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ABSTRACT 

 

Shale gas development is transforming the energy landscape in the United States. 

Advances in production technologies, notably the dual application of horizontal drilling 

and hydraulic fracturing, allow the extraction of vast deposits of trapped natural gas that, 

until recently, were uneconomic to produce. The objective of this work is to develop 

mixed-integer programming models to support upstream operators in making faster and 

better decisions that ensure low-cost and responsible natural gas production from shale 

formations.  

We propose a multiperiod mixed-integer nonlinear programming (MINLP) 

model along with a tailored solution strategy for strategic, quality-sensitive shale gas 

development planning. The presented model coordinates planning and design decisions 

to maximize the net present value of a field-wide development project. By performing a 

lookback analysis based on data from a shale gas producer in the Appalachian Basin, we 

find that return-to-pad operations are the key to cost-effective shale gas development 

strategies.  

We address impaired water management challenges in active development areas 

through a multiperiod mixed-integer linear programming (MILP) model. This model is 

designed to schedule the sequence of fracturing jobs and coordinate impaired- and 

freshwater deliveries to minimize water management expenses, while simultaneously 

maximizing revenues from gas sales. Based on the results of a real-world case study, we 

conclude that rigorous optimization can support upstream operators in cost-effectively 
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reducing freshwater consumption significantly, while also achieving effective impaired 

water disposal rates of less than one percent.  

 We also propose a multiperiod MINLP model and a tailor-designed solution 

strategy for line pressure optimization in shale gas gathering systems. The presented 

model determines when prospective wells should be turned in-line, and how the pressure 

profile within a gathering network needs to be managed to maximize the net present 

value of a development project. We find that backoff effects associated with turn-in line 

operations can be mitigated through preventive line pressure manipulations.  

 Finally, we develop deterministic and stochastic MILP models for refracturing 

planning. These models are designed to determine whether or not a shale well should be 

restimulated, and when exactly to refracture it. The stochastic refracturing planning 

model explicitly considers exogenous price forecast uncertainty and endogenous well 

performance uncertainty. Our results suggest that refracturing is a promising strategy 

for combatting the characteristically steep decline curves of shale gas wells.  
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CHAPTER 1 

 

Introduction 

Shale gas development is reshaping the United States’ energy future. The Energy 

Information Administration (EIA) assumes that shale gas will account for more than half 

of all natural gas production in the U.S. by 2040 (EIA, 2014). This is a remarkable 

development considering the fact that as of 2005 the U.S. were producing hardly any 

natural gas from shale formations. Given the projected production increase, virtually all 

stages of the existing natural gas supply chain will need new, expanded, and/or upgraded 

infrastructure: gas gathering pipelines, processing facilities, transmission pipelines, 

storage facilities and many more (Goellner, 2012).  

Shale gas extraction involves a combination of vertical drilling, horizontal 

drilling and hydraulic fracturing. Hydraulic fracturing refers to the injection of water 

into a geologically tight formation under high pressure of up to 70 MPa. This well 

stimulation creates fractures in the sub-surface reservoir that locally increase the 

permeability of the formation which allows trapped gas to flow into the wellbore and up 

to the surface. Hydraulic fracturing requires large amounts of water, oftentimes more 

than 20 million liters of water per well. In addition, operators add proppant and special 

additives into the water to keep fractures open and enhance the gas flow into the 

wellbore. The typical composition of the fracturing fluid is 90% water, 9% proppant and 

1% chemical additives.  

Nowadays, upstream operators have the ability to drill as many as 40 horizontal 

wells from a single well pad. Fig. 1.1 illustrates a well pad with eight wells. These multi-
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well pads allow operators to recover large quantities of gas from a single location while 

reducing the surface disruption to a minimum. By developing several wells in parallel, 

operators can also take advantage of economies of scale that lower the unit cost for 

drilling a single well.  

 

 

Fig. 1.1: Cross section through a typical shale gas well (left) and a multi-well pad 

configuration (right) 

A single well pad is typically developed as follows: initially, operators construct 

a temporary well site. For this purpose the pad is levelled, water impoundments and pits 

are excavated, and an access ramp is built to the site itself. As soon as the pad 

construction is concluded, a drilling rig is moved on site and assembled. Drilling may 

take several months depending on how many wells are drilled, how deep they reach 

vertically, and how far they extend horizontally. Next, completion operations begin, 

which involve the actual fracturing of the formation. Commonly, the lateral sections of 

the wells are stimulated in stages which are sealed off temporarily and treated 

individually. During this development phase the operators need to have large quantities 

of water stored on site. Once completed, the wells are ready for production and they can 
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be turned “in-line”, which means they are connected to the local gathering system. 

Today it is expected that shale wells will produce gas for up to 15-30 years. 

Fig. 1.2 summarizes the sequence of development operations that need to be 

completed in order to produce natural gas from a shale reservoir. It is important to 

recognize that each development operation requires certain resources and is oftentimes 

characterized by unique challenges. At the same time, shale gas producers can leverage 

a number of degrees of freedom in each development operation. This flexibility provides 

the industry with opportunities to adapt to market conditions, price environments and/or 

environmental challenges. Since the coordination of these development operations lies 

at the foundation of this thesis, we examine their inherent challenges and opportunities 

in some more detail. 

 

Fig. 1.2: Sequence of shale gas development operations 

For instance, the construction of a gathering system is necessary to deliver 

natural gas to major demand hubs. This development operation involves the installation 
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of pipelines and compressor stations. Economies of scale play a key role in deciding 

what size pipelines or compressors are necessary and cost-effective for a particular 

gathering system. Moreover, pipeline diameters and compressor configurations are 

standardized in the oil and gas industry. Therefore, upstream operators can only select 

from a limited set of equipment sizes. On the other hand, shale gas producers oftentimes 

have ample flexibility in designing and sizing their gathering networks. They can choose 

from a superstructure of options to maximize the utilization of their equipment.  

Building a well pad is another important operation that is part of the development 

process. Upstream operators need to size these pads carefully, while evaluating how 

many horizontal wells they choose to drill, and how much water storage capacity they 

wish to provide for fracturing operations. Constrained acreage positions often prevent 

producers from placing a large number of wells at a given location.  

Vertical and horizontal drilling operations are crucial for the success of any shale 

gas development project. Upstream operators rely on drilling rigs and crews for this step, 

and the logistical coordination of both can be very challenging. At the same time, drilling 

schedules can be rearranged on relatively short notice. This can be exploited to 

implement return-to-pad operations or “split” pad development.  

Hydraulic fracturing of shale wells is directly linked to serious water 

management challenges. Producers need to make a number of important decisions when 

performing fracturing jobs: a) whether to use freshwater or impaired water, b) where to 

obtain the water from, c) how to deliver it on-site (trucking vs. piping), d) which storage 

options to select (water pits or above-ground storage tanks), e) how to blend different 

water qualities, and f) whether or not to treat the water prior to reuse. The primary degree 
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of freedom here is the rearrangement of the fracturing schedule. By advancing or 

delaying certain fracturing operations, operators can maximize recycle rates for 

impaired water and reduce disposal as much as possible.  

Once completed, shale wells are ready to be turned in-line. At this point in the 

development process, producers mostly struggle with bottlenecks in their gathering 

systems. Oftentimes the installed pipelines do not have sufficient capacity to take in the 

produced gas, or the opening of new wells would result in undesirable line pressure 

increases (leading to production “backoffs”). However, shale companies have the 

opportunity to adjust their turn in-line schedules to avoid these situations. Active line 

pressure management gives the industry another degree of freedom to improve the 

utilization of available gathering capacity.  

Even once shale wells are actively producing natural gas, upstream operators 

continue to face operational challenges. Shale companies are responsible for meeting 

downstream gas quality specifications when feeding into transmission pipelines. This 

can be difficult to accomplish since their assets frequently produce a variety of different 

gas qualities. Producers can either enter into midstream agreements with processing 

companies to have their gas purified, or they can implement gas blending strategies to 

avoid processing entirely. It is also important to note that shale wells produce impaired 

water along with raw natural gas. These water volumes need to be dealt with by either 

treating, recycling or disposing of them – leading to additional challenges and 

opportunities for water management.  

In this work we also recognize that shale wells can be fractured more than once. 

These refracturing opportunities allow upstream operators to reinvigorate their assets 
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and thereby improve the economics of mature wells. However, planning refracture 

treatments of shale wells faces two critical obstacles: price forecast uncertainty and well 

performance uncertainty. Shale companies want to ensure that the cost of a well 

restimulation is justified over a wide range of price scenarios. Moreover, they want to 

account for the possibility that the post-refracturing production performance may not be 

as good as expected. In light of these uncertainties, optimizing the timing and frequency 

of refracture treatments presents both an opportunity and a challenge.  

Across all development operations described above, it is important to emphasize 

that shale gas wells are characterized by steep production decline curves. Initially, wells 

may produce at very high rates of up to 280,000 m3/day. However, this initial phase is 

followed by drastic declines as high as 65-85% within the first year. In fact, as seen in 

Fig. 1.3 some shale wells produce more than half their total estimated ultimate recovery 

(EUR) within the first year of operation. The initial peak in production is due to the 

sudden release of trapped gas after the well stimulation. Eventually though, the 

production decline is driven by pressure depletion and the inherently low permeability 

of the reservoir.  
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Fig. 1.3: Production profiles in million cubic feet per year for shale gas wells              

in major U.S. shale plays  

1.1 Quality-Sensitive Shale Gas Development Planning  

Shale wells produce a variety of different gas qualities. Operators traditionally 

distinguish between dry gas and wet gas. The primary component of both gas qualities 

is methane. The key difference between them is that dry gas contains very few so-called 

natural gas liquids (NGLs). These NGLs are light hydrocarbons that include ethane, 

propane, pentane, butane and natural gasoline. In wet gas, on the other hand, these 

components can account for up to 15% of the total gas. In addition, the extracted gas 

may also contain impurities such as nitrogen, carbon dioxide or hydrogen sulfide. The 

distinction between different gas qualities is important for a number of reasons. 

For one, gas that is delivered to interstate transmission pipelines must be within 

a specific heating value range (approximately 0.9 kJ/kmol), and it may contain no more 

than trace components of hydrogen sulfide or carbon dioxide, for example. A gas stream 

that meets these specifications is considered pipeline-quality gas (Tobin et al., 2006). In 



 

 8 

order to meet these specifications the produced raw gas generally needs to be treated, 

i.e., purified at dedicated processing plants. The primary purpose of these processing 

plants is to separate natural gas liquids and undesirable components from the raw gas 

stream and return pipeline-quality gas to the operators. This processing service is 

typically not performed by the operators themselves, but rather provided by midstream 

processors as an independent, contract based business.  

Generally, dry gas – which contains mostly methane (heating value: 889 kJ/mol) 

– can be marketed as pipeline-quality gas and operators do not have to pay for 

processing. The NGL components contained in wet gas, however, increase the heating 

value of the gas mixture significantly above pipeline specifications (ethane: 1,560 

kJ/mol, propane: 2,220 kJ/mol, pentane: 3,507 kJ/mol). Therefore, wet gas always has 

to be purified prior to its delivery which results in non-negligible processing expenses 

to the upstream operator. The intriguing tradeoff, though, is that the NGLs contained in 

wet gas oftentimes trade at a premium to pipeline-quality gas, i.e., their sales prices are 

significantly higher. Hence, the distinction between dry gas and wet gas is very 

important in terms of the shale gas development problem.   

The quality issue of shale gas development is further complicated by the fact that 

the composition of the extracted gas may vary spatially within a particular gathering 

system. Therefore, it is oftentimes problematic to classify a development area as 

distinctively wet or dry. Since individual wells will be feeding different gas qualities 

into one and the same gathering system at varying production rates, it may be non-

obvious for the decision-makers to determine: a) which wells to develop over time with 

respect to a given gas and liquids price forecast, b) when and how to blend gas streams 
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to meet quality specifications, or c) when and how much processing capacity to procure 

from a midstream processor. Hence, we postulate in this work that the shale gas 

development problem is truly quality-sensitive, i.e., the quality of the extracted gas 

determines decisively which development strategies are profitable for the operator, and 

which ones may not be feasible. 

1.2 Impaired Water Management in Shale Gas Development Areas 

It is well-known that shale gas development – which involves hydraulic 

fracturing – requires significant quantities of water; often several million gallons of 

water for a single well. However, it is fairly common that a portion of the injected water 

is recovered after the respective well is turned in-line. The shale industry distinguishes 

between so-called flowback water during the early phase of a well’s production life cycle 

(typically 10-30% of the injected water) and produced water further into the lifetime of 

a well. Both, flowback water and produced water are referred to as impaired water, since 

the water is contaminated. Minerals and organic constituents present in the formation 

dissolve into the water, creating a brine solution that includes high concentrations of 

salts, metals, oils, greases, and soluble organic compounds (Gregory et al., 2011). 

Initially, the shale industry disposed of impaired water in class-II injection wells. 

However, this practice is both costly and may also have resulted in undesirable, 

injection-induced seismic activity in certain areas of the U.S. (Folger & Tiemann, 2014).  

Rather than disposing of the impaired water, operators nowadays are 

increasingly re-using the recovered water to reduce the freshwater demand for fracturing 

new shale gas wells (Mauter et al., 2013). Companies are proactively blending 

freshwater and impaired water, and thereby reducing the water volumes that have to be 
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sent to disposal wells (Mauter et al., 2014). That said, when oil and gas prices are low 

and development activity is reduced, the shale industry has fewer opportunities to reuse 

impaired water. More impaired water has to be disposed of, and consequently 

operational water management expenses – which operators are trying to decrease in low-

price environments – are actually increasing. However, while reduced development 

activity strains water management operations, it also provides producers with more 

flexibility to re-organize the timing of fracturing operations. Since companies are 

drilling, fracturing and completing fewer wells, fracturing jobs may be delayed, 

interrupted or simply extended without negatively affecting business objectives. In other 

words, the fracturing schedule becomes a true degree of freedom in low-price 

environments.  

Hence, the objective here is to explore whether and how impaired water disposal 

expenses can be lowered, while simultaneously taking advantage of any available 

flexibility in fracturing operations. One option that appears intriguing are so-called 

return-to-pad operations (Drouven and Grossmann, 2016), i.e., to intentionally delay 

individual fracturing jobs on a multi-well pad until an increasing amount of impaired 

water can be reused, rather than sent to disposal. In essence, our goal is to evaluate 

whether water operations should have a bigger impact on the fracturing schedule, i.e., 

whether water operations should possibly even “drive” the fracturing schedule.  

1.3 Line Pressure Optimization in Shale Gas Gathering Systems 

Fig. 1.4 shows a simplified illustration of a typical shale gas gathering system. 

The gathering network is characterized by a few key elements, namely: existent and 

prospective well pads, existent and prospective gathering pipelines of varying sizes, one 
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or several compressors and a coupling link to a large-diameter, long-distance 

transmission pipeline. On every existent pad one or more shale wells actively produce 

natural gas which is then fed into gathering lines at varying rates over time. The shale 

gas gathering system itself is typically operated at relatively low pressures, ranging from 

50 to 200 psi. Low line pressures allow producers to extract the most gas from their 

shale wells, since they create a large differential between the reservoir pressure and the 

wellhead pressure. In other words, as the line pressure in a gathering system increases, 

overall production typically decreases (Lee & Wattenberger, 1996; Boyan & 

Ghalambor, 2014). Since the reverse statement is true as well, upstream producers 

generally prefer to operate their gathering systems at the lowest possible line pressure. 

 

Fig. 1.4: Illustration of a shale gas gathering system with key network elements 

However, eventually the produced gas needs to be delivered to a transmission 

pipeline which will move the gas to major demand hubs. These transmission lines are 

operated by midstream companies at very high pressures between 900-1,200 psi in order 

to transport large quantities of natural gas over long distances. Therefore, it is up to the 
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shale gas producer to overcome the pressure differential between the low-pressure 

gathering system and the high-pressure transmission line. This is typically accomplished 

through one or several compressors. Compressor stations allow upstream operators to 

produce the gas at low pressures, on the one hand, but still meet the transmission line’s 

pressure delivery requirements on the other hand. Due to the significant pressure 

differential that needs to be overcome by the compressor, and the considerable volumes 

of gas that are processed, compression expenses can be a major cost factor in the 

operation of shale gas gathering systems. Consequently, upstream producers struggle to 

balance two conflicting objectives: a) operating their gathering systems at low pressures 

and thereby increasing gas production, and b) raising line pressures so as to minimize 

compression expenses.   

1.4 Planning of Shale Gas Well Refracture Treatments 

Shale wells are known for their rapid production declines. Upstream operators 

struggle with these characteristically steep production decline curves. For one, they are 

contractually obligated to providing steady gas deliveries to midstream distributors over 

time – which is difficult to accomplish given that shale well production rates decline by 

as much as 65-85% within the first year after turning wells in line. Moreover, as Cafaro 

and Grossmann (2014) suggest and Drouven and Grossmann (2016) confirm, operators 

need to maximize the utilization of production and gathering equipment – such as 

pipelines and compressors – in order to stay profitable. In reality, however, production 

and gathering equipment is usually sized based on the initially high production rates. 

This means that within a matter of months shale gas wells feed into oversized pipelines 

and compressor stations, and equipment utilization drops. Even worse, in order to satisfy 
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contractual gas delivery agreements, operators are forced to open up new wells 

continuously to honor their obligations, and hence the process is repeated over and over 

again. 

However, it turns out that shale wells can be fractured more than once. And there is 

increasing evidence suggesting that many mature shale wells still contain large volumes 

of oil and gas that can be recovered through the process of refracturing or well 

restimulation (Fear, 2016). Kotov & Freitag (2015) argue that the steep decline curves 

in unconventional reservoirs after the initial fracturing operation typically result in 10 

percent or less recovery of the available reserves. This implies that refracturing 

theoretically has the potential to recover 90 percent of remaining hydrocarbons in the 

shale formation. More importantly, well restimulations could serve as an ideal 

countermeasure against the inherently steep production declines experienced by shale 

wells. By reinvigorating the gas production of their assets, operators can improve the 

utilization of their gathering equipment and might be able to refrain from developing 

new wells continuously just to make up for production offsets.  

1.5 Overview of the Thesis and Research Objectives 

In this thesis we propose a number of mixed-integer programming models to 

address various challenges associated with shale gas development. Fig. 1.5 provides an 

overview of the topics addressed in this work. We review previous, related work in each 

chapter individually. However, it should be noted that chapter 2 – which focuses on 

shale gas blending strategies and the arrangement of midstream processing agreements 

– is motivated by the work of Cafaro & Grossmann (2014) who present a multiperiod 

MINLP for strategic shale gas development planning. The model we propose in chapter 
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3 to optimize water operations compares to the work by Yang et al. (2014), Yang et al. 

(2015) and Bartholomew & Mauter (2016) who also focus on water management 

challenges in active development areas. To the best of our knowledge, we are the first 

to address rigorous line pressure optimization in shale gas gathering systems, as 

discussed in chapter 5. With the exception of Knudsen & Foss (2013, (2015), previous 

work in this domain neglects how pressure variations in pipeline networks affect the 

production of shale wells, individually and collectively. The aforementioned authors 

primarily focus on developing dynamic shale well reservoir models, whereas our work 

is intended to support upstream operators in making tactical field development 

decisions. Finally, it is interesting to note that, to date, the refracturing planning problem 

we address in chapters 5 and 6 has received fairly little attention in academia. A report 

by Sharma (2013) is one of the few contributions that discusses the challenges and 

opportunities of well restimulations in greater detail.  

 

Figure 1.5: Overview of research topics addressed in this thesis 
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The objectives of this thesis are as follows: 

 Develop MINLP models to address the long-term, quality-sensitive shale gas 

development planning problem and investigate effective solution strategies 

 Propose MILP models for water management in shale gas development areas with a 

particular focus on rearranging fracturing schedules to maximize impaired water 

recycle rates and minimize water disposal 

 Address the line pressure optimization problem in shale gas gathering systems by 

developing MINLP models and investigating effective solution strategies 

 Develop MILP models to address the refracturing planning problem 

 Extend the previously proposed models for refracturing planning to account for 

uncertain price forecasts and uncertain well performance  

 Apply the proposed models to real-world case studies and attempt to quantify the 

economic potential of rigorous, mathematical optimization in this domain  

1.5.1 Chapter 2: Planning Models for Strategic Field Development 

In chapter 2, we address the long-term, quality-sensitive shale gas development 

problem. This problem involves planning, design and strategic decisions such as where, 

when and how many shale gas wells to drill, where to lay out gathering pipelines, as 

well as which delivery agreements to arrange. Our objective is to use computational 

models to identify the most profitable shale gas development strategies. For this purpose 

we propose a large-scale, nonconvex, mixed-integer nonlinear programming (MINLP) 

model. We rely on generalized disjunctive programming (GDP) to systematically derive 

the building blocks of this model. Based on a tailor-designed solution strategy we 

identify near-global solutions to the resulting large-scale problems. Finally, we apply 



 

 16 

the proposed modeling framework to two case studies based on real data to quantify the 

value of optimization models for shale gas development. Our results suggest that the 

proposed models can increase profitability by several million U.S. dollars. 

1.5.2 Chapter 3: Scheduling Models for Impaired Water Management 

In chapter 3, we present a mixed-integer linear programming model to support 

upstream operators in identifying optimal strategies for impaired water management in 

active shale gas development areas. The proposed model is designed to coordinate three 

key development decisions such that the net present value is maximized: a) the 

fracturing schedule, b) the water supply sourcing and distribution strategy, and c) the 

selection of appropriate water storage solutions. We specifically allow return-to-pad 

operations in the fracturing schedule, and assume that water blending ratios for 

fracturing jobs are unrestricted, i.e., companies may use only impaired water to meet the 

completions water demand. Moreover, we explicitly consider the sizing and timing of 

water storage solutions. By applying the optimization model to a real-world case study, 

we find that impaired water disposal volumes can be reduced drastically if operators 

manage to coordinate their fracturing schedule with impaired water availability. 

1.5.3 Chapter 4: Scheduling Models for Pressure Management 

In chapter 4, we propose a mixed-integer nonlinear programming model to 

address the line pressure optimization problem for shale gas gathering systems. This 

model is designed to determine: a) the optimal timing for turning prospective wells in-

line, b) the optimal pressure profile within a gathering network, and c) the necessary 

compression power for delivering produced gas to long-distance transmission lines. We 

rely on a pressure-normalized decline curve model to quantify how line pressure 
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variations impact the gas production of individual wells. The reservoir model itself is 

incorporated in a gas transmission optimization framework, which rigorously evaluates 

pressure drops along pipeline segments throughout the gathering network. Moreover, 

we explicitly consider compression requirements to lift line pressure from gas gathering 

levels to setpoints dictated by transmission pipeline companies. Since the resulting 

optimization models are large-scale, nonlinear and nonconvex, we propose a solution 

procedure based on an efficient initialization strategy. Finally, we present a detailed case 

study, and we show that the proposed optimization framework can be used effectively 

to manage line pressures in shale gas gathering systems by properly scheduling when, 

and how many, new wells are brought online.     

1.5.4 Chapter 5: Deterministic Models for Refracturing Planning 

In chapter 5, we propose two optimization models to address the refracturing 

planning problem. First, we present a continuous-time nonlinear programming (NLP) 

model based on a novel forecast function that predicts pre- and post-treatment 

productivity declines. Next, we propose a discrete-time, multi-period mixed-integer 

linear programming (MILP) model that explicitly accounts for the possibility of multiple 

refracture treatments over the lifespan of a well. In an attempt to reduce solution times 

to a minimum, we compare three alternative formulations against each other (big-M 

formulation, disjunctive formulation using Standard and Compact Hull-Reformulations) 

and find that the disjunctive models yield the best computational performance. Finally, 

we apply the proposed MILP model to two case studies to demonstrate how refracturing 

can increase the expected recovery of a well and improve its profitability by several 

hundred thousand USD.   
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1.5.5 Chapter 6: Stochastic Models for Refracturing Planning 

In chapter 6, we present a comprehensive optimization framework to address the 

shale gas well development and refracturing planning problem. At its core, this problem 

is concerned with, if and when, a new shale gas well should be drilled at a prospective 

location, and whether or not it should be refractured eventually over its lifespan. Within 

the optimization framework we account for two major sources of uncertainty: exogenous 

gas price uncertainty and endogenous well performance uncertainty. We propose a 

mixed-integer linear, two-stage stochastic programming model embedded in a moving 

horizon strategy to dynamically solve the practical planning problem under exogenous 

and endogenous uncertainties. The framework is based on a novel, generalized 

production estimate function that predicts the gas production over time depending on 

how often a well has been refractured, and when exactly it was restimulated last. Based 

on a detailed case study we conclude that early in the life of an active shale well, 

refracturing makes economic sense even in low-price environments, whereas additional 

restimulations only appear to be justified if prices are elevated. 

1.5.5 Chapter 7: Conclusions and Directions for Future Work 

In chapter 7, we summarize the main findings of this thesis and we outline 

directions for future work. In particular we discuss: a) global optimization strategies for 

quality-sensitive shale gas development, b) quality-sensitive impaired water 

management, c) global optimization strategies for line pressure management, d) 

refracturing opportunities in field-wide development planning, e) multi-stage stochastic 

programming for refracturing planning, and f) multi-level shale gas development 

planning. 



 19 

CHAPTER 2 

 

Mixed-Integer Nonlinear Programming Models for Strategic       

Shale Gas Development Planning 

In this chapter, we present an optimization framework to address the long-term, 

quality-sensitive shale gas development problem. After presenting a brief literature 

review on related publications, we summarize the scope of our work in terms of a general 

problem statement and list the modeling assumptions. In the following section we 

present the proposed models for the long-term shale gas development problem: one 

addresses the development project with only one delivery node, and the other model 

captures the general, multiple delivery node development problem. While the former 

can be solved to global optimality with an MILP model, the general formulation yields 

a nonconvex MINLP for which we describe a solution strategy that is designed to 

identify near-global and optimal solutions. Finally, we apply the models to two case 

studies that demonstrate and quantify the value of rigorous optimization models for 

long-term shale gas development planning. 

2.1 Literature Review 

To date, the long-term shale gas development problem has received little 

attention in literature. Previous work has been focused primarily on conventional on- 

and offshore oil and gas field development planning, and the body of literature on this 

topic is extensive. For instance, Iyer and Grossmann (1998) propose a discrete-time, 

multi-period mixed-integer linear programming (MILP) model for the design and 
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planning of offshore oilfield infrastructure. The design decisions consider the well 

drilling schedule, the installation of well and production platforms, and fluid production 

rates in every time period to maximize the net present value. Van den Heever and 

Grossmann (2000) address the same problem as Iyer and Grossmann, but include the 

nonlinear reservoir performance in the formulation, rendering the model a mixed-integer 

nonlinear programming (MINLP). Van den Heever et al. (2001) extend the oil field 

development problem by considering complex economic objectives, such as fiscal rules 

and royalty payments. Goel and Grossmann (2004) consider the offshore gas field 

development planning problem under uncertainty in reservoir reserves, for which they 

propose a stochastic programming approach.  

Selot et al. (2008) specifically address natural gas production systems with 

multiple gas qualities. The authors develop a single-period model for a limited planning 

horizon of one week and consider gas quality specifications at delivery nodes. Tavallali 

et al. (2013) integrate critical elements of upstream oil production and spatiotemporal 

subsurface dynamics in a multi-period mathematical programming approach. Knudsen 

and Foss (2013) consider late-life shale gas wells producing at low erratic rates due to 

reservoir depletion and liquid loading. The authors present a shale gas well reservoir 

proxy model and a production scheduling model formulated as a generalized disjunctive 

program (GDP) that allow for enhanced gas production through cyclic shut-in based 

production strategies. In order to address field-wide multi-pad shale gas systems 

Knudsen et al. (2014a) propose a Lagrangean relaxation based decomposition scheme 

to deal with the dimensionality of the resulting large-scale MILPs. Furthermore, 

Knudsen et al. (2014b) make use of the proposed well scheduling models to argue that 
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shale gas wells could be used for natural gas supply in electric power plants. Yang et al. 

(2014) focus on optimization models for shale gas water management. Given an 

uncertain water availability the authors propose a two-stage stochastic MILP model 

based on the State-Task Network (STN) representation to minimize the expected water 

related expenses for transportation, treatment, storage and disposal, while accounting 

for natural gas sales revenues. Also, Yang et al. (2015) extended their modeling 

framework to optimize longer-term investment decisions using a deterministic MILP 

model for determining the location and capacity of water impoundments, piping options, 

treatment technologies and facility locations, as well as the optimal fracturing schedule.  

To the best of our knowledge, Cafaro and Grossmann (2014) are the first to have 

addressed the long-term shale gas development problem from a strategic perspective. 

The authors propose a large-scale, nonconvex MINLP model to identify the optimal 

shale gas supply chain. In the proposed model, nonlinearities arise from concave power 

law expressions to represent economies of scale. A major restriction is that the shale gas 

composition is assumed to be independent of well pad locations. Recently, Gao and You 

(2015) examine the well-to-wire life cycle of electricity generated from shale gas. In this 

context, the authors present a multi-objective, nonconvex MINLP model to optimize the 

design and operation of shale gas supply chain networks considering economic and 

environmental factors.  

The models proposed in this work are important extensions of the previous work 

by Cafaro and Grossmann (2014). The following paragraphs summarize the major new 

developments. 
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1) We present a novel superstructure for the shale gas development problem that is 

motivated by real-world gathering systems. This superstructure captures the distinctive 

“tree”-structure of typical gas gathering systems. These systems are characterized by 

trunk lines that “branch” out into the development area and eventually “ramify” to the 

well pads through a tight grid of flow pipelines. In addition, the superstructure explicitly 

distinguishes between different delivery options in real-world shale gas development 

areas, namely processing sales routes and direct delivery sales arcs. 

2) As part of the shale gas development problem upstream operators need to size 

gathering pipelines and transmission compressors. Oftentimes the corresponding design 

variables are treated as continuous decision variables to simplify the synthesis problem. 

In this work we consider discrete sizes of pipeline diameters and compressors, which 

allows us to use mixed-integer linear constraints for equipment sizing purposes. More 

importantly, by restricting the design variables to discrete values, we can capture 

economies of scale without dealing with continuous concave cost functions.   

3) In this work we also extend the scope of the shale gas development problem to 

explicitly consider strategic development decisions, which to the best of our knowledge 

have not been addressed before. The aforementioned strategic decisions include: a) the 

selection of delivery nodes, b) the arrangement of delivery agreements, and c) the 

procurement of delivery capacity. These downstream decisions have a major impact on 

the upstream development of a particular shale gas gathering system and add to the 

complexity of the overall development problem.  

4) Lastly, we specifically address the general shale gas development problem with 

multiple delivery nodes while explicitly considering spatial gas composition variations. 
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These composition variations are common in real-world gas gathering systems and 

complicate shale gas development in practice. On the one hand, upstream operators 

target different gas qualities depending on prevailing price forecasts. On the other hand, 

the operators need to ensure that their gas deliveries satisfy gas quality specifications at 

the delivery nodes. The consideration of spatial gas quality variations within multiple 

delivery node gathering systems yields a nonconvex MINLP for which we propose a 

tailor-designed solution strategy. 

2.2 General Problem Statement  

The problem addressed in this chaper can be stated as follows. Within a potential 

shale gas development area as depicted in Fig. 2.1, an upstream operator has identified 

a set of candidate wells pads from which shale gas may or may not be extracted. Long-

term production and gas quality forecasts are given for every candidate pad. To extract 

the gas the operator can develop, i.e., drill and fracture, a limited number of wells at 

every pad. For the purpose of development, a finite number of drilling rigs and 

completion crews are available to the operator. Ultimately, the operator wishes to sell 

extracted gas at a set of downstream delivery nodes, which are typically located along 

interstate transmission pipelines. For this purpose, a gathering system superstructure has 

been identified. This superstructure specifies all feasible and competitive options for 

laying out gathering pipelines to connect candidate well pads to the given set of delivery 

nodes. In addition, the superstructure indicates candidate locations for compressor 

stations, as well as the location of existing processing plants within reach of the 

gathering network. Finally, the superstructure also reveals available freshwater sources 
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within and outside of the development area (note that in general the proposed 

superstructure may also include existing well pads, pipelines, and compressor stations). 

 

 

Fig. 2.1 Proposed shale gas development superstructure 

The long-term shale gas development problem involves planning, design and 

strategic decisions. In terms of planning decisions the operator needs to decide: a) where 

and when to construct well pads, b) where, when and how many wells to drill at every 

candidate well pad, c) whether selected wells should be shut-in and if so for how long, 

d) how to allocate drilling rigs and completion crews over time, and e) how much 

freshwater to obtain from the available set of water sources. The design decisions 

involve: a) where to lay out gathering pipelines, b) what size pipelines to install, c) where 

to construct compressor stations, and d) how much compression power to provide. 

Finally, we consider strategic decisions that include: a) the selection of preferred 

downstream delivery nodes, b) the arrangement of delivery agreements, and c) the 
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procurement of take-away capacity. The upstream operator’s objective is to determine 

the optimal development strategy by making the right planning, design and strategic 

decisions such that the net present value is maximized for an extended planning horizon. 

2.3 Novel Superstructure 

The novel superstructure that we rely on in this work is motivated by real-world 

shale gas gathering systems. As depicted in Fig. 2.1 this superstructure consists of a 

given set of candidate well pads p  that are connected to a potential gathering system 

through candidate pipelines, i.e., the dashed lines in Fig. 2.1 represent alternative, 

feasible options for laying out pipelines in the development area. The individual pipeline 

segments are distinguished by the purpose they serve in the network. Well pipelines 

connect neighboring well pads with each other along well arcs ˆ )( ,p p  . These 

connections are very common in practice since several well pads are often clustered in 

certain areas of a gathering system. Flow pipelines originate at the well pads p  and 

lead to junctions j  in the gathering system along flow arcs ( , )p j  . The 

candidate junctions are interconnected through so-called gathering pipelines along 

gathering arcs ˆ)( ,j j  . These gathering pipelines reach far into a development 

area and collect all the extracted gas within a particular gathering system. Typically, all 

the gas that is gathered within a regional development area is fed to a network hub that 

serves as a splitting node within a particular gathering system. In Fig. 2.1 the node 

1j   serves as such an intermediate splitting node. Here, the gas flows can be directed 

to one or more delivery nodes q  along delivery arcs ( , )j q  . These delivery 

nodes are typically located along interstate transmission pipelines that gather extracted 
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gas from multiple development areas within states or national regions and transmit it to 

major gas consuming hubs throughout the nation. 

In terms of delivery arcs we differentiate between two particular sales options in 

this work: processing sales routes ( , )j q   and direct sales routes ( , )j q  . 

By default, gas that is extracted from unconventional reservoirs needs to be purified 

before it can be sold to transmission pipelines. For this purpose, operators will generally 

deliver extracted raw gas to processing plants. These processing plants then separate 

natural gas liquids and undesirable components from the gas stream and return pipeline-

quality gas to the upstream operators. Direct sales routes, on the other hand, allow 

operators to sell the extracted raw gas directly to transmission pipelines without 

intermediate processing. However, in order to qualify for direct deliveries, the gas must 

meet strict quality specifications and the operators are responsible for compressing the 

gas prior to its delivery. 

2.4 Modeling Assumptions 

The major assumptions in this work are: 

1) The planning horizon is discretized into a set of time periods, i.e., commonly months 

or annual quarters. A long-term natural gas and NGLs price forecast is given for the 

entire planning horizon. 

2) Shale gas is a mixture of ideal gases. However, the composition of the extracted shale 

gas may vary spatially within the development area. It is assumed that the composition 

is known at every candidate well pad.  

3) Long-term production forecasts, i.e., static type-curves, are available for all candidate 

well pads. Due to leasing and permitting restrictions, upstream operators can only drill 
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a limited number of wells at candidate well pads at any point in time. In addition, due to 

technological constraints and space limitations, no more than a maximum number of 

total wells can be drilled at every candidate well pad. The layout of the individual wells 

at candidate well pads (total vertical depth, lateral length, number of stages, etc.) is 

assumed to be fixed in advance depending on how many wells are to be drilled. Finally, 

freshwater demand for hydraulic fracturing is a given total volume for every well. 

4) Flow directions within the proposed pipeline superstructure are specified in advance. 

Wellhead outlet pressures as well as compressor suction and discharge pressures are 

fixed. As such fixed pressure drops are assumed throughout the gathering system. 

Pipelines are sized based on a given gas velocity and compression power is determined 

for a fixed pressure ratio.  

5) Investment costs related to well development, pipeline constructions, and compressor 

installations are subject to economies of scale. No uncertainty is assumed in any model 

parameters. 

2.5 Model Formulations 

In this section we describe the proposed mixed-integer programming models for 

the multi-period, long-term shale gas development problem. We distinguish between 

two variations of the development problem in this work: 

1) The single delivery node development problem: the decision-maker is restricted to 

choose just one delivery node among a given set of candidate take-away options.  

2) The multiple delivery node development problem: the extracted gas may be sent to 

several delivery nodes, i.e., “splitting” is explicitly permitted. 
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Fig. 2.2 shows a comparison of the two different problems. The key distinction 

between them is that in the single delivery node problem (left) all flows converge to no 

more than one delivery node, whereas the multiple delivery node problem (right) allows 

the gas to be directed to more than one sales point. The differences are most visible at 

the splitting node (highlighted in orange in Fig. 2.2). 

 

Fig. 2.2: Comparison of the single delivery problem (left) and the multiple delivery 

node problem (right) 

We address the single delivery node problem first and show that it can be 

formulated as a mixed-integer linear program (MILP), which can therefore be solved to 

global optimality. Thereafter, we extend the proposed model to capture the more general 

multiple delivery node problem which involves a large number of bilinear terms that 

render the optimization problem a nonconvex mixed-integer nonlinear program 

(MINLP) for which a method is proposed that yields near optimal solutions. 
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2.5.1 Model Formulation: Single Delivery Node Problem 

In this section we describe the set of constraints for the single delivery node 

development problem. 

Production constraints  

To determine how many horizontal wells n  should be developed at every 

candidate pad p  in any time period t  we introduce the binary decision 

variable , ,n p t

DRILLy .  Since the development process involves drilling, fracturing and 

completions operations, it will generally take several months after the beginning of 

drilling operations until the wells have been completed and are ready for production. 

Hence, we define the parameter 
D

n

W  as the development lead time that increases with 

the number of wells being developed in parallel. This parameter allows us to formulate 

Eq. (2.1), which states that the number of wells that have been completed at a pad 

p  in time period t , represented by the integer variable
,p tNWD , depends on 

how many wells were drilled WD

nt   time periods in advance, denoted by the binary 

variable 
, , WD

n

DRILL

n p t
y


. It is important to note here that the number of wells 0n  that can 

be drilled at a particular pad location includes the zero-element 0n . Hence, the enforced 

multiple-choice constraint (2.2) can be satisfied even when no wells are drilled.   
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In practice the drilling and fracturing processes require different resources and 

cannot be performed simultaneously. During the drilling phase, operators rely on 
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tophole and horizontal rigs to drill the vertical and lateral sections of the well. In 

preparation of the fracturing process, however, these rigs need to be moved off the pad 

to free up space for roughly 12-18 tractor trailers equipped with high-power water 

pumps that are eventually circled around each wellhead to fracture the wells. Hence, due 

to space limitations, wells cannot be fractured while other wells are still being drilled 

and vice versa. This practical constraint is expressed in Eq. (2.3) which states that as 

long any number of wells that have been drilled, have not been completed yet – captured 

by the development lead time parameter WD

n  – no new set of wells can be drilled.  
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1 ,
WD
n

DRILL

n p

t

t

n

y p t

 


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       (2.3) 

The total number of wells that can be drilled and developed at every candidate 

location throughout the planning horizon is generally constrained by the operator’s 

acreage position, permitting constraints, and/or lease commencement and expiration 

dates. In the proposed formulation the parameter ,

max

p tn  in Eq. (2.4) limits how many wells 

can be developed at every candidate pad location at any point in time.  
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n
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p pn ty n p tn 
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       (2.4) 

Upstream operators generally prefer to develop as many wells as possible at a 

particular well pad to take advantage of economies of scale. To quickly recover their 

development expenses, the operators will usually turn all completed wells in line as soon 

as possible, i.e., the extracted gas is fed into the gathering system to downstream delivery 

nodes. However, given the characteristic shale well production profiles, operators are 

increasingly exploring the option of keeping a subset of the developed wells shut-in 

temporarily. The motivation for this strategy is as follows. Initially, shale well 
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production rates are very high, at times up to 280,000 m3/day. Turning all developed 

wells in line at the same time requires substantial downstream capacity in terms of 

pipeline sizes and compression power. Such investments are very costly, i.e., in the 

range of several million U.S. dollars, and within a matter of months the wells’ 

production rates will decline rapidly, often by as much as 65-85% within the first year 

after production begin. At this time the previously installed downstream equipment is 

over-sized and under-utilized. To avoid poor equipment utilization, operators may 

choose to keep a subset of the developed wells shut-in temporarily and only produce 

from the remaining set of wells. In Eq. (2.5) we distinguish between the number of wells 

that have been completed at a particular well pad, 
,p tNWD , and the number of wells that 

are actively producing, ,p tNWP  , thus allowing for temporary shut-ins.  

 , ,

1 1

,
t t

p pNWP NWD p t 
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       (2.5) 

The implication of Eq. (2.5) is that the number of (active) wells producing raw 

gas is indeed an additional degree of freedom to the optimization. The optimizer can 

choose to keep a subset of the developed wells shut-in for any period of time to 

maximize equipment utilization, i.e., the available pipeline and compressor capacity.  

Based on how many wells are producing, we can calculate the amount of gas 

0

,p tF  that can be extracted at every well pad at any point in time. This flow rate is obtained 

by multiplying the number of wells producing at a particular pad, 
,p tNWP , with the 

corresponding long-term, static production forecast, i.e., the type-curve parameter 
,p t .  
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Since the operator can always choose to choke the wells and produce less gas, 

Eq. (2.6) is expressed as an inequality constraint. It is important to note, however, that 

in reality choking leads to a production delay that is not captured by Eq. (2.6). As such, 

the proposed formulation represents a minor simplification that is justified by the fact 

that intermediate, temporary shut-ins are fairly rare and they are usually concluded as 

quickly as possible.  

The proposed formulation can easily be extended to account for existing wells 

that are already feeding into the gathering system at the beginning of the planning 

horizon. We introduce the set of producing pads p  to identify pads that have 

already been turned in line. Based on the forecasted production rate for these well pads, 

0

,p tf , we simply impose the inequality in Eq. (2.7).  

 0 0

,, ,p tp t f tF p      (2.7) 

             Prior to well development at any candidate pad, a well site needs to be 

constructed. We introduce a binary decision variable ,

N

p t

COy  that denotes the beginning 

of the site construction process. Eq. (2.8) ensures that no well is developed before the 

construction process with lead time S

p  has been completed.  
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Flow balances  

Flow balances are imposed at all well pads and gathering junctions within the 

proposed gathering superstructure. Eq. (2.9) represents the flow balances at all well pads 

p  – candidate and producing –and involves pad production flow rates 0

,p tF , flows 
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from and to neighboring well pads ˆ, ,p p

P

t

PF , as wells as  flows from pads to gathering 

junctions , ,

J

p j t

PF . Eq. (2.10) ensures that flows to neighboring well pads ˆ, ,p p

P

t

PF  are 

constrained by the actual production rates at the originating pads.  
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Eq. (2.11) balances incoming and outgoing flows at gathering junctions j , 

which includes flows from pads to gathering junctions , ,

J

p j t

PF , flows between neighboring 

junctions ˆ, ,j j

J

t

JF , and flows from gathering junctions to delivery nodes , ,

Q

j q t

JF .  

 ˆ

( , )

, , , ,, , , ,
ˆ( , ) ( , ) ( , )

,p j t j q tj j t j j

PJ JJ J

t

J JQ

j qj j j jjp

F F F j tF
  

          (2.11) 

Equipment sizing constraints  

The shale gas development problem requires operators to size necessary 

equipment such as pipelines and compressors. In order to simplify the optimization 

problem the corresponding design variables are often treated as continuous decision 

variables15. In practice, however, pipelines and compressors are standardized in the oil 

and gas industry. Hence, we enforce discrete equipment sizes throughout this work, i.e., 

we assume that only a finite set of pipeline diameters and compressor sizes are 

commercially available. Moreover, for modeling purposes we take advantage of discrete 

equipment sizes by systematically deriving disjunctive models based on Generalized 

Disjunctive Programming (GDP) that generally yield tight continuous relaxations 

(Grossmann & Trespalacios, 2013). Lastly, in section 2.5.2 Model Formulation: 
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Objective Function we show that by only considering discrete equipment sizes we can 

capture economies of scale without explicitly having to introduce nonlinear, concave 

cost expressions into the objective function. We illustrate the general equipment sizing 

framework proposed in this work with two examples, namely delivery pipelines and 

gathering compressors.  

Delivery pipelines are intended to connect gathering junctions j  with 

delivery nodes q , and they are a crucial part of any shale gas gathering system. 

Based on the proposed superstructure, the length of candidate delivery pipelines, 
,j ql , is 

known. Hence, the only remaining degree of freedom for sizing purposes is the 

pipeline’s diameter. The more gas , ,

JQ

j q tF  flows through a delivery pipeline segment, the 

larger the respective pipeline diameter d  needs to be to provide the right amount of 

flow capacity. In this work we size pipelines based on fluid velocity, since pressure 

drops are relatively small in typical gas gathering systems given that the pipeline 

segments are relatively short (< 15 km) and the operating pressure is relatively low (< 

2.5 MPa). In addition, gas velocity itself is an important design criterion that is 

commonly used for preliminary sizing purposes. Operators need to bound the maximum 

gas velocity to reduce noise emissions and prevent pipeline corrosion. Based on a pre-

specified, maximum gas velocity, we can calculate a sizing coefficient Pk  that allows 

us to determine the necessary pipeline diameter with sufficient accuracy. Details 

regarding the calculation of the sizing coefficient Pk  are provided in Appendix A: 

Pipeline Sizing Guidelines.  

Within the proposed model we use disjunction (2.12) to size delivery pipelines 

(we note that all disjunctions in this work are exclusive).  
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This disjunction states that at any point in time, a particular pipeline diameter 

0d   must be selected along every candidate pipeline segment, i.e., precisely one 

Boolean variable , , ,d j q t

PIPEZ  has to be true in every time period t  along every arc 

 ,j q  . Since the lengths of all candidate arcs are fixed and given, the diameter 

selection will determine precisely how much flow capacity needs to be available along 

every candidate pipeline segment  ,j q  , i.e., how much gas , ,

JQ

j q tF  can flow 

along the respective arc. It is important to note here that the set of commercially 

available pipeline diameters 0d   explicitly includes the zero-diameter 0d . Hence, it 

is possible to select no flow capacity along an arc which corresponds to the design 

decision of excluding that arc from the eventual gathering system. In this case no gas 

may flow along that arc.  

It is also important to note that the disjunction (2.12) accounts for pre-installed 

pipeline capacity 0

,j q . If a pipeline has already been laid out along a delivery arc 

 ,j q  , then the corresponding flow capacity is available and must not be 

installed. In this sense, the proposed formulation does allow for looping of existing 

pipelines which is the common practice of designing parallel pipeline segments.    

Evidently, additional flow capacity along any pipeline segment is only available 

if a pipeline with the corresponding diameter has been installed previously. Since the 

construction of a gathering pipeline typically involves several annual quarters, we define 

the parameter P  as the lead time for installing any pipeline segment and we impose the 
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logic constraint (2.13). This constraint states that the flow capacity associated with the 

Boolean variable , , ,d j q t

PIPEZ  is only available if a pipeline installation was initiated P  time 

periods in advance, denoted by the Boolean variable , , ,d j q t

PIPEY . This Boolean variable in 

turn incurs the respective capital expenses as expressed in the objective function in 

section 2.5.2 Model Formulation: Objective Function. 

  , , , , , ,
1

, , ,

P

d j q d j

t
PIPE PIPE

q t d j q tY Z



 



       (2.13) 

In general terms, the disjunction (2.12) can be transformed into a set of mixed-

integer linear constraints by using either a Big-M (BM) or a Hull-Reformulation (HR). 

While the HR involves more constraints and variables than the BM, its continuous 

relaxation is at least as tight as, and generally tighter, than the Big-M. Therefore, we 

favor the HR. To reformulate disjunction (2.12) we introduce the binary variables , , ,d j q t

PIPEy  

and , , ,d j q t

PIPEz  that correspond directly to their counterpart Boolean variables , , ,d j q t

PIPEY  and 

, , ,d j q t

PIPEZ . Technically, we would also need to disaggregate the continuous decision 

variables , ,

Q

j q t

JF  for every disjunctive term. However, in this particular case we can derive 

the compact Hull Reformulation of disjunction (2.12), which does not require 

disaggregated variables as shown in Appendix B: Compact Hull Reformulation. The 

result is shown in Eq. (2.14).  

Since disjunction (2.12) is exclusive, we add Eq. (2.15) and transform the logic 

constraint (2.13) into the mixed-integer linear constraint (2.16) using propositional 

logic. Due to the structure of Eq. (2.16), either , , ,d j q t

PIPEy  or , , ,d j q t

PIPEz  may be specified as 
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continuous decision variables. In the authors’ experience, however, this does not yield 

noticeable computational speed-ups.  
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The pipeline sizing formulation for delivery pipelines represented by Eqs. (2.14)

-(2.16) is adapted for all candidate gathering pipelines  ˆ,j j  , flow pipelines 

 p, j   and well pipelines  p, p̂   that are considered in the gathering 

superstructure. In addition, Eqs. (2.17) and (2.18) are redundant constraints that 

strengthen the pipeline sizing formulation.  
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The underlying logic is that prior to solving the shale gas development problem, 

operators can easily identify non-decreasing pipeline capacity arcs  , , ĵp j   

and  ˆ,, j jj   within the gathering superstructure. Along these neighboring arcs, 

the flow capacity – represented by the installed pipeline capacity – is not allowed to 

decrease, i.e., a decrease in flow capacity would indicate that the preceding pipeline 
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segment is over-sized. If two pipelines merge into one segment, for example, it is clear 

that the subsequent pipeline may not decrease in terms of flow capacity. In practice, 

similar constraints are oftentimes imposed as part of the design problem to allow for 

“pigging” in gathering pipelines, i.e., the practice of using so-called “pigs” to clean 

operational pipelines in regular intervals.  

The proposed sizing formulation for pipelines can easily be extended to size 

gathering compressors. These compressors need to be installed between regional shale 

gas gathering systems and interstate transmission pipelines. Typically, the line pressure 

of shale gas gathering systems is in the range of 2 MPa, whereas interstate transmission 

pipelines are generally operated at well above 7 MPa. Operators are only responsible for 

installing gathering compressors along direct delivery sales routes, i.e., when gas 

processing is not necessary. When the gas is delivered to a processing plant, the 

processor is responsible for compressing the gas to transmission line pressure. For 

compressor sizing purposes we use disjunction (2.19).  
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This disjunction states that at any point in time a particular compressor size (in 

terms of compression power) must be selected along every candidate direct sales route, 

i.e., exactly one Boolean variable c, , ,

C

q

R

j t

OMPZ  has to be true in every time period t  

along every arc  ,j q  . Since inlet and outlet pressures of the compressor are 

fixed and given, the compressor power selection will determine precisely how much 
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compression capacity is necessary along every candidate delivery sales route 

 ,j q  , i.e., how much gas , ,

JQ

j q tF  can be compressed along the respective arc. It 

is important to note here that the set of commercially available compressor sizes 0c  

explicitly includes the zero-size 0c . Hence, it is possible to select no compression power 

along an arc which corresponds to the design decision of excluding that candidate 

compressor station from the final gathering system. Details regarding the compressor 

sizing procedure are provided in Appendix C: Compressor Sizing Guidelines.  

We note that the disjunction (2.19) does account for pre-installed compression 

power 0

,j q . If a certain amount of compression power has already been installed along 

a direct sales arc  ,j q  , then the corresponding compression capacity is already 

available. Hence, the proposed formulation allows for an increase in compression power, 

which is the common in industry. Compression increase in practice is typically modular, 

i.e., additional compressors are installed in parallel. As such, the pressure potential 

between the suction and the discharge sides of the compressors is identical.  

As before, disjunction (2.19) is transformed into a set of mixed-integer linear 

constraints using the Hull Reformulation. We refer to Appendix D: Compressor Sizing 

Formulation for the full reformulation.  

Water management constraints  

           Hydraulic fracturing of horizontal wells requires large amounts of fracturing 

fluid, oftentimes several million liters of water per well. Hence, it must be ensured that 

the demand for water can be met by the available set of water supply sources. In this 
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work it is assumed that the water demand for fracturing is given in terms of the location-

specific parameter 
pfwd .  

 , , , , ,n p

DEV

t f p t

f

p

n

fwd y Fn WS p t
 

         (2.21) 

           Constraint (2.21) ensures that the water supply 
, ,f p tFWS  from the available set of 

water sources f   satisfies the water demand at every well pad, depending on how 

many wells are being developed in parallel. In turn, constraint (2.22) balances the water 

supplied to all well pads with the water availability at all water sources, given by the 

parameter 
,f tfwa .  

 , , , ,f p t f t

p

FWS fwa f t


      (2.22) 

Rig and crew allocation constraints  

           In practice upstream operators generally only have a limited set of drilling rigs 

and completion crews at their disposal in a particular development area. The allocation 

of these resources is a challenging and complicating factor in the planning process. 

Hence, we introduce a binary decision variable , ,r p

G

t

RIy  that is active if a drilling rig and 

completion crew r  are present at a candidate pad location p  in time period 

t . Constraint (2.23) ensures that a drilling rig and completion crew are on site for 

as long as any number of wells are being developed at a candidate pad location. A 

drilling rig and completion crew may not be assigned to more than one well pad at any 

time as expressed by Eq. (2.24).  
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Strategic development constraints  

In practice, upstream operators oftentimes have the flexibility to choose from a 

set of candidate delivery nodes that are within the vicinity of their gathering system. 

These take-away options range from direct taps into nearby interstate transmission 

pipelines to processing plants that purify the raw gas prior to its injection into a 

transmission system. In addition to selecting the preferred delivery node, the operators 

also need to determine what kind of delivery agreements to arrange and how much 

delivery capacity to procure. The arrangement of these agreements is a quality-sensitive 

and nontrivial aspect of the overall long-term shale gas development problem.  

In this section we define the constraints that govern the strategic selection of: a) 

a preferred delivery node, b) delivery agreements, and c) necessary delivery or “take-

away” capacity. Fig. 2.3 illustrates these three levels of strategic decisions and the 

particular categories of constraints that they involve. The proposed formulation for the 

incorporation of strategic development constraints is motivated by Park et al. (2006) who 

include the selection of different types of contracts into existing supply chain 

optimization models using disjunctive programming. However, whereas Park et al. 

(2006) focus on generic purchasing and sales contracts between suppliers and customers, 

our models are tailored to the unique structure of the natural gas industry.  



 42 

 

Fig. 2.3: Illustration of the three levels of strategic development constraints 

In this work we capture the corresponding strategic development constraints 

using disjunction (2.25). This disjunction itself is characterized by a set of embedded 

disjunctions, and thus exploits the inherent structure of the strategic decision-making 

process.  



 43 

 

 
 

,

max

, , , ,

0 max

, ,

max

, , , ,

min max

, , , , , , , , ,

, ,

,

, ,

,

, , ,

, ,

DEL

j q

j q t j q t

j q t

p

j q t j q t

j q

JQ

p t

JQ KJQ J

t j q k j

Q

k

q t k j q t j q

AGR

da j q

j q

j q t da k j

j q t da

d

PR KJQ

t

EV

a

q

R

f t

f t

REV rev t

F h h F h t

PRE F

Y

F

F

F

Y

f

REV f

t









  

  

  

      



 





 , , ,

, , , ,

, , , , ,

, , , , , , ,

min max

, , , , , , , , , , , , ,

KJQ

CPTY

JQ

JQ S

JQ KJQ JQ

k j q t

dc da j q t

j q t dc da j q

dc
dc da j q j q t j q t

j q t dc da j q k j q t k j q t dc da q

k

j

t

F t

F t

F h h

F

Z

F

F F h t







 
 
 
 
 
 

  


 

 
 

  
  

 
 
 
 



  

      




 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
  

  

  (2.25) 

At the highest level, upstream operators have to select their preferred delivery 

node for a particular gathering system. This selection is of significant importance as it 

can vary between two conceptually disparate delivery options: processing sales routes 

and transmission sales routes. Whereas processing plants along processing sales routes 

( , )j q   are designed to purify off-spec raw gas deliveries, transmission lines 

along direct sales routes ( , )j q   generally only accept pipeline-quality gas 

deliveries. This diversity in terms of delivery options can be interpreted as a strategic 

degree of freedom to the upstream operator providing the decision-makers with a certain 

degree of flexibility. On the other hand, the conditions and terms of each delivery option 

also complicate long-term strategic commitments and add to the challenge of the 

development problem.  
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The Boolean variable ,

DEL

j qY  controls the outermost disjunction (2.25) and allows 

for the selection of a particular delivery arc ( , )j q  . This selection bounds the 

maximum take-away capacity max

, ,j q tf , the maximum attainable revenues , ,

max

j q trev  and it 

imposes gas quality specification constraints in terms of the heating value of the gas 

delivery ,

min

j qh  and ,

max

j qh . In this section we assume that the delivery node selection may 

only be made once throughout the planning horizon, hence disjunction (2.25) is truly 

exclusive. The relaxation of this restriction is discussed in section 2.5.3 Model 

Formulation: Multiple Delivery Node Problem.  

Besides the selection of a preferred take-away node, upstream operators must 

also choose from a limited set of delivery agreement options they are offered. In terms 

of processing plants, for example, these contracts range from fee-based to percent-of-

proceeds and keep-whole processing agreements (Pan, 2013). These agreements are 

conceptually different with regards to how the upstream operator compensates the 

processor for the processing service, and how revenues are generated for either party. 

Under fee-based contracts the operator simply pays a volume-based fee for the 

processing service, under percent-of-proceeds contracts the operator and the processor 

split revenues from marketing the gas and extracted NGLs, and under keep-whole 

contracts the processor retains title to all extracted NGLs as a method of payment. In 

addition, every possible delivery agreement may involve further specific terms and 

conditions regarding contract durations, delivery capacities or gas quality specifications. 

Delivery agreement options along direct sales routes are generally limited but may vary 

as well.  
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In this work, we embed the selection of the optimal delivery agreement within 

disjunction (2.25). For this purpose we introduce the Boolean variable , ,

AGR

da j qY  which is 

true if a particular delivery agreement da DA  is arranged along a take-away arc 

( , )j q  . This selection will determine the form of the processing cost function 

, , ,( )da k j q t

PR KJQf F  and the revenue function , , ,( )da k j q t

REV KJQFf . Constraint (2.26) ensures that if the 

Boolean variable ,

DEL

j qY  is true, i.e., a particular take-away node has been selected, then 

one of the available delivery agreements needs to be arranged, i.e., a corresponding 

Boolean variable , ,

AGR

da j qY  has to be true, too. The reverse statement holds true as well.   

 
, , , ( , )DEL AGR

j q da j
da

qY j qY


     (2.26) 

           In addition, the logic constraints (2.27) and (2.28) are imposed to explicitly 

distinguish between processing agreements and transmission agreements that operators 

may enter into depending on which type of delivery node is selected. The set of 

processing agreements pa  and transmission agreements ta  complement 

the set of delivery agreements da DA . Constraint (2.27) expresses that if a delivery 

node among the set of processing sales routes ( , )j q   is selected, then one of the 

available processing agreements pa  has to be arranged. Vice versa, constraint 

(2.28) states that deliveries along transmission sales routes ( , )j q   must be 

governed by one of the available transmission agreements ta .  

 , , , ( , )DEL AGR

j q pa j
pa

qY j qY
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Due to the complexity of the bilateral negotiation process between upstream 

operators and downstream entities, we assume that the arrangement of any delivery 

agreement may only be made once throughout the planning horizon. For this reason the 

center disjunction contained in disjunction (2.25) is exclusive.  

Finally, upstream operators have to determine how much delivery capacity to 

request at a particular delivery node. Generally, only discrete increments of take-away 

capacity can be procured, typically classified as limited, average, or extended delivery 

capacity. The more delivery capacity an upstream operator wishes to secure, the longer 

the duration of an agreement tends to be. Downstream entities, including processing 

plants and transmission lines, will specify minimum delivery quantities for the duration 

of a delivery agreement to ensure that they can recover their expenses for providing take-

away capacity. Commonly, these minimum delivery clauses involve so-called take-or-

pay provisions that obligate the upstream operator to either deliver the specified 

quantity, i.e., “take” the capacity, or to compensate the delivery entity, i.e., “pay” for 

unutilized capacity. Depending on how much take-away capacity is requested, 

additional and more restrictive gas quality specifications may be imposed as well. A 

midstream processor, for example, may offer limited processing capacity over a short 

period of time provided the delivered gas meets strict quality specifications.  

Within the embedded, innermost delivery capacity selection disjunction (2.25) 

we introduce the Boolean variable , , , ,

CPTY

dc da j q tZ  which is true if delivery capacity dc  

is available as part of delivery agreement da  along delivery arc ( , )j q   in 

time period t . If this Boolean variable is true, then the gas flowrate , ,

Q

j q t

JF  along the 

corresponding delivery arc is bounded by the maximum delivery quantity parameter 
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, , ,dc da j q . In addition, a minimum delivery quantity restriction , , ,dc da j q  may apply. 

Given the characteristic shale well decline curves these minimum delivery restrictions 

can be especially challenging to meet. In order to ensure a steady supply of natural gas, 

operators will generally try to turn new wells in line continuously. In this context we 

account for common take-or-pay provisions by introducing the slack variable , ,

S

j q tF . This 

variable closes the gap between the actually delivered gas flow , ,

Q

j q t

JF  and the arranged 

minimum delivery quantity , , ,dc da j q . As such, the slack variable , ,

S

j q tF  represents 

procured but unutilized capacity. Finally, the embedded delivery capacity selection 

disjunction involves the aforementioned gas quality specifications , , ,

min

dc da j qh  and , , ,

max

dc da j qh  

that may or may not apply.   

The logic constraint (2.29) guarantees that delivery capacity is available 

whenever a particular delivery agreement is selected and vice versa. This constraint links 

the agreement selection disjunction with the embedded capacity selection disjunction.  

 
, , , , , , , ( , ) ,AGR

da j q dc da j q t

CPTY

dc

Z daY j q t


                  (2.29) 

Similar to the case of delivery agreements, we distinguish between delivery 

capacity in terms of processing capacity and transmission capacity. Increments of 

processing capacity pc  are only available along processing sales routes 

( , )j q   as part of processing agreements pa , whereas transmission 

capacity increments tc  are restricted to transmission agreements ta  along 

transmission sales routes ( , )j q  . The logic constraints (2.30) and (2.31) establish 

these links among the embedded delivery agreement and delivery capacity selection 

disjunctions.  



 48 

 , , , , , , , ( , ) ,AGR CPTY

pa j q pc pa j q
pc

tZ pa j qY t


                (2.30) 

 
, , , , , , , ( , ) ,AGR CPTY

ta j q tc ta j q
tc

tZ ta j qY t


      (2.31) 

         We define the parameter ,

A

dc da  that specifies the agreement length for delivery 

capacity dc  under delivery agreement da . We also introduce the Boolean 

variable , , , ,

CPTY

dc da j q tY  that represents the selection of delivery capacity dc  as part of 

delivery agreement da  along delivery arc ( , )j q   in time period t , 

i.e., this Boolean variable marks the beginning of the capacity availability. Based on this 

variable declaration, constraint (2.32) states that delivery capacity, denoted by the 

Boolean variable , , , ,

CPTY

dc da j q tZ , is only available as long as the beginning of the arrangement 

occurred within the previous ,

A

dc da  time periods. During this time, all corresponding 

restrictions including minimum delivery quantities and gas quality specifications apply.  

 
,

, , , , , , , , , , ( , ) ,
A
dc da

t
CPTY

dc da j q dc da j q

CPTY

t
t

Y dc da jZ q t
  

      (2.32) 

Since the innermost disjunction contained in disjunction (2.25) is exclusive, 

some increment of delivery capacity is available along every delivery arc ( , )j q   

at any point in time. Technically, however, the set of available delivery capacities 

dc  will always involve a zero-capacity element 0dc .  

In this work the disjunctions are reformulated as mixed-integer linear constraints 

using both the big-M and the Hull Reformulation. For this purpose we introduce the 

binary variables ,

DEL

j qy , , ,

AGR

da j qy , , , , ,

CPTY

dc da j q ty  and , , , ,

CPTY

dc da j q tz  that correspond directly to the 

respective Boolean variables defined previously.  
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The outer disjunction (2.25) capturing the delivery node selection is transformed 

into a set of mixed-integer linear constraints using the Hull Reformulation. This 

disjunction involves the continuous decision variables , ,

Q

j q t

JF , , , ,k j q

Q

t

KJF , , ,j q tREV  and 0

,p tF . 

In this case only the latter variable needs to be disaggregated as 0

, , ,p j q tF  for each 

disjunctive term ( , )j q   as expressed in constraint (2.33).  

 ,

( , )

0 0

, , , ,p j q tp t

j q

pF F t


      (2.33) 

For the special case of the single delivery node problem, we can take advantage 

of the disaggregated variable 0

, , ,p j q tF when imposing the component flow balance Eq. 

(2.34).  

 
0 0

, , , , j, , , , ( , ) ,k

KJQ

j q t p q t p k

p

F x k j q tF


       (2.34) 

The reasoning for this constraint is as follows: by “design” the single delivery 

node problem forces all flows to converge to one delivery node eventually, i.e., 

regardless of the final design of the gathering system all of the gas that is extracted 

within the development area will be delivered to one and the same take-away hub. Since 

the composition of the extracted gas 0

,p kx  is known at every well pad, we can enforce 

constraint (2.34), which balances how much of each component k  is produced at 

all well pads in every time period with the component flow to all available delivery 

nodes. This explains why the single delivery node problem can indeed be solved as a 

mixed-integer linear program.

            In addition, we impose the upper and lower bound constraints (2.35)-(2.38) for 

all decision variables involved in the outer disjunction.  

  0 max

, , , , , ,0 , ,p j q t j q

L

t

DE

j qf y j q tF        (2.35) 
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 max

, , , , ,0 ( , ) ,DEL

j q t j q t j

J

q

QF f y j q t        (2.36) 

 max

, , , , , , ,0 ( , ) ,DEL

k j q t k j q t

Q

j

K

q

JF f y j q t        (2.37) 

 max

, , , , ,0 ( , ) ,DEL

j q t j q t j qREV rev y j q t        (2.38) 

          We note here that constraints (2.33) and (2.35) are not absolutely necessary, but 

are rather imposed to tighten the formulation. The gas quality specification constraint is 

adopted directly as it holds regardless of which disjunctive term is active.  

 
min max

, , , , , , , , ,j q t j q k j q t k j q t

JQ KJQ JQ

k

j qF h h F h tF


         (2.39) 

Constraint (2.40) ensures that only one node may be selected for delivery, i.e., 

only one term can be active in the outer disjunction (2.25). 

 
 

,

,

1DEL

j

q

q

j

y


   (2.40) 

The logic link (2.26) between the outer delivery node selection disjunction and 

the embedded center disjunction concerning agreement arrangements is reformulated 

into the algebraic constraint (2.41). The same transformation holds for the specialized 

logic propositions (2.27) and (2.28) affecting deliveries along processing and 

transmission sales routes.  

 , , , ( , )DEL AGR

d

j q da j q

a

j qy y


     (2.41)  

 , , , ( , )DEL AGR

p

j q pa j q

a

j qy y


     (2.42) 

 , , , ( , )DEL AGR

t

j q ta j q

a

j qy y


     (2.43) 

The constraints within the embedded center disjunction itself are converted into 

mixed-integer linear constraints using a big-M reformulation. For this purpose we define 
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the big-M parameters , ,

PRE

da j qm  and , ,

REV

da j qm . Depending on which agreement type da  

is selected, i.e., which binary variable , ,

AGR

da j qy  is active, determines which processing 

expenses accrue and how revenues are generated. Eq. (2.44) states the general 

expression for processing expenses where the processing cost coefficient A

da  changes 

depending on which type of agreement is selected.  

    , , , , ,, , da ,, , 1 ,( , ) ,JQ S PRE

q t j q

A AGR

da j j q t j q t da j qF PRE m y j q tF da           

  (2.44) 

The functional form of the revenue expression, on the other hand, changes 

fundamentally depending on the type of agreement between an upstream operator and a 

processing plant. In Appendix E: Delivery Agreements, we review the most common 

types of delivery agreements in more detail, i.e., fee-based, percent-of-proceeds, keep-

whole, and direct delivery contracts and we present the individual processing and 

revenue functions.  

Constraint (2.45) ensures that only one particular delivery agreement can be 

selected along every delivery arc ( , )j q  .   

 , , (1 , )AGR

a

da

d j q j qy


    (2.45) 

We link the embedded center and innermost disjunctions through constraint 

(2.46) that corresponds to the logical proposition (2.29). As before, this transformation 

also holds for the specialized logic propositions (2.30) and (2.31) addressing processing 

and transmission agreements.  

 , , , , , , , ( , ) ,AGR CPTY

da j q dc da j

dc

q t da j qy z t


      (2.46) 
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 , , , , , , , ( , ) ,AGR CPTY

pa j q pc pa j

pc

q t pa j qy z t


      (2.47) 

 , , , , , , , ( , ) ,AGR CPTY

ta j q tc ta j

tc

q t ta j qy z t


      (2.48) 

The embedded innermost disjunction in (2.25) capturing the delivery capacity 

selection is converted into algebraic constraints by using a big-M reformulation. The 

constraints involved in this disjunction address minimum delivery restrictions, capacity 

constraints, and gas quality specifications. By introducing sufficiently large parameters 

, , ,dc da j qm , , , ,dc da j qm , , , ,

minh

dc da j qm  and , , ,

maxh

dc da j qm  we can derive the big-M constraints (2.50)-

(2.52), respectively.    

 
 , , , , , , , , , , , ,1

, , ( , ) ,

j q t dc da j q dc da j q dc d

JQ CPTY

a j q tmF z

dc da j q t

   

    


 (2.49) 

 
   , , , , , , , , , , , , , ,1

, , ( , ) ,

CPTY

dc da j q j q t j q t dc da j q dc da j q t

JQ SF z

dc da j q

F

t

m   

   






(2.50) 

 
 min

, , , , j, , , , , , , , , , ,1

, , ( , ) ,

minh

j q t dc da q k j q t k dc da j q dc da j

JQ KJQ CP

q

k

t

TYF h F h z

dc da j q t

m


    

   






 (2.51) 

 
 max

, , , , , , , j, , , , , , , ,1

, , ( , ) ,

maxh

k j q t k j q t dc da q dc da j q dc da j

KJQ JQ CP

q

k

t

TYF h h z

dc

F

da q

m

j t



    

   






 (2.52) 

           Finally, the logic proposition (2.32) governing the length of delivery capacity 

agreements is reformulated as constraint (2.53).    

 

,

, , , , , , , , , , ( , ) ,
A
da da

CPTY

dc da j q dc da j q t

t
CPT

t

Y z dc da j q ty 

  

       (2.53) 

2.5.2 Model Formulation: Objective Function 
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The objective for shale gas development from the operator’s perspective is to 

maximize the net present value (NPV) over an extended planning horizon. The proposed 

objective function (2.54) accounts for revenues from natural gas and natural gas liquids 

sales tREV , development expenses tDVE , installation expenses for flow pipelines 

tFPE , gathering pipelines tGPE , delivery pipelines tDPE , compressor installation 

expenses tCIE , compressor operating expenses tCOE ,  production and maintenance 

expenses tPME , water acquisition expenses tFWE , royalty payments tRRE , rig 

transition expenses tRTE , rig downtime expenses tRDE , site construction expenses 

tSCE  and processing expenses tPRE .  

 



0

, ,T t ,

max (1 ) t

t

t t t t t t

t t t t t t t t

p t p p k

t pT k

k

P K

dr

FPE GPE DPE CIE

COE PME FWE

NPV

REV DVE

RRE RTE RDE SCE PRE

NWP x p







  



    

   

 





   

 





 (2.54) 

The last term in the objective function (2.54) captures the terminal value of the 

development project. Since the wells are expected to produce many years beyond the 

explicit planning horizon these revenues need to be factored into the net present value.  

For this purpose we consider the number of wells that are turned in-line at every pad in 

every time period 
,p tNWP , the expected, discounted, cumulative production of a well 

beyond the explicit planning horizon 
,p T t 

, the gas composition 0

,p kx , and an expected 

price forecast beyond the explicit planning horizon for every gas component kp . 

Assuming that the implicit planning horizon extends to time period t T  we determine 
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the expected, discounted cumulative production of a well beyond the explicit planning 

horizon as follows: 

  
1

, , 1
T t

t

p T t p

T t

dr





 


  



 

     (2.55) 

The overall revenues tREV  are driven by natural gas and NGLs sales along the 

delivery sales routes ( , )j q   as outlined in constraint (2.56). The explicit 

expressions for individual revenue streams along particular sales routes 
, ,j q tREV  depend 

on the arrangement of particular processing agreements. 

 
(

,

, )

,

j q

t j q tREV tREV


    (2.56) 

Economies of scale play a crucial role in shale gas development since the major 

capital investment expenses for drilling wells, laying out pipelines and installing 

compressor stations are well-known to obey these scaling principles (Moore, 1959; 

Haldi & Whitcomb, 1967; Tribe & Alpine, 1986 ). Dawson et al. (2012) go as far as to 

argue that the success or failure of unconventional gas development hinges upon the 

principles of economies of scale.  

Commonly, economies of scale are captured by concave investment cost 

functions of the form, 

 ( 0 1) xf x        

where ( )f x are the equipment cost, x  represents the equipment size, and finally   and 

  are cost parameters. The design variable x , i.e., the equipment size such as the 

pipeline diameter or compression power is commonly treated as a continuous variable. 

However, due to the concave nature of the cost function above, these expressions can 
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give rise to multiple local optima and unbounded gradients at zero values for equipment 

sizes ( 0x  ), leading to failures in NLP algorithms. Moreover, a posteriori rounding of 

equipment sizes can lead to suboptimal or even infeasible solutions.  

We overcome these difficulties by taking advantage of the discrete nature of the 

design variables involved in the shale gas development problem. Since pipeline 

diameters and compressor sizes are standardized in practice, we restrict the respective 

design variables to a finite set of discrete values 1 2{ , , , }i Nx xx x   (as shown in Fig. 

2.4) and introduce binary variables {0,1}iy   to select the optimal equipment sizes. This 

allows us to derive the following mixed-integer linear constraints for investment costs 

that are subject to economies of scale.  

 
1

)( i i i

N

i

x yf y 


      

 
1

1
N

i

iy


    

The important feature of the proposed reformulation is that it readily allows the 

consideration of discrete sizes and that it avoids nonlinear cost terms in the objective 

function due to economies of scale. However, depending on the number of discrete sizes, 

a large number of binary variables may be introduced that could render the mixed-

integer programs expensive to solve.  

 

Fig. 2.4: Illustration of equipment costs subject to economies of scale  
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In terms of the proposed model, we assume that expenses related to well 

developments as well as pipeline and compressor installations are subject to economies 

of scale. Hence, the respective cost expressions correspond to the modified cost 

function. Regarding well development expenses, for instance, the number of wells that 

can be drilled at any candidate pad location is an element of the discrete set n . By 

defining the cost parameters D  and 
D  we can take advantage of the previously 

introduced binary variable , ,

DEV

n p ty  and express the development expenses using constraint 

(2.57). This expression is linear even though it captures the nonlinear nature of 

economies of scale.   

 , ,

DD DRILL

t n p t

p n

DVE n y t
 

       (2.57) 

The same procedure can be applied to investment costs arising from the 

installation of delivery, gathering, flow and well pipelines. In all four cases we rely on 

the corresponding binary variables , , ,d j q t

PIPEy , ˆ, , ,d j j

E

t

PIPy , , , ,d p j t

PIPEy  and ˆ, , ,d p p

E

t

PIPy  to derive the cost 

expressions (2.58)-(2.60).  

 , , , ,

( , )

PP

t j q d d j

PIPE

q t

j q d

DPE tl y 
 

         (2.58) 

 
ˆ ˆ, , , ,

ˆ( , )

PP

t dj j d j j t
d

PIPE

j j

GPE l y t 


         (2.59) 

 ˆ ˆ, , , , , , , ,

ˆ( , ) ( , )

P PIPP

t d p j d p j t p p d p p t

d p j p p

E PIPEFPE l y l y t 
  

 
      

 
       (2.60) 



 57 

The constraints involve the cost parameters P  and 
P  as well as the lengths of 

candidate pipeline segments 
,j ql , ˆ,j j

l , 
,p jl  and ˆ,p pl . The parameter d  stands for 

commercially available pipeline diameters and is linked to elements of the set d .  

Expenses related to the installation of compression power are captured in a 

similar fashion. We assume that compressors only need to be installed along direct sales 

routes ( , )j q   leading to interstate transmission pipelines. We define the 

parameter c  to represent commercially available compressor sizes c  and use the 

cost parameters C  and 
C  to describe the characteristic economies of scale. 

Consequently, the selection of a particular compressor size, denoted by the binary 

variable , , ,

C

c j

R

q t

OMPy , determines the compressor installation expenses as given by expression 

(2.61).  

 ,

( , )

, ,

CC COMPR

t c c j q t

cj q

CIE y t 
 

        (2.61) 

Expenses for the operation of compressors as well as other production and 

maintenance costs, are captured by Eqs. (2.62) and (2.63). For simplicity we assume that 

compression expenses are directly proportional to the gas flow through the respective 

compressors. Similarly, production and maintenance expenses depend primarily on how 

much gas is extracted at all well pads within the development area.  

 , ,

( , )

JQ

q

j

O

t j t

q

COE F t


      (2.62) 

 ,

0

p t

I

t

p

PME F t


      (2.63) 
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In many U.S. states minimum royalty rates are prescribed by law and set to 

approximately 13% of the value of the extracted oil or gas. In this work we introduce a 

parameter to represent the royalty rate 
prr  and impose the expression (2.64).  

 
0

,

0

,

0

,p t k tt p pk

kp

RRE nd p tx rF r
 

          (2.64) 

Freshwater acquisition expenses for fracturing operations are described by Eq. 

(2.65). We define the cost parameter W  and assume that the cost of water acquisition 

is proportional to the amount of water that is required, 
, ,f p tWS , and the distance 

between a water source and the well pad 
,f pl .  

 , , ,

W

t f p f p t

f p

FWE l WS t
 

       (2.65) 

In practice, significant expenses accrue whenever a drilling rig is moved from 

one well pad to another. These are mainly due to the costly assembly and disassembly 

of the rigs. We define the rig transition cost parameter R  and assume that transition 

expenses accumulate whenever a drilling rig is either assembled or disassembled at a 

well pad. Since the binary variable , ,r p

G

t

RIy  identifies whether a drilling rig is located at a 

particular well pad or not, we use constraint (2.66) to anticipate rig transition expenses. 

The proposed constraints (2.66) - (2.68) are derived from the reformulation of the 

absolute value 
, ,r p tRTE .  

 , , , , , , , , 1-( ) , ,R

r p t r p t r p t

RIG RIG

r p tRTE RT tE y r py 

                 (2.66) 

 , , , ,, 0 , ,r p t r p tRT RTE tE r p         (2.67) 

 , , , ,t r p t r p t

r p

RTE RTERTE t 

 

     (2.68) 
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Usually, upstream operators will enter servicing agreements with rig companies 

and lease drilling rigs over several years. Under these agreements, the upstream 

operators are typically required to compensate the rig companies even when their 

services are not needed. These so-called rig downtime expenses are on the order of 

$50,000 per day, and hence contribute significantly to the overall development expenses. 

We account for rig downtime expenses tRDE  in Eq. (2.69).  

 , , , ,
DR
n

t
RIG DRILL RD

t r p t n

p r p n

p

t

RDE ty y 

 


     

 
     





     (2.69) 

For as long as the employed number of rigs are drilling on a well pad  – captured 

by an active binary variable , ,t

DRILL

n py  and the drilling lead time parameter DR

n  – no 

expenses accrue. For any rig that is not involved in drilling operations in time period 

t the rig downtime expense RD  applies. 

The construction of a well site may take place several months prior to the 

beginning of drilling operations. Based on the site construction cost coefficient S  and 

the binary variable ,

CON

p ty  – which marks the begin of construction operations – we 

calculate the site construction expenses tSCE  using constraint (2.70). 

 , ,
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t n

p

n p t

n

SCE y t
 

       (2.70) 

Processing expenses accrue only along processing sales routes ( , )j q   and 

depend on what type of processing agreement is arranged. Constraint (2.71) accounts 

for processing expenses along all candidate processing arcs.  

 
(

,

, )

,

j q

t j q tPRE PRE t


     (2.71) 
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In conclusion, the proposed model for the single delivery node development 

problem is composed of constraints (2.1)-(2.11), (2.14)-(2.18), (2.21)-(2.24), (2.33)-

(2.71). Since these constraints consist solely of mixed-integer linear constraints, the 

suggested formulation corresponds to an MILP that can be solved to global optimality.  

2.5.3 Model Formulation: Multiple Delivery Nodes Problem 

The previously proposed formulation for the single delivery node development 

problem can easily be extended to account for multiple delivery nodes. In fact, 

production constraints (2.1)-(2.8), flow balances (2.9)-(2.11), equipment sizing 

constraints (2.14)-(2.18), water management constraints (2.21)-(2.22), rig and crew 

allocation constraints (2.23)-(2.24), as well as the objective function (2.54) and the 

matching expressions used to capture revenues and expenses (2.56)-(2.71) can be 

adapted directly.  

The major differences in terms of the model formulation arise with the strategic 

development constraints, previously defined by the disjunction (2.25) and the 

corresponding constraints (2.26)-(2.53). Before, we introduced this set of constraints to 

capture the selection of a) a preferred delivery node, b) delivery agreements and c) 

necessary delivery or “take-away” capacity. Since the multiple delivery node problem 

explicitly allows for simultaneous gas deliveries to several take-away nodes, these 

constraints reduce to two levels of strategic decision-making: delivery agreements and 

“take-away” capacity. At the same time the exact distribution of gas deliveries to the 

given set of candidate delivery nodes, i.e. the ideal split factor, becomes a key degree of 

freedom.  
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Now, the modified strategic disjunction (2.72) replaces disjunction (2.25) 

involved in the single delivery node model. Unlike before, the outer disjunction now 

governs the selection of a particular delivery agreement, whereas the inner disjunction 

is concerned with the procurement of delivery capacity.  
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  (2.72) 

Since disjunction (2.72) is exclusive, it already ensures that no more than one 

delivery agreement is selected along every arc  ,j q  . In addition, we impose the 

logic constraints (2.73)-(2.74) to distinguish between processing agreements and 

transmission agreements.  

 , , ( , )AGR

pa pa j qY j q     (2.73) 

 , , ( , )AGR

ta ta j qY j q     (2.74) 

As with the single delivery node problem, we include the following logic 

constraints (2.75)-(2.78) for the delivery capacity selection. 
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 , , , , , , , ( , ) ,AGR CPTY

pa j q pc pa j q
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tZ pa j qY t


                (2.76) 
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, , , , , , , ( , ) ,AGR CPTY

ta j q tc ta j q
tc

tZ ta j qY t


      (2.77) 
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The disjunction (2.72) is reformulated using big-M constraints. However, since 

these constraints compare directly to those introduced previously in section 2.5.1 Model 

Formulation: Single Delivery Node Problem, we do not list them here but refer to 

Appendix F: Reformulation Multiple Delivery Node Disjunction.  

In addition, we explicitly account for the fact that the composition of the 

extracted gas will generally vary throughout a shale gas development area. Fig. 2.5 

below depicts a multiple delivery node gathering system where the shades of grey within 

the development area indicate qualitatively how the composition of the extracted gas 

can vary spatially (each shade of grey indicates a different gas quality). These 

composition variations are important to consider for several reasons. For one, the quality 

of the gas that can potentially be extracted at every candidate well pad will determine 

how profitable individual pads may be. Depending on the given forecasts for natural gas 

and natural gas liquids prices, upstream operators may want to target particular gas 

qualities at certain times and refrain from extracting these at other times. Secondly, 

while it is assumed that the composition of the gas is known at every candidate pad, the 

composition of the gas blend at the splitting node is an unknown since it depends on 

development decisions that determine which pads produce how much gas over time.  
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Fig. 2.5: Multiple delivery node development problem indicating gas composition 

variations (grey shades) 

In fact, the composition of the gas blend at a splitting node will generally change 

over time since individual wells feed different gas qualities into the gathering system at 

varying production rates throughout the planning horizon. This variation in gas 

composition adds to the challenge of the overall shale gas development problem since 

the operators have to satisfy gas quality specifications at the delivery nodes. Interstate 

transmission pipelines, for instance, will only allow pipeline-quality gas into their 

pipeline systems. Hence, if operators do not manage to blend the extracted gas such that 

the gas quality specifications at the delivery nodes are satisfied, then the pipeline 

companies have the right to refuse the deliveries and can therefore shut-in an entire 

gathering system. Hence, we reemphasize that the shale gas development problem is 

quality-sensitive.  

We note that the spatial composition variations are just as important to consider 

in the single delivery node problem as in the multiple delivery node problem. However, 

whereas the single delivery node problem can be modeled as an MILP, we show that in 
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the multiple delivery node problem these gas composition variations lead to nonlinear 

and nonconvex expressions, which complicate the solution of this problem. For this 

reason, we examine the component flow balances at the splitting node in greater detail. 

First, we establish the fact that all gas that is extracted within the development area 

eventually flows to an intermediate splitting node from where it is distributed along 

delivery arcs  ,j q  to the given set of take-away hubs as seen in  Fig. 2.6. This 

configuration is characteristic for most shale gas gathering systems.  

 

Fig. 2.6: Illustration of gas flows at the intermediate splitting node.  

Rather than explicitly balancing all incoming and outgoing component flows at 

the intermediate splitting node, we propose Eq. (2.79) to ensure that the material balance 

holds. The left-hand side of Eq. (2.79) sums up the products of all the produced gas 

flows 0

,p tF  at the given set of well pads p  and the (known) gas composition at the 

respective pads – captured by the molar fraction parameter 0

,k px . The left-hand side 

expression has to balance exactly with the component gas flows , , ,

KJQ

k j q tF  that are directed 

to the given set of delivery nodes. The advantage of this formulation is that this 

expression is entirely linear.      
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However, the component gas flow rates , , ,

KJQ

k j q tF in Eq. (2.79) need to be linked to 

the total gas flows , ,

JQ

j q tF  along the delivery arcs  ,j q   through an additional 

flow balance, Eq. (2.80).  

 , , , , , , , , (j,q) ,KJQ JQ J

k j q t j q t k j tF F X k tF        (2.80) 

Since both the gas flow rate , ,

JQ

j q tF  and the molar fraction , ,

J

k j tXF  characterizing 

the gas composition at the splitting node are continuous decision variables, their product 

is bilinear, and hence nonlinear and nonconvex. While Eq. (2.80) may seem deceptively 

simple, it turns the multiple delivery node development problem into a nonconvex 

MINLP problem and as such complicates the solution of the corresponding optimization 

problem significantly.  

It should be noted here that several alternative formulations for the flow balances 

at the splitting node can be explored. In particular, we mention the split flow formulation 

(Quesada & Grossmann, 1995) here. However, since it is challenging to specify tight 

bounds on split variables that lie between zero and one, we prefer to choose the above 

composition flow formulation. This proposed formulation allows us to efficiently impose 

tight bounds on the molar fraction variables , ,

J

k j tXF  as we outline in detail in the next 

section.  

2.6 Solution Strategy 

Whereas the single delivery node development problem can be solved to global 

optimality directly with a mixed-integer linear solver, the more general MINLP multiple 

delivery node problem calls for a tailored solution strategy. As outlined previously, the 

non-convexities in the shale gas development problem are due to bilinear terms in the 
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flow balances that arise in the general case of spatial gas composition variations in the 

development area and multiple downstream delivery nodes. We propose a solution 

strategy, see Fig. 2.7, which yields near-global and optimal solutions given the presence 

of the bilinear terms.  

 

Fig. 2.7: Proposed solution algorithm when using the outer approximation method                                             

to decompose the multiple delivery node MINLP 

The first step in the proposed strategy involves the solution of the shale gas 

development problem restricted to a single delivery node, which is a special case of the 

general multiple delivery node shale gas development problem. As demonstrated 

previously, this restricted problem can be solved as an MILP even when considering 

spatial variations in the shale gas composition. The solution of the single delivery node 

problem provides an initial, feasible solution to the general MINLP, i.e. it represents a 

lower bound to the full-scale MINLP maximization problem. It is important to note here 
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that the solution of the single delivery node problem considers gas quality specifications 

that may be imposed along all candidate delivery nodes. Hence, the solution of this 

initialization problem ensures that these constraints are satisfied. Moreover, if the initial 

single delivery node problem turns out to be infeasible, then we can conclude that the 

full-scale multiple delivery node problem is infeasible as well. This reasoning holds 

because additional delivery nodes merely offer opportunities to: a) sell more gas in total, 

or b) exploit different sales options by, for instance, targeting predominantly dry gas 

wells for some time and then producing wet gas at other times. We note that when only 

a few candidate delivery nodes are considered, it can be computationally beneficial to 

explore these options individually, i.e., selecting the delivery nodes “manually” one by 

one and determining the most profitable option may take less time than solving for the 

optimal delivery node explicitly.  

In addition, we perform a composition pre-analysis step to identify tight bounds 

for the molar fractional variables involved in the splitting node flow balance. The 

reasoning for this pre-analysis is as follows: The composition of the gas at the splitting 

node is unknown throughout the planning horizon since it depends on which 

development strategy is selected, i.e., when wells are turned in line, which quality gas 

the pads produce and how the gas flows are distributed within the gathering system. The 

composition of the gas at the well pads, on the other hand, is assumed to be known. 

Hence, this information can be used to specify tight bounds on the composition at the 

splitting nodes. For example, if the highest methane concentration at any well pad 

throughout the development area is 94%, then this bound may be imposed on the molar 

fraction of methane at the splitting node. Regardless of which development strategy is 
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ultimately selected, the composition of the gas at the splitting node may never exceed 

94%. The specification of these bounds has a positive impact on the performance of the 

nonlinear programming (NLP) solver, and is therefore an important step in solving the 

multiple delivery node development problem.  

Provided a feasible solution to the single delivery node problem exists and tight 

composition bounds are identified, the proposed solution strategy aims to solve the full-

scale multiple delivery node problem (an MINLP) next. Technically, we can rely on any 

MINLP solver capable of solving large-scale problems for this task. The key idea is to 

initialize the MINLP solver with the solution obtained from solving the single delivery 

node problem and impose the composition bounds identified in the pre-analysis step. 

We choose to decompose the MINLP into an NLP subproblem and an MILP master 

problem in the spirit of the outer approximation method (Duran & Grossmann, 1986) 

using DICOPT 24.4.1 (Viswanathan & Grossmann, 1990). By default, DICOPT will 

solve the NLP relaxation of the MINLP program to obtain an initial solution. Instead, 

we fix all binary decision variables involved in the multiple delivery node problem to 

the solution of the single delivery node problem. This turns the MINLP into an NLP 

subproblem. During the first iteration the solution of the subproblem will match the 

solution of the single delivery node initialization problem, since no additional degrees 

of freedom are available. The next step in the proposed solution strategy consists of 

deriving outer-approximations, i.e. linearizations, of all nonlinear constraints at the 

optimal solution of the preceding NLP subproblem. These linearizations turn the original 

MINLP into an MILP master problem. This master problem is then solved to identify 

an alternative solution to the shale gas development problem that has the potential of 
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being optimal, i.e. a set of planning, design and strategic development decisions. 

Provided the MILP master problem is feasible, the proposed algorithm progresses by 

fixing all binary variables of the full-scale MINLP to the solution of the master problem, 

and once again, solving the resulting NLP subproblem. If this subproblem is feasible 

and yields an improved objective function value, i.e. an increased net present value, the 

algorithm continues in an iterative fashion to solve a sequence of MILP master problems 

and NLP subproblems. If during the course of iterations a subproblem is found to be 

infeasible, a feasibility problem is solved instead, which aims to minimize the violation 

of the nonlinear constraints. The solution strategy terminates on a worsening lower 

bound.  

It is important to note that the proposed solution method does not guarantee 

convergence to a global optimum although DICOPT 24.4.1 has provisions to handle 

non-convexities. The NLP subproblems can get trapped in local solutions, and the 

linearizations of the master problem can potentially cut into the feasible region of the 

full-space MINLP yielding suboptimal solutions. Yet, the proposed solution strategy 

does increase the likelihood of obtaining near-global and optimal solutions, or at least 

identifying good feasible solutions to realistic problem instances, which are intractable 

for existing commercial global MINLP solvers such as BARON, SCIP or ANTIGONE.   

2.7 Case Studies 

The proposed model is applied to two case studies that demonstrate the value of 

tactical, computational decision-making support tools for long-term shale gas 

development.  
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Case Study 1 

Our first example is concerned with the expansion of an existing shale gas 

gathering system. The problem we present is based on a real-world development project 

that a major upstream operator undertook in the Appalachian Basin. As part of a 

“lookback” our analysis goes back in time, and assumes the operator had access to the 

proposed modeling and optimization framework several years ago. Our objective is to 

use our computational model to identify the most profitable development strategy at the 

time, and compare it to the actual historic development. This direct comparison allows 

us to quantify the economic potential of the proposed models. For confidentiality 

reasons we cannot disclose the exact location of the gathering system nor the particular 

time period the analysis covers.  

Fig. 2.8 shows the gathering system as it exists at the beginning of the planning 

horizon (Note: this schematic is not drawn to scale). The solid orange ovals indicate 

existing well pads that are already producing gas, whereas the dashed green ovals 

represent candidate well pads that are considered for development. Long-term 

production and gas quality forecasts are available for all candidate and producing pads. 

Based on the given acreage position within the development area, only a certain number 

of wells can be developed at every candidate pad. The solid lines in Fig. 2.8 specify 

existing pipelines that have already been laid out in the development area; the numerical 

figures along the individual segments indicate the size of those pipelines in inches. 

Evidently, the size of the installed pipelines constrains the flow capacity along every 

pipeline segment. In addition, the illustration depicts candidate pipeline routes as dashed 

lines. New pipelines may be laid out along these routes or besides existing pipelines. All 

of the gas that is extracted within the considered development area is delivered to a 
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single compressor station. In Fig. 2.8 this compressor station is represented by a solid 

grey triangle. At the beginning of the planning horizon this station provides 3,535 kW 

of compression power. 

 

Fig. 2.8: Given gathering system superstructure for Case Study 1 

It is assumed that the well pads feed into the gathering system at approximately 

1.7 MPa, the compressor suction pressure is set to 1.3 MPa (due to the pressure drop 

along the gathering lines) and the compressor discharges gas into the delivery line at 

roughly 8.3 MPa. The development area produces predominantly wet gas with a 

methane concentration between 77% and 83%, i.e., the extracted raw gas needs to be 

purified and fractionated at a processing facility outside of the development area (not 

depicted in Fig. 2.8). Hence, gas quality specifications are not imposed at the delivery 

node. We consider a two year planning horizon, and assume that the gathering system 

is not capacity-constrained downstream during this time. All candidate wells are clear-
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to-build within the given time frame. Due to the limited planning horizon, we do not 

consider the arrangement of delivery agreements as part of this case study.  

After discretizing the two year planning horizon into months, the problem 

involves a total of 30,336 binary variables, 4,686 continuous variables and 12,817 

constraints. Given that this development project corresponds to a single delivery node 

problem we can formulate it as an MILP while still considering variable gas composition 

at the given set of well pads. Using IBM CPLEX 12.6.0.0 in GAMS 24.2.2 the problem, 

which has an LP relaxation gap of 16%, can be solved to a 3.5% optimality gap within 

2.5 hours on an Intel i7, 2.93 Ghz machine with 12 GB RAM exploring a total of 125,000 

nodes in the branch and bound tree. The predicted NPV is 214 million USD. Fig. 2.9 

shows the optimal gathering system at the end of the planning horizon.  

 

Fig. 2.9: Optimal gathering system at the end of the planning horizon for Case Study 1 

In Fig. 2.9 the solid red ovals represent candidate well pads that are meant to be 

developed within the planning horizon, the solid red lines show newly installed 
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pipelines, and the numbers next to these segments specify the selected pipeline sizes in 

inches. Finally, Fig. 2.9 indicates a proposed expansion of the available compression 

power to 12,371 kW. It is interesting to note here that the optimizer chooses not to 

develop a total of three candidate pads, namely PAD13, PAD14 and PAD16 – our a 

posteriori analysis suggests that this is most likely due to their unfavorable production 

forecasts. Along with the gathering system, the solution reveals the optimal development 

strategy as seen in the left chart in Fig. 2.10.  

 

Fig. 2.10: Optimal development schedule (left) and historic development schedule 

(right) for Case Study 1 

This Gantt chart displays the candidate pads on the left axis and the two year 

planning horizon discretized by 24 time periods (months) on the bottom axis. The chart 

shows when pads are built (brown bars), how many wells are drilled over which period 

of time (white numbers in red bars), how long it takes to complete the wells (blue bars), 

if wells are shut-in temporarily and for how long (white numbers in orange bars), and 

when the respective pads start to produce gas (gray bars). It is apparent from Fig. 2.10 

that the optimal development strategy is characterized by a large number of so-called 

return-to-pad operations, i.e., the optimizer chooses to drill, complete and turn in-line a 

relatively small number of wells, but then returns to the same pad eventually to repeat 
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the process. For instance, rather than developing 9 wells all at once at candidate pad 

PAD17, the optimizer “splits the pad”. It proposes to build a pad, move a rig onto 

location, drill 4 wells, move the rig off location, complete the 4 wells, turn them in-line, 

move a rig back onto location again, drill another 4 wells, move the rig off location 

again, complete these 4 wells, turn them in-line, etc. These return-to-pad operations are 

rarely seen in practice as can be seen from the right chart in Fig. 2.10, which depicts the 

historic development strategy for this system.  

The historic development schedule does not involve any return-to-pad 

operations. In fact, the schedule gives reason to believe that the development strategy at 

the time was driven by trying to drill as many wells as possible at every given candidate 

location. At PAD17, for instance, the operator decided to drill and complete 11 wells in 

one sequence, and eventually turned all of them in-line at once. The chart reveals that 

the drilling operation itself lasted over a year. During this time, the pad was not 

producing any gas. The optimal development strategy, on the other hand, proposes to 

drill and complete only 4 wells upfront – which lasts merely 4 months. Upon completion 

these 4 wells already start to produce gas and the operator sees an early return on 

investment. This observation holds for several other pads as well. In all of these cases 

the return-to-pad operations allow the operator to feed gas into the system much sooner 

than the historic development strategy.  

Furthermore, return-to-pad operations also allow the operators to use smaller 

size pipelines for their gathering systems. Usually, when a large number of wells on a 

pad are turned in-line all at once, the respective pipelines need to be designed to handle 

large quantities of gas in a short period of time. However, considering the characteristic 
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shale gas decline curves, these pipelines are oftentimes oversized and underutilized in a 

matter of months. With return-to-pad operations, on the other hand, the flow pipelines 

can be sized smaller because only a few wells are turned in-line at one time. Moreover, 

since new wells are continuously brought online, the pipelines are also kept “full” over 

a longer period of time which improves the overall equipment utilization. In this context 

return-to-pad operations appear especially suitable for shale gas development projects.  

Fig. 2.11 shows the production profiles based on the optimal and the historic 

development strategies. In the left chart, displaying the optimal production profile, it can 

be seen that at first, the system produces roughly 1.7 x 106 m3/day until time period 7 

when the production is increased to nearly 4.5 x 106 m3/day. Thereafter, the production 

profile remains at a relatively steady level, which indicates a fairly high equipment 

utilization that should generally benefit the arrangement of downstream delivery 

agreements. Historically, however, the gathering system was producing merely 2.5 x 106 

m3/day within the given time frame as can be seen in the right chart in Fig. 2.11.   

 

Fig. 2.11: Optimal production profile (left) and historic production profile (right) for 

Case Study 1 
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As indicated earlier, the proposed development strategy yields a positive NPV 

of 214 million USD. Total development expenses amount to 360 million USD. Well 

development expenses, i.e., for drilling, fracturing and completing the wells, account for 

43% of the total expenses, royalties take up 21% and the compressor expansion requires 

another 10%. In comparison, the historic development strategy yields an NPV of merely 

81 million USD. Given the overall increase in gas production the proposed development 

strategy appears much more favorable economically. Our results suggest that a shift in 

shale gas production philosophy could have a major impact on the profitability of shale 

gas development projects. Considering the time value of money and the characteristic 

shale gas decline curves return-to-pad operations appear very promising and may be 

much more suitable than previous development strategies aimed at simply drilling as 

many wells as possible at any given pad.  

Case Study 2 

In our second example, we study a greenfield development project over a 6 year 

planning horizon. In this case study we explicitly consider the arrangement of processing 

agreements. Fig. 2.12 shows the given gas gathering superstructure including candidate 

pads, pipeline routes and delivery nodes.  
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Fig. 2.12: Given gathering system superstructure for Case Study 2 

We assume that the operator has already laid out two gathering lines: one 16” 

line extending to the North and one 12” line extending to the South. However, it has not 

been decided yet whether the extracted gas will: a) be fed directly into a transmission 

line using an existing compressor station at which 3,700 kW of compression power are 

available, or b) delivered to a natural gas processing plant that is operated by an 

independent midstream company. Gas deliveries to the compressor station must meet 

gas quality specifications, i.e., the heating value of the gas must be at least 34 MJ/m3 

(900 Btu/scf) and may not exceed 45 MJ/m3 (1,200 Btu/scf). Gas deliveries to the 

processing plant on the other hand require the arrangement of strategic processing 

agreements. The operator can choose between one of three different contract types, 

either: a) a fee-based, b) a percent-of-proceeds, or c) a keep-whole processing 

agreement. For either one the operator may procure a) limited, b) average or c) extensive 

processing capacity at any point in time throughout the planning horizon. Table 2.1 



 78 

summarizes the conditions of all available processing agreements in terms of minimum 

delivery quantities, maximum delivery capacities and durations of contracts.  

 

Table 2.1: Available processing agreements and their conditions for Case Study 2 

For simplicity, we assume that direct gas deliveries via the compressor station 

are not governed by any particular transmission agreements. Out of the given ten pads 

exactly three pads have already been pre-selected for development, namely PAD01, 

PAD07 and PAD09 – all other pads are true candidates for development. We assume 

that the gas composition varies significantly within the considered development area: 

the methane concentration, for instance, varies gradually between 79% in the Northwest 

(PAD05 and PAD06) and 97% in the South (PAD09, PAD10), i.e., the gas becomes 

“wetter” in the northwestern direction. Based on the projected acreage position all pads 

are subject to clear-to-build constraints, i.e., they may not be developed prior to a given 

start date.  

Since this development project considers both variable gas composition and a 

total of two candidate delivery nodes (the compressor and the processing plant) our 

formulation yields a nonconvex MINLP. Based on a monthly discretization of the 

planning horizon the problem involves 59,680 binary variables, 21,707 continuous 

variables, 56,859 constraints and 1,008 bilinear terms. We use the proposed solution 
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algorithm as described in section 2.6 Solution Strategy to identify the most profitable 

development strategy. For this purpose we solve the single delivery node (SDN) 

problem first. Using IBM CPLEX 12.6.0.0 in GAMS 24.2.2 this problem can be solved 

to a 5% relative optimality gap in slightly under 2 hours on an Intel i7, 2.93 Ghz machine 

with 12 GB RAM. This solution yields a positive NPV of 187.2 million USD. Fig. 2.13 

depicts the optimal gathering system when the optimizer is restricted to select only one 

delivery node.  

 

Fig. 2.13: Optimal gathering system for the SDN problem of Case Study 2 

The illustration in Fig. 2.13 reveals that two candidate well pads (PAD08 and 

PAD10) remain undeveloped – most likely due to their unfavorably “dry” gas quality. 

All other candidate pads are developed by the end of the planning horizon. The 

processing plant is selected as the exclusive delivery node, i.e., all the produced gas is 

purified and fractionated, which allows the upstream operator to market the extracted 
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NGLs at favorable prices. In this case the optimizer chooses to select a fee-based 

processing agreement to have the raw gas processed. The illustration in Fig. 16 shows 

which processing agreements need to be arranged as part of the proposed development 

strategy: three limited capacity contracts providing no more than 0.85 x 106 m3/day of 

processing capacity over 4 months each, and three extensive capacity contracts spanning 

2 years each. The latter extensive agreements require the upstream operator to deliver at 

least 1.7 x 106 m3/day, but no more than 2.3 x 106 m3/day of raw gas. It is important to 

note that these are take-or-pay contracts, meaning that the operator does not necessarily 

have to meet the minimum delivery requirements (“take the capacity”) but will have to 

pay for unutilized processing capacity (“pay for capacity”). Fig. 2.14 shows that at the 

end of the planning horizon the proposed development strategy does not succeed at 

delivering enough gas to take full advantage of the procured processing capacity.  

 

Fig. 2.14: Gas deliveries and selected processing agreements for the SDN problem of 

Case Study 2 
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As outlined in section 2.6 Solution Strategy, we use the solution obtained from 

solving the SDN problem to initialize the multiple delivery node (MDN) problem. By 

design, the SDN solution is a feasible solution to the MDN problem. Using DICOPT 

24.2.1, IBM CPLEX 12.6.0.0 and CONOPT 3 24.4.1 in GAMS 24.2.2 on the same 

computing machine as before, the algorithm terminates after a little less than an hour 

and reports a positive NPV of 197.4 million USD – a 5% increase compared to the 

solution of the SDN problem. DICOPT requires a total of two iterations to identify this 

solution. The major computational effort lies in solving the MILP master problems, 

whereas the NLP subproblems are solved within less than 15 seconds each. Provided the 

same initial solution as DICOPT 24.2.1, the best upper bound BARON 15.6.5 reports – 

after 16 hours on the computing machine above – is 252.9 million USD.  

The illustration on the left in Fig. 2.15 shows the proposed development strategy 

for the proposed gathering system. As seen in the previous case study, the development 

is characterized by a large number of return-to-pad operations. The schedule also reveals 

increased development activity early on in the planning horizon, which makes economic 

sense considering the time value of money.  The illustration on the right in Fig. 2.15 

shows the matching gas production profile over time, and highlights which pads 

contribute how much gas to the overall production. Fig. 2.16 shows the proposed 

gathering system for the multiple delivery node problem.  
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Fig. 2.15: Proposed development strategy (left) and gas production profile (right) for 

the MDN problem of Case Study 2 

The proposed gathering system in Fig. 2.16 reveals that now all candidate well 

pads are developed within the planning horizon - contrary to the solution of the single 

delivery node problem. Moreover, delivery pipelines are laid out to both the processing 

plant and the compressor station, indicating that an additional delivery node does 

improve the profitability of the development project.  

 

Fig. 2.16: Proposed gathering system for the MDN problem of Case Study 2 
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Fig. 2.17 shows how much gas is delivered to the processing plant and how much 

gas is sent to the compressor station over time. In addition, the illustration also indicates 

how much processing capacity needs to be procured to fit the proposed development 

strategy: one limited capacity arrangement and three extensive processing capacity 

contracts. In this case too, the optimizer proposes to arrange a fee-based processing 

agreement with the midstream company. We find that the selection of the processing 

agreement has a significant impact on the profitability of the development project. Given 

a keep-whole processing agreement the NPV for the exact same development problem 

reduces to 126.8 million USD – a 36% reduction compared to the solution we obtain 

with a fee-based agreement. Moreover, for a percent-of-proceeds processing agreement 

the NPV diminishes to a mere 102.1 million USD – 95.3 million USD less than the 

solution we report.  

 

Fig. 2.17: Gas deliveries and selected processing agreements for the MDN problem of 

Case Study 2 



 84 

Upon closer examination it becomes apparent that the direct delivery arc via the 

compressor station is used to market “excess” gas that cannot be processed by the 

processing plant due to capacity constraints. Since we assume that these gas deliveries 

are not governed by any particular transmission agreements they are much easier to 

arrange – provided the gas quality specifications are satisfied. However, it is important 

to note that the NGLs that are marketed along the direct delivery route are sold at the 

price of methane – which is far less favorable than typical liquids prices. In this 

particular case, it is not necessary to install additional compression power at the 

compressor station since the available 3,700 kW are sufficient. Finally, we present a 

breakdown of the overall development expenses in the left illustration of Fig. 2.18.  

 

Fig. 2.18: Breakdown of development expenses (left) and projected revenues (right) 

for the MDN problem of Case Study 2 

The chart on the left in Fig. 2.18 reveals that well development expenses account 

for more than half of all expenses, followed by royalty payments at nearly 20% and 

pipeline installation expenses at 13%. In total, the development expenses amount to 

441.5 million USD. The chart on the right in Fig. 20 shows the projected revenues that 

yield an NPV of 197.4 million USD based on the given gas price forecast. It can be seen 
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that the revenues are very sensitive to gas price fluctuations and that the solution exploits 

the projected peak in price forecasts between time periods 19-37.  

Altogether, this second case study demonstrates the value of having additional 

take-away options for shale gas gathering systems. Chances of being capacity-

constrained at some point in time throughout the development operation diminish 

significantly when multiple delivery nodes can be selected. In addition, these 

configurations allow the operators to exploit fluctuations in natural gas and NGL prices: 

when NGL prices are high it makes economic sense to purify and fractionate raw gas, 

whereas low NGL prices favor direct deliveries into transmission pipelines such that 

processing expenses can be avoided.  

2.8 Conclusions 

In this chapter, we have presented a large-scale, deterministic, multi-period, 

MINLP model to address the long-term shale gas development problem given a 

superstructure that reflects real world gathering systems. We exploited the discrete 

nature of the design variables involved in this problem, i.e., standardized pipeline 

diameters and compressor sizes, to systematically derive disjunctive models using 

Generalized Disjunctive Programming (GDP). By enforcing discrete equipment sizes 

we were able to use mixed-integer linear constraints to capture economies of scale that 

are typically expressed by concave investment cost functions. Furthermore, we extended 

the scope of the shale gas development problem to account for the arrangement of 

processing and transmission agreements, which impose additional restrictions on shale 

gas development strategies. Here, too, we relied on disjunctive models which are 
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characterized by a set of embedded disjunctions that allowed us to exploit the inherent 

structure of the strategic decision-making process.  

Finally, we emphasized that the shale gas development problem is quality 

sensitive, i.e., spatial variations in the composition of the extracted gas need to be taken 

into consideration. We proposed a nonconvex MINLP formulation to capture these 

composition variations, and we developed a solution strategy that yields the global 

optimum for the case of a single delivery node, while it yields near-global solutions for 

the case of multiple delivery nodes. The two case studies we presented clearly 

demonstrate that return-to-pad operations, improved equipment utilization and the 

arrangement of strategic delivery agreements can increase the profitability of shale gas 

development projects by several million U.S. dollars. With regards to the arrangement 

of delivery agreements we note that, in practice, upstream operators evidently cannot 

arrange delivery agreements of their own accords. Instead, these agreements are the 

result of complex, iterative, and bilateral negotiation processes – between operators and 

processors or operators and transmission lines. We did not capture these negotiations in 

this work. Rather, the objective of this work was to develop a framework that allows 

upstream operators to identify the optimal delivery agreements for their particular 

gathering systems. In that sense, the proposed extension of the shale gas development 

model to account for strategic decisions is intended to be used as a negotiation support 

tool for upstream operators.  

We conclude that the proposed computational decision-making framework can 

support upstream operators significantly in identifying cost-effective development 

strategies, and that it can help them remain profitable even in low-price environments. 
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Future work will exploit pressure optimization opportunities within the gathering 

system, and address uncertainties and disruptions realizing throughout the planning 

horizon.  

2.9 Nomenclature 

Sets    

c     Compressor sizes  

d     Pipeline diameters 

f     Fresh water sources 

p     Well pads 

p    Candidate well pads; subset of well pads  

p    Producing well pads; subset of well pads  

j     Gathering junctions 

k     Natural gas components 

k     Natural gas liquids; subset of natural gas components  

n    Number of wells 

q     Delivery nodes 

r     Drilling rigs 

t     Time periods 

da    Delivery agreements 

pa    Processing agreements; subset of delivery agreements  

ta    Transmission agreements; subset of delivery agreements  

dc    Delivery capacities 

tc    Transmission capacities; subset of delivery capacities  

pc    Processing capacities; subset of delivery capacities  

ˆ )( ,p p    Well pipeline arcs 

( , )p j    Flow pipeline arcs 

ˆ)( ,j j     Gathering pipeline arcs 

( , )j q     Delivery pipeline arcs 

( , )j q     Direct sales routes; subset of delivery pipeline arcs  

( , )j q     Processing sales routes; subset of delivery pipeline arcs  

ˆ)( , , jp j    Non-decreasing pipeline capacity arcs 
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Binary Variables 

, ,

DRILL

n p ty     Active if n  wells drilled at well pad p  in time period t   

, ,

CON

n p ty   Active if well pad p  fitting n  wells under construction in 

time period t   

, ,r p

G

t

RIy     Active if drilling rig r  on location at well pad p  in time  

   period t   

, , ,d j q t

PIPEy   Active if pipeline diameter d  installed between junction j and 

delivery node q  in time period t  

, , ,

C

c j

R

q t

OMPy   Active if compressor size c  installed between junction j  and 

delivery node q  in time period t   

, , ,d j q t

PIPEz   Active if pipeline diameter d available between junction j  and 

delivery node q  in time period t  

, , ,

C

c j

R

q t

OMPz   Active if compressor size c available along delivery arc ,j q in 

time period t   

,

DEL

j qy     Active if delivery arc ,j q  selected for raw gas delivery  

, ,

AGR

da j qy     Active if delivery agreement da  arranged along delivery  

   arc ,j q   

, , , ,dc da j q

Y

t

CPTy   Active if delivery capacity dc  selected within delivery 

agreement da  along delivery arc ,j q  in time period t   

, , , ,dc da j q

Y

t

CPTz   Active if delivery capacity dc  available within delivery 

agreement da  along  delivery arc ,j q  in time period t   

Boolean Variables 

, , ,d j q t

PIPEY   True if pipeline diameter d  installed between junction j  and 

delivery node q  in time period t  

, , ,

C

c j

R

q t

OMPY   True if compressor size c  installed between junction j  and 

delivery node q  in time period t   

, , ,d j q t

PIPEZ   True if pipeline diameter d  available between junction j  and 

delivery node q  in time period t  

, , ,

C

c j

R

q t

OMPZ   True if compressor size c  available junction j  and delivery 

node q   in time period t   



 89 

,

DEL

j qY     True if arc ,j q  selected for raw gas delivery  

, ,

AGR

da j qY     True if delivery agreement da  arranged along delivery arc ,j q   

, , , ,dc da j q

Y

t

CPTY   True if delivery capacity dc  selected within delivery agreement 

da  along delivery arc ,j q  in time period t   

, , , ,dc da j q

Y

t

CPTZ   True if delivery capacity dc  available within delivery 

agreement da  along delivery arc ,j q  in time period t  

Continuous Variables         

0

,p tF     Flow rate produced gas at well pad p  in time period t  

, j, ,

0

qp tF     Flow rate produced gas at well pad p  intended for delivery 

   arc  ,j q  in time period t  (disaggregated variable)  

, ,

PJ

p j tF     Gas flow rate from well pad p  to junction j  in time period t  

ˆ, ,p p

P

t

PF     Gas flow rate from well pad p  to well pad p̂  in time period t  

ˆ,, j

J

j t

JF     Gas flow rate from junction j  to junction ĵ  in time period t  

, ,

Q

j q t

JF     Gas flow rate along delivery arc ,j q  in time period t   

, , ,

KJQ

k j q tF   Gas flow rate component k  along delivery arc ,j q in time 

period t   

, ,

S

j q tF     Slack gas flow rate along delivery arc ,j q  in time period t   

, ,

J

k j tXF    Molar fraction gas component k  at junction j  in time period t  

tDVE   Development expenses (drilling, fracturing, completion) in time 

period t   

tFPE     Flow pipeline construction expenses in time period t  

tGPE     Gathering pipeline construction expenses in time period t   

tDPE     Delivery pipeline construction expenses in time period t   

tCIE     Compressor installation expenses in time period t   

tCOE     Compressor operating expenses in time period t    

tPME     Production and maintenance expenses in time period t   

tRRE     Royalty expenses in time period t      

tRDE     Drilling rig downtime expenses in time period t    
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tRTE     Drilling rig transition expenses in time period t    

, ,r p tRTE    Drilling rig transition expenses in time period t   

, ,r p tRTE    Drilling rig transition expenses in time period  

tSCE     Well site construction expenses in time period t    

tPRE     Processing expenses in time period t      

, ,j q tPRE    Processing expenses along delivery arc ,j q  in time period t  

tREV     Revenues from natural gas sales in time period t    

, ,j q tREV    Revenues from natural gas sales along arc ,j q  in time period t  

,p tNWD    Number of wells that completed at well pad p  in time period t    

,p tNWP    Number of wells producing shale gas at well pad p  in  

   time period t   

, ,f p tFWS    Freshwater supply from source f  to well pad p  in  

   time period t    

NPV     Net present value of the shale gas development project  

Parameters 

dr     Discount rate  

nd     Number of days per time period      

0

,p kx     Molar fraction shale gas component k  produced gas at  

   well pad p   

, ,k q tp     Price of natural gas component k  at delivery node q  in  

   time period t   

D     Well development cost coefficient      

A

da     Processing cost coefficient for delivery agreement da    

P     Pipeline construction cost coefficient     

C     Compressor installation cost coefficient  

I     Production cost coefficient     

O     Compressor operating cost coefficient    

W     Fresh water acquisition cost coefficient    

R     Rig transition cost coefficient      

RD     Rig downtime cost coefficient     
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S     Site construction cost coefficient     

D     Well development cost exponent     

P     Pipeline construction cost exponent     

C     Compressor installation cost exponent    

d     Commercially available pipeline diameters     

0

,j q     Pre-installed pipeline capacity (diameter) along arc ,j q    

0

,j j
     Pre-installed pipeline capacity (diameter) along arc ,j j    

0

i, j     Pre-installed pipeline capacity (diameter) along arc ,i j    

0

i,i
     Pre-installed pipeline capacity (diameter) along arc ,i j    

,j ql     Pipeline segment length from junction j  to delivery node q   

ˆ,j j
l     Pipeline segment length from junction j  to junction ĵ    

,p jl     Pipeline segment length from well pad p  to junction j    

, p̂pl     Pipeline segment length from well pad p  to well pad p̂    

,f pl     Pipeline segment length from fresh water source f  to  

   well pad p    

c     Commercially available compressor sizes    

0

,j q     Pre-installed compression power along arc ,j q     

prr     Royalty rate at well pad p        

S

p     Site construction lead time well pad p      

D

n

W     Well development lead time for a total of n  wells  

R

n

D     Drilling lead time for a total of n  wells being drilled  

F

n

H     Fracturing lead time for a total of n  wells being completed  

P     Pipeline construction lead time      

C     Compressor installation lead time     

,

A

dc da   Agreement length for delivery capacity dc  under delivery 

agreement  

,

x

p t

man     Maximum number of wells permitted at well pad p  in  

   time period t   
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,tp  
   Well productivity at well pad p  for a well of age a t     

   time periods 

, , ,dc da j q   Maximum delivery quantity under delivery capacity dc  within 

delivery agreement da  along delivery arc ,j q     

, , ,dc da j q   Minimum delivery quantity under delivery capacity dc  within 

delivery agreement da  along delivery arc ,j q    

Pk     Pipeline capacity coefficient      

Ck     Compressor capacity coefficient     

pfwd     Specific fresh water demand per well pad p     

,f tfwa    Fresh water availability at fresh water source f  in   

   time period t    

, ,

max

j q tf     Maximum molar gas flowrate along delivery arc ,j q  in  

   time period t   

, ,

max

j q trev    Maximum revenues along delivery arc ,j q  in time period t  

max

tcapex    Capital expenditures limit       

kh     Heating value gas component k      

min

, , ,dc da j qh   Minimum heating value imposed for delivery capacity dc  

within delivery agreement da  along delivery arc ,j q    

max

, , ,dc da j qh   Maximum heating value imposed for delivery capacity dc  

within delivery agreement da  along delivery arc ,j q    

, ,

PRE

da j qm   Big-M parameter for processing expenses under delivery 

agreement da  along delivery arc ,j q     

, ,da j

V

q

REm   Big-M parameter for revenues under delivery agreement da  

along delivery arc ,j q       

, , ,dc da j qm   Big-M parameter for minimum delivery quantity under delivery 

capacity dc  within delivery agreement da  along delivery arc 

,j q    

, , ,dc da j qm   Big-M parameter for maximum delivery quantity under delivery 

capacity dc within delivery agreement da  along delivery arc 

,j q     
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, , ,

minh

dc da j qm   Big-M parameter for minimum heating value specification 

under delivery capacity dc  within delivery agreement da  along 

delivery arc ,j q    

, , ,

maxh

dc da j qm   Big-M parameter for maximum heating value specification 

under delivery capacity dc  within delivery agreement da  along 

delivery arc ,j q    
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CHAPTER 3 

 

Mixed-Integer Programming Models for Impaired Water 

Management in Active Shale Gas Development Areas 

 

3.1 Introduction 

Fig. 3.1 highlights the scope of this work and demonstrates selected degrees of 

freedom within water management operations in active shale gas development areas. At 

the center of the illustration lies a candidate well pad. A candidate well pad is a location 

where an upstream operator intends to drill, fracture and complete a set of shale gas 

wells in the foreseeable future. Since this work focuses on development activity in low-

price environments, we assume that the timing of individual fracturing jobs is flexible 

and has not been determined yet. Hence, the fracturing schedule is a significant degree 

of freedom. In order to fracture any of the selected wells on a particular candidate pad, 

the producer needs to acquire significant volumes of water.  
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Fig. 3.1: Illustration of water management operations in active development areas 

 Clearly, one possible option is to use freshwater for fracturing purposes. For this 

reason producers will typically scout out active development areas and locate as many 

freshwater sources within the vicinity of a candidate pad as possible. Water availability 

forecasts, maximum withdrawal rates and acquisition expenses are all pre-determined 

for these freshwater sources. Hence, the producer only needs to decide how much water 

to transport from each of these available sources to a given candidate pad at any given 

point in time. Companies may choose to either truck freshwater on-site (typically from 

rivers or lakes), or use temporary water lines to pipe water to the pad (typically from 

nearby creeks). Generally, it is preferable to pipe water since it is much more cost-

effective than trucking as shown by Yang et al. (2014). If freshwater is used to stimulate 

selected wells, then sufficient on-site freshwater storage capacity needs to be provided. 

This storage capacity is typically realized by either constructing a freshwater pit or 

installing temporary above-ground storage tanks (so-called ASTs for short). Generally, 
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the operator can decide which storage option to select and how much storage capacity 

to provide for development operations.  

As an alternative to freshwater, the producer may choose to use impaired water 

to fracture wells on a candidate pad. Impaired water can be obtained from so-called 

producing pads surrounding the active development area. A producing pad is a location 

where completed shale wells are actively producing natural gas, and impaired water. 

The impaired water is typically fed into limited capacity production tanks. The water 

stored in these tanks can either be sent to disposal or hauled to a candidate-pad for reuse. 

How much water is sent to disposal, and, how much is recycled at any point in time, is 

an additional degree of freedom. If a company decides to haul impaired water onto a 

candidate pad, then sufficient impaired water storage capacity needs to be provided. 

Impaired water may not be stored in freshwater pits or freshwater ASTs, but only in 

dedicated, temporarily installed impaired water ASTs. Assuming that both freshwater 

and impaired water are available at a candidate pad, the operator needs to determine how 

much of each to use for every individual fracturing job. This so-called blending ratio is 

one of the key degrees of freedom in impaired water management.  

Once the prospective wells on a candidate well pad have been fractured, 

completed and turned in-line, they too will produce flowback water, and eventually, 

produced water. As on producing pads, these wells will feed their impaired water into 

production tanks, which – due to their limited capacity – need to be emptied regularly. 

Any producer has three alternative options for processing these volumes: (a) the water 

can be reused for an upcoming fracturing job on a neighboring candidate pad (inter-pad 

recycling), (b) the water can be sent to attainable disposal sites, or (c) the recovered 
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water can be recycled on-site by feeding it back into an available impaired water storage 

tank (intra-pad recycling). Since all three options are generally feasible and not 

exclusive to each other, the operator needs to evaluate carefully how to schedule 

impaired water deliveries over time. Hence, given the operational setup described above, 

the goal is to identify the most cost-effective fracturing schedule and water management 

strategy simultaneously.  

3.2 General Problem Statement 

 The problem addressed in this chapter can be stated as follows. Within an active 

shale gas development area as shown in Fig. 3.1, an upstream operator wishes to fracture 

and complete a set of previously drilled shale gas wells. Such assets are also referred to 

as drilled but uncompleted wells or “DUCs” (EIA, 2016). Type curve production 

forecasts, individual well lateral lengths, the water demand for fracturing, estimated 

completions durations and costs are pre-determined for every well. In addition, a set of 

attainable water sources can be used to service all considered candidate pads. For every 

water source the water availability as well as water transfer costs – accounting for 

trucking and piping options if available – are known.  

 Given the information described above, the problem is to determine: (a) the 

optimal fracturing schedule, (b) the optimal water supply sourcing and distribution 

strategy, and (c) optimal on-site water storage solutions including their capacities. The 

fracturing schedule specifies when each targeted well is fractured. The water 

management strategy determines the optimal water blending ratio for each well, i.e., 

how much freshwater is used to fracture a well compared to how much impaired water 

is used for the fracturing job. Moreover, the water management strategy specifies how 
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much of the recovered impaired water is reused on-site, off-site or sent to disposal, and 

when. A crucial component of the selected water management strategy involves the 

selection of necessary freshwater and impaired water storage equipment. This selection 

includes the determination of preferred freshwater pit impoundment capacities as well 

as freshwater and impaired water AST capacities and rental durations. The objective is 

to determine the optimal fracturing schedule and water management strategy such that 

the net present value of the development project is maximized.  

3.3 Literature Review 

 A number of rigorous optimization models for shale gas water management have 

been proposed in recent years. In this section we highlight some of these works and we 

distinguish our contribution from previous publications.  

Yang et al. (2014) propose a two-stage stochastic mixed-integer linear 

programming model to determine the optimal fracturing schedule, water transport, 

treatment and reuse strategies. The authors explicitly consider uncertainty in terms of 

water availability. The main opportunity for optimization is recognized as the trade-off 

between trucking and piping opportunities for water transport. The work assumes that 

all wells on a pad are completed before a fracturing crew moves on to another pad; 

return-to-pad operations are not considered. Moreover, the authors assume that the ratio 

of freshwater to impaired water for every fracturing job is predetermined. Yang et al. 

(2015) extend their previously proposed optimization model by specifically focusing on 

impaired water treatment technologies. The technologies considered include reverse 

osmosis, forward osmosis, membrane distillation and mechanical vapor recompression. 

As before, however, the authors assume that the water blending ratio is fixed a priori.  
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 Gao & You (2014) develop a mixed-integer linear fractional programming 

model to design and operate water supply chain networks for shale gas production. The 

authors only consider on-site impaired water reuse, but no inter-pad recycling. In terms 

of water storage solutions, Gao & You (2014) do not distinguish between freshwater 

and impaired water, although it is strictly prohibited to store contaminated water in 

freshwater tanks or pits. Similar to previous works, the authors assume that the water 

blending ratio is set.  

Guerra et al. (2016) present an optimization framework for the integration of 

shale gas supply chain design and related water management challenges. For planning 

purposes the proposed model selects from a given set of well pad “designs” for every 

prospective well-site. The well pad designs are essentially predetermined development 

configurations that differ in terms of total number of wells, the lateral lengths of 

individual wells and the completions design. In this sense, the presented framework is 

not intended to propose a particular fracturing schedule, neither is it designed to consider 

return-to-pad operations explicitly as a means to reducing impaired water disposal 

volumes. Moreover, the authors assume that water demand for fracturing purposes can 

only be met by using freshwater or impaired water that has undergone processing at a 

dedicated treatment facility. The possibility of reusing impaired water directly, i.e., 

without treatment, is not considered. The proposed optimization model is capable of 

sizing wastewater treatment plants and tracking impaired water quality (e.g. in terms of 

total dissolved solids concentration) over time. The sizing of on-site water storage 

solutions for freshwater and impaired water, on the other hand, is not within the scope 

of the proposed framework. 
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Lira-Barragán et al. (2016a) develop a mathematical programming formulation 

for synthesizing water networks associated with shale gas fracturing operations while 

accounting for uncertainty in terms of completions water demand and the accuracy of 

flowback water forecasts. The work assumes that all flowback water has to be treated 

prior to being reused, or even disposed of. For simplicity, the authors also fix the 

fracturing schedule in advance, thereby eliminating opportunities to reduce disposal 

volumes by re-organizing the sequence of fracturing jobs. Lira-Barragán et al. (2016b) 

also propose a mixed-integer nonlinear programming model to minimize cost for the 

optimal management of flowback water in shale gas development operations. The 

nonlinearities in the model formulation are due to the consideration of economies of 

scale applying to the capital costs for water storage units. In their work the authors 

assume that the fracturing schedule has already been fixed and, hence, they do not 

consider return-to-pad operations.  

Bartholomew and Mauter (2016) present a multi-objective mixed-integer linear 

programming model for assessing tradeoffs between water management costs in shale 

gas development operations and the associated human health and environmental (HHE) 

impacts. Their goal is to identify water management strategies that minimize financial 

cost, HHE costs, and combined costs. The authors propose a two-step strategy to address 

the integrated problem. First, a fracturing schedule is determined such that the profit of 

the development project is maximized. Thereafter, based on the fixed fracturing 

schedule, a multi-objective model is used to determine water management strategies that 

minimize financial, HHE, and combined costs. The authors require all wells on a pad to 

be fractured and completed before a fracturing crew can move on to another well-site. 
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As a result, return-to-pad operations are not considered. It is also assumed that impaired 

water use for fracturing purposes is limited by TDS. In other words, impaired water can 

only make up a limited percentage of the fracturing fluid. Hence, the water blending 

ratio of freshwater to impaired water is explicitly restricted. Through a case study that 

is representative of shale gas development in the Marcellus Play, the authors observe 

significant variations in financial and HHE costs when considering different objective 

functions and regulatory scenarios.  

In this work, we place considerable emphasis on exploiting any flexibility in 

terms of the fracturing schedule to optimize water management operations. In essence, 

the question we raise is whether the fracturing schedule should largely be driven by 

water operations – as opposed to the other way around, which is common practice. In 

particular, we explore whether, and to which extent, return-to-pad operations can allow 

the shale gas industry to minimize impaired water disposal volumes. Unlike previous 

works, we also assume that the water blending ratio for fracturing jobs is completely 

unrestricted. In other words, up to 100% impaired water can be used for fracturing 

purposes. In addition, our work emphasizes the selection and sizing of on-site water 

storage solutions for freshwater and impaired water. In practice, producers frequently 

argue that impaired water storage bottlenecks prevent them from increasing recycle 

rates. In terms of ASTs in particular, we explicitly consider the discrete sizes of these 

water storage solutions, and we recognize that shale companies need to decide for how 

long they wish to lease them. 
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Finally, we present a real-world case study based on data from one of the largest 

upstream operators in the Appalachian Basin to demonstrate the proposed optimization 

framework.  

3.4 Model Assumptions 

The key modeling assumptions in this work are highlighted below: 

 The planning horizon is discretized into a set of time periods, which typically 

represent weekly increments. A natural gas price forecast is given for the entire 

planning horizon.  

 The fracturing schedule is assumed to be unconstrained. In particular, this implies 

that all gas gathering systems within the considered development area are not 

capacity-constrained downstream.  

 Type curve production forecasts are provided for all prospective wells.  

 The water blending ratio for fracturing jobs is unrestricted. Operators can use 

arbitrarily contaminated water for fracturing purposes, due to technological 

advances in the performance of friction reducing additives. This assumption is 

supported by an expert elicitation of trends in Marcellus oil and gas wastewater 

management that was recently conducted by Mauter & Palmer (2014). The results 

of this elicitation clearly suggest that impaired water reuse is not inhibited by high 

concentrations of total dissolved solids (TDS). More specifically, the survey also 

reveals that shale gas producers do not factor salinity into decisions about whether 

to save impaired water for reuse. Expert responses from operators indicate that water 

quality is not a barrier to reusing water in the Marcellus. It is reported that high-

salinity tolerant friction-reducers that remain hydrant at concentrations up to 
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150,000 ppm TDS were cited by respondents as a major innovation in recent years. 

In fact, many producers speculated that fracturing water salinity had little bearing on 

the productivity of their wells. As a result, companies also reported blend rates 

between 20 and 90% in this survey.  

 Consequently, we only distinguish between two water qualities in this work, namely 

freshwater and impaired water.  

3.5 Model Description 

In this section we describe the proposed mixed-integer linear programming 

model to address the impaired water management problem.  

Allocation Constraints 

As expressed in the general problem statement, we assume that an “inventory” 

of targeted wells w W  on a set of candidate pads p CWP  is to be completed within 

an active development area. Hence, we enforce Eq. (3.1) to ensure that by the end of the 

planning horizon t T  all wells are completed by one of the available fracturing crews 

c C  .  

 , , , 1 ,Frac

t c

w p c ty pw
 

      (3.1) 

In low-price environments, the number of active fracturing crews is often limited 

to lower operational expenses and to accommodate the reduced development activity. 

We add Eq. (3.2) to our model, which states that at any point in time every fracturing 

crew may only be assigned to one particular candidate well pad p CWP . In this case, 

the assignment corresponds to the completion of the well, which is assumed to last a 

total of , ,

Frac

w p c  time periods.   
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, ,

, ,

1

, 1 ,
Frac
w p c

Frac

w p c t

t

tt

t

tp w

y c t
   

        (3.2) 

General Water Mass Balances 

The fracturing of every well requires a certain volume of water that is determined 

by two main factors: (a) the well’s lateral length 
,

Lateral

w pl and (b) the  preferred completions 

design, which translates into a specific water demand 
,

Well

w pwd  per unit length of treated 

interval. Eq. (3.3) captures the water demand at a particular pad once a fracturing crew 

has been assigned to complete a well. We note that the total water demand is divided by 

the number of weeks it requires to complete the well 
, ,

Frac

w p c  . If, for instance, a well with 

an extended lateral length requires several weeks to be completed, then the total water 

demand is evenly distributed across the duration of the fracturing job.  

 

, ,

, , , , , ,

,1 ,

1
,

Frac
w p c

Pad Lateral Well Frac

p t w p w p w p

t

c tt t

c ttFrac
w w p c

l y p tWD wd
   

         (3.3) 

The water demand 
,

Pad

p tWD  can be met by using freshwater 
,

Fresh

p tF  and/or impaired 

water 
,

Imp

p tF . The exact ratio of freshwater to impaired water determines the water 

blending ratio of a particular job.  

 
, , , ,Pad Imp Fresh

p t p t p tW FF tD p      (3.4) 

In this work we distinguish between two distinct water qualities: freshwater and 

impaired water. Hence, we enforce mass balances for both. The following paragraphs 

describe the key constraints and bounds that we consider.  
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Impaired Water Mass Balances 

In order to determine how much impaired water is stored at a given well pad at 

every point in time, we track four metrics, as seen in Eq. (3.5): the impaired water 

volume in the previous time period 
, 1

Imp

p tL 
, how much impaired water is delivered from 

surrounding pads 
, ,

Reuse

pp p tF , how much impaired water is recycled on-site 
,

Recycle

p tF , and how 

much impaired water is consumed for fracturing 
,

Imp

p tF .  

 
, , 1 , , , , ,Imp Imp Recycle Imp

p t p t pp p t p t p

Reuse

p

tL L F F pF t



        (3.5) 

We also assume that in order to use impaired water for any fracturing job, it 

needs to be available on-site in the previous time period. Vice-versa, the available 

impaired water storage capacity 
, 1

Imp

p tV 
 limits how much impaired water can be stored 

on-site. Both constraints are captured in Eq. (3.6).  

 
, , 1 , 1 ,Imp Imp Imp

p t p t p tVF L p t        (3.6) 

Fresh Water Mass Balances 

The mass balances that are imposed for freshwater are similar to the previous 

constraints. In terms of available freshwater volume on-site, however, Eq. (3.7) only 

involves three terms: (a) the freshwater volume in the previous time period 
, 1

Fresh

p tL 
, (b) 

freshwater deliveries to the candidate pad from surrounding water sources 
, ,

Source

f p tF , and 

(c) freshwater used for fracturing 
,

Fresh

p tF .  

 
, , 1 , , , ,Source Fresh

p t p t f p

Fresh Fresh

f

t p tL F pL F t



       (3.7) 

In Eq. (3.8) we consider the fact that the freshwater availability may be limited at times.  

 
, , , ,Source

f p t f t

p

Source f tF 


      (3.8) 
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As before, we assume that freshwater may only be used to perform a fracturing 

job if it is stored on-site in the previous time period. Also, the total freshwater volume 

on-site is constrained by the available freshwater storage capacity 
, 1

Fresh

p tV 
, which consists 

of constructed freshwater pits and installed ASTs.  

 
, , 1 , 1 ,FrF esh Freshresh

p t p t p tF V p tL         (3.9) 

Production Water Mass Balances 

Wells that have been turned in-line, typically feed into so-called production 

tanks, which recover flowback and produced water – depending on how long a well has 

been actively producing. We classify both water categories as impaired water in this 

work. The impaired water volume in the production tanks depends on a number of 

factors captured in Eq. (3.10): (a) the impaired water volume stored in the production 

tank in the previous time period 
, 1

Prod

p tL 
, (b) the produced water recovered from active 

wells 
,

Pad

p tWP , (c) impaired water sent to disposal 
, ,

Disposal

p ds tF , (d) impaired water sent to a 

neighboring well pad for reuse 
, ,

Reuse

p pp tF , and (d) impaired water recycled on-site 
,

Recycle

p tF .  

 
, , 1 , , , , , , ,Prod Prod Pad Disposal Reuse Recycle

p t p t p t p d t

ds pp

p pp t p tL F F FL WP p t

 

          (3.10) 

The amount of produced water 
,

Pad

p tWP that is recovered from active wells has two 

contributions: the produced water forecast of wells previously turned in-line (existing 

wells), and forecasted produced water volumes from wells that need to be completed 

within the planning horizon.  

 
, ,

, , ,

1

, , , ,

Frac
w p c

Pad Pad Well Frac

p t p t w t tt w p c tt

t

w c tt

WP wp tw y pp











        (3.11) 
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As shown in Eq. (3.12) the total volume of impaired water stored in these 

production tanks is limited due to their fairly modest capacity ,

Prod

p t .  

 , , ,Prod Prod

p t p t p tL       (3.12) 

Impaired Water Storage 

In order to provide for sufficient impaired water storage capacity at a well pad, 

dedicated ASTs need to be installed on-site. These ASTs are only available in certain 

sizes and are typically rented from third-party providers for as long as they are required. 

We model the selection of impaired water storage capacity using logic propositions and 

disjunctions (Raman and Grossmann, 1991, Grossmann and Trespalacios, 2013). For 

this purpose we introduce two Boolean variables: first, a Boolean variable , , ,

ImpAST

p tc t dY  which 

is true if an impaired water AST with storage capacity 
0tc  is rented on a candidate 

well pad p  for a duration of d  time periods in the current time period t

. Next, we introduce a matching Boolean variable , ,

ImpAST

p tc tZ  which is only true if an 

impaired water AST with storage capacity 
0tc  is available on candidate well pad 

p  in the current time period t . Based on these declarations, we express the 

logic constraint (3.13) which governs the relation between these two Boolean variables. 

This constraint states that an impaired water AST of a certain size is only available on-

site for the duration it was rented for.  

 
, , , , , 0, ,

Rental
d

t
ImpAST ImpAST

p tc t p tc tt
d

d
tt t

Z p tY c t
 

     (3.13) 
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We note that the set of available AST sizes 
0
 explicitly includes the zero-

element, which allows the optimizer not to install an AST. Also, we consider the fact 

that AST rental terms Rental

d  are oftentimes discretized in weekly increments.  

Next, we introduce disjunction (3.14) which states that if the Boolean variable 

, ,

ImpAST

p tc tZ  is true, i.e., an impaired water AST with storage capacity 
0tc  is available 

on a candidate pad p  in time period t , then the pre-existing, on-site 

impaired water storage capacity 
0

pv  is increased by the corresponding increment 
tc , 

setting the total storage capacity to ,

Imp

p tV .  

 
0

, ,

0

,

,

ImpAST

p tc t

Imp
tc

p t p tc

t
Z

p
vV 

 
 

  

  


  (3.14) 

Finally, we add Eq. (3.15) to express that disjunction (3.14) is exclusive.  

 
0 , , ,ImpAST

tc p tc t p tZ      (3.15) 

In this case we choose to transform the logic proposition (3.13) and the 

disjunction (3.14) intro a set of mixed-integer constraints using the Compact Hull 

Reformulation (Castro and Grossmann, 2012; Cafaro et al., 2016). For this purpose the 

Boolean variables , , ,

ImpAST

p tc t dY  and , ,

ImpAST

p tc tZ  are converted into the corresponding binary 

variables , , ,

ImpAST

p tc t dy  and , ,

ImpAST

p tc tz . Based on this conversion, the logic proposition (3.13) can 

be expressed as the mixed-integer constraint Eq. (3.16).   

 , , , , , 0, ,
Rental
d

t

d tt t

ImpAST ImpAST

p tc t p tc tt dz p tcy t
  

        (3.16) 

Similarly, the disjunction (3.14) itself is transformed into Eq. (3.17) to govern 

impaired water AST capacity extension at every candidate pad in every time period.  
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 ,0

, , , ,ImpairedAST ImpAST

p t p tc p tc t

Imp

tc

V v z p t


        (3.17) 

Lastly, Eq. (3.15) is expressed through the multiple choice constraint (3.18).  

 
0

, , 1 ,ImpAST

p tc t

tc

pz t


      (3.18) 

We point out that the binary variable , , ,

ImpAST

p tc tt dy  can be treated as a continuous 

variable due to constraints (3.16) and (3.18), which enforce integrality for 0-1 values of 

the binary variable , ,

ImpAST

p tc tz .  

Freshwater Storage 

We proceed in a similar fashion to model the selection of freshwater storage 

capacity. However, in addition to installing freshwater ASTs, producers have the ability 

to construct freshwater pits. Hence, the total freshwater storage capacity ,

Fresh

p tV  on every 

candidate pad consists of the available AST storage capacity ,

FreshAST

p tV  and the available 

pit storage capacity ,

FreshPit

p tV , as shown in Eq. (3.19).   

 , , , ,FreshAST FreshPit

p t p

h

p

F

t

res

tV VV p t      (3.19) 

As before, we model the selection of freshwater AST capacity using two Boolean 

variables: one to capture the installment-decision , , ,

FreshAST

p tc t dY , and one to capture the 

availability of the AST , ,

FreshAST

p tc tZ . Eq. (3.20) links these Boolean variables for every 

candidate pad.  

 
, , , , , 0, ,

Rental
d

t
FreshAST FreshAST

p tc t p tc tt
d t t

d
t

Z p tY c t
 

      (3.20) 

The corresponding disjunction (3.21) governs the temporary extension of AST 

capacity for freshwater.  
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0

, ,

,0

,

,
FreshAST

FreshAST

p tc t

FreshAST
tc

p t p tc

p t
v

Z

V 

  


 
 

  

  (3.21) 

In this case, too, we add Eq. (3.22) to express that disjunction (3.22) is exclusive.  

 
0 , , ,FreshAST

tc p tc t pZ t      (3.22) 

The conversion of Eqs. (3.20)-(3.22) is analogous to the previous transformation 

and leads to the mixed-integer constraints (3.23)-(3.25).  

 , , , , , 0 ,,
Rental
d

t
FreshAST FreshAST

p tc t p tc tt d

ttd t

z y p t tc
  

        (3.23) 

 ,0

, , , ,FreshAST FreshAST

p t p tc

Fr

p tc t

eshAST

tc

V v z p t


        (3.24) 

 
0

, , 1 ,FreshAST

p t

t

c t

c

z p t


      (3.25) 

Once again, the binary variables , , ,

FreshAST

p tc tt dy  can be treated as continuous variables 

to reduce the complexity of the optimization problem. In addition to installing temporary 

AST storage capacity, operators can construct freshwater pits on candidate well pads. 

These pits can store significantly more water than ASTs, and they are oftentimes less 

costly on a per-barrel basis than renting ASTs over extended periods of time. We 

introduce Eq. (3.26) in our model to track the available freshwater pit storage capacity 

at very point in time. The parameter 
,0FreshPit

pv  specifies pre-existing storage capacity, 

whereas the continuous variable ,

FreshPitInstall

p tV  allows the optimizer to construct or expand 

a freshwater pit.  

 ,0

,

1

, ,FreshPit FreshPitInstall
t

FreshPit

t

p t p p tt

t

V v pV t


      (3.26) 
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We introduce the binary variable ,

FreshPitInstall

p ty  which becomes active if a 

freshwater pit is installed on a candidate pad in a certain period of time. Eq. (3.27) 

ensures that the installed pit capacity does not exceed a pre-determined upper bound 

based on spatial well pad constraints.  

 
,

, , ,FreshPitInstall FreshPitInstall UP FreshPitInstall

p t p p tV V y p t       (3.27) 

Finally, the multiple choice constraint (3.28) guarantees that a pit construction or 

extension does not occur more than once over the planning horizon.  

 
, 1FreshPitInstall

t

p t

T

y p


     (3.28) 

Objective Function 

The objective for shale gas development is typically to maximize the net present 

value of a field development project. The proposed objective function (3.29) considers 

revenues from natural gas sales at every well pad 
,p tREV , development expenses for 

fracturing wells 
,p tDVE , freshwater acquisition expenses 

,p tFAE , impaired water 

hauling expenses 
,p tIHE , impaired water AST rental expenses 

,p tIARE , freshwater AST 

rental expenses 
,p tFARE , freshwater pit installation expenses 

,p tFPIE , impaired water 

disposal expenses 
,p tIDE , and friction reducer expenses 

,p tFRE  – all discounted back 

to their present value.  

 

  



/52

, , , , ,

, , , ,

1
t

p t p t p t p t p t

p t p t p t p t

t p

DVE FAE IARE

FARE FPIE IDE F

r REV IH

RE

E


 

  

   

     
 (3.29) 



 112 

The revenues from gas sales at every well pad in every time period are linked to 

the timing of the fracturing operation , , ,

Frac

w p c ty , every well’s individual type curve forecast 

, ,w p t  and the gas price forecast 
t . 

 
1

, , , , , , ,Frac

p t w p c tt w p t

t

tt w c

tt tREV y p t 

  

       (3.30) 

Development expenses for fracturing wells consider the prospective wells’ 

lateral lengths ,

Lateral

w pl  and well-specific stimulation and completions costs Dev

w .  

 
, , , , , ,Frac Lateral Dev

c w

p t w p c t w p wl p tDVE y 
 

        (3.31) 

Freshwater acquisition expenses depend on a number of factors: the amount of 

water that is hauled from a freshwater source f  to a well pad p , the respective source 

travel time ,

Source

f p  , the  source-dependent freshwater acquisition cost coefficient ,

Source

f p  

and the standard water hauling truck capacity stc . 

 
, , , , ,

1 ,Source Source

p t f p t f p

Sourc

f

f

e

pFAE p t
stc

F  


        (3.32) 

Impaired water hauling expenses are determined similar to freshwater 

acquisition expenses. The costs depend on the amount of water hauled from one pad to 

another , ,

Reuse

p pp tF , the inter-pad travel time ,

Travel

p pp , the individual water transfer cost 

coefficient ,

Reuse

p pp , and the standard water hauling truck capacity stc .  

 
, , , , ,

1 ,Travel Reuse

p t p pp t p pp

Reuse

p pp

pp

I p t
stc

HE F  


        (3.33) 
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Expenses for renting impaired water and freshwater ASTs are directly linked to 

the binary variables , , ,

ImpAST

p tc t dy  and , , ,

FreshAST

p tc t dy , as well as the respective cost coefficients 

,

ImpAST

tc d  and ,

FreshAST

tc d , which consider water storage capacity tc  and rental duration d .   

 
, , , , , ,ImpAST

p t tc d p tc t d

ImpAST

t dc

yIAR pE t
 

        (3.34) 

 
, , , , , ,FreshAST

p t tc d p tc t d

FreshAS

d

T

tc

pA tE yF R 
 

        (3.35) 

Freshwater pit installation expenses, on the other hand, depend on the increase 

in water storage capacity ,

FreshPitInstall

p tV  and the expansion cost coefficient 
PitInstall .  

 , , ,FreshPitInstall PitInstall

p t p tFPIE V p t      (3.36) 

Expenses for impaired water disposal are linked to the amount of impaired water 

delivered to a disposal site , ,

Disposal

p d tF , the distance between a well pad p  and a disposal 

site ds , and the disposal cost coefficient ,

Disposal

p ds . 

 
, , , , , ,Disposal Disposal

p t p ds t p ds p ds

ds

lID tF pE 


       (3.37) 

Friction reducers need to be added during well completions to ensure that the 

fracturing water is “slick” and to reduce pressure losses. Pressure increases during 

fracturing lead to reduced frac pump rates, which increase the risk of premature screen-

outs (Schilling, 2016). Hence, friction reducer expenses are determined by how much 

impaired water ,

Imp

p tF  is used for fracturing and the cost of purchasing the additive 
FR

p . 

Since, technically, these expenses may also depend on how contaminated the impaired 

water is (e.g. TDS concentration), we intentionally overestimate them in this work.  

 , , ,Imp FR

p t p t p pFR F tE       (3.38) 
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3.6 Case Study 

The proposed model is applied to a real-world case study to demonstrate the 

value of rigorous, mathematical optimization for impaired water management in shale 

gas development. The data for this case study is provided by one of the largest upstream 

operators in the Appalachian Basin. For confidentiality reasons we cannot disclose the 

company’s identity, nor the focus area of the case study. However, we provide a detailed 

discussion of the impaired water management strategy proposed for this particular 

problem to illustrate and convey the potential impact of rigorous optimization in this 

domain.  

3.6.1 Setup of the Impaired Water Management Problem 

For the purpose of the case study we wish to determine the optimal fracturing 

schedule and water coordination strategy for a given, active development area. This 

development area contains a total of nine well pads: four “candidate” pads (henceforth 

referred to as PAD_A, PAD_B, PAD_C and PAD_D) and five “producing” pads 

(labeled as PAD_E, PAD_F, PAD_G, PAD_H and PAD_I). The producing pads are 

characterized by the fact that the wells on these sites have already been turned in-line 

previously, whereas a total of 29 wells still need to be drilled and completed on the 

candidate pads within the next year. Lateral lengths, completions times, completions 

designs, type curve forecasts, and expected development costs are given for all 29 

prospective wells. For the existing wells, on the other hand, an impaired water 

production forecast can be provided. This forecast, as shown in Fig. 3.2, indicates how 

much impaired water each and every existent pad in the development area is expected 

to produce over the given one year planning horizon. We note that according to this 
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forecast more than 2.75 million barrels of impaired water will be produced over a twelve 

month period – and they need to be either disposed of and/or recycled. 

 

Fig. 3.2: Impaired water production forecast over the planning horizon 

We assume that no more than two fracturing crews are available to complete the jobs. 

However, due to a depressed price-environment at the time, we assume that there is 

complete flexibility in terms of the fracturing schedule. Finally, a natural gas price 

forecast is given for the one year planning horizon, which is split into 52 weekly 

increments. In addition, we make the following three assumptions: (a) the gathering 

system in the given development area is not capacity-constrained downstream, (b) due 

to regulatory changes no new impaired water pits may be installed in this area, and (c) 

for simplicity, we neglect fracture communication between individual wells. The 

objective is to use the proposed optimization model to determine the most economic 

fracturing schedule and corresponding water management strategy for this particular 

development area.  
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3.6.2 Proposed Impaired Water Management Strategy 

The presented optimization model given by Eqs. (3.1)-(3.12), (3.16)-(3.19), 

(3.23)-(3.38) yields a mixed-integer linear programming problem with 5,304 binary 

decision variables, 31,253 continuous variables and 10,278 constraints. Using IBM 

CPLEX 12.6.0.0 in AIMMS 4.30.5 on an Intel i7, 2.93 Ghz machine with 12 GB RAM 

the problem can be solved to a 6% optimality gap in less than 1.5 hours. The reported 

NPV is 64.5 MM$. In the following paragraphs we highlight selected aspects of the 

proposed solution, and we analyze why and how it makes economic and practical sense.  

First and foremost, the optimization yields the optimal fracturing schedule as 

seen in Fig. 3.3. This Gantt chart shows when exactly to complete each and every 

prospective well over the given one year planning horizon. The proposed schedule is 

color-coded to reflect which wells are on which pads. One of the most striking 

observations that can be made right away is that the optimization clearly suggests to 

“split pads” as can be seen for PAD_B and PAD_D. In both cases the solution suggests 

to fracture a few wells at first and then return to the pad eventually to stimulate the 

remaining wells, rather than completing all jobs at once. Also, the schedule is clearly 

characterized by “widespread” development activity. Given the two available fracturing 

crews, the optimizer could have proposed to complete all 29 jobs as quickly as possible, 

to turn wells in-line and generate revenues early on. Considering the time value of 

money, such a development strategy may intuitively appear economically promising. 

However, as our analysis will demonstrate, there is reason to believe that the proposed 

fracturing schedule is highly cost-effective and that it may improve the economics of 

the overall development project significantly.  
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Fig. 3.3: Proposed fracturing schedule for the given development area  

We begin our analysis by focusing on the “early” development activity on PAD_B. As 

Fig. 3.3 shows, a total of five wells are scheduled to be fractured on this pad early on in 

the planning horizon. The obvious question here is: why does the optimization model 

prefer to complete these five wells at this particular point in time? To answer this 

question we turn to Fig. 3.4, which shows the impaired water production forecast for the 

given development area (in grey) on the left axis, and proposed water deliveries from 

neighboring well pads to PAD_B (in red) on the right axis. If we focus on the highlighted 

time window – between June 2016 and July 2016 – we recognize that nearly all of the 

available impaired water from surrounding well pads is delivered to said PAD_B during 

this particular period in time: up to 40,000 barrels of impaired water per week.  
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Fig. 3.4: Impaired water production forecast and impaired water deliveries to 

PAD_B over time 

Consequently, the optimization proposes to install an impaired water AST on PAD_B 

that can hold up to 40,000 barrels of water for a total of five weeks to store and process 

the delivered water. Fig. 3.5 shows the complete AST rental schedule for all four 

candidate pads. The AST on PAD_B is filled with impaired water from neighboring 

pads, and then the water is used to fracture the five wells on PAD_B as indicated by the 

fracturing schedule in Fig. 3.3.  

Altogether, 154,640 barrels of impaired water are delivered to PAD_B during 

this time window, at an estimated cost of $103,148. However, the data reveals that in 

order to fracture all five wells based on their individual completions designs, 

approximately 820,361 barrels of water are required. Therefore, the impaired water 

deliveries are not sufficient to complete all five wells on PAD_B. And indeed, the 

solution reveals that 665,721 barrels of freshwater need to be hauled to the pad from 

surrounding freshwater sources, at an approximate expense of $1,224,927.  
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Fig. 3.5: Proposed impaired water AST rental schedule for candidate pads over time  

At this point we rely on the so-called blending ratio to support the analysis and 

interpretation of the results. The blending ratio is defined as the amount of impaired 

water that is used to perform a fracturing job, compared to the total amount of water 

required (freshwater and impaired water combined).  

Fig. 3.6 shows the blending ratio over time for all four candidate pads. Upon 

closer inspection, the chart reveals that during this time window of “early” activity on 

PAD_B, the blending ratio reaches, at times, up to 30%. This implies that only a 

relatively small portion of the total water demand can be met by relying on impaired 

water. At the same time, the impaired water forecast in Fig. 3.4 shows that during this 

particular period of time, the amount of impaired water that is available is rather limited. 

In other words, we claim that the optimization proposes to fracture the five wells on 

PAD_B for two reasons: a) completing and turning in-line these five wells results in a 

considerable stream of revenues from gas sales, and b) by fracturing these particular 

wells, nearly all available impaired water is reused, rather than sent to a disposal site. 
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This observation is in line with the following analysis and it supports the working theory 

that the proposed fracturing schedule is primarily driven by trying to minimize impaired 

water disposal as much as possible.  

 

Fig. 3.6: Water blending ratio (defined as impaired water used for fracturing 

compared to total amount of water required) over time for all candidate pads 

Next, we analyze the “early” development activity on PAD_D in more detail. As the 

fracturing schedule in Fig. 3.3 shows, the optimization suggests to fracture merely two 

wells on this pad at this time. As before, we find that during this time window a 

significant portion of the impaired water available at neighboring well pads should be 

delivered to PAD_D. Fig. 3.7 shows that up to 50,000 barrels of impaired water are 

hauled onto this pad per week. Interestingly, it turns out that on PAD_D the operator 

can rely on a legacy impaired water pit for water storage purposes. This pit can store 

over 100,000 barrels of water, which can then be used for fracturing.  
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Fig. 3.7: Impaired water production forecast and impaired water deliveries to 

PAD_D over time 

In fact, Fig. 3.8 shows that this impaired pit steadily receives water deliveries from 

surrounding well pads until its maximum storage capacity is reached. Once the water 

level in this pit has reached (near-) maximum storage capacity, the optimization 

immediately schedules a fracturing job. As a result, the blending ratio for these two well 

completions is very high, ranging between 55-80% (see Fig. 3.6 for details). This implies 

that more than half of the total water demand for these fracturing jobs is met by recycling 

available impaired water. Specifically, the water demand for fracturing is met by using 

a total of 343,266 barrels of impaired water (which therefore do not need to be sent to 

disposal) as opposed to 263,191 barrels of freshwater. Based on the results, impaired 

water deliveries to PAD_D are estimated to cost roughly $162,594, whereas freshwater 

acquisition expenses amount to approximately $426,369. The significance of the 

proposed solution for PAD_D is that, once again, it is clear that the optimization 
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intentionally schedules fracturing jobs such that they use up as much of the available 

impaired water as possible.  

 

Fig. 3.8: Impaired water storage capacity utilization over time for PAD_D 

At this point we also analyze the “late” development activity on PAD_D to 

demonstrate why it can make economic sense to “split” fracturing jobs on the same pad 

(rather than completing all in one trip). As the fracturing schedule in Fig. 3.3 indicates, 

the optimization proposes to complete the remaining five prospective wells on PAD_D 

towards the end of the planning horizon. Once again Fig. 3.7 shows that during this time 

window significant volumes of impaired water are delivered to PAD_D. As can be seen 

in Fig. 3.8, the optimization fully utilizes the available storage capacity in the existing 

impaired water pit. At one point in time, it even proposes to temporarily install a 22,000 

barrels AST at the well pad for a single week to store even more impaired water on-site. 

Not surprisingly, the available impaired water is used to meet the total water demand for 

fracturing. Altogether, a remarkable 931,372 barrels of impaired water are recycled for 

the scheduled completion of the five wells (hauling costs amount to $362,055). In 
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comparison, 333,708 barrels of freshwater need to be acquired (at an estimated 

$540,607). In fact, in order to perform the last scheduled fracturing job within the 

planning horizon (WELL07_PAD_D) the optimization uses impaired water exclusively; 

no freshwater is necessary to meet the total completions water demand. As a result, the 

blending ratio for this job is 100%.  

3.6.3 Benefits of the Proposed Impaired Water Management Strategy 

Finally, we summarize some of the qualitative and quantitative benefits of the 

proposed water management strategy. Qualitatively, we find that the optimization is 

carefully coordinating when to perform individual fracturing jobs, it evaluates where to 

source water from, which water quality to use (impaired water vs. freshwater) and how 

to take advantage of the available water storage capacity. Moreover, though, we can 

actually quantify some of the potential gains. As outlined earlier, the impaired water 

forecast, as shown in Fig. 3.2, suggests that within the respective development area over 

2.75 million barrels of impaired water need to be dealt with, i.e. either disposed of or 

recycled. The optimization results show that if the producer were able to implement the 

proposed fracturing schedule and coordinate water deliveries as suggested, then out of 

the 2.75 million barrels of water merely 7,500 barrels would have to be disposed of. 

Estimated expenses for impaired water disposal amount to less than $60,000 for the 

entire year.  

Fig. 3.9 shows the total, forecasted impaired water volume with respect to the 

anticipated disposal volumes. Practically speaking, the proposed water management 

strategy promises to translate to an effective water disposal rate of less than 0.3%, which 

is remarkable and exceptionally low. In practice, despite the industry’s efforts to 
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maximize impaired water recycle volumes, disposal rates currently range between 10-

30%. If we assume that only 10% of the expected impaired water volumes in this case 

study could not have been recycled, then water disposal costs would have amounted to 

roughly $2,200,000. In some sense, the results appear to suggest that impaired water 

should be a considered a (valuable) resource, rather than the “burden” that it oftentimes 

presents to upstream operators. Clearly, the results demonstrate that the optimization is 

driven by trying to minimize water disposal as much as possible, while simultaneously 

maximizing the amount of impaired water that is reused.   

 

Fig. 3.9: Impaired water production forecast and impaired water disposal volumes 

over time 

Obviously, the increased impaired water recycle rate comes at an expense. Most 

importantly, costs for providing impaired water storage capacity and costs for hauling 

impaired water from one well-site to another can be expected to increase. It should also 

be noted that in order to handle increasing blending ratios for fracturing jobs based on 

up to 100% of impaired water, operators need to use special, advanced friction reducers 
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and other additives to ensure that the well performance is not negatively affected. For 

the purpose of this case study, these expenses were intentionally over-estimated. Based 

on the proposed water management strategy the producer would spend up to $1,283,200 

on high-salinity tolerant additives. Nevertheless, we find that there is a clear, cost-driven 

incentive for drastically increasing impaired water recycle rates. Specifically, in this 

case study we find that rearranging the fracturing schedule and coordinating water 

deliveries based on rigorous optimization reduces potential freshwater consumption by 

nearly 2.75 million barrels. At the same time impaired water disposal volumes are 

lessened by the same amount. Therefore, we believe that the shale gas industry has a lot 

to gain from relying on rigorous optimization models for improving impaired water 

management strategies. 

3.7 Conclusions 

In this chapter, we presented a mixed-integer linear programming model for 

impaired water management in active shale gas development areas. This model 

determines the optimal fracturing schedule along with a water management strategy that 

maximizes the net present value. The water management strategy includes water 

sourcing and distribution decisions, as well as the selection of water storage solutions 

including above-ground storage tanks. In this work we explicitly considered return-to-

pad operations and we allowed for unrestricted water blending ratios, i.e., fracturing jobs 

can be completed with impaired water exclusively.  

The proposed optimization model was applied to a real-world case study based 

on data provided from one of the largest upstream operators in the Appalachian Basin. 

The results of the case study clearly suggest that the optimization is driven to minimize 
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impaired water disposal as much as possible. We found that splitting the development 

of a well pad into several trips can make sense in order to increase impaired water 

recycling. In other words, fracturing jobs on the same pad should not necessarily be 

scheduled in quick succession, but such that their timing aligns with the availability of 

impaired water volumes. Overall, we concluded that the fracturing schedule should be 

driven more by the optimal water management strategy and not vice versa. The solution 

also suggested that impaired water storage solutions – and sufficient storage capacity in 

particular – are essential to effective water management strategies. Ultimately, we found 

that water management strategies based on rigorous, mathematical optimization can 

allow the shale industry to reduce impaired disposal rates significantly and thereby 

support companies in striving towards more cost-effective shale gas development.  

3.8 Nomenclature 

Sets    

c    Fracturing crews 

d    AST rental durations 

ds   Disposal sites 

f    Freshwater sources 

fr   Friction reducers  

i    Impaired water sources 

p    Well pads  

p   Existing well pads 

p   Candidate well pads 
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r    Treatment facilities 

s    Water sources 

t    Time periods 

tc   Available AST sizes 

w   Candidate wells 

Binary Decision Variables 

, , ,

Frac

w p c ty   Active if well w  on pad p  stimulated using fracturing crew c  in time 

period t   

, , ,

ImpAST

p tc t dy   Active if on well pad p  impaired tank capacity tc  installed in time 

period t  for the duration of d  time periods 

, ,

ImpAST

p tc tz   Active if on well pad p  impaired tank capacity tc  available on well 

pad in time period t   

, , ,

FreshAST

p tc t dy   Active if on well pad p  fresh tank capacity tc  installed in time period t  

for the duration of d  time periods 

, ,

FreshAST

p tc tz   Active if on well pad p  fresh tank capacity tc  available on well pad in 

time period t  

,

FreshPitInstall

p ty   Active if a freshwater pit is installed on well pad p  in time period t    

, ,fr p

R

t

Fy    Active if friction reducer type fr  selected on pad p  in time period t    

Continuous Decision Variables 

, ,p pp t

ReuseF   Flow rate impaired water from well pad pp  to well pad p  in time 

period t  (inter-pad-recycling) 
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,

Recycle

p tF   Flow rate impaired water recycled from well pad p  in time period t   

(intra-pad-recycling) 

,

Imp

p tF   Flow rate impaired water used for fracturing on well pad p  in time 

period t   

,

F

p t

reshF    Flow rate freshwater used for fracturing on well pad p  in time period t   

, ,

So

f t

e

p

urcF   Flow rate freshwater from freshwater source f  to well pad p  in time 

period t   

, ,

Disp

p

l

d t

osaF   Flow rate disposal water from well pad p  to disposal site d  in time 

period t   

, ,

Treat t

p r t

menF   Flow rate to treatment from well pad p  to treatment facility r  in time 

period t   

,

Imp

p tL    Impaired water impound level on well pad p  in time period t   

,

F

p t

reshL    Freshwater impound level on well pad p  in time period t   

,

d

p t

ProL    Production water tank level on well pad p  in time period t   

,

Imp

p tV    Impaired water impound capacity on well pad p  in time period t   

,

F

p t

reshV    Freshwater impound level on well pad p  in time period t  

,

Fre

p t

shASTV   Total freshwater AST capacity on well pad p  in time period t   

,

Fre

p t

shPitV   Total freshwater pit capacity on well pad p  in time period t   

,

FreshPitIn l

p t

stalV   Freshwater pit expansion on well pad p  in time period t   

,

Pad

p tWD   Water demand on well pad p  in time period t    
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,

Pad

p tWP    Water produced on well pad p  in time period t    

,p tREV   Revenues generated from well pad p  in time period t   

,p tFAE   Freshwater acquisition expenses for well pad p  in time period t   

,p tIAE    Impaired water acquisition expenses for well pad p  in time period t   

,p tIDE    Impaired water disposal expenses for well pad p  in time period t   

,p tITE    Impaired water treatment expenses for well pad p  in time period t   

,p tICE   Impaired water trade expenses for well pad p  in time period t   

,p tIIE   Impaired water impoundment installation expenses for pad p  in time 

period t   

,p tFIE   Freshwater impoundment installation expenses for pad p  in time 

period t   

Parameters 

, ,

Trans

c p pp    Time required to move crew c  from well pad p  to well pad pp   

, ,

Frac

w p c    Time to fracture well w  on well pad p  using fracturing crew c  

,

Well

w pwd    Specific water demand for fracturing well w  at every well pad p   

,

Lateral

w pl    Lateral length of well w  on well pad p   

, ,

Well

w p twp   Produced water forecast for well w  on well pad p  in time period t   

,

ad

p t

Pwp    Produced water forecast for well pad p  in time period t   

tc    Tank capacity for commercially available impaired tank capacity tc   

,f pl    Distance from freshwater source f  to well pad p   

,i pl    Distance from impaired water source i  to well pad p   

,p dl    Distance from well pad p  to disposal site d   
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,p rl    Distance from well pad p  to treatment facility r  

,p kl    Distance from well pad p  to competitor k  

,

Travel

p pp    Travel time from well pad p  to well pad pp   

,

So

f p

urce    Travel time from freshwater source f  to well pad p   

Rental

d    Equipment rental duration d   

,

Source

f p    Freshwater acquisition cost coefficient from source f  to pad p   

,i p    Impaired water acquisition cost coefficient from source i  to pad p   

Dev

w    Well development expenses for well w   

,

ImpAST

tc d   Impaired water AST rental cost coefficient for capacity tc  for d  time 

periods 

,

FreshAST

tc d   Freshwater AST rental cost coefficient for capacity tc  for d  time 

periods 

PitInstall   Freshwater pit installation expense cost coefficient  

,

Disposal

p d   Disposal cost coefficient from well pad p  to disposal site d   

FR

p    Friction reducer expense on well pad p   

,

Reuse

p pp    Impaired water transportation cost coefficient from pad p  to pad pp   

, ,w p t    Type curve forecast for well w  on well pad p  in time period t   

t    Natural gas price forecast in time period t   

,0ImpairedAST

pv   Initial impaired water AST impoundment capacity on well pad p   

,0ImpairedPit

pv   Initial impaired water pit impoundment capacity on well pad p   

,0FreshAST

pv   Initial freshwater AST impoundment capacity on well pad p   

,0FreshPit

pv   Initial freshwater pit impoundment capacity on well pad p   

d

p

Prov    Production water tank level restriction on well pad p   

adr    Annual discount rate  

,

So

f t

urce    Freshwater availability at freshwater source f  in time period t   
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,

Impaired

i t   Impaired water availability at impaired water source i  in time period t   

,

Disposal

d t   Maximum capacity at disposal site d  in time period t   

,

Treatment

r t   Maximum capacity at treatment site r  in time period t   

,

Competitor

k t   Maximum capacity at competitor k  in time period t   

,

d

p t

Pro    Maximum production tank capacity at well pad p  in time period t   

,

Impaired

p t   Maximum impaired water impoundment capacity at well pad p  in time 

period t   

,

F

p t

resh   Maximum freshwater impoundment capacity at well pad p  in time 

period t   

frr    Frac ratio threshold for friction reducer type fr   

fr    Cost coefficient for friction reducer type fr   

stc    Standard water hauling truck capacity 
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CHAPTER 4 

 

Mixed-Integer Nonlinear Programming Models for Line Pressure 

Optimization in Shale Gas Gathering Systems 

4.1 Introduction 

Shale gas producing companies generally struggle with the so-called backoff 

effect. Fig. 4.1 shows the historic gas production rate of a shale well in the Appalachian 

Basin over time, along with its wellhead pressure. The data shows that sudden line 

pressure variations have a direct and pronounced impact on the shale well’s production. 

For instance, in mid-February 2014 the respective gathering system experienced an 

abrupt pressure increase (possibly due to an unscheduled compressor shut-down). The 

well’s response is almost instantaneous, and it is characterized by a striking production 

backoff. The other way around, when the wellhead pressure dropped in mid-June 2014, 

this particular well saw a clear and immediate increase in production. The pressure spike 

is almost mirrored by the production rate.  

It should also be pointed out that the pressure and production data in Fig. 4.1 

shows dynamic effects and measurement variances. The purpose of this work is not to 

capture these dynamic effects that occur on a daily basis, or to account for measurement 

errors. Instead, we focus on the dominant backoff effects which are directly tied to 

strategic development decisions, such as deliberate line pressure variations or bringing 

new wells online. The problems we wish to address are characterized by extended 

planning horizons (3 to 12 months) and they assume that a weekly discretization of time 
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is sufficient. Hence, we believe that the use of steady-state models with semi-dynamic 

extensions is applicable and justified.  

 

Fig. 4.1: Historic wellhead pressure and gas production rate of a single shale well 

over time 

The backoff-effect itself is particularly prominent when new shale wells are turned 

in-line. Due to the characteristically high initial production rates of shale gas wells, 

gathering systems will experience pronounced line pressure increases. These sudden 

pressure spikes result in immediate production cutbacks by all wells, but especially 

existing wells experience serious recovery declines. To demonstrate this effect, we turn 

to Fig. 4.2. This figure shows the overall gas production rate and average line pressure 

for a gas gathering system over time. The red dotted line shows the forecasted production 

of all existent wells – assuming that no new wells are opened up. Clearly, these wells 

are expected to experience a gradual decline with age.  
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Fig. 4.2: Demonstration of the “backoff effect” in a shale gas gathering system 

when too many prospective wells are turned in-line at the same time 

For demonstration purposes let us assume that an upstream operator decides to 

turn seven prospective shale wells in-line on January 1, 2017. For this scenario the 

stacked charts in grey and blue show the expected production of the existent and 

prospective wells respectively. In addition, the solid red line indicates how this 

development decision would affect the average line pressure in the gathering system. As 

expected, the line pressure increases by nearly 70 psi once the new wells are brought 

online. However, this sudden pressure spike results in an almost immediate, drastic 

production backoff by the existing wells collectively. These wells nearly cease to 

produce at all. What this implies is that a majority of the incremental production volumes 

added by turning new wells in-line is “lost” to making up for the reduced production of 

the existent wells. In other words, the system does not exhibit the desired production 

increase that one would expect from bringing seven additional wells online. Shale gas 

producers regularly struggle with this phenomenon since it seriously complicates 
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development decisions regarding the right timing for turning wells in-line. For this 

precise reason the “backoff effect” lies at the heart of the line pressure optimization 

problem in shale gas gathering systems.  

4.2 General Problem Statement 

 In this work we present a multiperiod mixed-integer nonlinear 

programming model to address the line pressure optimization problem in shale gas 

gathering systems. The problem at hand can be stated as follows. Within an active 

development area, an upstream operator is actively producing natural gas from a set of 

existing shale wells into an existing gas gathering system. This pipeline system delivers 

the produced gas to a compressor station which feeds into a long-distance, wide-

diameter, high-pressure transmission line. Within the foreseeable future the producer 

wishes to open up additional prospective wells to maximize the utilization of the 

available gas gathering capacity.  

 Our work is concerned with: a) determining the optimal schedule to turn 

prospective wells in-line, also referred to as the “turn-in-line (TIL) schedule”, b) 

identifying the optimal pressure profile within the gas gathering network, and c) 

calculating the required compression power to deliver the gas into the interstate 

transmission network. The problem is complicated by the fact that as new wells are 

brought online, the production of previously producing wells is negatively affected. In 

other words, the increase in line pressure due to additional gas production curtails gas 

recovery from mature wells. This effect is particularly prominent due to the 

characteristically steep decline curves of new shale gas wells. Hence, the objective of 

this work is to determine the optimal “TIL” schedule, line pressure profile and 
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compressor operation such that the net present value of the field development project is 

maximized.  

4.3 Literature Review 

Over the years many researchers have proposed mathematical programming 

models for pressure optimization in natural gas transmission systems. Recently, Ríos-

Mercado and Borraz-Sánchez (2015) published a comprehensive review of previous 

efforts in this domain to-date. The authors distinguish between three different topics in 

this general research area: a) line-packing problems focused on short-term natural gas 

storage in pipelines (Carter & Rachford, 2003; Krishnaswami et al., 2004; Zavala, 

2014), b) pressure drop models capturing pressure losses due to frictional resistance 

along pipeline segments (Duran & Grossmann, 1986; De Wolf & Smeers, 2000; Martin 

et al., 2006), and c) fuel cost minimization problems that focus on compressor station 

modeling (Wu et al., 2000; Ríos-Mercado et al., 2006; Misra et al., 2015). All three 

topics have been addressed extensively – both individually and collectively. We only 

highlight selected papers focused on the use of mathematical programming techniques. 

For a comprehensive summary of related publications we refer to the work by Ríos-

Mercado and Borraz-Sánchez (2015).  

To the best of our knowledge, we are the first to address the rigorous line 

pressure optimization problem in the context of shale gas development. Previous 

optimization frameworks addressing the shale gas development problem do not 

rigorously capture pressure variations within gas gathering networks (Cafaro & 

Grossmann, 2014; Guerra et al., 2016; Drouven & Grossmann, 2016). In this work we 

explicitly consider three important aspects of the development problem: a) the 
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incorporation of  reduced-order, nonlinear shale well reservoir models, b) the rigorous 

consideration of pressure drops along gas gathering pipelines based on nonlinear and 

nonconvex gas flow equations, and c) the inclusion of nonlinear and nonconvex 

compressor models to determine necessary compression power. Specifically, in this 

work we rely on a pressure normalized decline model proposed by Anderson et al. 

(2012) to capture and quantify how line pressure variations affect individual well 

production rates. Anderson et al. (2012) observe that shale wells display a harmonic 

decline of pressure normalized production rate over time. In fact, the authors 

demonstrate that a linear relationship between pressure normalized production rate and 

cumulative gas production can be established in a semi-log plot. Fig 4.3 shows this linear 

relationship for selected wells from the Haynesville play. For more details regarding the 

proposed reservoir function we refer to section 4.5 Model Description. 

 

Fig. 4.3: Pressure normalized production rate over cumulative gas production for 

selected shale wells (Source: Anderson et al. 2012) 

We also note that to date several alternative shale well reservoir models have 

been proposed. In particular, we highlight those proposed by Knudsen & Foss (2013), 
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(2015) who derive reduced-order shale well and reservoir proxy models using first-

principles physics of the subsurface storage and transport mechanisms. These models 

are particularly suitable for capturing rapid reservoir dynamics, such as those occurring 

during shut-in operations. Empirically derived reservoir models, on the other hand, 

generally assume steady-state operations and therefore these models are not suitable for 

the explicit consideration of short-term line pressure manipulations.  

4.4 Model Assumptions 

 The planning horizon is discretized by weeks. This discretization is motivated by the 

fact that it typically takes one week to turn a prospective well in-line. Moreover, by 

splitting the planning horizon into weekly time intervals we can track the dynamics 

of the gas gathering system (in terms of pressure variations and compression 

requirements) with sufficient accuracy.  

 The reservoir model proposed by Anderson et al. (2012) captures the production of 

shale gas wells based on their cumulative production and the respective wellhead 

pressure.  

 The focus of this work is on turning prospective wells in-line. Therefore, we assume 

that either, a) all prospective wells have already been drilled and completed, or b) 

any outstanding drilling and completions operations can be scheduled according to 

the preferred TIL schedule.  

4.5 Model Description 

In this section we describe the proposed mixed-integer nonlinear programming 

model to address the line pressure optimization problem in shale gas gathering systems.  
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Reservoir Model Constraints 

        The reservoir model proposed by Anderson et al. (2012) is one of the fundamental 

building blocks of the line pressure optimization model we present. Its purpose is to tie 

the default gas production rate of any shale well 
,

,

W S

w tF  to its wellhead pressure ,

W

p tP  and 

cumulative production ,

S

w tQ . As outlined by Anderson et al. (2012) this can be 

accomplished by considering four parameters: a) the initial bottomhole pressure of the 

well 
0

,w tp , b) the cumulative production of the well at the beginning of the planning 

horizon 0,S

wq , c) a slope parameter 
,w pm  , and d) an intercept parameter 

,w pa . The latter 

two parameters need to be fit to historic production data for existent wells and estimated 

for prospective wells based on forecasted type curves.  By including this reservoir model 

in our framework we can quantify how pressure variations will affect gas production 

rates.  

Eq. (4.1) represents the default reservoir model for existing wells. It turns out 

that this model is nonlinear and nonconvex within the domain of interest. It is also 

important to note that the default reservoir model inherently assumes that any line 

pressure variations occur gradually, over extended periods of time. As we established 

earlier, shale gas gatherings systems oftentimes experience abrupt and pronounced line 

pressure changes. These are not captured adequately by the default reservoir model.  

    
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, 0,

, , ,0

, ,

log , ,,
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w p w w t w pW
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 

    
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   
 

 (4.1) 

Therefore, we propose a “backoff extension” to the default reservoir model. The 

extension in Eq. (4.2) considers wellhead pressures at pads in consecutive time periods 

along with a well-specific backoff parameter B

w  in order to predict the backoff 
,

,

B S

w tF  . 
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If the wellhead pressure increases from one time period to another, then this backoff 

extension in Eq. (4.2) will result in a production backoff “penalty”, i.e., the well’s 

production is less than forecasted by the default reservoir model. The extension also 

holds in the reverse direction, i.e., when the wellhead pressure drops, then the production 

will increase accordingly. This backoff parameter itself can be fit to historic data for 

existing wells but for prospective wells it has to be estimated.  

    ,

, , 1 , ,, , 1B S W W B

w t p t p t wF w p tP P w         (4.2) 

Ultimately, the default reservoir model and the backoff extension are combined 

for all wells (existent and prospective) in Eq. (4.3) to capture the shale well’s final 

production 
,

,

F S

w tF . We note that typical gas production units (GPUs) are rate-restricted. 

Hence, we impose Eq. (4.4) using the maximum production rate parameter 
w  to ensure 

that the well cannot produce at infinitely high rates early in its lifespan.  

 
, , ,

, , , ,F S W S B S

w t w t w tFF wF t       (4.3) 

 
,

, ,F S

w t wF w t      (4.4) 

Although the modified reservoir model transfers over directly from existing to 

prospective wells, we examine the model formulation of the latter in more detail. We 

rely on a disjunctive programming formulation for prospective wells to link the 

corresponding reservoir model to the turn in-line decision. For this reason we introduce 

the Boolean variable ,

PROD

w tY  which is true if the prospective well w  on pad p  

is actively producing in time period t . This Boolean variable is involved in the 

disjunction in Eq. (4.5) to model the fact that as long as the well is not actively 

producing, its default production 
,

,

W S

w tF is less or equal than zero and the production 
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backoff 
,

,

B S

w tF  is greater or equal than zero. Due to the formulation of Eq. (4.3) the 

optimization will generally aim for “negative” backoff (resulting in a production 

increase), hence this inequality ensures that the inactivity of a prospective well does not 

lead to any actual production.  
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  (4.5) 

On the other hand, if the Boolean variable ,

PROD

w tY  is true, the well is active, and 

its production will be governed by the default reservoir model and the backoff extension 

as outlined previously. We should also note that the initial cumulative production of 

prospective wells 0,S

wq  in Eq. (4.5) is typically zero.  

The disjunction in Eq. (4.5) is transformed into the mixed-integer constraints Eq. 

(4.6)-(4.10) using the big-M reformulation (Grossmann & Trespalacios 2013). For this 

purpose we introduce a corresponding binary variable ,

Prod

w ty  for the Boolean variable 

,

PROD

w tY . We note that the big-M parameters 
1 5,,M M  need to be defined independently.  
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, , 1 , 2 ,1 , ,, 1B S W W B PROD

w t p t p t w w tPF P M ty w w p           (4.7) 

      ,
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w t p t p t w w tPF P M ty w w p           (4.8) 

  ,

, 4 , ,, ,W S PROD
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  ,

, 5 , , 1,,B S PROD

w t w tF M y tw w p         (4.10)  

At this point we establish a direct link between the decision to bring a well online 

and its “active production status”. In order to accomplish this we introduce an additional 

binary variable ,

TIL

w ty  which marks the time period in which the well is turned in-line 

(“TIL” for short). Using this binary variable we first impose Eq. (4.11) which ensures 

that any prospective well may be opened at most once over the planning horizon. We 

note that the formulation explicitly allows for rejecting the development of a candidate 

well.  

 
, 1TIL

w t

t

wy


     (4.11) 

Next, we add Eqs. (4.12) and (4.13) to the model formulation. These inequalities 

impose additional constraints on the timing of TIL operations. Eq. (4.12) limits the 

number of wells that can be brought online simultaneously to 
,TIL maxn . Eq. (4.13) on the 

other hand restricts in which time periods prospective wells may be turned in-line 

through the so-called land-cleared parameter 
,w tlc . 
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Finally, the logic constraint Eq. (4.14) states that any prospective well that has 

been turned in-line in one of the previous time periods has to be actively producing. In 

other words, unless the TIL operation has already occurred, a prospective well cannot 

be producing.  
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Pressure Drop Constraints 

Next, we focus on how to capture pressure drops along gathering pipeline 

segments due to frictional resistance. In this work we rely on the Weymouth Equation 

to link gas flowrates with up- and downstream pressures (Weymouth, 1912). This 

equation is commonly used to estimate pressure drops in small-diameter, short-distance 

gathering pipelines. The Weymouth Equation considers the diameter of the pipeline 

segment d , its length l , the specific gravity of the gas 
gS , its compressibility Z  and 

the inlet temperature 
LT . We apply the Weymouth equation to all network arcs within 

the gathering system, which includes: a) Eq. (4.15) for pipelines connecting well pads 

and network nodes  ,p n  , b) Eq. (4.16) for segments connecting network nodes 

leading up to the compressor station  ,n n  , and c) Eq. (4.17) for delivery 

pipelines connecting the compressor station and the transmission line  ,n n  . In 

terms of pressures we explicitly distinguish between wellhead pressures ,

L

p tP  at the pads 

and line pressures ,

L

n tP  at the network nodes. It should be noted that all inequality 

constraints below are nonlinear and nonconvex.  
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Along with Eqs. (4.15)-(4.17) we impose the inequalities (4.18)-(4.20) to ensure 

that – due to the pressure drops – upstream and downstream pressures of pipeline 

segments are not identical. In this case  is a sufficiently small parameter.  

  , , , ,P L

p t n t tP P p n      (4.18) 

  , , , ,LL

n t n tP P n n t      (4.19) 

  , , , ,LL

n t n tP P n n t      (4.20) 

Flow Balances 

We include flow balances in the proposed line pressure optimization model to 

ensure the conservation of mass. In particular, Eq. (4.21) has to hold for every network 

node n  within the gathering system in every time period t . We distinguish 

between the following flows: a) gas flows 
,

, ,

PN S

p n tF  from well pads to network nodes 

 ,p n  , b) gas flows 
,

, ,

NN S

n n tF  between regular network nodes  ,n n  , c) 

gas flows 
,

, ,

NN S

n n tF  through the compressor station  ,n n  , and d) gas flows 
,

, ,

NN S

n n tF  

along the delivery arc  ,n n  . All flows are measured in volume units at standard 

conditions (15° C and 101.325 kPa).  
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In addition, Eq. (4.22) allows the gas produced at a well pad to be delivered to 

multiple network nodes (only applies if the respective pad is actually connected to 

multiple network nodes).  
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Eq. (4.23) determines how much gas every pad produces based on the final 

production rates of individual wells located at the respective pad.  
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Finally, Eq. (4.24) calculates the cumulative gas production ,

S

w tQ  of every well 

in every time period based on its weekly production rates 
,

,

F S

w tF .  
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Compression Power 

               The compression model is included in the line pressure optimization model to 

capture the tradeoff between low line pressures and high operating costs. This model 

explicitly accounts for the pressure differential that needs to be overcome between the 

low-pressure gathering system and the high-pressure transmission line. In this case we 

rely on a straightforward compression model reported in Biegler et al. (1997), which is 

nonlinear and nonconvex. It calculates the necessary compression power 
tW  to process 

the gas flowrate 
,

,

NN S

n nF  from suction pressure ,

L

n tP  to discharge pressure ,

L

n tP . The 

parameters that need to be specified include: a) the heat capacity ratio k , b) the 

compressibility Z  and c) the compressor efficiency CE . It should be noted that we 

consider multi-stage compressors in this work.  
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For practical purposes we impose lower and upper bounds on the compression 

power since many compressors should not or cannot be operated below certain engine 

speeds.  

 MIN MAX

tW W W t      (4.26) 

Objective Function 

The objective function for the line pressure optimization problem considers three 

line items to maximize the net present value of the field development project: a) 

revenues from natural gas sales, b) expenses for turning wells in-line, and c) expenses 

for compressor operation. In this work we assume that the compressor is powered by 

natural gas. Hence, the compression expenses translate to lost revenues from reduced 

gas sales. All revenues and expenses are discounted back to the present time. The 

parameters included in the objective function in Eq. (4.27) are: a) the natural gas price 

forecast 
t , b) the cost of turning any prospective well in-line ,

TIL

w p  , and c) the 

compressor fuel consumption coefficient C .  
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Altogether, the proposed line pressure optimization MINLP model. In the 

following section we describe a tailored solution strategy for addressing this problem.  

4.6 Solution Strategy 

As outlined in the previous section, the line pressure optimization problem in 

shale gas gathering systems gives rise to large-scale, nonconvex MINLPs. Solving these 
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problems to optimality with commercial solvers can be very challenging, and even 

finding good feasible solutions is not trivial. Due to the nonconvexities involved in the 

pressure drop constraints and the compression model, the proposed optimization model 

can exhibit multiple local optima. Hence, we present a tailored solution strategy for this 

particular problem type. Fig. 4.4 shows an overview of the proposed solution strategy.  

 

Fig. 4.4: Proposed solution strategy for addressing the line pressure optimization 

problem in shale gas gathering systems 

The solution strategy illustrated in Fig. 4.4 begins by addressing a simplified 

version of the line pressure optimization problem, namely the existent wells planning 

problem. Initially, we only consider existing wells and do not account for any 

prospective wells that may be turned in-line. In particular, this version of the problem 

does not include Eqs. (4.6)-(4.14), and the objective function does not account for costs 

associated with TIL operations. Since the remaining model constraints do not include 
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any binary variables, the existent wells planning problem reduces to a nonlinear 

programming problem. In general, the simplified NLP should be much easier to solve 

than the full-scale MINLP. Yet, the solution to the NLP yields a valid feasible solution 

to the actual MINLP problem. After all, one possible solution to the scheduling problem 

at hand is not to open up any new wells. More importantly though, any solution to the 

existent wells planning problem provides an initial line pressure profile within the 

respective shale gas gathering network. In other words, the solution specifies wellhead 

pressures, line pressures and gas flowrates throughout the network. This information can 

be used to effectively initialize the line pressure problem including any available 

prospective wells. We should note that the existent wells planning problem yields a 

nonconvex NLP. Hence, it may be necessary to use global NLP solvers such as BARON 

(Tawarmalani & Sahinidis, 2005) or SCIP (Achterberg, 2009) to obtain the global 

optimum.  

Parallel to addressing the existent wells planning problem, we propose to 

perform a rigorous pressure bound pre-analysis throughout the gathering network. 

Oftentimes tight bounds can be specified on pressure variables by considering maximum 

allowable operating pressures (individually by pipeline segments) or low/high 

suction/discharge pressures at compressor inlets/outlets, respectively. These bounds are 

essential for strengthening the upper bounds of any (mixed-integer) nonlinear 

programming solver to increase the likelihood of convergence.   

Finally, we address the full-scale line pressure optimization problem including 

any prospective wells. Despite all initialization and bound tightening attempts, this 

nonconvex MINLP can still be quite challenging to solve. In our experience, even minor 
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problem data variations can change which MINLP solver performs best. In the spirit of 

multi-start approaches, we propose a strategy of alternating between different (non-

global) MINLP solvers while initializing any solver run with the incumbent solution. 

For instance, the MINLP could first be solved using alpha-ECP (Westerlund & 

Pettersson, 1995). If alpha-ECP provides a feasible solution that yields a better objective 

function value than the solution of the existent wells planning problem, then this solution 

is stored as the incumbent. Next, the initialized problem could be solved with DICOPT 

(Viswanathan & Grossmann, 1990) by using CPLEX as the MIP solver and CONOPT 

as the NLP solver. Assuming that this solver combination does not yield a better 

solution, DICOPT could be run again – with the same incumbent as a starting solution 

– but now with IPOPT as the NLP solver. Our experimental analysis does not reveal a 

universally preferable sequence of MINLP solvers. However, considering the relatively 

short time it takes for most non-global MINLP solvers to converge, it can make sense to 

evaluate different possibilities depending on the problem data at hand. It should also be 

noted that this procedure does not guarantee convergence to the global optimum. In fact, 

all non-global solvers might fail at identifying the global optimum. Yet, in our 

experience, the proposed strategy increases the likelihood of converging to near-global 

solutions in a reasonable amount of time. Once all non-global solvers (or solver 

combinations) have been explored, the incumbent can be passed on to a global MINLP 

solver such as BARON or SCIP.  

4.7 Case Study 

For our case study we consider the mid-size shale gas gathering system shown 

in Fig. 4.5. This system itself consists of four existing well pads, a fully established 
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pipeline network with segments of varying sizes, a single multi-stage compressor station 

providing up to 5,000 HP of compression power, and an interconnect to a long-distance 

transmission pipeline. Altogether, 21 wells are actively producing natural gas within the 

respective development area. In addition, there is the possibility to turn 14 additional 

wells in-line on the existent pads (five wells on PAD1, three wells on PAD2 and six 

wells on PAD4). We assume that all prospective wells have already been drilled, and 

that completions operations for these wells can be coordinated according to any feasible 

TIL schedule. Regardless of which schedule is ultimately selected, all produced gas must 

be delivered to the transmission line at 940 psi. Furthermore, the following pressure 

constraints need to be considered: the maximum allowable operating pressure 

throughout the gathering system is 1,440 psi, the suction pressure at the compressor inlet 

is constrained from above and below (70 psi and 250 psi respectively), and the discharge 

pressure at the compressor outlet may not exceed 1,400 psi. All of this information is 

used to impose tight bounds on line and wellhead pressures within the gathering 

network. Lastly, we assume that no more than two TIL operations can be performed per 

week. For a planning horizon of 26 weeks, we wish to determine the optimal TIL 

schedule and pressure profile within the gathering network that maximizes the net 

present value of the development project. We note that the data for this case study is 

provided by one of the largest upstream operators in the Appalachian Basin. For 

confidentiality reasons we cannot disclose the company’s identity, nor the focus area of 

the case study.  
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Fig. 4.5: Schematic of the mid-size gathering system considered for the case study 

This particular line pressure optimization problem yields a nonconvex MINLP 

with 728 binary variables, 4,499 continuous variables and 6,530 constraints. We apply 

the solution strategy proposed in the previous section to this problem and terminate it 

after 10,000 s. All sub-problems and solvers are run on an Intel i7 with 2.93 Ghz and 12 

GB RAM using GAMS 24.7.3. The reported NPV is 13.3 MM$.  

Fig. 4.6 shows the improvement of the objective function value over time based 

on the proposed solution strategy. Initially, the simplified version of the problem is 

solved by only considering existing wells in the gathering system. This problem yields 

a nonconvex NLP which is initially solved using CONOPT 3.17. After approximately 

20 seconds CONOPT converges to a solution with an NPV of 11.8 MM$. Due to the 

nonconvex nature of the existent wells planning problem, we initialize the global solver 

SCIP 3.2 with this solution and terminate its run after reaching an optimality gap of less 

than 10%.  
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Fig. 4.6: Objective function value improvement over time based on the proposed 

solution strategy applied to the case study 

The solution obtained from solving the existent wells planning problem provides 

an excellent starting point for addressing the full-scale line pressure optimization 

problem including all available prospective wells. The corresponding MINLP is first 

optimized using the non-global MINLP solver AlphaECP 2.20.06. This solver 

terminates after 780 s but does not manage to improve the objective function value 

beyond the solution of the existent wells planning problem. Next, we initialize the non-

global MINLP solver DICOPT 24.7.3 using CPLEX 12.6.3.0 and CONOPT 3.17 with 

the incumbent. Fortunately, DICOPT converges to a solution with an improved 

objective function value. After 1,569s including 6 major iterations the reported NPV is 

12.9 MM$ (up from 11.8 MM$) – and the solution suggests to turn selected prospective 

wells in-line. Finally, we pass this solution on to the global MINLP solver SCIP 3.2. 
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Interestingly, SCIP identifies a solution with a slightly better objective function value of 

13.3 MM$ within 300 s. Thereafter, SCIP spends 6,800 s attempting to close the 

optimality gap. Yet, the final gap after more than 7,100 s remains high, since the upper 

bound SCIP reports is 19.5 MM$. Nevertheless, it is important to note that SCIP 

provides a valid and rigorous upper bound to the problem that non-global MINLP 

solvers do not. Instead of SCIP, we also tested the global MINLP solver BARON 

16.5.16. It turns out that BARON provides a slightly tighter upper bound (19.0 MM$). 

However, BARON converges to a marginally lower objective function value than SCIP 

within the time limit of 10,000 s.  

First and foremost, the optimization yields the proposed TIL schedule as shown 

in Fig. 4.7. Altogether, a total of 9 out of 14 prospective wells are brought online: four 

on PAD1, three on PAD2 and two on PAD4. In the following paragraphs we analyze 

the implications of this schedule in more detail – and we attempt to outline why the 

timing and coordination of these particular TIL operations makes economic and 

practical sense.  
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Fig. 4.7: Proposed TIL schedule for the shale gas gathering system considered in 

the case study 

Fig. 4.8 shows production volumes by pads over time based on the proposed TIL 

schedule. Clearly, the entire system experiences volume growth over the full planning 

horizon, driven by new wells being brought online. At the same time, Fig. 4.8 reveals 

that the scheduled TIL operations are having a pronounced effect on the pressure profile 

within the gathering system. Every time a set of prospective wells are turned in-line, the 

line pressure increases noticeably, but then decreases again eventually. Unexpectedly 

though, the suction pressure does not appear to be abating between weeks 2 and 7 – after 

the TIL operations on PAD2 and before prospective wells are being brought online on 

PAD1.  
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Fig. 4.8: Production volumes by pads over time compared to suction pressure at the 

compressor inlet 

In fact, a detailed analysis of the solution in week 7 (towards the end of February 

2017) allows for a number of interesting observations. As seen in Fig. 4.9, line pressure 

throughout the gathering system is fairly elevated even though the system is far from 

reaching its maximum capacity. This is unusual, since upstream operators typically try 

to lower line pressure as quickly as possible to increase output of their shale wells. 

Moreover, the elevated line pressure implies that the pressure differential that needs to 

be overcome by the compressor is reduced. This explains why the compressor is running 

far below its maximum power of 5,000 HP.  
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Fig. 4.9: Specific analysis of the proposed solution for week 7 of the case study 

We turn to Fig. 4.10 to provide an explanation for the counter-intuitive solution 

suggested by the optimization. This figure shows overall gas production over time for 

two different cases. The lower dotted, red line marks the expected production of all 

existing wells assuming that no new wells are brought online. The grey and blue stacked 

charts, on the other hand, show how much gas existent and prospective wells, 

respectively, contribute towards overall production based on the proposed TIL schedule. 

The direct comparison of these two cases reveals that the backoff effect is having a 

prominent impact on gas production. Every time new wells are turned in-line, the 

existing wells produce significantly less than they would have by default. Yet, Fig. 4.10 

allows for an intriguing observation. Although the pressure profile within the gathering 

system tracks the volume decline towards the end of the planning horizon, it does not 

do so early on. In fact, the clearly visible pressure increase between weeks 2 and 7 

appears to be directly linked to the four TIL operations scheduled on PAD1. In other 

words, we have reason to believe that the optimization proactively raises line pressure 
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throughout the system prior to bringing these four new wells online. In doing so, the 

optimization is actively mitigating the backoff effects associated with the upcoming TIL 

operations. Otherwise, if the pressure had subsided along with the production profile 

after week 2, the system would have experienced a pronounced pressure spike in week 

8 (when the new wells are scheduled to come online). This pressure spike likely would 

have resulted in a substantial production loss – to the point where the existent wells 

might not have produced at all temporarily. Instead, the optimization proposes to 

“ready” and prepare the system for the upcoming pressure increase by maintaining the 

elevated pressure profile, and thereby effectively minimizing production backoff.  

 

Fig. 4.10: Production volumes and pressure over time distinguished by a) existent 

wells without development and b) existent and prospective wells with development 

The findings described above are significant because they suggest that upstream 

operators can take a much more active role in terms of line pressure management when 

timing TIL operations. Rather than “wasting” the production potential of existing wells, 
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the results suggest that producers need to evaluate carefully when new shale wells are 

turned in-line, and how their gathering systems should be operated prior to these events.  

4.8 Conclusions 

In this chapter we have proposed a nonconvex mixed-integer nonlinear 

programming model for line pressure optimization in shale gas gathering systems. This 

model is designed to support shale gas producers in deciding when and how many 

prospective wells should be turned in-line, as well as how to manage line pressures and 

compressor stations throughout the gathering network. The model itself is based on three 

fundamental building blocks: a) a nonlinear and nonconvex reduced-order shale 

reservoir model, b) a nonlinear and nonconvex pressure drop model, and c) a nonlinear 

and nonconvex compression model. We modified the reservoir model specifically to 

account for production backoff effects that are prominent in shale gas gathering systems 

whenever new wells are brought online. Due to the nonconvex nature of the proposed 

model, we developed a tailored solution strategy that aims to provide valid and good 

initial solutions. Lastly, we applied the proposed optimization framework to a real-world 

case study using data from one of the largest upstream operators in the Appalachian 

Basin. Our results demonstrate that shale gas producers can proactively manage line 

pressures in their gathering systems to reduce undesirable production backoff as new 

wells are brought online.  
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4.9 Nomenclature 

Sets    

t     Time periods 

n    Network nodes 

w    Wells  

p     Pads 

w    Existent wells 

p    Prospective wells 

 ,w p    Well-to-pad assignments 

 ,p n    Pad-to-node arcs 

 ,n n    Node-to-node arcs 

 ,n n     Compression node arcs 

 ,n n    Delivery node arc 

Binary Decision Variables 

, ,

TIL

w p ty   Active if well w  on pad p  turned in-line in time period t   

, ,w p t

PRODy   Active if well w  on pad p  actively producing in time period t   

Continuous Decision Variables 

,

L

n tP   Line pressure at network node n  in time period t  [psi] 

,

P

p tP   Wellhead pressure at pad p  in time period t  [psi] 

,

,

W S

w tF   Default gas flow at well w  in time period t  (at standard 

conditions) 

,

,

B S

w tF   Backoff gas flow at well w  in time period t  (at standard 

conditions) 

,

,

F S

w tF   Final gas flow at well w  in time period t  (at standard 

conditions) 

,

,S

p t

PF   Gas flow at pad p  in time period t  (at standard conditions) 
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,

, ,p n t

PN SF   Gas flow from pad p  to network node n  in time period t  (at 

standard conditions) 

, ,

,

n n t

NN SF   Gas flow from network node n  to network node n  in time 

period t  (at standard conditions) 

, ,

,A

n n t

NNF   Gas flow from network node n  to network node n  in time 

period t  (at actual conditions) 

tW   Compressor power in time period t  

,

S

w tQ   Cumulative gas production well w  in time period t  (at standard 

conditions) 

,

L

n tU   Substitute line pressure at network node n  in time period t   

,

P

p tU   Substitute wellhead pressure at pad p  in time period t   

Parameters 

,p nd   Pipeline diameter for segment from pad p  to network node n  

,n nd   Pipeline diameter for segment from network node n  to network 

node n  

,p nl   Pipeline length for segment from pad p  to network node n  

,n nl   Pipeline length for segment from network node n  to network 

node n  

,w pa   Slope parameter pressure normalized decline curve for well w  

on pad p  

,w pm   Intercept parameter pressure normalized decline curve for well 

w  on pad p  

,w tlc   Land-cleared date for well w  in time period t  

M   Big-M parameter  

, N

p

L MIp   Minimum wellhead pressure at pad p  

0

,w pp   Initial bottomhole pressure well w  on pad p  [psi] 
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, N

p

L MIp   Minimum wellhead pressure at pad p  

,L MIN

np   Minimum line pressure at network node n  

, X

p

L MAp   Maximum wellhead pressure at pad p  

,L MAX

np   Maximum line pressure at network node n  

0

wq   Cumulative gas production existent wells at begin of planning 

horizon 

gS   Specific gravity of gas 

MAXW   Maximum compression power 

Z   Compressibility factor for gas 

LT   Gas temperature along pipelines 

,

TIL

w p   Well development cost at well w  on pad p  

t   Gas price in time period t   

C  Compressor fuel coefficient   

w  Rate restriction well w  

N   Number of compressor stages 

k   Heat capacity ratio 

CE   Compression efficiency 

R   Gas constant 

dr   Annual discount rate 

B

w   Backoff parameter well w  
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CHAPTER 5 

 

Deterministic Programming Models for Planning Shale Gas Well 

Refracture Treatments 

5.1 Introduction 

Refracturing presents a promising strategy for addressing the characteristically 

steep decline rates of shale gas wells (Jacobs, 2014). The core idea behind refracturing 

is to restimulate the reservoir such that it yields previously untapped hydrocarbons and 

improves the overall production profile of a well. Whether or not a refracture treatment 

will reinvigorate a shale gas well depends on a number of factors, including the 

characteristics of the reservoir and the initial completions design. Historically, refracture 

treatments have been applied predominantly to shale gas wells suffering from low 

production rates due to known suboptimal initial stimulations and completions.  

However, over the past years, the use of real-time microseismic hydraulic 

fracture mapping and other analytical tools has allowed operators to improve 

completions and stimulation designs, leading to a larger number of treated stages per 

well, meticulous stage selection, and increased fluid and proppant volumes (Baihly et 

al., 2011). Clearly, refracture treatments designed and performed under these revised 

insights can be expected to improve hydrocarbon recovery from unconventional 

reservoirs. 

Moreover, Dozier et al. (2003) argue that even wells with effective initial 

treatments have shown significant production improvements when restimulated after an 

initial period of production and partial reservoir depletion. On the one hand, the success 
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of these workovers can be attributed to the fact that fracture conductivity is known to 

decrease over time as proppant packs become damaged or deteriorate with scale buildup 

during reservoir-pressure drawdown. Additional fracturing measures can address this 

issue, reestablish flow into the wellbore and reinvigorate a well’s production profile. On 

the other hand, Dozier et al. (2003) also point out that stress changes are known to occur 

around effective initial fractures as a result of reservoir depletion during production. 

These stress changes in turn lead to a fracture reorientation, which initiates new fractures 

along different azimuthal planes. Therefore, refracturing treatments performed at the 

right time can provide access to under- or unstimulated zones of the reservoir through 

these reoriented, newly created fractures. As such, well restimulations appear promising 

even for wells with effective initial treatments – especially in low permeability 

formations such as shale gas reservoirs. 

The left image in Fig. 5.1 shows a horizontal wellbore and a typical fracture 

network induced by a wide-spaced hydraulic well stimulation. In contrast, the image on 

the right in Fig. 5.1 shows the same lateral wellbore and the surrounding reservoir after 

a refracture treatment. A comparison of the two images reveals that refracturing can add 

entirely new perforations to the existing fracture network and also extend previous 

fractures in new directions. Clearly, the enhanced fracture network has an increased 

surface area and reaches into previously unattainable areas of the reservoir.  
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Fig. 5.1: A shale well and the surrounding fracture network after initial well 

stimulation (left) and after refracturing (right), Source: Allison and Parker (2014) 

Refracturing is known to cause a peak in the production rate that often matches up to 

60% of the initial production peak, as seen in Fig. 5.2. In addition to restoring well 

productivity, refracture treatments present an opportunity to improve the completions 

design and can therefore alter long-term decline curves favorably by, for instance, 

enhancing fracture conductivity. Based on recent results, operators are increasingly 

confident that refracturing can enhance estimated ultimate recoveries (EUR) in excess 

of 30%, and thereby extend the expected lifespan of their shale wells beyond 20-30 

years, especially when considering the possibility of multiple refracture treatments. This 

strategy seems particularly appealing given that refracturing an existing well generally 

costs less than half as much as completing a new well (Jacobs, 2014); operators do not 

have to secure additional acreage, drill a well, or install pipelines for access to gathering 

systems. By reusing the existing infrastructure, refracturing also reduces surface 

disruption significantly, and therefore benefits the overall environmental impact of any 

field development project.   
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Fig. 5.2: Production profile of a refractured horizontal well in the Barnett Shale,  

Source: Allison and Parker (2014) 

5.2 Literature Review 

To this day, refracturing planning has received fairly little attention in the 

literature. One of the few contributions in this domain is a comprehensive report by 

Sharma (2013), who addresses improved reservoir access through refracture treatments 

in greater detail. The author argues that refracturing has long been recognized as a 

successful way to restore production rates – particularly in low-permeability gas wells 

– by improving the productivity of previously unstimulated or understimulated reservoir 

zones. However, Sharma (2013) also recognizes that the selection of candidate wells for 

refracturing is often very difficult based on the limited information available to decision-

makers. The author claims that the timing of secondary reservoir stimulations, in 

particular, is critical for optimizing well performance. In the report, Sharma (2013) 

proposes a number of dimensionless criteria to: (a) identify candidate wells for 

refracturing, and (b) determine the optimal refracture time in a well’s lifespan. Among 

these criteria are a well completions number (indicating the quality of the initial 

completions), a reservoir depletion number (quantifying the extent of depletion around 

a particular well), a production decline number (reflecting the extent and quality of a 

Refracture 

Treatment 
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reservoir) and a stress reorientation number (revealing the potential for additional 

fractures to propagate into underdepleted regions of the reservoir). In addition, the 

author proposes the use of dimensionless type curves to estimate the optimal time-

window for refracture treatments.   

Eshkalak et al. (2014) focus on the economic feasibility of refracture treatments 

for horizontal shale wells. For an unconventional gas field consisting of 50 horizontal 

wells – all of which are considered candidates for refracturing – the authors calculate 

the net present value (NPV) and internal rate of return (IRR) for various refracturing 

scenarios that differ in terms of: (a) how many wells are refractured, (b) when wells are 

refractured, and (c) the given gas price forecast. The timing of the refracture treatments 

is specified in advance and the authors assume that the production increase due to 

restimulation is given by a fixed long-term refracturing efficiency factor. Based on the 

results of their analysis, Eshkalak et al.  (2014) conclude that refracturing shale gas wells 

makes economic sense over a wide range of price forecasts.  

Tavassoli et al. (2013) also address the refracturing planning problem. Motivated 

by the fact that – although refracturing strategies seem promising conceptually – merely 

15-20% of all wells that have been refractured thus far achieved the desired performance 

targets, the authors develop a numerical, dual-permeability (matrix-fracture), two-phase 

(gas-water) simulation model. This model allows them to study the effect of different 

reservoir parameters (permeability, porosity) and operational decisions (initial fracture 

spacing, refracture timing) on refracturing performance. Their findings, too, suggest that 

the timing of a refracture job is absolutely crucial for success. In an attempt to provide 

some guidance for the optimal timing of refracturing treatments, the authors study 
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typical shale gas well production decline curves in detail. They highlight the fact that 

typical shale well productivity curves evolve from steep, pronounced declines to more 

steady rates. Based on this analysis, the authors suggest that refracture treatments should 

be performed when the production decline rate falls below 10-15%, which – based on 

their numerical simulation studies – marks the point when gas production decline rates 

generally level off.  

From the above we conclude that it is generally accepted that refracture timing 

is critical for optimizing the performance of any shale well. Yet, Lantz et al. (2008) 

report that in practice, the time between the original completions stimulation and 

refracture treatments varies greatly. The authors describe a shale oil well refracturing 

program in the Bakken formation where some wells were refractured after 2 years while 

other wells produced for 3.5 years until they were restimulated. Previous work provides 

some guidelines or general heuristics as to when refracture treatments should be 

performed, but these indicators appear vague and often do not account for important 

economic factors, such as price forecasts or fracturing expenses. Therefore, the objective 

of this work is to develop a modeling framework for planning optimal shale gas well 

refracture treatments.  

5.3 General Problem Statement 

The problem addressed in this chapter can be stated as follows. We assume that 

a candidate shale gas well has been identified for refracturing. For this well, a long-term 

production forecast as well as the production profile after additional refracture 

treatments at any point in time over the planning horizon is given. A gas price forecast 
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along with expenses for drilling, fracturing, completions and refracturing operations are 

also given.  

Our goal is to determine: (a) whether or not the well should be refractured, (b) 

how often the well should be refractured over its entire lifespan, and (c) when exactly 

the refracture treatments should be scheduled. The objective is to maximize either: (a) 

the estimated ultimate recovery (EUR) of the well, or (b) the net present value (NPV) of 

the well development project.  

This chapter is organized as follows. First, we present a continuous-time 

nonlinear programming (NLP) model to determine whether or not a shale gas well 

should be refractured, and when to schedule the refracture treatment. The NLP model 

relies on the assumption that the well productivity profile – prior to and after a refracture 

treatment – can be predicted by a decreasing power function of time. For this purpose 

we propose an effective forecast function that mimics real-life curves. In the following 

section we extend the proposed framework to allow for multiple refracture treatments 

and present a discrete-time mixed-integer linear programming (MILP). In this context, 

we review three alternative model formulations and explore their trade-offs in terms of 

model sizes and computational performance. Finally, we apply the discrete-time MILP 

model to two case studies to demonstrate the value of optimization for refracturing 

planning applications.   

5.4 Continuous-Time Refracturing Planning Model 

Typically, the productivity curve of an ordinary shale gas well can be captured using 

a decreasing power function of time as stated in Eq. (5.1). Fig. 5.3 shows the fitness of 
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such a function to forecasted production data provided by the EQT Corporation – a 

major shale gas producer in the Appalachian Basin (United States).   

 1( ) ap t k t t    (5.1) 

In Eq. (5.1) the productivity p(t) is commonly specified in terms of MMscf/month, k 

is a parameter representing the initial production peak observed during the first month 

after turning a well in line, and a > 0 is the exponent representing the steepness of the 

production decline. We note that the productivity function p(t) is only defined for 1t  . 

By our convention, we assume that time t = 0 corresponds to the beginning of drilling 

and completions operations, and that the well is ready to produce gas exactly one month 

later (i.e., at t = 1). 

 
Fig. 5.3. Comparison of real production forecast data and a fitted power function for a 

shale gas well  

While a shale gas well is being refractured, it does not produce any gas. We refer to 

this as the refracuring period rt. Once the refracture treatment has been completed and 
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the well is turned in line again, a new peak in gas production is observed. Generally, this 

secondary production peak represents a fraction of the original peak and depends 

strongly on the characteristics of the reservoir, the refracturing technique and the 

original completions design. In this work we assume that the secondary peak can be 

expressed as r k  , with typically 0.50 ≤ β ≤ 0.80. Moreover, the production decline 

after refracturing follows a new decline curve, which is often steeper than the original 

decline following the original completions (Tavassoli et al., 2013). Motivated by real 

world data, we assume that the steepness of the productivity decline after refracturing 

(i.e., the magnitude of the exponent in the power function) increases linearly with the 

time between the original completions and the refracturing operation (namely, trf). On 

the other hand, given that the refracture operation can affect original fractures either 

favorably or unfavorably, the productivity of the original fractures is multiplied with the 

factor γ. In practice, the parameter   needs to be specified in close coordination with 

completions design engineers, geologists and reservoir engineers, who are most familiar 

with the initial completions design as well as the particular reservoir characteristics. As 

a result, the productivity curve after refracturing can be represented by the function 

given in Eq. (5.2).   

   1( )
a b trfak t t trf rp t t rft t tr r

            (5.2) 

The variable trf is the time when refracturing starts (in months, after the original 

completions operation), γ is the factor that accounts for the increase or decrease in 

productivity of the original fractures, and b is the coefficient capturing the increase of 

the decline steepness after refracturing. Finally, we can express the productivity of a 
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shale gas well before, during and after having been refractured using the function in Eq. 

(5.3).  

 

 

0 1

1

( )

1

a

a b trfa

t t trf

t trf rt

k t t tr

k

p t trf

r trf rtf rt t T



  

  

   

      




 


  

 (5.3) 

In Fig. 5.4 we plot the function in Eq. (5.3) for different refracture start dates. We 

assume that a refracturing operation takes one month and that the resulting secondary 

peak (parameter r) is independent of the timing of the well restimulation. The latter 

assumption is supported by the work of Tavassoli et al (2013).   

 

Fig. 5.4 Productivity curves of a shale gas well for different refracture start dates (trf) 

To determine the total amount of gas that can be recovered from a shale gas well that 

has been refractured, we can integrate function (5.3) from t = 1 to t =T, where T 

represents the expected productive lifespan of the well. This key indicator of any shale 

gas well is usually referred to as the estimated ultimate recovery (EUR). 
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 

 

11 1

1

( ) 1 1
1 1

1
1

aa a

a b trf

k
EUR trf trf rt

a a

r

a b

k
trf T

T trf rt
trf
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  

          
 

 


 



   
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 (5.4) 

 The EUR function in Eq. (5.4) assumes that: (1) a ≠ 1, and (2) a + b trf ≠ 1. 

To identify the optimal time to refracture a well such that the EUR is maximized, we 

propose a continuous-time nonlinear optimization model as in Eq. (5.5).  

 

 

 

11 1

1

max ( ) 1 1
1 1

1
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k
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a
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b
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  
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 

 

    
 



 



  (5.5) 

This optimization model presents a singularity when trf = (1 – a) / b for 1 ≤ (1 – a) / 

b ≤ T – rt – 1. When this is the case, the denominator in the third term in Eq. (5.5) equals 

zero, leading to a division by zero. This explains why local and global solvers such as 

MINOS, CONOPT, BARON, COUENNE or LINDOGLOBAL (McCarl, 2011) will 

oftentimes fail to converge to the optimal solution. For this reason, we propose to solve 

the problem in Eq. (5.5) as two separate optimization problems by dividing the planning 

horizon into two domains. First, we solve for (11 ) /trf a b     , where ε is a small 

tolerance: 
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 (5.6) 

 

Next, we solve for (1 ) / 1a b trf T rt      :  
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(5.7) 

It should be noted that it is very unlikely that the optimal value for trf, i.e., the optimal 

time to refracture a well, matches the singular value (1 – a) / b at the optimum. Generally, 

(1 – a) / b > T, which implies that the singular value for trf lies outside the feasible 

region and far beyond the expected lifespan of an ordinary shale gas well.  

Fig. 5.5 shows the relationship between the timing of the refracture treatment trf and 

the EUR for different steepness values a based on the function in Eq. (5.4). All other 

parameters remain the same. It can be observed that refracturing can raise the EUR up 

to 22.5%, depending on the productivity curve. We also note that the wells featuring 

higher values of a (i.e., steeper declines) should be refractured later in their lifespan, 

achieving lower increases in the well reserves. 

 

Fig. 5.5. EUR ratios with and without refracturing with regards to the time of 

refracturing 
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5.5 Multiperiod Refracturing Planning Model 

The continuous-time NLP model presented in the previous section is particularly 

useful for identifying the optimal time for refracturing a typical shale gas well so as to 

maximize its expected ultimate recovery (EUR). In practice, however, the NLP model 

has the following shortcomings: (a) it is not suitable for planning multiple refracture 

treatments over the expected lifespan of the well, (b) it does not allow for the evaluation 

of economic objective functions, such as the net present value (NPV), and (c) it only 

admits forecasted production decline curves strictly following the fundamental power 

function given by Eq. (5.1). To overcome these limitations, we also present a discrete-

time, multiperiod mixed-integer linear programming (MILP) model that – unlike the 

continuous model – is capable of planning multiple refracturing operations while 

accounting for an economic evaluation of the well development project.   

We assume that the planning horizon has been discretized into a set of time periods t 

 T, usually months. The decision-maker is considering a candidate number of 

refracture treatments i  I0 that are ordered chronologically. We note that the set I0  

explicitly contains the zero-element, i.e. I0 = {i0}  I = {i0; i1; i2;...}. The practical 

interpretation of this element is that the well may not be refractured at all.  Generally, 

we recommend to set  |I| = 2 to 3 for a planning horizon of 10 years, even though some 

researchers11 argue that up to five refracture treatments may be performed over the 

expected lifetime of a shale gas well. Moreover, we advise to set |T| = 120 to 360 – 

corresponding to 10 to 30 years. Next, we introduce the binary variable xi,t which is 

active if the well is refractured for the i-th time in time period t. Then, the following 

equations hold. 



 175 

 , 1
t

i t

T

ix I


     (5.8) 

 , 1, , , 1i t i

t rt

x x i I t T i




 
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Eq. (5.8) states that a well cannot be refractured for the i-th time more than once. In 

fact, the formulation allows the well not to be refractured at all since this is a true degree 

of freedom in practice. Moreover, Eq. (5.9) ensures that if a well is refractured for the i-

th time in time period t, then it has to have been refractured for the (i-1)-th time in one 

of the previous time periods  < t - rt, where rt is the number of time periods it takes to 

restimulate the well.  

5.5.1 Production Profile 

From the analysis of shale gas productivity curves before, during, and after a 

refracture treatment, we can state that prior to any refracturing operation, the production 

curve obeys a decreasing power function as given in Eq. (5.1). Hence, the gas production 

in time period t can be bounded from above as follows. 

 
1,

ˆa

t i

t

P k xk t t T






      (5.10) 

We note that constraint (5.10) is relaxed if the well has been refractured once or more 

often by time period t. k̂ is an overestimator of the new production peak we expect after 

a refracture treatment. Usually, we set k̂ = k. During the refracturing procedure itself, 

the well will not produce any gas. Therefore, during the rt time periods it takes to 

restimulate the well, the production is set to zero by constraint (5.11). 
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max( , ) 1ˆ
t i

t rt I
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    

 
     

 
    (5.11) 
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In fact, Eq. (5.11) states that if the well was refractured in any of the previous 𝑟𝑡 − 1 

time periods, then the production rate in time period t must be zero. Once a well has 

been refractured, it becomes more challenging to model its production rate, since the 

well’s productivity depends on precisely how often and also when a restimulation was 

last performed. For this purpose, we introduce the binary decision variable yi,t  [0,1] 

(can be treated as a continuous variable) that is meant to become active (i.e., equal to 

one) if by the end of time period t the well has been refractured i times. This distinction 

is important because in any time period t the well may have been refractured i times 

even though the last refracturing operation occurred in a previous time period 𝑡̂ < 𝑡. We 

derive the following mixed-integer constraints through propositional logic (Raman & 

Grossmann, 1991) to capture the relation between the decision variables xi,t and yi,t by 

using their equivalent Boolean variables.   

 
, , 0 ,i t i tx ti I Ty      (5.12) 

Eq. (5.12) states that if the well is refractured for the i-th time in time period t, then 

the well has been refractured i times by the end of that period. This logic statement can 

be expressed through Eq. (5.13). 

 
, , 0 ,i t i t tx y i I T      (5.13) 

Next, we argue that if the i-th refracturing is the last that occurred as of the end of 

time period t, i.e., the decision variable yi,t is active, then in one of the previous time 

periods the well had to have been refractured for the i-th time.  

 
, , 1 , 2 , 3 , 0 ,i t i t i t i t i ty x x x i Ix t T         (5.14) 

The corresponding mixed-integer constraint is given by Eq. (5.15). 
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t

x i ty I T
 

      (5.15) 

Indeed, if by the end of time period t-1 the well has been refractured a total of i times, 

i.e., the decision variable yi,t-1 is active, but in the subsequent time period t the decision 

variable yi,t is no longer active, then the well must have been refractured for the (i+1)-th 

time in this time period t, i.e., the decision variable xi+1,t has to be active.  

 , 1 , 1, 0 , 1i t i t i ty i I ty x         (5.16) 

Eq. (5.16) matches exactly with Eq. (5.17) in mixed-integer form.  

 , , 1 1, 0 , 1i t i t i ty x i Iy t        (5.17) 

Finally, we ensure that in any time period only a single number of refracture operations 

i may have occurred previously.  
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Next, we propose three alternative formulations for capturing the productivity profile 

of a shale gas well after it has been refractured once or more often.  

5.5.2 Big-M Formulation 

Given the decision variables ˆ,i t
x  and yi,t we can impose an upper bound on the 

production of the shale gas well after refracturing, as stated by constraint (5.19).  

    
ˆ

ˆ ˆ,, ,
ˆ1 2 , ,ˆˆ

a b ti a

t i ti t i t
P k t r t t rt y x i I t T t t tk r 

                    

  (5.19) 

Constraint (5.19) is a key part of the model and deserves to be analyzed in detail. It 

is an upper bound only imposed on the gas production in time period t when – at the end 

of time period t – the well has been refractured i times (yi,t = 1) and this i-th refracturing 
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operation occurred in time period 𝑡̂ < 𝑡 − 𝑟𝑡 ( ˆ,i t
x = 1). The production of the well during 

time period t is composed of two parts: (a) the contribution of the original fractures, 

which is increased or decreased by the factor  (normally < 1) every time a new 

refracture treatment is performed, and (b) the contribution of newly induced fractures. 

In the latter case, it is assumed that the first refracturing operation yields a peak of 

magnitude r, and every further refracture treatment yields a smaller peak derived from 

multiplying the previous peak with the factor ˆ,i t
  < 1. Hence, the parameter ˆ,i t

  depends 

on two factors: (a) how often the well has been refractured (index i ), and (b) when the 

last refracture treatment occurred (index t̂ ). For simplicity, one may assume that ˆ,i t
  = 

i , which implies that every additional refracture treatment yields the same reduction 

in the post-refracture production peak, regardless of when it is performed. Similar to the 

continuous model, the corresponding production curves’ declines are steeper the later 

the refracturing is performed, which is driven by the exponent (−𝑎 − 𝑏 𝑡̂).We refer to 

Eq. (5.19) as the big-M formulation (BMF).  

5.5.3 Disjunctive Formulation: Standard Hull-Reformulation 

Given the decision variables ˆ,i t
x  and yi,t we can also introduce an additional binary 

variable 𝑧𝑖,𝑡,𝑡̂. This variable is active if and only if at the end of time period t the well 

has been refractured a total of i times (yi,t =1) and the last refracturing occurred in time 

period 𝑡̂ ( ˆ,i t
x =1). This binary variable is defined by the following logic. 

 ˆ ˆ, 0, , ,
,, ˆ

i t i t i t t
x z i I T t tt ry t         (5.20) 

We can easily transform Eq. (5.20) into the following mixed-integer constraint using 

propositional logic (Raman & Grossmann, 1991).  
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ˆ1 ,,i t i t i t t

x z i I T t t rty t          (5.21) 

In addition, we include the reverse logic statement as well. 

 ˆ ˆ, 0, , ,
ˆ, ,i ti t t i t

y x i I t T t t tz r         (5.22) 

This, too, can easily be transformed into the following two constraints: 

 ˆ , 0, ,
ˆ, ,i ti t t

y i I t T t t tz r        (5.23) 

 ˆ ˆ 0, , ,
ˆ, ,

i t t i t
x i I t T t rtz t        (5.24) 

The advantage of having introduced the binary variable 𝑧𝑖,𝑡,𝑡̂  is that we can derive a 

disjunctive model for the key production constraint.  
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 (5.25) 

 
0 , ˆ ˆ1 , ,i I t t rt i t t

Tz t       (5.26) 

It is important to note that in the formulation above, i  and ˆ,i t
  are parameters. In 

particular, we clarify that 1io   and ˆ0,
0

i t
  . Moreover, we highlight the fact that the 

binary variable ˆ, ,i t t
z  can be declared as a continuous variable due to constraints (5.21)

,(5.23),(5.24), which enforce integrality for 0-1 values of 
,i tx  and 

,i ty . As outlined by 

Grossmann and Trespalacios (2013) we use the Hull-Reformulation (HR) to transform 

disjunctions (5.25)-(5.26) into the set of mixed-integer constraints (5.27)-(5.29). 
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We refer to constraints (5.27)-(5.29) as the Standard Hull-Reformulation (SHR).  

5.5.4 Disjunctive Formulation: Compact Hull-Reformulation 

 In this particular case it is possible to derive a more compact reformulation 

of the disjunctive model. For this purpose we sum up constraint (5.27) over all 𝑡̂ ∈

 1 … 𝑡 − 𝑟𝑡 for every time period 𝑡 ∈ 𝑇 and every number of candidate refracture 

operations 𝑖 ∈ 𝐼0. Also, we introduce the partially disaggregated variable 𝑃𝑖,𝑡 =

∑ 𝑃𝑖,𝑡,𝑡̂ 
𝑡−𝑟𝑡
𝑡̂=1 . The result is shown in Eqs. (5.30)-(5.31).  
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 The key advantage is that the triple-indexed disaggregated variables 𝑃𝑖,𝑡,𝑡̂  

can be replaced by the double-indexed variables 𝑃𝑖,𝑡, hence reducing the total number of 

decision variables. Also, the formulation in Eqs. (5.30)-(5.32) involves fewer 

constraints. In fact, the proposed formulation can be improved even further by summing 

up constraint (5.30) over all 𝑖 ∈ 𝐼0 in every time period 𝑡 ∈ 𝑇.  
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 Now the formulation does not involve any disaggregated variables or the 

corresponding constraints, and hence we refer to the aggregated Eqs. (5.33)-(5.34) as 

the Compact Hull-Reformulation (CHR). For more details regarding the CHR we refer 

to the Appendix G: Compact Hull-Reformulation (Tradeoffs).  

Finally, we note that in certain cases, when rigorous reservoir simulation tools are 

available, the forecasted production profile after any number of refracture treatments 

can be directly specified as a parameter, namely 𝑄𝑖,𝑡,𝑡̂. This parameter captures the 

predicted production of the well in time period t when the well has been refractured i 

times, and the last refracture treatment started in time period 𝑡̂ < 𝑡 − 𝑟𝑡. If so, Eqs. 

(5.19), (5.25), (5.27) and (5.30) turn into Eqs. (5.35)-(5.38), respectively, which 

represents a much more compact formulation. 
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5.5.5 Objective Function 

The intended goal of the multiperiod model is to maximize the net present value 

(NPV) of a shale gas well development project. Therefore, the objective function 

involves positive terms accounting for natural gas sales, as well as negative terms related 

to drilling, fracturing and refracturing expenses. All these terms are discounted back to 

the present time with a monthly discount rate d. Drilling costs (DC) and completions 
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costs (CC) are considered to be expenditures at the present time. The unit shale gas profit 

(gpt) is the difference between the unit gas price and the production costs, while RC is 

the total cost of a single refracture treatment. Hence, the objective function of the MILP 

is given by Eq.(39).  

   ,1max
t
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t t i t

T I
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5.6 Computational Results 

We apply the proposed discrete-time MILP model to two case studies. Our first 

example is a typical shale gas well development planning problem with hypothetical 

data, whereas the second example is based on simulation results presented by Tavassoli 

et al.  (2013) who rely on real-world data from a Barnett shale well.  

5.6.1 Example 1 

Given a 10 year planning horizon, we assume that the decision-maker is 

considering a total of two possible refracture treatments for a particular well 

development project. Production forecasts with and without refracture treatments are 

given and factored into the analysis. It is assumed that every additional well stimulation 

takes about one month during which the well cannot produce any gas. It is also assumed 

that original drilling, fracturing and completions expenses amount to 3 million USD, 

whereas every additional refracturing operation costs 800,000 USD. It is important to 

note that the optimal refracturing strategy is very sensitive to the assumed restimulations 

costs, which can vary greatly depending on the completions design. In a recent 

publication, several operators reveal that they expect to spend between 12.5 % and 20.0 

% of the initial well development cost for every refracture treatment (WorldOil, 2015). 
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We decide to take a more conservative approach here and assume that the refracturing 

procedure costs nearly 30 % of the initial completions expenses. The monthly discount 

rate d  to evaluate the project is 1 %. Lastly, we assume a fixed specific profit of $ 1.5 

per produced Mscf ($ 0.05 per produced m3) over the entire planning horizon. All other 

model parameters are specified in Tab. 5.1. The decision-maker’s objective is to 

maximize the net present value of the well development project.  

Model Parameters 
Parameter 

Notation 
Values Units 

Initial well production rate k   299.4 [MMscf/month] 

Production decline exponent a   0.6674 [-] 

Post-refracturing production rate r   120 [MMscf/month] 

Post-refracturing decline change b   0.0005 [1/month] 

Time required for refracturing rt   1 [months] 

Initial fractures contribution    1 [-] 

Tab 5.1 Model parameter specifications for Example 1. 

We solve the MILP model for this problem to zero optimality gap, and identify 

a refracturing strategy that yields a positive NPV of 765,434 USD. The solution reveals 

a single refracturing operation, scheduled exactly 26 months after the original well 

stimulation. Our results suggest that this single refracture treatment allows the operator 

to increase the EUR from 3,696 MMscf (104.4 x 106 m3) to 4,609 MMscf (130.2 x 106 

m3); a remarkable 25% increase over the given planning horizon. Without the well-

restimulation, the projected NPV reduces to 625,664 USD.  
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Fig. 5.6. Optimal production curve of a shale gas well studied in Example 1 

The NLP model presented in section 5.4 can also be applied to this example – as 

long as only one single refracture treatment is allowed over the given planning horizon. 

In this case the objective function needs to be replaced by the maximization of the 

expected ultimate recovery (EUR) since, as outlined previously, the NLP model is not 

designed for economic objective functions. Here, the NLP model reveals that the best 

time for a single refracture treatment is trf = 29.72 months. This solution is obtained in 

less than one second using BARON 16.3 in GAMS 24.2.2. (McCarl, 2011). We find that 

using the MILP model yields a similar solution (trf = 28) when the EUR is maximized 

– rather than the NPV. The slight difference between both solutions can be attributed to 

the conversion of the continuous to the discrete time scale. We also note that the singular 

value for the variable trf in the NLP is (1 – a) / b = (1-0.6674)/0.0005 = 665.2 months, 

much larger than the extent of the planning horizon. 
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5.6.2 Comparison of Different Formulations 

In this section we compare the three alternative MILP formulations, namely the 

Big-M Formulation (BMF), the Standard Hull-Reformulation (SHR), and the Compact 

Hull-Reformulation (CHR) in terms of model size and computational performance. We 

note that all three formulations yield the exact same solution, as reported in the previous 

section. Table 5.2 summarizes selected computational statistics for all three formulations 

when solving Example 1 using Gurobi 5.6.2 in GAMS 24.2.2 on an Intel i7, 2.93 Ghz 

machine with 8 GB RAM.  

 BMF SHR CHR 

Binary variables 240 360 360 

Continuous variables 481 44,161 22,381 

Constraints 15,603 89,163 67,383 

Nodes 7,786 0 0 

Solution time [seconds] 255 22 9 

 

Table 5.2. Computational statistics for the Big-M Formulation (BMF), the Standard 

Hull-Reformulation (SHR), and the Compact Hull-Reformulation (CHR) using Gurobi  

Table 5.2 clearly shows that the BMF yields the smallest model size in terms of 

variables and constraints. However, out of the three proposed formulations it also 

requires the largest solution time (255 s). Despite the fact that the SHR leads to a 

significantly larger model, it takes less time to solve the same problem: merely 22 s. 

What is even more impressive is that Gurobi succeeds at solving the MILP problem to 

optimality at the root node, i.e., prior to branching on any discrete variable. Compared 

to the SHR, the CHR yields a reduced model size in terms of the number of continuous 
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variables and constraints. As with the SHR, the problem is solved at the root node, but 

now it takes merely 9 s to obtain the global optimum. Table 5.3 summarizes the 

computational statistics of all three formulations when solving Example 1 using CPLEX 

24.4.6 in GAMS 24.2.2 on an Intel i7, 2.93 Ghz machine with 8 GB RAM.  

 BMF SHR CHR 

Binary variables 240 360 22,140 

Continuous variables 481 44,161 22,381 

Constraints 15,603 89,163 67,383 

Nodes 10,612 0 0 

Solution time [seconds] 64 12 11 

 

Table 5.3. Computational statistics for the Big-M Formulation (BMF), the Standard 

Hull-Reformulation (SHR), and the Compact Hull-Reformulation (CHR) using CPLEX 

Conceptually, the computational results for solving Example 1 using CPLEX 

24.4.6 as depicted in Table 5.3 compare directly to those obtained by solving the 

problem using GUROBI 5.6.2. However, it is interesting to note that the problem solves 

much faster using CPLEX, particularly for the BMF and SHR models. We also observe 

that the continuous linear programming (LP) relaxations of all three formulations are 

nearly identical.  The fact that CPLEX and Gurobi solve the problem at the root node 

can be attributed to the structure of the SHR and CHR formulations, which allow the 

solvers to take advantage of added cutting planes, efficient heuristics and constraint 

propagation.   
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5.6.3 Example 2 

In our second case study we rely on a numerical reservoir simulation model 

developed by Tavassoli et al. (2013) to determine optimal refracturing strategies for a 

well development project. For this purpose we assume that an upstream operator has 

already decided to develop a particular shale gas well. The reservoir simulation model 

proposed by Tavassoli et al.  (2013) allows us to predict the well’s production profile 

over a 30 year planning horizon based on real data from a Barnett shale well. Moreover, 

the model is capable of determining the well’s production profile after refracture 

treatments induced 24, 36, 48, 60, or 72 months after the original well completions. 

However, unlike Tavassoli et al. (2013), we assume that the well may potentially be 

restimulated twice over its lifespan. The production forecast after secondary refracture 

treatments is estimated based on the simulation results by Tavassoli et al. (2013). 

Through a number of case study variations, we show that our proposed refracturing 

planning model is capable of determining different optimal restimulation strategies, 

depending on what type of price forecast is given. As before, we assume that drilling, 

fracturing and completions expenses amount to 3 million USD, whereas every additional 

refracturing operation costs 800,000 USD and takes exactly one month. The monthly 

discount rate d  is assumed to be 1 %.  

Price Forecast with a Seasonal Pattern 

Our initial example assumes a price forecast with an underlying seasonal trend 

pattern. For demonstration purposes we rely on historic Henry Hub spot price data to 

simulate such a price forecast. The resulting MILP model involves a total of 6,873 binary 

variables, 7,576 continuous variables, and 22,026 constraints. We note that the decision 
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variables 
,i ty  and ˆ, ,i t t

z  can be declared as continuous variables, which can result in an 

improved computational performance depending on the solver selection. The problem 

is solved to global optimality in less than 2 seconds using CPLEX 24.4.6 on an Intel i7, 

2.93 Ghz machine with 8 GB RAM.  

 

Fig. 5.7 Optimal production curve for a shale gas well given a price forecast                                

(refracture treatments scheduled after 24 months and 72 months respectively) 

             The optimal solution we identify yields a positive NPV of 5.7 million USD. As 

shown in Fig. 5.7, the MILP optimizer proposes two refracturing treatments: one 24 

months and the other 72 months after initial completions. A comparison of the given 

price forecast and the projected production profile in Fig. 5.7 suggests that both 

restimulations are scheduled such that they exploit price peaks in the forecast. Clearly, 

the given price forecast has a fundamental impact on the optimal well development 
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strategy. Therefore, we also study two alternative future price forecasts assuming fewer 

stochastic price swings.  

Upwards Trend Price Forecast with a Seasonal Pattern 

We modify the underlying price forecast for the problem and assume an upwards 

trend price forecast with a seasonal pattern. This forecast is taken from the CME Group’s 

Henry Hub natural gas futures quote in January 2016 (CME, 2016). The size of the 

optimization problem and the solution time are the same as in the previous variation of 

the example.  

 

Fig. 5.8 Optimal production curve for a shale gas well given an upwards trend price 

forecast (refracture treatments scheduled after 24 months and 60 months respectively) 

         Given the price forecast seen in Fig. 5.8, the solution from the MILP model yields 

a positive NPV of 2.1 million USD. The decrease in well development profitability – 

compared to the previous variation of the example – is clearly due to a lower price 

forecast. However, in this case too, the solution suggests that a total of two refracturing 

treatments should be performed over the lifespan of the well: the first well restimulation 
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should occur 24 months after well completions (as before) and the second one 3 years 

later (unlike 4 years before). Without additional refracturing treatments, the predicted 

NPV for this particular well development project diminishes to merely 1.6 million USD.  

Downwards Trend Price Forecast with Seasonal Pattern 

Finally, we modify the underlying price forecast for the problem once more and 

assume a downwards trend price forecast with a seasonal pattern. This forecast is 

entirely hypothetical but motivated by the CME Group’s Henry Hub natural gas futures 

quotes (CME, 2016). As before, the size of the optimization problem and the solution 

time are the same as in the previous variation of the example. 

 

Fig. 5.9 Optimal production curve for a shale gas well given a downwards trend price 

forecast (single refracture treatment scheduled after 24 months) 

            Based on the revised price forecast shown in Fig. 5.9, the optimization yields a 

positive NPV for the well development project of 2.0 million USD. Despite the 

downward trend of the price forecast, the solution suggests that well development is 
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economically favorable. However, in this particular case the solution shows that only a 

single refracture treatment should be performed, and it should occur two years into the 

planning horizon. Without this restimulation, the predicted NPV decreases to 1.5 million 

USD.  

            The above examples clearly demonstrate that price forecasts have a significant 

impact on optimal restimulation strategies – particularly on the frequency and timing of 

such measures. Hence, we argue that well development economics – and price forecasts 

in particular – need to be taken into account whenever refracture treatments are 

considered. Moreover, our results have shown that multiple refracture treatments can 

provide a viable means to improving the profitability of unconventional wells. 

5.7 Conclusions 

In this work, we have presented two optimization models for planning shale gas 

well refracture treatments. First, we proposed a novel forecast function for predicting 

pre- and post-refracturing productivity declines and a related continuous-time NLP 

model designed to determine whether or not a shale gas well should be refractured, and 

when exactly to perform the refracture treatment. We also presented a discrete-time, 

multiperiod MILP model that explicitly accounts for the possibility of multiple 

refracture treatments over the lifespan of a well. In the context of the latter, discrete-

time model, we compared three alternative formulations: a big-M formulation as well as 

a disjunctive formulation transformed using Standard and Compact Hull-

Reformulations. Applied to a representative well development project that considers the 

possibility of multiple refracture treatments, we found that the Compact Hull-

Reformulation yields the best computational performance in terms of solution times.  
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The proposed modeling framework can be applied to planned, new well 

development projects, but also to existing, already producing wells to determine whether 

or not refracture treatments make economic sense. If, for instance, a price peak appears 

imminent in the near future, our modeling framework can help to decide whether the 

magnitude and extent of the projected price peak justifies a well restimulation. We 

applied the proposed MILP model to two case studies to demonstrate that refracturing 

can increase the expected ultimate recovery of a well over its lifespan by up to 25 %, 

and improve the profitability of a well development project by several hundred thousand 

USD. We find that the optimal number of refracture treatments and their timing are 

highly sensitive to the given natural gas price forecast. Therefore, our work is meant to 

lay the foundation for a more rigorous analysis of planning refracture treatments for 

field-wide development projects, considering price forecast uncertainty. At this time 

work is currently under progress to: (a) expand the proposed modeling framework in the 

context of stochastic programming to account for uncertain price forecasts and post-

refracture well-performance, and (b) incorporate a reduced-order shale gas well and 

reservoir proxy model – such as those proposed by Knudsen and Foss (2013) and 

Knudsen et al. (2014) – directly into our model.  
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5.8 Nomenclature 

Sets 

i I    Refracture treatments 

t T    Time periods 

Binary variables 

,i tx    Active if well refractured for the i-th time in time period t 

,i ty    Active if in time period t the well has been refractured a total of i times 

ˆ, ,i t t
z    Active if in time period t the well has been refractured a total of i times 

and the last refracturing occurred in time period 𝑡̂ 

Continuous variables 

tP  Shale gas well production in time period t 

trf   Timing of refracture treatment 

Parameters 

a   Production decline exponent 

b   Post-refracturing decline change 

d   Discount rate  

k   Initial well production peak 

r   Post-refracturing production peak 

rt   Duration of refracture treatment 

T   Expected lifespan of the shale gas well 

ˆ, ,i t t
Q   Forecasted production of a well in time period t after a total of i refracture 

treatments when the last one occurred in time period 𝑡̂ 

   Post-refracturing peak reduction factor
 

   Initial fractures contribution 
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CHAPTER 6 

 

Stochastic Programming Models for Optimal Shale Well 

Development and Refracturing Planning under Exogenous and 

Endogenous Uncertainties 

6.1 Introduction 

The oilfield service company Schlumberger estimates that roughly 10,000 horizontal 

shale oil and gas wells drilled in the past five years in North America are candidates for 

refracturing (Sider & Ailworth, 2013). The belief is that a well restimulation can restore 

production to near-initial levels at far less cost than drilling and completing a new well 

(Johnson, 2016). Fig. 6.1 shows the production history of a Marcellus shale well 

refractured by Consol Energy after approximately four years. In this particular case the 

production data clearly reveals that the restimulation was very effective; production 

rates are restored, and even the decline appears to be less drastic following the 

recompletion. Naturally, restimulation costs vary between operators or development 

areas and generally they depend on the selected refracturing technique. While Consol 

Energy estimates that a restimulation costs approximately two million USD, Encana is 

refracturing wells for less than one million USD (Miller, 2015). In comparison, the 

process of drilling, fracturing and completing a new shale well in the Marcellus Play 

ranges in cost between three and six million USD.    
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Fig. 6.1: Production history of a Marcellus shale well refractured after 

approximately four years. Source: Analyst presentation Consol Energy, June 2014 

However, not only does the cost of restimulations vary between operators. King 

(2015) reports that both timing and frequency of recompletions oftentimes differ too. 

While some operators choose to refracture early into the lifespan of their wells, others 

wait several years to restimulate horizontal laterals. Moreover, there is increasing 

evidence suggesting that multiple restimulations of the same wellbore may make 

economic sense. In fact, Broderick et al. (2011) claim that shale gas wells could be 

refractured up to five times over their expected lifespan of 20-25 years.  

6.2 Literature Review 

Despite its practical potential, the refracturing planning problem is not a well-

studied problem in the literature. To this day, notably few researchers have addressed 

the challenges that shale gas producers face when scheduling and performing well 

restimulations. Among the few works that have been published in this field, Sharma 

(2013) proposes guidelines and dimensionless type curves to accomplish two things: a) 

determine the ideal timing of a refracture treatment in the life of a well, and b) evaluate 
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the potential increase in well production after the restimulation. Eshkalak et al. (2014) 

study the refracturing planning problem with an emphasis on the economics of well 

restimulations. Through a comprehensive case study involving a total of 50 shale wells, 

the authors find that refracturing is profitable even in low-price environments, although 

the actual timing of the well restimulations is pre-determined. Tavassoli et al. (2013) 

propose a comprehensive, numerical simulation model to evaluate the impact of well 

restimulations on the production performance of shale wells as a function of reservoir 

parameters, the recompletions design, and the timing of the refracture treatment. As a 

rule of thumb, the authors advise upstream operators to consider the restimulation of 

their shale wells whenever production decline rates are below 10-15%.  

Lastly, Cafaro et al. (2016) present an optimization framework to plan shale gas 

well refracture treatments. In their work, the authors assume that the decision to drill, 

fracture and complete a prospective shale well has already been made. In order to 

determine if, when and how often the well should be restimulated over its lifespan, 

Cafaro et al. (2016) propose two optimization models: a continuous-time nonlinear 

programming (NLP) model and a discrete-time mixed-integer linear programming 

(MILP) model. Whereas the NLP model is primarily designed to identify the optimal 

time to refracture a well such that its expected ultimate recovery (EUR) is maximized, 

the MILP model can be used to schedule multiple refracture treatments over the life of 

a well. Both models, however, are purely deterministic in nature.  

In this chapter we present an important extension of the work by Cafaro et al. 

(2016). Our primary objective is to explicitly account for two major sources of 

uncertainty: price developments over time, and production performance before/after 
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restimulations. In addition, we present a generalized production estimate function, and 

a moving horizon framework that enables upstream operators to schedule refracture 

treatments as true recourse actions to uncertainty realizations and/or potential 

disruptions.  

6.3 General Problem Statement 

We assume that an upstream operator has identified a prospective location to 

drill, fracture and complete a single shale gas well. The estimated production of the 

prospective well over time is characterized by a given type curve. Once completed, it is 

assumed that this well can be refractured multiple times over its expected lifespan. Every 

restimulation leads to a reinvigoration of the well’s gas production rate.  

However, in this work we recognize that a prospective well’s production rate 

over time cannot always be forecasted accurately a priori, i.e. before the well has actually 

been drilled and completed. Particularly, the post-refracture response performance can 

be difficult to anticipate. Hence, we assume that – in addition to the default type curve 

– a discrete set of well performance scenarios is provided. These scenarios account for 

the possibility that the gas production prior to and after any number of well 

restimulations exceeds or fails to meet expectations.  

In addition to well performance scenarios, we assume that the operator chooses 

to consider a set of natural gas price forecast scenarios. These scenarios reflect the fact 

that it is generally challenging to predict natural gas price developments reliably over 

time, especially over multiple years. By considering a number of unique, potential price 

development scenarios, the intent is to “robustify” the proposed well development 

strategy over a wide range of possible outcomes.  
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In light of uncertain well production performance and uncertain gas price 

forecast, the goal of this work is to determine: (a) if a well should be drilled at the 

prospective location at the present time, (b) whether or not the well should be refractured 

eventually, (c) how often the well should be refractured over its expected lifespan, and 

(d) when exactly the refracture treatments should be performed. The objective is to 

maximize the expected net present value of the well development project. 

The remainder of this chapter is organized as follows. Initially, we present a 

generalized production estimate function that explicitly considers the possibility of 

refracturing a shale well multiple times over its lifespan. Next, we briefly review general 

concepts of stochastic programming to address optimization problems under uncertainty 

and we discuss why two-stage stochastic programming is particularly suitable for 

addressing the well development and refracturing planning problem in light of 

exogenous price uncertainty and endogenous well performance uncertainty. The 

integrated planning problem is tackled with two distinct mixed-integer linear 

programming models: a) a two-stage stochastic programming model for well 

development planning, and b) a two-stage stochastic programming model for 

refracturing planning. Both models are embedded in a moving horizon strategy, which 

allows decision-makers to recognize refracturing as an opportunity to periodically 

respond to uncertainty realizations and/or potential disruptions. Moreover, we show that 

the moving horizon strategy can be used to effectively address the endogenous nature of 

the well performance uncertainty. Thereafter, we present a comprehensive case study to 

demonstrate how the proposed optimization framework can be used to solve the practical 

well development and refracturing planning problem under uncertainty. Lastly, we 
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discuss qualitatively what role refracturing may have in field-wide shale development 

projects.  

6.4 Generalized Production Estimate Function 

In this section we propose a generalized production estimate function that 

predicts how much gas a well is expected to produce over time as a function of when 

and how often it has been restimulated. For this purpose we introduce the parameter 

ˆ, , ,i t t p
Q . This parameter captures the amount of gas to be produced by a well in time 

period t  given that it has been refractured i  times total, and the last stimulation was 

performed in time period t̂ t .  Since we wish to account for the uncertainty in 

predicting gas production over time, this parameter also includes the well-performance 

scenario index p . This index highlights the fact that the estimated gas production is 

scenario-dependent, which will be outlined in more detail below.  

As suggested by Cafaro et al. (2016), the gas production of an unconventional well 

can be represented adequately by a decreasing power function. This power function is 

defined by an expected initial production peak parameter 
pk  and an expected initial 

production decline parameter 
pa , both of which are assumed to be scenario-dependent. 

Yet, these two parameters by themselves can only represent the production of a shale 

well that has not been refractured. In order to account for restimulation measures we 

propose Eq. (6.1).  

   , ,
ˆ

ˆ ˆ,, , , , ,
ˆ 1

i p i pp
a b ta

i p pi t t p i t p
k t r tQ t rt

  
         (6.1) 
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The function in Eq. (6.1) contains the expected initial production peak parameter 
pk

and the expected initial production decline parameter 
pa . However, this function also 

considers a number of additional factors that play an important role as soon as a well 

has been refractured once or more often. For instance, every time a shale well is 

refractured, the contribution of its initial fractures to the overall production changes. 

Some operators report an increase in production contribution, while others have 

experienced decreases. We introduce the parameter 
,i p  to capture this aspect. Initially, 

after a well has been drilled and fractured for the first time, this parameter equals one. 

After every restimulation, however, the parameter may be set to a different expected 

value. This information can typically be provided by completions design engineers, 

geologists, or reservoir engineers. By default, we assume that , p

i

i p  , meaning that 

every additional refracture treatment has the same impact on the original fractures. 

        More importantly, the second term of the gas production estimate function in Eq. 

(6.1) captures the characteristic peak in production following a well restimulation. We 

assume that every restimulation takes rt  time periods (usually, one month). For this 

reason, we introduce the expected, supplemental production peak parameter ˆ, ,i t p
r . The 

value of this parameter changes depending on how many times ( i ) the well has been 

refractured and when the last restimulation occurred, captured by the index t̂ . With 

every additional refracture treatment, this supplemental production peak becomes less 

pronounced. Also, field tests have revealed that the peak following a restimulation 

decreases the longer an upstream operator waits to refracture a well. We note that 

previous work by Cafaro et al. (2016) does not consider the timing of a well 
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restimulation to anticipate the supplemental production peak following the refracture 

treatment. For simplicity, the authors assume that every time a well is refractured, the 

supplemental production peak lessens by a peak reduction factor 
,i p , which explicitly 

considers the number of total restimulations, but does not account for the timing of these 

measures. Conceptually, the approximation ˆ ,, , i p pi t p
rr    is valid and may be used to 

simplify the problem at hand. 

        Finally, we address the exponent ( , ,
ˆ

i p i pa b t   ) in Eq. (6.1). Essentially, this 

exponent is an estimate of the post-refracture production decline after i restimulations 

in scenario p. The term is made up of three critical factors that are believed to determine 

the production decline following a refracture treatment: a) the initially expected 

production decline of the well after i restimulations 
,i pa  (which may vary depending on 

how many stages of the well are actually recompleted), b) the expected additional 

decline after i restimulations 
,i pb , and c) the timing of the i-th refracture treatment t̂ . 

This composite decline exponent is motivated by the work of Tavassoli et al. (2013) 

who show that the post-refracture production decline increases the longer an upstream 

operator waits to refracture a shale well. As before, all production decline parameters 

are scenario-dependent and can therefore be defined to account for different well-

performance scenarios p. Fig. 6.2 shows an illustration of the generalized production 

estimate function with added “noise” (created via Monte Carlo simulation). The type 

curves are representative for a well having been fractured once, twice or three times 

considering different production performance parameter settings.  
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Fig. 6.2: Illustration of the generalized production estimate function for multiple 

refracturing treatments considering different production performance settings 

         Altogether, the generalized production estimate function in Eq. (6.1) is more 

rigorous and comprehensive than the previously proposed correlation by Cafaro et al. 

(2016), since it explicitly considers: a) how often a well has been refractured in total, b) 

when a well was last restimulated, and c) by how much production may deviate 

depending on the degree of uncertainty.  

6.5 Concepts of Stochastic Programming 

 In this section, we briefly review concepts and premises of stochastic 

programming. The motivation for stochastic programming originates from the fact that 

decision-makers often face problems involving uncertain parameters. These parameters 

could include price forecasts, processing times, or cost assumptions. Stochastic 

programming allows decision-makers to solve problems involving uncertain parameters 
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through rigorous mathematical optimization. The premise of stochastic programming is 

that a problem is essentially split into two broad categories of decisions: a) those that 

have to be made in light of the uncertainty, i.e., not knowing the actual realization of the 

uncertain parameters, and b) those decisions that can be taken as soon as the uncertainty 

has revealed itself. The former decisions are referred to as here-and-now decisions, 

whereas the latter can be classified as wait-and-see, corrective or recourse actions. The 

interpretation of this categorization is as follows: in light of uncertain parameters the 

goal is to identify a particular here-and-now solution strategy (e.g. a schedule, an 

assignment, or a particular design) that works best for a set of possible scenarios. This 

solution should be such that regardless of which of the scenarios is true, the selected 

strategy hedges against the risk of uncertainty and, in theory, it is prepared for any 

possible outcome. At the same time, the aforementioned recourse actions provide a 

decision-maker with the flexibility to respond to particular uncertainty realizations. The 

more flexibility a decision-maker has in terms of recourse actions, the less impactful the 

here-and-now decisions are. In stochastic programming the time horizon is generally 

discretized and all potential uncertainty realizations are obtained from discretized 

probability distributions. Therefore, a given set of discrete scenarios merely represents 

a finite set of different realizations for the uncertain parameters (Apap & Grossmann, 

2016). Given the probability of each scenario, we use mathematical programming to 

maximize the expected value of the objective function, subject to the constraints from 

all scenarios. We refer to the formulations of these optimization problems as the 

deterministic equivalent of the stochastic problem.  
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In this work we primarily focus on two-stage stochastic programming (Birge and 

Louveax, 2011) where the entire set of decision variables is split into two subsets: here-

and-now decision variables (stage one) and wait-and-see decision variables (stage two 

recourse actions). Alternatively, optimization problems under uncertainty can be 

addressed via multi-stage stochastic programming. In this case decision-makers have 

the opportunity to make here-and-now decisions at three or more stages throughout the 

time horizon. Clearly, multi-stage stochastic programming is a more rigorous and 

accurate representation of the decision-making process in practice. However, these 

formulations lead to significantly larger models that are oftentimes computationally 

intractable.  

Within the realm of stochastic programming, we can distinguish between two 

types of uncertainty: exogenous and endogenous uncertainty. Exogenous uncertainty 

realizes regardless of what a decision-maker does. If we consider the future natural gas 

price as an uncertain parameter, for instance, we can presume that the uncertainty will 

realize eventually, i.e., the market will settle on a particular gas price – regardless of 

whether a shale gas producer drills or refractures a prospective well or not. The 

realization of endogenous uncertainty, on the other hand, depends on what a decision-

maker ends up doing. For example, in this work we assume that the production 

performance of an unconventional well before and/or after a restimulation is uncertain 

prior to actually drilling the well. However, once an upstream operator has actually 

drilled the lateral section of the well, completions engineers gather reservoir data 

including permeability and porosity readings, which in turn can be used to predict the 

well’s production performance much more accurately. Therefore, we consider well 
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performance to be an endogenous uncertainty. It is worth mentioning that in the past, 

optimization problems under exogenous and endogenous uncertainty have been 

addressed almost exclusively with multi-stage stochastic programming. For a detailed 

examination of multi-stage stochastic programming under endogenous and exogenous 

uncertainties we refer to the comprehensive work by Apap & Grossmann (2016).  

6.6 Stochastic Programming Model for Well Development Planning 

In this work, we assume that the practical well development planning problem 

under exogenous price uncertainty and endogenous well performance uncertainty can 

be formulated as a two-stage stochastic programming approach. First, we consider the 

premise of the generic well development planning problem. Initially, an upstream 

operator has identified a prospective location to drill, fracture and complete a single 

shale gas well. For this well, a long-term forecast of its production over time can be 

estimated. However, since this production estimate is uncertain, the operator wants to 

consider alternative well performance scenarios. Moreover, even at this stage in the 

development process, the operator may want to consider the possibility of refracturing 

the well at some point over the course of its life, possibly even multiple times. 

Although the post-refracture production performance can also be estimated, it is 

likely that the operator’s confidence in this estimate is limited. To this day, operators 

have drilled thousands of unconventional wells, but only restimulated a small fraction 

of them. Therefore, the post-refracture well performance is also assumed to be uncertain. 

In order to hedge against the risk of uncertainty, we consider a set of well performance 

scenarios p P , each with probability 
p , as part of the well development planning 

problem.  
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The planning problem is also challenging because commodity prices are known to 

fluctuate dramatically. Upstream operators need to know that their potential investment 

in a prospective shale well makes economic sense across a range of possible price 

developments. Hence, we explicitly factor price uncertainty into our analysis, and 

therefore consider a set of price forecast scenarios f F . Furthermore, our framework 

gives operators the opportunity to assign a likelihood 
f  to the realization of each 

scenario.  

The purpose of the well development planning problem is then to determine, first 

and foremost, if an upstream operator should drill the prospective shale well at the 

present time. In the proposed optimization framework this key decision is captured by 

introducing the binary decision variable DRILLw . In the context of two-stage stochastic 

programming, as outlined earlier, this variable is classified as a stage one, here-and-now 

decision. Without knowing what the ultimate production performance will be or how 

natural gas prices will develop, the optimization model sets this variable either to one or 

to zero in light of the considered spectrum of uncertainty scenarios. Beyond the actual 

well development, there are a number of decisions that can be made individually for 

every considered scenario; these are denoted as scenario-dependent, wait-and-see 

decisions. Among these decisions are: a) whether or not the well should be refractured 

eventually, b) how often the well should be restimulated over its expected lifetime, and 

c) when exactly the refracture treatments should be performed. All of the 

aforementioned aspects of the well development planning problem are captured by the 

binary decision variable 
, , ,i t f px . This variable is equal to one if the well is scheduled to 

be restimulated for the i-th time in time period t  under price scenario f  and well 



 207 

performance scenario p .  The following constraints are designed around these two key 

decision variables, DRILLw  and 
, , ,i t f px .  

       For instance, the inequality in Eq. (6.2) is added to the proposed model to ensure 

that unless the well has actually been drilled, it cannot be refractured.  

 , , , , , ,DRILL

i t f pw x i I t T f F p P        (6.2) 

We note that Eq. (6.2) is expressed as an inequality constraint to allow for the 

possibility of drilling the well but never actually refracturing it over its lifespan. In turn, 

Eq. (6.3) ensures that the prospective well cannot be restimulated for the i-th time more 

than once.  

 , , , 1 , ,i t f p

Tt

i I f F px P


       (6.3) 

Eq. (6.4) is a sequencing constraint ensuring that if in time period t  the well is 

restimulated for the i -th time, then it has to have been refractured for the  1i  -th time 

previously. We note that the parameter rt  is introduced to represent the number of time 

periods it actually takes to recomplete the well.  

 , , , 1, , , , , , , 1i t f p i f p

t rt

i Ix t T px f F P i




 

         (6.4) 

At this point we rely on a simple but effective step to strengthen the quality of the 

proposed model formulation. We introduce an auxiliary binary variable 
, , ,i t f py  to 

determine whether as of time period t  the well has been refractured i  times in scenarios 

f  and p . Although the variables 
, , ,i t f px and 

, , ,i t f py are closely related, they serve 

different purposes. The variable 
, , ,i t f px marks the exact timing of a restimulation, 

whereas the variable 
, , ,i t f py  keeps track of the “state of restimulation”. For instance, it 
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is entirely possible that in time period 36t   (typically months) the well has been 

refractured twice for a particular scenario combination, hence 
2, 36, , 1i t f py  . Yet, this 

does not necessarily imply that the restimulation actually occurred in this particular time 

period. Instead, the well could have been refractured in time period 24t   for the second 

time, in which case 
2, 24, , 1i t f px  . To establish the relationship between these two 

variables, we include Eqs. (6.5), (6.6) and (6.7) in the model.  

 
, , , , , , , , ,i t f p i t f py i I t T f F px P        (6.5) 

 , , , , , , , , ,i t f p i f p

t

i I t p Py T f Fx 
 

        (6.6) 

 , , , , 1, , 1, , , 0 1,, ,i t f p i t f p i t f py xy f ti I F p P         (6.7) 

       All three equations above can easily be derived using propositional logic (Raman 

& Grossmann, 1991) and we refer to the work by Cafaro et al. (2016) for the actual 

derivation. Similar to the previously introduced Eq. (6.3), we also add Eq. (6.8) to the 

model.  

 
0

, , , , ,DRILL

i t f p

Ii

w t T f F py P


       (6.8) 

        However, we note that unlike Eq. (6.3), the above constraint is actually expressed 

as an equality constraint. That is because at any point in time the well has to be in a 

particular “refracturing state” 0i I , if drilled. In fact, the set 0I  includes the element oi  

which represents the state “drilled and fractured, but not refractured”. Next, we 

introduce an additional binary variable ˆ, , , ,i t t f p
z . This variable can be derived from the 

previously defined decision variables  
, , ,i t f px and 

, , ,i t f py  as follows:  

 ˆ ˆ, , , , , , , , , ,
ˆ,, , ,i t f p i t f p i t t f p

y tx z i I T t t f F p P        (6.9) 
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       Practically speaking, the variable ˆ, , , ,i t t f p
z  indicates whether in time period t  the well 

has been refractured i  times in the past, and the last restimulation occurred in time 

period t̂  for the scenario combination f  and p . By applying propositional logic to the 

statement in Eq. (6.9), we derive Eqs. (6.10)-(6.12).  

 ˆ ˆ, , , , , , , , , ,
ˆ1 , , ,,i t f p i t f p i t t f p

x z i I T t t f F p Py t              (6.10) 

 ˆ , , ,, , , ,
ˆ, , , ,i t f pi t t f p

y i I t T t Pz t f F p         (6.11) 

 ˆ ˆ, , , , , , ,
ˆ, , , ,

i t t f p i t f p
x i I t T t t f Fz p P         (6.12) 

     For the particular element 0oi I , Eqs. (6.10)-(6.12) take the following form: 

 ˆ, , , 1, , , ,
ˆ1 , ,, ,DRILL

i t f p oi t t f p
w z i i T t t fy pt F P             (6.13) 

 ˆ , , , 1, , , ,
ˆ, , , ,i t f p oi t t f p

y iz i t T t t f F p P         (6.14) 

 ˆ 1, , , ,
ˆ, , , ,DRILL

oi t t f p
w i i t T t t f F p Pz          (6.15) 

The actual gas production of the prospective well 
, ,t f pP  is directly linked to the 

previously proposed production estimate function ˆ, , ,i t t p
Q  in Eq. (6.16).  

 ˆ ˆ, , , , , , , , ,
ˆ 1

, ,
o

t f p i t t p i t t f
I t

t

i
p

Q z t T f F p PP
 

       (6.16)  

     Since the previously introduced decision variable ˆ, , , ,i t t f p
z  captures the current time 

period (index t ), how often the well has been refractured (index i ), and when the last 

restimulation occurred (index t̂ ) for every scenario combination (indices f  and p ), we 

link it directly to the production ˆ, , ,i t t p
Q  predicted by Eq. (6.1). However, we note that 
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the proposed optimization framework can be linked to any alternative production 

forecast function simply by replacing ˆ, , ,i t t p
Q  by the preferred estimation.  

       Finally, Eq. (6.17) ensures that, if drilled, the well should be in one “refracturing 

state” at every point in time for every scenario combination.  

 
0

ˆ, , , ,
ˆ 1

, ,DRILL

i t t

t

f p
Ii t

t T f F p Pz w
 

      (6.17) 

The objective of the well development project is to maximize the expected net present 

value. This means that in light of the considered price forecast uncertainty and well 

performance uncertainty, revenues from gas sales have to be maximized, whereas 

expenses for well development and recompletions are to be minimized.  

    , , , , , ,

Stage 1 decision (here-and-now):
Develop the well: yes or no? Stage 2 decisions (wait-and-see):

Restimulate the we

1max
tDRILL

f p t f p t f i i t f p

f F Pp t iT I

ENPV DC CC d rw g cp xP 


   

 
        

 
   

ll: yes or no? how often? when? (scenario-dependent)

  

  (6.18) 

The objective function in Eq. (6.18) clearly exemplifies the two-stage nature of the 

proposed optimization model. The initial summation term captures the stage one, here-

and-now decision concerned with whether or not the well should be developed at the 

present time. This is a yes-or-no design decision that involves a development expense 

for drilling and completions operations, as represented by the parameters DC  and CC

, respectively. The binary variable DRILLw  is clearly scenario-independent, accounting 

for the fact that this decision needs to be made in light of the uncertainty, i.e., not 

knowing which of the scenarios will turn out to be true.  

The second summation term in Eq. (6.18) represents the stage two, wait-and-see 

decisions that reflect whether or not, how often and when the well needs to be 
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refractured. These decisions represent scenario-dependent recourse actions that can be 

made individually and independently for every single scenario combination of price 

forecast and well performance. Since every unique scenario combination may result in 

a different production profile and/or restimulation strategy, revenues and expenses may 

vary scenario-by-scenario. In particular, this term of the objective function contains the 

scenario-dependent gas price parameter 
,t fgp  as well as the refracture cost irc  which 

may depend on the total number of recompletions. Moreover, every scenario 

combination is individually weighted based on specified scenario realization 

probabilities, 
f  and  

p , for price forecasts and well performance, respectively. These 

probability parameters allow decision-makers to specify their confidence in individual 

scenarios, which will then be reflected in the solution identified by the optimization. 

Altogether, Eqs. (6.2)-(6.8) and (6.10)-(6.18) define the formulation of the well 

development planning problem.  

In the previous section we pointed out that the pre-and post-refracture well 

performance uncertainty is endogenous in nature, whereas the price forecast uncertainty 

can be categorized as exogenous. However, at this stage in the planning process both 

uncertainty sources are treated the same because the prospective well has not actually 

been drilled and completed yet. Once this has been done, completions and reservoir 

engineers can use collected subsurface data to refine their production estimates to the 

point where a stochastic analysis is no longer necessary. This leads us to the refracturing 

planning problem, which will be addressed in greater detail in the following section.  
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6.7 Stochastic Programming Model for Refracturing Planning 

The setup of the refracturing planning problem is as follows. Unlike before, we 

assume that an upstream operator is dealing with an actively producing shale gas well. 

Similar to the premise of the well development planning problem, however, a long-term 

type-curve forecast for this well’s gas production is available. Yet, at this point into the 

well’s lifespan we assume that the gas production over time can be predicted fairly 

accurately. Right after turning the well in-line, operators record the initial production 

and get early readings on its decline rate. Also, subsurface data gathered during drilling 

and fracturing operations allows producers to anticipate a well’s response behavior to 

one or many restimulations relatively precisely. Hence, it is no longer necessary to 

account for well performance uncertainty as part of the refracturing planning problem. 

Price uncertainty, on the other hand, continues to present a major challenge to the 

operator. Therefore, we still consider a set of natural gas price forecast scenarios f F  

with probability 
f  when scheduling refracture treatments for the given well.  

The refracturing planning problem is meant to address a number of important 

decisions that an upstream operator needs to make in the situation described above. The 

primary purpose is to determine if the active shale well should be refractured at the 

present time. That is ultimately the question that motivates this section. Beyond this 

decision, however, we also wish to determine: a) whether or not the well should be 

refractured again, b) how often it should be restimulated over its expected lifespan, and 

c) when exactly subsequent refracture treatments should ideally be scheduled. As before, 

we propose a two-stage stochastic programming model to address the refracturing 

planning problem in light of uncertain price forecasts. In the spirit of two-stage 
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stochastic programming, the here-and-now design decision is concerned with the 

possibility of restimulating the well at the present time, whereas all other decisions can 

be classified as scenario-dependent, wait-and-see recourse actions. Although the model 

formulation of the refracturing planning problem is clearly inspired by the well 

development planning problem, there are some distinct differences that are highlighted 

below.  

Eqs. (6.19)-(6.34), introduced next, compare directly to Eqs. (6.3)-(6.8), (6.10)-

(6.12) in the previous section. However, there are a few notable differences. First, and 

most importantly, we introduce a new binary decision variable REFRACx to capture 

whether or not the actively producing well should be refractured at the present time. In 

the context of two-stage stochastic programming, REFRACx represents the stage one, here-

and-now decision variable. Unlike before, we now also link the index i  to the “current 

refracture state” cr  which tracks how often a well has been restimulated thus far. The 

introduction of the current refracture state is necessary since the model proposed in this 

section is intended to be used repeatedly over the course of a well’s lifespan, even after 

multiple refracture treatments may already have occurred. For more details regarding 

this scheme we refer to the next section (Moving Horizon Framework for Well 

Development and Refracturing Planning). Lastly, we point out that unlike the previous 

model, the constraints below are not set up over the set of well performance scenarios 

p P  since the production uncertainty is assumed to have resolved itself at this point in 

the planning process.  

The inequalities in Eqs. (6.19) and (6.20) are included in the refracturing planning 

model to make sure that the shale well cannot be refractured for the i-th time more than 
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once. Here and in several other constraints below, the introduction of the stage-one 

decision variable REFRACx makes it necessary to distinguish between the first opportunity 

to recomplete the well (here-and-now), represented by the refracture state 1i cr   in 

time period t1, and additional opportunities for future well restimulations 1i cr  .  

 , , 1 1,REFRAC

t f

Tt

i x rx i c f F


        (6.19) 

 , , 1 1,i t f

t T

i cr fx F


       (6.20) 

Eqs. (6.21) and (6.22) represent sequencing constraints ensuring that the optimizer 

cannot schedule the i- th well restimulation, unless the (i-1)-th recompletion has been 

performed. As before, the practical constraint is expressed via two inequalities due to 

the stage-one decision variable REFRACx . 

 , , 1, , , , , 2i t f i f

RE

t rt

FRAC i I t T f F ix x cx r




 

            (6.21) 

 , , 1, , , , , 2i t f i f

t rt

i I t T f F i cx x r




 

         (6.22) 

Eqs. (6.23)-(6.28) are directly adapted from Eqs. (6.5)-(6.7) in section 6.6 Stochastic 

Programming Model for Well Development Planning. They are added to the model to 

account for the auxiliary variable 
, ,i t fy , which captures the “state of restimulation”. For 

more details we refer to the previous section.  

 , , 11, ,REF

i

C

t

R

f

A y i cr t tx f F         (6.23) 

 
, , , , , 1,i t f i t fx y i cr t f F       (6.24) 

 , , , , 1, ,REFRAC

i t f i f

t

x i cry x t T f F
 

         (6.25) 

 , , , , 1, ,i t f i f

t

i cr t Tx f Fy 
 

        (6.26) 
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 1, , , ,1 REFRAC

i t fy t tx cr Ffi        (6.27) 

 
, , , 1, 1, , , ,1i t f i t f i t fy t fy x i cr F         (6.28) 

As before, we also include Eq. (6.29) in the proposed model to ensure that at any 

point in time the well can be categorized by its “refracturing state” 0i I .  

 , , 1 ,i t f

i cr

t Ty f F


      (6.29) 

Eqs. (6.30)-(6.34) can be traced back to constraints (6.10)-(6.12) in the previous 

section. These inequalities capture the relation between the decision variables ˆ, , ,i t t f
z , 

, ,i t fy , ˆ, ,i t f
x  and REFRACx .  

 ˆ, , 1, , ,
, ˆ1 1, ,i t f i t t f

REFRAC zy i cr t T t fx t F                (6.30) 

 ˆ ˆ, , , , , , ,
ˆ1 1 1,, ,i t f i t f i t t f

x z i cr ty T t t f F                 (6.31) 

 ˆ , ,, , ,
ˆ1, , ,i t fi t t f

y i cr t T t t f Fz          (6.32) 

 ˆ 1, , ,
ˆ1, , ,REFRAC

i t t f
x i cr t T t t fz F         (6.33) 

 ˆ ˆ, , , , ,
ˆ1, ,1 ,

i t t f i t f
x i cr t T t t f Fz           (6.34) 

If the optimization concludes that a well restimulation is not justified here-and-now, 

then 0REFRACx   and by Eq. (6.27)
, 1, 1cr t fy  . This means that the well’s “current 

refracturing state” cr  does not change in time period 1t . In fact, the well will remain in 

the refracturing state cr  until an additional refracture treatment 1cr   is proposed as a 

recourse action in a future time period. To account for this particular case, we introduce 

the binary variable ,

N

t fz . For as long as no refracture treatment is scheduled, this variable 

will be set to one according to Eq. (6.35).  
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ˆ ,, , ,

ˆ1 1

1 ,N

t fi t t

t

f
cr ti

z t Fz T f
  

       (6.35) 

We note that Eq. (6.35) ensures that , 0N

t fz   whenever a recompletion 1i cr   is 

performed, since the corresponding variable ˆ, , ,i t t f
z  will automatically take value one. 

Finally, we determine the well’s production in time period t  for price forecast scenario 

f  by Eq. (6.36).  

 ˆ ˆ, ,, , , , ,
ˆ 1

,N N

t f t

t

i

t fi t t i t t f
cr t

Q z Q z t T fP F


        (6.36) 

Similar to the well development planning model, the gas production in time period t  

depends on the “refracturing state” of the well at that time, which in general is 

determined by the variable ˆ, , ,i t t f
z . This decision variable is multiplied by the parameter 

ˆ, ,i t t
Q , capturing the anticipated production of the well in time period t  considering that 

it was last refractured for the i- th time in time period t . However, in this refracturing 

planning model we introduce an additional term into this key constraint. If no further 

refracture treatment is scheduled during the first t  time periods of the current planning 

horizon, and therefore ˆ, , ,
0

i t t f
z  , then the production is given by the parameter N

tQ . 

This parameter reflects the default production of the well without any restimulations. 

For the refracturing planning problem we also rely on a slightly modified objective 

function as seen in Eq. (6.37).  

   , , , ,

Stage 1 decision (here-and-now):
Refracture the well now: yes or no? 

Stage 2 decisions (wait-and-see):
Restimulate the well lat

ax 1m
t

f t f t f i i t

REFRAC

t i

f

f F T cr

x P gEN pPV RC d rc x


  

 
       

 
  

er: yes or no? when? how often? (scenario-dependent)

  

  (6.37) 
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6.8 Moving Horizon Framework 

For clarification purposes, we contrast moving and rolling horizon strategies 

since these expressions are sometimes used interchangeably by different authors. By 

moving horizon we mean that a fixed-length planning horizon is periodically moved 

forward in time, and the corresponding optimization problem is re-solved based on 

updated input data. We refer to Fig. 6.3 for a graphic illustration of the moving horizon 

concept. A rolling horizon approach, on the other hand, is often presented as a 

decomposition technique for planning and scheduling problems (Zamarripa et al., 2016), 

in which the entire time horizon is divided into two blocks: a detailed time block and a 

subsequent aggregate time block.  

 

Fig. 6.3: Visualization of the two-stage stochastic programming models for well 

development and refracturing planning embedded in a moving horizon strategy  
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In this work, we propose a moving horizon strategy as shown in Fig. 6.3 to address 

the integrated well development and refracturing planning problem. At each step of this 

moving horizon strategy, we solve one of the two stochastic programming models 

presented in the previous sections. The overall algorithm is illustrated in Fig. 6.4. Which 

of the two models is used depends on the current stage of the well development plan. At 

the beginning of the planning horizon (current time ct = t1), the well is considered to be 

in a “ready-for-drilling” state. At this point in time, the well development planning 

problem is solved considering endogenous and exogenous uncertainties. The key here-

and-now model decision is whether or not to drill the shale well (represented by the 

binary variable wDRILL). If wDRILL  is zero, stating that the well is not to be drilled at the 

present time, then the planning horizon moves forward fwd periods (typically one year) 

and the model is solved again at t = ct + fwd, at which point revised uncertainty scenarios 

can be incorporated. If instead the decision is to drill the well (wDRILL = 1), then the 

planning horizon also moves forward fwd periods, but the problem at hand changes 

conceptually. Now, the well has actually been drilled, fractured and completed. The 

drilling time (dt) is recorded and its current state (cr) changes to io. Thereafter, the first 

gas production peak is observed. Moreover, after some time of continuous production, 

we are able to determine which of the well performance scenarios p  P has actually 

realized; we say that the “production estimate scenario” is revealed. In the next step, 

given that the actual performance of the shale gas well is now known, and after updating 

the gas price forecast scenarios, the refracturing planning problem is solved (only 

considering exogenous price uncertainty).  
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Fig. 6.4: Algorithm for embedding the proposed two-stage stochastic programming 

models for well development and refracturing planning in a moving horizon strategy 
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The problem now enters the second phase: deciding on recourse actions. The 

new key here-and-now decision is whether or not to refracture the well (denoted by the 

binary xREFRAC). Note that the well is currently producing, and a restimulation will 

temporarily reduce production flow to zero. If the model proposes not to refracture the 

well at this time, then the well continues to produce, the planning horizon is moved 

forward fwd periods, and the potential recourse action (a restimulation) is evaluated once 

again at t = ct + fwd, under revised price scenarios. If, however, the decision is made to 

refracture (xREFRAC = 1) then the refracturing time (lt) is registered, and a new production 

peak is induced. The magnitude of the peak and the production decline that follows 

depend on the age and the performance of the well. We assume that both of them are 

known data for the recourse model. The refracture state of the well changes to cr = i1, 

the planning horizon moves forward once again, and the refracturing planning model is 

re-solved to determine if a further restimulation would be economically attractive, 

considering continuously revised price forecast scenarios.   

We note that the proposed algorithm compares to the work by Cui & Engell 

(2010), who propose a moving horizon strategy based on a two-stage stochastic mixed-

integer linear programming for multi-period, medium-term planning of a multiproduct 

batch plant considering uncertainty in terms of demand, plant capacity and product 

yields. However, in their work the authors do not consider endogenous uncertainty as 

part of the planning problem.  

It is important to acknowledge some of the proposed framework’s shortcomings, 

as well as some of its advantages. For instance, at every iterative step in the proposed 

algorithm in Fig. 6.4 the optimization assumes that upon the implementation of the here-



 221 

and-now decisions, the considered price uncertainty realizes instantaneously over the 

entire remaining planning horizon. Practically speaking, this is obviously not the case. 

Hence, in the scheme in Fig. 6.4 we move the planning horizon up one time increment 

periodically and re-solve the problem in light of the uncertainty realization and under 

consideration of updated price forecasts (once again giving rise to a stochastic program). 

Yet, this sequential realization of uncertainty is not directly captured “a priori” at every 

step of the algorithm.  

Other optimization frameworks, such as multi-stage stochastic programming, 

explicitly account for this sequence of here-and-now decisions, uncertainty realizations 

and recourse actions at specific, future points in time or “stages” (Apap & Grossmann, 

2016). Hence, multi-stage stochastic programming is clearly a more rigorous and 

accurate representation of the decision-making process over extended periods of time. 

At the same time, it is well-known that multi-stage stochastic programming leads to 

significantly larger models that quickly become computationally intractable. Therefore, 

we advocate the proposed strategy of embedding two-stage stochastic programs in 

moving horizon approaches as a practical optimization framework for problems 

involving exogenous and endogenous uncertainty to bridge the existing gap between 

deterministic programming and multi-stage stochastic programming.  

6.9 Case Study 

In order to demonstrate how the proposed optimization framework can support 

upstream operators in deciding whether or not to drill and refracture shale wells, we 

present and discuss a comprehensive well development and refracturing planning case 

study. For this purpose, we assume that an operator has identified a prospective location 
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to drill, fracture and complete a single shale gas well. The initial well development is 

assumed to cost $3,000,000. Every potential restimulation of the well can be performed 

for $700,000. The planning problem at hand is complicated by the fact that commodity 

prices are subject to significant fluctuations. For this reason, the operator wishes to 

consider a total of nine different, equally probable price development scenarios, all of 

which are defined by the operator’s business development strategy. In considering all 

nine scenarios, the intention is to hedge against the risk of price uncertainty.  

It is assumed that, once turned in-line, the prospective well could potentially be 

refractured up to five times over its expected lifespan of 20 years. However, we expect 

the operator’s experience with shale well restimulations to be fairly limited – which is 

presently true for many oil & gas companies. As long as the prospective well has not 

actually been drilled yet, implying that access to subsurface geological data is very 

limited, it is difficult to anticipate the well’s production. Hence, we explicitly consider 

well performance uncertainty in this case study to account for the possibility that the 

expected production performance of the well is under- or overestimated. In this case 

study a total of three different, equally probable production scenarios are considered 

(“low”, “avg”, “hgh”), determined by completions design engineers, geologists, or 

reservoir engineers based on production data of neighboring wells. However, it is 

assumed that once the well has been drilled and completed, the operator can refine the 

production forecast to the point where it becomes deterministic. Therefore, the case 

study at hand represents a well development and refracturing planning problem under 

exogenous price uncertainty and endogenous production uncertainty. Given a 10 year 

planning horizon, discretized by months, the operator wishes to maximize the expected 
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net present value of the proposed project. In order to address the described problem, we 

rely on the proposed two-stage stochastic programming models and embed them in a 

moving horizon strategy based on annual re-evaluations.  

Initially, in the first year of this case study, we assume that the market is 

operating in a low-to-moderate price environment as illustrated in Fig. 6.5. Natural gas 

is selling for $ 3.3 /Mscf. Future price uncertainty is captured by the aforementioned 

nine price scenarios defining a “cone of uncertainty” based on positive, null and negative 

price trends with underlying cyclic fluctuations. At this point in time, the key question 

that the operator faces is whether or not to drill the prospective shale well. The proposed 

MILP model for the well development planning problem involves 19,441 binary 

variables, 131,059 continuous variables and a total of 413,317 constraints. Using 

CPLEX 24.7.3 on an Intel i7, 2.93 Ghz machine with 8 GB RAM, the problem solves 

in 59 seconds. The optimization converges to the “zero-solution” (NPV= $0), indicating 

that it does not make economic sense to drill the prospective well at the present time 

despite the consideration of possible future refracture treatments. The assumed price 

environment does not allow for economic well development. As a result of this analysis, 

the operator would refrain from developing the prospective well at this time and pursue 

alternative, more promising investment opportunities.  
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Fig. 6.5: Case study results for years 1-3 based on the assumption that by year 3 

the well’s production performance is revealed to be “high” according to the 

respective scenario 

In the spirit of the moving horizon strategy, we fast-forward into year 2 of the case 

study (fwd = 12 months in Fig. 6.4). The prospective well is once again considered for 

development. We assume that in the meantime the natural gas price has climbed to $ 4.0 

/Mscf as shown in Fig. 6.5. The well development planning model is re-applied to the 

problem at hand. Although the problem size is identical, it now takes 269 seconds to 

solve the problem to zero relative optimality gap on the same machine as before. In light 

of the elevated price environment, the optimization concludes that it does make sense to 

drill, fracture and complete the prospective well here-and-now. The expected NPV for 

the well development project is $195,482. At this point in the case study, the decision-

maker and the optimization are still unaware of the well’s true production performance 

over time. Either of the three performance scenarios (“low”, “avg”, “hgh”) could 
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potentially realize. However, the optimization rigorously evaluates all three well 

performance scenarios (and all nine price performance scenarios), and proposes a well 

development strategy for each possible realization. Upon closer inspection the results 

reveal that refracturing of the well is proposed in nearly all scenarios, although the 

timing of the restimulations varies significantly. If the performance of the well is found 

to be average or high, the model suggests to refracture early into the well’s lifespan – 

almost regardless of which price scenario realizes. If, however, the well’s performance 

turns out to be low, then the restimulations tend to be scheduled later in life, and 

oftentimes selectively for elevated price development scenarios. The results also show 

that multiple recompletions of the well (up to five times) are proposed for some scenario 

combinations. In the context of this case study, we assume that the decision-maker 

indeed agrees to drill and complete the prospective well.  

Once more we fast-forward a year; now into year 3 of the case study. The well is 

assumed to have actively produced for the past twelve months. In addition to early 

production readings, the operator has also gathered sufficient reservoir data to refine the 

well’s performance forecast. For the purpose of this case study we therefore assume that 

the production performance can now be classified as “high”, according to the respective 

scenario. This marks the realization of the endogenous well performance uncertainty. 

The following, detailed analysis is based on this particular realization. However, Table 

6.1 summarizes here-and-now decisions based on the moving horizon strategy for all 

possible well performance realizations.  
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Table 6.1: Optimization results for here-and-now decisions for all three considered 

well performance scenario realizations in consecutive years of the case study 

In year 3 of the case study, the natural gas price has decreased to $ 3.2 /Mscf. 

Since the well is actively producing at this point, we now rely on the proposed 

refracturing planning model for decision-support. As outlined earlier, this model no 

longer considers well performance uncertainty, but it does account for price forecast 

uncertainty. For the problem at hand, this model involves 541 binary variables, 44,767 

continuous variables and 45,308 constraints. Using the same machine and solver as 

before, it takes 44 seconds to solve the problem to optimality. Under the current 

conditions, the optimization proposes to refracture the well here-and-now for the first 

time. Moreover, the results suggest that given the set of considered price development 

scenarios, additional well restimulations will be justified over time as shown in Fig. 6.5. 

The expected NPV for the proposed refracturing strategy is $ 2,927,232. It should be 

noted that the expected NPV is significantly higher in year 3 than in year 2 due to the 

realization of the well production uncertainty according to the “high” performance 

scenario. As before, we assume that the operator chooses to implement the proposed 

here-and-now decision, which results in the well being restimulated in year 3.  

By year 4 of the case study the natural gas price has decreased further, down to 

$ 2.1 /Mscf as shown in Fig. 6.6. Re-applying the refracturing planning model reveals 

that the well should not be refractured at the present time under these circumstances. In 
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light of the depressed price environment, the expected NPV diminishes to $ 1,756,846. 

Yet, the solution indicates that future restimulations can improve the economics of the 

well development project for selected price development scenarios. Year 5 is 

characterized by an increase in gas price to $ 4.0 /Mscf (Fig. 6.6). Interestingly however, 

the optimization does not propose to refracture the well at this time despite the higher 

price environment. It appears that the increase in expected revenues after the well 

reinvigoration does not outweigh the restimulation costs at this time. The improved 

expected NPV of $ 2,829,758 does show though, that the well development project 

clearly benefits from the recent price increase.  

 

Fig. 6.6: Case study results for years 4-6 

One last time, we fast-forward into year 6 of the case study and assume that the 

natural gas price has spiked to $ 6.9 /Mscf as illustrated in Fig. 6.6. Under these 

circumstances the optimization proposes to refracture the well a second time here-and-
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now, and it recognizes scenario-dependent opportunities for additional restimulations. 

If implemented, the suggested restimulation strategy leads to an expected NPV of $ 

4,759,961. Although the analysis could be continued for several more years, we 

conclude our case study at this point. By year 6 of this case study we find that 

refracturing increases gas recovery from 805 MMscf (without refracturing) to 1,243 

MMscf (with  two refractures) and the profitability of the well development project is 

improved from -$ 173,311 (without refracturing) to $ 1,366,314 (with refracturing) over 

the first six years. This clearly indicates the potential of well restimulations for 

unconventional wells. More importantly, the analysis demonstrates that the proposed 

optimization framework can be used effectively to address the well development and 

refracturing planning problem under exogenous price uncertainty and endogenous well 

performance uncertainty.  

6.10 General Recommendation for Refracturing Shale Wells 

In this section we discuss general recommendations for refracturing shale wells 

motivated by the results of the case study presented in the previous section. First, if a 

recompletion is believed to be effective, then refracturing is promising early into the life 

of a shale well even when commodity prices are relatively low. The reasoning behind 

this is that early, effective well restimulations have a lasting impact on gas production 

over time. They alter the overall decline curve favorably, and thereby increase the 

expected ultimate recovery (EUR) significantly. Hence, economics greatly benefit from 

these early workovers even in low-price environments. In fact, King (2015) also argues 

that refracturing within the first two years of production may provide significant 
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economic benefits, especially during periods of downturns in oil and gas prices when 

drilling budgets are oftentimes reduced.  

Secondly, as wells mature, refracture treatments should only be performed: a) in 

elevated price environments, or b) in direct response to projected price peaks. The 

reasoning here is as follows: the longer a shale well has already been producing, the less 

effective and impactful a recompletion is typically expected to be. This practical 

observation is also reflected in the previously introduced generalized production 

estimate function. What this implies is that, assuming the cost of refracturing a well 

remains the same, the potential “return on investment” of a well restimulation generally 

diminishes over time.  

In order to substantiate the above claims, we analyze a particular solution of the 

previously presented case study in more detail. In year 2 of the case study the situation 

is as follows: given is a prospective shale well. The decision has not yet been made 

whether, at the present time, this well should be drilled or not. The decision-maker faces 

price uncertainty and well performance uncertainty. The respective optimization 

problem is solved and reveals that, at the present time, well development does make 

economic sense. At the same time, the optimization specifies scenario-dependent 

refracturing strategies for every scenario combination of price and performance 

uncertainty. Here we examine the solution for one particular price forecast scenario in 

detail. As Fig. 6.7 shows, the optimization proposes to drill the well here-and-now, 

despite the fact that its true production performance is uncertain; it could turn out to be 

either “low”, “average” or “high”. For each of these possibilities the optimization 
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proposes a refracturing strategy that would maximize economics, given the particular 

price forecast scenario.  

 

Fig. 6.7: Optimization results for year 2 of the case study given one particular price 

forecast scenario and all three well performance scenarios 

Interestingly, for the “average” and “high” performance scenarios, the optimization 

proposes to refracture the well just one year after turning it in-line, even though the price 

is expected to decrease significantly. However, if the well’s production performance 

turns out to be “low”, then it is suggested not to recomplete. This confirms the previously 

stated recommendation that early refracture treatments can be justified even in low-price 

environments.  

The results in Fig. 6.7 also show a clear trend for late-life refracture treatments. As 

prices are forecasted to increase, the optimization proposes to exploit the projected 

price peak by scheduling multiple well restimulations. This trend holds true regardless 
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of which well performance scenario realizes. It confirms that the timing of the late-life 

recompletions is very sensitive to the price environment at the time. 

6.11 Field-Wide Shale Development Planning Considering 

Refracturing Opportunities 

The presented results raise the question how the proposed optimization 

framework could be used for field-wide shale development planning, rather than merely 

being applied to a single, prospective well. Given a set of prospective locations for 

developing new wells and a set of mature, actively producing wells, an upstream 

operator may have to decide how many new wells to drill, fracture and complete and/or 

whether existing wells should be restimulated instead. The proposed optimization 

framework can be embedded in field-wide development planning models such as those 

proposed by Drouven & Grossmann (2016) or Cafaro & Grossmann (2015). Even 

though we do not address the field-wide development planning problem explicitly in 

this work, we attempt to discuss and evaluate refracturing opportunities within mature 

shale development areas qualitatively. The motivation for this discussion is that in 

mature development areas new wells and refracturing opportunities will compete against 

one another; especially in light of limited resources such as development capital, 

fracturing crews or drilling rigs.  

Conceptually, refracturing provides operators with a number of promising 

opportunities. For instance, Drouven & Grossmann (2016) find that the equipment 

utilization in shale gas gatherings systems is often poor due to the characteristically steep 

decline curves of unconventional wells. Operators tend to size pipelines and 

compressors such that they can handle the high initial production rates of shale wells. 
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However, within months after these wells are turned in-line, production declines 

dramatically and operators are left with oversized and under-utilized pipelines and 

compressors. To offset volumes lost to decline and to maintain constant production, 

operators are forced to drill and complete new shale wells in quick succession (Kotov & 

Freitag, 2015). As Fig. 6.9 illustrates, the impact of these development strategies on rural 

landscapes can be quite significant. Moreover, for every new well that is drilled an 

operator needs to install additional gathering equipment such as production units or well 

lines.  

 

Fig. 6.8: Development of the Jonah natural gas field near Pinedale, Wyoming, 

illustrates the impact that shale gas development can have on rural landscapes 

However, by reinvigorating existing wells through restimulations upstream operators 

can increase the utilization of gathering pipelines and compressor stations without 

constantly opening up new wells; in simple terms: refracturing can help operators keep 

their pipelines and compressors “full”. In this way, by drilling fewer new shale wells 
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and “reusing” existing infrastructure, operators can decrease the well count in 

development areas, lay out fewer gathering pipelines, and thereby reduce the overall 

surface disruption. 

It is also worth mentioning that refracturing an existing well takes far less time than 

drilling and completing a new well. The process of developing a prospective shale well 

involves securing additional acreage, applying for permits, relocating and assembling a 

drilling rig, drilling the vertical and horizontal segments of the well, completing the well 

and installing production equipment as well as gathering pipelines. From start to finish 

the entire process may take several months to complete. Refracturing an existing well, 

on the other hand, can be done within weeks. Considering the recent, dramatic 

fluctuations in natural gas prices, refracturing could allow upstream operators to very 

quickly respond to projected price increases by ramping up field-wide production in a 

short period of time. From this perspective, refracturing conceptually compares to shut-

in based production schemes such as those proposed by Knudsen & Foss (2013) and 

Knudsen et al. (2014).  

Even from a water management perspective refracturing makes sense. It is well-

known that hydraulic fracturing requires significant volumes of water of up to 20 million 

liters per well. However, over the lifespan of a shale well up to 50% of the injected water 

is eventually recovered at the surface again as flowback or produced water. The 

recovered water is generally contaminated and may not be released back into the 

environment unless it has undergone extensive (and therefore costly) treatment. 

Alternatively, operators have two options: a) dispose of the impaired water by injecting 

it into abandoned wells (which is strictly regulated, very expensive, and known to lead 
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to undesirable seismic activity), or b) reuse the recovered water for future fracturing 

operations. Given these options, upstream operators have increasingly been reusing 

impaired water for hydraulic fracturing in an attempt to reduce disposal volumes and 

avoid costly treatment. For this purpose, however, the recovered water oftentimes needs 

to be transported from one well pad to another – depending on where the development 

activity is occurring. Transportation is usually performed with water hauling trucks, 

which leads to increased truck traffic, road deterioration, the potential for accidents, and 

added costs. These issues can be mitigated if upstream operators choose to restimulate 

more of their horizontal wells as part of field-wide development programs. Rather than 

transporting impaired water across and in between development areas, operators could 

temporarily store the recovered water on-site and re-use it to refracture other producing 

wells eventually.  

Finally, it is important to note that refracturing is significantly cheaper than 

drilling and completing new wells. This cost advantage can be of significant importance 

to smaller, capital-constrained upstream operators, who do not always have access to the 

financial markets and therefore fresh capital. Instead of being able to drill just one new 

shale well, refracturing may allow these companies to reinvigorate production at up to 

six of their assets. By embedding the proposed optimization framework in field-wide 

development models, these benefits could easily be quantified and may convince 

operators to increasingly exploit refracturing opportunities in mature development areas.  
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6.12 Conclusions 

In this chapter, we have presented stochastic programming models for optimal 

shale well development and refracturing planning under exogenous price uncertainty 

and endogenous well performance uncertainty. The proposed optimization framework 

is intended to help upstream operators decide: a) if and when a prospective shale well 

should be drilled and fractured, and b) how often and when the well should be 

refractured. In our work, we accounted for uncertain price forecasts and uncertain well 

performance by proposing mixed-integer linear, two-stage stochastic programming 

models. The endogenous nature of the well performance uncertainty was addressed 

through a moving horizon strategy into which the proposed models were embedded. As 

part of a comprehensive case study, we demonstrated how the proposed optimization 

framework can be used to determine when to drill and/or refracture a shale well in light 

of price and performance uncertainty. The case study also revealed two interesting 

observations: a) even if commodity prices are low, it can make economic sense to 

refracture active shale wells early into their lifespan, and b) late-life refracture 

treatments only appear justified in elevated price environments or in direct response to 

projected price peaks. Finally, we concluded our analysis with a qualitative discussion 

on refracturing opportunities for field-wide shale development planning projects.  
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6.13 Nomenclature 

Sets 

i I    Refracture treatments 

f F   Price forecast scenarios 

p P    Well performance scenarios 

t T    Time periods 

Binary variables 

DRILLw    Active if the well is drilled here-and-now (stage one decision variable) 

REFRACx   Active if the well is refractured here-and-now (stage one decision 

variable) 

, , ,i t f px    Active if the well is refractured for the i-th time in time period t  for price 

forecast scenario f  and well performance scenario p   

, , ,i t f py    Active if in time period t the well has been refractured a total of i times 

for price forecast scenario f  and well performance scenario p   

ˆ, , , ,i t t f p
z    Active if in time period t the well has been refractured a total of i times 

and the last refracturing occurred in time period t̂   for price forecast 

scenario f  and well performance scenario p   

,

N

t fz   Active if in time period t  the producing well has not been refractured for 

price forecast scenario f   
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Continuous variables 

, ,t f pP   Gas production of the shale gas well in time period t  for price forecast 

scenario f  and well performance scenario p   

Parameters 

,i pa   Production decline after i  well restimulations for well performance 

scenario p   

,i pb   Post-refracturing decline after i  well restimulations for well performance 

scenario p  

,i p   Peak reduction factor after i  well restimulations for well performance 

scenario p  

cr   Current refracturing state of the shale well 

ct   Current time period 

d   Discount rate  

dt   Drilling time period 

DC   Drilling cost 

CC   Completions cost 

RC   Refracturing cost 

p   Realization probability for well performance scenario p   

fwd   Number of periods the planning horizon moves forward at every iteration 

,t fgp   Gas price in time period t for price forecast scenario f   

,i p   Original fracture contribution after i  restimulations for well performance 

scenario p   
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pk   Initial production peak for well performance scenario p   

lt   Last refracture time period 

f   Realization probability for price forecast scenario f   

ˆ, ,i t p
r   Supplemental production peak after i  well restimulations when the last 

one occurred in time period t̂    

irc   Cost of i-th well restimulation  

rt   Duration of refracture treatment 

ˆ, , ,i t t p
Q  Shale gas well production in time period t given that it has been 

refractured i  times, and the last restimulation was performed in time 

period t̂ t  for well performance scenario p   
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CHAPTER 7 

 

Conclusions 

In this thesis, we have proposed a suite of mixed-integer programming models for 

various aspects of the general shale gas development problem. The main topics we 

addressed were: a) strategic, quality-sensitive shale gas development planning in chapter 

2, b) impaired water management in active development areas in chapter 3, c) line 

pressure optimization in gas gathering systems in chapter 4, and d) planning refracture 

treatments for individual shale wells considering deterministic data in chapter 5 and 

accounting for uncertain price forecasts/well performance in chapter 6. In the following 

sections, we summarize the major findings of this thesis and we provide a critical review 

of our work.  

7.1 Quality-Sensitive Shale Gas Development Planning 

 In chapter 2, we proposed a multi-period MINLP model to address the quality-

sensitive shale gas development planning problem. This model is meant to help shale 

gas producers make a number of important development decisions, such as: a) where, 

when and how many shale wells to drill, b) where to install pipelines and compressor 

stations, c) how much gathering capacity to provide, and d) which delivery agreements 

to arrange with midstream processing companies.  

Within the proposed optimization framework we explicitly considered the fact 

that the quality of the produced gas oftentimes varies within development areas. This 

can lead to serious operational challenges since upstream operators are responsible for 
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meeting strict downstream gas quality specifications when delivering their product to 

the market. Our model is aimed at either: a) identifying blending strategies that avoid or 

minimize the need for purifying produced gas, or b) determining which processing 

agreements are most suitable for a selected development area.  

 Since the consideration of spatial gas composition variations lead to nonlinear 

and nonconvex model constraints, we developed a tailored solution strategy specifically 

for the quality-sensitive shale gas development planning problem. The solution strategy 

relies on an efficient initialization of the MINLP based on an approximation of the true 

problem, and on identifying tight bounds for all nonlinear decision variables. Yet, we 

emphasized that the proposed solution strategy does not necessarily guarantee 

convergence to the global optimum, and therefore it is possible to get trapped in 

suboptimal solutions. However, we demonstrated that the algorithm is capable of 

identifying near-global solutions to large-scale, practical problems (e.g. 59,680 binary 

variables, 21,707 continuous variables, 56,859 constraints and 1,008 bilinear terms) 

within reasonable solutions times (less than four hours).  

The application of our optimization framework to two real-world case studies 

revealed intriguing findings. Most importantly, we verified that return-to-pad strategies, 

i.e., the delay of selected drilling and fracturing operations, are the key to cost-effective 

shale gas development strategies. Previously, return-to-pad situations were perceived as 

an undesirable, oftentimes unintentional “side-effect” of shale gas development that 

occurred whenever development operations were not properly coordinated. For the 

longest time the “development philosophy” of the shale industry was to simply drill as 

many wells as possible and turn them in-line as quickly as possible. Instead, we found 
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that intentionally splitting the development of a pad is an ideal countermeasure against 

the characteristically steep decline curves of shale wells. By stacking completions jobs, 

one can install significantly smaller gathering equipment, maximize the utilization of 

pipeline systems, and ultimately improve the economics of development projects by 

millions of dollars. To support this claim, we performed a rigorous lookback-analysis 

with one shale gas producer in the Appalachian Basin and found that an optimized 

development strategy could have improved their profitability in one area by 133 million 

dollars.  

7.2 Impaired Water Management in Shale Gas Development Areas 

In chapter 3, we presented a multiperiod MILP for impaired water management 

in shale gas development areas. This model is designed to address three important issues: 

a) the sequencing of fracturing jobs and the corresponding completions water demand, 

b) the coordination of freshwater and impaired water deliveries, and c) the selection and 

sizing of on-site water storage solutions. Although the objective function of the model 

is to maximize the NPV of a development project, we primarily evaluated how water 

management costs could be reduced effectively. In particular, we investigated three 

opportunities for cost savings: a) rearranging the fracturing schedule by implementing 

return-to-pad operations, b) using 100% impaired water for individual fracturing jobs, 

and c) installing limited-capacity, temporary above-ground storage tanks on-site.  

We applied the water management optimization model to a real-world case study 

using actual data from a shale gas producer in the Appalachian Basin. For a problem 

considering 9 well pads, a total of 29 completions jobs and a one year planning horizon, 

discretized by weeks, the corresponding MILP involved 5,304 binary variables, 31,253 
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continuous variables and 10,278 constraints. The optimal solution was obtained in less 

than 1.5 hours and allowed for a number of interesting discoveries. First, the results 

suggested that the optimization is primarily aiming to minimize water expenses. Rather 

than turning all 29 prospective wells in-line as quickly as possible and generating early 

gas sales revenues (which would be an entirely feasible and intuitive solution at first 

sight), the optimization positively leveraged the possibility of implementing return-to-

pad operations to maximize impaired water reuse. In other words, we found supporting 

evidence that the fracturing schedule should be driven by water operations – and not the 

other way around, which is still common in industry.  

The case study also revealed that impaired water storage capacity – provided 

either by permanent pits or temporary tanks – is crucial for cost-effective water 

management. Lastly, our findings confirmed that companies should make every effort 

possible to reduce impaired water disposal in order to improve the economics of their 

operation. In the presented case study, the optimization managed to reduce potential 

freshwater consumption by nearly 2.75 million barrels of water (87 million gallons) by 

reusing available impaired water in the development area. Altogether, less than 7,500 

barrels of water had to be disposed of over a one year planning horizon. This corresponds 

to an effective disposal rate of 0.3% which is a significant improvement compared to 

the current industry standard of 10-30%.  

7.3 Line Pressure Optimization in Shale Gas Gathering Systems 

 In chapter 4, we developed a multiperiod MINLP model for line pressure 

optimization specifically in shale gas gathering systems. Given an existing gas gathering 

network consisting of well pads, pipelines and compressor stations, this model can be 
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used to coordinate the following decisions: a) the timing of when prospective wells are 

turned in-line, b) which pressure profile to establish within a gathering system, and c) 

how much compression power to provide at every point in time. The motivation for this 

work is that upstream operators often struggle with line pressure management in their 

gathering systems. On the one hand, it is well-known that as the line pressure within a 

pipeline network is raised or lowered, the production within that development area 

collectively decreases or increases respectively. Therefore, producers typically strive to 

operate their systems at low line pressures, hoping to “squeeze” as much gas as possible 

out of their assets. However, whenever operators bring new wells online, the line 

pressure in their gathering systems increases significantly, which has a negative effect 

on the production output of mature wells. This cause-and-effect relationship is known 

as the backoff effect and it presents a major challenge to practitioners.  

The model we proposed is designed around three fundamental building blocks 

(all of which are nonlinear and nonconvex): a) a simplified reservoir model, b) a pressure 

drop model, and c) a compression model. Binary variables are introduced to determine 

when exactly prospective wells should be turned in-line. Since the resulting nonconvex 

MINLP is challenging to solve with commercial MINLP solvers, we developed a 

tailored solution strategy specifically designed for the line pressure optimization 

problem. This strategy is based on the following two steps: a) solving an approximation 

of the real problem by only considering existing wells (yielding a good initial solution), 

and b) performing a rigorous pressure bound analysis (yielding tight pressure bounds). 

Both, the initial solution and the pressure bounds, can be used to effectively solve the 

line pressure optimization problem with commercial MINLP solvers. The proposed 
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solution strategy is not designed or guaranteed to converge to the global optimum. 

However, in our experience it yields near-global solutions to practically relevant 

problems within very reasonable solution times.  

We applied the proposed model and solution strategy to a real-world line 

pressure optimization problem in the Appalachian Basin using actual data. Our case 

study was set up for a 26 week planning horizon, a gathering system containing 4 well 

pads, 21 existent wells, 14 prospective wells, a mature pipeline network and a single 

compressor station. The corresponding MINLP involved 728 binary variables, 4,499 

continuous variables, 6,530 constraints and was solved in 2.5 hours. Conceptually, we 

found that preventive line pressure manipulations can mitigate backoff effects associated 

with bringing new wells online. By intentionally raising the line pressure prior to the 

onset of new production volumes, system backoff can be minimized. This is an 

important finding since it suggests that upstream operators can take an active role in 

preparing and “readying” their gathering systems for development operations through 

effective line pressure management.  

7.4 Planning of Shale Gas Well Refracture Treatments  

 In chapters 5 and 6, we proposed multiperiod MILP models to plan refracture 

treatments for shale gas wells. This work was motivated by the fact that refracturing is 

a promising option for addressing the characteristically steep decline curves of shale 

wells. By restimulating the shale reservoir, operators can extract previously unrecovered 

hydrocarbons and reinvigorate their wells. One of the remaining key challenges to 

successful refracturing is the precise timing of well restimulations – especially with 

respect to projected natural gas price developments.  
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In order to address this problem, we developed an optimization framework for 

refracturing planning in chapter 5. Our models are based on a novel production forecast 

function which is capable of estimating the pre- and post-refracture well performance of 

a given shale well. We embedded this forecast function in different model formulations 

to evaluate their computational performance. Ultimately, we found that a discrete-time, 

multi-period MILP derived from a disjunctive model formulation performed best 

computationally. This model allowed us to solve the deterministic refracturing planning 

problem efficiently within seconds. From applying the proposed optimization 

framework to several case studies with different underlying price developments, we 

learned three things: a) shale well restimulations have the potential to increase the 

ultimate gas recovery by up to 25%, b) refracturing can improve the profitability of 

individual wells by several hundred thousand dollars, and c) under certain circumstances 

it can make economic sense to refracture shale wells multiple times over their expected 

lifespan. 

In chapter 6, we extended the deterministic refracturing planning model 

formulation to account for two major sources of uncertainty: price forecasts and 

expected well performance. Moreover, we drew attention to the fact that price 

uncertainty can be classified as exogenous, whereas well performance uncertainty is 

endogenous in nature. Once a decision-maker drills and completes a shale well, its 

performance before and after any refracture treatment can be forecasted relatively 

accurately. Hence, we categorized this uncertainty as endogenous. Price uncertainty, on 

the other hand, is exogenous since commodity prices realize regardless of which 

decisions individual companies make.  
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Ultimately, we addressed the refracturing planning problem under uncertainty 

through a two-stage stochastic programming model. The stage one, here-and-now 

decision is concerned with whether a prospective shale well should be drilled at the 

present time, whereas the second stage captures scenario-dependent, wait-and-see 

recourse actions in terms of future well restimulations. The stochastic programming 

model itself was embedded in a moving horizon framework to account for the 

endogenous nature of the well performance uncertainty. The results of our case study in 

this chapter allowed for two practical insights. First, refracturing recently completed 

shale wells can make economic sense even in low-price environments due to the lasting 

impact on production. Second, restimulations of mature wells are only justified if either 

a) prices are elevated, or b) price peaks are imminent. Otherwise, late-life refracture 

treatments are unlikely to improve the economics of well development projects.  

7.5 Contributions of the Thesis 

The main contributions of this thesis are summarized below: 

1. A multiperiod MINLP model was proposed for addressing the long-term, quality-

sensitive shale gas development planning problem. The problem involves where, 

when, and how many shale wells to drill, where to lay out pipelines, and how much 

compression power to provide. The framework explicitly considers a) gas quality 

variations within active development areas, and b) the arrangement of complex gas 

delivery agreements between upstream operators and midstream processors.  

2. Since the aforementioned large-scale, nonconvex MINLP models are difficult to 

solve with existing MINLP solvers, a tailored solution strategy was developed for 

the strategic development planning problem. By solving an approximation of the full 
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problem, the solution strategy increases the likelihood of converging to near-global 

solutions within reasonable solution times.  

3. As part of a rigorous lookback analysis the proposed optimization framework for 

strategic development planning was applied to an actual gathering system operated 

by one of the largest shale gas producers in the Appalachian Basin. The results 

demonstrated significant economic potential for optimization in this domain: the 

NPV of the company’s development strategy in one particular area could be 

increased by over $133 million. Furthermore, the results proved that return-to-pad 

operations are the key to cost-effective shale gas development.  

4. A multiperiod MILP model was developed for impaired water management in active 

shale gas development areas. The model determines the optimal fracturing schedule, 

the coordination of water deliveries and the selection of appropriate water storage 

solutions such that water management costs are minimized without compromising 

revenues from gas sales. 

5. The proposed MILP model was applied to a real-world problem based on actual data 

from a shale gas producer in the Appalachian Basin. The results indicated that water 

management based on rigorous optimization could a) drastically reduce freshwater 

consumption by nearly 2.75 million barrels of water (87 million gallons) in one area 

in just one year, and b) curtail water disposal rates from an industry average of 10-

30% to merely 0.3%.  

6. A multiperiod MINLP model for line pressure optimization in shale gas gathering 

systems was developed. The presented model determines when to turn prospective 
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wells in-line and how to manage line pressure such that production backoff is 

minimized.  

7. As part of a real-world case study the proposed MINLP model was tested using 

actual data provided from an upstream operator in the Appalachian Basin. The 

results demonstrated that active line pressure manipulations can successfully 

mitigate backoff effects associated with turn in-line operations. These insights are 

expected to improve the profitability of development projects by hundreds of 

thousands of dollars annually.  

8. A set of multiperiod MILP models for refracturing planning were developed. The 

models determine: a) if a given shale gas well should be refractured, b) when to 

restimulate the well, and c) how many recompletions to perform over the lifespan of 

the well.  

9. The proposed deterministic refracturing planning model was extended to account for 

exogenous price uncertainty and endogenous well performance uncertainty. A two-

stage stochastic programming model formulation embedded in a moving horizon 

strategy was presented to plan refracture treatments under uncertainty.  

10. The refracturing planning model was applied to a comprehensive case study to 

demonstrate when to restimulate shale gas wells in practice – particularly in 

consideration of price and well performance uncertainty. The results suggested that 

a) refracturing can help upstream operators combat the characteristically steep 

production decline curves, and b) well restimulations give producers the opportunity 

to proactively respond to commodity price fluctuations.  
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Altogether, this thesis has led to the following journal publications and conference 

articles:  

1. Drouven MG, Grossmann, IE. Multi-Period Planning, Design, and Strategic Models 

for Long-Term, Quality-Sensitive Shale Gas Development. AIChE Journal. 2016. 

62(7):2296-2323.  

2. Drouven MG, Grossmann IE. Disjunctive Models for Strategic Midstream Delivery 

Agreements in Shale Gas Development. Proceedings of the 26th European 

Symposium on Computer Aided Process Engineering (ESCAPE), p. 931-936, June 

12-16, 2016, Portorož, Slovenia, Elsevier.  

3. Drouven MG, Grossman IE. Optimization Models for Impaired Water Management 

in Shale Gas Development. Journal of Petroleum Science and Engineering. 2017. 

Submitted for publication April 2017.  

4. Drouven MG, Grossmann IE. Mixed-Integer Programming Models for Line 

Pressure Optimization in Shale Gas Gathering Systems. Journal of Petroleum 

Science and Engineering. 2017. To be submitted April 2017.  

5. Cafaro DC, Drouven MG, Grossmann IE. Optimization Models for Planning Shale 

Gas Well Refracture Treatments. AIChE Journal. 2016. 62(12):4297-4307.  

6. Drouven MG, Cafaro DC, Grossmann IE. Stochastic Programming Models for 

Optimal Shale Well Development and Refracturing Planning under Uncertainty. 

AIChE Journal. 2017. Submitted for publication February 2017.  
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7.6 Directions for Future Work 

In the following sections we summarize selected directions for future work.  

7.6.1 Global Optimization Strategies for Quality-Sensitive Shale Gas Development  

As outlined previously, the quality-sensitive shale gas development planning 

problem gives rise to large-scale, nonconvex MINLPs, which are challenging to solve. 

In fact, although the solution strategy proposed in chapter 2 has proven to perform very 

well, it does not actually guarantee convergence to the global optimum. Yet, considering 

the scope and potential impact of this research area, we believe that it would be of great 

value to practitioners if these problems could rigorously be solved to global optimality. 

Despite recent advances, it is unlikely that general-purpose MINLP solvers will be able 

to solve practically relevant development planning problems to global optimality in the 

near future. These problems quickly become computationally intractable. Hence, we 

believe that there is an opportunity to develop tailored global optimization strategies. 

One promising direction would be to explore a possible MILP reformulation of the 

nonconvex MINLP. While it is generally favorable to solve linear programs instead of 

nonlinear optimization problems, such a reformulation may come at the expense of 

adding a very large number of binary variables and constraints to the problem.  

7.6.2 Quality-Sensitive Impaired Water Management  

The multiperiod MILP model presented in chapter 3 distinguishes between just 

two water qualities, namely freshwater and impaired water. This distinction is accurate 

from a regulatory perspective and it is common in industry. Yet, in practice the 

concentration of total dissolved solids (TDS) in the impaired water – which is the 

prevalent measure for the “degree of water contamination” – actually varies spatially 
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and temporally within active development areas. According to a recent expert elicitation 

conducted by Mauter & Palmer (2014), upstream operators currently do not believe that 

water quality, and high TDS in particular, represent a barrier to reusing impaired water 

for fracturing purposes. However, it is possible that this view will change. The shale gas 

industry as a whole is increasingly reusing impaired water to minimize freshwater 

consumption, and as a result it is likely that the average TDS concentration will increase 

significantly over time. Therefore, we believe that it would be interesting to extend the 

proposed MILP model to account for the quality of the impaired water, and possible 

water treatment solutions (e.g. reverse osmosis, membrane distillation). An extended, 

quality-sensitive model could be used to implement water blending strategies within 

development areas that prevent TDS concentrations and/or other water quality metrics 

from exceeding certain thresholds. From a mathematical programming perspective it is 

likely that such models will give rise to nonlinear and nonconvex problems.  

7.6.3 Global Optimization Strategies for Line Pressure Management 

In chapter 4 we proposed a nonlinear and nonconvex MINLP model for line 

pressure optimization in shale gas gathering systems. This model can give rise to 

suboptimal solutions. The solution strategy we presented does not necessarily guarantee 

convergence to the global optimum. Therefore, we believe that the investigation and 

development of global optimization strategies specifically for the line pressure 

management problem would be a promising direction for future work. The challenge 

here will consist of obtaining tight underestimators or convex envelopes for: a) the 

nonconvex shale well reservoir model, b) the nonconvex constraints governing pressure 

drops along pipeline segments, and c) the nonconvex compression model.  
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7.6.4 Refracturing Opportunities in Field-Wide Development Planning 

In chapters 5 and 6, we proposed mixed-integer programming models for 

refracturing planning. However, the presented framework was focused on individual 

shale wells. We believe that it would be interesting to extend this work to consider 

refracturing opportunities within strategic, field-wide development planning models. In 

other words, given an active development area containing existing and prospective 

wells, the optimization could select where it wants to drill entirely new wells, and/or 

which mature wells it chooses to restimulate. In light of limited resources (drilling rigs, 

fracturing crews, development budget) upstream operators frequently have to weigh 

these opposing options and decide how many wells to refracture at the expense of 

drilling fewer new wells.  

7.6.5 Multi-Stage Stochastic Programming for Refracturing Planning 

In chapter 6, we presented a two-stage stochastic programming model embedded 

in a moving horizon framework to address the refracturing planning problem under 

exogenous price uncertainty and endogenous well performance uncertainty. In the past, 

optimization problems involving both exogenous and endogenous uncertainties have 

been addressed primarily through the multi-stage stochastic programming framework 

(Apap & Grossmann, 2016). On the one hand, this framework represents a more accurate 

representation of the decision-making process in practice. On the other hand, multi-stage 

stochastic programs generally lead to large optimization problems that can take very 

long to solve. Nevertheless, we believe that the refracturing planning problem under 

exogenous and endogenous uncertainties would make for an interesting application to 

contrast and compare alternative stochastic programming approaches. In particular, the 
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question is to which extent two-stage stochastic programs embedded in moving horizon 

strategies can compete with multi-stage stochastic programming in terms of solution 

accuracy.  

7.6.6 Multi-Level Shale Gas Development Planning 

In this thesis, we have addressed several detailed topics within the context of 

shale gas development. In chapter 3, we proposed optimization models for operational 

impaired water management. In chapter 4, we focused on tactical line pressure 

optimization in shale gas gathering systems. Finally, in chapters 5 and 6, we presented 

models for strategic refracturing planning. In practice, the respective decisions within 

each of these domains are often made separately by individual business units or groups. 

Hence, we are confident that the proposed models will help practitioners make better 

and faster decisions within their domains. However, we also believe that there is 

significant value in coordinating individual and collective efforts in the interest of an 

organization as a whole. Ideally, the detailed models presented in chapters 3, 4, 5 and 6 

could be coupled with the strategic development planning framework proposed in 

chapter 2. The ultimate goal would be to coordinate strategic, tactical and operational 

decisions within a multi-level shale gas development planning framework. Since it is 

likely that any coupled models, or even their mere coordination, will result in extremely 

large-scale mixed-integer optimization problems, this line of work will require the 

investigation of effective decomposition strategies.  
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APPENDICES 

Appendix A: Pipeline Sizing Guidelines for Strategic Development 

Planning 

As outlined in section 2.5.1 Model Formulation: Single Delivery Node Problem 

we size gathering lines based on fluid velocity. As a rule of thumb operators strive to 

ensure that the fluid velocity in gas lines does not exceed 20 m/s to minimize noise 

emissions and allow for corrosion inhibition. We rely on this design specification for 

preliminary pipeline sizing purposes. The necessary pipeline diameter ,j q  is 

calculated using Eq. (A.1).  

  2

, , , , ,
60 J

j q j q t

g

Q

l

Pk

T z
F j q t

v p




 
    


  (A.1)  

In Eq. (A.1), T  is the gas temperature in K, z  is the gas compressibility factor 

( 1z   due to the ideal gas assumption), gv  is the maximum gas velocity set to 20 m/s, 

and lp  is the line pressure MPa. For simplicity, we define the pipeline coefficient Pk  

as seen in Eq. (A.1) and use it for pipeline sizing purposes. For a given gas flow , ,

JQ

j q tF  

in 106 m3/day and an unknown pipeline diameter ,j q  in inches the pipeline coefficient 

is 0.0026716Pk  . 

We note that once the gathering system has been sized using the proposed 

approach we generally advise to use standard gas flow equations such as the Weymouth 

or Panhandle equations to calculate the explicit pressure drops along individual 

pipeline segments. When evaluating pressure drops rigorously along pipelines installed 

in parallel, we advise to perform these calculations separately for each line, considering 
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the individual flowrate through each line at every point in time. If these calculations 

reveal pressure drops beyond tolerable specifications, a larger diameter pipeline may 

be selected. In our experience, however, the sizing procedure based on gas velocity 

provides a sufficiently good estimate of the required pipeline size and, generally, the 

calculated pressure drops are reasonably small due to the relatively low line pressure 

and short lengths of the pipeline segments.  

Appendix B: Compact Hull-Reformulation (Introduction) 

Disjunctions are usually reformulated using either a Big-M (BM) or a Hull 

Reformulation (HR) formulation. Given disjunction (2.12) its HR is as follows. 

  
0

, , , , , , ,JQ DJQ

j q t d j q t

Dd

F j q tF


      (A.2)  

     
2

0 2

,, , , , , , 0 , , ,P DJQ PIPE

d j q t d dq j q tj z dk q tF j            (A.3) 

  , ,

, , , , , , , , , , , , , 0 , , ,JQ LOW PIPE DJQ JQ UP PIPE

j q t d j q t d j q t j q t d j q tF z F F z d j q t              (A.4) 

  
0

, , , 1 , ,PIPE

d

d

j q tz j q t


      (A.5)  

Compared to its alternative – the Big-M formulation – the HR requires the 

introduction of the disaggregated variables , , ,

DJQ

d j q tF , the corresponding constraints as 

seen in Eq. (A.2), as well as two constraints for each disaggregated variable (to impose 

lower and upper bounds on these variables) as captured by Eq. (A.4). Therefore, the 

HR generally requires more variables and constraints than the BM. This increase in 

model size oftentimes adds to the computational effort of solving the respective 

problems. At the same time Grossmann and Lee (2003) show that the continuous 
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relaxation of the HR formulation is as least as tight as and generally tighter than the 

BM when the discrete domain is relaxed.  

In the particular case of disjunction (2.12), however, it is possible to derive a 

compact HR: if, for a given  ,j q   and t , we sum up the inequality 

constraint (A.3) over all 0d   then we get: 

     
0 0

2
0 2

, , ,, , , , , ,j q

P DJQ PIPE

d j q t d q

d

d t

d

jz qF tk j 
 

       (A.6) 

Next, we can replace the summation of the disaggregated variables , , ,

DJQ

d j q tF  on 

the left-hand side of Eq. (A.6) with their initial definition in Eq. (A.2) as shown below.  

    
0

2
0 2

, , , ,, , , ,P JQ PIPE

j q t d d jj q q t

d

k F z j q t 


       (A.7)  

Since Eq. (A.7) no longer involves any disaggregated variables, we can now 

drop Eqs. (A.2) and (A.4) from the reformulation of the disjunction and merely impose 

regular bounds on the flow variables. Hence, the compact HR is as follows. 

    
0

2
0 2

, , , , , , , ,P

j q t j q d d j

JQ

q t

PIPE

d

k jF z q t 


         (A.8) 

 
0

, , , 1 ( , ) ,PIPE

d j q t

d

z j q t


      (A.9) 

As highlighted by Castro and Grossmann (2012), the noteworthy property of 

the compact HR is that it combines the advantages of the HR and the BM without 

introducing their respective shortcomings.  
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Appendix C: Compressor Sizing Guidelines for Strategic 

Development Planning 

The size of a compressor is determined in terms of its maximum power 

requirement.  For this purpose we assume adiabatic compression and a fixed 

compression ratio, i.e., suction and discharge pressure specifications 
qPd  and 

jPs  are 

fixed. Given these assumptions the power requirement ,

C

j q  is linearly proportional to 

the gas flow , ,

JQ

j q tF  as seen below.   
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

  

  (A.10) 

In Eq. (A.10) above T  is the gas temperature at suction conditions in K 

(typically 298.15T K ),   represents the heat capacity ratio (typically 1.26  ),   

stands for the compressor efficiency (we assume 0.9  ), and finally z  is the gas 

compressibility factor which we set to 1z   due to the ideal gas assumption.  For 

simplicity, we define the compression coefficient Ck  as seen in Eq. (A.10) and use it 

for compressor sizing purposes. For a given gas flow , ,

JQ

j q tF  in 106 m3/day and unknown 

compression power ,

C

j q  in kW the compression coefficient is 0.0023813Ck  . 

Appendix D: Compressor Sizing Reformulation 

The previously introduced binary variables , , ,

C

c j

R

q t

OMPy  and , , ,

C

c j

R

q t

OMPz  correspond 

directly to their counterpart Boolean variables , , ,

C

c j

R

q t

OMPY  and , , ,

C

c j

R

q t

OMPZ . Here, too, the 
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introduction of disaggregated variables and the corresponding constraints can be 

avoided as shown in Appendix B: Compact Hull Reformulation. Thus Eq. (A.11) 

represents the compact Hull Reformulation of disjunction (2.19). Since disjunction 

(2.19) is exclusive, we add Eq. (A.12) and transform the logic constraint into the 

mixed-integer linear constraint (A.13) using propositional logic.  
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

       (A.13) 

Appendix E: Delivery Agreements for Strategic Development 

Planning 

Fee-based processing agreements (index da FB ) are the most common 

arrangements between upstream operators and midstream processors. Under these, 

operators pay a service fee A

FB  to the processor based on how much gas is processed 

in terms of throughput volumes. Eq. (A.14) captures the processing expenses 
, ,j q tPRE  

under such a fee-based agreement. In return, the processor receives all pipeline-quality 

gas and any natural gas liquids extracted from the raw gas stream to the operator who 

markets these. Eq. (A.15) shows the operator’s revenue function. 

    , , FB, ,, , , , , ,1 ( , ) ,JQ S PRE

q t j q

A AGR

FB j j q t j q t FB j qF PRE m y j qF t         (A.14) 

  , , , FB, ,, , , , , ,1 ( , ) ,KJQ REV

k j q t j q

AGR

j q t q k t FB j q

k

p m y j qV F tRE


        (A.15) 
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Under fee-based processing contracts the processor’s revenues are primarily 

related to the quantity and not the quality of the gas that is delivered. To the operators, 

on the other hand, who market the gas and liquids exclusively, these arrangements are 

highly quality-sensitive; when NGL prices are high, processing can increase the 

operator’s overall revenues, whereas low NGL prices favor other alternative 

agreements or blending strategies to reduce or avoid the need for processing.  

              Under percent-of-proceeds contracts (index da PP ) processors will 

generally only charge a small servicing fee A

PP  for their processing service depending 

on how much gas is received. These processing expenses are captured by Eq. (A.16). 

In addition, however, the processors are entitled to receive an agreed upon percentage 

PP  of the proceeds from all natural gas and NGLs sales19. Hence, upstream operators 

and midstream processors split the overall revenues. Therefore, the operator’s revenues 

are given by Eq. (A.17). Under percent-of-proceeds arrangements both parties, the 

operators and the processor, share commodity risks. 

    , , PP, ,, , , , , ,1 ( , ) ,JQ S PRE

q t j q

A AGR

PP j j q t j q t PP j qF PRE m y j qF t            (A.16) 
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  (A.17) 

Under keep-whole arrangements (index da KW ) the midstream processor is 

compensated for the processing service by retaining title to any NGLs recovered from 

the raw gas stream. In return, the upstream operator receives an identical amount of 

pipeline-quality gas that equals the heating value of the original raw gas stream. Thus, 

the operator is “kept whole” on a heating value basis. Since the processors market the 
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NGLs exclusively under keep-whole agreements, they are directly exposed to NGL 

price fluctuations, which presents a severe strategic risk. However, when NGL prices 

are high, midstream processors can generate substantial revenues from these contracts. 

The corresponding constraints are as follows: 

    , , KW, ,, , , , , ,1 ( , ) ,JQ S PRE

q t j q

A AGR
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Direct deliveries contracts (index da DD ) generally do not imply significant 

processing expenses, and hence, the processing cost coefficient A

DD  in Eq. (A.20) is 

usually set to zero. In rare cases, though, transmission companies may impose a 

minimum fee for dehydrating the received gas. Either way, the operator gets to market 

all gas and natural gas liquids sales individually as depicted in Eq. (A.21).  
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Appendix F: Reformulation Multiple Delivery Nodes Disjunction 

Disjunction (2.72) is reformulated using big-M constraints. Eqs. (A.22)-(A.23) 

show the reformulation of those constraints that determine which processing expenses 

are incurred and how revenues are generated. 
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Eqs. (A.24)-(A.25) address minimum delivery requirements and maximum 

delivery capacities. 
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Gas quality specifications that may be imposed along with particular delivery 

agreements are governed by Eqs. (A.26)-(A.27).  
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Since disjunction (2.72) is exclusive, we add Eq. (A.28) and transform the logic 

constraints (2.73)-(2.78) into the mixed-integer linear constraints (A.29)-(A.34) using 

propositional logic.  
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Appendix G: Compact Hull-Reformulation (Tradeoffs) 

In this section we study the Compact Hull Reformulation (CHR) in more detail, 

in an attempt to clarify: (a) when a CHR may generally be applied, and (b) what 

advantages and disadvantages it entails compared to alternative reformulations.  

First, we assume that a given optimization problem involves a set of 

disjunctions k K  as shown in Eq. (A.35). Each of these disjunctions includes kj J  

disjunctive terms, all of which are linked by the logic OR-operator ( ). Each 

disjunctive term is associated with a Boolean variable { , }jk TrueY False , which 

controls which disjunctive term is active, i.e., which constraints 
jk jkA x b  are 

enforced. We note that Eq. (A.35) is restricted to the linear case, i.e., all constraints 

jk jkA x b  involved in the disjunction are linear. Lastly, Eq. (A.36) ensures that no more 

than one disjunctive term kj J  may be active for every disjunction k K .  
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k

Y k K



    (A.36) 

The set of disjunctions in Eq. (A.35) may generally be transformed into mixed-

integer constraints using a Big-M reformulation (BM), as shown in Eqs. (A.37)-(A.38)

, by introducing large parameters 
jkM .   
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   ,1jk jk jk jk kx yA b M K Jk j       (A.37) 
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Alternatively, the set of disjunctions in Eq. (A.35) can be transformed using a Hull-

Reformulation (HR), as displayed in Eqs. (A.39)-(A.41), by introducing a set of 

disaggregated variables 
jk  for every disjunctive term.  
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In general terms, the HR involves more variables and constraints than the BM, 

but its continuous relaxation is as least as tight as and generally tighter than the BM – 

as shown by Vecchietti, Lee and Grossmann (2003). For more details regarding 

Generalized Disjunctive Programming and a comparison of reformulations, we refer to 

the work by Grossmann and Trespalacios (2013).  

Given the set of disjunctions in Eq. (A.35) we argue that a Compact Hull-

Reformulation (CHR) can only be applied if the coefficient matrix 
jkA  involved in the 

linear constraints 
jk jkA x b  is independent of the set of disjunctive terms kj J , i.e., 

in this particular case 
jk kA A . The CHR of the set of disjunctions in Eq. (A.35) is 

given by Eqs. (A.42)-(A.43).  
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 1
k
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Jj

y k K


    (A.43) 

A noteworthy property of the CHR is that – compared to the standard Hull-

Reformulation – it involves kJ K  fewer variables and kJ K  less constraints. 

However, it is important to note that the CHR is a “surrogate formulation”, since the 

right-hand side of Eq. (A.42) is made up of aggregated constraints. Hence, it can be 

proven that the continuous relaxation of the standard HR is generally tighter than the 

continuous relaxation of the CHR. Yet, the significant reduction of the model size 

achieved by the CHR – both in terms of decision variables and model constraints – 

generally aids the performance of mixed-integer programming solvers such as CPLEX 

or Gurobi. Moreover, in direct comparison with the BM reformulation, we highlight 

the fact that the CHR does not require the specification of any big-M parameters.  

 


