
Carnegie Mellon University

CARNEGIE INSTITUTE OF TECHNOLOGY

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

 FOR THE DEGREE OF Doctor of Philosophy

TITLE Mobile Behaviometrics: Behavior Modeling

 from Heterogeneous Sensor Time-series

PRESENTED BY Jiang Zhu

ACCEPTED BY THE DEPARTMENT OF

 Electrical and Computer Engineering

 ______Joy Zhang_________________ __5/2/14_______________
 ADVISOR, MAJOR PROFESSOR DATE

 ____Jelena Kovacevic___________ ___5/2/14_________________
 DEPARTMENT HEAD DATE

APPROVED BY THE COLLEGE COUNCIL

 _Vijayakumar Bhagavatula___ ___________________ ______5/1/14_______________
 DEAN DATE

Mobile Behaviometrics: Behavior Modeling from Heterogeneous
Sensor Time-series

Submitted in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in the

Electrical and Computer Engineering

Jiang Zhu

M.S., Electrical Engineering, Stanford University
M.S., Management Science and Engineering, Stanford University

B.E., Control Engineering, Tsinghua University

Department of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, Pennsylvania

May, 2014

ii

Mobile Behaviometrics: Behavior Modeling from Heterogeneous Sensor Time-series

Copyright c© 2014 by

Jiang Zhu

All Rights Reserved

iii

ABSTRACT

In the era of ubiquitous and mobile computing, the penetration of mobile devices equipped

with various embedded sensors makes it possible to capture the physical and virtual context of the

user and his/her surrounding environment. There is also an increasing demand to model human

behaviors based on those data to enable context-aware computing and people-centric applications,

which utilize users’ behavior pattern to improve the existing services or develop new services.

Over the decades, we have seen tremendous success in biometrics technologies being used in

all types of applications based on the physical attributes of the individual such as face, fingerprints,

voice and iris. Inspired by this, we introduce a new concept Mobile Behaviometrics, which uses

algorithms and models to measure and quantify unique human behavioral patterns in place of human

bio-attributes. Behaviometrics algorithms take multiple data from various sensors as input and fuse

them to build behavioral models which are capable of producing application specific quantitative

analysis on the unique individuals that were the originators of the data.

We have three main challenges: statistical modeling of the sensor data, difficulty of multi-

dimensional sensor fusion and structural activity recognition. Based on our observation of the

similarity between human behavior and natural language, we apply natural language processing

(NLP) techniques to statistically model heterogeneous sensor data and investigate various appli-

cations based on the derived models. We also investigate adapting conventional machine learning

techniques to human behavioral modeling for non time-sensitive behavior sequences. To overcome

the difficulty of multi-dimensional sensor fusion, we develop a hybrid approach to first learn be-

havioral factors for feature dimension reduction and then infer optimal way of fusing models from

different factors. We study a novel Helix algorithm to induce the underlying grammar of human

activities and ultimately solve the structural activity recognition.

Our analytical work has been incorporated into a mobile security application SenSec, which

iv

allows us to conduct extensive experiments on behavioral modeling and its applications through

passive sensing. Through the deployment and field tests of SenSec, we conclude that the proposed

modeling algorithms can effectively identify users and their unique behavioral patterns and eventu-

ally detect anomalies from suspicious behaviors. Our SenSec application and its foundation appli-

cation MobiSens1 are publicly available. They continuously collect huge amount of mobile sensing

data which will enable a broader range of research in modeling and analyzing human behaviors in

the near future.

1 SenSec is built on the same framework of MobiSens application is originally designed and implemented. Therefore,
publicly, we usually refer MobiSens as both the framework and the application.

v

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor, Professor Ying Zhang, for his sup-

port, inspiration, encouragement and trust, without which this thesis can never be possible. It was

my fortune and privilege to work with him. Professor Zhang has always been a fountain of knowl-

edge for me no matter what issue challenged me during the course of my work. I am truly grateful

for the research freedom he gave me on developing expertise of my own, his willingness to share

his deep knowledge and strong analytical skills whenever I was at stuck, and his encouragement and

support on my research and choice of career path.

I am very grateful for my outstanding thesis committee members – Professor Jason Hong, Pro-

fessor Patrick Tague, Dr. Fabio Maino and Dr. Flavio Bonomi. Professor Hong has been a won-

derful source of insight and enthusiasm that has helped me identify the strengths and improve the

weaknesses of my thesis work. I would miss the enjoyable individual discussions with Professor

Tague, and would like to thank him for the valuable advice and support for the course project where

a major portion of this research work is based on. I have learned immensely from collaborations

with Dr. Maino and Dr. Bonomi at Cisco Research during the past 3 years, and truly appreciate

their deep and insightful comments, which have greatly improved this thesis.

I would like to thank my colleagues and friends at Carnegie Mellon. Thanks to Huan-Kai Peng

and Dongzhen Piao, who have always been willing to offer help during my first year; to Pang Wu,

Sean Wang and Ben Draffin, for great research discussions and their great support on MobiSens,

SenSec and KeySens system implementations; to Le Nguyen, Ming Zeng and Fei Xiong, thanks to

all of you for the warm and friendly lab atmosphere and the sharing of your knowledge during the

group discussions. Another special thanks to Dr. Hao Hu from Cisco Research and Jiatong Zhou

from University of New South Wales for carefully proofreading and editing the manuscript. I would

also like to thank the group of friends and colleagues in the ECE department for making my study

vi

in Carnegie Mellon such an enjoyable and rewarding process.

This work would not have been possible without the support from my family. I am indebted

to the support and encouragement from my parents. My Mom and Dad have always cared for me,

tried their best to understand every detail of my work and provide suggestions. I am blessed to have

the companionship of my wife, Yuechuan She, and my lovely daughter, Alina, for going through

the ups and downs with me throughout these years at Carnegie Mellon. It is my fortune to always

have you two by my side.

Finally, this thesis research was supported by CyLab at Carnegie Mellon under grants DAAD19-

02-1-0389 and W911NF-09-1-0273, from the Army Research Office (ARO), Nokia research award

on “Mobile Sensing and Behavior Modeling for Social Computing,” Google research award on

“Social Behavior Sensing and Reality Mining,” and a Cisco research award on “Behavior Modeling

for Human Network.” I greatly appreciate the financial support from these sponsors.

TABLE OF CONTENTS

1 Introduction 2
1.1 Research Overview . 4
1.2 Thesis Statement . 6
1.3 Thesis Roadmap . 8

2 Related Work 10
2.1 Mobility Behavior Modeling and Analysis . 10
2.2 Mobile Application Security through Passive Sensing 12
2.3 Micro-behavior Modeling of Keyboard Interaction 14

3 Behaviometrics 16
3.1 Framework . 17
3.2 Sensor Data and Contextual Metrics . 19

3.2.1 Sensors . 19
3.2.2 Data Acquisition . 23
3.2.3 Contextual Metrics . 25

3.3 SenSec, Secure Mobile Data and Application through Behaviometrics 27
3.3.1 Mobile Security: Motivation and Background 27
3.3.2 SenSec Architecture . 28
3.3.3 SenSec Prototype . 29

4 Building Behaviometrics: Modeling and Analysis 31
4.1 Behaviometrics Language Modeling . 32

4.1.1 Motivations . 32
4.1.2 Behavioral Text Representation and Language Model 33
4.1.3 Behavioral n-gram Model . 34
4.1.4 Prediction and Skipped n-gram model . 35

vii

TABLE OF CONTENTS viii

4.1.5 Similarity of Behaviometrics . 35
4.1.6 Classification and Recognition . 38
4.1.7 Anomaly Detection . 39
4.1.8 Behavioral Text Segmentation . 40

4.2 Helix: Hierarchical Segmentation and Classification 42
4.2.1 Vocabulary Initialization using Time-series Motifs 44
4.2.2 Super-Activity Discovery by Statistical Collocation 44
4.2.3 Vocabulary Generalization . 45
4.2.4 Content similarity (φe) . 47
4.2.5 Context similarity (φx) . 47

4.3 Modeling Personal Factors from Motion Sensor Data 49
4.3.1 Activity Classification via Time-Series Analysis 49
4.3.2 User Identification based on Activity Recognition 52
4.3.3 Feature Selection . 54
4.3.4 A Gaussian Model for User Authentication 55
4.3.5 Augmenting Motion Data with Location Knowledge 56

4.4 Spatial Modeling on User Interaction Patterns . 57
4.4.1 Feature Selection . 58
4.4.2 Discriminant Model . 59
4.4.3 Generative Model . 61

4.5 Heterogenous Sensor Fusion . 61
4.6 Summary . 64

5 Experiments, Results and Evaluation 65
5.1 User Mobility Behaviometrics . 66

5.1.1 Label Generation . 66
5.1.2 Data Set . 69
5.1.3 Anomaly Detection . 69

5.2 User Classification Based on Gesture Patterns . 74
5.2.1 Experimental Setup . 75
5.2.2 Data Set and Parameters . 76
5.2.3 Results . 77
5.2.4 Online User Authentication . 78

5.3 Hierarchical Activity Segmentation and Recognition 80
5.3.1 Experimental Setup . 80
5.3.2 Modeling the Data . 82

TABLE OF CONTENTS ix

5.3.3 Performance Evaluation . 85
5.4 Activity Recognition through Time Series Analysis 89

5.4.1 Experimental Setup . 91
5.4.2 Activity Class Construction . 91
5.4.3 Feature Selection . 92
5.4.4 User Identification Evaluation . 92
5.4.5 Anomaly Detection Evaluation . 97

5.5 Location Augmented Passive Authentication . 98
5.5.1 Experimental Setup . 99
5.5.2 Location Data Analysis . 99
5.5.3 Location as a Passive Authentication Factor 101

5.6 User Identification based on Interaction Metrics 104
5.6.1 Experimental Setup . 104
5.6.2 Performance Evaluation . 106

5.7 Summary . 111

6 Discussion 112
6.1 User Interface and User Experience Challenges 112

6.1.1 Usability Issues from Alpha Testing . 112
6.1.2 User Interface and Interaction Evolution 113

6.2 Data Privacy and Security . 119
6.3 Data and Power Consumption . 120

7 Conclusion 123

A MobiSens Framework 126
A.1 MobiSens Architecture . 126
A.2 Mobile Client Components . 127

A.2.1 Data Widgets . 127
A.2.2 Data Aggregator . 128
A.2.3 Sensing Profile Pulling . 129
A.2.4 Activity Recognition Module . 129

A.3 MobiSens Backend and Mobile Sensing Application Servers 130

References 131

LIST OF FIGURES

1.1 Thesis Roadmap . 9

3.1 Behaviometric Framework Diagram . 17
3.2 Illustration of the coordinate system of an accelerometer on a mobile phone. 20
3.3 Illustration of the coordinate system of a gyroscope on a mobile phone 21
3.4 Illustration of the touch screen and soft keyboard on a mobile phone 22
3.5 An illustration of contextual metrics . 25
3.6 SenSec Overview: A Motivating Example. 28

4.1 Log(freq) vs. rank of frequency of word types in behavior language corpus. 33
4.2 Skipped n-gram to model long-term dependent mobility behaviors 36
4.3 Activity changes calculated by different sizes of sliding windows. 41
4.4 Grammar induction using Helix. A, V , and G denote the multi-level activities,

vocabulary, and induced grammar, respectively. 43
4.5 Joint and marginal frequencies of activity pairs, with the contingency table of the

pair (A1,B2). 45
4.6 (a) Content-based and (b) context-based generalizations. 46
4.7 Accelerometer readings for standing, walking and running along with the discrete

fourier transformation . 50
4.8 ActivityClass function with α = β = 1 . 52
4.9 A high-level diagram of how the discriminant algorithm is designed. Per-key neu-

ral networks generate confidence scores weighted against training size. These are
aggregated into a combined score for a 5-key sliding window to generate likelihood
of non-authorized user. 59

x

LIST OF FIGURES xi

4.10 A high-level diagram of how the generative algorithm is designed. It calculates
feature probabilities individually, aggregates them to a confidence score for a single
key press and uses a 5-key sliding window to generate likelihood of non-authorized
user. 60

4.11 Sensor fusion by concatentation . 62
4.12 Sensor fusion through Risk Analysis Tree. 64

5.1 Regular patterns from user’s daily mobility behaviors 68
5.2 Pseduo-location density from 4 selected users vs all users 69
5.3 Two users’ mobility patterns are concatenated to create a sample for a simulated

stolen event. Originally pink and red are user A’s trace. blue is user B’s trace. We
splice pink with the blue to simulate a device stolen event. 70

5.4 Anomaly detection experiment results for a user with different thresholds. The
graph shows average log probability within a sliding window over time. The stolen
event happens at A. C and D are false positives for threshold 0.42. B is the true
positive for threshold 0.37. The response time is the distance between B and A. . . 71

5.5 Receiver Operating Characteristic (ROC) curves of the n-gram model for training
size of 4 and 12 hours. 72

5.6 Variation of anomaly detection accuracy vs n-gram order. Threshold is set to .59 . 73
5.7 Distributions of demographic groups for user classification 75
5.8 Users perform the same sequences of activities and SenSec is monitoring and build-

ing Motion Metrics . 76
5.9 Receiver Operating Characteristic (ROC) curves of the n-gram model for training

size of 4 and 12 hours. 79
5.10 Two mounting positions of phones in experiments: stowed in pocket (left) and

mounted on upper arm (right) . 82
5.11 An example of 3-level top-down hierarchical activity segmentation with w1 =

20minutes, w1 = 10minutes and w1 = 5minutes. 85
5.12 F1 scores of activity recognition accuracies for two phone mounting positions: pants

pocket and upper arm. Activity recognition uses only accelerometers data. For
pocket settings, the average F1 score is 0.57. For upper-arm setting, F1=0.56. . . . 88

5.13 Ground truth labeled asG1 with three true annotations(A1-A3) and four false annotations(A4-
A7) . 89

5.14 The F-Score of user annotation on Hierarchical activity segmentation result vs.
HMM, on right arm dataset, motion only. 90

5.15 t-SNE visualization of a subset of the data collected with a 50ms sampling rate . . 94
5.16 t-SNE visualization of a subset of the data collected with a 20ms sampling rate . . 94

LIST OF FIGURES 1

5.17 Percentage of time in top two locations . 100
5.18 ROC Curve . 102
5.19 Two-User Comparison of Keypress Locations on ‘spacebar’. Observe how users

tend to clump, and how ‘User 2’ presses in seemingly distinct areas with their left
thumb versus right thumb. 107

5.20 Quad-comparison of Keypress Locations on ‘o’. ‘User 1’ and the axes are static.
This shows how different users have (sometimes widely) varying spreads and centers.108

5.21 Comparison of hold time between users on the period key. 108
5.22 Comparison of finger drifts between users. The center of each circle is the normal-

ized location where the user first pressed down. The angles describe which direction
the user drifted (but not how far). The ray lengths are the frequency of drifts in that
direction. 109

5.23 Testing performance and receiver operating characteristics for discriminant model.
67.7% of simulated ‘non-authorized users’ were caught within a 5 keypress slid-
ing window with a False Acceptance Rate of 32.3% and a False Rejection Rate of
only 4.6%. The ROC curves represent a subset of all tests indicating variability of
detection rates between users. 111

6.1 User Interface for SenSec Alpha . 114
6.2 SenSec Tutorial . 116
6.3 SenSec Protection Options: Secured, Protected via either Passcode or Sliding Pattern 117
6.4 SenSec Home Screen . 117
6.5 SenSec Status Bar and Notification . 118
6.6 The power consumed by different module/functionalities of the SenSec mobile client.

“Sensor” refers to physical sensors including accelerometers, gyroscope and mag-
netometers (digital compass).“System Scan” is the scanning of running applications
in the system, which consumes very little power. 121

A.1 MobiSens mobile application and back-end system architecture. MobiSens is a
client/server system with Android App as client and two-tier server systems. 127

CHAPTER 1

INTRODUCTION

Nearly 40 years ago, IBM suggested that a computer user could be recognized at a computer termi-

nal by something he knows or memorizes, by something he carries, or even by a personal physical

characteristic. This analysis was done in the context of computer data security - remotely recog-

nizing those authorized to access stored data - and specifically referenced voice recognition as a

personal physical characteristic useful for human recognition, although automated handwriting, fin-

gerprint, face, and hand geometry systems were, by 1970, also under development. Since that time,

automatically recognizing people by physical and behavioral characteristics has come to be known

as biometric authentication and its applications have broadened far beyond the remote recognition

of computer terminal users. Today, biometric technologies are being used in all types of appli-

cations not foreseen by its early pioneers especially in areas where using something you know or

something you carry is either not secure enough or not feasible such as visa and passport issuance,

social service administration, and entertainment ticket management systems.

By formal definition, biometrics is the science of recognizing the identity of a person based on

the physical or behavioral attributes of the individual such as face, fingerprints, voice and iris. With

the pronounced need for robust human recognition techniques in critical applications such as secure

access control, international border crossing and law enforcement, biometrics has positioned itself

2

3

as a viable technology that can be integrated into large-scale identity management systems. Bio-

metric systems operate under the premise that many of the physical or behavioral characteristics of

humans are distinctive to an individual, and that they can be reliably acquired via appropriately de-

signed sensors and represented in a numerical format that lends itself to automatic decision-making

in the context of identity management. Now, biometric technology is a rapidly evolving field, re-

sulting in the development of innovative sensors, novel feature extraction and matching algorithms,

enhanced test methodologies and cutting-edge applications, even though it has yet penetrated ev-

eryone’s daily life.

On the other hand, with the advancement and proliferation of digital electronics and portability

having become a major driving factor for innovation, mobile devices and their applications are

becoming ubiquitous and will increasingly change the way we live, work and play. Those devices,

such as smartphones, tablets and laptops, make our lives convenient in ways that were unimaginable

before and have become an indispensable part of our lives. Keeping in mind the successfulness of

biometrics, can we improve existing applications and enable new services for the future ubiquitous

computing?

Modern mobile devices are equipped with various embedded sensors that make it possible to

capture the physical and virtual context of the user and surrounding environment. The fact that these

embedded sensors have become so pervasive combined with the increasing popularity of context-

aware computing and people-centric applications, has created the possibility to model human be-

haviors based on sensory data. With models developed, we can utilize a user’s behavior pattern

to improve existing services, such as casual authentication and anomaly detection, or enable new

services, such as customized intelligence and patient monitoring and support in healthcare.

In this thesis, we introduce a new concept, Mobile Behaviometrics, which comes from mobile

“behavior” and “biometrics”, uses algorithms and models to measure and quantify the unique human

behavioral patterns and natural rhythms that every user has when operating and interacting with their

mobile devices. Many of the characteristics we explore here through Behaviometrics are highly

1.1 RESEARCH OVERVIEW 4

related to biometrics, such as how a user retrieves the phone, how she holds it while using certain

applications, and how she types on the keyboard. Behaviometric algorithms take multiple streams

of data collected from various sensors (GPS, WiFi, Accelerometers, Gyroscopes, Bluetooth, etc)

and other context-related information sources (Mouse movement and clicks, screen touches and

slides, keyboard strokes, application usage, etc) as input, and fuses them to build behavioral models

which are capable of producing application specific quantitative analysis on the unique individuals

that were the originators of the data.

1.1 RESEARCH OVERVIEW

The fundamental question we are trying to answer is: given a set of sequences of sensory data,

how to build a statistical model to represent the user who directly or indirectly generated those se-

quences, such that the model can identify if a new sequence of sensory data is generated by the

original user? Empirically, we observe similar structure between human behavior and natural lan-

guage, i.e., both the sequence of behaviors and the sequence of words are generally following certain

patterns. This inspired us to investigate the application of natural language processing (NLP) tech-

niques to Behaviometric modeling. It is also possible to adapt and improve conventional machine

learning techniques, e.g., neural networks, to efficiently build non time-sensitive behavior models.

Once we start to build sensory data based user identifications algorithms, we observe one key

challenge, i.e., heterogeneous sensor fusion. In standard sequence classification, input data are

usually one-dimension sequences, such as words, phrases or DNA nucleotides. For mobile Be-

haviometrics, behaviors are captured and represented by various sensors such as accelerometers,

gyroscopes, GPS receiver, WiFi receiver, microphone, keyboard, touch screen, and so on. These

sensors are of heterogeneous data format (e.g., real number value or location coordinates), sam-

pling rate, and semantic meaning. In this thesis, we consider a hybrid approach to deal with this

problem, which consists of two phases. In the learning phase, we model user behaviors for each pre-

defined category of factors separately. Within the category, we use various techniques to reduce the

1.1 RESEARCH OVERVIEW 5

dimensionality of the feature space. In the inference phase, we adopt a voting system that combines

scores adaptively, boosting or filtering, from models that represent different factors.

Another practical challenge is the need for unsupervised structural activity recognition. Su-

pervised methods use samples with predefined labels such as “walking” or “running”. Practically,

however, not only it is unrealistic to assume large amounts of labeled data, but also it’s limited

to recognize only the predefined activities. In many applications, it is more useful to recognize

activities at high-level, or more generally, in a structured manner. Such an approach will make

it possible to identify high-level activities like “playing a tennis game”, lower-level ones like “a

play”, or even breaking down to “step” or “swing”, etc. Inspired by grammar induction in natural

language processing, we study a novel approach called Helix to induce the underlying grammar of

human activities.

In our language approach, at first, we convert the raw sensory data into a behavior text represen-

tation as sequences of behavior labels. Each behavior label is considered as a word in the language.

We then train a continuous n-gram language model on these labels. We also evaluate several NLP

techniques in this new problem context and adapt them in performing activity segmentation, recog-

nition, classification, prediction and anomaly detection. To overcome the aforementioned practical

challenge, our proposed unsupervised algorithm Helix induces the underlying grammar or structure

of human behaviors using partial or unlabeled heterogenous sensor data and discovers the hierarchy

of the activities considering various granularities. It first generates an initial vocabulary using un-

labeled sensory data, followed by iteratively combining statistically collocated sub-activities across

multiple sensor dimensions and grouping similar activities together to discover higher level activi-

ties. We also perform a separate study which focuses specifically on modeling motion data, and by

taking advantage of its structure we are able to produce a different method for activity classification.

For some sensory data categories and application contexts, we also apply traditional machine learn-

ing approaches, such as Naive Bayes, Mixed Gaussian, and Neural Networks, in modeling mobile

behaviors to complement the approaches mentioned in the aforementioned language models.

1.2 THESIS STATEMENT 6

We apply these Behaviometric models and algorithms in the design and development of a mobile

security application SenSec, which builds user behavioral models through passive sensing. These

models are then used to perform user identification and casual authentication. Through the de-

ployment and field tests of SenSec, we conclude that we are able to model and identify users via

Behaviometric analysis of the sensor data using the above techniques. We first focus on the factors

accessible from motion and posture sensors, for example, accelerometers, gyroscope, orientation

sensors and magnetometers by building generative models of user’s motion and posture characteris-

tics to use for identification and authentication. This generative model is based on the “language” as

a motion principle which we show can be used for activity segmentation and recognition, anomaly

detection. Then we build on this model by introducing location and mobility aspects with WiFi

traces, which can be used to enhance the anomaly detection capabilities of the model as well as to

predict future behavior. Then we take a look at user identification and anomaly detection through

the approach of using classic machine learning algorithms by deriving a method to extract an “ac-

tivity level” from data and build models based on these levels. We improve this by adding location

data into the mix, showing that with this new factor, we are able to lower the false positive rate and

boost the accuracy of the model. Finally, we include the factors obtained from user interactions with

the mobile devices, specifically, software keyboard inputs. These factors describe physical aspects

of individuals. From the experiments conducted with human subjects using these applications, we

are also able to provide guidelines in selecting different models, tuning model parameters and im-

proving user experience, especially in handling errors and false-positives in prediction and anomaly

detection.

1.2 THESIS STATEMENT

In this thesis, we study the fundamental scientific problem of modeling an individual’s behavior

from heterogeneous sensor time-series. Sensor information is monitored from physical sensors

such as accelerometers and gyroscopes on mobile phones and “soft sensors” such as the key-typing

1.2 THESIS STATEMENT 7

patterns on laptops. The users’ behavior models are primarily used in this work to identify the user

and detect anomalies in usage patterns.

Our contributions to the theoretical development of Behaviometrics include:

1. We propose a novel language-based approach to study mobile user behaviors. We develop key

steps to convert the raw sensory data into behavior text representation as sequences of behav-

ior labels and then to apply NLP techniques in performing activity segmentation, recognition

and classification, prediction and anomaly detection.

2. We propose a novel unsupervised algorithm Helix to induce the underlying “grammar” of

human behaviors using partial or unlabeled heterogenous sensory data and to discover the

hierarchy of the activities considering various granularities. We also propose an extension

Helix Tree that use such structures to efficiently perform classification and regression in vari-

ous granularities.

3. We investigate how conventional machine learning techniques can be adapted and applied to

this new Behaviometrics modeling when the language based approach is less efficient. We ap-

ply data preprocessing techniques, e.g., DFT and entropy-based feature selection algorithms

for user identification/authentication based on activity recognition. We also investigate sensor

fusion technologies to improve the performance.

Our contributions to the advancement of Behaviometrics applications include:

1. We develop a Behaviometrics framework which incorporates sensing, data preprocessing,

data modeling, application and evaluation. This generic framework can be utilized to imple-

ment future Behaviometrics applications.

2. We build and deploy a mobile security application SenSec based on our mobile sensing plat-

form, MobiSens, and release it to the public domain.

1.3 THESIS ROADMAP 8

3. We conduct extensive experiments with SenSec collecting location, motion and user interac-

tion traces to build mobile user’s behaviometrics for user identification and anomalous behav-

ior detection.

4. Based on our experiments and real user experience, we provide guidelines in selecting differ-

ent models, tuning model parameters and improving user interaction, especially in handling

errors and false-positives in prediction and anomaly detection in related application areas.

5. Our applications deployed in the field, including SenSec and MobiSens, continuously collect

huge amounts of mobile sensing data, some of them are labelled or partially labelled for

various purposes including security, lifelog, or mental status. These valuable data sets will

enable a broader range of research in modeling and analyzing human behaviors in the mobile

computing context.

1.3 THESIS ROADMAP

The roadmap of the thesis is shown in Figure 1.1. The thesis is organized as follows: In Chap-

ter 2, the background and related work of user behavior modeling is presented. Then an overview

of the proposed Behaviometrics framework is first presented in Chapter 3. Later in Chapter 3, we

go through the sensor data factors collected, and introduce the SenSec app. In Chapters 4, 5, and 6,

we will go through the design considerations and the details of the proposed approaches. Chapter 4

explores the analysis techniques and models used throughout this work. We explain the mathe-

matically derived principles used in these models and outline the methods used to interpret them.

Chapter 5 extends Chapter 4 by evaluating the effectiveness of the proposed approaches. We present

the procedure for dataset collection, evaluation methodologies and experimental results. Finally, in

Chapter 6 we discuss challenges and limitations of our work as well as the future research directions.

We conclude this thesis in Chapter 7.

1.3 THESIS ROADMAP 9

Mobile
Behaviometrics

Introduction
(Chapter 1)

Related Work
(Chapter 2)

BehaviorMetrics
(Chapter 3)Framework

(§ 3.1)

Sensory
Data and

Contextual
Metrics
(§ 3.2)

SenSec
(§ 3.3)

Modeling
and Analysis
(Chapter 4)

Behavior
Language
Modeling
(§ 4.1)

Helix
(§ 4.2)

Modeling
Personal
Factors
(§ 4.3)

Modeling
User

Interaction
(§ 4.4)

Sensor
Fusion
(§ 4.5)

Experiments
(Chapter 5)

Language
Approach

(§5.1 � 5.3)

Time
Series

Analysis
(§5.4 � 5.5)

Spatial
Model
(§ 5.6)

Discussions
(Chapter 6)

Conclusion
(Chapter 7)

Figure 1.1: Thesis Roadmap

CHAPTER 2

RELATED WORK

There has been extensive prior work on human behavior modeling and analysis in various applica-

tion domains, especially in the field of biomedical and psychological studies. In the past, interviews,

surveys and medical examinations were intensively used to collect information from the human sub-

jects. However, these approaches are not suitable for mobile internet environment, because 1) they

are very domain-specific and not flexible enough to capture complex behaviors from human day-

to-day activities and routines. 2) some approaches rely on structured and labeled data sets, such as

results from medical examinations and questionnaires, which takes a long time to obtain, requires

special facility and incurs significant cost. Therefore, practically, the data sets for those studies

were relative small and only represent limited sources of information. 3) most of the recent work

did leverage data sets collected from the low cost sensors on the mobile devices, but focused on us-

ing single sensory data stream. In this section, we review some of the past research that are related

to our Behaviometric work.

2.1 MOBILITY BEHAVIOR MODELING AND ANALYSIS

The use of probabilistic methods for modeling user mobility behavior in wireless network in-

cluding WiFi and Cellular environment has been attempted in various previous work [1–5] with

predominate focus on using probabilistic approaches such as Bayesian and Markov models.

10

2.1 MOBILITY BEHAVIOR MODELING AND ANALYSIS 11

Work in [6] by Kim et al. is one of the first attempts to construct a WLAN mobility model from

real-world wireless user traces. Using syslog approach, they collected traces containing sequences

of WLAN association records. They explored several methods to extract mobility tracks, including

triangle centroid, time-based centroid and Kalman filter. They also developed a heuristic to extract

pause time from mobility tracks. They validated these methods through controlled walks where

the tracks (via GPS) and pause-time were also recorded. Using the similar data set, Lee and Hou

presented a semi-markov model [4] for characterizing user mobility both in the temporal and spatial

domains. With the semi-markov model, they were able to capture and analyze both the steady-state

and transient behaviors of user mobility. From the steady-state analysis, they were able to identify

the long-term mobility characteristics, such as the steady-state user distribution over APs. Among

other contributions, the effect of ping-pong phenomena in user mobility was analyzed and a solution

to identify and remove ping-pong transitions was proposed.

As suggested by the close ties between human activity and language, predictive models used

in language modeling can also be applied to mobility behavior modeling. Aipperspach et al in [7]

showed that smoothed n-grams can provide a fast and accurate method for making single-step pre-

dictions on binary sensor output and user’s location in a smart-home environment. The results

also showed that the mapping between language and human behavior, evidenced through the Zipf

distribution of movement sequences and the “local structure” of those sequences, supports the ap-

plication of language models to user behavior modeling. The simplicity of their approach inspire

us to explore similar language approach to model user mobility behavior with fine-grain sensory

data with heterogenous nature. We have demonstrated that such simple language approaches can be

used to model user activities in our lifelogger system [8] and to perform anomaly detection in our

geo-tracing system [9].

2.2 MOBILE APPLICATION SECURITY THROUGH PASSIVE SENSING 12

2.2 MOBILE APPLICATION SECURITY THROUGH PASSIVE SENSING

Biometric authentication, which applies context-awareness [10, 11] to security applications, ver-

ifies user identity by leveraging the uniqueness of behavioral characteristics and/or physical trait.

Traditional schemes include fingerprint scanners, iris recognition, voice recognition, face recog-

nition and so forth. Since last decade, novel approaches have sprung out. Orr and Abowd [12]

designed a system which can identify users based on their footstep force profiles. Work by Peacock

et al. [13] concentrated on keystroke patterns and the underlying typing characteristics to perform

user identification. Work by Hayashi et al. [14] examined context-aware scalable authentication,

combining a number of passive factors such as location for authentication. Work by Davrondzhon

et al. [15] proposed a scheme that uses accelerometers mounted on lower leg for gait recognition

and uses it to enforce authentication. Other biometrics including blinking pattern, writing style, etc.

were also explored in the past which focus on individuals’ behaviors.

More recently, as sensing and computing capabilities become standard on smartphones, re-

searchers have begun to collect more types of sensory data on devices to build user behavior models

and use the model to infer certain contexts, including user authentication. In the work of Zheng

et al. [16], the GPS readings are used to detect whether a person is walking, running, driving a

car, or riding a bus. Schmidt et al. [17] monitors various system parameters on a mobile device,

including system free memory, running process count, user inactivity, CPU usage and SMS count,

for anomaly detection and IDS. Keng-hao et al. [18] predicts whether the user is interruptible based

on the input from microphone and the user’s keyboard activities by detecting the unique pattern of

holding the television remote control using the accelerometers attached. Jakobsson et al. [19] put

forward the notion of implicit authentication in that the authentication strategy is carried out based

on what applications and features on a mobile phone are being used. Shi et al. [20] also devised an

implicit authentication architecture in which a user model is constructed from a user’s past behavior

recorded by the mobile device. Then with this model and recently observed user activities, device

2.2 MOBILE APPLICATION SECURITY THROUGH PASSIVE SENSING 13

can score the trustworthiness of current user and respond accordingly. SenGuard [21], a similar

system to SenSec, leverages availability of multiple sensors on smartphones and passively use them

as sources of user identification in background. It invokes active user authentication when there is a

mounting evidence that the phone user has changed.

Our work differs from the aforementioned efforts in that 1) we collected Received Signal

Strength (RSS) readings of the beacons emitted from mobile devices and aggregate the data from

multiple Wireless Access Points (WAPs) to form sequences of fingerprints, which can be used to

easily infer the actual locations of the devices. This approach reduces the overhead to estimate mo-

bility tracks and pause time. 2) We converted heterogenous sensory data into behaviorial text and

adopt “n-gram” model to efficiently construct sufficient statistics of user mobility behavior, captur-

ing both the steady-state (uni-gram) and transient behavior (bi-gram and n-gram) simply through

counting. 3) We used “skipped n-gram” model to capture the long-term dependency in user mobility

behavior. Ping-pong phenomena can also be partially mitigated through this method if ping-pong

transitions are skipped.

Our work extends beyond the aforementioned efforts in that 1) Instead of using devices mounted

to various part of the human body, we explored the possibility of using the sensor data collected from

generic smart phones to model user’s gesture patterns while users are using the devices. 2) Different

from SenGuard, which uses JigSaw engine [22] to detect 5 common physical activities, stationary,

walking, cycling, running, and in a vehicle (i.e., car, bus), SenSec uses a novel and simple n-gram

model to capture individual users’ motion gesture. 3) One of our experiments was based on the data

collected from a group of users performing the same tasks with the device. This further verified that

gesture patterns are very personal and can be used for user identification and classification. 4) We

integrated our approach into a prototype system and tested it in participants’ the day-to-day usage.

Our system can identify non-owner anomaly in less than 5 seconds, faster than existing work [19],

and still maintain reasonable True Positive Rate at 85% with False Positive Rate at 10%, which

makes our approach more practical for real deployments.

2.3 MICRO-BEHAVIOR MODELING OF KEYBOARD INTERACTION 14

2.3 MICRO-BEHAVIOR MODELING OF KEYBOARD INTERACTION

One of the key areas of research on behavioral models for computer security is to model user

interaction through input devices. These include 1) desktop keystroke dynamics using traditional

methods [23], 2) mobile phone keypress dynamics using traditional methods [24] and 3) key in-

ference using side-channel sensors [25]. This research can focus on either structured text such as

passwords/shared secrets or dynamic text that tracks keystroke patterns over the duration of a typ-

ing session. The testing environment in these studies could be either controlled or uncontrolled,

describing whether the users are in a lab or on their personal machines. Additionally, studies can

either focus on authentication of a single user or identification from among a pool of users [23].

They can also study a wide variety of features, depending on researcher interest and the capabilities

of the target equipment.

Desktop computer keystroke dynamics research has a long and rich history. A wide variety of

extracted features, learning algorithms, success metrics and testing environments have been stud-

ied [13, 23]. While more research has been focused on static text that can observe the patterns of

password typing, there are a number of studies that focus on uncontrolled environments with dy-

namic text [26]. These studies, limited by the capabilities of physical keyboards, tend to gather in-

formation about typing latencies, cadences, or error rates. Some special keyboards can also provide

pressure information, though this is not common in consumer-grade products. With our application,

we leverage the additional data gathering power of a touch screen keyboard and can extend beyond

these primarily timing-based features.

Mobile phones have been getting increased attention over the last few years as security threats

develop and risks are further revealed. The access to additional data from their touchscreens defines

a research environment with both added benefits (e.g. more data) and added challenges (e.g. greater

mobility, more dynamic environments). A number of studies have addressed keypress dynamics on

mobile phones, though many use similar feature sets as on desktops [27]. Some, however, including

2.3 MICRO-BEHAVIOR MODELING OF KEYBOARD INTERACTION 15

a quite successful one on PINs by Zahid et al., analyze additional features such as the difference in

digraph time between adjacent and non-adjacent keys [24]. Our work builds on this existing work

by focusing on the mobile keypress features not possible on traditional desktops.

Another growing area of research is the ability to leverage the other sensors on mobile phones

(notably accelerometers and gyroscopes) to infer keypresses without direct access to keypress data.

By measuring the changes in orientation [28], accelerometer readings [25, 28], and/or gyroscopes

[28], applications with very few special privileges 1 can provide attackers insight into passwords

or PINs. Applications posing as games or with other innocuous guises could tap into these sensor

channels in the background and infer keypresses. We have internally discussed, though not exam-

ined, how a gaming application could generate its own training data through in-game menus. While

we focus on the direct analysis of touches, we leverage this area of research to guide the processing

of our own orientation data.

Our work extends beyond the aforementioned efforts in that 1) Instead of using devices mounted

to various part of the human body, we explored the possibility of using the sensory data collected

from generic smart phones to model user’s gesture patterns while users are using the devices. 2)

Different from SenGard, which uses JigSaw engine [22] to detect 5 common physical activities,

stationary, walking, cycling, running, and in a vehicle (i.e., car, bus), SenSec uses a novel and

simple n-gram model to capture individual users’ motion gesture. 3) One of our experiments was

based on the data collected from a group of users performing the same tasks with the device. This

further verify that gesture patterns are very personal and can be used for user identification and

classification. 4) We integrated our approach into a prototype system and tested it in participants’

the day-to-day usage. Our system can identify non-owner anomaly in less than 5 seconds, faster

than existing work [19], which makes our approach practical for real deployments.

1 Android Security Overview, http://source.android.com/tech/security/index.html

CHAPTER 3

BEHAVIOMETRICS

The word “Behaviometrics” derives from the terms behavioral and biometrics [29]. Behavioral

refers to the way a human person behaves, and biometrics, in an information security context, refers

to technologies and methods that measure and analyze biological characteristics of the human body,

usually for authentication purposes, for example fingerprints, retina and voice patterns. Behavio-

metrics, or behavioral biometrics, is a measurable behavior used to recognize or verify the identity

of a person or his/her individual behaviors. Unlike biometrics, Behaviometrics focuses on behav-

ioral patterns rather than physical attributes and can be extended to area beyond the aforementioned

security context.

A human behavioral pattern consists of a variety of different unique semi-behaviors; all mixed

together into a larger and utterly more unique profile. Each person has a unique pattern in how they

interact with a mobile device’s input components, its keyboard, touch screen, mouse and micro-

phone. Since every person’s unique Behaviometric pattern is formed not only by biometric features,

like the way you move your hand, but is also influenced by more social and psychological means,

like if you are native in the language you write, it is just about impossible to copy or imitate some-

body else’s behavior when using mobile devices. This makes Behaviometrics very personal and

unique, which could be leveraged for various applications.

16

3.1 FRAMEWORK 17

In this chapter, we first introduce the concept of Behaviometrics and its enabling framework.

Then, we discuss various types of the sensory data on modern mobile devices and contextual metrics

that can be derived from them. Applying the Behaviometric framework in real world scenario, we

propose a particular use case of Behaviometrics, SenSec, to passively secure mobile device and

application from unauthorized users.

3.1 FRAMEWORK

A generic Behaviometric framework is shown in Figure 3.1. There are five major components

or stages:

Applications

Modeling

PreprocessingSensing

Feature
Construction

Behavior Text
Generation

N-gram
Model

C
la

s
s
ific

a
tio

n

Threshold

Skipped
N-gram
Model

Helix

DT

Evaluation
ROC Accuracy

Precision
Recall

UX

P
re

d
ic

tio
n R

e
c
o

g
n

itio
nSVM

DT SVM

Ground
Truth

A
n

o
m

a
ly

D

e
te

c
tio

n

...

Figure 3.1: Behaviometric Framework Diagram

(1) Sensing: in order to build a behavior model and eventually a behavior-aware application,

3.1 FRAMEWORK 18

we need to first collect necessary data as input to the framework. The data may come from

hardware sensors embedded in smart devices, for example, GPS, gyroscope, etc., or from

software running status and device input/output interface, as illustrated in Figure 3.1.

(2) Preprocessing: This component preprocesses the raw sensor data (or human-device interac-

tions) from various sensor inputs. For example, the data may be discretized and quantized

into time-series for later processing. Selecting the right set of features is important for im-

proving the target system performance and reducing overhead. Additionally, features may

also be sensitive to modeling tools. Therefore, we need to carefully construct features to use

and convert the data to behavior text if necessary.

(3) Modeling: behavior modeling is the most challenging part. Given the constructed feature

set, various modeling tools may be applied; some can be superior to the others. In this thesis,

language-based behavior modeling method is extensively investigated. Compared with legacy

learning algorithms, e.g., neural network, etc., it has better performance and lower complexity

for some features, with time-series involved. We also proposed Helix, a novel approach to

induce underlying grammar of human activities for macro-level behavior modeling.

(4) Applications: There are many use scenarios that can benefit from Behaviometric study, in-

cluding enterprise IT, mobile security, etc. Typical use-cases include anomaly detection, user

classification, user behavior prediction and regression.

(5) Evaluation: With ground truth data and behavior learned with suitable models, we will be

able to evaluate the performance of each application.

The first stage, ‘Sensing’, is the prerequisite of the following stages of Behaviometrics. Without

sensory data collected from user devices, it is impossible to model user behavior and consequently,

impossible to realize applications such as user classification, recognition, anomaly detection, etc.

The actual modeling involves data preprocessing and model development, i.e., stages 2 and 3. The

3.2 SENSOR DATA AND CONTEXTUAL METRICS 19

applications will also be highly tied to the specific model developed.

3.2 SENSOR DATA AND CONTEXTUAL METRICS

Modern mobile devices come with various mobile sensors such as accelerometer, gyroscope,

GPS receiver, WiFi receiver, etc. We consider contextual information, i.e., contextual metrics be-

ing collected from these “hardware sensors” when building the Behaviometrics of a mobile user.

Additionally, we also consider including the contexts from “virtual sensors” such as information

obtained from the operating system like which application is being active or how much network

traffic an application is transmitting or receiving, etc. In the following, we discuss various widely

utilized sensors, how to retrieve sensor data systematically and what contextual metrics we can

derive from these sensor data.

3.2.1 Sensors
3.2.1.1 Accelerometer

An accelerometer is a device that measures proper acceleration experienced by an object relative

to a free-falling frame of reference. A triaxial accelerometer installed on a mobile or wearable device

returns a real-valued estimate of acceleration along the x, y, and z axes (as shown in Figure 3.21) in

units of meter per second squared (m/s2).

By measuring the amount of static acceleration due to gravity, it is possible to find out the angle

the device is tilted at with respect to the earth. By sensing the amount of dynamic acceleration,

we can analyze the way the device is moving and eventually infer the bearer’s movement. Because

of the information that the accelerometer can offer, it can be employed as a high-bandwidth side

channel to learn certain behavioral patterns, e.g., user tap and gesture-based input pattern [30].
1 http://s.techtunes.com.bd

3.2 SENSOR DATA AND CONTEXTUAL METRICS 20

Figure 3.2: Illustration of the coordinate system of an accelerometer on a mobile phone.

3.2.1.2 Gyroscope

A gyroscope is a device for measuring or maintaining orientation, based on the principles of

angular momentum. Also known as angular rate sensors or angular velocity sensors, gyroscopes can

sense the angular velocity along the x, y, and z axes of a mobile or wearable device, corresponding

to pitch, roll and yaw respectively (as shown in Figure 3.3 2), in units of radian per second (rad/s).

The introduction of gyroscopes into the mobile devices has allowed for more accurate recogni-

tion of movements within 3D space than lone-accelerometer devices. That is why modern smart-

phones are usually equipped with both accelerometer and gyroscope, for example, HTC, Nexus,

iPhone, Nokia, etc. Gyroscopes plays a significant role in the gaming arena by providing a richer

experience in handling the game controls than a smartphone without it. It can also improve the

accuracy of behavior model with better movement recognition data.
2 http://b2b.cbsimg.net

3.2 SENSOR DATA AND CONTEXTUAL METRICS 21

Figure 3.3: Illustration of the coordinate system of a gyroscope on a mobile phone

3.2.1.3 Location Sensors

Location sensors detect the location of the mobile device using either GPS, Lateration/Triangulation

of cell towers or wifi networks (with a database of known locations for towers and networks), Loca-

tion of associated cell tower or wifi network. Typical GPS precision is 20-50 meters with maximum

precision of 10 meters. However, cell towers or wifi is preferred over GPS in urban or indoor

environments due to its availability and higher precision.

These location sensors play an essential role for Location-based services (LBS). By using these

sensors, applications on the smart devices can customize information and services for the user based

on the location, surroundings and more. For example, with a location sensor, you may be able to

find a nearby restaurant, get directions to that restaurant, send the directions to a friend, and then

follow the directions on a map as you travel to your destination. The location sensor data provides

a macro-level view of human activity trajectory. By properly using that, we can enable a variety of

novel applications.

3.2.1.4 Virtual Sensors

Other than the “hardware” sensors, there are a variety of “channels” to collect other side infor-

mation from the smart devices, referred as “virtual” sensors. One obvious medium is the device I/O,

3.2 SENSOR DATA AND CONTEXTUAL METRICS 22

for example, keyboard, mouse or touch screen. Based on the collected key press and/or mouse click

pattern data, one is able to develop a keystroke dynamics model for different applications, through

analyzing information about typing latencies, cadences, or error rates.

Mobile smart devices normally come with a touch screen and some form of soft keyboard.

Soft keyboards are a relatively new form of input method editor, as shown in Fig. 3.4. While typing,

users have a variety of different typing rhythms and the physiological traits of their hands, joints and

fingertips ensure that no two users type exactly alike. Alongside traditional desktop-like features

such as experience level and posture, soft-keyboard typing seems to be influenced by hand size,

finger length, fingertip size, muscle development, posture and position, one-handed or two-handed

typing, orientation of the phone, user tiredness, coldness of fingers, focus of the user (mobile users

are often partially engaged in other activities), and whether the user is walking, standing, sitting,

lying down, or riding in a car, bus or subway. Additional influences are size/shape of the phone,

screen, and external phone cases.

Figure 3.4: Illustration of the touch screen and soft keyboard on a mobile phone

Another category of virtual sensors is referred to as “soft” sensors, meaning they are not phys-

ically present but can potentially provide useful information. Network packet traces are a typical

example in this category. It is possible to extract and analyze network packet headers and on-off

3.2 SENSOR DATA AND CONTEXTUAL METRICS 23

patterns for desired applications. Additionally, we can also track how human interacts with running

applications through OS level message or applications API.

3.2.1.5 Reliability and Variability of Sensors

One important fact to note about both physical and virtual sensors is that devices of from differ-

ent manufacturers or different models from the same manufacturer may have different reliabilities.

And for some sensors the scale and sensibility may be different yielding variability in sensor read-

ings. For example, accelerometers, gyroscopes and GPS sensors are more calibrated, while the WiFI

radios, touch screen may need further calibrations to produce reliable and comparable readings from

different devices.

3.2.2 Data Acquisition

On a mobile device, the sensory data may be collected through different means. For the afore-

mentioned sensory data, we can collect them through /emphPlatform API, /emphSyslog and /emph-

Daemon Services.

3.2.2.1 Platform API

The proliferation of sensors in modern mobile devices has driven the evolution of platforms

with necessary drivers and exposed certain APIs for developers to access the sensory data. Modern

operating systems targeted for portable devices, e.g., iOS, Android, come with a rich set of APIs

with supports a broad categories of sensors, including motion sensors, environmental sensors, and

position sensors as mentioned above. Android, for example, offers an Android sensor framework 3,

providing several classes and interfaces that help developers perform a wide variety of sensor-related

tasks:

• Determine which sensors are available on a device.
3 http://developer.android.com/guide/topics/sensors/sensors_overview.html

3.2 SENSOR DATA AND CONTEXTUAL METRICS 24

• Determine an individual sensor’s capabilities, such as its maximum range, manufacturer,

power requirements, and resolution.

• Acquire raw sensor data and define the minimum rate at which you acquire sensor data.

• Register and unregister sensor event listeners that monitor sensor changes.

3.2.2.2 Syslog

Syslog is a standard for computer message logging. It permits separation of the software that

generates messages from the system that stores them and the software that reports and analyzes

them. Within syslog, messages are labeled with a facility code (one of: auth, authpriv, daemon,

cron, ftp, lpr, kern, mail, news, syslog, user, uucp, local0 ... local7) indicating the type of software

that generated the messages, and are assigned a severity (one of: Emergency, Alert, Critical, Error,

Warning, Notice, Info, Debug). Specific configuration may permit directing messages to various

devices (console), files (/var/log/) or remote syslog servers. It is also possible to filter and display

matching syslog messages only. Syslog also defines a client/server protocol. A logging application

can transmit a maximum 1024 byte text message to the syslog receiver, which is commonly referred

as syslogd, or syslog daemon.

3.2.2.3 Daemon Service

Daemon, by definition, is a computer program that runs as a background process, rather than

being under the direct control of an interactive user. Therefore, a daemon service will have close

to none negative impact on a user’s experience at using the devices. A daemon service can also

assist in gathering non-skewed data from virtual sensors as the users may not notice such processes

running in the background. Depending on a specific requirement, a daemon service can perform

certain actions at predefined times or in response to certain events, for example, sending out an alert

message or logging the status and shutting down the device if an anomaly is detected. Normally,

a daemon service is very light-weight by consuming little system resources. Thus, we can develop

3.2 SENSOR DATA AND CONTEXTUAL METRICS 25

Accelerometer Gyroscope GPS WiFi Cellular Keyboard TouchScreen Apps

Motion
Metrics

Location
Metrics

System
Metrics

Interaction
Metrics

BehavioMetrics

Figure 3.5: An illustration of contextual metrics

data acquisition daemons using supported platform APIs.

3.2.3 Contextual Metrics

Depending on specific application requirements and resources constraints, e.g., available sen-

sors, power constraints, etc., we can choose a set of sensory data and apply machine learning tech-

niques to them. As a first and generic step, we organize them into four categories, based on the char-

acteristics of these physical and virtual contexts. As shown in Fig. 3.5, we proposed four contextual

metrics: Motion Metrics, Location Metrics, Interaction Metrics and System Metrics. Combined,

these four metrics provide a wide spectrum towards generalized Behaviometrics.

Motion Metrics describe physical aspects of individuals. For example, when a group of users

perform the same sequence picking up a mobile phone and starting an application, the actual data

readings recorded through the accelerometer will normally differ from person to person, from which

we can learn a specific motion model for each person. One application from such a model is that

by comparing a sequence of motion sensors readings, we can infer whether they come from the

authorized user or not.

Oftentimes, motion metrics is not appropriate or efficient for certain applications due to the

limited scope of physical aspects of individuals. By studying Location Metrics, also examined by

3.2 SENSOR DATA AND CONTEXTUAL METRICS 26

Hayashi et al. [14], we can enable or augment other mobile security services. From the location

sensors of mobile devices, we will be able to construct a mobility pattern that is routinely followed

by users. Later, when a new event is detected and it is not likely due to the authorized user based on

his mobility model, certain security measures will be evoked to protect privacy and information in-

tegrity. Location Metrics will also be very useful to augment solely motion metrics based solutions,

by providing additional features for the learning process.

Interaction Metrics, unlike the previous two metrics that are normally time-series data, how

a user may interact with his/her devices, may generally not be correlated from one action to the

next. For example, a user can interact with a keyboard or touch screen of a device. If we model

the typing sequence as time-series, it can be very ineffective. However, we can apply data analysis

in the spatial domain to model a user’s interaction pattern. In the touch screen example, the finger

pressure, press time, key press location, etc., will differ from user to user. Thus, these features can

be efficiently used for pattern recognition.

System Metrics, reflect how system resources are used on the mobile devices. They are largely

tied to the frequent application invocations by the mobile users and the interactions between the sys-

tems, the applications and the users. These metrics can be derived from system specific sensory and

trace data, including network IO statistics, power consumption, system and user process statistics

and memory usage, etc. These are indirect reflections on the mobile users’ preferences and usage

behaviors.

Behaviometrics is a generalization of those contextual metrics. They can be modeled alone as

discussed above or selectively fused together in appropriate way towards an overall Behaviometric

model. We will cover more details in Chapter 4 and Chapter 5.

3.3 SENSEC, SECURE MOBILE DATA AND APPLICATION THROUGH BEHAVIOMETRICS 27

3.3 SENSEC, SECURE MOBILE DATA AND APPLICATION THROUGH
BEHAVIOMETRICS

Based on the Behaviometric framework and the outline of factors which influence a user’s

unique Behaviometric profile, we realize a mobile application, the SenSec App. SenSec can pas-

sively secure mobile data and applications through data sensing, model learning and anomaly de-

tection.

3.3.1 Mobile Security: Motivation and Background

While mobile devices such as smartphones make our lives convenient in ways that were unimag-

inable before, applications such as email, web browsing, social network, shopping and online bank-

ing know too much about our private lives. Mobility introduces additional security and privacy

challenges in being able to provide services in a way that neither compromises the environment of

users nor their data.

Recently, a new survey 4 has revealed that 36 percent of consumers in the United States have

either lost their mobile phone or had it stolen. Another survey 5 has also revealed that 329 organi-

zations polled had collectively lost more than 86,000 devices with an average cost of lost data at

$49,246 per device, worth $2.1 billion or $6.4 million per organization. Given the high loss rate and

high cost associated with these losses, accountable schemes are needed to protect the data on the

mobile devices.

Reliable and convenient authentication is an essential requirement for a mobile device and its

applications. Today, passwords are the most common form of authentication. This results in two

potential problems. First, passwords are major sources of security vulnerabilities, as they are often

easily guessed, re-used, often forgotten, often shared with others, and are susceptible to social

engineering attacks. Secondly, to secure the data and applications on a mobile device, the mobile
4 Strategy One survey conducted among a U.S. sample of 3,017 adults age 18 years or older on September 21-28, 2010,
with an oversample in the top 20 cities (based on population)
5 ”The Billion Dollar Lost-Laptop Study” conducted by Intel Corporation and the Ponemon Institute, analyzed the scope
and circumstances of missing laptop PCs

3.3 SENSEC, SECURE MOBILE DATA AND APPLICATION THROUGH BEHAVIOMETRICS 28

Quantization

Risk Analysis
Tree

Clustering

Activity
Recognition

Application Sensitivity

Application Access Control

Certainty of Risk

Sensor Fusion
and Segmentation

<

Figure 3.6: SenSec Overview: A Motivating Example.

system would prompt the user for authentication quite often and this results in serious usability

issues. Therefore, protecting a user’s privacy, data integrity and ensuring the accountability of

mobile applications in seamless and non-intrusive ways poses great interests and values to next

generation mobile computing platforms.

3.3.2 SenSec Architecture

Mobile BehavioMetrics and its various techniques create new opportunities for simplifying and

strengthening mobile device and application security. Our SenSec application collects data from

accelerometer, gyroscope, GPS, WiFi radio and other sensors and builds its owner’s behavior model.

Once the model is built, SenSec also continuously evaluates the sureness of whether the mobile

device is under the control of the owner. This information can be used subsequently by on-device

security sub-systems to control the access to resources, services and data as shown in Figure 3.6.

SenSec, which uses passive sensory data to ensure mobile device and application security run-

ning in the background, provides an additional layer of security mechanism on top of existing au-

3.3 SENSEC, SECURE MOBILE DATA AND APPLICATION THROUGH BEHAVIOMETRICS 29

thentication methods. A typical use scenario of SenSec would be like this: You are at a party and

mistakenly leave your phone unattended. The phone is picked up by one of your friends. Out of

curiosity, he/she starts to browse your applications and data. You certainly would not mind if she

only plays a mobile game, but would feel extremely uncomfortable if she starts to view your contact

list and uses your mobile banking apps. Because the gesture patterns are so different between you

two, the SenSec system would detect this incident and automatically trigger further authentication,

if any sensitive (defined by the user) applications are invoked.

3.3.3 SenSec Prototype

We built a functional SenSec Android mobile application, which keeps track of sensory readings

from the accelerometer, gyroscope and magnetometer, builds the context of a user’s gesture/motion

pattern and uses that to verify his or her identity. It also collects data streams from GPS, WiFi radios,

touch screen and software keyboard to build statistical models on user’s location and interaction

behaviors. We further fuse these location metrics and interaction metrics with gesture and motion

factors to archive the same level of mobile security with better user experience. Table 3.1 shows a

list of contextual metrics of our interests organized into four categories, each associated with some

examples. In the sequel, we will discuss how to model these contextual metrics and how we design

and carry out the experiments and their performance evaluation in detail.

3.3 SENSEC, SECURE MOBILE DATA AND APPLICATION THROUGH BEHAVIOMETRICS 30

Type Example Context Description of Certainty
Motion Metrics Touchscreen and Mouse

Movement
One’s unique of using the touch
screen or mouse to operate cer-
tain functions of the device.

Walking Gait One’s personal walking style,
based on accelerometer data.

Device Tilt and Holding
Pattern

One’s personal device angle
based on accelerometer and gy-
roscope data.

Location Metrics WiFi MAC Address Known WiFi environment
Cellular Tower ID Known Cellular environment
Outdoor Mobility Patterns The movement pattern of the

mobile devices based on GPS-
trace.

Indoor Mobility Patterns Movement patterns and indoor
places users usually go to, via
WiFi RSS and inertial naviga-
tion.

Daily Activity Routines When and where a user does
what on a daily basis.

Interaction Metrics Typing Pattern One’s unique pattern of typing
on the keyboard on the mobile
device based on keystrokes.

Touchpad swiping A user’s swiping pattern based
on pressure, length, and speed.

System Metrics Application Usage When and where a user uses a
certain application on the mobile
device.

Device power consump-
tion

Whether the device is idling or
active

Application Network Be-
havior

Frequency of data packets sent
by an App.

Table 3.1: Contextual Metrics considered in SenSec.

CHAPTER 4

BUILDING BEHAVIOMETRICS: MODELING AND
ANALYSIS

Behavior modeling and analysis is the most critical phase of our methodology (see Figure 3.1) and

is concerned with the application of mathematically derived principles to Mobile BehavioMetrics

for the purposes of characterization, classification, prediction and anomaly detection in mobile user

and group behaviors.

In this chapter, we define our BehavioMetric models and outline the methods used to analyze and

interpret these models in a quantitative manner. We start by proposing a novel language approach

that converts multi-dimensional sensory data into behavioral text representation and utilizes NLP

techniques to perform modeling and inference tasks. We then illustrate a hierarchical scheme, Helix,

to segment and classify sensory time-series. This novel language-based approach is then augmented

in our SenSec framework with traditional time-series based methods. Finally, we tackle the case

where time-series analysis is not particularly useful with spatial analysis techniques. For each of the

modeling techniques developed, we also show their application to various tasks, e.g., classification,

identification, authentication, etc.

31

4.1 BEHAVIOMETRICS LANGUAGE MODELING 32

Natural Language Behavior Language Example
Word Atomic Movement Device tilt and movement
Phrase Movement Picking up the phone
Sentence Action Making a phone call
Paragraph Activity Search for the nearest Pizza restaurant

and place a phone order
Document Event Prepare for a lunch meeting

Table 4.1: Behavior as language at different levels.

4.1 BEHAVIOMETRICS LANGUAGE MODELING

4.1.1 Motivations

The similarity between human behavior and language had been articulated by Burke [31] and

Wertsh [32]. Based on the “principle of language as action”, natural language and human action are

really the same thing. They are both “mediational means” or tools by which we achieve our ends.

They exhibit structure and satisfy “grammars”. Table 4.1 illustrates that ambulatory behavior shares

a lot in common with natural languages at all levels. Atomic movements form the vocabulary of

the behavior language. A sequence of atomic movements performed in meaningful order creates a

movement such as an action of “picking up the device”. Actions such as “making a phone call” are

created by performing actions in a right order similar to create a “sentence”. A sequence of actions

builds up an activity. Higher level behavioral concept event is composed of a series of activities in

a similar way as a document.

To empirically evaluate the similarity between ambulatory behavior and natural language, we

check if the behavior language corpus, a corpus composed of words mapped from atomic behaviors,

follows the Zipf’s law. Zipf’s law states that given some corpus of natural language utterances, the

frequency of any word is inversely proportional to its rank in the frequency table. In other words,

the log frequency of a word is linear to its rank in a natural language corpus. Figure 4.1 plots the log

frequency of word types in the behavior language corpus for word type ranked 1, 2, 3, etc. Though

not exactly linear, it does plot a line similar to Zipf’s distribution. The implication of such analogous

4.1 BEHAVIOMETRICS LANGUAGE MODELING 33

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 20 40 60 80 100 120 140 160 180 200

lo
g

(f
re

q
)

Rank of words by frequency

Zipf’s Law

Figure 4.1: Log(freq) vs. rank of frequency of word types in behavior language corpus.

is that we may reuse the rich collection of algorithms developed by NLP researchers to model the

time-series as a sequence and a structure problem rather than developing algorithms from scratch.

4.1.2 Behavioral Text Representation and Language Model

Shannon in [33] established that a language could be approximated by an n-th order Markov

model (n-gram). Using an n-gram model trained on the English text, we can estimate whether

“United” or “house” is more likely to follow the phrase “the president of the” by comparing the

probability P (“United” | “the president of the”) and P (“house” | “the president of the”). Such an

n-gram model has also been proven to be very robust in modeling sequences of data other than

language. Similar to [34–37], in our work, we adopt a scheme by converting real-valued sensor

readings to symbols through quantization, vectorization or clustering and using n-gram models to

capture the patterns in a user’s behaviors in various scales, macro locations, micro locations, motion

gestures, activities and tasks, etc.

Data produced by sensors usually are multi-dimensional and real-valued. This may prevent us

from using them directly in our language approach due to computational complexity. To overcome

this, we first segment the raw sensor readings into a series of chucks of fixed size in time. For each

chunk, we then construct a set of features and build feature vector for that time slot. After that, these

4.1 BEHAVIOMETRICS LANGUAGE MODELING 34

feature vectors are clustered into V classes using K-means algorithm. The centroids of the resulting

V classes form the vocabulary V. Thus, the sequence of feature vectors can be mapped to a series

of class labels {l0, l1, l2, . . . , ln, . . . }, where li ∈ V. This forms the behavior labels for the n-gram

processing, which will be covered in next section.

In a nutshell, we convert the raw sensory data into behavior text representation as sequences

of behavior labels. Each behavior label is considered as a “word” in the language. We then train a

language model on those traces and use the trained model for various applications.

4.1.3 Behavioral n-gram Model

An n-gram model is an n-order Markov model for predicting the next item in a sequence. The

two core advantages of n-gram models are 1) relative simplicity and 2) the ability to scale up.

Moreover, n-gram model is a generative model. Compared with discriminative models such as

SVM, it also enables us to perform user authentication task with only positive training samples

collected from the owner.

In our context, the n-gram model estimates the probability of the next behavior label li given

the previous n− 1 behavior labels from the traces denoted as in Equation 4.1.

P (li|li−1
i−n+1) = P (li|li−n+1, li−n+2, . . . , li−1) (4.1)

The model probabilities P (li|li−1
i−n+1) can be estimated through the Maximum Likelihood Estima-

tion (MLE) from the training data by counting the occurrences of behavioral text labels:

PMLE(li|li−1
i−n+1) =

C(li−n+1, . . . , li−1, li)

C(li−n+1, . . . , li−1)
(4.2)

MLE assigns probability zero to any unseen n-grams if a data set contains n-grams that have

never occurred in the training data. To address this issue, Good-Turing discounting and Katz backoff

smoothing [38] can be applied to discount the MLE probability for each observed n-grams in the

training data and reserve some probability mass for unseen events.

4.1 BEHAVIOMETRICS LANGUAGE MODELING 35

Similar to the n-gram language model, our n-gram model is based on the Markovian assumption

that a user’s future behavior solely dependent on his/her previous n− 1 behaviors.

4.1.4 Prediction and Skipped n-gram model

The aforementioned continuous n-gram model can be used to predict user’s next behavior given

adjcent previous behaviors as given in Equation 4.1.

In natural language, words in a sentence may have long-distance dependencies. For example,

the sentence ”I hit the tennis ball” has three word level tri-grams: ”I hit the”, ”hit the tennis” and ”the

tennis ball”. However, it is clear that an equally important tri-gram implied by this sentence, ”hit the

ball”, is not normally captured because of the separator “tennis”. If we skip the word ”tennis”, we

can form this important trigram. Similarly, our continuous n-gram model assumes that a user’s next

action is dependent solely on his/her previous n − 1 actions. However, in many cases one’s future

mobility behavior depends on behaviors that happened a while ago, while the intermediate behaviors

have little relevance or influence on the present and future behaviors. For example, knowing that

a user is leaving the break room and entering the hallway which leads to his office, we can predict

that he will be in his office soon. In other words, his intermediate actions along the hallway and his

actions right before entering the office are not that important once we know that he is leaving the

break room.

To model such long-distance dependencies, we can train a skipped n-gram model. A skipped

n-gram is a pair (L, l) extracted from the behavior text. L is a label sequence of n−1 labels and l is

the label that after skipping d labels after L (Figure. 4.2). Usually L and l have strong correlations.

In other words, the occurrence of L is associated with the occurrence of l in the future.

4.1.5 Similarity of Behaviometrics

Each sentence is vectorized using the frequencies of all its n-grams. Each dimension of the

vector represents one n-gram instance. For example, consider an activity sentence P (“NB NB P P

4.1 BEHAVIOMETRICS LANGUAGE MODELING 36

ABC ACD ? ? EDB……….

Figure 4.2: Skipped n-gram to model long-term dependent mobility behaviors

P P P P NB NB”) and another Q (“NB P P NB NB P NB P P P”). The vectors for sentence P and

Q are constructed as

VP = (4, 6, 2, 1, 5, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2)

VQ = (4, 6, 1, 3, 3, 2, 1, 2, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0)

Each dimension of the these vectors is representing one of the instances of the n-gram column of

Table 4.2. Note that if a particular n-gram does not appear in a sentence, the value of that dimension

would be zero. e.g. n-gram (”NB NB P P P”) in sentence Q.

Table 4.2 shows an example of calculating the similarity between activity sentence P (“NB NB

P P P P P P NB NB”) and Q (“NB P P NB NB P NB P P P”).

The centroid of cluster is constructed by taking the the centroid of all the vectors in the given

cluster.

In natural language, it is a common task to compare multiple documents for similarity with the

applications in document classification, forgery detection, etc. Similarly, in our context, when Be-

havioMetric models are built from sequences of sensory data, similarity between two BehavioMetric

models can be calculated by the distance of their corresponding behavior text strings.

Inspired by the BLEU metric where averaged n-gram precision is used to measure the similar-

ity between a machine translation hypothesis and human generated reference translations, we use

averaged n-gram precision to estimate the similarity between two lifelog segments.

Assuming that P and Q are two activity language sentences of the same length l. P is the

sequence of P1, P2, . . . , PL and Q is the sequence of Q1, Q2, . . . , QL. Denote the similarity

4.1 BEHAVIOMETRICS LANGUAGE MODELING 37

n n-gram freqP freqQ min Precn
1 NB 4 4 4

P 6 6 6
10/10=1.0

2 NB NB 2 1 1
NB P 1 3 1

P P 5 3 3
P NB 1 2 1

6/9 = 0.67
3 NB NB P 1 1 1

NB P P 1 2 1
P NB NB 1 1 1

P P NB 1 1 1
P P P 4 1 1

5/8 = 0.63
4 NB NB P P 1 0 0

NB P P P 1 1 1
P P NB NB 1 1 1

P P P NB 1 0 0
P P P P 3 0 0

2/7 = 0.29
5 NB NB P P P 1 0 0

NB P P P P 1 0 0
P P P NB NB 1 0 0

P P P P NB 1 0 0
P P P P P 2 0 0

0/6 = 0.0
S(P,Q) = 0.52

Table 4.2: Calculating the similarity between two activity sentences using averaged n-gram preci-
sion.

4.1 BEHAVIOMETRICS LANGUAGE MODELING 38

between P and Q as S(P,Q). Define the n-gram precision between P and Q as Precn(P,Q) =∑
p̃∈{All n-gram types in P}min(freq(p̃, P), freq(p̃, Q))∑

p̃∈{All n-gram types in P} freq(p̃, P)
, (4.3)

and the similarity between P and Q is defined as:

S(P,Q) =
1

N

N∑
n=1

Precn(P,Q) (4.4)

Precn(P,Q) calculates the percentage of n-grams in P that can also be found in Q and S(P,Q)

averages the precision over N -gram of all N orders.

4.1.6 Classification and Recognition

We can build n-gram models for M different users or user groups (or classes). When they

perform the same tasks that cause similar motions and postures. Additionally, we can group traces

from multiple users that belongs to the same class, being gender, occupation or age group, and train

a n-gram model for this class. Without losing generality, let’s denote V as the vocabulary and G as

the set of all n-grams from such a behavioral text data set of M users, the models of these M classes

can be described as probability vectors as
−→
P 0,
−→
P 1,
−→
P 2, . . . ,

−→
P M−1 where

−→
P m = {Pm(li|li−1

i−n+1)|li ∈ V, li−1
i−n+1 ∈ G} (4.5)

For a sequence of behavioral labels of size N, L = {l1, l2, . . . , lN}, we estimate the probability

that L is generated by a given n-gram model
−→
P m as

P (L,m) = P (l1, l2, . . . , lN ,m) =
N∏
i=1

Pm(li|li−1
i−n+1) (4.6)

or average log probability as
1

N

N∑
i=1

logPm(li|li−1
i−n+1) (4.7)

where Pm(. . .) are the model probabilities of user m as in Equation 4.12.

Given a behavior text sequence L, the user classification problem can be formulated as

û = argmax
m

P (L,m) (4.8)

4.1 BEHAVIOMETRICS LANGUAGE MODELING 39

where P (L,m) is the probability the behavior text sequence L is generated by mth user’s n-gram

model as denoted in Equation 4.1. Therefore,

û = argmax
m

1

N

N∑
i=1

logPm(li|li−1
i−n+1) (4.9)

= argmax
m

N∑
i=1

logPm(li|li−1
i−n+1) (4.10)

4.1.7 Anomaly Detection

Once we constructed a model of a user’s behaviometrics through learning, we can continue mon-

itoring user’s behaviometrics and compare them with the learned model. If the new behaviometrics

deviate from the learned model, we may choose to trigger an anomaly alert. However, variations

in sensory data streams could also be caused by noise and new behaviors in addition to anomalous

behaviors. Variations caused by noise are less significant and can be smooth out statistically. On

the other hand, to distinguish between anomalous and new behaviors, we need to evaluate if those

unseen patterns can be incorporated into the model over time. Failing to identify such a distinction

might yield false positive temporarily, but if certain feedback mechanisms are in place to correct

those false positives, we are still able to build a robust anomaly detection system in various appli-

cation domains such as theft detection and prevention, casual authentication, emergency detection

and healthcare monitoring.

The anomaly detection problem can be formulated as binary classification problem, classifying

a behavior text sequence as normal behavior (â = 1) or not (â = −1). We can model this scheme

probabilistically as â = sign[P (u = 1|r) > θ], i.e. given an observation r, evaluate the probability

of a given sequence is generated from a learned model (â = 1) and check to see if it exceeds a

certain threshold θ.

â = sign[P (u = 1|r) > θ] (4.11)

Similarly as shown in Equation 4.5, a user u’s behaviometric model can be expressed as a

4.1 BEHAVIOMETRICS LANGUAGE MODELING 40

probability vector as
−→
P u where

−→
P u = {Pu(li|li−1

i−n+1)|li ∈ V, li−1
i−n+1 ∈ G} (4.12)

Then, given a sequence of behavior text L, and a sensitivity threshold θ, we want to validate if

these sequence is generated by model of user u as

â(L|u, θ) = sign[P (L, u) > θ)] (4.13)

while P (L, u) = P (l1, l2, . . . , lN ,m) =
∏N
i=1 Pm(li|li−1

i−n+1) as in Equation 4.1:

â(L|u, θ) = sign(
N∑
i=1

logPu(li|li−1
i−n+1) > log θ) (4.14)

The sensitivity threshold θ is crucial towards the precision and recall of a given anomaly detec-

tion model. A suboptimal θ may lead to false positives or may cause anomalous behaviors to be

undetected.

4.1.8 Behavioral Text Segmentation

Similar to natural language processing where the text corpus needs to be segmented to para-

graphs, sentences and words in order to infer their meanings, behavioral textual representation of

sensory data sequence also need to be segmented, so that we can group labels that belong to the

same activity and build behaviometrics for that activity.

Unlike most of the natural languages, which have specific escape tokens to indicate the boundary

of language entities, we relay on similarity of adjacent behavior textual representations to identify

if a change of activity occurs. If we assume that when a user switches his/her activity at time t,

there should be a significant change from behavior text string [t− w, t− 1] to string [t, t+ w]. For

a window size w, define the “change of activity” at time t as:

H(t, w) = −logS([t− w, t− 1], [t, t+ w − 1]), (4.15)

where S(P,Q) (Eq. 5.1) measures the similarity between behavior text string P and Q. The higher

4.1 BEHAVIOMETRICS LANGUAGE MODELING 41

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 2000 2500 3000 3500 4000

C
h

a
n

g
e

 o
f

B
e

h
a

v
io

r

Time

WindowSize=100
WindowSize=200
WindowSize=500

WindowSize=1000
WindowSize=2000

Figure 4.3: Activity changes calculated by different sizes of sliding windows.

the value of H(t, w), the more likely is the user to have changed his/her activity at time t.

Figure 4.3 shows an example of H values at each data given different window sizes for a se-

quence of behavior text built from a sequence of accelerometer readings from a mobile device.

Notice that: (1) peaks of activity change identified by larger windows are also peaks identified by

smaller windows but not vice versa; and (2) activity changes over larger windows are smoother than

smaller windows. Intuitively, larger window size captures changes of larger-scale activities whereas

smaller window captures changes of smaller activities. Based on these, we can first segment the

data using large window sizes and then recursively segment the data using smaller windows.

A smoothed Hidden Markov Model (HMM) can also be used to segment behavior textual repre-

sentation. After specifying the topology of a Markov model, an HMM can be trained on unlabeled

sequences of text through the Baum-Welch algorithm [39]. which estimates model parameters such

as the probability of emitting a symbol from a certain state and the transition probability from one

state to another. A trained HMM can then be used to “parse” a sequence of text and estimate the

4.2 HELIX: HIERARCHICAL SEGMENTATION AND CLASSIFICATION 42

most likely “states” sequence (e.g., “S1 S1 S1 S2 S2 S1 S1 S3 . . . ”) that generates the observed

text. The “state” is then used as the label for each observed symbols or in our case, the underlying

activity for the observed sensor readings. When the state labels changes, we consider the underlying

activity has changed and segment the data to reflect this change.

In our implementation, each state in the HMM emits single behavior text symbols. This leads

to a problem where HMM segments the input data into too many activities. To smooth out these

noise, we apply a sliding window of size 2w over the recognized state sequence. At time t, we use

the dominant activity symbols within the window [t − w, t + w] as the smoothed activity symbol

for time t and segment the sequence to activities over the smoothed activity/state symbols.

The activity recognition approach proposed in [40] is implemented as the bootstrapping activity

recognition algorithm in our system. In this approach, sensors readings will be clustered and quan-

tized into a series of labels, called activity text. The activity text will be used as the training corpus

to train a smoothed n− gram language model for activity recognition.

This approach was selected based on its following capabilities: It can provide acceptable ac-

tivity boundary segmentation in a cold boost and lead ways to similar activity retrieval, which can

help users annotate activity automatically after getting sufficient labels. In addition, it provides a

uniformed representation of heterogeneous sensor input, like accelerometer and GPS are converted

into a single type of “activity language” after data preprocessing, which will facilitate the fusion of

different sensors.

4.2 HELIX: HIERARCHICAL SEGMENTATION AND CLASSIFICATION

With illustrations in Figure 4.4, we first define the problem as follows: given d-dimensional sen-

sor readings S = {S1, . . . , S|d|} with some underlying activities, we define the multi-level Activity

Text as A = {A1, . . . , AL} of L levels, where Al = {al1, . . . , al|Al|} in which each ali represents

the i-th activity in level l. Here A1 denotes lowest-level activities (e.g., “twisting the waist”) while

AL denotes the highest (e.g., “playing a game”). Subject to A, we define an Activity Grammar

4.2 HELIX: HIERARCHICAL SEGMENTATION AND CLASSIFICATION 43

A1 A1 A1

B1 B2 B2B2 B1 B1

C1 C1 C1

A1B2 A1B2 A1B2

B1C1 B1C1 B1C1

A1B2B1C1 A1B2B1C1 A1B2B1C1

A1

A1

A1

A1 B2 B1 C1

A1B2 B1C1

A1B1B1C1

A
1

A
2

A
3

A
1 = {B1, A1, C1, B2, A1, C1, B1,B2,

A1, B1, C1, B2, A1}

A
2 = {B1C1, A1B1, A1, B1C1, A1B2, B1C1,

A1B2}

A
3 = {A1B2B1C1, A1, A1B2B1C1, A1B2B1C1}

S
a

S
b

S
c

V
1
 = {A1, B2, B1, C1}

V
2 = {A1B2, B1C1}

V
3 = {A1B2B1C1}

G:

Figure 4.4: Grammar induction using Helix. A, V , and G denote the multi-level activities, vocabu-
lary, and induced grammar, respectively.

G = {V,R}1 , where V denotes a multi-level Activity Vocabulary of L levels and R denotes

the Relations specifying the structure of the grammar. Specifically, V = {V 1, . . . , V L}, where

V l represents the activity vocabulary of the l-th semantic level, such that each l-th level activity

ali ∈ {V 1 ∪ · · · ∪ V l}. Accordingly, any directed relationship (vl1i → vl2j) ∈ R iff l2 > l1 and vl2j is

a super-activity or a generalized activity 2 are vl1i , that is, vl1i is implied to be performed as part of

the activity vl2j .

Definition. Unsupervised Activity Structure Learning. Subject to a set of unlabeled multi-

dimensional sensor readings S generated by some activities, the Unsupervised Activity Structure

Learning Problem is defined as finding a grammar G = {V,R} that best describes the hierarchical

activity structure embedded in S.

We then describe how to find such a grammar G using an unsupervised algorithm consisting

of three main steps: (1) vocabulary initialization, (2) collocation discovery, and (3) vocabulary
1 The grammar definition in the NLP community is typically of the 4-tuple form G′ = {V ′, R′,Σ, S}, where Σ is the
set of terminals, V ′ is the set of variables, and S is the starting symbol. For simplicity, and with a slight abuse of notation,
our grammar definition is of the 2-tuple form G = {V,R} where V 1 = Σ, V L = S, R = R′, and V = {Σ ∪ V ′ ∪ S}.
2 A super activity or generalized activity is a combination of smaller sequenced activities. A intuitive example would
be, as we illustrated in the ”playing a game” example, ”playing a game” is a super activity that consists of ”twisting the
waist” other smaller actions

4.2 HELIX: HIERARCHICAL SEGMENTATION AND CLASSIFICATION 44

generalization.

4.2.1 Vocabulary Initialization using Time-series Motifs

An established approach to build a vocabulary from time-series is by finding time-series motifs

[41], the recurring patterns of similar subsequences. As in the top-left of Figure 4.4, we extend [41]

to extract similar subsequences. They are then assigned labels to form the initial vocabulary. In the

example, V 1 = {A1,B1,B2,C1} and A1 = {B1,A1,C1,B2,C1,B1,B2,A1,B1,C1,B2,A1}.

4.2.2 Super-Activity Discovery by Statistical Collocation

In Statistical Natural Language Processing (SNLP), Collocation [42] is the “expression of two

or more words that correspond to some conventional way of saying things”. In the context of super-

activity discovery, collocation is the combination of two activities where their joint-occurrence fre-

quency is significantly larger than what could be resulted randomly from their marginal frequencies.

To discover super-activities using statistical collocation, we first assume that the activity pairs

occurring jointly within a window may be components of one super-activity, like an intertwined

double helix. For example, the grey dotted box in Figure 4.4 includes 3 activity pairs ([B1,B2],

[B1,C1], and [B2,C1]). Note that the order within the pair matters: two sub-activities from the same

dimension are ordered by time ([B1,B2]), whereas two sub-activities from different dimensions are

ordered by their dimension rank ([B2,C1]). The rationale is that for a super-activity, the ordering

between its sub-activities in the same dimension usually matters (e.g., leaning forward then stand

up), but not so much for those from different dimensions (doing an exam while feeling pressure).

By sliding the grey window along the current activity text (A1), we accumulate the joint fre-

quencies of all activity pairs and record them in a Joint Frequency Table (upper-left of Figure 4.5).

The Marginal Frequency Table (upper-right of Figure 4.5) is also accumulated similarly. For exam-

ple, the pair [B1,C1] will account for one [B1,-] and one [-,C1]. Although the content of the two

tables depends on the length and the step size of the sliding window, we found that the collocation

4.2 HELIX: HIERARCHICAL SEGMENTATION AND CLASSIFICATION 45

Joint Freq. TableJoint Freq. TableJoint Freq. Table

w1 w2 Freq.

A1 B1 5
A1 B2 12
A1 C1 6
B1 B2 3
B1 C1 10
B2 B2 6

Marginal Freq. TableMarginal Freq. TableMarginal Freq. Table

w1 w2 Freq.

A1 - 23

B1 - 13
B2 - 6
- B1 5
- B2 15
- C1 22

Contingency Table of Contingency Table of Contingency Table of [A1,B2Contingency Table of [A1,B2]

A1 ¬ A1

B2 12 11 23
¬ B2 3 16 19

15 27 42

χ2 =
42 × (12 × 16 − 11 × 3)

23 × 19 × 15 × 27
= 5.99

≥ α0.95 = 0.3841

Figure 4.5: Joint and marginal frequencies of activity pairs, with the contingency table of the pair
(A1,B2).

discovery results are not sensitive to them, because as the size of a super-activity grows, the region

within which other activities can co-occur with it also stretches. Empirically, setting the sliding

window’s step size to an atomic activity length (e.g., 0.5s) and the window size to a multiple of it

(e.g., 5s) gives good results.

With the joint and marginal frequency tables, we test each activity pair for its statistical col-

location significance. We do so by constructing the contingency table for each activity pair and

calculating the χ2 (chi-square) statistics [42]:

χ2 =
∑
i,j

(Oij − Eij)2

Eij
(4.16)

whereOij denotes the (i, j)-th entry of the contingency table and Eij denotes the expectation of the

entry derived from their marginals. For [A1,B2] in the Figure 4.5, χ2 = 5.99 ≥ χ2
0.05(1) = 3.841.

Therefore, we can merge [A1,B2] to form a super-activity with 95% confidence level, here we use

αTH = χ2
0.05(1) as the threshold parameter controlling the merging strength. Repeating this step

for three iterations, we obtain the grammar in the right-bottom of Figure 4.4.

4.2.3 Vocabulary Generalization

The collocation discovery works when there are repeating sequences of sub-activities. For real

human activities, however, repetitions are unlikely to be exact. For example, when one is playing

4.2 HELIX: HIERARCHICAL SEGMENTATION AND CLASSIFICATION 46

A1 A2A1 A5 A1 A2A1 A9

A5 A9

A5'

A0A0A0A0A0A0A0A0A0

A0A0A0A0A0'

A0A0A0A0A1

(a)

(b)

Figure 4.6: (a) Content-based and (b) context-based generalizations.

ping-pong, he may perform a cut, a lift, or a regular play, which can have various sequence combi-

nations. In order to detect higher-level activities in such a condition, we need to generalize similar

activities before constructing the joint and marginal frequency tables. Such a clustering is done ac-

cording to two similarity measures: (1) Content Similarity (φe) and (2) Context Similarity (φx). We

employ a clustering algorithm according to two similarity measures: (1) Content Similarity (φe) and

(2) Context Similarity (φx). For content similarity, as shown in Figure 4.6(a), we we first calculate

their n-gram precision and recall and then calculate the similarity score as .

Precision =
|nGram(v1) ∩ nGram(v2)|

|nGram(v1)| = 1

Recall =
|nGram(v1) ∩ nGram(v2)|

|nGram(v2)| = 0.75

φe = 2× Precision×
√
Recall

Precision+
√
Recall

= 0.93 (4.17)

The square root of the recall term is to award that case when two phrases are very similar in content

but differs in length. For context similarity, we take into account of activities occurring within

similar context, as shown in Figure 4.6(b), we count the number of times every activity co-occurs

with the activity and then calculate the context similarity φx between two activities as the cosine

distance between their context vectors:

φx =
~c1 · ~c2

|~c1||~c2|
(4.18)

4.2 HELIX: HIERARCHICAL SEGMENTATION AND CLASSIFICATION 47

Finally, we aggregate the content and context similarities into one single similarity measure φ using

arithmetic means and use φ in a complete-link clustering algorithm where a link exists between two

activities only if their similarity φ is larger than a threshold φTH

4.2.4 Content similarity (φe)

As in Figure 4.6(a), the first generalization accounts for activities similar in content, includ-

ing two main cases. The first case is when multiple activities are both repetitions of the same

sub-activity, e.g., A0A0A0A0, and A0A0A0A0A0 (left two nodes at the top). The second case

is when two activities differ in only minor portion in their composition, e.g., A0A0A0A0A0, and

A0A0A0A0A1 (right two nodes).

To consider both of these cases of two similar phrases (activities) v1 and v2, we first calculate

their n-gram precision and recall. W.l.o.g., we assume |v1| ≤ |v2| and n = 2. For the example

in Figure 4.6(a), v1 = A0A0A0A0 and v2 = A0A0A0A0A1, such that nGram(A) consists of 3

A0A0’s and whereas nGram(B) consists of 3 A0A0’s and 1 A0A1. Accordingly, we have:

Precision =
|nGram(v1) ∩ nGram(v2)|

|nGram(v1)| = 1

Recall =
|nGram(v1) ∩ nGram(v2)|

|nGram(v2)| = 0.75

φe = 2× Precision×
√
Recall

Precision+
√
Recall

= 0.93 (4.19)

The square root of the recall term is to award that case when two phrases are very similar in content

but differs in length.

4.2.5 Context similarity (φx)

The second generalization accounts for activities occurring within similar context. For example,

A5, and A9 in Figure 4.6(b) are both preceded by 2 A1’s and followed by A2, suggesting that

these two activities are likely to be semantically similar. We represent the context of an activity

as ~c = (n1, . . . , n|V |), representing the number of times every activity co-occurs with the activity.

4.2 HELIX: HIERARCHICAL SEGMENTATION AND CLASSIFICATION 48

Then the context similarity φx between two activities is the cosine distance between their context

vectors:

φx =
~c1 · ~c2

|~c1||~c2|
(4.20)

Before clustering, we need to aggregate the content and context similarities into one single

similarity measure φ. Intuitively, the arithmetic, geometric, and harmonic means are all reasonable

candidates. However, in order to make each of φe and φx sufficient for generalization (instead

of requiring both), we use the arithmetic mean. This aggregate φ is then used in a complete-link

clustering algorithm where a link exists between two activities only if their similarity φ is larger than

a threshold φTH . Consequently, all activities grouped together in a cluster are all highly similar to

each other. Algorithm 4.2.1 summarizes the overall Helix algorithm.

Algorithm 4.2.1 Hierarchical Activity Structure Discovery
Input: S = {S1, . . . , Sd} : d-dimensional sensor readings
Input: αTH : merging threshold parameter
Input: δTH : generalization threshold parameter
Output: G = {V,R} : discovered hierarchical grammar
Output: A : hierarchical activities labeled using V

1: (A1, V 1) = initialize the vocabulary by motif discovery
2: (A′, V ′) = (A1, V 1)
3: l = 1
4: while TRUE do
5: l = l + 1
6: (Al, V l) = discover collocations from (A′, V ′)
7: break if |V l| == 0
8: for all vi ∈ V l do
9: add edges (vi, vj) into R for all collocations

10: end for
11: (A′, V ′) = generalize the vocabulary from (Al, V l)
12: end while
13: V = {V 1, . . . , V l−1}
14: return G = {V,R}, A

4.3 MODELING PERSONAL FACTORS FROM MOTION SENSOR DATA 49

4.3 MODELING PERSONAL FACTORS FROM MOTION SENSOR DATA

In our language as action study, we are training a single model for all types of activities. Depend-

ing on how we calculate the feature vector for each fixed size window when building our vocabulary,

we may end up with elements in V such that two conceptually different actions map to the same ele-

ment. In this way, there may be the possibility that two separate people perform a different sequence

of actions but they get mapped to a similar behavioral ’sentence’. While HELIX works well with

the language as action principle, it is more of a general approach for activity classification. In this

section, we perform a separate study which focuses specifically on motion sensor data to develop

an approach to behavioral modeling. By doing this, we are able to exploit the structure of motion

data and build a different model for each individual class. This allows for the models to learn the

subtleties in the particular way each user performs actions from each activity class. For example,

if we can know that a set of data comes exclusively from people walking, then we can infer from

this data distinctive qualities of each walk. However, without knowing this, we may unwittingly

compare a walk to a run which when performed by different people may exhibit similar time-series

data.

4.3.1 Activity Classification via Time-Series Analysis

We begin this study by focusing on human ambulatory behavior as an example, but the devel-

oped approach generalizes to all actions. Figure 4.7 shows the accelerometer readings for three

specific activities: standing, walking and running. By analyzing the time series data (left column) in

this figure (taken from accelerometer readings of a phone placed in the front pocket with a sampling

rate of once every 50ms), it can easily be seen that standing, walking and running produce vastly

different patterns. We propose that in order to extract an ‘activity level’, we should look at two dis-

tinguishing factors obvious in this figure. One is the raw magnitude of acceleration and the other is

period with which patterns repeat, which represents the frequency of how this acceleration changes

4.3 MODELING PERSONAL FACTORS FROM MOTION SENSOR DATA 50

0

5

10

15

20

0 20 40 60 80 100 120 140

a
c
c
e
l
e
r
a
t
i
o
n

time

Accelerometer X-axis

standing
walking
running

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7

a
m
p
l
i
t
u
d
e

frequency

Accelerometer X-axis

standing
walking
running

0

5

10

15

20

0 20 40 60 80 100 120 140

a
c
c
e
l
e
r
a
t
i
o
n

time

Accelerometer Y-axis

standing
walking
running

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5 6 7

a
m
p
l
i
t
u
d
e

frequency

Accelerometer Y-axis

standing
walking
running

0

5

10

15

20

0 20 40 60 80 100 120 140

a
c
c
e
l
e
r
a
t
i
o
n

time

Accelerometer Z-axis

standing
walking
running

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7

a
m
p
l
i
t
u
d
e

frequency

Accelerometer Z-axis

standing
walking
running

Figure 4.7: Accelerometer readings for standing, walking and running along with the discrete
fourier transformation

4.3 MODELING PERSONAL FACTORS FROM MOTION SENSOR DATA 51

over time. In Figure 4.7, we see that standing produces a relatively flat line in the time-series data

where the magnitude of acceleration is low with no repeating patterns of high acceleration. This

contrasts with walking data which shows some irregular patterns with moderate acceleration and

running data with produces regular high frequency patterns of high acceleration. We can extract

these two factors more easily by applying the Discrete Fourier Transform (DFT) and mapping the

data into the frequency domain.

The result of this transformation is also shown in the right hand column of Figure 4.7 which

graphs the modulus of the complex amplitudes of the ambulatory activities. With these figures, we

demonstrate the transform allows us to more easily extract the level of activity for each window.

Windows with high levels of activity such as running will have higher amplitudes with peaks closer

to π while a low level of activity will produce a curve with low amplitude. We make the classifica-

tion by transforming the DFT data into a real valued number between 0 and 1 where 1 represents

a window where there is high frequency activity of high amplitude and 0 represents either low fre-

quency, or low amplitude activity or both. To do this, we take the m largest peaks in the range (0, π]

(since the DFT is symmetric) and average the x and y values. The intuition for doing this lies in

the fact that we want to look at the largest m sinusoids which contribute to the original wave. By

averaging the x values we obtain the average frequency and by averaging the y values we obtain the

average amplitude contributed by these waves. Now to map these values onto the range [0, 1] we

use the hyperbolic tangent function because of the desirable shape of its graph (lying on the range

[0, 1) in the domain [0,∞)).

ActivityClass = tanh(α× x̄)× tanh(β × ȳ)

=
(eα×x̄ − e−α×x̄)× (eβ×ȳ − e−β×ȳ)

4

Using the above equation (where x̄ is the average of x values, and ȳ is the average of y values),

we map the DFT of each axis to a value on the range [0, 1). This range can now be split arbitrarily

4.3 MODELING PERSONAL FACTORS FROM MOTION SENSOR DATA 52

0

0.5

1

1.5

2

2.5

3

3.5

0

0.5

1

1.5

2

2.5

3

3.50

0.2

0.4

0.6

0.8

1

Figure 4.8: ActivityClass function with α = β = 1

depending on the number of activity classes needed and the properties of each of these activity

classes. A plot of this function can be seen in Figure 4.8 to give an intuition of how some x̄, ȳ pair

will get mapped. It can be seen from this plot that a value below 1 for either axis brings about a

steep drop in the result, as we want to penalize data with either low acceleration or low frequency

patterns. Now we get a final value for each window by taking the maximum ActivityClass value

from all axes of the accelerometer.

4.3.2 User Identification based on Activity Recognition

A rich body of machine learning algorithms has been developed over the years. Many of the new

learning algorithms, such as support vector machines, Bayesian and neural networks, are routinely

used in commercial systems. In some scenarios, we can also utilize and adapt the standard approach

to model human behavior. Being able to do activity class recognition allows for the modeling of

each class for different users. Given that the model is built for a distinct class, it is possible to

use existing machine learning classification techniques to learn the different characteristics of that

particular class, say for example a walk. In this section we describe a feature set to help capture the

individual traits of each person performing a similar action.

4.3 MODELING PERSONAL FACTORS FROM MOTION SENSOR DATA 53

The feature set described in this section does not rely on the sensor input type, it just needs the

input to produce a stream of real valued samples. From this stream we can form collections of n

consecutive samples starting with some sample st0 using a sliding window. For each window w we

can compute a set of features which represent the action a of time tn−1− t0 starting at time t0. The

features calculated include:

• The root mean squared value, which is a statistical measure of the magnitude of a varying

quantity:

xrms =

√√√√ 1

n

n∑
t=1

x2
t

• The root mean squared error, which is a measure of the differences between values predicted

by a model and the values actually observed:

xrmse =

√√√√ 1

n

n∑
t=1

(xt − x̂)2

(where x̂ is the mean value for that dimension)

• The minimum value of window w:

x ∈ w : x ≤ y,∀y ∈ w

• The maximum value of window w:

x ∈ w : x ≥ y,∀y ∈ w

• The average sample by sample change of window w:

∆̄ =
1

n

n∑
t=2

(xt − xt−1)

• The number of local peaks:

Count(t ∈ {1 . . . n} : xt ∈ w, xt > xt−1, xt > xt+1)

4.3 MODELING PERSONAL FACTORS FROM MOTION SENSOR DATA 54

• The number of local crests:

Count(t ∈ {1 . . . n} : xt ∈ w, xt < xt−1, xt < xt+1)

• The average time from a sample to a peak:

1

n

|Peaks|∑
i=1

∑
Peaksi−1<j<Peaksi

(Time(xPeaksi)− Time(xj))

• The average time from a sample to a crest:

1

n

|Crests|∑
i=1

∑
Crestsi−1<j<Crestsi

(Time(xCrestsi)− Time(xj))

• The root mean square cross rate:

xrcr = Count(t ∈ {1 . . . n} : xt ∈ w, xt < xrms, xt+1 > xrms)

• The signal magnitude area:

SMA = max(w)−min(w)

4.3.3 Feature Selection

With this feature set, we can further perform feature selection once we know the input sensor

type and the application of the model, to increase the performance of any algorithms using the set

and also make it more relevant to the problem. Our approach for feature selection is based on

measuring the information gain of a feature with respect to class. To measure information gain, we

use the concept of entropy which provides a measure for the average unpredictability in a random

variable, equivalent to its information content. Entropy can be defined as:

H(X) =
∑
x∈X
−P (x)× log(P (x))

4.3 MODELING PERSONAL FACTORS FROM MOTION SENSOR DATA 55

From this, we can rank the features by measuring the information gain which is defined as follows:

I(Y,X) = H(Y)−H(Y |X)

which in this context translates to:

G(Class, Feature) = H(Class)−H(Class|Feature)

4.3.4 A Gaussian Model for User Authentication

We approach the user authentication problem by building a model with gaussian distribution to

detect anomalies in user behavior. Here we take an unsupervised and generative approach, where

in some period of learning, all data is assumed to be normal data from one user, to form a set of

positive samples. After this training period, new data is tested against this model and a probability

is calculated for the likelihood of it being generated by the model. We will then classify all data

with a probability less than some ε an anomaly and assume it was caused by someone other than the

primary user.

To create the gaussian model, we use the same features described above. We calculate the feature

vector for m training examples x1 . . . xm indicative of normal usage and for each feature, we will

fit the parameters µ (mean) and σ2 (standard deviation squared) as per the following equations.

µj =
1

m

m∑
i=1

xij

σ2
j =

1

m

m∑
i=1

(x
(i)
j − µj)2

To calculate the probability of some feature j taking a value x, we use the gaussian equation:

p(x : µ, σ2) =
1√
2πσ

e−
(x−µ)2

2σ2

Now by making the assumption that all of our features are reasonably independent, we can

calculate the probability of some window of data being caused by the primary user by calculating

4.3 MODELING PERSONAL FACTORS FROM MOTION SENSOR DATA 56

its feature vector and computing:

p(x) =

n∏
j=1

p(xj ;uj , σ
2
j) =

n∏
j=1

1√
2πσj

e
− (xj−µj)

2

2σ2
j

4.3.5 Augmenting Motion Data with Location Knowledge

Using motion data by itself is sometimes not enough to discriminate between two users. This

is evident especially for those actions with relatively low levels of activity. There isn’t enough

information available for proper analysis. As part of our SenSec framework, in this section, we seek

to mitigate this problem by augmenting motion data with location knowledge. We hypothesize that

people spend the majority of their time in only a few regular locations (for example home, office,

school) and thus actions performed in a location can be tied to specific users. The rationale behind

this is most people frequent different locations, if a phone is stolen, and taken to a rarely visited

or not visited area, then a high probability that it is not being used by the primary user should be

reflected in the framework. Even within a location, there are different probabilities with which we

perform different actions. For example, when one is at the movies, the phone is relatively stationary,

as it is not courteous to use their phone. On the other hand, when a person is at work, depending

on profession, he/she may frequently check for updates on work related messages. If this is true, by

including location context, we should be able to lower the number of false positive results improving

the usability of our framework.

The approach taken to integrate location into the previous anomaly detection system is similar

to a naive bayes approach. We still divide the samples into groups based on their frequency and

amplitude. For each group, we are able to model a gaussian distribution for each of the motion

features. As before, we can use these distributions to calculate the probability that some samples

were generated by that model. Let us denote this probability as Pm,M (fv) which represents the

probability that some feature vector fv was generated based on its motion features, given some

model M .

4.4 SPATIAL MODELING ON USER INTERACTION PATTERNS 57

We now use a naive bayes approach to calculate Pl,M (fv) which is the probability that some

feature vector fv was generated based on its location features, given some model M.

Using the chain rule in probability theory:

P (An, . . . , A1) = P (An|An−1, . . . , A1)× P (An−1, . . . , A1)

We can calculate the probability that some action class C was performed at some location L with:

P (C ∩ L) = P (C|L)× P (L)

Here we calculate P (L), the probability that the user was at locationL, by counting the number

of times M has seen the location L and dividing it by the number of times M has seen any location.

Similarly we calculate P (C|L) by counting the number of times action class C was performed at

location L divided by the total number of times any action class was performed at location L. To

combine the two factors together, we use a simple, but in this case empirically effective, concate-

nation, which just multiplies the two values together. Hence our new anomaly detection system

measures the probability that some model M generated some motion vector and location pair fv by

calculating:

PM (A) = Pm,M (fv)× Pl,M (fv) = Pm,M (fv)× P (C|L)× P (L)

4.4 SPATIAL MODELING ON USER INTERACTION PATTERNS

As part of SenSec’s user interaction metrics, we take into account how a user’s soft keyboard

usage contributes to their unique behaviometric profile. While typing, users have a variety of dif-

ferent typing rhythms and the physiological traits of their hands, joints and fingertips ensure that no

two users type exactly alike. Alongside traditional desktop-like features such as experience level

and posture, soft-keyboard typing seems to be influenced by hand size, finger length, fingertip size,

muscle development, posture and position, one-handed or two-handed typing, orientation of the

phone, user tiredness, coldness of fingers, focus of the user (mobile users are often partially en-

4.4 SPATIAL MODELING ON USER INTERACTION PATTERNS 58

gaged in other activities), and whether the user is walking, standing, sitting, lying down, or riding in

a car, bus or subway. Additional influences are size/shape of the phone, screen and external phone

cases. Our analysis of soft keyboard usage takes a different tact from previous methods which had

a focus on time-series data. In this section, we have considered these influencing factors and de-

veloped several spatial models to tackle the challenges that arise when learning how different users

interact with their mobile device.

4.4.1 Feature Selection

After analyzing the prior research on keyboards as well as the smartphone-specific information,

we developed our set of features to capture and analyze. These will be used to help train our model

and be will analyzed for patterns between users.

Location pressed on key is our primary micro-behavior metric and is recorded per key as an

ordered pair (Xoffset, Yoffset), expressed from that key’s center.

Length of press from finger down to finger lift, a traditional metric, has much greater variation

on mobile phones, but does improve model performance.

A user’s force of press or pressure is available as a unitless value between 0 and 1 on many

Android devices [43]. This allows for tracking of metrics such as distributions of maximum touch

pressure, but is complicated by inconsistent scales between device models.

Similarly, the user’s size of touched area is also available as a unitless value between 0 and

1 [43].

We can also analyze variability in size and pressure information within a single keypress. This

allows analysis of pressure and size dynamics for the user.

Another feature, drift, records how much the user’s finger moves between pressing down and

lifting up and at what angle they slid.

Additionally, with easily available sensor data from accelerometers and gyroscopes, informa-

tion about orientation (where the phone faces while held) could help improve comparisons and

4.4 SPATIAL MODELING ON USER INTERACTION PATTERNS 59

Figure 4.9: A high-level diagram of how the discriminant algorithm is designed. Per-key neural
networks generate confidence scores weighted against training size. These are aggregated into a
combined score for a 5-key sliding window to generate likelihood of non-authorized user.

anomaly detection. This proved to be challenging to correlate between handsets, but the addition of

a calibration session could enable successful consideration of this feature.

4.4.2 Discriminant Model

We developed two models for comparison testing between users—each suited for different envi-

ronments. The method of analysis we used is offline supervised learning trained with data from other

users. While not as scalable as a purely generative version, this has some additional advantages—

better non-authorized user recognition, better battery life by reducing on-phone computation, and

more securely stored behavioral data (on server rather than directly on phone). This technique trains

small neural networks for each key, using samples of other users’ behavior as ‘non-authorized user’

training examples [44]. A high-level diagram explaining this technique can be seen in Figure 4.9

and the following paragraph contains a detailed explanation.

This model leverages the multi-user data collection environment and takes advantage of the high

number of training keypresses. While more computationally expensive, this facilitates much higher

recognition rates and fewer errors. Each key with a reasonable amount of training data (we set

threshold at 15 keypresses) is trained with its own two-layer, feed-forward neural network. Scaled

4.4 SPATIAL MODELING ON USER INTERACTION PATTERNS 60

Figure 4.10: A high-level diagram of how the generative algorithm is designed. It calculates feature
probabilities individually, aggregates them to a confidence score for a single key press and uses a
5-key sliding window to generate likelihood of non-authorized user.

conjugate gradient back-propagation is the learning method [44]. We used 10 neurons for the one

hidden layer to ensure there is sufficient power in the analysis. The performance function is the

mean squared error, but another performance function checks after training to ensure the network

is not ill-fitted. This may ask networks to retrain if they settle in poor local minima (e.g. classifying

everything as the regular user). The output from these neural networks are then weighted by how

many keypresses were used to train that key and are averaged across the last 5 keypresses (using

a simple mean). This aggregate confidence is compared against a threshold. The threshold (and

the per-key weighting) is set by using a regularized logistic regression algorithm [44]. The cost

function for the algorithm is shown in Equation 4.21. To improve scalability and to allow for

non-networked computation, this model will later be replaced with a single-user generative model

(described below).

min
θ

1

m

[
m∑
i=1

y(i)
(
− log hθ(x

(i))
)

+ (1− y(i))
(
− log(1− hθ(x(i)))

)]
+

λ

2m

n∑
j=1

θ2
j (4.21)

4.5 HETEROGENOUS SENSOR FUSION 61

4.4.3 Generative Model

Our intention is to further develop our generative model that can detect anomalies without net-

work access or comparison to other users. A generative model is needed for this approach. For a

single user’s features, historical distributions can be determined and models (Gaussian or otherwise)

developed [45]. Then, upon new data input, the probability that each feature has come from the user

is calculated. Aggregated for all of the features, these probabilities give a per-key confidence score.

Additionally, as per an evaluation by Killourhy and Maxion, an outlier count feature was added that

tallies the number of recent outliers (shown to be effective at detecting anomalies on desktops) [45].

In a similar fashion to the discriminant model, number of historical keypresses at that key serves

as the weight relative to other recent keypresses. See Figure 4.10 for a visual explanation. This

weighting is done through the same logistic regression as described in the ‘discriminant model’

section but is expanded to include the input features processed by that model’s neural network [44].

4.5 HETEROGENOUS SENSOR FUSION

In this chapter we have discussed methods and techniques used to model multiple different

sensors. However, effective modeling requires the system to consider different factors together.

Intuitively, fusing information from different types of sensors should improve the discriminative

power of the passive authentication classifier. For example, we can obtain the user’s outdoor location

trace and her traveling speed with just a GPS sensor. However, if her mobile phone is stolen by an

attacker that is familiar with the user’s commuting pattern, then the attacker can just walk along the

same route as the user to break into the system. In this case, fusing the location information with

other sensor information such as gait and phone tilting can help to identify the anomaly.

The most straightforward straightforward way of sensor fusion is to concatenate several sensor

readings into one value and train the classifier on the concatenated input. For example, after fus-

ing the location, acceleration and time information, the input may look like ”location=37.378535 N

4.5 HETEROGENOUS SENSOR FUSION 62

Figure 4.11: Sensor fusion by concatentation

122.086585 W; acceleration-x=0.017g; acceleration-y=0.002g; acceleration-z=-0.014g; time=2:05pm”.

However, this approach suffers the curse of dimensionality problem. When the number of fused

sensors increases, the total number of possible combined values increases exponentially. The fused

sensor representation requires enormous amounts of training data to train a reliable statistical model

in order to be general enough to classify unseen data. Even if we preprocess the sensor data by

quantizing the sensor readings after which real number values are converted to discrete symbolic

labels, the vocabulary’s size can still be in the range of hundreds or thousands and the combination

of all sensor values can easily grow to millions or billions. Thus fusing by concatenating is only

practical to fuse a small number of sensors. An example can be seen in Figure 4.11.

Another problem of this approach is over partitioning. Over partitioning happens when the

classifier partitions the value space into too many classes. For example, if we fused ”application

usage: information with ”location” and ”time” information through concatenation, the classifier

might partition the ”checking email” activity to multiple activities such as ”checking email in office

at 2:13pm”, ”checking email in the hallway at 10:30am”, and ”checking email at home at 11:23pm”.

This can be overkill as checking email can happen at any time. Knowing the habit of where the user

usually checks email is sufficient for contextual security.

We may mitigate this problem by having each sensor generate its own confidence score and com-

bining them with some linear or nonlinear combination. For example, say we have the confidence

4.5 HETEROGENOUS SENSOR FUSION 63

scores for location sl, accelerometer sa and gyroscope sg, we can just take the overall confidence

score to be

s = α× sl + β × sa + γ × sg (4.22)

This essentially turns the sensor fusion problem into an optimization problem, where we try to

find the appropriate weights to maximize the detection of anomalous usage while minimizing the

number of false positives. We may even choose to use some nonlinear function for example the

step function for which s = 1 if sl > thl ∧ sa > tha ∧ sg > thg for some arbitrary thresholds and

s = 0 otherwise. The current approach used in the SenSec App uses a hybrid model which combines

the concatenation approach with this combination technique. For sensors which generate multidi-

mensional values, for example the accelerometer, we use the concatenation approach to generate a

confidence score for that sensor. Then we combine these confidence scores together using a simple

linear combination. This seems to work relatively well in practice (See Chapter 6)

To further explore this area, we tried another method for sensor fusion. Similar to decision trees,

a technique widely used for classification tasks, we can automatically construct a risk analysis tree

for each user to determine whether the system is at risk or not by querying multiple sensors. Figure

4.12 shows an example Risk Assessment Tree. Here, the RAT first queries the sensors to get the

user’s outdoor location. If the user is not at home or at work, the RAT then queries the GPS to obtain

her traveling speed. In the case that she is most likely driving given her traveling speed, the RAT

checks which application is running on the mobile device and applies a risk assessment function that

fuses the sensor readings from geo-trace, app-category and time information. Intuitively, the RAT

partitions the full feature spaces into small regions where certain combination of sensors are most

effective to assess the risks of the mobile device. To train the RAT model, we take two approaches

with slight differences:

We then build a decision-tree classifier to partition the feature space into sub-spaces where a

subset of features are responsible for the risk assessment. For each subspace, we will then train a

4.6 SUMMARY 64

Location

Time of the Day

Day of the week

R =f(handholding,

indoor loc, app)
Alert!

Activity

R =f(WiFi trace,

app, time)

Traveling Speed

Gait R =f(geo trace,

app, time)

At home At work Between home and work

8am-6pm Other

Mon.-Fri. Sat. & Sun idle

Walking Driving

1

Figure 4.12: Sensor fusion through Risk Analysis Tree.

regressor to optimize weights for each sensor feature to best quantify the risk level of the mobile

device. Moreover, we can systematically select subsets of the features and build multiple RATs and

use a weighted average or voting method to combine the decision from these RATs to quantify the

risk level.

4.6 SUMMARY

In this chapter, we have explained the theory behind our behaviometric models and described

methods with which we can use to interpret these models mathematically. We first introduced a

language approach to behavior modeling that utilizes NLP techniques to perform inference. This

approach allowed for the conversion of multi-dimensional sensory data into a behavioral text repre-

sentation and used a novel hierarchical scheme, Helix, to segment and classify sensory time series.

We continued with techniques to analyze sensory data that is based off of more traditional time-

series methods. Finally we introduced spatial analysis techniques for contexts such as soft-keyboard

modeling where time-based methods may not be as effective. Through this, we have explained the

most critical phase of our methodology, making clear how to perform characterization, classifica-

tion, prediction and anomaly detection in mobile user and group behaviors.

CHAPTER 5

EXPERIMENTS, RESULTS AND EVALUATION

In the previous chapters, we have covered the major research problems and challenges in Mobile

Behaviometrics, and have presented the details of a mobile application, SenSec to ensure mobile

device and application security using Behaviometrics techniques.

In this chapter, the effectiveness of the proposed approaches will be evaluated through SenSec’s

deployment, data collection and experiments. We implemented several experiments to evaluate

these approaches in a variety of different situations. We begin with three experiments which demon-

strate the language based approach to human behavior modeling. The first experiment examines

using WiFi traces to model a user’s location and mobility patterns, the second experiment explores

performing user classification on users performing the same task and the third experiment stud-

ies automatic segmentation and recognition of unlabeled activities. We then perform an experiment

which focuses specifically on motion data to demonstrate the improvements that can be made to user

identification and authentication by first performing activity recognition and then further improve

upon this by adding the location factor. Finally, we evaluate our spatial model for soft keyboard

modeling by developing and deploying our own soft keyboard as part of SenSec.

65

5.1 USER MOBILITY BEHAVIOMETRICS 66

5.1 USER MOBILITY BEHAVIOMETRICS

In this experiment, we introduce the practical aspects of the behavior as language theme by

exploring how system metrics can be used to build a mobile users’ location and mobility behavio-

metrics. We start with a set of experiments which leverage WiFi traces. We adopted the syslog [6]

approach to collecting data for these experiments. Unlike [6], in which only the associated WAPs is

recorded, we collect RSS of the beacons for mobile devices on multiple WAPs. Because all of these

WAPs’ internal clocks are synchronized, it allows us to aggregate traces from different WAPs and

serialize them on a single time line. This approach allows us to infer mobile devices’ location in

finer granularity, in addition to their associated WAP. In our study, we constructed a series of RSS

vectors ~st = (s1,t, s2,t, . . . , sN,t), where sk,t is the RSS of a mobile device’s beacon detected by

the kth WAP at time t. We also used two types of information to model a user’s mobility behav-

ior: (pseudo) location and time. We adopted the fingerprinting approach similar to [46] to assign a

pseudo location label for each segment of RSS readings to represent the device’s current location.

Compared with [6], our approach removes the overhead of estimating the actual mobility path from

the associated WAPs path and the pause time at each location.

5.1.1 Label Generation
5.1.1.1 Pseudo location label generation

We assume that the infrastructure in the building is relatively stable, i.e., positions of WAPs,

devices used as WAPs and radio environment are not changed over time, which usually holds true

for office buildings. Therefore, RSS vectors with high similarities will indicate the device is within

proximity. We used k-means clustering algorithm with a distance function inspired by Redpin [47]

and WASP system [48] to convert the trace for each mobile user into a series of pseudo location

labels, where each label represents a class from the clustering results. Our experiments showed that

choosing 3N as the number of clusters, where N is the RSS vector dimension, produces the best

quality/performance trade-offs.

5.1 USER MOBILITY BEHAVIOMETRICS 67

Using the algorithm described above, we convert the trace for each mobile user c into a series

of pseudo location labels Lc = {l0, l1, l2, ...lt}.

5.1.1.2 Collapsing recurring pseudo location labels

Due to the recurring nature of the data collection process, if a user stays at a pseudo location

for a long period of time, there will be sequences of repeating labels in the data. The n-gram model

would fail to model the transition of actions and the probability mass will be dominated by the most

visited places.

To mitigate this effect, we collapsed repeating pseudo location labels into a set of new pseudo

location labels. Time spent at a location can be user-dependent. For example, a faculty member

may stay in his office for a long time, while a student visiting him may spend less time at the same

location. The process described above may result in the loss of this information. To overcome this,

we constructed another Duration feature by counting the repeating pseudo location labels before

collapsing.

5.1.1.3 Sequence Segmentation and Time-of-day label

Users’ behavior follows certain regularities due to regular meetings and routines associated with

their responsibilities and roles as shown in Figure 5.1. For example, a group of students who work

on the same course project may get together in a conference room or a common area after the class;

faculty members may have quick group meetings at certain time of the day to get status reports from

the students.

In our raw data set, every RSS vector is marked with a time stamp (epoch). It provides extra

information to assist the modeling of user behaviors especially with routine and fixed schedules.

We partitioned the duration of 24 hours into multiple non-equal-size sections and used the tags

NA,AM,PM,EV as the time-of-day (TOD) labels. While not the focus of this study, we found

that the universal division of the duration may cause problems if the users have shifted working

hours by which a series of associated mobility behaviors are right across the section boundary. We

5.1 USER MOBILITY BEHAVIOMETRICS 68

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time of Day

P
s
e
u

d
o

-l
o

c
a
ti

o
n

 c
h

a
n

g
e
 r

a
te

User 1

User 2

Poly. (User 1)

Poly. (User 2)

8:00 12:00 18:0

Figure 5.1: Regular patterns from user’s daily mobility behaviors

proposed an Activity-Level Adjusted Segmentation (ALAS) scheme where we adjusted the section

boundary based on a given user’s mobility behavior. The rationale is to cut the section boundary so

that the continuity of user mobility behavior is maximized.

5.1.1.4 Multi-label fusion based on Pair-Wise Mutual Information

As described in Section 5.1.1.2 and 5.1.1.3, we have multi label streams in addition to pseudo

location labels from the RSS trace. Blindly concatenating the labels for different features together

will either inadequately reduce data resolution or necessarily increase the model complexity if the

sampling rates are very different and the granularity of the data source is not comparable.

Therefore, we explored heterogenous sensor fusion techniques to combine these different streams

of labels into a single stream of behavior text before fit it to our n-gram model. We use Mutual In-

formation, a simple metric, to determine whether time-at-location features should be combined with

the pseudo location feature. This approach is to include the duration label only if it is highly cor-

related with the location label, to capture the high level activities associated with this location/time

pair.

The change rate of the Time-of-Day label is small compared to the other two features. Therefore,

we decided to concatenate them with the fused label in this study.

This multi-label fusion process allows us to add more features, such as the type of applications

5.1 USER MOBILITY BEHAVIOMETRICS 69

All Users

User 1

User 2

User 3

User 4

Figure 5.2: Pseduo-location density from 4 selected users vs all users

running on the mobile device, their network resource consumption and battery information, into

behavior text streams without losing their importance in the n-gram modeling.

5.1.2 Data Set

We obtained series of pseudo location labels of 40 users, who were selected from the traces of

587 users collected from 87 WAPs over 5 days. If two users’ mobility areas are entirely separable,

it is relatively easy to identify the users by their pseudo location label histogram. As shown in

Figure 5.2, user 2 and user 4 are completely partitioned into two separate areas, while user 1 and

user 3 have some overlap. We calculated the cross entropy of those labels among all these users. To

test our n-gram model’s strong capability in anomaly detection, we choose 10 users that have the

least cross entropy. This ensures that users’ moving paths strongly overlap and the location label

histogram can not be used to efficiently identify users.

5.1.3 Anomaly Detection
5.1.3.1 Simulated testing data through splicing

We used 3/4 of the samples as the training set and the remaining 1/4 data to create the testing

data. Since there were no real device stolen events recorded in the data we collected, to make the

experiments more generalizable, we created simulated device stolen events by splicing two users’

5.1 USER MOBILITY BEHAVIOMETRICS 70

Figure 5.3: Two users’ mobility patterns are concatenated to create a sample for a simulated stolen
event. Originally pink and red are user A’s trace. blue is user B’s trace. We splice pink with the blue
to simulate a device stolen event.

trace segments at their intersection point. This simulated device-stolen trace has the real moving

patterns from both the original owner and the “unauthorized user” and those patterns intersect at

the event time as show in Figure 5.3. We combined these simulated device-stolen samples and the

normal samples to create a testing set.

5.1.3.2 Anomaly detection and threshold

In the testing phase, we adopted a sliding window scheme with a window size of 20 seconds and

step size of 2 seconds. As the sliding window advances, we continuously calculate the likelihood

(average log probability as shown in Equation 4.7) of the behavior text in the sliding window that

is generated by the n-gram model of the original user. We will trigger an anomaly detection alert

when the log probability drops below a predefined threshold. When such situation is detected, we

record the location of the sliding window and the “response time”. In other words, this estimates

how much time it takes for the system to detect the mobile device has been stolen.

5.1 USER MOBILITY BEHAVIOMETRICS 71

Log Probility

Low Threshold

High Threshold

A

B

DC

Figure 5.4: Anomaly detection experiment results for a user with different thresholds. The graph
shows average log probability within a sliding window over time. The stolen event happens at A. C
and D are false positives for threshold 0.42. B is the true positive for threshold 0.37. The response
time is the distance between B and A.

As shown in Figure 5.4, at first the log probability of the testing segment is high because the

data matches the user’s behavior model. As the sliding window moves closer to the event point

A, the log probability drops and eventually goes completely below the threshold, where an alarm

is triggered. We performed these experiments for all 10 users with different training data sizes

(by means of hours L), different history lengths (n) and different detection thresholds. Among the

users with high cross entropy in pseudo location labels, the n-gram model correctly detected 86%

of simulated device-stolen events with n = 10 and just 12 hours of training data.

About 10% of the non-stolen testing samples trigged the alerts as false positive cases. These

results were obtained using 0.40 (average log probability) as the detection threshold and 10 labels

as maximum allowable response time. If an event is undetected at the 10th label after the event

happens, we consider this testing sample undetected, and classify it as a false negative.

Figure 5.5 shows Receiver Operating Characteristic (ROC) curves for anomaly detection results.

Each points on the ROC curve corresponds to a certain detection threshold. The upper left corner

represents perfect detection, while diagonal represents the model that is performing no better than a

5.1 USER MOBILITY BEHAVIOMETRICS 72

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

T
r
u

e
 P

o
s
it

iv
e
 R

a
te

Data Size (12 Hrs)

Data Size (8 Hrs)

Figure 5.5: Receiver Operating Characteristic (ROC) curves of the n-gram model for training size
of 4 and 12 hours.

coin-flip. Figure 5.5 also illustrates the trade-offs on detection threshold and data size.

5.1.3.3 Order of n-gram and training data size

We studied the impact of history length n on the detection accuracy. A larger n captures more

context in the n-gram model which increases the accuracy. However, it also increases the size of

the model. Figure 5.6 shows that anomaly detection performance would saturate when n > 5. This

suggests that in the majority of the cases, user mobility behavior only depends on the most recent 5

pseudo locations. Figure 5.6 also shows the effect on the training size. If the training size is as small

as 4 hours, it may not capture user’s mobility behavior, yielding poor accuracy. The closeness of

the two curves with training size 8 and 12 hours also suggests that the system only needs to monitor

the user’s behavior for less than one day in order to build up a reliable mobility behavior model for

anomaly detection.

5.1.3.4 Future Location Prediction

In addition to accountability, this mobile behavior model can also be used to predict the future

activity of the user based on his/her past and current behaviors. Predicting future activity can be

used to optimize resource allocations, such as spectrum and bandwidth, to improve quality of expe-

5.1 USER MOBILITY BEHAVIOMETRICS 73

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

n-gram order

A
cc

u
ra

cy

Data size (4hr)

Data size (8hr)

Data size (12hr)

Figure 5.6: Variation of anomaly detection accuracy vs n-gram order. Threshold is set to .59

UID 1 2 3 4 5 6 7 8 9 10
(%) 74.1 60.5 63.3 38.4 72.3 64.9 61.7 65.0 32.8 70.2

Table 5.1: Prediction Accuracy for a selected set of users.

rience of multimedia services including VoIP and video streaming, and to preserve user privacy and

maintain network security.

To demonstrate the n-gram model’s predictive capabilities, we divided each user’s trace into 4

equal-length consecutive segments. We used the first 2 segments to train the n-gram model and

tried to predict the user’s behavior for the remaining 2 segments. In our study, we empirically set

n = 3, d = 7. The results are shown in Table 5.1.

We found that the prediction accuracy dropped significantly for some users, specifically, user

4 and user 9 in Table 5.1. Further investigation revealed that our segmentation scheme to divide

the training and testing data might have cut behavior changing boundary. As a result, their mobility

patterns are different between the training and testing set. After swapping a segment between testing

and training, we achieved 63.1% and 65.7% accuracy for user 4 and user 9 respectively similar to

other users.

5.2 USER CLASSIFICATION BASED ON GESTURE PATTERNS 74

5.1.3.5 Experiment Summary

We collected RSS readings of the beacons emitted from mobile devices. We aggregated the

data from multiple WAPs to form sequences of fingerprints. These sequences were used to infer

the actual locations of the devices on a fine-grain scale. This approach reduces the overhead in

estimating mobility tracks and pause time using more complex models or ad-hoc heuristics. We

converted these heterogenous sensor data into behavioral text and adopted a skipped n-gram model

to capture the long-term dependency in user mobility behavior. In addition to single pseudo location

information, we leveraged simple heterogenous data fusion techniques to incorporate other context

information, such as time-of-day and duration to mobility behavior text representation.

We applied our model to mobile anomaly detection and future behavior prediction. Through

experimenting with data sets captured from production networks, we have shown that this simple

n-gram approach can capture the personal mobility patterns. Since our data set did not contain

any samples from a device-stolen event, we tested our model in anomaly detection by including a

series of simulated device-stolen scenarios. The results showed that the model can detect such an

anomaly by examining the log probability calculated with the n-gram model. We also analyzed how

certain parameters would affect the performance of the algorithm in terms of scale of the model and

accuracy of detections.

5.2 USER CLASSIFICATION BASED ON GESTURE PATTERNS

We now move from the high level modeling of location and mobility to more fine grain modeling

of a user’s movement. The SenSec framework enables us to model user’s gesture patterns and use it

to do user classification and user authentication. In this set of experiments, we investigated SenSec’s

effectiveness in conducting user classification to distinguish users by their gesture patterns when

they are performing the same tasks.

5.2 USER CLASSIFICATION BASED ON GESTURE PATTERNS 75

Figure 5.7: Distributions of demographic groups for user classification

5.2.1 Experimental Setup

20 volunteers 1 from different demographic groups (genders, occupations, and age) participated

in the study. The distribution of their demographics are shown in Figure 5.7. Due to the planned,

systematic nature of this experiment, it serves to be a proof of concept that user classification can

be achieved through learning gesture patterns.

All participants were given the same Google Nexus S smartphone loaded with our sensing ap-

plication and were asked to perform the same task for 5-10 times. Specifically, they were asked to

perform the following tasks in a sequential order:

1. Pick up the device from a desk

2. Unlock the device using the right slide pattern 2

3. Invoke Email app from the ”Home Screen”

4. Lock the device by pressing the ”Power” button

5. Put the device back on the desk
1 User studies were conducted with the approval of IRB application HS11-094, ”Human Behavioral modeling using
Mobile Sensors” from the IRB Board at Carnegie Mellon University. 2 No password or lock patterns are configured on
the phone

5.2 USER CLASSIFICATION BASED ON GESTURE PATTERNS 76

Figure 5.8: Users perform the same sequences of activities and SenSec is monitoring and building
Motion Metrics

While the users are performing this specific sequences of activities, SenSec application is record-

ing the motion sensor data time-series as illustrated in Figure 5.8. The sensor data are used later

to build user motion metrics to experiment on user identification and authentication tasks. It is

worthwhile to note that this experiment is neither realistic nor robust. The only purpose of this

experiment is to build a proof of concept system.

5.2.2 Data Set and Parameters

During the experiments, our sensing application monitors the accelerometers, orientations, gy-

roscopes and magnetometers. We set the sample rate of these sensors at 4Hz, i.e. the application

produces 4 samples per second and each sample contains 12 real valued readings, including Ac-

celerometer (X, Y, Z), Orientation (Azimuth, Pitch, Roll), Compass (X, Y, Z), and Gyroscope (X,

Y, Z). Each experiment lasts about 20-30 seconds, which produces about 1250 time-stamped sam-

ples. These samples are then uploaded to our server and labeled with the hashed user ID to hide

participant’s real identity.

We adopt a sliding window approach in constructing the features. We chose the window size

of 2 seconds and stepping offset of 500 ms. Using the data in the window, each feature vector

is composed by various statistical features [49], including Root Mean-Square, Root Mean-Square

error, minimum value, maximum value, average sample-by-sample change, number of local peaks,

number of local crests and combined signal magnitude, etc., to capture sufficient statistics of those

5.2 USER CLASSIFICATION BASED ON GESTURE PATTERNS 77

Classification Target No. of Classes Accuracy
Gender 2 0.81

Age Group 3 0.79
Occupation 4 0.76

User ID 20 0.75

Table 5.2: Experiment Results for User Classifications

micro movements. These motion feature vectors are clustered in V classes using K-means clustering

algorithm. The centroids of the resulting V Classes are mapped to behavior text labels and become

the dictionary of the model.

For a given classification tasks to predict participant’s gender, occupation, age group and user

IDs 3, we randomly reserve 20% of the samples from each class as testing set {E} and use the rest

as training set {R} to train aN order n-gram model for that class. For each sample L from {E}, we

calculate P (L,m) for the models of all the classes where m = 1, 2, . . . ,M and select m with the

maximum P (L,m) as the class label prediction. We chose V = 200 andN = 5 due to performance

and complexity trade-offs.

5.2.3 Results

The experiment was repeated 5 times, which is equivalent to a 5-fold cross validation (CV).

The results are shown in Table 5.2. By using the data from a small group of participants, we can

achieve a reasonable accuracy in classifying users of different classes. We also found that most of

the misclassifications happened when the experiments were conducted back-to-back. There were

chances that the latter participants may have observed previous participants’ motion and posture

and subconsciously tried to mimic what he or she had done [50], which ideally may disappear in

experiments with an isolated environment and with a large number of participants.
3 We would like to understand how the methodology we adopt here would work for identification problems with different
complexity, where gender identification is assumed to be the easier and user ID identification to be the hardest

5.2 USER CLASSIFICATION BASED ON GESTURE PATTERNS 78

5.2.4 Online User Authentication

We integrated the aforementioned data preprocessing and modeling schemes into our SenSec

App, loaded it to a smartphone and gave it to a group of participants to conduct the online user

authentication experiments.

5.2.4.1 Training and Testing

These experiments were carried out in the following stages:

1. Training Stage: Each of the participants uses the phone for 24 hours while the SenSec app is

collecting sensor readings in the background and build the behavioral n-gram model.

2. Positive Testing Stage: In this stage, each participants continually uses her phone for 24 hours.

This time the SenSec app is switched to testing mode. It collects the sensors reading the same

way as in training mode, but also construct behavior text sequences and feeds it to the learned

n-gram model. A sureness score is calculated as described in Equation 4.1. If it falls below a

preset threshold while a certain operation is performed, an authentication screen will be pop

up asking user to enter a passcode. The sureness score and the authentication decision are

recorded for logging and result reporting purposes.

3. Negative Testing Stage: The phones are given to other participants to use for another 24

hours. As in the previous stage, the same operations are performed on the phone and all

authentication events are recorded for further analysis.

5.2.4.2 Outcome

We examined the logs generated by these experiments. At each authentication decision point,

the sureness score is recorded. By varying the threshold, we can evaluate how well our SenSec

models perform user authentication under different threshold values. For each threshold value, we

can calculate False Positive Rate or FPR and True Positive Rate or TPR and plot Receiver Operating

Characteristic (ROC) curves.

5.2 USER CLASSIFICATION BASED ON GESTURE PATTERNS 79

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
r
u
e
 P

o
s
it
iv

e
 R

a
te

Experiment I

Experiment II

Average

Threshold:
0.7

Figure 5.9: Receiver Operating Characteristic (ROC) curves of the n-gram model for training size
of 4 and 12 hours.

Figure 5.9 shows ROC curves for user authentication experiments. Each points on the ROC

curve corresponds to a certain threshold. The upper left corner represents perfect authentication,

while diagonal represents the model that is performing no better than a coin-flip.

The True Positive Rate (TPR) represents the cases that the system successfully detected non-

owner access, while the False Positive Rate (FPR) represents the false alarms when the owner is

detected as a non-owner. To ensure the security of the system while still keeping the usability to a

certain level, we need to maximize TPR and minimize FPR. The ROC curves provide a guideline

on choosing the right thresholds to fulfill such a requirement. For example, the system may have a

requirement to effectively detect 70% of the unauthorized access, but it may need to keep the false

alarm rate below 15%. As shown in Figure 5.9, we can choose a data point from the allowable

region on the ROC curve: threshold 0.7 can achieve 71.3% TPR and only 13.1% FPR. We also

examined the detection delay at this threshold by deliberately passing the phone between the two

users more often and recording the time. By comparing these recorded time and the timestamps of

triggered anomalies from the log, we found SenSec bears an average 4.96 seconds detection delay.

5.3 HIERARCHICAL ACTIVITY SEGMENTATION AND RECOGNITION 80

Table 5.3: Sensors on the mobile client and their sampling rate.
Sensor Sampling Rate
Accelerometer, magnetometer
Ambient light, temperature 20Hz (every 50 ms)
Microphone 8KHz
Camera
GPS, WiFi every 2 minutes

5.3 HIERARCHICAL ACTIVITY SEGMENTATION AND RECOGNITION

We continue our language as action based modeling in this section, extending the classification

of users performing the same task from the previous experiment to automatic activity segmentation

and recognition. The data for this experiment was collected with the MobiSens4 mobile client, part

of the MobiSens mobile sensing platform designed for real-world mobile sensing applications using

novel algorithms, running on a Motorola Droid. Table 5.3 shows sensors used and their sampling

rates. Although video and audio data could help, we decided not to use them in MobiSens for three

reasons. First of all, the media stream will create a large data storage and transmission overhead,

which greatly reduces battery life. Another reason is privacy concerns, especially concerning the

recording of video. In addition, we realized that capturing video on Android requires that the

application stays in the foreground, which will prevent the user using other functionalities of the

phone.

5.3.1 Experimental Setup

We collected 36 hours of real life data in 5 consecutive weekdays from two graduate students to

verify and analyze the system. The data collection process lasted about 7 hours each day. Table 5.4

summarizes activities done by the users.

The users carried two phones during the data collection stage (Figure 5.10). One was tied to the
4 MobiSens is a framework developed as part of our research to collect sensor data from mobile devices. Refer to
Appendix A for more details

5.3 HIERARCHICAL ACTIVITY SEGMENTATION AND RECOGNITION 81

Table 5.4: Activity instance count and their average time
Activity Instance Count Avg. Time per Instance (minutes)
Walk 7 50.29
Working on Computer 15 66.07
Cooking 4 19.75
Eating 9 20.78
Washing Dishes 2 4.5
Cycling 2 21.5
Video Gaming 2 47.5
Presentation 2 29
Having Class 2 79
Meeting 2 69.5
Talking to Somebody 5 15
Driving 3 8.67
Printing Paperwork 1 44

user’s right arm and another phone was used in the normal way: most of the time the phone was in

user’s pocket and from time to time the user took it out to make phone calls or check emails.

At the end of each day, the user will use the web interface to annotate his activities during the

day in two settings:

• Without looking at the unsupervised segmentation, the user listens to the recorded audio and

creates from scratch his daily activity summary on the calendar. This segmentation/annotation

is used as the ground truth in our experiments.

• Based on the unsupervised segmentation (starting/ending time information) and activity clus-

tering (clustering similar activities and visualizing using the same color) label segmented

activities.

The goal of the experiments is to evaluate 1) whether the automatic activity segmentation matches

the ground truth, and 2) whether the similar activity coloring helps the user to recall what has

happened before.

5.3 HIERARCHICAL ACTIVITY SEGMENTATION AND RECOGNITION 82

Figure 5.10: Two mounting positions of phones in experiments: stowed in pocket (left) and mounted
on upper arm (right)

Table 5.5: Sensors and their sampling rate used for the single-sensor classification experiment.
Sensor Sampling Rate
Accelerometer, Ambient
Light

20Hz

GPS, Speed every 2 minutes

5.3.2 Modeling the Data
5.3.2.1 Unsupervised Activity Segmentation based on Motion

Activity segments are the basis units to train activity recognition models. MobiSens first seg-

ments the sensor time-series into a sequence of activities in a unsupervised manner without any prior

knowledge of users’ activities. The automatically generated activity segments reduce the cognitive

load of users as it is very challenging for a user to remember the start and end time of an activity

but relatively easy to recall what they did during a time interval.

MobiSens uses motion information for activity segmentation. Intuitively, when one changes

his/her activities, motion usually changes [51]. Motion is also the most distinguishing modality for

most of the human activities. Table 5.6 shows the activity recognition accuracies based on a single-

modality. Using motion-only information, we can achieve 72%, much higher than other modalities

such as location (GPS).

5.3 HIERARCHICAL ACTIVITY SEGMENTATION AND RECOGNITION 83

Table 5.6: Activity classification accuracy using single sensor modality. J48 decision tree is used in
this example. Motion is the most informative single sensor in this experiment.

Data Modality Accuracy
Accelerometer (Motion) 0.72
GPS (Location) 0.41
Speed 0.32
Light 0.17

MobiSens’ activity segmentation algorithm operates on motion sensor (accelerometer) time-

series data.

5.3.2.2 Behavior Text Representation

We apply a sliding window (width=24 samples, step size=6 samples) over the accelerometer

time-series and extract motion features from each window to represent the motion characteristics

at each time.With the sampling rate at 4 Hz, each window corresponds to 6 seconds. We extract 6

features from each window including the mean and standard deviation of each of the three axes of

accelerometers. During the offline training process, motion feature vectors from many users’ data

are clustered into V classes using K-Means clustering. During the runtime, we map an incoming

motion feature vector to its closest class and use the class label to represent this motion feature

vector for the follow up process. The input accelerometer reading stream is thus converted to a

sequence of cluster labels which we refer as “behavior text” in later sections.

Needless to say, such clustering and quantization process loses information and precision com-

pared to using the raw motion feature vectors. The benefit of discretizing feature vectors to a symbol

is the convenience to model the sequential and structural patterns in the motion time-series.

The number of clusters V is the vocabulary size of the behavior text. The selection of V affects

the overall system performance. If V is too small, the quantization process loses too much informa-

tion which decreases the segmentation accuracy. If V is too large, the symbolic representation loses

generalization and it is difficult to capture the patterns in activities. Also, the quantization process

5.3 HIERARCHICAL ACTIVITY SEGMENTATION AND RECOGNITION 84

needs more computation to calculate the distance between the input feature vector with each of the

V centroids and drains the battery fast. In a working system, V needs to be manually optimized

based on the system requirements, i.e. the minimum granularity of activity and battery life. In

our experiments, we set V = 200 which can balance the power consumption and segmentation

accuracy. The detail of parameter selection is discussed in Section 5.3.3.1.

5.3.2.3 Change of Activities

When a user changes his/her activity at time t, there should be a significant change from behav-

ior text string [t−w, t−1] to string [t, t+w]. Herew is the window size that controls the granularity

of detected activities. We refer to w as the segmentation window size.

To compare the similarity between two behavior strings, we use the classic Vector Space Model

(VSM) [52]. Each behavior string is represented by a vector over the whole vocabulary b =

(b1, b2, . . . , bi, . . . , bV) where bi is the weight of word i (term-weight) in documents. Here we

want to partially model the temporal patterns between symbols. In addition to words, we also con-

sider consecutive words (n-grams) in the string. Each behavior string is then represented as a vector

in the n-gram space and bi is the normalized frequency over 1-gram, 2-gram and up to N -gram.

The similarity of two behavior text vectors b, q is calculated by their cosine distance:

S(b,q) =
b · q
||b|| ||q|| (5.1)

where S(b,q) (Equation 5.1) is the n-gram similarity between string B and Q. The lower the

value of S(b,q), the more likely the user changes his/her activity in [t − w, t + w]. A threshold Θ

was defined to determine the activity change. For single level segmentation on the smartphone, we

empirically set Θ = 0.8 .

5.3.2.4 Hierarchical Activity Segmentation

An advantage of using this activity segmentation framework is that the window size w can be

used to control the granularity of segmented activities. Since the length of activities varies in real

5.3 HIERARCHICAL ACTIVITY SEGMENTATION AND RECOGNITION 85

life, we can use different window sizes to generate hierarchical activity segmentation: After getting

the segmentations in level one with a large segmentation window size, a smaller window will be

used to identify fine-grain activities recursively on each of the generated segment (Figure 5.11). The

hierarchical activity segmentation will enable the user to view and annotate activities in different

granularities, he/she can “zoom” in or out to change the granularity of activities.

Level 1 } w
1
= 20min

Level 2 } w
2
=10min

Level 3 } w
3
= 5min

Figure 5.11: An example of 3-level top-down hierarchical activity segmentation with w1 =
20minutes, w1 = 10minutes and w1 = 5minutes.

In our experiment, we implemented a four level hierarchical activity segmentation using seg-

mentation window sizes of 30, 20, 10 and 5 minutes.

We discover that the activity change “peaks” (similarity lower than average) identified by larger

segmentation windows are also peaks identified by smaller segmentation windows but not vice

versa; and activity changes over larger windows are smoother than smaller windows so setting

one threshold for all levels is not a good approach. Instead of setting a hard threshold, we obtain

threshold Tl for level l dynamically using the following equation:

Θl = 0.9 · (max({S})−min({S})) + min({S}) (5.2)

where {S} are the similarities obtain from two neighboring segmentation windows of level l.

5.3.3 Performance Evaluation

We evaluate the accuracy of the activity segmentation and recognition by calculating the F1-

Score of user’s annotation with the ground truth.

Each identified activity in the system’s annotation A is a triple of < s, e, l > where s is the

5.3 HIERARCHICAL ACTIVITY SEGMENTATION AND RECOGNITION 86

starting time of the activity, e is the ending time and l is the label of the activity such as “walking”.

Similarly, we can represent each activity in the ground truth G also as a triple of < s, e, l >.

For each activity A in the system’s annotation, if there exists a ground truth activity G such that

Al = Gl, i.e., the two activities have the same label, and As = Gs ±∆, Ae = Ge ±∆ where two

activities have roughly the same starting time and ending time within the allowed margin ∆, then

we consider A matches the ground truth activity G and is a true positive (Figure 5.13). With the

precision and recall value calculated for each activity type, we can estimate the harmonic mean and

report the F1 score. High F1 scores indicate the system’s segmentation/label matches the ground

truth.

5.3.3.1 Impact of Vocabulary Size V and N -gram Size

Table 5.7 shows the system power consumption5 with different vocabulary size.

V = 50 100 200 300
Recognition F1 0.33 0.45 0.57 0.49
Power(%) 41 45 51 63

Table 5.7: The impact of V to the system, in terms of power consumption, overall recognition
performance. N is set to 3 in these experiments.

Overall, recognition accuracies increase when V increases. It reaches the max when V is 200

and then drops slightly when V = 300. It could be that when V is too large, the system loses

generalization and the trained activity recognition model over fits the training data.

The power consumption increases significantly when V increases. Because larger V requires

more computation and CPU is one of the major sources that consumes power.

By fixing V = 200, we test different size ofN (1, 2, 3, 4) for n-grams.Table 5.8 shows that when

N reaches 3, activity recognition performance does not improve any more. The power consumption

doesn’t seem to have very significant change because the additional computation needed with larger
5 Power consumption is measured using Android’s built-in power measurement tool under ”Settings”. The percentage is
recorded on the same device, Samsung S4, after a full charge

5.3 HIERARCHICAL ACTIVITY SEGMENTATION AND RECOGNITION 87

N is trivial compared to the increase of V .

N = 1 2 3 4
Recognition F1 0.51 0.51 0.57 0.55
Power(%) 48 48 49 51

Table 5.8: The impact of n-gram sizeN to on power consumption and activity recognition accuracy.

5.3.3.2 Impact of Phone Position in Activity Recognition

We run experiments to study whether the mounting position of the phone has any impact on

the activity recognition accuracy. As shown in Figure 5.10, participants carry two phones at the

same time, one in the pants pocket and another one mounted on the upper arm. Figure 5.12 shows

the recognition accuracy of different activities with two mounting positions. Overall, that system

performs better when the phone is attached to users upper arm. For activities where motion comes

mainly from hand movements, l(e.g., “cooking” and “working on computer”), the upper-arm setting

performances better. For activities where motion comes mainly from legs, such as “cycling” and

“walking”, pocket position performs better than the upper-arm setting. It makes sense because arms

are relatively stable while riding a bike yet legs are moving more frequently and regularly. For

activity “walking”, the motion patterns of upper arm are more similar to other activities whereas as

the motion patterns of legs (pockets) are more distinguishable.

5.3.3.3 Hierarchical Activity Segmentation vs. Smoothed HMM

Hidden Markov Models (HMM) have been widely used to model sequential data that have inher-

ent structure as state transitions. We compare activity segmentation using the proposed hierarchical

activity segmentation approach in MobiSens with a smoothed single-layer Hidden Markov Model

(HMM). After training a single-layer HMM using the EM algorithm over the unlabeled motion la-

bel sequence, we apply the learned HMM on the testing data (also a sequence of motion labels).

During the decoding time, the HMM finds the state sequence that best explains the observed sensor

5.3 HIERARCHICAL ACTIVITY SEGMENTATION AND RECOGNITION 88

0.67

0.72

0.57

0.13

0

1

0.67

1

1

0.5

0

0

0

0.55

0.75

0.86

0.13

0

0.67

0.67

1

1

0.5

0

0.5

0

0 0.2 0.4 0.6 0.8 1

Walking

Working on

Computer

Cooking

Eating

Washing

Dishes

Cycling

Video Gaming

Presentaion

Having Class

Meeting

Talking to

someone

Driving

Printing

Paperwork

Right Arm (0.57) Pocket (0.56)

Figure 5.12: F1 scores of activity recognition accuracies for two phone mounting positions: pants
pocket and upper arm. Activity recognition uses only accelerometers data. For pocket settings, the
average F1 score is 0.57. For upper-arm setting, F1=0.56.

stream. For each input motion label, its corresponding HMM state becomes an “activity label”.

We apply a sliding window over the activity label sequence and use the majority label in window

[t− w/2, t+ w/2] as the label for position t to smooth out noises. Segmentation is then done over

the “smoothed” activity label sequence to identify positions where activities change.

The best configuration of HMM in our experiment has 10 states and the smoothing window size

w = 800 which corresponds to 6 minutes in time. Averaged over all activity types, HMM performs

worse than the hierarchical segmentation approach (Figure 5.14). In particular, HMM performs

badly on high-level activities such like “Having Class”, “Meeting”, “Working on Computer” and

“Presentation”. These activities are usually composed by multiple low-level activities and have

5.4 ACTIVITY RECOGNITION THROUGH TIME SERIES ANALYSIS 89

A5 (Walking)

A6 (Walking)

A7 (Eating)

A4 (Walking)

G1 (Walking)

A1 (Walking)

A2 (Walking)

A3 (Walking)

Figure 5.13: Ground truth labeled as G1 with three true annotations(A1-A3) and four false
annotations(A4-A7)

multiple motion patterns. A single-layer HMM models the lowest-level sensor readings and doesn’t

have the capability to merge these similar patterns to higher level activities.

5.4 ACTIVITY RECOGNITION THROUGH TIME SERIES ANALYSIS

In this experiment, we forgo the language as action principle to evaluate a different approach

to activity recognition. Here, we study only motion data and by leveraging certain properties of

this data we are able to derive a method to extract an activity level. Then by recognizing different

activity classes of physical action (say standing, walking, or running etc.), we can build a system

which compares two actions from the same class. This will allow for models which can discriminate

between the minute differences in the way different people perform the same action, which can be

used to identify between different users and detect unknown unauthorized users.

5.4 ACTIVITY RECOGNITION THROUGH TIME SERIES ANALYSIS 90

0.92

0.32

0.67

0.67

0

0.5

1

0

0.25

0

0.33

0.5

0

0.55

0.75

0.86

0.13

0

0.67

0.67

1

1

0.5

0

0.5

0

0 0.2 0.4 0.6 0.8 1

Walking

Working on

Computer

Cooking

Eating

Washing

Dishes

Cycling

Video Gaming

Presentaion

Having Class

Meeting

Talking to

someone

Driving

Printing

Paperwork

Hierarchical Approach (0.57) HMM(0.52)

Figure 5.14: The F-Score of user annotation on Hierarchical activity segmentation result vs. HMM,
on right arm dataset, motion only.

5.4 ACTIVITY RECOGNITION THROUGH TIME SERIES ANALYSIS 91

5.4.1 Experimental Setup

The experiment was set up such that a small group of people performed a set of ambulatory

activities, standing, walking and running, with the same Nexus 5 phone in their pockets collecting

accelerometer data. The experiments were conducted with a 50ms sampling rate, except for the

set of walking experiments which were performed with both a 50ms and 20ms sample rate. We

also used a separate dataset where the ground truth labels were not known. This dataset contained

110GB of data, after taking only the accelerometer part and discretizing the time series data into

feature vectors for windows of size 128, we were left with a dataset of more than 2GB.

5.4.2 Activity Class Construction

We first test the approach to ambulatory activity recognition, explained in Section 4.3, by calcu-

lating the correct number of classification made on our dataset of 381 windows, each window con-

taining 128 samplings from a triaxial accelerometer with a sampling rate of 50ms. In this dataset,

there are 113 windows of standing data, 149 windows of walking data and 119 windows of running

data, contributed by eight different users. The experiment is set up such that for each window, the

DFT is extracted to calculate the ActivityClass function. We choose α = 2 and β = 1
10 to scale

both inputs to roughly the same range, and to account for the fact that the tanh function approaches

1 very fast so we want the inputs to be relatively small. Since we are looking to distinguish between

three different classes, we sort the outputs of theActivityClass function and try to find the 2 largest

gaps between these outputs which do not lie close to each other. For our particular dataset this hap-

pens at 0.1754 and 0.9050. We choose these two numbers as the boundaries between classes so we

classify any window between the ranges [0, 0.1754] as standing, (0.1754, 0.9050] as walking and

(0.9050, 1] as running. Comparing this to the ground truths for this dataset, we correctly classify

359 of the 381 windows, giving a classification accuracy of 94.23%.

5.4 ACTIVITY RECOGNITION THROUGH TIME SERIES ANALYSIS 92

5.4.3 Feature Selection

To speed up the performance of any algorithms, and make the feature vector more relevant to

the problem of classifying between users, we perform feature selection on the features discussed in

the Section 4.3.2. We used data collected from 7 different users walking and each data sample is

formed by taking the 11 features from the motion feature set for each of the X, Y and Z axes of

the accelerometer, creating a 33 dimension feature vector for each window. Table 5.9 shows the

rankings of each feature. From this experiment, it was apparent that the avgDelta, numCrests,

numPeaks features were not very useful and they are therefore discarded in the remaining experi-

ments of this section.

5.4.4 User Identification Evaluation

To evaluate the effectiveness of these features on ambulatory data, we will first visualize how

data from different people get mapped in feature space after dimensionality reduction using t-

Distributed Stochastic Neighbor Embedding (t-SNE), and then perform classification with 10-fold

cross validation on the dataset.

We collected the data by having a small group of people perform a normal walk across a hallway.

The experiment was conducted with two sampling intervals, one of 20ms and another of 50ms, and

the data collected was divided into windows of 128 samples. Feature vectors, based on the features

identified in the feature selection section, were created for each axis of the accelerometer forming a

feature vector of size 24 for each window. For the t-SNE visualization, the features were also log-

normalized. In the case of the 50ms experiments, a group of 7 people participated, each contributing

a different number of windows for a total of 149 data points. For the 20ms experiments, a group of

3 people participated, contributing a total of 211 data points.

Figures 5.15 and 5.16 plots the result of applying t-SNE dimensionality reduction on our dataset

to reduce it to 2 dimensions. Each mark represents a window of data in the 2-dimensional space.

From these figures, it can be seen that there does seem to be natural clusters, but there is also some

5.4 ACTIVITY RECOGNITION THROUGH TIME SERIES ANALYSIS 93

Ranking Feature
1 RMSx
2 RMSEx
3 maxy
4 RMSz
5 RMSEz
6 smay
7 maxz
8 smaz
9 miny
10 rcrx
11 smax
12 maxx
13 RMSy
14 RMSEy
15 ttpz
16 numPeaksx
17 ttcy
18 ttcx
19 numCrestsx
20 minx
21 rcrz
22 minz
23 rcry
24 avgDeltax
25 ttcz
26 numCrestsz
27 ttpy
28 ttpx
29 numCrestsy
30 avgDeltay
31 numPeaksz
32 avgDeltasz
33 numPeaksy

Table 5.9: Feature Rankings

5.4 ACTIVITY RECOGNITION THROUGH TIME SERIES ANALYSIS 94

−8 −6 −4 −2 0 2 4 6

−4

−2

0

2

4

−80 −60 −40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

−300 −200 −100 0 100 200 300
−200

−150

−100

−50

0

50

100

150

200

250

Figure 5.15: t-SNE visualization of a subset of the data collected with a 50ms sampling rate

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

Figure 5.16: t-SNE visualization of a subset of the data collected with a 20ms sampling rate

5.4 ACTIVITY RECOGNITION THROUGH TIME SERIES ANALYSIS 95

TP rate FP rate ROC area Precision Recall F-Score
J48 Decision Tree 0.664 0.076 0.825 0.670 0.664 0.664

Sequential Minimal Optimization 0.832 0.047 0.941 0.835 0.832 0.817
Multilayer Perceptron 0.799 0.050 0.941 0.800 0.799 0.792

Naive Bayes 0.732 0.071 0.916 0.750 0.732 0.730
Bayes Net 0.722 0.048 0.930 0.779 0.772 0.773

Table 5.10: 10-fold cross validation of data collected with 50ms sampling rate

TP rate FP rate ROC area Precision Recall F-Score
J48 Decision Tree 0.886 0.063 0.932 0.888 0.886 0.887

Sequential Minimal Optimization 0.915 0.039 0.946 0.920 0.915 0.916
Multilayer Perceptron 0.924 0.038 0.979 0.927 0.924 0.925

Naive Bayes 0.839 0.092 0.919 0.837 0.839 0.827
Bayes Net 0.882 0.055 0.971 0.891 0.882 0.884

Table 5.11: 10-fold cross validation of data collected with 20ms sampling rate

overlap in the data. This can be explained by the both the data loss inherent in dimensionality

reduction and the fact that even though most of the time when walking, people will exhibit behavior

that is common as a group, but different to their previous normal behavior, such as when a person

turns a corner.

Now we look at how these features perform when doing actual classification. Tables 5.10 and

5.11 list the results of running the dataset through some common classification algorithms. We

can see from these results that the above feature set performs quite well in identifying the original

users. Most of the algorithms will produce an accuracy within the 70% to 80% range for the 50ms

sampling rate and 80% to 90% range with 20 ms sampling rate, with both high precision and recall.

What is interesting to note is that the recognition rate for different users vary modestly, showing

that some users are easier to recognize than others. This may be due to the fact that different users

contributed different sizes of data, so for some users the algorithms may not have enough to data to

work with.

We’ve so far only looked at user identification when we know beforehand the set of actions that

have been performed. However it would be much more useful to be able to do user identification

5.4 ACTIVITY RECOGNITION THROUGH TIME SERIES ANALYSIS 96

ActivityLevel Range TP rate FP rate F-Score
[0.9, 1) Bayes Net 0.794 0.013 0.81

[0.9, 1) SMO 0.785 0.03 0.761
[0.8, 0.9) Bayes Net 0.7 0.016 0.714

[0.8, 0.9) SMO 0.671 0.041 0.635
[0.7, 0.8) Bayes Net 0.634 0.024 0.643

[0.7, 0.8) SMO 0.593 0.048 0.551
[0.6, 0.7) Bayes Net 0.539 0.034 0.546

[0.6, 0.7) SMO 0.527 0.056 0.486
[0.5, 0.6) Bayes Net 0.487 0.045 0.496

[0.5, 0.6) SMO 0.488 0.091 0.429
[0.4, 0.5) Bayes Net 0.434 0.056 0.429

[0.4, 0.5) SMO 0.41 0.106 0.343
[0.3, 0.4) Bayes Net 0.378 0.068 0.369

Table 5.12: User classification on unknown activities

on data which either don’t have activity labels, or aren’t based on some already known activity.

Now, we explore using the activity recognition process described in Section 4.3, on a much larger

dataset, to create arbitrary classes of similar activities and evaluate the effectiveness of performing

user identification on these groups.

For this test we use the second, much larger dataset, consisting of more than 2GB of feature

vectors of unknown activities. The feature vectors were then divided into 10 activity classes based

on the output of the ActivityClass function, with a class for each of the ranges [0, 0.1), [0.1, 0.2),

. . . , [0.9, 1). We trained and tested some classification algorithms with 10-fold cross validation on

these classes to determine if it was possible to do user classification without knowing the ground

truth activity labels. The results are shown in Table 5.12.

For all tested classes, this approach to user identification performs reasonably well compared

to randomly guessing the user which should only yield a true positive rate of 0.04. An obvious

pattern in these results is that the accuracy of the classification algorithms decrease as the out-

put of the ActivityClass function decreases. This can be intuitively explained if we think of the

ActivityClass function as a function which measures the level of motion within any window. Now,

5.4 ACTIVITY RECOGNITION THROUGH TIME SERIES ANALYSIS 97

User Accuracy TP+TN FP FN
User 1 91.4% 117 4 7
User 2 89.4% 118 3 11
User 3 83.7% 113 2 20

Table 5.13: Anomaly Detection Metrics

for those windows with less activity, there are less features which are able to distinguish between

different users. It is for this reason that the classes with lower motion levels weren’t classified, they

would predictably yield much lower accuracy and because most of the time your phone is stationary,

(eg. laying on a table), these classes were much bigger and would’ve taken significantly longer to

classify.

5.4.5 Anomaly Detection Evaluation

We continue this experiment by evaluating how this activity recognition approach performs

when doing anomaly detection, a core part of SenSec’s user authentication functionality. We eval-

uate the approach mentioned in Section 4.3.4 by taking 3 of 7 users in the 50ms walking dataset

and building gaussian models for them on half of their data. Then we take the rest of the dataset

and test it on these models with an epsilon of 1.0 × 10−10. The primary objective here is for this

anomaly detection technique to act as a user authentication system, hence we want to maximize the

detection rate, consisting of true positives (anomalies which were successfully detected) and true

negatives (normal usage which was successfully detected), while minimizing false positives (since

we don’t want to incorrectly classify the primary user as an anomaly) and false negatives (marking

anomalous usage as normal usage). For this experiment, we will consider the true positive + true

negative, false positive and false negative metrics.

Table 5.13 shows promising results, demonstrating both high accuracy and a low false positive

rate. However, again, we are using data for which there is only a single activity being performed.

Now, we tackle the problem of anomaly detection for windows of data which have undetermined

activity (so for data without labels or for previously unseen classes). Using the larger dataset, the

5.5 LOCATION AUGMENTED PASSIVE AUTHENTICATION 98

ActivityLevel Range Accuracy TPR FPR
[0.1, 0.2) 88.2% 0.898 0.812
[0.2, 0.3) 85.4% 0.869 0.811
[0.3, 0.4) 83.7% 0.851 0.791
[0.4, 0.5) 88.9% 0.903 0.803
[0.5, 0.6) 89.3% 0.905 0.753
[0.6, 0.7) 90.3% 0.915 0.706
[0.7, 0.8) 90.7% 0.918 0.691
[0.8, 0.9) 91.9% 0.932 0.760
[0.9, 1) 95.8% 0.976 0.815

Table 5.14: Unknown Activity Anomaly Detection

experiment is set up so that for each class c and user u, a model is built using half of u’s data from

class c. Then for each class we average the TPR, FPR and accuracy statistics of all users with

data in that class. In this experiment, we empirically set epsilon to 5.0 × 10−4, to maximize the

accuracy and minimize the number of false positives. An interesting note here is that this epsilon

differs from the one used in the above anomaly detection experiment by many orders of magnitude.

The reason for this can be explained by the fact that this dataset is so much bigger, with presumably

many more windows of different types. This translates to a gaussian model with a larger standard

deviation which will increase the probability of new data being generated by the model, hence we

have to set a much larger epsilon. The results of this experiment are detailed in Table 5.4.5.

Although the results show very high accuracy with an average of 89.36% across all classes,

unfortunately the false positive rate is also extremely high with an average of 0.771. This means that

the primary user will get incorrectly flagged around 3
4 of the time which is generally not acceptable

for anomaly detection systems. This shows that we will still need to combine this with other methods

or factors of authentication, to provide increased user experience.

5.5 LOCATION AUGMENTED PASSIVE AUTHENTICATION

As shown in the previous section, performing user authentication through anomaly detection

based solely on accelerometer data presents a very high false positive rate. In this experiment, we

5.5 LOCATION AUGMENTED PASSIVE AUTHENTICATION 99

seek to mitigate this problem by including location as a factor in the anomaly detection model.

5.5.1 Experimental Setup

The experiment is based on data collected from 25 Android phone users. The Android applica-

tion took both accelerometer and GPS samples, with an accelerometer sampling rate of 50ms and

GPS sampling rate of 1s. Each sample was logged with its corresponding timestamp. Because the

application may not always be operating at highest priority (most common usage shows it will oper-

ate at background priority most of the time), these sampling rates may not be very precise. With the

collected data, we further processed the location trace by parsing the GPS coordinates and placing

them into distinct areas. Specifically we divided latitude and longitude space into 0.002 × 0.002

grids as done in [14]. This resulted in grids of size 200m × 200m in the North America region

where most of our participants come from.

5.5.2 Location Data Analysis

First, we will use the location traces in the above dataset to determine if we can confirm the fact

that the majority of users spend most of their time in a few locations. For each user, we calculate the

amount of time they spent at each recorded location. As mentioned above, the collection of data may

not be particularly consistent, since we cannot control the thread priority of the application, whether

GPS tracking was turned on, whether the application was killed or not and a variety of other factors.

We manage this by defining a period of time, of five minutes, where if two consecutive samples were

recorded at the same location within this period, we would assume that the user was at this location

for the full duration between the two samples. If, however, two samples s1, s2 which indicate the

user was in location A were recorded outside of this time interval, we assume that the user left

location A at s1 and came back at s2. This is to prevent the scenario where a user goes to work,

turns on the GPS because they need it for something work related, turn it off before they go back

home, and turn it back on again at work the next day. We don’t want to calculate them as having

5.5 LOCATION AUGMENTED PASSIVE AUTHENTICATION 100

Place Mean Standard Deviation
1 50.66% 16.33%
2 15.14% 9.70%
3 6.76% 3.44%
4 3.73% 2.51%
5 3.03% 2.34%

Table 5.15: Percentage of time spent in the top 5 locations across 25 users

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.17: Percentage of time in top two locations

been at work for the whole night because two subsequent GPS samples say they were at the same

location.

Using this strategy, we were able to collect an average of 1428 hours of location data for each

user, roughly 60 days worth.

Table 5.15 shows the distribution of time spent between in the top 5 places. It can be seen that

for the majority of people, a large amount of time (approximately 50%) is spent in one location.

This is promising for this study because it implies we can indeed use location data as a factor

when performing user authentication, a conclusion shared by the findings in [14]. The smaller the

percentage of time the primary user spends in his/her less frequented areas the more the likelihood

5.5 LOCATION AUGMENTED PASSIVE AUTHENTICATION 101

of such an event occurring being an anomaly. Hence such a distribution of time spent by our

participants gives the combined advantage of increasing true anomaly detection rates and increasing

user experience, since the larger the amount of time the user spends in more frequented ’safe’ areas

the less the number of false positive triggers.

We can see a more detailed and precise picture of where each user spends the majority of their

time in Figure 5.17. As shown in the graph, a good majority, 18 of the 25 users spend 55% or more

of their time at their top two most frequented locations, presumably home and work/school.

5.5.3 Location as a Passive Authentication Factor

Here we evaluate the approach detailed in Section 4.3.5 by augmenting the previous anomaly

detection system which is based on segmenting motion into different activity groups with location

data to see if we can improve the accuracy of the anomaly detection system. In combining the

motion and location data, we need some way of assigning each motion a discrete location. In this

experiment the motion data is in the form of a feature vector. These feature vectors were created

as before, taking a window of 128 samples and calculating the motion features from this window.

Each feature vector is assigned a timestamp of when the first sample in its window was taken. We

assigned all feature vectors to the closest location with a timestamp that is both less than and within

5 minutes of the timestamp of the feature vector. We then discarded all those feature vectors for

which there did not exist a recorded location 5 minutes prior to its timestamp. This resulted in∼ 2.1

million motion feature and location pairs, with each feature vector accounting for about 6 seconds

of data.

The participants who collected that data came from a variety of backgrounds. While most of

them were situated in the United States, there were also some people from other continents. It is

important to note that this approach does not take the distance of frequented locations into account,

since each location is a different discrete entity, so given some user on the west coast of the United

States, the probability that some action was performed on the east coast is the same as the probability

5.5 LOCATION AUGMENTED PASSIVE AUTHENTICATION 102

0.034% 0.093% 0.252% 0.684% 1.854% 5.024% 13.616%36.900%100.000%
False Positive Rate

0%

20%

40%

60%

80%

100%

Tr
u
e
 P
o
si
ti
v
e
 R
a
te

Figure 5.18: ROC Curve

of the same action performed in Antarctica, given model M has seem the same number of each

action class in both locations.

To evaluate the suggested approach, we performed the following experiment. For each class

c and user u we randomly selected half of u’s samples for class c and calculated the gaussian

distributions for each feature in the feature set. Then we trained the model on all of u’s samples

for activities that weren’t in class c and the previously randomly selected set of feature vectors, by

recording a count for the number of samples in each location, in each class. We then evaluated this

model by taking the remainder of u’s feature vectors in class c combined with every other user’s

feature vectors of class c and calculated Pm(A). We then selected a threshold and labelled all those

feature vectors with probability less than the threshold an anomaly.

We chose a number of different thresholds in testing the approach. Figure 5.18 shows shows the

receiver operating characteristic curve of the different users. We calculated this curve by summing

the true positive, false positive, false negative and true negative results for all classes together for

each user. Although each user has a different number of feature vectors for each class, we don’t

5.5 LOCATION AUGMENTED PASSIVE AUTHENTICATION 103

Range Accuracy TPR FPR
[0, 0.1) 95.78% 0.9606 0.1990

[0.1, 0.2) 97.57% 0.9801 0.3311
[0.2, 0.3) 97.64% 0.9810 0.3335
[0.3, 0.4) 97.70% 0.9810 0.2997
[0.4, 0.5) 98.05% 0.9849 0.3301
[0.5, 0.6) 98.07% 0.9858 0.4108
[0.6, 0.7) 97.54% 0.9815 0.3875
[0.7, 0.8) 97.33% 0.9811 0.5255
[0.8, 0.9) 96.24% 0.9714 0.4607
[0.9, 1) 97.16% 0.9832 0.4933

Table 5.16: Anomaly detection for each class

apply any weighting when adding the classes together because we assume that the distribution of

feature vectors among classes for each user is representative of future usage. From this, we deduce

that once the threshold goes past a certain point, we are able to see very promising results. In fact,

before we even reach a false positive rate of 0.2, the true positive rate exceeds 0.8 for all users.

Table 5.16 shows the performance of the anomaly detection system for each class when the

threshold is set to 1 × 10−30. Comparing these results to those of the anomaly system without

location as a factor, we see that the accuracy has improved across the board. What is interesting to

note is that the decrease in false positive rate is much higher for the lower ranges than for higher

ranges. This seems to be indicative of the fact that the previous anomaly detection system was not

able to distinguish between user classes on the lower activity class ranges based solely on motion

alone. This can be seen intuitively since in low activity windows, for example of a person standing,

there are less distinguishing motion features. By introducing location data, a factor independent

from motion, we allow the system to recognize a person standing in North America is very different

to a person standing in Asia, and thus we are able to dramatically lower the false positive rate for

these range of activities.

5.6 USER IDENTIFICATION BASED ON INTERACTION METRICS 104

5.6 USER IDENTIFICATION BASED ON INTERACTION METRICS

The experiments thus far, have all considered time-series data. However, SenSec’s user interac-

tion modeling component takes into account how a user’s use of the soft keyboard also contributes

to their behaviometric profile. As such, this section explores the usages of the spatial modeling

techniques described in Section 4.4 to supplement our time-series models. We developed a soft-

keyboard application that can passively authenticate users in real-world environments based on

micro-behavioral metrics modeling. We analyze not only how rapidly a user types, but also a va-

riety of soft-keyboard specific micro-behavior features. These include where on the key the user

pressed, how much the user drifts over the course of a keypress, and the orientation of the phone.

Using this data, plus a variety of statistical tools, we can generate a certainty score of whether

the user’s phone is in a stranger’s hands. This score, when combined with a larger application and

decision engine, will be used in future work to block access to applications or ask for additional

authentication information when an non-authorized user is detected. For this demonstration we

leverage other users’ keypress data to help train the a micro-behavioral model, but we envision a

system where all data is collected and stored on the phone and a model is trained offline separate

from other user data.

5.6.1 Experimental Setup
5.6.1.1 Soft Keyboard Application

One of the advantages of the Android platform is the availability of lower level sensors and

View-level data. Compared with iOS or other mobile operating systems, Android exposes more

touchscreen data, allows for greater application configuration, and enables developers to design a

huge variety of alternative input devices. We took advantage of these features to build an trial input

method editor (IME) to gather example user data. This application (implementing a custom Key-

boardView for raw touchscreen access) records absolute pointer positioning and size/pressure data

for each finger or stylus. On most Android phones, there can be up to 4 or 5 touchscreen events

5.6 USER IDENTIFICATION BASED ON INTERACTION METRICS 105

per keypress, giving us an abundance of data with which to work. By implementing a custom Key-

boardView class, we can capture all of the MotionEvents that Views receive from the touchscreen,

rather than just KeyEvents. Additionally, features can be analyzed on a per-key and a holistic basis

to identify patterns with fine-grained resolution. If the regular user always presses spacebar in the

bottom right and a keypress occurs in the bottom left, the application can flag that with a different

significance than a slightly atypical press of the ‘q’ key, which may not have nearly as much training

data.

To ensure there are a sufficient number of test users and to encourage natural typing behaviors,

our application was designed to closely mirror the features of other Android keyboards: Standard

QWERTY layout, typical enter, shift, delete and ‘symbols’ key locations, and a typical key size

are all familiar attributes. Additionally, as a promotional feature—and one that has received very

positive reviews—we included 6 configurable ‘hot-strings’ that can output frequently typed strings

such as emails, mailing addresses, or phone numbers. We feel that spending time on the user

experience side of application development was a worthwhile investment for the increased user

retention and more comfortable typing environment. If users have to spend a long time adjusting

to the new system, their early data can be misleading or even counterproductive when developing a

training model.

5.6.1.2 Data Collection and Modeling

A short recruitment drive 6 and three week long collection period resulted in a group of 13

active users contributing a total of roughly 86,000 keypresses (with highly variable contributions

from each user) and about 430,000 touch data points. This gives some indication about how much

data can be collected in a short period of time, especially when gathering keypress information in all

contexts, not just from passwords or controlled phrases. To model the data, we utilize the generative
6 User studies were conducted with the approval of IRB application HS11-094, ”Human Behavioral modeling using Mo-
bile Sensors” from the IRB Board at Carnegie Mellon University. Recruitment were through on-campus advertisements
with symbolic incentives.

5.6 USER IDENTIFICATION BASED ON INTERACTION METRICS 106

or discriminant models developed in Chapter 3.

5.6.1.3 Training System Design

When designing learning algorithms, it is very important to ensure good training practices are

followed [53]. Model training, validation and testing are important parts of the process and should

be considered carefully. When analyzing, user data is split into five sections, the first four randomly

sampled from the first two weeks of collection. The final set of testing data is from at least 3 days

after the rest (to test in user environments independent from training data). Our results are generated

from the ‘final testing data.’

1. Training data for primary generative or discriminant models (50% ' 3000 keypresses from

user, 2000 from each of 3 other random users)

2. Cross validation for primary model (15%)

3. Testing data for model and training data for key-frequency scaling (10%)

4. Cross-validation for key-frequency scaling (10%)

5. Final testing data (15%)

5.6.2 Performance Evaluation
5.6.2.1 Variability in Keypress Location

Figure 5.19 displays differrent patterns that develop for users on specific keys. ‘User 1’ is

almost always in the bottom right, while ‘User 2’ is usually right around the vertical center of the

key but with wide horizontal variability. Observe also that there are two area of concentration for

‘User 2.’ Based on some contextual knowledge about that user’s behavior we found that the left

concentration is from the right finger, while the right concentration is from the left finger. Figure

5.20 compares 5 different users’ press locations on a single key, holding ‘User 1’ constant for

reference.

5.6 USER IDENTIFICATION BASED ON INTERACTION METRICS 107

−30 −20 −10 0 10 20 30 40
−100

−80

−60

−40

−20

0

20

40

60

80

Horizontal Distance from Center of Key (pixels)

V
er

ti
ca

l
D

is
ta

n
ce

 f
ro

m
 C

en
te

r
o
f

K
ey

 (
p
ix

el
s)

Key−press Locations on "space"

User 1

User 2

Figure 5.19: Two-User Comparison of Keypress Locations on ‘spacebar’. Observe how users tend
to clump, and how ‘User 2’ presses in seemingly distinct areas with their left thumb versus right
thumb.

With the key press location data, we applied a bivariate Gaussian distribution for each key. The

formula for bivariate covariance is in Equation 5.3 [44].

cov =
1

n

n∑
i=1

(wi − w̄)(wi − w̄)′, (5.3)

5.6.2.2 Keypress Length

While experienced desktop users tend to type faster than inexperienced ones [26], mobile users

type in a much wider range of circumstances and at a much wider range of rates. An interesting

exception was found with the dual-purpose period (‘. ,’) key. To access a comma, users can hold the

period key for 500 ms. The distributions of hold times around this value had some discriminatory

merit, perhaps because users had a different sense of how long it really took. See Figure 5.21 for a

visualization.

5.6.2.3 Drift

Drift was found to have different angle distributions depending on the user. Due to touchscreen

noise, drift is only counted if a finger’s last contact is more than 4 pixels from point of first contact.

The numerical cutoff is referred to as the drift threshold. See Figure 5.22 for a visualization of drift

5.6 USER IDENTIFICATION BASED ON INTERACTION METRICS 108

−40 −20 0 20 40
−40

−30

−20

−10

0

10

20

30

40

1−to−4 User Comparison of Keypress on "o"

Horizontal Offset from Center of Key (pixels)

−40 −20 0 20 40
−40

−30

−20

−10

0

10

20

30

40

V
er

ti
ca

l
O

ff
se

t
fr

o
m

 C
en

te
r

o
f

K
ey

 (
p
ix

el
s)

−40 −20 0 20 40
−40

−30

−20

−10

0

10

20

30

40

−40 −20 0 20 40
−40

−30

−20

−10

0

10

20

30

40

User 1

User 3

User 1

User 2

User 1

User 4

User 1

User 5

Figure 5.20: Quad-comparison of Keypress Locations on ‘o’. ‘User 1’ and the axes are static. This
shows how different users have (sometimes widely) varying spreads and centers.

Figure 5.21: Comparison of hold time between users on the period key.

5.6 USER IDENTIFICATION BASED ON INTERACTION METRICS 109

 10

 20

30

210

60

240

90

270

120

300

150

330

180 0

Radial Units in Degrees
Magnitudes Express Frequency

User 1

 50

 100

30

210

60

240

90

270

120

300

150

330

180 0

User 2

 100

 200

 300

30

210

60

240

90

270

120

300

150

330

180 0

Direction of Finger Drift (Polar Plot)

User 3

Figure 5.22: Comparison of finger drifts between users. The center of each circle is the normalized
location where the user first pressed down. The angles describe which direction the user drifted (but
not how far). The ray lengths are the frequency of drifts in that direction.

angle distributions where the origin is normalized location of first contact. There are a very similar

number of tap samples from each user. Observe how ‘User 3’ drifts down to the left much less often

(as a percentage of total drifts) than the other two in the figure. Observe, however, that ‘User 3’ has

a much higher total number of drifts above the threshold as the other two (the number by each ring

is frequency).

The data for drift is by no means normally distributed, but tends to clump into a number of

distinct areas for particular users. By grouping angles into a finite number of buckets (akin to the

rose histograms below), we can calculate the historical probability of a particular drift direction

against which to compare new data. Our formula for such analysis is below:

P (drift|user; θ) = αdrift ∗ P (anyDrift|user) ∗ P (θ|user) (5.4)

5.6.2.4 User Identification Results
5.6.2.4.1 Success and Error Metrics

When evaluating the success of a model or a process, it is important to define the metrics used. Our

primary objective is to identify ‘non-authorized users’ quickly, accurately, and repeatably. This is

essential in creating a functional authentication system. Our other main objective is to minimize

5.6 USER IDENTIFICATION BASED ON INTERACTION METRICS 110

how often the primary user is flagged as another user—an inconvenience. For these metrics we

define Detection Rate as the frequency of successfully detecting ‘non-authorized users’, False Re-

jection Rate (FAR) as the frequency of flagging the primary user as ‘non-authorized’ and the False

Acceptance Rate (FAR) as the frequency of failing to flag a ‘non-authorized user’ as such [53].

5.6.2.4.2 Attack Detection

Our discriminant algorithm trained on multiple users performed well in testing, detecting an me-

dian of 67.7% of simulated ‘non-authorized users’ within 5 keypresses. Our False Acceptance Rate

(FAR) was 32.3% and we had a False Rejection Rate (FRR) of only 4.6%. For longer input ses-

sions of 15 keypresses, our detection rate rose to 86.0% with a FAR of 14.0% and a FRR of only

2.2%. Models were trained with 3000 keypresses from the ‘primary user’ and 2000 from each of

3 other users. It was then tested against 550 ‘primary user’ keypresses and 500 ‘non-authorized

user’ keypresses from a variety of other users. A few keypresses from each user were ignored due

to lack of training data for those keys (a potential concern for analyzing symbol-heavy passwords).

The ‘non-authorized users’ in the testing sets were not used for training data. The test data from

the primary trainee was from at least 3 days after the training data to ensure independent (though

not assuredly distinct) environments. The performance matrix and receiver operating characteristics

(ROC) curves (for a number of different users) are in Figure 5.23.

As seen in the ROC curves (a subset of all tests), there is a sizable spread to the recognition rates

between users. This needs to be further explored, however it indicates that some users are easier

to tell apart than others. Running a model trained on ‘User 1’ with two different sets of example

‘non-authorized users’ can generate very different detection rates.

Our results do suffer from a significant hole, however. Because we strip timestamp information

from the data before logging, we cannot recreate exact strings to use as testing data. We counter this

as best we can by creating each test string with data from a single log file (which typically contain

only a few minutes of typing data). Further testing needs to be done on data known to be in ordered

5.7 SUMMARY 111

Figure 5.23: Testing performance and receiver operating characteristics for discriminant model.
67.7% of simulated ‘non-authorized users’ were caught within a 5 keypress sliding window with
a False Acceptance Rate of 32.3% and a False Rejection Rate of only 4.6%. The ROC curves
represent a subset of all tests indicating variability of detection rates between users.

strings, however actual keylogging will only be acceptable in more limited environments.

Going forward, our generative model can use these results as a benchmark against which to

measure it’s own success. More work will be required to develop robust, yet not overly sensitive

decision engines that need not be trained on other users’ data.

5.7 SUMMARY

In this chapter, we evaluated the effectiveness of our proposed approaches and models through

several experiments. We started by focusing on the language as action principle demonstrating

that we can indeed use this for location and mobility modeling, user identification, and activity

segmentation and recognition. Then we demonstrate our second model for user identification and

authentication, one which focuses on motion data as input. We augment this model with location

data and demonstrate that by doing so we are able to increase accuracy and decrease the false

positive rate. Finally, we evaluate our spatial model for user interaction by building and testing a

soft keyboard capable of passively authenticating users.

CHAPTER 6

DISCUSSION

In the previous chapter, we describe the experiments that we conduct for the particular use sce-

nario of Behaviometrics, SenSec, and how we evaluate the methodologies, models and algorithms

we discussed in Chapter 4. During these experiments and evaluations, we have encountered sev-

eral practical issues and/or limitations that are either related to the BehavioMetric models or the

application scenario itself. We classify the issues and limitations into the following categories:

1. Usability

2. Data Privacy and Security

3. Power Consumption

In this chapter, we will discuss these issues and their solutions. We will also present some

limitations to our work and propose some future research directions.

6.1 USER INTERFACE AND USER EXPERIENCE CHALLENGES

6.1.1 Usability Issues from Alpha Testing

We developed and released SenSec version 1.0 based on motion behaviometrics. Figure 6.1

shows the UI. There are 3 major views: Application Protection Configuration View (Figure 6.1.a),

112

6.1 USER INTERFACE AND USER EXPERIENCE CHALLENGES 113

Training and Threshold Settings (Figure 6.1.b), and Passcode prompt (Figure 6.1.c). The UI follows

the older version of Android UI patterns with a darker background and standard UI elements without

a lot of changes in visualization and interaction flows. One particular modification we have done

is the scrabbled passcode layout, as shown in Figure 6.1, where the numeric keys’ locations are

randomized. The intention was to added extra overhead for attackers, making it harder to guess the

passcode by looking at relative key stroke movements on the screen.

We started the alpha test in June 2012 and then released on the Google Play Store in October the

same year. As mentioned in Chapter 5, our initial tests and experiments show an average 13% False

Positive Rate or FPR. From a modeling perspective, this FPR may be reasonable. However, after we

surveyed the participants of the experiments, we found that 75% of the users felt very annoyed when

SenSec prompted them for the passcode, especially when it affected their normal operations of the

device. In an extreme case, one participant complained that the system blocked him from answering

important phone calls multiple times in a row because he was occupied with other tasks and could

only use one hand to operate the phone. With the scrambled keyboard, it is not easy to enter the code

correctly. Another participant mentioned SenSec sometimes prompted for the passcode even after

she had successfully authenticated herself just a minute piror. Other participants shared frustrations

in understanding how to use the application, especially the ”training/testing” switch on the Settings

view.

In the next section, we will illustrate the evolution of SenSec user experience, UX, based on this

feedback.

6.1.2 User Interface and Interaction Evolution

A great mobile application should constantly adapt to user feedback. SenSec is not an exception.

In SenSec version 2, we redesigned SenSec’s user interface as well as its interaction flows based on

the feedback we collected from alpha tests and initial release.

6.1 USER INTERFACE AND USER EXPERIENCE CHALLENGES 114

Figure 6.1: User Interface for SenSec Alpha

6.1.2.1 Models and System Flows

To address the aforementioned usability issues related to high FPR, we have made the following

revisions in our system and interaction flows: 1) We adopt an online and adaptive model, in which

we add the trace data shortly before a false positive to the training data and update the model.

This change would eliminate the need for the training switch in the Settings view in such a way

that the SenSec app will learn and adapt to a user’s behaviometrics gradually and use the false

positive samples (labeled by user’s successful authentication) to update the model. 2) We also add

logic to grant user a “Free Ride” period if they just successfully pass the authentication due to the

detection of changes in motion behaviometrics. This is under the assumption that a user who just

authenticated him or her self with the system should be controlling the device for a given period of

time. To prevent a sudden event that could breach mobile device security, such a “Free Ride” period

will end immediately if an abrupt context change is detected, such as high acceleration, sudden

change of location, etc.

6.1 USER INTERFACE AND USER EXPERIENCE CHALLENGES 115

6.1.2.2 SenSec Tutorial

We added a tutorial in SenSec version 2. This tutorial will be triggered when user starts the

application for the first time. As shown in Figure 6.2, the tutorial walks through the key elements

on the SenSec app and shows the new user the standard usage flow.

6.1.2.3 Multiple Protection Options

We also added the options to use a sliding pattern in addition to the passcode when SenSec is

prompting the user for authentication. Our intention is to let the user decide which applications need

“softer” security, for which a sliding pattern would be adequate to protect, and which applications

require strict authentication via passcode from a scrabbled keypad. The new UI for this change is

shown in Figure 6.3.

6.1.2.4 Home Screen and Monitoring History

The ”sense of security” is very important for security products [54] like SenSec. From the focus

groups, survey and interviews of SenSec’s potential users1, we learned that it is critical to show

the users what is under protection by the system and what is not. Therefore, we redesigned the

home screen of SenSec to have a pie chart showing how many applications are secured (via key

code), how many are protected (via sliding patterns) and how many are unprotected as shown in

Figure 6.4.a. We also added the protection history as part of the home screen, Figure 6.4.b, to

give user the behaviometrics, in form of certainty or sureness scores, over time and the threshold

relatively to these scores.

6.1.2.5 Status and Notification

We noticed that users sometime need to turn off protection completely during certain time peri-

ods for various reasons. We added this flexibility following the standard Android UI design patterns:

Start/Stop options in the Status Bar and Notification Area as shown in Figure 6.5. It not only pro-
1 User studies were conducted with the approval of IRB application HS11-094, ”Human Behavioral modeling using
Mobile Sensors” from the IRB Board at Carnegie Mellon University.

6.1 USER INTERFACE AND USER EXPERIENCE CHALLENGES 116

Figure 6.2: SenSec Tutorial

6.1 USER INTERFACE AND USER EXPERIENCE CHALLENGES 117

Figure 6.3: SenSec Protection Options: Secured, Protected via either Passcode or Sliding Pattern

Figure 6.4: SenSec Home Screen

6.1 USER INTERFACE AND USER EXPERIENCE CHALLENGES 118

Figure 6.5: SenSec Status Bar and Notification

vides a way to start or stop SenSec service, but also shows a summary of anomaly detection counts

and the accuracy rate.

6.1.2.6 Sensor Fusion for Behaviormetrics

Also, in this version, we combined location metrics, interaction metrics along with motion met-

rics in the anomaly detection process. As we mentioned in Chapter 4, SenSec App adopts a simple

hybrid model to combine behaviometrics from different sensory sources: the motion sensors are

generating location argumented confidence score Sm,l, separated from the confidence score Sk of

the user interaction metrics, i.e. software keyboard patterns. SenSec App will trigger user authen-

tication prompt whenever either of the scores drop below a threshold. Due to the nature of these

different types of sensors and the corresponding interaction flows, users will have different percep-

tions when an anomaly is detected and an authentication screen is prompted:

1. Reactive triggering: When user is trying to invoke an application either secured or protected,

6.2 DATA PRIVACY AND SECURITY 119

the certainty score is computed and compared against the threshold. User are blocked from

invoking such an application by the authentication screen if the score falls below the threshold.

2. Proactive triggering: When user is using the software keyboard, presumably within an al-

ready running application, if the certainty score, from interaction metrics, motion metrics and

location metrics combined, drops below threshold, user will be blocked from continued use

of the application until the authentication is successfully completed.

6.2 DATA PRIVACY AND SECURITY

The most critical factor that might hinder the SenSec applications is data privacy and security.

For example, in the KeySens application, by collecting so much data about each touch event on the

keyboard, we are able to compare a wide variety of features between users and develop an improved

model for user authentication. However, much of this information is highly sensitive or confidential.

We cannot expect users to willingly use a keylogger on their personal devices and we certainly do not

want to expose scores and scores of key sequences in the unfortunate event of server compromise.

Given that we do comparisons key-by-key, it was necessary to find an obfuscation strategy that

allows us to know which key was pressed, but cannot let someone find out when it was pressed.

Thus, we remove timestamp information from the keypresses and order them by a cryptographically

secure random number generator (Java’s SecureRandom class) so that the original sequences are not

reorder-able [55]. This, combined with block-level encryption and large-batch HTTPS transfers to

our server helps protect user data while allowing us access to the information we need.

From a platform point of view, we can rely on a hybrid cloud architecture in which personal

sensitive data will be kept in a private cloud fully controlled by the user [56]. He/she opts for

certain data to be exposed to a public cloud service to enable certain applications. Alternatively, a

third party widget can be deployed by the user into the private cloud and only the final analytics

results will be published. E.g., information consumers such as health monitor organizations; car

6.3 DATA AND POWER CONSUMPTION 120

insurance companies and utility companies can develop application widgets to extract statistics

from users’ sensor data. A widget 1) declares what kind of information is going to be extracted

from users’ data (e.g., “this widget will estimate your average commuting distance from home to

work”); 2) is downloaded and installed to the user’s personal cloud once the user grants information

access to the information consumer; 3) runs on the personal cloud and processes the raw sensor data

using the data analytics API; and 4) uploads the extracted analytics to public cloud. Finally, the

aggregated statistics will be used to derive behavior models for their own applications.

6.3 DATA AND POWER CONSUMPTION

Mobile devices are highly sensitive to power consumption considerations. Users expect that

applications not only improve their mobile experience, but do so with limited impact on battery

life [57]. Users are less willing to forgo longevity for common applications such as keyboards,

than for immersive ones (such as games). It was observed from our users that the soft keyboard

application was consuming less than 4 percent of the phone’s battery life. For most, it did not

even show up in the listing (alongside power hogs like Maps, Music—even Phone made the cut).

Further analysis of current draw is needed, but power consumption is markedly low. This will likely

increase, however, once the behavioral model computation is done directly on the handset.

In the SenSec App, we measure the power consumption due to data acquisition and transmis-

sion on a Google Nexus S running Android 4.0. With a polling rate of 4Hz, SenSec App collects

2MB of sensor data per hour, which is the major storage and power overhead. The following chart

shows the power consumed by sensor (accelerometers, gyroscope and magnetometers) data collec-

tion (includes writing to SD card), GPS (using an activity aware power optimization algorithm) and

wireless sensor data upload (using WIFI).

As we can see, sensor data collection (including writing to the SD card) and WIFI transmission

makes up 65% of SenSec’s power consumption. After leveraging the activity aware GPS sampling

scheme, the power consumed by GPS only takes 10% of the total power consumed by SenSec. If

6.3 DATA AND POWER CONSUMPTION 121

we use a constant rate of 3 minutes per GPS request, this number will grow to more than 50%. The

computation overhead brought by activity segmentation and recognition, as well as other system-

wide power consumption also make up 17% of SenSec’s power consumption.

!"#$

%"#$

&'#$

(#$

"#$
%)#$

*+,-./$

01*$

2343$5676$8/6,-9:--:.,$

2343$;1$*<6,$

=-7+9$<6,$

>:-<?$

Figure 6.6: The power consumed by different module/functionalities of the SenSec mobile client.
“Sensor” refers to physical sensors including accelerometers, gyroscope and magnetometers (digital
compass).“System Scan” is the scanning of running applications in the system, which consumes
very little power.

This experiment indicates that we should reduce the wireless data transmission via the mobile

device to lower power consumption. In SenSec app, we have built the modeling and inference logic

as discussed in Chapter 4 and Chapter 5, which does not rely on cloud services to perform user

identification and casual authentication. However, we still upload all the raw sensor data to cloud

services in order to keep all sensory data and traces for our Behaviometrics research and for any

future research work that could use the data sets. We envision that in future, SenSec will adopt a

hybrid approach, in which it processes and consumes part of the sensory data on the mobile devices

and sends some of the raw sensory data and some processed data to the cloud services. The cloud

services will aggregate sensory time-series from a larger population of users and try to model the

group behaviometrics in a larger scale. The resulting behaviometric models will then be pushed back

to the mobile devices and be used for more accurate user identifications and casual authentications.

In [56], we propose such a hybrid architecture called ”Fog Computing based Mobile Sensing”.

6.3 DATA AND POWER CONSUMPTION 122

Among other aspects and challenges [56] of such a Fog based approach, one critical question is

how to balance the ”local” processing vs. ”cloud” processing in a way to optimize transmission

and computation costs on the mobile devices in a practical manner. This remains a future research

direction.

CHAPTER 7

CONCLUSION

This thesis explores the problem of capturing user behavioral patterns and its applications by con-

ducting scientific study on human behavior patterns in the digital age, which is known as Behavio-

Metric. Unlike the traditional approaches to measure and quantify such metrics, we established

a new ground to measure, model and analyze human’s behaviors through sensing techniques in a

mobile computing environment.

A key step towards this end is defining the BehavioMetrics, outlining its enabling framework,

identifying various sensors on modern mobile devices and finding factors and metrics that can be

derived from them. Applying the BehavioMetrics framework in real world scenario, we proposed

a particular use case, SenSec, to passively secure mobile device and application from unauthorized

users.

We discussed in detail our BehavioMetric models and outlined the methods used to analyze and

interpret these models in a quantitative manner. We started by proposing a novel language approach

that converts multi-dimensional sensory data into behavioral text representation and utilizes NLP

techniques to perform modeling and inference tasks. Further exploiting such representations, we

proposed a hierarchical scheme, Helix, to segment and classify sensory time-series. This novel

language-based approach is then augmented with traditional time-series based methods. Moreover,

123

124

we tackled the case where time-series analysis is not particularly useful with spatial analysis tech-

niques. For each of the modeling techniques developed, we also showed their application to various

tasks, e.g., classification, identification, authentication, etc. We built SenSec app based on Mo-

biSens platform, a mobile behavior monitoring, annotation and data collection tool developed as

part of this research, to carry out some of experiments to evaluate these models and algorithms. We

also conducted user studies to drive the usability issues arise from these experiments and early field

trails of the SenSec App.

In summary, we have made the following contributions:

1. We proposed a language approach in studying mobile user behaviors. We developed several

techniques to convert raw sensory data into behavior text representation and apply NLP algo-

rithms to perform activity segmentation, recognition, classification, prediction and anomaly

detection.

2. We proposed a new unsupervised algorithm Helix to induce the underlying grammar or struc-

ture of human behaviors using partial or unlabeled heterogenous sensory data and to discover

the hierarchy of the activities considering various granularities. This hierarchical structure of

activity recognition enable us to model user behaviors not only at the micro level, but also at

the macro level.

3. We investigated how existing legacy machine learning algorithms can be adapted and applied

to the Behaviometrics context when the NLP approach is less efficient.

4. We derive a method for extracting an “activity level” from time series data which can be used

in performing user identification and anomaly detection. We also added location as a factor

to augment our models to reduce the false positive rate and improve accuracy.

5. We built and deployed a mobile security application, SenSec, based on our research on mo-

bility anomaly detection, mobile user behavior modeling through passive sensing, and micro

125

behavioral modeling using software keyboard interactions (KeySens) to release to the public

domain. From the experiments we conduct with human subjects using these applications, we

are also able to provide guidelines in selecting different models, tuning model parameters and

improving user experience, especially in handling errors and false-positives in prediction and

anomaly detection for mobile device and application security.

6. The dataset collected by SenSec, and its backend system, which has, in the field, continuously

collected huge amounts of mobile sensory data, some of them are labelled or partially labelled

for various purposes including security, lifelog, and mental status. These valuable data sets

will enable a broader range of research in modeling and analyzing human behaviors in the

mobile computing context.

As an effort to enhance the extend to which mobile devices can be proactive and assistive in our

day-to-day lives, we believe that being able to observe and understand mobile users’ behaviors will

play a key role in the future era of ubiquitous computing. In this regards, we particularly focused

on formalizing the computational models of human behaviors that can perform well in the face of

data uncertainty and complex behavioral dynamics. With the framework, theoretical foundations

and specific applications developed in this thesis, we have a good starting point towards bridging

physical world gestures and activities to the digital world mobility, security as well as intelligence.

APPENDIX A

MOBISENS FRAMEWORK

A.1 MOBISENS ARCHITECTURE

MobiSens is a full-blown mobile sensing platform designed for a range of real-world mobile

sensing applications using novel algorithms and user interface. MobiSens addresses common chal-

lenges in mobile sensing including robust sensor data sampling, power optimization, indexing and

understanding the sensor time-series and interaction with users.

After releasing MobiSens on Android Market for five months, we have collected 13,993 hours

of sensor data submitted from 310 users for the mobile lifelogger project. Several other research

projects have been using the MobiSens platform to collect user data to develop behavior-based

anomaly detection [36], future activity prediction [58], remote elderly care [59] and behavior-driven

passive authentication [60].

The MobiSens platform is a client/server system consisting of two major components: an An-

droid mobile Application and a two-tier back-end system. Figure A.1 illustrates the system architec-

ture. In this architecture, Smart phones are used as both sensing and controlling units. Mobile clients

collect various sensor data from users’ phones, apply activity segmentation, lightweight adaptive ac-

tivity recognition and directly interacts with the user. This sensor data is uploaded to the MobiSens

server to index and process the sensor data using heavy-weight algorithms. Second-tier (application

126

A.2 MOBILE CLIENT COMPONENTS 127

and service) servers use information processed by MobiSens server to provide application specific

services such as lifelogging, senior care and ground reporting etc.

Activity

Summarization

Interface

Data Preprocessor

Behavior Modeling

Algorithms

MobiSens

Data

Exchange

API

Storage

System

Device

Profile API

MobiSens Backend
Lifelogger

Applications

WebService

Data

Exchange

API

Sensing

Control

Model

Pushing

Data

UploadSensor

Widgets

Data

Aggregator

Device

Controller

Activity

Segmentation

MobiSens Mobile

Application

Message

Pool

UI

(a) MobiSens Mobile Application (b) Tier 1 (c) Tier 2

Figure A.1: MobiSens mobile application and back-end system architecture. MobiSens is a
client/server system with Android App as client and two-tier server systems.

A.2 MOBILE CLIENT COMPONENTS

The MobiSens mobile client has four components: Data Widgets, the Data Aggregator, the

Device Controller and the Activity Recognition Module. The client is designed as data-centric

and message-driven, i.e., components are both message receivers and broadcasters. They register as

listeners of a certain set of messages and then process data passed with these messages and broadcast

the processing result as new messages.

A.2.1 Data Widgets

In MobiSens, we consider all information sources as “sensors”. Sensors include “hardware

sensors” such as accelerometers and GPS, and “soft sensors” such as time, date, calendar, phone

charging status, ringtone settings etc. Data Widgets are collectors of sensor data. Data Widgets

A.2 MOBILE CLIENT COMPONENTS 128

collect raw sensor readings (Table A.1) and broadcast the information to data consumer components

using Android’s inter process communication mechanism (IPC) if the sensor sampling rate is low

or using RAM directly for high-frequency sensors such as the accelerometer, magnetometer and

gyroscope.

Table A.1: Examples of sensor data collected by MobiSens client. All these sensory data are
recorded with time-stamps. For rotation matrix, we used Motorola Droids which do not have
gyroscope sensors. The orientation of the phone is estimated by the Android SDK based on the
accelerometer readings and the gravity g-value.

Sensors Information Sensed
3-axis accelerometer motion
Magnetometer azimuth value of heading direction
GPS coordinates outdoor locations and trace
Rotation matrix orientation of the phone
Ambient light level lighting level
Shuffled sound recording environmental acoustic features
Charging state whether the phone is being charged or not
Temperature sensor environment temperature
WiFi RSS indoor location and WiFi provider
Nearby bluetooth IDs whether the user is in a crowded place
Battery level power consumption of the device
Process list which application/service is running
Network stats network traffic to/from applications

A.2.2 Data Aggregator

Mobile devices are not always connected to the Internet. We can not stream the sampled sensor

data to the MobiSens Backend at all time. MobiSens first stores all the data locally and uploads

them once a network connection is available and the phone is being charged. Two components on

the client side manage the data storage and upload process:

• Data Aggregator: a local data storage manager. The Data Aggregator receives all raw readings

from different Data Widgets and saves them to multiple files. It also pushes the raw data file

queue to the Data Uploader and notifies the Uploader which files are ready to be uploaded.

• Data Uploader uploads and removes the uploaded file to free local storage space for incoming

A.2 MOBILE CLIENT COMPONENTS 129

sensor data.

A.2.3 Sensing Profile Pulling

There are hundreds of parameters controlling the mobile client’s behavior. For example, the

sampling interval and sampling rates of each sensor impact the sensitivity of the activity recognition

and the battery life of the whole system. Different mobile sensing applications and different mobile

devices require different sensing profiles. For instance, mobile lifelogging systems need to run at

least 12 hours without charging for users who leave home in the morning and come back from work

in the late afternoon. For behavior-driven security systems (Section 3.3) using the user’s gripping

pattern, the sensing only needs to be activated for a few seconds after the screen is unlocked.

On the other hand, different Android devices have different CPU frequencies (which signifi-

cantly impact the power consumption rates) and battery capacities, MobiSens clients need to adjust

their sampling profiles to ensure the desired battery life on different devices. To avoid publishing

new versions of MobiSens on the Android Market each time when we want to adjust the client’s

parameter settings, MobiSens mobile client has a feature called profile pulling which dynamically

updates its configurations from the backend server. As the core component of this functionality,

the Device Controller periodically pulls configuration profile from the backend MobiSens server,

including list of sensors need to be sampled, sensor sampling rate and sampling strategy, data push

interval, etc.

The client profile can be customized for individual devices by specifying different configuration

files. This allows the system to adjust the sensing configuration for each user or each type of devices

if needed.

A.2.4 Activity Recognition Module

The Activity Recognition Module monitors process events from the Data Aggregator and per-

forms simple activity modeling tasks, such as motion-based activity segmentation and recognition.

A.3 MOBISENS BACKEND AND MOBILE SENSING APPLICATION SERVERS 130

The recognized activities are shown on the mobile client for the user to view and annotate. Details

of activity recognition is discussed in Section 4.1.6 and 4.3.

A.3 MOBISENS BACKEND AND MOBILE SENSING APPLICATION SERVERS

The two-tier back-end server contains the first-tier MobiSens Backend and the second-tier Mo-

bile Sensing Application servers. MobiSens Backend communicates with mobile devices directly

and provides three key functions: device control, data storage and data access management.

MobiSens Backend receives the sensor feature data pushed/uploaded from mobile devices and

stores them in a file system. The data can then be fed via MobiSens Data Exchange API to Mobile

Sensing Application servers to derive and infer meanings for sensing applications, such as lifelogger

activity summarization and social behavior aggregation. Results are pushed back to MobiSens

Backend which can be accessed by mobile devices for users to check their activity summary on their

smart phones. Mobile Sensing Application Servers access data processed by MobiSens Backend

and provide high-level services with new analytical components.

It is also possible that applications can be developed and supported without MobiSens Backend,

in which case, the analytics are done on the MobiSens client instance on the mobile devices and the

corresponding actions can be taken locally.

REFERENCES

[1] L. Song, U. Deshpande, U. C. Kozat, D. Kotz, and R. Jain, “Predictability of wlan mobil-

ity and its effects on bandwidth provisioning,” in INFOCOM 2006. 25th IEEE International

Conference on Computer Communications. Proceedings, April 2006, pp. 1 –13.

[2] G. Liu and G. Maguire, Jr., “A class of mobile motion prediction algorithms for wireless

mobile computing and communication,” Mobile Networks and Applications, vol. 1, no. 2, pp.

113–121, 1996.

[3] M. Shin, A. Mishra, and W. A. Arbaugh, “Improving the latency of 802.11 hand-offs using

neighbor graphs,” in Proceedings of the 2nd international conference on Mobile systems,

applications, and services, ser. MobiSys ’04. New York, NY, USA: ACM, 2004, pp. 70–83.

[Online]. Available: http://doi.acm.org/10.1145/990064.990076

[4] J.-K. Lee and J. C. Hou, “Modeling steady-state and transient behaviors of user

mobility: formulation, analysis, and application,” in Proceedings of the 7th ACM

international symposium on Mobile ad hoc networking and computing, ser. MobiHoc

’06. New York, NY, USA: ACM, 2006, pp. 85–96. [Online]. Available: http:

//doi.acm.org/10.1145/1132905.1132915

[5] L. Vu, K. Nahrstedt, S. Retika, and I. Gupta, “Joint bluetooth/wifi scanning framework

for characterizing and leveraging people movement in university campus,” in Proceedings

of the 13th ACM international conference on Modeling, analysis, and simulation

131

REFERENCES 132

of wireless and mobile systems, New York, NY, USA, 2010. [Online]. Available:

http://doi.acm.org/10.1145/1868521.1868563

[6] M. Kim, D. Kotz, and S. Kim, “Extracting a mobility model from real user traces,”

in Proceedings of the 25th Annual Joint Conference of the IEEE Computer and

Communications Societies (INFOCOM), Barcelona, Spain, April 2006. [Online]. Available:

http://www.cs.dartmouth.edu/∼dfk/papers/kim:mobility.pdf

[7] R. Aipperspach, E. Cohen, and J. Canny, “Modeling human behavior from simple sensors

in the home,” in Proceedings of IEEE Conf. on Pervasive Computing, Dublin, Ireland, April

2006, pp. 337–348.

[8] S. Chennuru, P.-w. Chen, J. Zhu, and Y. Zhang, “Mobile Lifelogger - recording , indexing ,

and understanding a mobile user ’ s life,” MobiCase, 2010.

[9] S. Buthpitiya, Y. Zhang, A. Dey, and M. Griss, “n-gram geo-trace modeling,” in Proceedings

of Ninth International Conference on Pervasive Computing, San Francisco, CA, June 12-15

2011.

[10] M. Baldauf and S. Dustdar, “A survey on context-aware systems,” INTERNATIONAL JOUR-

NAL OF AD HOC AND UBIQUITOUS COMPUTING, p. 2004, 2004.

[11] K. Wrona and L. Gomez, “Context-aware security and secure context-awareness in ubiquitous

computing environments.”

[12] R. Orr and G. Abowd, “The smart floor: A mechanism for natural user identification and

tracking,” ACM Press, 2000.

[13] A. Peacock, X. Ke, and M. Wilkerson, “Typing patterns: a key to user identification,” Security

Privacy, IEEE, vol. 2, no. 5, pp. 40 –47, sept.-oct. 2004.

REFERENCES 133

[14] E. Hayashi, S. Das, S. Amini, J. Hong, and I. Oakley, “Casa: Context-aware scalable authenti-

cation,” in SOUPS ’13 Proceedings of the Ninth Symposium on Usable Privacy and Security,

2013.

[15] D. Gafurov, K. Helkala, and T. Sondrol, “Biometric gait authentication using accelerometer

sensor,” Journal of Computers, vol. 1, 2006.

[16] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W.-Y. Ma, “Understanding mobility based on

gps data,” in Proceedings of the 10th international conference on Ubiquitous computing,

ser. UbiComp ’08. New York, NY, USA: ACM, 2008, pp. 312–321. [Online]. Available:

http://doi.acm.org/10.1145/1409635.1409677

[17] A.-D. Schmidt, F. Peters, F. Lamour, and S. Albayrak, “Monitoring smartphones for

anomaly detection,” in Proceedings of the 1st international conference on MOBILe

Wireless MiddleWARE, Operating Systems, and Applications, ser. MOBILWARE ’08.

ICST, Brussels, Belgium, Belgium: ICST (Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering), 2007, pp. 40:1–40:6. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1361492.1361542

[18] K. hao Chang, J. Hightower, and B. Kveton, “Inferring identity using accelerometers in tele-

vision remote controls,” in In Proceedings of the International Conference on Pervasive Com-

puting, 2009.

[19] M. Jakobsson, E. Shi, P. Golle, and R. Chow, “Implicit authentication for mobile

devices,” in Proceedings of the 4th USENIX conference on Hot topics in security, ser.

HotSec’09. Berkeley, CA, USA: USENIX Association, 2009, pp. 9–9. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1855628.1855637

REFERENCES 134

[20] E. Shi, Y. Niu, M. Jakobsson, and R. Chow, “Implicit authentication through learning user

behavior,” in Proceedings of the 13th international conference on Information security, ser.

ISC’10. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 99–113.

[21] W. Shi, J. Yang, Y. Jiang, F. Yang, and Y. Xiong, “Senguard: Passive user identification on

smartphones using multiple sensors,” in Wireless and Mobile Computing, Networking and

Communications (WiMob), 2011 IEEE 7th International Conference on, oct. 2011, pp. 141

–148.

[22] H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and A. T. Campbell, “The jigsaw

continuous sensing engine for mobile phone applications,” in Proceedings of the 8th ACM

Conference on Embedded Networked Sensor Systems, ser. SenSys ’10. New York, NY, USA:

ACM, 2010, pp. 71–84. [Online]. Available: http://doi.acm.org/10.1145/1869983.1869992

[23] S. P. Banerjee and D. L. Woodard, “Biometric authentication and identification using keystroke

dynamics: A survey,” Journal of Pattern Recognition Research, 2012.

[24] S. Zahid, M. Shahzad, S. Khayam, and M. Farooq, “Keystroke-based user identification on

smart phones,” in Recent Advances in Intrusion Detection, ser. Lecture Notes in Computer

Science, E. Kirda, S. Jha, and D. Balzarotti, Eds. Springer Berlin Heidelberg, 2009, vol.

5758, pp. 224–243. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-04342-0 12

[25] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang, “Accessory: password inference

using accelerometers on smartphones,” in Proceedings of the Twelfth Workshop on Mobile

Computing Systems & Applications, HotMobile’12. New York, NY, USA: ACM, 2012, pp.

9:1–9:6. [Online]. Available: http://doi.acm.org/10.1145/2162081.2162095

[26] F. Bergadano, D. Gunetti, and C. Picardi, “User authentication through keystroke dynamics,”

ACM Trans. Inf. Syst. Secur., vol. 5, no. 4, pp. 367–397, Nov. 2002. [Online]. Available:

http://doi.acm.org/10.1145/581271.581272

REFERENCES 135

[27] E. Maiorana, P. Campisi, N. González-Carballo, and A. Neri, “Keystroke dynamics

authentication for mobile phones,” in Proceedings of the 2011 ACM Symposium on Applied

Computing, ser. SAC ’11. New York, NY, USA: ACM, 2011, pp. 21–26. [Online]. Available:

http://doi.acm.org/10.1145/1982185.1982190

[28] L. Cai and H. Chen, “On the practicality of motion based keystroke inference

attack,” in Trust and Trustworthy Computing, ser. Lecture Notes in Computer Science,

S. Katzenbeisser, E. Weippl, L. Camp, M. Volkamer, M. Reiter, and X. Zhang,

Eds. Springer Berlin Heidelberg, 2012, vol. 7344, pp. 273–290. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-30921-2 16

[29] L. Wang and X. Geng, Behavioral Biometrics For Human Identification: Intelligent Appli-

cations (Premier Reference Source), 1st ed. Medical Information Science Reference, Sep.

2009. [Online]. Available: http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\

&path=ASIN/1605667250

[30] A. J. Aviv, B. Sapp, M. Blaze, and J. M. Smith, “Practicality of accelerometer side-channel on

smartphones,” in Proceedings of Annual Computer Security Applications Conference. (ACSAC

2012), 2012.

[31] K. Burke, Language as Symbolic Action. University of California Press, 1966.

[32] J. V. Wertsch, Mind As Action. Oxford University Press, USA, 1998.

[33] C. E. Shannon, “A mathematical theory of communication,” Bell Systems Technical Journal,

Tech. Rep., 1948.

[34] P.-W. Chen, S. K. Chennuru, and Y. Zhang, “A language approach to modeling human be-

havior,” in Proceedings of The seventh international conference on Language Resources and

Evaluation (LREC), Valletta, Malta, May 19-21 2010.

REFERENCES 136

[35] S. Buthpitiya, Y. Zhang, A. Dey, and M. Griss, “n-gram geo-trace modeling,” in Proceedings

of Ninth International Conference on Pervasive Computing, San Francisco, CA, June 12-15

2011.

[36] J. Zhu and Y. Zhang, “Towards accountable mobility model: A language approach on user

behavior modeling in office wifi networks,” in Proceedings of The IEEE International Con-

ference on Computer Communications and Networks (ICCCN 2011), Maui, Hawaii, July 31 -

August 4 2011.

[37] K. Farrahi and D. Gatica-Perez, “Extracting mobile behavioral patterns with the distant n-gram

topic model,” Wearable Computers, IEEE International Symposium, vol. 0, pp. 1–8, 2012.

[38] C. Zhai and J. Lafferty, “A study of smoothing methods for language models applied to infor-

mation retrieval,” ACM Transactions on Information and System Security, vol. 22, no. 2, pp.

179–214, 2004.

[39] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization technique occurring

in the statistical analysis of probabilistic functions of markov chains,” The Annals

of Mathematical Statistics, vol. 41, no. 1, pp. 164–171, 1970. [Online]. Available:

http://dx.doi.org/10.2307/2239727

[40] P.-w. Cheng, S. Chennuru, S. Buthpitiya, and Y. Zhang, “A Language-Based Approach to

Indexing Heterogeneous Multimedia Lifelog,” International Conference on Multimodal Inter-

faces, 2010.

[41] A. Mueen, E. Keogh, Q. Zhu, and S. Cash, “Exact discovery of time series motifs,”

Proceedings of the SIAM, 2009. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.155.1026\&rep=rep1\&type=pdf

[42] C. D. Manning and H. Schuetze, Foundations of Statistical Natural Language Processing,

1st ed. The MIT Press, Jun. 1999.

REFERENCES 137

[43] A. O. S. Project, “Touch devices.” [Online]. Available: http://source.android.com/tech/input/

touch-devices.html

[44] R. O. Duda, P. E. Hart, and D. G. Stork, “Multi-layer neural networks,” in Pattern Classifica-

tion, 2nd Edition. John Wiley and Sons, Inc., 2001, vol. 2.

[45] K. Killourhy and R. Maxion, “Comparing anomaly-detection algorithms for keystroke dynam-

ics,” in Dependable Systems Networks, 2009. DSN ’09. IEEE/IFIP International Conference

on, 2009, pp. 125–134.

[46] E. Mok and G. Retscher, “Location determination using wifi fingerprinting versus wifi

trilateration,” J. Locat. Based Serv., vol. 1, pp. 145–159, June 2007. [Online]. Available:

http://portal.acm.org/citation.cfm?id=1451879.1451884

[47] P. Bolliger, “Redpin - adaptive, zero-configuration indoor localization through user collabo-

ration,” in MELT ’08: Proceedings of the first ACM international workshop on Mobile entity

localization and tracking in GPS-less environments. New York, NY, USA: ACM, 2008, pp.

55–60.

[48] H. Lin, Y. Zhang, M. Griss, and I. Landa, “Wasp: an enhanced indoor locationing

algorithm for a congested wi-fi environment,” in Proceedings of the 2nd international

conference on Mobile entity localization and tracking in GPS-less environments,

ser. MELT’09, Berlin, Heidelberg, 2009, pp. 183–196. [Online]. Available: http:

//portal.acm.org/citation.cfm?id=1813141.1813158

[49] J. Han, E. Owusu, L. T. Nguyen, A. Perrig, and J. Zhang, “Accomplice: Location inference

using accelerometers on smartphones,” in COMSNETS, 2012, pp. 1–9.

[50] L. Van Boven, A. Kamada, and T. Gilovich, “The perceiver as perceived: Everyday intuitions

about the correspondence bias.” Journal of Personality and Social Psychology, vol. 77, no. 6,

pp. 1188–1199, 1999.

REFERENCES 138

[51] B. Logan, J. Healey, M. Philipose, E. Tapia, and S. Intille, “A long-term evaluation of sensing

modalities for activity recognition,” in Proceedings of the 9th international conference on

Ubiquitous computing. Springer-Verlag, 2007, pp. 483–500.

[52] P. Soucy, “Beyond TFIDF weighting for text categorization in the vector space model,”

in In Proceedings of the Proceedings of the 19th International Joint Conference

on Artificial Intelligence (IJCAI 2005, 2005, pp. 1130–1135. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.105.4957

[53] I. S. Organization, “Biometric performance testing and reporting,” 2006.

[54] A. Whitten, J. D. Tygar, A. Whitten, and J. D. Tygar, “Usability of security: A case study,”

Tech. Rep., 1998.

[55] J. Knudsen, “Securerandom,” in Java Cryptography. O’Reilly Media, 2010, vol. 1, pp. 38–49.

[56] J. Y. Zhang, P. Wu, J. Zhu, H. Hu, and F. Bonomi, “Privacy-preserved mobile sensing through

hybrid cloud trust framework,” in Proceedings of the 6th IEEE International Conference on

Cloud Computing, 2013.

[57] D. Gordon, J. Czerny, and M. Beigl, “Activity recognition for creatures of habit,”

Personal and Ubiquitous Computing, pp. 1–17, 2013. [Online]. Available: http:

//dx.doi.org/10.1007/s00779-013-0638-2

[58] L. T. Nguyen, H.-T. Cheng, P. Wu, S. Buthpitiya, and Y. Zhang, “Pnlum: System for prediction

of next location for users with mobility,” in Procedings of Mobile Data Challenge by Nokia

Workshop at the Tenth International Conference on Pervasive Computing, Newcastle, UK,

June 2012.

REFERENCES 139

[59] P. Wu, H.-K. Peng, J. Zhu, and Y. Zhang, “Senscare: Semi-automatic activity summarization

system for elderly care,” in International Conference on Mobile Computing, Applications, and

Services (MobiCASE), 2011.

[60] J. Zhu, P. Wu, X. Wang, and J. Y. Zhang, “Sensec: Mobile application security through passive

sensing,” in Proceedings of International Conference on Computing, Networking and Commu-

nications. (ICNC 2013), San Diego, CA, USA, January 28-31 2013.

	ADP161D.tmp
	THESIS

