume of a single particle. However, an elongated particle

(` � a) generates a disturbance to the ambient flow over a length scale `3; hence, the neglect

of hydrodynamic interactions requires a more stringent condition, nVpr2 � 1. Similarly, a thin,

oblate particle (`� a) generates a disturbance to the ambient flow over a length scale a3, requiring
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that nVp/r2 � 1 for hydrodynamic interactions to be neglected.

Initially, the microstructure is assumed to be isotropic with no preferential particle orienta-

tion. The suspension is then subjected to a spatially homogenous, transient, and linear flow with

velocity v∗(t∗) and velocity gradient Γ∗(t∗), where t∗ is time. The orientation unit vector, p, is

defined along the axis of rotation of a particle. In the absence of Brownian motion, p will rotate

deterministically based on Jeffery’s equation9,

ṗJ = p ·Ω∗ +B (E∗ · p− E∗ : ppp) , (4.2)

where Ω∗ = (Γ∗ − Γ∗T )/2 and E∗ = (Γ∗ + Γ∗T )/2 are the vorticity and rate-of-strain tensors,

respectively; the superscript T represents the matrix transpose. Equation (4.2) can be solved ex-

actly for steady, simple shear9,12 and the orientation will evolve periodically in time for |B| < 1.

The resultant trajectory, with period TJO = 2π(r+ r−1)/γ̇0, is known as a Jeffery orbit and is given

by9,

tan θ =
C r√

r2 cos2 φ+ sin2 φ
, (4.3)

and

tanφ = −r tan

(
γ̇0t

r + r−1
+ κ

)
, (4.4)

where θ is the polar angle from the vorticity direction, φ is the azimuthal angle from the flow axis

(see Figure 4.2), C = [0,∞) is the orbit constant, which sets the specific orbit a particle will

follow, and κ is the phase along an orbit; since all orbits have the same period, a single phase

angle is sufficient. If |B| ≥ 1, a particle adopts a terminal orientation in steady shear flow131,132.

For nearly-spherical particles, the velocity along an orbit will be roughly constant, a particle will

essentially rotate at half of the ambient vorticity and the orbits trace lines of latitude along a unit

sphere. For elongated particles (B ↗ 1), the particle trajectory traces greater circles and the

velocity is highly non-uniform along an orbit, with particles spending most of their time nearly

aligned with the flow. Notably, this configuration causes the least disturbance to the ambient flow

and thus suspension stress. The Jeffery orbits for a nearly-spherical particle (r = 1.1) and an
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elongated particle (r = 20) are shown in Figure 4.3.

Figure 4.2: Definition of spherical coordinates. The polar angle, θ, denotes the projection of the orientation
unit vector, p, into the x-y plane (flow-gradient plane). The azimuthal angle, φ, denotes the orientation in
the x-y plane with respect to the positive flow axis.

Equation (4.2), for |B| < 1, describes the periodic orientational motion of a particle, and

thus periodic suspension stress, with no mechanism of relaxation; thus, a particle will remain

along its initial Jeffery orbit indefinitely. However, most colloidal systems are Brownian and the

orientation of a particle is affected by random collisions with solvent molecules. This ultimately

allows for a steady distribution of particle orientation. Rotational Brownian motion is not the

only mechanism by which a steady orientation distribution can be achieved. Rahnama et al. 133

show that the hydrodynamic interactions in a suspension of non-Brownian fibers also allows for

a steady orientation distribution. With the inclusion of rotational Brownian motion, which is the

mechanism for relaxation of the micro-mechanical model used herein, the system is no longer

deterministic and a statistical description of the microstructure is required. A convenient measure

is the orientation distribution function, ψ(p, t∗), where ψ(p, t∗) sin θdθdφ represents the likelihood

of a particle oriented in a differential solid angle about (θ, φ), and θ and φ are the polar and

azimuthal angles, respectively, of a spherical coordinate system (see Figure 4.2). The orientation

unit vector is restricted to the surface of a unit sphere, requiring that the orientation distribution
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C = 0.1
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r = 20 r = 1.1

flow

gradient

vorticity

(a) (b)

Figure 4.3: Jeffery orbits for a (a) prolate spheroid (r = 20) and (b) nearly-spherical particle (r = 1.1) for
orbit constants C = 0.1, 1, and 10, phase κ = 0, and shear rate γ̇0 = 10 s−1. The discrete points in time
are evenly spaced over a period of a Jeffery orbit, TJO = 2π(r + r−1)/γ̇0. In (a), a particle trajectory traces
large circles with a non-uniform velocity along an orbit. Here, the discrete points are clustered near the flow
axis for C = 1, 10, indicating that a particle spends most of the period of a Jeffery orbit aligned with the
flow. Conversely, in (b) the distribution of orientations over a period of a Jeffery orbit is nearly uniform as
a particle simply rotates with half the ambient vorticity of the flow.

function satisfy a normalization condition at all instances in time,

∫
ψ(p, t∗)dS = 1, (4.5)

where dS = sin θdθdφ is the differential solid angle over a unit sphere.

The orientation distribution function satisfies the conservation, or Fokker-Planck, equation12,13,65

∂ψ

∂t∗
+∇p · (ṗψ) = 0. (4.6)

where ∇p = (I− pp) · ∇ is the surface gradient operator, I is the identity tensor, and ṗ is the

temporal evolution of the orientation unit vector,

ṗ = ṗJ −Dr∇p lnψ. (4.7)

Here, Dr is a rotational diffusion coefficient. Equation (4.7) results from a torque balance with
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contributions from the vorticity and straining components of the flow and rotational Brownian

motion. Equations (4.5)-(4.7) have previously been solved for the case of steady simple shear.

For Wi � 1, Brownian motion is dominant and the orientation remains essentially isotropic;

the first effect of the imposed flow is to align particles along the extensional axes of the flow.

Here, a solution to (4.5)-(4.7) can be achieved through a regular perturbation expansion134,135 or

a Galerkin (spherical harmonics) expansion96,135. For Wi � 1, the effect of Brownian motion is

dampened and the orientation distribution function follows a Jeffery orbit. As shown by Leal and

Hinch 10 , here the first effect of Brownian motion is to select a distribution of orbit constants, C,

and phase, κ. For elongated particles (r � 1), the likely orbits are those in which the particles

spend the majority of the time aligned along the flow axis. A simple transformation, r → 1/r and

φ→ φ + π/2, shows that oblate particles tend to spend most of the the time over an orbit aligned

along the velocity gradient direction (normal to the flow axis)11. Furthermore, Hinch and Leal 11

identify an intermediate regime, Wi � 1 and Wi � (r + 1/r)3, for which particles essentially

follow Jeffery orbits, but the velocity in the slow portion of the orbit is so small that the rate of

Brownian motion is comparable to the rate of advection along the orbit in that region, even though

Wi � 1. This leads to an orientational boundary layer of thickness O(Wi−1/3) in which the

orientation distribution is strongly peaked about θ ∼ π/2 and φ ∼ 0, with a small, O(Wi−1/3),

fraction of orientations outside the boundary layer.

For B ≡ 1, the micro-mechanical model described herein reduces to the rigid-dumbbell model

used in the kinetic theory of polymers. Here, a particle is equally affected by the vorticity and

straining component of the flow, and the trajectories in (4.3)-(4.4) predict a terminal orientation

along the flow axis as the period of a Jeffery orbit is infinite96. Bird et al. 5 provide a thorough

discussion of the stress dynamics of a rigid-dumbbell suspension under steady shear, small ampli-

tude oscillatory shear, and steady elongation. The rigid dumbbell model has, more recently, been

investigated under a large amplitude oscillatory shear flow via a regular perturbation expansion

about small Wi7,8.

The particle contribution to the stress tensor, τ P , can be determined from an ensemble average
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of the stresslet11,12

τ P

µsc
= 4AHE∗ : 〈pppp〉+ 4BH

(
E∗ · 〈pp〉+ 〈pp〉 · E∗ − 2I

3
E∗ : 〈pp〉

)
+ 2CHE∗ + 2FHDr

(
〈pp〉 − I

3

)
, (4.8)

where the angled brackets are averages of the moments of the orientation unit vector,

〈pp〉 =

∫
ppψ(p, t∗)dS, (4.9)

and

〈pppp〉 =

∫
ppppψ(p, t∗)dS. (4.10)

which require a solution of (4.6) to compute. AH , BH , CH , and FH are scalar coefficients that

solely depend on the particle aspect ratio11,12. The terms in (4.8) proportional to E∗ originate from

the hydrodynamic stresslet generated by the inability of a rigid particle to deform with the straining

component of the flow.11,14. In a transient flow, such as an oscillatory flow, the hydrodynamic

contribution to the stress is zero when the flow vanishes.

The last term in (4.8) is a direct Brownian contribution arising from the entropic torque gen-

erated by rotational Brownian motion and is solely dependent upon the second moment of the

orientation distribution function. The evolution of this second moment, and thus the direct Brow-

nian stress, can be obtained by multiplying (4.6) by (pp− I/3) and integrating over p-space15,136,

∂

∂ t
〈pp〉 − Ω∗T · 〈pp〉 − 〈pp〉 ·Ω∗ −B

[
E∗ · 〈pp〉+ 〈pp〉 · E∗

]
(4.11)

= 6Dr

[ I

3
− 〈pp〉

]
− 2B〈pppp〉 : E∗.

Unfortunately, (4.11) depends on the unknown higher-order moment 〈pppp〉 and thus cannot be

solved exactly; the same is true for the evolution equation of any finite moment of p. However, a

qualitative understanding of the evolution of the Brownian stress can be obtained for limiting values

77



of B. In the rigid dumbbell limit (B = 1), the left-hand-side of (4.11) is the co-deformational, or

upper-convected, material derivative of 〈pp〉 and describes its rate of change while translating and

deforming (i.e. rotating and straining) with a fluid element. Here, the microstructure aligns with

the flow axis under steady shear, and thus the Brownian stress should be relatively constant. This

feature is shared by constitutive equations that involve the upper convected derivative of the stress

tensor, such as the Giesekus model. Hence, we would expect similar dynamics between the total

stress from the Giesekus model and the Brownian stress of the rigid dumbbell micro-mechanical

model. For B ' 0, the microstructure rotates with half of the ambient vorticity. In the limit

of nearly-spherical particles, B ' 0, the left-hand-side of (4.11) reduces to the co-rotational, or

Jaumann, derivative of 〈pp〉, and describes its evolution while translating and rotating with a fluid

element. Here, the microstructure rotates at half the ambient vorticity and rapid oscillations in

the stress are observed130. This feature is likely shared with constitutive models that involve a

co-rotational derivative of the stress, such as the co-rotational Maxwell model.

4.2.2 Oscillatory Shear Flow

The specific deformation employed in this work is an oscillatory shear flow with velocity field

v∗(t∗) = γ̇0 cos(ωt∗)y ex and velocity gradient Γ∗(t∗) = γ̇0 cos(ωt∗)eyex, where Γ∗i,j = ∂v∗j/∂xi.

Here, x, y, and z are Cartesian coordinates and ex and ey are unit vectors along the x (flow) and

y (flow-gradient) directions, respectively. Thus, substitution of the above oscillatory velocity field

into (4.6) and (4.7), and defining the relaxation time as λ = 1/6Dr, yields a dimensionless Fokker-

Planck equation,
∂ψ

∂t
+Wi cos(De t)∇p ·

(
ṗJψ

)
=

1

6
∇2

pψ, (4.12)

where Wi = γ̇0/6Dr is a Weissenberg number, De = ω/6Dr is a Deborah number, and t = 6Drt
∗

is a dimensionless time. The relaxation time of λ = 1/(6Dr) is chosen as this is the time-scale

over which the stress relaxes upon flow cessation and the relaxation time-scale obtained from linear

viscoelasticity65,137. Other relaxation times do occur for elongated particles in strong flows when

Wi � 111,128,137. However, our choice is convenient to allow consistent comparison across the
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entire Wi−De space.

For Wi � 1, the material is only slightly shifted out of equilibrium, and the resulting re-

sponse in linear in the imposed flow; this is typically referred to a small-amplitude oscillatory

shear (SAOS). Two conditions must be met to ensure one is operating in the LAOS regime to ob-

tain a non-linear material response : 1) the rate of relaxation is less than the rate of deformation,

Wi > 1, and 2) the strain cannot be small, γ0 = γ̇0/ω = Wi/De ≥ 1. If the oscillation frequency

is much greater than the strain-rate amplitude, the deformation over an oscillation cycle cannot

fully propagate through the material and the response will quasi-linear in the imposed flow. Alter-

natively, when Wi > 1 and De ∼ O(1), the nonlinear and unsteady viscoelasticity of the material

becomes apparent.

We define a non-equilibrium orientation distribution, ψ(p, t) = (1 + f(p, t))/4π, where

ψ = 1/4π is the equilibrium solution for an isotropic material and f characterizes departures

from equilibrium. The non-equilibrium orientation distribution function satisfies the normaliza-

tion condition, ∫
f(p, t)dS = 0, (4.13)

and initial condition f(p, t = 0) = 0. The dimensionless Fokker-Planck equation in (4.12) param-

eterized in spherical coordinates is (Figure 4.2),

∂f

∂t
+
Wi cos(De t)

2

[
B sin 2θ sin 2φ

2

∂f

∂θ
+
(
B cos 2φ− 1

)∂f
∂φ
− 3B sin2 θ sin 2φ f

]

− 1

6

(
∂2f

∂θ2
+ cot θ

∂f

∂θ
+

1

sin2 θ

∂2f

∂φ2

)
=

3BWi

2
cos(De t) sin2 θ sin 2φ. (4.14)

The first bracketed quantity, proportional to Wi cos(De t), of (4.14) represents the advective con-

tribution from the imposed flow, which acts to concentrate the orientation density along Jeffery

orbits. The second bracketed quantity is simply the angular portion of the Laplacian operator and

represents relaxation via rotational Brownian diffusion, which acts to randomize the orientation

(i.e. phase and orbital constant). The right-hand-side of (4.14) is the contribution of the equilib-
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rium microstructure, which acts as a forcing term.

The stress tensor in (4.8) can be specified for the oscillatory shear flow given above by substi-

tution of the orientation unit vector in spherical coordinates,

p = sin θ cosφ ex + sin θ sinφ ey + cos θ ez, (4.15)

and the appropriate rate of strain tensor. From there, the shear stress, τyx, and normal stress dif-

ferences, N1 and N2, can be decomposed into a hydrodynamic, or flow-induced, and Brownian, or

indirect, contributions11. The components of the shear stress are,

τHyx
µscγ̇0

= ηeq +
[
AH〈sin4 θ sin2 2φ〉+BH〈sin2 θ〉

]
cos(De t), (4.16)

and
τByx
µscγ̇0

=
FH

6Wi
〈sin2 θ sin 2φ〉, (4.17)

where the superscripts ‘H’ and ‘B’ indicate the hydrodynamic or Brownian contribution, respec-

tively, and ηeq is the hydrodynamic viscosity that arises from the equilibrium microstructure11,

ηeq =

(
4AH
15

+
4BH

3
+ CH

)
cos(De t). (4.18)

This contribution is always in-phase with the strain-rate and is thus purely viscous. Likewise, the

normal stress differences, N1 = τyy − τxx and N2 = τzz − τyy, can be decomposed as,

NH
1

µscγ̇0

= −AH〈sin4 θ sin 4φ〉 cos(De t), (4.19)

NB
1

µscγ̇0

= − FH
3Wi
〈sin2 θ cos 2φ〉, (4.20)
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and

NH
2

µscγ̇0

=
[
2AH〈sin2 θ sin 2φ

(
cos2 θ − sin2 θ sin2 φ

)
〉 − 2BH〈sin2 θ sin 2φ〉

]
cos(De t), (4.21)

NB
2

µscγ̇0

=
FH

3Wi
〈cos2 θ − sin2 θ sin2 φ〉, (4.22)

respectively.

Another useful metric in quantifying the dynamics of the microstructure is through rheo-

optical, or birefringence, techniques, which measure the flow-induced anisotropy of the suspen-

sion. Specifically, one can calculate (or measure) the average orientation angle, χ, in the shear

plane (flow-gradient plane) and the extent of alignment about that angle, ∆n′′. These quantities

are determined from the eigenvalues of the imaginary component of the effective refractive index

tensor of the suspension. In the Raleigh limit of light-scattering, where the length scale of the

particles is much smaller than the wavelength of incident light, these are138–141,

tan 2χ =
〈sin2 θ sin 2φ〉
〈sin2 θ cos 2φ〉

, (4.23)

and
∆n′′

∆n′′max
=
[
〈sin2 θ sin 2φ〉2 + 〈sin2 θ cos 2φ〉2

]1/2
. (4.24)

The orientation angle and linear dichroism can also be expressed in terms of the Brownian contri-

bution to the shear stress (4.17) and first normal stress difference (4.20) as,

tan 2χ =
τByx

−NB
1 /2

, (4.25)
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and

∆n′′

∆n′′max
=

6Wi

FH

[ (
τByx
)2

+

(
NB

1

2

)2
]1/2

. (4.26)

Thus, the birefringence measurements of a dilute suspension of rigid, anisotropic particles provides

a measure of the entropic, or Brownian, evolution of the stress in the suspension. This is in contrast

to birefringence measurements of polymer solutions or semi-dilute rigid rod suspensions, where

the stress-optic law applies and the total shear stress and first normal stress difference can be

inferred from the average orientation angle and linear dichroism140.

4.3 Numerical Solution Method

We limit our analysis to the long-time oscillatory response of the material, neglecting any initial

transience resulting from the start-up of the flow. Thus, we pose a solution to (4.14) as a series of

Fourier harmonics of base frequency De,

f(p, t) =
∞∑

`=−∞

f `(p)ei`De t, (4.27)

where i =
√
−1 and the coefficients f `(p) are solely dependent upon p. Substitution of (4.27) into

(4.14) yields,

[
i`De− 1

6

(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin θ2
∂2

∂φ2

)]
f ` (4.28)

+ Wi

[
B sin 2θ sin 2φ

8

∂

∂θ
+

(
B cos 2φ− 1

4

)
∂

∂φ
− 3B

4
sin2 θ sin 2φ

](
f `+1 + f `−1

)
=

3BWi

4
sin2 θ sin 2φ

(
δ`,1 + δ`,−1

)

where δij is the Kronecker delta function. From (4.28), it is evident that each temporal mode, f `,

is coupled to f `+1 and f `−1 through oscillatory advection, the strength of which is dictated by the

magnitude of Wi. This is analogous to the problem of large amplitude oscillatory microrheology,
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investigated by Swan et al. 72 , where the structural modes of the pair distribution function, governed

by the Smoluchowski equation, are also coupled through oscillatory advection. The orientation

distribution function is a real-valued function, thus requiring that f−` and f ` be related by their

complex conjugates, f−` = f̂ `; the hatted symbol indicates the complex conjugate. Substituting

(4.27) into (4.8), for example, yields for the shear stress,

τPyx
µscγ̇0

= ηeq +
1

4π

∞∑
`=−∞

[(
ei(`+1)De t + ei(`−1)De t

)(AH
2

∫
sin4 θ sin2 2φf `dS +BH

∫
sin2 θf `dS

)

+ ei`De t

(
FH
Wi

∫
sin2 θ sin 2φf `dS

)]
. (4.29)

The normal stress differences and birefringence parameters can be calculated in an analogous

manner (see Section 4.A.1).

A finite-difference approach is utilized to solve for the temporal modes in (4.28). A uniform

grid is applied in φ and a scaled polar angle, β = exp(−Wi1/3 cos θ), is introduced. The cosine

transformation acts to cluster points near θ = π/2. In the intermediate regime of weak Brownian

rotation (Wi � 1) and elongated particles (Wi1/3 � r + r−1), the steady shear orientation

distribution function is peaked at θ ∼ π/2, indicating that the particles spend a majority of the

time in the flow-gradient plane11,129. A scaling factor of Wi1/3 is chosen as this is the width of

the orientational boundary layer formed under a strong, steady shear flow11,142. Equation (4.28)

is axisymmetric and can be solved on the quarter-plane β ∈ [e−Wi1/3 , 1]
(
θ ∈ [0, π/2]

)
and φ ∈

[0, π] as opposed to over the full half-plane. The harmonics, f `(θ, φ), must satisfy the following

boundary conditions. First, a mirror boundary condition about θ = π/2,

f `
(π

2
− δ, φ

)
= f `

(π
2

+ δ, φ
)
, (4.30)

where δ = [0, π/2]. Secondly, a periodic boundary condition about φ = π,

f `(θ, ε) = f `(θ, π + ε), (4.31)
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where ε = [0, π]. Two additional boundary conditions can be determined by analyzing the orienta-

tion distribution function as expanded in spherical harmonics96,

f `(θ, φ) =
N∑
n=2

n∑
m=0

 sm`,nP
m
n (cos θ) sin(mφ) ` odd

cm`,nP
m
n (cos θ) cos(mφ) ` even

, (4.32)

where cm`,n and sm`,n are scalar coefficients and Pm
n is an associated Legendre polynomial. At θ = 0,

Pm
n (1) is only non-zero for m = 0; thus, for odd ` the modes are zero,

f `(0, φ) = 0 (for odd `), (4.33)

and even ` modes are only a function of φ,

∂f `

∂θ

∣∣∣∣
θ=0

= 0 (for even `). (4.34)

Finally, at φ = 0, the odd ` modes are zero,

f `(θ, 0) = 0 (for odd `), (4.35)

and even ` the modes are only a function of θ,

∂f `

∂φ

∣∣∣∣
φ=0

= 0 (for even `). (4.36)

We have chosen not to utilize a spherical harmonics expansion in the solution of the non-equilibrium

orientation distribution function because this approach results in an ill-conditioned matrix system

for Wi & O(1)96, whereas the approach described herein is well-conditioned (see Section 4.A.2).

A second-order central difference scheme is applied to (4.28) in both β and φ resulting in the
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discretized equation,

Ai,jf
`
i,j+1 +Bi,jf

`
i,j−1 + Ci,j(f

`
i+1,j + f `i−1,j) +D`

i,jf
`
i,j + Ei,j

(
f `+1
i,j+1 − f `+1

i,j−1 + f `−1i,j+1 − f `−1i,j−1

)
+ Fi,j

(
f `+1
i+1,j − f `+1

i−1,j + f `−1i+1,j − f `−1i−1,j

)
+Gi,j

(
f `+1
i,j + f `−1i,j

)
= Ri,jδ`,±1 (4.37)

where,

Ai,j =
(

(ln βi)
2 −Wi2/3

) β2
i

6∆β2
, (4.38)

Bi,j =
(

(ln βi)
2 −Wi2/3

) βi
6∆β

+
βi ln βi
6∆β

,

Ci,j =
1

6∆φ2

Wi2/3

(ln βi)2 −Wi2/3
,

D`
i,j = i`De− 2 (Ai,j + Ci,j) ,

Ei,j = Wi

(
B cos 2φj − 1

8∆φ

)
,

Fi,j =
WiB

8∆β
βi ln βi

(
Wi−2/3(ln βi)

2 − 1
)

sin 2φj,

Gi,j =
3WiB

4

(
Wi−2/3(ln βi)

2 − 1
)

sin 2φj,

Ri,j =
3WiB

4

(
1−Wi−2/3(ln βi)

2
)

sin 2φj.

A point in the discretized spatial domain is labeled (βi, φj) for i ∈ [0, N + 1] and j ∈ [0,M + 1]

with grid spacing (∆β,∆φ) = (1/N, π/M). The resulting coupled set of ODEs can be compactly

written as M·f = R, where M is a sparse matrix containing 15 bands comprised of the coefficients

in (4.38), f is the solution vector for the non-equilibrium orientation distribution function, and R

is a forcing vector from the equilibrium microstructure at each point in space and time. The linear

system is solved using sparse direct solvers in MATLAB®. The solution is deemed converged for

a given Wi, De, and r when both the addition of spatial (N,M ) and temporal nodes (L) results in

less than a 1% relative change in the shear stress (see Section 4.A.2 for more details).
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4.4 Results

A numerical solution to the Fokker-Planck equation for a dilute suspension of Brownian spheroids

subject to an oscillatory shear flow over a range of flow strengths (Wi) and oscillation frequencies

(De) is obtained. For simplicity, we have limited the majority of our analysis to prolate spheroids

of aspect ratio r = 20; however, our numerical method is general and can be applied to other

aspect ratios, including oblate spheroids, as we discussed in Section 4.2. For near-spheres, r ≈ 1,

the nonlinear viscoelastic regime is discussed by Khair 130 .

Figure 4.4 is a Pipkin diagram comprised of a collection of Lissajous plots of the hydrodynamic

and Brownian shear stress contributions over Wi ∈ (0, 20] and De ∈ (0, 100] as a function of the

normalized strain-rate, cos(De t). In the weak deformation limit, Wi � 1, the hydrodynamic

shear stress is the equilibrium contribution in (4.18) to leading order in Wi, resulting in a straight

line at all De. The Brownian shear stress is elliptical over most values of De, as this is the source

of the material’s viscoelasticity in this regime. In the limit of large oscillation frequency, De� 1,

or small extent of deformation, Wi/De � 1, the hydrodynamic shear stress is dominant over

the Brownian shear stress over a majority of an oscillation cycle. Furthermore, the hydrodynamic

shear stress is linear in the strain-rate at all Wi, analogous to the linear viscoelastic regime. In

the limit of slow oscillations, De � 1, both shear stress contributions have a negligible amount

of projected area, indicating a quasi-steady, viscous response. For larger flow strengths, Wi &

2, the non-Newtonian, shear-thinning response of the material is observed. Finally, when the

deformation is strong, Wi � 1, and the extent of deformation is not small, Wi/De ≥ 1, both

the hydrodynamic and Brownian shear stress exhibit a non-linear viscoelastic response, where

secondary and sometimes tertiary loops are observed in the shear stress response. The secondary

and tertiary loops observed in this regime correspond to over-shoots that one would observe during

the start-up, or under-shoots upon the cessation, of a steady shear flow. This is unsurprising as an

oscillatory deformation is a continual start-up and cessation flow, since the flow must pass through

zero twice during an oscillation cycle. Beyond Wi ' 10, over all De, the stress response does not
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significantly change when increasing Wi. Thus, our results have reached the large Wi regime. In

what follows, we will address each of these regimes in more detail (see also Figure 4.1).

Figure 4.4: Pipkin diagram of Lissajous curves over a range of flow strengths (Wi) and oscillation fre-
quencies (De). Each Lissajous plot shows the hydrodynamic (black (blue online)) and Brownian (gray (red
online)) shear stress contribution versus the normalized strain-rate, cos(De t). The shear stress is normal-
ized by the total shear stress at that (Wi,De), so that the shear stress across the Wi−De parameter space
can be compared consistently.

4.4.1 Linear viscoelastic response: Wi� 1

In the linear viscoelastic regime, the rate of the imposed deformation, γ̇0, is much less than the rate

of relaxation, 1/6Dr (Wi � 1). Here, the leading order non-equilibrium orientation distribution

function is asymptotically small inWi and the microstructure oscillates at the input frequency,De.
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Formally we have11,

fLVE =
3BWi

2

[
cos(De t) +De sin(De t)

De2 + 1

]
sin2 θ sin(2φ) +O(Wi2). (4.39)

Substitution of (4.39) into (4.8), (4.23), and (4.24) yields for the linear viscoelastic shear stress11,65,134,

τLVE
yx

µscγ̇0

= ηeq +
FHB

15

(
cos(De t) +De sin(De t)

De2 + 1

)
+O(Wi2), (4.40)

orientation angle,

χLVE = sgn(I1)
π

4
+O(Wi2), (4.41)

and linear dichroism,
∆n′′

∆n′′max
= |I1|+O(Wi2), (4.42)

where,

I1 =
2WiB

5

(
cos(De t) +De sin(De t)

De2 + 1

)
(4.43)

and sgn is the sign function. Normal stress differences are beyond the linear viscoelastic regime as

they arise from the O(Wi2) microstructure deformation.

Figure 4.5 shows the non-equilibrium orientation distribution function given in (4.39) forWi =

0.1 andDe = 0.1 and 1 as a function of the strain rate, γ̇0 cos(De t). The microstructure will orient

along the principle axes of strain in the flow-gradient plane, φ = ± π/4, and transition between

the two axes based on the value of De. For instance, when De � 1, fLVE ∼ cos(De t) and the

transition in orientation about the principle axes of strain will occur in-phase with the imposed

flow, characteristic of a viscous liquid. Conversely, when De � 1, fLVE ∼ sin(De t)/De and

the transition in orientation will occur 90o out-of-phase with the imposed flow, i.e. in phase with

the strain, characteristic of an elastic solid. At intermediate De, the microstructure will behavior

viscoelastically and the duration of the transition between the principle axes of strain will be out-

of-phase with the imposed strain and strain-rate.

Figure 4.6(a) shows Lissajous plots of the hydrodynamic and Brownian components of the
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shear stress as a function of the normalized strain-rate from (4.40). The hydrodynamic contribu-

tion solely arises from the equilibrium (isotropic) microstructure and is purely in-phase with the

applied flow. The viscoelasticity of the material solely arises from the Brownian contribution,

which has the greatest overall contribution to the shear stress at De ∼ O(1). Figure 4.6(b) shows

Lissajous plots of the orientation angle (purple) and linear dichroism (green) given in (4.41)-(4.42)

as a function of the normalized strain-rate. As discussed previously, the orientation of the mi-

crostructure oscillates between the principle axes of strain and the transition is dictated by the

magnitude of De. Unsurprisingly, the magnitude of the linear dichroism remains close to zero

regardless of the magnitude of De. This is because the microstructure is only slightly perturbed

out of equilibrium.

Figure 4.5: Non-equilibrium orientation distribution function in the linear viscoelastic regime, Wi = 0.1,
given in (4.39) for De = 0.1, 1 at different instances in the strain-rate, γ̇ = γ̇0 cos(De t), over a half
cycle, t ∈ [0, π/De]. Regions of red indicate likely orientations whereas regions of blue indicate unlikely
orientations. The particles tend to align along the principle axes of strain in the flow-gradient plane (±π/4),
which is supported by the value of the orientation angle given in (4.41).
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Figure 4.6: (a): Hydrodynamic (black, (blue online)) and Brownian (gray (red online)) shear stress contri-
butions and (b): orientation angle (purple) linear dichroism (green) for Wi = 0.1 and De = [0.01, 3].

4.4.2 Quasi-linear Response: Wi > 1, Wi/De� 1

In the large frequency limit, De � 1, the oscillation time scale is much less than time scale

of relaxation. When the oscillation time scale is also much less than the time scale of the flow,

Wi/De = γ0 � 1, the material is not given sufficient time to deform, even under a strong defor-

mation rate, resulting in a quasi-linear response. Figure 4.7 shows the non-equilibrium orientation

distribution function at various instances in the shear cycle at De = 100 and Wi ∈ [1, 20]. We

qualitatively observe that the material response is akin to the large frequency, small amplitude

deformation regime, where the microstructure is aligned about the principle axes of strain and

the transition between the two axes is 90o out-of-phase with the strain-rate, f ∼ De sin(De t).

As shown in Figure 4.8(a), the hydrodynamic shear stress contribution is dominant and is nearly

entirely in-phase with the strain-rate. Thus, the hydrodynamic contribution is dominated by the

equilibrium microstructure and not the distorted orientation distribution function that is 90 o out-

of-phase with the strain rate. Figure 4.8(b) shows that for a large-amplitude deformation, but small

strain, the particles will align along the principle axes of strain, with an increased degree of align-

ment as Wi increases, and the transition between the axes will be nearly 90o out-of-phase with the

strain-rate, as one would observe for an elastic solid; this is analogous to what is observed under a
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small-amplitude deformation.

Figure 4.7: Non-equilibrium orientation distribution function in the quasi-linear viscoelastic regime at dif-
ferent instances in the strain-rate over a full-cycle, t = [0, 2π/De], for De = 100 and Wi = [1, 20].
Regions of red indicate likely orientations whereas regions of blue indicate unlikely orientations. We quali-
tatively observe that f ∼ sin(De t) as changes in the microstructure are 90o out-of-phase with the imposed
strain-rate over all Wi investigated, similar to the large frequency limit of the linear response in Section
4.4.4.4.1
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Figure 4.8: (a) Shear stress and (b) birefringence parameters in quasi-linear viscoelastic regime for De =
100 and Wi = [1, 20]. The shear stress is dominated by the equilibrium hydrodynamic component (black
(blue online)), which is fully in-phase with the strain-rate. The Brownian shear stress (gray (red online))
is 90o out-of-phase with the strain rate and remains near zero at all points in an oscillation cycle. Over all
flow strengths (Wi) investigated, the particles mainly align along the principle axes of strain, as is observed
in SAOS. The linear dichroism remains small over all Wi, but does increase as the flow strength increases,
characteristic of a nonlinear elastic deformation of the microstructure.

4.4.3 Quasi-steady response: De→ 0

In the small oscillation frequency limit, De� 1, the oscillation time scale is much greater than the

time scale of relaxation resulting in a quasi-steady deformation. For Wi & O(1), the microstruc-

ture is strongly aligned with the flow axis during most of an oscillation cycle; the shear rate is

strong enough to bias the particle orientation toward slower parts of the Jeffery orbit. In Figure

4.9 we qualitatively observe that as Wi increases, the degree of alignment along the flow axis is

enhanced and the magnitude of the orientation distribution function increases. Also, the alignment

of the microstructure about the flow axis oscillates in time and appears to be nearly in-phase with

the oscillatory strain-rate. The orientation angle in Figure 4.10(b), over all Wi investigated, re-
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mains near its minimum magnitude over the majority of an oscillation cycle; as the flow changes

in direction, the sign of orientation of the particles also changes, but the magnitude remains the

same (since the particles are fore-aft symmetric). Similarly, the linear dichroism is at a maximum

when the strain-rate is at a maximum and decays to a minimum value when the flow vanishes.

Figure 4.10(a) shows the hydrodynamic and Brownian contributions to the the shear stress. For

Wi > 1, the increase of the hydrodynamic shear stress with strain-rate is sub-linear, indicating that

the suspension is shear-thinning. Interestingly, the magnitude of the slope of the Brownian shear

stress is also sub-linear and negative, ∆τByx/∆γ̇ ∼ −0.45, forWi > 1. Furthermore, there is nearly

no projection of area in the Lissajous plots of either the hydrodynamic or Brownian shear stress

contribution, indicating that the response is essentially viscous in nature, i.e. the stress evolves

quasi-steadily with the imposed flow.

The steady shear response of a dilute suspension of spheroids subject to weak rotational Brow-

nian motion was investigated by Hinch and Leal 11 , who obtained an approximation to the steady-

state orientation distribution function via a singular perturbation analysis. For weak Brownian

rotation, Wi � 1, diffusion is negligible nearly everywhere in the domain with the exception of

a boundary layer near the flow axis where advection and diffusion are of comparable strength;

the width of this orientational boundary layer scales as O(Wi−1/3). Hinch and Leal 11 ultimately

found that for 1/(6Wi) � 1 and Wi1/3 � 6−1/3(r + r−1), the hydrodynamic contribution to the

shear stress scales as τHyx ∼ Wi2/3 (see their equation (48a)); a particle aspect ratio of r = 20 and

the range of Wi used herein falls within this regime. Hinch and Leal 11 neglected the Brownian

contribution to the shear stress as it is of lower order in Wi than the hydrodynamic contribution

for Wi � 1. However, we observe that when the strain-rate is close to zero, the hydrodynamic

and Brownian shear stress contributions are comparable. Thus, the Brownian contribution to the

shear stress should not be naively neglected during the entirety of an oscillatory shear deformation,

even if Wi at the maximum strain-rate is large. In Figure 4.10(a) we fit the scaling approximation

of Hinch and Leal 11 to pass through zero when the flow vanishes and through the value of the

hydrodynamic shear stress when the magnitude of the strain rate is at a maximum. A qualitative
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agreement is observed between this scaling and our numerical results for the hydrodynamic shear

stress at De = 0.01 and Wi > 1, indicating that at sufficiently low oscillation frequencies, the

material response approaches a quasi-steady state limit. This also validates our numerical results.

Figure 4.9: Non-equilibrium orientation distribution function in the quasi-steady viscoelastic regime at dif-
ferent instances in the strain-rate over a half-cycle, t = [0, π/De] forDe = 0.01 andWi = [1, 20]. Regions
of red indicate likely orientations whereas regions of blue indicate unlikely orientations. The alignment of
the microstructure along the flow axis oscillates in time and appears to be in-phase with the strain-rate. Also,
as Wi increases, the degree of alignment about the flow axis increases.
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Figure 4.10: Shear Stress in the quasi-steady viscoelastic regime for De = 0.01 and Wi = [1, 20]. The
hydrodynamic (black (blue online)) contribution to the shear stress dominates over the Brownian (gray (red
online)) contribution at nearly all instances in an oscillation cycle. The exception occurs when the flow
is near zero, t ∼ π/De, when the two contributions are comparable. The blue dashed line is the scaling
approximation for the steady hydrodynamic shear stress from Hinch and Leal 11 (denoted as HL72), which
is fit to pass through zero when the flow vanishes and through the value of the hydrodynamic shear stress
when the flow is at its maximum value, τHLyx = τHyx|γ̇=1 cos

2/3(De t). This approximation qualitatively
agrees with our numerical results for Wi > 1 and De = 0.01. The qualitative agreement between the
steady shear scaling and the Brownian shear stress for Wi = 1 is coincidental. The average orientation
angle (purple) remains at a minimum over most of an oscillation cycle and changes sign when the flow
reverses direction. Similarly, the linear dichroism (green) is at a maximum when |γ̇| ∼ 1 and a minimum
when |γ̇| ∼ 0.

4.4.4 Nonlinear Viscoelastic Response, Wi & 1 and Wi/De & 1

In the nonlinear viscoelastic regime, the deformation is strong, Wi ∼ O(1) and larger, and the

rate of relaxation of the material is comparable to the oscillation frequency, De ∼ O(1), such

that the transient, non-linear rheology of the material is interrogated. Figure 4.11 shows the non-

equilibrium orientation distribution function for De = 1 and Wi = [1, 20]. Here, as Wi increases,

the degree of alignment along the flow axis is enhanced, which is observed over a range of De

(not shown). Also, as Wi increases, the particles tend to spend most their time aligned along the
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flow direction with little distribution along the vorticity direction. At all Wi, when De = O(1),

the orientation distribution function is not in-phase with the rate of strain – there is a significant

out-of-phase contribution resulting from the viscoelasticity of the material. Furthermore, when

the flow vanishes, γ̇ = 0, a significant degree of alignment still exists as the microstructure is not

given sufficient time to relax. The inability of the material to completely relax occurs because the

time-scale over which the flow transitions is comparable to the relaxation time of the material. It

is this inability to relax from a strongly aligned state that gives rise to the nonlinear viscoelastic

response. As one transitions to De < 1, the time-scale of relaxation is less than the time-scale over

which the flow transitions; and thus, the material is given sufficient time to relax over an oscillation

cycle, as was shown in Section 4.4.4.4.3

Under a sufficiently strong deformation, Wi & 2, and De ∼ O(1), the Lissajous curves in Fig-

ure 4.4 show secondary loops (or points of overlap) in both the hydrodynamic and Brownian shear

stress; when Wi ≥ 10 tertiary loops are also observed. The existence of secondary (and higher

order) loops, or over/under-shoots, in the material response indicate significant microstructural

variations are occurring over an oscillation cycle143. Figure 4.12 shows the shear stress response at

De = 1 at variousWi in both the time and strain-rate domain. At eachWi selected, an under-shoot

is observed between De t = [π/2, π], corresponding to a cross-over point on cos(De t) = [0,−1].

In this nonlinear viscoelastic regime, the hydrodynamic contribution to the shear stress (Figure

4.13a) is dominant over the Brownian shear stress contribution, with the exception of when the

strain-rate is near zero, as the hydrodynamic shear stress must be zero when the flow vanishes.

Here, the only viscoelasticity observed in the hydrodynamic shear stress is when the strain-rate

is near its maximum. Otherwise, it is purely viscous and in-phase with the strain-rate; this can

also be observed in the left column of Figure 4.12. As mentioned previously, tertiary loops, or

secondary cross-over points, are observed in the hydrodynamic shear stress for Wi ≥ 10. The

Brownian shear stress, at all Wi investigated in this regime, is viscoelastic over an entire oscil-

lation cycle and maintains a “bow-tie” shape with a single cross-over point in each oscillation

half-cycle. Analogous to what is observed in the shear stress response, the hydrodynamic first
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normal stress difference is dominant over the Brownian contribution through the majority of an

oscillation cycle (Figure 4.13b). The exception being when the flow vanishes and the hydro-

dynamic first normal stress difference is zero and the Brownian contribution is non-zero. The

hydrodynamic and Brownian first normal stress difference are viscoelastic over an entire oscil-

lation cycle with a cross-over point when the flow vanishes. This cross-over point corresponds

to the symmetry of the first normal stress difference over the half-cycle of an oscillation, i.e.

N1(0 ≤ De t ≤ π/2) = N1(π/2 ≤ De t ≤ π); again, the symmetry occurs because the par-

ticles are fore-aft symmetric. A secondary cross-over point occurs in both contributions to the

first normal stress difference for Wi & 8, but at different points in an oscillation cycle. The sec-

ondary cross-over point in the hydrodynamic first normal stress difference occurs when |γ̇| ∼ γ̇0/2,

whereas this occurs for the Brownian contribution when |γ̇| ∼ γ̇0. As Wi increases, the orienta-

tion angle and linear dichroism (Figure 4.13c), indicate a higher degree of alignment along the flow

axis. The magnitude of the orientation angle at the maximum strain rate decreases from roughly

13o at Wi = 4 to 6o at Wi = 20. The linear dichroism increases from approximately 0.5 to 0.7

over the same change inWi, indicating that the non-equilibrium orientation distribution function is

increasingly peaked along the flow axis. Furthermore, we can qualitatively observe that the orien-

tation angle is dominated by the Brownian shear stress whereas the linear dichroism is dominated

by the Brownian first normal stress difference (see equations (4.25) and (4.26)).

97



Figure 4.11: Non-equilibrium orientation distribution function in the non-linear viscoelastic regime at dif-
ferent instances in the strain-rate over a half-cycle, t = [0, π/De] for De = 1 and Wi = [1, 20]. Regions of
red indicate likely orientations whereas regions of blue indicate unlikely orientations. As Wi increases, the
degree of alignment along the flow-axis is enhanced and the particles are almost entirely aligned along the
flow axis, as would be expected from their Jeffery orbit trajectories.
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Figure 4.12: Normalized shear stress atDe = 1 and (a): Wi = 4, (b): Wi = 10, and (c): Wi = 20 as a function
of time (left column) and normalized strain-rate (right column). The shear stress is decomposed into the
hydrodynamic (black (blue online)) and Brownian (gray (red online)) contributions. The dotted black line
in the left column represents strain-rate for reference. The points of cross-over in the Lissajous plots (right
column) correspond to the over-shoots and under-shoots in the shear stress response in the time-domain (left
column). Regions in the Lissajous plots where the shear stress contributions have a finite projection area
correspond to the response in the time-domain being out-of-phase with the imposed strain-rate.
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Figure 4.13: Lissajous plots of (a): the shear stress, decomposed into the hydrodynamic (black (blue on-
line)) and Brownian (gray (red online)) contributions; (b): first normal stress difference, decomposed into
the hydrodynamic (black (blue online)) and Brownian (gray (red online)) contributions; and (c): orientation
angle (purple) and linear dichroism (green) for Wi = [1, 20] and De = 1. Secondary loops in the shear
stress and first normal stress are observed for Wi ≥ 4; tertiary loops are only observed in the hydrodynamic
contributions to the shear stress and first normal stress difference for Wi ≥ 10. The magnitude of the av-
erage orientation angle decreases as Wi increases, whereas the linear dichroism increases, supporting the
notion that the particles are increasingly aligned with the flow. Qualitatively, the orientation angle closely
resembles the Brownian shear stress whereas the linear dichroism resembles the Brownian first normal stress
difference.

4.5 Discussion

We have numerically solved the Fokker-Planck equation for a dilute suspension of Brownian

spheroids in a Newtonian fluid subject to an oscillatory shear flow of varying flow strength (Wi)

and oscillation frequency (De). The resultant non-equilibrium orientation distribution function

was then utilized to calculate the hydrodynamic and Brownian contributions to the shear stress

and normal stress differences and the average orientation angle and linear dichroism, as would be

measured from a birefringence experiment. Our numerical approach has allowed us to probe a

significant portion of the Wi−De parameter space for the case of prolate spheroids of aspect ratio
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r = 20; our approach can be applied generally to spheroids of any aspect ratio, however. Next, we

will discuss the nonlinear viscoelastic regime and explain the microstructural origins of multiple

crossover points in the Lissajous-Bowditch plots of the shear stress response. We will then com-

pare our results for prolate spheroids of aspect ratio r = 20 to that of oblate spheroids of aspect

ratio r = 1/20 = 0.05. Finally, we will discuss the overall impact of this work.

Cross-over points in the Lissajous plots of the shear stress versus strain-rate have been observed

in a variety of soft materials such as xanthum gum solutions and inverted-micelle drilling fluids143,

a thermoreversible nanoparticle gel144, and micelle solutions37,145 along with constitutive equations

such as the single-mode Geisekus model73,146,147, a non-affine network model148, and a tube-based

model for entangled polymers149. The origin of cross-over points has been physically interpreted

as significant changes in the microstructure143. Figure 4.14 gives a complete picture of the mi-

crostructure, stress response, and rheo-optical response for a dilute suspension of Brownian rods

(r = 20) under a large-amplitude oscillatory shear deformation for Wi = 20 and De = 1. Figure

4.14(a) shows snapshots of the microstructure, parameterized by the non-equilibrium orientation

distribution function, at four points in an oscillation half-cycle, where two stress over-shoots are

observed in the hydrodynamic stress response. The four quadrants of Figure 4.14(a) correspond to

the four discrete points numbered in Figure 4.14(b-e), which will be referred to as “time points 1–

4”.

At time point 1, the flow vanishes (γ̇ = 0), the microstructure begins to relax via rotational

Brownian motion, and the hydrodynamic stress is zero. However, the Brownian stress is non-

zero, but qualitatively appears to be decaying analogous to what one would observe in a cessation

experiment. The relaxation of the microstructure results in a decrease in the magnitude of the linear

dichroism corresponding to an decrease in the degree of alignment of particles. A slight increase

in the orientation angle is also observed as the particles are no longer being driven to align along

the flow axis. At the very next instance in time, the flow restarts, but in the opposite direction from

the previous half-cycle.

At time point 2, the flow is roughly at 50% of its maximum amplitude (|γ̇| ∼ 0.5, De t ∼
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7π/10). With the inception of the flow and reversal in its directionality, the particles have tran-

sitioned from an average orientation angle of ≈ 8 o to an average orientation angle of ≈ −17 o

(Figure 4.14f), as they are driven to align along the flow axis, which is now φ = π (-x axis). Now

the particles are more mis-aligned, i.e. further from 0 o, than they were at time point 1, which

contributes to the stress over-shoot observed between time points 1 and 2. The linear dichroism

increases beyond time point 2 as the strain-rate increases, indicating increased degree of alignment

(Figure 4.14g). This dramatic change in the microstructure causes the first over-shoot in the hy-

drodynamic stress (Figure 4.14b,c). The increase in the magnitude of the strain-rate and dramatic

change in the average orientation angle is also the origin of the over-shoot in the Brownian stress

response.

At time point 3, the flow is roughly at 75% of its maximum amplitude (|γ̇| ∼ 0.75, De t ∼

4π/5). Here, the average orientation angle (Figure 4.14f) has nearly decreased to its minimum

magnitude of ∼ 7 o and the linear dichroism (Figure 4.14g) is roughly at its maximum value,

indicating the strongest alignment about the average orientation angle. A decrease in the hydrody-

namic shear stress is observed, resulting from the fact that more of the particles are aligned near

the flow axis thus generating less of a disturbance to the flow. The Brownian shear stress has also

decreased because the contribution of rotational Brownian motion is dampened by the strength of

the flow. Between time points 2 and 3 a maximum in the magnitude of both the hydrodynamic

and Brownian first normal stress difference occurs due to the over-alignment of the particles, as is

observed in the shear stress overshoot.

At time point 4, the flow is approximately at its maximum amplitude, and a secondary maxi-

mum in the magnitude of the hydrodynamic shear stress, hydrodynamic first normal stress differ-

ence, and Brownian first normal stress difference occur. Interestingly, a slight decrease and then

recovery is observed in the linear dichroism (Figure 4.14g) indicating that some particles briefly

become less aligned with the flow; an analogous change is observed in the Brownian first normal

stress difference (Figure 4.14e) between time points 3 and 4. At time point 2 the non-equilibrium

orientation distribution function is approximately 0 at φ ≈ 0 (+x axis). Then, further along at time
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point 3 the orientation distribution function has a small, but finite contribution near φ = 0, which

increases slightly when moving to time point 4. This corresponds to a small, but non-negligible

probability of an ensemble of particles transitioning from the average orientation angle, χ, to a

different angle that is of opposite sign and close to zero. This second transition creates a dis-

turbance to the flow, resulting in a secondary overshoot in the hydrodynamic shear stress and first

normal stress difference. No discernible change is observed in the Brownian shear stress or average

orientation angle between time points 3 and 4.

This secondary transition is similar to spheroidal particles undergoing a Jeffery orbit under

steady shear flow in the absence of Brownian motion. Jeffery orbits occur in steady shear because

the imposed flow generates a torque on the surface of a particle, but the particle is rigid and cannot

deform so it must rotate in order to remain torque-free; the period of rotation is TJO = 2π(r +

r−1)/γ̇0. Here, the period of a Jeffery orbit is comparable to the period of an oscillation cycle,

TJO/Tosc = (r+r−1)De/Wi = 1.0025. Under these conditions we are allowing for sufficient time

for these Jeffery orbit-like events to occur; specifically, one orbit can occur before the flow reverses.

Furthermore, it is worth mentioning the striking similarities between the Brownian first normal

stress difference in 4.14(e) and the total first normal stress difference calculated by Khair 73 from a

singular perturbation solution to the single-mode Giesekus model under LAOS. As mentioned in

Section 4.2.4.2.1, for B ≈ 1, the evolution of the Brownian stress via 〈pp〉, is dependent upon the

upper convected derivative of 〈pp〉, analogous to the evolution of the total stress in the Giesekus

model, as a particle is equally affected by the vorticity and straining component of the flow. Thus,

this leads to the single overshoots in the Brownian first normal stress difference herein and the total

first normal stress difference from the Giesekus model (see Figure 4 of Khair 73).

An analogous phenomena has been described for a dilute suspension of nearly spherical par-

ticles (|r − 1| � 1) under a large-amplitude oscillatory shear flow130, where the total shear

stress response undergoes rapid oscillations and multiple cross-over points near |γ̇| ' 1. Here,

TJO/Tosc ≈ 2De/Wi� 1, allowing for multiple orbits to occur over an oscillation cycle, and thus

multiple crossover points in the shear stress, which is dampened by Brownian rotation. Further-
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more, the evolution of the Brownian stress, which is dominant over the hydrodynamic contribution(
FH � AH , BH , CH for r ∼ 112

)
, depends on the co-rotational derivative of 〈pp〉 for B ≈ 0. The

existence of multiple cross-over points in the stress response is thus expected for any co-rotational

microstructure that is not oriented by the straining component of the flow

The numerical approach provided herein for solving the Fokker-Planck equation subject to

an oscillatory shear deformation can be applied to spheroids of any aspect ratio. To illustrate

this, Figure 4.15 shows the non-equilibrium orientation distribution function over a half-cycle for

Wi = 10 and De = 1 for prolate spheroids (r = 20) and oblate spheroids (r = 0.05). The results

for prolate spheroids are the same as in Figure 4.11. Both types of particles align in such a way

to minimize the disturbance to the imposed flow and thus minimize the stress of the suspension.

This results in prolate spheroids aligned along the flow axis and oblate spheroids aligned along the

flow-gradient axis. For both cases, the particles are mainly aligned in the flow-gradient plane with

little distribution along the vorticity direction.

The shear stress, decomposed into hydrodynamic and Brownian contributions, for Wi = 10

and De = [0.5, 100] is given for both types of particles in Figure 4.16. For both prolate and oblate

particles, the hydrodynamic contribution to the shear stress is dominant over the Brownian contri-

bution, with the exception of when the strain-rate is small, γ̇ ∼ 0, where the hydrodynamic contri-

bution vanishes but the Brownian contribution does not. Qualitatively, the Brownian contribution to

the shear stress for an oblate spheroid suspension is similar to that of a prolate spheroid suspension.

Quantitatively the two differ by roughly a factor of 5, which can be attributed to the difference in

the relevant scalar hydrodynamic coefficient, FH(r), (FH(r = 20)/FH(r = 0.05) ≈ 4.9)12. When

De ∼ O(1), differences are observed in the hydrodynamic shear stress contribution for oblate

and prolate particles. The prolate suspension tends to have an increased degree of hydrodynamic

viscoelasticity, meaning that the area projection is larger compared to that of the oblate suspension.
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Figure 4.14: Microstructural origins of stress over-shoot: (a): Non-equilibrium orientation distribution
function in spherical coordinates, (b): hydrodynamic shear stress, (c): hydrodynamic first normal stress
difference, (d): Brownian shear stress, (e): Brownian first normal stress difference, (f): average orientation
angle, and (g): linear dichroism for Wi = 20 and De = 1. The orientation distribution function in each
quadrant of (a) corresponds to the numerically labeled point on (b-g).
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Figure 4.15: Microstructure at Wi = 10 and De = 1 for a: prolate spheroid suspension, r = 20 and
(b): r = 0.05. The prolate particles will orient themselves about the flow axis under a sufficiently strong
deformation. Conversely, oblate objects will orient themselves along the flow-gradient axis.

Figure 4.16: Hydrodynamic (black, blue online) and Brownian (gray, red online) shear stress for (a) a
prolate spheroid suspension, r = 20, and (b) an oblate spheroid suspension,: r = 0.05, for Wi = 10 over a
range of De.

In conclusion, we have demonstrated a general numerical approach to solving the Fokker-

Planck equation for a dilute suspension of Brownian spheroids subject to an oscillatory shear flow

over a wide range Wi and De. Specifically for the case of prolate spheroids of aspect ratio r = 20,

we have calculated the full stress tensor along with the birefringence quantities, the linear dichro-
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ism and average orientation angle. This work provides a novel microstructural insight into the

nonlinear viscoelasticity of suspensions of rigid anisotropic particles. This type of insight is gener-

ally valuable because many complex fluids are utilized under strong, transient deformations. LAOS

can be viewed as a series of shear start-up and cessation shear flows. However, the microstructure

at each start-up in the oscillation cycle does not start from equilibrium, but contains some memory

of the previous oscillation cycle. Thus, LAOS is a tool complimentary to a steady shear start-up

or cessation flow where the microstructure is beginning at equilibrium or allowed to full relax to

equilibrium, respectively, where one can probe the affects of memory on the stress response of

a material. The full potential of LAOS can be achieved by combining the technique with other

microstructural probes, such as birefringence measurements, SANS, or Raman spectroscopy, to

name a few. Specifically, we have shown that the birefringence results provide valuable insight

into the Brownian, or entropic nature, of the material. Here, the linear dichroism is qualitatively

providing a measure of the Brownian first normal stress differences whereas the average orientation

angle is providing a measure of the Brownian shear stress contribution. The combination of the

birefringence and LAOS results allow for one to experimentally decouple the hydrodynamic and

Brownian stress contributions, which cannot be done by either technique alone. Furthermore, this

can analogously be applied to simultaneous SANS measurements. In this case, the alignment fac-

tor (typically denoted as Af 40) would now give a qualitative measure of the Brownian first normal

stress difference.

4.A Appendix

4.A.1 Expressions for normal stress differences and birefringence parame-

ters

Below are expressions for the normal stress differences and birefringence parameters, average

orientation angle and linear dichroism, when the non-equilibrium orientation distribution function
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is expanded as a Fourier series in time (see equation (4.27)). The first normal stress difference is,

N1 = − 1

4π

∞∑
`=−∞

[(
ei(`+1)De t + ei(`−1)De t

)
AH

∫
sin4 θ sin 4φf `dS

+ ei`De t
(

FH
3Wi

∫
sin2 θ sin 2φf `dS

)]
. (4.44)

The second normal stress difference is,

N2 =
1

2π

∞∑
`=−∞

[(
ei(`+1)De t + ei(`−1)De t

)(
AH

∫
sin2 θ sin 2φ

(
cos2 θ − sin2 θ sin2 φ

)
f `dS

+ BH

∫
sin2 θ sin 2φf `dS

)
+ ei`De t

(
FH

6Wi

∫ (
cos2 θ − sin2 sin2 φ

)
f `dS

)]
. (4.45)

The linear dichroism is,

∆n′′

∆n′′max
=
√
L2
1 + L2

2. (4.46)

The average orientation angle is,

tan 2χ =
L1

L2

, (4.47)

where,

L1 =
1

4π

∞∑
`=−∞

[
ei`De t

∫
sin2 θ sin 2φf `dS

]
, (4.48)

and

L2 =
1

4π

∞∑
`=−∞

[
ei`De t

∫
sin2 θ cos 2φf `dS

]
. (4.49)
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4.A.2 Convergence and Condition of Numerical Solution Method

The numerical method detailed in Section 4.3 is an iterative approach in that the number of spatial

nodes in β and φ (N and M , respectively) and the number of temporal nodes (L) necessary to

accurately prescribe the non-equilibrium orientation distribution function in (4.28), for a given

Wi, De, and r, are not known a priori. We deem a numerical solution to (4.28) converged when

the addition of spatial and temporal nodes results in a less than 1% relative change in the total shear

stress. This is achieved as follows for a fixed r, Wi, and De. An initial guess for the number of

spatial nodes, N0 and M0, and temporal nodes, L0 are chosen either from a previously converged

solution at the same Wi and larger De or a previously converged solution at the same De and

smaller Wi. Using the initial discretization scheme, the orientation distribution function, f0, is

calculated and then employed to calculate the total shear stress, τ 0yx. Next, the number of spatial

nodes is increased, N = N0 + ζ and M = M0 + ζ , and the orientation distribution function, f ,

and shear stress, τyx, are calculated. This is repeated until the relative error in the total shear stress

is below a given tolerance limit: error = ||τ 0yx − τyx||/||τ 0yx|| ≤ tol, where ||x|| represents the

2-norm. We refer to this intermediate solution as the “spatially converged solution.” Then, while

holding the number of spatial nodes fixed at N and M , an additional temporal node is added,

L = L0 + 1, and the orientation distribution function, f , and total shear stress, τyx, are calculated.

If the relative error between the new total shear stress and spatial converged total shear stress is less

than the prescribed tolerance limit, the solution is deemed converged. However, if the addition of a

temporal node resulted in a relative error between the new total shear stress and spatially converged

total shear stress that is greater than the prescribed tolerance, the solution is not converged and the

process must be restarted with N0 = N , M0 = M , and L0 = L.

Once a converged solution is obtained for a given Wi and De, that discretization scheme (N ,

M , and L) are employed as the starting point for a solution to (4.28) for the same r and either

the same Wi and smaller De or the same De and larger Wi (in the De � 1 regime). This is

schematically depicted in Figure 4.17. The process described here is repeated until the entirety of

the Wi−De parameter space has been investigated. For prolate spheroids of aspect ratio r = 20,
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Figure 4.17: Schematic of the solution methodology for solving (4.28) for a fixed r over a range of Wi and
De, which can be interpreted chronologically from 1 − 9, beginning at the yellow star. A solution is first
obtained at small Wi (Wi ∼ 1) and large De (De > 10). That discretization scheme is then used at the
same Wi and smaller De. Once the entire range of De has been probed, the solution at the largest De is
then used to probe the next value of Wi.

that parameter space is Wi = [1, 20] and De = [0.01, 100]; little variation in mechanical response

is observed outside of these ranges.

As mentioned in in Section 4.3, the orientation distribution function in (4.14) can be expanded

in the basis of spherical harmonics. This approach was utilized for a dilute, rigid dumbbell suspen-

sion (B = 1) in steady shear94,135 and the start-up of steady shear96. Strand et al. 96 were limited by

the system size (i.e. number of terms in the spherical harmonics expansion) and the value of Wi.

For instance, Strand et al. 96 found that for Wi = 10 and 30 spherical harmonics terms (960 ma-

trix elements), the condition number of the matrix system was ≈ 1016, which is ill-conditioned. A

matrix is considered ill-conditioned if the condition number is larger than the reciprocal of floating-

point accuracy; here that limit is ≈ 4.5 × 1015. Conversely, the numerical approach detailed here

is well-conditioned for significantly larger system sizes. Figure 4.18 shows the condition number

for Wi = 10 as a function of De. As De decreases, the system size increases, mainly due to an

increased number of terms required in the Fourier series expansion (L). At De = 0.01, which

we have demonstrated to be in the quasi-steady viscoelastic regime, the condition number of our

matrix system is roughly 10 orders of magnitude less than the reciprocal of floating-point accuracy

(2 × 105 compared to 4.5 × 1015), and is thus well-conditioned; here, our matrix system size is
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Figure 4.18: Condition number for Wi = 10 as function of De. As De decreases, the system size,
NM(L+1), increases as does the condition number. However, the system remains well-conditioned as the
condition number is, at minimum, 10 orders of magnitude less than the reciprocal of floating-point accuracy
≈ O(1015).

136,648 (N = 58, M = 62, and L = 37).
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5. Summary
We calculate the transient rheology of a micro-mechanical model suspension of rigid, Brow-

nian spheroids in a Newtonian fluid. The model suspension is homogeneous and dilute, such

that interparticle hydrodynamic interactions are negligible. The microstructure, or orientation dy-

namics of the particles, is characterized via an orientation probability distribution function, which

quantifies the likelihood of particle possesing a given orientation at an instance in time. The orien-

tation distribution function satisfies the Fokker-Planck equation, which is a conservation equation

balancing the effects of the memory of the material, advection from the flow, and rotary Brownian

motion. From the statistical description of the microstructure, the macroscopic stress response of

the model suspension is calculated via ensemble averages of the stresslet, weighted by the orienta-

tion distribution function. We solve the Fokker-Planck equation using regular perturbation theory

and a numerical method to ultimately calculate the stress response of the model suspension under

varying flow strengths and oscillation frequencies.

In Chapter 224 we calculated the linear viscoelasticity of a dilute suspension of self-propelled

rigid spheroids under a SAOS deformation using regular perturbation theory. The microstructure

of this material relaxes via two independent mechanisms: correlated tumbling events and rotational

Brownian motion. This leads to an increased rate of stress relaxation, relative to a suspension that

relaxes by either mechanism alone. We explicitly calculate the non-equilibrium orientation distri-

bution function, which is a function of the SAOS deformation, rotational Brownian motion, and

correlated tumbling events, via a regular perturbation expansion about Wi � 1. From this, we

calculate the orientationally-averaged shear stress response in the linear viscoelastic regime, which

arises from the imposed flow, rotational diffusion, and self-propulsion. Through a comparison of

our linear viscoelastic results to a theoretical prediction of the steady shear viscosity of active,

slender rods25, we propose a modified Cox-Merz rule for active suspensions. Finally, we demon-

strate that linear viscoelastic measurements of active suspensions can be used to determine the

mechanism of self-propulsion (pusher or puller), the strength of self-propulsion (i.e. thrust force
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generated), and correlation between tumbling events; this is achieved through a comparison of our

linear viscoelastic results and experimental results for the steady shear viscosity of E. coli52, using

the proposed modified Cox-Merz rule.

In Chapter 331 we describe a framework for determining the first nonlinear, or MAOS, re-

laxation modulus of a viscoelastic material from a dual-frequency oscillatory shear deformation.

Knowledge of the MAOS relaxation modulus of a material allows one to predict the weakly non-

linear stress response of the material through a memory integral expansion30. We demonstrate this

framework using the micro-mechanical model system of a dilute suspension of Brownian spheroids

in a Newtonian medium. We determine the second normal stress difference of a simple viscoelastic

fluid subject to a dual-frequency MAOS deformation from a co-rotational memory integral expan-

sion. Next, the stress response of the model system is calculated through the ensemble average of

the stresslet, wherein the orientation distribution function is calculated via a regular perturbation

expansion about Wi � 1. An analytical expression for the MAOS relaxation modulus of the

micro-mechanical system is resolved through a comparison of the second normal stress difference

of the model system and the co-rotational memory integral expansion. Finally, we employ the

MAOS relaxation modulus to reconstruct the stress response of the model system in the start-up

and cessation of steady shear and uniaxial extension.

In Chapter 4 we numerically calculate the nonlinear viscoelasticity of a dilute suspension of

Brownian spheroids subject to a LAOS deformation. The orientation distribution function is cal-

culated by numerically solving the Fokker-Planck equation through a finite difference method in

space and a Fourier series in time, thus quantifying the long-time periodic behavior of the material.

The entire stress tensor and birefringence parameters, average orientation angle and linear dichro-

ism, are then calculated. We apply our numerical method over a range of Wi and De for prolate

spheroids of r = 20; however, our approach is general and applicable to other values of the aspect

ratio. We showcase results in four viscoelastic regimes: linear viscoelastic (Wi� 1), quasi-linear

viscoelastic (Wi > 1 and Wi/De � 1), quasi-steady viscoelastic (Wi & 1 and De � 1), and

the nonlinear viscoelastic regime (Wi & 1 and Wi/De & 1). In the nonlinear viscoelastic regime,
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specifically Wi � 1 and De ∼ O(1), multiple overshoots are observed in the hydrodynamic

stress response of the material. We demonstrate that the origin of these secondary (and potentially

additional) overshoots are through microstructural rearrangements similar to a particle undergoing

a Jeffery orbit under steady shear in the absence of Brownian motion; this is done by analyzing

the microstructure, stress response, and birefringence parameters simultaneously for Wi = 20 and

De = 1. In this example, the period of a Jeffery orbit is comparable to the period of an oscillation

cycle, thus allowing sufficient time for a single Jeffery orbit to occur per oscillation cycle. Finally,

we provide results for oblate spheroids of r = 0.05 and compare these to the results of r = 20.

The Brownian stress of both suspensions is qualitatively similar, differing only by a scalar factor

of roughly 5; this arises from the ratio of the relevant aspect ratio-dependent hydrodynamic coef-

ficient, FH(r = 20)/FH(r = 0.05) ≈ 4.9. However, a suspension of oblate spheroids tends to

have a smaller hydrodynamic contribution to the viscoelastic stress compared to a suspension of

prolate particles, indicating that the oblate spheroids create less of a disturbance to the imposed

flow, compared to prolate spheroids with equal |B|.

5.1 Future Work

Simple shear is not the only linear flow that can be used to probe nonlinear viscoelasticity. One

can also employ an extensional deformation, such as a planar or uniaxial extensional flow, where

a viscoelastic material is stretched (or compressed), either in two or three dimensions17,150–152.

Extensional flows are highly efficient at stretching flexible polymer molecules and orienting rigid

particles, as there is no rotational component to flow151. Thus, one would expect a markedly dif-

ferent response of a viscoelastic material under an extensional flow compared to a simple shear

flow. A natural extensional of this thesis would be to calculate the nonlinear viscoelasticity of the

micro-mechanical model system detailed herein under a large amplitude oscillatory extensional

(LAOE) deformation. This can be achieved by adapting the analysis described in Chapter 4 to an

oscillatory uniaxial extensional flow with velocity field v = ε̇0 cos(De t)
(
− x ex − y ey + 2z ez

)
,

where ε̇0 is the extension amplitude (analogous to the shear-rate amplitude). Thus, we can define
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an extensional Weissenberg number, WiE = ε̇0/6Dr. In steady extensional flow, a particle will

align along the extensional axis, as it is a stable fixed point (attractor) in the orientation space.

This is distinctly different from steady simple shear, where a (non-Brownian) particle undergoes

a periodic Jeffery orbit, i.e. there are no fixed points in this case. Furthermore, oscillatory ex-

tension is fundamentally different from steady extension as the stable fixed points are destroyed

as the velocity field oscillates. Thus, the nonlinear viscoelastic response of a suspension of rigid,

axisymmetric particles in oscillatory extension will be markedly different from oscillatory simple

shear and steady extension.

Another continuation of this work would be to expand the micro-mechanical model from rigid

particles to a deformable microstructure that is capable of stretching, like a polymer molecule

would. The extensibility of the microstructure is a new degree of freedom, in addition to the ori-

entation distribution. For instance, the elastic dumbbell model describes a polymer molecule as

two mass-less beads connected by a spring6; the dumbbell is orientable and able to stretch via

the spring. The dynamics of polymer molecules in LAOE has been recently explored in the sin-

gle polymer153,154 and semi-dilute polymer regimes155,156, by optically measuring the extension

of single-stranded DNA in an oscillatory planar extensional flow. A simple model of these ex-

periments would be achieved by solving a conservation equation, analogous to the Fokker-Planck

equation, for a probability distribution function, which quantifies the likelihood of the beads at

a separation distance, r, where both the orientation and magnitude of r can vary. This conser-

vation equation balances the memory of the material, orientation by the imposed flow, rotational

Brownian motion, and now an entropic spring force, which quantifies the extensibility of the mi-

crostructure. A key goal would be to compare the cycle-averaged extension of a particle, or an

ensemble of particles, predicted from this model to the above mentioned experiments.
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