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Abstract

This dissertation deals with some computational and analytic challenges for dy-

namic process operations using first-principles models. For processes with signifi-

cant spatial variations, spatially distributed first-principles models can provide ac-

curate physical descriptions, which are crucial for offline dynamic simulation and

optimization. However, the large amount of time required to solve these detailed

models limits their use for online applications such as nonlinear model predictive

control (NMPC). To cope with the computational challenge, we develop computa-

tionally efficient and accurate dynamic reduced order models which are tractable

for NMPC using temporal and spatial model reduction techniques. Then we intro-

duce an input and state blocking strategy for NMPC to further enhance computa-

tional efficiency. To improve the overall economic performance of process systems,

one promising solution is to use economic NMPC which directly optimizes the eco-

nomic performance based on first-principles dynamic models. However, complex

process models bring challenges for the analysis and design of stable economic

NMPC controllers. To solve this issue, we develop a simple and less conserva-

tive regularization strategy with focuses on a reduced set of states to design stable

economic NMPC controllers.

In this thesis, we study the operation problems of a solid sorbent-based CO2 cap-

ture system with bubbling fluidized bed (BFB) reactors as key components, which

are described by a large-scale nonlinear system of partial-differential algebraic equa-
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tions. By integrating dynamic reduced models and blocking strategy, the compu-

tational cost of NMPC can be reduced by an order of magnitude, with almost no

compromise in control performance. In addition, a sensitivity based fast NMPC al-

gorithm is utilized to enable the online control of the BFB reactor. For economic

NMPC study, compared with full space regularization, the reduced regulariza-

tion strategy is simpler to implement and lead to less conservative regularization

weights. We analyze the stability properties of the reduced regularization strategy

and demonstrate its performance in the economic NMPC case study for the CO2

capture system.
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Chapter 1

Introduction

In this chapter, we present the scope of the research work in this dissertation.

Firstly we introduce the conventional hierarchy structure for process operations

and review research developments to improve the current operational practice.

Then we define the research problems tackled in this dissertation and introduce

thesis outline.

1.1 Hierarchy Structure for Process Operation

For the process industries, operations of complex processes involve a large number

of decisions variables and it is extremely important to find an optimized operation

strategy to maximize the overall economic performance. The current practice of

operation is the so-called hierarchy planning and operations structure, which is

shown in the following figure. The upper layers, planning and scheduling layer,

decide what products to produce and in which sequences. These tasks are usually

executed on a monthly/daily basis. Then the business decisions are passed down

to the real time optimization (RTO) and advanced process control (APC) layer for

real-time implementation. Based on these business decisions, RTO finds econom-
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1.1. Hierarchy Structure for Process Operation

Figure 1.1: Hierarchy structure for process operation

ically optimal operating points by solving an optimization problem which opti-

mizes an economic objective, subject to first-principles steady state process models.

Then these operating points are passed down as setpoints to the APC layer and it

will drive the process to the setpoints sent by the RTO layer. The APC layer usu-

ally utilizes model predictive control (MPC) to determine optimal control moves.

The models used in MPC controllers are typically linear data-driven models which

are obtained through system identification. Lastly, Base-Layer Control is required

to implement the control decisions by APC, which are typically done by PID con-

trollers.

Such a hierarchy has been widely applied in process industry and has various suc-

cessful applications. However, the operation performances have been limited by

several inconsistencies existed between different layers within the structure. One

significant inconsistency is in the execution frequency of different layers. For ex-

ample, the RTO layer usually runs on an hourly basis while APC layer usually exe-

cutes every minute. Between RTO executions, if disturbances occur, RTO will take

no action to handle these disturbances until process measurements get steady and

RTO models get updated. Meanwhile APC will still track the old setpoints, which

are now suboptimal. External disturbances are very common in the daily oper-
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1.2. Research Developments

ations of real plants. For example, typical disturbances include the variations in

input feed temperature or composition and also limit changes by operators. Since

RTO runs relatively infrequently, it lags behind external disturbances and sacri-

fices the process economic performance between RTO executions. Another incon-

sistency exists due to different models used in separate layers. Although detailed

first-principles models used in RTO layers give accurate prediction of system’s eco-

nomics, the dynamics of the process is not considered. What’s more, the setpoints

by RTO layer may not be reachable for APC layer since it uses a different set of

models which are typically linear data-driven models. To mitigate this issue, a sep-

arate steady state optimization is required in the APC layer, but that may lead to

sacrifice in the overall economic performance.

1.2 Research Developments

To improve the current process operation structure, much research has been done

in this area, aiming at bridging the gaps between different operational layers and

improving the overall economic performances of process operations.

Firstly, we can see a trend of tighter integration of different layers to overcome

the shortcomings of the current hierarchy structure. For example, the concept of

dynamic real time optimization (DRTO) has been proposed to integrate the RTO

and APC layers [15, 38]. Compared with the two-layered structure, DRTO directly

optimizes the economic performance of process over a prediction time subject to

first-principles dynamic models. Similar to this idea, high-level objectives such as

process economics are added to MPC, which is denoted as economic model pre-

dictive control (eMPC) [5, 71]. More theoretical developments of economic MPC

including stability analysis will be discussed in Chapter 5. With this formulation,

process economics can be directly optimized in the dynamic control problem and

thus the limitations of the conventional RTO-APC structure could be avoided.
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1.3. Research Statement and Thesis Outline

Secondly, we can see there are increasing interests in integrating first-principles

models into dynamic process operations. For processes with strong nonlinearity

and frequent transitions, first-principles process models are crucial to provide ac-

curate predictions for dynamic behaviors. With improved solution algorithms and

increasing computing power, detailed first-principles models are being integrated

for dynamic optimization purposes. This includes the developments and appli-

cation of first-principles differential-algebraic equation (DAE) models for off-line

dynamic optimization such as optimal recipe optimization [65] and optimal grade

transition [79]. For control studies, detailed nonlinear process models are being in-

corporated into the MPC framework and this strategy is denoted as nonlinear MPC

(NMPC). Compared with linear data-driven models in MPC, first-principles mod-

els are more accurate in larger ranges and thus NMPC may help improve control

performance. Online NMPC strategies have been demonstrated on highly nonlin-

ear industrial chemical processes including batch reactors [64] and polymerization

processes [96].

Integration of optimal decision-making for process operations and application of

first-principles models are crucial to improve the overall economic performance for

complex integrated process systems. However, it should be noted that successful

applications of these strategies always require efficient solutions, which could be

challenging with tighter integration of separate layers and increasing applications

of more detailed first-principles models.

1.3 Research Statement and Thesis Outline

For process with strong nonlinearity, NMPC provides superior performance over

MPC in terms of setpoint tracking and disturbance rejection. Economic NMPC

provides a novel alternative to integrate the traditional RTO and APC layers and

it optimizes the economic performance directly. However, to facilitate the success-
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1.3. Research Statement and Thesis Outline

ful application of these ideas, improved computational performance is always re-

quired especially for complex integrated systems with detailed first-principles pro-

cess models.

The objective of this dissertation is to develop systematic approaches to handle the

computational and analytic challenges for NMPC brought by large-scale spatially-

distributed first-principles process models. Spatially distributed first-principles

process models are usually needed to provide accurate physical descriptions for

complex chemical processes with significant spatial variations. The integration of

such detailed model into dynamic process operations such as NMPC framework

requires direct transcription of the first-principles models, which lead to large-scale

models whose numerical solution are computationally expensive. To handle these

challenges, we develop computational efficient models suitable for the time-critical

application using model reduction techniques. Novel formulation for NMPC will

be discussed to improve computational efficiency. In addition, economic NMPC is

a promising solution to improve the economic performance of process operations.

For complex systems with a large number of states, in addition to computational

burden, it complicates the analysis and design of stable economic NMPC controller.

To solve this issue, we develop a regularization strategy on reduced sets of system

states to design stable economic NMPC controller.

In this thesis, we study the operation problems of bubbling fluidized bed (BFB)

reactors in a post-combustion CO2 capture process. Specific tasks for this thesis

include dynamic model reduction, computationally efficient formulations for set-

point tracking NMPC and regularization strategy for economic NMPC. The pro-

posed strategies are demonstrated on the setpoint tracking NMPC and economic

NMPC of the BFB reactors with applications in CO2 capture.

This dissertation is organized as follows:

Chapter 2 provides background and literature reviews for the tasks in the disser-
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1.3. Research Statement and Thesis Outline

tation. For NMPC, we will introduce the basic notations, formulation and stability

results for setpoint tracking NMPC. We also present the formulation of NMPC into

nonlinear programming (NLP) problems via direct transcription through high or-

der collocation with finite elements grids. We will also discuss solution strategies

for NLP and briefly describe a sensitivity based NMPC algorithm. For model re-

duction, we will provide a review of general model reduction approaches.

Chapter 3 discusses process modeling and model reduction for the BFB reactor.

Firstly we will briefly introduce the application of BFB reactors in CO2 capture pro-

cess and the rigorous modeling of BFB reactors. Then we will focus on the model

reduction for the rigorous BFB model and discuss the temporally and spatially dy-

namic reduced models.

Chapter 4 focuses on improving computational efficiency for NMPC of the BFB

reactor. We introduce an input and state blocking formulation for NMPC to fur-

ther reduce the size of NLP problem with stability guarantees. Dynamic reduced

models are integrated into NMPC and additive output correction terms are intro-

duced to handle the model mismatch. Case studies show computational cost of

NMPC can be reduced by an order of magnitude with almost no compromise in

control performance. Lastly, advanced step NMPC is applied to reduce the online

computational delay.

Chapter 5 studies the economic NMPC of an integrated CO2 capture system aiming

at reducing operational costs. A regularization strategy with reduced sets of states

is proposed for economic NMPC, which is simpler to implement and less conser-

vative compared with full regularization. We discuss the stability properties of the

reduced regularization strategy and demonstrate its performance in the economic

NMPC case study for the integrated CO2 capture system.

Chapter 6 concludes this dissertation and discusses recommendations for future

work.
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Chapter 2

Literature Review

In this chapter, we briefly review the literature in the area of model predictive

control (MPC), computational strategies and model reduction, which are closely

related with the research work in this dissertation. Firstly we introduce basic no-

tation and formulation of MPC which will be used in the later chapters. Stability

properties of setpoint tracking NMPC will also be discussed. After that, we review

the computational strategy used to solve NMPC problems and also a fast NMPC

algorithm. In the last section, we discuss general approaches for model reduction.

2.1 MPC Formulation

We consider the following discrete-time dynamic model of a plant:

x(k + 1) = f̂ (x(k), u(k), w(k))

= f (x(k), u(k)) + d(x(k), u(k), w(k)) (2.1.1)

where x(k) ∈ <nx , u(k) ∈ <nu and w(k) ∈ <nw are the plant states, controls and

disturbance signals, respectively, defined at time steps tk with integers k > 0.

The mapping f : <nx+nu 7→ <nx represents the nominal model, while the term

7



2.1. MPC Formulation

d : <nx+nu+nw 7→ <nx is used to describe modeling errors, estimation errors and

disturbances.

A general formulation of MPC for this given plant is shown as follows:

V(x(k)) :=min
zl ,vl

N−1

∑
l=0

ψ(zl , vl) (2.1.2)

s.t. zl+1 = f (zl , vl), l = 0, . . . N − 1

z0 = x(k)

vl ∈ U, zl ∈ X.

where N is the prediction horizon length of MPC, and x(k) are the initial conditions

for the dynamic plant model. The nominal plant model f (·, ·) is used to predict the

trajectory of the plant states. ψ(·, ·) is the stage cost. For setpoint tracking MPC, the

stage cost is usually a quadratic form which represents the differences between the

predicted states and setpoints. By solving the above optimization problem, MPC

can find the optimal control moves subject to the constraints on predicted states z

and controls u over a specific horizon N in the future.

The key idea of MPC is to solve this dynamic problem in a moving horizon manner.

At sampling time tk, the MPC problem (2.1.2) is solved and the optimal solution is

denoted as {z∗0 , · · · , z∗N , v∗0 , · · · , v∗N−1}. The first control move of the optimal so-

lution is extracted and implemented into the plant as u(k) = v∗0 . Then the plant

evolves as x(k + 1) = f (x(k), u(k)) + d(x(k), u(k), w(k)). At next sampling time

tk+1, the MPC problem is shifted one step forward by setting k = k + 1 and the

new state estimates x(k) are applied as initial conditions. With this moving horizon

strategy, state estimates at each sampling time provide feedback to handle process

disturbances and model mismatch.

With this formulation, MPC is suitable to control multivariable plants and can di-

rectly handle state and input constraints, which are significant advantages com-
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2.2. Stability Property of Setpoint Tracking NMPC

pared with most conventional control strategies like PID controller. Therefore MPC

has been widely applied in process industry [69] and become an active area for re-

search study [61].

MPC strategy originates in early 1980s. Cutler and Ramaker proposed the dynamic

matrix control (DMC) algorithm [25], where linear step response models are used

to predict system dynamic response. Later, we can see more variations of MPC

controller such as QDMC [32]. The linear data-driven models are widely used for

MPC because they are relatively easy to obtain and have small computational cost.

Thus linear MPC has been successfully applied in refining and petrochemical pro-

cesses where the system dynamics are only slightly nonlinear. Recently, nonlinear

MPC (NMPC), which uses nonlinear models for state predictions, are becoming

attractive, especially for processes with strong nonlinearity. In this dissertation, we

focus on the NMPC strategy using first-principles nonlinear models.

2.2 Stability Property of Setpoint Tracking NMPC

One of the key areas for NMPC study is the stability analysis of the closed-loop

system using NMPC. The stability of a system without any disturbances is called

nominal stability; while the stability of a system under disturbances is called robust

stability. In this section, we will introduce some basic definitions and assumptions

for stability analysis and briefly discuss the nominal and robust stability property

of setpoint tracking NMPC.

2.2.1 Notations and Definitions

Firstly we introduce some definitions which will be used in stability analysis.

Definition 2.2.1. [14] A function f (.): <n 7→ < is continuous in<n if for all ε > 0, there

exists a value δ > 0 such that | f (x1)− f (x2)| ≤ ε for all x1 , x2 that satisfy |x1− x2| ≤ δ.
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A continuous function f (.): <n 7→ < is Lipschitz continuous in <n if there exists a finite

L > 0 such that | f (x1)− f (x2)| ≤ L|x1 − x2| for all x1, x2 ∈ <n.

Definition 2.2.2. [59] A continuous function α(.): <≥0 7→ <≥0 is aK function if α(0) =

0, α(s) > 0, ∀s > 0 and it is strictly increasing. A continuous function α(.): <≥0 7→ <≥0

is a K∞ if it is a K function and α(s) → ∞ as s → ∞. A continuous function α(.):

<≥0 × Z≥0 7→ <≥0 is a KL function if α(s, k) is a K function in s for any fixed k > 0

and for each fixed s > 0, α(s, ·) is decreasing and α(s, k)→ 0 as k→ ∞.

Assumption 2.2.1. The set X ⊆ <n is robust positive invariant for the system (2.1.1),

namely, f̂ (x, u(x), w) ∈ X holds for all x ∈ X, w ∈W.

Definition 2.2.3. (Stable Equilibrium Point) [74] The point x = 0 is called a stable equi-

librium point of the system (2.1.1) if for all k0 > 0 and ε1 > 0, there exists ε2 > 0 such

that |xk0 | < ε2 ⇒ |xk| < ε1 for all k ≥ k0.

Next we consider nominal and robust stability. There are various forms of stability;

here we introduce the definitions of asymptotic stability for the nominal case and

input-to-state stability and input-to-state practical stability for the robust case.

Definition 2.2.4. (Asymptotic Stability) [74] The system (2.1.1) is asymptotically stable

on X if lim
k→∞

x(k)→ 0 for all x0 ∈ X and x = 0 is a stable equilibrium point.

Definition 2.2.5. (Input-to-State Stability) [45, 59] The system (2.1.1) is input-to-state

stable (ISS) in X if there exists a KL function β, and a K function γ such that for all w in

the bounded setW ,

|x(k)| ≤ β(|x(0)|, k) + γ(|w|), ∀ k ≥ 0, ∀x(0) ∈ X

Definition 2.2.6. (Input-to-State Practical Stability) [56] The system (2.1.1) is input-to-

state practically stable (ISpS) in X if there exists a KL function β, a K function γ and a

positive constant c such that for all w in the bounded setW ,

|x(k)| ≤ β(|x(0)|, k) + γ(|w|) + c, ∀ k ≥ 0, ∀x(0) ∈ X
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Lyapunov stability theorems provide a powerful tool for the stability analysis of

closed-loop systems using NMPC. The following are the definitions for Lyapunov

functions and the theorems to establish stability property based on Lyapunov func-

tions.

Definition 2.2.7. (Lyapunov Function) [74] A function V(·) is called a Lyapunov func-

tion for the system (2.1.1), if there exist K∞ functions α1, α2, α3 such that for all x ∈ X,

α1(|x|) ≤ V(x) ≤ α2(|x|) (2.2.1)

V( f̂ (x, u(x), w))−V(x) ≤ −α3(|x|)

Definition 2.2.8. (ISS-Lyapunov Function) [45, 59] A function V(·) is called an ISS-

Lyapunov function for the system (2.1.1), if there exist K∞ functions α1, α2, α3, a K func-

tion σ such that for all x ∈ X and w ∈W,

α1(|x|) ≤ V(x) ≤ α2(|x|) (2.2.2)

V( f̂ (x, u(x), w))−V(x) ≤ −α3(|x|) + σ(|w|)

Definition 2.2.9. (ISpS-Lyapunov Function) [56] A function V(·) is called an ISpS-

Lyapunov function for the system (2.1.1), if there exist K∞ functions α1, α2, α3, a K func-

tion σ and positive constants c1, c2 such that for all x ∈ X and w ∈W,

α1(|x|) ≤ V(x) ≤ α2(|x|) + c1 (2.2.3)

V( f̂ (x, u(x), w))−V(x) ≤ −α3(|x|) + σ(|w|) + c2

Theorem 2.2.1. [74] If system (2.1.1) admits a Lyapunov Function in X that satisfies

Assumption 2.2.1, then it is asymptotically stable in X.

Theorem 2.2.2. [45, 59] If system (2.1.1) admits an ISS-Lyapunov Function in X that

satisfies Assumption 2.2.1, then it is ISS in X.

Theorem 2.2.3. [56] If system (2.1.1) admits an ISpS-Lyapunov Function in X that sat-
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isfies Assumption 2.2.1, then it is ISpS in X.

2.2.2 Nominal Stability

The value function V(x) of NMPC (2.1.2) is a good candidate for Lyapunov func-

tions, which can be used to establish the stability property of NMPC. To ensure

the stability of NMPC, different formulations of NMPC have been proposed, i.e.

infinite-horizon MPC; finite horizon NMPC with terminal constraint/terminal cost;

and quasi-infinite horizon NMPC. By adding appropriate modifications on NMPC

(2.1.2), V(x) can be shown to be a Lyapunov function and thus the nominal asymp-

totic stability of MPC can be established. A review of stability property of MPC can

be found in [61].

In this section, we focus on a specific formulation of NMPC to illustrate the outline

of a stability proof, which provides a basis for the research in this dissertation.

The following is a finite horizon formulation for NMPC with terminal equality

constraints.

V(x(k)) :=min
zl ,vl

N−1

∑
l=0

ψ(zl , vl) (2.2.4)

s.t. zl+1 = f (zl , vl), l = 0, . . . N − 1

z0 = x(k), zN = xs

vl ∈ U, zl ∈ X.

Compared with the NMPC formulation (2.1.2), only terminal equality constraints

zN = xs are imposed to facilitate the stability analysis, where xs are setpoints for

tracking NMPC. Here we assume that the states and controls are restricted to the

domains X and U, respectively. The set U is compact and contains the origin; the

set X is closed and contains the origin in its interior. We consider a stage cost given

by ψ(·, ·) : <nx+nu → <, which is assumed to be Lipschitz continuous.
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Stability properties of setpoint tracking NMPC can be found in [46, 59], with the

following assumption:

Assumption 2.2.2. (Nominal Stability Assumptions for NMPC)

• The optimal stage cost ψ(x, u) satisfies αp(|x|) ≤ ψ(x, u) ≤ αq(|x|) where αp(·)

and αq(·) are K∞ functions.

Nominal stability of NMPC can be established by the following theorem.

Theorem 2.2.4. (Nominal Stability ) Consider the moving horizon problem (2.2.4) that

satisfies Assumption 2.2.2. Then, V(x) from the controller (2.2.4) is a Lyapunov function

and the closed-loop system is asymptotically stable.

To prove this theorem, we rely on a key property called the recursive feasibility

of NMPC. Namely, if we obtain optimal solutions {z∗0 , · · · , z∗N , v∗0 , · · · , v∗N−1} of

NMPC (2.2.4) at tk, then these solutions can serve as feasible solutions for NMPC

problem at tk+1 with some mild assumptions. For NMPC (2.2.4), we can construct

a feasible solution {z∗1 , · · · , z∗N , xs, v∗1 , · · · , v∗N−1, us} for NMPC at tk+1. Then we

compare the value function V(x(k)) at two consecutive sampling times. Based on

recursive feasibility and the principle of optimality, we can derive the following

inequality:

V(x(k + 1))−V(x(k)) ≤ −(ψ(x(k), u(k))− ψ(xs, us)) (2.2.5)

For setpoint tracking NMPC, the stage cost is usually a quadratic form ψ(zl , vl) =

|zl − xs|2Qx
+ |vl − us|2Qu

. Therefore, (xs, us) are the global minimum for all z ∈

X, v ∈ U. Thus the right hand side of equation (2.2.5) is always negative and V(x)

will be non-increasing and it will converge to a fixed value. Then, we can show that

lim
k→∞

ψ(x(k), u(k))→ ψ(xs, us) and with Assumption 2.2.2, we have lim
k→∞

x(k)→ xs.
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2.2.3 Robust Stability

We also make the following assumptions and establish robust stability of the NMPC

controller from the following theorem [45, 59].

Assumption 2.2.3. (Robust Stability Assumptions)

• The value function V(x) of moving horizon problem (2.2.4) is continuous and dif-

ferentiable with respect to x, with a positive Lipschitz constant LV

• d(x, u, w) is Lipschitz with respect to its arguments, with |d(x, u, w)| ≤ |d(x, u, 0)|+

Lg|w| and |d(x, u, 0)| ≤ ρ

LV
αp(|x|), where αp(|x|) is aK∞ function and ρ ∈ (0, 1).

Theorem 2.2.5. (Robust ISS Stability of NMPC Under Assumptions 2.2.2 and 2.2.3, the

cost function V(x) obtained from the solution of (2.2.4) is an ISS-Lyapunov function and

the resulting closed-loop system is ISS stable.

Under Assumption 2.2.3, the setpoint tracking NMPC with nominal asymptotic

stability will automatically inherit the ISS property under robust cases. The outline

to prove Theorem 2.2.5 is as follows:

Proo f : We compare the value functions of two consecutive NMPC problems and

bound the changes in the value functions using the following inequality:

V(x(k + 1))−V(x(k)) (2.2.6)

= V(x(k + 1))−V( f (x(k), u(k))) + V( f (x(k), u(k)))−V(x(k))

≤ LV |d(x(k), u(k), w(k))| − ψ(x(k), u(k))

≤ LV |d(x(k), u(k), 0)|+ LV Lg|w(k)| − αp(|x(k)|)

≤ −(1− ρ)αp(|x(k)|) + LV Lg|w(k)|

The derivation of inequality for the first pair relies on the nonlinear programming

(NLP) sensitivity and Assumption 2.2.3; while the second inequality follows the

proof for nominal stability. Therefore, we can show that V(x) is an ISS Lyaponuv
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function and the closed-loop system is ISS stable.

2.3 Computational Methods

Efficient solution strategies are always required for NMPC. In this section, we dis-

cuss the solution strategies for dynamic optimization and focus on the formulation

of NMPC into nonlinear programming (NLP) problems via direct transcription.

Then we will briefly introduce solution algorithms for NLP and the concept of

NLP sensitivity.

2.3.1 Solution Approaches for Dynamic Optimization

As discussed earlier, NMPC can be set up as a dynamic optimization problem.

For dynamic chemical processes, differential-algebraic equation (DAE) models are

typically used to describe their dynamic behaviors. DAE models consist of differ-

ential equations including mass and energy balances and algebraic equations such

as thermodynamic relations. The following is a general form of DAE-constrained

dynamic optimization problems:

min
z,y,v

ψ(z, y, v) (2.3.1)

s.t.
dz
dt

= f (z, y, v)

0 = g(z, y, v)

cl ≤ c(z, y, v) ≤ cu

where z, y, u represent differential variables, algebraic variables and control inputs;

f (·) are differential equations and g(·) are algebraic equations; c(·, ·) represent ad-

ditional constraints imposed on all variables.
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Many solution strategies have been proposed to solve the above DAE-constrained

dynamic optimization problem. Analytic solutions of problem (2.3.1) can be ob-

tained based on Pontryagin’s maximum principle. However, this is inefficient for

large-scale problems and difficult to handle inequality constraints. To compensate

for this issue, various direct methods are developed, which convert the dynamic

optimization problem into a nonlinear programming problem. For direct meth-

ods, they can be separated into two major categories - sequential and simultaneous

approaches, based on how DAE models are solved.

For the sequential approach, only control variables are discretized and DAE models

are solved using numerical integration methods with fixed control variables. Then

optimization is performed with respect to discretized control variables. The gradi-

ents of the objective function can be obtained by solving direct sensitivity equations

or integrating the adjoint sensitivity equations. However, several limitations exist

for this type of methods; e.g. it’s difficult to handle unstable DAE systems and in-

equality constraints. Instead multiple shooting approaches have been proposed to

handle the issues with the sequential methods. Similar to sequential methods, only

control variables are discretized for multiple shooting method. However, instead

of integrating DAE over entire time domain, multiple shooting divides the time

domain into multiple finite elements and integrates DAEs separately within each

finite element.

Moreover, simultaneous approaches are proposed, with a central idea of discretiz-

ing both control variables and state variables and solving the optimization problem

simultaneously. Compared with the sequential approach, the simultaneous ap-

proach has many advantages. With this formulation, no DAE integrator is needed

and thus excessive integration efforts can be avoided. The simultaneous approach

is also suitable to handle unstable and ill-conditioned DAE systems. In addition,

constraints on states and controls can be directly enforced. On the other hand,

simultaneous approach may lead to a large-scale nonlinear programming prob-
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lem with significant variable size and degrees of freedom. Therefore efficient NLP

solvers are required, which will be discussed in the following section. A more de-

tailed comparison of sequential and simultaneous methods can be found in [14].

In this work, we utilize the simultaneous approach to solve dynamic optimization

problem. The discretization of state variables can be achieved using orthogonal col-

location on finite elements (OCFE). In this formulation, time domain is separated

into multiple finite elements and state profiles are approximated using a weighted

sum of orthogonal polynomials within each finite element. It can be shown that

such approximation is equivalent to implicit Runge-Kutta method with high order

accuracy and excellent stability.

Next we introduce the NLP formulation for dynamic optimization problem (2.3.1)

using OCFE. Over the time domain, we introduce discrete points, 0 = t0 < t1... <

ti . . . < tN = t f . Applying orthogonal collocation to the finite elements hi = ti −

ti−1, we approximate the differential variables z(t) using Lagrange interpolation

polynomials lj(·) within each element.

t = ti−1 + hiτ (2.3.2)

zK =
K

∑
j=0

lj(τ)zi,j

t ∈ [ti−1, ti], τ ∈ [0, 1]

where j ∈ {0, . . . , K} is the index of the polynomials used in finite element i, zi,j are

the coefficients for the approximation.

Lagrange interpolations polynomials lj(τ)are defined as follows:

lj(τ) =
K

∏
k=0, 6=j

(τ − τk)

(τj − τk)
(2.3.3)

By using Lagrange interpolation polynomials for state approximation, the coeffi-
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cients zi,k are the state values at collocation points τk, k = 1, . . . , K.

Then we substitute the approximated states into the original dynamic optimiza-

tion problem (2.3.1) and enforce the resulting algebraic equations at the colloca-

tion points τk. This leads to the discretized system shown in equation (2.3.4b) -

equation(2.3.4e). The continuity of the differential states is guaranteed by equa-

tion(2.3.4e).

min
zi,j,yi,j,vi,j

ψ(zi,j, yi,j, vi,j) (2.3.4a)

s.t.
K

∑
j=0

zi,j
dlj(τk)

dτ
= hi f (zi,j, yi,j, vi,j) i = 1 · · ·N, k = 1 · · ·K (2.3.4b)

0 = g(zi,j, yi,j, vi,j) i = 1 · · ·N, k = 1 · · ·K (2.3.4c)

cl ≤ c(zi,j, yi,j, vi,j) ≤ cu i = 1 · · ·N, k = 1 · · ·K (2.3.4d)

zi+1,0 = zi,K, i = 1 · · ·N − 1 (2.3.4e)

where hi is the length of finite element i; zi,k, yi,k and vi,k are the values of differen-

tial, algebraic and control variables at collocation points τk, respectively.

By converting NMPC problem into the NLP formulation via direct transcription,

we obtain the NMPC formulation as shown in (2.1.2). For NMPC case studies in

this work, we use a 3-point Radau-collocation formulation. For control variables,

we use a piecewise constant formulation. Such transformation usually leads to a

large-scale NLP problem, which requires efficient NLP solvers. In the next section,

we will briefly introduce the optimization method to solve the above NLP problem.

2.3.2 IPOPT and NLP Sensitivity

In this section, we will discuss solution methods to the NLP resulting from the

simultaneous collocation formulation. A general formulation for the NLP problem
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can be written as follows:

min
x

ψ(x, p) (2.3.5)

s.t. c(x, p) = 0

x ≥ 0

where x are variables and p are parameters.

NLP can be solved by different optimization strategies and there exist a number

of NLP solvers. Here we consider IPOPT algorithm which is very efficient in solv-

ing large-scale NLPs. IPOPT is an interior point method based NLP solver [85].

For IPOPT algorithm, NLP (2.3.5) is reformulated into an equality constrained op-

timization problem using a barrier approach.

min
x

ψ(x, p)− µ
n

∑
i=0

ln(x(i)) (2.3.6)

s.t. c(x, p) = 0

where µ is a positive barrier parameter and x(i) denotes the ith component of the

vector x. In the reformulated problem, the inequality constraints are removed by

logarithmic barrier terms and added into the objective function. Under mild as-

sumptions, x(µ) converges to a local optimal solution of the original problem as

µ → 0. IPOPT algorithm applies this strategy and uses Newton’s method to solve

the KKT conditions derived from NLP (2.3.6), which leads to the following large-

scale linear system at iteration j:


Wj Aj −I

AT
j 0 0

Vj 0 Xj




∆x

∆λ

∆v

 = −


∇ψ(xj) + Ajλj − vj

c(xj)

XjVje− µe

 (2.3.7)

Literature Review 19



2.3. Computational Methods

where we define e = [1, 1, · · · , 1]T, X = diag(x), V = diag(v), the Hessian Wj =

∇xxL(xj, λj, vj), the Lagrange function L(x, λ, v) = ψ(x) + c(x)Tλ − xTv and the

Jacobian of equality constraint Aj = ∇c(xj).

For every barrier problem with a fixed µ, IPOPT finds the search directions by solv-

ing a smaller symmetric linear system after removing the last block row in (2.3.7).

Then a line-search filter method is used to obtain the steps. After a barrier NLP is

converged, then barrier parameter µ decreases and IPOPT solves another barrier

problem. This loop continues until the original NLP is solved as µ approaches to 0.

IPOPT is very efficient in solving large-scale and sparse NLPs, since it exploits the

sparsity of large-scale systems. In addition, the analytic Jacobian and Hessian in-

formation provided by modeling platforms such as AMPL can be used to improve

the performance of IPOPT. Therefore we utilize IPOPT to solve the NMPC prob-

lems. More detailed discussions about IPOPT can be found in [85].

In addition to the interior point methods, there are other solution methods for

NLPs, e.g. sequential quadratic programming and generalized reduced gradient

methods, and corresponding solvers including SNOPT and CONOPT. A detailed

review and comparison of different NLP solution strategies can be found in [14].

After discussing the NLP solution strategy, we will introduce the concept of NLP

sensitivity. For a parametric NLP (2.3.5) with a nominal parameter vector p0, the

optimal solution with a perturbed parameter vector p could be obtained based on

NLP sensitivity.

Assume that ψ(x, p) and c(x, p) are at least twice differentiable in x and once differ-

entiable in p. x∗(p0) is the optimum solution to NLP (2.3.5), with p = p0. As shown

in [67], assume that linear independence constraint qualification (LICQ), strict com-

plementarity (SC) and strong second-order sufficient conditions (SSOSC) hold at

x∗(p0). Then the optimal triplet vector s(µ, p)T = [x(µ, p)T, , λ(µ, p)T, v(µ, p)T] is

continuous and differentiable for p in a neighborhood of p0.
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Based on the implicit function theorem, we can find the sensitivity matrix given by

the following equation:

s(µ, p0)T

dp
= −M(s(µ, p0))

−1Np(s(µ, p0)) (2.3.8)

where M(·) and Np(·) are defined as:

M(s(µ, p0)) =


W(s(µ, p0)) A(x(µ, p0)) −I

A(x(µ, p0))
T 0 0

V(µ, p0) 0 X(µ, p0)

 (2.3.9)

Np(s(µ, p0)) =


∇xpL(s(µ, p0))

∇pc(x(µ, p0))
T

0

 (2.3.10)

Then we can get a first order approximation s̃(µ, p) of the perturbed optimal solu-

tion s∗(µ, p):

s̃(µ, p) = s(µ, p0)−M(s(µ, p0))
−1Np(s(µ, p0))(p− p0) (2.3.11)

The approximation error can be bounded by:

|s̃(µ, p)− s∗(µ, p)| ≤ Ls|p− p0|2 (2.3.12)

where Ls is a positive Lipschitz constant.

Based on the above idea, sIPOPT [67] has been implemented to provide optimal

sensitivity of solutions of parametric NLPs. sIPOPT reuses the matrix factoriza-

tion results from IPOPT, so that the sensitivity can be obtained with minimal com-

putational cost. This provides opportunities for very fast NLP sensitivity based
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approximations, which could be used for fast NMPC algorithms.

2.4 Advanced Step NMPC

Nonlinear model predictive control (NMPC) uses nonlinear process models to pre-

dict system behavior and find an optimal sequence of values for the manipulated

variables by solving the dynamic optimization problem. Compared with linear

MPC, NMPC may lead to better performance since the nonlinear first-principles

models are more robust than the linear data-driven models in larger operation

ranges. However, solving NMPC problems with detailed first-principles process

models can be computationally challenging. The computational time to solve NMPC

is usually not negligible; and this computational delay may degenerate control per-

formance and even destabilize the process [29]. Therefore, computationally effi-

cient NMPC algorithms are needed to reduce the online computational cost. Sev-

eral fast NMPC strategies have been developed, including hierarchical NMPC and

distributed NMPC. A review of fast NMPC strategies is given in [87]. Recently,

NMPC with fast updates based on NLP sensitivity becomes attractive since the on-

line computational cost is negligible. In this section, we focus on a fast advanced

step NMPC (asNMPC) algorithm proposed in [95].

As discussed earlier, NMPC problems are solved in a moving horizon manner. At

each sampling time, problem (2.2.4) is solved with z0 = x(k) as initial conditions.

Therefore, a NMPC problem can be treated as a parametric NLP and an approx-

imated optimal solution can be obtained based on NLP sensitivity. The key idea

of asNMPC is to solve the NMPC problem one sampling time in advance using

the predicted state as initial conditions and generate a perturbed optimal solution

when true states are obtained. The implementation of asNMPC algorithm can be

divided into the following two steps:

• Background calculation
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Within the sampling interval from tk to tk+1, obtain the predicted states f (x(k), u(k))

one step ahead and solve the NMPC problem in background by setting z0 =

f (x(k), u(k)).

• Online update

At the sampling time tk+1, obtain the true states x(k + 1). Calculate the per-

turbed solutions given by (2.3.11) and implement the first control move.

In this algorithm, the predicted states f (x(k), u(k)) are the nominal parameters p0

while the true states x(k + 1) are treated as parametric perturbations. Expensive

computation for the nominal NMPC problem is put into background. The online

update step is very cheap to get from sIPOPT, since the sensitivity matrix (2.3.8) has

already been factorized at the nominal optimum and only a backsolve is required.

Usually, the computational cost of online update step is one to two orders of magni-

tude smaller than the background calculation. Therefore, the computational delay

for NMPC can be avoided by asNPMC. In terms of stability analysis, the nominal

asymptotic stability and robust ISS stability are established for asNMPC in [95].

In addition, an advanced-multi-step NMPC (amsNMPC) algorithm has been pro-

posed in [90], with the central idea of extending the background calculation step

from one sampling time to multiple sampling times. A parallel and sequential im-

plementation of amsNMPC has also been proposed. This algorithm is suitable to

handle the cases where NMPC may take more than a sampling time to solve. For

the online update step, a single sensitivity update may cause infeasible input and

active set changes. This issue can be handled by a simple clipping strategy [90]

or introducing several subsequent sensitivity updates in a path-following manner

[44].

Literature Review 23



2.5. Model Reduction

2.5 Model Reduction

Mathematical models are mathematical abstractions of physical systems. A proper

mathematical model of process is important to understand the system’s behavior

and it is crucial for numerical simulation, optimization and control of these sys-

tems. However, modeling physical systems can lead to complex high-order dy-

namic models. For systems with little spatial variation, lumped parameters mod-

els can provide a good approximation of the system behavior, and they are com-

monly used for chemical units. However, for systems with multiple components

and complicated physical behavior, lumped parameter models can have signifi-

cant dimension and complexity. What’s more, to accurately describe the dynamic

behavior of processes with strong spatial-temporal dynamics, distributed param-

eter fist-principles models are usually required, which may pose computational

challenges for numerical solutions and limit their applications in real-time opti-

mization and control tasks.

Model reduction provides a systematic way to find a lower dimensional approxi-

mation of complex models with reasonable accuracy and it offers an attractive solu-

tion to integrating these complicated models into time-critical applications, such as

nonlinear model predictive control and dynamic real time optimization. For model

reduction, there are generally two types of methodologies. One is the black-box

approach, which generates surrogate models using data-driven techniques, such

as principal component analysis, artificial neural networks and Kriging methods.

There are also software implementations to generate data-driven surrogate models

[24, 58]. The other is the physics-based approach, which manipulates the structure

and equations of the rigorous model to find a lower dimensional approximation.

The physics-based approach provides not only accurate input-to-output mapping

but also access to all the states in the rigorous model.

In this dissertation, we focus on the physics-based approach to generate fast and
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accurate dynamic reduced order models which can be used for equation-based ap-

plications. For linear dynamic systems, model reduction techniques are well estab-

lished. Antoulas et al. reviewed approximation approaches for large-scale linear

systems in [7]. The general idea is to first transfer the original model using state

transformation into a new system, where important and unimportant states can be

easily separated. Then, truncation or residualization can be used to generate the re-

duced model. For nonlinear model reduction, Marquardt provided an overview of

a large variety of nonlinear model order reduction and model simplification meth-

ods from an optimization-based control perspective [60]. Despite various model

reduction methods, there is no generic approach that is appropriate for all pro-

cess systems. It is also emphasized that the proper way to assess model reduction

quality for online nonlinear model-based control is to compare the closed loop per-

formance.

For nonlinear model reduction, one representative method is nonlinear balancing,

introduced by Scherpen [76], that generalizes the idea of balancing of linear sys-

tems. The key idea is to transform a system into an equivalent form where the

importance of states can be assessed in terms of the energy in its input and output

signals, but difficulty in determining the nonlinear controllability and observability

functions limits its practical applications. Lall et al. introduced empirical balancing

of nonlinear systems by using empirical Gramians as equivalent linear Gramians

[51]. Hahn and Edgar elaborated on model order reduction by balancing empirical

Gramians and showed significant model order reduction on a small-scale distilla-

tion column model [35].

Another important model reduction technique, especially for models with multi-

ple time scale behavior, is the singular perturbation method [47]. The underlying

idea is the quasi-steady state approximation for fast states, which converts the dif-

ferential equations describing the states with fast dynamics to algebraic equations.

However, the major challenge is to identify the time scale differences that exist in
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different chemical processes, which requires prior knowledge and first hand expe-

riences with the corresponding processes. Chemical processes are characterized by

phenomena on separate time scales, which is due to both the physical characteris-

tics and the operation of the processes. By reviewing the literature, we can identify

the following principles and observations for time scale separation in chemical pro-

cesses.

On the unit level, significant time scales may exist in the following aspects:

• Differences in the orders of magnitude for reaction rates/reaction time con-

stant, e.g. Ozone decomposition reaction system [84]

• Time scale differences in multi-phase processes, e.g. air separation unit [43]

• Time scale differences in mass and heat transfer rates, e.g. fixed bed reactor

[23]

On the system level, chemical processes usually involve multiple units such as

reactors and separators. For the integrated system, the design and operation of

such system may lead to additional multiple time scale behavior. For example, for

chemical processes with large recycles, by introducing the concept of recycle num-

ber as the perturbed parameter, the fast and slow dynamics can be easily separated

[11, 48].

For a distributed parameter system modeled by partial differential equations (PDEs),

Li et al. presented an overview of model reduction techniques from a view of time-

space separation [55]. The spatial-temporal variables of the distributed parameter

systems can be expanded into a set of spatial basis functions and the correspond-

ing temporal models. Then the original infinite-dimensional PDE system can be

converted to a finite order temporal models using weighted residual methods. The

selection of spatial basis functions is crucial for model reduction and it directly af-

fects the size and accuracy of the approximated model. Spatial basis functions with

different properties lead to different type of approximation methods such as or-
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thogonal collocation, finite element, finite difference and Karhunen-Loeve method.

A more detailed discussion will be presented in Chapter 3.
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Chapter 3

Dynamic Reduced Order Models

for Bubbling Fluidized Bed

Reactors

Spatially distributed first-principles process models provide an accurate physical

description of chemical processes, but lead to large-scale models whose numeri-

cal solution can be challenging and computationally expensive. Therefore fast re-

duced order models are required for model-based real-time applications, such as

advanced process control and dynamic real-time optimization. In this chapter, we

focus on the model reduction of bubbling fluidized bed (BFB) adsorbers, which are

the key components of a post-combustion carbon capture system. In the following

sections, we will briefly introduce the background for the solid sorbent-based car-

bon capture system and the rigorous BFB reactor model. Then we will introduce

temporal and spatial model reduction for the BFB reactors. From a temporal aspect,

dynamic reduced models are generated using nullspace projection and eigenvalue

analysis methods, with the basic idea of quasi-steady state approximation for the

states with fast dynamics. From a spatial aspect, dynamic reduced models are
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developed using orthogonal collocation and proper orthogonal decomposition to

reduce the size of the rigorous model. We demonstrate the performances of the

dynamic reduced models in simulation case studies.

3.1 Introduction

Anthropogenic carbon dioxide (CO2) emission is regarded as one of the major

causes of global climate change in the scientific community. In the United States,

approximately one third of anthropogenic CO2 emission is produced from the use

of fossil fuels in power plants for electricity generation [28] and the demand for

electric power will keep growing as the U.S. and global economies grow. Therefore

it is crucial to develop techniques to reduce the amount of anthropogenic CO2 emit-

ted from power plants and considerable research has been conducted in the area

of carbon capture and storage (CCS). To improve carbon capture for power plants,

three major pathways are being actively studied, including post-combustion cap-

ture, pre-combustion capture and oxy-combustion. These three pathways have

pros and cons and a comprehensive comparison is given in a review paper [28]

by the US Department of Energy. Among these pathways, post-combustion is ap-

plicable to most existing coal-fueled power plants that are air fired and is most

suitable for retrofit. However, post-combustion capture requires an efficient sep-

aration process to remove CO2 from power plant flue gas, which has a low CO2

concentration. One popular choice is to use an amine-based solvent considering

its good reactivity and absorption capacity. Monoethanolamine (MEA) is the most

commonly used solvent for CO2 recovery. In addition, emerging technologies are

being developed to improve the energy efficiency of conventional technology. For

example, amine-based solid sorbents are considered because they may require a

relatively small amount of energy for regeneration compared with liquid solvents.

National Energy Technology Laboratory (NETL) has initiated Carbon Capture Sim-
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ulation Initiative (CCSI) to develop computational tools and models to accelerate

the development and commercialization of CCS technology [62]. A solid-sorbent-

based post-combustion CO2 capture technology has been utilized to demonstrate

how the computational models can be used to develop a carbon capture system

integrated with a coal-fired power plant [22]. The process diagram for the carbon

capture system is shown in Figure 3.1. The flue gas coming from the power plant

is fed into the carbon capture system to remove CO2. The solid sorbent is desorbed

in the regenerator and the captured CO2 can be compressed for geological storage.

Figure 3.1: Process diagram for a post-combustion, solid sorbent-based CO2 cap-
ture system

The carbon capture system proposed in [22] consists of bubbling fluidized bed

(BFB) reactors which are used as adsorber and regenerator to remove CO2 and recy-

cle sorbent. The BFB reactor is chosen as the key reactor type for post-combustion

carbon capture because it has large contact area and offers efficient mass and heat

transfer. The process feasibility of solid sorbent-based CO2 capture has also been

demonstrated in [57]. For their study, the authors use a Ca-based sorbent loop

technology and construct a pilot-scale dual fluidized bed system to remove the

CO2 from flue gas.

When operating a post-combustion carbon capture system for power plants, spe-
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cific requirements on CO2 capture fraction (e.g. 90%) should be satisfied. However,

changing loads will pose significant disturbances on the carbon capture system. Ef-

ficient controllers are needed to reject the disturbances and meet the environmen-

tal constraints. In addition, economic issues such as high energy consumption are

major bottlenecks for the commercial application of carbon capture systems [28].

Therefore flexible operation and control strategies are required to improve the per-

formance of carbon capture systems. Bui et al. [16] gave a comprehensive review

of dynamic modeling and optimization of flexible operation in post-combustion

CO2 capture plants. Included in that paper is related research work on amine-

based solvent carbon capture systems, which is applicable to other types of CO2

capture plants as well. Representative examples of strategies for flexible opera-

tion consider variations in the electricity market and, thus, implement different

operational modes with varied set points for CO2 recovery to balance the trade-off

between profit and CO2 emissions [86]. These flexible operational strategies of the

capture plant impose additional process disturbances as the setpoint of the capture

facility is changing with energy demand. Thus robust process control and online

optimization need to be developed to reject process disturbances and tracking set-

point change. Such control techniques require dynamic models that can provide

accurate predictions of the process to improve and optimize transient performance.

First-principles dynamic models arise in a wide variety of process applications

such as dynamic simulation and off-line optimization. However, the large amount

of time required to solve the detailed models limits their use for process control.

As a result, dynamic reduced order models with reasonable accuracy are required

for model-based real-time applications, such as advanced process control and dy-

namic real-time optimization. In the area of post-combustion capture, the need

for reduced dynamic models, which are used for process control, is getting in-

creased attention. A reduced order model of a CO2 absorption unit was developed

based on physical analysis and integrated with nonlinear model predictive control
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(NMPC) of the process [2]. A dynamic model of a pilot carbon capture plant was

simplified by using equilibrium based modeling instead of rate based modeling

for process control applications [54]. In this chapter, we study model reduction ap-

proaches and develop dynamic reduced order models of the BFB adsorber which

will be used for time-critical applications such as model-based online control. Next,

we introduce the full scale model of the BFB adsorber. Following that, we discuss

the model reduction for the BFB reactor.

3.2 Full Scale Model of Bubbling Fluidized Bed Adsorber

Comprehensive theoretical studies of bubbling fluidized bed reactors were initi-

ated by Kunii and Levenspiel. They developed a three-region model to describe

the behavior within a BFB reactor [49, 50]. The model identified three distinct

regions within a fluidized bed, including bubble, cloud-wake and emulsion re-

gions, as shown in Figure 3.2(a). In their model, the solid phase was assumed to be

well-mixed and isothermal. Following this approach, other researchers developed

models for fluidized bed reactors for application to catalytic processes and poly-

merization reactions [77, 82]. Their models only consider the bubble and emul-

sion regions, and the assumption for isothermality in solid phase holds. However,

temperature and pressure are key factors that have strong effects on adsorption

processes.

To better describe the dynamic behavior of adsorption process, a one-dimensional,

three-region, pressure-driven model for a BFB adsorber has been developed by re-

searchers at NETL, which considers axial variations in the solid phase and the bed

hydrodynamics [53, 63]. The kinetic model used in the BFB model assumes that

the adsorption of CO2 and water occurs through a three-reaction scheme [52]. Wa-

ter and CO2 diffuse into the pores of the solid sorbent and react with impregnated
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amines to form carbamate and bicarbonate, as shown below:

H2O(g) 
 H2O(phys) (3.2.1)

2R2NH + CO2 
 R2NH+
2 + R2NCO−2 (3.2.2)

R2NH + CO2 + H2O(phys) 
 R2NH+
2 + HCO−3 (3.2.3)

The kinetic parameters are determined based on experimental data. The reactions

are assumed to take place in the solid phase. These three reactions show different

time scales, which will be further discussed in temporal reduction section.

The hydrodynamic behavior in the reactor is described by partial differential and

algebraic equations (PDAEs), constructed from mass and heat conservation and

hydrodynamic equations. This model can be represented by the following general

PDAEs.

∂z
∂t

=
∂z
∂x

+ f (z, y) (3.2.4a)

g(z, y) = 0 (3.2.4b)

where z are differential variables, y are algebraic variables. The detailed equations

and boundary conditions are presented in the Appendix.

For a differential slice in the model shown in Figure 3.2(b), mass and heat balances

are written for each phase and region. The differential equations consider the effect

of axial material flow and transfer terms between different regions. The gas phase

mass balance equation in the bubble region is shown below as an example:

∂cb,j

∂t
δAx = −

∂Gbyb,j

∂x
− AxδKbc,j(cb,j − cc,j) + Kg,bulk,j (3.2.5)

The term on the left hand side of equation (3.2.5) is the accumulation term for

the component concentration in the bubble region. The three terms on the right

hand side represent the effect of upwards gas flow through the bubble region, mass
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(a) Sketch of the BFB ad-
sorber

(b) Mass and energy relations in a differential slice

Figure 3.2: Three-region BFB model

transfer between the bubble and the cloud-wake region, and the bulk flow between

the bubble and the emulsion region, respectively. Here cb,j and cc,j represent the

concentrations of component j in the bubble and the cloud-wake region. Gb is the

axial flow rate of gas through the bubble region; yb,j is the gas mole fraction. Ax

is the cross sectional area; δ is the volume fraction of the bubble region; Kbc,j is the

mass-transfer coefficient for component j; Kg,bulk,j is the flow rate of component j

into the bubble region from the emulsion region due to a bulk flow of gas. The

component mass and energy balances are enforced as boundary conditions at the

bottom (x = 0) and the top (x = L) of the reactor. For equation (3.2.5), since the flue

gas is fed at the bottom, the gas flow rate and component mole fraction at x = 0

are the same as the input flue gas. In addition to differential equations, a set of

algebraic equations are included to calculate hydrodynamic properties, heat and

mass transfer coefficients, reaction kinetics, gas phase properties and the sizing of

the reactor and heat exchanger. Most algebraic equations are correlations based on

experimental studies with high nonlinearities. A brief summary of the algebraic

equations in the BFB model is also given in the Appendix.
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The BFB model [53, 63] was implemented in Aspen Custom Modeler (ACM), an

equation-based process model development and simulation environment devel-

oped by Aspen Technology. Here we denote this model as original full scale BFB

model. The original full scale BFB model is discretized using the finite difference

method over 100 nodes. After spatial discretization, the BFB model becomes a sys-

tem of differential and algebraic equations (DAEs) as described by the following:

dz
dt

= f (z, y) (3.2.6a)

g(z, y) = 0 (3.2.6b)

A first order backward difference method is used for all upwards flow within the

reactor, and a forward finite difference method is used for downwards flow. The

discretized system consists of more than 10,000 differential and algebraic equa-

tions. Solving such a large-scale DAE model is computationally expensive for real-

time applications. Thus, a dynamic reduced order model of the BFB adsorber is

needed for model-based control and optimization of the carbon capture system.

In the original full scale BFB model, a number of physical properties in the gas phase

are used within the model, such as gas phase viscosity and molar heat capac-

ity. These properties are calculated using Aspen properties. The equation of state

used in the original full scale BFB model is the Peng-Robinson equation with Boston-

Mathias modifications. With the large physical and thermodynamic properties

database in Aspen, the property functions give accurate predictions of the gas

phase physical properties; however, these functions are implicit subroutines, and

the explicit form of equations are inaccessible. Moreover, it’s desired to have ex-

plicit forms for model equations in many cases. Firstly, some physics-based model

reduction approaches, such as proper orthogonal decomposition, require the ex-

plicit form of all model equations. In addition, access to the full explicit equations
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will enable implementation of the model in various algebraic modeling environ-

ments, such as AMPL [31] and PYOMO [36], where state-of-art solvers can be eas-

ily used. Considering that the BFB model will be used for equation-based control

and optimization studies, we introduce some model simplifications to replace these

implicit functions, before any model reduction is performed. With reactor pressure

and temperature within a limited range, linear regression models can give accu-

rate predictions of gas phase properties. Linear regression models are developed

off-line based on the training data given by the Aspen property functions, and they

are included in the BFB model to replace the implicit property functions. For more

extreme operating conditions, more sophisticated models such as Kriging models

can be used for accurate approximations. The BFB model after the manipulations

described above serves as the reference model on which we apply model reduction.

Compared with the original full scale BFB model, the reference BFB model can achieve

about 30% reduction in simulation time and the maximum relative errors for key

outputs are within 2%.

Since there is no generic model reduction technique for nonlinear process systems,

careful analysis of the reference BFB model is required to find the most appropriate

techniques and achieve successful model reduction. For the reference BFB model

described by large-scale DAEs, there are some characteristics which we could ma-

nipulate. First is the stiffness ratio of a DAE system, which is defined as the ratio

of the largest real part of eigenvalues to the smallest in the local Jacobian matrix.

A high stiffness ratio limits the integration step size due to stability considerations

[9]. In the BFB model, system dynamics shows multiple time scales due to factors

such as the reaction kinetics and phase differences, which lead to high stiffness.

In addition, the huge number of differential and algebraic equations after spatial

discretization also increases the simulation time. In this work, time scale decom-

position is utilized to reduce the stiffness of the system from a temporal aspect.

Orthogonal collocation on finite elements and proper orthogonal decomposition
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(POD) reduction are applied to reduce the number of differential and algebraic

equations discretized in space. Next we will discuss the derivation of temporally

reduced models using time scale decomposition techniques. Case studies are con-

ducted to validate the temporally reduced models. Then we will introduce spatial

model reduction using collocation and POD. Simulation results of reduced models

by spatial decomposition and combining temporal and spatial methods are pre-

sented.

3.3 Temporal Model Reduction for BFB Adsorber

As mentioned in chapter 2, singular perturbation is a useful tool for the reduction

of models with separate time scales. The standard singularly perturbed form of

ordinary differential equation (ODE) systems [47] is defined as follows.

żs = f (zs, z f , t, ε)

εż f = g(zs, z f , t, ε)
(3.3.1)

Here ε is a very small parameter, zs and z f denote slow and fast states. As ε → 0,

the original ODE system collapses to a reduced DAE system with fewer differential

equations:

żs
r = f (zr

s, zr
f , t, ε)

0 = g(zr
s, zr

f , t, ε)
(3.3.2)

The reduced system is less stiff and has nearly the same dynamic behavior when

ε is sufficiently small. A major challenge in using this method is the conversion of

process models to the standard perturbed form, which is not trivial and requires

sufficient prior knowledge. In chapter 2, we summarize a few guidelines for singu-

lar perturbation in modeling of chemical processes. For our case, the BFB reactor is
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Table 3.1: Forward and backward equilibrium reaction rates

r f (mol/m3s) rb(mol/m3s)
Reaction 1 106 106

Reaction 2 100 100

Reaction 3 10−1 10−1

r f - forward equilibrium reaction rates
rb - backward equilibrium reaction rates

modeled by PDAEs to describe its spatial and temporal features. To deal with this

complex process model after spatial discretization, two general approaches are uti-

lized to analyze and manipulate the time scale differences within the BFB model.

In this section, we directly perform model reduction on the reference BFB model

described by DAE system (3.2.6).

3.3.1 Temporally Reduced Model Using Nullspace Projection

When modeling dynamic chemical processes, we often encounter synergistic fast

and slow modes which cause difficulties in numerical solutions. Nie et al. [65]

proposed a nullspace projection method which provides a systematic way to re-

formulate a system of complex reaction equations with multiple time scales, and it

has been successfully applied to simplify polymer reaction systems. This method

inherits an idea similar to quasi-steady state approximation from singular pertur-

bation but focuses on the time scale differences in equilibrium reaction rates. The

kinetics model used in the BFB adsorber includes three equilibrium reactions, as

shown in equation (3.2.1) - equation (3.2.3). From simulation results, we find that

multiple time scales exist in these reactions. As shown in Table 3.1, we can see

that the forward and backward reaction rates of reaction 1, the water physisorp-

tion reaction, are much larger than the other two reactions, which indicates the

physisorption of water is much faster. Based on this observation, the nullspace

projection method, as described in the following, is utilized to simplify the reac-

tion kinetics in the BFB model.
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The mass balance equation systems can be described by the following equation:

ż = A r(z) + g(z, t) (3.3.3)

where z are component concentrations, A is the stoichiometric matrix, r(z) are reac-

tion terms and g(z, t) are additional terms including mass transfer. By partitioning

the irreversible and equilibrium reactions, we can obtain the following system:

ż =

[
A1 A2

]  r1(z)

σr2(z)

+ g(z, t) (3.3.4)

where r1(z) and σr2(z) represent reaction rates for irreversible and equilibrium re-

actions. σ is a very large number which makes the corresponding reactions much

faster than the others. Then we multiply both sides of equation (3.3.4) with a non-

singular matrix
[

Y Z

]T

, where ZT A2 = 0, which leads to a reformulated sys-

tem:

YT ż = YT A1r1(z) + σYT A2r2(z) + YTg(z, t) (3.3.5)

ZT ż = ZT A1r1(z) + ZTg(z, t) (3.3.6)

In equation (3.3.6), fast equilibrium reaction rates σr2(z) are removed, but they

still exist in equation (3.3.5). The term σYT A2r2(z) can be separated into zero and

non-zero parts and Y can be partitioned accordingly, which gives the following

formulation: YT
a

YT
b

 ż =

 YT
a

YT
b

 A1r1(z) +

 0

σ f (z)

+

 YT
a

YT
b

 g(z, t) (3.3.7)

When σ → ∞, f (z) is required to equal zero in order to get a stable solution; this

describes the equilibrium manifold of the fast reaction system. Thus, we can get

the reformulated DAE system shown in equation (3.3.8) - equation(3.3.10), which
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is less stiff but with the same asymptotic behavior.

YT
a ż = YT

a A1r1(z) + YT
a g(z, t) (3.3.8)

f (z) = 0 (3.3.9)

ZT ż = ZT A1r1(z) + ZTg(z, t) (3.3.10)

As mentioned before, physisorption of water is several orders of magnitude faster

than the other two reactions, and the nullspace projection ZT A2 = 0 is applied to

remove these fast dynamics. The physical basis is that the fast reaction is assumed

to be always at equilibrium, and only slow reactions need to be described by dif-

ferential equations. After the nullspace projection, the mass balance equation for

gaseous and physisorbed water in both the cloud-wake region and the emulsion

region, as shown in equations (A.3), (A.5), (A.7) and (A.9) in the Appendix, are

removed. A quasi-steady state approximation for the fast reaction is introduced

which forces the forward rates of the water physisorption reaction to be equal to

the backward reaction rate. The nullspace projection also generates pseudo species

s1 and s2 defined in equations (3.3.11) and (3.3.12), which are described by new

differential equations (3.3.13) and (3.3.14).

s1 = cc,H2O
εd

1− εd
+ nc,H2Oρs (3.3.11)

s2 = ce,H2O
εd

1− εd
+ ne,H2Oρs (3.3.12)

ṡ1 = −r2,c +
Kbc,H2O(cb,H2O − cc,H2O)− Kce,H2O(cc,H2O − ce,H2O)

fcw(1− εd)

− ∂Jcnc,H2O

∂x
1

fcwδ(1− εd)
− ρsKce,bs(nc,H2O − ne,H2O)

fcw(1− εd)

− Ks,bulk,H2O

Ax fcwδ(1− εd)

(3.3.13)
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ṡ2 = −r2,e +
δKce,H2O(cc,H2O − ce,H2O)

(1− fcwδ− δ)(1− εd)
−

Kg,bulk,H2O

(1− fcwδ− δ)(1− εd)Ax

+
∂Jene,H2O

∂x
1

(1− fcwδ− δ)(1− εd)
− δρsKce,bs(nc,H2O − ne,H2O)

(1− fcwδ− δ)(1− εd)

+
Ks,bulk,H2O

Ax(1− fcwδ− δ)(1− εd)

(3.3.14)

In these reformulated differential equations, the first terms on the right hand sides

are the reaction rates of the second reaction shown in equation (3.2.2), which rep-

resent the slow time scale; the other terms are the mass transfer terms. Compared

with the original mass balance equations for gaseous and physisorbed water, the

reaction rates of the fast reaction are removed. In terms of model size, the reduced

model using nullspace projection achieves a 10% reduction in the number of dif-

ferential equations.

Next, a case study is conducted to validate the temporally reduced model. The BFB

adsorber is designed to remove CO2 from flue gas emitted by power plants. CO2

removal fraction and sorbent loading are key outputs which indicate the efficiency

of the adsorber. However, when operating the CO2 capture plant, changing input

conditions of the flue gas stream will cause disturbances to the BFB adsorber. For

example, the load of power plants may change in response to fluctuations in power

demand. This load following leads to variations in the flue gas flow rate, which is

a major disturbance to the BFB adsorber. In this study, multiple step changes in

the flow rate of flue gas and flow rate of solid sorbent are introduced, and we com-

pare the dynamic behavior of two key outputs, CO2 removal fraction and sorbent

loading, predicted by both the reduced and the reference BFB model. Both models

are implemented in Aspen Custom Modeler (ACM) V7.3. The base case conditions

are given in Table 3.2. All dynamic simulations were performed on an Intel i7-3770

3.40 GHz personal computer. The ACM integrator uses the implicit Euler method,

with an integration error tolerance of 10−5. The equation and variable tolerance is

10−7. These settings apply for all dynamic simulation tests in this chapter.
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Table 3.2: Base case conditions

Design parameters Gas conditions Solid conditions
Dt 9 m Gb,in 9950 mol/s Fsorb,in 166.67 kg/s
Lb 5 m Tg,in 313 K Tsorb,in 323 K
dx 0.02 m yg,CO2,in 0.13 nHCO3,in 0.01 mol/kg solid
Nx 940 yg,H2O,in 0.06 nH2O,in 0.7 mol/kg solid
Nor 2500 m−2 yg,N2,in 0.81 nNHCO2,in 0.7 mol/kg solid

Table 3.3: Dynamic simulation results

Simulation time (s) MRE1 (%) MSE1(%2) MRE2(%) MSE2(mol2/kg2)
Reference model 193 - - - -
RM-1 122 0.017 2.45E-5 0.0081 3.06E-8

RM-1 - temporally reduced model using nullspace projection
MRE - maximum relative error, MSE - mean squared error
1 - CO2 removal fraction, 2 - sorbent loading

Figure 3.3 shows the dynamic behavior of both the reference model and temporally

reduced model RM-1 under disturbances. We can see that the dynamic response

of both models are nearly the same, but the reduced model requires about 35% less

simulation time because the reduced system becomes less stiff. The performance

data are listed in Table 3.3. From these simulation results, we can conclude that

the nullspace projection technique is applicable to the model reduction of the BFB

adsorber, and the reduced model can greatly reduce the computational cost with

very small error in the model’s key outputs.

3.3.2 Temporally Reduced Model Using Eigenvalue Analysis

In addition to manipulating the time scale differences in the reaction kinetics, we

also investigate the system’s overall dynamics, which can be well characterized

by the eigenvalues of the Jacobian matrix. Fast states, which quickly reach steady

state, are usually associated to eigenvalues with real parts, Re(λ), that are negative

and large in magnitude. If the system contains two distinct groups of eigenvalues

λ1 · · · λi and λi+1 · · · λn such that,

· · · < Re(λi−1) < Re(λi)� Re(λi+1) < Re(λi+2) < · · ·
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Figure 3.3: Comparison of output profiles of the reduced and reference BFB model

then fast and slow time scales exist when the separation ratio ζ, defined as the ratio

of Re(λi) to Re(λi+1), is large, usually greater than one order of magnitude [4].

The spatially discretized reference BFB model is a nonlinear DAE system defined

by equation (3.2.6). By making perturbations, we can obtain the locally linearized

system. The Jacobian matrix A of the DAE system (3.2.6) is determined by comput-

ing the Schur complement of the linearized system.

∆ż = A∆z, A =
∂ f
∂z
− ∂ f

∂y
· ∂g

∂y

−1

· ∂g
∂z

(3.3.15)

Using equation (3.3.15), we can calculate the Jacobian matrix and its eigenvalues

to see if different time scales exist . Robertson and Cameron [75] empirically re-
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lated the separation ratio to the model reduction error and presented a homotopy-

continuation technique to identify the eigenvalue-state association; however this

method can only be used for one-to-one association between eigenvalues and states.

For complicated systems, a group of eigenvalues may be associated with a group of

states. Here the unit perturbation spectral resolution (UPSR) matrix [19] is used to

obtain a quantitative measure of the levels of association between all eigenvalues

and states. The key idea is to use the response of a state to a perturbation in itself to

measure the eigenvalue-to-state association. The UPSR matrix P is defined as the

element by element product of eigenvector matrix of Jacobian A and the transpose

of its inverse matrix. The element Pij can be calculated by:

Pij = Vij(V−1)ji (3.3.16)

where V is the eigenvector matrix of the Jacobian A defined by equation (3.3.15).

Pij measures the strength of association between state xi and eigenvalue λj. The

larger Pij is, the stronger the association between state xi and eigenvalue λj. In this

way we can associate fast/slow states with eigenvalue groups with large/small

real parts. Then we convert the differential equations of fast states to algebraic

equations. The resulting DAE system may become high index after the conversion.

Index reduction is needed if the index of the reduced DAE system is greater than

1, especially because consistent initial conditions are required.

In general, the dynamics of mass and heat transfer in different phases have differ-

ent time scales. Focusing on the different time scales of states in different phases

and regions, we further simplify the BFB model and build a single stage model

in which the spatial distribution is ignored. By fixing the incoming and outgoing

flow variables in a differential slice of BFB model, as shown in Figure 3.2(b), we

obtain the single stage model. The original BFB model can be treated as a series

connection of the single stage model. Next the Jacobian matrix of the single stage

model is calculated using automatic differentiation with Matlab objects (adiff). We
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introduce step changes in the input conditions to generate the transient response

of the model. Eigenvalue variations of the system are calculated using dynamic

simulation data. It should be noted that the following eigenvalue variations only

correspond to a representative dynamic trajectory. However, different input dis-

turbances will not significantly change the underlying physics for this solid-gas

reaction system. Therefore, we use a representative case to analyze the time scale

differences in system states. From Figure 3.4(a), we can find a clear separation of

two distinct eigenvalue groups in the reference system. The absolute values of the

three eigenvalues in the bottom of the figure are several orders of magnitude larger

than the other eigenvalues, which corresponds to the fast dynamics in the reference

system. The criterion to classify the slow and fast modes is to choose a separation

which gives the largest separation ratio. In that way, less error will be introduced

if the corresponding fast dynamics are removed. Based on this criterion, the fast

and slow mode separation is shown in Figure 3.4(a). The separation ratio of the

two groups is 843, which shows that fast and slow modes exist. By analyzing the

UPSR matrix, the 3 eigenvalues in the fast mode are associated with the gaseous

water concentration in the emulsion and the cloud-wake regions as described by

equation (A.3) and equation (A.7) and the nitrogen concentration in the bubble re-

gion as described by equation (A.1). It is noted that all the fast eigenvalues are

associated with states in the gas phase. The physical basis is that the dynamics of

states in the gas phase are usually faster than the solid phase. The gaseous water

concentration states in the emulsion and the cloud-wake regions are identified as

fast states because of the fast kinetics of water physisorption, which is consistent

with the previous analysis. The nitrogen concentration is identified as a fast state

because nitrogen is not involved in any reaction and the bubbles move very quickly

upwards and nitrogen mass transfer is nearly instantaneous. In the reduced model,

the differential equations for these fast states are converted to (index 1) algebraic

equations. By comparing the curves shown in Figure 3.4(b), we can tell that, in the

reduced system, all the eigenvalues in fast mode are removed, which validates our
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eigenvalue-to-state association.
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Figure 3.4: Eigenvalue variation during transient response

Neglecting axial variations in temperature and pressure, the time scale decompo-

sition of the single stage model is applied to the reference BFB model to gener-

ate the reduced model RM-2. Then, we test the performance of RM-2 in the case

study. The simulation data are listed in Table 3.4. From Figure 3.5, we can see that

the predicted response of the reference and reduced models have nearly the same

dynamic behavior. The major difference is caused by the approximation of fast

dynamics during transient response. The simulation time of the reduced model

RM-2 is reduced by about 15%. Based on simulation tests and physical analysis,

we conclude that the reduced model generated by eigenvalue analysis reduces the
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Table 3.4: Dynamic simulation results

Simulation time (s) MRE1(%) MSE1(%2) MRE2(%) MSE2(mol2/kg2)
Reference model 193 - - - -
RM-2 168 0.32 1.67E-4 0.023 4.31E-8

RM-2 - temporally reduced model using eigenvalue analysis

computational cost with only small error in predicting the model’s key outputs.

Figure 3.5: Comparison of output profiles of the reduced and reference BFB model

3.3.3 Summary of Results

In this section, a nullspace projection scheme is used to simplify the reaction ki-

netics and an eigenvalue analysis technique is utilized to study time scale differ-

ences in the system’s overall dynamics. Simulation results in Table 3.5 show that

both techniques lead to reducing simulation time while maintaining good accu-
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Table 3.5: Dynamic simulation results

Simulation time (s) MRE1 (%) MSE1 (%2) MRE2 (%) MSE2 (mol2/kg2)
Reference model 193 - - - -
RM-1 122 0.017 2.45E-5 0.0081 3.06E-8
RM-2 168 0.32 1.67E-4 0.023 4.31E-8
RM-3 117 0.32 2.02E-4 0.0093 2.59E-8

RM-1 - temporally reduced model using nullspace projection
RM-2 - temporally reduced model using eigenvalue analysis
RM-3 - combined temporally reduced model

racy. We also observe that the temporally reduced model using nullspace projec-

tion achieves better performance than eigenvalue analysis. One reason is that the

time scale difference in reaction rates is more significant than those in the eigen-

value groups, while the performance of the reduced model is dependent on the

time scale differences that exist in the reference model. Usually, the larger the dif-

ference, the better the approximation. We can further improve the performance of

the reduced model by combining these two methods. Since the fast dynamics of

gaseous water has already been removed by nullspace projection, in the combined

temporally reduced model, we only introduce the quasi-steady state approxima-

tion for nitrogen concentration based on eigenvalue analysis. Dynamic simulation

results are listed in Table 3.5. By comparing the results, we find that the reduced

model RM-3 with combined techniques is faster than RM-1 or RM-2 and maintains

reasonable prediction accuracy.

Considering the generalization of these methods, both methods can be applied to

model reduction of general first-principles process models apart from the BFB ad-

sorber. The performance of reduced model depends on the inherent features of

the rigorous model. The nullspace projection method is effective for models with

significant differences in reaction rates. Prior knowledge about the reaction kinet-

ics is needed, which can be achieved by simulating rigorous models or by exper-

iments. The eigenvalue analysis and spectral association technique give general

insight to a system’s dynamic modes. For nonlinear systems, this method relies on

local linearization, but it can help understand the dynamics at certain local operat-
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ing points.

3.4 Spatial Model Reduction for BFB Adsorber

As described previously, the reference BFB model is discretized using the finite

difference method, leading to a large-scale DAE system with over 10,000 equa-

tions. The large number of equations contributes to the high simulation cost. In

this section, we reduce the number of DAEs by introducing a relatively sparse dis-

cretization grid while maintaining reasonable accuracy. The model reduction is

conducted on the reference BFB model represented by the PDAE system (3.2.4).

3.4.1 Spatially Reduced Model Using Orthogonal Collocation

Orthogonal collocation uses high order orthogonal polynomials to approximate

state profiles. Orthogonal collocation on finite elements (OCFE) combines the ben-

efits of orthogonal collocation and finite difference method [20]. Over the spatial

domain, x ∈ [0, L], we introduce discrete points, 0 = x0 < x1... < xi . . . < xNE = L.

Applying orthogonal collocation to the finite elements hi = xi − xi−1, we approxi-

mate the states z(x, t) through basis polynomials lj(.) within each element.

zK =
K

∑
j=0

lj(ξ)zi,j (3.4.1)

where j ∈ {0, . . . , K} is the index of the polynomials used in finite element i, zi,j are

the coefficients for the approximation which needs to be calculated. In this work,

Lagrange polynomials are used for state space approximation. The coefficients

zi,k are the state values at collocation points ξk, k = 1, . . . , K. We substitute the

approximated states into the original PDAE system (3.2.4) and enforce the resulting

algebraic equations at the collocation points ξk. This leads to the discretized system

shown in equation (3.4.2a) - equation (3.4.2b). The continuity of the differential
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state is guaranteed by equation (3.4.2c).

∂zi,k

∂t
hi =

K

∑
j=0

zi,j
∂lj(ξk)

∂ξ
+ hi f (zi,k, yi,k) i = 1 · · ·N, k = 1 · · ·K (3.4.2a)

g(zi,k, yi,k) = 0 i = 1 · · ·N, k = 1 · · ·K (3.4.2b)

zi+1,0 = zi,K, i = 1 · · ·N − 1 (3.4.2c)

where hi is the length of finite element i, zi,k and yi,k are the values of differential

and algebraic variables at collocation points ξk.

The collocation method is a high order method, and the truncation error for Radau

collocation is O(h2K−1), where K is the number of collocation points in a single

finite element. Therefore, it needs fewer discretization points than the finite dif-

ference method to achieve a similar accuracy. Considering the characteristics of

fluidization, since the solids are circulated in the reactor, there exist upward and

downward flows for the solids. For a counter-current flow configuration, special

treatment is needed for discretization. For upward flow of gas and solid, the spatial

partial differential terms are discretized at collocation points and boundary condi-

tions are enforced at the bottom boundary (x = 0). For the downward flow, the

boundary condition is applied at the top (x = L) and spatial partial differential

terms are discretized at collocation points including the bottom boundary. The

discretization scheme for the BFB model is shown in Figure 3.6.

Simulation results show dramatic changes for spatial states, such as solid molar

flux, in the lower region near the bottom of the reactor (0 ≤ x ≤ 0.1L). Figure 3.7

shows the spatial profile of the solid molar flux in the emulsion region. We can

see that with a small increase in bed length near the lower region, the value of the

solid molar flux changes greatly. Since we discretize the partial differential terms at

the bottom boundary, an accurate approximation for spatial gradients is required,

especially in the lower region. To handle this issue, we introduce an unevenly

distributed finite element scheme. In the case study, a total of 12 finite elements
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Figure 3.6: Discretization scheme for BFB adsorber using OCFE

is introduced, with 2 finite elements located in the lower region. Thus, a denser

discretization grid is used in the lower region of the reactor to better approximate

steep gradients for state variables. The finite elements in the lower region are al-

most half the size as in the upper region, and the overall system is more sparse

than the finite difference case. In each finite element, 3 Radau collocation points

are used. Thus, the total number of equations in the spatially reduced model using

OCFE is only about 40% of the original model discretized using the finite difference

method. The element mesh can also be tuned to balance model size and accuracy.

Figure 3.7: Spatial profile of solid molar flux in the BFB adsorber

We test the performance of the spatially reduced model RM-4 using the same sim-
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Figure 3.8: Comparison of output profiles of the reduced and reference BFB model

ulation test as for the temporally reduced models. From Figure 3.8, we can see

that the dominant dynamic behavior is captured by the reduced model. The de-

tailed simulation results are listed in Table 3.6. The MRE for CO2 removal is only

0.68%, and the MSE is 0.071%. For sorbent loading, the MRE is within 0.19%. The

reduced model can achieve about 65% reduction in simulation time because of a

similar reduction in model size. In addition, we compare the discretized model us-

Table 3.6: Dynamic simulation results

Simulation time (s) MRE1(%) MSE1(%2) MRE2(%) MSE2(mol2/kg2)
Reference model 193 - - - -
RM-4 69 0.68 0.071 0.19 1.19E-5
RM-5 54 8.91 15.54 1.46 1.04E-3

RM-4 - spatially reduced model using orthogonal collocation on finite elements (36 nodes)
RM-5 - discretized model using finite difference method (36 nodes)
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ing finite differences with same number of discretization points as OCFE. Hence,

we reduce the number of discretization points in the upper region, with the num-

ber in the lower region unchanged. From simulation results shown in Table 3.6, we

can see that there are much higher prediction errors when using finite differences

with 36 discretization points. Although this approach reduces the simulation time,

the accuracy is much worse than with the collocation method. So we can achieve a

computationally efficient reduced model with good accuracy using OCFE.

3.4.2 Model Reduction Using Proper Orthogonal Decomposition

In addition to using general spatial basis functions such as Lagrange polynomials,

we also investigate specific spatial basis functions based on the model’s character-

istics. Proper orthogonal decomposition (POD), also called the Karhunen-Loeve

method, is a powerful model reduction tool to create an accurate low dimensional

approximation of spatially distributed models based on dynamic simulation data.

The basic idea of POD is to find the dominant empirical eigenfunctions that repre-

sent the spatial features of the original states. POD is introduced by Lumley [13]

to find coherent structures in turbulent flows. This approach has been applied to

model reduction and numerical simulation of many complex distributed systems,

such as the rapid thermal processing system [3] and a lithium-ion battery [18]. POD

has also been applied to control and optimization problems such as the control of

diffusion-reaction processes [8], optimization of diffusion-convection-reaction pro-

cesses [12] and optimization of pressure swing adsorption systems [1]. The proce-

dure of POD is illustrated as follows. The spatio-temporal state variables z(x, t) of

a distributed parameter system given by equation (3.2.4a) can be expanded by a set

of spatial basis functions as follows:

z(x, t) =
M

∑
i=1

ai(t)φi(x) (3.4.3)
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where φi(x) is a spatial basis function, ai(t) is a time dependent coefficient. In this

way, the temporal and spatial information of z is decomposed. The key idea of POD

is to find a low dimensional set of orthogonal basis functions, in which the spatial

distribution information is captured, to represent the original high dimensional

system. In this case study, we use the method of snapshots [81] to find the spatial

basis functions. Snapshots are the numerical solutions to a large-scale system after

spatial discretization of the PDEs. The snapshot matrix Z is given by:

Z = {z(x, t1), · · · , z(x, tNt)} (3.4.4)

Each column z(x, tj) represents the spatial profile of the state variable at time tj,

and each row z(xi, t) represents the time trajectory of the state variable at spatial

location xi. The POD basis functions are generated by performing singular value

decomposition (SVD) of the snapshot matrix Z:

Z = UDVT =
N

∑
i=1

σiuivT
i (3.4.5)

where ui is the eigenvector, and σi is the singular value. The first M vectors of the

orthogonal eigenvector matrix U, which capture most spatial distribution informa-

tion, are chosen as the POD basis functions φi(x), i = 1 · · ·M. This approximation

will lead to a projection error ε which can be quantified by:

ε = 1− ∑M
i=1 σ2

i

∑N
i=1 σ2

i

(3.4.6)

After finding appropriate basis functions, the method of weighted residuals [30]

is used to solve the unknown time dependent coefficient ai(t) by enforcing the in-

ner product of residuals of the approximated PDEs with an orthonormal set of

weighted basis function set to zero. The Galerkin method is the most popular

choice used for POD applications, where the weighted basis functions are the same
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Table 3.7: Dynamic simulation results

Simulation time (s) MRE1(%) MSE1(%2) MRE2(%) MSE2(mol2/kg2)
Reference model 193 - - - -
RM-6 741 0.35 0.0051 0.080 2.77E-6
RM-7 395 8.47 12.64 8.54 0.034

RM-6 - spatially reduced model using POD (L2 inner product over 100 nodes)
RM-7 - spatially reduced model using POD (5 point quadrature)

as the POD basis functions. Next we consider a PDE described by equation (3.4.7)

to demonstrate how POD can reduce model size. The approximated state given by

equation (3.4.3) is substituted into equation (3.4.7). The residuals are projected onto

the orthonormal basis function φi(x) and this leads to a reduced system with only

M sets of ordinary differential equations (ODE), as shown in equation (3.4.8). For

the original system, however, there will be N sets of ODEs after spatial discretiza-

tion over N nodes. Since M is significantly less than N, a much smaller reduced

model with reasonable accuracy is created using POD.

∂z
∂t

= f (z,
∂z
∂x

) (3.4.7)

dai

dt
=
∫

f (
M

∑
j=1

aj(t)φj(x),
M

∑
j=1

aj(t)
dφj

dx
)φidx, i = 1 . . . M (3.4.8)

For the POD reduction of the BFB model, the reference BFB model discretized by

the finite difference method is used to generate dynamic simulation data as snap-

shots. The method of snapshots is then applied to find the POD basis functions.

We find that all the states can be represented with only 6 to 7 POD basis func-

tions, instead of 100 discretization points. The projection error ε, defined by equa-

tion (3.4.6), is less than 0.1%. These results show great potential for reducing the

model size and maintaining good accuracy. The Galerkin method is then utilized

to project the model equations onto the basis functions. In the dynamic simulation

case study, we approximate the gas temperature in the bubble region using 5 POD

basis functions to study POD’s performance. The bubble region energy balance

equation, as shown in equation (A.2), has been projected onto the basis functions.
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From the simulation results in Table 3.7, we can see that spatially reduced model

RM-6 by POD has good prediction accuracy. Only 5 basis functions are needed to

capture most of the spatial information. However, the simulation time of RM-6 is

much higher than the reference model. The first reason for this inconsistency is that

the Galerkin method enforces the integral of residuals to be zero. At every iteration,

the integral of the residuals needs to be calculated, and it is very time-consuming

for a highly nonlinear system like the BFB model. To reduce the computational cost

of calculating the integral, we can use the quadrature method to approximate the

integral, instead of the L2 inner product. Results from RM-7 show that this takes

less simulation time than RM-6, but its accuracy is worse due to the integral ap-

proximation. After using the quadrature approximation, however, the simulation

time of RM-7 is still higher than the reference model. This is due to the fact that

the sparsity of Jacobian ∂ f /∂a in equation (3.4.8) is destroyed by POD projection.

POD can generate a smaller model, but the Jacobian is denser compared with nor-

mal discretization methods. This may become a serious issue especially for systems

having many states with strong couplings. To potentially improve the effectiveness

of the POD method,there are several ways to reduce the computational cost of ap-

proximating L2 inner products, such as missing point estimation [10] and discrete

empirical interpolation method [21] , with a central idea of using a small selected

set of spatial nodes to avoid directly calculating L2 inner products. These meth-

ods have been shown to be effective on models developed for applications such as

glass melting furnaces, and we will consider applying them on the reference BFB

model in future work.

3.4.3 Summary of Results

In this section, two spatial model reduction methods are utilized to reduce the

number of equations in the reference BFB model. Orthogonal collocation is a higher

order discretization method and requires fewer discretization points compared
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with the finite difference method to achieve a similar accuracy in space. Orthogonal

collocation with finite elements adds more flexibility into the discretization frame-

work. Fewer finite elements can be used in spatial areas with small spatial varia-

tions in spatial states. Thus, the total number of discretization nodes can be further

reduced based on the spatial distribution features of the rigorous model. For the

POD method, dominant spatial basis functions can be found using the method of

snapshots. This shows great potential for reducing model size. Despite the reduc-

tion in model dimension, the projection scheme of POD destroys the sparsity of the

Jacobian, and it does not achieve significant reduction in computational cost for

doing subsequent simulation.

To further reduce the simulation time, both temporal and spatial model reduction

approaches are combined. We test the performance of the reduced model generated

by combining temporal and spatial model reduction. Detailed simulation results

are listed in Table 3.8. By comparing the results, we find that the reduced model

with combined techniques is faster than those with spatial or temporal reduction

applied separately, and the reduced model has reasonable prediction accuracy. For

the reference BFB model, the most significant contribution to reducing simulation

time is by orthogonal collocation on finite elements. Thus, the dominant factor

causing high simulation time is the large number of equations. Temporal model re-

duction can also help reduce the simulation cost by reducing stiffness. For models

of small size, such as the discretized model using orthogonal collocation, tempo-

ral model reduction does not improve as much as for large-scale models, since the

stiffness issue becomes less serious for Jacobians of lower dimension.

3.5 Concluding Remarks

In this chapter, we developed temporally and spatially reduced order dynamic

models for a large-scale and highly nonlinear model of a bubbling fluidized bed
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Table 3.8: Dynamic simulation results

Simulation time (s) MRE1(%) MSE1(%2) MRE2(%) MSE2(mol2/kg2)
Reference model 193 - - - -
RM-3 117 0.32 2.02E-4 0.0093 2.59E-8
RM-4 69 0.68 0.071 0.19 1.19E-5
RM-8 64 0.68 0.072 0.18 9.91E-6

RM-3 - combined temporally reduced model
RM-4 - spatially reduced model using orthogonal collocation on finite elements
RM-8 - combined reduced model using spatial and temporal model reduction

adsorber. The reduced models can achieve significant reduction in simulation time

while maintaining good accuracy. Time scale decomposition methods, including

nullspace projection and eigenvalue analysis, can help remove the fast dynamics of

the system and reduce system stiffness. Orthogonal collocation on finite elements

can reduce the number of model equations with reasonable accuracy. An unevenly

distributed finite element scheme helps further reduce the model size based on

process features. On the other hand, POD shows the potential to reduce the model

size but does not reduce the simulation time, since it destroys the sparsity of the

original system.

The computationally efficient and accurate reduced dynamic models developed in

this chapter will be incorporated into time-critical applications in advanced pro-

cess control to reduce the computational cost. Nonlinear model predictive control

(NMPC) uses nonlinear process models to predict system behavior and find an

optimal sequence of values for the manipulated variables by solving the dynamic

optimization problem. However, solving the dynamic optimization problem with

detailed first-principles process model is time-consuming and may lead to compu-

tational delay that will degenerate control performance and even destabilize the

process [29]. Therefore, incorporating dynamic reduced models into the NMPC

framework can help improve the computational efficiency of NMPC and make it

applicable for online-control applications.
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Chapter 4

NMPC of BFB Adsorber

In the previous chapter, we have developed accurate and computationally efficient

dynamic reduced models. In this chapter, we will study the nonlinear model pre-

dictive control (NMPC) problem of the BFB adsorber using first-principles dynamic

reduced models developed in the previous section. In addition to model reduc-

tion, we also introduce an input and state blocking formulation to reduce the size

of nonlinear programming (NLP) problem and the computational cost for NMPC.

Next we will apply a fast NMPC algorithm based on NLP sensitivity which could

significantly reduce the online computational cost of NMPC. In the case study, we

will demonstrate the performance of NMPC for BFB adsorber. Also we will fo-

cus on improvements in computational time brought by model reduction, NMPC

blocking strategy and fast NMPC algorithm.

4.1 Input and State Blocking for NMPC

4.1.1 Introduction

As we mentioned before, the computational burden of solving large-scale opti-

mization problems is one of the major challenges for practical applications of NMPC.
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For larger process systems, computationally efficient solution of NLP subproblems

are always required to avoid computational delay for NMPC. In addition to model

reduction, we will introduce an input and state blocking strategy to further im-

prove the computational efficiency for NMPC.

As discussed in Chapter 2.3.1, the dynamic optimization problem in NMPC can be

reformulated to NLP via temporal discretization of the dynamic models using or-

thogonal collocation on finite elements. In standard NMPC formulation, dynamic

models are discretized over uniformly distributed finite elements whose lengths

equal the sampling time. This reformulation could lead to a large-scale NLP espe-

cially if the dynamic model has significant size and the prediction horizon is long.

For offline implementation of dynamic optimization, nonuniform grids are frequently

considered for temporal discretization of state and control profiles to obtain ac-

curate approximation and reduce the size of NLP problem. The construction of

these nonuniform grids usually depends on the dynamics of particular applica-

tions. With appropriate nonuniform grids, nonuniform discretizations of state and

control profiles, through high order collocation with finite elements grids, are es-

sential to approximate the discretized DAE system, capture multiple time scales of

the state profiles and reduce the size of NLP problem.

In this work, we expand this task to on-line NMPC controllers. As we mentioned

earlier, uniform grids are typically used for temporal discretization when formu-

lating the NMPC problem. The benefit of uniform discretization is that recursive

feasibility is guaranteed in the moving horizon framework under mild assump-

tions, which is a key property to establish the stability of NMPC controller.

In this section, we denote NMPC with nonuniform discretization for control and

state profiles as input and state blocking strategies for NMPC. A closely related prob-

lem to input and state blocking for NMPC is the use of input blocking or move block-

ing in MPC. This formulation is widely applied in commercial implementations of
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DMC and other MPC controllers. A common strategy is to specify a shorter hori-

zon for manipulated variables than the prediction horizon for states and outputs

(see, e.g, [68]). With this formulation, the degrees of freedom in the optimization

problem for MPC can be reduced, but not the size of the NLP problem. On the other

hand, applying input blocking into the moving horizon framework raises several

challenges with respect to stability and robustness properties, especially when ter-

minal costs and constraints are imposed for MPC. In particular, for most moving

horizon blocking (MHB) schemes, recursive feasibility cannot be guaranteed and

this can complicate the stability analysis.

To solve this issue, stability and robustness properties of input blocking schemes

have been analyzed over the past decade for linear MPC, mainly focusing on find-

ing specific input blocking strategies that can guarantee recursive feasibility. In

[17], the authors developed a general cyclic blocking scheme based on input de-

viations from an unconstrained feedback controller. This blocking scheme cycles

over a time period and maintains recursive feasibility, even for terminal conditions.

However, the controller moves are more restricted through these input deviations

and optimal performance of the blocked MPC strategy is not guaranteed. A block-

ing scheme is established in [33] that applies to all blocking patterns by initially

establishing feasible regions for the blocked controller. The approach then finds

the least restrictive moves for a given blocking scheme. The approach ensures re-

cursive feasibility but without stability guarantees. In [78], the authors develop a

blocking framework for variable horizon MPC, which allows shifting and transfor-

mation of blocking patterns as the horizons evolve. They include a robust stability

analysis using contraction properties and require terminal constraints on the MPC

problem.

These studies show that an alternative shifted blocking (SB) scheme, where the

left-most interval is removed and a right-most interval is added as the horizon

shifts, is recursively feasible if appropriate terminal conditions are imposed. A
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particular case considered in [88] is based on approximations to infinite horizon

NMPC, where a shrinking horizon is maintained over infinite time. Under these

conditions approximations to MHB and SB schemes are equivalent and recursively

feasible.

With our input and state blocking formulation, recursive feasibility may not be

maintained, which makes stability analysis more difficult. In this study, we will

modify the NMPC formulation and show how nominal stability and input-to-state

stability (ISS) can still be preserved with input and state blocking. In the next sec-

tion we describe our MHB and SB schemes for nonuniform grids. Based on these

we modify the NLP subproblem for blocked NMPC to enforce strong descent of

the Lyapunov function at each sampling time. This leads to an NMPC strategy

that embeds both MHB and SB schemes and leads to robust stability guarantees.

Then we will demonstrate the performance of blocking strategy on the bubbling

fluidized bed adsorber process.

4.1.2 Input and State Blocking Formulation

Consider the following discrete-time nonlinear dynamic model of the plant with

uncertainties:

x(k + 1) = f̂ (x(k), u(k), w(k))

= f (x(k), u(k)) + d(x(k), u(k), w(k)) (4.1.1)

where x(k) ∈ <nx , u(k) ∈ <nu and w(k) ∈ <nw are the plant states, controls and

disturbance signals, respectively, defined at time steps tk with integers k > 0. The

mapping f : <nx+nu 7→ <nx with f (0, 0) = 0 represents the nominal model, while

the term d : <nx+nu+nw 7→ <nx is used to describe modeling errors, estimation errors

and disturbances. We assume that f (·, ·) and d(·, ·, ·) are Lipschitz continuous, and

that the noise w(k) is drawn from a bounded setW .
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Then we introduce a blocking pattern v = Mq where v = [vT
0 , vT

1 , . . . , vT
N−1]

T and q

are the blocked inputs. After N0 intervals, the blocking matrix M incorporates nb

blocks, each of length Nj, j = 1, . . . , nb as follows:

M =



Inu×N0 0 0 . . . 0

0 E1 0 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . Enb


(4.1.2)

where the matrices Ej, j = 1, . . . nb consist of Nj stacked identity matrices of order

nu.

This blocked NMPC controller is defined by the following nonlinear programming

problem (NLP):

V(x(k)) := min
zl ,vl

Ψ(zN) +
N−1

∑
l=0

ψ(zl , vl) (4.1.3a)

s.t. zl+1 = f (zl , vl), l = 0, . . . N0 − 1 (4.1.3b)

zl+1 = f j(zl , vl), j = 1, . . . nb,

l =
j−1

∑
j′=0

Nj′ , . . . ,
j

∑
j′=0

Nj′ (4.1.3c)

z0 = x(k), v = Mq, zl ∈ X, vl ∈ U, zN ∈ X f . (4.1.3d)

where the horizon length is
nb

∑
j′=0

Nj′ = N.

We assume that the states and controls are restricted to the domains X and U,

respectively. X f is the terminal set with X f ⊂ X. The set U is compact and contains

the origin; the sets X and X f are closed and contain the origin in their interiors. The

stage cost is given by ψ(·, ·) : <nx+nu → <, while the terminal cost is denoted by

Ψ(·) : <nx → <; both are assumed to be Lipschitz continuous.

Moreover, we apply the robust problem formulation in [91] and relax X and X f

with `1 penalty terms. Writing X and X f as inequalities g(zl) ≤ 0 and g(zN) ≤
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0, respectively, and redefining g(j)
+ (zl) = max(0, g(j)(zl)), ψ(zl , vl) := ψ(zl , vl) +

ρ‖g+(zl)‖ and Ψ(zN) := Ψ(zN) + ρ‖g+(zN)‖, we obtain the following MHB refor-

mulation:

V(x(k)) = min
vl ,zl

Ψ(zN) +
N−1

∑
l=0

ψ(zl , vl) (4.1.4a)

s.t. zl+1 = f (zl , vl), l = 0, . . . N0 − 1 (4.1.4b)

zl+1 = f j(zl , vl), j = 1, . . . , nb,

l =
j−1

∑
j′=0

Nj′ , . . . ,
j

∑
j′=0

Nj′ (4.1.4c)

z0 = x(k), v = Mq, vl ∈ U. (4.1.4d)

Note that the redefined objective function in (4.1.4) is no longer differentiable ev-

erywhere, but still Lipschitz continuous, with Lipschitz constant LV , which is suf-

ficient for the stability analysis in the following sections.

In the reformulated MHB problem (4.1.4), we can find a coarser approximation

for the discretized differential-algebraic equation model, given by zl+1 = f j(zl , vl).

For f j(,̇)̇, the dynamic model is discretized by collocation on nonuniform finite

elements with the length of element equal to Nj. Within the finite element that

covers multiple sampling times, the states at each sampling time are calculated via

interpolation. We denote this as state blocking.

This formulation leads to state profiles described by finite elements of different

length in each block. These longer elements are sufficient for slower time scales

and lead to a significant reduction in NLP variables. It should be noted that the

accuracy of the discretized models depends on the blocking pattern. In this study,

we assume that the blocked state model based on collocation on nonuniform finite

elements is a high fidelity approximation to the plant since the blocking pattern

can be determined offline based on the system dynamics.

Figure 4.1 shows a graphical representation of state and input profiles in the pro-
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Figure 4.1: Representation of input and state blocking scheme

posed blocking scheme. The blue curve represents state profiles and red rectangle

represents control moves. For the initial part (k to k + N0) in the prediction hori-

zon, where fast dynamics may dominate, uniform grids with small lengths are

applied for temporal discretization. For the rest of prediction horizon (k + N0 to

k + N0 + N1) , we introduce a larger finite element to discretize dynamic model

equations and control inputs. In this region, states with slow time scales evolve

less significantly and the larger finite element can still provide sufficient approxi-

mation.

Then we apply the input and state blocking into the moving horizon framework.

At time step k, we solve the blocked NMPC problem (4.1.4). At next sampling time

k + 1, we move the optimization problem one step forward and solve the NMPC

with the same blocking scheme. The scheme for MHB strategy is shown in Figure

4.2.
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Figure 4.2: Representation of moving horizon blocking scheme

From Figure 4.2 we can see that MHB is not recursively feasible, neither for inputs

nor states due to the input and state blocking introduced. In this figure, we de-

note state feasibility error and input feasibility error, which will be discussed in the

following section.

Moreover, we also consider a Shifted Blocking (SB) strategy with v = M̄q̄. The

input blocking matrix M̄ for shifted blocking strategy is defined as follows:

M̄ =



Inu×(N0−1) 0 0 . . . 0

0 E1 0 . . . 0

. . . . . . . . . . . . . . .

0 0 . . . ENb 0

0 0 . . . 0 Inu


. (4.1.5)

As shown in Figure 4.3, the shifted blocking pattern modifies the moving horizon

blocking pattern by removing the sampling time on the left and adding a sampling

interval on the right. The SB strategy is recursively feasible for the inputs and

states, as well as the terminal conditions. The NLP subproblem for the SB pattern
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is given by:

V̄(x(k)) = min
vl ,zl

Ψ(zN) +
N−1

∑
l=0

ψ(zl , vl) (4.1.6a)

s.t. zl+1 = f (zl , vl), l = 0, . . . N0 − 2 (4.1.6b)

zl+1 = f j(zl , vl), j = 1, . . . nb,

l = (
j−1

∑
j′=0

Nj′)− 1, . . . (
j

∑
j′=0

Nj′)− 1 (4.1.6c)

zN = f (zN−1, vN−1) (4.1.6d)

z0 = x(k), v = M̄q̄, vl ∈ U (4.1.6e)

Figure 4.3: Representation of shifted blocking scheme

4.1.3 Nominal and ISS Stability Properties

Stability properties of blocked NMPC are adapted from well-known properties of

the standard NMPC controller [46, 59], with the following assumptions:

Assumption 4.1.1. (Nominal Stability Assumptions for NMPC)

• The terminal penalty Ψ(·), satisfies Ψ(z) > 0, ∀z ∈ X f \{0},

• There exists a local control law u = κ f (z) defined on X f , such that f (z, κ f (z)) ∈

X f , ∀z ∈ X f , and Ψ( f (z, κ f (z)))−Ψ(z) ≤ −ψ(z, κ f (z)), ∀z ∈ X f .
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• The optimal stage cost ψ(x, u) = ψ(x, κ(x)) satisfies αp(|x|) ≤ ψ(x, u) ≤ αq(|x|)

where αp(·) and αq(·) are K functions.

Nominal stability can be paraphrased by the following theorem.

Theorem 4.1.1. (Nominal Stability [74]) Consider the unblocked moving horizon prob-

lem (Problem (4.1.4) with M = I) and associated control law u = uid, that satisfies

Assumption 4.1.1. Then, V(x) from the unblocked controller is a Lyapunov function and

the closed-loop system is asymptotically stable.

For unblocked NMPC, under Assumption 4.1.1, we have the following descent

condition by comparing two neighboring value functions:

V(x(k + 1))−V(x(k)) ≤ Ψ( f (zN , κ f (zN))) +
N

∑
l=1

ψ(zl , vl) (4.1.7)

−Ψ(zN)−
N−1

∑
l=0

ψ(zl , vl)

= −ψ(x(k), u(k)) + Ψ( f (zN , κ f (zN)))−Ψ(zN) + ψ(zN , κ f (zN))

≤ −ψ(x(k), u(k))

Relying on the recursive feasibility of unblocked NMPC, most terms in V(x(k))

and V(x(k + 1)) cancel out. With the above inequality, the nominal asymptotic

stability of unblocked NMPC can be established.

For blocked NMPC, however, the above inequality may not hold because recursive

feasibility is not guaranteed. Here we assume that the solutions [v0, · · · , vN−1] from

NMPC at tk provide feasible inputs to the NMPC problem at tk+1. Namely, the

control [v1, · · · , vN−1, vN ] with vN = vN−1 are feasible inputs to NMPC at tk+1.

Note that at tk+1, the blocking is moved one step forward and it doesn’t match the

previous discretization grids. Therefore the overlapping states for two consecutive

NMPC problems are different due to blocking in state approximation. Then we

compare the value functions at two consecutive sampling time tk and tk+1. Since

70 NMPC of BFB Adsorber



4.1. Input and State Blocking for NMPC

the overlapping states are not completely the same, additional error terms appear

in the value function difference.

V(x(k + 1))−V(x(k)) ≤ Ψ( f (zN , κ f (zN))) +
N

∑
l=1

ψ(zl,blocked, vl) (4.1.8)

−Ψ(zN)−
N−1

∑
l=0

ψ(zl , vl)

= −ψ(x(k), u(k)) + ε f

+ Ψ( f (zN , κ f (zN)))−Ψ(zN) + ψ(zN , κ f (zN))

≤ −ψ(x(k), u(k)) + ε f

where ε f are the feasibility errors brought by the state blocking. In addition, the

input may not be recursively feasible as well, which will introduce a similar input

feasibility error term, as shown in Figure 4.2.

Therefore, the inequality (4.1.7) may not hold due to the input and state blocking.

However, if the feasibility errors ε f can be bounded by ρψ(x(k), u(k)), with 0 ≤

ρ < 1, which leads to the following inequality

V(x(k + 1)) ≤ V(x(k))− (1− ρ)ψ(x(k), u(k)) (4.1.9)

where ρ ∈ [0, 1) is chosen to reflect the inaccuracy caused by input and state block-

ing as well as other sources of model mismatch.

With constraint (4.1.9) being satisfied, the value function of blocked NMPC will be

decreasing monotonically and thus the stability of blocked NMPC controller can

be established. In addition, it is easy to show that the nominal stability can be

maintained if the inequality (4.1.9) is violated for a finite number of times. This can

be shown by summing the left hand side of (4.1.9) over k. If (4.1.9) is allowed to be

NMPC of BFB Adsorber 71



4.1. Input and State Blocking for NMPC

violated for no more than a finite subsequence (say, k ∈ K f ), which leads to:

V(x(k0)) ≥
∞

∑
k=k0

V(x(k))−V(x(k + 1)) (4.1.10)

=
∞

∑
k∈K f

V(x(k))−V(x(k + 1)) +
∞

∑
k=k0\K f

V(x(k))−V(x(k + 1))

= C f +
∞

∑
k=k0\K f

(V(x(k))−V(x(k + 1)))

≥ C f +
∞

∑
k=k0\K f

(1− ρ)ψ(x(k), u(k)).

Then we can see that lim
k→∞

ψ(x(k), u(k))→ 0, and lim
k→∞

x(k)→ 0.

For the analysis of robust stability properties of NMPC, we consider Input-to-State

Stability (ISS) ([45, 59]). We also make the following assumptions and establish

robust stability of the NMPC controller from the following theorem.

Assumption 4.1.2. (Robust Stability Assumptions)

• The value function V(x(k)) of (4.1.4) is continuous with respect to x(k), with a

positive Lipschitz constant LV .

• d(x, u, w) is Lipschitz with respect to its arguments, with |d(x, u, w)| ≤ |d(x, u, 0)|+

Lg|w| and |d(x, u, 0)| ≤ α0(|x|), where α0(|x|) is a K∞ function.

Theorem 4.1.2. (Robust ISS Stability of Unblocked NMPC (Theorem 2 in [59], see also

[45]) Under Assumptions 4.1.1 and 4.1.2 with α0(|x|) ≤
η

LV
αp(|x|) and η ∈ (0, 1), the

cost function V(x) obtained from the solution of (4.1.4) with M = I is an ISS-Lyapunov

function and the resulting closed-loop system is ISS stable.

The result from Theorem 4.1.2 with unblocked NMPC leads to the following in-
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equality:

V(x(k + 1))−V(x(k)) (4.1.11)

= V(x(k + 1))−V( f (x(k), u(k))) + V( f (x(k), u(k)))−V(x(k))

≤ εw − ψ(x(k), u(k))

where εw ≥ |V(x(k + 1))− V( f (x(k), u(k)))| is an additional ISS term that repre-

sents the influence of disturbances w(k). The inequality for the second pair follows

the inequality (4.1.7) in Theorem 4.1.1.

However, for blocked NMPC, recursive feasibility doesn’t hold. Therefore, we have

the following relationship, with additional feasibility error ε f as shown in (4.1.8):

V(x(k + 1))−V(x(k)) (4.1.12)

= V(x(k + 1))−V( f (x(k), u(k))) + V( f (x(k), u(k)))−V(x(k))

≤ εw − ψ(x(k), u(k)) + ε f

Similarly, if the feasibility error ε f can be bounded by ρψ(x(k), u(k)), with 0 ≤

ρ < 1, we can have the following inequality, which still guarantees ISS property of

blocked NMPC.

V(x(k + 1)) ≤ V(x(k))− (1− ρ)ψ(x(k), u(k)) + εw (4.1.13)

The ISS term εw can be bounded by LV‖x(k + 1) − f (x(k), u(k))‖ based on NLP

sensitivity, where LV can be determined by off-line NLP sensitivity analysis.
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4.1.4 Blocked NMPC Strategy

To show under what conditions (4.1.9) and (4.1.13) hold, we first consider the quasi-

infinite horizon formulation in [88]. Here nb = 1 after N0 sampling times, and the

single blocked stage takes the process to (near) steady state where xs = f (xs, us).

Assuming that N1 is sufficiently long, we do not need to impose a terminal con-

straint. As shown in Figure 4.4 the quasi-infinite blocking pattern is recursively

feasible for the inputs. On the other hand, there is a slight error in the approxima-

tion of the states. We will assume this error and other model mismatch effects can

be bounded above by the ρψ(x(k), u(k)) term in (4.1.13).

Figure 4.4: Representation of quasi-infinite blocking scheme

On the other hand, if an arbitrary blocking pattern is used with nb > 1, we no

longer have recursive feasibility and the descent conditions (4.1.13) for moving

horizon blocking problem (4.1.4) need to be checked. If stability condition (4.1.13)

is not satisfied, then we will apply the solutions to the shifted blocking problem

(4.1.6). Figure 4.5 illustrates the cyclic pattern for shifted blocking, which maintains

recursive feasibility.

Based on these characteristics, we apply the following blocked NMPC approach:

While k > 0

• At time k obtain x(k), u(k), ψ(x(k), u(k)) and V(x(k)).

• At time k + 1 obtain x(k + 1) and ‖x(k + 1)− f (x(k), u(k))‖.
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Figure 4.5: Representation of cyclic shifted blocking scheme

• Obtain (an approximate) solution of SBn problem (4.1.6).

• Solve the MHB problem (4.1.4) and obtain V(x(k + 1)).

• For k > k0 if (4.1.13) is satisfied, implement u(k + 1) from the solution of the

MHB problem (4.1.4), set n = 1. Else, implement u(k + 1) from the solution

of SBn problem (4.1.6), set n = n + 1.

• Set k := k + 1.

Note that by checking (4.1.13) at k > k0 where time k0 is some settling time af-

ter a setpoint change or upset, we allow (4.1.13) to be violated a finite number of

times, and still satisfy the stability guarantees. Also note that cyclic shifted block-
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ing scheme shown in Figure 4.5 cannot guarantee recursive feasibility forever. In

the worst case, shifted blocking becomes fully unblocked NMPC.

4.1.5 NMPC Case Study on Nonuniform Grids

In this section, we discuss the NMPC case study using nonuniform grids formu-

lation. In the case study, we consider the NMPC problem for the BFB adsorber

discussed in chapter 3. For the BFB adsorber, the controlled variable is the CO2

removal fraction and the manipulated variable is the inlet flowrate of the solid sor-

bent. The dynamic optimization problem for NMPC is formulated as NLP (4.1.4),

with a traditional setpoint tracking objective. In the case study, we use the refer-

ence BFB model in chapter 3 as both control model and plant model. The sampling

time for NMPC in the case study is 50 seconds and the prediction horizon is 600

seconds.

Two input and state blocking strategies are considered in the case study. For block-

ing strategy A, nb = 1, N0 = 4 and N1 = 8, i.e., we introduce 4 short finite elements

whose length equals 50 seconds and one long finite element at the end. For block-

ing strategy B, nb = 2, N0 = 4, N1 = 4 and N2 = 4, i.e., we introduce 4 short finite

elements and 2 long finite elements to cover the prediction horizon. The discretized

BFB models are implemented in AMPL [31] and the NMPC problem is solved us-

ing IPOPT [85]. The computational tests are conducted on an Intel i7-3770 3.40 GHz

PC.

In the nominal cases, no additional disturbances or noises are introduced. In the

robust cases, we study a comprehensive scenario with measurement noises and set-

point changes as disturbances. Using the proposed algorithm, stability constraints

are checked in all simulation cases to guarantee the stability of the controller. The

effect on the stability, induced by the blocking strategy and disturbances, is han-

dled by ρ and εw.
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Firstly we look at the nominal cases with no external disturbances. In nominal case

1, blocking strategy A is applied to discretize the BFB model. Figure 4.6 shows

the variation of cost function in every NMPC cycle for nominal case 1. As we

can see from Figure 4.6, V(x(k + 1)) is always smaller than V(x(k)), which means

we can always find ρ so that stability constraint (4.1.9) is satisfied. Since the state

blocking is introduced at the end of the prediction horizon, where the states are

close to steady state, the errors introduced by state blocking are relatively small.

For the case using blocking strategy B, as shown in Figure 4.7, the cost function

variations during NMPC iterations are very similar to the cases using blocking

strategy A. Moreover, for all of the nominal cases the shifted blocking strategy was

not invoked.

Figure 4.6: Cost function variation in nominal case 1

In addition, we compare the control performance of nonuniform NMPC cases to

those with uniform grids. We also present the benefits in computational cost re-

duction given by the nonuniform grids formulation. Control performance for all

nominal cases is shown in Figure 4.8. Uniform grids with a length equal to 50 are

applied to discretize BFB model in the nominal base case; this provides the best

control performance for this simulation scenario. From Figure 4.8 we see hardly
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Figure 4.7: Cost function variation in nominal case 2

any differences in control performance among the unblocked nominal base case,

and cases 1 and 2, which use different blocking strategies. Note that blocking

strategies A and B show negligible differences. From these results, stability con-

straints are monitored in every iteration and we observe no control performance

degeneration or instability with nonuniform grids.

Figure 4.8: Comparison of control performances in nominal cases

Computational results for the nominal cases are listed in Table 5.2. In comparing
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Figure 4.9: Comparison of control moves in nominal cases

Table 4.1: Computational results for nominal cases

Number of NLP Variables Average CPU sec Max. CPU sec
Nominal base case 479704 507.1 1031.7
Nominal case 1 198723 45.0 74.6
Nominal case 2 238860 60.9 100.7

Nominal base case - no blocking
Nominal case 1 - blocking strategy A
Nominal case 2 - blocking strategy B

the unblocked nominal base case, nominal case 1 and 2, we see that the blocking

strategy reduces the size of the NMPC problem by at least 50% and average com-

putational cost is reduced by an order of magnitude for NMPC problems.

Next, we consider robust cases, where measurement noise and step change in the

setpoint are introduced as additional disturbances. To account for these distur-

bances, an additional disturbance bound term is introduced and the corresponding

stability constraint (4.1.13) is enforced. The disturbance bound term is defined as

εw = LV‖x(k + 1)− f (x(k), u(k))‖. LV is a measure of sensitivity of cost function

with respect to disturbances. In this case, we determine LV = 5 by solving problem

(4.1.4) offline after perturbation of input disturbances.

In robust case 1, we discretize the BFB model using blocking strategy A. The cost

function variations in every NMPC iteration are shown in Figure 4.10. εw is intro-
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duced to compensate for the effect of disturbances. From Figure 4.10, V(x(k+ 1)) is

smaller than V(x(k)) + εw in all iterations, which means stability constraint (4.1.13)

is always satisfied. In this scenario, in addition to measurement noises, setpoint

changes are introduced as disturbances. When a setpoint change occurs, we as-

sume that it is known one sampling time ahead, and thus we can determine the

true state at the next sampling time in a feedforward manner. With this formula-

tion, we calculate the error bound and find that the stability constraint (4.1.13) is

still satisfied when the setpoint change is introduced. Otherwise, it may be vio-

lated when setpoint change is introduced. However, as discussed in the previous

section, stability constraint (4.1.13) can be violated for a finite number of times and

we can check it after some settling time. As shown in Figure 4.11, variations of

value functions for robust case 2 are similar to robust case 1. Moreover, for all of

the nominal and robust cases, the shifted blocking strategy was not needed by the

blocked NMPC controller.

Figure 4.10: Cost function variation in robust case 1

We also compare the control performance of NMPC, using nonuniform grids, with

a base case using the BFB model without any blocking. From Figure 4.12 and 4.13,

we can see that the control performance of NMPC using nonuniform grids is nearly
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Figure 4.11: Cost function variation in robust case 2

the same as the base case. On the other hand, NMPC problem size and the compu-

tational cost is greatly reduced by using the blocking strategy, which is shown in

Table 4.2.

Figure 4.12: Comparison of control performances in robust cases
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Figure 4.13: Comparison of control moves in robust cases

Table 4.2: Computational results for robust cases

Number of NLP variables Average CPU sec Max. CPU sec
Nominal base case 479704 428.5 1212.6
Nominal case 1 198723 46.1 75.7
Nominal case 2 238860 62.6 94.1

Robust base case - no blocking
Robust case 1 - blocking strategy A
Robust case 2 - blocking strategy B

4.2 NMPC Case Study: Online Control of the BFB Adsorber

In the previous section, we introduced the input and state blocking strategy for

NMPC and analyzed stability property of the blocked NMPC. From the case study,

we demonstrated that with input and state blocking strategy, the computational

cost can be reduced by an order of magnitude while maintaining nearly the same

control performance.

In this section, we will present a comprehensive case study for online control of the

BFB adsorber. Firstly we will compare the control performance of ideal nonlinear

MPC and linear MPC. Then we will integrate model reduction and the blocking

strategy to reduce the computational cost of nonlinear MPC. Lastly, a sensitivity

based fast NMPC algorithm is applied to reduce the online computational cost of
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NMPC.

Figure 4.14: BFB adsorber

Figure 4.14 shows a sketch of the BFB adsorber. For this reactor, the controlled

variable is the removal fraction of CO2 from the fluegas and manipulated variable

is the flowrate of the solid sorbent. In the case study, the BFB adsorber reactor is

subject to disturbances of flue gas flowrate and composition. These disturbances

could occur due to operational load changes in the power plant or variations in fuel

quality. Thus one major goal of the NMPC controller is to maintain the setpoint for

CO2 removal fraction and reject these disturbances by manipulating the flowrate

of solid sorbent. In addition, setpoint of CO2 removal fraction usually comes from

the upper RTO layer, which could get updated frequently due to economic or en-

vironmental concerns. For example, as electricity prices change, the operation of

BFB adsorber may be switching between different operational modes with differ-

ent capture rates to satisfy CO2 removal requirement over a specified period of
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time. This requires the controller to exhibit good performance for setpoint track-

ing, in addition to disturbance rejection. Therefore, in the following NMPC case

study, we study the control performance in both setpoint tracking and disturbance

rejection.

4.2.1 Comparison of Ideal Nonlinear MPC and Linear MPC

In the control case study, we introduce several disturbances in the fluegas flowrate

and composition, which are shown in Figure 4.15. In addition, we introduce a set-

point change for CO2 removal fraction from 52% to 60% at 2500 seconds and com-

pare the setpoint tracking performance of different controllers. For MPC controller

setting, the prediction horizon is 400 seconds and the sampling time is 50 seconds.

In the following case study, the simulation time is 4500 seconds. The discretized

BFB models are implemented in AMPL [31] and the NMPC problem is solved us-

ing IPOPT [85]. The computational tests are conducted on an Intel i7-930 2.80 GHz

PC.

Figure 4.15: Disturbances introduced in the case study

Firstly, we compare the performance of ideal nonlinear MPC and linear MPC. For

ideal NMPC, we assume that we will get the optimal control moves once the states

are obtained. With this assumption, potential computational delay by solving dy-

namic optimization problem is neglected. It should be noted that ideal NMPC

gives better performance than real implementation of NMPC with significant com-

putational cost that cannot be ignored. For linear MPC, linear models are obtained
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through system identification are used as the control model. Detailed implementa-

tion can be found in [66]. For ideal nonlinear MPC, we use the rigorous BFB model

as the control model. The control performance is shown in the following figures.

Figure 4.16: Closed-loop performance of BFB adsorber

As shown in Figure 4.16, from t = 0 to t = 2500, we can see that nonlinear MPC

has better performance in disturbance rejection with fewer oscillations than linear

MPC. At t = 2500, a setpoint change in CO2 removal fraction is introduced. From

Figure 4.16, we can see that nonlinear MPC drives the process to track the setpoint

much faster than linear MPC. We can also see that NMPC shows much better per-

formance in rejecting the disturbance introduced at t = 3500. This is mainly due to

the fact that rigorous nonlinear model gives more accurate predictions than iden-

tified linear models, in a larger operational range. The performance of each con-

trol configuration is compared using the control performance metric mean integral

square error (MISE), with the following definition:

MISE =
1
N

N−1

∑
k=1

(
(rk − yk)

T(rk − yk)

2
+

(rk − yk+1)
T(rk − yk+1)

2
) (4.2.1)
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Figure 4.17: Control profiles of nonlinear MPC and linear MPC

where rk are the reference values and yk are the process outputs.

In this case study, the MISE for linear MPC is 3.68; while for nonlinear MPC, the

MISE is 2.49. Therefore, ideal nonlinear MPC demonstrates a better control per-

formance than linear MPC. As for computational cost , linear MPC takes less than

1 second to solve; however, the computational time for nonlinear MPC is much

larger. And we will discuss this issue in the following sections.

4.2.2 NMPC Using Reduced Model and Blocking Strategy

In this section, we compare the control performance and computational results of

the following 3 controllers:

• Controller 1: NMPC using rigorous BFB model, no state and input blocking

• Controller 2: NMPC using rigorous BFB model, with state and input blocking

• Controller 3: NMPC using reduced BFB model, with state and input blocking

86 NMPC of BFB Adsorber



4.2. NMPC Case Study: Online Control of the BFB Adsorber

For controller 1, we use rigorous BFB model as control model and apply uniform

temporal grids. For controller 2, rigorous BFB model is also used as the control

model. In addition, we introduce state and input blocking formulation proposed

in previous section, with 3 small finite elements with length equal to 50 and 1 large

finite element with length equal to 250. For controller 3, we integrate the reduced

BFB model developed in the previous chapter as the control model. However, this

formulation leads to the model mismatch between the control model and process

model, which is simulated using the rigorous BFB model. To account for the model

mismatch, we introduce a simple output additive correction term for the reduced

model using the feedback measurements from the rigorous model. With this for-

mulation, it can handle the model mismatch and achieve an offset-free control per-

formance [40]. The same blocking strategy as controller 2 is also applied for con-

troller 3.

Figure 4.18: Closed-loop performance of BFB adsorber

The closed loop performance of these controllers are shown in the following figures

and the computational results including computational time and MISE are listed in
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Figure 4.19: Control profiles of different NMPC formulation

Table 4.3. Firstly we compare the control performance. From Figure 4.18 and 4.19,

we can see that control moves and closed loop performances of controllers 2 and

3 are nearly the same as controller 1. By comparing the MISE for controllers 1-

3 shown in Table 4.3, we can find that the blocking strategy and reduced model

introduce almost no compromise in the control performance. The reason is that the

dynamics of the rigorous model are well captured by the reduced model, as we

demonstrated in the previous chapter. The other reason is that we use the feedback

from the process measurements to account for the model mismatch properly and

achieve an offset-free performance.

As for computational time, controller 1 takes more than 4 CPU minutes to solve a

single NMPC problem and the maximum time is about 15 CPU minutes. In this

case, if we directly implement controller 1 online, it may lead to computational

delay as long as 15 minutes while the sampling time is only 50 seconds. Such

computational delay could greatly degenerate the control performance.
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Table 4.3: Computational results for Controller 1-3

Number of NLP Variables Average CPU sec Max. CPU sec MISE
Controller 1 319136 260.67 906.34 2.487
Controller 2 166745 56.74 256.09 2.489
Controller 3 64229 23.86 39.36 2.501

Controller 1 - rigorous model, no blocking
Controller 2 - rigorous model, input and state blocking
Controller 3 - reduced model, input and state blocking

After we apply the blocking strategy and integrate reduced model into NMPC,

we observe a significant reduction in the size of optimization problem compared

with controller 1. That leads to a similar percentage of reduction in the average

solution time of the optimization problem. We can observe even more significant

reduction for maximum solution time. By comparing these 3 cases, both strategies

can significantly reduce the size of the optimization problem and they lead to an

order of magnitude reduction for NMPC solution time. Also it should be noted

that, with the combined strategy, the computational time for every optimization

problem is less than one sampling time, which is 50 seconds. With that, we will

apply advanced step NMPC to enable online control of the reactor in the following

section.

4.2.3 Online Control Using Advanced Step NMPC

Advanced step NMPC (asNMPC) is a fast online NMPC algorithm proposed in

[95]. As discussed in chapter 2.4, the essential idea of asNMPC is to solve the

NMPC problem one sampling time ahead using the predicted state as initial con-

ditions. At the next sampling time when true states are obtained, an online update

is conducted to approximate the optimal control move based on NLP sensitivity.

As we showed in the previous section, after introducing blocking strategy and re-

duced model, the NMPC solution time is under a sampling time. Therefore we

can move the calculation of NMPC in background within a sampling interval and

online computational cost can be reduced through asNMPC.
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In the following case study, we apply the advanced step NMPC algorithm to con-

trol the BFB adsorber, which we denote as controller 4. Controller 4 has the same

configuration as controller 3, except that an NLP sensitivity based online update is

performed. In this case study, we only consider parametric uncertainties brought

by the disturbances shown in Figure 4.15. sIPOPT [67] is used to provide NLP

sensitivity to approximate the optimal control moves when disturbances occur.

The following figures compare the simulation results of controllers 3 and 4.

Figure 4.20: Closed-loop performance of BFB adsorber
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Figure 4.21: Control profiles of different NMPC formulation

From Figure 4.21, we observe that slightly different control moves occur after the

disturbances are introduced, due to the approximation error given by the sensitiv-

ity update. But as shown in Figure 4.20, the closed-loop performance of asNMPC

is very similar to the ideal NMPC case. The MISE for controller 4 is 2.529, which is

just slightly larger than the controller 3 (2.501).

As for the computational result, the average online cost for sensitivity update is

1.04 second, which is much smaller than the solution time of NMPC problems. This

online cost is comparable to linear MPC and the computational delay by controller

4 can be neglected in this case.

In this section, we demonstrate that by integrating reduced model and blocking

strategy, significant reduction in computational time of NMPC can be achieved.

Advanced step NMPC has been applied to reduce the online computational cost

for NMPC. For online control purposes, advanced multiple step NMPC may be

needed to handle the case where NMPC solution time is larger than a sampling
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time. In addition, it should be noted that no measurement noises are considered in

the case study. When measurement noises are introduced, there may be changes in

active sets in the NMPC problem. In these cases, instead of directly implementing

the control update by NLP sensitivity, a different strategy proposed in [44] may be

needed to account for the active set changes to give more accurate updates.

4.3 Concluding Remarks

In this chapter, we demonstrate the application of nonuniform temporal discretiza-

tion in dynamic, collocation-based models for NMPC formulations. With appro-

priate input and state blocking strategies, computational cost for NMPC problems

can be greatly reduced without significant sacrifice of control performance. To ad-

dress the stability concerns raised by general input and state blocking strategies, we

analyze nominal and ISS stability for blocked NMPC and show that these proper-

ties can be enforced through treatment of model mismatch, quasi-infinite horizons

and additional stability constraints. Our analysis leads to an efficient NMPC strat-

egy that guarantees ISS stability for any blocking pattern, if recourse to the shifted

blocking strategy is allowed.

In the NMPC case study, the proposed blocked NMPC strategy is applied to control

a large-scale BFB adsorber simulated by first-principles models. By using reduced

model with input and state blocking strategy, we observe significant reductions in

computing effort for NMPC with almost no compromise in control performance.

Finally, a sensitivity based fast NMPC algorithm is also applied to reduce the online

computational cost of NMPC.
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Chapter 5

Economic NMPC

In the previous chapter, we study the setpoint tracking NMPC problem of the BFB

adsorber to improve the control performance in tracking setpoints, rejecting dis-

turbances while enhancing computational efficiency for NMPC. In this chapter, we

will study economic NMPC which directly optimizes the economics of the process

operations subject to the process models and constraints.

5.1 Introduction

For the process industries, improving economic performance is a major goal in pro-

cess operations. As discussed in chapter 1, in addition to the traditional RTO-APC

two-layer structure, economic (nonlinear) model predictive control has been stud-

ied recently and it seems to be a promising solution to address the challenges for

the two-layered structure, i.e. inconsistencies between the operation time scales

and models used for different layers. Compared with setpoint tracking NMPC

which minimizes the deviations of process states and outputs to setpoints, eco-

nomic NMPC directly optimizes an economic function which represents the profit

or cost information for process operation. With this formulation, optimization-
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based controllers can explicitly optimize the economic performance of transient

process operations and handle the constraints on states and inputs easily.

Though stability properties are well established for setpoint tracking NMPC, ad-

ditional work is required to extend these results for economic NMPC. Since the

economic stage cost could have an arbitrary form, it may violate some key assump-

tions used for Lyapunov stability analysis established for setpoint tracking NMPC.

In recent years, considerable research work has been carried out in this area. For

linear systems with convex stage costs, the stability proof for economic MPC can be

found in [73]. In [6], it has been shown that economic MPC can achieve at least the

same asymptotic average cost as the cost at optimal steady state. Stability results

have been extended to nonlinear systems in [6, 26], based on properties such as

dissipativity and strong duality. For a specific type of nonlinear system with peri-

odic cycles, theoretical analysis and computational studies can be found in [39, 41].

For more general nonlinear systems, as shown in [44], regularization terms can be

added to guarantee such properties and thus stability results can be maintained. In

addition, an additional stabilizing constraint is introduced in [94] to stabilize eco-

nomic NMPC for non-dissipative systems. Also design of economic NMPC with

Lyapunov-based constraint is presented in [37]. Most stability analysis results for

economic NMPC consider terminal constraints or terminal costs; although a study

on stability and performance of economic NMPC without terminal constraints is

given in [34]. More detailed reviews on economic NMPC can be found in [27, 72].

With increasing needs to improve process operation, rigorous first-principles mod-

els have been developed and corresponding model-based controllers can be de-

signed. To handle these nonlinear first-principles models, fast (economic) model

predictive control algorithms are proposed and applied for various complex sys-

tems. In addition to the computational burden, for complex systems with a large

number of states, there are also challenges for analysis and design of stable eco-

nomic NMPC controllers. For economic NMPC, standard regularization strategies
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require analysis of the full system state space, and regularization terms are usually

required for most system states. When dealing with large-scale detailed process

models with significant number of states, the standard analysis becomes very te-

dious and may also lead to conservative economic performance. In this chapter, we

aim to extend stability results for economic NMPC with a focus on only a subset of

system states and propose a systematic approach to determine sufficient regular-

ization weights for economic NMPC.

In the following sections, we will discuss the stability properties and full state

regularization of economic NMPC. Then we will analyze the stability property

for economic NMPC with reduced sets of regularization. A systematic approach

to calculate the sufficient regularization weights for economic NMPC will be dis-

cussed later. Lastly, we apply the proposed strategy to economic NMPC of a non-

linear CSTR and a large-scale CO2 capture system to demonstrate its performance

through comprehensive case studies.

5.2 Stability Properties of Economic NMPC

We consider the following steady state optimization problem for economic NMPC

with xs and us as optimal steady state solutions.

min
x,u

ψec(x, u) (5.2.1)

s.t. x = f (x, u)

u ∈ U, x ∈ X.
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The dynamic optimization problem for economic NMPC is defined as follows:

V(x(k)) := min
vl ,zl

N−1

∑
l=0

ψec(zl , vl) (5.2.2)

s.t. zl+1 = f (zl , vl), l = 0, . . . N − 1

z0 = x(k), zN = xs

vl ∈ U, zl ∈ X.

Here we assume that the states and controls are restricted to the domains X and

U, respectively. The set U is compact and contains the origin; the set X is closed

and contains the origin in its interior. We consider a stage cost given by ψec(·, ·) :

<nx+nu → <., which is assumed to be Lipschitz continuous. For simplicity, here

we use the NMPC formulation with terminal equality constraints. Compared with

tracking NMPC, the major difference of economic NMPC is that the economic stage

cost ψec(·, ·) can have arbitrary forms which represent process economics.

Regarding the stability analysis for economic NMPC, we follow the Lyapunov sta-

bility framework and we can derive a similar inequality as shown in equation

(2.2.5) with the same assumptions for setpoint tracking NMPC:

V(x(k + 1))−V(x(k)) ≤ −(ψec(x(k), u(k))− ψec(xs, us)) (5.2.3)

For setpoint tracking NMPC, the stage cost ψtr(x, u) is usually in a quadratic form,

which satisfies Assumption 2.2.2. With this inequality, the tracking objective is de-

creasing monotonically and thus it can be shown to be a Lyapunov function. For

economic NMPC, however, the economic stage cost ψec(x, u) can have any arbi-

trary form which represents the economic information for process operation. For

an arbitrary economic objective, the right hand side of inequality (5.2.3) may not

be always negative since the optimal solution (xs, us) may not be the global mini-

mum of ψec(x, u) for all x and u. In addition, Assumption 2.2.2 is not fulfilled for
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a general ψec(x, u). Thus the value function of economic NMPC may not be di-

rectly used as a Lyapunov function to demonstrate the stability of the closed-loop

systems using economic NMPC.

To guarantee the stability for economic NMPC, additional properties are needed.

Firstly, as shown in [6], dissipativity can be used to establish the stability for eco-

nomic NMPC, which is defined as follows:

Definition 5.2.1. [6] A control system x+ = f (x, u) is dissipative with respect to a supply

rate s : X×U→ R if there exists a function λ : X→ R, such that

λ( f (x, u))− λ(x) ≤ s(x, u) (5.2.4)

for all feasible control-input pairs. If in addition ρ : X→ R≥0 positive definite (ρ(xs) = 0

and ρ(x) > 0 for all x 6= xs) exists such that

λ( f (x, u))− λ(x) ≤ −ρ(x) + s(x, u) (5.2.5)

then the system is said to be strictly dissipative.

From Theorem 2 in [6], if the closed-loop system by economic NMPC (5.2.2) is

strictly dissipative with respect to the supply rate:

s(x, u) = ψec(x, u)− ψec(xs, us) (5.2.6)

Then xs is an asymptotically stable equilibrium point of the closed-loop system.

Therefore, with the dissipativity of the stage cost and dynamic model, the economic

NMPC is asymptotically stable.

By choosing λ(x) = λ̄Tx for some λ̄ ∈ Rn, the dissipativity assumption is equiva-

lent to the following:

min ψec(x, u) + λ̄T(x− f (x, u)) ≥ ψec(xs, us) (5.2.7)

Economic NMPC 97



5.2. Stability Properties of Economic NMPC

As pointed out in [6], the dissipativity assumption can be fulfilled if the economic

stage cost and dynamic model form a strongly dual problem. More importantly,

this leads to the idea of rotated stage cost [6, 26] defined as follows:

φ(x, u) = ψec(x, u) + λT(x− f (x, u)) (5.2.8)

where λ are the multipliers form the equality constraints in the steady state opti-

mization problem (5.2.1). Moreover, it has been shown in [41, 44] that if the rotated

stage cost φ(x, u) is strongly convex, then strong duality property together with the

stability of the corresponding economic NMPC can be guaranteed. These results

provide sufficient conditions to establish stability for economic NMPC. Note that

these conditions can be satisfied by adding quadratic regularization terms to the

economic stage cost, which will be discussed in the following section.

5.2.1 Regularization of Non-convex Economic Stage Costs

For a general economic stage cost ψec(x, u) and process dynamic model f (x, u),

properties like dissipativity, strong duality or strong convexity are not fulfilled in

general. To guarantee such properties, an easy remedy is to add quadratic regular-

ization terms to the original economic stage cost.

After introducing the regularization terms, the modified steady state problem and

the corresponding regularized rotated stage cost is defined as follows:

min
x,u

ψec(x, u) +
1
2
‖(x, u)− (xs, us)‖2

Q (5.2.9)

s.t. x = f (x, u)

u ∈ U, x ∈ X.
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φreg(x, u) = ψec(x, u) + λT(x− f (x, u)) +
1
2
‖(x, u)− (xs, us)‖2

Q

(5.2.10)

where (xs, us) are the optimal solutions to the original optimization problem (5.2.1).

Q is a diagonal regularization weighting matrix.

As shown in [26, 44] , there are two major steps to show the stability of the eco-

nomic NMPC controller after adding quadratic regularization terms. Firstly we

consider a pseudo controller using the rotated stage cost φ(x, u) as objective func-

tion. With a sufficiently large regularization matrix Q, the regularized rotated stage

cost φreg(x, u) can be strongly convex. Then, as shown in [44], a local optimal so-

lution from problem (5.2.9) is a global minimum for the regularized rotated stage

cost. With this result, the value function of this pseudo controller is monotonically

decreasing based on inequality (5.2.3). Also it can be proved that regularized ro-

tated stage cost satisfies Assumption 2.2.2. Therefore the pseudo economic NMPC

controller using the rotated stage cost as objective is asymptotically stable. The next

step is to extend the stability result to economic NMPC controller by showing that

it has the same solution as the pseudo controller. Then the stability of economic

NMPC can be guaranteed after adding sufficiently large regularization.

In addition to stabilizing the controller, these quadratic regularization terms pro-

vide guidance for economic NMPC to drive the process to optimal steady state,

which is desired in most practical applications.

Though adding regularization terms is easy, finding appropriate regularization

weights which guarantee the stability of economic NMPC could be a challenging

task. In [44], a systematic approach to find the sufficient regularization weights has

been proposed. The key idea is to apply the Gershgorin theorem to find "minimal"

regularization matrix Q, which makes the regularized rotated stage cost φreg(x, u)

strongly convex.
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The proposed condition for Gershgorin weights is shown as follows:

qi > ∑
i 6=j
|ai,j| − ai,j (5.2.11)

where qi are the diagonal elements of the regularization weighting matrix Q and

ai,j are the elements of matrix A, the Hessian matrix of the rotated stage cost φ(x, u)

in (5.2.8), which is defined as follows.

A = ∇2φ(x, u) (5.2.12)

With condition (5.2.11) satisfied, the Hessian of the regularized rotated stage cost

φreg(x, u) is positive definite and thus it’s strongly convex. Based on this simple

criterion, we can determine the "minimal" regularization weights that guarantees

stability of economic NMPC.

On the other hand, it should be noted that this condition (5.2.11) must be satis-

fied for all u ∈ U, x ∈ X. In other words, we need to check this criterion over

the entire space of (x, u) so that the regularized rotated stage cost is guaranteed

to be strongly convex. In practice, we can sample a sufficient number of possible

combinations of states and controls in order to check this criterion. In [89], the

author divides the feasible regions of every variable, including differential states,

algebraic variables and controls, into N grid points and calculates the Hessian ma-

trix of the rotated stage cost at each grid point. Though all calculations are done

offline, it could be cumbersome especially for large-scale systems with a significant

number of variables. The number of calculations needed to determine sufficient

regularization weights could be exponentially increasing with increased dimen-

sion of system variables. Moreover, based on this criterion, regularization may be

required for most system variables including dynamic states, algebraic variables

and controls, which could lead to very conservative economic performance.
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To overcome this issue, we propose the economic NMPC formulation with reduced

sets of regularization. The key idea is that we only focus on a set of critical states,

which are a subset of full system states, for stability analysis and regularization.

Then we further introduce strategies to determine regularization weights for these

critical states. If this is possible, we can achieve much easier control implemen-

tation and less conservative performance. In the next section, we will discuss the

proposed regularization strategy for economic NMPC of differential and algebraic

equation (DAE) systems. Firstly we will demonstrate that the algebraic variables

can be removed for regularization analysis and economic NMPC can maintain

asymptotic stability. Then we will study the stability property of economic NMPC

with regularization of subsets of system states. A comprehensive case study will

be presented to demonstrate the proposed regularization strategy.

5.3 Regularization Strategy for Economic NMPC of DAE sys-

tems

As we mentioned before, first-principles process models have been developed for

complex processes, which are usually modeled as differential and algebraic equa-

tions. In addition to simulation and offline optimization, these first-principles

models can also be used in NMPC framework to improve the control and economic

performance for process operations.

Next we want to improve the regularization strategy for economic NMPC of DAE

systems firstly by removing the algebraic variables.

The steady state optimization problem for economic NMPC of a DAE system is
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defined as follows:

min
x,y,u

ψec(x, y, u) (5.3.1)

s.t. x = f (x, y, u)

y = g(x, y, u)

u ∈ U, x ∈ X, y ∈ Y.

where x and y are the differential and algebraic variables existed in the first-principles

process models; f and g are the corresponding differential and algebraic equations.

By introducing extended variables for control ṽl+1 = vl , we can write the dynamic

optimization problem for economic NMPC controller of a DAE system as follows:

V(x(k)) = min
vl ,yl ,zl

N−1

∑
l=0

ψec(zl , yl , vl) (5.3.2)

s.t. zl+1 = f (zl , yl , vl), l = 0, . . . N − 1

yl = g(zl , yl , ṽl), l = 1, . . . , N

y0 = g(z0, y0, u(k− 1))

z0 = x(k), zN = xs

vl , ṽl ∈ U, zl ∈ X, yl ∈ Y.

We can define the following rotated stage cost:

φ(x, y, u) = ψec(x, y, u) + λT
f (x− f (x, y, u)) + λT

g (y− g(x, y, u)) (5.3.3)

After adding regularization terms, we obtain the following regularized rotated
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stage cost:

φreg(x, y, u) = ψec(x, y, u) + λT
f (x− f (x, y, u)) + λT

g (y− g(x, y, u)) (5.3.4)

+
1
2
‖(x, y, u)− (xs, ys, us)‖2

Q

Then the previous results can be easily extended to the above rotated stage cost. By

adding additional regularization terms, if the regularized rotated stage cost (5.3.4)

is strongly convex, then a local optimal solution to problem (5.3.1) using the reg-

ularized rotated stage cost (5.3.4) as objective function is the global minimum for

(5.3.4) [44]. Therefore we can establish the stability for NMPC (5.3.2) using the

regularized rotated stage cost (5.3.4) as the objective. Then it’s straightforward to

show that the NMPC problem (5.3.2) using the regularized rotated stage cost (5.3.4)

as objective has the same solution as the NMPC problem (5.3.2) using the original

economic stage cost and same regularization. Thus the stability for the regularized

economic NMPC of DAE systems can be established.

However, if we directly apply this result, then the Hessian matrix of the regularized

rotated state cost should be positive definite for all feasible (x, y, u). In many appli-

cations, there could be many more algebraic variables than differential variables.

So this could significantly increase the work to find the sufficient regularization

weights and make control performance very conservative.

To cope with this issue, we propose a strategy to determine regularization weights

only for these differential variables and controls, which could be easily applied

to designing stable economic NMPC controllers for processes modeled by general

DAE systems.

5.3.1 Reduction of Algebraic Variables

Assumption 5.3.1. The semi-explicit DAE system in economic NMPC problem (5.3.2) is
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index-1.

With this assumption, the algebraic variables can be determined by differential

variables via solving the square algebraic equations systems. High-index DAE sys-

tems can be transformed into index-1 system through index reduction strategies.

Under Assumption 5.3.1, we can find the following function gy(., .) to determine

algebraic variables y in terms of states x and controls u:

y = gy(x, u) (5.3.5)

Substituting y = gy(x, u) into the original optimization problem (5.3.1), which

leads to the following reformulated steady state optimization problem:

min
x,u

ψec(x, gy(x, u), u) (5.3.6)

s.t. x = f (x, gy(x, u), u)

u ∈ U, x ∈ X.

Here we introduce a robust formulation similar to [91] to remove constraints on

y by `1 penalty terms in the objective function. With a sufficiently large penalty

weight, at optimal solutions, these penalty terms will be zero and the original

constraints on y will be satisfied. With this reformulation, algebraic variables and

equations are removed from the reformulated optimization problem.

The corresponding dynamic optimization problem for NMPC can be defined as
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follows:

V(x(k)) = min
vl ,zl

N−1

∑
l=0

ψec(zl , gy(zl , ṽl), vl) (5.3.7)

s.t. zl+1 = f (zl , gy(zl , ṽl), vl), l = 0, . . . N − 1

z0 = x(k), zN = xs

vl , ṽl ∈ U, zl ∈ X.

Theorem 5.3.1. Under Assumption 5.3.1, economic NMPC controller described by (5.3.7)

can be made asymptotically stable, by adding a sufficiently large regularization on dynamic

states z and controls v.

Proo f : After removing algebraic variables, economic NMPC controller described

by (5.3.7) is equivalent to the economic NMPC (5.2.2). Then we can directly use the

proof in [44] to establish the stability property.

After removing the algebraic variables, we can guarantee the stability of economic

NMPC controller by only regularizing states x and controls u. While there may not

exist an explicit form for function gy(·, ·), but we can at least determine this steady

state relationship implicitly based on the implicit function theorem. A systematic

approach to determine the sufficient weights for x and u based on the original DAE

model will be discussed in the following sections.

5.3.2 Economic NMPC with Regularization of Reduced States

In previous section, we showed that algebraic variables can be removed from the

regularization analysis. Based on that, we redefine the steady state optimization

(5.3.6) into the following problem S1 where all algebraic variables and equations
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are removed:

S1 : min
x̄,x̂,u

ψec(x, u) (5.3.8)

s.t. x̄ = f1(x̄, x̂, u)

x̂ = f2(x̄, x̂, u)

x̄, x̂ ∈ X, u ∈ U.

In the steady state problem S1, system states x are divided into two subsets x̄, x̂ ∈

X. Here x̄ represent some critical states of the system, which will be considered for

systematic analysis and may require regularization to stabilize economic NMPC

controller; while x̂ represent the rest of the system states. These subsets of states

can be located through structural analysis of the original optimization problem

given by (5.2.1). For example, the states that are directly involved in the economic

stage cost could be treated as critical states since they directly affect the optimal

solutions to the economic NMPC controller. More guidelines will be discussed in

the following section.

For NMPC problem, we apply the robust problem formulation in [91] by relax-

ing X with `1 penalty terms. Without loss of generality, we assume that X and U

can be represented by simple upper and lower bounds. Then we can write X as in-

equalities g(zl) ≤ 0 , and redefine g(j)
+ (zl) = max(0, g(j)(zl)), ψ(zl , vl) := ψ(zl , vl) +

ρ‖g+(zl)‖. Note that the redefined objective function is no longer differentiable ev-

erywhere, but still Lipschitz continuous, which is sufficient for the stability analy-

sis. With constraint qualifications and second order conditions (e.g. MFCQ, CRCQ

and GSSOSC) satisfied, if we select a sufficiently large penalty weight ρ, the opti-

mal solution of the reformulated problem is the same as the original optimization

problem and the penalty terms equal zero. Similarly, terminal equality constraints

can also be removed with `1 penalty terms. Here we choose a penalty parameter ρt

which is large enough so that zN = xs at the optimal solution.
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After this reformulation, we define the dynamic optimization problem for eco-

nomic NMPC controller D1 as follows:

D1 : VD1(x(k)) = min
z̄l ,ẑl ,vl

N−1

∑
l=0

ψec(zl , vl) + ρt||zN − xs|| (5.3.9)

s.t. z̄l+1 = f1(z̄l , ẑl , vl)

ẑl+1 = f2(z̄l , ẑl , vl)

z̄0 = x̄(k)

ẑ0 = x̂(k)

vl ∈ U, l = 0, . . . N − 1.

To separate two subsets of system states for analysis, we firstly introduce the fol-

lowing assumption.

Assumption 5.3.2.

• For steady state economic problem S1, x̂ can be uniquely determined by (x̄, u).

With assumption 5.3.2, x̂ can be uniquely calculated via the square equation system

f2(., .) with fixed values of x̄ and u. Under Assumption 5.3.2, the rest of system

states x̂ can be expressed as a function of critical states x̄ and controls u, which

leads to the following reformulated steady state optimization problem S2:

S2 : min
x̄,x̂,u

ψec(x, u) (5.3.10)

s.t. x̄ = f1(x̄, x̂, u)

x̂ = h(x̄, u)

x̄, x̂ ∈ X, u ∈ U.

Note that there may not exist an explicit form for function h(·, ·), but we can at

least determine this steady state relationship implicitly based on implicit function
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theorem under Assumption 5.3.2.

Next we introduce a pseudo DAE system, where critical states x̄ are determined

by the original dynamic model, but unimportant states x̂ are treated as algebraic

variables. Assume that this pseudo system is an index 1 DAE system, and define

extended states ṽl+1 = vl , then we apply the same robust reformulation and have

the following pseudo economic NMPC controller D2:

D2 : VD2(x̄(k)) = min
zl ,ẑl ,vl

N−1

∑
l=0

ψec(zl , vl) + ρt||zN − xs|| (5.3.11)

s.t. z̄l+1 = f1(z̄l , ẑl , vl), l = 0, . . . N − 1

ẑl = h(z̄l , ṽl), l = 1, . . . N

z̄0 = x̄(k)

ẑ0 = h(x̄(k), u(k− 1))

vl , ṽl ∈ U.

Next we are going to analyze the stability property of economic NMPC with reg-

ularization of reduced states. As mentioned before, to design a stable economic

NMPC controller, an offline analysis step is usually required to determine sufficient

regularization weights. To simplify this process and avoid over-regularization, we

want to perform analysis only in a reduced space of states. Such analysis will lead

to regularization on only a subset of states, which will be added to the unregular-

ized economic NMPC controller D1 (5.3.9) .

To analyze the stability property of this strategy, we firstly study the stability of

pseudo economic NMPC controller D2 (5.3.11), where unimportant states are treated

as algebraic variables and a much simpler and less conservative regularization can

be obtained. Then we analyze the stability of economic NMPC D1 with reduced

regularization obtained from D2, by considering the effect of errors in such approx-

imations in the analysis step. Similar to the previous analysis, the main stability
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analysis is conducted for economic NMPC using the rotated stage cost as objective.

To begin, we will demonstrate the equivalence of NMPC using two objectives with

the following Lemmas.

Here we define the rotated stage cost for the steady state problem S2 as follows:

φ(x, u) = ψec(x, u) + λT(x̄− f1(x̄, x̂, u)) (5.3.12)

It should be noted that only a subset of model equations are rotated. λ are the

multipliers for the equality constraints in the optimization problem S2 that have

been rotated.

Lemma 5.3.1. Economic NMPC controller D1 has the same solution when using φ(x, u)

given by (5.3.12) as the stage cost.

Proo f : Using φ(x, u) given by (5.3.12) as the stage cost, we obtain a new objective

for problem D1:

VD1,ro =
N−1

∑
l=0

(ψec(zl , vl) + λT(z̄l − f1(z̄l , ẑl , vl)) (5.3.13)

Note that from the dynamic model for controller D1, we have z̄l+1 = f1(z̄l , ẑl , vl).

Then we derive the relationship of the new objective VD1,ro for controller D1 and

original objective VD1:

VD1,ro(x̄(k)) =
N−1

∑
l=0

(ψec(zl , vl) + λT(z̄l − f1(z̄l , ẑl , vl)) (5.3.14)

=
N−1

∑
l=0

ψec(zl , vl) +
N−1

∑
l=0

λT(z̄l − z̄l+1)

=
N−1

∑
l=0

ψec(zl , vl) + λT x̄(k)

= VD1(x̄(k)) + λT x̄(k)

From the above equation, we find that VD1,ro and VD1 differ by only a constant term.
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Therefore economic NMPC controller D1 has the same solution as using the rotated

stage cost (5.3.13) as objective.

Lemma 5.3.2. Economic NMPC controller D2 has the same solution as using φ(x, u)

given by (5.3.12) as the stage cost.

Proo f : Similar to the proof for Lemma 5.3.1, the new objective for D2 is defined as

VD2,ro =
N−1

∑
l=0

(ψec(zl , vl) + λT(z̄l − f1(z̄l , ẑl , vl)) (5.3.15)

and the relationship of the new objective VD2,ro for controller D2 and original objectiveVD2

is as follows:

VD2,ro(x̄(k)) =
N−1

∑
l=0

(ψec(zl , vl) + λT(z̄l − f1(z̄l , ẑl , vl)) (5.3.16)

=
N−1

∑
l=0

ψec(zl , vl) +
N−1

∑
l=0

λT(z̄l − z̄l+1)

=
N−1

∑
l=0

ψec(zl , vl) + λT x̄(k)

= VD2(x̄(k)) + λT x̄(k)

From the above equation, we find that VD2,ro and VD2 differ by only a constant term.

Therefore economic NMPC controller D2 has the same solution as using the rotated

stage cost as objective.

From equations (5.3.14) and (5.3.16) in the above Lemmas, we can also find that

VD1,ro(x̄(k))−VD2,ro(x̄(k)) = VD1(x̄(k))−VD2(x̄(k)).

Moreover, problems D1 and D2 can be linked with the following parametric NLP

110 Economic NMPC



5.3. Regularization Strategy for Economic NMPC of DAE systems

formulation pNLP(t), with a parameter t:

min
z̄l ,ẑl ,vl

N−1

∑
l=0

ψec(zl , vl) + ρt||zN − xs|| (5.3.17)

s.t. z̄l+1 = f1(z̄l , ẑl , vl), l = 0, . . . N − 1

ẑl = h(z̄l , ṽ1) + t( f2(z̄l−1, ẑl−1, vl−1)− h(z̄l , ṽl)), l = 1, . . . N

z̄0 = x̄(k)

ẑ0 = h(x̄(k), u(k− 1)) + t(x̂(k)− h(x̄(k), u(k− 1)))

vl ,ṽl ∈ U.

Here we introduce a noise vector w(k) = [w0 . . . wN ]
T with entries defined as fol-

lows:

w0 = x̂(k)− h(x̄(k), u(k− 1)) (5.3.18)

wl = f2(z̄l−1, ẑl−1, vl−1)− h(z̄l , ṽl) l = 1 . . . N (5.3.19)

The noise vector w(k) represents the differences in the values of ẑl given by the

dynamic function and steady state relationship. For the above parametric NLP

problem, when t = 0, it corresponds to problem D2. On the other hand, when

t = 1, it corresponds problem D1.

Next we will show that, in the pseudo nominal case where w(k) = 0, stability prop-

erty can be guaranteed for economic NMPC by adding regularization terms only

for critical states x̄ and u.

Theorem 5.3.2. In the pseudo nominal case where w(k) = 0, under Assumption 5.3.2,

economic NMPC controller D1 can be made asymptotically stable, by adding a sufficiently

large regularization on reduced sets of states z̄ and v.

Proo f : In this pseudo nominal case, we assume that w(k) = 0; so that NMPC prob-

lem D1 is equivalent to NMPC problem D2, where all unimportant states x̂ are
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algebraic variables. Then we can perform the similar analysis as reducing the alge-

braic variables as discussed in chapter 5.3.1.

Substituting the steady state relationship ẑl = h(z̄l , ṽl), D2 can be rewritten as:

min
z̄l ,ṽl ,vl

N−1

∑
l=0

ψec(z̄l , h(z̄l , ṽl), vl) (5.3.20)

s.t. z̄l+1 = f1(z̄l , h(z̄l , ṽl), vl)

z̄0 = x̄(k)

vl ,ṽl ∈ U, l = 0, . . . N − 1.

Similarly, we can rewrite the steady state problem S2 as follows:

min
x̄,u

ψec(x̄, h(x̄, u), u) (5.3.21)

s.t. x̄ = f1(x̄, h(x̄, u), u)

x̄ ∈ X, u ∈ U.

Here we also introduce a robust formulation similar to [91] to remove constraints

on ẑ by `1 penalty terms in the objective function. With sufficiently large penalty

weight, at optimal solutions, these penalty terms will be zero and the original con-

straints on ẑ will be satisfied.

Now this problem is equivalent to economic NMPC described by (5.2.2) and we

can follow the proof in [44] to establish stability results. For this reduced sys-

tem, if the regularized rotated stage cost φreg(x̄, u) = ψec(x̄, h(x̄, u), u) + λT(x̄ −

f1(x̄, h(x̄, u), u)) +
1
2
‖(x̄, u) − (x̄s, us)‖2

Q̄ is strongly convex, as shown in [44], the

monotonic decrease of the value function can be guaranteed and the regularized

stage cost is bounded by K∞ functions. Therefore, the asymptotic stability for reg-

ularized economic NMPC controller using rotated stage cost as objective can be

established. Based on Lemma 5.3.2, in the pseudo nominal case where w(k) = 0,

112 Economic NMPC



5.3. Regularization Strategy for Economic NMPC of DAE systems

economic NMPC controller D1 is asymptotically stable.

Next we will consider the stability property for economic NMPC controller D1 for

cases where w(k) 6= 0. In these cases, the economic NMPC controller D1 can be

treated as the controller D2 corrupted with non-zero noise terms w(k).

The pseudo process model for controller D2 is defined as follows:

x̄(k + 1) = f1(x̄(k), u(k), h(x̄(k), u(k− 1))) (5.3.22)

while the process model is defined as follows:

x̄(k + 1) = f1(x̄(k), u(k), h(x̄(k), u(k− 1)) + w(k, 0)) (5.3.23)

Here w(k, 0) is the first element of the noise vector w(k) and it’s defined as x̂(k)−

h(x̄(k), u(k− 1)), which represents the difference in the values for x̂ at initial time

in D1 and D2.

Firstly we will analyze the stability property for controller D2 when the process

model is given by equation (5.3.23), which is the nominal process model. How-

ever, model mismatch exists between the nominal process model and the control

model (5.3.22) for controller D2. Then we introduce an assumption on w(k) that

it’s always bounded. With additional standard assumptions for robust stability, we

can establish Input-to-State Stability (ISS) property for controller D2.

Assumption 5.3.3.

• The noise vector w(k) = [w0 . . . wN ]
T is drawn from a bounded setW with an upper

bound w̄.

Assumption (5.3.3) is a key assumption for the following stability analysis, which

assumes that the deviations of dynamic states x̂ from their algebraic predictions

are bounded, i.e. dynamic states x̂ have a similar behavior as algebraic variables.
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For example, the states that have very fast dynamics and quickly converge to their

algebraic counterparts may satisfy this assumption.

Assumption 5.3.4. Robust stability assumptions

• The optimal solution to problem D1 and D2 is continuous with respect to x(k) and

w.

• V(x(k)) is Lipschitz with respect to x(k), with a positive Lipschitz constant Lv.

• Model equations f and steady state relationship h are Lipschitz with its arguments

with corresponding Lipschitz constants.

Theorem 5.3.3. Under Assumption 5.3.2, 5.3.3 and 5.3.4, the controller D2 can be made

ISS stable when process model is given by equation (5.3.23) and w(k) 6= 0.

Proo f : Here we consider the controller D2 using rotated stage cost VD2,ro (5.3.15)

as objective, which is equivalent to D2 using the original stage cost, as shown in

Lemma 5.3.2.

Then we compare the differences between value functions at two consecutive sam-

pling times. Similar to the robust stability proof shown in [45, 59], we can derive

the following inequality, with Assumption 5.3.4.

VD2,ro(x̄(k + 1))−VD2,ro(x̄(k)) (5.3.24)

= VD2,ro(x̄(k + 1))−VD2,ro( f1(x̄(k), u(k), h(x̄(k), u(k− 1))))

+ VD2,ro( f1(x̄(k), u(k), h(x̄(k), u(k− 1))))−VD2,ro(x̄(k))

≤ Lv|x̄(k + 1)− f1(x̄(k), u(k), h(x̄(k), u(k− 1)))| − ψro(x̄(k), u(k))

≤ LvL f |w(k, 0)| − ψro(x̄(k), u(k))

≤ −αl(|x̄(k)− x̄s|) + LV |w(k, 0)|

The last line of derivation follows the fact that the rotated stage cost ψro(x̄(k), u(k))

can be bounded by a K∞ function αl(·) after adding sufficient regularization on z̄

and v based on Theorem 5.3.2. w(k, 0) is the first element of the noise vector w(k)
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at sampling time tk, which causes the differences in the states predictions given by

and pseudo process model (5.3.22) and process model (5.3.23). Under Assumption

5.3.3, w(k, 0) is drawn from the bounded set W . Therefore, ISS property can be

established for controller D2.

Next we analyze the stability property for economic NMPC D1 with reduced sets

of regularization by linking the solutions to problems D1 and D2.

By introducing a notation v = [vl , ṽl ], we can rewrite the pNLP(t) defined by

(5.3.17) as follows:

pNLP(t) =min
z,v

F(z, v) (5.3.25)

s.t. c1(z, v) = 0

c2(z, v) + tc3(z, v) = 0

The new notations c1, c2, c3 are defined as follows, which is derived from pNLP(t)

by (5.3.17):

c1(z, v) =

 z̄l+1 − f1(z̄l , ẑl , vl)

z̄0 − x̄(k)

 (5.3.26)

c2(z, v) =

 ẑl − h(z̄l , ṽ1)

ẑ0 − h(x̄(k), u(k− 1))

 (5.3.27)

c3(z, v) =

 −( f2(z̄l−1, ẑl−1, vl−1)− h(z̄l , ṽl))

−(x̂(k)− h(x̄(k), u(k− 1)))

 (5.3.28)

The above NLP is equivalent to D2 when t = 0 and is the same as D1 when t = 1.

The difference in the solutions of D2 and D1 with the same control inputs v can be

bounded with the following Lemma.

Lemma 5.3.3. Assume that solutions (z∗(t), v∗(t)) exist for pNLP(t) given by (5.3.25),
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for all t ∈ [0, 1]. Then with v∗(t) specified, and z calculated from the equality constraints

in (5.3.25), the difference of value functions and state profiles at t = 0 and t = 1 is O(w̄),

i.e. |F(z(0), v∗(t))− F(z(1), v∗(t))| ≤ LFw̄, |z(0)− z(1)| ≤ Lzw̄.

Proo f : The equation systems for pNLP(t) are shown as follows:

P(t) : c1(z, v) = 0 (5.3.29)

c2(z, v) + tc3(z, v) = 0

With fixed inputs v∗(t), the equation systems for pNLP(t) becomes a square system.

Then solving pNLP(t) is equivalent to solving a dynamic simulation problem and

the equation systems P(t) can be solved by marching step by step from l = 0 to

l = N. Here we assume that the square systems are non-singular for all t ∈ [0, 1].

Then we can apply the implicit function theorem to find the parametric sensitivity

of state variables z with respect to t:

 ∇c1(z, v∗(t))

∇c2(z, v∗(t)) + t∇c3(z, v∗(t))

 ż = −

 0

c3(z, v∗(t))

 (5.3.30)

and the differences in the state variables z can be bounded by:

|z(1)− z(0)| =

∣∣∣∣∣∣∣
∫ 1

0

 ∇c1(z, v∗(t))

∇c2(z, v∗(t)) + t∇c3(z, v∗(t))


−1  0

c3(z, v∗(t))

 dt

∣∣∣∣∣∣∣
(5.3.31)

≤ LK|c3(z, v∗(t))| ≤ LK|w̄|

Note that c3(z, v∗(t)) is the same as w(k), which is bounded by w̄ based on Assump-

tion 5.3.3. In addition, under the assumption that F is lipschitz in x, the difference
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in value functions can be bounded by:

|F(z(0), v∗(t))− F(z(1), v∗(t))| ≤ LF|w̄| (5.3.32)

Theorem 5.3.4. Under Assumption 5.3.2, 5.3.3 and 5.3.4, economic NMPC controller D1

can be made Input-to-State Practical Stable (ISpS), by adding a sufficiently large regular-

ization on reduced sets of states z̄ and v.

Proo f : Firstly, we solve problem D2 and obtain optimal control sequences vD2
l .

Then we apply vD2
l to solving the square systems for controller D1:

P1 : c1(zl , vD2
l ) = 0 (5.3.33)

c2(zl , vD2
l ) + c3(zl , vD2

l ) = 0

Injecting vD2
l and solving P1 may lead to violations of state inequality constraints

and terminal equality constraints used in D1. For example, the solution zN from P1

may not equal to xs. However, the difference ||zN − xs|| is bounded by a constant

c(w̄) based on Lemma 5.3.3. After using the robust reformulation, these constraints

are replaced with `1 penalty terms and these additional penalty terms in the objec-

tive functions are also bounded by a constant c(w̄). With the robust reformulation,

P1 can be solved and we denote the value function associated with P1 as V f
D1. Based

on Lemma 5.3.3, the difference of value functions of P1 and D2 can be bounded by:

|V f
D1 −VD2| ≤ LV1w̄ (5.3.34)

On the other hand, it should be noted that the solution of P1 provides a feasible so-

lution to D1. Based on the principle of optimality, we have the following inequality:

V f
D1 ≥ VD1 (5.3.35)
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Similarly, we solve problem D1 and obtain optimal control sequences vD1
l . Then

we apply vD1
l to solving the square systems for controller D2:

P2 : c1(zl , vD2
l ) = 0 (5.3.36)

c2(zl , vD2
l ) = 0

Here we denote the value function associated with P2 as V f
D2. Also based on

Lemma 5.3.3, the difference of value functions of P2 and D1 can be bounded by:

|VD1 −V f
D2| ≤ LV2w̄ (5.3.37)

Since the solution of P2 provides a feasible solution to D2, based on the principle

of optimality, we have:

V f
D2 ≥ VD2 (5.3.38)

To establish the stability property, we consider the controller D1 using rotated stage

cost VD1,ro as objective, which is equivalent to D1 using the original stage cost, as

shown in Lemma 5.3.1. Also based on Lemma 5.3.1 and Lemma 5.3.2, we have

VD1,ro(x̄(k))−VD2,ro(x̄(k)) = VD1(x̄(k))−VD2(x̄(k)).

Then the difference of rotated stage cost at two consecutive sampling times is
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shown as follows:

VD1,ro(x̄(k + 1))−VD1,ro(x̄(k)) (5.3.39)

= VD1,ro(x̄(k + 1))−VD2,ro(x̄(k + 1)) + VD2,ro(x̄(k + 1))−VD2,ro(x̄(k))

+ VD2,ro(x̄(k))−VD1,ro(x̄(k))

= VD1(x̄(k + 1))−VD2(x̄(k + 1)) + VD2,ro(x̄(k + 1))−VD2,ro(x̄(k))

+ VD2(x̄(k))−VD1(x̄(k))

≤ V f
D1(x̄(k + 1))−VD2(x̄(k + 1)) + VD2,ro(x̄(k + 1))−VD2,ro(x̄(k))

+ V f
D2(x̄(k))−VD1(x̄(k))

≤ LV1w̄ + (−αl(|x(k)− x̄s|) + LV |w(k, 0)|) + LV2w̄

≤ −αl(|x̄(k)− x̄s|) + LV |w(k, 0)|+ LV3w̄

The inequality for the pair VD2,ro(x̄(k + 1)) − VD2,ro(x̄(k)) comes from equation

(5.3.24) in the proof for Theorem 5.3.3, where αl(·) is aK∞ function. As for the other

two pairs, the inequalities can be derived with the previous analysis. Therefore the

ISpS property can be established for D1. It should be noted that the constant is

related with the upper bound w̄ for w(k).

From the above results, we can guarantee ISpS stability of the economic NMPC

controller by regularizing important states x̄, under the assumption that the deriva-

tions of unimportant dynamic states x̂ from their algebraic predictions are bounded.

Though the pseudo controller D2 has a stronger stability result than controller D1,

we only use the pseudo process model to determine reduced regularization weight

but still use the full model for the controller which gives accurate predictions in

terms of the dynamic behavior of both states x̄ and x̂.

Unlike exogenous process disturbances which exist all the time and are indepen-

dent of process states, the noise vector w(k) in our analysis may have some differ-

ent properties that could lead to stronger stability results. Next we will study the
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stability results if a stronger assumption is made for w(k).

Assumption 5.3.5. The noise vector |w(k)| ≤ ρ

Lw
(|x̄(k) − x̄s|), where

ρ

Lw
(|x̄(k) −

x̄s|) ≤ w̄, Lw = LV3 + LV , ρ ∈ [0, 1), after a finite number of iterations K.

In Assumption 5.3.5, we assume that as critical states x̄ approach to steady state, the

noise vector w(k) can be bounded by the distance of x̄ to the optimal steady state,

which is stronger than Assumption 5.3.3. However, this assumption may hold for

cases where x̄(k) and x̂(k) are close to steady state; the deviations of dynamic states

x̂(k) and their algebraic predictions are bounded by a decaying bound and w(k)

will go to 0 as x̄ converge to steady state x̄s.

Theorem 5.3.5. Under Assumption 5.3.5, NMPC controller D1 can be made asymptot-

ically stable, by adding a sufficiently large regularization on reduced sets of states z̄ and

v.

Proo f : The Assumption 5.3.5 assumes that |w(k)| ≤ ρ

Lw
(|x̄(k)− x̄s|) ≤ w̄ after a

finite number (e.g. K) iterations. With this assumption, we can define a new upper

bound w̄n for w(k), with w̄n =
ρ

Lw
(|x̄(k)− x̄s|), Lw = LV3 + LV , ρ ∈ [0, 1).

From (5.3.39) in Theorem 5.3.4, we can derive a similar inequality, for k ≥ K:

VD1,ro(x̄(k + 1))−VD1,ro(x̄(k)) (5.3.40)

≤ −αl(|x̄(k)− x̄s|) + LV3w̄n + LVw̄n

≤ −(1− ρ)αl(|x̄(k)− x̄s|)

where αl(·) is a K∞ function.

This theorem can be proved by summing inequalities (5.3.39) and (5.3.40) over k
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from 0 to ∞, and it leads:

VD1,ro(x̄(0))−VD1,ro(x̄(∞)) ≥
∞

∑
k=0

(VD3,ro(x̄(k))−VD3,ro(x̄(k + 1)) (5.3.41)

≥
K

∑
k=0

αl(|x̄(k)− x̄s|)−
K

∑
k=0

LV3|w(k, 0)| −
K

∑
k=0

LVw̄

+
∞

∑
k=K+1

(1− ρ)αl(|x̄(k)− x̄s|)

Since VD1,ro is bounded above and below, the above inequality can be valid only if

lim
k→∞

αl(|x̄(k)− x̄s|)→ 0 and lim
k→∞

x̄(k)→ x̄s.

Remark: Note that it’s not necessary to derive the steady state relationship h(·, ·) to

reduce the state space for economic NMPC implementation or to use problem D2

as the controller. This reduction is only used to facilitate the stability analysis.

In this section, we have shown that, with a sufficiently large regularization on a

reduced set of system states, the stability of economic NMPC controller can still be

maintained. Next we will briefly discuss the guidelines for critical states selection

and introduce a systematic approach to determine the sufficient weights for the

reduced regularization that guarantees the stability of economic NMPC controller.

5.3.3 Selection of Critical States

In the previous section, we analyze the stability property of economic NMPC us-

ing reduced regularization on critical states. Moreover, it’s crucial to identify the

critical states that need to be considered for regularization analysis. Though the

selection of critical states may be application-dependent and there is no unifying

criterion, we will discuss some general guidelines in this section.

Based on the previous stability results, we can see that dynamic states that have

similar performance as their algebraic counterparts may be removed from regu-

larization analysis by treating them as algebraic variables. These states can be lo-
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cated via time scale analysis of the original system. For example, the fast states in

the standard singularly perturbed system (3.3.1) may be removed for the regular-

ization analysis if ε is small. For these states, Assumption 5.3.3 may be satisfied

implicitly and no regularization is required for these states.

In addition to time scale analysis, sensitivity analysis of the optimization prob-

lem may provide insights to locate the critical states. When considering the steady

state optimization problem (5.2.1), only a subset of the full system states affects

its optimal solution. Therefore, when solving the corresponding NLP problem for

economic NMPC, the optimal control moves of economic NMPC controller are af-

fected by only a subset of system states. By doing a sensitivity analysis of the op-

timization problem, we can find the states that significantly affect the optimization

objective function. The states that have little impact on the objective functions may

not need regularization and can be removed from the regularization analysis.

Moreover, to select appropriate critical states for regularization, it also requires a

good understanding of dynamic process model structure. For example, we can

conduct a structural analysis of the dynamic model to see if there are inherently

unstable states. If so, we need to treat these unstable states as critical states as well.

In addition, the coupling of states may provide hints to remove unnecessary states

for regularization analysis. For instance, if there exist strong dependency of some

states on the rest of states, like the slaving relationship for algebraic variables, then

these dependent states may be neglected for regularization analysis.

5.3.4 Regularization Weight Calculation

After removing algebraic variables and unimportant differential variables, we end

up with the following rotated stage cost consisting of x̄ and u at steady state:

φred(x̄, u) = ψec(x̄, h(x̄, u), u) + λT(x̄− f1(x̄, u, h(x̄, u))) (5.3.42)
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Next we need to find sufficient regularization to make the regularized rotated stage

cost φred(x̄, u) +
1
2
‖(x̄, u)− (x̄s, us)‖2

Q̄ to be strongly convex. This is equivalent to

finding a regularization matrix to make the Hessian matrix of the rotated stage cost

positive definite, which is defined as follows:

Ār = ∇2φred(x̄, u) (5.3.43)

Compared with the strategy proposed in [44], one major difference is that we only

need to calculate the Hessian of the reduced system given by (5.3.43), rather than

the Hessian of the full system (5.2.12). Also it should be noted that the rotated stage

cost has been simplified since equations f2(·, ·) are not included.

To make the reduced Hessian Ār positive definite, we can apply the same criterion

based on the Gershgorin theorem to find sufficient weights, as shown in [44].

q̄i > ∑
i 6=j
|āi,j| − āi,j (5.3.44)

where q̄i are the diagonal elements of the weighting matrix Q̄ for regularization of

critical states
1
2
‖(x̄, u)− (x̄s, us)‖2

Q̄; āi,j are the elements of matrix Ār.

With the inequality (5.3.44) being satisfied for all u ∈ U, x̄ ∈ X, the regularized

rotated stage cost φred(x̄, u) +
1
2
‖(x̄, u) − (x̄s, us)‖2

Q̄ is strongly convex. Then the

stability results shown in the previous sections hold for economic NMPC controller

after adding this regularization. As we mentioned before, the inequality (5.3.44)

needs to be satisfied for all values in the space of critical states, which is much

smaller than the original full state space.

In addition, other strategies can be used to find the minimum regularization weight

which makes the reduced Hessian Ār positive definite. For example, we can intro-

duce a diagonal regularization matrix Q̄ = qI, where I is a identity matrix of the
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dimension of x̄ and u. The scalar regularization weight q can be determined by:

q > max(0,−λi) (5.3.45)

where λi is the negative eigenvalue of the reduced Hessian without any regulariza-

tion. After adding regularization matrix Q̄ = qI, the regularized reduced Hessian

can be positive definite since all of its eigenvalues are positive.

Prior to regularization, we need to calculate the reduced Hessian matrix Ār. Since

the explicit form of h(·, ·) may not be available, we need to start with the rotated

stage cost with (x̄, x̂, u). To simplify the notation, we define x̃ = [x̄, u] ∈ <nx̃ and

x = [x̃, x̂] ∈ <nx . Then the rotated stage cost can be defined as follows:

φ(x) = ψec(x) + λT(x̄− f1(x)) (5.3.46)

Based on the chain rule, we can derive the Jacobian and Hessian of φ(x) with re-

spect to x̃ as follows:

∂φ(x)
∂x̃

=
∂φ(x)

∂x
∂x
∂x̃

(5.3.47)

∂2φ(x)
∂x̃2 =

∂x
∂x̃

T ∂2φ(x)
∂x2

∂x
∂x̃

+
nx

∑
i=1

∂φ(x)
∂xi

∂2xi

∂x̃2 (5.3.48)

In the above equations, we have:

∂x
∂x̃

T
=

[
I

∂x̂
∂x̃

T
]

(5.3.49)

where I is an identity matrix with the dimension of x̃.

As discussed earlier, we can derive the implicit steady state relationship x̂ = h(x̃)
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from the following square equation system from problem S1:

F2(x̃, x̂) = f2(x̃, x̂)− x̂ = 0 (5.3.50)

Based on chain rule, the dependent sensitivity and Hessian can be determined by:

J1
∂x̂
∂x̃

+ J2 = 0 (5.3.51)

∂J1

∂x̃i

∂x̂
∂x̃

+ J1
∂2 x̂

∂x̃∂x̃i
+

∂J2

∂x̃i
= 0 i = 1 · · · nx̃ (5.3.52)

where J1 =
∂F2

∂x̂
and J2 =

∂F2

∂x̃
.

With (5.3.51) and (5.3.52) plus the Jacobian and Hessian information of rotated

stage cost φ(x), we can calculate
∂2φ(x)

∂x̃2 given by (5.3.48), which is equivalent to the

reduced Hessian Ār. Note that all these calculations are based on the original full

space model, which means we can find the reduced Hessian implicitly without the

need to find an explicit form for h(·, ·) or to reformulate the original model equa-

tions. Also it should be noted that all information required to perform the above

calculation is the Jacobian and Hessian matrix of the original model. So we can di-

rectly apply these equations to check criterion (5.3.44) or (5.3.45) if we have access

to analytic Jacobian and Hessian which is available in modeling platform such as

AMPL. Another practical alternative is to approximate the dependent derivatives

and the reduced Hessian numerically using the perturbation method.

5.4 Case Studies

5.4.1 Economic NMPC of a CSTR

To illustrate the reduced regularization strategy proposed in the previous section,

we firstly study the economic NMPC problem of a well-mixed, continuous stirred
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tank reactor (CSTR). The CSTR model is taken from [26], with a first order irre-

versible reaction A → B. The mass balances for reactant A and product B are

shown as follows:

dcA

dt
=

F
V
(cA0 − cA)− kcA (5.4.1)

dcB

dt
=

F
V
(−cB) + kcA (5.4.2)

Here cA and cB represent the concentrations of A and B, in mol/l. The reactor vol-

ume V = 10 l, and the rate constant k = 1.2 l/(mol·min). The manipulated variable

is F, the flowrate of feed A, in l/min, and cA0 = 1 mol/l is the feed concentration.

Here we consider a similar economic stage cost as used in [26]:

ψec(F, cA, cB) = −(3FcB − 0.5F) (5.4.3)

where the first term represents the profit of product B and the second term repre-

sents the cost for raw material A.

In addition, we set the variable bounds as:

10 ≤ F ≤ 20 (5.4.4)

0.45 ≤ cB ≤ 1 (5.4.5)

Then we apply the robust reformulation to constraints on cB which softens the

variable bounds with `1 norm penalty in the objective function. The penalty weight

ρ is chosen as 106. For economic NMPC problem, we discretize the CSTR model

using a three-point Radau collocation with a finite element length of 0.5 min. The

prediction horizon N = 200. The initial conditions cA,0 = 0.1 mol/l, cB,0 = 1 mol/l.

In addition, the steady state optimum of the above problem are c∗A = 0.55, c∗B =

0.45, F∗ = 14.67.

Next we need to find sufficient regularization weights to stabilize economic NMPC
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controller. Firstly we apply the full regularization strategy proposed in [44]. The

rotated stage cost of the original system is defined as:

φ(F, cA, cB) = −3FcB + 0.5F + λ∗1 [
F
V
(cA0 − cA)− kcA] + λ∗2 [

F
V
(−cB) + kcA]

(5.4.6)

To make the rotated stage cost strongly convex, we introduce regularization terms
1
2
[qA(cA − c∗A)

2 + qB(cB − c∗B)
2 + qF(F− F∗)2] for all 3 variables. After adding the

regularization terms, the Hessian of the rotated stage cost is:

A = ∇2φ =


qF 1.54 0.43

1.54 qA 0

0.43 0 qB

 (5.4.7)

It should be noted that, for CSTR example, the elements of Hessian matrix A re-

main constant for all (z, v) since there are only linear and bilinear terms in the

CSTR model. Based on the Gershgorin theorem, A can be made strongly convex

with regularization weights that satisfy the following inequality:

qF > 1.97, qA > 1.54, qB > 0.43 (5.4.8)

Next we demonstrate the reduced regularization strategy proposed in the previous

section. Here we choose cB as x̂ and thus equation (5.4.2) is f2(·). By setting the left

hand side of equation (5.4.2) to zero, we can easily find a steady state function h(·)

for cB:

cB = h(F, cA) = kV
cA

F
(5.4.9)
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Then we substitute cB = h(F, cA) into the economic stage cost. After that, we obtain

a rotated stage cost for the reduced system:

φred(F, cA) = −3kVcA + 0.5F + λ∗1 [
F
V
(cA0 − cA)− kcA] (5.4.10)

Compared with the original rotated stage cost φ(F, cA, cB), the above reduced ro-

tated stage cost φred(F, cA) only involves 2 variables. To make the reduced rotated

stage cost strongly convex, we introduce regularization terms
1
2
[qF(F − F∗)2 +

qA(cA − c∗A)
2] for the reduced states. After adding the regularization term, the

Hessian of the reduced rotated stage cost is:

Ar = ∇2φred =

 qF 1.54

1.54 qA

 (5.4.11)

Then we can obtain the following Gershgorin bounds for F and cA to make Ar

positive definite:

qF > 1.54, qA > 1.54 (5.4.12)

The CSTR example illustrates how the reduced regularization procedure works.

In the CSTR example, the explicit form of h(·) can be found based on the steady

state model equation. In the dynamic case where the explicit form of h(·) may be

difficult to obtain, we can still find the Hessian of the reduced system by implicit

function theorem or numerical perturbations, as discussed in the previous section,

since only Jacobian and Hessian information of the original model is needed.
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In the CSTR example, we obtain less conservative Gershgorin bounds using the

reduced regularization strategy. In addition, we only need to check the inequality

condition by Gershgorin theorem in a reduced space. Though the Hessian is con-

stant for all states values in CSTR example, the efforts to find sufficient weights can

be reduced for other general cases.

Next, we will compare the control performances of the following 3 controllers:

• Controller 1: pure economic NMPC, with no regularization

• Controller 2: economic NMPC, with full regularization

• Controller 3: economic NMPC, with reduced regularization

It should be noted that CSTR models given by (5.4.1) and(5.4.2) are used for all con-

trollers. The above reduction procedure is only required to determine the regular-

ization weight. For controller 2, we choose regularization weights qF = 1.98, qA =

1.55, qB = 0.44, and for controller 3, we choose qF = 1.55, qA = 1.55, qB = 0.

The control performances of the above 3 controllers are shown in the following

figures. For pure economic NMPC controller 1, we observe oscillatory profiles for

both controls and states. After adding regularization terms, both controllers 2 and

3 are able to drive the process to the optimal steady state.

As for the economic performance, the accumulated cost
K

∑
k=0

ψec(x(k), u(k)) for con-

trollers 1-3 are shown in Table 5.1. Since controllers 2 and 3 approach steady states

quickly, we firstly compare the economic performance in the transient process by

choosing K = 10 NMPC cycles. From Table 5.1, we can see that pure economic

NMPC controller has the best economic performance, though it leads to cyclic op-

erations. After adding regularization terms, both controllers 2 and 3 have worse

economic performance than pure economic NMPC. However, we can see that by

using the reduced regularization strategy, we obtain a slightly better economic per-

formance than using the full space regularization strategy. Since economic NMPC
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keeps oscillating in this case study, we also compare the accumulated economic

stage cost for K = 50 NMPC cycles. From Table 5.1, we find that pure economic

NMPC achieves better economic performance by not converging to the optimal

steady state. However, such cyclic operations may not be favored for practical pro-

cess operations.

Table 5.1: Accumulated economic stage cost for CSTR example

K = 10 K = 50

Controller 1 -164.14 - 666.56

Controller 2 -160.90 - 659.57

Controller 3 -161.15 - 659.81

Figure 5.1: Comparison of control profiles in CSTR example

Figure 5.2: Comparison of states profiles in CSTR example
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In this section, we demonstrate the idea of the reduced regularization strategy by

studying the economic NMPC problem for a nonlinear CSTR. In this example, to

drive the process to the optimal steady state, regularization terms need to be added

to the economic NMPC controller. From the case study, we can see that economic

NMPC can achieve a less conservative economic performance by using the pro-

posed reduced regularization strategy than the full regularization.

5.4.2 Economic NMPC of a Solid Sorbent-Based CO2 Capture System

In the previous NMPC case for BFB reactors, we study setpoint tracking NMPC to

control the plant at certain setpoints and reject process disturbances, which are the

traditional goals for NMPC. As we know, the operation of CO2 capture process for

power plants is energy intensive, which requires more sophisticated strategies to

reduce the energy consumption of the process. To handle this problem, we want

to consider economic NMPC to minimize the operational cost of the CO2 capture

system.

In this section, we present an economic NMPC case study of an integrated CO2

capture system. In the case study, we will compare the economic performance of

economic NMPC and setpoint tracking NMPC. We will also apply the proposed

regularization strategy and demonstrate its performance. An illustration of the

solid sorbent-based post-combustion CO2 capture system studied in the case study

is shown in Figure 5.3. BFB reactors are the key components of this system and

are used to remove CO2 from fluegas and regenerate the solid sorbents. For the

operation of the system, flue gas from the power plant is fed into the BFB adsor-

ber at the bottom. In the adsorber, CO2 is adsorbed via gas-solid reactions and the

clean gas exists at the top. Since these reactions are exothermic reactions, cooling

water is used to remove the reaction heat and enhance the adsorption of CO2. The

loaded solid sorbent is fed into the regenerator, which operates at higher temper-

ature range to release the CO2 captured by the solid sorbent. In the regenerator,
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Figure 5.3: Schematic of the integrated carbon capture system

steam and purge stream is used to maintain high temperature which favors the

desorption process. Then fresh solid sorbent is cooled down through the heat ex-

changer and recycled back to the adsorber. Similarly, pre-heating is also provided

to loaded sorbent before it is transported into the regenerator.

The economic NMPC problem formulation for the integrated carbon capture sys-

tem is written as follows:

min
zl ,vl

Ψ(zN) +
N−1

∑
l=0

ψec(zl , vl) (5.4.13)

s.t. zl+1 = f (zl , vl), l = 0, . . . N − 1

z0 = x(k)

zl ∈ X, vl ∈ U.

The model used in the NMPC controller is two interconnected BFB models, with

over 1000 states after spatial discretization using orthogonal collocation on finite

element. For state constraints, bounds on regenerator temperature and pressure

are considered for safety reasons. In addition, bounds on control inputs and limits
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on maximum moves are also added in this problem. In this case study, we use the

NMPC formulation with quadratic terminal cost with large weights. The sampling

time is 50 seconds and the prediction horizon is 1500 seconds which is long enough

to satisfy the terminal constraint implicitly. The dynamic optimization problem

in NMPC controller is discretized in time using a 3-point Radau collocation on

finite elements. To reduce the NLP size, we apply the input and state blocking

strategy using 5 finite elements with lengths equal [50 50 200 600 600]. The

discretized model is implemented in AMPL [31] and the NMPC problem is solved

using IPOPT [85]. The computational tests are conducted on an Intel i7-3770 3.40

GHz PC.

For the economic NMPC case study, we want to minimize the operational cost of

the integrated carbon capture system while satisfying the environmental constraint

on the CO2 removal fraction. The economic stage cost ψec(x, u) = p1u1 + p2u2,

where u1 and u2 are two manipulated variables of the system; while p1 and p2 are

the corresponding unit prices. Two manipulated variables of this system are the

flowrate of cooling water used to cool down the fresh solid sorbent and the flowrate

of purge gas fed into the regenerator. To satisfy the environmental requirement on

CO2 capture, we also add a lower bound for CO2 removal fraction in the economic

NMPC problem. In this case study, the economic stage cost only involves two

manipulated variables.

Next we discuss the regularization weight calculation for economic NMPC. The

steady state problem for economic NMPC of the CO2 capture system has over 1000

differential variables and over 7000 algebraic variables. Firstly, we can find the

sufficient regularization weights for all the variables using using the strategy out-

lined in [44]. But here we consider only the regularization weights that satisfy the

inequality condition (5.2.11) only at the optimal steady states. The regularization

weights for all variables (larger than 1) are shown in Figure 5.4. It should be noted

that the y axis is in the log scale and we can see that very large regularization
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Figure 5.4: Regularization weight for all variables in economic NMPC

weights are required for some variables. In addition, we only check the inequality

condition (5.2.11) at optimal steady states to obtain this result, even though it must

be checked for all feasible values of all variables; this can be an intractable task for

the problem with this size. Therefore it is difficult to directly apply the strategy

outlined in [44] and the regularization weights calculated in this way can be very

large.

To handle this issue, we apply the proposed strategy to find sufficient regulariza-

tion for a subset of system states. By studying the steady state optimization prob-

lem, we find that only CO2 removal fraction is active at its lower bound for the

optimal solution. Since the removal fraction is directly determined by the gas con-

centrations at the top of the BFB adsorber, we choose the concentrations of three

gas species as critical states. In addition, we also choose a temperature state as a

critical state since it involves safety constraints. Besides that, we want to consider

two manipulated variables for regularization analysis, because they are directly in-

volved in the economic stage cost. In the following case study, these 6 variables are

considered for regularization analysis.
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To determine sufficient regularization weights for these critical states, we calculate

the reduced Hessian given by (5.3.43) using numerical perturbations. The reduced

Hessian is calculated at different sampling points within the feasible regions of 6

variables, and we determine the minimum regularization weight that make the

reduced Hessian positive definite at all these sampling points. Compared with full

regularization, the calculation process is greatly simplified since we only sample

values for 6 variables rather than the complete set of over 8000 variables.

Instead of using the Gershgorin theorem to determine the minimum regularization

weight, we also consider finding the minimum weight by eigenvalue decomposi-

tion using a diagonal regularization matrix Q̄ = qI, where q can be determined

by (5.3.45). In the case study, we find that the reduced Hessian matrix has small

negative eigenvalues, thus we can obtain much smaller regularization weights by

(5.3.45) than using condition (5.3.44) given by Gershgorin theorem. From the test

results, we find that q = 60 such that the regularized reduced Hessian matrix is

positive definite at all sample points of the 6 variables. It should be noted that the

regularization weight is the same for all the regularized variables, which is differ-

ent from regularization weight calculated based on Gershgorin theorem.

Next we compare the performances of the following controllers in the case study.

• Controller 1: setpoint-tracking NMPC

• Controller 2: pure economic NMPC, with no regularization

• Controller 3: economic NMPC, with reduced regularization

For Controller 1, the objective includes quadratic tracking terms xTQxx + uTQuu.

The weighting matrix Qx for scaled states is an identity matrix while Qu is a di-

agonal matrix with diagonal elements p1 and p2. For Controller 2, the economic

stage cost p1u1 + p2u2 is used as objective; while for Controller 3, in addition to the

economic stage cost, a regularization term
1
2

x̄TQ̄x̄ with diagonal element qr = 60

is also added to the objective. In the case study, these controllers are initialized
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with the same initial states and we will compare the control performance during

the transient response.

Firstly we look at the nominal case. The simulation profiles are shown in the fol-

lowing figures.

Figure 5.5: Comparison of control profiles in the nominal case

In Figure 5.5, control profiles of controllers 1-3 are plotted. Selected state profiles

of controllers 1-3 are shown in Figure 5.6. x1 - x3 represent the concentrations of
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Figure 5.6: Comparison of states profiles in the nominal case

CO2, H2O and N2 at the top of BFB adsorber and x4 represents the gas temperature

state at the top of the BFB adsorber. From these figures we can see that all three

controllers converge to the optimal steady state, including pure economic NMPC.

However, it should be noted that unregularized economic NMPC is not guaran-

teed to converge to optimal steady state, since economic NMPC may achieve a

lower economic objective by not going to steady state. In addition, it should be

noted that, for this case study, if the terminal constraints are removed, then pure

economic NMPC may drive the process to suboptimal steady state, though the

open-loop solution of each NMPC iteration is not steady. Similar phenomena are

reported in [34]. With special turnpike property and controllability properties, the

controller without terminal constraints may converge to a neighborhood of the op-

timal steady state. But even here regularization terms and terminal constraints may

still be needed for economic NMPC to drive the process to the optimal steady state.
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Table 5.2: Accumulated economic stage cost for the nominal case

K = 20
Controller 1 4152321.69
Controller 2 4019062.41
Controller 3 4044969.02

In Figure 5.5, compared with setpoint tracking NMPC, Controller 2 penalizes the

usage of u1 and u2 in the initial stages because the economic stage cost is directly

minimized in pure economic NMPC. On the other hand, it leads to more oscillatory

control profiles. Regularized NMPC has a similar trend as pure economic NMPC,

but it has smoother control profiles due to the regularization terms added.

Next we study the economic performances by comparing the accumulated eco-

nomic stage cost
K

∑
k=0

ψec(x(k), u(k)) during the transient process. Since the control

moves become almost steady after 20 NMPC cycles, we choose K = 20. For pure

economic NMPC, it achieves 3.21% reduction in the accumulated economic stage

compared tracking NMPC. For regularized economic NMPC, the economic perfor-

mance is sacrificed slightly due to the regularization terms, but it is still 2.59% less

than setpoint tracking NMPC.

Next we consider the performance of controllers 1-3 in the robust case with addi-

tive measurement noises. In the case study, we add the measurement noises with

standard deviations of 1% of optimal steady state values. For robust case, the con-

trol profiles are plotted in Figure 5.7 and selected states profiles are shown in Figure

5.8.

Firstly, from Figure 5.7, we observe that pure economic NMPC controller has the

most oscillatory control profiles, especially for u2, the flowrate of the purge gas fed

into the regenerator. By adding the regularization terms, the regularized economic

NMPC has less oscillatory control profiles in the robust case. It should be noted that

the performance of regularized economic NMPC is also different from the setpoint

tracking NMPC, since only regularization for 6 variables is added to controller 3.
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Table 5.3: Accumulated economic stage cost for the robust case

K = 20
Controller 1 4180053.94
Controller 2 4017700.93
Controller 3 4051150.66

The oscillatory control profiles also lead to the oscillations in the state profiles,

which is shown in Figure 5.8. In addition to the states on the adsorber side (x1− x4),

4 selected states from the regenerator side are also plotted in Figure 5.8. x5 − x8

represent the loading of 3 species in the solid sorbent and gas temperature respec-

tively. From Figure 5.8, we can see that pure economic NMPC leads to the most

oscillatory state profiles, especially for 4 states on the regenerator side. By adding

regularization terms, we observe that state profiles are less oscillatory and closer to

optimal steady state.

As for the economic performances in the robust case, the accumulated economic

stage cost
K

∑
k=0

ψec(x(k), u(k)) in the first 20 time steps are listed in Table 5.3. In

this case, we can observe a similar improvement in the economic performance by

economic NMPC over setpoint tracking NMPC as in the nominal case.
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Figure 5.7: Comparison of control profiles in the robust case
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Figure 5.8: Comparison of states profiles in the robust case
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5.5 Concluding Remarks

In this chapter, we focus on the economic NMPC problem for large-scale DAE sys-

tems. The stability of economic NMPC controller can be guaranteed if specific

properties, such as dissipativity and strong duality, hold true for the economic

stage cost and process model. In general cases, regularization terms are needed

to enforce such properties. In this chapter, we propose an economic NMPC for-

mulation with reduced sets of regularization. Compared with full regularization,

the regularization strategy with a reduced set of states is much simpler to imple-

ment and may lead to less conservative economic performance. To determine the

regularization weight, we show that algebraic variables can be removed without

affecting the stability results. Moreover, a subset of system states can be removed

from the regularization analysis. By adding a reduced regularization, the economic

NMPC has the ISpS property, with the assumption that derivations of unregulated

states from their algebraic predictions are bounded. With stronger assumptions,

asymptotic stability can be achieved by reduced regularization. The proposed

strategy has been applied to a case study on an integrated CO2 capture system. In

the case study, we demonstrate that adding reduced regularization improves the

economic NMPC controller performance especially in robust cases while still get-

ting improved economic performance over setpoint tracking NMPC. In addition,

the procedures to determine sufficient regularization weights are greatly simplified

and can be applied to economic NMPC of large-scale DAE systems.

For future work, one important task is to develop systematic approaches to de-

termine the critical states for general applications, which are crucial to the perfor-

mance of regularized economic NMPC. In terms of regularization weight calcula-

tions, other strategies like semidefinite programming may be considered to find

less conservative regularization weights that can guarantee the stability of the eco-

nomic NMPC.
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Chapter 6

Conclusions

6.1 Thesis Summary and Contributions

For dynamic process operations, first-principles process models provide accurate

predictions of process dynamics and they are crucial for dynamic simulation, of-

fline optimization and nonlinear model predictive control (NMPC). In addition, the

integration of RTO and APC layers via economic NMPC is a promising solution

to improve the overall economic performance for complex integrated process sys-

tems. However, it should be noted that successful applications of these strategies

always require efficient solutions, which could be challenging with tighter integra-

tion of separate layers and increasing applications of more detailed first-principles

models.

This dissertation studies some computational and analytic challenges for dynamic

process operations brought by large-scale spatially distributed first-principles pro-

cess models. Specifically, in this thesis, we study the operation problems of a solid

sorbent-based CO2 capture system with bubbling fluidized bed (BFB) reactors as

key components. The BFB model is described by a large-scale nonlinear system

of partial-differential algebraic equations. Specific tasks for this thesis include dy-
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namic model reduction, input and state blocking formulation for NMPC and reg-

ularization strategies for economic NMPC. These proposed strategies are demon-

strated on the setpoint tracking NMPC and economic NMPC of the BFB reactors

with applications in CO2 capture.

This thesis can be summarized as follows:

Chapter 1 reviews the process operation regime and provides an overview for the

research work in this thesis.

Chapter 2 provides background and literature reviews for the tasks in the disserta-

tion, including MPC stability, computational strategies and model reduction tech-

niques, which provides a basis for the discussions in Chapter 3 to 5.

Chapter 3 deals with the model reduction for the dynamic first-principles BFB reac-

tor, which is described by a large-scale partial differential and algebraic equations

system. To handle the computational challenges, we utilize temporal and spatial

model reduction techniques to develop computationally efficient dynamic reduced

models that are suitable for time-critical applications, such as NMPC. The major

contributions of this chapter are:

• Develop temporally dynamic reduced models for the BFB reactor with 40%

simulation time reduction, by utilizing nullspace projection and eigenvalue

analysis methods to reduce the stiffness of the DAE system.

• Develop a spatially dynamic reduced model for the BFB reactor with 60%

time reduction and good prediction accuracy using orthogonal collocation

on non-uniformly distributed finite elements to reduce the number of model

equations after spatial discretization.

• Combine the temporal and spatial model reduction to generate a computa-

tionally efficient dynamic reduced model with accurate prediction capacity;

and compare the advantage and disadvantages of various model reduction
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techniques using the BFB example.

Chapter 4 focuses on improving computational efficiency for NMPC of large-scale

first-principles models. For processes with strong nonlinearities, NMPC provides

superior performance over linear MPC in terms of setpoint tracking and distur-

bance rejection. However, directly incorporating detailed first-principles models

into NMPC may lead to significant computational delay which can degenerate the

control performance. To handle this issue, we propose to use non-uniform grids

in the direct transcription of process models for NMPC and incorporate dynamic

reduced models developed in the previous chapter to reduce the computational

burden for NMPC of the BFB adsorber. In this chapter, our contributions are:

• Propose an input and state blocking strategy to reduce NLP problem size for

NMPC and apply it in a moving horizon blocking scheme for NMPC.

• Analyze the stability property for moving horizon blocking NMPC and show

that nominal and robust stability can be maintained with potential recourse

to the cyclic shifted blocking scheme.

• Incorporate the dynamic reduced BFB model developed in Chapter 3 into

the NMPC framework and introduce additive correction terms to handle the

model mismatch, which guarantees an offset-free control performance.

• Integration of dynamic reduced models and blocking strategies lead to an

order of magnitude reduction of NMPC computational time, with almost no

sacrifice in control performance.

• Apply advanced step NMPC to reduce the online computational delay and

enable online control of the BFB reactor.

Chapter 5 studies the economic NMPC of large-scale DAE systems. Economic

NMPC directly optimizes the process economics based on first-principles process

models. To guarantee the stability of economic NMPC, quadratic regularization
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terms are usually required. In this chapter, we study the regularization strategy

with focuses on reduced sets of states, which is much simpler to implement and

lead to less conservative economic performance than full regularization. The pro-

posed strategy has been tested in the economic NMPC of an integrated carbon cap-

ture system aiming at reducing its operational costs. In this chapter, our specific

contributions are:

• Propose a regularization strategy for reduced sets of states to stabilize eco-

nomic NMPC controller of large-scale DAE systems, with simpler analysis

process and potentially less conservative regularization weights than full reg-

ularization strategy.

• Analyze the stability property of reduced regularization for economic NMPC

of DAE systems. To determine the regularization weight, we show that alge-

braic variables can be removed without affecting the stability results. More-

over, a subset of system states can be removed as well and the stability prop-

erty of economic NMPC can be guaranteed under additional assumptions.

• Apply the proposed reduced regularization strategy to the economic NMPC

case study of an integrated carbon capture system. In the case study, reduced

regularization strategy generates much smaller regularization weights than

full regularization and the reduced regularization can still maintain the sta-

bility of the economic NMPC controller in the nominal and robust cases.

6.2 Recommendations for Future Work

In this section, we provide some recommendations for future work.
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6.2.1 Model Reduction

In chapter 3, we develop computationally efficient dynamic reduced models us-

ing temporally and spatially model reduction techniques. These techniques are

generally applicable to other nonlinear dynamic systems and we compare the ad-

vantages and disadvantages of various methods using the BFB example [93]. In

the case study, we identify the limitations of POD methods and find that though

it may lead to significant reduction in the model size, the computational cost may

not be reduced due to the sparsity is destroyed with POD method with Galerkin

projection. To handle this issue, POD with collocation formulation [83] may be

considered. In addition, improved strategies like missing point estimation [10] and

discrete empirical interpolation method [21] can be applied to improve the effec-

tiveness of the POD method.

Note that in this thesis, we focus on physics-based model reduction techniques.

However, it would be interesting to study data-driven techniques and compare the

performances of reduced models generated by both physics-based and data-driven

methodologies in the dynamic simulation, optimization and control applications.

6.2.2 Blocking Strategy for NMPC

In chapter 4, we introduce an input and state blocking strategy for NMPC and

apply it online as moving horizon blocking NMPC. This strategy can be applied

to general NMPC formulations, and leads to significant reduction of the NLP size

of each NMPC problem [92]. As discussed in chapter 4, the choices of blocking

scheme directly affect the performance of moving horizon blocking NMPC and

they depends on the dynamic characteristics of specific processes. Therefore, it’s

worthwhile to develop a systematic scheme to determine optimal blocking strategy

for NMPC. This work can be done offline via studying the representative dynamic

trajectories from process simulation/plant data. Optimal blocking scheme can be

Conclusions 147



6.2. Recommendations for Future Work

determined by balancing the state approximation errors and block numbers.

6.2.3 Regularization Strategy for Economic NMPC

In chapter 5, we study the regularization strategy to design stable economic NMPC

controller and propose the reduced regularization strategy. The key idea is that we

only focus on a set of critical states for stability analysis and regularization, which

could reduce efforts in finding sufficient regularization weights and lead to less

conservative economic performance. It should be noted that the selection of criti-

cal states will affect the regularization weights and the control performance. Right

now there is no unifying criterion to determine critical states. Therefore it’s impor-

tant to develop a systematic approach to select critical states. Based on the previous

stability results, we can see that dynamic states that have similar performance as

their algebraic counterparts may be removed from regularization analysis by treat-

ing them as algebraic variables. These states can be located via time scale analysis

of the original system. In addition, we can apply sensitivity analysis of the opti-

mization problem and structural analysis of the dynamic model to provide insights

for critical state selection.

6.2.4 Other Areas

To implement NMPC online in real plants, additional tasks should also be consid-

ered. For example, fast state estimation is required to enable NMPC and sensitivity

based fast NMPC algorithms. In addition to some commonly used state estimators

such as extended Kalman filter, moving horizon estimation (MHE) [70] provides an

attractive alternative to constrained state estimation for nonlinear systems. Similar

to NMPC, MHE solves a dynamic optimization strategy based on first-principles

models in a rolling horizon manner. Therefore the blocking strategy and model

reduction work can be extended to MHE as well. In addition, to handle the com-
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putational burden for MHE, the advanced step strategy has also been applied in

[40] to reduce the online cost. Another important topic is handling the uncertainty

for optimization and control. For NMPC, there may exist model mismatch between

the first-principles model and real process, and model reduction can introduce ad-

ditional errors in the states predictions. To account for this, strategies like back-off

constraints [80] and multi-scenario formulations [42] can be considered to avoid

violations of critical constraints under model uncertainties.
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Appendix A

BFB Model Equations

This section gives a brief summary of the BFB model equations [52, 53, 63]. In the

BFB model, mass and energy balances have been written for all the chemical com-

ponents in all three regions for both gas and solid phases. Three regions including a

bubble region, cloud-wake region and emulsion region are shown in Figure 3.2(a).

The differential equations are shown in the following section.

A.1 Differential Equations

Bubble region

• Gas phase component balance

∂cb,j

∂t
δAx = −

∂Gbyb,j

∂x
− AxδKbc,j(cb,j − cc,j) + Kg,bulk,j (A.1)

• Gas phase energy balance

∂Tg,b

∂t
cp,gcb,t Axδ = −cp,g

∂GbTg,b

∂x
− AxδHbc(Tg,b − Tg,c) + Hg,bulk (A.2)
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A.1. Differential Equations

Cloud-wake region

• Gas phase component balance

∂cc,j

∂t
fcwδεd = δKbc,j(cb,j − cc,j)− δKce,j(cc,j − ce,j)− fcwδ(1− εd)rg,c,j (A.3)

• Gas phase energy balance

∂Tg,c

∂t
Axcp,gcc,t fcwδεd = AxδHbc(Tg,b − Tg,c)− AxδHce(Tg,c − Tg,e)

− Ax fcwδ(1− εd)ρsaphp(Tg,c − Ts,c)− Ax fcwδ(1− εd)Σrg,c,jcp,g,c,j(Tg,c − Tre f )

(A.4)

• Solid phase adsorbed species balance

∂nc,i

∂t
Ax fcwδ(1− εd)ρs = −Ax

∂Jcnc,i

∂x
− Ks,bulk,i − AxδρsKce,bs(nc,i − ne,i)

+ Ax fcwδ(1− εd)rs,c,i

(A.5)

• Solid phase energy balance

∂Ts,c

∂t
cp,sρs Ax fcwδ(1− εd) = −

∂Jchs,c

∂x
Ax − Hs,bulk − AxδρsKce,bs(hs,c − hs,e)

+ Ax fcwδ(1− εd)Σ(rg,c,jcp,g,c,j)(Tg,c − Tre f ) + Ax fcwδ(1− εd)ρsaphp(Tg,c − Ts,c)

(A.6)

Emulsion region

• Gas phase component balance

∂ce,j

∂t
Ax(1− fcwδ− δ)εd = AxδKce,j(cc,j − ce,j)− Ax(1− fcwδ− δ)(1− εd)rg,e,j − Kg,bulk,j

(A.7)
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• Gas phase energy balance

∂Tg,e

∂t
cp,gce,t Ax(1− fcwδ− δ)εd = AxδHce(Tg,c − Tg,e)− Ax(1− fcwδ− δ)(1− εd)ρsaphp(Tg,e − Ts,e)

− Hg,bulk − Ax(1− fcwδ− δ)(1− εd)Σrg,e,jcp,g,e,j(Tg,e − Tre f )

(A.8)

• Solid phase adsorbed species balance

∂ne,i

∂t
Ax(1− fcwδ− δ)(1− εd)ρs = Ax

∂Jene,i

∂x
+ Ks,bulk,i + AxδρsKce,bs(nc,i − ne,i)

+ Ax(1− fcwδ− δ)(1− εd)rs,e,i

(A.9)

• Solid phase energy balance

∂Ts,e

∂t
cp,sρs Ax(1− fcwδ− δ)(1− εd) = Ax

∂Jehs,e

∂x
+ Hs,bulk + AxδρsKce,bs(hs,c − hs,e)

+ Ax(1− fcwδ− δ)(1− εd)Σrg,e,jcp,g,e,j(Tg,e − Tre f ) + Ax(1− fcwδ− δ)(1− εd)ρsaphp(Tg,e − Ts,e)

+ πdxht∆Thx NxCr

(A.10)

Boundary conditions

Flue gas is fed into the reactor at the bottom of the reactor (x = 0). equation (A.11)

- equation (A.13) give the boundary condition for the upward gas flow.

yb,j,0 = zg,in,j (A.11)

Gb,0 = Fg,in (A.12)

Tg,b,0 = Tg,in (A.13)
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A.2. Algebraic Equations

The solid phase mass and energy balances at the top of the reactor (x = L) are given

by equation (A.14) - equation (A.15). Since the reactor is in top-feed and over-flow

configuration, the addition and removal of solid sorbent are also included.

Je,Lne,i,L Ax + Fs,outzs,out,i = Jc,Lnc,i,L Ax + Fs,inzs,in,i (A.14)

Je,Lhs,e,L Ax + Fs,ouths,out = Jc,Lhs,c,L Ax + Fs,inhs,in (A.15)

Similarly, equation (A.16) - equation (A.17) give the solid phase mass and energy

balances at the bottom of the reactor (x = 0).

Je,0ne,i,0 Ax = Jc,0nc,i,0 Ax (A.16)

Je,0hs,e,0 Ax = Jc,0hs,c,0 Ax (A.17)

A.2 Algebraic Equations

The mass and energy balance equations provide a description of gas and solid flow

throughout different regions of the reactor. Solving these differential equations re-

quires correlation equations for heat and mass transfer coefficients and hydrody-

namic properties of the bed. These algebraic equations can be generally classified

into the following categories:

1. Hydrodynamic correlations

2. Heat and mass transfer coefficients

3. Gas phase properties

4. Heat exchanger tube correlations

5. Reaction kinetics

All the algebraic equations are described by Lee and Miller [53]. Some representa-

tive equations are briefly discussed below:
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Hydrodynamic Correlations

The hydrodynamic model describes the behavior of the fluidized bed, and defines

the variables used in other parts of the model. Hydrodynamic properties, such as

the gas velocity, size of the rising bubbles, and the voidage of the fluidized bed, can

be calculated by correlations derived from experimental studies. For example, the

following equation calculates an approximate value for the minimum fluidization

velocity vm f :

1.75Re2
m f

φsε
3
m f

+
150(1− εm f )Rem f

φ2
s ε3

m f
= Ar (A.1)

where the particle Reynolds number Re and Archimedes number Ar are defined as

follows:

Ar =
d3

pρg(ρs − ρg)g
µ2

g
(A.2)

Re =
vedpρg

µg
(A.3)

The gas velocity ve through the emulsion region of the bed can be calculated by:

ve

vm f
=

188ρ0.089
g µ0.371

g e0.508F

d0.568
p g0.663(ρs − ρg)0.663x0.244 (A.4)

The following equations are correlations describing the emulsion region voidage,

εd, and cross-sectional average voidage ε:

1− εm f

1− εd
=

2.54ρ0.016
g µ0.066

g e0.090F

d0.1
p gc0.118(ρs − ρg)0.118x0.043 (A.5)

(1− ε) = (1− εd)(1− δ) (A.6)

The following equations calculate the equilibrium size of a bubble db,e and the di-
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ameter of a bubble db,x at a given height within the fluidized bed:

db,e =
Dt

4
(−g1 + g3)

2 (A.7)

(

√
db,x −

√
db,e√

db,0 −
√

db,e
)

1− g1
g3 (

√
db,x −

√
g2√

db,0 −
√

g2
)

1+ g1
g3 = e−0.3 x

Dt (A.8)

where the initial diameter of the bubble db,0 and parameters g1, g2 and g3 are de-

fined as follows:

db,0 = 1.38g−0.2((vg,0 − ve,0)A0)
0.4 (A.9)

g1 = 2.56× 10−2

√
Dt
g

vm f
(A.10)

g2 =
Dt(g1 + g3)2

4
(A.11)

g3 =

√
g2

1 +
4db,m

Dt
(A.12)

Heat and Mass Transfer Coefficients

The gas phase mass transfer between the bubble and cloud-wake regions for each

component, and also the coefficient for mass transfer between cloud-wake and

emulsion region, are given by the following equations:

Kbc,j = 5.94
vm f

db
+ 5.85

D0.5
j g0.25

d5/4
b

(A.13)

Kce,j = 6.77

√
ε2

dDjvb

d3
b

(A.14)
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Heat transfer coefficients for the gas phase are developed by analogy to the mass

transfer coefficients, resulting in the following equations:

Hbc = 5.94
vm f ρgcp,g

db
+ 5.85

√
kgρgcp,gg0.25

d5/4
b

(A.15)

Hce = 6.78

√
εdvbkgρgcp,g

d3
b

(A.16)

The following equation is used to calculate the mass transfer coefficient for the

exchange of solids between the cloud-wake and emulsion regions.

Kce,bs =
3(1− εd)vm f

(1− δ)εddb
(A.17)

For gas-solid heat transfer, an empirical correlation is used to to relate the Nusselt

number Nup and the gas-solids heat transfer coefficient hp:

Nup =
hpdp

kg
(A.18)

Gas Phase Properties

A number of physical properties of the gas phase are used within the model, and

they are calculated using Aspen Properties. As discussed previously, in the refer-

ence BFB model, surrogate models with explicit forms are developed using date

generated by the Aspen property subroutines. The properties of the mixed gas are

assumed to be a linear sum of those of the pure components. For example, the fol-

lowing linear regression equations calculate the gas thermal conductivity kg, gas

viscosity µg and gas molar heat capacity cpg:

kg = ye,CO2(−7.7214× 10−7 × P + 7.9571× 10−5 × Tg,e + 0.01923)

+ ye,H2O(−1.8623× 10−6 × P + 8.7126× 10−5 × Tg,e + 0.02078)

+ ye,N2 × (9.0592× 10−7 × P + 6.921× 10−5 × Tg,e + 0.02794)

(A.19)
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µg = ye,CO2(8.512× 10−7 × P + 4.6155× 10−5 × Tg,e + 0.016614)

+ ye,H2O(−2.282× 10−7 × P + 3.7075× 10−5 × Tg,e + 0.011082)

+ ye,N2(9.6301× 10−7 × P + 4.3339× 10−5 × Tg,e + 0.019267))

(A.20)

cp,g = yb,CO2(0.003054× P + 0.04579× Tg,b + 38.9499)

+ yb,H2O(−0.0008426× P + 0.005919× Tg,b + 33.7558)

+ yb,N2 ∗ (−0.0002627× P + 0.0009494× Tg,b + 29.1509)

(A.21)

For properties such as gas concentration and gas density, the idea gas law is used

to approximate these gas properties:

cb,t =
100P

8.314× (Tg,b + 273.16)
(A.22)

ρg =
100P(ye,CO2 × 44.01 + ye,N2 × 28.01 + ye,H2O × 18.02)

8.314× (Tg,e + 273.16)
(A.23)

Immersed Heat Exchanger Tube Correlations

For processes like CO2 adsorption, there is a large amount of heat released during

the process, so it’s crucial to add heat exchanger tubes within the bed. Several cor-

relation equations are used to calculate the key properties for the heat exchanger.

Firstly the thermal conductivity of an emulsion packet is calculated by:

kp,a = (3.58− 2.5εd)kg(
kp

kg
)0.46−0.46εd (A.24)

Next, the residence time of emulsion packets at the heat exchanger surface τ, is

calculated using the correlation equation:

τ = 0.44(
dpg

v2
m f ( fn − ah)2

)0.14(
dp

dx
)0.225 (A.25)

166 BFB Model Equations



A.2. Algebraic Equations

where fn is the fluidization number of the bed defined as:

fn =
vg

vm f
(A.26)

Next, the fraction of time that the heat exchanger surface is exposed to emulsion

packets can be obtained by:

fb = 0.33(
v2

m f ( fn − ah)
2

dpg
)0.14 (A.27)

The following equation is used to calculate the heat transfer coefficient between the

heat exchanger tubes and the emulsion packets:

hd = 2

√
kp,aρscp,s(1− εd)

Πτ
(A.28)

The heat transfer coefficient between the heat exchanger tubes and gas bubbles,

hl , and the overall heat transfer coefficient ht are calculated using the following

correlations with the Prandtl number Pr:

1000hldp

kg
= 0.009Ar0.5Pr0.33 (A.29)

ht = fbhd + (1− fb)hl (A.30)

Reaction Kinetics

The kinetic equations used in the model come from a simple kinetic model [52] built

for a sorbent developed and tested at NETL (sorbent 32D). The model assumes that

the adsorption of CO2 and water occurs through a three-reaction scheme shown in

equation (3.2.1) to equation (3.2.3). Each reaction is described by a kinetic expres-

sion involving a rate constant and an equilibrium constant. For each equation, the

temperature dependence of these constants is described using the Arrhenius and
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Gibbs equations respectively, and the temperature is in Kelvin.

k j = AjTexp(
−Ej

RT
) (A.31)

105KjP = exp(
−∆Hj

RT
+

∆Sj

R
) (A.32)

The reaction rates for each reaction are then described by the following equations:

rH2O = k1(105PyH2O −
nH2Oρs

K1
) (A.33)

rcarb = k2((1−
2ncarbρs + nbicarbρs

nv
)2(Pyc,1 × 105)m1 − 1

K2

ncarb + nbicarb

nv
nbicarbρ2

s )

(A.34)

rbicarb = k3((1−
2ncarbρs + nbicarbρs

nv
)nH2OρsPyCO2 × 105 − 1

K3

ncarb + nbicarb

nv
nbicarbρ2

s )

(A.35)

Nomenclature

ah: empirical constant

ap: particle specific surface area (m2/kg)

Ao: area of distributor plate per orifice (m2)

Ar: particle Archimedes number

Ax: cross-sectional area of fluidized bed (m2)

Cr: average correction factor for heat exchanger tubes

c: gas phase concentration (kmol/m3)

cp,s: particle heat capacity (kJ/(kg K))

cp: gas molar specific heat capacity (kJ/(kmol K))

168 BFB Model Equations



A.2. Algebraic Equations

D: diffusivity of species (m2/s)

Dt: diameter of reactor vessel (m)

dx: heat exchanger tube diameter (m)

dp: particle diameter (m)

E: activation energy (J/mol)

Fg,in: input flue gas flow (kmol/s)

Fs,in: input solid sorbent flow (mol/s)

Fs,in: output solid sorbent flow (mol/s)

fb: fraction of time heat exchanger surface is exposed to bubbles

fcw: cloud-wake to bubble region volume ratio

fn: fluidization number

g: gravity acceleration (m/s2)

g1, g2, g3: bubble growth coefficients

Gb: molar flowrate of gas in bubble region (kmol/s)

Hg,bulk: rate of heat transfer due to gas bulk flow (kJ/(s m))

Hs,bulk: rate of heat transfer due to solid bulk flow (kJ/(s m))

Hbc: bubble to cloud-wake gas heat transfer coefficient (kJ/(m3 K s))

Hce: cloud-wake to emulsion gas heat transfer coefficient (kJ/(m3 K s))

hs: sorbent specific enthalpy (kJ/kg)

ht: overall heat transfer coefficient (kJ/(m2 K s))

hp: convective heat transfer coefficient (kJ/(m2 K s))
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hd: heat transfer coefficient between heat exchanger and emulsion packet (J/(m2 K

s))

hl : heat transfer coefficient between heat exchanger and bubble (J/(m2 K s))

ht: heat exchanger heat transfer coefficient (J/(m2 K s))

hs,in: output solid sorbent specific enthalpy (kJ/kg)

hs,out: output solid sorbent specific enthalpy (kJ/kg)

J: superficial solid flux (kg/(m2 s))

k: reaction rate constant

kp: thermal conductivity of solid particles (J/(m K s))

kp,a: thermal conductivity of emulsion packet (J/(m K s))

K: reaction equilibrium constant

Kce,bs: cloud-wake to emulsion solids mass transfer coefficient (s−1)

Kce: cloud-wake to emulsion gas mass transfer coefficient (s−1)

Kbc: bubble to cloud-wake gas mass transfer coefficient (s−1)

Kg,bulk: rate of gas bulk flow between bubble and emulsion region (kmol/(m s))

Ks,bulk: rate of solid bulk flow between cloud-wake and emulsion region (kmol/(m

s))

Kce,bs: cloud-wake to emulsion solids mass transfer coefficient (s−1)

kg: gas thermal conductivity (J/(m K s))

L: reactor length (m)

n: adsorbed species concentrations in the sorbent (mol/kg)

nv: amine loading of the sorbent (mol/m3)
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Nor: number of orifices per square meter in distributor plate (m−2)

Nx: number of tubes in heat exchanger

Nup: Nusselt number

P: bed pressure (bar)

Re: Reynolds number

r: rate of reaction (mol/(m3 s))

T: temperature (K)

Tg,in: Input flue gas temperature (K)

v: gas velocity (m/s)

x: height above distributor plate (m)

y: gas mole fraction

zg,in: input flue gas mole fraction

zs,in: input solid sorbent mole fraction

zs,out: output solid sorbent mole fraction

∆H: heat of reaction (J/mol)

∆S: reaction entropy (J/mol)

∆Thx: heat exchanger temperature difference (K)

Greek characters

delta: volume fraction of bubbles in bed

ρg: gas density (kg/m3)

ρs: solid density (kg/m3)
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ε: cross-sectional average voidage (m3/m3)

εd: voidage of emulsion region (m3/m3)

φs: particle sphericity

τ: bubble residence time at heat exchanger surface (s)

µ: gas viscosity (kg/(m s))

Subscripts

b: bubble region

c: cloud-wake region

e: emulsion region

i: adsorbed species

j: gaseous species

m: maximum

m f : minimum fluidization

t: total

0: bottom of the reactor (x=0)

L: top of the reactor (x=L)
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