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A B S T R A C T

This dissertation examines two related questions. How do mixed membership models

work? and Can mixed membership be used to model how students use multiple strategies

to solve problems?

Mixed membership models have been used in thousands of applications from

text and image processing to genetic microarray analysis. Yet these models are

crafted on a case-by-case basis because we do not yet understand the larger class

of mixed membership models.

The work presented here addresses this gap and examines two different aspects

of the general class of models. First I establish that categorical data is a special

case, and allows for a different interpretation of mixed membership than in the

general case. Second, I present a new identifiability result that characterizes equiv-

alence classes of mixed membership models which produce the same distribution

of data. These results provide a strong foundation for building a model that cap-

tures how students use multiple strategies.

How to assess which strategies students use, is an open question. Most psy-

chometric models either do not model strategies at all, or they assume that each

student uses a single strategy on all problems, even if they allow different students

to use different strategies. The problem is, that’s not what students do. Students

switch strategies. Even on the very simplest of arithmetic problems, students use
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different strategies on different problems, and experts use a different mixture of

strategies than novices do.

Assessing which strategies students use is an important part of assessing stu-

dent knowledge, yet the concept of ‘strategy’ can be ill-defined. I use the Knowledge-

Learning-Instruction framework to define a strategy as a particular type of inte-

grative knowledge component. I then look at two different ways to model how

students use multiple strategies.

I combine cognitive diagnosis models with mixed membership models to create

a multiple strategies model. This new model allows for students to switch strate-

gies from problem to problem, and allows us to estimate both the strategies that

students are using and how often each student uses each strategy. I demonstrate

this model on a modestly sized assessment of least common multiples.

Lastly, I present an analysis of the different strategies that students use to esti-

mate numerical magnitude. Three smaller results come out of this analysis. First,

this illustrates the limits of the general mixed membership model. The properties

of mixed membership models developed in this dissertation show that without

serious changes to the model, it cannot describe the variation between students

that is present in this data set. Second, I develop a exploratory data analysis

method for summarizing functional data. Finally, this analysis demonstrates that

existing psychological theory for how children estimate numerical magnitude is

incomplete. There is more variation between students than is captured by current

theoretical models.
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1
I N T R O D U C T I O N T O M I X E D M E M B E R S H I P

Mixed membership is based on a simple, intuitive idea. Individuals in a pop-

ulation belong to multiple subpopulations, not just a single class. For example,

documents may be about multiple topics at the same time (Blei et al., 2003). Pa-

tients sometimes get multiple diseases at the same time (Woodbury et al., 1978).

Birds may have genetic heritage from multiple subgroups (Pritchard et al., 2000).

Children may use multiple strategies to solve mathematics problems (Chapter 4).

The problem of how to turn this intuitive idea into an explicit probability

model was originally solved by Woodbury et al. (1978) and later independently

by Pritchard et al. (2000), and Blei et al. (2003). Erosheva (2002) and Erosheva et al.

(2004) then built a general mixed membership framework to incorporate all three

of these models.

This dissertation explores the properties of the general mixed membership

model, and whether mixed membership is useful for describing the ways in which

students use multiple strategies. This first chapter introduces mixed membership

and its historical development, then highlights the contributions of this work.

1



1.1 the general mixed membership model 2

1.1 the general mixed membership model

The general mixed membership model (MMM), as defined in Erosheva et al.

(2004), specifies an explicit probability model for the idea that individuals belong

to multiple classes. The model is defined by four layers of assumptions: popula-

tion level, subject level, latent variable level, and sampling scheme.

At the population level, the basic assumption is that there are K profiles within

the population. If the population is a corpus of documents, then the profiles may

represent the topics in the documents. If we are considering the genetic makeup

of a population of birds, then the profiles may represent the different genetic

heritages present in the populations. In image analysis, the profiles may represent

the different categories of objects or components in the images, such as mountain,

water, car, etc. When modeling the different strategies that students use to solve

problems, then each profile can represent one of the strategies.

Within each profile, each feature or variable that we measure has a different

distribution. We index the variables by j = 1, . . . , J, and index the profiles as

k = 1, . . . ,K. The distribution of observations for the kth profile on the jth vari-

able is then given by the cumulative distribution function (cdf) Fkj. In an image

processing setting, this indicates that the profile for the water category has a dif-

ferent distribution of features than the mountain profile. In another application,

such as an assessment of student learning, different strategies may result in differ-

ent response times on different problems. The Fkj contain all of the information

about these differences between the profiles.

The next layer of assumptions is the individual level. Each individual has a

membership vector that indicates the degree to which they belong to each profile,
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θi = (θi1, . . . , θiK). The term individual here could refer to an image, document,

gene, person, etc. The components of θ are non-negative and sum to 1, so that θ

can be treated as a probability vector. Thus, if student i used strategies 1 and 2,

each about half the time, then this student would have a membership vector of

θi = (0.5, 0.5, 0, . . . , 0). Similarly, if an image was 40% water and 60% mountain

then this would be indicated by θi.

For a particular variable j, we assume that the response distribution of individ-

ual i, conditional on the membership vector θi is given by the individual-level

mixture;

F(xj|θi) =

K∑
k=1

θikFkj(xj). (1.1)

Blei et al. (2003) explicitly add a data augmentation indicator vector Zij to the

Latent Dirichlet Allocation model (LDA). Zijk = 1 if individual i acts as a member

of profile k for feature j, and Zijk = 0 otherwise. Thus for an image, if segment j

of image i contains water, then Zij,water = 1. Or in the assessment setting, Zijk = 1

if student i used strategy k on problem j. The assumption is then that F(xj|Zijk =

1) = Fkj, and that the membership vector θi gives the distribution of Zij, in that

Pr(Zijk = 1) = θik. This is equivalent to equation 1.1, since

F(xj|θi) =

K∑
k=1

F(xj|Zijk = 1)Pr(Zijk = 1|θi) =

K∑
k=1

θikFkj(xj). (1.2)

The Zij indicator variables explicitly model partial membership as a switching

behavior. For example, the student with partial membership in different strategies

uses one strategy on some items and switches to another strategy on other items.

In LDA, some words come from one topic and other words come from different

topics. Equation 1.2 clarifies that even when the Zs are not explicitly included in

the model, the individual-level mixture can always be interpreted as modeling a

switching behavior.
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To continue building the individual level of the model, we assume that observed

variables are independent conditional on the membership vector, θ. In psychomet-

rics, this is known as a local independence assumption. This assumption allows

us to write the joint distribution of the full response vector x = (x1, . . . , xJ), condi-

tional on θi

F(x|θi) =

J∏
j=1

[
K∑
k=1

θikFkj(xj)

]
(1.3)

This conditional independence assumption also contains the assumption that

the profile distributions are factorable. If an individual belongs exclusively to

profile k (for example, an image contains only water) then θik = 1, and all other

elements in the vector θi are zero. Thus,

F(x|θik = 1) =
∏
j

Fkj(xj) = Fk(x) (1.4)

At the sampling scheme level, we may observe replications of each of the J

feature variables. For example, in LDA J = 1, since only the presence or absence

of words is being observed, but there are many replications of this measurement,

and a different number of replications for each document in the sample. Let Rij

be the number of replications of variable j for individual i. Then the individual

response distribution becomes:

F(x|θi) =

J∏
j=1

Rij∏
r=1

[
K∑
k=1

θikFkj(xr)

]
(1.5)

Note that equations 1.1, 1.3 and 1.5 vary for each individual with the value

of θi. It is in this sense that MMM is an individual-level mixture model. The

distribution of variables for each profile, the Fkj, is fixed at the population level,

so that the components of the mixture are the same, but the proportions of the

mixture change individually with the membership parameter θi.
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At the latent variable level, we can treat the membership vector θ as either fixed

or random. If we wish to treat θ as random, then we can integrate equation 1.5

over the distribution of θ, yielding:

F(x) =

∫ J∏
j=1

Rij∏
r=1

[
K∑
k=1

θikFkj(xr)

]
dD(θ) (1.6)

The final layer of assumptions about the latent variable θ is crucial for purposes

of estimation, but it is unimportant for the theoretical results presented here. The

new results in Chapter 2 depend only on the structure of equation 1.3, and not on

the distribution of θ or the shape of the Fkj.

This general mixed membership model is closely related to finite mixture mod-

els. Finite mixture models can be considered a special case of the mixed member-

ship model when the membership parameter θ is restricted to the corners of the

simplex, where one component is 1 and all others are 0. However, every mixed

membership model can also be expressed as a finite mixture model with a much

larger number of classes, and constraints on the class probabilities. Erosheva, et

al. (2007) shows that this relationship holds for categorical data, and Theorem 2.3

shows that it holds in general.

1.2 the early development of mixed membership

Woodbury et al. (1978) first introduced the mixed membership idea with the

grade-of-membership model to describe individuals with multiple disease pro-

files. In the early 2000’s, two other versions of mixed membership were inde-

pendently developed. Pritchard et al. (2000) developed an admixture model to

describe the presence of individuals in a population with mixed genetic heritage.
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Blei et al. (2003) developed Latent Dirichlet Allocation (LDA) to describe the top-

ics present in a corpus of documents where many documents are about multiple

topics.

1.2.1 Grade of Membership Model

The Grade of Membership model (GoM) is by far the earliest example of mixed

membership (Woodbury et al., 1978). The motivation for creating this model came

from the problem of designing a system to help doctors diagnose patients. The

problems with creating such a system are numerous: Patients may not have all

of the classic symptoms of a disease, they may have multiple diseases, relevant

information may be missing from a patient’s profile, and many diseases have

similar symptoms.

In this setting, the mixed membership profiles represent distinct diseases. The

observed data Xij are the categorical levels of indicator j for patient i. The profile

distributions Fkj(xj) indicate which level of indicator j is likely to be present in

disease k. Since Xij is categorical, and there is only one measurement of an indica-

tor for each patient, the profile distributions are multinomial with n = 1. In this

application, the individual’s disease profile is the object of inference, so that θi is

treated as fixed. Thus the likelihood in Equation 1.3 is used in estimation.

1.2.2 Population Admixture Model

Pritchard et al. (2000) models the genotypes of individuals in a heterogeneous

population. The profiles represent the distinct populations of origin, with indi-
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viduals having inherited some genes from the different sub-populations in which

they have partial membership.

The variables Xj are the genotypes observed at J locations, and for diploid indi-

viduals two replications Rj = 2 are observed at each location. Across a population,

a finite number of distinct alleles are observed at each location j, so that Xj is

categorical, and Fkj is multinomial for each sub-population k.

In this application, the distribution of the membership parameters θi is of as

much interest as the parameters themselves. The parameters θi are treated as

random realizations from a symmetric Dirichlet distribution. The new results in

Chapter 2 indicate that the symmetric distribution is problematic for estimation

and interpretation. In a finite mixture model, the model is only identifiable up

to permutations of indices, so that there would be K! equivalent model, this is

the number which Pritchard et al. (2000) anticipates. However, with a symmetric

distribution for θ, there are K!J−1 equivalent models, which are created by a very

different type of permutation (Theorem 2.7).

One of the more interesting features of the admixture model is that it includes

the possibility of both unsupervised and supervised learning. Most mixed-membership

models are estimated as unsupervised models. That is, the model is estimated

with no information about what the profiles might be, and no information about

which individuals might have some membership in the same profiles. Pritchard

et al. (2000) considers the unsupervised case, but they also consider the case where

we have additional information. In their case, the location where an individual

bird was captured provides information about which sub-population it is likely

has some membership in, even though it may be the descendant of an immigrant

bird. This information is included with a carefully constructed prior on θ, which

incorporates rates of migration.
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1.2.3 Latent Dirichlet Allocation

Latent Dirichlet Allocation Blei et al. (2003) is in some ways the simplest example

of mixed membership, as well as the most popular. This is a textual analysis

model, where the goal is to identify the topics present in a corpus of documents.

Mixed membership is necessary, because many documents are about more than

one topic.

LDA uses a bag of words model, where only the presence or absence of words

in a document is modeled, and word order is ignored. The individuals i are the

documents. The profiles k represent the topics. LDA models only one variable, J =

1, the words present in the documents. The number of replications Rij is simply

the number of words in document i. The profile distributions are multinomial

distributions over the set of words: Fkj = Multinomial(λk,n = 1), where λkw

is the probability that a particular word in topic k will be the word w. LDA

uses the integrated likelihood in equation 1.6. The focus here is on estimating the

topic profiles, and the distribution of membership parameters, rather than the θi

themselves. Blei et al. (2003) also uses a Dirichlet distribution for θ, however they

do not use a symmetric Dirichlet, and so avoid the identifiability issues that are

present in Pritchard et al. (2000).

1.3 variations of mixed membership models

Though, LDA was not the first mixed membership model, it has quickly become

the most popular, currently with over 4000 citations according to Google Scholar.

LDA is only one variation of the general mixed membership model developed
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by Erosheva et al. (2004); however, LDA has become so popular that it continues

to inspire new models, based only on LDA. Yet these new models still fit within

Erosheva’s general model.

1.3.1 Distributions of the Membership Parameter

Many mixed membership models have been created as variations of LDA with a

different distribution of the membership parameter θ. LDA uses a Dirichlet dis-

tribution for the membership parameter θ. The Dirichlet distribution introduces

a strong independence condition on the components of θ subject to the constraint∑
k θik = 1 (Aitchison, 1982). In many applications, this strong independence as-

sumption is a problem.

For example, in text analysis an article with partial membership in an evolution

topic is more likely to also be about genetics than astronomy. In order to model an

interdependence between profiles, Blei and Lafferty (2007) use a logistic-normal

distribution for θ. Blei and Lafferty (2006) take this idea a step further and create

a dynamic model where the mean of the logistic-normal distribution evolves over

time.

Fei-Fei and Perona (2005) analyze images, where the images contain different

proportions of the profiles water, sky, foliage, etc. However, images taken in differ-

ent locations will have a different underlying distribution for the mixtures of each

of these profiles. For example, rural scenes will have more foliage and fewer build-

ings than city scenes. Fei-Fei and Perona address this by giving the membership

parameters a distribution that is a mixture of Dirichlets.
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1.3.2 Profile Distributions

Other models have been created by altering the profile distributions, so that they

are no longer multinomial. The Latent Process Decomposition model (Rogers

et al., 2005) models the different processes that might be responsible for different

levels of gene expression observed in microarray data sets. In this application, Xij

measures the expression level of the jth gene in sample i, a continuous quantity.

This leads to profile distributions Fkj = N(µkj,σkj).

The simplical mixture of Markov chains (Girolami and Kaban, 2005) is a mixed

membership model where each profile is characterized by a Markov chain tran-

sition matrix. The idea is that over time an individual may engage in different

activities, and each activity is characterized by a probable sequence of actions.

Shan and Banerjee (2011) is another interesting extension of LDA which seeks

to define a ‘generalization’ of LDA, which they call a mixed-membership naive

Bayes model. This model simply requires the profile distributions Fkj to be expo-

nential family distributions. This is a subset of models that fall within the general

mixed membership model introduced by Erosheva et al. (2004), and as Theorem

2.2 shows, other exponential family profile distributions will not have the same

properties as the multinomial profiles used in LDA. The main contribution of

Shan and Banerjee (2011) is a comparison of different variational estimation meth-

ods for particular choices of Fkj.
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1.4 contributions of this dissertation

This dissertation makes contributions in several different disciplinary areas. First,

are contributions in statistics and machine learning; I establish fundamental prop-

erties of mixed membership distributions. Next, are contributions in psychomet-

rics and the learning sciences; I build a statistical model that recognizes strat-

egy choice as an important component of expertise, a model which is capable of

estimating both the strategies present in the data and how much each student

uses each strategy. Two other contributions include the development of a new ex-

ploratory data analysis method for functional data, and new psychological results

regarding how children estimate numerical magnitude.

A wide variety of mixed membership models now exist, based on early models,

and LDA in particular. The enormous variety in this class of models suggests that

we need to better understand the properties of the general mixed membership

family of distributions. We need to know which applications represent the special

cases, and we need to understand how different choices, such as the choice of

a particular distribution for θ affects the identifiability and estimability of the

model. The theoretical results in Chapter 2 address these questions. I establish

the different model interpretations that are possible in the general case, and in

the special case of categorical data. I then develop an identifiability result which

characterizes classes of mixed membership models which produce the same data

distribution.

Chapter 3 provides a theoretical grounding for using mixed membership as

a cognitive model to describe students switching between different strategies.

First, I develop a definition of strategy within the Knowledge-Learning-Instruction
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framework Koedinger et al. (2010) that is consistent both with common English

usage of the term and is practical for modeling student performance. I then

combine cognitive diagnosis models with mixed membership models to build

a multiple strategies model that describes students switching strategies between

assessment items. The mixed membership framework allows for expanding the

multiple strategies model to include additional variables, such as response time

or self-reported strategy. The full model is a novel method for jointly modeling

all observed student data for a particular item as conditionally dependent on the

same cognitive process.

Each strategy is defined by a process-signature, that is each strategy is only

identifiable to the extent that it differs from other strategies on the observed vari-

ables. If two strategies have the same error rate and have the same distribution

of response times, this model will not distinguish between them even if they are

arguably different cognitively.

This multiple strategies model represents a substantial contribution in mod-

eling student knowledge. Experts and novices use different strategies to solve

problems. Assessing which strategies students use is an important factor in deter-

mining what students know.

Simply building the model, however, is not enough. We also need to know that

this model is useful for inference in real applications. Chapter 4 demonstrates

a simple application of the multiple strategies model. One of the goals of this

application is to determine whether we can learn both the strategies and how

much students use them from the data, or if we need to know the strategies apriori

in order to estimate student knowledge. The data set is rather small, with only

15 items per student. Yet, with prior knowledge of only one strategy, we can still

estimate how much students are using each of the strategies in the model, and the
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remaining strategies. The good performance is due, in part, to the incorporation of

the response time data. This application functions primarily as a proof-of-concept

for the multiple-strategies model.

Chapter 5 illustrates another application where students use multiple strate-

gies. The data are functional data from experiments on how young children esti-

mate numerical magnitude. Due to the properties described in Chapter 2, mixed

membership is a poor choice for modeling this data. Instead, I develop a new ex-

ploratory data analysis technique to summarize the patterns in this type of data.

A model-based analysis then reveals that existing psychological theory is insuffi-

cient to describe the strategies that children use to estimate numerical magnitude.

This psychological result is relevant to education since the ability estimate num-

bers accurately is closely related to arithmetic skills (Booth and Siegler, 2008).

One final contribution of this dissertation is that it represents a serious attempt

to integrate the cognitive literature on how children use multiple strategies, and

how strategy use is an indicator of expertise, with the statistical and psychomet-

ric literature to model student performance. The National Research Council report

Knowing What Students Know Pellegrino et al. (2001) charges that, “Traditional tests

do not focus on many aspects of cognition that research indicates are important,

and they are not structured to capture critical differences in students’ levels of

understanding." This dissertation addresses that gap, and builds a model of stu-

dent performance that is capable of capturing cognitively significant differences

in student performance.



2
P R O P E RT I E S O F M I X E D M E M B E R S H I P D I S T R I B U T I O N S

This chapter explores the theoretical properties of the general mixed membership

model, as defined in Erosheva et al. (2004) and given in Chapter 1. I am not yet

concerned with the theoretical properties of different estimators, but rather the

more basic question of, “What do the data distributions look like?" The mixed

membership model is rather complicated, and the answer to this simple question

is not obvious.

In this chapter, I demonstrate that categorical data and other data types be-

have very differently in mixed membership models. I describe the two possible

interpretations of what it means for an individual to have partial membership

in multiple profiles, and establish when each interpretation is possible. Last, but

certainly not least, I fully characterize equivalence classes of mixed membership

models which will produce the same distribution of observed data.

2.1 categorical data

The intuition for how mixed membership models behave was developed through

the early applications including Woodbury et al. (1978); Pritchard et al. (2000);

14
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Erosheva (2002); Blei et al. (2003); Manton et al. (2004) and Erosheva et al. (2004).

Each of these papers has one feature in common, the data were categorical.

In the general mixed membership model (MMM), the individual distributions

are given by Equation 1.1, which is repeated here for reference:

F(xj|θi) =

K∑
k=1

θikFkj(xj). (2.1)

For categorical data, this equation simplifies, and that is the key difference be-

tween categorical data and any other type of data.

In the general case, MMM models partial membership as a switching behavior;

sometimes individuals act in accordance with one profile, and sometimes in ac-

cordance with another profile (Equation 1.2). The mathematical simplification that

occurs for categorical data allows an additional interpretation. In this special case,

MMM models individuals residing between profiles, and acting with a behavior

that is between the profiles in which they have partial membership.

If variable Xj is categorical, then we can represent the possible values for this

variable as `1, . . . , `Lj . We represent the distribution for each profile as Fkj(xj) =

Multinomial(λkj,n = 1), where λkj is the probability vector for profile k on

feature j, and n is the number of multinomial trials. The probability of observing

a particular value l within basis profile k is written as:

Pr(Xj = l|θk = 1) = λkj`l (2.2)

The probability of individual i, with membership vector θi, having value l for

feature j is then

Pr(Xij = l|θi) =

K∑
k=1

θikPr(Xj = l|θk = 1) =

K∑
k=1

θikλkj`l (2.3)

Consider as an example, latent Dirichlet allocation (LDA) (Blei et al. (2003),

described in Section 1.2.3). Assume that document i belongs to the sports and
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medicine topics. The two topics each have a different probability distribution over

the lexicon of words, say Multinomial(λs), and Multinomial(λm). The word

elbow has a different probability of appearing in each topic, λs,e and λm,e respec-

tively. Then the probability of the word elbow appearing in document i is given

by λi = θisλs,e + θimλm,e. Since the vector θi sums to one, the individual proba-

bility λi must be between λs,e and λm,e. The individual probability is between the

probabilities in the two profiles.

We can simplify the mathematics further if we collect the λkj into a matrix by

rows, and call this matrix λj. Then θTi λj is a vector of length Lj where the lth entry

is individual i’s probability of value l on feature j, as in equation 2.3.

We can now write individual i’s probability vector for feature j as

λij = θ
T
i λj. (2.4)

The matrix λj defines a linear transformation from θi to λij, as illustrated in Figure

2.1. Since θi is a probability vector and sums to one, λij is a convex combination of

the the profile probability vectors λkj, and the individual λij lie in a simplex where

the extreme points are the λkj. In other words the individual response probabilities

lie between the profile probabilities. This leads Erosheva et al. (2004) and others

to refer to the profiles as extreme profiles; for categorical data the parameters of the

profiles form the extremes of the individual parameter space.

Moreover, since the mapping from the individual membership parameters θi

to the individual feature probabilities λij is linear, the distribution of individual

response probabilities is effectively the same as the population distribution of

membership parameters. (Figure 2.1.)



2.1 categorical data 17

A B C

!1

!2 !3

!i

"1

"2

"3

"i

Figure 2.1: For multinomial basis profiles, the distribution of the membership parameter

θ is mapped linearly onto a multinomial response probability. This allows

us to interpret individual i’s position in the θ-simplex as equivalent to their

response probability vector.

Thus, when feature xj is categorical, an individual with membership vector θi

has a probability distribution of

F(xj|θi) =Multinomial(θ
T
i λj,n = 1) (2.5)

This is the property that makes categorical data special. When the profile distribu-

tions are multinomial with n = 1, the individual-level mixture distributions are

also multinomial with n = 1. Already this is a special property, since we know

for example that a mixture of normals is not normal. However, we also have that

the parameters of the individual distributions, the θTi λj are convex combinations

of the profile parameters, the λkj.

In this sense, when the data are categorical, an individual with mixed mem-

bership in multiple profiles is effectively between those profiles. Even though the

exchangeability structure of MMM, as described in Section 1.1 clearly describes an

switching behavior, the early applications on categorical data lead to an equivalent

between interpretation. These two equivalent interpretations have led to certain in-
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tuitions about how to interpret mixed membership, intuitions that may not hold

in the general case.

We need to reiterate that while categorical data allows a special interpretation

of partial membership in the multinomial parameter space, the behavior in data

space is the same switching behavior as defined in the general case. Individuals

may only give responses that are within the support of at least one of the profiles.

Consider the example of a word appearing in a document. Camel may be a high

probability word in the zoo topic, while cargo has high probability in the transporta-

tion topic. For a document with partial membership in the zoo and transportation

topics, the word camel will have a probability of appearing that is between the

probability of camel in the zoo topic and its probability in the transportation topic.

Similarly for the word cargo. However it doesn’t make sense to talk about the word

cantaloupe being between camel and cargo. With categorical data, there is no ‘be-

tween’ in the data-space. The between interpretation only holds in the parameter

space.

Let us consider another example, suppose that we are looking at response times

for a student taking an assessment. Suppose that one strategy results in a re-

sponse time with a distribution N(10, 1), and another less effective strategy has

a response time distribution of N(20, 2). In the mixed membership model, an

individual with membership vector θi = (θi1, θi2) then has a response time distri-

bution of θi1N(10, 1) + θi2N(20, 2). This individual may use strategy 1 or strategy

2, but a response time of 15 has a low probability under both strategies, and in

the mixture. The individual may switch between using strategy 1 and strategy 2

on subsequent items, but a response time between the two distributions is never

likely, no matter the value of θ. Moreover, the individual distribution is no longer

normal, but a mixture of normals (Titterington et al., 1985). Thus, for this con-
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tinuous data, we do not have a between interpretation in the parameter space

either.

In Section 2.2, we show that the between interpretation does not hold in general.

The multinomial distribution with n = 1 has a property which is not shared

by other common distributions, and it is this property which allows the between

interpretation of partial membership.

2.2 conditions for a between interpretation

The between interpretation arises out of special property of the multinomial distri-

bution: The individual probability distributions are in the same parametric family

as the profile distributions, as both are multinomial with n = 1. Further, the in-

dividual parameters are between the profile parameters. Thus, for the between

interpretation to hold in the general case, we need the individual distributions

F(x|θi) to be in the same family of distributions as each profile distribution Fk. If

we let φk represent the parameters of the profile distributions, then the individual

parameters must lie between the φk.

In other words, the property we are looking for is that an individual with mem-

bership parameter θi would have an individual data distribution of F(X; θTi φ), so

that for each variable j we have:

∑
k

θikFkj(Xj;φkj) = Fj(Xj; θTi φ·j). (2.6)

For simplicity, I will omit the subscript j for the remainder of this section, so

that equation 2.6 becomes

∑
k

θikFk(X;φk) = F

(
X;

∑
k

θikφk

)
. (2.7)
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From equation 2.7, we see the property that allows the between interpretation is

that the cumulative distribution function F, or equivalently, the density function,

is a linear transformation of its parameters φ. Theorem 2.1 specifies the form

that a cumulative distribution function (cdf) must take in order for the between

interpretation to hold. When the distributions of the profiles can be written as

finite mixture models, then the between interpretation in the parameter space

will hold.

Theorem 2.1. Suppose that F is a cdf parameterized by the finite vector φ. F is a linear

transformation of φ if and only if F can be written as a finite mixture model, that is:

F(x;φ) =
S∑
s=1

φsBs(X) (2.8)

where
∑
φs = 1, φs > 0 for each s, and each Bs is itself a cdf.

Proof. I. Suppose that F(X;φ) =
∑S
s=1φsBs(X). Then

K∑
k=1

θkF(X;φk) =
∑
k

θk

[∑
s

φksBs(X)

]

=
∑
k

∑
s

θkφksBs(X)

=
∑
s

∑
k

θkφksBs(X)

=
∑
s

[∑
k

θkφks

]
Bs(X)

= F

(
X;

∑
k

θkφk·

)

(both sums are finite, so the order is reversible.)
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II. Suppose that F is a linear transformation of its parameters φ, and φ is a

vector of length S:

K∑
k=1

θkF(X;φk) = F

(
X;

∑
k

θkφk

)

A standard result from linear algebra says that any linear map between finite-

dimensional vector spaces can be represented as a matrix product, so that F can

be written as:

F(X;φ) = B(X)φ

Let ei be the vector with 1 in the ith entry and 0 otherwise. Note that if the

space of possible values of φ does not include ei for i ∈ {1, . . . ,S}, then we can

project φ onto φ∗, as φ∗ = Vφ so that ei is in the space of possible values for φ∗.

Thus we can write:

F(X;φ∗) = B(X)Vφ∗ = B∗(X)φ∗ =

S∑
s=1

B∗s(X)φ
∗
s

We now observe that

F(X; ei) = B∗i (X)

i.e., each B∗i (X) must be a cdf. In addition, we observe that since F → 1 as

x→∞:

lim
X→∞ F(X;φ∗) =

S∑
s=1

lim
X→∞B∗s(X)φ∗s =

∑
s

φ∗s = 1

Thus, we can parameterize F as a finite mixture model.
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Illustration 1

LetΦ(x) denote the cdf of the standard normal distribution, and for s = 1 . . . S, let

cs be fixed constants. Then the mixture distribution, parameterized by the vector

φ,

F∗(x;φ) =

S∑
s=1

φsΦ(x− cs) (2.9)

satisfies the condition of Theorem 2.1. Thus, if we set the profile distributions for

variable j as F∗(xj;φk), then we will be able to interpret individuals as residing

between the basis profiles. In this case, if we have K profiles parameterized by the

vectors φk, then an individual with membership parameter θi has the individual

distribution:

F(x|θi;φ) =

K∑
k=1

θik

[
S∑
s=1

φksΦ(x− cs)

]
= F∗(x; θTi φ) (2.10)

The parameters for individual i in the family of F∗ distributions are θTi φ and

reside in a simplex defined by the extreme points φk.

Now suppose the means of the mixture components are also parameters of the

mixture, denoted φ�. Then the basis profiles no longer satisfy the condition of

Theorem 2.1:

F�(x; φ,φ�) =

S∑
s=1

φsΦ(x−φ�s)

So if the basis profiles of a mixed membership distribution are F�, then the be-

tween interpretation cannot be used, and we must interpret individuals as switch-

ing between basis profiles. This illustration clarifies that it is easy to create dis-

tributions which satisfy the requirements for a between interpretation, but these

requirements are very strict. �
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2.2.1 The Multinomial Distribution

Interpreting individuals with mixed membership in multiple profiles as being

between the profiles requires profile distributions to be linear functions of their

parameters. The multinomial distribution with n = 1 can be written as a sum of

indicator functions, or as a an exponential family distribution, and is unique in

this respect. The multinomial distribution with n = 1 is the only common distri-

bution that will allow a between interpretation in a mixed membership model.

Let X ∼Multinomial(p,n = 1). We can write the distribution of X as a mixture

model,
∑L
l=1 plIal(X), where Ia(x) is an indicator function, and al represents the

different levels of the multinomial distribution. We can also write the distribution

in exponential family form. Recall that the density function of an exponential

family distribution has the form h(x)g(φ) exp [η(φ) · T(x)]; for the multinomial

distribution this is

(x1! . . . xL!)−1(n!) exp

[∑
l

xl log(pl)

]
. (2.11)

Theorem 2.2. The multinomial distribution with n = 1 is the only exponential family

distribution that can be written as a finite mixture model.

Proof. If X has a distribution that can be written as a finite mixture model, then

its density must be a mixture of densities, which we will write as f(x) = φTb(x).

Since f is exponential family, we can then write

f(x) = φTb(x) = h(x)g(η) exp{ηTt(x)} (2.12)

We can absorb g and h into other terms, so that this simplifies to

φTb(x) = exp{ηTt(x)} (2.13)
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Here we note that φ and η are distinct parameterizations, but it must be the case

that φ = φ(η), or likewise η = η(φ). Now, if we take the partial derivative with

respect to ηi, we have(
∂φ

∂ηi

)T
b(x) = ti(x) exp{ηTt(x)} (2.14)

Which, substituting, is(
∂φ

∂ηi

)T
b(x) = ti(x)

(
φTb(x)

)
(2.15)

Rearranging terms yields

b(x)T
(
∂φ

∂ηi
−φ(η)ti(x)

)
= 0 (2.16)

Fix any x where b(x) 6= 0. Since Equation 2.16 must hold for all η, ∂φ∂ηi −φ(η)ti(x)

must be identically zero. This implies that

∂φ

∂ηi
= ti(x)φ(η) (2.17)

Since ti(x) is present on only the right hand side, it must be constant on its sup-

port; that is, ti(x) is an indicator function, which we shall write as ti. The solution

to equation 2.17 gives us φj(η) = exp{(t+ c)Tη}. This gives us the exact form of a

multinomial with n = 1 when written in exponential family form.

Theorem 2.2 indicates that interpretation of mixed membership is restricted to

the switching interpretation for all exponential family distributions, save one. This

result is particularly important when considering the many extensions and vari-

ations of LDA. LDA was built for categorical data, the extensions use a variety

of profile distributions. Shan and Banerjee (2011) creates a ‘naive Bayes mixed

membership model’ which includes any MMM where the profiles are exponen-

tial family. All of these variations are restricted to interpreting mixed membership
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as individuals switching between profiles, when the LDA model they are extend-

ing also allows an interpretation of individuals residing between the profiles. The

danger here is that it is easy to believe that extending the model allows an exten-

sion of the interpretation as well, when in fact LDA is a very special case of mixed

membership.

Illustration from Applications to Data

Let us consider two specific parallel applications of mixed membership. Both ap-

plications are mixed membership regression models. For each individual i, and

each feature j, we observe a data point Xij and a covariate Zij.

In Manrique-Vallier (2010), the observed variable X is binary and the covariate

Z is continuous. The basis profiles are defined by logistic regression functions.

Pr(Xij = 1|k = 1) = logit−1(˛
0jk + ˛

1jkZij) = rk(Zij). (2.18)

So that

Fk(x|z) = Bernoulli(rk(z)). (2.19)

In Galyardt (2010), both the observed variable X and the covariate Z are contin-

uous. The basis profiles are defined by normal regression functions.

Xij = β0jk +β1jkZij + εij with ›ij ∼ N(0, ff2

k). (2.20)

Thus,

Fk(x|z) = N(rk(z),σ2k). (2.21)

Both of these are mixed-membership regression models, yet the behavior of the

models at the individual level are strikingly different. The Bernoulli distribution
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satisfies the conditions of Theorem 2.1, and so the individual distributions of

Xij|θi are also Bernoulli distributions. Moreover, there is an individual regression

function ri(z), where

ri(z) =

K∑
k=1

θikrk(z). (2.22)

We note that the individual regression function ri(z) will not be a logistic function,

yet ri(z) is a mean regression function for the individual probability distribution:

Xij|θi,Zij ∼ Bernoulli(ri(Zij)). (2.23)

Figure 2.2 illustrates these individual regression functions in the case where the

profiles are logistic regression functions.

Now contrast the behavior of these logistic regression basis profiles with the

behavior of the normal regression basis profiles, Fk = N(rk(z),σ2k). The individual

probability distributions in the normal regression case are

Xij|θi,Zij ∼

K∑
k=1

θi N
(
rk(Zij),σ2k

)
. (2.24)

The distribution in Equation 2.24 does not simplify. In the Bernoulli case, the

individual distribution can be summarized by a single regression function that

is a convex combination of logistic regression functions. In the Normal case, the

individual distribution is a mixture distribution and cannot be summarized by a

single regression function. This result is one of the main reasons why the mixed

membership model is an inappropriate analysis for the application in Chapter 5.

The unique dual representation of the multinomial distribution means that it is

the only common distribution which allows a between interpretation in a mixed

membership model. The early applications of mixed membership were all to cate-

gorical data, and thus all of the profile distributions were multinomial with n = 1.
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Figure 2.2: Example of a mixed membership regression model, where the profiles are

logistic regression functions. This example includes only K = 2 profiles for

clarity. The black solid and dashed lines show the two profile logistic re-

gression functions, rk(z). The red lines show individual regression functions

ri(x) =
∑
k rk(z).

Intuition developed on early applications and versions of mixed membership was

developed on categorical data. These intuitions and understandings of how to

interpret mixed membership do not hold in general.

2.3 relationship between mixed membership and finite mixture

models

The assumption at the subject level of the mixed membership model that fea-

tures are conditionally independent given the membership vector θ has some
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surprising consequences for the data distribution. The structural exchangeability

assumptions are shared by every mixed membership model whether the data are

categorical, discrete or continuous. The more recent models, such as Airoldi et al.

(2008) and Manrique-Vallier (2010) have increasingly complicated profile distri-

butions. It is therefore, critical to understand how the basic model assumptions

behave on their own and how they interact when combined with other distribu-

tions.

In the Section 1.1, we drew a contrast between mixed membership models

(MMMs) and finite mixture models (FMMs). Here, we elaborate on this contrast,

and define conditions when the two models are equivalent. FMMs are the prob-

ability model underlying many machine learning tasks including clustering and

classification. FMMs divide a population up into multiple component pieces, each

component with its own probability distribution, say Fw(x). Each individual in the

population belongs completely to one of these components, and each component

makes up a certain proportion of the population, say πw. Thus for an FMM, we

write the population distribution as

FFMM(x) =

W∑
w=1

πwFw(x) (2.25)

In contrast, MMM assumes that each individual belongs to multiple profiles,

which results in the individual distribution given in equation 1.3. To get a popula-

tion distribution, we must integrate equation 1.3 over the population distribution

of the individual mixed membership parameter, D, which yields:

F(x|α) =

∫ J∏
j=1

[
K∑
k=1

θkFkj(xj)

]
D(dθ) (2.26)

The FMM in equation 2.25 is a population-level mixture model. MMM is an

individual-level mixture model, so that the sum inside equation 2.26 is the same
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as in the FMM. However, the product is needed to account for measurements on

different features, and the integral is needed to account for individuals belonging

to different profiles in different proportions.

Despite the additional complications in equation 2.26 compared to 2.25, every

mixed membership model can be re-expressed as a finite mixture model with a

much larger number of components. Haberman (1995) suggested this relationship

in his review of Manton et al. (1994). Erosheva et al. (2007) showed that it holds

for categorical data, and recognized that the same result holds in the general case

as well. I present the proof of Theorem 2.3 for the general case, because a general

version of the proof is not recorded elsewhere. The relationship between mixed

membership and finite mixture models forms the foundation for understanding

the behavior of mixed membership in the general case.

Theorem 2.3. Assume a mixed membership model with J features and K profiles. To

account for any replications in features, assume that each feature j has Rj replications, and

let R =
∑J
j=1 Rj. Write the profile distributions as

Fk(x) =

R∏
r=1

Fkr(xr).

Then the mixed membership model can be represented as a finite mixture model with

components indexed by ζ ∈ {1, . . . ,K}R = Z, where the classes are

FFMMζ (x) =

R∏
r=1

Fζrr(xr) (2.27)

and the probability associated with class ζ is

πζ = E

[
R∏
r=1

θζr

]
(2.28)
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Proof. Begin with the individual mixed membership distribution, conditional on

θi.

F(x|θi) =
∏
r

∑
k

θikFkr(xr) (2.29)

=
∑
ζ∈Z

∏
r

θiζrFζrr(xr) (2.30)

Equation 2.30 reindexes the terms of the finite sum when Equation 2.29 is ex-

panded. Distributing the product over r yields Equation 2.31.

F(x|θi) =
∑
ζ∈Z

([∏
r

θiζr

][∏
r

Fζrr(xr)

])
(2.31)

=
∑
ζ∈Z

πiζFζ(x) (2.32)

Integrating Equation 2.32 yields the form of a finite mixture model.

F(x) = Eθ

∑
ζ∈Z

πiζFζ(x)

 =
∑
ζ∈Z

πζFζ(x) (2.33)

Corollary 2.4. Let ζ, ζ′ ∈ {1, . . . ,K}R = Z, and F be a set of MMM profiles. If ζ′ is a

permutation of ζ, then the probability associated with the FMM mixture classes Fζ and

Fζ′ is equal. That is πζ = πζ′ .

Proof. From Theorem 2.3, equation 2.31 and equation 2.33,

πζ = E

[
R∏
r=1

θζr

]

We simply observe that if ζ′ is a permutation of ζ, then

R∏
r=1

θζr =

R∏
r=1

θζ′r
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Theorem 2.3 says that if a mixed membership model needs K profiles to express

the diversity in the population, an equivalent finite mixture model will require KJ

components. In equation 1.2, we introduced indicator vectors Zij, let us rewrite

them slightly so that Zij = k if individual i acts as a member of profile k on vari-

able j. Then the FMM class indicator for an individual i is ζi = (Zi1,Zi2, . . . ,ZiJ). ζ

indicates exactly which profile an individual followed on each and every variable.

The mixed membership model is a much more efficient representation for high

dimensional data; however, there is a tradeoff in the constraints on the shape of

the data distribution. The equivalent FMM is highly constrained in the shape of

the components allowed. Each FMM class Fζ is a product of components of the

profiles across different dimensions Fkr. Illustration 2 demonstrates the relation-

ship between the two representations of a mixed membership model, and how

the MMM profiles Fkr form a “basis" for the FMM components Fζ.

Corollary 2.4 goes farther, indicating that not only are the shapes of the classes

in the FMM constrained, but there are constraints on the class probabilities, so that

certain sets of classes will have the same probabilities. From a generative perspec-

tive, any data generated by a particular MMM will satisfy the constraints given

by Corollary 2.4 when the model is expressed in FMM form. These constraints

will play an important part in determining whether an MMM is identifiable.

Illustration 2

Suppose we have a MMM with three profiles, and two variables with no replica-

tion (K = 3; J = R = 2), . To make this more concrete, suppose we are looking

at student assessment data where the two features represent the amount of time

a student takes to reach a solution on two different items. The three profiles then
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might, for example, represent three possible different solution strategies. Theorem

2.3 says that we could also write this as a FMM with |Z| = KR = 9 classes.

To highlight how the FMM classes are formed from the MMM profile distribu-

tions, I will write each of the two-dimensional profiles as Fk = Fk1 ⊗ Fk2. Thus

F1,2 is the distribution for the amount of time required using strategy k = 1 on

the problem j = 2. We suppose that the distribution of time for each strategy on

each item is normal, and that strategy 1 takes about 3 minutes per item, strategy

2 takes about 7 minutes per item, and strategy 3 takes about 11 minutes per item.

We’ll also assume that strategy 3 has a different standard deviation for the two

items.

Fk=1 = N(3, 1) ⊗ N(3, 1)

Fk=2 = N (7, 0.25) ⊗ N (7, 0.25)

Fk=3 = N (11, 0.5) ⊗ N(11, 1)

If an individual used strategy 3 on the first problem, and strategy 1 on the

second problem, then this would be represented by the FMM component ζ = {3, 1},

and the student’s data point would be located in Fζ={3,1} ∼ N (11, 0.5) ⊗ N(3, 1).

Likewise, if a student used strategy 2 on the first item and strategy 3 on the

second item, then this is represented by the FMM component ζ = {2, 3}. The index

set ζ ∈ Z represents all the possible combinations of different strategies that could

be used on different problems.

The three MMM profiles appear on the left side of Figure 2.3, while the right

side shows all 9 FMM classes. The FMM classes are completely determined by the

profiles Fk, for ζ ∈ Z, we have

Fζ = Fζ1,1 ⊗ Fζ2,2 (2.34)
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In this way the MMM profiles form a “basis" for the data distribution.

Figure 2.3: Illustration 2. Mixed membership model with three profiles and two features

(K = 3, J = R = 2). The densities of the profiles for the features x1 and x2 are

shown on the left hand side and labeled with the profile index k. The resulting

FMM classes on the right side are labeled with the index ζ ∈ Z.

Now consider a particular individual who uses strategies 1 and 3 equally, so

that their membership parameter is θi = (0.5, 0, 0.5). This individual’s response

time distribution on the first item is then

F(x1|θi) = (0.5)N(3, 1) + (0.5)N(11, 0.5)

It is worth noting that this individual’s mixed membership in each strategy does

not make it likely they will have a response time between 3 and 11 minutes,

but rather that they will have a response time either near 3 minutes or near 11

minutes. This is, of course, a well-known property of normal mixture models,

but it is worth reiterating because of the between interpretation possible in other

circumstances.
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For this individual, since they use strategies 1 and 3 equally, any combination

of these two strategies is equally likely. In particular, it is equally likely that they

use strategy 1 on the first item and strategy 3 on the second item, ζ = {1, 3}; as that

they use strategy 3 on the first item and strategy 1 on the second item, ζ = {3, 1}.

This is the symmetry under permutation of ζ guaranteed by Corollary 2.4. It is

always the case that π{1,3} = π{3,1}. Thus the corresponding FMM components

always have the same probability.

The MMM ‘basis’ profiles determine the FMM mixture components, as evident

in equation 2.27 of Theorem 2.3, and this illustration. A change in the value or

distribution of the membership parameter θ cannot change the mixture classes

when the model is expressed in FMM form. Changing the distribution of θ only

affects the probability associated with each mixture class πζ = E [
∏
r θζr].

This illustration shows how the small set of mixed membership profiles are

recombined by the switching behavior to form the larger set of mixture classes. �

2.4 identifiability

Identifiability is an issue that is often ignored when working with complex hier-

archical models. However, if a mixed membership model is not identifiable, we

may draw incorrect conclusions about the population based on the basis profiles

that are estimated.

Let us consider a highly abstracted version of the applications to the National

Long Term Care Survey (Erosheva et al., 2007; Manrique-Vallier, 2010). Suppose

that we fit a MMM and find one profile that indicates a high level of mental im-

pairment, but low levels of impairment to mobility. Suppose that another profile
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indicates the opposite: a low level of mental impairment, but severe mobility re-

strictions. This might lead us to conclude that mental and physical impairment

are relatively independent and severe impairment in both areas rarely occurs.

Alternatively, if we find a profile that is associated with very mild levels of both

mental and physical disability, and another profile is associated with high levels

of mental and physical disability. This set of profiles might lead us to conclude

that physical and mental degeneration are linked.

These are drastically different conclusions, but we cannot know whether either

is justified until we understand the conditions under which a mixed membership

model is identifiable. Theorem 2.3 shows that a small number of basis profiles can

generate a much larger number of classes when written as a finite mixture model.

This leads us to wonder whether distinct sets of profiles can generate the same

set of finite mixture components.

From Illustration 2, we see that the mixed membership profiles form a sort

of ‘basis’ for the mixture components, and just from looking at Figure 2.3 we

might propose an alternate set of basis profiles. Theorem 2.5 shows that we can

indeed construct such an alternate set of basis profiles by selecting other mixture

components in such a way that they ‘span’ the set of all mixture components. We

note, however, that for the marginal data distribution to be the same, not only

must the FMM components be the same, the probabilities for each component

must also be equal, so Theorem 2.5 alone is insufficient for identifiability.

Theorem 2.5. Let F and G be two sets of K MMM profiles over J unique variables.

Assume that for each feature j ∈ {1, . . . , J}, the list of profile distributions F1j, . . . , FKj

and G1j, . . . ,GKj, is the same up to permutation. That is, there is a one-to-one and onto

mapping from k to k′ such that Fkj = Gk′j.
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Then when the distribution is written as a finite mixture model with components in-

dexed by ζ ∈ Z, F and G will generate the same set of mixture components.

Moreover, there are (K!)(J−1) distinct sets of basis profiles with the same set of mixture

model components.

Proof. Let Fζ be a component of the mixture model generated by F, then from

Theorem 2.3,

Fζ(x) =

R∏
r=1

Fζrr(xr) (2.35)

But by assumption for each ζr ∈ {1, ...,K}, there exists a ζ′r ∈ {1, ...,K} such that

Fζrr = Gζ′rr so that

Fζ(x) =

R∏
r=1

Fζrr(xr) =

R∏
r=1

Gζ′rr(xr) = Gζ′(x) (2.36)

Now, we need to count the number of possible distinct sets of basis profiles

which generate the same mixture components. First, to avoid double counting, fix

the distribution of the first variable for each basis profile. That is, fix Fk,j=1 for

k = 1, . . . ,K.

Then, for the first basis profile, there are K possible choices of Fk=1,j for j =

2, . . . , J, and thus K(J−1) distinct ways to construct Fk=1.

For the kth basis profile, there are now K− (k− 1) possible choices of Fk,j for

j = 2, . . . , J, so there are (K− (k− 1))(J−1) ways to construct Fk.

Thus the number of possible ways to construct all K components is:

K∏
k=1

(K− (k− 1))(J−1) = (K!)(J−1) (2.37)
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Illustration 3

Continuing from Illustration 2, we will use the same context of student response

times and the same set of basis profiles, F:

Fk=1 = N(3, 1) ⊗ N(3, 1)

Fk=2 = N (7, 0.25) ⊗ N (7, 0.25)

Fk=3 = N (11, 0.5) ⊗ N(11, 1)

We can think of constructing an alternate set of basis profiles {Gk} as permuting

which distributions for the second problem are paired with the distributions for

the first problem. For example, we might switch F2,2 and F3,2 to get the basis

profiles:

Gk=1 = N(3, 1) ⊗ N(3, 1)

Gk=2 = N (7, 0.25) ⊗ N(11, 1)

Gk=3 = N (11, 0.5) ⊗ N (7, 0.25)

Clearly the interpretation of these two different sets of profiles would be differ-

ent. Under the F profiles, strategy F2 is always faster than strategy F3; however,

under the G profiles strategy G2 is sometimes faster and sometimes slower than

strategy G3. Theorem 2.5 indicates that despite the different interpretation, these

two sets of basis profiles will result in the same finite mixture model components.

Figure 2.4 shows the profiles F and G, and the FMM components associated with

each set of profiles.

In this example, there are (K!)(J−1) = (3!)1 = 6 possible sets of basis profiles

with the same mixture components in finite mixture model form. The six possible

sets are shown in Figure 2.5. �
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Figure 2.4: Illustrations 3 and 4. The left shows the two sets of basis profiles, F and G.

The right shows the finite mixture model with components labeled by their

probabilities under each distribution. Note that different components share

labels under each set of basis profiles.

The six sets of basis profiles in Illustration 3 and Figure 2.5 generate exactly

the same set of mixture components. However, an FMM is defined by both the

component distributions Fζ and the associated probabilities πζ. Theorem 2.5 gives

the conditions under which different specifications of the basis profiles will result

in the same FMM components. The permutation constraints on the probabilities
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Figure 2.5: Illustration 3. The original basis profiles F are shown in the upper left corner.

There are a total of (K!)(J−1) = 6 basis profiles which generate the same finite

mixture classes. Each box shows one of these sets of basis profiles. The basis

profiles G are shown on the lower left.

πζ given by Corollary 2.4 lead to Theorem 2.6. Theorem 2.6 says that the prob-

abilities of components will not be equal unless multiple sets of constraints are

satisfied simultaneously. Thus, even if the FMM components are the same, the

FMM distributions will not be equal unless additional requirements are met.

Theorem 2.7 is the main identifiability result, and characterizes the class of

MMM distributions which will generate exactly the same FMM distribution. Es-

sentially, the MMM basis profiles must generate the same FMM components, as

in Theorem 2.5, and the distribution of the membership parameter θ must guar-

antee that the FMM components under each specification of the model have the
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same probability. The more symmetry there is in the distribution of θ, or equiv-

alently, the more dimensions of θ which are exchangeable, then the larger the

class of MMM distributions which generate the same marginal data distribution

becomes.

Theorem 2.6. Let F and G be two distinct sets of mixed membership profiles which

generate the same set of finite mixture model components (as in Theorem 2.5). When the

model is expressed in finite mixture model form, the component probabilities, πζ are subject

to equality constraints described in Corollary 2.4. These sets of equality constraints on πζ

under F and G are distinct.

Proof. Since F and G are distinct sets of basis profiles, F has at least one basis pro-

file that is not in G, say Fk∗ . When the data distribution for F is written in finite

mixture form, the mixture component Fζ∗ where ζ∗ = {k∗,k∗, . . . ,k∗} is equal to

Fk∗ , and it has probability π∗ = E [
∏
r θk∗] = E

[
θRk∗
]
. Note that the set of permu-

tations of ζ∗ has only one element, namely ζ∗, so that under F, the probability π∗

for mixture component Fζ∗ is not constrained.

Since F and G generate the same set of mixture components, there exists a t ∈ Z

such that Fζ∗ = Gt. Under G, the probability of the mixture component Gt is

γt = E [
∏
r θtrr], which is constrained so that γt = γt′ for all permuations t′ of t.

However, Fk∗ is not an basis profile in G, so that Gt is not equal to any basis pro-

files in G, and thus the set of permutations of t has more than one element. Thus

the two sets of basis profiles impose distinct sets of constraints on the probabilities

of the finite mixture distribution.

Theorem 2.7. Fix the distribution of the membership vector, θ = (θ1, . . . , θK), and sup-

pose that for some maximal subset A ⊆ {1, . . . ,K}, the θa are exchangeable for a ∈ A .

Then two sets of profiles, F and G will be associated with the same marginal data distribu-
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tion if and only if Gk = Fk for k 6∈ A, and Gkj = Fk′j for k,k′ ∈ A. (That is G permutes

the exchangeable dimensions of F, otherwise G is the same as F.)

There will be (|A|!)J−1 sets of MMM basis profiles which define the same mixed mem-

bership distribution.

Proof. If F and G satisfy Gk = Fk for k 6∈ A, and Gkj = Fk′j for k,k′ ∈ A, then they

satisfy the conditions in Theorem 2.5 to generate the same FMM components.

Additionally, if F and G have the same marginal data distribution, then they must

generate the same FMM components. Thus G must permute the dimensions of F

according to Theorem 2.5.

We simply need show that the component probabilities, πζ, are equal if and

only if G is a permutation of F for only the exchangeable dimensions of θ.

When expressed as a FMM, we have a marginal data distribution of

FFMM(x) =
∑
ζ∈Z

πζFζ(x) (2.38)

where

πζ = E

[
R∏
r=1

θζr

]
(2.39)

For F and G to have the same marginal data distribution, we must have that

E

 K∏
j=1

θζj

 = E

 K∏
j=1

θζ′j

 (2.40)

This holds if and only if ζ′ is formed from ζ by permuting the elements ζa

where θa is an exchangeable dimension of θ.

The counting is the same as in the proof of Theorem 2.5.

These identifiability results follow directly from the exchangeability assumption

in Equation 1.3. The assumption that features are independent conditional on
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the latent membership parameter results in both the basis structure identified in

Theorem 2.5 and the probability constraints defined in Corollary 2.4. Theorem 7

tells us that if some dimensions of the membership parameter θ are exchangeable,

then there are multiple ways to specify the basis profiles which will result in the

same data distribution and satisfy the same constraints on class probabilities.

We can now see that the identifiability of a mixed-membership model depends

on the exchangeability structure of the membership parameter. If there is no sub-

set of θa which are exchangeable, then there is only one set of basis profiles pos-

sible which will generate that marginal data distribution. In this case, the MMM

is identifiable. On the other hand, if θ is fully exchangeable, as is the case when a

symmetric Dirichlet prior is placed on the membership parameter, then there are

(K!)J−1 equivalent sets of basis profiles. This idea is illustrated in Figure 2.6.

Theorem 2.7 defines an equivalence class of MMM which all have the same

marginal data distribution. An MMM is identifiable up to a defined set of permu-

tations that switch distributions for variables from one profile to another profile.

This is somewhat similar to how a finite mixture model is identifiable up to per-

mutation (Titterington et al., 1985), yet in the FMM case it is simply a permutation

of the indices. For MMM, it is not a simple re-indexing, it is recombining the pro-

files to form a completely different set of profiles.

Manton et al. (1994) does consider the issue of identifiability for the GoM model.

However, these results are flawed because they do not consider the possibility of

distinct sets of mixed membership profiles producing the same model for data.

The results in Manton et al. (1994) only apply when the profile distributions are

multinomial and the equivalence class defined by Theorem 2.7 has a single mem-

ber.
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Figure 2.6: Each triangle represents a possible distribution of the membership parameter

θ in a MMM with K = 3. Distribution A has 2-fold symmetry, and there are

2!(J−1) equivalent MMM distributions. Distribution B has complete symmetry

and all possible K!(J−1) MMM distributions will have the same distribution of

observable data. Distribution C has no symmetry, and the associated MMM

will be identifiable.

Illustration 4

Continuing from Illustrations 2 and 3, we have two sets of MMM basis profiles, F

and G which generate the same set of FMM mixture components. These two sets

of profiles represent two different possible summaries of strategies that students

might use in a problem solving context. In order for F and G to represent the same

distribution of solution times in data, they must not only generate the same set of

FMM mixture components, but the must also generate the same probabilities for

each component.

That is, if

FFMM(x) =
∑
ζ∈Z

πζFζ(x)
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and

GFMM(x) =
∑
ζ∈Z

γζGζ(x)

Then for FFMM to be equal to GFMM we must have that for all ζ ∈ Z there is a ζ′

such that πζ = γζ′ and Fζ = Gζ′ .

Theorem 2.6 says that the constraints on πζ and γζ are different. We can think

of it this way: If the F strategies are accurate, then a student is equally likely to use

strategy F1 followed by F2 as to use strategy F2 followed by F1. So the student’s

data point is equally likely to be in the FMM component N(3, 1)⊗N(7, 0.25) as

in the component N(7, 0.25)⊗N(3, 1). This is the equality constraint that π{1,2} =

π{2,1}.

The G basis profiles define strategy 2 differently. If the G strategies are accu-

rate, then a student is still equally likely to use strategy G1 then G2 as to use

G2 and then G1, according to the equality constraint that γ{1,2} = γ{2,1}. However,

since strategy G2 is different than strategy F2, now the student’s data point is

equally likely to be in the FMM component N(3, 1)⊗N(11, 1) as in the compo-

nent N(7, 0.25)⊗N(3, 1).

Recall that π and γ are determined completely by the distribution of the mem-

bership parameter θ. In order to have FFMM = GFMM, the distribution of θ must

be one that can simultaneously satisfy the equality constraints on π and those on

γ.

In this example, G permutes dimensions of the basis profiles F2 and F3. Thus,

according to Theorem 2.7, if θ2 and θ3 are exchangeable, then the mixed mem-

bership model defined by G and the model defined by F will have the same data

distribution. If θ2 and θ3 are not exchangeable, then F and G define distinct mixed

membership distributions. �



2.4 identifiability 45

There are a few special cases to consider. First, in LDA J = 1 with many repli-

cations; the only feature being modeled in LDA is the presence or absence of

words, but each document has many words, so there are many replications. In

this case there is K!J−1 = K!0 = 1 distinct set of basis profiles which will generate

the equivalent mixture model components. Thus latent Dirichlet allocation is an

identifiable model.

Another special case to consider is the issue of distinct sets of exchangeable

dimensions of θ. Suppose that θa are exchangeable for a ∈ A and θb are ex-

changeable for b ∈ B. In this case, there are

(
|A|!(J−1)

)(
|B|!(J−1)

)
(2.41)

members of the equivalence class with the same marginal data distribution.

A final special case is of particular importance for the myriad extensions of LDA

which model more than one feature (J > 1). The symmetric Dirichlet distribution

is often used as a convenient prior distribution for the membership parameter, θ.

For any symmetric distribution of the membership parameter, all K!(J−1) possible

basis profiles will have exactly the same marginal data distribution. In this case,

the class of equivalent MMM distributions is at its maximal size. This practice may

lead to problems with non-identifiability such as different MCMC runs resulting

in different, but equivalent estimations of the basis profiles. If we place a strong

symmetric prior on θ, then we may estimate the basis profiles to be any one of

the K!(J−1) possibilities, because under that prior, they are all equivalent.
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2.5 discussion and implications for practice

The results in this chapter address two different facets of mixed membership

models. First is the special case of categorical data, addressed by theorems 2.1

and 2.2. Second is the identifiability of the class of general models, described in

theorems 2.3-2.7.

Theorems 2.1 and 2.2 show that mixed membership distributions have a dif-

ferent interpretation for categorical data than in the general case. This is a key

finding since all of the early papers on mixed membership worked with categori-

cal data exclusively. We demonstrated that the individual-mixture structure in the

mixed membership model in the general case may be interpreted as describing

a switching behavior. Individuals with partial membership sometimes follow one

profile and sometimes follow another profile.

For categorical data, and a small set of other cases, an additional interpretation

is possible. Partial membership in multiple profiles in this special set of cases may

also be interpreted as individuals residing between profiles. These two interpreta-

tions take place in two different spaces. The between interpretation for categorical

data is in the parameter space. The switching interpretation is in the data space.

This difference in interpretations should be one of the things we consider when

deciding if a mixed membership model is appropriate for a given application.

For example, suppose that we are again modeling student performance on an

assessment. Suppose two profiles represent an immature (bad) strategy and a

mature (good) strategy, and mixed membership represents the degree to which

a student has moved from the immature strategy to the mature strategy. If the

data is categorical, mixed membership is an appropriate and reasonable model
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whether we believe that students who are learning the mature strategy use some

strategy between the two extremes, or if we believe that students switch back and

forth between strategies while learning the mature strategy. Either interpretation

is possible for categorical data.

If the data are not categorical, but is continuous or discrete, then only the switch-

ing interpretation is possible. Mixed membership will model students switching

back and forth between the immature and mature strategies, but not using some

strategy between the two extremes.

Now consider the examples of Rogers et al. (2005) and Blei and Jordan (2003).

Rogers et al. (2005) models gene expression levels, and Blei and Jordan (2003) mod-

els the content of an image. Both models use continuous data, and both use multi-

variate Gaussians as basis profile distributions for some features, Fkj = N(µk,σk).

Again, the between interpretation is not possible here, only the switching interpre-

tation; but the switching interpretation is fully appropriate. In Rogers et al. (2005),

genes switch their expression level based on which processes the tissue sample

associated with. In Blei and Jordan (2003), their GM-LDA model describes some

image segments being associated with some subjects and other image segments

associated with other subjects. This is again a switching behavior, the individual

image switches between subjects for different segments of the image. The key here

is that in the general case, mixed membership is an appropriate model only if par-

tial membership is reasonably interpreted as switching back and forth between

profiles.

Theorems 2.3-2.7 focus on identifiability of mixed membership models. These

results are also critical for evaluating the appropriateness of a mixed membership

model and interpreting estimation results. First, we showed in Theorem 2.3 that

every mixed membership model can be re-written as a constrained finite mixture
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model. This raises the question of whether mixed membership is worth the extra

trouble if we can simply use an equivalent simpler model. The answer is that a

finite mixture model is not always simpler. Mixed membership can represent a

document being about both healthcare and small-businesses without creating a

separate healthcare/small-business topic. The mixed membership model needs

only K profiles and the membership parameter θ to describe the diversity in the

population. The finite mixture model needs KJ classes to describe the same di-

versity. The advantage for mixed-membership comes as the number of features

increases and data become very high dimensional.

The parsimony in representations comes with some tradeoffs. One well-known

tradeoff is that mixed membership models can be difficult to estimate (Blei et al.,

2003; Shan and Banerjee, 2011). The probability constraints in Corollary 2.4 are

another such tradeoff. We can summarize the data with a small number of profiles

at the cost of making assumptions about exchangeability between features. In the

image-analysis context we assume that it is equally likely that segment 1 at the top

of the image is sky and segment 2 at the bottom of the image is rock, as that the

upper segment is rock and the lower segment is sky. In this example, this clearly

false assumption probably doesn’t make too much difference and the model may

perform acceptably regardless. In other applications, we may need to examine

this assumption more carefully.

Finally, the main identifiability result in Theorem 2.7 describes classes of mixed

membership distributions which all have the same data distribution. If the dis-

tribution of the membership vector θ has any symmetry, or equivalently, if any

dimensions of θ are exchangeable, then the class of equivalent models has more

than one member. Illustration 4 provided a very simple and easy to identify exam-
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ple of this phenomenon. Identifying the equivalence class in practice with high

dimensional data will be more tricky.

A large equivalence class might cause different MCMC runs to result in differ-

ent estimated profiles. When this occurs, it seems prudent to look for equivalent

mixed membership representations. Another possibility is to examine the poste-

rior distribution of θ for exchangeable dimensions. Identifying symmetry in the

posterior distribution of θ is a good first step toward identifying members of the

equivalence class of mixed membership distributions.

A more thorny issue with respect to these equivalence classes is how to interpret

them. Any interpretation of the estimated profiles should be applicable to all

of the possible profiles in the equivalence class. In our illustration, with the F

profiles, strategy F1 was faster than strategy F2 which was faster than F3. This

lends itself to a nice interpretation. The alternate G profiles did not have such

a nice interpretation. However, if θ2 and θ3 were exchangeable, then F and G

generated identical data distributions. How we interpret this may depend in large

part on the context of the application.

In some situations, we may be able to argue that even though F and G are math-

ematically equivalent, F is a more reasonable summary because we know that the

problems are very similar and the results from each strategy on each problem

should be similar. Alternatively, we may decide that G is a more reasonable sum-

mary because sometimes strategy G2 is faster and sometimes strategy G3 is faster.

We must realize, however, that this is an invocation of external knowledge and

the two representations are equivalent (for this supposed distribution of θ). It is

more honest in this case to report the estimated profiles, the distribution of θ, and

note that profiles 2 and 3 are exchangeable.
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A final comment on terminology. First, the mixed membership profiles are

sometimes referred to as ‘extreme profiles’ due to the properties of mixed mem-

bership for categorical data. Since the profiles do not form extremal points of

the parameter space in the general case, the term ‘basis profiles’ or simply ‘pro-

files’ are more appropriate general terms. Additionally, latent Dirichlet allocation

is a poor name for the general model for two reasons. First, the distribution of

the membership parameter does not need to be Dirichlet. Second, when the dis-

tribution of the membership parameter is a symmetric Dirichlet distribution, the

class of equivalent mixed membership distributions is at its maximum size. Mixed

membership is a more appropriate name for the general class of models.



3
M O D E L I N G M U LT I P L E S T R AT E G I E S

It seems intuitive that for most problems, there are multiple ways to solve them.

Colloquially, these multiple ways to solve a problem are what we refer to as

“strategies." There is ample evidence that for all types of problems, individuals

use multiple distinct strategies. For example, in mental rotation tasks, we know

that different individuals use different strategies, but we also suspect that individ-

uals switch strategies from item to item (Geiser et al., 2006). In another setting, we

have solid evidence that children switch strategies on even the simplest arithmetic

and spelling problems (Siegler, 1987; Rittle-Johnson and Siegler, 1999).

Not only are different strategies present, the strategies themselves are indica-

tors of expertise. Experts have knowledge that is organized around fundamental

principles of a discipline, and they are able to retrieve this knowledge flexibly

(Bransford et al., 2000). Experts know more strategies and use different strategies

than novices (Lovett, 1998; Pellegrino et al., 2001; Quaiser-Pohl et al., 2010). Since

strategies differ by expertise, assessing which strategies individuals are using is

an important part of assessing their expertise.

One compounding factor for estimating expertise through strategy use, is that

while on the whole, strategies do become more effective with age and experience,

51
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growth is not straightforward. Rather it seems that as children learn, the mixture

of strategies that each child uses changes; they use one strategy more and an-

other strategy less, but still use both strategies (Pellegrino et al., 2001). In order

to estimate expertise from strategies, we have to estimate the proportion of the

time each individual uses each strategy. This is the key which leads us to mixed

membership for modeling strategies.

This chapter uses foundations in the learning sciences and cognitive psychol-

ogy to refine the concept of ‘strategy.’ I then develop a probability model for as-

sessing individual strategy usage by combining mixed membership models with

cognitive diagnosis models. I then demonstrate how additional variables such as

response time can be incorporated into this model of strategies.

3.1 example of multiple strategy use in addition

To better understand what modeling multiple strategies entails, let us consider a

specific example. Siegler (1987) examines the strategies that young children use

in addition, and is one of the first papers to highlight the fact that children switch

strategies, even for very simple single-digit addition problems. Five strategies

were considered: retrieval, min-counting, count-all, decomposition, and guessing.

The retrieval strategy is the fastest and most accurate if it is available; if 2 +

2 is memorized, then the student does not need to count. In the min-counting

strategy the student begins counting on the bigger number. For example, to solve

3 + 5, the student counts five, six, seven, eight. When a student uses the count-

all strategy, they solve 3 + 5 by counting one, two, three,. . . , four, five, six, seven,

eight. Decomposition involves transforming the problem into simpler problems.
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For example; to solve 12+ 2; a child may say “12 is 10 and 2; 2 and 2 is 4; 10 and

4 is 14; so 14." Decomposition may be considered a more expert strategy because

it relies on a greater conceptual understanding of addition.

The five strategies are separated by both solution time and percentage of er-

rors. Retrieval was the fastest strategy, followed by decomposition and guessing.

Min-counting took twice as long on average as retrieval and led to more than

twice as many errors. Count-all was used almost exclusively by kindergardeners,

was 3 times longer than retrieval and more than twice as long as min-counting.

Count-all was also incredibly inaccurate, with an over-all error rate of 54%. De-

composition is worth particular note, because while it was only used about 10%

of the time by first and second graders, it is the second fastest strategy and ap-

proximately as accurate as retrieval.

The evidence that children switch strategies from problem to problem is over-

whelming. 99% of children reported using at least 2 strategies and 62% reported

using 3 or more. In kindergarden, retrieval, min-counting, count-all, and guessing

were each used at least once by more than 68% of children. In first and second

grade, a majority of children used retrieval, min-counting and decomposition at

least once. A reasonable conclusion is that by first or second grade, the students

knew all 5 strategies but had abandoned the slow and inaccurate strategies.

The key observation here is that even for these very simple addition problems,

children switch strategies, and strategy choice is clearly related to expertise. More-

over, the differences in expertise are expressed by differences in the proportion of

time that the students use each strategy. Siegler (1987) argues that we should aban-

don the question “What is the strategy that young children use to add?" in favor

of the question “Under what conditions do children most often use each of their
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strategies?" This is the same shift that we now need to make in modeling student

knowledge.

3.2 modeling strategies

To consider how strategies are currently modeled in the psychometric literature,

it is useful to turn to the categorization created in Junker (1999) and espoused in

Pellegrino et al. (2001).

Case 0: No modeling of strategies

Case 1: Model strategy changes between persons

Case 2: Model strategy changes between tasks, within persons

Case 3: Model strategy changes within task, within persons
Most psychometric models are Case 0 models. An item response theory (IRT)

model that estimates student ability compared to the difficulty of the questions

on the assessment is an example of Case 0 (Junker, 1999). Cognitive diagnosis

models (CDM) are also Case 0 models (Henson et al., 2009). CDMs assume that

a person can solve a problem if they possess a certain set of skills, but the set of

required skills is identical for every individual. That is, the model assumes that

everyone solves the problem in the same way, with the same strategy.

Mixture IRT models (Mislevy and Verhelst, 1990) are an example of Case 1. In a

mixture IRT model, students are partitioned into latent classes according to which

strategy they use, and the responses for all students in a given class is represented

by a standard IRT model. Case 1 models assume that different individuals use

different strategies, but that each individual uses a single strategy throughout the

assessment, thus most Case 1 models are variations of latent class models.
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Case 2 and Case 3 models are much more difficult to estimate, because we

have to estimate when and how much each individual is using each strategy. As

Junker (1999) notes, binary or polytomously scored responses may not contain

enough information to identify strategies, and accordingly very little work has

been done in modeling Cases 2 and 3. With computer-based assessment becoming

more prevalent, it is much easier to collect additional data, and estimate which

combination of strategies individuals are using.

Modeling strategy differences between persons, Case 1, is a useful model if indi-

viduals predominantly use one strategy. However, if individuals switch strategies

between tasks, then using a Case 1 model functions as aggregating the strategies

for each individual. Siegler (1987) demonstrates that not only do people switch

strategies on even very simple tasks, but also that aggregating strategies can lead

to incorrect conclusions about which strategies are present.

In order to capture the differences in expertise that are expressed by different

strategy use, we need to be working in Case 2. We need to model individuals

switching strategies. In fact, the choice of which strategy to use on which problem

is, itself, an indicator of expertise. As established in Chapter 2 mixed membership

models are built to describe a switching behavior. This makes mixed membership

an ideal foundation for modeling Case 2, where individuals switch strategies

between items.

3.3 the knowledge-learning-instruction framework

“Strategy" is well defined in common English usage. A common dictionary defini-

tion is “a plan of action designed to achieve a specific goal." We need to refine this
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concept of strategy in a way that is both consistent with common usage and pre-

cise enough for the purposes of assessment. For this, we turn to the Knowledge-

Learning-Instruction (KLI) framework (Koedinger et al., 2010).

The KLI framework provides the groundwork to connect cognitive learning

research to instructional principles at different grain-sizes from neurons to the

classroom. It builds a taxonomy of kinds of knowledge focusing on the character-

istics that may determine which learning processes are likely to be most effective

in producing different kinds of knowledge.

For example, the studying techniques that are effective to memorize facts are

not the same techniques that are most effective to learn mathematical problem

solving methods. The taxonomy created in the KLI framework focuses on the

distinctions that are likely to tell us why the learning process is different in each

case. This taxonomy allows us to create a more precise definition of ‘strategy.’

The basic unit of knowledge in the KLI framework is dubbed a knowledge compo-

nent (KC) and defined as ‘an acquired unit of cognitive function or structure that

can be inferred from performance on a set of related tasks.’ Defined as such, this

term encompasses skills, strategies, concepts, principles, facts, misconceptions,

schemas, and production rules. Knowledge components are also distinguished by

the time scale on which they occur, taking 1 second to 1 minute.

This framework exists to help researchers study learning. Therefore it is useful

to define KCs at the level of students who are in a particular learning environment

(such as a course). For example, college students can read regular and irregular

verbs with very high accuracy. First or second grade students in comparison, may

be able to read regular verbs, but have difficulty with irregular verbs. At the lower

level, we need at least two KCs, possibly more since there are different types of

irregular verbs, but at the higher level, only one KC is necessary. We unpack
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knowledge components into smaller components until the smaller components

are ones that students can perform with a sufficiently high accuracy and fluency.

The KLI framework decomposes the learning progression into a temporal se-

quence of events: instructional events, learning events, and assessment events. Instruc-

tional events include any event intended to produce learning: a classroom lesson,

a practice session on a computer, or a museum exhibit. Instructional events are

observable, as are assessment events. Exams, or particular exam items are the

most common assessment events, but formative assessments that occur during

instruction are also assessment events. Learning events however, are unobserv-

able. Learning must be inferred from assessment data. The goal of an assessment

within this framework is to identify whether a student has acquired a particular

set of knowledge components.

Knowledge components represent the conditionalized nature of knowledge by

relating the task features and context to the individual’s response. An example KC

might be: To get ready to play baseball, get your bat and glove. However, like learning,

KCs are unobservable, and should be inferred from student performance on an

appropriate set of tasks. KCs are expressed in a condition-response format to

emphasize that a critical part of knowing is knowing when to apply knowledge.

The taxonomy of KCs takes place in four dimensions: Task Features, Response,

Relationship, Rationale.Task Features and Responses may be either constant or

variable. For example, To state meaning of the Spanish word rojo, say red. This simple

KC has a constant task feature, and a constant response. The relationship between

the features and response may be either implicit or explicit, and the rationale for

the relationship may be known or unknown. This yields a possible 16 types of

knowledge components, Koedinger et al. leave the question open whether all 16

types exist in practice. Table 3.1 below is a reproduction of Table 3 from Koedinger
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et al. (2010) showing common knowledge component categories with common

labels for each type of KC.

Table 3.1: Common knowledge component categories (Table 3 from Koedinger et al.

(2010))

Task Features Response Relationship Rationale Labels

constant constant implicit no association

constant constant explicit no fact

variable constant implicit no category

variable constant explicit no concept

variable variable implicit no production, schema, skill

variable variable explicit no rule, plan

variable variable explicit yes principle, rule, model

In addition to these four dimensions, KCs also vary substantially in complexity.

Complexity may come from many sources, such as the amount of perceptual

encoding required, or the complexity of any motor response. Of interest for us, is

that some KCs must be integrated with other KCs to produce behavior, these are

referred to as integrative knowledge components.

3.4 definition of ‘strategy’

We can now define strategy as a type of integrative knowledge component that

guides how the other KCs should be combined in order to complete a task. For
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example, the white area in Figure 3.1 can be computed in at least 2 ways. You

can compute the area for the large rectangle, and subtract off the area for the

black rectangle. Alternatively, you can decompose the white space into 2 smaller

rectangles and add the areas together. The strategy chosen dictates which atomic

KCs are necessary to solve the problem.

Figure 3.1: To find the area of the white region, students can use numerous different

strategies.

Defining strategy as an integrative knowledge component translates nicely to

the psychometric literature when compared to conjunctive and disjunctive models.

In conjunctive, or noncompensatory models, students need all of the attributes

associated with a problem in order to solve the problem. In contrast, disjunctive

models assume that if students have at least one of the necessary attributes, they

will be able to solve the problem. (See for example Junker and Sijtsma (2001);

Henson et al. (2009).)

Junker (1999) introduces the idea that we may think of strategies as disjunctive

attributes. As long as a student knows one strategy for solving a problem, then

provided the student has the necessary atomic KCs to carry out the strategy, they

will be able to solve it. The KCs required to complete the solution are conjunctive,
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the student must have all of them to carry out the strategy. These conjunctive KCs

can be appropriately termed skills. These definitions are consistent with common

English usage as well. A student can use only one strategy, one plan of attack, but

may require several skills to carry out that plan.

Strategy 1

Strategy 2

Strategy 3

Skill A

Skill B

Skill C

Skill D

Item 1

Item 2

Figure 3.2: Illustration of the relationship between strategies and items in a multiple-

strategies model. Strategy 1 may be thought of as an expert strategy, only one

skill is required to solve both items. Strategy 2 is less efficient, and requires

both Skills B and C, but it is still an effective method for solving both items.

Strategy 3, on the other hand, relies on a misconception, and will not generate

a correct response to Item 1

Figure 3.2 shows an example of the relationship between strategies, skills and

items in a multiple-strategies model. What is missing from Figure 3.2 is a charac-

terization of how students relate to strategies. If students use only one strategy,

then we have some flavor of latent class model, but if students switch strategies
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then we need to construct a new mixed-membership model that allows for this

behavior.

3.5 combining mixed membership with cognitive diagnosis models

We have now defined what is meant by ‘strategy’. We know that students use

different strategies, that strategy choice is correlated with expertise, and that stu-

dents switch strategies from problem to problem. Having defined the problem,

we now turn to the question of how to model strategies in assessment data.

In a mixed membership model (MMM), individuals have partial membership

in different profiles. If the different profiles can represent different strategies, then

partial membership in a profile will correspond to how much an individual uses

that strategy. There is a subtle point here. Partial membership is not how well

a student knows a particular strategy, but rather how much the student uses the

strategy. To represent the individual strategies, we use cognitive diagnosis models

(Henson et al., 2009). Later in this chapter, we will demonstrate how to incorporate

response time data, and other variables such as self-reported strategy.

Cognitive diagnosis models (CDMs) measure students’ expertise by estimat-

ing whether they have mastered a pre-defined set of knowledge components. It

is more common in the psychometric literature to talk about CDMs measuring

‘skills’ or ‘attributes’, but I use the term knowledge component (KC) since it is

both more well defined than attribute and more general than skill. A wide variety

of CDMs exist in the literature, which are gathered into a single family of models

by Henson et al. (2009). I use the general notation of Henson et al. (2009) so that
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it is clear that the incorporation of CDMs with MMMs is not dependent upon the

particular CDM used to represent the individual strategies.

The probability that a student can correctly solve a problem is conditional on

the KC’s that the item requires and the KCs that the student has acquired. There

are many ways that CDMs express this probability. Disjunctive models assume

that if a student possesses at least one of the required KCs, then they have a high

probability of solving the item. Compensatory models assume that if a student is

particularly skilled in one attribute, then that can make up for a lack of another

attribute. Conjunctive models require that a student possess all of the required

KCs to have a high probability of a correct response.

We have defined strategies as disjunctive KCs that require conjunctive skill KCs

to complete a solution. Each strategy is essentially determined by the skills re-

quired to carry out the strategy; that is, a strategy is defined by a conjunctive

model. We use a separate conjunctive CDM for each profile distribution. Individ-

uals can then switch between the profiles from problem to problem, modeling the

strategy switching, but once they have chosen a strategy for a particular item, the

CDM associated with that strategy determines the skills required.

In a CDM, the probability that a particular student i can correctly answer a

particular item j depends on the KCs that the student possesses and the KCs that

the item requires. The KCs that student i possesses are captured by the vector αi.

αis = 1 if student i possesses the KC s, and is 0 otherwise. The KCs associated

with each item are specified by the matrix Q. The matrix entry qjs = 1 if skill s is

associated with item j, and 0 otherwise. Specifying the Q matrix is equivalent to

defining the strategy that this CDM represents.



3.5 combining mixed membership with cognitive diagnosis models 63

Henson et al. (2009) gives a common log-linear formulation for the larger family

of CDMs:

log

(
P(Xij = 1|αi)

1− P(Xij = 1|αi)

)
= λTj h(αi,qj) − ηj. (3.1)

or equivalently:

P(Xij = 1|αi) =
exp{λTj h(αi,qj) − ηj}

1+ exp{λTj h(αi,qj) − ηj}
, (3.2)

The vector-valued function h(αi,qj) determines whether the model is conjunc-

tive, disjunctive or compensatory. Each component of h is a linear combination of

αi and qj. λj is a vector of weights for each of the components of h. The value ηj

essentially defines a guessing probability when a student has not mastered any

skills required by the item.

We create a multiple strategy model by using one CDM to represent each strat-

egy. We can then use the distinct CDMs as the basis profiles in a mixed member-

ship model. This allows a student i to switch between using different strategies k

on different problems j, with the membership parameter θi governing how much

a student uses each strategy.

Recall that the mixed membership model is defined by

F(x|θi) =

J∏
j

K∑
k

θikFkj(xj). (3.3)

Each MMM basis profile is now a distinct CDM: Fkj(xj) = P(Xij = 1|αi), so that

we create a mixed membership cognitive diagnosis model:

F(x|θi,αi) =
J∏
j

K∑
k

θik

[
exp{λTj h(αi,qj) − ηj}

1+ exp{λTj h(αi,qj) − ηj}

]
(3.4)

This formulation models a student’s mastery of both simple skill knowledge

components and integrative strategy knowledge components. θ represents how
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much the student uses each strategy KC while α represents whether the student

has mastered each skill KC. One of the challenges with the full model is estimating

both θ and α. Indeed, Junker (1999) suggests that additional information beyond

binary or polytomous response data may be necessary to estimate models with

multiple strategies. The next section builds a framework for incorporating this

additional information.

3.6 response time and other variables

With computer assessment data, response times are easily recorded. In experi-

mental data, researchers often have recorded observed strategies or self-reported

strategies. These variables and others are not perfectly predictive of a student’s

strategy, but they are highly correlated. The multiple strategy model is easily

adapted to incorporate additional variables. In this section, we focus on including

response times as an illustration of a general way to extend the mixed member-

ship cognitive diagnosis model into a general multiple strategies model.

It is well known that response time and expertise are correlated (van der Lin-

den, 2009). Attempts at including some measure of time into estimates of ability

date back to Thurstone (1937), but the question of how to use response data for

this purpose is still unresolved, in part due to several issues with how time and

expertise are related.

The first issue is an accuracy-time tradeoff. For an individual attempting a sin-

gle task, they have a choice between going more slowly and doing the task well, or

going more quickly and allowing for a higher risk of an error. This within-person

tradeoff can only be seen by observing the same individual under different condi-
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tions which require more accuracy or faster performance. There is some evidence

that during the course of an assessment, students do not alter their speed very

much from problem to problem, so that this well-known psychological tradeoff is

not observed in assessment data (van der Linden, 2009).

The second issue is that as individuals practice, they get faster (Anderson, 2010;

Koedinger et al., 2010). In order to model an accuracy-time tradeoff, you must

assume that no learning is taking place. As a student’s expertise increases, both

accuracy and speed increase, so that any tradeoff between the two changes over

time.

This brings up the third issue. Over a population, speed and accuracy are corre-

lated. However, the correlation is sometimes negative and sometimes positive. Van

der Linden (2009) argues that this is simply because the higher-ability students

have better time management skills, and know when to speed up and slow down.

This time-management idea is naive. Time and accuracy depend on strategy.

Siegler (1987) demonstrates that response times vary substantially by strategy,

though not in a linear fashion. The most expert strategies were by far the fastest.

The most rudimentary strategy of all, guessing, was only a little slower. The slow-

est strategies were the two novice strategies.

In other task domains, the expert strategies are slower than novice strategies,

often because they require more steps. The variable correlation between speed

and accuracy depends on whether the expert strategies are slower or faster than

the novice strategies. The key though, is that we can model both the responses

and response times conditionally on strategy choice.
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3.6.1 Existing models for Responses and Time

Van der Linden (2009) separates attempts to model speed and accuracy into a cou-

ple of categories: distinct models for time and accuracy, incorporating time into a

model of ability, incorporating accuracy into a model for speed, and jointly mod-

eling speed and accuracy. Rouder et al. (2003) is an example of the first case. It

is a sophisticated model for response times that accounts for differences between

items and differences between individuals. An example of the second sort is Thur-

stone (1937), which incorporates time into a model of ability, and indeed, many

more recent models, such as Roskam (1997), are similar to this early model.

Van Breukelen (2005) offers one of the first joint models, where both time and

responses are considered random variables and attempts to estimate the correla-

tion between them. Van der Linden (2007) introduces another joint model which

has spawned a number of variations, including Loeys et al. (2011) and Entink et al.

(2009).

We can think of all of these models as belonging to a larger class of models,

inspired by van der Linden (2007). Let Cij indicate whether individual i correctly

responded to item j, let Tij be the associated response time, and let Xij = (Cij, Tij).

The joint distribution is a hierarchical model which accounts for correlation be-

tween individual speed and ability. The distribution for Cij depends on item

difficulty parameters βjc and individual ability parameters φic. Similarly, the re-

sponse time distribution for Tij depends on item intensity parameters βjt, and

individual speed parameters φit. The individual parameters are summarized as

φi = (φic,φit), and the item parameters as βj = (βjc,βjt).
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In an extension of the usual local independence assumption we treat Cij and

Tij as conditionally independent given the item parameters βj and the individual

parameters φi;

F(Xij|βj,φi) = F(Cij|βjc,φic)× F(Tij|βjt,φit) (3.5)

so that,

F(X|β, θ) =
∏
j

∏
i

[
F(Cij|βjc, θic)× F(Tij|βjt, θit)

]
(3.6)

=

∏
j

∏
i

F(Cij|βjc, θic)

∏
j

∏
i

F(Tij|βjt, θit)

 (3.7)

= F(C|βc, θc)× F(T |βt, θt) (3.8)

The second layer of the hierarchical model is what captures the relationship be-

tween speed and accuracy and makes this a joint model.

θi ∼ N(µθ,Σθ) (3.9)

βj ∼ N(µβ,Σβ) (3.10)

Thus Σθ captures the correlation between speed and ability, while Σβ captures the

correlation between item difficulty and item time intensity.

One of the reasons that van der Linden (2007) has inspired several variations

is that it is very easy to make changes to the distributions for time and accu-

racy. The original model proposed used a three-parameter normal-ogive model

for F(Cij|βjc, θic), but the hierarchical structure of the model makes it very sim-

ple to substitute another response model, for example, a one-parameter logistic

model.

This class of models is useful for detecting test design flaws such as bad test

items or ambiguous instructions, analyzing the ’speededness’ of the test, and de-
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tecting aberrant student behavior. Our goal is to estimate which strategies stu-

dents are using, and this class of models does not address the issue of multiple

strategies (Case 0).

3.6.2 Time, Accuracy and Strategy

In Siegler (1987), some strategies were fast, others were up to 3 times slower. Each

strategy had a distinct distribution of response times, and a distinct distribution

of responses. This is the key observation in using response times to estimate strate-

gies.

As above, let Xij be all the variables collected for student i on item j. When we

have only responses and response time, Xij = (Cij, Tij). In some applications, we

may observe additional variables, such as eye-tracking data, self-reported strategy,

or specific intermediate steps. Call these additional variables collectively Wij, so

that Xij = (Cij, Tij,Wij). Consistent with the rest of this paper, let the mixed mem-

bership profiles be indexed k = 1, . . . ,K, and let each profile represent a different

strategy.

A strategy is characterized by a distribution for the vector Xij. This distribu-

tion, Fkj, is the process-signature for strategy k. It is convenient to assume that

the variables are conditionally-independent given the strategy chosen, so that Fk

factors. Whether or not a student can carry out strategy k depends on whether

they have the required knowledge components, as indicated by αi. Thus, for a

particular item j, the distribution of responses for individuals who used strategy

k is assumed to follow:

Fkj(xj|α) = Fkjc(cj|α)× Fkjt(tj|α)× Fkjw(wj|α) (3.11)
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Of course, the model is far simpler if we assume that time and other variables

do not depend on the KC-skill vector α:

Fkj(xj|α) = Fkjc(cj|α)× Fkjt(tj)× Fkjw(wj) (3.12)

3.7 the multiple strategies model

Section 3.5 developed the idea of combining mixed membership models with

cognitive diagnosis models to model students switching strategies during an as-

sessment, using a distinct CDM to represent the response pattern of each strategy.

Section 3.6 discussed response time and illustrated how time and other variables

can be incorporated into the mixed membership basis profiles that represent each

strategy. From here, we can now specify a multiple strategies model that consid-

ers how much a student uses each strategy to be an integral part of estimating

student expertise.

The data point Xij is the collection of all variables collected for student i on

item j. In particular, we consider Xij = (Cij, Tij,Wij); where Cij indicates whether

student i answered item j correctly, Tij is the response time, and Wij represents

any other observed data. Each strategy k is represented by a mixed membership

basis profile Fk,

Fkj(xj|α) = Fkjc(cj|α)× Fkjt(tj)× Fkjw(wj) (3.13)

The profile distributions Fk capture the process-signatures for each strategy. We

can distinguish two strategies within this model only if they produce different

distributions for the observed data X.
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At the individual level, the membership parameter θi indicates how much in-

dividual i uses each strategy, and the KC-skill vector αi indicates whether the

individual has mastered each of the skills necessary to complete each strategy. In

the mixed membership model, the distribution of an individual with membership

parameter θi and KC-skill vector αi is:

F(x|θi,αi) =
∏
j

[∑
k

θikFkj(xj|αi)

]
(3.14)

=
∏
j

[∑
k

θikFkjc(cj|αi)Fkjt(tj)Fkjw(wj)

]
(3.15)

Note that since the sum over k is inside the product over j, the variables C,

T , and W are not conditionally independent given θ. Rather, when we write the

model in finite mixture model form (Theorem 2.3), then we have an independence

relationship conditional on the particular strategies used on each problem.

F(x|θi,αi) =
∏
j

[∑
k

θikFkj(xj|αi)

]
(3.16)

=
∑
ζ∈Z

πiζFζ(x|αi) (3.17)

=
∑
ζ∈Z

πiζFζc(cj|αi)Fζt(tj)Fζw(wj) (3.18)

If we know which strategy individual i used on each problem j, that is the same

as knowing which FMM class ζ the individual belongs to. Denote this class with

an indicator vector zi. Equation 3.18 now becomes:

F(x|zi,αi) =
∏
ζ∈Z

[
πiζFζc(cj|αi)Fζt(tj)Fζw(wj)

]ziζ (3.19)

Equation 3.19 demonstrates clearly that Ci and Ti are locally independent given

zi, not θi. What’s the difference? θ contains information on how much a child

uses a certain strategy. On the other hand, zi contains information about which
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strategy was used on which problem. ζ ∈ {1, . . . ,K}J, and ζij = k if individual i

used strategy k on item j. zi is a data augmentation vector that specifically states

which strategy a child used on each item. Cij and Tij are independent only if the

strategy used by student i on item j is known.

From a cognitive perspective, the response itself and the response latency are

outcomes of internal processing (Wenger, 2005). Moreover, the influences on this

processing can run all the way from perceptual encoding to motor output, so

that the relationship between time and accuracy is not fixed between tasks. By

conditioning on the strategy choice for each item, we are conditioning on this

cognitive processing event.

The flexible framework provided by the mixed membership model allows us

to relate observed variables to each other through the strategies without neces-

sitating specific distributional choices. For example, in one application we may

know that response time distributions follow a 3 parameter Weibull distribution

(Rouder et al., 2003; Rouder, 2005), in which case we can use that distribution for

Fkjt. If, on the other hand, the response times follow an exponential or log-normal

distribution, then we can adjust Fkjt accordingly. In the same way, any member of

the CDM family can be used for the the response distribution Fkjc; though, since

we have defined strategies as disjunctive KCs and skills as conjunctive KCs, we

will use conjunctive CDMs. Relating observed variables to each other through so-

lution strategies provides a flexible framework for altering the model to include

any other available variables, which we have denoted W.

Both accuracy and latency are random variables that are due to unobserved

cognitive processes. The multiple strategies model allows us to condition on the

process at the appropriate cognitive grain-size of a knowledge component.
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3.8 comments

Assessing expertise by modeling multiple strategy usage is not just building a

more complicated model to estimate student “ability." Pellegrino et al. (2001)

claims that ”The measurement models in use today include some very sophis-

ticated options, but they have had surprisingly little impact on the everyday prac-

tice of educational assessment. The problem lies not so much with the range of

measurement models available, but with the outdated conceptions of learning

and observation that underlie most widely used assessments."

This model addresses this concern. It represents an effort to capture the dimen-

sions along which cognitive science has shown that experts and novices differ.

Almost everyone switches strategies from problem to problem, but experts and

novices differ in the mixture of strategies that they use. Experts use efficient strate-

gies more often, but may occasionally fall back on more rudimentary strategies.

This mixed membership model is built to capture these individual differences in

the mixtures of strategies used.

The concern however is that this model is too complicated to be useful. If we

cannot obtain parameter estimates for reasonably sized data sets, then the model

is pointless. Chapter 4 tests this model on a simple data set of very modest size

to examine whether estimating this model is feasible and useful for inference.



4
M U LT I P L E S T R AT E G I E S I N L E A S T C O M M O N M U LT I P L E S

A S S E S S M E N T D ATA

Mixed membership models are undeniably complicated models. The majority of

applications where mixed membership models have been used have exceptionally

large data sets. For example, Latent Dirichlet Allocation (Blei et al., 2003) is com-

monly used to analyze corpus of text containing tens of thousands of documents

where each document is hundreds or thousands of words long.

Educational data sets exist on a much smaller scale, with hundreds of students

and 10-60 items per student. We need to ask whether it is even possible to esti-

mate multiple strategy usage from data sets that can realistically be collected. The

purpose of this chapter is to test a simple version of multiple-strategies mixed

membership model.

For this application we assume the number of strategy profiles K, is known. In

mixed-membership models in general, determining the appropriate number of

profiles for a particular data set is difficult (Erosheva et al., 2004). Future work

must address the question of determining the appropriate number of strategies.

Ideally, we would like to fit an unsupervised version of this model, so that from

the data, we can recover both the strategy process-signatures and how much each

73
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child uses each strategy. This may or may not be a reasonable goal with data sets

of this size. We may need to use some prior information about the strategies in

order to estimate each child’s mixture of strategies. The simulations in Section 4.4

explore the question of how much data is necessary to estimate both the strategies

and how much children use them.

These simulations indicate that with 300 students and 15 items per student,

if we have prior knowledge of one strategy, then we can estimate the process-

signatures of the other strategies as well as the student parameters. With 30 items

per student, we can estimate the process-signatures of all the strategies without

prior knowledge of any strategies.

4.1 least common multiples data

The data come from a computer-based assessment of Least Common Multiples

(Pavlik et al., 2011). Two-hundred fifty-five sixth and seventy grade students par-

ticipated in the experiment (N = 255). Each student answered a randomly selected

sample from the J = 24 items. Most students answered 16 items, but 58 students

only received 8 items.

When students answered items incorrectly, they were allowed to review the

correct answer for 18 seconds. This provides the opportunity for students to learn

during the assessment, and means that if we view the assessment as a whole, then

we should certainly observe multiple strategy usage as students switch to a more

correct strategy.

Data include accuracy and two kinds of response times. The data point for

student i on item j is the ordered triple Xij = (Cij, Tij1, Tij2).



4.2 multiple strategies model 75

• Cij is binary: 1 indicates the student correctly answered the item, 0 indicates

an incorrect response.

• Tij1 is the amount of time in milliseconds a student took before beginning to

type their response.

• Tij2 is the amount of time in milliseconds that the student took to finish

typing.

4.2 multiple strategies model

Two distinct strategies are known to be common for computing Least Common

Multiples (LMCs). One is essentially a ‘correct’ strategy, the other is a misconcep-

tion that produces a correct solution in some cases. We will also include a third

‘unknown’ strategy in the model, to allow for the possibility that an additional

strategy is present in this data, and to account for any additional variation be-

tween students. Thus, we use K = 3 strategy profiles in each model and in each

simulation.

This application is simpler than the general multiple strategies model defined in

Chapter 3 because each strategy is associated with a single skill. Thus if a student

uses a particular strategy, we can assume that they know the single required skill.

This means that we only need to estimate individual strategy parameters θi, but

not individual skill parameters αi. The strategy-skill diagram for this application

is shown in Figure 4.1.

Now, since the data are collected in a setting where students have an oppor-

tunity to learn, it would be nice to estimate when children learned the correct

strategy. To do this would require a longitudinal model where the individual
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membership parameter θi changes over time. Creating such a longitudinal model

is beyond the scope of this application, but it is certainly a desirable target for

future work. The conditional independence assumption in equation 4.10, which is

the same as equation 1.3 in the general mixed membership model, means that a

student is just as likely to use a particular strategy on the last item as on the first

item.

Skill C

Item 1

Item 2

Item 3

Item 4

Skill BMisconception 
Strategy

Skill A
Correct 
Strategy

Strategy
3 ?

Figure 4.1: The correct strategy is associated with only skill A, and leads to a correct

response on all items. The misconception strategy is associated only with skill

B, and leads to a correct response on only 2 items out of 4. The third strategy

also has only a single skill associated, but it is an unknown strategy, so we do

not know when it might lead to a correct response.
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4.2.1 Strategy Profiles

We assume that there are K = 3 different strategies that students might use to to

solve the J = 24 items.

• Students are indexed i = 1, . . . ,N.

• Items are indexed j = 1, . . . , J.

• Strategy profiles are indexed k = 1, . . . ,K.

The data point Xij = (Cij, Tij1, Tij2) includes information on correct responses

and two different response times. Thus, the multiple strategies model defined in

Chapter 3, gives us strategy profiles of

Fkj(xj) = Fkjc(cj)× Fkjt1(t1j)× Fkjt2(t2j). (4.1)

The distribution of responses, Fkjc should be a cognitive diagnosis model, where

the probability of a correct response depends on the KCs required by the item and

the KCs the student has mastered.

Fkjc(xij) = Pr(xij = 1) =
exp{λTkjh(αi,qkj) − ηkj}

1+ exp{λTkjh(αi,qkj) − ηkj}
, (4.2)

We assume that each strategy is associated with a single skill. Further, we assume

that if a student uses a particular strategy, they possess the the single skill required

to execute that strategy, so that h(αi,qkj) is fixed for each profile. Thus, Pr(xij = 1)

is a constant ckj for each profile k. This is better expressed by writing

Fkjc(cj) = Bernoulli(cj; λkj). (4.3)

Since items have different difficulties, and the difficulty varies with choice of strat-

egy, each strategy k has a distinct probability of a correct response for each item j.
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Thus the probability of a correct response is indexed as λkj. The probability of a

correct response depends only on the strategy and the item, there is no additional

ability parameter after the student chooses a strategy.

We will use the simplest possible model for the two response times, acknowl-

edging that more sophisticated models, such as the 3 parameter Weibull distri-

bution in Rouder et al. (2003) may refine the results presented here. If a student

uses strategy k on a particular item then Tij1 ∼ Exp(βk1) and Tij2 ∼ Exp(βk2). For

this data set assessing Least Common Multiples, it is reasonable to assume that

the time required to execute a strategy has the same distribution across items. In

other words, if a student uses strategy k, the distribution of Tij1 is the same for

each item j, and similarly for Tij2.

In many other settings, this assumption will not be appropriate, since a partic-

ular strategy may be quick on one item and lengthy on another item. In a setting

where the profile strategies take different amounts of time for different items, al-

tering the model for βkj1and βkj2 is straightforward, it simply increases the num-

ber of parameters in the model. When response time distributions are the same

across all items, there are 2K parameters for the time distributions. If different

items have different response time distributions, there are 2KJ parameters.

For a student that uses strategy k on item j, the distribution of Xj is given by

Fkj(Xj) = Bernoulli(Cj; λkj)× Exp(Tj1;βk1)× Exp(Tj2;βk2) (4.4)

4.2.2 Priors for Strategy Profile Parameters

The profile parameters λ and β can be treated as unknown or known. For example,

a superficial strategy may work on some items, but not on other items. In this
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case, we can treat λk as known; since if the strategy works, the probability of a

correct response is 1, and if the strategy does not work, the probability of a correct

response is 0. Note that treating a subset of parameters as known is equivalent to

placing a point-mass prior on those parameters. In general, we will not explicitly

know λ and β, and will not use a point-mass prior.

Mixed membership models are usually treated as unsupervised models. This

provides a strong contrast with CDM models. To estimate a CDM, the association

of which skills are required for each item must be known and specified before-

hand. In this multiple strategies model, we have the opportunity to ‘learn’ the

strategies from the data.

We do have strong knowledge about two of the strategies that should be present

in the data. We expect to find a correct strategy, and a misconception strategy.

As I test the multiple strategies model, I will experiment to see how much of

this knowledge needs to be incorporated into the priors in order draw reliable

inferences from the data.

I use a conjugate Beta prior for λ and a conjugate Gamma prior for β.

p(λ) =
∏
k

∏
j

Beta(λkj;γ) (4.5)

p(β1) =
∏
k

Gamma(βk1;α1) (4.6)

p(β2) =
∏
k

Gamma(βk2;α2) (4.7)
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Since Tij2, the time required to type in an answer, is substantially shorter than

the time before a student begins to type, Tij1, the two times require different prior

distributions on β.

4.2.3 Membership in Strategy Profiles

The amount that each student uses each strategy is parameterized by the non-

negative membership vector θi = (θi1, . . . , θiK). Where
∑
k θik = 1, so that θi

lies in the K− 1 dimensional simplex. We can interpret the component θik as the

proportion of time which student i uses strategy k. Note that this is different from

how much a student knows strategy k; θ captures how much a student uses each

strategy.

For a particular item j, the distribution for student i’s response is given by

Xij|θi ∼
∑
k

θikFkj(Xij) (4.8)

∼
∑
k

θik
[
Bernoulli(Cj; λkj)× Exp(Tj1;βk1)× Exp(Tj2;βk2)

]
(4.9)

Items are independent conditional on the student’s membership parameter:

Xi|θi ∼
∏
j

∑
k

θikFkj(Xij) (4.10)

4.2.4 Distribution of the Membership Parameter

The membership parameters θi resides in the K− 1 dimensional simplex. There

are a couple of common choices for distributions on the simplex, with the most

common being the Dirichlet and the Logistic-Normal (Aitchison and Shen, 1980;

Aitchison, 1982, 1985).
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The most common prior distribution for membership parameters in mixed

membership models is the Dirichlet. See, for example: Erosheva (2002); Blei et al.

(2003); Erosheva et al. (2004); Airoldi et al. (2008); Manrique-Vallier (2010); Shan

and Banerjee (2011). However, the Dirichlet distribution has a strong indepen-

dence property, where components are independent conditional on summing to

1. This independence is not always appropriate.

In this application, it is reasonable to expect that students who use advanced

strategies are less likely to also use immature or inefficient strategies, so that mem-

bership in some strategies may be negatively correlated. The Dirichlet distribution

is incapable of modeling correlation between membership parameters. Therefore,

the Logistic-Normal distribution is a better choice for the prior distribution of

θ. This is the same prior used in the Correlated Topic Model (Blei and Lafferty,

2007):

θi ∼ LogisticNormal(µ,Σ) (4.11)

ηi = log
(
θi
θiK

)
(4.12)

ηi ∼ N(µ,Σ) (4.13)

As we discussed in Chapter 2, if θ meets certain partial exchangeability condi-

tions, then a subset of strategy profiles are effectively interchangeable, and there

is a class of equivalent models. In other words, if the distribution of θ has any

symmetry, then the mixed membership model is not uniquely identifiable. There-
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fore it is important to estimate µ and Σ, to determine if the distribution of θ meets

these conditions.

To complete the distribution for membership parameters, we need a prior for µ

and Σ. I chose to use a noninformative Jeffrey’s prior:

p(µ,Σ) ∝ |Σ|−(d+1)/2 (4.14)

4.2.5 Data Augmentation

Let Zij be a binary vector of length K, where Zijk = 1 if student i uses strategy k

on item j, and

Pr(Zijk = 1|θi) = θik (4.15)

Since Zij indicates which strategy student i uses on item j, we have that

Xij|Zij ∼
∏
k

[
Fkj(Xij)

]Zijk (4.16)

∼
∏
k

[
Bernoulli(Cij; λkj)× Exp(Tij1;βk1)× Exp(Tij2;βk2)

]Zijk (4.17)

and items are independent conditional on either θi or Zi so that

Xi|Zi ∼
∏
j

∏
k

[
λ
Cij
kj (1− λkj)

(1−Cij)
]Zijk [

βk1e
−βk1Tij1

]Zijk [
βk2e

−βk2Tij2
]Zijk

(4.18)

This is the same data augmentation technique that was introduced in Erosheva

(2002). We can express every mixed membership model as a finite mixture model

with KJ classes (Theorem 2.3). The data augmentation variables Zi = {Zi1, . . . ,ZiJ}

indicates in which of these KJ classes Xi belongs.
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4.2.6 The Complete Model

The complete model without data augmentation variables is:

p(X, θ, λ,β,µ,Σ) = p(X|θ, λ,β)p(θ|µ,Σ)p(µ,Σ)p(λ)p(β). (4.19)

With the addition of the data augmentation variables, we can factor this further.

p(X,Z, θ, λ,β,µ,Σ) = p(C|Z, λ)p(T1|Z,β1)p(T2|Z,β2)p(Z|θ)× (4.20)

p(θ|µ,Σ)p(µ,Σ)p(λ)p(β) (4.21)

= p(µ,Σ)p(λ)p(β)
N∏
i=1

[p(Ci|Zi, λ)p(Ti2|Zi,β2) × (4.22)

p(Ti1|Zi,β1)p(Zi|θi)p(θi|µ,Σ)] (4.23)

4.3 mcmc estimation

I used MCMC for estimation. While it is slow, and may not scale, MCMC at least

protects from the possible biases of other methods, such as variational approxi-

mation. For example, Shan and Banerjee (2011) obtain different results depending

on the type of variational approximation that they made. Since the purpose here

is to test whether the multiple strategies model can capture strategy switching in

real student data, it is desirable to use a more reliable estimation method.

MCMC is also desirable for practical reasons. For comparing several versions

of the multiple strategies model, adjusting MCMC is simpler and more straight-

forward than adjusting variational inference.
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4.3.1 Update for µ and Σ

From equation 4.20, the distribution of µ and Σ given the other parameters is

p(µ,Σ| . . .) ∝ p(θ|µ,Σ)p(µ,Σ). (4.24)

For this update we, reparameterize θ ∼ Logistic−Normal(µ,Σ), as

ηi = log
(
θi
θiK

)
(4.25)

where θiK is the last component of θi. Note that η is effectively of dimension K− 1,

and has the distribution

ηi ∼ N(µ,Σ). (4.26)

The prior distribution for µ and Σ is given by

p(µ,Σ) ∝ |Σ|−K/2. (4.27)

So that the posterior distribution is

Σ|η ∼ Inv−WishartN−1(S) (4.28)

µ|Σ,η ∼ N

(
η̄,
1

N
Σ

)
(4.29)

where

S =

N∑
i=1

(ηi − η̄)(ηi − η̄)
T . (4.30)

It is worth observing that the posterior distribution for Σ is proper if N− 1 > K.

4.3.2 Update for θ

The distribution for θ conditional on the other parameters is

p(θ| . . .) ∝ p(Z|θ)p(θ|µ,Σ) (4.31)
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where

Zij|θi ∼ Multinomial(θi,n = 1), (4.32)

θi|µ,Σ ∼ LogisticNormal(µ,Σ), (4.33)

ηi|µ,Σ = log
(
θi
θiK

)
∼ N(µ,Σ). (4.34)

The Multinomial and the Logistic-Normal distributions are non-conjugate, so

updating θ requires a Metropolis-Hastings step. At iteration b, the proposed point

θ∗i is drawn from the jumping distribution N(θbi , εI), where ε is a tuning parame-

ter for the MCMC. Setting the tuning parameter to ε = 0.1 produces a reasonably

efficient algorithm with K = 3.

4.3.3 Update for Z

The distribution of Z conditional on the other parameters is

p(Zi| . . .) ∝ p(Xi|Zi, λ,β)p(Zi|θi) (4.35)

∝
∏
j

∏
k

[(
λ
Cij
kj (1− λkj)

(1−Cij)
)(
βk1e

−βk1Tij1
)(
βk2e

−βk2Tij2
)
θik

]Zijk
.(4.36)

So that the conditional distribution is Zij| . . . ∼Multinomial(pij), where

pijk =
(
λ
Cij
kj (1− λkj)

(1−Cij)
)(
βk1e

−βk1Tij1
)(
βk2e

−βk2Tij2
)
θik. (4.37)

4.3.4 Update for λ

The conditional distribution for λ is

p(λ| . . .) ∝ p(C|Z, λ)p(λ). (4.38)
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where the prior for λ is

p(λ) =
∏
k

∏
j

Beta(λkj;γk). (4.39)

So that

p(λ| . . .) ∝
∏
j

∏
k

[
λ
γ1k−1
kj (1− λkj)

γ2k−1
∏
i

[
λ
Cij
kj

(
1− λkj

)1−Cij]Zijk] . (4.40)

Thus,

p(λkj| . . .) = Beta

(
γ1k +

∑
i

CijZijk, γ2k +
∑
i

Zijk(1−Cij)

)
. (4.41)

4.3.5 Update for β

Recall that the data Xij = (Cij, Tij1, Tij2) include two separate latency times. Tij1 is

the time before a student begins to type, and is generally a much longer time than

Tij2, the time a student takes to finish typing. In this section, I use the index t to

represent these two different times.

The profile distributions for Tt are

Tijt|βt,Zijk = 1 ∼ Exp(βtk). (4.42)

βtk has a conjugate gamma prior with different parameters for the two times,

p(βtk) = Gamma(αt). (4.43)

Thus, the conditional distribution of βt is

p(βt| . . .) ∝ p(βt)p(Tt|Z,βt) (4.44)

∝
∏
k

βtkαt1−1e−αt2βtk∏
i

∏
j

(
βtke

−βtkTijt
)Zijk . (4.45)
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Which leads to the posterior

βtk| . . . ∼ Gamma

αt1 +∑
i

∑
j

Zijk , αt2 +
∑
i

∑
j

ZijkTijt

 . (4.46)

4.4 simulations and results

The least common multiples (LCM) data set has 255 students who each saw 8 or

16 items. We know that two strategies should be present in the data, and want

to allow the possibility of a third strategy in the model. The simulations mirror

these aspects of the real data.

All simulations useN = 300 students and K = 3 strategies. The number of items

that each student saw in the real data is small, so I considered simulations with

both J = 15 and J = 30 items.

One question I focused on was how much information is necessary for the

model to obtain reliable estimates of the strategies, and the distribution of mem-

bership parameters. Should we treat the strategies as known, or can we estimate

the strategies from the data? The simulations demonstrate that with 30 items per

student, we can estimate the strategies, but with only 15 items per student, we

need to incorporate some prior information about at least one of the strategies.

Simulations were computationally intensive, taking 5-8 hours for each MCMC

chain to run. So I focused on simulations that would provide me with informa-

tion about parameter-estimation in situations where the model was correct, rather

than information about model misfit. Simulations varied in three ways: First, the

average number of items each student saw. Second, I varied the types of strategies

present in the simulations by varying the generating distribution for the response

parameters λ. Finally, I varied the prior information for λ that was used for es-
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timation; from flat priors and informative priors to point mass priors. Table 4.1

summarizes the variations between simulations. One important aspect of model

misfit that I did not examine is the case where K is unknown.

Data simulation process:

• number of students N = 300

• number of items J, varies by simulation

• number of strategies K = 3

• µ and Σ vary with each replication of each simulation.

• for each strategy k = 1, . . . ,K, simulate:

– λkj, varies by simulation

– βk1 ∼ Gamma(1, 100)

– βk2 ∼ Gamma(1, 10)

• for each student i = 1, . . . ,N:

– θi ∼ LogisticNormal(µ,Σ)

– draw the number of items seen, Ji ∼ Poisson(γ), where γ varies by

simulation.

– draw a set of items Ji of size Ji uniformly from {1, . . . , J}.

– for each item j ∈ Ji

∗ zij ∼Multinom(θi,n = 1)

∗ Xij ∼ Fkj|zijk = 1
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Each strategy is defined by the profile distribution

Fkj = Bernoulli(C; λkj)× Exp(T1;βk1)× Exp(T2;βk2) (4.47)

The different generating distributions for βk1 and βk2 indicate that the two

times Tij1 and Tij2 are on different scales, but may not differ much between pro-

files.

Table 4.1: Summary of Simulations

Simulation Avg. Items Generative distribution Priors used for estimation

per Student for λkj

1 30 λkj ∼ Unif(0, 1) λkj ∼ Unif(0, 1)

2 15 λkj ∼ Unif(0, 1) λkj ∼ Unif(0, 1)

3 15 λkj ∼ Unif(0, 1) point mass, λkj known

4.1 15 λ1j ∼ Beta(10, 1) λ1j ∼ Beta(10, 1)

λ2j, λ3j ∼ Unif(0, 1) λ2j, λ3j ∼ Unif(0, 1)

4.2 15 λ1j ∼ Beta(10, 1) λ1j ∼ Beta(10, 1)

λ2j ∼ Bernoulli(
1
2) λ2j ∼ Unif(0, 1)

λ3j ∼ Unif(0, 1) λ3j ∼ Unif(0, 1)

The MCMC chains were thinned by saving only every 5th iteration. All of the

plots in this section use the thinned chain. In addition, the item parameters β and

λ were successfully recovered with appropriately narrow posterior distributions,

except in simulation 2 which had very few items per student and used flat priors
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for λ. The individual parameters θ, and the population-level parameters µ and Σ

were much more difficult to estimate. Σ in particular was very difficult to estimate,

and took the longest to converge in every case.

4.4.1 Simulation 1: Average of 30 items per student, flat prior for λ

This simulation shows that with an average of items per student, we can estimate

both the strategies and the distribution of membership parameters with no prior

information included. It is especially worth noting that since the strategy response

probabilities were simulated as λkj ∼ Unif(0, 1), there is no particularly strong

distinction between the strategies. Yet with this reasonable number of items per

student, we are able to recover both the item and the individual parameters.

This simulation included 60 unique items J = 60, but an average of 30 items

per student. For each student i, the number of items seen was generated by

Poisson(30), the items were then selected randomly from the 60 items. The profile

accuracy parameters were generated by

λkj ∼ Uniform(0, 1) (4.48)

I ran two replications of this simulation, with two different values of µ and Σ.

The two resulting distributions of θ are shown in Figures 4.2 and 4.3. Performance

was similar in both replications.

Estimation for Simulation 1 I used a flat prior for λ in the MCMC, Beta(1, 1) =

Uniform(0, 1). The priors used to estimate the β parameters were the same ones

that the data were generated from. These priors provide some information about

the scale of the data, but are weak relative to the size of the data set.
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From a random start, convergence occurred around 2500 iterations. Accuracy

probabilities λ and time distribution parameters β were recovered with high pre-

cision and no obvious bias.

Posterior distributions for individual membership parameters θi were centered

on the simulated value most tightly for individual near the edges of the simplex

(Figures 4.4 and 4.6). For individuals with membership parameters closer to the

center of the distribution of membership parameters, the posterior of θi is more

spread out into the population distribution of θ (Figures 4.5 and 4.7).

The parameters µ and Σ which govern the distribution of the membership vec-

tor θ were the most unstable and took the longest to converge. They also showed

the most auto-correlation. This is expected because µ and Σ are the only two

parameters which are updated by a Metropolis-Hastings step. However, the pos-

terior distributions covered the simulated parameters, and more importantly the

posterior means µ̂ and Σ̂ describe a distribution of θi very similar to the simulated

values (Figures 4.2 and 4.3).
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Figure 4.2: Simulation 1, replication 1 (30 items per student). The contour plot on the left

shows the distribution of θ defined by the simulated values of µ and Σ. The

red dots show the simulated values of θi. On the right, the green dots show

the posterior means of θi, and the contour plot is based on the posterior means

of µ and Σ.
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Figure 4.3: Simulation 1, replication 2 (30 items per student). The contour plot on the left

shows the distribution of θ defined by the simulated values of µ and Σ. The

red dots show the simulated values of θi. On the right, the green dots show

the posterior means of θi, and the contour plot is based on the posterior means

of µ and Σ.
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Figure 4.4: Simulation 1, replication 1 (30 items per student). Thinned MCMC chains and

posterior distribution for simulated individual i = 86. The posterior distribu-

tion in the lower right shows the simulated value plotted as a black dot.
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Figure 4.5: Simulation 1, replication 1 (30 items per student). Thinned MCMC chains and

posterior distribution for simulated individual i = 281. The posterior distribu-

tion in the lower right shows the simulated value plotted as a red dot.
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Figure 4.6: Simulation 1, replication 2 (30 items per student). Thinned MCMC chains and

posterior distribution for simulated individual i = 217. The posterior distribu-

tion in the lower right shows the simulated value plotted as a black dot.
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Figure 4.7: Simulation 1, replication 2 (30 items per student). Thinned MCMC chains and

posterior distribution for simulated individual, 1 = 114. The posterior distri-

bution in the lower right shows the simulated value plotted as a black dot.
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4.4.2 Simulation 2: Average of 15 items per student, flat prior for λ.

This set of simulations was almost identical to those in Section 4.4.1, with one

important change. For this set of simulations, there were J = 30 unique items, and

each student saw Poisson(15) items. I ran four replications of this simulation, and

used the same flat priors for estimation as in Section 4.4.1.

With this smaller number of item per student, estimates for all parameters be-

came much noisier. As might be expected, estimates individual membership pa-

rameters had much larger variation, and showed substantial shrinkage toward

the estimated population distribution. However the distribution of the member-

ship parameters was itself very poorly estimated. (Figures 4.8, 4.9, 4.10, and 4.11).

Reasonable estimates of µ and Σ were found in only one of the four replications.

Additionally, several posterior distributions of βkt did not cover the simulated

parameters and many posterior distributions of λkj covered almost the entire unit

interval.

These simulations make it clear that even when the model is correct, 15 items

per student are simply not enough data to reliably estimate both the strategies

and how much students use each one. This is a rather serious concern since the

least common multiples data set contains only 8-16 items per student.



4.4 simulations and results 98

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Simulated Theta

θ1

θ 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated Theta

θ1

θ 2

Figure 4.8: Simulation 2, replication 1 (15 items per student). The contour plot on the left

shows the distribution of θ defined by the simulated values of µ and Σ. The

red dots show the simulated values of θi. On the right, the green dots show

the posterior means of θi, and the contour plot is based on the posterior means

of µ and Σ.
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Figure 4.9: Simulation 2, replication 2 (15 items per student). The contour plot on the left

shows the distribution of θ defined by the simulated values of µ and Σ. The

red dots show the simulated values of θi. On the right, the green dots show

the posterior means of θi, and the contour plot is based on the posterior means

of µ and Σ.
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Figure 4.10: Simulation 2, replication 3 (15 items per student). The contour plot on the

left shows the distribution of θ defined by the simulated values of µ and Σ.

The red dots show the simulated values of θi. On the right, the green dots

show the posterior means of θi, and the contour plot is based on the posterior

means of µ and Σ.
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Figure 4.11: Simulation 2, replication 4 (15 items per student). The contour plot on the

left shows the distribution of θ defined by the simulated values of µ and Σ.

The red dots show the simulated values of θi. On the right, the green dots

show the posterior means of θi, and the contour plot is based on the posterior

means of µ and Σ.
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4.4.3 Simulation 3: Average of 15 items per student, Known λ

This simulation differs from the simulations in sections 4.4.1 and 4.4.2 in how λ

is treated. Values were simulated according to λkj ∼ Uniform(0, 1), but during

estimation these values were treated as “known". That is, a point-mass prior was

placed on the simulated value. The simulation included J = 30 unique items, and

each student saw Ji ∼ Poisson(15) items.

Convergence in this case happened in less than 500 iterations. The posterior dis-

tributions for the remaining “unknown" parameters were appropriately narrow

and covered the simulated values (Figure 4.12). It is also worth noting that poste-

rior distributions for θi (Figures 4.13 and 4.14) showed markedly less shrinkage

towards the population distribution than observed in the simulation with double

the number of items per student but unknown item parameters (Simulation 4.4.1).
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Figure 4.12: Simulation 3 (15 items per student, known λ). The contour plot on the left

shows the distribution of θ defined by the simulated values of µ and Σ. The

red dots show the simulated values of θi. On the right, the green dots show

the posterior means of θi, and the contour plot is based on the posterior

means of µ and Σ.
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Figure 4.13: Simulation 3 (15 items per student, known λ). MCMC chains and posterior

distribution for simulated individual i = 42. The posterior distribution in the

lower right shows the simulated value plotted as a black dot.
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Figure 4.14: Simulation 3 (15 items per student, known λ). MCMC chains and posterior

distribution for simulated individual i = 244. The posterior distribution in

the lower right shows the simulated value plotted as a black dot.
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4.4.4 Simulation 4: Average of 15 items per student, Informative prior for λ1j.

Simulation 2 demonstrates that with 15 items per student, we cannot reliably es-

timate both the strategy parameters and individual membership in the strategies.

Simulation 3 shows that if the strategies are known, then it is easy to estimate

individual membership in each strategy. We now consider whether or not we can

estimate the model when we have some prior information for a single strategy.

For example, suppose a particular misconception is common. Understanding

this misconception means we have prior information about one of the strategy

profiles. As another example, suppose some students know a correct strategy, but

we wish to discover if there are any misconceptions present in the data set. We

can set a prior distribution for one of the strategy profiles that reflects this prior

information. In these situations, we specify an informative prior for λkj for k = 1,

but use a flat prior for k = 2, . . . ,K. This allows us to include prior information

about the strategy we understand, but estimate the other strategies for which we

have no information about.

For the simulation, I designated k = 1 as a ‘correct’ strategy profile. The prob-

ability of correctly answering an item within this profile were simulated as λ1j ∼

Beta(10, 1). This distribution has a mean of 10/11 ≈ 0.91, and Pr(λij > 0.7) = 0.97.

I ran two replications of this simulation with variations in how the remaining 2

profiles were generated. In one replication, the other two profiles had parameters

λkj ∼ Beta(1, 1). In the other replication, I considered a profile representing a su-

perficial strategy that worked in some cases and not in others λ2j ∼ Bernoulli(0.5).

The other profile was generated by λ3j ∼ Beta(1, 1). Once again, there were J = 30

unique items, and each student saw Ji ∼ Poisson(15) items. In both replications of
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this simulation for the MCMC estimation, I placed a Beta(10, 1) prior on profile

k = 1, and a Beta(1, 1) prior on profiles k = 2, 3.

The estimation results were similar to those for 30 items per student (Section

4.4.1). Anchoring a single profile with an informative prior allows us to estimate

both of the other strategies, and students’ membership in each strategy as well as

if we had twice as many items per student. (Figures 4.15 and 4.16).
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Figure 4.15: Simulation 4, replication 1 (15 items per student, informative prior on λ1j).

The contour plot on the left shows the distribution of θ defined by the simu-

lated values of µ and Σ. The red dots show the simulated values of θi. On the

right, the green dots show the posterior means of θi, and the contour plot is

based on the posterior means of µ and Σ.
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Figure 4.16: Simulation 4, replication 2 (15 items per student, informative prior on λ1j).

The contour plot on the left shows the distribution of θ defined by the simu-

lated values of µ and Σ. The red dots show the simulated values of θi. On the

right, the green dots show the posterior means of θi, and the contour plot is

based on the posterior means of µ and Σ.
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4.5 analysis of least common multiple assessment data

As described in Section 4.1, we have 255 students with 8 or 16 items per student.

The simulations in Section 4.4 indicate that we cannot estimate both the strategy

parameters, λkj and βk, and the student membership vector θi with this amount

of data unless we use an informative prior distribution for one strategy.

In this application, there are two known strategies. The first is a correct strategy,

where the child computes the least common multiple of two numbers. The second

strategy is a misconception, a ‘product’ strategy where children simply multiply

the two numbers together, rather than computing the LCM. The misconception

produces a correct answer when two numbers are relatively prime, such as 8 and

9, but the strategy does not always work. For example, the misconception will pro-

duce an incorrect response for the numbers 6 and 8. The correct strategy and the

misconception represent the theoretical strategies. I include a third strategy pro-

file in the model in order to describe any additional variation in student behavior,

so that K = 3.

In the following analyses, we experiment with incorporating different amounts

of prior information about the strategies, to see how well we can recover the

theoretical strategies. I always use a flat prior for λ to estimate the third unknown

strategy. This allows me to find additional patterns in the data if they exist, or to

represent a guessing strategy in the absence of other meaningful patterns.

For each student, and each item we have the response and two response times,

the time before they began to type a solution and the time that it took to enter the

solution, Xij = (Cij, Tij1, Tij2). In general Tij2 will be much shorter than Tij1, but Tij2

may have many outliers. If a student accidentally hits a key before they are ready
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to enter a solution, or if they begin to enter a solution and change their mind, then

Tij2 may be very long. Therefore, we also consider a model that simply includes

total solution time where Tij = Tij1 + Tij2, and Xij = (Cij, Tij).

4.5.1 Model with 2 response times

This is the full model with both times included, Xij = (Cij, Tij1, Tij2). The strategy

profiles are of the form:

Fkj(Xj) = Bernoulli(Cj; λkj)× Exp(Tj1;βk1)× Exp(Tj2;βk2) (4.49)

The simulations indicate that with a data set of this size, estimation will be

unstable unless we incorporate some prior information for λ. We can investigate

this behavior in the context of the data by comparing results for a model with

a flat prior for λ to a model with an informative prior for one of the strategy

profiles.

I chose the priors for β to be weak conjugate gamma priors scaled to reflect the

distribution of the two distinct time periods. The longer time Tij1, the time for a

student to begin entering a response, has the hyper prior βk1 ∼ Gamma(1, 40000).

The shorter time Tij2, the time a student takes to complete the response, has the

hyper prior βk2 ∼ Gamma(1, 2000).

We will compare results for two models with different priors for λ. The first is

a flat prior, λkj ∼ Unif(0, 1) for all k and j. The second uses an informative prior

for k = 1, and a flat prior for k = 2, 3. In the model with an informative prior,

I chose to let the strategy profile k = 1 represent a correct strategy. A student

who uses this strategy should have a high probability of correctly responding to

each item, and we can consider a student who belongs completely to this profile
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to have mastered the content. I represented this expert strategy profile with the

prior λ1j ∼ Beta(10, 1). I ran two MCMC chains for each model.

4.5.1.1 Model with uniform prior for λkj.

Based on the simulations, we expect this model to perform poorly since there are

only 16 items per student and a non-informative prior for λ, and indeed this is

the case. The two MCMC chains did converge to the same posterior distributions

for all parameters; however, the distributions bear remarkable similarity to the

posteriors estimates from simulation 2 in Section 4.4.2.

Figure 4.17 shows the estimated posterior distribution for θ, which bears a re-

markable similarity to the estimated posterior distributions of θ for simulation 2,

(Figures 4.8, 4.10, and 4.11). In each case, the posterior density has collapsed to a

narrow curvilinear shape within the simplex.
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Figure 4.17: Section 4.5.1. Xij = (Cij, Tij1, Tij2), and estimation uses a flat prior for λ.

Contour plots of posterior distribution of θ based on posterior mean of µ and

Σ. Green dots are posterior means for each θi.
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In addition, the posterior estimates of λk, the probability of a correct response

within each strategy, are not substantially different between the profiles. Each of

the three strategy profiles bears some resemblance to the theorized misconception

strategy (Figure 4.18).

The distinguishing feature of the profiles in this version of the model are the

βk parameters which govern response time (Table 4.2). Profile 1 has the shortest

average time for both Tij1 and Tij2. Profile 2 has a very long average Tij1, but the

second response time is similar to profile 1. Profile 3 has a longer average Tij1 than

Profile 1, but an exceptionally long average 2nd response time.

These results agree with the simulations. Sixteen items per student is simply not

enough data to estimate a mixed membership multiple strategies model without

the use of some prior information for at least one of the strategies.

Table 4.2: Section 4.5.1. Xij = (Cij, Tij1, Tij2), and estimation uses a flat prior for λ. Pos-

terior means and 95% credible intervals for time parameters β. The mean re-

sponse time for each profile is 1/βkt.

βk1 βk2

Profile 1 5.1× 10−5 8.3× 10−4

(4.8× 10−5, 5.3× 10−5) (7.9× 10−4, 8.7× 10−4)

Profile 2 7.6× 10−6 5.1× 10−4

(6.7× 10−6, 8.5× 10−6) (4.3× 10−4, 6.0× 10−4)

Profile 3 1.4× 10−5 2.9× 10−5

(1.1× 10−5, 1.6× 10−5) (2.3× 10−5, 3.6× 10−5)



4.5 analysis of least common multiple assessment data 110

P
ro
b
le
m
s

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

lambda1 lambda2 lambda3 Theory lambda1 lambda2 lambda3

Figure 4.18: Section 4.5.1. Xij = (Cij, Tij1, Tij2), and estimation uses a flat prior for λ. The

first 3 columns are posterior mean estimates of λkj for the first MCMC run.

The last 3 columns are the same for the second MCMC run. The middle col-

umn labeled “Theory" indicates the items where the theorized misconception

strategy works. Darker cells indicate higher values of λkj and a higher prob-

ability of a correct response.
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4.5.1.2 Model with informative prior for λ1j.

Based on the simulations, we expect this model to perform better than the model

with a flat prior for λ. Figure 4.20 shows the posterior means for λ. These re-

sults reflect a better distinction between a correct strategy and the misconception

strategy.

The two MCMC runs for this model produced almost identical results, except

that the indices of the 2nd and 3rd profiles were permuted between the two runs.

Most parameters converged in under 100 iterations, µ and Σ converged after 1000

iterations.

Posterior means of λ for strategy profile k = 1 reflect a correct strategy, where

the probability of a correct answer is high for each item. We expect this, since the

prior distribution λ1j ∼ Beta(10, 1) specifies a correct strategy. This strategy is also

the fastest strategy (Table 4.3).

Strategy profile k = 3 resembles the theoretical misconception strategy most

strongly. A student who is using the misconception strategy should have a high

probability of a correct response for some items and a very low probability of a

correct response for the other items. We see this reflected in the estimated values

of λ3j for items j = 1, 5, 13, 14, 15, 17, 18. This strategy is slower than the correct

strategy. The posterior distributions of β indicate that a student using this mis-

conception strategy takes on average more than twice as long to work before they

begin to type their response (Tij1) compared to a student using the correct strategy.

The time required to type is not significantly different.

The strategy profile k = 2, may be considered a true novice strategy. The prob-

ability of a correct response is low for 23 of the 24 items, but the distinguishing
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feature of this strategy is that it is exceptionally slow. Both of the two response

times are on average, more than ten times longer than for the correct strategy.

The posterior distribution of θ (Figure 4.19) is much more distributed across

the simplex than in the model which used no prior information (Figure 4.17).

The distribution of the membership parameter indicates that most students pre-

dominantly use some combination of the correct strategy and the misconception

strategy. Membership in the slow profile k = 2 is very low.

The strategy profiles in this model are more strongly distinguished by response

time than the probability of a correct response. Therefore, we should compare

this model which uses Xij = (Cij, Tij1, Tij2) with models which use a single total

response time (Xij = (Cij, Tij)), and a model with no response times included

(Xij = Cij).
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Figure 4.19: Section 4.5.1. Xij = (Cij, Tij1, Tij2), and estimation uses an informative prior

for λ1j. Contour plots of posterior distribution of θ based on posterior mean

of µ and Σ. Green dots are posterior means for each θi. High values of θi1

correspond to high membership in the ‘correct’ profile. Points near the origin

correspond to high values of θi3, which is the "immature" strategy.
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Table 4.3: Section 4.5.1. Xij = (Cij, Tij1, Tij2), and estimation uses an informative prior

for λ1j. Posterior means and 95% credible intervals for time parameters β. The

mean response time for each profile is 1/βkt.

βk1 βk2

Profile 1 6.7× 10−5 8.6× 10−4

(5.9× 10−5, 7.6× 10−5) (7.9× 10−4, 9.4× 10−4)

Profile 2 5.5× 10−6 5.6× 10−5

(4.8× 10−6, 6.2× 10−6) (4.8× 10−5, 6.5× 10−5)

Profile 3 2.9× 10−5 7.5× 10−4

(2.7× 10−5, 3.2× 10−5) (7.0× 10−4, 8.0× 10−4)
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Figure 4.20: Section 4.5.1. Xij = (Cij, Tij1, Tij2), and estimation uses an informative prior

for λ1j. The first 3 columns are posterior mean estimates of λkj for the first

MCMC run. The last 3 columns are the same for the second MCMC run. The

middle column labeled “Theory" indicates the items where the misconception

strategy will produce a correct answer. Darker cells indicate higher values of

λkj and a higher probability of a correct response.
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4.5.2 Model without Time

Let us consider a model based only on the responses, with no time included,

Xij = Cij. How much information is in the accuracies alone, and how much do

we gain from including response time?

In this model, the priors for λ in all three profiles were flat Uniform(0, 1) dis-

tributions. Figure 4.22 shows the posterior means for λ. Profile 1 reflects a correct

strategy. Profile 3 reflects the misconception strategy. Profile 2 indicates a higher

probability of a correct response for items 13-24 than for 1-12, reflecting that the

first 12 items are story problems, the second 12 are not.

The strategy profiles reflect reasonable properties of student behavior, but indi-

vidual membership in each profile is impossible to estimate well for most students.

For the expert students who exclusively use the correct strategy, the posterior dis-

tribution of θi reflects this (Figure 4.23). For other students, the posterior distribu-

tion of θ covers the entire simplex (Figure 4.24). Without using the information in

the response times, we cannot estimate how much students use each strategy.

Since it is so difficult to estimate θi, it is not surprising that it is also difficult to

estimate the distribution of θ ∼ LogisticNormal(µ,Σ). The posterior means for µ

between MCMC run 1 and MCMC run 2 are similar, but the posterior means for

Σ are not similar between the two runs (Figure 4.21).

This model without response times confirms the presence of a correct strategy

and the presence of a misconception strategy. It also indicates that we may need to

pay particular attention to the story problems. Most of all though, we see that the

inclusion of response time helps estimate student ability. With this small number
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of items per student, we need to include response time information in order to

estimate individual strategy usage.
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Figure 4.21: Section 4.5.2. Xij = Cij, and estimation uses a flat prior for λ. Contour plots

of posterior distribution of θ based on posterior mean of µ and Σ. Green

dots are posterior means for each θi. High values of θi1 correspond to high

membership in the correct strategy. Points near the origin correspond to high

values of θi3, the misconception strategy.
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Figure 4.22: Section 4.5.2. Xij = Cij, and estimation uses a flat prior for λ. First 3 columns

are posterior mean estimates of λkj for the first MCMC run. The last 3

columns are the same for the second MCMC run. The middle column la-

beled “Theory" indicates the items where the misconception strategy works.

Darker cells indicate higher values of λkj and a higher probability of a correct

response.
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Figure 4.23: Section 4.5.2. Xij = Cij, and estimation uses a flat prior for λ. MCMC chains

and posterior distribution for individual i = 194. The posterior distribution in

the lower right is based on Run 1, with the posterior mean for Run 2 plotted

as the green dot.
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Figure 4.24: Section 4.5.2. Xij = Cij, and estimation uses a flat prior for λ. MCMC chains

and posterior distribution for individual i = 245. The posterior distribution in

the lower right is based on Run 1, with the posterior mean for Run 2 plotted

as the green dot.
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4.5.3 Model with Total Time

For this model, the data are Xij = (Cij, Tij). The data include two separate solution

times, Tij1, the time before a student began to type an answer, and Tij2 the time to

finish typing. Rather than modeling these as two separate times, it may be more

reasonable to combine them into a single “Time to solution", Tij = Tij1 + Tij2. The

strategy profiles are of the form:

Fkj(Xj) = Bernoulli(Cj; λkj)× Exp(Tj;βk) (4.50)

The model with two separate times (Section 4.5.1) and the simulations (Sec-

tion 4.4) indicate that we need to use an informative prior for λ1j in order to

estimate the mixed membership multiple strategies model with 16 items per stu-

dent. We designate strategy profile k = 1 as a correct strategy with the prior

λ1j ∼ Beta(10, 1). For profiles k = 2, 3, I use a flat prior λkj ∼ Uniform(0, 1). For

the response times, we use a weak hyper-prior that reflects the scale of the data

βk ∼ Gamma(1, 40, 000).

As with the other models, I ran two separate MCMC chains from random starts

to compare convergence. Most parameters converged almost immediately. µ and

Σ were again the slowest parameters to converge, taking around 2000 iterations.

The indices of profiles 2 and 3 were permuted between the two runs of MCMC.

After re-indexing, results from the two runs are identical.

Of all the models considered, this model results in the clearest and most inter-

pretable differences between the strategy profiles. The estimated strategy profiles

are similar to those in the model with two response times (Section 4.5.1), but with

stronger patterns apparent in the profiles, leading to better interpretation of what

strategies the profiles represent.
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Strategy profile k = 1 has a very high probability of a correct response for all

items (Figure 4.25), and the fastest average response time (Table 4.4). This profile

represents an expert or correct, strategy.

Strategy profile k = 3 is a misconception strategy. The probability of a correct

response in this strategy is only relatively high when the known misconception

would be successful (Figure 4.25). Though, we note that the story problems, items

1-12, are harder than the non-story problems. Students using the misconception

strategy take, on average, about 30% longer than students using the correct strat-

egy (Table 4.4).

Profile k = 2 is a slow strategy that may represent fumbling or guessing. The

average solution time is more than 7 times longer than for the correct strategy

(Table 4.4). Using this strategy, the probability of a correct response on most items

is near 0.5. Item 17 is peculiar, λ2,17 = 0.9. There is nothing obvious that makes

item 17 special, “What is the least common multiple of 4 and 5?" In comparison,

item 13, “What is the least common multiple of 3 and 5?" is not nearly as easy.

The distribution of membership parameters is similar for this model with one

time (Figure 4.25), as for the model with two times (Figure 4.19). The density is

highest in the corners of the simplex near the expert strategy and the misconcep-

tion strategy, indicating that many students who do not switch strategies.

Overall, the results from this model with one response time are similar to those

from the model with two response times. However, the single response time ap-

pears to yield a cleaner, more interpretable model.
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Figure 4.25: Section 4.5.3. Xij = (Cij, Tij), and estimation uses an informative prior for λ1j.

Contour plots of posterior distribution of θ based on posterior mean of µ and

Σ. Green dots are posterior means for each θi. High values of θi1 correspond

to high membership in the ‘correct’ profile. Points near the origin correspond

to high values of θi3, which is the “immature" strategy.
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Table 4.4: Section 4.5.3. Xij = (Cij, Tij), and estimation uses an informative prior for λ1j.

Posterior means and 95% credible intervals for time parameters β. The mean

response time for each profile is 1/βk.

βk

Profile 1 5.0× 10−5

(4.6× 10−5, 5.5× 10−5)

Profile 2 6.5× 10−6

(5.8× 10−6, 7.4× 10−6)

Profile 3 3.9× 10−5

(3.6× 10−5, 4.2× 10−5)
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Figure 4.26: Section 4.5.3. Xij = (Cij, Tij), and estimation uses an informative prior for

λ1j. First 3 columns are posterior mean estimates of λkj for the first MCMC

run. The last 3 columns are the same for the second MCMC run. The middle

column labeled “Theory" indicates the items where the superficial strategy

works. Darker cells indicate higher values of λkj and a higher probability of

a correct response.
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4.6 comments

The multiple strategies model (MSM) successfully discovered the misconception

strategy in the Least Common Multiples data. These results compare favorably

to Cognitive Diagnosis Models (CDMs) along several dimensions. First, even this

simpler form of the MSM allows for students to switch strategies from item to

item, whereas CDMs assume that every student uses the same strategy on each

item. Second, the MSM is able to learn the strategies, while the association be-

tween skills and items must be specified a priori for CDMs.

Perhaps most importantly, MSM performed reasonably well with a moderately

sized data set. With 300 students and an average of 15 items per student, we

need to have some information about the strategies in the data. However we do

not need to know all of the profiles with complete certainty, as with CDMs. We

only need some prior information about one of the strategy profiles. If we have

more items per student, then we can discover all of the strategies with no prior

information.



5
M U LT I P L E S T R AT E G I E S I N C H I L D R E N ’ S N U M E R I C A L

E S T I M AT I O N

5.1 introduction

This chapter explores a second application of multiple strategy modeling. Unlike

the Least Common Multiple data in Chapter 4, the numerical magnitude estima-

tion data cannot be modeled with the Multiple Strategies model developed in

Chapter 3. The reasons why the mixed membership structure is inappropriate

for this data are discussed further in Chapter 6. In this chapter, we focus on the

application itself.

Research into how children learn to estimate numerical magnitude has been

an active area of research over the last decade. The ability to accurately estimate

numerical magnitude is interesting not only from a developmental and cogni-

tive perspective, but has also been shown to be closely related to other areas of

mathematical proficiency, such as arithmetic (Booth and Siegler, 2008). Currently,

one theory for how this process occurs is quite dominant (Siegler & Opfer, 2003;

Siegler, Thompson, & Opfer, 2009), even though other theories have been sug-

gested (Ebersbach, Luwel, Frick, Onghena, & Verschaffel, 2008; Moeller, Pixner,

126
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Kaufmann, & Nuerk, 2008; Barth & Paladino, 2011). This paper re-examines data

from early experiments using new analysis methods, and presents evidence that

challenges the prevailing theoretical interpretation of these data.

Siegler and Opfer (2003) was a landmark study, and has been widely cited. This

study devised a number-line task to compare theories for how children and adults

represent numerical magnitude. They observed that young children appeared to

use a logarithmic scale for estimation and develop a linear scale as they grew. In

addition, second graders appeared to use a linear representation when presented

with a 0-100 scale, but revert to a logarithmic representation on the 0-1000 scale.

Subsequent research appeared to confirm this finding (Berteletti, Lucangeli, Pi-

azza, Dehaene, & Zorzi, 2010; Booth & Siegler, 2006; Dehaene, Izard, Spelke, &

Pica, 2008; Laski & Siegler, 2007; Opfer & Thompson,2008; Siegler & Booth, 2004,

2005). However, the analysis methods for all of these papers are similar, and have

many of the same drawbacks.

The current study provides a new tool for summarizing and visualizing data

from these numerical magnitude estimation experiments, a method which can

be easily utilized for a larger, more general class of data, including longitudi-

nal data. Moreover, by applying this visualization tool to data from Siegler and

Booth (2004); Booth and Siegler (2006) and Opfer and Siegler (2007), we build a

foundation for more rigorous model-based analysis that challenges the theory of

a linear-logarithmic representational shift. We show that while strategies do be-

come more linear as children age, the early strategy is not logarithmic, but may be

some combination of linear estimation on small numbers and simple categoriza-

tion for larger numbers. In addition, we discover a third, intermediate strategy

that has not been previously recognized.
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5.2 method

We re-examine data from three previously published studies on how young chil-

dren estimate numerical magnitude (Booth and Siegler, 2006; Opfer and Siegler,

2007; Siegler and Booth, 2004). Booth and Siegler (2006) considers two different

experiments, so that in total, data from four experiments were reanalyzed. The

central task in each experiment is the number line estimation task. In this task,

the stimulus is a number line with only the endpoints marked, and a number to

be estimated printed above the line. Participants estimate the magnitude of the

number by marking its position on the number line. The number lines are usually

around 25 cm long, with a single number line on each page. In two experiments,

the number lines were on a 0-100 scale while the other two used a 0-1000 scale.

In all four of the experiments, small numbers are over-represented in order to

better discriminate between the theorized linear and logarithmic strategies. Table

5.1 provides details on the participants and stimuli for each experiment.

5.3 concerns with common analysis techniques

The number line task is the principal task in the vast majority of numerical mag-

nitude estimation experiments, and the basic analysis is similar in each of these

papers. The primary visual data summary takes the median estimate of each num-

ber for all of the participants in an age group and performs a regression through

those median estimates (Figure 5.1). This visualization consistently shows a curve

for the younger children that appears logarithmic, and a more linear curve for

older children.
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Table 5.1: Details of the four experiments being re-analyzed.

Experiment Scale Participants Numbers to be Estimated

Siegler and Booth (2004) 0-100 Kindergartners (21) {3, 4, 6, 8, 12, 17, 21, 23, 25,

1st graders (32) 29, 33, 39, 43, 48, 52, 57,

2nd graders (31) 61, 64, 72, 79, 81, 84, 90, 96}

Booth and Siegler (2006) 0-100 Kindergarteners (20) {3, 4, 6, 8, 12, 14, 17, 18,

Experiment 1 1st graders (25) 21, 24, 25, 29, 33, 39,

2nd graders (23) 42, 48, 52, 57, 61, 64,

3rd graders (22) 72, 79, 81, 84, 90, 96}

Experiment 2 0-1000 2nd graders (30) {3, 7, 19, 52, 103, 158, 240, 297,

4th graders (28) 346, 391, 438, 475, 502, 586, 613,

690, 721, 760, 835, 874, 907, 962}

Opfer and Siegler (2007) 0-1000 2nd graders (93) {2, 5, 18, 34, 56, 78, 100, 122, 147,

4th graders (60) 150, 163, 179, 246, 366, 486,

606, 722, 725, 738, 754, 818, 938}



5.3 concerns with common analysis techniques 130

0 20 40 60 80 100

0
20

40
60

80
10
0

Kindergarden

Actual Magnitude

M
ed

ia
n 

E
st

im
at

e

12.1 + 14.4ln(x)

0 20 40 60 80 100

0
20

40
60

80
10
0

First Grade

Actual Magnitude

-14.9 + 19.6ln(x)

0 20 40 60 80 100

0
20

40
60

80
10
0

Second Grade

Actual Magnitude

21.2 + 0.64x

Figure 5.1: Standard visual summary of data used for number line estimation task. This

was created with data from Siegler and Booth (2004). Within each grade level,

the median estimate of each number is calculated. Regression is performed on

the median estimates.

To determine whether individual strategies resemble the median group strategy,

standard practice is to fit competing functions to each child’s data, and assume

that the function with the higher R2 value is the strategy used by that child. For

example, Siegler and Booth (2004) found that on a 0-100 scale, the logarithmic

function better described 81% of the kindergarteners, but only 45% of the second

graders.

There are three issues with this analysis method. First, visualizations based

on median curves may be misleading, as demonstrated in Figure 5.2. In the same

way that knowing the mean of a variable without knowing the standard deviation

does not give us a complete picture; knowing the shape of a median curve without

knowing how individuals vary around this curve is not a complete picture. Any

summary of data must include information on variation.

Second, it may be convenient to assume that if a linear model fits better than

the alternative logarithmic model, then a linear model is correct. However, it is

quite possible that neither model fits very well, even if one is better than the other.

A simple visual inspection, such as that in Figure 5.3, can reveal this problem. The
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Figure 5.2: [a] Shows the estimates for all the first grade participants in Siegler and Booth

(2004) with a smooth curve through the median points. [b] Shows a smooth

curve for each individual. Examination of only the median curve hides indi-

vidual variation.

issue is that if the experiment has more than a few participants it can be difficult

and time consuming to perform this inspection for each participant. A good visu-

alization should reveal whether our models are consistent with the observed data,

and do this for multiple participants at once.

Finally, each theory for how children estimate numerical magnitude does not

simply suggest a set of regression functions that might fit individual data, but

rather puts forward a framework for which functions are more likely at different

ages and what kinds of variation exist between children (Barth and Paladino, 2011;

Ebersbach et al., 2008; Moeller et al., 2008; Siegler et al., 2009). The current practice

of analyzing each individual separately with only R2 as a measure of model fit,

makes it impossible to know which theory truly describes the patterns in the

data. All information on variation between individuals is lost. It is preferable to



5.4 clustering method for fda 132

0 20 40 60 80 100

0
20

40
60

80
10
0

[a]

Actual Magnitude

E
st
im
at
es

R2 = 0.694

0 20 40 60 80 100

0
20

40
60

80
10
0

[b]

Number to be Estimated

R2 = 0.667

0 20 40 60 80 100

0
20

40
60

80
10
0

[c]

Number to be Estimated

Figure 5.3: Number line estimation task data for a first grade participant in Siegler and

Booth (2004). The linear fit in [a] is slightly better than the logarithmic fit in

[b]. A smooth nonparametric curve is shown in [c] for comparison.

express each theory as a complete probability model and compare the models on

their ability to describe the entire dataset.

5.4 cluster-based method for preliminary analysis of functional

data

We are not concerned with children’s estimates of any particular number, but

rather we wish to draw inferences about the overall pattern of their strategy. We

assume that the position where a child estimates a number is a function of the

number to be estimated, and the object of inference is the shape of that function.

In introductory statistics courses, we speak of categorical, ordinal, and scalar

data. Functional data is another class of data. In general, even though the func-

tional relationship between variables is our concern, it is difficult to directly ob-

serve the function. Instead, we usually infer the shape of the function from dis-

crete observations taken at different points. In longitudinal data, we would take
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measurements of each individual at many time points. In this case, we ask each

child to make an estimate of many different numbers.

An initial summary for quantitative data might include a histogram or a scatter-

plot. These plots provide a quick visual summary that displays overall trends and

individual variation, they also provide a simple check for the appropriateness of

a model. For example, a scatterplot quickly reveals that the relationship between

two quantitative variables may not be linear, and that linear regression may be a

poor model for the data.

Our goal is a visual summary of functional data that accomplishes these same

objectives. We need to summarize all of the individual curves simultaneously.

We need to display the variation between individuals and the overall trends. We

would also like to highlight any subgroups within the data. Functional data anal-

ysis is presently an active area of research, but methods are computationally in-

tensive and time consuming (Peng & Müller, 2008; Thompson & Rosen, 2003;

Crambes, Kneip, & Sarda, 2009; Morris, Baladandayuthapani, Herrick, Sanna &

Gutstein, 2011) Our visual summary method is loosely based on Ramsay and Sil-

verman (2005). It is a simple, fast method and appropriate for preliminary analysis

and data exploration.

The analysis has 3 flexible steps, and is appropriate for all types of functional

data, including longitudinal analysis. We estimate each individual function, and

then display the curves grouped by similar shape. Figure 5.2 illustrates that plot-

ting all of the functions simultaneously gives an unclear picture; however, by

plotingt the curves in clusters, we can more easily discern patterns.

In order to visually summarize a set of functional data, we create a plot showing

clusters of functions with similar shape. This will allow us to view all of the data,

display the overall trends and the variation between individuals. It also has the
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advantages of being very easy to interpret, and being easily created with built-

in functions in the statistical software package R. There are only three steps to

creating this visualization and summary: (1) Estimate a smooth function based on

each individual’s data. (2) Cluster discretized versions of the functions. (3) Plot

the clusters so that they may be viewed together.

To describe this method fully, we introduce formal notation. Each individual

i for i = 1, . . . ,N has measurements Yij taken at the points xij for j = 1, . . . ,Mi.

In longitudinal data, the xij represent the different time points at which measure-

ments are taken. For the number line task, the xij represent the numbers that child

i was asked to estimate, and the Yij represent the positions of their estimates.

We assume that the observations represent discrete measurements along a con-

tinuous function fi, with errors εij, so that we can write:

Yij = fi(xij) + εij

The notation xij indicates that each individual may have been measured at differ-

ent points, but the method described here does require that the xij span the same

interval.

Step 1. Create a nonparametric estimate f̂i of the function fi for each individual

i. One of the simplest ways to estimate a nonparametric regression function is

with some form of linear smoother, such as kernel smoothing, local polynomial

smoothing, basis smoothing, or smoothing splines. Tarpey (2007) demonstrates

that any linear smoother will produce relatively similar results, so any of these

smoothers can be used with subsequent steps.

For this data on numerical magnitude estimation, we need the estimates f̂i to be

accurate near 0, since the small numbers near 0 are where the theorized linear and

logarithmic functions will differ the most. Many nonparametric smoothers are
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greatly influenced by data points near the boundary of the range of x values, this

is known as boundary bias. Local linear smoothers have less boundary bias than

some of the other methods and are easily implemented with the R function loess

(Hastie et al., 2009). Therefore, for this data, local linear smoothing is the most

appropriate method. For other applications with periodic data, basis smoothing

with a Fourier basis would be more appropriate.

Data from different individuals may require different amounts of smoothing.

For example, the second graders in this study have better fine motor skills than

the kindergarteners, and thus have much smaller errors, εi, around their curves.

Generalized Cross Validation (GCV) is an easily calculated goodness-of-fit mea-

sure for linear smoothers (Hastie et al., 2009). Thus, for this application, we chose

to create the estimated functions f̂i with local linear smoothing using GCV to

choose an appropriate amount of smoothing.

Step 2. Cluster discretized versions of the f̂i. Let s be a fine grid of points cov-

ering the range of x. Evaluate the functions f̂i on the grid s, to create the discrete

vector Ŷi representing individual i’s smooth curve, Ŷi = f̂i(s). We can then clus-

ter the Ŷi with a standard clustering method of our choice, since clustering with

Euclidean distance on the Ŷi is an approximation of clustering the fi with an L2

norm in the functional space (Ramsay and Silverman, 2005).

K-means is a very popular clustering method, but when the number of clus-

ters is unknown, it can be difficult to make that choice with k-means. Gaussian

mixture models are a more general class of models that includes k-means as a spe-

cial case. The R implementation of Gaussian mixture model clustering Mclust in

the package mclust automatically calculates Bayesian Information Criterion (BIC)

scores, which can then be used to choose the number of clusters.
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Step 3. The final step is to plot the clusters of individual curves. If desired, the

clusters can be organized to make patterns more apparent. Results are shown in

Figures 5.6, 5.7, and 5.8.

Additionally, we may discover outlier and noise patterns through this visual-

ization. Clustering is well known to be sensitive to outliers. If we wish to remove

curves that we deem to be noise or outliers, we should re-cluster and re-create

the plot. The visible patterns may become more pronounced, or change very little

after outliers are removed. We demonstrate this process in our discussion of the

visualization results from the Siegler and Booth (2004) data.

5.5 cluster-based visualization results

5.5.1 Data from Siegler and Booth, 2004

The best clustering results, as selected by BIC, have 8 clusters (Figure 5.4). The

cluster sizes are relatively small, and if the number of clusters and the shape of

each cluster were an object of inference, this would be cause for serious concern.

For visualizing patterns in the data, though, this is perfectly acceptable. The small

clusters allow us to see individual curves more clearly, and make comparisons

between the different shapes observed.

Clusters 1-6 all have mean curves that are monotonically increasing. Clusters 7

and 8 do not share this property: all of these curve are flat or decreasing. This pre-

viously unreported finding indicates that these students may have not understood

the number line estimation task, and were simply plotting numbers at random.

These are essentially ‘noise’ clusters.
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Figure 5.4: Clusters of curves from Siegler and Booth, 2004. Individual curves are shown

in gray, the mean curve for each cluster is shown as a thicker black line.

In general, outlier curves will not be grouped together, and outliers can affect

the shape of the cluster where they are grouped. Closer examination of cluster

5 reveals just such an outlier. Overall, the trend of cluster 5 is linear, but one

child’s curve starts near the point (0,80) then dips below the other curves in the

cluster before joining them on the larger end of the scale. This is an individual

that deserves a closer look. When we plot this child’s raw data, in Figure 5.5, we

see that this individual seems to recognize numbers greater than 50 as ‘large’, and

near the high end of the 0-100 scale, but responds randomly for numbers less than

50. This is an interesting observation, but since this pattern is an outlier, we will

omit this individual along with those in clusters 7 and 8 from subsequent analyses.

Omitting these 11 participants leaves us with 73 participants from Siegler and

Booth (2004).
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Figure 5.5: Individual data from a child with an outlier pattern. This child was a partici-

pant in Siegler and Booth 2004.

Simple visual inspection is usually insufficient to identify outlier curves with

any amount of certainty. More robust and computationally intensive methods

do exist to definitively identify outliers (Gervini, 2008, 2009). That is beyond the

scope of this paper, instead we simply provide an intitial tool to summarize and

visualize functional data prior to more rigorous analyses.

Figure 5.6 shows new clusters after outlier patterns are removed. It is coinci-

dence that BIC again chooses 8 clusters. Cluster 1 appears to have a piecewise lin-

ear shape with 2 segments. These individual appear to estimate 0-20 on a strong

linear scale, but do not differentiate larger quantities. They may simply be clas-

sifying any number greater than 20 as ‘big’ (Laski and Siegler, 2007). Cluster 2

may either be logarithmic or piecewise linear. Cluster 3 appears linear overall, but

may have a different slope on 0-10, making it piecewise linear. Clusters 4 and 5

may have three linear segments, rather than the theorized two segments. We may

speculate that these children estimate small numbers linearly, recognize numbers
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Figure 5.6: Clusters of curves from Siegler and Booth, 2004, after removing obvious out-

liers. Individual curves are shown in gray, the mean curve for each cluster is

shown as a thicker black line.
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bigger than 50 as ‘large’, but classify numbers between 20 and 50 as ‘the middle.’

Clusters 6, 7, and 8 are close to the line y = x, even though cluster 6 has a lower

slope and cluster 7 has some slight curvature.

5.5.2 Data from Booth and Siegler, 2006, Experiment 1

For this second dataset on the 0-100 scale, we went through the same process of

smoothing and clustering the complete dataset. This identified several flat curves

and additional outliers. We removed the 6 children with outlier patterns, leaving

84 in the analysis. The final clusters are shown in Figure 5.7.

In many ways the clusters in Figure 5.7 are very similar to those found in Figure

5.6. Clusters 1, 2 and 4 are piecewise linear with a steep slope for small numbers

and flat for larger numbers. Cluster 5 has a similar shape, but is more curved

with no obvious corner, the theorized logarithmic estimation function may fit this

cluster. We will need to perform more rigorous analysis to be certain whether the

logarithmic function is appropriate. Clusters 8, 9 and 10 are very close to accurate

linear estimation. Clusters 3, 6, and 7 however, have multiple inflection points. A

piecewise linear curve with three segments may be able to describe these clusters.

Cluster 7, in particular, is very different from the clusters found in the Siegler

and Booth (2004) data. In the previous experiment, the 4th cluster was flat be-

tween 20 and 60, indicating those children did not differentiate between ‘middle’

numbers. This cluster instead has a very steep slope between 40 and 60, which

indicates that these students are making a strong differentiation near 50.
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Figure 5.7: Clusters of individually smoothed curves, from Booth and Siegler, 2006, Ex-

periment 1, after removing obvious outliers.
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5.5.3 Data on 0-1000 scale

One of the benefits of this method is that we can combine multiple datasets easily,

even if measurements were taken at different time points or for different inputs.

Experiment 2 of Booth and Siegler, 2006; and Opfer and Siegler, 2007 both ex-

amined how children estimate numbers on the 0-1000 scale. However, the two

different studies include two different sets of numbers to be estimated.

We can combine these datasets by first estimating a smooth curve for each

individual in the combined dataset. Then we simply discretize these curves on

the same grid of points so that we can cluster the curves as one dataset. Figure 5.8

shows the clusters after the flat curves and obvious outliers have been removed.

The clusters on the 0-1000 scale in Figure 5.8, show a similar pattern to the

clusters on the 0-100 scale. Clusters 1, 2, 3, 4, 6, and 8 have a piecewise linear

shape with 2 segments. Clusters 5, 7 and possibly 11 could be piecewise linear

with 3 segments. Clusters 12 and 13 are very close to accurate linear estimation.

Cluster 10 contains individuals who have an overall linear estimation strategy, but

make one or two very large estimation errors. Cluster 9 shows a new pattern. It

has only 2 children, who might be considered outliers; however, they have a very

interesting estimation strategy. These children estimated numbers on (0,100) on a

very steep linear scale, while numbers (200,1000) are estimated on a separate and

somewhat accurate linear scale. This appears to be a piecewise linear estimation

strategy, but unlike other participants, their estimation function is discontinuous.
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Figure 5.8: Clusters of individually smoothed curves for combined data from Booth and

Siegler (2006) Experiment 2 and Opfer and Siegler (2007). Flat curves and ob-

vious outliers have been removed.
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5.6 model based analysis

In addition to the dominant theory of a logarithmic to linear representation shift

(Dehaene et al., 2008; Siegler and Opfer, 2003; Siegler et al., 2009), another theory

has recently emerged. This theory suggests that children use one linear scale to

estimate small familiar numbers, and another linear scale to estimate larger num-

bers, so that the estimation function is piecewise linear with 2 segments (Ebers-

bach et al., 2008; Moeller et al., 2008).

The clusters in Figures 5.6, 5.7, and 5.8 demonstrate that in all four experiments,

a substantial proportion of participants, about 80 children total, did not follow the

pattern predicted by either of these existing theories. These graphs themselves

suggest one possible model. A piecewise linear function with 3 segments may be

appropriate to describe the behavior of the full dataset. So we will compare this

third model to the two theory-based models.

Current practice is to compare each model on each individual participant sepa-

rately. We require instead, a principled way to compare the ability of each theory

to simultaneously describe all of the experimental data. Each theory predicts the

shape of each child’s individual estimation function and how children should

vary from each other. We formalize this in hierarchical probability models so that

we can compare each theory on the complete dataset.

5.6.1 Probability model for the Linear-Logarithmic Representation Theory

The analyses in Berteletti et al. (2010); Booth and Siegler (2006, 2008); Dehaene

et al. (2008); Laski and Siegler (2007); Opfer and Siegler (2007); Opfer and Thomp-
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son (2008); Opfer and DeVries (2008); Siegler and Booth (2004, 2005); Siegler et al.

(2009) all assume that every child uses either a linear strategy or a logarithmic

strategy. This assumption corresponds to a two-class hierarchical model where

each strategy is represented by one of the classes, and there is some variability

between individuals in each class.

We will use the same notation as above, so that individual i provides an es-

timate Yij of the quantity Xij. Let Zi be a latent class indicator variable, so that

Zi = 0 if individual i uses the logarithmic strategy, and Zi = 1 if individual i uses

the linear strategy. We will place a flat prior on Z, so that Pr(Zi = 1) = 1
2 . Within

each class, we specify a hierarchical regression model for the children that use

that strategy. Thus for students using the logarithmic strategy (Z = 0), we have

a mean logarithmic strategy of: Y = α0 + α1 log(X) and each individual strategy

has the form:

Yij = β0,i +β1,i log(Xj) + εij

where β ∼ N(α,Σβ), and εij ∼ N(0,σi).

Similarly, for the linear strategy (Z = 1), the mean linear strategy is: Y = γ0 +

γ1X and each individual strategy has the form:

Yij = δ0,i + δ1,iXj + εij

Once again, δ ∼ N(γ,Σδ), and εij ∼ N(0,σi).

In both strategy classes, we place a flat prior on α, γ, Σβ, and Σδ. and model

regression errors as εij ∼ N(0,σi) with a prior variance distribution of σi ∼ Inv−

χ2(ν, τ2). On the smaller scale, we set hyper-parameters as ν = 10 and τ2 = 72,

and on the larger scale , ν = 4 and τ2 = 802. These weakly informative priors

place the expected value of σi at a 10% error, but have a wide distribution. This
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reflects the belief that children will place ninety percent of their marks within 20%

of where they intend to place the mark.

5.6.2 Probability Model for 2-Piece Linear Theory

Ebersbach et al. (2008) and Moeller et al. (2008) both propose that children esti-

mate small numbers on one linear scale and larger numbers on a separate linear

scale. In more formal terms, each child’s estimation strategy is a piecewise linear

function with 2 segments and there is some variability between individuals.

We use the endpoints of the linear segments to parameterize the hierarchi-

cal probability model for this strategy. The first segment has endpoints (0,αy0)

and (αx1 ,αy1). The second segment begins at (αx1 ,αy1), and ends at (100,αy2) or

(1000,αy2) as appropriate.

The vector α parameterizes the population mean strategy, with individual strate-

gies similarly parameterized by βi ∼ N(α,Σβ). The parameters β define regression

functions r(x,β). Individual data are then modeled as

Yij = r(Xj,βi) + εij

As in the linear-logarithmic model, regression errors are distributed as εij ∼

N(0,σi) with a prior variance distribution of σi ∼ Inv− χ2(ν, τ2). On the smaller

scale, the hyper-parameters are as ν = 10 and τ2 = 72, and on the larger scale

ν = 4 and τ2 = 802.

We set the prior on α as uniform on the scale of the data. So for the 2004 data,

we set α ∼ Uniform(0, 100), and so on. Lastly, we restrict Σβ, the variance of

individual strategies around the population mean strategy, to diagonal matrices;

and set a wide prior distribution for each diagonal component as Inv− χ2(ν, τ2).
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On the smaller 0-100 scale, ν = 2 and τ2 = 102. On the 0-1000 scale, ν = 3 and

τ2 = 802.

3-piece Linear Model. This is the model suggested by the cluster-based visualiza-

tion results. Each child’s estimation function is represented by a piecewise linear

function with 3 segments, and the individual functions are assumed to be nor-

mally distributed around a mean strategy.

5.6.3 Probability Model for 3-Piece Linear Model

Unlike the linear-logarithmic representation model and the 2-piece linear model,

this model is not driven by psychological theory. Rather, this model is a math-

ematical device developed to describe patterns in the data that we observed in

Section 5.5.

These patterns, if they are more than noise, cannot be described by the existing

models. We consider this third model in order to determine if these previously

undiscovered patterns are indeed real patterns, or if they are in fact just noise.

If we recognize that a piecewise linear function with three segments can also

fit both a straight line, and a piecewise linear function with two segments, then it

becomes clear that a piecewise linear function with 3 segments can represent all

of the observed patterns in the data.

As with the 2-piece model, the endpoints of the linear segments parameter-

ize the 3-piece model: (0,αy0), (αx1 ,αy1), (αx2 ,αy2), and (100,αy3) or (1000,αy3).

Again, α represents the population mean strategy and βi ∼ N(α,Σβ) represents

the individual strategies.
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Individual estimates follow the regression model Yij = r(Xj,βi) + εij, with er-

rors modeled as εij ∼ N(0,σi). We use the same weakly informative Inverse-χ2

prior for σi, with (ν, τ2) = (10, 72) on the 0-100 scale, and (ν, τ2) = (4, 802) on the

larger scale.

The prior for α is again Uniform on the scale of the data; however, since there

are two change points, we must require that αx1 6 αx2 . Thus the prior on αx2 is

Uniform(αx1 , 100) or Uniform(αx1 , 1000), as appropriate.

As in the 2-piece model, we assume Σβ is a diagonal matrix, and each compo-

nent has an Inverse-χ2 prior. On the 0-100 scale, (ν, τ2) = (2, 102), and (ν, τ2) =

(3, 802) on 0-1000.

5.7 results and discussion

We fit each of the three models to all 4 datasets via MCMC, and compared model

fit using deviance information criterion (DIC) (Gelman, Carlin, Stern & Rubin,

2003). To verify DIC as an appropriate goodness-of-fit measure, we simulated

data from the linear-logarithmic model. DIC selected the correct model for the

simulation. DIC scores for data are shown in Table 5.2. Both of the piecewise

linear models fit all four datasets better than the linear-logarithmic model by a

substantial margin.

The best model on the 0-1000 scale is the 2-piece linear model. This corresponds

to the theory that children estimate small, familiar numbers on one scale and es-

timate larger numbers on a different scale. Moeller et al. (2008) argued that this

change-point occurred because of difficulty with the place value system. These

results support that argument. Even the two outlier curves we observed in Clus-
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Table 5.2: DIC scores for the three probability models on each of the 4 experiments, as

well as data simulated from a logarithmic-linear model. Lower values indicate

a better model fit. ∗ indicates the best fitting model for each dataset.

2004 2006, Exp 1 2006, Exp 2 2007 Simulation

Estimation Scale 0-100 0-100 0-1000 0-1000 0-100

3-piece model 13733∗ 16826∗ 14067 27560 11408

2-piece model 13873 16895 14039∗ 27498∗ 11331

Log-Linear model 15122 18686 15013 30293 1150∗

ter 9 of Figure 5.8 have a non-linear pattern that appears to be due to difficulty

integrating place value.

On the 0-100 scale, the 3-piece linear model better describes both datasets, prob-

ably due to the presence of intermediate estimation strategies. We observed one

group of 8 students in the 2004 data who had a very flat slope in the middle of

their curves, from 20-50, indicating a lack of differentiation of these middle num-

bers. Another group of 22 students in the 2006 data have a very steep slope around

the half-way point, indicating an over-differentiation of the middle numbers. Both

of these patterns are consistent with both a categorization strategy (Laski and

Siegler, 2007) and a proportional reasoning strategy (Barth and Paladino, 2011).

We can further examine the posterior estimates of each child’s strategy, as in

Figure 5.9. The clusters are created on the change-points of the piecewise linear

strategies for participants in Siegler and Booth (2004). This examination shows

that as children grow, their strategies do become increasingly linear; however, we

observe interesting patterns in the immature strategies. The immature strategy
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Figure 5.9: Posterior mean estimation strategies for participants from Siegler and Booth

(2004), shown grouped by grade and strategy cluster. Clusters are shown in

columns. The first row contains kindergarteners, the second row contains first

graders and the bottom row contains second graders.
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favored by the kindergarteners is linear on 0-10, or 0-20 for some children, larger

numbers appear to be simply categorized as ‘big’ and plotted near the upper end

of the number line. The intermediate strategy is the one used by the majority of

first and second grade students, and appears to be some combination of linear

estimation on 0-20, and categorization or proportional reasoning. The posterior

estimates for Experiment 1 of Booth and Siegler (2006) show similar patterns of

an immature strategy, a categorization/proportional strategy and a linear strategy.

As a caveat, we note that the experiments on the 0-1000 scale include only

second- and fourth-graders. It is possible that if third-graders had been included

in the study, the intermediate categorization/proportional reasoning strategy ob-

served on the 0-100 scale would have been present on the larger scale as well.

The intermediate categorization/proportional reasoning strategy answers one

of the critiques that Opfer, Siegler, and Young (2011) raised to Barth and Paladino

(2011). Opfer et al. (2011) claims that changes in representation are responsible for

the abrupt shifts in linearity observed in earlier experiments (Opfer and Thomp-

son, 2008), and the gradual transition model argued for in Barth and Paladino

(2011) cannot explain these changes. The patterns observed with thorough vi-

sual data summaries and the model-based analysis suggest that children use a

mixture of strategies at all stages. The youngest children appear to combine lin-

ear estimation of familiar numbers with categorization of less familiar quantities,

while older children appear to combine linear estimation, categorization, and/or

proportional reasoning. The microgenetic changes that have been observed may

be due to feedback activating additional strategies, and thus increasing linearity.

A detailed analysis of the raw data from several widely cited studies does not

support the claim that children’s understanding of the number line undergoes

a transition from a logarithmic to a linear representation with development. In-
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deed, the analysis presented here reveals that the logarithmic-to-linear shift does

not even hold on the data upon which the theory was established. The novel vi-

sual data summarization methods described in this paper enabled us to identify

previously unrecognized patterns in the data. Children do estimate numerical

magnitude with increasing linearity as they grow, but at all ages there is evidence

for a combination of linear estimation, categorization and proportional reasoning

strategies.
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D I S C U S S I O N A N D D I R E C T I O N S F O R F U T U R E W O R K

This dissertation makes substantial contributions in two main areas. The first con-

tribution is to establish the theoretical properties of mixed membership distribu-

tions. The second is the development of a model for assessing how much students

use different strategies. We discuss each of these in turn.

6.1 mixed membership distributions

Thousands of applications of mixed membership exist today, the majority based

on latent Dirichlet allocation. Each model exists individually with little regard for

the general class of models; and while each model appears to stand quite well

on its own, there is little understanding of how different choices in building the

model will affect how the model functions. The work presented here addresses

this gap.

Mixed membership models are constrained finite mixture models (Theorem

2.3). This result is the anchor for all the other results in Chapter 2.

Two interpretations are possible for MMMs, the between and the switching in-

terpretation. We can always interpret an individual with mixed membership in

153
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multiple profiles as switching between the profiles, but only in special cases can

we interpret an individual having a behavior that is between the profiles. The

difference lies in the fact that MMMs are fundamentally FMMs. We know that

a mixture of normal distributions is not normal, and we know that a mixture of

Bernoulli distributions is also Bernoulli. This is why the interpretation of mixed

membership is different for normal profiles than for Bernoulli profiles. It is only

when a family of distributions is closed under mixture, and is a linear transforma-

tion of its parameters, that we can use the between interpretation in an MMM.

In the same way, the identifiability results in Section 2.4 rely entirely on ex-

pressing the MMM in FMM form. We characterize equivalence classes of mixed

membership models by first recognizing when profiles generate the same FMM

components, and then recognizing when the distribution of the membership pa-

rameter guarantees that the FMM components have the same probability.

Mixed membership can summarize data with far more parsimony than a finite

mixture, the tradeoff is in the exchangeability assumption that variables are in-

dependent conditional on the membership parameter. The results in Chapter 2

are fundamental to understanding how this tradeoff will function in any given

application.

6.2 future work on mixed membership

6.2.1 Identifiability

Theorem 2.7 characterizes equivalence classes of identifiable MMMs. This result

has profound implications for practice. For example, Pritchard et al. (2000) uses a
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symmetric Dirichlet distribution for the membership vector θ. Theorem 2.7 indi-

cates that this is a poor choice for the distribution of θ. A symmetric distribution

here leads to a maximal equivalence class. All possible K!J−1 sets of MMM profiles

will yield exactly the same data distribution.

The large class of possible equivalent models has two immediate implications

for practice: First, when building a mixed membership model, use a non-symmetric

distribution for the membership parameter. Second, when estimating the model,

it is wise to estimate the distribution of the membership parameter as well.

Beyond this general advice, many open questions remain. Perhaps the first is,

after estimating a mixed membership model, how do we recognize the equiva-

lence class? Right now, I can only recommend examining the distribution of θ

for exchangeable dimensions, and taking the uncertainty in that distribution into

account. Therein lies the problem, it is unclear how uncertainty in the distribution

of θ translates to uncertainty in the equivalence class of models.

The second open question lies in how to interpret the class of equivalent models.

This is much more complicated than in a finite mixture model where re-indexing

is the primary difficulty. Let us suppose that the membership parameter θ has 2

exchangeable dimensions, say θ1 and θ2. Then the two profiles

F1 =

J∏
j=1

F1j and F2 =

J∏
j=1

F2j (6.1)

are interchangeable: I can swap any F1j for F2j, and the model remains the same.

With only two exchangeable dimensions of θ, it is already difficult to characterize

F1 and F2. How are we to summarize a larger set of exchangeable profiles, and

how much will this summary depend on the application at hand?
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6.2.2 An Alternate Mixed Membership Model

In Chapter 2, we discussed the differences between categorical and continuous

data, and the differences in the between interpretation vs. the switching interpre-

tation of mixed membership. The differences between the students in the numeri-

cal magnitude estimation application (Chapter 5) are not easily summarized by a

mixed membership model.

This is again because the general mixed membership model is at its core a

constrained finite mixture model. Each individual in the application has an indi-

vidual regression function r(x;φi), parameterized by φi and the parameters come

from a joint distribution φi ∼ Fφ. This is a quintessential hierarchical regression

model.

Yet in this application, a mixed membership interpretation would be undeni-

ably useful. At one extreme of the individual regression functions is a mature

linear estimation strategy. At the other extreme is an immature strategy that dras-

tically overestimates small numbers, and treats all other numbers as ‘large’. It

would be preferable to model individuals who are learning the mature estimation

strategy as having mixed membership in the two strategies. The obvious ‘solution’

is to use the two extreme strategies as the mixed membership basis profiles, yet

this solution does not work.

As noted in Section 2.2.1, if the profile distributions are of the form Fk(x; z) ∼

N(rk(z),σ2k), then the individual mixed membership distribution becomes:

Xij|θi,Zij ∼

K∑
k=1

θi N
(
rk(Zij),σ2k

)
. (6.2)
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This is not a continuous regression function. It is not even a regression model, it’s

a mixture of regression models. At any given point Zij, the distribution of Xij is a

finite mixture model. A mixture of normals is not normal.

Using regression functions as mixed membership basis profiles is not a solution

to this problem. Moreover, no change to the distribution of the membership pa-

rameter θ will resolve the issue. Changing θ changes the mixture parameters, the

structure of the distribution is still fundamentally a mixture model.

The question we now consider is whether it is possible to propose a version of

mixed membership that will allow us to interpret models with continuous data

with the between interpretation, in the same way that we can with categorical

data. To do so, we we must alter the individual-level assumption in the the mixed

membership model.

In Erosheva’s general mixed membership model (Erosheva, 2002), the primary

individual-level assumption is that the distribution for a particular observation is

an individual mixture model (Equation 1.1):

Xij|θi ∼

K∑
k=1

θikFkj(xj) (6.3)

We alter the mixed membership distribution in 2 ways. First, we require that

all of the population profile distributions be from the same parametric family, so

that Fk(x) = F(x;φk). Second, we replace Equation 1.1 with

Xij|θi ∼ F

(
xij;

∑
k

θikφk

)
(6.4)

Now, the individual distribution is in the same parametric family as the profiles,

and moreover, the individual parameters lie in a simplex where the extreme points

are the profile parameters φk.

To illustrate how this changes the mixed membership model, let us consider

again the mixed membership regression model inspired by the Numerical Magni-
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tude Estimation application. Using this alternate mixed membership model, we

can now write the individual level model as:

X|θi,Z ∼ N

(
K∑
k=1

θikrk(Z),
K∑
k=1

θikσ
2
k

)
. (6.5)

Now, each child’s strategy is described by an individual regression function;

ri(x) =
∑
k

θikrk(z) (6.6)

Y|θi,X ∼ N
(
ri(X),σ2i

)
. (6.7)

Moreover, the individual regression functions are convex combinations of the pro-

file functions, so that the individual function is quite literally between the profiles.

Figure 6.1 shows a simple version of this model to illustrate how individual vari-

ation is captured. This figure is now analogous to the categorical logistic regres-

sion example in Figure 2.2. With this alternative mixed membership model, we

can now summarize individual variation in continuous data in the same way that

Erosheva’s general mixed membership model allows us to summarize individual

variation in categorical data.

This alternative mixed membership model has not yet been explored to deter-

mine its appropriateness and usefulness in different modeling situations. That is

beyond the scope of this dissertation. I am raising the possibility of an alternate

specification to highlight how the meaning of “mixed membership" may differ in

different applications.

I note that this alternative mixed membership model may have similarities with

other existing models and tools. Equation 6.5 is remarkably similar to functional

data analysis (Ramsay and Silverman, 2005) and basis expansion of regression
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Figure 6.1: Illustration of a regression version of the alternate mixed membership model.

The profile distributions are Fk(x; z) = N(rk(z),σ2k). The profile functions rk(z)

are the solid and dashed black lines. The red lines in the middle represent the

individual regression functions ri(x) which are a convex combination of the

profile functions.

functions (Hastie et al., 2001). Basis expansion represents a function f(x) in terms

of a sum of basis functions b1(x),b2(x), . . .

f(x) =
∑
m

βmbm(x) (6.8)

The biggest difference between Equations 6.6 and 6.8 is that
∑
k θik = 1, while

there is generally no such restriction on
∑
m βm. Nonetheless, should this alter-

nate mixed membership model appear useful, the comparison with basis expan-

sion methods may provide a useful tool for estimation and interpretation.
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In the case where the profiles Fk are normal, and the parameters φk are con-

stants rather than functions of covariates; the alternative mixed membership model

in Equation 6.4 may reduce to a dimension-reduction technique such as principal

components analysis, or a density estimation tool such as kernel density esti-

mation (Hastie et al., 2001). These relationships have not been explored yet, but

provide possible directions for future work.

6.3 multiple strategies model

The differences between novices and experts in a domain are the ideal targets

for assessing what students know. One of the most crucial differences between

novices and experts is how they approach problems, in the strategies they use to

solve them. Yet these differences in knowledge are not easy to capture. If there are

multiple ways to solve a problem correctly, then in order to distinguish strategies,

we need data rich enough to capture the differences in strategies and a probability

model that relates the multiple measures of student performance to the strategies.

The multiple strategies model presented in Chapter 3 is a revolutionary solu-

tion to this problem. MSM provides a flexible framework for incorporating any

variables related to student achievement. This in itself is a remarkable accomplish-

ment, as Wenger (2005) notes in his review of Van Breukelen (2005);

If you were to browse through recent editions of the most prominent

publications in the perceptual and cognitive sciences, you would find

that, generally, the papers appearing in these journals concern them-

selves with patterns of either response choices or latencies. If you were

somehow to be able to browse the peer reviews of these published
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works, you would also find that, in the majority of cases, reviewers

were requesting information on latencies for those papers that focused

on response probabilities, and information on response probabilities

(e.g., error rates) for those submissions that focused on latencies. This

is because the working consensus in these fields is that, to be inter-

pretable, patterns in one of the variables need to be understood in the

context of potentially important convergent or confounding patterns

in the other.

Jointly modeling multiple measures of student knowledge is a significant and

substantial achievement, but MSM accomplishes more. Very few psychometric

models attempt to account for multiple solution strategies, and even fewer ac-

count for students who switch between strategies. Yet strategies are one of the

dimensions which most strongly distinguishes expert and novice performance.

Moreover, the path from novice to expert is not smooth. Individuals switch strate-

gies from task to task, and may revert to immature strategies, even when they

know expert strategies (Pellegrino et al., 2001). The multiple strategies model cap-

tures the differences in how experts and novices use strategies.

6.4 future work on multiple strategies

The multiple strategies model measures student performance along one of the

dimensions which most strongly distinguishes expert and novice performance.

Possible applications include everything from psychological studies of mental ro-

tation tasks to large scale assessments of student knowledge. However, the appli-
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cation of the multiple strategies model in Chapter 4, represents a proof of concept.

There is much more work to be done.

Some of the necessary work is described in Section 6.2. The multiple strategies

model is built upon a mixed membership model. The identifiability and inter-

pretability issues with mixed membership are also concerns for MSM. When two

strategy profiles are exchangeable in the probability model, how do we make

interpretable inferences about student knowledge?

Other facets of future work are unique to the multiple strategies model. In the

application to the least common multiples assessment data, MSM was able to

estimate both the strategies and how much students used each strategy for a very

modestly sized data set. However, the problem was greatly simplified since each

strategy was associated with a single skill. In this application we only needed to

estimate which strategies a student uses, θ, and not the skills they possess, α.

In order to take full advantage of the promise of MSM, we need to be able to

estimate both the atomic knowledge components, the skills parameterized by αi,

and the integrative knowledge components, the strategies parameterized by θi. I

have not yet solved the problem of how to estimate both parameters simultane-

ously. One of the primary difficulties is that skills and strategies are inextricably

intertwined. For example, depending on the strategies a student chooses, we may

not observe the student use certain skills. The solution to this dilemma may lie in

carefully constructing a joint distribution for θ and α.

Another possible direction for future work is to adapt the multiple strategies

model into a dynamic or knowledge-tracing model. To accomplish this, we would

need to develop a dynamic model of student performance where both θ and

α change over time. A dynamic model of this sort could be integrated into a

computer testing system, such as the formative assessment program ASSISTment
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(Feng et al., 2010). Observing changes in strategy use over time, will provide a

powerful tool for research in both psychology and education.



A P P E N D I X

164



A
M C M C R - C O D E F O R M U LT I P L E - S T R AT E G I E S M I X E D

M E M B E R S H I P M O D E L I N C H A P T E R 4

1 ############################################

############################################

###### Full MCMC

############################################

############################################

6

load(’data_file_name.Rdata’) #load data

## This data file should include:

## K=number of profiles

## J=number of unique problems

11 ## N=number of students

## test.data = matrix where each row is (i, j, C_{ij}, T_{ij1}, T_{ij2})

##

## This code assumes that each student may have seen a

## different subset of the total items

16

library(MCMCpack)

165
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library(mvtnorm)

folder.name = ’Save_folder’

# folder where data will be saved.

21 # create folder before you run code.

## MCMC parameters

b = 5 ## Thin the chain by only saving every bth iteration.

max.iter = 5000 # maximum number of iterations

26

eps.eta = 0.1 # tuning parameter for jumping distribution for eta/theta

# MH proposal distribution: eta.star ~ N(eta, eps.eta*I)

alpha.1 = c(1,100) # shape & rate prior parameters for beta_{1} -> T_{i1}

31 alpha.2 = c(1, 10) # shape & rate prior parameters for beta_{2} -> T_{i2}

lambda.prior = rbind(c(10, 1), c(1,1), c(1,1))

# parameters for beta-priors for lambda -> C_i)

# row k is the prior for profile k

# c(a,b) corresponds to beta(a,b).

36

######################

## Parameter Initialization

######################

41 ## can initialize from a previous iteration with:

## load(’foldername/iter#.Rdata’)

# mu, sigma, beta, lambda
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# initialized with random starts

46 mu.0 = rnorm(K-1, 0, 2)

sigma.0 = diag(rchisq(K-1,df=10), nrow=K-1)

lambda.0 = rbeta(J, shape1=lambda.prior[1,1], shape2=lambda.prior[1,2])

for(k in 2:K){lambda.0 = cbind(lambda.0, rbeta(J, shape1=lambda.prior[k,1],

shape2=lambda.prior[k,2]))}

51 beta.0 = rbind(rgamma(K, shape=alpha.1[1], rate=alpha.1[2]),

rgamma(K, shape=alpha.2[1], rate=alpha.2[2]))

# # theta & Z

# # rows of Z.0 correspond to rows of test.data

56 ##################################################################

# # Uncomment to use random starts for theta & Z

# # Note that convergence is slower with random starts.

# Z.0 = t(rmultinom(dim(test.data)[1], 1, rep(1/K,K)))

# eta.0 = rmvnorm(N, mean=rep(0, K-1), sigma = diag(1, K-1))

61 # theta.0 = exp(eta.0)/(1+apply(exp(eta.0), 1, sum))

# tmp = 1-apply(theta.0[,1:(K-1)], 1, sum)

# theta.0 = cbind(theta.0[, 1:(K-1)], tmp)

##################################################################

# Convergence is faster when initial Z’s are based on initial lambda’s

66 # (using accuracy & ignoring response time)

# then initialize theta.0 at the mean of Z.0[i]

# slightly perturb the theta.0’s to avoid taking the log of 0.

Z.0 = matrix(NA, nrow=dim(test.data)[1], ncol=K)

theta.0 = matrix(NA, nrow=N, ncol=K)

71 eta.0 = matrix(NA, nrow=N, ncol=K-1)
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for(i in 1:N){

X.i = test.data[test.data[,1]==i,3]

p.lam = (lambda.0[test.data[test.data[,1]==i,2],]^X.i)*

(1-lambda.0[test.data[test.data[,1]==i,2],])^(1-X.i)

76 Z.tmp = matrix(NA, nrow=length(X.i), ncol=K)

for(j in 1:length(X.i)){

Z.tmp[j,] = rmultinom(1,1,p.lam[j,])

}

Z.0[test.data[,1]==i,] = Z.tmp

81 tmp = abs(apply(Z.tmp, 2, mean) + rnorm(K, 0, 0.001))

theta.0[i,] = tmp/sum(tmp)

eta.0[i,] = log(theta.0[i,]/theta.0[i,K])[-K]

}

86 # Save starting values

iter = 0

save(mu.0, sigma.0, Z.0, eta.0, theta.0, lambda.0, beta.0,

alpha.1, alpha.2, lambda.prior,

file=paste0(folder.name,’/’,’iter’,iter,’.Rdata’))

91 #priors are also saved in iter.0

96 ######################

## MCMC

######################
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for(iter in 1:max.iter){

#### Update beta

101 for(k in 1:K){

T.1k = test.data[Z.0[,k]==1,4]

beta.0[1,k] = rgamma(1, shape = alpha.1[1] + length(T.1k),

rate = alpha.1[2] + sum(T.1k))

T.2k = test.data[Z.0[,k]==1, 5]

106 beta.0[2,k] = rgamma(1, shape = alpha.2[1] + length(T.2k),

rate = alpha.2[2] + sum(T.2k))

}

#### Update lambda

111 for(j in 1:J){

shape1 = apply(Z.0[test.data[,2]==j, ]*

test.data[test.data[,2]==j, 3], 2, sum)

shape2 = apply(Z.0[test.data[,2]==j, ]*

(1-test.data[test.data[,2]==j, 3]), 2, sum)

116 lambda.0[j, ] = rbeta(K, shape1+ lambda.prior[,1],

shape2+ lambda.prior[,2])

}

for(i in 1:N){

121 #### Update Z

X.i = test.data[test.data[,1]==i,3]

T.i1 = test.data[test.data[,1]==i,4]

T.i2 = test.data[test.data[,1]==i,5]
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126 p.C.log = log((lambda.0[test.data[test.data[,1]==i,2],]^X.i)*

(1-lambda.0[test.data[test.data[,1]==i,2],])^(1-X.i))

p.T1.log = matrix(log(beta.0[1,]), nrow=length(T.i1),

ncol=K, byrow=TRUE) -

matrix(beta.0[1,], nrow=length(T.i1), ncol=K,

131 byrow=TRUE)*T.i1

p.T2.log = matrix(log(beta.0[2,]), nrow=length(T.i1),

ncol=K, byrow=TRUE) -

matrix(beta.0[2,], nrow=length(T.i2), ncol=K,

byrow=TRUE)*T.i2

136 p.log = p.C.log+p.T1.log+p.T2.log+

matrix(log(theta.0[i,]), nrow=length(X.i), ncol=K, byrow=TRUE

)

Z.tmp = matrix(NA, nrow=length(X.i), ncol=K)

for(j in 1:length(X.i)){

Z.tmp[j,] = rmultinom(1,1,exp(p.log[j,]))

141 }

Z.0[test.data[,1]==i,] = Z.tmp

#### Update theta (MH step)

#propose a new theta=f(eta)

146 eta.star.i = rmvnorm(1, mean=eta.0[i,], sigma=diag(eps.eta, nrow=K-1)

)

tmp = exp(eta.star.i)/(1+sum(exp(eta.star.i)))

theta.star.i = c(tmp, 1-sum(tmp))

p.log.star.1 = sum(Z.tmp%*%log(theta.star.i))

p.log.0.1 = sum(Z.tmp%*%log(theta.0[i,]))
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151 p.log.star.2 = dmvnorm(eta.star.i, mu.0, sigma.0, log=TRUE)

p.log.0.2 = dmvnorm(eta.0[i,], mu.0, sigma.0, log=TRUE)

r.log = p.log.star.1 + p.log.star.2 - p.log.0.1 - p.log.0.2

# accept/reject

tmp = rbinom(1,1, prob = min(exp(r.log),1))

156 if(tmp==1){theta.0[i,] = theta.star.i; eta.0[i,] = eta.star.i}

}

#### Update mu & sigma

S = (N-1)*cov(eta.0)

161 sigma.0 = riwish(N-1,S)

mu.0 = rmvnorm(n=1, mean = apply(eta.0, 2, mean), sigma = sigma.0/N)

#### Save every bth iteration

if(round(iter/b) == iter/b) save(mu.0, sigma.0, Z.0, eta.0, theta.0, lambda

.0,

166 beta.0, file=paste0(folder.name,’/’,’iter’,iter,’.Rdata’))

}
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C H A P T E R 5

1 ####

# make.smoothed.discrete is a function that returns discretized versions

# of smoothed functions for a functional data set

####

# this function is coded to take advantage of the fact that for the

6 # numerical magnitude estimation data, each individual estimated the

# same set of numbers x.

####

# The optimal smoothing bandwidth is chosen by generalized cross validation

####

11

make.smoothed.discrete = function(ests,x, s=seq(0,100, length=50),

alpha = seq(0.2, 2, length=21), deg=1){

####

# ests is a matrix

16 # ests[i,j] is student i’s estimation of the jth quantity.

# x is a vector, x[j] is the jth quantity to be estimated.

172
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# s = grid of points where the smoothed functions will be evaluated

# alpha = vector of bandwidths over which smoothing is optimized.

# degree of local polynomial smoother (default is local linear

smoothing)

21 ####

N = dim(ests)[1] # number of students

n = dim(ests)[2] # number of quantities estimated

Y = matrix(NA, nrow=N, ncol=length(s))

26 BW = rep(NA, length=N)

for(i in 1:N){

y = ests[i,]

GCV = rep(NA, length(alpha))

31 # computes GCV for each bandwidth in alpha

for(a in 1:length(alpha)){

sm = loess(y~x, span=alpha[a], degree=deg)

GCV[a] = mean((sm$residuals/(1-sm$trace.hat/n))^2)

}

36 BW[i] = alpha[GCV==min(GCV)]

#sets BW to the bandwidth with the minimum GCV

sm = loess(y~x, span = BW[i], degree=deg)

Y[i,] = predict(sm, s)

# discretized, smooth function for student i

41 }

return(list(Y=Y, BW = BW))

}
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