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Abstract

This thesis study focuses on the development of model-based control and opti-

mization for optimal grade transitions in polyethylene solution polymerization

processes. To meet the operational need of this particular process and to reduce

transition time and off-grade production for economic benefit, four major topics

are taken into account: 1) model development, 2) optimization formulations and

solution strategies, 3) handling uncertainties, and 4) online implementation. These

four parts cover two layers, the real time optimization layer and the advanced con-

trol layer, in the decision-making hierarchy of chemical processes. Both of them

require detailed mathematical models that are representative of the process and

efficient dynamic optimization strategies.

First, a detailed mathematical model is developed to capture the dynamic behav-

ior of the process. This includes time delay models for vapor and liquid recycle

streams as well as a reduced, yet accurate, vapor-liquid equilibrium (VLE) model

derived from rigorous VLE calculations. Next, two optimization formulations, sin-

gle stage and multistage, are developed to deal with single-value target and spec-

ification bands of product properties, respectively. The results show significant

reduction in grade transition time and off-spec production. However, the perfor-

mance can deteriorate in the presence of uncertainties, disturbances and model

mismatch, which calls for robust optimization strategies. In our work, a flowchart

is proposed and back-off constraints calculated from Monte Carlo simulations are
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incorporated in the original optimization problem to generate optimal control poli-

cies that can be applied at different uncertainty levels. As an extension of this

work, nonlinear model predictive control and state estimation are then considered.

An online implementation framework is built up for grade transitions in such pro-

cesses and can be further extended to other similar processes.

For dynamic optimization, simultaneous collocation method is applied to discretize

the differential-algebraic equations, and the resulting nonlinear programming (NLP)

problems are solved using NLP solvers. Because of the characteristics of the prob-

lem, singular control problems are considered and the influence of regularization

is discussed for both offline dynamic optimization and optimization under uncer-

tainty.
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Chapter 1

Introduction

In the past several decades, substantial growth of model-based control and opti-

mization applications has been observed in a number of different application areas.

In the chemical industry, systematic optimization is essential to maintain compet-

itive and successful applications, involving process design and synthesis, process

operations and process control. With the advanced optimization algorithms and

efficient computational implementation of these optimization methods, engineers

and scientists are able to improve the process design and operations to achieve

better product quality, lower cost and higher productivity.

Challenges that arise in real-world problems drive the need for better optimization

formulations and more efficient algorithms. To solve the right problem with the

right formulation and the right tool is the underlying topic of this thesis and the

key to more widespread applications in many disciplines.

In this introductory chapter, a brief overview of decision-making hierarchy and

model-based control and optimization is presented, which helps better illustrate

the scope of our work. The motivating grade transition problem and its current

challenges are then summarized to set the stage for the development of optimiza-

tion formulations and control strategies in the subsequent chapters.

1



1.1. Hierarchical Process Operations

1.1 Hierarchical Process Operations

As shown in Figure 1.1, the decision-making hierarchy of chemical processes is

typically represented as a pyramid-like structure. Usually, there are five layers

involved which actively interact with neighboring layers: planning, scheduling,

(dynamic) real-time optimization (RTO), advanced control such as model predic-

tive control (MPC), and basic regulatory control. From the top to the bottom layer,

the decision frequency increases while the problem scope narrows.

Advanced Control 

Regulatory Control 

Real-Time Optimization 

Scheduling 

Planning 

Figure 1.1: Decision-making hierarchy of chemical processes

At the top, planning and scheduling target at enterprise-wide plans and manufac-

turing sequences. The decisions made in these two layers are long-term ones with

time scale varying from years to weeks.

The three layers at the bottom address operational decisions for one process unit or

a set of process units at a higher frequency. Given the production plan made in the

top two layers, real-time optimization generates and updates optimal operation

conditions. RTO is the bridge between the top scheduling plans and the bottom

process dynamics; it is carried out constantly to respond to changes in production

2 Introduction



1.2. Model-Based Optimization and Control

plan and to interact with the dynamic process below. Real-time optimization was

first introduced to describe steady-state behavior in continuous processes and later

extended to dynamic real-time optimization (DRTO) which includes process dy-

namics such that 1) transit behaviors and batch processes can be considered and

optimized and 2) economic performance can be better pursued.

The operation conditions or setpoints calculated from RTO layer are then fed to the

control system. The advanced control layer generates control actions that address

maintenance of optimal process operation and rejection of disturbances. The most

commonly used advanced control algorithm is Model Predictive Control (MPC)

which exploits explicit process models to update controls in real time [53]. De-

pending on the nature of the process, either a linearized or a nonlinear model is

used. The former one is typically termed as MPC, while the latter one as Nonlin-

ear Model Predictive Control (NMPC) [25, 45, 54, 56]. For processes which exhibit

strong nonlinearity in the operation, NMPC is of great interest due to its accuracy

and applicability in a wider range of operating conditions.

Regulatory control layer makes the most frequent decisions mainly based on feed-

back mechanism [1]. Traditional PID controllers are usually built in this layer.

1.2 Model-Based Optimization and Control

The distinguishing feature of model-based optimization is the equation-oriented

representation of the process of interest. Different from trial and error through case

studies, model-based optimization enables us to find optimal process design, op-

erations and plans based on the exploitation of explicit mathematical model struc-

tures. The optimization task is often translated to a mathematical programming

problem, from which optimal solutions can be obtained from a mathematical point

of view with the help of efficient optimization algorithms.

Introduction 3



1.3. LLDPE and Loop Reactors

Model-based optimization is widely used in the decision-making hierarchy. How-

ever, the nature of the optimization problem that arises in different layers may be

different, which drives the need for different model representations and different

optimization algorithms. In the top two layers, discrete decisions such as whether

to invest, which product to produce and which product delivery route to take are

modeled. Therefore, optimization problems in these two layers are often mixed in-

teger linear or nonlinear problems. As mentioned in the previous section, the RTO

layer considers either a steady state model or a dynamic model that is representa-

tive of the actual process. This model usually involves nonlinear equations due to

the nonlinearity of most of the chemical processes, and differential algebraic equa-

tions (DAEs) are taken into account when dynamic behavior is modeled [14, 15].

As a result, dynamic optimization algorithms is usually required in this layer for

DRTO. For the advanced control layer, MPC is typically applied. This is a com-

monly used optimization-based control scheme, which also requires mathematical

model representations and sometimes dynamic optimization strategies.

1.3 LLDPE and Loop Reactors

Polyethylene is the most widely used thermoplastic polymer today. Among the

large family of polyethylene products, linear low-density polyethylene (LLDPE)

has penetrated almost all traditional polyethylene markets. LLDPE is made by

copolymerization of ethylene with longer-chain olefins; single-site catalysts are

preferred, as they tend to provide a narrower distribution of molecular weight.

Solution polymerization in a continuous plant is a typical process for LLDPE pro-

duction. Two common reactor configurations for solution polymerization are stirred-

tank reactors and loop reactors. In particular, the loop reactor mainly consists of a

non-adiabatic tubular system in a closed loop, with at least one heat exchanger for

removing the heat generated by polymerization reactions and a pump to circulate
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the reaction mixture through the pipe. Multiple feed positions are located along

the loop for inlet monomer, comonomer and catalyst along with a product outlet

[35]. The reactor is operated liquid filled, with temperature and pressure controlled

to maintain the reaction mixture in liquid phase. The loop reactor is more effective

than a stirred tank as it directly influences heat transfer conditions. Moreover, its

effectiveness, described in Zacca and Ray [78], is due to operation at high circula-

tion rates which allows operations under high polymer concentrations and a high

length/diameter ratio which improves heat transfer conditions.

Modeling and simulation studies of loop reactors include Zacca and Ray [78], where

the reactor is modeled as two interconnected tubular reactors, and Reginato et al.

[59], which develops a nonideal CSTR model. In Touloupides et al. [68], loop reac-

tors are modeled as an ideal CSTR followed by a semi-continuous product removal

unit. As discussed in Zacca and Ray [78], the dynamic behavior of loop reactors can

be characterized by its volumetric recycle ratio. At high recycle ratios, the loop re-

actor behaves like an ideal CSTR. This reactor type greatly simplifies the construc-

tion of a detailed dynamic model without incorporating additional information on

reactor geometry, which is often proprietary.

1.4 Grade Transitions

Various grades of LLDPE tailored to different applications are defined by the spec-

ifications of product properties such as melt index (MI) and density. Typically, sev-

eral grades are produced in the same production line. Due to high inventory cost

and volatile market demand, frequent grade transitions are needed. Those grade

transitions are considered to be challenging from an operational point of view be-

cause both process economics and safety issues should be taken into consideration.

In certain instances, complex transitions rely heavily on operator/expert experi-

ence. Given the large market of LLDPE and the current experience-based transi-

Introduction 5



1.4. Grade Transitions

tions, there is a need, and also room to improve transitions and change operating

conditions in a more efficient way so that the transition time as well as off-grade

production could be minimized.

Several studies have been performed to seek better transition policies. A compar-

ison of the performance of experience-based transition strategies is presented [16]

and a semi-continuous grade transition strategy aimed at preventing melting and

agglomeration of particles in fluidized bed polyethylene reactors is developed and

compared with other strategies [55].

Through computer simulations, researchers are able to compare a variety of transi-

tion policies and to select the best one. However, simulations alone are insufficient

to create new policies; this motivates continuing studies on dynamic optimization

of grade transitions. Dynamic optimization of grade transitions is an important

topic and attracts attention of many researchers [8, 10, 22, 73]. The potential value

of optimization includes great reduction in transition time, increased flexibility in

the product wheel and guided complex transitions. Wang et al. [73] proposed an

optimal grade transition control system by integrating nonlinear model predictive

controller and offline dynamic optimizer using sequential dynamic optimization.

Mixed integer dynamic optimization is applied to a gas-phase copolymerization

fluidized bed reactor [11], and optimal control configuration and transition poli-

cies are achieved.

Among all the methods proposed, simultaneous dynamic optimization (or direct

transcription approach) shows particular advantages in solving such problems. A

successful application of simultaneous dynamic optimization on transition prob-

lems is discussed in Cervantes et al. [10], where optimal control strategies are

obtained for grade transitions in large-scale LDPE plant models using orthogonal

collocation on finite elements and an interior point method. Therefore, a simulta-

neous dynamic optimization strategy will be applied in this study to solve optimal

transition problems of LLDPE solution polymerization.
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1.5 Research Statement and Thesis Outline

The goal of the project is to build a model-based control and optimization frame-

work for optimal grade transitions in polyethylene solution polymerization pro-

cesses. To achieve this goal, there are four key topics we need to consider:

1. Model development

2. Optimization formulation and solution strategies

3. Optimization under uncertainty

4. Online implementation

A detailed model that is representative of the process is a solid base for all the sub-

sequent tasks. Once the model is ready, we focus on the RTO and the NMPC layers

in the decision-making hierarchy. The motivation, the background, the methodol-

ogy as well as the results of each topic will be discussed in the remainder of the

thesis.

Chapter 2 gives a brief overview of the optimization algorithms for dynamic opti-

mization. We focus on simultaneous dynamic optimization in particular and will

talk about singular control problems as well. These two topics lay the foundation

of all the work presented here. The concept and methodology are widely used

through the entire thesis; the simultaneous dynamic optimization approach en-

ables efficient solution to the large-scale optimization problem while the singular

control nature of the problem brings up the discussion on regularization.

Starting from Chapter 3, we focus on an industrial application of polyethylene so-

lution polymerization processes. First, we discuss the model development in this

chapter; a brief description of the process and a detailed explanation of the model

are presented.
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Then in Chapter 4 dedicated to the real-time optimization layer, the simultane-

ous dynamic optimization method is applied to two distinct optimization formu-

lations: one is for single-value product property targets while the other goes one

step further to deal with specification bands. Several case studies are presented to

explain the optimal transition policy and to illustrate the influence of regulariza-

tion.

Chapter 5 aims at obtaining robust optimal solutions in the presence of uncertainty.

The motivation of considering uncertainty, as well as the background information

on related research topics, will be introduced at the beginning of the chapter. Next,

we formulate the back-off problem and demonstrate its effectiveness using a set of

case studies.

Chapter 6 begins with a review of the commonly used nonlinear model predictive

control and moving horizon estimation, and then proceeds to a modified version

which is tailored to this particular grade transition problem. Two cases studies are

presented to show the online control performance with either full state feedback or

partial state measurement. Moreover, the dividing line between RTO and advance

control is removed by applying economic NMPC to the grade transition problem.

Chapter 7 concludes the dissertation, discusses the contributions of our work, and

points out some open questions and future research directions.
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Chapter 2

Optimization Methodology

In the previous introduction, we briefly discussed the two aspects of the thesis: the

right tool from a mathematical programming point of view and the right problem

formulation at the engineering level. Efficient solution strategies for dynamic opti-

mization is the enabling tool for successful execution of model-based optimization

tasks in both real-time optimization and model predictive control layer. Problems

that arise in the area of real-time optimization (or offline optimization) include

recipe optimization of batch processes, grade transition in continuous processes

and parameter estimation, while online implementation in the advanced control

layer usually involves model predictive control, state estimation and online process

identification. In this chapter, we first present the dynamic optimization methods

that apply to all these problems and introduce the commonly used notations as

well as basic formulations, before we delve into specific problems of grade transi-

tions in the subsequent chapters.

9



2.1. Solution Approaches for Dynamic Optimization

2.1 Solution Approaches for Dynamic Optimization

Consider the general-purpose dynamic optimization problem given by:

min F(z(t f ))

s.t. ż = f (z(t), y(t), u(t), p), z(0) = z0,

g(z(t), y(t), u(t), p) = 0,

h(z(t), y(t), u(t), p) ≤ 0,

zL ≤ z(t) ≤ zU , yL ≤ y(t) ≤ yU , uL ≤ u(t) ≤ uU , pL ≤ p ≤ pU

(2.1)

with the differential-algebraic equations (DAEs) model. Here z(t) ∈ Rnz are differ-

ential variables, y(t) ∈ Rny are algebraic variables, u(t) ∈ Rnu are control variables,

and p are variables that are independent of time t. The problem is defined in the

continuous time domain from 0 to t f . F(·) is the objective function in the Mayer

form, which considers the final time objective as a function of differential states.

f (·) represent process dynamics in ordinary differential equations, and g(·) de-

scribe the rest of process model using algebraic equations. Both of them come from

first-principles or data-driven model of the process. h(·) and variable bounds arise

from optimization constraints such as feasible control movement, process safety

constraints, product property requirement, etc. Both end-point constraints and the

path constraints can be represented in the presented form.

Numerical solution methods for dynamic optimization are usually classified in two

categories: 1) the sequential approach and multiple shooting with parameterized

control and embedded DAE solvers [7, 21, 62, 70, 70], and 2) the simultaneous

approach with fully discretized states and controls [14].
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2.1.1 Sequential Approach and Multiple Shooting

The basic idea of sequential approach is to separate the DAE problem from the op-

timization task, with sensitivity calculation linking them together. This involves

repeated execution of three functional blocks: the DAE solver, the sensitivity cal-

culation and the NLP solver. The integration of DAEs are performed in the first

block. And then in the second block, either direct sensitivity or adjoint sensitivity

is calculated. The reduced size NLP problem is solved in the third block based

on the gradient information provided from sensitivity calculation. After each it-

eration, the NLP solver generates new optimal decision profiles, send them to the

DAE solver for integration and a new iteration starts.

Multiple shooting [7, 40] is developed to avoid the instability problem that arises

in the sequential approach. In this approach, the time domain is discretized into

several smaller time periods and the integration of the DAE model is performed in

each period. In this way, not only the control variables but also the initial conditions

of the states in each period are considered in the sensitivity calculation, and thus

more state variable information can be utilized by the NLP solver.

Sequential approach and multiple shooting are classified in the same category as

both of them require embedded DAE solvers and repeated solutions of the DAE

system. Because of this, both approaches rely heavily on the efficiency and relia-

bility of the DAE solver. Moreover, the sequential nature of the approach destroys

the original sparsity of the dynamic model and makes the computation more ex-

pensive.

2.1.2 Simultaneous Dynamic Optimization

The simultaneous collocation method discretizes the continuous time horizon into

a finite element mesh, and then the differential-algebraic equation optimization

problems are converted into nonlinear programming problems [34]. Here state
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and control profiles are represented by a family of polynomials on finite elements.

Typically the control decisions u(t) are represented by piecewise constant or piece-

wise linear profiles, and the differential and algebraic state variables z(t) and y(t),

respectively can be represented by the Runge-Kutta basis representation:

z(t) =zi−1 + hi

K

∑
j=1

Ωj(τ)żi,j (2.2a)

y(t) =
K

∑
j=1

lj(τ)yi,j (2.2b)

t =ti−1 + τhi (2.2c)

where i is the index of the element and j is the index of the collocation points

within the element; hi is the length of the element, τ ∈ [0, 1] is the normalized time

in the element, zi−1 is the state value at the beginning of the element, yi,j is the state

variable y(t) and żi,j is the first derivative of state variable z(t) with respect to time

at collocation point j, and Ωj(τ) is a polynomial of order K.

Ωj(τ) =
∫ τ

0
lj(τ

′)dt′ (2.3)

Here, lj(τ) is Lagrange interpolation polynomial basis function. Continuity of the

state profiles across element boundaries is enforced by a set of continuity equations,

as shown in (2.4). Similar to (2.2), by setting τ = 1, the state value at the end of the

element is calculated and passed to the next element.

zi = zi−1 + hi

K

∑
j=1

Ωj(1)żi,j (2.4)

Substituting (2.2) for the state and control profiles into the differential-algebraic

equations and adding (2.4) leads to a fully discretized dynamic optimization prob-

lem which can be solved by nonlinear programming (NLP) solvers, such as CONOPT

[18] and IPOPT [72].
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The NLP problem converted from the dynamic optimization problem (2.1) is stated

as:
min F(zi,j)

s.t. zi,j = zi−1 + hi

K

∑
j=1

Ωj(τj)żi,j,

zi = zi−1 + hi

K

∑
j=1

Ωj(1)żi,j,

żi,j = f (zi,j, yi,j, ui,j, p), z1,0 = z0,

g(zi,j, yi,j, ui,j, p) = 0,

h(zi,j, yi,j, ui,j, p) ≤ 0,

zL ≤ zi,j ≤ zU , yL ≤ yi,j ≤ yU ,

uL ≤ ui,j ≤ uU , pL ≤ p ≤ pU .

(2.5)

More detailed information on simultaneous strategies can be found in the overview

by Biegler [3].

2.2 Nonlinear Programming Methods

The NLP solver is a must no matter you choose sequential approach, multiple

shooting or simultaneous approach to solve the dynamic optimization problem.

It is the key component in all the dynamic optimization approaches because it con-

ducts optimization searches and determines the optimal decision profiles and its

efficiency and reliability highly influence the performance. Newton type solvers

are generally preferred due to their fast convergence properties [49]. Three nonlin-

ear programming algorithms are usually adopted in the current NLP solvers.

The sequential quadratic programming (SQP) method solves a sequence of quadratic

programs (QP) to guide the search. To construct each QP, the variable value and

derivative information at each iteration are used. SQP solvers are favored by the

sequential method for dynamic optimization for the following two reasons. First,

the size of the NLP problem is relatively small in the sequential approach. Also,
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second-order derivatives are very expensive to compute via sensitivity analysis,

but SQP methods usually perform well with approximated derivatives using BFGS.

Another method is the generalized reduced gradient (GRG) method. One key fea-

ture of this GRG method is that it partitions the variables in an NLP into three

types: basic, nonbasic, and superbasic variables. Basic variables are used to solve

equality constraints, nonbasic variables are fixed at either their upper or lower

bounds, and superbasic variables drive the optimization search. Among all the

NLP solvers, CONOPT is a representative solver exploiting this method.

The interior point method is preferred when dealing with large-scale problems

with many degrees of freedom, and it is often used to solve NLP problems resulting

from the simultaneous collocation method. This method reformulates the inequal-

ity constraints as barrier terms to the objective function, and solves a series of NLP

problems with decreasing barrier parameters to recover the optimal solution of the

original problem. One good example of this type of solvers is IPOPT.

2.3 Singular Control Problems

Singular control problem often arises in process engineering when the control ap-

pears linearly in the differential equations and in the performance index. Accurate

control structures and junctions between optimal non-singular and singular arcs

are required to generate optimal control profiles. Moreover, the singular arcs can

not be determined directly from the Euler-Lagrange equations. The ill-conditioned

DAEs result in oscillatory control profiles and require repeated time differentia-

tions to recover the control.

A number of techniques have been proposed to address the singular control prob-

lem. One approach as proposed in [31] is adding regularization term in the ob-

jective function. The regularization term is a time-integral of the control variables
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u with a adjustable weight, which needs to be determined carefully such that the

optimal control profiles do not deteriorate and the actual objective function is ad-

equately emphasized. Jacobson et al. formulate the original singular control prob-

lem as a sequence of non-singular problems with a decreasing barrier parameter.

But numerical instabilities may occur when the barrier parameter is too small. On

the other hand, the actual objective or the original performance index is not ad-

dressed if the barrier parameter is too large. Another heuristic approach [4] applies

a coarser discretization grid on the control variables. In the simultaneous colloca-

tion approach, piecewise constant control can be enforced to realize this.

In addition to the regularization approach and the coarse grid, indirect and di-

rect approaches are two common strategies designed for singular control problems.

The key idea of indirect approach is the pre-determined solution structure and ex-

plicit expression for the singular control. However, determining the right structure

and expression for the singular control is difficult. Contrary to the indirect ap-

proach, direct approaches do not require prior knowledge of the control structure.

The detection of control switching structure is based on the coarse resolution of the

control profile, and then a multistage problem is formulated and solved using a

sequential NLP approach.

Recently, Chen and Biegler [12] proposed a nested direct transcription optimization

approach which leads to solutions that satisfy the necessary optimality conditions

for singular optimal control problems. This approach is enabled by a simultaneous

approach with moving finite elements [13].

In the dissertation, regularization and piecewise constant profiles are adopted in

the optimal grade transition problem. A detailed procedure of the determination

of weighting factors will be further discussed in the subsequent chapters.
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Chapter 3

Model Development of

Polyethylene Solution

Polymerization Processes

In this chapter, we focus on the model development for the motivating industrial

polymerization process as described in the introduction. We first give a brief de-

scription of the process, including the process flowsheet and the reaction mecha-

nism, and then explain all the components of the model in detail, which include:

(1) mass and energy balance equations, (2) the moment model to predict product

properties, (3) a simple yet accurate vapor-liquid equilibrium (VLE) model derived

from rigorous calculations, and (4) a variable time delay model for the rest of the

flowsheet. The resulting model is capable of capturing the detailed dynamics of

the system.
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3.1 Process Overview

3.1.1 Process Flowsheet

Product  
measurements 

Recycle stream 

Purge 

Pelletizer 

Fresh ethylene,  
comonomer, hydrogen, 
catalyst, solvent 

Loop 
Reactor 
 Separator 

Splitter 

Figure 3.1: Flowsheet of Solution Polymerization Process

The flowsheet of this entire LLDPE process is shown in Fig. 3.1. LLDPE is produced

using solution polymerization, where the loop reactor operates at high recycle ra-

tio and is modeled as an ideal CSTR, based on the observation of Zacca and Ray’s

work [78]. This assumption also avoids specification of additional information on

reactor geometry and equipment information required for loop reactors, which is

often proprietary. In this study, both raw material and recycle flows are combined

as inlet reactor flow. Ethylene, comonomer, catalyst, hydrogen, solvent and impu-

rities are continuously injected into the jacketed reactor, and ethylene is partially

polymerized to produce products of different grades. Cooling media flow through

the reactor jacket to control the reactor temperature to an acceptable range, and to

ensure all components remain in liquid phase while maintaining efficient reaction

rates. The reactor is followed by a separator which separates polymers from other

components and a splitter which recycles both liquid and vapor streams.

From a process control perspective, available manipulated variables are ethylene

flowrate, comonomer flowrate, hydrogen flowrate, catalyst flowrate and inlet cool-
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ing media temperature while the controlled variables are ethylene conversion, reac-

tor temperature, MI and product density. Perfect mixing is assumed in the reactor;

thus, there is no position dependence in the reactor model.

3.1.2 Reaction Mechanism

The liquid phase olefin polymerization is represented by the following reactions

[78]. For our process, we assume that catalyst activation is very fast compared

to other reactions; once the catalyst is fed into the reactor all sites of the catalyst

become activated. Also, as single-site catalyst (metallocene) is used in this study,

no site transformation is considered. The selected kinetic reactions can be seen

in Table 3.1, with P0, the empty site; M, monomer and comonomer denoted by

different subscripts i and j; Pn,i, growing polymer of chain length n and end-group

Mi; Dn,i, dead polymer of chain length n and end-group Mi; Cd, dead catalyst site;

and A, S, T, X for cocatalyst, solvent, transfer agent and poison, respectively.

Chain initiation P0 + Mi ⇒ P1,i rate constant kp
Chain propagation Pn,i + Mj ⇒ Pn+1,j rate constant kpij
Chain transfer
1. to hydrogen Pn,i + H2 ⇒ P0 + Dn,i rate constant kcH
2. to cocatalyst Pn,i + A⇒ P0 + Dn,i rate constant kcA
3. to solvent Pn,i + S⇒ P0 + Dn,i rate constant kcS
4. to transfer agent Pn,i + T ⇒ P0 + Dn,i rate constant kcT
5. to monomer Pn,i + Mj ⇒ P1,j + Dn,i rate constant kcm
6. spontaneous Pn,i ⇒ P0 + Dn,i rate constant kcsp
Chain deactivation
1. by poison Pn,i + X ⇒ Cd + Dn,i rate constant kdx

P0 + X ⇒ Cd rate constant kdx0
2. spontaneous Pn,i ⇒ Cd + Dn,i rate constant kdsp

P0 ⇒ Cd rate constant kdsp0

Table 3.1: LLDPE polymerization reactions considered in this study
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3.2 Model Development

3.2.1 First-principles Model Equations

For the copolymerization process considered in the study, there are four propaga-

tion rate constants kp11, kp12, kp21 and kp22 with the first subscript representing the

end-group in growing polymer, and the second representing the monomer adding

to the polymer chain; the values 1 and 2 represent ethylene and comonomer, re-

spectively. The propagation rates for different end-groups and different monomers

are not identical. Two reactivity ratios are defined as r1 = kp11/kp12 and r2 =

kp22/kp21. These reactivity ratios are reported [27]. The Arrhenius law is used to

describe the dependence of reaction rate on temperature. All of the remaining rate

constants and activation energies can be found in literature [78]. A table of kinetic

parameters used in this study is in Table 3.2.

Reaction k0 Unit Ea (kcal/gmol)

Chain initiation kp 4.84× 108 L/gmol/s 12.0
Propagation kp11,kp21 4.84× 108 L/gmol/s 12.0
Chain transfer

to hydrogen kcH 4.4× 106 L/gmol/s 12.0
spontaneous kcsp 3.85× 102 L/gmol/s 12.0
to monomers kcm 6.16× 103 L/gmol/s 12.0

Site deactivation
spontaneous kdsp 7.92× 103 L/s 12.0

Table 3.2: Kinetic rate constants: k = k0e−Ea/RT, r1 = 10, r1 × r2 = 1

Five dynamic mass balances are derived for ethylene, comonomer, empty catalyst

site, hydrogen, and solvent and presented in Eq.(3.1). Fresh and recycled ethylene

are fed into the reactor at rate F1 and F1r with concentrations M0
1 and M1r, respec-

tively and ethylene is consumed by initialization, propagation and chain transfer

reactions. Similarly the mass balance equation of comonomer is derived with fresh

comonomer flowrate F2, concentration M0
2 and recycled comonomer flowrate F2r

with concentration M2r. Activated empty catalyst site P0 is introduced into the
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reactor at rate Fc, occupied by chain propagation reactions and deactivated by poi-

soning and spontaneous deactivation. The chain transfer reactions release the oc-

cupied site and generate activated empty sites. In addition, mass balances of hy-

drogen and solvent are described with additional differential equations. Here fresh

hydrogen enters the reactor at rate FH and concentration H0
2 , together with recycled

hydrogen flow at rate FHr and concentration H2r. A similar equation is derived for

solvent.

Ṁ1 =
F1M0

1 + F1r M1r − Fout M1

V

− kp M1P0 − kp11M1

∞

∑
n=1

Pn,1 − kp21M1

∞

∑
n=1

Pn,2 − kcm M1(
∞

∑
n=1

Pn,1 +
∞

∑
n=1

Pn,2) (3.1a)

Ṁ2 =
F2M0

2 + F2r M2r − Fout M2

V

− kp M2P0 − kp22M2

∞

∑
n=1

Pn,2 − kp12M2

∞

∑
n=1

Pn,1 − kcm M2(
∞

∑
n=1

Pn,1 +
∞

∑
n=1

Pn,2) (3.1b)

Ṗ0 =
FcP0

0 − FoutP0

V
− kp M1P0 − kp M2P0 − kdx0XP0 − kdsp0P0

+ (kcH H2 + kcA A + kcSS + kcTT + kcsp)(
∞

∑
n=1

Pn,1 +
∞

∑
n=1

Pn,2) (3.1c)

Ḣ2 =
FH H0

2 + FHr H2r − FoutH2

V
− kcH H2(

∞

∑
n=1

Pn,1 +
∞

∑
n=1

Pn,2) (3.1d)

Ṡ =
FSS0 + FSrSr − FoutS

V
− kcSS(

∞

∑
n=1

Pn,1 +
∞

∑
n=1

Pn,2) (3.1e)

In addition to the mass balance equations, the population balance equations for

polymer chains can be expressed as Eq.(3.2). As seen from the equations, each

individual polymeric species, live/dead polymer chain with a certain length and

a certain end-group, is described by an ordinary differential equation. When the
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chain length grows, the number of population balance equations becomes large.

Ṗ1,i =−
FoutP1,i

V
+ kp MiP0 − ∑

j=1,2
kpij MjP1,i − (kcH H2 + kcA A + kcSS + kcTT + kcsp)P1,i

− (kdsp + kdxX)P1,i − kcm(M1 + M2)P1,i + kcm M1

∞

∑
n=1

(Pn,i + Pn,j), i = 1, 2 (3.2a)

Ṗn,i =−
FoutPn,i

V
+ ∑

j=1,2
kpji MiPn−1,j − ∑

j=1,2
kpij MjPn,i − (kdsp + kdxX)Pn,i

− (kcH H2 + kcA A + kcSS + kcTT + kcsp)Pn,i − kcm(M1 + M2)P1,i, n ≥ 2, i = 1, 2

(3.2b)

Ḋn,i =−
FoutDn,i

V
+ (kcH H2 + kcA A + kcSS + kcTT + kcsp)Pn,i + kcm(M1 + M2)Pn,i

+ (kdsp + kdxX)Pn,i, n ≥ 1, i = 1, 2 (3.2c)

Heat balance equations are included for reactor temperature and jacket tempera-

ture as shown in (3.3). Reactor feed enters the reactor at temperature T0, while the

outlet leaves at temperature T. The solution inside the reactor, which has a solu-

tion density ρs and heat capacity Cps, is heated mainly by heat generated from the

chain propagation reactions, and cooled by cooling water in the jacket. U denotes

the heat transfer coefficient, A the heat transfer area and ∆H the reaction heat. The

temperature change in the jacket is described in Eq.(3.3b) with inlet temperature

of cooling media T0
j , the jacket volume Vj, the density of cooling media ρj and the

heat capacity Cpj.

Ṫ =
FinT0 − FoutT

V
−

UA(T − Tj)

ρsCpsV

+

∆H(kp11M1

∞

∑
n=1

Pn,1 + kp12M2

∞

∑
n=1

Pn,1 + kp21M1

∞

∑
n=1

Pn,2 + kp22M2

∞

∑
n=1

Pn,2)

ρsCps

(3.3a)

Ṫj =
Fj(T0

j − Tj)

Vj
+

UA(T − Tj)

ρjCpjVj
(3.3b)
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3.2.2 Moment Model

The above population balance introduces an equation for each species and for each

polymer chain length. It is capable of tracking the molecular weight distribution

(MWD), but the size of the population balance model increases and the model be-

comes computationally intractable and inefficient as the chain length gets larger.

Instead, the method of moments provides an efficient way to solve polymerization

systems by aggregating polymers of various chain lengths with different weights.

The kth moment of growing polymer with end-group Mi is defined as

µk,i =
∞

∑
n=1

nkPn,i (3.4)

and the kth moment of bulk (live and dead) polymer is

λk,i =
∞

∑
n=1

nk(Pn,i + Dn,i) (3.5)

where Pn,i denotes the population of live polymer chains with length n and end-

group Mi and Dn,i is the population of dead polymer chains with length n and

end-group Mi. Average distributional properties can be calculated from those mo-

ments. As the product properties considered in the study, MI and density, are cor-

related with these molecular weight averages, dynamic molecular weight moment

equations are derived for the zeroth, first and second moments from polymer pop-

ulation balance equations.

To simplify the following moment equations, we define a lumped term for chain

transfer reactions as in Eq. (3.6).
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KC = kcH H2 + kcA A + kcSS + kcTT + kcsp + kcm(M1 + M2) + kdsp + kdxX (3.6)

Live Polymer Moments

0th moments

µ̇01 =− Foutµ01

V
+ kp M1P0 + kP21M1µ02 − KCµ01 − kp12M2µ01 + kcm M1(µ01 + µ02)

(3.7a)

µ̇02 =− Foutµ02

V
+ kp M2P0 + kP12M2µ01 − KCµ02 − kp21M1µ02 + kcm M2(µ01 + µ02)

(3.7b)

1st moments

µ̇11 =− Foutµ11

V
+ kp11M1µ01 + kp21M1(µ02 + µ12)

− KCµ11 + kp1M1P0 − kp12M2µ11 + kcm M1(µ01 + µ02) (3.7c)

µ̇12 =− Foutµ12

V
+ kp22M2µ02 + kp12M2(µ01 + µ11)

− KCµ12 + kp2M2P0 − kp21M1µ12 + kcm M2(µ01 + µ02) (3.7d)

2nd moments

µ̇21 =− Foutµ21

V
+ kp11M1(2µ11 + µ01) + kp21M1(µ22 + 2µ12 + µ02)

− KCµ21 − kp12M2µ21 + kp1M1P0 + kcm M1(µ01 + µ02) (3.7e)

µ̇22 =− Foutµ22

V
+ kp22M2(2µ12 + µ02) + kp12M2(µ21 + 2µ11 + µ01)

− KCµ22 − kp21M1µ22 + kp2M2P0 + kcm M2(µ01 + µ02) (3.7f)

24 Model Development



3.2. Model Development

Bulk Polymer Moments

0th moments

λ̇01 =− Foutλ01

V
+ kp M1P0 + kp21M1µ02 − kp12M2µ01 + kcm M1(µ01 + µ02) (3.8a)

λ̇02 =− Foutλ02

V
+ kp M2P0 + kp12M2µ01 − kp21M1µ02 + kcm M2(µ01 + µ02) (3.8b)

1st moments

λ̇11 =− Foutλ11

V
+ kp11M1µ01 + kp21M1(µ02 + µ12) (3.8c)

+ kp1M1P0 − kp12M2µ11 + kcm M1(µ01 + µ02) (3.8d)

λ̇12 =− Foutλ12

V
+ kp22M2µ02 + kp12M2(µ01 + µ11) (3.8e)

+ kp2M2P0 − kp21M1µ12 + kcm M2(µ01 + µ02) (3.8f)

2nd moments

λ̇21 =− Foutλ21

V
+ kp11M1(2µ11 + µ01) + kp21M1(µ22 + 2µ12 + µ02)

− kp12M2µ21 + kp1M1P0 + kcm M1(µ01 + µ02) (3.8g)

λ̇22 =− Foutλ22

V
+ kp22M2(2µ12 + µ02) + kp12M2(µ21 + 2µ11 + µ01)

− kp21M1µ22 + kp2M2P0 + kcm M2(µ01 + µ02) (3.8h)

The number average molecular weight Mn and the weight average molecular weight

Mw can be calculated from the following moments: Mn = MW
λ11 + λ12

λ01 + λ02
and

Mw = MW
λ21 + λ22

λ11 + λ12
, where MW is the molecular weight of the repeating units. In

the process considered in our study, MW can be computed as a weighted average
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of the molecular weights of monomer and comonomer, MW1 and MW2.

MW = (1−ω)MW1 + ωMW2 (3.9a)

ω =
µ12

µ12 + µ11
(3.9b)

The melt index (MI) correlation and its parameters can be found in relevant work

[19, 20, 36, 37, 63].

MI = a1Ma2
w (3.10)

where a1 = 3× 1019, a2 = −3.92.

A simple data fit leads to the density correlation with branch content from the

data[51].

ρ = b1log(100ω) + b2 (3.11)

where b1 = −0.023, b2 = 0.9192 and 100ω is the percentage of branch content of

the comonomer.

3.2.3 Surrogate VLE Model

A key component of the model is vapor-liquid equilibrium of the polymer solu-

tion, which is used to estimate bubble point pressure. Since the whole process

takes place in liquid phase, bubble point pressure of the mixture should be main-

tained below operating pressure at all time. For polyethylene system, the most ac-

cepted vapor-liquid equilibrium models are Equation-of-State (EOS) models; these

include the Sanchez-Lacombe model based on the lattice theory, Polymer SRK,

which extends the SRK equation of state, and PC-SAFT, based on perturbation the-

ory of fluids. The EOS model has the following advantages compared to activity
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coefficient models: 1) it is consistent in the critical region; 2) it can represent both

vapor and liquid phases; 3) and its parameters extrapolate well with temperature.

However, developing and solving such an EOS model is difficult due to its com-

plexity.

The need for a simple, yet accurate thermodynamic model gives rise to the idea

of surrogate thermodynamic model, derived from an EOS model. One choice of

surrogate model is the well-known Kriging model [23, 42]. It consists of two parts,

i) the regression model f s
k (x) ∈ Rnx → Rns , with k = 1, . . . , np with regression

parameter vector η∗ and ii) the correlation model Rs(θ, x) ∈ Rnx → Rnd with cor-

relation parameter vector ζ∗ shown in (3.12). Here x ∈ Rnx is the input vector of

the model, s ∈ Rns is the vector calculated from x, np is the number of regression

terms and nd is the number of training data points.

s(x) =
np

∑
k=1

η∗k fk(x) +
nd

∑
i=1

ζ∗i Rs
i (θ, x) (3.12)

The mathematical form of the regression model is chosen as quadratic combina-

tions of input variables as shown in (3.13) while the correlation model has a Gaus-

sian expression as shown in (3.14). wi ∈ Rnx is the input vector of the ith training

data with i = 1, 2, . . . , nd. The correlation model is asymptotically zero when the

distance between training point wi and x is large. This phenomenon is anisotropic,

where coefficients θj control the decay rates, which are distinct in the nx directions.

Model Development 27



3.2. Model Development

Regression model

np =
1
2
(n + 1)(n + 2)

f s
1(x) = 1

f s
2(x) = x1, . . . , f s

n+1(x) = xn

f s
n+2(x) = x2

1, . . . , f s
2n+1(x) = x1xn

f s
2n+2(x) = x2

2, . . . , f s
3n(x) = x2xn

. . .

f s
p(x) = x2

n

(3.13)

Correlation model

Rs
i (θ, x) =

n

∏
j=1

exp(−θj(wij − xj)
2) (3.14)

In this study, 250 training points are designed by the Latin Hypercube Sampling

method in the region of interest, shown in Table 3.3. A surrogate Kriging model

representing the relationship between the mass fraction of the components, tem-

perature of the mixture and the bubble point pressure, is built based on those train-

ing data points generated from ASPEN. DACE, a MATLAB toolbox [42], is used to

build the Kriging model.

Independent Variables in the Surrogate Model Range of Interest

Reactor Temperature 80-220 oC
Mass Fraction of Ethylene 0-0.1

Mass Fraction of Comonomer 0-0.3
Mass Fraction of Hydrogen 0-0.001

Mass Fraction of Polymer 0-0.4

Table 3.3: Ranges of independent variables in the surrogate model

To test the resulting model’s performance, 10 different compositions are considered

to construct a test data set. For each composition, around 10 data points are gen-

erated using the ASPEN EOS model with increasing temperature, as seen in Table

3.4.

Fig. 3.2 provides a comparison of bubble point pressures from the Kriging model
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3.2. Model Development

Test Ethylene Comonomer Solvent Hydrogen Polymer Temperature
Scenario mass frac. mass frac. mass frac. mass frac. mass frac. oC

1 0.050 0.029 0.620946 0.000054 0.3 100-220
2 0.000 0.029 0.670950 0.000050 0.3 100-270
3 0.000 0.029 0.670800 0.000200 0.3 100-260
4 0.100 0.029 0.571000 0.000000 0.3 100-170
5 0.100 0.029 0.570900 0.000100 0.3 100-170
6 0.100 0.029 0.570800 0.000200 0.3 100-170
7 0.075 0.029 0.595946 0.000054 0.3 100-200
8 0.025 0.029 0.645946 0.000054 0.3 100-250
9 0.050 0.029 0.620975 0.000025 0.3 100-220
10 0.050 0.029 0.620925 0.000075 0.3 100-230

Table 3.4: Test data for the surrogate VLE model

prediction and ASPEN model simulation for 126 test (validation) points, and demon-

strates the accuracy of the surrogate model in the region of interest. Note the bubble

point pressure prediction of the Kriging model is slightly higher than that from the

ASPEN model, which allows a safety margin in the pressure specification. Along

the reactor, we need to guarantee that the bubble point pressure is below operating

pressure at two positions, one inside the reactor and the other for the feed mixture.

We use two surrogate thermodynamic models for those two positions.

3.2.4 Recycle Time Delay Model

As shown in Fig. 3.1, separator units and recycle loops are included to reuse unre-

acted materials. The effect of recycle streams on grade transitions is not negligible

and must be considered because there is no direct control of recycle flowrate in

the real plant; this is determined solely by the outlet flowrate and its composition.

Also, recycle loops introduce several variable time delays into the system. As a re-

sult, the grade transition policy depends on the current reactor conditions as well

as previous outlet flows.

There are several ways to model recycle streams and time delays, including repre-

senting the variable time delay as a transportation delay in a pipe. Here, we divide
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Figure 3.2: Comparison between ASPEN model and Kriging model

a pipe with total length L into N small, well-mixed segments. The resulting mass

balance equation for the kth component in the ith segment is given by Eq.(3.15),

where Ck
i (t) is the concentration of species k in the ith segment at time t, F is the

flowrate, ∆L is the length of each small pipe segment and A is the cross-section.

Ċk
i (t) = (Ck

i−1(t)− Ck
i (t))

F(t)
A∆L

, ∆L =
L
N

k ∈ {ethylene, comonomer, hydrogen, solvent}, i = 1, 2, . . . , N
(3.15)

The time delays in the vapor (unreacted ethylene and hydrogen) and liquid (sol-

vent and unreacted comonomer) recycle loops are 1.05 hours and 1.5 hours, respec-

tively. To determine an appropriate N, we performed a number of step response

simulations and compared the resulting profiles for different values; N is deter-

mined when there is no further improvement in approximation accuracy. Dynamic

profiles of output variables, MI and ρ are compared in Fig. 3.3 and Fig. 3.4 for var-

ious values of N. With increased N, the approximation accuracy improves and the

model is capable of capturing oscillatory behaviors of MI, as can be seen in the
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3.2. Model Development

profiles of N = 50 and N = 200. However, the magnitude of those oscillations

is relatively small compared to the overall trend of MI. Considering the increased

computational demand caused by the large value of N and its negligible effect in

the optimization problem, we set N = 10 in both recycle loops, as this balances

accurate discretization with smaller problem size.
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Figure 3.3: MI profiles with different number of segments used to approximate
recycle delays

3.2.5 Process Constraints

In addition to the mass and heat balance equations, property correlations, the sur-

rogate VLE model and the variable time delay model, we identify process con-

straints, which cover the following three aspects:

• Feasible operation: constraints on manipulated variables

Maximum and minimum of feed flowrate and temperature of inlet cool-
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Figure 3.4: Density profiles with different number of segments used to approximate
recycle delays

ing water:

Fmin ≤ F ≤ Fmax, F ∈ {F1, F2, Fc, FH} (3.16a)

T0
j,min ≤ T0

j ≤ T0
j,max (3.16b)

• Acceptable performance: constraints on output variables

Reactor temperature should be in a certain range:

Tmin ≤ T ≤ Tmax (3.17)

MI and density should be kept within a certain range to get rid of over-
shooting and undershooting

MImin ≤ MI ≤ MImax (3.18a)
ρmin ≤ ρ ≤ ρmax (3.18b)

Production rate is maintained within a certain range near maximum ca-
pacity:

Pmin ≤ P ≤ Pmax (3.19)
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Critical concentration of reaction is addressed during both steady state
operations and grade transitions:

θ ≥ θmin, θ is the conversion rate of ethylene (3.20)

• Safety considerations and process requirements

Bubble point pressure should be controlled below operating pressure:

Inside the reactor: Pb ≤ Pb,max (3.21a)
At the feed point: Pf ,b ≤ Pf ,b,max (3.21b)

3.3 Concluding Remarks

This chapter presents a rigorous mathematical model developed for the entire flow-

sheet of the solution polymerization process in a loop reactor. This includes time

delay models for vapor and liquid recycle streams as well as a data-driven surro-

gate vapor-liquid equilibrium model for monitoring the bubble point pressure. In

addition, the moment model is built to bridge the gap between numerous polymer

chains in the reactor and physical properties of the product.

One highlight of this work is the data-driven surrogate VLE model. Maintaining

the bubble point pressure of the mixture inside the reactor and in the feed under op-

erating pressure is of great importance in solution polymerization processes. This

is enforced in our model through non-ideal VLE constraints at all points in time.

Another point we should mention is the scope of this model. Not only the indi-

vidual reactor but also the recycle stream and its transport delay are considered in

the model using a variable time delay model. This drives the need for longer time

horizons for the grade transition, but provides more realistic solutions that match

the actual process operation.

In total, the model contains 59 differential equations and 114 algebraic equations.
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To prepare the model for later optimization problems, simultaneous collocation

approach, which allows for detailed representation of state and control profiles, is

applied to discretize the model. Applying 3-point collocation on 48 finite elements

leads to a large-scale nonlinear programming problem with 157,935 variables and

159,683 constraints. More detailed optimization formulation and computational

aspects will be discussed in the subsequent chapters.
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Chapter 4

Optimization of Grade Transitions

Optimization of grade transitions in continuous processes is a heated topic in the

past several decades. The potential value of model-based optimization of grade

transitions includes great reduction in transition time as well as the off-grade pro-

duction, increased flexibility in the production wheel and guided complex transi-

tions. In this chapter, two distinct optimization formulations are considered: one

is for single-value product property targets and the other goes one step further to

deal with specification bands. With the detailed model developed in the last chap-

ter and the simultaneous dynamic optimization strategy described in Chapter 2,

the corresponding NLP problems for both formulations are solved for two grade

transitions and the influence of regularization in the objective function is analyzed.

4.1 Single-stage Optimization Formulation

With the aim of minimizing off-grade products and transition time, we set a weighted

integral error function as the objective function to minimize the transition time; this

implies minimum waste of material and minimum utility consumption.
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The objective function can be formulated as below:

min
∫ t f

t0

‖ y(t)− y∗ ‖2
Q +

1
γ
‖ u(t)− u∗ ‖2

R dt (4.1)

where t f is time horizon, y is a vector of algebraic state variables, which contains

MI, product melt index, and ρ, product density, and u represents a vector of ma-

nipulated variables. The superscript * marks the setpoint of final grade product

properties and steady-state operation conditions of manipulated variables. γ, Q

and R in Eq.(4.1) are weighting factors described in Eq.(5.14) and Eq.(5.15).

Q =

 wMI/(MI0 −MI∗)2 0

0 wρ/(ρ0 − ρ∗)2

 (4.2)

R = diag(1/(u0
j − u∗j )

2) (4.3)

The initial condition is the steady state production of a certain grade before tran-

sition, while the setpoint and reference inputs are the steady state outputs of the

desired grade after transition. Constraints such as available operating ranges of

manipulated variable and acceptable range of temperature are also incorporated

in the dynamic optimization problem, as discussed in the previous section. The

surrogate Vapor-Liquid Equilibrium (VLE) equations derived from (3.12) are used

to calculate the bubble point pressure. In order to maintain the reactor and its feed

in liquid phase, bubble point pressures should not exceed operating pressures at

these locations.

The single-stage optimization problem is stated as follows:
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min
∫ t f

t0

‖ y(t)− y∗ ‖2
Q +

1
γ
‖ u(t)− u∗ ‖2

R dt

s.t. Reactor model (3.1), (3.3)

Moment model (3.7)− (3.8)

Product property correlations (3.9)− (3.11)

Surrogate VLE model (3.12)− (3.14)

Recycle variable time delay model (3.15)

Process constraints (3.16)− (3.21)

(4.4)

The weighting factor γ and scaling matrices Q and R greatly influence the solution

performance and need to be determined appropriately. In the objective function,

the first term addresses the gap between current property predictions and their

targets, while the second ensures that it reaches the target steady state smoothly.

When this regularization term is removed, the problem becomes an ill-conditioned,

singular control problem, the optimal solution is very sensitive to numerical error,

and this leads to highly oscillatory profiles. As the regularization weight 1/γ in-

creases, smoother control profiles can be observed at the expense of transition time.

To systematically determine the weighting factors, we consider the impact of Q, R

and γ in two parts: i) scaling matrices Q and R based on the units and the magni-

tude of the variables, and ii) the regularization γ for the control terms. The selec-

tion of weights can be summarized in the following two steps, and will be further

illustrated in the case studies in Section 4.

1. Q is determined to give the elements of the output vector, y (MI and ρ), equal

weight. Similarly, R is chosen for the control variables, and it depends on the

operating conditions of grade A and B.

2. To balance oscillatory profiles without significant loss of optimality, we plot

the optimal performance with respect to γ and find the smallest value of γ

where the performance remains unchanged.
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4.2. Multistage Optimization Formulation

4.2 Multistage Optimization Formulation

From a practical point of view, the specification of any polyethylene grade is a spec-

ified band centered at a target value with an acceptable deviation. For example, in-

stead of a target density ρ, a grade may have a typical specification band of density

ρ± ∆ρ. This slight change from single-value target to specification band may lead

to large adjustments in control policies as well as large differences in off-grade pro-

duction calculation. This requires a modified dynamic optimization formulation

for grade transitions. Prata et al. (2008) [52] considered the specification band in

the integrated scheduling and dynamic optimization problem. The objective func-

tion in their work minimizes the weighted summation of total production time,

raw material consumption and the amount of off-spec material produced during

a transitional stage. Nystrom et al. (2005) [50] considered specification bands and

different production modes, such as processing modes and transitional modes. The

dynamic model is treated differently in different time intervals, either as a transi-

tion stage or a production stage. But their main focus is on production sequencing

problem with several orders. In the work of Gisnas et al.[26], the specification bands

are considered as a grade belt explicitly. Two objectives to minimize the transition

time needed to reach the target grade band and the amount of off-grade material

are compared.

In our study, we take a closer look at the impact of specification band on grade tran-

sition policies. Moreover, it is more realistic to compute off-grade production dur-

ing transitions based on specification bands. Therefore, we propose a multistage

optimization formulation that extends previous studies. As shown in Fig. 4.1, we

divide the entire transition period into three stages: 1) Grade A in-spec, 2) off-grade

and 3) Grade B in-spec. The same dynamic model is used in all stages, although

different input values and constraints are required for each stage. In Stage 1 and

Stage 3, lower and upper bounds of product qualities of Grade A and Grade B, re-
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spectively, are invoked to ensure in-spec production in those two stages. The goal

of the grade transition is to minimize a combination of the off-spec production time

in Stage 2 from t1 to t2 and the transition time from the beginning of Stage 1, t0, to

the end of Stage 2, t2.
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Figure 4.1: Grade transitions when specification bands are considered

Based on the analysis of the influence of specification band and the concept of mul-

tistage, we modify Eq.(4.4) to obtain the multistage optimization problem as fol-

lows.
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4.2. Multistage Optimization Formulation

min αt(t2 − t1) + βt(t1 − t0) +
∫ t f

t0

||y(t)− y∗||2Q +
1
γ
||u(t)− u∗||2R dt

s.t. Reactor model (3.1), (3.3)

Moment model (3.7)− (3.8)

Product property correlations (3.9)− (3.11)

Surrogate VLE model (3.12)− (3.14)

Recycle variable time delay model (3.15)

Process constraints (3.16)− (3.21)

Property speci f ications in the f irst and the last stages

MIA,min ≤ MI ≤ MIA,max, ρA,min ≤ ρ ≤ ρA,max, t ∈ [t0, t1]

MIB,min ≤ MI ≤ MIB,max, ρB,min ≤ ρ ≤ ρB,max, t ∈ [t2, t f ]

(4.5)

In problem (4.5) y(t) denotes output (algebraic) variables, u(t) are manipulated

variables and t is time. In the objective function, the terms represent the time period

of producing off-spec product (t2 − t1), initiation to the first transition (t1 − t0)

and a regularization term that promotes a smooth solution to the target steady

state of the second grade, respectively. αt, βt, γ, Q and R are weighting factors

and matrices which need to be tuned to balance these objectives, similar to the

weighting factors in the single stage formulation. Following the results for γ, Q

and R in single-stage formulation, we tune the weights to balance highly oscillatory

(noisy) profiles without significant loss of optimality. A summary of the tuning

procedure is presented in the following two steps, and details of this tuning are

described in the next section.

1. Q and R are scaling matrices and fixed as in the single-stage objective func-

tion. αt is chosen to balance ‖y(t)− y∗‖2
Q and βt is set to keep (t1 − t0) small.

2. The regularization weight γ is needed to promote smooth solutions to the

target. Similar to the tuning for single-stage objective, we plot the transition
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time with respect to γ and find the smallest value of γ where the transition

time remains fairly flat.

The multistage formulation can be easily extended to consider a direct minimiza-

tion of off-spec material. Here we illustrate the idea by introducing a term for

off-spec production in the objective.

αp

∫ t2

t1

P(t)dt + βt(t1 − t0) +
∫ t f

t0

||y(t)− y∗||2Q +
1
γ
||u(t)− u∗||2R dt (4.6)

where P(t) is production rate at time t, and off-spec product is made in period

[t1, t2]. Similar to the case with minimum transition time, the weights αp, βt and γ

can be tuned systematically with fixed Q and R.

4.3 Case Study

In order to illustrate and test the idea of single-stage and multistage formulation,

we optimize two transitions between two grades. The target density and melt in-

dex as well as steady state operating conditions are shown in Table 4.1.

Meaning Grade A Grade B

MI Melt index (g/10min) 1.0 12.0
Outputs Density Density (g/cm3) 0.908 0.864

θ Ethylene conversion rate 0.825 0.833

T0
j Inlet cooling water temperature 0.62 0.66

Scaled F1 Ethylene inlet flow 0.98 0.70
Manipulated F2 Comonomer inlet flow 0.18 0.97

Variables FH Hydrogen inlet flow 0.50 0.93
Fc Feed catalyst 0.97 0.88

Table 4.1: Steady states of two grades in this study

The product density is highly dependent on the comonomer incorporation. It is

easier for molecules with fewer short chain branches to fold, which leads to higher

density. As we can see from the table, Grade A with a high density needs a small
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amount of comonomer feed. When transitions from Grade A to Grade B are per-

formed, there is a small initial amount of comonomer inside the reactor and the

recycle loop. Increasing the comonomer feed flowrate helps the whole system

achieve the Grade B target. However, transitions are expected to be slower when

the density of our target grade is higher (Grade B→ Grade A). The reason is that a

large amount of comonomer exists in the reactor and the recycle loop at the begin-

ning of the transition, and it takes more time for the process to digest and to remove

comonomers from the reactor and recycle. To demonstrate the difference between

these two cases, we perform two transitions in opposite directions. In each case,

both single-stage and multistage problems are solved and the resulting profiles are

compared.

Time
Description

Number of Element length
(hour) finite element (nfe) (hour)

[0, 5] steady state simulation 10 0.5
(5, 25] grade transition on fine grid 40 0.5
(25, 35] continued grade transition 2 5
(35, 65] continued grade transition 2 15
(65, 125] continued grade transition 2 30
(125, 225] continued grade transition 2 50

Table 4.2: Initial setting of the entire horizon and element lengths

As discussed in the model development section, the grade transition problem in

the case study considers not only the individual reactor, but also the dynamic op-

timization of the entire plant with liquid and vapor recycles. This requires longer

time horizons for the grade transition. In the following case studies, the first 5

hours of the horizon are used as steady state simulation for the current grade, and

the transition is set to start at t0 = 5 hours. Most of the transitions in control and

output responses happen within 20 hours. For this period, we have verified that a

discretization with 40 elements is accurate. After the first 25 hours (5-hour steady

state production and 20-hour transition), a coarser discretization grid with 8 ele-

ments over 200 hours is considered to ensure the steady state. The initial setting
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of the entire horizon and element lengths is summarized in Table 4.2. Moreover,

this mesh was validated for sufficiently high accuracy with additional simulations

of the DAE system.

# of Var. # of Con. CPU (s)
Weights

αp αt βt γ wMI wρ

single-stage 157598 158881 666.7 - - - 20 10 100
Min-time 157935 159683 169.0∗ - 30 15 20 10 100

Min-off-spec 157935 159683 101.7∗ 0.1 - 15 20 10 100

Table 4.3: A→B: Optimization statistics for transition to low density. Multistage
optimization problem is initialized with single stage solution. Min-time for the

minimum transition time objective (4.5), and Min-off-spec for the minimum
off-spec production objective (4.6).

# of Var. # of Con. CPU (s)
Weights

αp αt βt γ wMI wρ

single-stage 157598 158881 540.4 - - - 20 200 100
Min-time 157935 159683 269.0∗ - 40 20 3.33 200 100

Min-off-spec 157935 159683 96.3∗ 0.01 - 20 3.33 200 100

Table 4.4: B→A: Optimization statistics for transition to high density. Multistage
optimization problem is initialized with single stage solution. Min-time for the

minimum transition time objective (4.5), and Min-off-spec for the minimum
off-spec production objective (4.6).

Application of 3-point collocation on 48 finite elements over 220 hours, excluding

the first 5-hour steady state simulation part, results in a nonlinear programming

problem with more than 150,000 variables and equations, as stated in Table 4.3

and Table 4.4. The resulting NLP problems are solved with nonlinear optimization

solver CONOPT in the General Algebraic Modeling System (GAMS) [9] (similar

CPU times are also obtained with IPOPT). Also shown are the values of weighting

factors in the objective function to balance transition time, off-grade and smooth

profiles. A detailed discussion of the selection of the weighting factors is presented

as follows.
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4.3.1 Grade Transition to Low Density: A→B

Determination of weighting factors in the objective function

In both single-stage and multistage formulations, there are several weighting fac-

tors in the objective function that need to be tuned. To better understand the mech-

anism of tuning weighting factors, a step-by-step procedure is presented below

with detailed analysis and illustrative graphs.

1. To select the scaling matrices Q and R we balance wMI and wρ in (5.14) such

that two curves can reach the target at the same time. Resulting dynamic

behavior of MI and ρ indicates wMI = 10 and wρ = 100.

2. For single-stage objective, we keep wMI and wρ constant to choose the regu-

larization weight γ. A plot of transition time with respect to γ is shown in

Fig. 4.2 and the smallest value of γ where the objective remains fairly constant

is found to balance oscillatory profiles without significant loss of optimality.
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Figure 4.2: A→B: Influence of γ on transition time in single-stage problem
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As γ decreases, more emphasis is placed on smooth control profiles instead

of the actual objective and thus the transition time increases. When larger γ

is used, transition time becomes shorter, and the reduction of transition time

is negligible when γ increases from 200 to 1000. The single-stage optimal

solutions with γ = 1000, 200, 100, 20 are shown in Fig. 4.4, Fig. 4.5 and Fig. 4.3.
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Figure 4.3: A→B: Single-stage optimal control and temperature profiles with vary-
ing γ
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Figure 4.4: A→B: Single-stage optimal MI profiles with varying γ
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Figure 4.5: A→B: Single-stage optimal density profiles with varying γ

To balance oscillatory profiles and loss of optimality, γ = 20 is chosen based

on the previous analysis.
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3. For multistage formulation, we also vary γ, once αt, βt, Q and R have been

fixed as scale factors. As seen in Table 4.3 the same values of Q and R are

used here as in the single-stage case.
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Figure 4.6: A→B: Influence of γ on transition time in multistage problem
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Figure 4.7: A→B: Multistage optimal MI profiles with varying γ
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From Fig.4.6, the decrease of transition time with the increase of γ can be seen

clearly. And the multistage solutions with γ = 1000, 200, 100, 20 are shown in

Figures 4.7 to 4.9. To balance oscillatory profiles and optimality, γ is set to 20.
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Figure 4.8: A→B: Multistage optimal density profiles with varying γ
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Figure 4.9: A→B: Multistage optimal control and temperature profiles with varying
γ

Results and discussion

With the weighting factors chosen based on the tuning results, we compare four

different grade transition policies for this particular transition: 1) step response,

2)single-stage formulation, 3)multistage with minimum transition time and 4) mul-

tistage with minimum off-spec production.
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Figure 4.10: A→B: Optimization result of manipulated variables and reactor
temperature with a green dashed-dotted curve for step response and solid blue

curve for single-stage problem (4.4). The multistage solutions are represented by
solid red curves for minimum off-spec production (4.6) and solid black curve for

minimum transition time (4.5).

The resulting optimal control profiles, as well as the reactor temperature profile,

for transition from a high density to low density are shown in Fig. 4.10, starting

at t = 5. The multistage solution curves have different durations for each stage,

and the control policy obtained from multistage formulation is more aggressive,

leading to a shorter transition time. The optimal control trajectories also provide

the following valuable guidelines for facilitating grade transitions under process

constraints.
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• A large amount of comonomer is injected into the reactor to increase the

degree of incorporation of comonomer in polymer chains at the beginning.

Then the comonomer feed flowrate decreases because an adequate amount

of comonomer becomes available from the liquid recycle.

• More catalyst is needed in the first hour to speed up the reactions.

• The feed hydrogen flowrate increases to achieve shorter polymer chains, which

leads to higher MI.
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Figure 4.11: A→B: Comparison of density profiles
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Figure 4.12: A→B: Comparison of MI profiles

The profiles of density and MI are shown in Fig. 4.11 and Fig. 4.12 with the product

property specification bands marked by horizontal dotted lines. Note that multi-

stage optimization provides much improved transition policies. As seen from the

density profile, for example, the multistage solution quickly leaves the first specifi-

cation band and performs a fast transition to the boundary of the second band. In

this way, the duration of the second (out-of-spec) stage is minimized. Also, for the

MI profile there are some oscillations in the multistage solution within the target

specification band, but all the product within the band is in specification.

Transition Transition time Stage 1 Stage 2 Off-spec
A→B (hr) duration (hr) duration (hr) production

Step response >20 0.18 >20 >8.96
Single-stage 1.91 0.04 1.87 1.00

Min-off-spec 1.31 0.10 1.21 0.61
Min-time 1.28 0.10 1.18 0.65

Table 4.5: A→B: Comparison of step response, single-stage and multistage solu-
tions for transition to low density. Off-spec production is scaled by single-stage
solution.
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In Fig. 4.11, Stage 3 of the multistage solution begins at t2 = 6.36 hrs., while the

single-stage solution reaches the boundary of the target band at t2 = 6.91 hrs. On

the other hand, Stage 2 begins at almost the same time for both solutions. Similarly,

we can obtain the statistics for MI profiles in Fig. 4.12. The total transition times and

the durations of Stage 2 are shown in Table 4.5.
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Figure 4.13: A→B: Comparison of accumulated off-spec production

For both single-stage and multistage formulations, minimum transition time is con-

sidered and the solutions suggest an increased production rate during transition.

In contrast, the modified formulation (4.6) directly minimizes off-spec production

and indicates a lower production rate during transition. Based on those solutions,

we plot the accumulated off-spec production in Fig.4.13. Compared to the single-

stage formulation, the multistage one achieves more than 30% reduction in both

transition time and off-spec production. Note that the multistage formulations sig-

nificantly outperform the single stage formulation, and are capable to directly re-

duce the amount of off-grade product as well as the transition time.
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4.3.2 Grade Transition to High Density: B→A

Similar to the transition to low density, the transition to high density is optimized

using single-stage and multistage formulations. Model information and optimiza-

tion statistics are listed in Table 4.4.

Determination of weighting factors in the objective function
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Figure 4.14: B→A: Influence of γ on transition time in single-stage problem

As discussed in the transition from A to B, the scaling matrices are determined

first to balance the dynamics for the outputs, MI and ρ. Next, in the single-stage

optimization problem, we vary the weight on the regularization term, γ, to balance

oscillatory profiles and loss of optimality. The influence of varying γ on transition

time is shown in Fig. 4.14, and γ = 20 is chosen because it leads to smoother

control profiles without the loss of optimality, compared to the other cases with

similar transition times.
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Figure 4.15: B→A: Influence of γ on transition time in multistage problem

In multistage optimization, we follow the same tuning procedure as discussed in

the other case. We first fix αt, βt and αp and then vary γ for the regularization term.

Fig. 4.15 provides a guideline for selecting γ. One candidate solution is located

around the kink at γ = 5000 and 4.3 hrs, and it yields highly oscillatory control

profiles with short transition time. However, these oscillatory profiles may be hard

to implement in the real plant. At the expense of transition time, we search along

the curve and reach another solution at γ = 3.33 and 6.8 hrs., which leads to much

smoother control profiles. A comparison between those two candidate solutions

can be found in Fig. 4.16, Fig. 4.17 and Fig. 4.18.

Optimization of Grade Transitions 55



4.3. Case Study

0 5 10 15 20 25

0.8

1

1.2

1.4

time (hr)

sc
al

ed
 F

2

0 5 10 15 20 25
0

0.5

1

time (hr)
sc

al
ed

 F
8

 

 

0 5 10 15 20 25
0

0.5

1

1.5

time (hr)

sc
al

ed
 F

c

0 5 10 15 20 25
0

2

4

6

time (hr)

sc
al

ed
 F

H

0 5 10 15 20 25

0.65

0.7

0.75

0.8

time (hr)

sc
al

ed
 T

ji

0 5 10 15 20 25
0.8

0.85

0.9

0.95

1

time (hr)

sc
al

ed
 T

γ=5000
γ=3.33

Figure 4.16: B→A: Optimization results of two candidate solutions
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Figure 4.17: B→A: Comparison of density profiles obtained from two candidate
solutions
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Figure 4.18: B→A: Comparison of MI profiles obtained from two candidate solu-
tions
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Figure 4.19: B→A: Optimization result of manipulated variables and reactor
temperature with a green dashed-dotted curve for step response and solid blue

curve for single-stage problem (4.4). The multistage solutions are represented by
solid red curves for minimum off-spec production (4.6) and solid black curve for

minimum transition time (4.5)

Results and discussion

For the final comparison, we choose γ = 20 in single-stage formulation and γ =

3.33 in the multistage objective. A summary of all the weights is presented in Ta-

ble 4.4. Fig. 4.19 shows the controls and the reactor temperature profiles. While the

single-stage policy is smooth and exhibits gradual changes of inputs to their tar-

get, more aggressive controls can be found in the input profiles of the multistage

solutions.
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Figure 4.20: B→A: Comparison of density profiles
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Figure 4.21: B→A: Comparison of MI profiles
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Figure 4.22: B→A: Comparison of accumulated off-spec production

The performance for optimal transition to high density product is shown in Fig. 4.20

and Fig. 4.21, and the transition times, the off-spec production and the durations

of Stage 1 and Stage 2 are listed in Table 4.6. The accumulated off-spec produc-

tion is shown as well in Fig. 4.22. Based on those figures, it can be seen that the

single-stage solution greatly reduces the transition time and the amount of off-

grade, compared to step response. Moreover, the multistage formulation further

reduces the transition time and the off-spec production by about 10%. According

to the previous discussion on the selection of γ, it is clear that multistage formula-

tion has the potential to further cut the transition time and off-spec product at the

expense of some oscillatory control profiles. We also observe that transitions to a

higher density take much more time than transitions to lower density, no matter

which formulation is used. This is in accordance with our previous discussion on

the presence of comonomers during the transition.
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Transition Transition time Stage 1 Stage 2 Off-spec
B→A (hr) duration (hr) duration (hr) production

Step response >20 0.22 >20 >2.03
Single-stage 7.14 0.14 7.00 1

Min-off-spec 6.84 0.10 6.74 0.89
Min-time 6.82 0.10 6.72 0.89

Table 4.6: B→A: Comparison of step response, single-stage and multistage solu-
tions for transition to high density. Off-spec production is scaled by single-stage
solution.

4.4 Concluding Remarks

To minimize transition time and off-spec production, two formulations are consid-

ered to deal with single value targets (single-stage formulation) as well as specifica-

tion bands (multistage formulation). Product specification bands are carefully con-

sidered in the proposed multistage formulation within a compact nonlinear pro-

gramming formulation. This enables the explicit minimization of transition times,

off-spec production times and off-spec production. Moreover, this multistage for-

mulation exploits the simultaneous dynamic optimization approach, and provides

an efficient formulation that extends from single stage to multistage dynamic op-

timization problems. The results of two transition case studies demonstrate the

effectiveness of the multistage formulation, which has the ability to directly mini-

mize transition time and off-spec product, and achieves a significant improvement

over single-stage solutions.

In addition, in both single-stage and multistage objectives, we incorporate the idea

of regularization. Given the singular nature of the grade transition problem when

the regularization term is removed, systematically tuning the weighting factors is

necessary. By changing the regularization factors, a trade-off between short tran-

sition time and smooth control profiles to steady state is made. In this study, de-

tailed evaluation of tuning parameters and a thorough numerical comparison are

provided for the resulting dynamic optimizations, thus demonstrating significant
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improvements of the multistage strategy.

Future work will be devoted to optimization of grade transitions under uncertain-

ties, both for off-line analysis and on-line operation. Moreover, these formulations

for pairwise grade transition can easily be extended to production scheduling with

multiple grades over a product wheel. For this case, integrated production schedul-

ing can be addressed through the formulation of mixed-integer dynamic optimiza-

tion (MIDO) problems, the inclusion of binary decision variables, and supported

by the solution of MILP subproblems[50, 52, 67, 69].
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Chapter 5

Optimization under Uncertainty

The offline dynamic optimization in Chapter 4 is capable of effectively handling

grade transition problems, but its performance can deteriorate in the presence of

uncertainties. In order to assess the impact of uncertainty and generate transition

policies that work in different scenarios, robust optimization strategies for grade

transitions need to be considered. In this chapter, we review related optimization

strategies and then formulate the optimization problem with back-off constraints

obtained from Monte Carlo simulation. A set of case studies is presented to show

the effectiveness of the proposed approach.

5.1 Problem Statement

The success of model-based control and optimization strategies highly rely on model

accuracy. In order to obtain reliable, realistic solutions, models used in optimiza-

tion problems need to be accurate and representative of the actual process. In ad-

dition, any model mismatch, either structural imperfection, model simplification

or parameter uncertainty, may lead to infeasible solutions or unsafe control actions

in the actual plant. In our previous work [64], optimal grade transition policies
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of a realistic industrial LLDPE process were considered. A large-scale mathemat-

ical model that captures the dynamic behaviors of solution polymerization pro-

cess carried out in a CSTR is developed for optimization purposes. In addition to

mass and heat balance equations, the model uses the molecular weight moment

model for the prediction of product properties and incorporates a simple, yet ac-

curate, vapor-liquid equilibrium (VLE) model derived from rigorous calculations.

The model also includes the recycle loop, whose time delays are modeled through

variable transportation delay model.

Two optimization formulations, single stage and multistage, were developed to

deal with single-value specification and specification bands of product proper-

ties, respectively. The results obtained using simultaneous dynamic optimization

demonstrate significant improvement in transition times and off-grade production,

compared with the baseline performance. In addition, the multistage formulation

is shown to outperform the single stage formulation as the former led to more ag-

gressive control profiles and allowed oscillations within the specification bands.

The previous work on offline dynamic optimization demonstrates the potential in

dealing with grade transition problems; however the performance of the optimized

transition policy can deteriorate in the presence of uncertainties. Optimal solutions

obtained at nominal uncertainty level may become non-optimal, or even infeasible,

and the safety constraint might be violated under uncertainty.

Uncertainties come from different sources, such as uncertain model parameters,

disturbances, noises, unmeasured variables and measurement errors. Usually, the

uncertainty can be classified as time-invariant and time-varying uncertainty. On

the other hand, it can also be categorized into two types as in [39]: those that are

random and never resolved and those that are resolved at a later time.

Several approaches have been proposed to handle uncertainties in the optimization

problem [2, 38, 46, 84]. Depending on whether measurements are utilized, the ap-
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proaches can be grouped into two categories: robust optimization and measurement-

based optimization [65, 66]. In terms of problem formulation, either compact prob-

lem formulations with modifications on the constraint (back-off constraints) or

multi-scenario formulation with each scenario corresponding to one discretized

uncertainty level is adopted.

In order to assess the impact of uncertainties in the grade transition problem, dif-

ferent transitions under various uncertainty levels are performed and robust opti-

mization strategies for grade transitions are taken into account to obtain optimal

policies that can be applied to systems with different uncertainty levels. In this

work, back-off constraints calculated from Monte Carlo simulations are incorpo-

rated in the optimization problem. The resulting solution is shown to be robust

under various uncertainty levels.

5.2 Literature Review

The traditional robust optimization approach aims at optimal solutions that give the

best performance in the absence of measurement. The performance metric of the

robust objective function is usually based on expectation, weighted mean-variance

or worst-case scenario. One main factor that distinguishes robust optimization

from other strategies is the lack of recourse variables. Typically robust optimiza-

tion does not take reactive actions into account, and thus makes the optimal so-

lution conservative. A bilevel minmax problem is a typical formulation of robust

optimization, in which the lower level problem seeks the worst scenario and the

upper level one optimizes over the worst case. Since the worst case usually has a

low probability of occurring, the robust solution is often conservative and its per-

formance is largely sacrificed when the nominal or the most probable uncertainty

level is realized.

In this approach, identifying and quantifying the worst case is crucial. Researchers
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working on this approach seek constraint feasibility despite uncertainty by modify-

ing the original constraints with back-off terms (or margins). These back-off terms

tighten the constraint and shrink the feasible region of the optimization problem to

such a level that variations of the constraints in the worst case can still be handled

and thus the feasibility ensured.

Visser et al. considered the end-point optimization of a nonlinear, control affine

batch process under parametric uncertainties and disturbances [71]. In order to

handle uncertainties, back-off terms are introduced into the original constraints

and the size of those back-off terms is determined using the linearization of the

constraints and the linear time-varying state space model of the original optimiza-

tion problem. Diehl et al. proposed an approximation technique based on first

order derivatives of the constraints in robust nonlinear optimization problem [17].

Similar to the work of Visser et al., the worst case is approximated by linearization

of the lower level problem and the resulting dual norms are used to represent the

back-off terms (or penalty terms as named in the paper). Besides those analytical

solutions to the linearized problem, another iterative procedure is mentioned in

[65], where the back-off terms are first initialized using an initial guess, and the

optimization problem with the current back-offs is solved. The back-offs are then

updated using the probability density function of the states computed at the op-

timal solution. The back-off strategy is also shown to be effective in model-based

experiment design under parametric uncertainty. As discussed in [24], suitable

back-offs are calculated from the prediction of system responses for the given pa-

rameter distribution, and then these back-offs are used in the experiment design

problem to ensure both feasibility and optimality of the planned experiment.

The back-off terms are shown to ensure constraint feasibility despite uncertainty

effectively. However, the current derivation of back-off terms can be difficult to im-

plement for large scale optimization problems due to problem complexity. Besides,

the derivation relies heavily on the first-order approximation of the optimization
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problem. This may result in inaccurate back-offs since only linearized worst-case

feasibility is guaranteed.

On the other hand, stochastic programming assumes that the probability distribu-

tion of the uncertain parameter can be estimated and it takes advantage of the

probability information to optimize the expected performance. Moreover, mea-

surement is utilized and recourse variables are introduced to increase the flexibil-

ity of the optimal trajectory. Once the uncertainty is realized in the first stage, its

effect is observed and evaluated such that reactive actions tailored to different un-

certainty levels can be applied. The solution of stochastic programming problem

is less conservative compared to the robust solution. However, its problem size

always increases significantly as the probability distribution or multiple scenarios

are needed.

Ruppen et al. utilized the discrete probability distribution of the uncertain param-

eters and formulated the problem using several parallel model descriptions with

distinct uncertainty realizations [61]. Over the last couple of years, the idea has

been extended to reformulate economic nonlinear model predictive control (eco-

nomic NMPC) problems. In the work of Lucia et al.[43, 44], the evolution of uncer-

tainty is represented as a scenario tree and multi-stage NMPC problem is formu-

lated accordingly. Although those extensions and their applications successfully

demonstrate its effectiveness in handling uncertainties, increased problem size and

heavy computational burden are always the bottlenecks of this approach to large-

scale applications.

In summary, the robust optimization approach typically has a compact problem

form and additional variables or equations are not required, while the stochas-

tic programming approach usually considers multiple scenarios and requires ad-

vanced computational capability to handle large scale problems. Given that the

grade transition problem of polyethylene solution polymerization process is al-

ready large scale and complex, it is hard to solve such multi-scenario stochastic
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programming problems in reasonable time using available optimizers and proces-

sors. Instead, modifying the original constraints with back-offs would be a more

practical choice. In our study, we adopt the concept of robust optimization and use

Monte Carlo simulation to calculate the size of back-off terms. A detailed descrip-

tion of the procedure and its application is the main focus of this chapter.

5.3 Concept of Back-off Constraints

As we discussed in the first section, there are two strategies to optimize in the pres-

ence of uncertainty: stochastic programming and robust optimization. Due to the

heavy computational burden, it is more difficult to apply a scenario-based stochas-

tic programming formulation. Instead, we adopt the idea of robust optimization to

solve the problem, which takes the worst-case scenario into account.

Consider the original inequality constraint in the problem

h(z, y, u, p) ≤ 0 (5.1)

where z is the differential variable vector, y is the algebraic variable vector, u is

the input/manipulated variable vector and p is the uncertain parameter vector. To

ensure that the inequality constraint is satisfied in the presence of uncertainties, a

back-off term bc ≥ 0 is introduced into the constraint at nominal uncertainty level

p̄.

h(z, y, u, p̄) + bc ≤ 0 (5.2)

Replacing the original constraints (5.1) with the modified one (5.2), we obtain the

updated optimization formulation with back-off constraints, as represented in (5.3):
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min F(z(t f ))

s.t. ż = f (z, y, u, p̄), z(0) = z0

g(z, y, u, p̄) = 0

h(z, y, u, p̄) + bc ≤ 0

(5.3)

The confidence level c of the robust optimization solution is defined as the proba-

bility of the constraint being satisfied under uncertainties c = P[h(z, y, u, p) ≤ 0].

When the confidence level c = 1, the constraint can be satisfied under all possible

uncertainty levels, i.e. the solution considers the worst-case scenario and repre-

sents the robust solution.

The previous section mentions two ways to obtain the back-off terms. Diehl et al.

[17] uses the linearized problem formulation and the dual norm to derive analytical

solutions to the robust optimization problem, while Srinivasan et al. [65] iteratively

update the back-off terms until the simulation results agree with the required confi-

dence level. The linearization of the first approach may lead to inaccurate back-offs

when the system is highly nonlinear, and the approach is expensive to derive for

large systems. On the other hand, the second approach, as pointed out in [65], may

not guarantee convergence to the solution of (5.3).

Relating Back-off Constrained Formulations with Multi-scenario Opti-

mization

Consider the following optimization problem under uncertainty:

minx Ep∈Π[ f (x, p)], s.t. h(x, p) ≤ 0, ∀p ∈ Π (5.4)

where x are the decision variables after any state variables and equations (includ-

ing DAEs) have been eliminated. Note that for optimal control problems, decision

variables include control profiles and stage times. A straightforward approach to
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find an approximate solution is to discretize the probably distribution function for

p as pi ∈ IΠ and form the following multi-scenario problem:

minx ∑
i∈IΠ

wi f (x, pi) (5.5)

s.t. h(x, pi) ≤ 0, ∀i ∈ IΠ.

The first order KKT conditions for (5.5) are given by:

∑
i∈IΠ

(wi∇x f (x, pi) +∇xh(x, pi)λi) = 0

0 ≤ λi ⊥ h(x, pi) ≤ 0, ∀i ∈ IΠ.

Writing the constraints only in terms of critical uncertainty points, pī, ī ∈ IΠ where

h(x, pī) = 0 and all other constraints are inactive, leads to:

∑
i∈IΠ

wi∇x f (x, pi) + ∑
ī∈IΠ

(∑
j
∇xhj(x, pī)λī j) = 0 (5.6)

0 ≤ λī j ⊥ hj(x, pī) ≤ 0, ∀j, ∀ī ∈ IΠ.

We also assume that ∑
i∈IΠ

wi = 1. With backoff constraints we consider the following

approximation:

f (x, p) ≈ f (x, p̄) + F(x, p̄)T(p− p̄)

hj(x, p) ≈ hj(x, p̄) + Hj(x, p̄)T(p− p̄)
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and consequently,

f (x, p) ≈ f (x, p̄) + F(x, p̄)T(p− p̄) ≤ f (x, p̄) + |F(x)T(p− p̄)|

≤ f (x, p̄) + ‖F(x)‖1‖p− p̄‖∞ ≤ 0.

hj(x, p) ≈ hj(x, p̄) + hj(x)T(p− p̄) ≤ hj(x, p̄) + |Hj(x)T(p− p̄)|

≤ hj(x, p̄) + ‖Hj(x)‖1‖p− p̄‖∞ ≤ 0.

In Diehl et al. (2005), ‖F(x)‖1 and ‖Hj(x)‖1 are estimated through adjoint sensitiv-

ities, which may be expensive to calculate for large systems. They also lead to an

inaccurate approximation for nonlinear constraints when ‖p− p̄‖ is large.

Instead, we approximate the back-off terms |F(x, p̄)T(p− p̄)| ≈ F̃(x; p) and |Hj(x, p̄)T(p−

p̄)| ≈ H̃j(x; p) through off-line Monte Carlo simulations for a fixed value of x. On

the other hand, these terms evaluated at nominal conditions may not lead to opti-

mal back-off solutions unless we can show that the back-off term is insensitive to

x, i.e.,

‖∇x f (x, p̄)‖ >> ‖∇x F̃(x; p)‖ ≈ 0, ‖∇xhj(x, p̄)‖ >> ‖∇x H̃j(x; p)‖ ≈ 0. (5.7)

Through an iterative approach, where the back-off terms are updated with optimal

values of x from (5.8), we can improve this solution as well as the back-off terms.

Under these assumptions the backoff problem is equivalent to the multiscenario

problem with optimality conditions (5.6) if (5.7) is satisfied. Replacing the backoff

terms with their approximations the problem becomes:

minx f (x, p̄) + F̃(x, p), s.t. h(x, p̄) + H̃(x, p) ≤ 0 (5.8)
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with the optimality conditions of (5.8) given by:

∇x f (x, p̄) + ∑
j
∇xhj(x, p̄)λ̄j = 0 (5.9)

0 ≤ λ̄j ⊥ hj(x, p̄) + H̃j(p) ≤ 0.

where we have used ∑
i∈IΠ

wi = 1 and define λ̄j := ∑
ī∈IΠ

λī j.

Monte Carlo Simulation to Approximate Back-offs

Optimization 
w/o Uncertainty

Monte Carlo Simulation

Data Processing
Approximate backoff 

Optimization 
w/ Backoff Constraints

Monte Carlo Simulation
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Converged? Stop

Optimal control profiles  ∗

State and output profiles

Backoff 

Optimal control profiles  ∗

Monte Carlo Simulation

No

Yes

Fix controls at  ∗

Sample from 
~ ,

Simulation 

Figure 5.1: Steps to obtaining robust optimal transition strategy

We now consider Monte Carlo simulation to calculate the size of back-off. Monte

Carlo simulation is capable of probing the system and providing an idea of how

state and output variables changes when the uncertainty level varies. The steps

to obtaining a robust and optimal transition strategy are outlined below and the
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flowchart is presented in Figure 5.1.

Step 1: Solve the optimization problem (5.3) with at nominal conditions, p = p̄

and bc = 0. The optimal solution can be obtained under the assumption

that the uncertainty stays at its nominal level and there is no variation with

the control profile.

Step 2: Assume the probability distribution of uncertainty is known. At the nomi-

nal optimal solution, the whole model is simulated using Monte Carlo sim-

ulation and the resulting dynamic profiles reveal the sensitivity informa-

tion of state and output variables to uncertainties.

Step 3: Calculate the back-off term based on the simulation result from the pre-

vious step. The size of back-off is dependent on the sample standard de-

viation S and a tuning parameter η which influences the confidence level

(larger η results in greater confidence level). Here m is the total number of

simulation runs, S2(t) is the sample variance, hi(t) is the constraint func-

tion value at time t when the uncertainty realizes the ith value sampled

from its probability density distribution, pi, in the Monte Carlo simula-

tion. Assume that the uncertain parameter p follows Gaussian distribution,

p ∼ N( p̄, σ2
p), then pi is sampled from Gaussian distribution N( p̄, σ2

p).

bc(t) = ηS(t) (5.10)

S2(t) =
∑m

i=1(hi(t)− h̄(t))2

m− 1
(5.11)

h̄(t) =
∑m

i=1 hi(t)
m

(5.12)

Based on the formula shown above, two different designs of bc are imple-

mented and compared. The first way to calculate the back-off bc is to take

the maximum deviation over time as a conservative hedge against con-

straints infeasibility under uncertainty, while the second one relaxes the
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back-off constraint using time-varying back-offs.

• Constant back-off: bc = max
t

bc(t)

• Time-varying back-off: bc(t)

Step 4: Solve the updated optimization problem (5.3) again with back-off constraints.

Step 5: Perform Monte Carlo simulation to check the performance and update back-

off terms based on the updated solution of (5.3).

Step 6: (Optional) Go to Step 4 and solve the optimization problem with updated

back-off constraints. Stop when the convergence criterion is satisfied, i.e.

‖bk+1
c − bk

c‖ ≤ ε.

The iterative approach presented here may not converge to the optimal solution of

Problem (5.3) unless the back-off term bc is insensitive to the control profile.

More detailed information on this approach, along with the results from each step,

will be described with the case study.

5.4 Application to Polyethylene Grade Transitions

In the solution polymerization process, there are various sources of uncertainties,

including ambient temperature, fouling factor, and kinetic parameters. Among all

these uncertainties, the unknown catalyst deactivation rate is hard to measure and

it has a large influence on the system performance [44]. In this work, we focus on

developing transition policies that are applicable over a wide range of unknown

deactivation rates.

Our current knowledge of the deactivation mechanism as shown in Table 3.1 sug-

gests that the catalyst deactivation is governed by two reactions: thermal deactiva-

tion (i.e., spontaneous deactivation) and deactivation by poison. Since there is not

enough information to separate the impact of these two reactions, a lumped term
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Kd = Kdsp + KdxCx is introduced as an uncertainty parameter. Kd is the overall

deactivation rate, Kdsp is the spontaneous deactivation rate, Kdx is deactivation rate

by poison, and Cx is the concentration of the impurity in the reactor (i.e., impurity

level).

Different from disturbances which exhibit fast time-varying dynamics, uncertain

parameters are usually slow time-varying or time-invariant [65]. In the polyethy-

lene polymerization system considered here, the lumped deactivation rate changes

slowly over time and is assumed to be time-invariant in a short period of time.

We assume that the lumped term follows the normal distribution with its nominal

value as the mean. Detailed settings can be found in Table 5.1.

As outlined in the previous section, the robust optimization approach is realized

using back-off constraints calculated from Monte Carlo simulation. We apply this

strategy to the same grade transition problem as considered in our previous work;

the initial and the target product density and melt index, as well as steady state

operating conditions, are shown in Table 5.1. The upper and lower specification

bands are illustrative of MI and density specs; actual products will be different

depending upon the grade and application.

Meaning Grade A Grade B

MI Melt index (g/10min) 1.0 12.0
Outputs Density Density (g/cm3) 0.908 0.864

θ Ethylene conversion rate 0.825 0.833

T0
j Inlet cooling water temperature 0.62 0.66

Scaled F1 Ethylene inlet flow 0.98 0.70
Manipulated F2 Comonomer inlet flow 0.18 0.97

Variables FH Hydrogen inlet flow 0.50 0.93
Fc Feed catalyst 0.97 0.88

Uncertain Kd Catalyst deactivation rate N(7.9× 103, 1.32× 102)

Parameters KcH Chain transfer to hydrogen rate N(4.4× 106, 2.94× 104)

Table 5.1: Steady states of two grades and uncertain parameters

In this study, we consider a mathematical model capturing the dynamics of the so-

lution polymerization process carried out in a CSTR. Four key components of the
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mathematical model are (1) mass and energy balance equations, (2) the moments

model to predict product properties, (3) a simple yet accurate vapor-liquid equi-

librium (VLE) model derived from rigorous calculations, and (4) a variable time

delay model for recycle streams. In the first part, five dynamic mass balances are

derived for ethylene, comonomer, empty catalyst site, hydrogen and solvent. Be-

sides, there are two energy balance equations capturing the temperature change

inside the reactor and the cooling jacket. The second component featuring the

method of moments is built in the model to avoid a set of computationally in-

tractable and inefficient population balance equations. The resulting 12 moments

(6 for the living polymer moments up to the second order and 6 for bulk polymer

moments up to the second order) can be used to calculate the average distributional

properties, such as melt index and product density, which are the key properties

considered in grade transitions. The surrogate VLE model in the third part is built

with both quadratic regression model and Gaussian correlation model using 250

training points.

The entire model is shown in Chapter 3 and a detailed description of the process

and each individual part of the model can be found in [64]. In total, the model

contains 59 differential equations, and applying 3-point collocation on 48 finite el-

ements leads to a large-scale nonlinear programming problem with 157,935 vari-

ables and 159,683 constraints. The solution approach, simultaneous dynamic opti-

mization, will be discussed in the next section while information on the discretiza-

tion grid and the resulting NLP problem can be found in [64].

As described in Chapter 4, a simultaneous dynamic optimization approach is ap-

plied to solve the grade transition problem without considering uncertainties. Two

optimization formulations, single stage and multistage, are developed to deal with

single-value specification and specification bands of product properties, respec-

tively. The results show significant improvement in transition times and reduction

in off-grade production as compared to the baseline. Additionally, the multistage
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formulation designed for problems with specification bands has the ability to min-

imize transition time and off-grade production directly (in the objective function)

and outperforms the single stage formulation as the former one leads to more ag-

gressive control profiles and allows oscillations within the bands. In this section,

we will focus on multistage optimization formulation as represented in (5.13).

min αt(t2 − t1) + βt(t1 − t0) +
∫ t f

t0

||y(t)− y∗||2Q +
1
γ
||u(t)− u∗||2R dt

s.t. Reactor model

Moment model

Product property correlations

Surrogate VLE model

Recycle variable time delay model

Process constraints

Property speci f ications in the f irst and the last stages

MIA,min ≤ MI ≤ MIA,max, ρA,min ≤ ρ ≤ ρA,max, t ∈ [t0, t1]

MIB,min ≤ MI ≤ MIB,max, ρB,min ≤ ρ ≤ ρB,max, t ∈ [t2, t f ]

(5.13)

In problem (5.13), y(t) denotes output (algebraic) variables, u(t) are manipulated

variables and t is time. In the objective function, the terms represent the time period

of producing off-spec product (t2− t1), initiation to the first transition (t1− t0) and

a regularization term that promotes a smooth solution to the target steady state of

the second grade, respectively. αt, βt, γ, Q and R are weighting factors and matrices

which balance these objectives.

Q =

 wMI/(MI0 −MI∗)2 0

0 wρ/(ρ0 − ρ∗)2

 (5.14)

R = diag(1/(u0
j − u∗j )

2) (5.15)
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As shown in (5.13), the multistage objective function considers the actual economic

objective (minimizing transition time and reducing off-grade production) and the

regularization term. A key weighting factor γ plays an important role in shap-

ing the control profiles and determining the transition time. The determination

of the weighting factors at nominal uncertainty level is discussed and illustrated

through a case study in [64]. The scaling matrices Q and R are chosen such that the

two key product properties, MI and density, can reach the target at the same time.

The weight γ on the regularization term can be used to smooth oscillatory profiles

without significant loss of optimality. As γ decreases, more emphasis is put on the

regularization term and thus the transition time increases.

5.4.1 Dynamic Optimization with Constant Back-offs

In the first case study, the same setting of weighting factors, αt = 30, βt = 15, γ =

20, wMI = 10, wρ = 100, is used as suggested in Chapter 4. A more extensive

assessment of influence of the weighting factors and other settings will also be

discussed.

Following the steps in Figure 5.1:

Step 1: Obtain the optimal transition policy based on the nominal parameter

value. The solution of multistage formulation provides optimal transition policies

with large reduction of transition time and off-spec product, but the aggressive con-

trol strategy is more likely to violate constraints and specification ranges compared

to other conservative non-optimal solutions. Therefore, we use the multistage for-

mulation as the focus of our robust optimization study. The optimal solution at

nominal parameter values can be in Figures 5.2, 5.3 and 5.4.
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Figure 5.2: Control profiles with nominal parameter values, p̄
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Figure 5.3: MI profiles with nominal parameter values, p̄
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Figure 5.4: Density profiles with nominal parameter values, p̄

Step 2: Perform Monte Carlo simulation. Assume that the parameter uncertainty

is normally distributed and centered around the nominal parameter value. Sample

m values from this distribution to capture a statistically significant range of pa-
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rameter values in the system; m should be large enough to adequately capture the

range of uncertainty (in our study, we use the setting m = 200 and the sampled

values are scaled and shown in Figure 5.5).
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Figure 5.5: Sampled uncertainty level in Monte Carlo simulation, m = 200

For every parameter value, simulate the state and output profiles that would result

from implementing the optimal transition strategy obtained in step 1. This helps

us visualize the impact that the uncertainty has on our system. Note that melt

index is more heavily influenced by the variations in the uncertainty level, catalyst

deactivation rate, as compared to density, as illustrated in Figure 5.6 and Figure 5.7.
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Figure 5.6: Monte Carlo simulations of MI with m = 200 at nominal optimal
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Figure 5.7: Monte Carlo simulations of density with m = 200 at nominal optimal

Figure 5.6 shows clearly that there are several constraints violations when the un-

certainty level is different from its nominal value. As we can see from Figure 5.6,

one of the product properties, MI, is expected to increase quickly to the target spec-
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ification band of Grade B (MIB,min = 10.2 g/10min and MIB,max = 13.8 g/10min),

and oscillations are acceptable within the band. However, this aggressive solu-

tion deteriorates in the presence of uncertainty resulting in bounds violations and

long-time off-spec production.

Step 3: Approximate back-off constraints. At each time point of the entire hori-

zon, the sample standard deviation of inequality constraint h is calculated and the

resulting maximum standard deviation is summarized in Table 5.2. Incorporating

the back-off terms into the original optimization problem gives us a problem that

can be represented as Problem (5.3). η in (5.10) is set to 3 to ensure a confidence

level greater than 99.8%.

Max standard deviation Smax Unit

Melt Index (MI) 0.5634 g/10min
Density 1.8349× 10−4 g/cm3

Production rate 10.7583 g/s
Reactor temperature 0.2264 oC

Ethylene concentration 0.0104 mol/L
Bubble point pressure in reactor 0.0300 MPa

Bubble point pressure in feed 0.0082 Mpa

Table 5.2: Maximum standard deviation calculated from Monte Carlo simulation
output profiles

Step 4: Optimization with back-off constraints. Obtain the optimal transition pol-

icy based on the nominal parameter values and the multistage formulation that has

been modified with back-off constraints. As Figure 5.3 shows, the resulting melt

index profile has little to no oscillations as compared to step 1 (this is a desirable

outcome of robust optimization).

Step 5: Perform Monte Carlo simulation to check the performance of the robust

solution and update the back-offs. As is observed in Figure 5.8 and Figure 5.9,

the majority output profiles of the m-sampled uncertainty levels remain within the

desired specification range for both melt index and density. However, it is obvious
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to see the error propagation over time; as time proceeds, the MI profile diverges

from the center value which may lead to lower bound violations for the extreme

case.
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Figure 5.8: Monte Carlo simulations of MI with m = 200 (robust optimization with
constant back-offs)
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Figure 5.9: Monte Carlo simulations of density with m = 200 (robust optimization
with constant back-offs)
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Step 6: Go to Step 4 and solve the optimization problem with updated back-

off constraints. As discussed in Section 3.3, we utilize Monte Carlo simulation to

approximate the back-off term under the assumption that the back-off is insensitive

to the decision variables. An iterative approach is necessary to update the back-

off term with the change of optimal decisions. In the constant back-off case, we

observe fast convergence of back-off terms and objective function value. A more

rigorous discussion of the iterative approach will be presented for the time-varying

back-off case.

5.4.2 Dynamic Optimization with Time-varying Back-off Constraints

In the case study above, constant back-offs bc are calculated using maximum stan-

dard deviation. In reality, back-off bc is a function of input and state variables and

it also varies over time.
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Figure 5.10: Sample standard deviation of MI varies over time

As shown in Figure 5.10, the sample standard deviation of Melt Index increases

from zero at the beginning of the horizon to around at the end. If we use the
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maximum standard deviation as a constant back-off in the inequalities, the orig-

inal constraint is tightened too much and the feasible region shrinks at the cost of

performance.

Based on the observation from Figure 5.10, we propose using time-varying back-

offs bc(t) instead of constant bc to formulate the robust optimization problem. The

only difference between the current case study and the previous one is the time-

varying back-off; all the steps and procedure remain the same, as illustrated in the

previous section.

The optimization solutions without back-off, with constant back-off and with time-

varying back-off are shown in Figure 5.3 and Figure 5.4. Compared to the solution

with constant back-off, the time-varying back-off relaxes inequality constraints and

allows oscillations within the specification bands. As seen in the profile of Melt In-

dex, oscillations with smaller peaks occur within the band. However, in contrast to

the non-robust multistage optimization solution, the peak in the robust optimiza-

tion solution never hits the original boundaries and thus leaves a safety margin for

uncertainties.
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Figure 5.11: Monte Carlo simulations of MI with m = 200 (robust optimization
with time-varying back-offs)
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Figure 5.12: Monte Carlo simulations of density with m = 200 (robust optimization
with time-varying back-offs)

Figure 5.11 and Figure 5.12 show the performance of the robust optimal transition
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policy under uncertainties. The control policy is feasible for all 200 realizations of

uncertainty, which demonstrates its robustness.

The back-off terms are updated after Step 5. The optimal solution without back-

offs is considered as the initial guess, and the approximation from Step 5 is the

first iteration result. The evolution of two performance metrics, transition time

and objective function value, is plotted in Figure 5.13. It is clear that the solution

converges in one iteration; the resulting solution from the first iteration is represen-

tative of the following solutions. In Figures 5.14 and 5.15, standard deviation of MI

and density for 6 iterations are shown.
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Figure 5.13: Optimal transition time and objective function value in the iterative
approach
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Figure 5.14: Sample standard deviation of MI in the iterative approach
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Figure 5.15: Sample standard deviation of density in the iterative approach

Now we compare the performance of the non-robust and the robust solutions at

nominal uncertainty level and in the worst-case of the Monte Carlo simulation. As

seen in Table 5.3, the loss of the objective due to considering uncertainties is small;
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the robust solution has a longer transition time at nominal uncertainty level than

that of the non-robust case. However the gain of considering back-off constraints

is large; the worst-case transition time is reduced from infinity to 1.95 hours. On

the other hand, by using time-varying back-offs, the conservatism of robust opti-

mization and the back-off constrained formulation is reduced to some extent.

Transition Time (hour) Optimization Monte Carlo

with p = p̄ worst case, p CPU time (s) CPU time (hr)

w/o backoff 1.31 infinite 169.0 ∼1
constant bc 1.96 2.10 121.1 ∼1

time-varying bc 1.59 1.95 47.7 ∼1

Table 5.3: Comparison among non-robust, robust solution with constant back-offs
and with time-varying back-offs

5.4.3 Influence of Weighting Factors

The influence of weighting factors in the objective function of Problem (5.13) is

assessed in Chapter 4 without consideration of uncertainty. In this section, we

present a case study focusing on the influence of the weights on grade transitions

under uncertainty. Besides the previous case with αt = 30, βt = 15, γ = 20, wMI =

10, wρ = 100, another two cases with either smaller or larger regularization are

performed here.

Large Regularization

To obtain a representative case with relatively larger regularization, the weight in

the objective function is set to αt = 30, βt = 15, γ = 2, wMI = 10, wρ = 100. The

weight on the regularization term, 1/γ, is ten times as much as the original setting.

First, the optimization problem under nominal uncertainty level is solved and fol-

lowed by Monte Carlo simulation. The resulting profiles can be found in Figure
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5.16 and 5.17. Similar to the previous case with γ = 20, the worst case in Monte

Carlo simulation leads to infinite transition time since its MI profile goes off the

specification band gradually. On the other hand, the difference from the solution

to the last case study is obvious; the overall transition time is much longer since

more emphasis is put on regularization and thus relatively small weight is on the

actual objective.
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Figure 5.16: Monte Carlo simulations of MI with m = 200 (nominal optimal and
large regularization)
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Figure 5.17: Monte Carlo simulations of density with m = 200 (nominal optimal
and large regularization)

0 5 10 15 20 25
0

2

4

6

8

10

12

14
MI (200 runs)

time (hr)

M
I (

g/
10

m
in

)

Figure 5.18: Monte Carlo simulations of MI with m = 200 (time-varying back-offs
and large regularization)
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Figure 5.19: Monte Carlo simulations of density with m = 200 (time-varying back-
offs and large regularization)

Then, the time-varying back-off is calculated and incorporated into the inequality

constraints. The optimization with back-off constraints is solved. In Figure 5.18 and

5.19, the Monte Carlo simulation result with time-varying back-offs is shown. Both

MI and density profiles are shifted into the specification band in the time segment

where constraint violations were observable in non-robust solution. This adjust-

ment results in much shorter transition time (5.29 hours), which demonstrates the

effectiveness of the back-off constraints.
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Figure 5.20: Control and temperature profiles with nominal parameter values and
large regularization

Figures 5.20 to 5.22 show the optimal solutions obtained from both non-robust

problem and the one with back-offs. Because a larger weight is placed on the regu-

larization term, the control profiles are smoother and have fewer oscillations. From

the one without back-offs to those with back-offs, the differences in the control ac-

tions are moderate; only small adjustments are observed to compensate for the

influence of uncertainty.

The change of transition policy is clear in Figure 5.21. As our objective is to mini-

mize the transition time/off-grade production time, the non-robust MI profile stays
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above the lower specification bound for a longer time. However, this type of be-

havior is more sensitive under uncertainty. Therefore, the profiles are pushed deep

inside the band after applying back-off constraints so that a safety margin is guar-

anteed.
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Figure 5.21: MI profiles with nominal parameter values and large regularization
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Figure 5.22: Density profiles with nominal parameter values and large regulariza-
tion

Small Regularization

To complete the case study on regularization, another case with smaller regulariza-

tion is performed. In the objective function, we keep αt, βt, wMI and wρ the same as

the previous cases and increase γ from 2 to 200. In this way, the actual weight 1/γ

on the regularization term is now one tenth of the original one.

Here we present the solutions obtained from two Monte Carlo simulations: one

without back-offs and the other one with time-varying back-offs. This particular

case gives us a different perspective on the back-off constraint. In the previous two

cases, the control policies obtained without back-off constraints fail in the Monte

Carlo simulation as constraints violations are observed. However, the non-robust

control policy in this case does lead to good performance when the uncertainty

level varies. A small violation can be seen in Figure 5.23, but it does not greatly

affect overall transition time. When back-off constraints are incorporated in the

optimization problem, the transition time is sacrificed in order to get rid of that
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violation.
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Figure 5.23: Monte Carlo simulations of MI with m = 200 (nominal optimal and
small regularization)
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Figure 5.24: Monte Carlo simulations of density with m = 200 (nominal optimal
and small regularization)
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Figure 5.25: Monte Carlo simulations of MI with m = 200 (time-varying back-offs
and small regularization)
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Figure 5.26: Monte Carlo simulations of density with m = 200 (time-varying back-
offs and small regularization)

A valuable lesson gained from this case study is that the performance check under
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uncertainty is of great importance and should be conducted before a robust opti-

mization strategy is applied to the problem. In the case where uncertainty is small

enough or the system is insensitive enough not to trigger any constraint violation,

the original control policy may suffice.
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Figure 5.27: Control and temperature profiles with nominal parameter values and
small regularization

Back to the topic of this section, the influence of the regularization term can be

revealed by comparing the solutions of the previous two cases with Figures 5.27

to 5.29. The manipulated variables in Figure 5.27 show more oscillatory behavior.

But the transition time becomes much shorter because relatively larger weight is
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placed on minimizing transition time. Detailed information of these different case

studies can be found in the table below.
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Figure 5.28: MI profiles with nominal parameter values and small regularization
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Figure 5.29: Density profiles with nominal parameter values and small regulariza-
tion
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5.4.4 Influence of Output Tracking

Another interesting point which draws our attention is the influence of output

tracking term in the objective function. Recall the objective function

min αt(t2 − t1) + βt(t1 − t0) +
∫ t f

t0

||y(t)− y∗||2Q +
1
γ
||u(t)− u∗||2R dt.

We keep one term for output tracking
∫ t f

t0

||y(t)− y∗||2Q dt whose weight is deter-

mined by matrix Q.

Q =

 wMI/(MI0 −MI∗)2 0

0 wρ/(ρ0 − ρ∗)2

 (5.16)

In the cases considered above, non-zero weights are placed on the output tracking

term, wMI = 10, wρ = 100. Now we remove the output tracking term by setting

wMI = wρ = 0 and follow the same procedure shown in Figure 5.1.

From Figures 5.30 to 5.32, the influence of output tracking is clear. The nominal

case without back-offs results in density and MI profiles that stay at the boundary

of the target specification band in the third stage. This phenomenon can be well

explained as there is no driving force to push the outputs to the center of the band.
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Figure 5.30: Control and temperature profiles with nominal parameter values and
no output tracking
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Figure 5.31: MI profiles with nominal parameter values and no output tracking
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Figure 5.32: Density profiles with nominal parameter values and no output track-
ing

Monte Carlo simulations are performed with those three control policies shown in

Figure 5.30. As mentioned above, without output tracking the nominal solution
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stays at the boundary and leaves no safety margin. Therefore, it leads to trouble

if uncertainties or disturbances exist. Figures 5.33 and 5.34 show severe constraint

violations in about half of the simulation runs.
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Figure 5.33: Monte Carlo simulations of MI with m = 200 (nominal optimal and no
output tracking)
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Figure 5.34: Monte Carlo simulations of density with m = 200 (nominal optimal
and no output tracking)
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Figure 5.35: Monte Carlo simulations of MI with m = 200 (time-varying back-offs
and no output tracking)
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Figure 5.36: Monte Carlo simulations of density with m = 200(time-varying back-
offs and no output tracking)

With time-varying (or constant) back-offs incorporated in the optimization prob-
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lem, the disadvantages of neglecting the output tracking term are greatly com-

pensated. As shown in Figure 5.35 and 5.36, all uncertainty scenarios can finish

transition and enter the specification band at 2.03 hours.

From another point of view, the output tracking term is not only useful for driv-

ing the output profiles to the center of the spec, but also beneficial to the process

robustness.

5.4.5 Handling Multiple Uncertainties

The number of uncertain parameters in the system is always a challenge to opti-

mization under uncertainty. Instead of adding extra equations or sensitivity calcu-

lations in the optimization model, our current approach can be easily extended to

cases with multiple uncertainties. In order to obtain a certain approximation accu-

racy of the probabilistic distribution of the response, the Monte Carlo simulation

requires a larger number of runs in the cases with multiple uncertainties. Fortu-

nately, the proposed flowchart is still valid and easy to follow; the only change

happens in the Monte Carlo simulation during which random samples are drawn

from either correlated or uncorrelated probabilistic density functions.

To demonstrate the effectiveness, a case study with two uncorrelated uncertain

parameters is performed. Beside the uncertain catalyst deactivation rate, the chain

transfer rate to hydrogen (KcH) is also considered as uncertain parameters in this

case. Following the procedure in Figure 5.1, we obtain the figures below.
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Figure 5.37: Monte Carlo simulations of MI with m = 200 (nominal optimal and
multiple uncertain parameters)
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Figure 5.38: Monte Carlo simulations of density with m = 200 (nominal optimal
and multiple uncertain parameters)

As additional uncertain parameters are considered in the process, the standard
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deviation calculated from Monte Carlo simulation increases and thus the back-off

terms become larger. Other than this point, it is hard to distinguish between the

multiple uncertainty case and the single uncertainty case based on the Monte Carlo

simulation results; the resulting back-offs are similar in both cases.

The simulation results with time-varying back-offs are shown in Figure 5.39 and

5.40.

Note that we still use 200 runs in the Monte Carlo simulation, m = 200, as it is

sufficient to capture the probabilistic distribution of the output variables. For more

detailed analysis on the required number of sampling in Monte Carlo simulation,

please refer to [24].
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Figure 5.39: Monte Carlo simulations of MI with m = 200 (time-varying back-offs
and multiple uncertain parameters)
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Figure 5.40: Monte Carlo simulations of density with m = 200 (time-varying back-
offs and multiple uncertain parameters)

Optimal solution and performance obtained from all the case studies are summa-

rized in Table 6.2.

Case Setting
Transition Time (hour)

w/o backoff Time-varying bc

N W N W

Original γ = 20 1.39 infinite 1.59 1.95
Large regularization γ = 2 1.49 infinite 1.71 2.15
Small regularizaiion γ = 200 1.38 1.56 1.60 1.72
No output tracking wMI = wρ = 0 1.37 infinite 1.57 2.18

Multiple uncertainty 2%KcH, 5%Kd 1.39 2.18 1.59 1.71

Table 5.4: Summary of the optimal solution and performance under uncertainty
in all case studies. N: nominal uncertainty level, W: worst-case scenario in Monte
Carlo simulation.
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5.5 Concluding Remarks

System uncertainties have a huge impact on the process performance; control poli-

cies generated without considering this issue may deteriorate in the presence of

uncertainty. Stochastic programming and robust optimization are two candidate

methods for tackling optimization problems under uncertainty. Although a great

number of studies have been conducted to better solve this type of problem, they

suffer from either intricate derivation or heavy computational burdens. This issue

becomes a bottleneck for the large-scale optimization problem, which is challeng-

ing itself even when only nominal uncertainty level is considered. The concept of

back-off is preferred here because it can maintain the problem size at an acceptable

level.

In this study, Monte Carlo simulation is applied and the robust solutions with con-

stant back-offs and time-varying back-offs are evaluated. The effectiveness and the

robustness of this formulation are demonstrated using an industrial example. In

addition, we reported the computational performance and the transition time. As

mentioned in the previous discussion, four key points should be re-emphasized: 1)

the use of back-off constraints results in slightly longer transition time at nominal

uncertainty level, but it effectively avoids violating constraints under uncertainty;

2) since the back-off constraints do not change the size of the model, the computa-

tional burden when considering uncertainties is well-maintained at an acceptable

level; 3) the relaxed formulation with time-varying back-offs is proposed based on

the change of standard deviation over time, which also reflects sensitivity at dif-

ferent status; 4) the iterative approach applied to back-off terms in the case study

shows fast convergence.

In addition, three complementary studies are conducted to assess the influence of

regularization, output tracking and multiple uncertainties. The first two cases pro-

vide valuable information and guidance on the choice of objective function and
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the determination of weighting factors in future applications. The last one demon-

strates the effectiveness of the proposed approach when more than one uncertain

parameter is present in the system.

In addition to advantages mentioned above, another key point should also be

discussed. The first column in Table 5.3 shows the increase of transition time

when back-off constraints are used. Although the time-varying back-off provides a

shorter transition time, the loss due to the incorporation of conservative back-offs

and the lack of measurement is still not negligible.

The back-off constraint is relatively conservative compared to other measurement-

based schemes. Therefore for future work, we will extend the current offline work

to online implementation with measurements and other disturbances considered.

For the polyethylene solution polymerization process considered in this chapter,

there are several measurements and model predictions in place which can reflect

the system status. Those valuable measurements might be further utilized to better

approximate the back-off terms. Moreover, state and parameter estimation will be

taken into account such that the system status, as well as the parameters, can get

updated online.

Another research direction which is out of the scope of this project but of interest

to many researchers is the sampling technique. When several uncertainty sources

are taken into account in the Monte Carlo simulation, fast and efficient sampling

techniques are of great importance and should be treated with care.
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Chapter 6

Online Optimization and Control

From Chapter 3 to Chapter 5, our model-based optimization framework of grade

transitions is extended with more features and advanced optimization strategies.

In Chapter 4, the offline optimization formulations are developed for different

specifications. The multistage optimization formulation is more advantageous in

the sense that it effectively deals with product specification bands and leads to rel-

atively more aggressive control policies. Then in Chapter 5, the aggressive control

profiles are hedged by introducing back-off constraints in the optimization prob-

lem. The resulting output profiles show smaller oscillations and thus leave a safety

margin in case uncertainties ruin the control performance. Taken together, these

features comprise the real-time optimization layer in the decision-making hierar-

chy, and thus lay a solid foundation for the development of the advanced control

layer.

In this chapter, we take one step closer to the process and concentrate on the model

predictive control layer (or advanced control layer). We extend the off-line frame-

work described above to include online state estimation and optimal control of the

large-scale grade transition problem. In addition, the multistage optimization for-

mulation enables the consideration of a good economic objective and is adopted to
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extend the normal setpoint-tracking NMPC to economic NMPC. The control per-

formance of both NMPC designs with full state measurement will be discussed.

The design of state estimator is also mentioned to deal with partial state feedback,

and will be further considered as future work in Chapter 7.

It should be noted that some notation changes are made that differ from the previ-

ous chapters.

6.1 Background Information

Recipe optimization 

Controller 

Process 

Observer 

Figure 6.1: Classic control diagram

Figure 6.1 depicts the classic control framework, which consists of two main build-

ing blocks: the observer and the controller, as seen in the middle layer.

The top layer is the recipe optimization and its function is to generate optimal op-

erational decisions given tactical decisions made in the scheduling and planning

layer. The task is usually performed offline to maximize the profit or the product

quality, and various constraints considered at this level involve product schedule,

production rate, product quality satisfaction, safety issues, etc. The development

of recipe optimization is often considered in the real-time optimization layer and

the detailed discussion on this block is presented in Chapter 4 and 5.

Next, the setpoint or the optimal trajectory calculated in recipe optimization is sent
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to the middle layer, which interacts directly with the process of interest. The selec-

tion of the controller and the observer is determined mainly by the characteristics

of the process. Nonlinear Model Predictive Control (NMPC) and Moving Hori-

zon Estimator (MHE) are two advanced control and estimation strategies which

are suitable for highly-nonlinear processes with coupled controls and various con-

straints in the form of path constraints, end-point constraints and variable bounds.

6.1.1 Nonlinear Model Predictive Control and Economic NMPC

In recent years, more and more applications adopt model predictive control and

benefit from it [81]. (N)MPC uses a dynamic model of the process to predict the

future dynamic behavior over a time horizon and make optimal control actions. It

is advantageous in the following three aspects compared to classical controllers:

1. It handles multi-input-multi-output systems without decoupling, which might

be difficult to perform when the number of controls and outputs becomes

large or when the process itself is complex and has highly coupled variables.

2. It imposes constraints and variable bounds.

3. NMPC based on the first-principle dynamic model reflects the behavior of

highly nonlinear processes and deals with frequent transitions or other tran-

sient behaviors.

Meanwhile, the development of NMPC drives the need for detailed, accurate non-

linear dynamic models and efficient optimization strategies to handle computa-

tional complexities. Research directions for enabling fast, efficient execution of

NMPC can be categorized as:

1. Simplify or reduce the first-principle model;

2. Improve nonlinear programming solvers for large-scale problems;

3. Develop fast NMPC strategies which utilize sensitivity information or paral-
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lel computing to reduce the heavy computational burden for solving nonlin-

ear dynamic optimization problems [32, 76, 79, 83].

Advances in these directions efficiently address the obstacles of applying NMPC

online in different areas and promote its adoption in large-scale, highly-nonlinear

processes.

On the other hand, economic objectives and process disturbances are isolated in

two layers in the classical control framework; the economical consideration is usu-

ally managed solely in the real-time optimization layer while NMPC tries to track

the trajectory and reject disturbances. Such a framework has a few drawbacks.

First, the optimal setpoints/trajectories generated in the RTO layer can not guar-

antee economical optimality in the presence of disturbances. Also, model incon-

sistency between the steady-state model in RTO layer and the dynamic model in

NMPC layer may lead to infeasible solutions. In recent decades, economic NMPC

has attracted many researchers’ attention as it integrates these two layers and op-

timizes economic objectives with the influence of process disturbances considered.

The economic NMPC scheme can be illustrated in Figure. 6.2.

Recipe optimization 

Controller 

Process 

Economic NMPC 

State Estimator 

Figure 6.2: Economic control diagram

To solve the dynamic optimization problem considered in NMPC, dynamic opti-

mization strategies mentioned in Chapter 2 are applied. The dynamics of the plant
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can be described as

x(k + 1) = f (x(k), u(k), p) (6.1)

where x(k) is the plant state at time tk, u(k) is the control input at time tk and p are

the uncertain parameters in the system with nominal value p̄. Here we consider

the NLP problem for NMPC converted from the dynamic optimization problem at

time tk as

min
zl ,vl

J

s.t. zl+1 = f (zl , vl , p̄), l = 0, ..., N − 1

yl = g(zl , vl , p̄), l = 0, ..., N

h(zl , vl , p̄) ≤ 0, l = 0, ..., N

z0 = x(k), zN ∈ X

zl ∈ X, yl ∈ Y, vl ∈ U,

(6.2)

where zl are predicted values of the states x(k + 1), vl are predicted values of con-

trol inputs u(k + 1), yl are predicted outputs, and N is the horizon length.

The objective function J represents either the setpoint tracking or the economic

objective in terms of zl and vl . In the standard setpoint tracking NMPC, terminal

cost Ψ and the stage cost ψ are included in the objective function as follows:

J = Ψ(zN) +
N−1

∑
l=0

ψ(zl , vl). (6.3)

On the other hand, the economic NMPC directly minimizes the economic cost and

may lead to unstable performance. One way to stabilize is adding a setpoint track-

ing term in the economic objective function [32]. The weight on the setpoint track-

ing term is carefully selected such that both the economic objective and the stability

are adequately addressed.
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6.1.2 State Estimation and Moving Horizon Estimation

The controller can not stand alone without the support of observers or state esti-

mators; without accurate measurements of process status, the control action is not

solid nor convincing. In the framework we consider, NMPC makes optimal control

decisions based on the current status of the process. However, not all the states can

be measured. Even for these measured states, such as temperature or concentration

that have a sensor in place, the measurement obtained from a certain sensor might

be colored with measurement noise or may also be delayed. In order to provide

accurate estimates of the unmeasured states, state estimation is required. The goal

of state estimation is to recover/estimate the state of the process based on limited

input and output information [57, 80].

Some commonly used state estimators are Extended Kalman Filter (EKF), Unscented

Kalman Filter (UKF), and Moving Horizon Estimation (MHE). Compared to other

state estimators, MHE can be formulated directly as an NLP problem and thus it is

capable of handling variable bounds efficiently.

Typically, MHE problem is formulated as

min
zk−N ,...,zk

Φ(zk−N) +
k−1

∑
l=k−N

wT
l Q−1

l wl +
k

∑
l=k−N

vT
l R−1

l vl

s.t. zl+1 = f (zl , ul , p̄) + wl

yl = g(zl , ul , p̄)) + vl

zl ∈ X, l = k− N, ..., k

(6.4)

where zl are the state estimates, yl are the outputs, vl represent measurement noises

and wl for state disturbances. The objective function includes the arrival cost Φ,

minimization of process noise and measurement noise. Ql is the covariance matrix

of the unknown disturbances and Rl is the covariance matrix of the measurement

noise. An important assumption made in the formulation is that both wl and vl are

white noise; they have zero means and follow Gaussian distribution.
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6.2 Model-based Online Optimization Framework for Grade

Transitions

For batch processes or grade transitions in a continuous process, the entire time

horizon considered in the control problem has a finite time window. Based on this

setting, Jung et al. propose an online optimization framework with shrinking hori-

zon nonlinear model predictive control (sh-NMPC) and expanding horizon least

squares estimation (eh-LSE). The framework is tested on a semi-batch polymer-

ization process; efficient computational statistics and good control performance

are shown in the presence of measurement noise. In this section, we discuss the

framework in detail using the grade transition problem in polyethylene solution

polymerization processes as an example and extend it to consider large parametric

uncertainties. Figure 6.3 illustrates the online framework with estimation horizon

equal to 2 and control horizon equal to 3 at time step k = 2.

Control 𝑢 

Past (State estimation) Future (NMPC) 

Output 𝑦 

Δ𝑡1 Δ𝑡2 Δ𝑡3|3 Δ𝑡4|3 Δ𝑡5|3 time 

Measurement 
Collocation point 

Figure 6.3: Online framework with shrinking horizon NMPC and expanding hori-
zon LSE
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Two key components of the framework are state estimator and model predictive

controller; both components incorporate the rigorous dynamic model we devel-

oped in our previous work and rely on efficient NLP solvers to solve. First, sh-

NMPC is applied to minimize transition time and off-grade product, and to refine

the control schemes. As time proceeds, the control horizon shrinks, fewer finite

elements and thus fewer control decisions are considered in the controller. Next,

eh-LSE is designed to provide state estimates based on measurements in the past.

The expanding horizon scheme minimizes the information loss by considering all

the measurement data in the past. As a result, the estimation horizon increases

and the state estimate is expected to be more accurate with adequate information

revealing the system status.

In this chapter, we mainly focus on the design of NMPC. Several modifications are

made based on the standard NMPC problem (6.2):

1. To ensure more stable and less oscillatory control behavior, a regularization

term is incorporated in the multistage objective, as discussed in Chapter 4.

2. To handle parametric uncertainties, we adopt the back-off constraint in the

NMPC problem.

3. To ensure feasibility of the online problem, relaxation of the inequality con-

straints is introduced and a penalty term is minimized in the objective func-

tion.

4. To minimize the grade transition time using multistage formulation, length

of each stage is also treated as a decision variable. As the number of finite

element in each stage is fixed and the elements are evenly distributed in the

stage, variable element length h is equivalent to variable stage length in the

following case study.

120 Online Optimization and Control



6.3. Case Study

The resulting NMPC formulation after modification is represented as

min
zl ,vl

J + µP

s.t. zl+1 = f (zl , vl , p̄), l = 0, ..., N − 1

yl = g(zl , vl , p̄), l = 0, ..., N

h(zl , vl , p̄) + bc ≤ P, l = 0, ..., N

z0 = x(k), zN ∈ X

zl ∈ X, yl ∈ Y, vl ∈ U

(6.5)

where bc is the back-off term, P is a vector of slack variables and µ is an adjustable

constant weighting factor on the penalty term. The construction of economic ob-

jective function J can be found in Problem (4.5) and the penalty term is added to

ensure solutions of Problem (6.2).

In short, the proposed online optimization framework solves two slightly different

NLP problems repeatedly. At each time step, process measurements obtained from

the beginning of the transition to the current time are obtained and used in eh-LSE

optimization problem. The resulting state estimates serve as the initial value of an

updated NMPC problem, which is then solved to reduce the overall transition time

and the off-grade product. The resulting control scheme is also applied to the sys-

tem at each time step so that new measurements are added. The effectiveness of the

framework is demonstrated by case studies in which uncertainties, measurement

errors and disturbances are taken into account.

6.3 Case Study

In this section, we apply the proposed framework on online optimization and con-

trol of the polyethylene solution polymerization process as discussed in the previ-

ous chapter. In addition to the controller and the state estimator, the actual pro-

cess is also represented by the dynamic process model as developed in Chapter
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3, with slight modifications to include parametric uncertainties, disturbances and

measurement noise in the process simulation.

6.3.1 Problem Settings

The two grades of polyethylene and their corresponding operation conditions are

summarized in Table 4.1. The setting of the weighting factors in the objective func-

tion and discretization grid can be found in Section 4.3.

In addition, random disturbances are added to all the states which directly reflect

physical states of the process. This includes concentrations of all species in the re-

actor, reactor temperature, jacket temperature, as well as the 0th moments. The

1st and the 2nd moments are excluded since the influence of disturbances on poly-

mer chains is reflected in the 0th moments and thus is passed to the higher order

moments. The concentration in the recycle streams is not subject to disturbances

because they are fictional states used to approximate the actual state with long time

delay. The random disturbance is assumed to be white noise, which takes samples

from Gaussian distribution with zero mean. Its magnitude is bounded within 1%

of the nominal state value (3% in the last case which tests the control performance

in the presence of greater disturbances).

For the parametric uncertainty, similar setting as presented in Chapter 5 is used;

the lumped rate constant for chain deactivation is considered as uncertain and it is

assumed to vary within 5% of the nominal value.

At current stage, we assume all the states are perfectly known (i.e. they can be

measured accurately with no time delay) and focus on the development of different

types of control schemes: 1) standard setpoint-tracking NMPC which utilizes the

single stage formulation as shown in Problem (4.4), 2) economic NMPC based on

the multistage optimization formulation without back-off constraints as seen in

Problem (5.13), and 3) economic NMPC with back-off constraints. The single stage
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formulation minimizes the time-integral of the squared deviation of current states

and outputs from their setpoints, while the multistage formulation has variable

finite elements and is capable of directly minimizing the economic objective, i.e.

transition time in the current grade transition problem. The economic objective

can also be extended to minimization of off-grade production or economic cost as

demonstrated in Chapter 4.

All computations for the subsequent case studies are performed using NLP solver

CONOPT in GAMS 24.0.2, on a desktop with Intel R© CoreTM i7 CPU a© 2.80 GHZ

and 9.00 GB memory.

6.3.2 Adjustable Back-off Constraints

In the previous section, we discussed several modifications aiming at improving

either the economic objective or the computational performance of the standard

NMPC. In short, there are two modifications applied to ensure the feasibility and

the convergence of the NLP problem: 1) non-negative slack variables are intro-

duced to convert original constraints to soft constraints, and the penalty of relaxing

the constraint is minimized in the objective function [6]; 2) variable stage length in

the NLP problem helps ensure constraint satisfaction and optimizes the objective

[33].

However, artificial lower and upper bounds should be assigned for variable stage

lengths. The determination of both upper and lower bounds strongly influences

control performance. In Figures 6.4 and 6.5, we test the control performance of eco-

nomic NMPC with back-off constraints and three different upper bounds for vari-

able finite elements h (unit in second): h ≤ 7200, h ≤ 3600 and h ≤ 1900. The initial

guess of all the elements is h = 1800. 1% state disturbances and 5% parametric

uncertainty are assumed. The interval between two markers in the same curve in

both plots represents the resulting stage length. Here, the resulting element length
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always hits its upper bound, and larger deviation of MI from the center target is

observed in the case with longer stages. This is in accordance with our expectation

that less frequent control actions degrade the overall control performance.
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Figure 6.4: MI performance with different upper bound for finite element length,
1% disturbance and 5% parametric uncertainty
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Figure 6.5: Density performance with different upper bound for finite element
length, 1% disturbance and 5% parametric uncertainty

The phenomena that stage lengths reach the upper bound is not accidental. In the

multistage formulation, the transition time is defined as the duration of the first

two stages which are minimized. When the controller proceeds to the third stage,

the minimization of time is no longer addressed directly in the objective function.

Instead, the program tries to reduce the penalty for soft constraints, which results

in the need for longer stage lengths, especially in cases with back-off constraints.

To conclude, the idea of variable stage length guarantees constraint feasibility at

the cost of control performance.

Another issue is nonzero slacks related to the soft constraints. Although soft con-

straints help the convergence of the NLP problem, the existence of positive slacks

in the solution may result in infeasible solutions of the original problem. As can be

seen in Figure 6.5, the solution of the case h ≤ 1900 is close to the upper bound of

the specification band, and the corresponding slack variables are nonzero. For the
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case which enforces tight back-off constraints, the presence of nonzero slacks can

easily cancel out the effect of back-offs and generate solutions that are vulnerable

to uncertainty and disturbances.

Based on these observations, an adjustable relaxation of the back-off constraint is

proposed to avoid long stage lengths and nonzero slacks while maintaining prob-

lem feasibility. During the online execution of economic NMPC with back-offs, the

model prediction from the previous run and the new measurement are compared.

If the difference between the prediction and the measurement is large, relaxation

of back-offs in the next NLP problem is activated. For this particular NLP problem,

the back-off constraint in the first finite element is relaxed; η is reduced from 3 to

1 in Eqn. (5.10). Meanwhile, the size of the back-off term remains at the designed

level in the subsequent finite elements.

Two output profiles obtained from the proposed scheme are presented in Figure 6.4

and 6.5. Clearly, better control performance is achieved as both curves go deeper

inside the specification band. The upper bound of the element length is set to 2100,

but it is never reached. Moreover, all the resulting slack variables are zero. Detailed

computational statistics can be found in Table 6.1. All these cases have the same

number of constraints and variables, and the computational time is comparable.

The relaxation of back-offs produces the best control performance among these

cases within the least CPU time.

Problem size: Const.(Var.) CPU time (s)

Largest Smallest Average Worst

h ≤ 7200 159,713 (159,181) 29,963 (29,847) 41.84 317.46
h ≤ 3600 159,713 (159,181) 29,963 (29,847) 41.85 151.84
h ≤ 1900 159,713 (159,181) 29,963 (29,847) 53.27 290.33

h ≤ 2100∗ 159,713 (159,181) 29,963 (29,847) 36.02 133.35

Table 6.1: Influence of upper bound of element length and relaxed back-off con-
straints on computational time (∗last case with relaxed back-off constraints)
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As explained above, the back-off constraint tightens the feasible region and calls

for longer stages. At the same time, the stage length is not minimized directly in

the objective function. The combined action produces long stages together with

poor control performance. The proposed modification is especially useful in the

multistage formulation with back-off constraints. In the following case studies, this

modification is adopted to facilitate the solution of economic NMPC with back-offs.

6.3.3 Case Study with No Parametric Uncertainty

Enhanced by the proposed modification, the economic NMPC with back-off con-

straints is compared with the other two control designs, i.e. setpoint-tracking NMPC

and economic NMPC without back-off constraints. In this section, we assume that

only state disturbances exist in the actual system and the model is representing the

process with no model mismatch or parametric uncertainty.
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Figure 6.6: MI online performance with 1% disturbance and no parametric uncer-
tainty
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The comparison of three control designs is shown in Figures 6.6 and 6.7. In both

figures, three curves obtained from setpoint-tracking NMPC, economic NMPC and

robust economic NMPC are plotted. Both MI and density profiles reach the center

of the specification band no matter which controller is applied, which indicates that

the process with only small state disturbances can be well controlled.
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Figure 6.7: Density online performance with 1% disturbance and no parametric
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As seen in Table 6.2, both economic NMPC and robust economic NMPC lead to

shorter transition time (1.40 hr and 1.56 hr) compared to setpoint-tracking NMPC

(1.91 hr). The setpoint-tracking NMPC minimizes the deviation from the setpoint/trajectory

only and it is not capable of handling economic objectives. Because of this, it loses

the ability to explore the entire domain of decision variables or the power of taking

advantage of specification bands. On the contrary, economic NMPC fully exploits

the degree of freedom in the problem and results in oscillatory profiles that yield

better economic benefits.
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In addition, since there is no parametric uncertainty in the system, the addition

of back-off constraints offers no benefit. It slows down the transition as tightened

constraints are considered in the problem.

Case with 1% disturbance, no parametric uncertainty

Transition Problem size: Const.(Var.) CPU time(s)

time(hr) Largest Smallest Average Worst

Tracking 1.91 158,881(158,833) 29,791(29,782) 18.35 130.81
Economic w/o bc 1.40 159,713(159,181) 29,963(29,847) 19.42 86.36

Economic w/ bc 1.56 159,713(159,181) 29,963(29,847) 26.21 123.93

Case with 1% disturbance, 5% parametric uncertainty

Transition Problem size: Const.(Var.) CPU time(s)

time(hr) Largest Smallest Average Worst

Tracking 2.14 158,881(158,833) 29,791(29,782) 109.25 475.26
Economic w/o bc 1.81 159,713(159,181) 29,963(29,847) 109.12 806.06

Economic w/ bc 1.50 159,713(159,181) 29,963(29,847) 36.02 133.35

Case with 3% disturbance, 5% parametric uncertainty

Transition Problem size: Const.(Var.) CPU time(s)

time(hr) Largest Smallest Average Worst

Tracking 2.15 158,881(158,833) 29,791(29,782) 100.41 521.245
Economic w/o bc 2.73 159,713(159,181) 29,963(29,847) 46.29 377.76

Economic w/ bc 1.51 159,713(159,181) 29,963(29,847) 53.86 585.425

Table 6.2: Summary of online implementation results. Tracking in first column
stands for setpoint-tracking NMPC, Economic w/o bc for economic NMPC with-
out back-off constraints, and Economic w/ bc for economic NMPC with back-off
constraints.

6.3.4 Case Study with Parametric Uncertainty

Now we take parametric uncertainty into consideration. Assume the actual de-

activation rate is 1.05 times of its nominal value. The three controllers are again

applied to control the same transition, and the resulting MI and density profiles

are presented in Figures 6.8 and 6.9.
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Figure 6.8: MI online performance with 1% disturbance and 5% parametric uncer-
tainty
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Figure 6.9: Density online performance with 1% disturbance and 5% parametric
uncertainty
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As shown in these figures, the robust economic NMPC formulation with back-off

constraints is able to handle large uncertainties in the system. The MI profile ob-

tained from economic NMPC hits the lower bound when it oscillates inside the

specification band. This is caused by the combined influence of an uncertain pa-

rameter and process disturbances, and it is not desired as off-grade production as

well as the transition time would increase due to the bound violation. After in-

corporating back-off constraints in the economic NMPC, the magnitude of those

oscillations is reduced to leave a safety margin, and the overall curve is pushed

deep inside the specification band. Although the transition time may get slightly

longer under some uncertainty realizations, the constraint violation is effectively

prevented. As a result, the whole system becomes more tolerant of uncertainties.

Different from the previous case with no parametric uncertainty, all the curves in

this setting are off the center of the specification band. Parameter estimation or

output correction would be required to close the gap between the current model

prediction and the actual measurement, which is out of the scope of this work.

6.3.5 Case Study with Increased Disturbance Level

In the last case study, we test the control performance with increased disturbance

levels. The influence of state disturbances can be revealed from the oscillatory

profiles in Figures 6.10 and 6.11.
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Figure 6.10: MI online performance with 3% disturbance and 5% parametric uncer-
tainty

Similar to previous observations, the resulting profiles are off the center due to the

parametric uncertainty. Because the model used in NMPC is different from the

actual process, the gap between the output and the center line of its specification

band exists and persists.

The nonrobustness of economic NMPC is disclosed in Figure 6.10. A large oscilla-

tion violating the lower bound of the specification band is observed and thus the

transition time is prolonged. Moreover, the transition time of economic NMPC, as

summarized in Table 6.2, is longer than that of the setpoint-tracking case.

The performance of robust economic NMPC is slightly affected by the increased

disturbance level, and it results in the best control performance among the three

controllers.
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Figure 6.11: Density online performance with 3% disturbance and 5% parametric
uncertainty

6.4 Concluding Remarks

In summary, this chapter gives a brief overview of the classic control diagram and

discusses model-based online optimization framework and its modifications. The

proposed framework features shrinking horizon NMPC and expanding horizon

LSE, and three different designs of NMPC are compared. The effectiveness of ro-

bust economic NMPC is demonstrated through several case studies of grade tran-

sitions in a polyethylene polymerization process.

Some highlights are listed below:

• One highlight of this chapter is the demonstrated effectiveness of economic

NMPC. By merging the RTO layer with the advanced control layer, economic

NMPC is capable of pursuing the economic objective and maintaining feasi-

ble control actions simultaneously in the presence of disturbances.
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• Another highlight is the adoption of back-offs empowering the previously

aggressive economic NMPC to avoid constraint violations under uncertain-

ties.

• The proposed modification, a relaxation of back-off constraints in the first

element, greatly facilitates the solution of NLP problems and yields better

control performance without sacrificing computational performance.

• The use of shrinking horizon scheme reduces the size of subsequent NMPC

problems and relieves the computational burden to some extent.

• Lastly, we should mention that computationally tractable solutions of these

NLP problems are obtained in these case study with the aid of well-initialized

NLP problems offline.

For future work, there are several interesting topics that are worth investigating.

First, this chapter deals only with shrinking horizon NMPC and does not include

state estimation. In future, an observability analysis should be conducted and then

the proposed expanding horizon state estimation needs to be included.

Second, although the NLP problems can be solved quickly, the computational time

is not negligible. The delay in state estimation and optimization may give rise to

system instability and degrade the control performance. Advanced step NMPC

and MHE use sensitivity information to update the control and the estimates, re-

spectively. Therefore, the advanced step strategy should be considered if the pro-

posed framework is applied to the real plant where computational time can not be

ignored.

We also note that applying sh-NMPC and eh-LSE in continuous processes requires

switching of controllers once the grade transition is finished. To maintain the pro-

cess in steady state production mode is easier compared to fast grade transitions,

and could be operated with a simplified control and estimation scheme.
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Lastly, seeking less conservative robust solutions to the control problem needs to

be considered. The current back-off terms are calculated offline using Monte Carlo

simulation, and online update of those terms would be an interesting research di-

rection.
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Chapter 7

Conclusions

Model-based control and optimization is a well-known strategy for process opti-

mization and control, and an increasing number of applications appear in different

disciplines. Although simplified or linearized process models help reduce the re-

quired computational resource, the nonlinear dynamic process model is of great

importance as it captures detailed dynamic behavior that occurs in the process and

provides much more accurate model predictions, especially when the process is

highly nonlinear. In this dissertation, we consider grade transitions in polyethy-

lene solution polymerization processes and aim at developing suitable optimiza-

tion and control strategies for the process. With the support of the advanced dy-

namic optimization methods, we construct the dynamic process model, propose

the multistage optimization formulation, introduce back-off constraints into the

optimal control problem and set up the online control and optimization framework

at the end. In this chapter, we summarize the result in each chapter and propose

some future directions that would be worth investigating.
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7.1 Thesis Summary and Contributions

Chapter 1 briefly introduces the decision-making hierarchy and narrows the scope

of the dissertation to the two operational decision-making layers: real-time op-

timization and advanced control. Then the motivating industrial polyethylene

polymerization process is described and the current issue with grade transitions

is brought up. All the subsequent chapters explain the elements introduced in this

chapter in detail. As we can see from the entire dissertation, the methodology de-

veloped in this work is inspired and motivated by the industrial application, but

is not limited to this single application. Batch or continuous processes with similar

needs can also be considered under this framework.

Chapter 2 discusses the most important supporting tool throughout the entire the-

sis: dynamic optimization approaches. Simultaneous dynamic optimization is ex-

plained and the following section provides several methods that solve the resulting

nonlinear programming problem. The singular control problem is also addressed

in this chapter.

Chapter 3 presents a rigorous mathematical model for the entire flowsheet of the

solution polymerization process in a loop reactor, which contains mass and heat

balances for depicting the dynamic behavior of the system, moment model to pre-

dict product properties, a data-driven surrogate VLE model for monitoring the

bubble point pressure, and variable time delay model for modeling variable time

delay in the recycle loop. The resulting model is capable of capturing the detailed

dynamics of the system. Three novel features of this chapter are:

• A detailed reactor model has been created that includes a moment model

that allows product quality to be incorporated directly into the optimization

problem. Moreover, this model has been formulated using a simultaneous

collocation approach that allows for detailed representation of state and con-

trol profiles.
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• The solution polymerization process that we consider requires the operating

pressure to always remain above the bubble point pressure. This is enforced

in our model through non-ideal VLE constraints (with monomers and co-

monomers, solvents and polymers) at all points in time. These constraints

are facilitated through the development and integration of a surrogate model

for non-ideal VLE.

• The grade transition problem considers not just the individual reactor, but the

dynamic optimization of the entire plant with liquid and vapor recycles. This

also requires consideration of longer time horizons for the grade transition.

Moreover, to approximate the transport delay in the recycle streams, a vari-

able time delay must be built into the model. Successful application of such a

variable time delay model achieves satisfactory approximation accuracy and

appropriate level of detail for the model.

Chapter 4 develops an optimal grade transition approach that incorporates de-

tailed kinetic polymerization models to reflect product properties and specifica-

tions as well as process constraints. Two optimization formulations, the traditional

single-stage formulation for single-value product property targets and the pro-

posed multistage formulation that deals with specification bands, are applied to

grade transition problems in the polyethylene solution polymerization process de-

veloped in Chapter 3. We demonstrate the effectiveness of multistage formulation

through two transition problems. The major contributions in this chapter are:

• We propose the multistage optimization formulation that considers product

specification bands carefully within a compact nonlinear programming for-

mulation. This enables the explicit minimization of transition times, off-spec

production times as well as direct minimization of off-spec product. The mul-

tistage formulation also exploits the simultaneous dynamic optimization ap-

proach, and provides an efficient formulation that extends from single stage

to multistage dynamic optimization problems.
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• For both single-stage and multistage objectives, we incorporate the idea of

regularization. Given the singular nature of the grade transition problem

when the regularization term is removed, systematic tuning of the weighting

factors is necessary. By changing the weighting factors of the real objective

and the regularization term, a trade-off between short transition time and

smooth control profiles to steady state is made. In this chapter, we provide

detailed evaluation of tuning parameters and a thorough numerical compar-

ison of the resulting dynamic optimization problems, which can serve as a

guideline for the determination of weighting factors.

Chapter 5 deals with system uncertainties. Although a number of studies have

been conducted to solve this type of problem, they suffer from either intricate

derivation or heavy computational burden. In this chapter, the concept of back-

off is applied to the large-scale dynamic optimization problem. Both robust solu-

tions with constant back-offs and time-varying back-offs are evaluated. The use of

back-off constraints results in slightly longer transition time at nominal parameter

level, but it effectively avoids the chance of violating constraints under uncertainty.

Moreover, several case studies are performed to help better understand the opti-

mization formulation and the effect of weighting factors in the objective function.

The key contributions in this chapter are:

• We adopt the concept of back-off and calculate the back-off terms from Monte

Carlo such that the computational burden of dealing with uncertainties is

well-maintained at an acceptable level. Compared to constant back-offs, the

proposed calculation of time-varying back-offs effectively makes the solution

less conservative. In addition, an iterative approach is applied to update the

back-off terms. Fast convergence of this approach is observed in the case

study.

• We conduct a rigorous study to assess the influence of regularization, output

tracking and multiple uncertainties. With the first two studies, we give in-
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sight into the choice of objective function and the determination of weighting

factors. The case study with multiple uncertainties shows the potential of the

Monte Carlo simulation-based back-off scheme for handling several distinct

uncertainties in the process.

Chapter 6 addresses online optimization and control framework with sh-NMPC

and eh-LSE and compares three different designs of NMPC: setpoint-tracking NMPC,

economic NMPC and economic NMPC with back-off constraints. Different from

setpoint-tracking NMPC which tracks the predetermined setpoint, the merged layer

for dynamic real-time optimization or economic NMPC considers both economic

objective and control requirements at the same time, and is able to generate more

economic benefit given the same process status. Also, the introduction of back-offs

in the inequality constraints ensures constraint satisfaction under uncertainties. In

this way, it effectively handles parametric uncertainties that appear in the process

model of polyethylene polymerization. The case studies in this chapter demon-

strate the superiority of robust economic NMPC over the other two forms through

the grade transition example.

The major highlights in this chapter are listed below:

• We develop and evaluate several modifications in the NMPC formulation

that improve either the economic objective or the computational performance.

In addition, a relaxation of back-off constraints in the first element is pro-

posed to facilitate the solution of NLP problems in robust economic NMPC

without sacrificing the control performance under parametric uncertainties.

• We achieve computationally tractable solutions of these large-scale NLP prob-

lems by using the shrinking horizon scheme. Initialization based on the of-

fline dynamic optimization problem also helps shorten the computational

time.
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7.2 Recommendations for Future Work

As mentioned in the concluding remarks in each chapter, there are several interest-

ing research topics that are worth investigating as future work. We would like to

point out some of them in the last section to conclude the dissertation.

7.2.1 Model Development of Polyethylene Solution Polymerization

The rigorous dynamic model developed in Chapter 3 is able to provide accurate

model calculations and it maintains a great balance between model size and model

performance. However, in order to make it representative of the actual process,

there are several tasks that should be considered.

1. Model validation and parameter estimation need to be performed to make

the model be representative of the actual plant. Some small modifications are

expected depending on slightly different reactor configurations.

2. The grade transitions considered in the current work only involve changes

of flowrate and temperature. More complex transitions with comonomer

change or catalyst change can also be considered.

3. The loop reactor is modeled as a continuous stirred tank reactor under the as-

sumption that the process is operated at a high recycle ratio, in which region

the loop reactor and the CSTR behave similarly. However, future research

can include the spatial distribution in the loop reactor and build partial dif-

ferential equations for mass and heat balances such that the resulting model

can be utilized over a wider range of recycle ratios.
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7.2.2 Alternative Approaches for Optimization under Uncertainty

As we point out in Chapter 5, the back-off strategy is the most conservative ap-

proach to handling uncertainties because it always considers the worst-case sce-

nario. On the contrary, multi-scenario approach increases the problem size dramat-

ically [30]. Generating less conservative, yet computationally tractable approaches

is a great direction for future work. The main resource we could utilize from the

engineering point of view is the online measurement, which could be probably

analyzed to reveal the uncertainty level to some extent and to relax the back-off

constraints. On the other hand, algorithms need to be developed to solve multi-

scenario problems more efficiently. This would enable us to apply the multi-stage

NMPC problem proposed in [43, 44] to large-scale applications.

7.2.3 State Estimation with Multi-rate Measurements

The successful execution of the online optimization and control framework relies

heavily on two components: the controller and the state estimator. The design

of the shrinking horizon NMPC is discussed in detail in Chapter 6, and its per-

formance is demonstrated in the grade transition problem with perfectly known

states. However, the assumption that all the states can be measured perfectly with

no time delay does not always hold in practice. In most cases, only some of the

states are measured and thus state estimation approaches are needed to infer the

unmeasured ones.

In addition, available measurements may come at different frequency/sampling

rate. For instance, in the polyethylene processes, temperatures and flowrates can be

measured quickly while product properties like MI and density need longer time

and thus introduce measurement delays. A moving horizon estimator designed

for processes with multi-rate measurements are proposed in [41] and the idea can

be adopted to solve grade transition problems.
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7.2.4 Computational Complexity for Online Implementation

In Chapter 6 we discuss the online optimization and control framework without

considering the computational delay. However, the control performance could de-

teriorate if non-negligible period of time is required to solve either state estima-

tion or model predictive control problem online. Various studies on fast NMPC

strategies have been developed and could be possibly used in the large-scale grade

transition problem. Related work on advanced step NMPC, advanced-multi-step

NMPC and advanced step MHE could be found in [6, 47, 76, 79, 83].

7.2.5 Integration of Scheduling and Real-time Optimization

Similar to the integration of RTO and NMPC, the integration of scheduling with

real-time optimization has the potential to generate considerable economic ben-

efits. The formulations proposed in Chapter 4 for pairwise grade transition can

easily be extended to production scheduling with multiple grades over a product

wheel. For this case, integrated production scheduling can be addressed through

the formulation of mixed-integer dynamic optimization (MIDO) problems, and the

inclusion of binary decision variables, supported by the solution of MILP subprob-

lems [48, 50, 52, 67, 69].
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Nomenclature

αp Weighting factor on the term of off-grade production

αt Weighting factor on the term of off-grade production time

M̄W Molecular weight of the repeating units

βt Weighting factor on the term of duration of Stage 1 in multistage formula-

tion

∆H Reaction heat

γ Weighting factor on regularization

λk,i kth moment of bulk (live and dead) polymer with end-group Mi

µk,i kth moment of growing polymer with end-group Mi

ω Branch content of comonomer in the polymer chains

ρ Product density

ρj Density of the cooling media in the cooling jacket

ρs Density of the mixture in the reactor

θ Ethylene conversion rate

A Cocatalyst

a1 Coefficient in the melt index correlation

a2 Coefficient in the melt index correlation

b1 Coefficient in the density correlation

b2 Coefficient in the density correlation

bc Back-off term in robust optimization

Cd Dead catalyst site

155



Bibliography

Cpj Heat capacity of the cooling media in the cooling jacket

Cps Heat capacity of the mixture in the reactor

Dn,i Dead polymer of chain length n and end-group Mi

F1 Inlet flowrate of fresh ethylene

F1r Flowrate of recycled ethylene stream

F2 Inlet flowrate of fresh comonomer

F2r Flowrate of recycled comonomer stream

FC Catalyst feed flowrate

FH Fresh hydrogen flowrate

FHr Recycled hydrogen flowrate

H0
2 Concentration of hydrogen in the fresh hydrogen feed

H2r Concentration of hydrogen in the recycled hydrogen stream

kp Rate constant for chain initialization

kcA Rate constant for chain transfer to cocatalyst

kcH Rate constant for chain transfer to hydrogen

kcm Rate constant for chain transfer to monomer

kcsp Rate constant for spontaneous chain transfer

kcS Rate constant for chain transfer to solvent

kcT Rate constant for chain transfer to transfer agent

kdsp Rate constant for spontaneous chain deactivation

kdx Rate constant for chain deactivation by poison

kp,i,j Rate constant for chain propagation with end-group i in the growing chain

and monomer j adding to the chain

KC Lumped term in the moment model that combines several reaction rates

M0
1 Concentration of ethylene in the fresh ethylene feed

M0
2 Concentration of comonomer in the fresh comonomer feed

Mi Monomer or comonomer, i = 1 for ethylene and i = 2 for comonomer

Mn Number average molecular weight

Mw Weight average molecular weight
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M1r Concentration of ethylene in the recycled ethylene stream

M2r Concentration of comonomer in the recycled comonomer stream

MI Melt index

MW1 Molecular weight of ethylene

MW2 Molecular weight of comonomer

P0 Empty catalyst site

Pb Bubble point pressure of the mixture in the reactor

Pf ,b Bubble point pressure of the feed to the reactor

Pn,j Growing polymer of chain length n and end-group Mi

Q Scaling matrix

R Scaling matrix

r1 Reactivity ratio

r2 Reactivity ratio

S Solvent

T Reactor temperature

T Transfer agent

T0 Temperature of the reactor feed flow

Tj Jacket temperature

T0
j Inlet temperature of cooling media

U Heat transfer coefficient

V Reactor volume

Vj Cooling jacket volume

wρ Weighting factor on density term

wMI Weighting factor on MI term

X Poison
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