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Abstract

This dissertation proposes new mixed-integer optimization models and
computational strategies for optimal offshore oil and gas field infrastructure
planning under fiscal rules of the agreements with the host government,
accounting for endogenous uncertainties in the field parameters using a stochastic
programming framework. First, a multiperiod mixed-integer nonlinear
programming (MINLP) model is proposed in Chapter 2 that incorporates field
level investment and operating decisions, and maximizes the net present value
(NPV). Two theoretical properties are proposed to remove the bilinear terms from
the model, and further converting it to an MILP approximation to solve the
problem to global optimality. Chapter 3 extends the basic deterministic model in
Chapter 2 to include complex fiscal rules maximizing total contractor’s (oil
company) share after paying royalties, profit share, etc. to the host government.
The resulting model yields improved decisions and higher profit than the previous
one. Due to the computational issues associated with the progressive (sliding
scale) fiscal terms, a tighter formulation, a relaxation scheme, and an
approximation technique are proposed. Chapter 4 presents a general multistage
stochastic MILP model for endogenous uncertainty problems where decisions
determine the timings of uncertainty realizations. To address the issue of
exponential growth of non-anticipativity (NA) constraints in the model, a new
theoretical property is identified. Moreover, three solution strategies, i.e. a k-stage
constraint strategy; a NAC relaxation strategy; and a Lagrangean decomposition
algorithm, are also proposed to solve the realistic instances and applied to process
network examples. In Chapter 5, the deterministic formulations in Chapter 2 and 3
for oilfield development are extended to a multistage stochastic programming
formulation to account for the endogenous uncertainties in field sizes, oil
deliverabilities, water-oil-ratios and gas-oil-ratios. The Lagrangean decomposition
approach from Chapter 4 is used to solve the problem, with parallel solutions of

the scenarios. To improve the quality of the dual bound during this decomposition



approach, a novel partial decomposition is proposed in Chapter 6. Chapter 7
presents a method to update the multipliers during the solution of a general two-
stage stochastic MILP model, combining the idea of dual decomposition and
integer programming sensitivity analysis, and comparing it with the subgradient
method. Finally, Chapter 8 summarizes the major findings of the dissertation and

suggests future work on the subject.
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Chapter 1

Introduction

The development planning of offshore oil and gas field infrastructures has
received significant attention in recent years given the new discoveries of large oil
and gas reserves in the last decade around the world. These have been facilitated
by the new technologies available for exploration and production of oilfields in
remote locations that are often hundreds of miles offshore. Surprisingly, there has
been a net increase in the total oil reserves in the last decade because of these
discoveries despite increase in the total demand (BP, Statistical review Report
2011). Therefore, there is currently a strong focus on exploration and
development activities for new oil fields all around the world, specifically at
offshore locations. However, installation and operating decisions in these projects
involve very large investments that potentially can lead to large profits, but also to
losses if these decisions are not made carefully. Therefore, the goal of this thesis
is to develop efficient mixed-integer optimization models and computational
strategies for optimal development planning of offshore oil and gas field
infrastructure considering multi-field site, nonlinear reservoir profiles, complex
fiscal rules, and endogenous uncertainties in the field parameters using a
stochastic programming framework.

This chapter begins with an overview of the offshore oil and gas field
infrastructure planning problem. Then, the various approaches used in the
literature to model and solve this problem ranging from a basic deterministic
model to incorporate fiscal and uncertainty considerations. A brief review of
stochastic programming is presented with a particular focus on the endogenous

(decision-dependent) uncertainty problems. Finally, we outline the specific



research objectives of the work, and conclude it with a unified modeling
framework used in the thesis for this oil and gas field development problem and a
brief overview of the corresponding chapters.

1.1 Development planning of offshore oil and gas fields

The development planning of offshore oil and gas field infrastructures represents
a very critical problem since it involves multi-billion dollar investments
(Babusiaux et al., 2007). An offshore oilfield infrastructure (Figure 1.1) is usually
very complex and comprises various production facilities such as Floating
Production, Storage and Offloading (FPSO), Figure 1.2, Tension Leg platform
(TLP), Figure 1.3, and connecting pipelines to produce oil and gas from the
reserves. Each oilfield consists of a number of potential wells to be drilled using
drilling rigs, which are then connected to the facilities through pipelines to
produce oil. The produced oil is transported to the shore either though pipelines or
using large tankers.

Figure 1.1: Offshore oilfield infrastructure



Figure 1.2: FPSO facility Figure 1.3: TLP facility

The life cycle of a typical offshore oilfield project consists of the following
five steps:

(1) Exploration: This activity involves geological and seismic surveys
followed by exploration wells to determine the presence of oil or gas.

(2) Appraisal: It involves drilling of delineation wells to establish the size and
quality of the potential field. Preliminary development planning and
feasibility studies are also performed.

(3) Development: Following a positive appraisal phase, this phase aims at
selecting the most appropriate development plan among many alternatives.
This step involves capital-intensive investment and operating decisions that
include facility installations, drilling, sub-sea structures, etc.

(4) Production: After the facilities are built and wells are drilled, production
starts where gas or water is usually injected in the field at a later time to
enhance productivity.

(5) Abandonment: This is the last phase of an oilfield development project
and involves the decommissioning of facility installations and subsea
structures associated with the field.

Given that most of the critical investments are usually associated with the
development planning phase of the project, this thesis focuses on the key
strategic/tactical decisions during this phase of the project. The major decisions
involved in the oilfield development planning phase are the following:

(1) Selecting platforms to install and their sizes



(i) Deciding which fields to develop and what should be the order to develop
them
(iii) Deciding which wells and how many are to be drilled in the fields and in
what sequence
(iv) Deciding which fields are to be connected to which facility
(v) Determining how much oil and gas to produce from each field
Therefore, there are a very large number of alternatives that are available to
develop a particular field or group of fields. However, these decisions should
account for the physical and practical considerations, such as the following: a
field can only be developed if a corresponding facility is present; nonlinear
profiles of the reservoir that are obtained from reservoir simulators (e.g.
ECLIPSE) to predict the actual flowrates of oil, water and gas from each field;
limitation on the number of wells that can be drilled each year due to availability
of the drilling rigs; and long-term planning horizon that is the characteristic of
these projects. Therefore, optimal investment and operating decisions are essential
for this problem to ensure the highest return on the investments over the time
horizon considered. By including all the considerations described here in an
optimization model, this leads to a large-scale multiperiod mixed-integer
nonlinear programming (MINLP) problem that is difficult to solve to global
optimality. The extension of this model to the cases where we explicitly consider
the fiscal rules with the host government and the uncertainties can further lead to
a very complex problem to model and solve.
In the next sub-sections we briefly review the various approaches used in the

literature to address this problem either using a deterministic formulation or a

stochastic one.

1.1.1 Deterministic approaches for oil and gas field development planning

The oilfield development planning has traditionally been modeled as LP (Lee and
Aranofsky, 1958; and Aronofsky and Williams, 1962) or MILP (Frair, 1973)
models under certain assumptions to make them computationally tractable.
Simultaneous optimization of the investment and operating decisions has been
addressed in Bohannon (1970), Sullivan (1982) and Haugland et al. (1988) using
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MILP formulations with different levels of details. Behrenbruch (1993)
emphasized the need to consider a correct geological model and to incorporate
flexibility into the decision process for an oilfield development project.

Iyer et al. (1998) proposed a multiperiod MILP model for optimal planning
and scheduling of offshore oilfield infrastructure investment and operations. The
model considers the facility allocation, production planning, and scheduling
within a single model and incorporates the reservoir performance, surface
pressure constraints, and oil rig resource constraints. To solve the resulting large-
scale problem, the nonlinear reservoir performance equations are approximated
through piecewise linear approximations. As the model considers the performance
of each individual well, it becomes expensive to solve for realistic multi-field
sites. Moreover, the flow rate of water was not considered explicitly for facility
capacity calculations.

Van den Heever and Grossmann (2000) extended the work of lyer et al.
(1998) and proposed a multiperiod generalized disjunctive programming model
for oil field infrastructure planning for which they developed a bilevel
decomposition method. As opposed to lyer and Grossmann (1998), they explicitly
incorporated a nonlinear reservoir model into the formulation but did not consider
the drill-rig limitations.

Grothey and McKinnon (2000) addressed an operational planning problem
using an MINLP formulation where gas has to be injected into a network of low
pressure oil wells to induce flow from these wells. Lagrangean decomposition and
Benders decomposition algorithms were proposed for the efficient solution of the
model. Kosmidis et al. (2002) considered a production system for oil and gas
consisting of a reservoir with several wells, headers and separators. The authors
presented a mixed integer dynamic optimization model and an efficient
approximation solution strategy for this system.

Barnes et al. (2002) optimized the production capacity of a platform and the
drilling decisions for wells associated with this platform. The authors addressed
the problem by solving a sequence of MILPs. Ortiz-Gomez et al. (2002) presented

three mixed-integer multiperiod optimization models of varying complexity for



the oil production planning. The problem considers fixed topology and is
concerned with the decisions involving the oil production profiles and
operation/shut in times of the wells in each time period assuming nonlinear
reservoir behavior.

Lin and Floudas (2003) considered the long-term investment and operations
planning of the integrated gas field site. A continuous-time modeling and
optimization approach was proposed introducing the concept of event points and
allowing the well platforms to come online at potentially any time within the
planning horizon. A two-level solution framework was proposed to solve the
resulting MINLP problems which showed that the continuous time approach can
reduce the computational efforts substantially and solve problems that were
intractable for the discrete-time model.

Kosmidis et al. (2005) presented a mixed integer nonlinear (MINLP) model
for the daily well scheduling in petroleum fields, where the nonlinear reservoir
behavior, the multiphase flow in wells and constraints from the surface facilities
were simultaneously considered. The authors also proposed a solution strategy
involving logic constraints, piecewise linear approximations of each well model
and an outer approximation based algorithm. Results showed an increase in oil
production of up to 10% compared to typical heuristic rules widely applied in
practice.

Carvalho and Pinto (2006a) considered an MILP formulation for oilfield
planning based on the model developed by Tsarbopoulou (2000), and proposed a
bilevel decomposition algorithm for solving large-scale problems where the
master problem determines the assignment of platforms to wells and a planning
subproblem calculates the timing for the fixed assignments. The work was further
extended by Carvalho and Pinto (2006b) to consider multiple reservoirs within the
model.

Barnes et al. (2007) addressed the optimal design and operational
management of offshore oil fields where at the design stage optimal production
capacity of a main field was determined with an adjacent satellite field and a well

drilling schedule. The problem was formulated as an MILP model. Continuous



variables involved individual well, jacket and topsides costs, whereas binary
variables were used to select individual wells within a defined field grid. An
MINLP model was proposed for the operational management to model the
pressure drops in pipes and wells for multiphase flow. Non-linear cost equations
were derived for the production costs of each well accounting for the length, the
production rate and their maintenance. Operational decisions included the oil
flowrates, the operation/shut-in for each well and the pressures for each point in
the piping network.

Gunnerud and Foss (2010) considered the real-time optimization of oil
production systems with a decentralized structure and modeled nonlinearities with
piecewise linear approximations, resulting in an MILP model. The Lagrange
relaxation and Dantzig—Wolfe decomposition methods were studied on a semi-
realistic model of the Troll west oil rim in Norway, which showed that both
approaches offers an interesting option to solve the complex oil production
systems as compared to the fullspace method.

1.1.2 Incorporating complex fiscal rules

The major limitation with the above approaches in the oilfield development
planning is that they do not consider the fiscal rules explicitly in the optimization
model that are associated to these fields, and mostly rely on the simple net present
value (NPV) as an objective function. Therefore, the models with these objectives
may Yield the solutions that are very optimistic, which can in fact be suboptimal
after considering the impact of fiscal terms. Bagajewicz (2008) discussed the
merits and limitations of using NPV in the investment planning problems and
pointed out that additional consideration and procedures are needed for these
problems, e.g. return on investments, to make the better decisions. Lainez et al.
(2009) emphasizes that enterprise-wide decision problems must be formulated
with realistic detail, not just in the technical aspects, but also in the financial
components in order to generate solutions that are of value to an enterprise. This
requires systematically incorporating supplier/buyer options contracts within the

framework of supply-chain problems.



In the context of oilfield planning, fiscal rules of the agreements between the
oil company (contractor) and the host government, e.g. production sharing
contracts, usually determine the share of each of these entities in the total oil
production or gross revenues and the timing of these payments. Hence, including
fiscal considerations as part of the oilfield development problem can significantly
impact the optimal decisions and revenue flows over the planning horizon, as a
large fraction of the total oil produced is paid as royalties, profit share, etc. The
models and solutions approaches in the literature that consider the fiscal rules
within oilfield infrastructure planning are either very specific or simplified. Van
den Heever et al. (2000) and Van den Heever and Grossmann (2001) considered
optimizing the complex economic objectives including royalties, tariffs, and taxes
for the multiple gas field site where the schedule for the drilling of wells was
predetermined as a function of the timing of the installation of the well platform.
Moreover, the fiscal rules presented were specific to the gas field site considered,
but not in general form. Based on a continuous time formulation for gas field
development with complex economics of similar nature as Van den Heever and
Grossmann (2001), Lin and Floudas (2003) proposed an MINLP model and
solved it with a two-stage algorithm. Approaches based on simulation (Blake and
Roberts, 2006) and meta-modeling (Kaiser and Pulsipher, 2004) have also been
considered for the analysis of the different fiscal terms. However, the papers that
address the mathematical programming models and solution approaches for the
oilfield investments and operations with fiscal considerations are still very

limited.

1.1.3 Incorporating uncertainties in the development planning

In the literature work described above, one of the major assumptions is that there
is no uncertainty in the model parameters, which in practice is generally not true.
Although limited, there has been some work that accounts for uncertainty in the
problem of optimal development of oil and/or gas fields. Haugen (1996) proposed
a single parameter representation for uncertainty in the size of reserves and
incorporates it into a stochastic dynamic programming model for scheduling of oil

fields. However, only decisions related to the scheduling of fields were
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considered. Meister et al. (1996) presented a model to derive exploration and
production strategies for one field under uncertainty in reserves and future oil
prices. The model was analyzed using stochastic control techniques.

Jonsbraten (1998a) addressed the oilfield development planning problem
under oil price uncertainty using an MILP formulation that was solved with a
progressive hedging algorithm. Aseeri et al. (2004) introduced uncertainty in the
oil prices and well productivity indexes, financial risk management, and
budgeting constraints into the model proposed by lyer and Grossmann (1998), and
solved the resulting stochastic model using a sampling average approximation
algorithm.

Jonsbraten (1998b) presented an implicit enumeration algorithm for the
sequencing of oil wells under uncertainty in the size and quality of oil reserves.
The author uses a Bayesian approach to represent the resolution of uncertainty
with investments. The paper considers investment and operation decisions only
for one field. Lund (2000) addressed a stochastic dynamic programming model
for evaluating the value of flexibility in offshore development projects under
uncertainty in future oil prices and in the reserves of one field using simplified
descriptions of the main variables.

Cullick et al. (2003) proposed a model based on the integration of a global
optimization search algorithm, a finite-difference reservoir simulation, and
economics. In the solution algorithm, new decision variables were generated
using meta-heuristics, and uncertainties were handled through simulations for
fixed design variables. They presented examples having multiple oil fields with
uncertainties in the reservoir volume, fluid quality, deliverability, and costs. Few
other papers, (Begg et al., 2001; Zabalza-Mezghani et al., 2004; Bailey et al.,
2005; and Cullick et al., 2007), have also used a combination of reservoir
modeling, economics and decision making under uncertainty through simulation-
optimization frameworks.

Ulstein et al. (2007) addressed the tactical planning of petroleum production
that involves regulation of production levels from wells, splitting of production

flows into oil and gas products, further processing of gas and transportation in a



pipeline network. The model was solved for different cases with demand
variations, quality constraints, and system breakdowns.

Elgseeter et al. (2010) proposed a structured approach to optimize offshore
oil and gas production with uncertain models that iteratively updates setpoints,
while documenting the benefits of each proposed setpoint change through
excitation planning and result analysis. The approach is able to realize a
significant portion of the available profit potential, while ensuring feasibility
despite large initial model uncertainty.

However, most of these works either consider the very limited flexibility in
the investment and operating decisions, or handle the uncertainty in an ad-hoc
manner. Stochastic programming provides a systematic framework to model
problems that require decision-making in the presence of uncertainty by taking
uncertainty into account of one or more parameters in terms of probability
distribution functions, (Birge and Louveaux, 1997). The concept of recourse
action in the future, and availability of probability distribution in the context of
oilfield development planning problems, makes it one of the most suitable
candidates to address uncertainty. Moreover, extremely conservative decisions are
usually ignored in the solution utilizing the probability information given the
potential of high expected profits in the case of favorable outcomes.

In the context of stochastic programming, Goel and Grossmann (2004)
considered a gas field development problem under uncertainty in the size and
quality of reserves where decisions on the timing of field drilling were assumed to
yield an immediate resolution of the uncertainty, i.e. the problem involves
decision-dependent uncertainty as discussed in Jonsbraten et al. (1998); Goel and
Grossmann (2006); and Gupta and Grossmann (2011a). Linear reservoir models,
which can provide a reasonable approximation for gas fields, were used. In their
solution strategy, the authors used a relaxation problem to predict upper bounds,
and solved multistage stochastic programs for a fixed scenario tree for finding
lower bounds. Goel et al. (2006) later proposed the theoretical conditions to
reduce the number of non-anticipativity constraints in the model. The authors also

developed a branch and bound algorithm for solving the corresponding
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disjunctive/mixed-integer programming model where lower bounds were
generated by Lagrangean duality. The proposed decomposition strategy relies on
relaxing the disjunctions and logic constraints for the conditional non-
anticipativity constraints while dualizing the initial ones at the root node. Ettehad
et al. (2011) presented a case study for the development planning of an offshore
gas field under uncertainty optimizing facility size, well counts, compression
power and production policy. A two-stage stochastic programming model was
developed to investigate the impact of uncertainties in original gas in place and
inter-compartment transmissibility. Results of two solution methods, optimization
with Monte Carlo sampling and stochastic programming, were compared which
showed that the stochastic programming approach is more efficient. The models
were also used in a value of information (VOI) analysis.

Moreover, the gradual uncertainty reduction has also been addressed for
problems in this class. Stensland and Tjgstheim (1991) have worked on a discrete
time problem for finding optimal decisions with uncertainty reduction over time
and applied their approach to oil production. These authors expressed the
uncertainty in terms of a number of production scenarios. Their main contribution
was combining production scenarios and uncertainty reduction effectively for
making optimal decisions. Dias (2002) presented four propositions to characterize
technical uncertainty and the concept of revelation towards the true value of the
variable. These four propositions, based on the theory of conditional expectations,
are employed to model technical uncertainty.

Tarhan et al. (2009) addressed the planning of offshore oil field
infrastructure involving endogenous uncertainty in the initial maximum oil
flowrate, recoverable oil volume, and water breakthrough time of the reservoir,
where decisions affect the resolution of these uncertainties. The authors extend
the work of Goel and Grossmann (2004) and Goel et al. (2006) but with three
major differences: (a) The model focuses on a single field consisting of several
reservoirs rather than multiple fields but more detailed decisions are considered.
(b) Nonlinear, rather than linear, reservoir models are considered. (c¢) The

resolution of uncertainty is gradual over time instead of being resolved
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immediately. The authors also developed a multistage stochastic programming
framework that was modeled as a disjunctive/mixed-integer nonlinear
programming model consisting of individual non-convex MINLP subproblems
connected to each other through initial and conditional non-anticipativity
constraints. A duality-based branch and bound algorithm was proposed taking
advantage of the problem structure and globally optimizing each scenario problem
independently. An improved solution approach was also proposed that combines
global optimization and outer-approximation to optimize the investment and
operations decisions (Tarhan et al., 2011). However, it considers either gas/water
or oil/water components for single field and single reservoir at a detailed level.
Hence, realistic multi-field site instances can be expensive to solve with this
model.

In the next section we briefly outline the basic elements of the stochastic

programming that will be used as a modeling framework in this thesis.

1.2 Stochastic Programming
A stochastic program is a mathematical program in which some of the parameters
defining a problem instance are random (e.g. uncertain reservoir size, product
demand, yields, prices). In general, multiperiod industrial planning, scheduling,
supply-chain etc. problems under uncertainty are formulated as stochastic
programs since it allows to incorporate probability distribution of the uncertain
parameters explicitly into the model while making investment and operating
decisions, and provides an opportunity to take corrective actions in the future
(recourse) based on the actual outcomes (see lerapetritou and Pistikopoulos, 1994;
Clay and Grossmann, 1997; lyer and Grossmann, 1998; Schultz, 2003; Ahmed
and Garcia, 2003; Sahinidis, 2004; Ahmed et al. 2004; Li and lerapetritou, 2012).
This area is receiving increasing attention given the limitations of deterministic
models.

Discrete probability distributions of the uncertain parameters are widely
considered to represent uncertainty in terms of the scenarios where a scenario is

given by the combination of the realization of the uncertain parameters.
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Depending on the number of decision stages involved in the model, the stochastic
program corresponds to either a two-stage or a multistage problem. The main idea
behind two-stage stochastic programming is that we make some decisions (stage
1) here and now based on not knowing the future outcomes of the uncertain
parameters, while the rest of the decisions are stage-2 (recourse actions) decisions
that are made after uncertainty in those parameters is revealed. In this work, we
focus on more general multistage stochastic programming models where the
uncertain parameters are revealed sequentially, i.e. in multiple stages (time
periods), and the decision-maker can take corrective actions over a sequence of
the stages. In the two-stage and multistage case the cost of the decisions and the
expected cost of the recourse actions are optimized.

Based on the type of uncertain parameters involved in the problem,
stochastic programming models can be classified into two broad categories
(Jonsbraten, 1998b): exogenous uncertainty where stochastic processes are
independent of decisions that are taken (e.g. demands, prices), and endogenous
uncertainty where stochastic processes are affected by these decisions (e.g.
reservoir size and its quality). In the process systems area, lerapetritou and
Pistikopoulos (1994), Clay and Grossmann (1997) and lyer and Grossmann
(1998) solved various production planning problems that considered exogenous
uncertainty and formulated as the two-stage stochastic programs. Furthermore,
detailed reviews of previous work on problems with exogenous uncertainty can be
found in Schultz (2003) and Sahinidis (2004). However, a number of planning
problems involving very large investments at an early stage of the project have
endogenous (technical) uncertainty that is at-least comparable if not greater than
the exogenous (market) uncertainty. In such cases, it is essential to incorporate
endogenous uncertain parameters while making the investment decisions since it
can have a large impact on the overall project profitability.

In the context of endogenous uncertainty, our decisions can affect the
stochastic processes in two different ways (Goel and Grossmann, 2006): either
they can alter the probability distributions (type 1) (see Viswanath et al., 2004;
and Held and Woodruff, 2005), or they can determine the timing when
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uncertainties in the parameters are resolved (type 2) (see Goel et al., 2006; Tarhan
et al., 2009). Surprisingly, these problems have received relatively little attention
in the literature despite their practical importance. Pflug (1990) addressed
endogenous uncertainty problems in the context of discrete event dynamic
systems where the underlying stochastic process depends on the optimization
decisions. Jonsbraten et al. (1998) proposed an implicit enumeration algorithm for
the problems in this class where decisions that affect the uncertain parameter
values are made at the first stage. Ahmed (2000) presented several examples
having decision dependent uncertainties that were formulated as MILP problems
and solved by LP-based branch and bound algorithms. Moreover, Viswanath et al.
(2004) and Held and Woodruff (2005) addressed the endogenous uncertainty
problems where decisions can alter the probability distributions.

There are multiple sources of uncertainty in the oil and gas field
development problem as can be seen from the literature work afore-mentioned.
The market price of oil/gas, quantity and quality of reserves at a field are the most
important sources of the uncertainty in this context. The uncertainty in oil prices
is influenced by the political, economic or other market factors and it belongs to
the exogenous uncertainty problems. The uncertainty in the reserves on the other
hand, is linked to the accuracy of the reservoir data (technical uncertainty). While
the existence of oil and gas at a field is indicated by seismic surveys and
preliminary exploratory tests, the actual amount of oil in a field, and the
efficiency of extracting the oil will only be known after capital investment has
been made at the field (Goel and Grossmann, 2004), i.e. endogenous uncertainty.
Both, the price of oil and the quality of reserves directly affect the overall
profitability of a project, and hence it is important to consider the impact of these
uncertainties when formulating the decision policy. However, due to the
significant computational challenge in this thesis we only address the uncertainty
in the field parameters where timing of uncertainty realizations is decision-
dependent. In particular, we focus on the type 2 of endogenous uncertainty where
the decisions are used to gain more information, and resolve uncertainty either

immediately or in a gradual manner. Therefore, the resulting scenario tree is
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decision-dependent that requires modeling a superstructure of all possible
scenario trees that can occur based on the timing of the decisions (see Goel et al.,
2006; Tarhan et al., 2009).

t=1

t=2

t=3

(a) Standard Scenario Tree with uncertain parameters 6, and 0, (b) Alternative Scenario Tree

Figure 1.4: Tree representations for discrete uncertainties over 3 stages

Specifically, to address the stochastic programming problem under
consideration, we assume in this thesis that the uncertain parameters follow
discrete probability distributions and that the planning horizon consists of a fixed
number of time periods that correspond to decision points. Using these two
assumptions, the stochastic process can be represented with scenario trees. In a
scenario tree (Figure 1.4-a) each node represents a possible state of the system at
a given time period. Each arc represents the possible transition from one state in
time period t to another state in time period t+1, where each state is associated
with the probabilistic outcome of a given uncertain parameter. A path from the
root node to a leaf node represents a scenario.

An alternative representation of the scenario tree was proposed by
Ruszczynski (1997) where each scenario is represented by a set of unique nodes
(Figure 1.4-b). The horizontal lines connecting nodes in time period t mean that
nodes are identical as they have the same information and those scenarios are said
to be indistinguishable in that time period. These horizontal lines correspond to
the non-anticipativity (NA) constraints in the model that link different scenarios
and prevent the problem from being amenable to decomposition. In this work,
since we focus on multistage stochastic programming (MSSP) problems with

endogenous uncertainty where the structure of scenario tree is decision-
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dependent, we use the above alternative scenario tree representation to model
these problems effectively.

In addition to the oil and gas field development problems under endogenous
uncertainties (type 2) as described in the previous section (Goel and Grossmann,
2004; Goel et al., 2006; and Tarhan et al., 2009), there are few other practical
applications that have been addressed. In particular, Tarhan and Grossmann
(2008) applied endogenous uncertainty in the synthesis of process networks with
uncertain yields, and used gradual uncertainty resolution in the model. Solak
(2007) considered the project portfolio optimization problem that deals with the
selection of research and development projects and determination of optimal
resource allocations under decision dependent uncertainty where uncertainty is
resolved gradually. The author used the sample average approximation method
for solving the problem, where the sample problems were solved through
Lagrangean relaxation and heuristics. Boland et al. (2008) addressed the open pit
mine production scheduling problem considering endogenous uncertainty in the
total amount of rock and metal contained in it, where the excavation decisions
resolve this uncertainty. These authors also compared the fullspace results for this
mine-scheduling problem with the one where non-anticipativity constraints were
included as the ‘lazy constraints’ during the solution. Colvin and Maravelias
(2008, 2010) presented several theoretical properties, specifically for the problem
of scheduling of clinical trials having uncertain outcomes in the pharmaceutical
R&D pipeline, and developed a branch-and-cut framework to solve these MSSP
problems with endogenous uncertainty under the assumption that only few non-

anticipativity constraints be active at the optimal solution.

1.3 Research Objectives
Following are the major objectives of this thesis:
1. Develop an efficient deterministic model for offshore oil and gas field
development planning considering multiple fields, facility expansions in

the future, lead times for facility installation and expansions, individual
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oil, water and gas flowrates, drilling rig limitations, with the objective to
maximize the net present value for the given planning horizon

Extend the simple NPV based deterministic oilfield planning model to
include general complex fiscal rules such as the ones in production sharing
agreements

Develop reformulation, approximation and decomposition based
approaches to improve the computational efficiency of the oilfield model
with fiscal rules

. Apply these deterministic models with/without fiscal contracts and
computational strategies to realistic oilfield development planning
examples

Formulate a general multistage stochastic mixed-integer linear
programming model for addressing endogenous uncertainties where the
optimization decisions affect the timing when uncertainties in the
parameters are resolved

Develop model reduction approaches and solution strategies to overcome
the computational expense of the above multistage stochastic model

. Apply these multistage stochastic model and solution strategies to the
process network planning problem under uncertain yields, and to the
oilfield development planning under uncertain field parameters
with/without fiscal contracts

Develop and implement a new Lagrangean decomposition algorithm based
on grouping of the scenarios for efficiently solving general multistage
stochastic programs under endogenous uncertainties, and apply it to
process network and oilfield planning examples to compare it with the
standard approaches

Develop a method for improving the dual bound generated during the
solution of a stochastic mixed-integer linear programming model using the
dual decomposition and integer programming sensitivity analysis, and

benchmark the results against the standard subgradient method
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1.4 Overview of thesis

Chapter 2

Basic Model: QOilfield
Development Planning under Chapter 5
Perfect Information v Chapters 4 and 6 P

A 4

Oilfield Development Planning
under Endogenous Uncertainty
with/without Fiscal considerations

Endogenous Uncertainty in
the model parameters using
Stochastic Programming

\ 4

Chapter 3 7y
A 4

Include Fiscal Calculations
within the Basic Model

\ 4

Figure 1.5: A unified framework for oilfield development planning under

complex fiscal rules and endogenous uncertainties

In this thesis we consider a unified modeling framework (Figure 1.5) to
address the offshore oil and gas field development planning problem under
complex fiscal rules and endogenous uncertainties. We start by developing a basic
deterministic model in Chapter 2 that includes sufficient level of detail to be
realistic as well as computationally efficient. Then, we discuss the extension of
the model to incorporate fiscal rules defined by the terms of the contract between
oil companies and governments in Chapter 3. In addition, several computational
strategies are proposed to solve the realistic instances of the fiscal model.

To address the issue of endogenous uncertainties in the field parameters
where timing of uncertainty realization depends on investment decisions, we first
consider a general multistage stochastic programming model in Chapter 4 and
propose solution strategies to handle the large instances. The stochastic
programming framework and solution approach presented in Chapter 4 is used for
the oilfield problem in Chapter 5 considering the deterministic models from
Chapter 2 and 3 as basis. An improved decomposition approach to solve the
general multistage stochastic formulation under endogenous uncertainties is also
proposed in Chapter 6. In Chapter 7 we present a new method to update the

Lagrangean multipliers during dual decomposition for two-stage stochastic
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mixed-integer linear programs under exogenous uncertainties. A more detailed

overview of the chapters in the thesis is presented below:

1.4.1 Chapter 2

Chapter 2 presents an efficient basic deterministic model for offshore oil and gas
field development problem. In particular, we develop a multiperiod non-convex
MINLP model for multi-field site that includes three components (oil, water and
gas) explicitly in the formulation using higher order polynomials avoiding bilinear
and other nonlinear terms. With the objective of maximizing total NPV for long-
term planning horizon, the model involves decisions related to FPSO (floating
production, storage and offloading) installation and expansions, field-FPSO
connections, well drilling and production rates in each time period. Furthermore,
it is reformulated into an MILP after piecewise linearization and exact
linearization techniques that can be solved to global optimality in an efficient
way. Solutions of realistic instances involving 10 fields, 3 FPSOs, 84 wells and 20
years planning horizon are reported, as well as comparisons between the

computational performance of the proposed MINLP and MILP formulations.

1.4.2 Chapter 3

In Chapter 3, we extend the simple NPV (net present value) based optimal oilfield
development planning model developed in Chapter 2 to include general complex
fiscal rules having progressive fiscal terms and ringfencing provisions. The
progressive fiscal terms penalize higher production rates based on the certain
profitability measures such as cumulative oil produced, daily production, rate of
return defined in the contract. On the other hand, ringfencing provisions divide
the fields in certain groups such that only fields in a given ringfence can share the
cost and revenues for fiscal calculations, but not with the fields from other
ringfences. Therefore, these provisions further increase the complexity of the
model. We explain the reduction of the proposed fiscal model to a variety of
contracts. The impact of the explicit consideration of the fiscal terms during
oilfield development planning on the investment and operating decisions is

analyzed. Since, the fiscal model can become computationally very expensive to
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solve, we propose logic constraints and valid inequalities to reformulate the model
that can be solved more efficiently. A relaxation scheme and an approximation
technique are also provided that work as good heuristics for the large-scale
problems. The proposed model and computational strategies are applied to several
instances of the oilfield development problems with fiscal contracts. Preliminary
results on a bi-level decomposition approach are provided that can predict the

rigorous bounds for the large instances involving ringfencing provisions.

1.4.3 Chapter 4

Chapter 4 considers a general multistage stochastic mixed-integer linear
programming (MSSP) model with endogenous uncertainty in some of the
parameters, where the optimization decisions affect the times when the
uncertainties in those parameters are resolved. To address the issue that the
number of non-anticipativity (NA) constraints increases exponentially with the
number of uncertain parameters and/or its realizations, we present a new
theoretical property that significantly reduces the problem size and complements
two previous properties proposed by Goel and Grossmann (2006). Since one
might generate reduced models that are still too large to be solved directly, we
also propose three solution strategies: a k-stage constraint strategy where we only
include the NA constraints up to a specified number of stages, an iterative NAC
relaxation strategy, and a Lagrangean decomposition algorithm that decomposes
the problem into scenarios. Numerical results for two process network examples

are presented to illustrate the performance of the proposed solution strategies.

1.4.4 Chapter5

Chapter 5 presents a multistage stochastic programming model for investment and
operations planning of offshore oil and gas field infrastructure. In particular, we
consider the deterministic models proposed in Chapters 2 and 3 as basis, and
utilize the stochastic programming framework presented in Chapter 4 to formulate
the model with/without fiscal contracts. We also consider correlations among the
endogenous uncertain parameters for a field such as field size, oil deliverability,

water-oil ratio and gas-oil ratio, which reduce the total number of scenarios in the
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resulting multistage stochastic formulation. To solve the large instances of the
problem, the Lagrangean decomposition approach proposed in Chapter 4 allowing
parallel solution of the scenario subproblems is implemented in the GAMS grid
computing environment. Computational results on a variety of oilfield
development planning examples are presented to illustrate the efficiency of the
model and the decomposition approach.

1.45 Chapter 6

In Chapter 6, we propose a new decomposition algorithm for solving general
large-scale multistage stochastic programs (MSSP) with endogenous
uncertainties. Instead of dualizing all the initial non-anticipativity constraints
(NACs) and removing all the conditional non-anticipativity constraints to
decompose the problem into scenario subproblems as in Chapters 4 and 5, the
basic idea relies on a partial decomposition scheme. It is proved that the algorithm
provides a dual bound that is at least as tight as the standard approach. The
algorithm has been applied to process network examples and oilfield development
planning problem to compare the quality of the bounds obtained at the root node

and impact on the computational effort.

1.4.6 Chapter?7

Chapter 7 presents a method for improving the dual bound of decomposable
MILP models using integer programming sensitivity analysis based on the
previous work by Tarhan (2009). In particular, it proposes a new linear program
that involves constraints from the primal and dual sensitivity analysis (Dawande
and Hooker, 2000) using the information from branch and bound tree of each
subproblem solution during Lagrangean decomposition, and yields improved
multipliers which results in faster convergence of the algorithm. The method has
been applied to several example problems to compare its performance against

standard subgradient method.
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1.4.7 Chapter 8
Chapter 8 provides a summary of the major contributions of the thesis and
suggestions for future work.

This thesis has led to the following papers:

e Gupta, V., Grossmann, I. E., 2011a. Solution Strategies for Multistage
Stochastic Programming with Endogenous Uncertainties. Computers and
Chemical Engineering 35, 2235-2247.

e Gupta, V., Grossmann, I. E., 2011b. Offshore Oilfield Development
Planning under Uncertainty and Fiscal Considerations. Optimization and
Analytics in the Oil and Gas Industry, Part I; Springer Edition, submitted
for publication.

e Gupta, V., Grossmann, I. E., 2012a. An Efficient Multiperiod MINLP
Model for Optimal planning of Offshore Oil and Gas Field Infrastructure.
Industrial and Engineering Chemistry Research 51 (19), 6823-6840.

e Gupta, V., Grossmann, I. E., 2012b. Modeling and Computational
Strategies for Offshore Oilfield Development Planning under Complex
Fiscal Rules. Industrial and Engineering Chemistry Research 51,
14438—14460.

e Gupta, V., Grossmann, I. E., 2013a. Multistage Stochastic Programming
Approach for Offshore Qilfield Infrastructure Planning under Production
Sharing Agreements and Endogenous Uncertainties, manuscript in
preparation.

e Gupta, V., Grossmann, I. E., 2013b. A new Decomposition Algorithm for
Multistage Stochastic Programs with Endogenous Uncertainties, submitted

for publication.

e Tarhan, B., Gupta V., Grossmann, I. E., 2013. Improving Dual Bound for
Stochastic MILP Models using Sensitivity Analysis, to be submitted.
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Chapter 2

An efficient multiperiod MINLP
model for optimal planning of
offshore oil and gas field

Infrastructure

2.1 Introduction

In this chapter, we focus on developing a basic deterministic model for the
strategic/tactical planning of offshore oil and gas fields, which includes sufficient
level of details to be useful for realistic oilfield development projects, as well as it
can be extended to include fiscal and uncertainty considerations as in the
subsequent chapters. In particular, there are following major extensions and
differences that are addressed in the proposed deterministic model as compared to
the previous work:

(1) We consider three components (oil, water and gas) explicitly in the
formulation for a multi-field site, which allows considering realistic
problems for facility installation and capacity decisions.

(2)  Nonlinear reservoir behavior in the model is approximated by 3™ and
higher order polynomials to ensure sufficient accuracy for the predicted
reservoir profiles.

(3)  The number of wells is used as a variable for each field to capture the
realistic drill rig limitations and the resulting trade-offs among various
fields.
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(4) We include the possibility of expanding the facility capacities in the
future, and including the lead times for construction and expansions for
each facility to ensure realistic investments.

A typical offshore oilfield infrastructure (Figure 2.1) consists of various
production facilities such as Floating Production, Storage and Offloading (FPSO),
fields, wells and connecting pipelines to produce oil and gas from the reserves.
Each oilfield consists of a number of potential wells to be drilled using drilling
rigs, which are then connected to the facilities through pipelines to produce oil.
There is a multi-phase flow in these pipelines due to the presence of gas and
liquid that comprises oil and water. Therefore, there are three main components
present, and their relative amounts depend on certain parameters like cumulative
oil produced. The field to facility connection involves trade-offs associated to the
flowrates of oil and gas for a particular field-facility connection, connection costs,
and possibility of other fields to connect to that same facility, while the number of
wells that can be drilled in a field depends on the availability of the drilling rig

that can drill a certain number of wells each year.

Total Qil/Gas

T T > Production

FPSO FPSO

Figure 2.1: Typical Offshore Qilfield Infrastructure Representation

We assume in this work that the type of offshore facilities connected to fields
to produce oil and gas are FPSOs with continuous capacities and ability to expand
them in the future. These FPSO facilities costs multi-billion dollars each

depending on their sizes and have the capability of operating in remote locations
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for very deep offshore oilfields (200m-2000m) where seabed pipelines are not
cost effective. FPSOs are large ships that can process the produced oil and store
until it is shipped to the onshore site or sales terminal. Processing includes the
separation of oil, water and gas into individual streams using separators located at
these facilities. Each FPSO facility has a lead time between the construction or
expansion decision, and the actual availability. The wells are subsea wells in each
field that are drilled using drilling ships. Therefore, there is no need to have a
facility present to drill a subsea well. The only requirement to recover oil from it
is that the well must be connected to a FPSO facility.

The facilities and connection involved in the offshore planning are often in
operation over many years, and it is therefore important to take future conditions
into consideration when designing an initial infrastructure or any expansions. This
can be incorporated by dividing the planning horizon, for example, 20 years, into
a number of time periods with a length of 1 year, and allowing investment and
operating decisions in each period, which leads to a multi-period planning
problem.

When oil is extracted from a reservoir oil deliverability, water-to-oil ratio
(WOR) and gas-to-oil ratio (GOR) change nonlinearly as a function of the
cumulative oil recovered from the reservoir. The initial oil and gas reserves in the
reservoirs, as well as the relationships for WOR and GOR in terms of fractional
oil recovery (f.), are estimated from geologic studies. Figures 2.2 (a)—(c) represent
the oil deliverability from a field per well, WOR and GOR versus fractional oil
recovered from that field. We can see from these figures that there are different
nonlinear field profiles for different field-FPSO connections to account for the
variations in the flows for each of these possible connections.

The maximum oil flowrate (field deliverability) per well can be represented
as a 3" order polynomial equation (2.1) in terms of the fractional oil recovery.

Furthermore, the actual oil flowrate (x; ) from each of the wells is restricted by

both the field deliverability Q? , eg. (2.2), and facility capacity. We assume that

there is no need for enhanced recovery, i.e., no need for injection of gas or water

into the reservoir. The oil produced from the wells (x; ) contains water and gas
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and their relative rates depend on water-to-oil ratio (wors) and gas-to-oil ratio
(gory) that are approximated using 3™ order polynomial functions in terms of
fractional oil recovered (egs. (2.3)-(2.4)). The water and gas flow rates can be
calculated by multiplying the oil flowrate (x; ) with water-to-oil ratio and gas-to-
oil ratio as in egs. (2.5) and (2.6), respectively. Note that the reason for
considering fractional oil recovery compared to cumulative amount of oil was to
avoid numerical difficulties that could arise due to very small magnitude of the
polynomial coefficients in that case.

Qf =a ((fc; )’ +b,,(fc,)? +c , fc, +d, vf (2.1)
X, <QF vf (2.2)
wor, =a, ,(fc,)* +b, ;(fc;)*+c,, fc, +d,, Vf (2.3)
gor, =a,, (fc, )’ +b,y  (fc,)* +c,, fc, +d,,  Vf (2.4)
W; = WOr, X; vf (2.5)
g; = gor; x; \4i (2.6)

In Appendix A we derive the polynomial equations for the cumulative water
and cumulative gas produced as a function of fractional oil recovery using
equations (2.3) and (2.4), respectively, in order to avoid the bilinear terms (2.5)-
(2.6) that are required in the model based on the above reservoir equations. Notice
that in this chapter we focus on a multi-field site and include sufficient details in
the model to account for the various trade-offs involved without going into much
detail for each of these fields. However, the proposed model can easily be
extended to include various facility types and other details in the oilfield

development planning problem.
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The outline of this chapter is as follows. In section 2.2, we provide a formal
description of the oilfield development problem considered that is formulated as
an MINLP problem in section 2.3. The MINLP model is then reformulated as an
MILP problem in section 2.4. Furthermore, section 2.5 introduces a procedure to
reformulate both the models with reduced number of binary variables. Section 2.6
presents numerical results on the three realistic oilfield development cases
involving up to 10 oilfields, 20 years of planning horizon and 84 wells, and

compares the performance of the proposed models.

2.2 Problem Statement

Given is a typical offshore oilfield infrastructure consisting of a set of oil fields F
= {1,2,..} available for producing oil using a set of FPSO (Floating, Production,
Storage and Offloading) facilities, FPSO = {1,2,...}, (see Figure 2.1). To produce
oil from a field, it must be connected to a FPSO facility that can process the
produced oil, store and offload it to the other tankers.

We assume that the location of each FPSO facility and its possible
connections to the given fields are known (Figure 2.1). Notice that each FPSO
facility can be connected to more than one field to produce oil while a field can
only be connected to a single FPSO facility. In addition, the potential number of
wells in each field is also given. There can be a significant amount of water and
gas that comes out with the oil during the production process that needs to be
considered while planning for FPSO capacity installations and expansions. The
water is usually re-injected after separation from the oil while the gas can be sold
in the market. In this case for simplicity we do not consider water or gas re-
injection i.e. natural depletion of the reserves.

To develop and operate such a complex and capital intensive offshore
oilfield infrastructure, we have to make the optimum investment and operation
decisions to maximize the net present value considering a long-term planning
horizon. The planning horizon is discretized into a number of time periods t,
typically each with 1 year of duration. Investment decisions in each time period t

include which FPSO facilities should be installed or expanded, and their
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respective installation or expansion capacities for oil, liquid and gas, which fields
should be connected to which FPSO facility, and the number of wells that should
be drilled in a particular field f given the restrictions on the total number of wells
that can be drilled in each time period t over all the given fields. Operating
decisions include the oil/gas production rates from each field f in each time period
t. It is assumed that all the installation and expansion decisions occur at the
beginning of each time period t, while operation takes place throughout the time
period. There is a lead time of I; years for each FPSO facility initial installation
and a lead time of |, years for the expansion of an earlier installed FPSO facility.
Once installed, we assume that the oil, liquid (oil and water) and gas capacities of
a FPSO facility can be expanded only once.

Field deliverability, i.e. maximum oil flowrate from a field, WOR and GOR
are approximated by a cubic equations, while cumulative water produced and
cumulative gas produced from a field are represented by fourth order polynomials
in terms of the fractional oil recovered from that field. Notice that these 4™ order
polynomials correspond to the integration of the cubic equations for WOR and
GOR as explained in Appendix A. The motivation for using polynomials for
cumulative water produced and cumulative gas produced as compared to WOR
and GOR s to avoid bilinear terms in the formulation and to allow converting the
resulting model into an MILP formulation. Furthermore, all the wells in a
particular field f are assumed to be identical for the sake of simplicity leading to
the same reservoir profiles, egs. (2.1)-(2.6), for each of these wells. However, the
model can easily be extended to include different reservoir profiles for each of
these wells for a specific field-FPSO connection, which may result in a significant
increase in the computational effort due to the additional nonlinearities and

constraints in the model.

2.3 MINLP Model

We present in this section a multiperiod MINLP model for the offshore oil and
gas field infrastructure optimization problem. Reader should refer to the

nomenclature section at the end of this chapter for the definitions of the various
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parameters and variables used in the model. The objective function (2.7) is to
maximize the total net present value (NPV) of the project. Constraint (2.8)
represents the overall NPV as a function of the difference between total revenue
and total cost in each time period t taking the discount factors d into account.
Max NPV (2.7)

NPV =>"d,(REV, —COST,) (2.8)
t

The total revenues (2.9) in each time period t are computed based on the total

amount of oil and gas produced in that time period and respective selling prices

where total oil, water and gas flowrates in each time period t, (Xf°t,Wf°t, gtmt)

are calculated as the sum of the production rate of these components over all the
FPSO facilities in equations (2.10)-(2.12), respectively.

REV, =6 («, Xtm +5,9:™) Vi (2.9)
X" =D Xt vt (2.10)
fpso
W =D Wi vt 2.11)
fpso
9" = D Gpsos vt (2.12)
fpso

The total cost incurred in (2.13) is the sum of capital and operating expenses
in each time period t. The overall capital expenses (2.14) consist of the fixed
installation costs for FPSO facilities, variable installation and expansion costs
corresponding to the FPSOs liquid and gas capacities, connection costs between a
field and a FPSO facility and cost of drilling the wells for each field in each time
period t. The total operating expenses (2.15) are the operation cost occurred
corresponding to the total amount of liquid and gas produced in each time period
t.

COST, =CAP. +OPER, vt (2.13)
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CAR, = 3 [FC by +VC IS, (QINE,, + QL ) +VCES Q155 +QEE, )]
fpso
+ ZZFCf fpsotbf fpso,t +ZFCfWi” \fNet”
f fpso
vt (2.14)
OPER, =6,|0C! (X +w*) + OCT* g™ | vt (2.15)

Constraints (2.16)-(2.19) predict the reservoir behavior for each field f in
each time period t. In particular, constraint (2.16) restricts the oil flow rate from
each well for a particular FPSO-field connection in time period t to be less than
the deliverability (maximum oil flow rate) of that field per well where equation
(2.17) represents the field deliverability per well at the beginning of time period
t+1 for a particular FPSO-field connection as the cubic equation in terms of the
fractional oil recovered by the end of time period t from that field. Constraint
(2.17a) corresponds to the oil deliverability in time period 1 while (2.17b)
represents for the rest of time periods in the planning horizon. Constraints (2.18)
and (2.19) represent the value of water-to-oil and gas-to-oil ratios in time period t
for a specific field-FPSO connection as cubic equations in terms of the fractional

oil recovery by the end of previous time period, respectively.

X0t < QF o vf, fpso,t (2.16)
Q?,'fos!,l =dy 1 s vf, fpso (2.17a)

d,well _ 3 2
Qf oot = At 1pso (TC1 )7+ B0 ¢ 100 (FC )7 +Crt oo TCr e +01 ¢ 10

v, fpso,t <[T|  (2.17h)

3 2
WOt fos0t =& ¢ fpso (fc, ,t—l) + b2,f ,fpso (feq ,t—l) +Cot o fc, Tt d2,f,fpso

VT, fpso,t (2.18)
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3 2
gorf , fpso,t = aS,f , fpso ( fo ,t—l) + b3,f , fpso ( fo ,t—l) + C3,f,fpso fo t-1 + d3,f , fpso

VT, fpso,t (2.19)

The predicted WOR and GOR values in equations (2.18) and (2.19) are
further used in equations (2.20) and (2.21) to calculate the respective water and
gas flowrates from field to FPSO in time period t by multiplying it with the
corresponding oil flow rate. Notice that these equations give rise to the bilinear

terms in the model.

Wf , fpso,t = Worf , fpso,tXf , fpso,t \V/f ] fpSO,t (220)

g f, fpso,t = gorf , fpso, t Xf , fpso,t \v/f ’ fpSO,t (221)

The total oil flow rate in (2.22) from each field f in time period t is the sum
of the oil flow rates that are directed to FPSO facilities in that time period t,
whereas oil that is directed to a particular FPSO facility from a field f is calculated
as the multiplication of the oil flow rate per well and number of wells available
for production in that field, eq. (2.23).

Xep = fo,fpso,t vt (2.22)

fpso

Xf,fpso.t = N \fNi“ . X\liv,e;:aso,t Vf 1 fpSO,t (223)

Eq. (2.24) computes the cumulative amount of oil produced from field f by
the end of time period t, while (2.25) represents the fractional oil recovery by the
end of time period t. The cumulative oil produced is also restricted in (2.26) by

the recoverable amount of oil from the field.

t

XCi ¢ = Z(Xm@) vf,t (2.24)
=1
XC;
fc; = ’
£t REC, vf,t (2.25)
xc; , < REC; vi,t (2.26)
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Egs. (2.27)-(2.29) compute total oil, water and gas flow rates into each FPSO
facility, respectively, in time period t from all the given fields.

X oot = D Xt fpsor Vfpso, t (2.27)
f

Wit = 2 Wi 0 vfpso, t (2.28)
f

oot = 2,9+ tpsot vfpso, t (2.29)
f

There are three types of capacities i.e. oil, liquid (oil and water) and gas that
are used for modeling the capacity constraints for FPSO facilities. Specifically,
constraints (2.30)-(2.32) restrict the total oil, liquid and gas flow rates into each
FPSO facility to be less than its corresponding capacity in each time period t
respectively. These three different kinds of capacities of a FPSO facility in time
period t are computed by equalities (2.33)-(2.35) as the sum of the corresponding
capacity at the end of previous time period t-1, installation capacity at the

beginning of time period t-I; and expansion capacity at the beginning of time
period t-I,. Specifically, the term QI ?Fi,'so,t,.l in equation (2.33) represents the oil

capacity of a FPSO facility that started to install |, years earlier and is expected to

be ready for production in time period t, to account for the lead time of I, years for

a FPSO facility installation. The term QE?;,'SO,t_.l represents the expansion

decision in the oil capacity of an already installed FPSO facility that is taken I,
years before time period t, to consider the lead time of |, years for capacity
expansion. Similarly, the corresponding terms in equations (2.34) and (2.35)
represent the lead times for liquid and gas capacity installation or expansion,

respectively. Notice that due to one installation and expansion of a FPSO facility,

il il . .
Ql ?F',so,t,h and QE?,'JSO,t_.l can have non-zero values only once in the planning

horizon while Q?,'Jso,t,l can be non-zero in the multiple time periods.
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oil
Xfpso,t = prso,t

liq
Xfpso,t + Wfpso,t < prso,t

gas

g fpso,t < prso,t

oil _ oil oil oil
prso,t - prso,tfl + QI fpso,t—I; + QE fpso,t—I,

lig . lig lig lig
prso,t - prso,t—l + QI fpso,t—I; + QE fpso,t—I,

gas gas gas
prsot Qfpsot-1 T Ql fpsot-1, ¥ QE fpeo1,

Vfpso,t
Vvipso,t
Vfpso,t
Vvipso,t
Vfpso,t

Vfpso,t

(2.30)
(2.31)
(2.32)
(2.33)
(2.34)

(2.35)

Inequalities (2.36) and (2.37) restrict the installation and expansion of a

FPSO facility to take place only once, respectively, while inequality (2.38) states

that the connection between a FPSO facility and a field can be installed only once

during the whole planning horizon. Inequality (2.39) ensures that a field can be

connected to at most one FPSO facility in each time period t, while (2.40) states

that at most one FPSO-field connection is possible for a field f during the entire

planning horizon T due to engineering considerations. Constraints (2.41) and

(2.42) state that the expansion in the capacity of a FPSO facility and the

connection between a field and a FPSO facility, respectively, in time period t can

occur only if that FPSO facility has already been installed by that time period.

D B <1

teT

ex
bepso t —

teT

be fpso,t S

teT

Zb?,fpso,t <1

fpso

zzbf fpso,t <1

teT fpso

Vfpso

Vfpso

VT, fpso

v, t

vt

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)
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t

b0t < 2 Proso - Vfpso, t (2.41)
t

b(f: fpso,t < bepso,r Vf y fpSO,t (242)

Inequality (2.43) states that the oil flow rate per well from a field f to a FPSO
facility in time period t will be zero if that FPSO-field connection is not available
in that time period. Notice that equations (2.23) and (2.43) ensure that for
production from a field in time period t there must be a field-FPSO connection
and at-least one well available in that field at the beginning of time period t.
Constraints (2.44)-(2.49) are the upper-bounding constraints on the installation
and expansion capacities for FPSO facilities in time period t corresponding to the
three different kinds of capacities mentioned earlier.

Ko <UTHE 20 i fpsot  (43)
Ql St <U SoDios vipso,t (2.44)
Qi UM beo . vfpso,t (2.45)
Ql Fot U Hebips Vfpso,t (2.46)
QE L, <Ufubi . vfpso,t (2.47)
QE, . <UL bE vfpso,t (2.48)
QEfe: <UL bTe. Vfpso,t (2.49)

The additional restrictions on the oil, liquid and gas expansion capacities of
FPSO facilities, (2.50)-(2.52), come from the fact that these expansion capacities
should be less than a certain fraction (u) of the initial built capacities,
respectively. Notice that available capacities in the previous time period can be
used in the expression instead of initially built FPSO capacities given that only

one installation and expansion is allowed for each of these facilities.
QE ot < £Q0e011 vipso,t (2.50)
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QEYI < .Q vfpso,t (2.51)

QE Pe: < 1Q%8 1 Vfpso,t (2.52)

The number of wells available for the production from a field is calculated
from (2.53) as the sum of the wells available at the end of previous time period
and the number of wells drilled at the beginning of time period t. The maximum
number of wells that can be drilled over all the fields during each time period t
and in each field f during complete planning horizon T are restricted by respective
upper bounds in (2.54) and (2.55). Notice that the important resource restriction
due to the availability of drill rigs as in constraint (2.54) makes the proposed
model more practical and useful. This restriction can easily be removed by
relaxing this constraint if there are no drilling limitations. Moreover, the resulting
model, which can be considered as a specific case of the proposed model, will

most likely become easier to solve.

NP = N ! v 259

St <unpet vt (2.54)
f

N \f/v’etll <UN \fNe“ A4 i ,t (255)

The non-convex MINLP model (Model 1) for offshore oilfield investment
and operations planning involves constraint (2.7)-(2.55). In particular, constraints
(2.17b)- (2.21) and (2.23) are nonlinear and non-convex constraints in the model
that can lead to suboptimal solutions when solved with a method that assumes
convexity.

In contrast to Model 1, the proposed MINLP model (Model 2) involves all
the constraints as in Model 1 except (2.18)-(2.21) that are replaced with the
reservoir profiles based on cumulative water and cumulative gas produced for
each field-FPSO connection. The motivation for using polynomials for
cumulative water produced and cumulative gas produced as compared to WOR

and GOR is to avoid bilinear terms (2.20)-(2.21) in the formulation and allow
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converting the resulting MINLP model into an MILP formulation. In particular,
the cumulative water and cumulative gas produced by the end of time period t
from a field are represented by 4" order polynomial equations (2.56) and (2.57),
respectively, in terms of fractional oil recovery by the end of time period t. Notice
that these 4™ order polynomials (2.56) and (2.57) correspond to the cubic
equations for WOR and GOR, respectively, that are derived in Appendix A.

wc

4 3 2
fpsot = At s (FCr ) 05 ¢ 1o (Cr )7 +Cy ¢ o (FCr )7+ ¢ e TCr 4

VT, fpso,t (2.56)

4 3 2
?(,:fpso,t:a&f,fpso(fcf,t) +b3,f,fpso(fcf,t) +CB,f,fpso(fo,t) +d3.f,fpsofcf,t

VT, fpso,t (2.57)

Notice that variables Qf fpsor and Qf e« Will be non-zero in equations
(2.56) and (2.57) if fc;  is non-zero even though that particular field-FPSO
connection is not present. Therefore, Q}N,cfpso,tand Q?,Cfpso,t represent dummy
variables in equations (2.56) and (2.57) instead of actual cumulative water (

WCs tnso,t ) @and cumulative gas ( 9C; rus0,¢ ) recoveries due to the fact that only

those cumulative water and cumulative gas produced can be non-zero that has the
specific FPSO-field connection present in that time period t. Therefore, we

introduce constraints (2.58)-(2.61) to equate the actual cumulative water

produced, WC; 5.t , for a field-FPSO connection by the end of time period t to
the corresponding dummy variable Q?Cfpso,t only if that field-FPSO connection is
present in time period t else WC s ¢ iS Set to zero. Similarly, constraints (2.62)-
(2.65) equate the actual cumulative gas produced, 9C¢ fpsot, t0 the dummy
variable Q?,Cfpso,tonly if that field-FPSO connection is present in time period t,

otherwise it is set to zero. M, and M % correspond to maximum amount

of cumulative water and gas that can be produced for a particular field and FPSO
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connection during the entire planning horizon,

respectively. Note that the

motivation for using dummy variables ( Qf tpe.rand Q7' pe0.¢) for cumulative

water and cumulative gas flows in equations (2.56)-(2.57) followed by big-M

constraints (2.58)-(2.65), instead of using disaggregated variables for the

fractional recovery in equations (2.56)-(2.57) directly, was to avoid large number

of SOS1 variables while MILP reformulation of this model as explained in the

next section.

WCf fpso,t —Qf fpso,t M¥vcfpso (1 be fpso, z')

ch fpso,t —Qf fpso,t M\fNCfpso(l be fpso, z')

wc
ch fpso,t — Mf fpsoz l,bf fpso,z

wc 2 :
WCf fpsot = Mf fpso bf fpso,z

C <Qf +M¥F. @A-> b
, T
g f, fpso,t — f, fpsot f, fpso( Z f, fpso,

c > Q¥ —M ¥ 1— > bt
Z'
g f, fpso,t f, fpso,t f, fpso( Z f, fpso,

gc
ng fpso,t — Mf fpsoz l,bf fpso,z

=1

gc
ng fpsot = Mf fpsoz l,bf fpso,r

vf, fpso,t (2.58)

vf, fpso,t (2.59)

v, fpso,t (2.60)

vf, fpso,t (2.61)

v, fpso,t (2.62)

vf, fpso,t (2.63)

v, fpso,t (2.64)

v, fpso,t (2.65)

Eq. (2.66) and (2.67) compute the water and gas flow rates in time period t

from a field to FPSO facility as the difference of cumulative amounts produced by

the end of current time period t and previous time period t-1 divided by the time

duration of that period.

Wf,fpso,t = (WCf,fpso,t _WCf.fpso,t—l)/5t

O+ fpsot = (ng,fpso,t - gcf,fpso,t—l)/é‘t

v, fpso,t (2.66)
v, fpso,t (2.67)
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The non-convex MINLP model (Model 2) involves constraint (2.7)-(2.17)
and (2.22)-(2.67) where constraints (2.17b), (2.56) and (2.57) are univariate
polynomials while constraint (2.23) involves bilinear terms with integer variables.
The correspondence between reservoir profiles for both the MINLP models and
their comparison is presented in Appendices A and B, respectively. In the
following section, we reformulate MINLP Model 2 into an MILP problem that
can be solved to global optimality in an effective way. Notice that due to the
presence of bilinear terms in equations (2.20) and (2.21), Model 1 cannot be
reformulated into an MILP problem.

2.4 MILP Reformulation

The nonlinearities involved in Model 2 include univariate polynomials (2.17b),
(2.56), (2.57) and bilinear equations (2.23). In this section, we reformulate this
model into an MILP model, Model 3 using piecewise linearization and exact
linearization techniques that can give the global solution of the resulting
approximate problem.

To approximate the 3" and 4™ order univariate polynomials (2.17b), (2.56)

and (2.57) SOS1 variables b'f + are introduced to select the adjacent points I-1 and

| for interpolation over an interval |. Constraints (2.68)-(2.71) represent the
piecewise linear approximation for the fractional recovery and corresponding oil
deliverability, cumulative water and cumulative gas produced for a field in each

time period t, respectively, where fc' Q?¥”§£' ,Q\f'v,cf’r')so and Qfg,c’f'pso are the

values of the corresponding variables at point | used in linear interpolation based

on the reservoir profiles (2.17b), (2.56) and (2.57). Note that only b'f,t variables
are sufficient to approximate the constraints (2.17b), (2.56) and (2.57) by

selecting a specific value of the fractional recovery for each field in each time
period t that applies to all possible field-FPSO connections for that field. This
avoids the requirement of a large number of SOS1 variables and resulting increase

in the solution times that would have been required in the case if constraints
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(2.56) and (2.57) were represented in terms of the disaggregated variables for
fractional recovery in Model 2.

fc, , = Izl:z'f fc! v, t (2.68)
QF T4 Zﬂ' Qe vf, fpso,t <[T|  (2.69)
Qs = Z/llf Qe vf, fpso,t (2.70)
Q fpsot = Zﬂ'f QL vf, fpso,t (2.71)

Equation (2.72) allows only one of the point | to be selected for which b'f t

equals 1 while equation (2.73) states that /1'” can be non-zero for only two
consecutive points | and I-1 that are used for convex combination during
interpolation, eq. (2.74). Thus, the corresponding Ith piece is used for linear
interpolation as all other /1'f  are zero for a field in time period t and determines

the value of the interpolated variable as a convex combination of their values at
both the end of this piece | in equations (2.68)-(2.71).

n—1

by, =1 Vit (2.72)
1=1
llf t S b:‘_,i::l- + blf t Vf ’t1| (273)
> A, =1 Vit (2.74)

The other nonlinear constraints (2.23) in Model 2 contain bilinear terms that

can be linearized using exact linearization (Glover, 1975). To linearize constraint

(2.23) we first express the integer variable, N¥V,et“, for the number of wells in

terms of the binary variables Z % ¢ using eq. (2.75) where Z{ determines the

value of the kth term of the binary expansion.
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NP =202M -z vt (2.75)
The bilinear term in constraint (2.23) can then be rewritten as follows,

X§ fpsot = Zklzk_l'zmlft 'X\?l,ell::)so,t vf, fpso,t (2.76)
Constraint (2.76) can be reformulated as a linear constraint (2.77) by

introducing a nonnegative continuous variable ZX {*he i = Z 1t X1 tosor

which is further defined by constraints (2.78)-(2.81) by introducing an auxiliary

. I
variable ZX1t% o ¢ -

k|—1
Xt oot = D2 ZX PN ki vf, fpso,t 2.77)
k
ZX ¥V,eflylaso,k,t + ZXl\:‘velf:asokt = X\;erll:)so,t Vf ’ fpSO, k’t (278)
ZX ot U { ps0Z et vf, fpso,k,t  (2.79)
ZX1Y okt <U o A= Z 75 vf, fpso,k,t  (2.80)
ZX o =0, ZX1Y =0 vf, fpso, k,t (2.81)

The reformulated MILP Model 3 involves constraints (2.7)-(2.16), (2.17a),
(2.22), (2.24)-(2.55), (2.58)-(2.75) and (2.77)-(2.81) which are linear and mixed-
integer linear constraints and allow to solve this approximate problem to global

optimality using standard mixed-integer linear programming solvers.

Remarks

The previous two sections present a multiperiod MINLP model for the
oilfield investment and operations planning problem for long-term planning
horizon and its reformulation as an MILP model using linearization techniques.
The MINLP models involve non-convexities and can yield suboptimal solutions
when using an MINLP solver that relies on convexity assumptions, while the
reformulated MILP model is guaranteed to be solved to global optimality using
linear programming based branch and cut methods. However, given the

difficulties involved in solving large scale instances of the MINLP and MILP
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models, especially due to the large number of binary variables, we extend these
formulations by reducing the number of the binary variables. The next section
describes the proposed procedure for binary reduction for MINLP and MILP

formulations.

2.5 Reduced MINLP and MILP models

Due to the potential computational expense of solving the large scale MINLP and
MILP models presented in the previous sections, we further reformulate them by

. . . C . .
removing many binary variables, namely bf ;. These binary variables
, Tpso,

represent the timing of the connections between fields and FPSOs and are used
for discounting the connection cost in the objective function along with some
logic constraints in the proposed models. The motivation for binary reduction
comes from the fact that in the solution of these models the connection cost is
only ~2-3% of the total cost, and hence, this cost can be removed from the

objective function as its exact discounting does not have a significant impact on

the optimal solution. In particular, we propose to drop the index t from bfc, fpso.t 1

which results in a significant decrease in the number of binary variables (~33%
reduction) and the solution time can be improved significantly for both the
MINLP and MILP formulations.

Therefore, to formulate the reduced models that correspond to Model 2 and 3

we use the binary variables b . fpso 1O represent the connection between field and

FPSOs instead of using b?, fpso,t Which results in a significant decrease in the

number of binary variables in the model. As an example, for a field with 5
possible FPSO connections and 20 years planning horizon, the number of binary
variables required can be reduced from 100 to 5. The connection cost term in the
eq. (2.14) is also removed as explained above vyielding constraint (2.82).

Moreover, some of the constraints in the previous MINLP and MILP models that

. . . C . R
involve binary variables bf,fpso,t are reformulated to be valid for bf,fpso based

reduced model, i.e. constraints (2.83)-(2.93). Notice that constraints (2.93) and
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(2.23) ensure that the oil flow rate from a field to FPSO facility in time period t,

X oot » Will be non-zero only if that particular field-FPSO connection is installed

and there is at-least one well available in that field for production in time period t,

- R I . . .

ie. bf roequals 1 and N{' is non-zero, otherwise X; . iS set to zero.
. . . 1 .

Moreover, it may be possible that variable X??fpso,t can take non-zero value in

equation (2.93) if be, fpso €quals 1 even though there is no well available in that
field in time period t, but this will not have any effect on the solution given that

the fractional recovery from a field and other calculations/constraints in the model

are based on the actual amount of oil produced from the field, i.e. variable X g

. . . . . . 1 .
which is still zero in this case. Therefore, variable X} s+ can be considered as a

dummy variable in the reduced model.

CAP, = Y [FC o Do + VOIS, QU +QEI, ) +VCE (QIEE, +QEE )]

fpso

welly well
+ > FCIe:
f

vt (2.82)
WC{ fosot < QF oot + M 1 e Q=DF 150) vf, fpso,t (2.83)
WC; om0t = QF om0 = M e 1 —DF 1) vf, fpso,t (2.84)
WC{ oot <M 1 0bf s vf, fpso,t (2.85)
WC tosot = —M 1 eobF s vf, fpso,t  (2.86)
9C+ fpsot < QF:fpsot ¥ M fpso @-b¢ fpso) vt, fpso,t (2.87)
9C 1 tpsot = QF tpsoxr =M e L—DF 150) vf, fpso,t (2.88)
9C+ ot =M ?,cfpsob?, fpso vf, fpso,t (2.89)
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gc R
ng fpsot =-M bf fpso

f, fpso

vf, fpso,t  (2.90)

D Y o <1 vf (2.91)
fpso

bF o0 < bepso . vf, fpso,t (2.92)
X0t <U e BF s vf, fpso,t (2.93)

The non-convex MINLP Model 2R for offshore oilfield investment and
operations planning after binary reduction involves constraints (2.7)-(2.13),
(2.15)-(2.17), (2.22)-(2.37), (2.41), (2.44)-(2.57), (2.66)-(2.67) and (2.82)-(2.93).
The reformulated MILP Model 3R after binary reduction involves constraints
(2.7)-(2.13), (2.15)-(2.16), (2.17a), (2.22), (2.24)-(2.37), (2.41), (2.44)-(2.55),
(2.66)-(2.75) and (2.77)-(2.93) which are linear and mixed-integer linear
constraints. Similarly, Model 1R corresponds to the non-convex MINLP model,
which is based on WOR and GOR expressions after binary reduction as described
above.

The resulting reduced models with fewer binaries can be solved much more
efficiently as compared to the original models. To calculate the discounted cost of

connections between field and FPSOs that corresponds to the reduced model

solution, we use the well installation schedule N ¥V,et“ from the optimal solution of

reduced models to find the Field-FPSO connection timing and subtract the
corresponding discounted connection cost from the optimal NPV of the reduced
model. The resulting NPV represents the optimal NPV of the original models in

case connection costs are relatively small.

2.6 Numerical Results

In this section we present 3 instances of the oilfield planning problem where we
consider from 3 to 10 fields while the time horizon ranges from 10 to 20 years.
The maximum number of possible FPSOs is taken 3 in all the instances. We
compare the computational results of the various MINLP and MILP models

proposed in the previous sections for these 3 instances. Table 2.1 summarizes the
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main features of these MINLP and reformulated MILP models. In particular, the
reservoir profiles and respective nonlinearities involved in the models are
compared in the table.

Table 2.1: Comparison of the nonlinearities involved in 3 model types

Model 1 Model 2 Model 3
Model Type MINLP MINLP MILP
Oil Deliverability 3 order polynomial | 3™ order polynomial Piecewise Linear
WOR 3 order polynomial - -
GOR 3 order polynomial - -
WwC - 4™ order polynomial Piecewise Linear
gc - 4™ order polynomial Piecewise Linear
Bilinear Terms N*x N*x None
x*WOR
x*GOR
MILP Reformulation Not Possible Possible Reformulated MILP

2.6.1 Instance 1

» Total Oil/Gas

I I I Production

FPSO 1 FPSO 2 FPSO 3

%=

Figure 2.3: Instance 1 (3 Fields, 3 FPSOs, 10 years)

In this instance (Figure 2.3) we consider 3 oil fields that can be connected to

3 FPSOs with 7 possible connections among these fields and FPSOs. There are a
total of 25 wells that can be drilled, and the planning horizon considered is 10
years, which is discretized into 10 periods of each 1 year of duration. We need to
determine which of the FPSO facilities is to be installed or expanded, in what
time period, and what should be its capacity of oil, liquid and gas, to which fields

it should be connected and at what time, and the number of wells to be drilled in
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each field during each time period. Other than these installation decisions, there
are operating decisions involving the flowrate of oil, water and gas from each
field in each time period. The objective function is to maximize total NPV over
the given planning horizon.

The problem is solved using DICOPT 2x-C solver for Models 1 and 2, and
CPLEX 12.2 for Model 3. These models were implemented in GAMS 23.6.3 and
run on Intel Core i7 machine. The optimal solution of this problem that
corresponds to Model 2, suggests installing only FPSO 3 with a capacity of 300
kstb/d, 420.01 kstb/d and 212.09 MMSCF/d for oil, liquid and gas, respectively,
at the beginning of time period 1. All the three fields are connected to this FPSO
facility at time period 4 when installation of the FPSO facility is completed and a
total of 20 wells are drilled in these 3 fields in that time period to start production.
One additional well is drilled in field 3 in time period 5 and there are no
expansions in the capacity of FPSO facility. The total NPV of this project is
$6912.04 M.

Table 2.2: Performance of various solvers with Model 1 and 2 for Instance 1

Model 1 Model 2

Constraints 1,357 1,997
Continuous Var. 1,051 1,271
Discrete Var. 151 151

Optimal NPV Time (s) Optimal NPV | Time (s)
Solver (million$) (million$)
DICOPT 6980.92 3.56 6912.04 3.07
SBB 7038.26 211.53 6959.06 500.64
BARON 9.0.6 6983.65 >36,000 6919.28 >36,000

Table 2.2 compares the computational results of Model 1 and 2 for this
instance with various MINLP solvers. Notice that based on the computational
experiments, we only include those global/local MINLP solvers that were
performing reasonably well as compared to the other solvers. We can observe
from these results that DICOPT performs best among all the MINLP solvers in
terms of computational time, while solving directly both Models 1 and 2. The
number of OA iterations required is approximately 3-4 in both cases, and solving

Model 2 is slightly easier than solving Model 1 directly with this solver.
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However, the solutions obtained are not guaranteed to be the global solution. SBB
is also reasonable in terms of solution quality but it takes much longer time to
solve. BARON 9.0.6 can in principle find the global optimum solution to models
1 and 2, but it is very slow and takes more than 36,000s to be within ~23% and
~10% of optimality gap for these models, respectively. Note that we use the
DICOPT solution to initialize in this case, but BARON 9.0.6 could only provide a
slightly better solution (6983.65 vs. 6980.92 and 6919.28 vs. 6912.04) than
DICOPT in more than 10 hours for both cases.

Table 2.3: Comparison of models 1, 2 and 3 with and without binary reduction

Model 1 Model 1R Model 2 | Model 2R | Model 3 | Model 3R

Constraints 1,357 1,320 1,997 1,960 3,094 3,057
Continuous

Var. 1,051 988 1,271 1,208 2,228 2,165
Discrete Var. 151 109 151 109 219 177
SOS1 Var. 0 0 0 0 120 120
NPV(million$) |  g9g0.92 704954 | 6912.04 | 6919.28 | 7030.90 | 7030.90
Time(s) 3.56 1.55 3.07 2.85 37.03 6.55

*Model 1 and 2 solved with DICOPT 2x-C, Model 3 solved with CPLEX 12.2

The performance of Models 1 and 2 are compared before and after reducing
the binary variables for connection, i.e. Models 1R and 2R, in Table 2.3. There is
one third reduction in the number of binary variables for both models. It can also
be seen that there is a significant decrease in the solution time after binary
reduction (for e.g. 1.55s vs. 3.56s for Model 1). Moreover, the reduced models
also yield better local solutions too for both the MINLP formulations. Notice that
these MINLP Models are solved with DICOPT here for comparison as it is much
faster as compared to other solvers as seen from the previous results.

The MILP Model 3 and its binary reduction Model 3R that are formulated
from Model 2 and Model 2R, respectively, solved with CPLEX 12.2 and results in
Table 2.3 show the significant reduction in the solution time after binary
reduction (6.55s vs. 37.03s) while both the models give same optimal NPV i.e.
$7030.90M. Notice that these approximate MILP models are solved to global
optimality in few seconds while global solution of the original MINLP

formulations is much expensive to obtain. Although the higher the number of
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points for the approximate MILP model the better will be the solution quality, but
we found that beyond 5 points at equal distance for the piecewise approximation
there was not much significant change in the optimal solution, while it led to large
increases in the solution time due to increase in the SOS1 variables in the model.
Therefore, we use 5 equal distance points for piecewise linearization to formulate
Model 3 and 3R for all the instances.

The global solution from the MILP approximation Model 3R gives a higher
NPV for this example as compared to solving Model 2 directly (7030.90 vs.
6912.04). Therefore, this model can potentially be used for finding global or near
optimal solution to the MINLP formulation. We fix the discrete variables coming
from Model 3R in the original Models 1 and 2 (MINLPSs) and solve the resulting
NLPs. The local solutions obtained in this manner are significantly better for
these MINLP models, i.e. 7076.62 vs. 6980.92 for Model 1 and 7004.08 vs.
6912.04 for Model 2. Notice also that no other solver could find the better
solutions directly in reasonable computational time as can be seen from Table 2.2.
Moreover, it is interesting to note that the discrete decisions that come from the
MILPs that corresponds to Model 2 seems to be optimal for Model 1 too which

ensures the close correspondence between Models 1 and 2 and its reformulations.

2.6.2 Instance 2

This is a slightly larger instance for oilfield planning problem than the
previous one where we consider 5 oil fields that can be connected to 3 FPSOs
with 11 possible connections. There are a total of 31 wells that can be drilled in
all of these 5 fields and the planning horizon considered is 20 years. Table 2.4
compares the results of Model 1 and 2 with various MINLP solvers for this
example. DICOPT still performs best even for this larger instance in terms of
solution quality and time. SBB, which relies on a branch and bound based
scheme, becomes very slow due to the increase in the number of binary variables
and problem size. BARON also becomes expensive to solve this larger instance
and could not improve the DICOPT solution that is used for its initialization for

both cases in more than 10 hours.
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Table 2.4: Comparison of various models and solvers for Instance 2

Model 1 Model 2

Constraints 3,543 5,543
Continuous Var. 2,781 3,461
Discrete Var. 477 477

Optimal NPV Time (s) Optimal NPV Time ()
Solver (million$) (million$)
DICOPT 11412.48 58.53 11204.86 18.43
SBB 11376.57 1057.68 11222.34 3309.73
BARON 9.0.6 11412.48 >36,000 11204.86 >36,000

There are significant improvements in computational times for Model 1 and
2 after binary reduction as can be seen in Table 2.5 (5.69s vs. 58.53s and 9.92s vs.
18.43s). Moreover, there are possibilities to find even better local solution too
from the reduced model as in the case of Model 2. The reduced models (Model
1R and 2R) should yield the same optimal solutions as the original models (Model
1 and 2), respectively, for small connection costs but there are slight differences
in the NPV values reported in Table 2.5 as these models are solved here with
DICOPT that gives the local solutions. The reformulated MILP after binary
reduction Model 3R becomes slightly expensive to solve as compared to finding
local solutions for the original MINLP models, but the solution obtained in this
case is the global one (within 2% optimality tolerance). Notice that the MILP
solutions can be either lower (instance 1) or higher (instance 2) than the global
optimal for MINLP models as these involve approximations of the three
functions, i.e. oil deliverability, cumulative water and cumulative gas produced.
Therefore, the resulting MILP can over or underestimate the original NPV
function. We do not present the result of Model 3 here as it gives the same NPV
as Model 3R but at a much higher computational expense since a larger number of
binary variables is involved in the model.

Note that some of the binary variables are pre-fixed in all of the models
considered based on the earliest installation time of the FPSO facilities and
corresponding limitations on the FPSO expansions, field-FPSO connections and
drilling of the wells in the fields that improves the computational performance of

these models. The solution of Model 3R can also be used to fix discrete variables
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in the MINLPs to obtain near optimal solutions to the original problem as done

for instance 1. The solutions of the NLPs obtained after fixing binary decisions in
Model 1 and 2 are 11412.48 and 11356.31 respectively. We can observe that none

of the solver in Table 2.4 could provide better NPV values than this case. Overall,

we can say that the results for this larger instance also show similar trends as what

is observed for instance 1.

Table 2.5: Comparison of models 1, 2 and 3 with and without binary reduction

Model 1 Model 1R Model 2 Model 2R Model 3R
Constraints 3,543 3,432 5,543 5,432 8,663
Continuous
Var. 2,781 2,572 3,461 3,252 6,103
Discrete Var. 477 301 477 301 451
NPV(million$) 11412.48 11335.01 1120486 | 11294.82 11259.61
Time(s) 58.53 5.69 18.43 9.92 871.80

*Model 1 and 2 solved with DICOPT 2x-C, Model 3 solved with CPLEX 12.2
2.6.3 Instance 3
Total Oil/Gas
Production

W T [

FPSO-1

Figure 2.4: Instance 3 (10 Fields, 3 FPSOs, 20 years)

In this instance we consider 10 oil fields (Figure 2.4) that can be connected
to 3 FPSOs with 23 possible connections. There are a total of 84 wells that can be

drilled in all of these 10 fields and the planning horizon considered is 20 years.
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The optimal solution of this problem that corresponds to Model 2R solved
with DICOPT 2x-C, suggests to install all the 3 FPSO facilities in the first time
period with their respective liquid (Figure 2.5-a) and gas (Figure 2.5-b) capacities.
These FPSO facilities are further expanded in future when more fields come

online or liquid/gas flow rates increases as can be seen from these figures.

Liquid Capacity Gas Capacity

800 400

700 - 350

600 f = 300
§ 500 / 8 250 —m
g 400 /-’ f s 200 /
© 200 1 // e 502 § 100 _/ e 502

100 __/ fpso3 50 _// fpso3

0 - 0 L
1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19
Year Year
(a) Liquid capacities of FPSOs (b) Gas capacities of FPSOs

Figure 2.5: FPSO installation and expansion schedule

> Total Oil/Gas
T Production

FPSO-1 FPSO-2 FPSO-3

Year-5 Year-6 Year-4

Figure 2.6: FPSO-field connection schedule
After initial installation of the FPSO facilities by the end of time period 3,
these are connected to the various fields to produce oil in their respective time
periods for coming online as indicated in Figure 2.6. The well drilling schedule
for these fields in Figure 2.7 ensures that the maximum number of wells drilling

limit and maximum potential wells in a field are not violated in each time period t.
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We can observe from these results that most of the installation and expansions are

in the first few time periods of the planning horizon.

14
Well Drilling Schedule
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Figure 2.7: Well drilling schedule for fields
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(a) Total oil flowrates from FPSO’s (b) Total gas flowrates from FPSO’s
Figure 2.8: Total flowrates from each FPSO facility

Other than these investment decisions, the operations decisions are the

production rates of oil and gas from each of the fields, and hence, the total flow

rates for the installed FPSO facilities that are connected to these fields as can be

seen from Figures 2.8 (a)-(b). Notice that the oil flow rates increases initially until

all the fields come online and then they start to decrease as the oil deliverability

decreases when time progresses. Gas flow rate, which depends on the amount of
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oil produced, also follows a similar trend. The total NPV of the project is
$30946.39M.

Table 2.6: Comparison of various models and solvers for Instance 3

Model 1 Model 2

Constraints 5,900 10,100
Continuous Var. 4,681 6,121
Discrete Var. 851 851

Optimal NPV Time (s) Optimal NPV | Time (s)
Solver (million$) (million$)
DICOPT 31297.94 132.34 30562.95 114.51
SBB 30466.36 4973.94 30005.33 | 18152.03
BARON 9.0.6 31297.94 >72,000 30562.95 | >72,000

Table 2.7: Comparison of models 1, 2 and 3 with and without binary reduction

Model 1 Model 1R Model 2 Model 2R Model 3R
Constraints 5,900 5,677 10,100 9,877 17,140
Continuous
Var. 4,681 4,244 6,121 5,684 12,007
Discrete Var. 851 483 851 483 863
SOS1 Var. 0 0 0 0 800
NPV(million$) 31297.94 30982.42 30562.95 | 30946.39 30986.22
Time(s) 132.34 53.08 114.51 67.66 16295.26

*Model 1 and 2 solved with DICOPT 2x-C, Model 3 with CPLEX 12.2

Tables 2.6-2.7 represent the results for the various model types considered
for this instance. We can draw similar conclusions as discussed for instances 1
and 2 based on these results. DICOPT performs best in terms of solution time and
quality, even for the largest instance compared to other solvers as can be seen
from Table 2.6. There are significant computational savings with the reduced
models as compared to the original ones for all the model types in Table 2.7. Even
after binary reduction of the reformulated MILP, Model 3R becomes expensive to
solve, but yields global solutions, and provides a good discrete solution to be
fixed/initialized in the MINLPs for finding better solutions.

The optimal NPV that come from the Models 1 and 2 after fixing discrete
variables based on the MILP solution (even though it was solved within 10% of
optimality tolerance) are $31329.81 M and $31022.48M, respectively. These are

the best solutions among all other solutions obtained in Table 2.6 for the
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respective MINLPs. Notice that although the advantage from using the MILP
formulation in terms of the NPV value is not very significant for this instance
since the required solution time is large, but it does yield a global solution that is
difficult to obtain for the MINLPSs. In addition, when we increase the complexity
of the basic deterministic model such as to fiscal contracts and/or stochastic
model, the advantage of MILP formulation becomes more apparent due to the
availability of the robust MILP solvers compared to MINLP.

Remarks

(a) The optimal NPV of both models 1 and 2 are very close (within ~1-3%) for all
the instances. Moreover, the difference is even smaller when we compare the
global solutions and they tend to have identical discrete decisions at the
optimal solution. Hence, in principle we can use either of these models for the
oilfield problem directly or with some other method. However, since Model 1
involves a large number of non-convexities because of the extra bilinear terms
in equations (2.20)-(2.21), it is more prone to converging to local solutions,
and may need good initializations as compared to Model 2. Moreover, as
opposed to Model 2, it is not possible to convert Model 1 to an MILP model
that can be solved to global optimality.

(b) Model 2 is more accurate in terms of physical representation of water and gas
flow profiles than Model 1 as explained in Appendix B, especially when the
length of each time period is large. Model 1 usually overestimates the NPV as
it assumes constant GOR and WOR for a time period t while extracting the oil
from a field during that time period, where WOR and GOR are calculated
based on the fractional recovery by the end of time period t-1, i.e. point
estimates are used for WOR and GOR. On the other hand, Model 2 estimates
the cumulative water and gas flow rates at the end of time period t taking into
account the amount of oil produced in that time period and variability of
WOR and GOR during current time period t i.e. average values of WOR and
GOR over the time period. Because of the general trend of increasing WOR
and GOR as time progresses and hence underestimating the actual water and

gas flow rates in Model 1 during each time period t due to point estimates for
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WOR and GOR at the end of time t-1, it yields a slightly higher NPV as can
be seen from the solutions obtained. In contrast, if WOR and GOR are
estimated at the end of time period t instead t-1, the solutions from Model 1

should give lower NPV values as compared to Model 2.

2.7 Conclusions

In this chapter, we have proposed a new deterministic MINLP model for offshore
oilfield infrastructure planning considering multiple fields, three components (oil,
water and gas) explicitly in the formulation, facility expansions decisions and
nonlinear reservoir profiles. The model can determine the installation and
expansion schedule of facilities and respective oil, liquid and gas capacities,
connection between the fields and FPSO’s, well drilling schedule and production
rates of oil, water and gas simultaneously in a multiperiod setting. The resulting
model yields good solutions to the realistic instances when solving with DICOPT
directly. Furthermore, the model is reformulated into an MILP using piecewise
linearization and exact linearization techniques with which the problem can be
solved to global optimality in a more consistent manner. The proposed MINLP
and MILP formulations are further improved by using a binary reduction scheme
resulting in the improved local solutions and more than an order of magnitude
reduction in the solution times. Realistic instances involving 10 fields, 3 FPSOs
and 20 years planning horizon have been solved to compare the computational
performance of the proposed MINLP and MILP formulations. The models
presented here are very general and can either be used for simplified cases (e.g.
linear profiles for reservoir, fixed well schedule etc.) or extended to include other

complexities.

Nomenclature

Indices

LT time periods, t,z €T
f field

fpso FPSO facility
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Integer Variables

well
If,t

well
Nf,t

Number of wells drilled in field f at the beginning of time period t

Number of wells available in field f for production in time period t

Binary Variables

b

fpso,t

beX

fpso,t

whether or not FPSO facility fpso is installed at the beginning of
time period t

whether or not FPSO facility fpso is expanded at the beginning of
time period t

whether or not a connection between field f and FPSO facility fpso
is installed at the beginning of time period t

whether or not a connection between field f and FPSO facility fpso

is installed

Continuous Variables

NPV
REV,

COST,
CAP,
OPER,

tot

net present value

total revenues in time period t

total costs in time period t

total capital costs in time period t

total operating costs in time period t

total oil flow-rate in time period t

total water flow-rate in time period t

total gas flow-rate in time period t

oil production rate from field f in time period t
water production rate from field f in time period t

gas production rate from field f in time period t
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ch,t

WCs fosort

OC¢ fpsor

fc, 1

well
Xf,fpso,t

Qd ,well
f, fpso,t

wc
Qf,fpso,t

gc
f, fpso,t

Xfpso,t

Wfpso,t

g fpso,t

X¢ fpso

Wf , fpso,t
g f,fpso,t

oil
prso,t

liq
prso.t

cumulative oil produced from field f by the end of time period t
cumulative water produced from field f to FPSO facility fpso by
the end of time period t

cumulative gas produced from field f to FPSO facility fpso by the
end of time period t

fraction of oil recovered from field f by the end of time period t
oil flow rate per well from field f to FPSO facility fpso in time
period t

field deliverability (maximum oil flow rate) per well for field f and

FPSO facility fpso combination in time period t

dummy variable for cumulative water produced from field f to

FPSO facility fpso by the end of time period t

dummy variable for cumulative gas produced from field f to FPSO
facility fpso by the end of time period t

total oil flow rate into FPSO facility fpso in time period t

total water flow rate into FPSO facility fpso in time period t

total gas flow rate into FPSO facility fpso in time period t

total oil flow rate from field f to FPSO facility fpso in time period t

total water flow rate from field f to FPSO facility fpso in time
period t
total gas flow rate from field f to FPSO facility fpso in time

period t
oil processing capacity of FPSO facility fpso in time period t

liquid (oil and water) capacity of FPSO facility fpso in time

period t
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gas
prso.t

oil
QI fpso,t

liq
QI fpso,t

gas
QI fpso,t

QE{L .

QEfk,

QE gas

fpso,t

Parameters
FC

fpso,t

FC

f, fpso,t
well
FCf ,t

VC”q

fpso,t

VC gas

fpso,t

gas capacity of FPSO facility fpso in time period t

oil installation capacity of FPSO facility fpso at the beginning of
time period t

liquid installation capacity of FPSO facility fpso at the beginning
of time period t

gas installation capacity of FPSO facility fpso at the beginning of
time period t

oil expansion capacity of FPSO facility fpso at the beginning of
time period t

liquid expansion capacity of FPSO facility fpso at the beginning of
time period t

gas expansion capacity of FPSO facility fpso at the beginning of

time period t

fixed capital cost for installing FPSO facility fpso at the beginning
of time period t

fixed cost for installing the connection between field f and FPSO
facility fpso at the beginning of time period t

fixed cost for drilling a well in field f at the beginning of time
period t

variable capital cost for installing or expanding the liquid (oil and

water) capacity of FPSO facility fpso at the beginning of time
period t

variable capital cost for installing or expanding the gas capacity of

FPSO facility fpso at the beginning of time period t
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oc/™

olokis
REC,

well,oil
U f, fpso

UOil

fpso

Uliq

fpso

U gas

fpso

UNtwe“

well
ul,

MWC

f, fpso

M ¥

f, fpso

Ot

B

operating cost for per unit of liquid (oil and water) produced in

time period t
operating cost for per unit of gas produced in time period t

total amount of recoverable oil from field f

Upper bound on the oil flow rate per well from field f to FPSO
facility fpso
Upper bound on the installation or expansion of oil capacity of a

FPSO facility

Upper bound on the installation or expansion of liquid capacity of

a FPSO facility

Upper bound on the installation or expansion of gas capacity of a

FPSO facility

Maximum number of wells that can be drilled in field f during

planning horizon T

Maximum number of wells that can be drilled during each time

period t

Maximum cumulative water that can be produced for a field-FPSO

connection

Maximum cumulative gas that can be produced for a field-FPSO

connection

lead time for initial installation of a FPSO facility

lead time for expansion of an earlier installed FPSO facility
Maximum fraction of the initial built FPSO capacities that can be
expanded

price of oil in time period t

price of gas in time period t
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d; discounting factor for time period t
Ot number of days in time period t
anbo.codq coefficients for polynomials used for reservoir models
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Chapter 3

Modeling and computational
strategies for optimal development
planning of offshore oilfields under

complex fiscal rules

3.1 Introduction

In this chapter, we address the optimal development planning of offshore oil and
gas fields under complex fiscal rules considering the multi-field site deterministic
model presented in chapter 2 as a basis. The proposed fiscal model considers the
trade-offs between optimal investment and operating decisions that correspond to
the simple NPV based model and resulting overall NPV for the oil company after
paying government share, and yields improved decisions in a more realistic

setting for the enterprise (see Figure 3.1).

Oilfield Design and Operational
planning model

A
Decisions, Contractor’s NPV
Total NPV after govt. share
A 4
Fiscal calculations including

royalty, cost oil, profit share, etc.

Optimal {)ecisions
and Contractor’s NPV

Figure 3.1: Qilfield Planning with fiscal considerations
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3.1.1 Type of Contracts

When an oil company needs to sign a contract or agreement with the host
government to explore and develop the petroleum resources in a country, there are
a variety of contracts that are used in the offshore oil and gas industry (Babusiaux
et al., 2007; Johnston, 1994; Sunley et al., 2002; and Tordo, 2007). Although the
terms of a particular agreement are usually negotiated between both the entities in
practice, these contracts can broadly be classified into two main categories:

(i) Concessionary System

A concessionary (or tax and royalty) system usually involves royalty, cost
deduction and tax. Royalty is paid to the government at a certain percentage of the
gross revenues. The net revenue after deducting costs becomes taxable income on
which a pre-defined percentage is paid as tax which may include both corporate
income tax and a specific profit tax. The total contractor’s share involves gross
revenues minus royalty and taxes in each year. The basic difference as compared
to the production sharing agreement is that the oil company keeps the right to all
of the oil and gas produced at the wellhead and pays royalties, bonuses, and other
taxes to the government. These contracts are used in countries such as Canada,
USA and the UK.

(i1) Production Sharing Agreements (PSAS)

The revenue flow in a typical Production Sharing Agreement can be seen as in
Figure 3.2 (World Bank, 2007). First, in most cases, the company pays royalty to
the government at a certain percentage of the total oil produced. After paying the
royalties, some portion of the remaining oil is treated as cost oil by the oil
company to recover its costs. There is a ceiling on the cost oil recovery to ensure
revenues to the government as soon as production starts. The remaining part of
the oil, called profit oil, is divided between oil company and the host government
at a certain percentage. The oil company needs to further pay income tax on its
share of profit oil. Hence, the total contractor’s (oil company) share in the gross
revenue comprises of cost oil and contractor’s profit oil share after tax. The other
important feature of a PSA is that the government keeps rights to the oil produced

at wellhead, and transfers title to a portion of the extracted oil and gas to oil
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company that works as a contractor at an agreed delivery point. Notice that the
cost oil limit is one of the key differences with a concessionary system. These
contracts are used in countries such as Cambodia, China, Egypt, India, Angola
and Nigeria.

Production
/V <
Cost Qil Profit Oil Royalty
v v
Contractor’s Government’s
Share Share
) 4 \ 4
Contractor’s Income
after-tax Share Tax

v v ) 4 v ) 4
Total Contractor’s Share Total Government’s Share

Figure 3.2: Revenue flow for a typical Production Sharing Agreement

3.1.2 Type of Fiscal terms for Concessionary Systems and PSA
The specific rules defined in such a contract (either concessionary or PSA,
hybrid) between oil company and host government determine the profit that the
oil company can keep, as well as the royalties and profit oil share that are paid to
the government. These profit oil fractions, royalty rates define the fiscal terms of
a particular contract and can be either of the following two types:

(i) Regressive Fiscal Terms:
These fiscal terms are not directly linked to the profitability of the project, e.g.
fixed percentage of royalty or profit oil share for the entire planning horizon.
Therefore, the so called tier structure (levels) is usually absent.

(ii) Progressive (Sliding scale) Fiscal Terms:
In this case fiscal terms (e.g. profit oil shares, royalty rates) are based on the
profitability of the project, i.e. these terms penalize higher production rates, where

cumulative oil produced, daily production, rate of return, R-factor, are the typical

63



profitability measures that determine the tier structure (levels) for these contract
terms. For instance, if the cumulative production is in the range of first tier,

0<xc, <200, the contractor receives 50% of the profit oil, while if the cumulative
production reaches in tier 2,200<xc, <400, the contractor receives 40% of the
profit oil, and so on (see Figure 3.3). In practice, as we move to the higher tier, the
percentage share of contractor in the total production decreases. Notice that this

tier structure is a step function, which requires additional binary variables to
model and makes the problem harder to solve.

100% -
80% -
60% -

o _‘_\_I—

20% -

0%

% Profit oil Share of
Contractor

0 200 400 600 800 1000
Cumulative Oil Production (MMbbl)

Figure 3.3: Progressive profit oil share of the contractor

3.1.3 Ringfencing Provisions

Total Oil/Gas
T T T Production

FPSO 1 FPSO 2 FPSO 3

Ringfence 1

( Field 4 h

Figure 3.4: 2 Ringfences for a set of 5 Fields
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Ringfencing is an important concept that is usually part of the fiscal contracts
and imposed by the government, which affects the cash flows over the planning
horizon. In a typical ringfencing provision, investment and operational costs for a
specified group of fields or block can only be recovered from the revenue
generated from those fields or block (see Figure 3.4). It means that the set of
particular fields are “ringfenced”. Therefore, income derived from one contract
area or project cannot be offset against losses from another contract area or
project. In financial terms, a ringfencing provision basically defines the level at
which all fiscal calculations need to be done, and restricts the oil companies to
balance the costs and revenues across various projects/blocks for minimizing the
tax burden. For example, fiscal calculations for Fields 1-3 (Ringfence 1) and Field
4-5 (Ringfence 2) in Figure 3.4 cannot be consolidated at one place. Notice that in
general a field is associated to a single ringfence, while a ringfence can include
more than one field. In contrast, a facility can be connected to multiple fields from
different ringfences for producing oil and gas. Ringfencing provisions are more
popular in production sharing contracts.

The main motivation of including ringfencing provisions by the host
governments is to protect the tax revenues. However, the existence and extent of
ringfencing affects the overall level of tax receipts. The more restrictive
ringfencing provisions (e.g. individual field is separately ringfenced) can lead to
situations that may not be economically viable to develop/operate for the oil
companies. On the other hand, the relaxation of the ringfencing provisions (e.g.
cost and revenues can be shared across any field for tax calculations) may lead to
significant tax saving for the oil companies since revenues from the favorable
fields can be used to offset the losses from other fields. Therefore, the number of
ringfences and distribution of the fields among ringfences involve various trade-
offs that include productivity of the field, crude quality, reservoir size,
development costs etc., so that these fiscal provisions are neither very
conservative nor very relaxed. Moreover, each ringfence can be assigned a

different cost recovery limit, profit sharing rate etc. based on these factors.
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Ringfencing provisions and income tax rates are usually legislated in the
country and do not provide opportunity for negotiation, while cost recovery and
profit sharing rates can be subject to negotiation. Therefore, from the perspective
of the oil companies, since they have limited control over the ringfencing
provisions and distribution of fields among various ringfences, they usually try to
include many fields from multiple ringfences in the model for making investment
and operational decisions that allows to consider the trade-offs among these fields
and/or ringfences. In general, it is better to have more fiscal aspects of a contract
that are subject to negotiation, since flexibility is often required to offset
differences between basins, regions, and license areas within a country (Johnston,
1994) .

The above fiscal contracts, terms and ringfencing provisions are the
backbone of most of the contracts that are currently used, and can have significant
impact on the revenues. In addition, there can be some other fiscal considerations
for a particular contract of interest, but for simplicity we only consider the
important financial elements as described above. Notice that the royalties and/or
government profit oil share that result from a particular contract can represent a
significant amount of the gross revenues. Therefore, it is critical to consider these
contract terms explicitly during the oilfield planning phase to assess the actual
economic potential of such a project.

This chapter is organized as follows: we first describe the oilfield planning
problem with fiscal considerations in section 3.2 and present a general model in
section 3.3 that includes progressive fiscal terms and ringfencing provisions. The
ways to derive a specific contract from the general model are highlighted in the
next section. In section 3.5, we propose new reformulation, relaxation and
approximation schemes to reduce the computational burden for the problems in
this class. Numerical results of several instances of the development planning

problem under complex fiscal rules are reported in section 3.6.
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3.2 Problem Statement

We consider the offshore oilfield infrastructure as in chapter 2 that consists of a
set of oil fields F = {1,2,...} for producing oil using a set of FPSO facilities,
FPSO = {1,2,...} as seen in Fig. 3.4. Each oilfield consists of a number of
potential wells to be drilled using drilling rigs, which are then connected to these
FPSO facilities through pipelines to produce oil. We assume that the location of
each potential FPSO facility and its possible connections to the given fields are
known. Notice that each FPSO facility can be connected to more than one field to
produce oil, while a field can only be connected to a single FPSO facility due to
engineering requirements and economic viability of the offshore oilfield
development projects. There can be a significant amount of water and gas that
comes out with the oil during the production process that needs to be considered
while planning for FPSO capacity installations and expansions. The water is
usually re-injected after separation from the oil, while the gas can be sold in the
market. In this case we do not consider water or gas re-injection, i.e. we consider
natural depletion of the reserves. For simplicity, we only consider FPSO facilities.
The proposed model can easily be extended to other facilities such as tension leg
platforms (TLPs).

In addition, there are fiscal aspects that need to be accounted for.
Particularly, we consider the cost recovery ceiling that is linked to gross revenues,
profit oil share and taxes as the main elements of the fiscal terms (see Figure 3.2).
Progressive (sliding scale) profit share of the contractor is also considered that can
be linked to any of the profitability measures, e.g. cumulative oil produced, daily
oil production, R-factor, IRR, where I = {1,2,...} is the set of corresponding tiers
for this sliding scale. The definition of R-factor can be contract specific but in its
most general form, it is calculated as the ratio of the contractor’s cumulative
revenue after taxes and royalty to the contractor’s cumulative cost (Kaiser and
Pulsipher, 2004). On the other hand, the internal rate of return (IRR) on an
investment or project is defined as the "annualized effective compounded return
rate” or "rate of return” that makes the net present value of the cash flows (both

positive and negative) from a particular investment equal to zero. In general, as
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values of the above profitability measures increase, the profit oil share of the
contractor decreases.

Notice that we do not consider explicit royalty provisions here as cost oil
ceiling and royalties both are usually not imposed simultaneously in a PSA
contract. However, including royalty provisions with cost oil ceiling is
straightforward. A set of ringfences RF = {1,2,...} among the given fields is
specified (see Figure 3.4) to ensure that fiscal calculations are to be done for each
ringfence separately. These ringfences may or may not have the same fiscal rules.
Notice that, the fiscal terms considered here collectively define a general
progressive PSA with ringfencing provisions. The variety of other contracts can
be derived as a special case from these rules. Notice that for simplicity, the cost
recovery ceiling fraction and tax rates are assumed to be fixed percentages (no
sliding scale). However, for the problems where these fiscal terms are also
progressive, a similar approach as used for progressive profit oil fraction can
directly be applied.

The objective is to determine the optimum investment and operation
decisions to maximize the contractor’s NPV for a long-term planning horizon
after paying the government share based on the above fiscal considerations. The
planning horizon is discretized into a number of time periods t, typically each
with 1 year of duration. Investment decisions in each time period t include, which
FPSO facilities should be installed or expanded, and their respective installation
or expansion capacities for oil, liquid and gas, which fields should be connected
to which FPSO facility, and the number of wells that should be drilled in a
particular field f given the restrictions on the total number of wells that can be
drilled in each time period t over all the given fields. Operating decisions include
the oil/gas production rates from each field f in each time period t. It is assumed
that the installation and expansion decisions occur at the beginning of each time
period t, while operation takes place throughout the time period. There is a lead
time of I, years for each FPSO facility initial installation, and a lead time of I,

years for the expansion of an earlier installed FPSO facility. Once installed, we
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assume that the oil, liquid (oil and water) and gas capacities of a FPSO facility
can be expanded only once.

Field deliverability, i.e. maximum oil flowrate from a field, water-oil-ratio
(WOR) and gas-oil-ratio (GOR) are approximated by a cubic equations (a)-(c) as
in the previous chapter, while cumulative water produced and cumulative gas
produced from a field are represented by fourth order separable polynomials, eg.
(d)-(e), in terms of the fractional oil recovered from that field, respectively.
Notice that these fourth order polynomials correspond to the integration of the
cubic equations for WOR and GOR as explained in chapter 2. The motivation for
using polynomials for cumulative water produced and cumulative gas produced,
eq. (d)-(e), as compared to WOR and GOR, eq. (b)-(c), is to avoid bilinear terms,
eq. (H-(g), in the formulation and allow converting the resulting model into an
MILP formulation using piecewise linear approximations. Furthermore, all the
wells in a particular field f are assumed to be identical for the sake of simplicity
leading to the same reservoir profiles, eq. (a)-(g), for each of these wells.

QY =a ,(fc,)® +b ((fc;)* +c , fc, +d, i (a)
wor, =a,, (fc;)*+b,, (fc;)* +c,, fc, +d,, Vf (b)
gor, =a, (fc,)®+b,, (fc;)*+c,, fc, +d,;,  Vf (©)
we, =a, , (fc,)* +b, , (fc,)* +c, ; fc? +d, , fc, Vf (d)
gc, =ag . (fc,)* +by ( (fc,)® +c,  fc? +dg , fc, Vf (e)
W, = WOr; .X, i )
g = gor; .x; i ()

A general MINLP model for oilfield development planning with fiscal
considerations is presented next based on the infrastructure, fiscal terms and

reservoir characteristics described in this section.

69



3.3 Qilfield Development Planning Model

(a) Models without fiscal considerations:

In chapter 2, we proposed efficient multiperiod MINLP models (Models 1 and 2)
for oilfield infrastructure planning problem described above without fiscal
considerations. Model 2 is also reformulated into an MILP (Model 3) to solve it
to global optimality. These models were further reduced (Models 1R, 2R and
3R) by neglecting the timing of the piping investments to improve the
computational efficiency. The basic features of these models can be summarized
as follows:

Model 1: MINLP based on WOR, GOR and corresponding bilinear terms

Model 2: MINLP based on separable functions for cumulative water and
cumulative gas produced derived from integration of WOR and GOR expressions
Model 3: Derived from MINLP Model 2 using piecewise linearization and exact
linearization techniques

Model 1R, 2R and 3R: Derived from corresponding Models 1, 2, and 3,
respectively, using binary reduction scheme that relies on the fact that connection
costs are much smaller as compared to other investment costs.

Based on the computational experience in the previous chapter, Model 3R is
the most efficient as it can directly be solved to global optimality in reasonable
time as compared to other models. Furthermore, its solution can be used to fix the
design decisions in the MINLP models to obtain near optimal solutions of these

models.

(b) Proposed Models with fiscal considerations:

In this section, we incorporate the complex fiscal rules in the above
MINLP/MILP models. Particularly, we consider the progressive PSA with
ringfencing provisions that is the most general form of fiscal terms. The proposed
models consider the trade-offs involved between investment and operations
decisions and resulting royalties, profit shares that are paid to the government, and

yield the maximum overall NPV for the contractor (see Figure 3.1) due to
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improved decisions. The indices, variables and parameters used in the model are
summarized in Appendix C.

(i) Objective Function: The objective function is to maximize total NPV of the
contractor as in (3.1), which is the difference between discounted total
contractor’s gross revenue share and total cost (total capital plus operating costs)
over the planning horizon (3.2). The total contractor’s share in a particular time
period t is the sum of the contractor’s share over all the ringfences as given in
equation (3.3). Similarly, constraints (3.4) and (3.5) represent the total capital and
operating expenses in time period t, which is the sum of respective costs over all

the ringfences in that time period.

Max NPV (3.1)
NPV =>dis, - (TotalConSh* —CAR™ —OPER”) (3.2)
"
TotalConSh® = TotalConSh, , vt (3.3)
rf
CAR™ = ;CAPﬁ . vt (3.4)
OPER/™ = > OPER, , vt (3.5)
rf

(if) Capital Costs: The overall capital expenses associated to a ringfence rf
contains two components as given in equation (3.6), see Figure 3.4. One capital
cost component, equation (3.7), is field specific and accounts for the connection
costs between a field and a FPSO facility, and cost of drilling the wells for each of
the field in that ringfence rf, i.e. set F, for each time period t. The second
capital cost component for a ringfence is FPSO specific as given in equation (3.8),
and it depends on the capital expenses for the corresponding FPSO facilities that

are installed during the planning horizon.

CAP; , =CAPL;  +CAP2, vrf,t (3.6)
CAPL; , ZZFCf o0t fpsot +ZFC¥V?” ¥Vetll vrf,t (3.7)
Frf fpSO rf

71



CAP2, = > DFPSOC . vrf t (3.8)

fpso

The total cost of an FPSO facility (3.9) consists of fixed installation costs,
variable installation and expansion costs corresponding to liquid and gas
capacities. Each FPSO facility can be connected to multiple fields from different
ringfences as can seen from Figure 3.4. Therefore, to calculate the second cost
component in (3.8) for a specific ringfence these FPSO costs need to be
disaggregated as in (3.10) over various fields (and therefore ringfences as in
(3.11)) based on the size of the fields, where set Frys, is the set of all the fields that
can be connected to FPSO facility fpso. Constraint (3.12) sets the binary variable

b t0 1 only if that field-FPSO connection comes online during the given

planning horizon. This binary variable is further used in constraint (3.13) to
ensure that the disaggregated FPSO cost can only be accounted for a field if that
field is connected to the FPSO facility. Constraint (3.14) calculates the value of
disaggregated FPSO cost for a specific field based on the ratio of the size of that
field to sum of the total field sizes that are connected to that FPSO facility during
given planning horizon. Notice that only those fields sizes are considered for

calculations that are actually connected to that FPSO facility, i.e. for which the
binary variable b{";, equals 1. In general, we consider a long planning horizon

for the development planning in which the fields may not be depleted completely
during this time horizon. However, the installed FPSO facilities and connections
usually remain in operation until it becomes uneconomical to produce from the
given fields, which may exceed few years over the time horizon considered in the
planning model. Therefore, it allows us to disaggregate the FPSO costs over the
various ringfences based on the recoverable volume of the oil from a field as
described above to be sufficiently accurate and computationally efficient by

avoiding nonlinearities.

FPSOC =[FCFPS°bFPS°+VC'quSO‘t(QI”q +QE! )+VC¥ (QI¥ +QE®™ )]

fpso,t ™ fpso,t fpso,t fpso,t fpso,t fpso,t fpso,t

Vvfpso,t (3.9)

fpso,t
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FPSOC ., = > DFPSOC {'{ vipso,t  (3.10)
Fioso
DFPSOC,; 10 = O, DFPSOC "4 | vrf, fpso,t (3.11)
Frf
b?rjfpso = zbf,fpso,t Vf ’ fpSO (312)
t
DFPSOC {5, <M -b" vf, fpso,t  (3.13)
on
pFpsoc e~ Pl RECT  ppone
. fpso.t Zb?? oo - REC. fpso.t vf, fpso,t (3.14)
f'eFfps0

Constraint (3.14) can be re-written as constraint (3.15), which can be further

simplified by setting the positive variables ZD{'%’,, =b{" ., - DFPSOC{"{%,, and
ZD fp0r :b??fpso-FPSOCfpSOYt that yields constraint (3.16). Due to the bilinear

terms involving binary variables b{"

o WE perform exact linearization, Glover

(1975), for defining the variables ZD/" .. and ZD; (... as in constraints (3.17)-

(3.20) and (3.21)-(3.24), respectively, which in fact is equivalent to the convex

hull of the corresponding disjunction of the nonlinear form.

D b - DFPSOC {5, - REC,. =b?" - FPSOC ., , - REC,
f'eF e
v, fpso,t (3.15)
f;zm!ﬂ?fpw,t -REC;. =ZDy (6, - REC, vf, fpso,t (3.16)
F o
ZD{ e +ZDL{Y o =DFPSOC{%, . Vf, fpso,t, f'e Fr (3.17)
ZD{ o SU b vf, fpso,t, f'e Fry,  (3.18)
ZD1{* o U -(L—b" ) v, fpso,t, f'e Fry,  (3.19)
ZD{% s =0,ZDL5 =0 vf, fpso,t, f'e Fy (3.20)

73



ZDy; 1 +ZDL¢ (o = FPSOC ¢, VT, fpso,t (3.21)
ZD; tpor <U b vf, fpso,t (3.22)
ZDL e <U - (1—Db{") vf, fpso,t (3.23)
ZDy (ot 20,ZD1¢ 4, =0 VT, fpso,t (3.24)

(iii) Operating Costs: The total operating expenses that correspond to ringfence
rf , eq. (3.25), are the operation costs corresponding to the total amount of liquid
and gas produced in each time period t from that ringfence.

OPER, , =&[0C!H (X, + W) +OC&g, |  wrf,t  (325)

(iv) Revenues: The gross revenues (3.26) in each time period t for a ringfence rf,
are computed based on the total amount of oil produced and its selling price,
where total oil flow rate in a time period t for ringfence rf, is calculated as the sum
of the oil production rates over all the fields in that ringfence, i.e. set F, as given
in equation (3.27). Given that all the fiscal terms are defined on the basis of total
oil produced, for simplicity we only consider the revenue generated from the oil
sales, which is much larger in general as compared to the revenue from gas. In
practice, due to large transportation costs involved in shipping gas from offshore
locations, it is usually re-injected or flared, if the gas revenue represents a small
fraction of the oil revenues. However, extension to include the gas sales and/or

fiscal terms associated is straightforward if the gas revenues are substantial.

REV, , = S, X1 vrf,t (3.26)

Xt = D Xp ¢ vrf,t (3.27)
Frf

(iv) Total Contractor Share: The total contractor share that corresponds to

ringfence rf in time period t is calculated in constraint (3.28) as the sum of
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contractor’s profit oil share for that ringfence (after paying income tax) and the
cost oil that it keeps to recover the expenses. The contractor needs to pay income-
tax on its profit oil share. Therefore, the contractor’s profit oil share before tax is
the sum of contractor’s profit oil share after tax and income tax paid as in

constraint (3.29).

TotalConSh, , = ConShi""™ +CO, vrf,t (3.28)

ConSh ™ = ConShi""™ + Tax, , vrf,t (3.29)

The contractor’s share before tax in each time period t is some fraction of the
total profit oil during that period t for ringfence rf. Note that we assume here that
this fraction, which is called profit oil fraction( ), is based on a decreasing

sliding scale system, where i is the index of the corresponding tier. The sliding
scale system considered here is linked to the cumulative amount of oil produced

XC + by the end of that time period t from ringfence rf, see Figure 3.5. The other

variables for this type of sliding scale system could be for instance the
contractor’s IRR or R-factor. Therefore, for possible levels i (i.e. tiers) of
cumulative amount of oil produced by the end of time period t, the corresponding

contractor’s profit oil share, Figure 3.6, can be calculated from disjunction (3.30).

In particular, variable Z;;, in the disjunction will be true if cumulative oil

produced in time period t for a ringfence rf, lies between L?f",i and Uﬁi,li , Le. tier i

is active in that time period t and corresponding profit oil fraction fis used for
calculating the contractor’s profit oil share for ringfence rf. This disjunction
(3.30) can further be rewritten as integer and mixed-integer linear constraints
(3.31)-(3.38) using the convex-hull formulation (Raman and Grossmann, 1994).
The solution time with the big-M formulation was much higher as compared to
convex-hull formulation due to its weaker LP relaxation. Notice that the binary

variables Z ;. can also be represented as SOS1 variables. However, we did not
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observe any specific improvements in the computational time with this alternate

approach.

[ Tier]

Tier2 ConSh ;"™

Tier3

Tier i

Figure 3.5: Sliding scale profit oil fraction
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Figure 3.6: Contractor’s share of profit oil
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The cumulative amount of oil produced from a ringfence rf by the end of
time period t is calculated in constraint (3.39) as the sum of the cumulative
amount of oil produced by that time period from all the fields associated to that

ringfence.

XCyi o= D XC{p" vr t (3.39)
Frf

The tax paid by the contractor on its profit oil share depends on the tax rate (

f,ff’ff) as in constraint (3.40), which is a given parameter assumed to have a fixed

value.

Tax, = fi"} -ConShee ™™ vrf t (3.40)

Constraint (3.41) states that total profit oil in time period t for a ringfence rf,
is the portion of the gross revenue that remains after subtracting the cost oil in that
period t.

PO, , =REV, ,—-CQOy vrf,t (3.41)

The portion of the total revenues that the oil company can claim for cost
recovery, i.e. cost oil, is normally bounded above by the so-called “cost recovery
ceiling” or “cost stop”. Therefore, the cost oil in time period t for a ringfence rf,
constraint (3.42), is calculated as the minimum of the cost recovery in that time

period and maximum allowable cost oil (cost recovery ceiling). The cost recovery
ceiling can be a fixed fraction (0< f} <1) of the gross revenue (Kaiser and
Pulsipher, 2004) or it might be based on a sliding scale system. We assume here
that the fraction f,fC,Ff is independent of project economics, i.e. a fixed parameter.

Constraint (3.42) can further be rewritten as mixed-integer linear constraints
(3.43)-(3.48). Notice that equation (3.42) can also be represented as a disjunction
and its corresponding convex-hull formulation. However, based on our
computational experience, we observed that using the convex-hull instead of the

big-M constraints, (3.43)-(3.48), was much slower due to additional continuous
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variables that were required to model the problem, whereas the LP relaxation was
almost identical.

CO, , =min(CRy ,, f -REV, ,) vrf,t (3.42)
CO;  <CR; +M(@1-bg’) vrf,t (3.43)
CO;,=2CR,,—M(1-b) vrf,t (3.44)
COy , < f{iREV,  +M -b, vrf,t (3.45)
COy, , = fiREV,  —M -b?, vrf ,t (3.46)
CO;  <CRy vrf,t (3.47)
COy , < f i REV, vrf ,t (3.48)

Cost recovery in time period t for a ringfence rf, constraint (3.49), is the sum
of capital and operating costs in that period t and cost recovery carried forward
from previous time period t-1. Any unrecovered cost (that is carried forward to
the next period) in time period t for a ringfence rf, is calculated as the difference
between the cost recovery and cost oil in time period t as given in constraint
(3.50). Notice that constraints (3.43)-(3.50) state that any capital and operating
costs that are not recovered in the form of cost oil due to cost recovery ceiling in
any time period t for a ringfence rf, are carried forwarded to the next time period
for the cost recovery purposes.

CR; =CAP;  +OPER/  +CRF; ., vrf,t (3.49)

CRF, , =CR, ,—CO,, vrf ,t (3.50)

Constraints (3.1)-(3.13), (3.16)-(3.29), (3.31)-(3.41), (3.43)-(3.50) are linear
and mixed-integer linear constraints that correspond to the fiscal part of the
problem. Notice that we also have the non-negativity restriction on all of the

variables involved in these constraints, except NPV, as revenues, costs, tax, profit
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share, etc., that cannot be less than zero in any time period. These fiscal
constraints can be included in either of the MINLP/MILP formulations in the
previous chapter which corresponds to the reservoir constraints, field-FPSO flow
constraints, FPSO capacity constraints, well drilling limitations and logic
constraints.

The resulting oilfield infrastructure planning models with fiscal
considerations (Models 1F, 2F and 3F) correspond to MINLP (for Models 1 and
2) or MILP (for Model 3) based on the type of reservoir profiles or their
approximations used, which are described in chapter 2. Table 3.1 summarizes the
main features of the proposed MINLP and MILP models with fiscal
considerations. Notice that Models 1-3 are the simple NPV based models in
Figure 3.1, while Models 1F-3F consider the fiscal aspects described above and
associated trade-offs during planning.

Table 3.1: Comparison of the proposed oilfield planning models

Model 1F Model 2F Model 3F
Model Type MINLP MINLP MILP
Qil Deliverability 3" order polynomial 3 order polynomial Piecewise Linear
WOR 3 order polynomial
GOR 3 order polynomial -
we - 4™ order polynomial Piecewise Linear
gc - 4™ order polynomial Piecewise Linear
Bilinear Terms N*x N*x None
x*WOR
x*GOR
MILP Reformulation Not Possible Possible Reformulated MILP
Fiscal Calculations Yes Yes Yes

It should be noted that the fiscal part of the problem only involves
calculations as in constraints (3.1)-(3.13), (3.16)-(3.29), (3.31)-(3.41), (3.43)-
(3.50) for a given set of investment and operational decisions. In particular, all
fiscal variables (cost oil, profit oil, tax etc.) are dependent variables that are pre-
defined functions of costs and revenues (or flows) as can also be seen from Figure
3.1, and hence the total contractor’s share is also a function of costs and revenues,
eq. (3.51). However, including the fiscal part in the problem provides a way to
make investment and operations decisions that are also optimal in terms of fiscal

aspects.
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TotalConsh, , = f (COST, ,,COST, ,,....COST, ;;REV, ,,REV, ,....REV, ,)

vt (3.51)

Remarks:

The proposed non-convex MINLP models (Model 1F and 2F) for offshore oilfield
planning with fiscal rules involves nonlinear non-convex constraints due to
reservoir profiles that can lead to suboptimal solutions when solved with an
MINLP method that assumes convexity (e.g. branch and bound, outer-
approximation; see Grossmann, 2002). However, the MILP formulation (Model
3F) corresponds to Model 3 with fiscal constraints and can be solved to global
optimality. The computational efficiency of the proposed MINLP and MILP
models can be further improved by neglecting the timing of the piping
investments. In particular, Model 1RF, 2RF and 3RF can be derived from
corresponding Models 1R, 2R, and 3R, respectively, that are described in the
previous chapter by including the fiscal constraints, (3.1)-(3.13), (3.16)-(3.29),
(3.31)-(3.41) and (3.43)-(3.50).

In summary, Model 3RF, which is an MILP and derived from Model 3R,
corresponds to the oilfield planning with fiscal considerations after binary
reduction, is most efficient as it can be directly solved to global optimality in
reasonable time as compared to other models described above. Moreover, its
solution can also be used to fix the investment decisions in the MINLP models to
obtain the near optimal solution of the original problem. Therefore, we use Model
3RF as a basis for the proposed reformulations, solution strategies and
computational experiments presented in the next sections. Notice that these
approaches are directly applicable to the other models, but it would be much
expensive to either solve (e.g. Model 3F) or obtain good quality solutions (Model
1F, 1RF, 2F, 2RF) for these models directly as compared to Model 3RF as per the
computational experience on the respective non-fiscal models in chapter 2.

The deterministic models with fiscal considerations proposed here are very

general, and can either be used for simplified cases (e.g. linear profiles for
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reservoir, fixed well schedule, single field site, etc.), or be extended to include
other complexities such as uncertainties, or more details of the specific contracts.

3.4 Deriving Specific Contracts from the Proposed Model

In the previous section, we proposed a general oilfield planning model with fiscal

rules (Model 3RF). The model is an extension of the Model 3R (MILP) from

chapter 2 to include progressive PSA terms with ringfencing provisions that
encapsulates a variety of contracts and fiscal terms that are used in practice.

Therefore, the fiscal models for specific cases based on the type of contracts,

fiscal terms and other provisions can be derived from this general formulation.

For instance, we reduce the general model (Model 3RF) to a variety of specific

cases as follows:

(a) No-ringfencing Provisions: The fiscal terms without ringfencing provisions
can be trivially considered as the specific case of the proposed model with
only 1 ringfence. In financial terms, it represents the consolidation of the
fiscal calculations for the various fields at one place. Therefore, constraints
(3.1)-(3.50) can be written without index for ringfence rf in this case.
Moreover, as all the given fields belong to the same ringfence, the costs and
revenues over various ringfences need not be disaggregated. In particular,
constraints (3.6)-(3.24) reduce to the simple total capital cost equation (3.52)

which is same as it was used in the models without fiscal calculations.

CAPt=[FCFP5°bFP5°+VC'fg;M(Q| s +QE™ )+VCE (QI% +QEX )]

fpso,t ™ fpso,t fpso,t fpso,t fpso,t fpso,t fpso,t
well p well
+ZZ FC+ tooDt oot +Z FCi e,
Frf fpSO Frf

vt (3.52)
(b) Concessionary System: The fiscal rules in a typical concessionary system
can be considered as the specific case of PSA where we do not have any cost

oil recovery limit and profit oil share. Therefore, only royalties, cost deduction
and taxes are involved. Royalties can be calculated as a certain fraction ( f,?™
) of the gross revenues, i. e. eq. (3.53). There are no cost ceiling provisions;

and therefore, cost oil ceiling fraction is one in equation (3.42) (i.e. f% =1),
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which yields equation (3.54). Notice that it allows to consider the total oil
produced in a given year to be recovered for the capital and operating
expenses after paying royalty. Equation (3.54) can further be rewritten as
mixed-integer linear constraints similar to (3.43)-(3.48) where f % =1. Notice
that the cost recovery term CR, , used in eq. (3.54) has the same definition as
in PSA model described earlier. Therefore, it can be represented by the
constraints (3.49)-(3.50). The remaining part of the oil after royalties and cost

oil becomes profit, eq. (3.55).

Royalty, , = f % REV, , vrf,t (3.53)
CO; , =min(CR; |, REV ,) vrf,t (3.54)
PO, = REV, , —Royalty, , —COy , vrf,t (3.55)

In addition, due to the absence of profit oil split layer in the fiscal
calculation (Figure 3.2), for concessionary system, the contractor’s share

before tax can be set as equal to the profit oil, equation (3.56), which

corresponds to the profit oil fraction as one, ( f;5, =1). Therefore, disjunction

(3.30) is not required. The company needs to pay tax on its profit, eq. (3.57),
where an effective tax rate may involve income tax and a specific profit tax,
eq. (3.58), which are assumed to have a fixed value. The resulting tax is used

to calculate the contractor’s after tax share in eq. (3.59).

ConShy ™™ = PO, , vrf,t (3.56)
Tax; , = f;y ™ ConShFi"™™ vrf,t (3.57)
et ome = 1% 4 f P vrf t (3.58)
ConShy"t"™ = ConShy" ™™ —Tax, , vt (3.59)

Notice that a particular concessionary system can also have a sliding scale
royalty rates and/or sliding scale profit tax rates to penalize the production
over a certain threshold. However, including those fiscal considerations is
straightforward based on the modeling approach presented in the previous

section for profit oil share in a typical PSA.
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(c) Regressive fiscal terms: It can be considered as a specific case of the
progressive fiscal terms with only one tier. In particular, disjunction (3.30)
and its corresponding reformulation (3.31)-(3.38) is not required in the model.
Therefore, the contractor’s share in the profit oil can directly be written in
terms of the given profit oil fraction for ringfence rf without index for tier i,
constraint (3.60). Notice that since the binary variables corresponding to the
disjunction are eliminated from the model for regressive fiscal terms, the

model is likely to solve much faster than the progressive fiscal terms.
ConShyP™™ = f . PO, vrf,t (3.60)
(d) Different Sliding scale variables: The variables that define the tier structure
for sliding scale can be contract specific. For instance, cumulative oil
produced, R-factor or IRR. Therefore, a sliding scale variable SV , for the

fiscal system of interest can be used in disjunction (3.30) that yields
disjunction (3.61), with its corresponding definition in eq. (3.62). Notice that

depending on the definition of the sliding scale variable SV . in eq. (3.62),

there is the possibility that additional nonlinearities be introduced in the

model, e.g. IRR as a sliding scale variable.
er Lt
v| ConShy ™ = £77 - PO, , vrf t (3.61)
L% <SV,  <Ug

SVis ¢ = fip o (XCys (,COST, (,REV ,...) vrf,t (3.62)

In some cases, for instance sliding scale royalties where average daily oil
production is the sliding scale variable, higher royalty rates are only
applicable on the oil production rate that is above the given threshold value in
each year, i.e. incremental sliding scale. Therefore, an effective overall royalty
should be used in disjunction (3.61) for each tier i in each time period t instead
of higher royalty rate on the total oil production. This situation mainly occurs

in the concessionary systems.
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Discussions:

1.

Including fiscal rules in simple NPV based development planning models are
traditionally assumed to be very expensive. However, this may not always be
the case. For instance regressive (only 1 tier) fiscal terms may improve the
computational performance of the model without any fiscal terms (e.g.
regressive Model 3RF vs. Model 3R, see Table 3.9), or at least perform in the
similar way. The progressive fiscal terms (tier structure as the disjunction in
(3.30)) are usually the ones most responsible for increasing the computational
time when we include the fiscal terms (see sections 3.6.2 and 3.6.3). This is
due to the additional binary variables and resulting weak relaxation, as good
bounds on the revenue, cost oil, profit oil for each time period are not known a
priori. However, due to the importance of explicitly considering the fiscal
aspects for planning optimization (see sections 3.6.1 and 3.6.2), it may be a
worthwhile effort despite the increase in the solution time.

The model with ringfencing provisions is usually much more expensive to
solve (see sections 3.6.2 and 3.6.3) than the model without any ringfence, as
binary variables for tiers as in constraints (3.31)-(3.38) are required for each
ringfence separately. In addition, the relaxation becomes even worse due to
the cost disaggregation over each ringfence and additional binary variables as
in constraints (3.6)-(3.24). Therefore, the computational efficiency of the
fiscal model with many ringfences will rely on the efficiency of solving the
model without any ringfence or just with few ringfences.

Concessionary or PSA fiscal system should have similar computational
complexity as the solution time is associated to the progressive (tier) vs.
regressive terms and ringfencing provisions that can be part of either of these
contracts. For example, a regressive PSA model can be orders of magnitude
faster than a progressive Concessionary system.

Although the proposed Model 3RF is a general formulation, the computational
time requirements may vary significantly depending on the variables that
define tiers in disjunction (3.30). Furthermore, additional nonlinearities may

be introduced in some cases, for instance the IRR as a sliding scale variable,
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that may require expensive global optimization based approaches for solving
the resulting non-convex MINLP model. However, these rules are not very

common in practice.

3.5 Computational Strategies

In this section, we propose some reformulation/approximation techniques and
solution strategies to overcome the computational expense that can arise from
incorporating the fiscal part in planning, specifically the models where
progressive fiscal terms are present. Notice that the proposed approaches and
results are presented taking Model 3RF (MILP) as a basis, where tiers are defined
on the basis of cumulative oil produced for profit oil share, disjunction (3.30), that
are widely used in practice. However, these approaches can directly be extended
to other models that are proposed and a different sliding scale variable. Notice

also that the proposed strategies are independent of ringfencing provisions.

Reformulation/Approximation Techniques

The following reformulation/approximation techniques in the proposed Model
3RF can improve its computational performance significantly:

() Tighter Formulation using additional Logic Constraints and Valid

Inequalities

The additional logic constraints (3.63) and (3.64) can be included in Model 3RF if
the sliding scale variable is a monotonically increasing function as time evolves,
e.g. cumulative oil produced. In particular, constraints (3.63) ensure that once tier
i is active in current period t, earlier tiers (i’< i) cannot be active in the future.
Similarly, constraints (3.64) state that higher tiers (i"> i) cannot to be active

before time period t if tier i is active in that period.

.

L= rA:t_'er,i',r vrf i i'<it (3.63)
t

L= T/}l_'zrf,i‘,r vrf,iLi'>i,t (3.64)

These logic constraints (3.63) and (3.64) can be expressed as integer linear

inequalities, (3.65) and (3.66), respectively, (Raman and Grossmann, 1991).
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Zyg i +Zgr. <1 vrf,i,i'<itt<z<T  (3.65)

Zyg i +Zgr. <1 vrf,i,i'>itl<z<t  (3.66)

In addition, we derive the following valid inequalities (3.67), see Appendix
D (Proposition 3.1) for derivation, that can also be included in Model 3RF where
cumulative oil produced is the sliding scale variable. The LHS of the inequality
represents the cumulative contractor share in the profit oil by the end of time

period t in terms of the oil volume, where & is the price of oil. Since, profit oil in

a given year, eq. (3.41), is the difference of total oil produced in that year less cost
oil that contractor used to recover its costs. Therefore, the RHS in (3.67)
corresponds to an upper bound on the cumulative contractor’s share in the
cumulative profit oil by the end of time period t based on the sliding scale profit
oil share and cost oil that has been recovered. In particular, the first term in RHS
of inequality (3.67) accounts for the amount of the cumulative oil that contractor
can receive by the end of time period t if tier i is active in the current time period
t, based on the given tier thresholds without considering the impact of the cost oil.
On the other hand, the second term in RHS is used to include the impact of cost
oil recovery in the profit oil calculation to provide the tighter bound on

cumulative contractor’s share, where profit oil fraction of the last tier £°, with

g
minimum value is used so that it yields a valid upper bound for any tier i. Notice
that these inequalities act as tight dynamic bounds on the cumulative contractor
share that appears in the objective function for the corresponding value of the
cumulative oil produced by the end of current year t. Therefore, this leads to a
much tighter formulation than Model 3RF.

3 (Contshe™®/ ) < 3" (172~ 79.)- (66— Ly )~ 7% D (CO; . /ar)

<t i'=1 <t
vrf,i,t (3.67)
We observed more than threefold improvement in the fullspace solution time
with these additional mixed-integer linear constraints and valid inequalities, i.e.
constraints (3.65)-(3.67) in Model 3RF, which we refer Model 3RF-L. This is
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due to the improved relaxation and significant reduction in the total number of
nodes needed in the branch and bound search tree.

Notice that the same logic constraints (3.65)-(3.66) can be used for any other
problem where sliding scale variable is monotonically increasing function as time
progresses. A different set of logic constraints can be derived for a particular case
of interest where this condition does not hold. Moreover, it is straightforward to
derive similar inequalities (3.67) for other tier variables (e.g. daily oil produced),
see Appendix D (Proposition 3.2). The general rule is that as long as we can
represent the contractor’s share (or cumulative one) as a direct fraction of gross
revenues in the current period (or cumulative revenue) and the sliding scale
variable is the daily oil produced (or cumulative oil), it is easy to generate similar
inequalities. However, in some cases like with the IRR might require additional
effort.

(i) Alternate formulation: Sliding scale Fiscal Rules without Binary Variables
Model 3RF, that relies on disjunction (3.30) and corresponding binary variables to
represent the sliding scale fiscal terms, usually becomes expensive to solve for
large instances. These instances may still be intractable even after we include the
above logic constraints and valid inequalities. Therefore, in this section we
present an alternative formulation of development planning Model 3RF with
progressive fiscal terms that does not use disjunctions to represent the tier
structure. Notice that although we consider the cumulative oil produced as the
sliding scale variable, but the reformulation can also be used for a variety of other
sliding scale variables.

In particular, the proposed Model 3RI is formulated from Model 3RF using
valid inequalities described above (3.67), without considering the constraints
(3.31)-(3.38) that correspond to the disjunction (3.30). This alternate Model 3Rl
may Yield the optimal solution to a typical concessionary system or some special
cases of PSAs, for which the valid inequalities (3.67) reduce to the simpler ones,
(see Appendix E for more details).

However, for the general case of progressive PSA that has cost oil limit

provisions, the proposed Model 3RI Yyields the relaxation of the original
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disjunctive Model 3RF as constraints (3.31)-(3.38) are not present. Therefore, we
outline the following two possibilities to use this alternate model for general PSA
fiscal terms that can be considered as a good heuristics to obtain the near optimal
solution to realistic instances of the fiscal problem:

Case 1: Relaxed Model (Model 3RI)

In this case, the valid inequalities are directly used in Model 3RF as
described earlier, i.e. constraints (3.67) in place of constraints (3.31)-(3.38) that
correspond to the disjunction (3.30). This yields a relaxed solution to the original
problem, and therefore an upper bound. However, its solution can be used to
generate a lower bound by fixing the discrete decisions in the original model.
Furthermore, this model can be used in either a bi-level decomposition,
disjunctive branch and bound, or branch-and-cut solution algorithm to close the
gap between the upper and lower bounds. In general, this relaxed model provides
reasonable bounds, and good discrete decisions in orders of magnitude less time

than the disjunctive formulation used for sliding scales in Model 3RF.

Case 2: Approximate Model (Model 3RI-A)

In this case, the valid inequalities (3.67) are defined in Model 3RI such that
they yield an approximate solution to the original problem, i.e. these are replaced
with constraints (3.68). Notice that the inequalities (3.67) and (3.68) that are used
in Models 3RI1 and 3RI-A, respectively, only differ in the second term in RHS. In

the first case (eq. 3.67), as we use the least value of this term (7%, ) for it to be

valid for all tiers, so it turns out to be the relaxation. On the other hand, in eq.

(3.68) we use the highest value of this term ( f;? ) to approximate the initial tiers

as close to reality as possible when costs are high yielding near optimal solutions.
Since, Model 3RI-A is an approximate model, neither an upper or lower bound is
guaranteed from this model, but in practice, it yields the solution within 2-3% of
accuracy based on our computational experiments. Moreover, its solution can be
used to generate a near optimal solution to the original problem in orders of
magnitude less time than the disjunctive approach used in Model 3RF. The

detailed description of the correspondence between these two different set of
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inequalities, (3.67) vs. (3.68), and derivation of inequalities (3.68) is explained in

Appendix F.

i'<i

> (Contsho™ ™/ g, ) < 3 (179~ £79.)- ke~ Ly 1)~ 22 -3(CO, , )

<t

i'=1 <t

vrfit  (3.68)

Remarks:

1.

The advantage of using Model 3RI and Model 3RI-A is that these are orders
of magnitude faster to solve than other fiscal models relying on the disjunctive
constraints, and even 3-4 times faster than solving the models without any
fiscal terms (i.e. Model 3R) as observed by the computational experiments.
The extreme instances of the oilfield planning problem with fiscal terms, i.e.
progressive PSA with ringfencing, are solved in reasonable time using these
alternate models which were intractable for Model 3RF.

Notice that the alternate Model 3RI and its approximation Model 3RI-A are
defined for the tier structure that is assumed to be linked to the cumulative oil
produced. Other sliding scale variables, e.g. daily oil produced, R-factor are
also used in practice. The similar approaches as described in the chapter can
be explored to model these fiscal considerations without explicitly using

disjunctions and corresponding binary variables.

These reformulation/approximation techniques can be used for the other
models directly. Tables 3.2 and 3.3 summarize all of the proposed models
(MINLP and MILP) for oilfield development planning problem with and
without fiscal considerations. In particular, Table 3.2 involves basic models 1,
2 and 3 with their fiscal counterparts considering detailed investment timing
for the pipeline connections. Whereas, Table 3.3 represents the respective
reduced models that are obtained by removing a large fraction of binary
variables that represent connection timings to improve the computational

efficiency without significant loss in the solution quality.
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Table 3.2: Comparison of the proposed oilfield planning models (detailed

connections)

MINLP MINLP MILP
Basic Model Model 1 Model 2 Model 3
Basic model with fiscal terms Model 1F Model 2F Model 3F
(using Disjunctions (3.30))
Basic model with fiscal terms Model 1F-L Model 2F-L Model 3F-L
(using Disjunctions (3.30), Logic constraints
(3.65)-(3.66) and valid Inequalities (3.67))
Basic model with fiscal terms Model 11 Model 21 Model 3l
(no binary variables for sliding scales i.e. (relaxed/exact) | (relaxed/exact) | (relaxed/exact)
using only valid Inequalities (eq. (3.67) for Model 11-A Model 21-A Model 3I-A
relaxed/exact model or eq. (3.68) for (approximate) | (approximate) | (approximate)
approximate model))

Table 3.3: Comparison of the proposed oilfield planning models (neglecting

piping investments)

MINLP MINLP MILP
Basic Model with binary reduction Model 1R Model 2R Model 3R

Basic model with binary reduction and Model 1RF Model 2RF Model 3RF
fiscal terms (using Disjunctions (3.30))

Basic model with binary reduction and Model 1RF-L Model 2RF-L Model 3RF-L
fiscal terms (using Disjunctions (3.30),
Logic constraints (3.65)-(3.66) and valid

Inequalities (3.67))

Basic model with binary reduction and Model 1RI Model 2RI Model 3RI
fiscal terms (no binary variables for sliding | (relaxed/exact) (relaxed/exact) | (relaxed/exact)
scales i.e. using only valid Inequalities Model 1RI-A Model 2RI-A Model 3RI-A
(eq. (3.67) for relaxed/exact model or eq. (approximate) (approximate) (approximate)

(3.68) for approximate model))
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3.6 Numerical Results

In this section, we consider three instances of the oilfield planning problem with
fiscal considerations where ringfencing provisions may or may not be present, and

examine the efficiency of the proposed models and solution strategies.
3.6.1 Instance 1

» Total Oil/Gas

T T T g Production

FPSO 1 FPSO 2 FPSO 3

=%

Figure 3.7: Instance 1 (3 Fields, 3 FPSO, 15 years, No Ringfencing)

In this instance (Figure 3.7) we consider 3 oil fields that can be connected to
3 FPSOs with 7 possible connections among these fields and FPSOs. There are a
total of 25 wells that can be drilled, and the planning horizon considered is 15
years, which is discretized into 15 periods of each 1 year of duration. Table 3.4
represents the data corresponding to the field sizes and their initial deliverability
per well for a particular field-FPSO connection. There is a cost recovery ceiling of
50% and 3 tiers that are defined for profit oil split between the contractor and the
host government, and are linked to cumulative oil production as seen in Table 3.5.
This represents the fiscal terms of a typical progressive Production Sharing
Agreement without ringfencing provisions.

We need to determine which of the FPSO facilities is to be installed or
expanded, in what time period, and what should be its capacity, to which fields it
should be connected and at what time, and the number of wells to be drilled in

each field during each time period. Other than these installation decisions, there
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are operating decisions involving the flowrate of oil, water and gas from each
field in each time period. The problem is solved to maximize the NPV of the
contractor’s share after paying taxes, and corresponding optimal investment and
operations decisions over the planning horizon.

Table 3.4: Field characteristics for instance 1

Fields Field Size Initial Oil derivability per well (kstb/d)
(MMbbl) FPSO 1 FPSO 2 FPSO 3
Field 1 230 16 18 16
Field 2 280 - 18 20
Field 3 80 15 12

Table 3.5: Sliding scale Contractor’s profit oil share for instance 1

Tiers Cumulative Oil Produced Contractor’s Share in Profit
Oil

Tier 1 0-150 MMbbl 50%

Tier 2 150-325 MMbbl 40%

Tier 3 >325  MMbbl 20%

The models are implemented in GAMS 23.6.3 and run on Intel Core i7, 4GB
RAM machine using CPLEX 12.2. The optimal solution of this problem is
presented in Table 3.6, that corresponds to Model 3F involving detailed
connections, suggests installing only FPSO 3 with a capacity 297.75 kstb/d and
161.90 MMSCF/d for liquid and gas, respectively, at the beginning of year 1. It
takes 3 years for this FPSO to be available for production. Fields 1 and 2 are
connected to this FPSO at the beginning of year 4, where 7 wells are drilled in
Field 1 and 6 wells are drilled in Field 2 to start the production. These fields are
preferred compared to Field 3 due to their large sizes and deliverabilities. Liquid
capacity of FPSO 3 facility is expanded by 103.93 kstb/d in year 5 that becomes
available in year 6 due to 1 year of lead time involved. Field 3 that is smaller in
size comes online at the beginning of year 6 when deliverability of fields 1 and 2
decreases, where 3 wells are drilled in this field with an additional well in year 9
when production goes down. There are no further expansions and well drillings

after year 9. Notice that most of the investments occur in early stages of the
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project. The total NPV of this project is $ 1497.69M after paying government

share.
Table 3.6: Optimal Installation and Drilling Schedule for instance 1
Year 1 2 3 4 5 6 7 8 9 10-15
Facility Install - - - Expand -
Installations | FPSO3 FPSO3
Field 1 - - Drill - -
7 wells
Field 2 - - Drill Drill Drill
6 wells 1 well 2 wells
Field 3 - - - - Drill Drill
3 wells 1 well
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Figure 3.8: Total oil flowrate for FPSO 3 Figure 3.9: Total gas flowrate for FPSO 3

Figures 3.8-3.9 represent the total oil and gas flow rates for the FPSO facility

during the planning horizon considered. Given that the timing of the particular tier

activation depends upon the cumulative oil production for this instance (Table

3.5) Tier 2 becomes active after fifth year while Tier 3 is active after the eighth

year involving less share in profit oil for contractor, see Figure 3.10.

In contrast, the sequential approach that first maximizes NPV i.e. Model 3,

without considering the impact of the fiscal terms, and then calculates the

contractor share based on these decisions and fiscal rules, yields a very different

solution. The optimum in this case suggests installing FPSO3 with a large
capacity (liquid 445.54 kstb/d and gas 211.65 MMSCF/d) at the beginning of the
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planning horizon without any future expansions. The drilling decisions are also
front ended compared to the solution of the fiscal model, Model 3F. However, the
total NPV of the contractor’s share in the sequential case turns out to be $
1362.67M, which is significantly lower than the optimal solution ($ 1497.69M) of
the model with fiscal considerations (Model 3F). These results represent the
optimistic nature of the sequential approach that tries to generate as much revenue
as possible at the beginning of the planning horizon neglecting the trade-offs that
are associated to the fiscal part. Therefore, it may lead to the decisions that can
incur large losses in the long term after considering the impact of the fiscal
calculations.

650
B0 == 7T SCSoSosSoososososososoooooos
550 -
500 -
450
400
350 A
300 A
250 -

200 -

Cumulative Oil produced (MMbbl)

150

100

50

0 ; : ; ; i ; ; . . . .
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Tier 1 Tier 2 Tier 3

Year

Figure 3.10: Cumulative Oil Produced vs. Timing of Tier activation

Table 3.7: Comparison of the computational performance of various models for

instance 1
Solver # of # of # of NPV Time
Model constraints | continuous discrete ($Million) (s)
variables variables
w’fﬁtﬁf QBQEON 3,557 2,236 345 | 1,198.44 | >36,000
e (<60% gap)

?"N‘I’IdLeF',)?’F g ;EX 5,199 3,668 309 | 1,497.69 | 3,359
'(V'N‘I’Id&',)?’RF g ;EX 5,147 3,570 322 | 1,497.69 337
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Table 3.7 compares the computational performance of the various models. In
particular, Model 3RF which is obtained after binary reduction from Model 3F
yields the same solution in an order of magnitude less time (337s vs. 3,359s),
when solved to optimality. In contrast, solving the corresponding MINLP
formulation Model 2F with BARON 9.0.6 can only provide a solution having
NPV of $ 1198.44M with a 60% gap in more than 10 hours. Moreover, we
observe that solving Model 2F directly with DICOPT requires a good
initialization due to the additional binary variables and constraints that are added
in this fiscal model compared to Model 2. Therefore, the optimal solution from
corresponding MILP formulations (Model 3F and Model 3RF) provides a way to
obtain a near optimal solution of the original Model 2F. We fixed the design
decisions in Model 2F from the optimal solution of Model 3RF and solved the
resulting NLP problem that yields an NPV of $1496.26 M, which shows that the
accuracy of the MILP solution is within 0.1% of the MINLP formulation.
Therefore, the proposed MILP formulations are computationally efficient and
provide near optimal solutions. In the next section, we will use these MILP
models as the basis and examine the performance of the proposed computational

strategies for the larger instances.

3.6.2 Instance 2

(i) PSA without ringfencing provisions for Instance 2

r Yy > Total Oil/Gas
T Production

FPSO-1 FPSO-2 FPSO-3

Figure 3.11: Instance 2 (5 Fields, 3 FPSOs, 20 years, No ringfencing)
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In this instance, we consider 5 oilfields that can be connected to 3 FPSOs
with 11 possible connections, see Figure 3.11. There are a total of 31 wells that
can be drilled in these 5 fields, and the planning horizon considered is 20 years.
There is a cost recovery ceiling of 50% and 4 tiers (see Fig. 3.3) that are defined
for profit oil fraction between the contractor and host government based on the
cumulative oil production. The problem is solved to maximize the NPV of the
contractor’s share after paying taxes and the corresponding optimal
investment/operations decisions.

Table 3.8 compares the performance of the MILP (Model 3F) involving
detailed connections and reduced MILP model (Model 3RF) that are the extension
of the Models 3 and 3R, respectively, with progressive PSAs. The models are
implemented in GAMS 23.6.3 and run on Intel Core i7, 4GB RAM machine using
CPLEX 12.2. We can observe that there is significant increase in the
computational time with fiscal consideration for the MILP formulation Model 3F
with this larger instance, which takes more than 10 hours with a 14% of
optimality gap as compared to the reduced MILP model (Model 3RF), which
terminates the search with a 2% gap in reasonable time.

Table 3.8: Computational Results for Instance 2 (Model 3F vs. Model 3RF)

# of # of # of NPV Time (s) | Optimality
Model constraints | continuous discrete ($Million) Gap
variables variables
Model 3F 9,474 6,432 727 2,183.63 >36,000 <14%
Model 3RF 9,363 6,223 551 | 2,228.94 1,164 <2%
700 -
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500 - 200 1
1 2100
200 - =
100 - 50 A
0 T T " 0 . . . )
0 5 10 15 20 0 5 10 15 20

Year

(a) Liquid capacity
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Figure 3.12. Optimal liquid and gas capacities of FPSO 3 facility for Instance 2

96




The optimal solution from Model 3RF suggests installing 1 FPSO facility
(FPSO3) with expansions in the future (see Fig. 3.12), while Fig. 3.13 represents
the well drilling schedule for this example. The tiers 2, 3 and 4 for profit oil split
become active in years 6, 8 and 12, respectively, based on the cumulative oil
production profile during the given planning horizon. Notice that the optimal
solution of this problem fails to develop field 1, which is not intuitive. The reason
for not developing field 1 is that the size of the field 1 is quite small as compared
to the other fields and the superstructure we consider does not allow connecting
field 1 to FPSO 3, which is the only FPSO that is installed. Therefore, based on
the superstructure and field size, it is not worth to install an additional FPSO to
produce from this field after paying government share. In contrast, the solution
from the sequential approach suggests exploring field 1 as well since it is worth in
that case to install 2 small FPSO facilities and also produce from field 1 given that
the trade-offs due to fiscal rules are neglected. Whereas, the total NPV of the
contractor’s share in this case is lower than the optimal solution of Model 3RF
($1,914.71M vs. $2,228.94M ). Therefore, we can observe that incorporating fiscal
terms within development planning can yield significantly different investment

and operations decisions compared to a simple NPV based optimization.
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Figure 3.13. Optimal well drilling schedule for Instance 2

Note that fiscal terms without tier structure, for instance fixed percentage of
profit share, royalty rates, often reduces the computational expense of solving the
deterministic model directly without any fiscal terms instead. Surprisingly, the

problem with flat 35% of the profit share of contractor is solved in 73s which is
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even smaller than the solution time for deterministic case without any fiscal terms
(190s). On the other hand, the problem with 2 tiers instead of 4 as considered
above is solved in 694s which is more than the model without fiscal terms and
less than the model with 4 tiers as can be seen in Table 3.9. Therefore, the
increase in computational time while including fiscal rules within development
planning, is directly related to the number of tiers (levels) that are present in the
model to determine the profit oil shares or royalties.

Table 3.9: Comparison of number of tiers vs. solution time for Model 3RF

# of tiers Time (s)
4 1,164
2 694
1 73
No fiscal rules 190

Table 3.10 compares the further improvements in the solution time for
Model 3RF (1,164s) after using the reformulation/approximation techniques and
strategies that are proposed. In particular, the tighter formulation Model 3RF-L
that is obtained after including logic constraint and valid inequalities, (3.65)-
(3.67), is solved in one fourth of the time than Model 3RF. Notice that these
MILP models are solved with a 2% of optimality tolerance yielding a slightly
different objective values for Model 3RF and Model 3RF-L. Model 3RI, which
relaxes the disjunction (3.30), can be solved more than 20 times faster than the
original Model 3RF. Although the solution obtained is a relaxed one (upper bound
of 2,591.10), it gives the optimal investment decisions that result in the same
solution as we obtained from solving Model 3RF directly. The approximate
version of this Model 3RI-A, takes only 82s as compared to Model 3RF (1164s)
and yields the optimal solution after we fix the decisions from this model in the
original one. Notice that the quality of the approximate solution itself is very good
(~1.5% accurate) and both relaxed/approximate models are even ~3 times faster
than the model without any fiscal terms (Model 3R) that takes 190s.
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Table 3.10: Results for Instance 2 after using various solution strategies

NPV after
# of # of fixing

Model conftf;in ts continuous | discrete ($I\I>II :T I\i/on) decisions in | Time ()

variables | variables Model 3RF

($Million)
Model 3RF 9,363 6,223 551 | 2,228.94 - 1,164
Model 3RF-L 11,963 6,223 551 | 2,222.40 - 275
Model 3RI-A 8,803 5,903 471 | 2,197.63 2,228.94 82
Model 3RI 8,803 5,903 471 | 2,591.10 2,228.94 48

(if) PSA with ringfencing provisions for Instance 2

In this case, we consider two ringfences for the above Instance 2 (see Figure
3.4) where progressive PSA terms are defined for each of these ringfences
separately. Based on the computational performance of the Model 3RF as
compared to Model 3F in the previous case, we only show the results for Model
3RF, which is more efficient.

Table 3.11: Results for Instance 2 with ringfencing provisions

NPV
after
#of # of # of NPV f'ﬁ"ﬂg Time %
Model constraints continuous | discrete ($Million) decisions ) gap
variables | variables in Model
3RF
($Million)
Model 3RF 14,634 9,674 651 2,149.39 - | >36,000 | <15.4%
Model 3RF-L 19,834 9,674 651 2,161.27 - 3,334 <2%
Model 3RI-A 13,514 9,034 491 2,148.90 2,142.75 134 <2%
Model 3RI 13,514 9,034 491 2,533.06 2,151.75 112 <2%

Table 3.11 compares the results for various models for this case. We can
observe that including ringfencing provisions makes Model 3RF expensive to
solve (>10 hrs), compared to the previous instance without any ringfences that
required only 1,164s. This is due to the additional binary variables that are
required in the model for each of the two ringfences, their trade-offs and FPSO
cost disaggregation. In contrast, since Models 3RI and 3RI-A do not need binary
variable for the sliding scale in disjunction (3.30), they solve much faster than
Model 3RF (>300 times faster) and Model 3RF-L (~30 times faster). Notice that

even after including ringfencing provisions, these two models are faster than the
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simple NPV based Model 3R. This is due to the trade-off from the fiscal part in
the simple NPV based model without binary variables for the sliding scale.

Notice that Model 3RI and 3RI-A are solved here in one of the most general
forms of the fiscal terms where the solutions may not be the global optimal, but
the relaxed Model 3RI, which provides a valid upper bound, also allows to
compare the solution quality. The optimal NPV after ringfencing provisions is
lower as compared to the earlier case without ringfencing provisions due to the
additional restrictions it imposes on the revenue and cash flows.

In addition, we also consider a bi-level decomposition approach (see
Appendix G) to solve this ringfencing instance. The algorithm considers an
aggregate fiscal model at upper level by neglecting the ringfencing provisions that
yields an upper bound ($2,222.40 M) as can be seen in Table 3.12. The lower
level detailed fiscal model is solved for the infrastructure selected from the upper
level problem to yield the feasible solution ($2,161.27 M). In the next iteration,
the upper level problem is solved with additional integer cuts that avoid the same
investment decisions to be selected. The objective value of this model ($2,040.23
M) becomes smaller than the lower bound obtained during the first iteration and
the algorithm stops. The MILP models are solved in this instance with a 2% of
optimality tolerance and total solution time is 869s. Based on these preliminary
results, the algorithm can be considered as an alternative to solve the oilfield
problems involving ringfencing provisions. However, the efficiency of the
algorithm relies on the efficiency of solving the lower and upper level problems
which may itself become expensive to solve for the large instances and/or may

need several iterations to close the gap.

Table 3.12: Bi-level decomposition for Instance 2 with ringfencing provisions

Iteration uB LB Optglgr;p? "
($Million) | ($Million) (%)
1 2,222.40 2,161.27 2.75%
2,040.23 - 0.00%
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3.6.3 Instance 3
(1) PSA without ringfencing provisions for Instance 3

> Total Oil/Gas
T Production

Figure 3.14: Instance 3 with 10 Fields, 3 FPSO, 20 years

In this case, we consider a larger instance of the oilfield planning problem
with fiscal considerations. There are 10 oil fields (Figure 3.14) that can be
connected to 3 FPSOs with 23 possible connections. There are a total of 84 wells
that can be drilled in all of these 10 fields and the planning horizon considered is
20 years. There is a cost recovery ceiling of 50% and 4 tiers are defined for profit
oil split between the contractor and host government that are linked to cumulative
oil production. The objective is to maximize the NPV of the contractor’s share

after paying taxes and corresponding optimal investment/operations decisions.

Table 3.13: Results for Instance 3 after using various solution strategies

NPV after
fixing
# of # of .# of NPV decisions Time %
Model . continuous | discrete o .
constraints . . ($Million) | in Model (s) gap
variables | variables 3RE
($Million)
Model 3RF 17,640 11,727 963 6,440.58 - | >72,000 | <22%
Model 3RF-L 20,240 11,727 963 6,498.45 - | 22,500 | <10%
Model 3RI-A 17,080 11,407 883 6,355.00 6,452.36 2,035 | <10%
Model 3RI 17,080 11,407 883 7,319.60 6,484.12 1,569 | <10%
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Table 3.13 compares the solution time required for Model 3RF with the
proposed reformulation/approximation techniques. We can observe that even
Model 3RF without any ringfences becomes expensive to solve for this larger
instance as compared to instance 2. Moreover, it takes more than 20hrs to reach
within 22% of optimality for Model 3RF, whereas the relaxed Model 3RI can be
solved in less than half an hour within 10% of optimality. The solution that is
obtained after fixing the design decisions in the original formulation is also better
than Model 3RF. Model 3RI-A, which is an approximation, also performs similar
to the relaxed model and gives an even improved solution than Model 3RF with a
~2% of accuracy. Both models are more than 20 times faster than even the tighter
formulation Model 3RF-L involving logic constraints and valid inequalities.
Surprisingly, these models perform again better than the model without any fiscal
terms, i.e. the simple NPV based model (Model 3R) takes more than 12,000s to
reach within 10% of optimality gap due to the trade-off that is missing between
production and fiscal part.

Notice that the times reported in Table 3.13 for Model 3RI-A and 3Rl are the
times to solve Models 3RI-A and 3RI only. We did not include the time required
to solve Model 3RF with fixed decisions in all the examples considered since it
was negligible as compared to solution time of Models 3RI-A, 3RI and 3RF. For
instance, it is ~2 orders of magnitude smaller than the solution time required for
Model 3RI-A (25s vs. 2035s) for this case. It is due to the fact that the critical
discrete variables that represent the infrastructure and well drilling are fixed in the
model and most of the remaining decisions correspond to the continuous

operational decisions.

(if) PSA with ringfencing provisions for Instance 3
In this case, we consider three ringfences for the above Instance 3 with 10
fields (see Figure 3.14) where Table 3.14 and 3.15 represent data corresponding

to the field sizes, ringfencing provisions and sliding scale profit oil divisions.
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Table 3.14: Field Sizes and Ringfencing Provisions for Instance 3

Field F-1 F-2 F-3 F-4 F-5 F-6 F-7 F-8 F-9 | F-10
Field Size 60 100 | 170 | 230 | 280 80 200 | 320 | 400 | 500
(MMbbl)

Corresponding | RF-1 | RF-1 | RF-1 | RF-2 | RF-2 | RF-2 | RF-3 | RF-3 | RF-3 | RF-1
Ringfence

Table 3.15: Fiscal data for Instance 3 with ringfencing provisions

(1 Sliding scale Contractor’s Profit (i) Tax rates and Cost Oil Ceilings
Oil share
; - PE. 3 : Cost Recovery
Ringfences: RF-1, RF-2, RF-3 Income Tax Rate Ceiling
Cumulative oil Contractor's Corgt(:r/zlcq[for's Rg)v/(:ar?zgs:‘cl)rsosm
P Profit Oil Sh
roduced rofit Oil Share Ringfence | Profit Oil Share) the Ringfence)
Tier-1 0 - 200 MMbbl 50% RE-1 30% 50%
Tier-2 200 - 400 MMbbl 40% RE-2 30% 50%
Tier-3 400 - 600 MMbbl 30% RE-3 30% 50%
Tier-4 > 600 MMbbl 20%

Table 3.16 compares the computational results of various models for this

case of instance 3. It can be observed that including ringfencing provisions for
this largest instance makes even both Model 3RF and Model 3RF-L very
expensive compared to the previous case without any ringfences. This is due to
the additional binary variables that are required in the model for each of the three

ringfences separately and resulting weak relaxations.

Table 3.16: Results for Instance 3 with Ringfencing provisions

NPV after
fixing
# of # of .# B NPV decisions Time
Model . continuous | discrete - . %
constraints . . ($Million) | in Model (s)
variables | variables 3RE gap
($Million)
Model 3RF 33,403 22,150 1,163 | 6,382.46 - | >72,000 | <57%
Model 3RF-L 41,203 22,150 1,163 | 6,469.30 - | >72,000 | <22%
Model 3RI-A 31,723 21,190 923 | 6,273.59 6,442.68 3,383 | <10%
Model 3RI 31,723 21,190 923 | 7,166.70 6,349.99 4,003 | <10%
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In contrast, since Models 3RI and 3RI-A do not require binary variables for
sliding scales, they perform much better than Model 3RF and its tighter version
Model 3RF-L as observed in the earlier cases. Model 3RI is a relaxation and
yields a reasonable upper bound, while Model 3RI-A yields an approximate
solution within 3% of accuracy.

»  Total Oil/Gas
T \\ T l Production
FPSO-3

Ringfence-2

Field-8

Ringfence-1

Ringfence-3

Figure 3.15: Optimal Solution for Instance 3 with Ringfencing provisions

Figure 3.15 represents the optimal installation and connections between
fields and FPSO for this problem, where we can observe that each of the installed
FPSO (1 and 3) is connected to a total of 5 fields that do not belong to the same
ringfence. The optimal cumulative oil production profile for various ringfences is
shown in Figure 3.16, and the sliding scale rules in Table 3.15(i), results in the
different times of higher tier activations for these three ringfences as shown in
Table 3.17. Notice that ringfence 3, which involves larger size fields, enters into
higher tier (Tier 4) sooner as compared to the other ringfences. Moreover, in

ringfence 2 which has smaller fields, only 3 tiers become active.

Table 3.17: Optimal timings of Tier activations for various Ringfences

Ringfence Tier-1 Tier-2 Tier-3 Tier-4
RF-1 Year 1- Year 6 Year 7- Year 8 Year 9- Year 12 | Year 13- Year 20
RF-2 Year 1- Year 6 Year 7- Year 10 | Year 11- Year 20
RF-3 Year 1- Year 6 Year 7- Year 8 Year 9- Year 11 | Year 12- Year 20

104




900

Cumulative Oil Production Profile for various Ringfences
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Figure 3.16: Optimal Cumulative Oil production for Instance 3 with Ringfencing provisions

It is important to note that the performance of Models 3RI and 3RI-A is
independent of the number of ringfences that are present in the fiscal terms, as it
can be seen that the increase in solution time is negligible compared to the
previous case without ringfencing provisions. This is due to the fact that
increasing ringfences in these models only increases the number of continuous
variables and linear constraints, except a few binary variables that are required for
cost oil recovery calculation. In contrast, the complexity of Models 3RF and 3RF-
L that rely on disjunction (3.30) increases exponentially with an increase in the
number of ringfences or tiers. Moreover, it is also interesting to note that even
after including one of the extreme cases of the fiscal term (progressive PSA with
ringfencing) for a large instance involving 10 fields, the proposed
relaxed/approximate models still perform extremely well, and they are in fact
even 3-4 times better than the simple NPV based Model 3R without fiscal

considerations.

3.7 Conclusions

In this chapter, we have introduced the fiscal aspects within offshore oil and gas

field planning problem. These fiscal considerations are usually either ignored or
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considered in an ad-hoc manner, which may have a very large impact on the
planning decisions. In particular, we have proposed a general model for the multi-
field site problems that accounts for the fiscal calculations in the objective
functions and constraints explicitly. The model is an extension of the
strategic/tactical planning model presented in the previous chapter to progressive
PSAs involving ringfencing provisions. Few simpler cases of the fiscal contracts
have also been derived from the proposed general model as an illustration. The
model yields investment and operating decisions that are not only optimal in the
sense of NPV after taxes for the project at hand, but also provides a more
appropriate basis to compare a portfolio of different projects involving different
fiscal contracts and other details. However, as the computational expense can be a
serious issue with the incorporation of fiscal terms for some particular contract,
we have also proposed a tighter formulation using additional logic constraints and
valid inequalities, two heuristic approaches yielding good solutions to the large
instances, and a bi-level decomposition approach. Numerical results in realistic
examples show that these models and solution strategies are quite efficient, and
reduce the solution time orders of magnitude than using the MILP for the
disjunctive formulation. We hope that this work has shown that explicit
consideration of the fiscal rules is important for oilfield infrastructure planning,
and that the models/methods described here can serve as the basis for further

extensions and improvements in the computational effort.
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Chapter 4

Solution strategies for multistage
stochastic programming with
endogenous uncertainties in the

planning of process networks

4.1 Introduction

In this chapter, we consider a general multistage stochastic mixed-integer linear
programming model for multiperiod planning problems where optimization
decisions determine the times when the uncertainties in some of the parameters
will be resolved, i.e. decision-dependent uncertainty (Jonsbraten et al., 1998; Goel
and Grossmann, 2006; and Tarhan and Grossmann, 2008). To address the issue of
computational expense in solving these endogenous uncertainty problems, we also
present several solution strategies and apply them to process network examples
having uncertainty in the process yields which can only be revealed once an
investment is made in the process.

The outline of this chapter is as follows. First, in sections 4.2 and 4.3 we
present the problem statement for the endogenous uncertainty problems under
consideration and the corresponding multistage stochastic programming model,
respectively. In section 4.4, three theoretical properties are identified for the
model and used to formulate a reduced model in the subsequent section. To solve
the large instance of the problems in this class a k-stage constraint solution

approach, NAC relaxation strategy, and a Lagrangean decomposition algorithm
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are proposed in section 4.6. The proposed models and solution strategies are then
applied to two process network problems under uncertain yields in section 4.7 to
illustrate the advantages of these approaches.

4.2 Problem Statement
In the class of problems under consideration, the time horizon is represented by
the discrete set of time periods T={1,2,....} Set1 ={1, 2,... .} represents the
set of “sources” of endogenous uncertainty, while ¢; represents the endogenous
uncertain parameter associated with source i € I. The discrete set of possible
realizations for 6; is represented by ®;. The resolution of uncertainty in ¢; depends
on the binary decision variables b;:. Specifically, the uncertainty in 6; will be
resolved in time period t if binary decision bij; =1 and bj, =0, V7 <t Note that
the parameters 6; represent intrinsic properties of source i and are assumed to be
independent and time invariant. Besides the decisions represented by variables b,
other decisions to be made in time period t are represented by variables y; and x;
where these are decisions made at the beginning and end of the corresponding
time period t.

The sequence of events in each time period is as follows. Decisions y; and b;
are implemented at the beginning of time period t . This is followed by the

resolution of uncertainty in the endogenous parameter d; for source i if bj; =1 and

bi: = 0 V<t <t The state variables (w, ) are calculated based on the decision

variables that are selected, while the recourse variables (x, ) are decisions

implemented at the end of each period.

In general, the variables bj; may represent investment decisions associated
with source i. In the gas field problem considered by Goel et al. (2006), these
variables represent whether or not investment is made at field i in time period t.
The uncertainty associated with a field is resolved in time period t only if
investment is carried out at that field in time period t, while no investments have
been made at that field in the past. Similarly, for capacity expansion planning
problems these decisions represent whether or not unit i is installed in time period

t. However, in this case we assume that the uncertainty associated with a process
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gets resolved as soon as initial investment is made in that process and it is
independent of the plant capacity.

Note that for ease of exposition, we assume that there is only one
endogenous uncertain parameter associated with source i for all i € 1. Thus, 6;is a
scalar for all i € I. Moreover, the problem statement presented here is the specific
case of the one that is described in Goel and Grossmann (2006).

4.3 Model

The multistage stochastic programming model (MSSP®) with endogenous
uncertainty can be represented as a mixed-integer linear disjunctive programming

model as described in Goel and Grossmann (2006).

(MSSP°) min > psZ[ctwswf +COX +C"y +Zcf’fbftj

seS teT iel
4.2)
s.t.Z(AZYEWj+A§ixj+A},s S A%, bsj VseS,vteT (4.2)
7eT, iel
Tt
b, =b Vs, s'eS,Viel,s=s' (4.3a)
yo =y Vs, s'eS,5#s" (4.3b)
t
VAl N [/\—'(bf,)} Vs,s'eS,VteT,s=s"  (4.4)
ieD(s,s") Lz=1
_ 258 _
t
X=X , _ v [_,ZIS’S‘] vs,s'eS,vteT,s#s  (4.5)
bis,t+1 = bis,t+1 Vi e I
_yts+l = ytil |

w, eW?, x5 e X7,y €Y°,b°, €e{01} VseS,vteT,Viel

t 7™t
Z>* e{True, False} Vs, s'eS,vteT
The objective function (4.1) in the above model (MSSP®) minimizes the
expectation of an economic criterion. For a particular scenario, inequality (4.2)

represents constraints that govern decisions in time period t and link decisions

across time periods. First time period non-anticipativity (NA) constraints are
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given by equations (4.3a) and (4.3b), while conditional NA constraints that are

written for the later time periods in terms of decisions by, are given by (4.4) and

(4.5). Note that the set D(s,s’) that is used in the equation (4.4) is defined as
follows:

D(s.s') ={i|i 1,67 =67
The idea of non-anticipativity is that the decisions at time t can only be

affected by the decisions (y;,b’,) made before time period t. These constraints

state that if two scenarios s and s’ are indistinguishable in time period t (i.e. they
are the same), then decisions for these scenarios in time period t should be the
same. It should also be noted that problem (MSSP®) can be reformulated as an
MILP as described in Goel and Grossmann (2006) by replacing the equations
(4.4) and (4.5) with integer and mixed-integer constraints, respectively.

4.4 Model Reduction Scheme

NA constraints like the ones in (4.3a), (4.3b) and (4.5) are essential in multistage
stochastic programming to ensure that our current decisions do not anticipate
future outcomes. When the model (MSSP°) is reformulated as an MILP problem,
the difficulty is that the NA constraints typically represent around 80% of the total
constraints and grow quadratically in the number of scenarios, making real-world
size problems intractable. To overcome this limitation, we present three

theoretical properties that allow us to formulate significantly reduced MSSP

models.
Let us assume that there are p uncertain parameters (01, 6, 0s,.......... , Op)
each of which has k realizations (4, &, &,.......... , &). Then the total number of

combinations of realizations of these parameters will be kPeach of which will
define a scenario s. For these S = kP scenarios there will be a total of S(S -1)
scenario pairs (s, s’) each of which corresponds to a NA constraint in each time
period t. The following properties significantly reduce the problem size by

reducing the number of these scenario pairs (s, s’) and the corresponding NA
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constraints. The first two properties were proposed by Goel and Grossmann
(2006).

Property 1. If scenario pair (s, s’) is indistinguishable at stage t, so is (s, s).
Therefore, we have to consider only one of these scenario pairs (i. e. (s, s°) such
that s <s’).

Proof. See Goel and Grossmann (2006).

Property 2. It is sufficient to express NA constraints for the pairs of scenarios (s,
s’) that differ in the outcome of only one uncertain parameter.

Proof. See Goel and Grossmann (2006).

Property 1 is based on the symmetry of the scenario pairs (s, s’) and prevents
duplication of the NA constraints for the same pair of scenarios (s, s’) in the
model. On the other hand, Property 2 exploits the fact that the NA constraints
between those scenarios which differ in the realizations of more than one
uncertain parameter is implicitly enforced by considering the NA constraints for
the one that differ in realization of only one uncertain parameter. Therefore, it is
sufficient to include a subset of scenario pairs corresponding to those that differ in
realization of one uncertain parameter. Properties 1 and 2 are further illustrated by
a small example in the next section. Although, these two properties significantly
reduce the number of scenario pairs for the NA constraints, there are still many of
these scenario pairs that are connected implicitly and that can be removed. This
motivates us to find these scenario pairs systematically to further reduce the size
of the problem and establish a new Property 3.

Property 3 basically exploits transitivity relationship among scenario pairs (s,
s’) that results after applying Properties 1-2, and is an extension of Property 2 to
those cases where uncertain parameters have more than two realizations (i.e. k
>2). In that case, according to the Property 2 all the scenario pairs that differ in
just one uncertain parameter will be included in the model for the NA constraints
and there will be multiple links among those scenarios pairs that corresponds to a
single uncertain parameter. Some of these multiple links among scenarios are not
needed because of the fact that many of these scenarios that corresponds to a

single uncertain parameter are such that they can be only realized at the same time
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irrespective of any decisions taken during the planning horizon and hence, we can
take advantage of the transitivity relation among these scenarios.

Therefore, the new property establishes that for an endogenous uncertainty
problem with p uncertain parameters and each having k realizations, it is
sufficient to express NA constraints only for those scenario pairs (s, s’) such that

(5,8') € (81,855 8) » Where (s;,S,,....,S,) €L, for each uncertain parameter 6
and s, s are the consecutive elements in this set. The required set L is defined as

follows:
(51,5108, )[S1:551---5, €5,8, <, <...<S,,
L, = vp
D(s,s") ={p} V(s,s") €(5;,S5,---:5¢)
The k scenarios within each of these (S,,S,,....,S,) sets can only be realized at

the same time irrespective of the other realizations during the given time horizon
because they differ in the realization of the same uncertain parameter 6.
Therefore, unique linking among only these scenarios will be sufficient to enforce
non-anticipativity. Specifically, Property 3 can be stated as follows:

Property 3. For an endogenous uncertainty problem having p uncertain
parameters and S scenarios, the maximum number of scenario pairs (s, s’)
required to represent the non-anticipativity are p(s|—|s|**'").

Proof. Suppose that for an endogenous uncertainty problem,

p is the number of uncertain parameters = (61, 0y, 0s,.......... , Op)

Therefore, the total number of scenarios are S = k°

For each uncertain parameter ¢, there will be a total of k** number of
scenario  sets(S;,S,,...,S,) i.e.‘Lp‘zk”‘l, each having k scenarios. The
characteristic of these k scenarios within a set (s;,S,,....,S,) € L, is that uncertainty

in these scenarios can be realized at the same time irrespective of the other
realization during the specified time horizon because these scenarios have the

same realizations for all the uncertain parameters except for that particular
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uncertain parameter 6. In other words, the k scenarios in a set (S;,S,,..,S) €L,

differ only in the realization of the uncertain parameter 6, and can be realized at
the same time irrespective of other realizations. Also, according to Property 2, it is
sufficient to express NA constraints for those scenario pairs that differ in the
realization of only one uncertain parameter. Therefore, we do not need to include
scenario pairs (s, s’) that differ in realization of more than one uncertain

parameter. As the uncertainty in these k scenarios in a set (S,S,,.....S,) is realized

at same time, it is sufficient to express non-anticipativity uniquely in these k
scenarios only. Hence, k—1 scenario pairs (s, s’) will be required to link k

scenarios in each of these sets (s;,S,.,....,S,), i.e. K—1 equations are required to

represent non-anticipativity for each of these k"* number of sets for a particular
uncertain parameter #,. Therefore, the total number of scenario pairs (s, s’)
required for non-anticipativity are pk "™ (k —1) or p(s|-|s|"™'"). O

The proposed Property 3 can be used in addition to earlier Properties 1 and 2
to reduce the model size as explained in the next section with a small example.
Qualitatively, the end result of using these 3 properties is that they lead to the

minimum number of independent links between the scenarios to represent the NA

constraints.

4.5 Reduced Model Formulation
In this section we apply the three properties described above in order to reduce the
size of the model (MSSP?). Let us define,
P: Set of scenario pairs (s, s’) for NACs in the model (MSSP®)
P1: Set of scenario pairs (s, s’) for NACs after applying Property 1
P,: Set of scenario pairs (s, s’) for NACs after applying Properties 1 and 2
P3: Set of scenario pairs (s, s’) for NACs after applying Properties 1,2 and 3
Therefore,
P={(s,s")[s,s'eS,s =5}
P ={(s,s")]s,s'eS,s<s'}

P, = {(s,s‘)|s,s‘e S,s<s'|D(s,s")| =1}
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P, = {(sl,sz),(32,53),....,(sk_l,sk)|(sl,sz,...,sk) eL, Vp}
The relation between these sets can be stated as, P, c P, c P, cP.

The reduced model (MSSPR) that is formulated from the original model
(MSSP®) by considering NA constraints for scenario pairs (s, s’) within the set Ps
for the equations (4.3a), (4.3b), (4.4) and (4.5) is given as follows:

(MSSPR)

min > psZ(ctWSWf FCOXT HClY + Zcf’fbﬁtj (4.1)

seS teT il

s.t.Z( WS ASXE + ARYE DAY, st > VseS,vteT (4.2)

7eT, il
7<t

by = bis,; V(s,s)ePR,Viel (46a)
y; = V5 V(s,s) e R, (4.60)
s,s' ' S
) < | D/(}S.)|:/_\l_|(bi'r):| ‘v’(s, S') c P3,‘v’t eT 4.7
B Zts,s' ]
X=X vz V(s,s)e P, VteT (48)
bis,t+1 = biS:t+l Viel
_yts+1 = yts-;—l

wy eW?, x; e X7, y7 €Y’,b’ {01} VseS,vteT,Viel
Z;* {True, False} Vs,s'eS,vteT

Theorem 4.1. The optimum solution of the Reduced model (MSSPF) is the same
as the optimum solution of the Original Model (MSSP?).

The proof follows trivially from applying Properties 1-3. To illustrate the
effect of the proposed properties on the problem size, we consider a case of
endogenous uncertainty problem having 2 uncertain parameters, i.e. (61, 6,). Each
of these uncertain parameters has three realizations (4, £, ¢3) which give rise to a

total of 9 scenarios shown in Table 4.1.
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Table 4.1: 9 Scenarios for the given example

Scenario (s) 1 2 3 4 5 6 7 8 9
6, N A A A VN VA VA A
6, N A VA A VA VA VA A

According to the original model (MSSPP), a total of 72 scenario pairs will be
required to represent non-anticipativity in the above problem as shown in Table
4.2(a) where each element in the table represent the indices of uncertain
parameters, (601, 8,) that differentiate the corresponding scenarios s and s’, i.e. set
D(s, s).

However, if we use Property 1 (i.e. (s, s’) such that s < s’) the number of
scenario pairs reduces to 36 from 72 due to the symmetry of the scenario pairs as
seen in Table 4.2(b). Now, if we apply Property 2 (i.e. consider the scenario pairs
which differ in realization of only one uncertain parameter) then (s, s’) becomes
18 by removing those scenario pairs have more than one element in the set D(s,
s’) as seen in Table 4.2(c). But out of these 18 scenario pairs, only 12 are
sufficient as seen in Table 4.2(d) to uniquely define the non-anticipativity that
also satisfies the requirement of Property 3. This is due to the transitivity relation
among the scenarios pairs corresponding to a single uncertain parameter and their
characteristic of being realized at the same time irrespective of the other decisions
as explained in the previous section. Hence, there is 83.33% reduction (i.e. from
72 to 12) in the scenario pairs (or problem size) on using the three theoretical
properties. Note that for this example Ly = {(S1, Sz, S3), (S, Ss, Ss), (S7, Ss, S9)} and
Lo = {(s1, S4, S7), (S2, Ss, Ss), (S3, Se, So)} according to the definition of these sets

described earlier.
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Table 4.2: Scenario pairs and corresponding differentiating set D(s, s’) for the 9 scenario example

(a) 72 Scenario pairs in the original model (MSSP?)

D(s,s’) 1 2 3 4 5 6 7 8 9
1 1 1 2 12 | 1,2 2 1,2 1,2
2 1 1 1,2 2 12 | 1.2 2 1,2
3 1 1 1,2 1,2 2 1,2 1,2 2
4 2 12 | 1.2 1 1 2 1,2 1,2
5 1,2 2 1,2 1 1 1,2 2 1,2
6 12| 1.2 2 1 1 1,2 1,2 2
7 2 12 | 1.2 2 12 | 1,2 1 1
8 1,2 2 1,2 1,2 2 1,2 1 1
9 12| 1.2 2 1,2 1,2 2 1 1

(b) 36 Scenario pairs after using Property 1

D(s,s’) 1 2 3 4 5 6 7 8 9
1 1 1|2 (12127 2 12 | 1.2
2 1 [12] 2 [12]12 2 12
3 12 [12] 2 [12] 1.2 2
4 1 1] 2 12 |12
5 1|12 2 12
6 12 | 12 2
7 1 1
8 1
9
(c) 18 Scenario pairs after using Properties 1-2 (d) 12 Scenario pairs after using Properties 1-3
D(s,s’) 1123 4 5 6 7 8 9 D(s,s’) | 1 2 3 4 5 6 7 8 9
1 1] 1] 2 2 1 1 2
2 1 2 2 2 1 2
3 2 2 3 2
4 112 4 1 2
5 1 2 5 1 2
6 2 6 2
7 111 7 1
8 1 8 1
9 9
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The graphical illustration of the model reduction scheme for the above 9
scenario example can be seen in Figure 4.1. Property 1 basically removes one of
the two links between scenarios 1 and 2 in the figure. Scenarios 1 and 5 differ in
both the uncertain parameters and due to the implicit connection between these
scenarios through links 1-2 and 2-5 each of which corresponds to a single
uncertain parameter, Property 2 can be used to remove the link 1-5. Because
scenarios 1, 4 and 7 differ in the realization of just the second uncertain parameter
6, and can only be realized simultaneously, they can be expressed by unique link
among them. Therefore, Property 3 removes the link 1-7 and still allowing
scenarios 1 and 7 to take non-anticipative decisions through the links 1-4 and 4-7.
The other similar links removed by these properties are not shown in the figure
for clarity.
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Figure 4.1: Model Reduction Scheme for 9 scenario example

Property 3 can be easily extended to the cases where there is a different
number of realizations for each uncertain parameter. In that case, we need to
create some dummy realizations for some of the uncertain parameters to make the
same number of realizations for all the uncertain parameters and apply Property 3

to find out the least number of scenario links required for this new scenario set.
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Finally, we can remove those scenario pairs from the NA constraints set that
involve dummy realizations of the uncertain parameters leading to the least
number of NA constraints for the given realizations.

Note that the number of scenario pairs using Properties 1-3 will be smaller
compared to using Properties 1-2 only if the number of realization of uncertain
parameters is more than two. Otherwise we will get the same number of scenarios
in both cases. Therefore, in contrast to the earlier properties by Goel and
Grossmann (2006), the proposed Property 3 can be regarded as the extension of
the Property 2 to the cases where uncertain parameters have more than two
realizations. Moreover, the effect of these properties on the problem size and
solution time becomes very significant for the problems having large number of

scenarios and/or having many realizations of each uncertain parameter.

4.6 Solution Strategies

Although the model formulation in the previous section greatly reduces the size of
the multistage stochastic programs with endogenous uncertainties, given the
exponential increase in the problem size with the number of uncertain parameters
and its realizations, these problems may not be solvable in reasonable
computational time. Hence, we may need some special solution techniques to

solve large-scale problems in this class as discussed in this section.

4.6.1 k-stage Constraint Strategy

We know that NA constraints play a major role in the size of any multistage
stochastic program and most of them are inactive at the optimum solution of the
problem, particularly in the later time periods since investments tend to take place
in the earlier periods. This observation motivates us to include only the subset of
these constraints, corresponding up to the first k-stages of the problem which are
assumed to be critical for defining the optimum solution of the problem. By
defining ST as the set of k initial stages for which NA constraints are to be
included, the proposed k-stage constraint formulation that is obtained from the
reduced model by replacing the set T with ST in equations (4.7) and (4.8) is as

follows:
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(MSSP*%) min > p Z(CWSW +COX +Cry? +Zc,bfbftj (4.1)
seS teT iel
s.t.Z[AZ?fwj+A§ CHANY Y AT, bsj P VseS,VteT (4.2)

7€l iel
<t

bg, = b V(s,s)eP, Viel  (463)
yi =y V(s s)ePR, (4.60)

t
Z:* < A [Aﬂ(bf})] v(s,s') e P, vt e ST (4.9)

ieD(s,s") L7=1

_ 250 _
x5 =x* ,
T vzl wsis)eR,vtesT  (4.10)
bis,t+l = bis,t+l VI € I
_yts+l = yts-;—l i

W eW?, X7 e X7,y €Y’ b {01} VseS,vteT,Viel
Z>* e{True, False} Vvs,s'eS,vteT

The above model can be solved successively by starting with a fixed number
of stages (say k=2) with NA constraints and increasing the number of stages, i.e.
the value of k, if NA constraints of those stages greater than k are violated. The
following two propositions are established to implement the proposed k-stage
constraint strategy:

Proposition 4.1. The k-stage constraint model (MSSP*®) provides a valid lower
bound on the Original Model (MSSP®) and the Reduced Model (MSSPR).

Proof. It can be seen from Reduced Model (MSSPF) and the stage constraint
model (MSSP*®) that they are identical except the constraints that corresponds to
the conditional NA constraints. More specifically, equations (4.9) and (4.10) are
written for the subset of stages ST instead of all the stages T in equations (4.7) and
(4.8) respectively. Therefore, the k-stage constraint model (MSSP*®) can be
regarded as the relaxation of the Reduced Model (MSSP®) where we neglect the
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conditional NA constraints for the stages that are not the elements of the set ST.

Hence, the k-stage constraint model (MSSP¢

the Reduced Model (MSSPF). As models (MSSP®) and (MSSP?) are equivalent,
PSC

) provides a valid lower bound on

the k-stage constraint model (MSS
Original Model (MSSP?). 0

) also provides a valid lower bound on the

Proposition 4.2. The k-stage constraint model (MSSP*®) provides the optimum
solution to the Original Model (MSSP®) and the Reduced Model (MSSP), if there
is no realization of any of the endogenous uncertain parameter after specified
stages in the solution that is obtained.

Proof. The proof follows from the fact that if there is no realization of any of the
uncertain parameter after specified stage k in the solution, then there will be no
new information available to any scenario from period k +1 to end of the planning
horizon T. Therefore, the state of the system corresponding to each scenario will
be the same from period k to T. Moreover, the scenario pairs that have already
being distinguished within the first k stages according to the logic condition of the
non-anticipativity, there will not be any need to include NA constraints for these
scenario pairs. On the other hand, if there are some scenario pairs that have not
been distinguished until stage k, and as there in no further realization of
uncertainty, these scenarios will have the same information from period 1 to T and
will have the same decisions. Hence, the NA constraints from period k+1 to T
will automatically be satisfied for these scenario pairs. Given that the reduced
model (MSSPR) and the stage constraint model (MSSP*°) are identical except the
conditional NA constraints that were relaxed, i.e. from period k+1 to T in the
stage constraint model, and because the NA from period k+1 to T are satisfied in
the solution of k stage constraint model if there is no realization of uncertain
parameter after stage k as discussed earlier, the solution of the stage constraint
model corresponding to the current stage k will be the optimum solution for the
reduced model (MSSPF). As models (MSSP®) and (MSSP®) are equivalent, the k-
stage constraint model (MSSP*°
Model (MSSP?) if the above condition is satisfied. |

) also provides an optimal solution to the Original
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The step-by-step procedure to implement the proposed k-stage constraint
strategy is as follows:
Step 1: Set the effective number of stages k (usually k=2) and lower bound to -o.
Step 2: Include NA constraints for the specified number of stages k in the model
(MSSP*%) and solve.
Step 3: If Proposition 4.2 is satisfied, i.e. there is no realization of any of the
uncertain parameter after the current stage k, Stop. Optimal solution is found;
else go to Step 4.
Step 4: If Proposition 4.2 is not satisfied, update the lower bound using the
solution of the model (MSSP*®) for the specified value of k. Set k=k+1 and go to
Step 2.
The following remarks can be made about the proposed k-stage constraint
strategy:
1. There are two cases involved while checking whether Proposition 4.2 holds in
step 3 of the above procedure. In the first case, if there is neither investment nor
expansion decision in the later stages in the solution, then we can ensure that
Proposition 4.2 is satisfied and the solution obtained is optimal by inspection. In
case that there are expansions in the later stages and no new investments, then the
NA constraints corresponding to the later stages are also satisfied, i.e. Proposition
4.2 holds true and the solution is optimal.
2. The lower bounds obtained from the above procedure are generally very tight
and the corresponding solution is very close to the feasible solution to the original
problem. Therefore, this solution can be used to obtain a good feasible solution,
i.e. upper bound, and one can also evaluate the quality of the solution that is
obtained.
3. In case that the iterations during the above solution procedure are
computationally expensive, one can use the solution of the previous iteration to
determine a good value of k that can be used in the next iteration to fix the
number of stages instead of increasing k value by just 1 in each iteration.
Therefore, one can skip the expensive calculations for those values of k that are

less likely to be optimum.
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The proposed k-stage constraint strategy can be quite effective for the
investment planning models because the trend in problems of this class is that
their optimum solution involves investments in the earlier stages of the project.
The reason behind this is the effect of economies of scale, as in general, it pays to
make investments only once and earlier because of the fixed cost charges. Second,
if one expands the capacity, it is better to do it early as otherwise one will not take
full advantage of the investment. This implies that the investment and operation
decisions in the early stages of planning horizon are critical for these problems
and require enforcing the NA constraints in these stages, while the ones for later
stages can be ignored making the large-scale investment planning problems easier
to solve. Specific examples for these problems are process network planning, or

oil and gas fields infrastructure planning problems.

4.6.2 NAC Relaxation Strategy

The k-stage constraint strategy presented in the previous section involves the
solution of the reduced model for the specified number of stages iteratively and
has advantage for the investment planning problems where only first few stages
involve uncertainty realization. This is due to the economies of scale in these
problems as explained earlier. On the other hand, if there are endogenous
uncertainties that are revealed later in the planning horizon, then the stage
constraint approach can become expensive for finding the optimal solution due to
the solution of MILP problems for multiple times, although a strong lower bound
to the problem can still be obtained.

Therefore, for the more general problems we propose a NAC relaxation
strategy. This strategy is motivated by the fact that very few inequality NA
constraints become active at the optimal solution of the problem (e.g. see Colvin
and Maravelias, 2010). In this strategy (Figure 4.2), we divide the solution
procedure in two phases, Phase | and Phase Il. Phase | involves removing all
inequality NA constraints from the reduced model (MSSP®) and solving its LP
relaxation (LP-MSSPF). Then we check the feasibility of the NA constraints and
add the violated NA constraints in the LP relaxation and solve iteratively until

there is no violation of the NA constraints in the LP relaxation. In Phase Il of the
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NAC relaxation strategy, the resulting model from Phase | with the added cuts is
solved as an MILP problem to obtain a lower bound that is usually very tight. The
upper bound is obtained by fixing the binary decisions in the reduced model
(MSSP®) using the solution of the lower bounding MILP problem such that NA
constraints are not violated and solving the problem in fullspace. If the gap
between lower and upper bounds is more than the specified tolerance, we check
the feasibility of the NA constraints for the MILP solution in the current iteration
and solve the new MILP problem with violated NA constraints that serve as
added cuts in the next iteration. The procedure of solving lower and upper
bounding problems in Phase Il continues until the gap between upper and lower

bound is within the specified optimality tolerance.

Solve LP-MSSPR [«

Phase A 4 No Add violated

NAC feasible > NAC’s

Yes
\ 4
[ Solve MILP with added |
NAC’s and update LB
Add violated
Solve Reduced Model (MSSPR) NAC’s
with fixed 0-1 variables 'y
Phase 11 < No
- Y - Yes .| Update UB and check

Feasible Solution > if UB-LB < ¢

No A Yes
Solve Reduced Model (MSSP®) with fixed
Stop

K 0-1 variables such that NAC’s are feasible

Figure 4.2: NAC Relaxation Strategy
Note that in comparison to the branch and cut solution method by Colvin and
Maravelias (2010), the proposed NAC relaxation strategy is much easier to
implement directly using the available commercial solvers, although there might
be some trade-offs between these solution strategies in terms of the solution
times. Furthermore, it has been observed that very few inequality NA constraints
(~6-7% of the total inequality NA constraints in the reduced model) are added as

cuts in the complete solution procedure and most of the violated NA constraints
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as cuts are added in Phase | itself which is very fast compared to Phase II.
Although, the most expensive part of this procedure is the solution of the MILP
problems during the Phase Il iterations, it has been observed in most of the cases
that only one or two iterations are required in Phase Il to obtain a strong lower
bound as well as the to generate the optimal solution from it. Moreover, due to the
very small problem size compared to the reduced model, the solution of the MILP
problems in Phase Il are significantly faster during these iterations.

4.6.3 Lagrangean Decomposition Algorithm

The solution strategies presented in the previous two sections basically require the
solution of a fullspace model and do not take the advantage of the decomposable
structure of the model by scenarios. We should notice that the reduced model
(MSSPF) is composed of scenario subproblems connected through initial and
conditional NA constraints. If these NA constraints are relaxed or dualized, then
the problem decomposes by scenarios, and each sub-problem can be solved
independently within an iterative scheme for the multipliers as described in Carge
and Schultz (1999) and in Goel and Grossmann (2006). In this way, we can
effectively decompose the large scale problems in this class.

In the Lagrangean Decomposition algorithm (Figure 4.3) the lower bound
(LB) is obtained by solving the Lagrangean problem with fixed multipliers that is
obtained from the reduced model (MSSP®) by relaxing the conditional NA
constraints and dualizing the first time period NA constraints as penalty terms in
the objective. Each sub-problem in the following Lagrangean problem (LRF-

MSSPR) corresponds to a scenario:

(LRR -MSSP®) min > p° Z[c{“wj +COX +ClYE + Zcﬁfbiftj

seS teT iel
3 S (b b )+ s (v - vs)
(s,s)eP; il (s,8")ePy (411)

s-t.z[A:wa: A ARy Y A?:,tb:,j <@ vseSvteT (42)
reT, iel
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The upper bound (UB) is generated by using a heuristic based on the solution

of the Lagrangean problem. In this heuristic, we fix the decisions obtained from
the above problem (LR®- MSSPF) in the reduced problem (MSSP®) such that
there is no violation of NA constraints and solve it to obtain the upper bound. The
sub-gradient method by Fisher (1985) is used during each iteration to update the
multipliers for the Lagrangean problem. The algorithm stops when either a
maximum iteration limit is reached, or the difference between the bounds LB and
UB is less than a pre-specified tolerance.

LB = -
UB =
Initial Multipliers (Aq)

B
»

and iteration no. k=0 v

Solve Lagrangean subproblem |«
with fixed multipliers to get LB

y

Find UB (Feasible Solution) Update Lagrangean multipliers

by using a heuristic using Sub-gradient method
l Y
Gap<eg No
or k> Kmax
Yes
Stop

Figure 4.3: Lagrangean Decomposition algorithm

The major advantage with the above Lagrangean decomposition algorithm
for endogenous uncertainty problems is that it provides good bounds on the
optimal solution at the root node by taking advantage of the decomposable
structure of the problem. Notice that in contrast to the method presented by Goel
and Grossmann (2006), no branch and bound method is performed here with
which the dual gap may not be closed for the problem. Therefore, if the gap

between lower and upper bounds is large then in principle we would have to also
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incorporate a branch and bound procedure to reduce this gap. In our experience,
however, we have observed for problems in this class that a good feasible solution
within a small optimality tolerance is often found at the root node with this
algorithm.

It should be noted that as opposed to the k-stage constraint method described
earlier, in both the NAC relaxation strategy and Lagrangean decomposition
algorithm, it is possible to assess the quality of the solution obtained (UB) with
the lower bound at each iteration. On the other hand, in the k-stage constraint
strategy we obtain the solution with optimal number of stages k.

4.7 Numerical Results
In this section we apply the proposed solution strategies to two process network
examples and examine their performance compared to the original and reduced

models.

4.7.1 Example 1

To illustrate the application of the various solution strategies for multistage
stochastic programming with endogenous uncertainties, we consider the following
problem from Goel and Grossmann (2006). Given is a process network (Figure
4.4) that is used to produce product A. Currently, the production of A takes place
only in Process Il with installed capacity of 3 tons/hour that consumes an
intermediate product B that is purchased. If needed, the final product A can also
be purchased so as to maintain its inventory. The demand for the final product,
which is known, must be satisfied for all time periods over the given time horizon.
Two new technologies (Process | and Process Il) are considered for producing the
intermediate B from two different raw materials C and D. These new technologies
have uncertainty in the yields. The yield of Process | and Process Il can be
(0.67,0.69,0.81,0.83,0.84) and (0.62,0.65,0.85,0.88,0.89), respectively, with equal
probability of 0.2. These five realizations of yield for each of Process | and
Process Il give rise to a total of 25 scenarios.

The problem consists of finding the optimum expansion and operation

decisions for this process network for a 10 year planning horizon to minimize the
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total expected cost of the project. Applying the original model (MSSP?) and
solving it with XPRESS 20.00, we obtain the results shown in Figures 4.5(a)-(e).

rate Purchases A

rate
yl Wl rate| B
C —2 » Process | > Y3 rate wrete
B W, 5
‘ Process |11 Sales A
rate Wrate B A I
2
D y—2> Process |1 >
B Inventory A

Figure 4.4: Process Network Example 1
The total expected cost is $369,124 and the solution suggests to install

Process Il with a capacity of 1 tons/hr and expand the existing Process 111 from a
capacity of 3 tons/hr to 6.914 tons/hr in the first year. If the yield of Process Il
turns out to be low, i.e. 0.65 (Figure 4.5-a) or 0.62 (Figure 4.5-b), then in the
second year it is not expanded and the new Process | is installed. On the other
hand, if yield of Process Il turns out to be high, i.e. 0.89, (Figure 4.5-c), 0.88
(Figure 4.5-d) or 0.85 (Figure 4.5-e), then Process Il is expanded in the second
year to slightly different capacities close to 8 tons/hr in each of these three cases
and there is no installation of Process I. There are no further installations or
expansions of any of the processes.

It is interesting to note that the solution of the two-stage stochastic model of
this example that considers no expansions, i.e. no recourse actions for the
investment decisions of the processes, yields an expected cost of $379,706 or
about 3% higher than the multistage model. In this case the solution suggests to
install Process I and Process Il with capacities of 4.246 tons/hr, and 4.541 tons/hr
respectively, and expand Process 111 to a capacity of 7.384 tons/hr in the first year.
The savings in the expected cost using the multistage stochastic model are due to
the fact that multistage stochastic solution takes advantage of favorable scenarios
corresponding to the high yields of Process I, while minimizing the losses due to
the low vyield of Process Il by taking appropriate recourse action in the future on
the basis of the outcome of the yield of Process Il. It can be seen from the Figures
4.5 (c)-(e), that there is no investment made in Process-l1 for the scenarios

corresponding to the high yields of Process Il and from Figures 4.5(a)-(b), that
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there is installation of Process | for the scenarios corresponding to low yields of

Process I1.
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Figure 4.5: Installation Schedule for the Process Network Example 1
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If we reformulate the original (MSSP®) and reduced (MSSP®) models into
MILP problems (see Goel and Grossmann, 2006) for this example, the
comparison of problem sizes and solution times between these models using
XPRESS 20.00 solver is given in Table 4.3. It can be seen that problem size has
reduced approximately 90% using Properties 1-3. Therefore, the advantage of
including the new Property 3 with the earlier Properties 1 and 2 is very significant

for this problem.

Table 4.3: Comparison of the various solution strategies for Example 1

Expected

Cost Number of | Continuous | Binary | Solution

Problem Type ($10°) Constraints | Variables | Variables | Time(s)

Original Model (MSSP?) 369.12 192,376 11,026 750 243.33
Reduced Model: Property 1 369.12 98,576 8,026 750 224.79
Reduced Model: Properties 1-2 369.12 32,376 6,026 750 56.76
Reduced Model (MSSPF): 369.12 15,816 5,426 750 35.94
k-stage constraint Model for 369.12 7,096 5,106 750 8.36
NAC Relaxation Strategy 369.12 8,187* 5,426* 750* 12.00

*Size of the last MILP with NA constraints in Phase Il.

** Solved using XPRESS 20.00 solver in GAMS 23.0 on an Intel Pentium-1V machine with 3 GB
of RAM.

The comparison of the k-stage constraint strategy with the original (MSSP®)
and the reduced (MSSPF) models for this 3 process network is also given in Table
4.3 where it can be seen that the global optimum is obtained using the k-stage
constraint strategy and the solution time is greatly decreased to only 8.4s. We
should note that the problem was solved with 2-stages initially and was stopped
after the first iteration itself because there was no installation in time periods after
k=2, and therefore Proposition 4.2 is satisfied. When the NAC relaxation strategy
is applied to this problem, it provides the optimal solution significantly faster
compared to the fullspace model as seen in Table 4.3, and its performance is
slightly slower than the k-stage constraint strategy. The problem size of the MILP
in the last iteration with this strategy after adding the violated NA constraints is

also comparable to the size of the k-stage model.
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The Lagrangean decomposition algorithm was also used for solving the

bound method.

Table 4.4: Iterations during Lagrangean Decomposition

Lower Upper
Sub-gradient Bound Bound %

Iteration No. ($10°%) ($10%) Gap
1* 360.408 369.124 2.361

2* 362.594 369.124 1.769

3* 363.795 369.124 1.444

4 363.795 369.124 1.444

5* 364.244 369.124 1.322
6 364.789 369.124 1.174

7* 364.816 369.124 1.167

8 364.883 369.124 1.149

9 364.883 369.124 1.149

10* 365.374 369.124 1.016
27 366.135 369.124 0.810
Time(s) 21.95 5.18 0.810

*problem solved for upper bound generation

process network Example 1 using the reduced model. The results in Table 4.4
show that with the Lagrangean decomposition algorithm the problem can be
solved within 1% of optimality at the root node in just 27 s compared to 243 s in
the case of the original model. Note that the global optimum is also obtained in
this case. To further reduce the gap one may have to incorporate a branch and

Table 4.5: Comparison of the original and reduced models for Example 1
considering different scenarios

Number of Solution Time(s) Solution Time(s) % Optimality
Scenarios Original Model* Reduced Model* Gap
4 1.30 0.96 0
9 19.38 4.98 0
16 133.09 14.71 0
25 243.33 35.94 0
36 731.37 42.26 < 0.5%
64 2516.709 102.04 < 0.5%
81 NA 105.03 < 0.5%
100 NA 120.19 < 0.5%

*Problems are solved in fullspace.
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Furthermore, to investigate the impact of the model reduction using
Properties 1-3, we also consider other cases for this example where the number of
realization of uncertain yields are changed for Process | and Process Il from 2 to
10, and the results are shown in Table 4.5. It is clear that the problem size is
reduced significantly and hence the solution time for all the cases. Also, note that
we can solve all the problems with the reduced model, while the larger ones
cannot be solved with the original model. The main reason is the much smaller

size of the reduced model as can be seen in Figure 4.6.
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Figure 4.6: Comparison of constraints in Original and Reduced Models for Example 1
considering different scenarios
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Figure 4.7: Cuts Added vs. Total Constraints in the Reduced Model for
NAC Relaxation Strategy
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As discussed earlier, the number of active NA constraints at the optimal
solution of these problems is very small. It can be observed from Figure 4.7 that
very few (~6-7%) inequality NA constraints of the reduced model are added as
cuts during the NAC relaxation strategy for all scenario instances of Example 1.
Also, the computational advantage of this strategy can be seen in Table 4.6. It
should be noted that very few Phase Il iterations are needed to obtain the optimal

solution.

Table 4.6: Reduced Model vs. NAC-Relaxation Strategy for various scenario instances

Solution
. Time (s) Solution
Number (S)p:tltr_nal NAC Time(s)
of olu ;0” Gap Phase | Phase 11 Relaxation Reduced
Scenarios ($10 ) % Iterations | Iterations Strategy Model
4 379.072 0.000 3 1 1.136 0.96
9 390.944 0.012 3 1 3.701 4.98
16 377.364 0.002 3 1 10.837 14.71
25 369.124 0.002 3 1 12.005 35.94
64 376.824 0.000 5 2 51.577 102.04
100 376.747 0.003 3 1 76.537 120.19
4.7.2 Example 2
Process V
E =% Process IV B Purchases A
B
B
C ——»| Process | > > Process 111 x Sales A
B !
Inventory A
D ————» Process Il >
B

Figure 4.8: Process Network Example 2

To illustrate the solution of a larger instance, we consider a 5 process
network (Figure 4.8) having 4 uncertain parameters, i.e. yield of Process |,
Process Il, Process IV and Process V. Notice that here we consider 2 new
additional processes compared to the previous example in which Process IV
converts E into B and Process V that converts B into final product A. Each of the

uncertain yields has 3 realizations and gives rise to a total of 81 scenarios with
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equal probabilities. The problem consists of finding the expansion and operation
decisions for this process network over a 10 year planning horizon to minimize
the total expected cost of the project.

The optimum installation schedule of the processes for this problem can be
seen in Figure 4.9. Only one node in time period 1 in Figure 4.9 corresponds to
the initial state of the system when there is no realization of any of the uncertain
yields. The uncertain Process I, Process IV and Process V are installed in the first
year with small capacities in all the scenarios and due to the 3 possible
realizations of the yield of each of these 3 processes, there are total 27 nodes at
time period 2 in the scenario tree (Figure 4.9) that correspond to the 27 possible
states of the system at the beginning of the second year. On the basis of these
yield realizations, the recourse actions involve installation of the new Process I
for low yield scenarios and expansion of the already installed processes for high
yield scenarios. Note that in Figure 4.9, the number of nodes (states) in time
period 3 is greater than the ones in period 2 due to the installation of Process I in
some of the states in the second year and its corresponding 3 possible yield
realizations for each of these new installations. From period 3 to end of the
planning horizon there is no further realization of uncertainty in any of the
scenarios and no new branches appeared as can be seen from Figure 4.9.
Moreover, we can observe from this solution that the structure of the scenario tree
for these problems depends on our decisions, i.e. decision-dependent scenario tree
as explained earlier.

Table 4.7: Comparison of the various solution strategies for Example 2

Expected Number of | Continuous Binary Solution
Problem Type Cost ($10°) | Constraints Variables Variables | Time(s)
Original Model (MSSP") - 3,158,272 90,802 4,050 NA
Reduced Model: Property 1 - 1,591,732 58,402 4,050 NA
Reduced Model: Properties 1-2 369.590 151,552 29,242 4,050 1627.51
Reduced Model (MSSP"): 368.972 109,432 28,162 4,050 1160.34
k-Stage Constraint Model for 368.916 44,200 26,434 4,050 37153
NAC Relaxation Strategy 368.650 45,797* 28,162* 4,050* 250.64

*Size of the last MILP with NA constraints in Phase II.
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Figure 4.9: Optimal Solution (Example 2)

The results for this problem are compared in Table 4.7 for the original
(MSSPY), reduced (MSSPR), k-stage constraint (MSSP*) models and NAC
relaxation strategy. The problem was solved within 0.5% optimally tolerance in
all the cases which gives slightly different optimal values. It can be seen that the
problem cannot be solved in the fullspace for the original model and even after
using Property 1, while using the reduced model with Properties 2 and 3, we can
solve it. The solution time for only considering Properties 1-2 is 1.5 times more
than the solution time from considering Properties 1-3, which is expected due to a
factor of around the same order in the number of scenario pairs included in these
models.

The k-stage constraint model was initially solved for two stages (k =2) and it
gives the optimal solution to the problem as there was no realization of any
uncertain parameter after k=2. Because of the inherent property of these
problems, the proposed k-stage constraint model does not need many iterations
and performs better than the reduced model. On the other hand, the NAC
relaxation strategy works well in all the cases because of its generality. As it can
be seen in Table 4.7, the optimal solution obtained from the NAC relaxation
strategy has a slightly lower cost than the other strategies, and it is also

significantly faster than the reduced model and comparable to the k-stage model.
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Table 4.8: Iterations during Lagrangean Decomposition

Sub-gradient | Lower Bound | Upper Bound %
Iteration No. ($10°%) ($10°%) Gap
1* 351.577 371.579 5.383
2* 352.517 371.579 5.130
3* 354.426 371.579 4.616
4* 354.426 371.579 4.616
5* 354.869 371.579 4.497
6* 354.869 371.579 4.497
7 354.929 371.579 4.481
8* 354.929 371.579 4.481
9 355.235 371.579 4.399
10 355.235 371.579 4.399
30 358.361 371.579 3.557
Time(s) 167.19 13.63 3.557

*problem solved for upper bound generation

The Lagrangean decomposition algorithm was also applied to this 5 process
network problem using the reduced model. The results in Table 4.8 show that
using Lagrangean decomposition algorithm with the reduced model, the problem
can be solved within about 3.5% of optimality gap at the root node after 30
iterations. The solution obtained (UB) at the root node has a higher cost than the
solution obtained from the NAC relaxation strategy ($371,579 vs. $368, 650). On
the other hand, it is faster than the NAC relaxation strategy (181s vs. 2515s).

The Lagrangean decomposition strategy has the advantage that if the
problem size is too large to be generated for all the scenarios at once, the model
can be decomposed by scenarios. The k-stage constraint and NAC relaxation
strategies will not work in this case as they need to be solved for all scenarios at
once. It is only in smaller to moderate size problems that the k-stage constraint
strategy and the NAC relaxation strategy may perform better than Lagrangean
decomposition strategy because of the tight lower bounds and corresponding
better solutions obtained in these cases. These trends can be clearly seen from the

two examples considered.
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It is also interesting to note that the two-stage stochastic model
corresponding to this example gives about 5% higher total expected cost
($387,421 vs. $368,650) and suggests to invest in all the processes in period 1.
Similar to the Example 1, in the two-stage case the higher cost occurs due to the
absence of appropriate recourse for the investment decisions in the model.
Furthermore, the larger savings compared to the previous example indicate the
advantage of using the multistage stochastic model. Also, note that the total
expected cost is about 3-6 % higher for the expected value problem (EVP) in
comparison to the multistage stochastic programming model for all the cases
considered.

The numerical results presented in this section are very encouraging to solve
multistage stochastic programming problems with endogenous uncertainty using
the proposed solution strategies in reasonable computational time. Although there
are several trade-offs involved in using a particular solution strategy for a
particular class of the problems under uncertainty, the proposed solution strategies
are fairly general and can be applied to many problems classes, specifically to all

the problems that involve endogenous uncertain parameters.

4.8 Conclusions

In this chapter, we have proposed several solution strategies for multistage
stochastic programming problems with endogenous uncertainty. We have
identified a new Property 3 for the models in this class that together with two
properties previously presented by Goel and Grossmann (2006), significantly
reduce the problem size and the solution time. To solve the large instance of these
problems, we have proposed a k-stage constraint strategy that yields the global
optimum in particular cases and is useful for problems where endogenous
uncertainty is revealed during the first few time periods of the planning horizon.
To solve the more general problems of large size, we also proposed a NAC
relaxation strategy based on relaxing the NA constraints and adding them if they
are violated. Finally, we described a Lagrangean Decomposition algorithm that

can predict the rigorous lower bounds for the solution obtained. The proposed
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solution strategies have been successfully applied to two process network
problems. Moreover, these strategies are applicable to a wide range of problems

having endogenous uncertainty in some of the parameters.
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Chapter 5

Multistage stochastic programming
approach for offshore oilfield
Infrastructure planning under
production sharing agreements and

endogenous uncertainties

5.1 Introduction

In this chapter, we present a general multistage stochastic programming model for
multiperiod investment and operations planning of offshore oil and gas field
infrastructure. The model considers the deterministic models proposed in chapter
2 and 3 as a basis to extend to the stochastic programming using the modeling
framework presented in chapter 4 for endogenous (decision-dependent)
uncertainty problems. In terms of the fiscal contracts, we consider progressive
production sharing agreements, whereas the endogenous uncertainty (type 2) in
the field parameters i.e. field size, oil deliverability, water-oil ratio and gas-oil
ratio is considered, that can only be revealed once an investment is made in the
field and production is started in it. Compared to the conventional models where
either fiscal rules or uncertainty in the field parameters are taken into account, the
proposed model is the first one in the literature that also allows considering both
of these complexities simultaneously. To solve large instances of the problem, the

Lagrangean decomposition approach similar to chapter 4, allowing parallel

138



solution of the scenario subproblems, is implemented in the GAMS grid
computing environment.

The outline of this chapter is as follows. First, in section 5.2 we present a
detailed problem description for offshore oilfield development planning under
production sharing agreements and endogenous uncertainties. The corresponding
multistage stochastic programming model is presented in extensive as well as
compact forms in sections 5.3 and 5.4, respectively. The Lagrangean
decomposition algorithm adapted from chapter 4 is explained in section 5.5 to
solve large instances of the stochastic oilfield planning model. The proposed
model and solution approach are then applied to multiple instances of the two
oilfield development problems in section 5.6 to illustrate their performances.

5.2 Problem statement

Total Oil/Gas
Production

Ringfence 1

Ringfence 2

Field 4

Figure 5.1: A typical offshore oilfield infrastructure representation

In this chapter, we consider the development planning of an offshore oil and gas
field infrastructure under complex fiscal rules and endogenous uncertainties. In
particular, a multi-field site, F = {1,2,...}, with potential investments in floating
production storage and offloading (FPSO) facilities, FPSO = {1,2,..} with
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continuous capacities and ability to expand them in the future is considered
(Figure 5.1), as in the previous chapters. The connection of a field to an installed
FPSO facility and a number of wells need to be drilled to produce oil from these
fields for the given planning horizon. The planning horizon is discretized into T
time periods, typically each with one year duration. The location of each FPSO
facility and its possible connections to the given fields are assumed to be known.
Notice that each FPSO facility can be connected to more than one field to produce
oil, while a field can only be connected to a single FPSO facility due to
engineering requirements and economic viability of the project. For simplicity, we
only consider FPSO facilities. The proposed model can easily be extended to
other facilities such as tension leg platforms (TLPs). The water produced with the
oil is usually re-injected after separation, while the gas can be sold in the market.
In this case, we consider natural depletion of the reserves, i.e. no water or gas re-
injection. Notice that for convenience to the reader, we included the detailed
problem statement and model in this chapter which contain few common elements

from the previous chapters.

There are three major complexities in the problem considered here:

521 Nonlinear Reservoir Profiles: We consider three components (oil,
water and gas) explicitly during production from a field. Field deliverability, i.e.
maximum oil flowrate from a field, water-oil-ratio (WOR) and gas-oil-ratio
(GOR) are approximated by cubic equations (a)-(c) (see Figure 5.2), while
cumulative water produced and cumulative gas produced from a field are
represented by fourth order separable polynomials, egs. (d)-(e), that are derived in
Appendix A. The motivation for using the polynomials for cumulative water
produced and cumulative gas produced in egs. (d)-(e) as compared to WOR and
GOR in egs. (b)-(c) is to avoid bilinear terms, egs. (f)-(g), in the formulation and
allow converting the resulting model into an MILP formulation using piecewise
linear approximations. All the wells in a particular field f are assumed to be
identical for the sake of simplicity leading to the same reservoir profiles, egs. (a)-

(9), for each of these wells.
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Figure 5.2: Nonlinear Reservoir Characteristics for field (F1) for 2 FPSOs

(FPSO 1 and 2)

(c) Gas to ail ratio for field (F1)
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5.2.2 Production Sharing Agreements: There are fiscal contracts with the
host government that need to be accounted for during development planning. In
particular, we consider progressive (sliding scale) production sharing agreements
with ringfencing provisions, which are widely used in several countries. The
revenue flow in a typical production sharing agreement (PSA) can be seen as in
Figure 5.3 (World Bank, 2007). First, in most cases, the company pays royalty to
the government at a certain percentage of the total oil produced. After paying the
royalties, some portion of the remaining oil is treated as cost oil by the oil
company to recover its costs. There is a ceiling on the cost oil recovery to ensure
revenues to the government as soon as production starts. The remaining part of
the oil, called profit oil, is divided between oil company and the host government
at a certain percentage. The oil company needs to further pay income tax on its
share of profit oil. Hence, the total contractor’s (oil company) share in the gross

revenue is comprised of cost oil and contractor’s profit oil share after tax.

| Production |
Cost Qil Profit Oil Royalty
v \ 4
Contractor’s Government’s
Share Share
v \ 4
Contractor’s Income
after-tax Share Tax
\ 4 l l A\ 4 A\ 4

Total Contractor’s Share | | Total Government’s Share

Figure 5.3: Revenue flow for a typical Production Sharing Agreement
In this work, we consider a sliding scale profit oil share of the contractor
linked to the cumulative oil produced. For instance, if the cumulative production
(in MMbbl) is in the range of first tier, 0 <xc, <200, the contractor receives 50%
of the profit oil, while if the cumulative production (in MMbbl) reaches in tier 2,

200 < xc, <400, the contractor receives 40% of the profit oil, and so on (see Figure

5.4). Notice that this tier structure is a step function, which requires additional
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binary variables to model and makes the problem harder to solve. Moreover, the
cost recovery ceiling is considered to be a fraction of the gross revenues in each
time period t. For simplicity, the cost recovery ceiling fraction and income tax
rates are assumed to be a fixed percentages (no sliding scale), and there are no

explicit royalty provisions which is a straightforward extension.

100% -
80% -
60% -

40% -_\—\_|—

20% -

0%

% Profit oil Share of
Contractor

0 200 400 600 800 1000
Cumulative Oil Production (MMbbl)

Figure 5.4: Progressive profit oil share of the contractor

A set of ringfences RF = {1,2,...} among the given fields is specified (see
Figure 5.1) to ensure that fiscal calculations are to be done for each ringfence
separately (see chapter 3 for details). For example, the fiscal calculations for
Fields 1-3 (Ringfence 1) and Field 4-5 (Ringfence 2) in Figure 5.1 cannot be
consolidated in one place. These ringfences may or may not have the same fiscal
rules. Qualitatively, a typical ringfencing provision states that the investment and
operational costs for a specified group of fields or block can only be recovered
from the revenue generated from those fields or block. Notice that in general a
field is associated to a single ringfence, while a ringfence can include more than
one field. In contrast, a facility can be connected to multiple fields from different

ringfences for producing oil and gas.

5.2.3 Endogenous Uncertainties:

@ Uncertain Field Parameters: We consider here the uncertainty in the
field parameters, i.e. field size, oil deliverability per well, water-oil ratio and gas-
oil ratio. These are endogenous uncertain parameters since investment and
operating decisions affect the stochastic process (Jonsbraten et al., 1998; Goel et

al., 2006; Tarhan et al., 2009; and Gupta and Grossmann, 2011a). In particular,
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the uncertainty in the field parameters can only be resolved when an investment is
made in that field and production is started in it. Therefore, optimization decisions
determine the timing of uncertainty realization, i.e. decision-dependent

uncertainty (type 2).

25
High .
o 20 \.
Uncertainty in the \
oil deliverability '\
Low H .‘\,
\ \\.H,H —— Average
s AN — - -High
10 > ' g

Q(kstb/d)
[62]
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0.0 0.1 0.2 0.3 4 0.5 0.6 0.7 0.8 0.9 1.0
Fractional Oil Recovery(fc)
Low Fractional High Fractional
Recovery (high size) Recovery (low size)

Uncertainty in the field size

fc oc

REC,
Figure 5.5: Oil deliverability per well for a field under uncertainty

The average profile in Figure 5.5 represents the oil deliverability per well for
a field as a nonlinear polynomial in terms of the fractional oil recovery (eq. (a))
under perfect information. However, due to the uncertainty in the oil
deliverability, the actual profile is assumed to be either the lower or upper side of
the average profile with a given probability. In particular, eq. (h) represents the oil

deliverability per well for a field under uncertainty where parameter «; ;, is used
to characterize this uncertainty.
Q(fj = O ol (j(fj vt (h)
For instance, if «,, >1, then we have a higher oil deliverability than
expected («,,, =1), whereas for a; . <1 a lower than expected oil deliverability

is observed. Since, the uncertain field size (recoverable oil volume, REC,) is an
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inverse function of the fraction oil recovery, a higher field size will correspond to
the low fractional oil recovery, whereas a small field size will correspond to the
higher fractional oil recovery for a given amount of the cumulative oil production.

Similarly, egs. (i) and (j) correspond to the uncertain field profiles for water-
oil-ratio and gas-oil-ratio that are characterized by the uncertain parameters
Ot worand @y g, respectively. Notice that since the cumulative water produced
(eq. (d)) and the cumulative gas produced (eq. (e)) profiles are used in the model,
instead of water-oil-ratio (eqg. (b)) and gas-oil-ratio (eg. (c)), the uncertainty in the

parameters o .o and ;g can be transformed into the corresponding

uncertainty in the parameters &; ,.and & o as in egs. (k) and (l), respectively.

In particular, we use the correspondence among the coefficients of these two sets

of the polynomials (see Appendix A) for this transformation.

WOI; = 0 0 - WOI vf (i)
gor; =a; g, - gor; vf ()
WC; = s ¢ - WC; v (k)
gC; = a; 4 - OC; v (D
Moreover, the uncertain  parameters for every field, i.e.

0; = {RECf ,af,oi.,af,wor,af,gor} are considered to have a number of possible
discrete realizations € with a given probability. Therefore, all the possible

combinations of these realizations yield a set of scenarios S e S™" where each

scenario has the corresponding probability p° .

(b) Correlation among the uncertain parameters: If the uncertain

parameters are considered to be independent, the total number of scenarios in set

S** grows exponentially with the number of uncertain parameters and their
possible realizations, which makes the problem intractable. For instance, if there
are only 2 fields, then 4 uncertain parameters for each field having 2 realizations

will require 256 scenarios. Therefore, it becomes difficult to solve a multi-field
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site problem with independent uncertainties in the set
0; ={RECf,af,oi.,af,wor,af,go,}. Since in practice normally uncertainties are

not independent, we can overcome this limitation by considering that there are

correlations among the uncertain parameters for each individual field. In
particular, the uncertain parameters for a field ¢; = {RECf ,af,oi.,af,wor,af,gm} are

considered to be dependent. Therefore, only a subset of the possible scenarios

S < S*™is sufficient to represent the uncertainty. For instance, based on the

practical considerations, we can assume that if a field is of lower size than

expected, then the oil deliverability is also lower (& <1). Therefore, the

scenarios with a combinations of higher oil deliverability (a; . >1) and lower

field size are not included in the reduced scenario set and vice-versa. Similarly,

correlations for the water-oil ratio and gas-oil ratio can be considered to

substantially reduce the original scenario set S** . Therefore, the problem can be
considered as selecting a sample of the scenarios for each field, where a scenario

for that field will be equivalent to the selected combinations of the realizations of
the uncertain parameters &; = {RECf ,af,oi.,af,wor,af,gor}.

In the computational experiments, we only consider the extreme cases of the
scenarios assuming perfect correlations, i.e. all uncertain parameters for a field
have either low, medium or high realizations. Note that these assumptions on
correlation among the field parameters are flexible and can be modified
depending on the problem at hand. In addition to the correlation among the
uncertain parameters for each individual field, one can also take into account the
correlation among the fields based on the available information for a particular
oilfield development site to further reduce the total number of scenarios. Notice

also that the model and solution method presented in the chapter is irrespective of

whether a reduced scenario set S is considered or the complete one (S** ).
(c) Uncertainty Resolution Rules: Instead of assuming that the
uncertainties are resolved as soon as a well is drilled in the field, i.e. immediate

resolution, we assume that several wells need to be drilled and production has to
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be started from the field for this purpose. Moreover, since the uncertain
parameters for a field &; ={RECf,af,oi.,af,wor,af,gor} are assumed to be

correlated as described above, the timing of uncertainty resolution in these
parameters is also considered to the same. This allows solving much larger multi-
field site instances without losing much in terms of the quality of the solution.

In contrast, Tarhan et al. (2009) considered a single field at a detailed level
where no correlations among the uncertain parameters of the field were
considered, and these parameters were allowed to be revealed independently at
different time periods in the planning horizon. However, the resulting scenario
tree even for a single field became very complex to model and solve. Therefore,
we assume that the uncertainty in all the field parameters

0; = {RECf ,af,oi.,af,wor,af,gor} is resolved if at-least N; number of wells have

been drilled in the field, and production has been performed from that field for a
duration of at-least N, years. Notice that these assumptions on uncertainty
resolution rules are flexible and can be adapted depending on the field
information that is available. Moreover, the model can also be extended to the
case where each parameter for a field is allowed to be revealed in different years
based on the work of Tarhan et al. (2009) that will result in a significant increase
in the computation expense.

(d) Decision-dependent scenario trees: The multiperiod planning horizon
and the discrete set of the selected scenarios for each field with given probabilities
can be represented by scenario trees. However, since the timing of the uncertainty
realization for a field (or its corresponding scenarios) depends on the drilling and
operating decisions, the resulting scenario tree is also decision-dependent as was
seen in chapter 4. For instance, if we consider a set of two uncertain fields

F={,2} and the selected scenario set based on the parameter correlations for

each field has 2 elements,{él,éf}, with equal probability. Therefore, the problem
involves the following 4 scenarios each with a probability of 0.25:

S :{1: (‘911’921); 2: (0111‘922); 3: (612’021); 4: (012’922)}
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Notice that each of these elements,{éﬁ,éf}, is equivalent to a selected
combination of the realization of the corresponding uncertain parameters, for
example 6} ={REC! VO o Xf o Ot gor} - Figure 5.6 represents the scenario tree

for this problem, where the uncertainty in the first field is resolved at the end of
first year, since we drill N; wells in the field at the beginning of year 1 and
produce from this field during that year (N, =1). The system can be in two
different states in year 2 depending on the realized value of the uncertain

parameter élk. Similarly, uncertainty in the field 2 is resolved in year 4 under the

scenarios 3 and 4 due to drilling and operating decisions, whereas it remains
uncertain in the scenarios 1 and 2. Therefore, the resulting scenario tree depends
on the optimization decisions, which are not known a priori, requiring modeling a
superstructure of the all possible scenario trees that can occur based on our
decisions. Notice that the scenario-tree also allows considering the cases where
the number of wells drilled in a field is less than the one required for the
uncertainty resolution (i.e. N; wells), and therefore, the corresponding scenarios

remain indistinguishable.

Year 1 Drill N; wells in field 1
~ \ _
Year2 O 0,
Year 3 () Drill N; wells in field 2
Year 4 O 521 522

Year 5 Q

1,2 3 4

Figure 5.6: Decision-dependent scenario tree for two fields

An alternate representation of the decision-dependent scenario-tree (chapter

4) is used to model the problem as a multistage stochastic program in which the
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scenarios are treated independently and related through the non-anticipativity
constraints for states of different scenarios that are identical (see Goel and
Grossmann, 2006; and Gupta and Grossmann, 2011a).

The problem is to determine the optimal investment and operating decisions
to maximize the contractor’s expected NPV for a given planning horizon
considering the above production sharing agreements and endogenous
uncertainties. In particular, investment decisions in each time period t and
scenario s include FPSO facilities installation or expansion, and their respective
installation or expansion capacities for oil, liquid and gas, fields-FPSO
connections, and the number of wells that need to be drilled in each field f given
the restrictions on the total number of wells that can be drilled in each time period
t over all the given fields. Operating decisions include the oil/gas production rates
from each field f in each time period t under every scenario s.

It is assumed that the installation and expansion decisions occur at the
beginning of each time period t, while operations take place throughout the time
period. There is a lead time of |; years for each FPSO facility initial installation,
and a lead time of I, years for the expansion of an earlier installed FPSO facility.
Once installed, we assume that the oil, liquid (oil and water) and gas capacities of
a FPSO facility can only be expanded once. These assumptions are made for the
sake of simplicity, and both the model and the solution approaches are flexible
enough to incorporate more complexities. In the next section, we propose a
multistage stochastic programming model for oilfield development planning with
production sharing agreements and decision-dependent uncertainty in the field

parameters as described.

5.3 Multistage Stochastic Programming Model

In this section, we present a general multistage stochastic programming model for
offshore oilfield development planning. The proposed model considers the trade-
offs involved between investment and operating decisions, uncertainties in the
field parameters and profit share with the government while maximizing the

overall expected NPV for the contractor. Notice that the model is intended to be
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solved every year in a rolling horizon manner with updated information, not just
once for the entire planning horizon. The constraints involved in the model are as
follows:

(i) Objective Function: The objective function is to maximize the total expected
NPV of the contractor as in (5.1), which is the summation of the NPVs over all

the scenarios having probabilities p°. The NPV of a particular scenario s is the
difference between discounted total contractor’s gross revenue share and total cost
over the planning horizon (5.2). The total contractor’s share in a particular time
period t and scenario s is the sum of the contractor’s share over all the ring-fences
(rf) as given in equation (5.3). Similarly, constraints (5.4) and (5.5) represent the
total capital and operating expenses for each scenario s in time period t.

Max ENPV (5.1)
ENPV =" p*> dis, - (TotalConSh*** — CAR*"* — OPER;*"*) (5.2)
s 4
TotalConSh*™* = > TotalConSh, , Vt, s (5.3)
rf
CAR™* =>"CAP;, Vi, s (5.4)
rf
OPER{™* = > OPER; , Vt,s (5.5)
rf

(ii) Cost Calculations: The total capital expenses in scenario s for a ring-fence rf
contains two components as given in equation (5.6). One is field specific (eq. 5.7)
that accounts for the connection costs between a field and a FPSO facility, and
cost of drilling the wells for each of the field in that ring-fence rf. The other cost
component is FPSO specific (eg. 5.8) that includes the capital expenses for the
corresponding FPSO facilities. Eq. (5.9) calculates the total cost of an FPSO
facility in time period t for scenario s which is disaggregated in eq. (5.10) over
various fields (and therefore ring-fences as in (5.11)). The cost disaggregation is
done on the basis of the field sizes to which the FPSO is connected (eq. (5.12)-
(5.14)), where set Fyso is the set of all the fields that can be connected to FPSO
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facility fpso and the binary variable b?r,'ﬁ,so represents the potential connections.
Notice that there is an uncertainty in the recoverable oil volume of the field (
REC:) used in eq. (5.14) that multiplies the binary variable b¢"p, . To linearize

the Dbilinear terms in eq. (5.14), we use exact linearization technique (Glover,

1975) by introducing the positive variables (ZD/ % .,ZDL1{* ) and

f', f,fpso,t? f' f, fpso,t

(ZD5 fp0.1» ZD15 (0.1 ) that results in the constraints (5.15)-(5.23).

CAP; , = CAPL , + CAP2:, vrf t,s (5.6)
CAP]':T |t :ZZFCf,fpso,tb?,fpso,t +ZFC¥V,?”|\1‘N,?”’S Vrf ,t,S (57)
F¢ fpso Ft
CAP2; , = > DFPSOC; o vrf t,s (5.8)
fpso
FPSOC,,, = [FCESbERS0s 1vCh, (QI1%, +QEMS ) +VCE, (QIESS +QEL:S)]
vrf,t,s (5.9)
FPSOC {,,c = > DFPSOC {05, vrf t,s (5.10)
Ffpso
DFPSOC o, = > DFPSOC {115, vrf, fpso,t,s  (5.11)
Frf
S S H v, fpso,s  (5.12)
t
DFPSOC ("5, <M -b?" vf, fpso,t,s  (5.13)
pFpsoc s —_ Prim RECT  ppon.
f fpsot S bes  -REC:, fpsot vf, fpsot,s  (5.14)
f'eFfpsu
> .ZD{%% . -REC{. = ZD; o, - REC; vf, fpso,t,s  (5.15)
f 'eFfpSO

ZD;!ff'f*f;SO,t +ZD1]‘:i.f"}(f'fspSO,t =DFPSOC [®%  vf, fpso,t, f'e Froo: S (5.16)

f,fpso,t
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ZDfie|d,S < U . bOﬂ,S \V/f , fpSO,t, f 'e FfpSO 'S (517)

f', f, fpso,t — f', fpso

ZD1{ o U -(A—bM ) vf, fpso,t, f'e Fry,S (5.18)
ZD{ o = 0,ZD1S =0 vf, fpso,t, f'e Fr,S (5.19)
ZD} p0x +ZD15 1 = FPSOCS ., vf, fpso,t,s (5.20)
ZD; (o <U -bY"E, vf, fpso,t,s (5.21)
ZD1% o <U-(L-b"0) vf, fpso,t,s (5.22)
ZD; o =0,ZD15 1, =0 vf, fpso,t,s (5.23)

The total operating expenses for scenario s in time period t for ring-fence rf ,
eq. (5.24), are the operation costs corresponding to the total amount of liquid and

gas produced.
OPER; , = 5{0CH (X% +wt?) + OCEgets ] wrf t,s (5.24)

(iii) Total Contractor Share Calculations: The total contractor share in scenario
s for ring-fence rf in time period t, eq. (5.25), is the sum of contractor’s after-tax
profit oil share for that ring-fence and the cost oil that it keeps to recover the
expenses. The contractor’s profit oil share after tax in scenario s is the difference
of the contractor’s profit oil share before tax and income tax paid as in constraint

(5.26). The tax paid by the contractor on its profit oil share depends on the given
tax rate ( fﬂ) as in constraint (5.27).

TotalConSh; , = ConShi"s"™™* + COj | vrf,t,s (5.25)

ConShi"e"™* = ConShy* ™™ —Tax] vrf,t,s (5.26)
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Tax = £ -ConsH ™ vitts e
The contractor’s share before tax for scenario s in each time period t is some

fraction of the total profit oil during that period t for ring-fence rf. Note that we

assume here that this profit oil fraction, f}, is based on a decreasing sliding scale

system that is linked to the cumulative amount of oil produced XCy; ., where i is

the index of the corresponding tier. Therefore, for possible levels i (i.e. tiers) of
cumulative amount of oil produced by the end of time period t in scenario s, the
corresponding contractor’s profit oil share can be calculated using disjunction
(5.28) where the boolean variable Z ;, is true if the cumulative oil produced lies
between the tier i threshold. This disjunction (5.28) can further be rewritten as
integer and mixed-integer linear constraints (5.29)-(5.36) using the convex-hull
formulation (Raman and Grossmann, 1994).

Zia
Y| Consh ™ = 7 POy vrf t,s (5.28)
Ly <xcp <UR, _
ConShyFiee®s = Z DConSh, ™ vrf t,s (5.29)
PO; | = Z DPO;, ;, vrf t,s (5.30)
XCh = z Dxc;; vrf t,s (5.31)
DConShr™* = {5 - DPO} ;, vrf,i,t,s (5.32)
0 < DConSh ™ <M -Z;, ., vrf,it,s (5.33)
0<DPO;; <M -Z3,, vrf,it,s (5.34)
LY -z, <Dxcy, <USL-Z5 0, vrf,it,s (5.35)
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2. Za =1 vrf t,s (5.36)

Z; it {01}

The cumulative amount of oil produced from a ring-fence rf by the end of
time period t in scenario s is calculated as the sum of the cumulative amount of oil
produced by that time period from all the fields associated to that ring-fence, eq.
(5.37). Constraint (5.38) represents the total profit oil in time period t for a ring-
fence rf as the difference between gross revenue and the cost oil for scenario s.
The gross revenues (5.39) in each time period t for a ring-fence rf in scenario s,
are computed based on the total amount of oil produced and its selling price,
where total oil flow rate in a time period t for ring-fence rf, is calculated as the
sum of the oil production rates over all the fields in that ring-fence, i.e. set Fy, in
equation (5.40). For simplicity, we only consider the revenue generated from the

oil sales, which is much larger in general as compared to the revenue from gas.

XCh ¢ = FZXCf“,?'d’S vrf t,s (5.37)
PO; , =REV; , —CO; VIt (5.38)
REV? , = 5,ax% VIt (5.39)
Xt = FZ X§ 4 vrf L, (5.40)

The cost oil in time period t for a ring-fence rf, constraint (5.41), is
calculated as the minimum of the cost recovery in that time period and maximum
allowable cost oil (cost recovery ceiling) in scenario s. Eq. (5.41) can further be
rewritten as mixed-integer linear constraints (5.42)-(5.47). Cost recovery in time
period t for a ring-fence rf in scenario s, constraint (5.48), is the sum of capital
and operating costs in that period t and cost recovery carried forward from
previous time period t-1. Any unrecovered cost (that is carried forward to the next
period) in time period t for a ring-fence rf, is calculated as the difference between

the cost recovery and cost oil in time period t for a scenario s (eq. (5.49)).
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CO; . =min(CR; , T -REV ) vrf,t,s (5.41)

CO;  <CR} , +M(1-bg%) vrf,t,s (5.42)
CO; , =CR; , —M(1-b5>) vrf,t,s (5.43)
CO; , < fAREV; (+M -b$ vrf,t,s (5.44)
CO; , = fAREV;  —M b vrf ,t,s (5.45)
CO; , <CR;, vrf,t,s (5.46)
CO; , < fiREV, vrf o t,s (5.47)
CR; , = CAP;  +OPER; , +CRF; _, vrf,t,s (5.48)
CRF;, =CR; —COj; vrf,t,s (5.49)

(iv) Tightening Constraints: The logic constraints (5.50) and (5.51) that
defines the tier sequencing are included in the model to tighten its relaxation.
These constraints can be expressed as integer linear inequalities, (5.52) and
(5.53), respectively, (Raman and Grossmann, 1991). In addition, the valid
inequalities (5.54), are also included that bounds the cumulative contractor’s share
in the cumulative profit oil by the end of time period t based on the sliding scale

profit oil share and cost oil that has been recovered (see chapter 3 for details).

.

Zyi = /}t—.sz’i.’r vrf,i,i'<i,t,s (5.50)
t

z;’i,t = /}1—.2%.,1 vrf,i,i'>1,t,s (5.51)

Zyi+Zgi. <1 vrf,LiI'<i,t,t <z <T,s (5.52)

Zii 2y, <1 vrf,ii'>i,t1<7r <t,s (5.53)
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> (Contsh='< / o, )<§(fp0—fp, )y~ L) 7% - D(CO5 )
=t =t

vrf,i,t,s (5.54)
(v) Reservoir Constraints: Constraints (5.55)-(5.58) predict the reservoir
behavior for each field f in each time period t for a scenario s. In particular,
constraint (5.55) restricts the oil flow rate from each well for a particular FPSO-
field connection in time period t to be less than the deliverability of that field per
well in scenario s. Equation (5.56) represents the field deliverability per well in
scenario s at the beginning of time period t+1 for a particular FPSO-field
connection as the cubic equation in terms of the fractional oil recovered by the
end of time period t from that field. In particular, (5.56a) corresponds to the oil
deliverability in time period 1, while (5.56b) corresponds to the rest of the time
periods in the planning horizon. Notice that the uncertainty in the oil

deliverability profile is characterized by the uncertain parameter «, . Constraints

oil *
(5.57) and (5.58) represent the separable polynomials for the cumulative water

and cumulative gas produced by the end of time period t for a specific field-FPSO

connection in scenario s, where «, and «g are the respective uncertain

parameters. The motivation for using polynomials for cumulative water produced
and cumulative gas produced as compared to WOR and GOR s to avoid bilinear
terms in the formulation, and allow converting the resulting MINLP model into an

MILP formulation as explained in the chapter 2.

X{ et < Qf Tt vf, fpso,t, s (5.55)
Q? \;V;slc!i = it "y ¢ fpso vf, fpso,s (5.56a)

Q? \;v;slc! v =g lag fpso(fcf t) +b ¢ fpso(fcf t) TCt fpso fci, +d ¢ fpso ]

vf, fpso,t <|[T|,s (5.56b)

Q\fN,Cf’;so,t = avsvc . [a2, f, fpso ( fC? ,t)4 + b2, f, fpso ( fC? ,t)3 + C2, f, fpso ( fC? ,t)2 + d2, f, fpso fC? ,t]
VT, fpso,t,s (5.57)
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Q?Cf;sot = aSc '[aS,f,fpso(fC? ,t)4 +b3,f,fpso(fci,t)3 +CB,f,fpso(fC? ,t)2 + d3,f,fpso fc?,t]
VT, fpso,t,s (5.58)

Notice that variables Qf' oo and Qf°ie Will be non-zero in equations
(5.57) and (5.58) if fc}  is non-zero even though that particular field-FPSO
connection is not present. Therefore, additional constraints (5.59)-(5.66) need to

be included to equate the actual cumulative water produced (WC?,fpw,t) and
cumulative gas produced ( gC?,fpso,t) for a field-FPSO connection by the end of

time period t to the corresponding dummy variables Q{5 and Q71 ¢ only if

that field-FPSO connection is present in time period t, else it is zero. Note that the

motivation for using dummy variables ( Qf o« and Qf e ) for cumulative

water and cumulative gas flows in equations (5.57)-(5.58) followed by big-M
constraints (5.59)-(5.66), instead of using disaggregated variables for the
fractional recovery in equations (5.57)-(5.58) directly, is to avoid large number of
SOS1 variables while MILP reformulation of this model, as explained in chapter
2.

t
WC? , fpso,t < Q\fN,Cf’;so,t + M \fNCf;so (1_ Zb?,fpso,r) Vf ) fDSO,t, S (559)
=1

t
WC? , fpso,t > Q\fNCszot - M wcflrs)so (l_ Zb?,fpso,r) Vf ] fpSO,t, S (560)
=1

t
WC? , fpso,t <M \flv,cf’;sozb?,fpso,r Vf ’ fDSO,t, S (561)
=1
t
WC? , fpso,t =—-M \fN,Cf’rstoZb?,fpso,r Vf ’ fpSO,t, S (562)
=1

t
9CT ot < Qfipeor + M 1o 0= D 05 10s0.2) vf, fpso,t,s  (5.63)
=1

t
gC? , fpso,t = Q?cstot - M ?Cfspso (1_ Zb?,fpso,r) Vf ] fpSO,t, S (564)
=1
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t
gci,fpso,t <M ?(,:’ff)sozb?,fpso,r Vf ’ fpSO,t, S (565)
=1

t
gC? , fpso, t =-M ?,C};sozb?,fpso,r Vi ’ fpSO,t, S (566)
=1

Eq. (5.67) and (5.68) compute the water and gas flow rates in time period t
from a field to FPSO facility in scenario s as the difference of cumulative amounts
produced by the end of current time period t and previous time period t-1 divided

by the time duration of that period.

W?,fpso.t = (Wci,fpso,t _WC?,fpso,t—l)/é‘t vf, fpso,t,s  (5.67)
g?,fpso,t = (gC? , fpso,t gC? , fpso,t—l)/é:[ \4i ’ fpSO,t, S (568)

(vi) Field-FPSO flow constraints: The total oil flow rate in (5.69) from each
field f in time period t for a scenario s is the sum of the oil flow rates that are
directed to FPSO facilities in that time period t, whereas oil that is directed to a
particular FPSO facility from a field f in scenario s is calculated as the
multiplication of the oil flow rate per well and number of wells available for
production in that field (eq. (5.70)). Eqg. (5.71) computes the cumulative amount
of oil produced from field f by the end of time period t in scenario s, while (5.72)
represents the fractional oil recovery by the end of time period t. The cumulative
oil produced in scenario s is also restricted in (5.73) by the recoverable amount of
oil from the field. Eqgs. (5.74)-(5.76) compute the total oil, water and gas flow
rates into each FPSO facility, respectively, in time period t from all the given
fields in each scenario s. The total oil, water and gas flowrates in each time period
t for scenario s are calculated as the sum of the production rate of these

components over all the FPSO facilities in equations (5.77)-(5.79), respectively.

X5 0= D XT oo vi,t,s (5.69)
fpso
X oo = NTT X om0 vf, fpso,t,s  (5.70)
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t

XC? t = Z(Xi,ré‘r)

r=1

S
s . XCf,t
s =
' RECS

xc$ , < REC:

s _ z : s
Xfpso,t - Xf,fpso,t
f

S _ 2 : S
Wfpso,t - Wf , fpso,t
f

s _ s
g fpso,t Z g f, fpso,t
f

tot,s __ 2 : S
Xt - Xfpso,t

fpso

tot,s __ 2 : S
\Nt - Wfpso,t
fpso

tot,s __ s
gt - Z g fpso,t

fpso

vf,t,s

vf,t,s

vf,t,s

Vfpso,t,s

vfpso,t,s

Vfpso,t,s

Vt,s

Vt,s

Vt,s

(5.71)

(5.72)

(5.73)

(5.74)

(5.75)

(5.76)

(5.77)

(5.78)

(5.79)

(vii) FPSO Capacity Constraints: Egs. (5.80)-(5.82) restrict the total oil, liquid

and gas flow rates into each FPSO facility to be less than its corresponding

capacity in each time period t, respectively. These three different kinds of

capacities of a FPSO facility in time period t are computed by equalities (5.83)-

(5.85) as the sum of the corresponding capacity at the end of previous time period

t-1, installation capacity at the beginning of time period t-I; and expansion

capacity at the beginning of time period t-1,, where |; and |, are the lead times for

FPSO installation and expansions, respectively.
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S oil,s
Xfpso,t < prSO,t

S S iq,
Xfpso,t +Wfpso,t < Q

gas,s

S )
g fpso,t < prso.t

oil,s __ oil,s
prso,t - prso,tfl +

lig, . lig, iq,
Qflpqscit = Qflr?scit—l +Ql oot

gas,s __ gas,s
prso,t - prso,tfl + QI

Vfpso,t,s

Vvfpso,t,s

Vfpso,t,s

vfpso,t,s

Vfpso,t,s

vfpso,t,s

(5.80)

(5.81)

(5.82)

(5.83)

(5.84)

(5.85)

(viii) Logic Constraints: Inequalities (5.86) and (5.87) restrict the installation

and expansion of a FPSO facility to take place only once, respectively, while

inequality (5.88) states that the connection between a FPSO facility and a field

can be installed only once during the whole planning horizon. Inequality (5.89)

ensures that a field can be connected to at most one FPSO facility in each time

period t, while (5.90) states that at most one FPSO-field connection is possible for

a field f during the entire planning horizon under each scenario s. Constraints
(5.91) and (5.92) state that the expansion in the capacity of a FPSO facility and

the connection between a field and a FPSO facility, respectively, in time period t

can occur only if that FPSO facility has already been installed by that time period.

2 Do, <1

teT

ex,s
2 DG <

teT

Zb? Sfpsot —1

teT

be fpso,t <1

fpso

Zzbf fpso,t <1

teT fpso

Vfpso,s

Vfpso,s

VT, fpso, s

VT, t,s

vf,s

(5.86)

(5.87)

(5.88)

(5.89)

(5.90)
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t
ex,s s
bfpso,t = bepso,r
=1

t
c,s s
bf , fpso,t =< zbfpso,r
=1

Vfpso,t,s

VT, fpso,t,s

(5.91)

(5.92)

(ix) Upper bounding constraints: Inequality (5.93) states that the oil flow rate

per well from a field f to a FPSO facility in time period t will be zero if that

FPSO-field connection is not available in that time period in a scenario s.

Constraints (5.94)-(5.99) are the upper-bounding constraints on the installation

and expansion capacities for FPSO facilities in time period t for each scenario s.

The additional upper bounds on the oil, liquid and gas expansion capacities of
FPSO facilities, (5.100)-(5.102), come from the fact that these expansion
capacities should be less than a certain fraction () of the initial built capacities,

respectively.

t
well,s well,oil s
Xt oot SU E b
=1

f, fpso

QI oil,s < U oil bs

fpso,t — fpso™ fpso,t

Ql 'f'rg;,t <yla ps

fpso™ fpso,t

Ql gas,s - U gas bs

fpso,t — fpso™ fpso,t

QEoiI,s < U oil bex,s

fpso,t — fpso™ fpso,t

QEqu,s < U lig bex,s

fpso,t — fpso™ fpso,t

gas,s gas |4 ex,s
QEfpso,t < U fpsobfpso,t
oil,s oil,s
QE fpso,t < /qupso,t—l
lig,s lig,s
QE fpso,t < /lepso,tfl

gas,s gas,s
QE fpso,t < :qupso,t—l

VT, fpso,t,s

vfpso,t,s
vfpso,t,s
Vfpso,t,s
vfpso,t,s
Vfpso,t,s
vfpso,t,s
Vfpso,t,s
vfpso,t,s

Vfpso,t,s

(5.93)

(5.94)
(5.95)
(5.96)
(5.97)
(5.98)
(5.99)
(5.100)
(5.101)

(5.102)

(x) Well drilling limitations: The number of wells available for production from

a field in scenario s is calculated from (5.103) as the sum of the wells available at

the end of previous time period and the number of wells drilled at the beginning
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of time period t. The maximum number of wells that can be drilled over all the
fields during each time period t and in each field f during complete planning
horizon are restricted by the respective upper bounds in (5.104) and (5.105).

N\f/v‘etll,s — N\;\I,Efrlfl’ls + 1 \fN,et”’S Vf ,t, S (5103)

Z Iyerts <y Vi, s (5.104)
f

N\f/v’etll,s <UN \]:vell \vai ,t,S (5105)

(xi) Initial Non-anticipativity Constraints: In addition to the above constraints
(5.1)-(5.105) that are equivalent to the constraints for the deterministic model

with fiscal rules for each scenario s as in chapter 3, we need the initial non-

anticipativity constraints, egs. (5.106)-(5.115), for time periods T, =T where the

set T, may include only first or few initial time periods. These constraints ensure

that we make the same decisions (FPSO installations, expansions and their oil,
liquid, gas capacities; well drilling schedule and field-FPSO connections) in

scenarios s and s’ until uncertainty in the any of the parameters cannot be

revealed.

bies =Dl vfpso,s,s',teT, (5.106)
bre: = b vipso,s,s',teT, (5.107)
bt fosot = b 0 vf, fpso,s,s', teT, (5.108)
Lol = gy vf,s,s'teT, (5.100)
Ql o = Ql ey vfpso,s,s' teT, (5.110)
Ql i, =Ql vfpso,s,s',teT, (5.111)
Ql s =Ql s vfpso,s,s',teT, (5.112)
QE i = QE o vfpso,s,s' teT, (5.113)
QE s, =QEf, vfpso,s,s',teT, (5.114)
QE.: =QE%S vfpso,s,s',teT, (5.115)

162



(xii) Conditional Non-anticipativity Constraints: To determine the scenario
pairs (S, s’) that are indistinguishable at the beginning of time period t, we
consider the uncertainty resolution rule as explained in section 5.2.3. In particular,
we assume that the uncertainty in all the parameters of a field is revealed if we
drill at-least N1 number of wells in the field, and produce from that field for at-
least N, number of years. Therefore, eq. (5.116) is used relate the number of wells
in the field to the binary variable W', such that the variable Wi is true if and
only if the number of wells drilled in the field are less than Nj. Similarly, the

production from the field f has been made for less than N, years, if and only if

W?’f is true as represented in eqs. (5.117)-(5.118). The logic constraint (5.119)
sets the value of the binary variable Wfst to be true if and only if either of Wlf’,st or

Wt are true, i.e. uncertainty in the field f has not been revealed in scenario s at

the beginning of time period t.

wes < (NS <N, -1) vf,t,s (5.116)
2 < . prod
wip < (Q b <N, -1) vf,t,s (5.117)
=1
b < (x5, > &) vf,t,s (5.118)
Wy << Wiy v Wi vi.ts (5.119)

Based on the above value of the variable W?St equation (5.120) determines
the value of the boolean variable z>* . In particular, two scenarios (s, s’) will be
indistinguishable at the beginning of time period t if and only if for each field f
that distinguishes those scenarios (i.e. f € D(s,s")), Wfst is true. Therefore, egs.

(5.116)-(5.120) can be used to determine the indistinguishable scenarios at the
beginning of time period t based on the decisions that have been implemented
before that time period. Notice that as a special case, where either well drilling or

production from the field is sufficient to observe the uncertainty, then one only
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needs to consider eq. (5.116) or egs. (5.117)-(5.118), respectively, and eq. (5.120)

without introducing the additional variable Wfst .

A N Vs, s',t (5.120)

feD(s,s")
The conditional non-anticipativity constraints in disjunction (5.121) equate
the decisions in scenarios s and s’ for the later time periods T. =T, if these
scenarios are indistinguishable at the beginning of time period t, i.e. for which

Z>* is true calculated in eq. (5.120).

_ 7es _
bes” =Dime’ Vfpso
be: =i Vfpso
b? fpso =07 tpsos vf, fpso
et — et vt
Q ?‘i’lsg" =Ql ?FI’IS‘?‘ vipso v [—.Zf's'] Vs, s' teT,
Ql o = Ql e vfpso 6,121
Ql e =Qlfs: vipso
QE {0t = QE vfpso
QE i = QE fkos vfpso
QEf%: =QERs: vipso

The multistage stochastic mixed-integer nonlinear disjunctive programming
model (MSSP-ND) for offshore oilfield investment and operations planning
involves constraints (5.1)-(5.13), (5.15)-(5.27), (5.29)-(5.40), (5.42)-(5.49),
(5.52)-(5.121) that consider endogenous uncertainty in the field parameters and
sliding scale production sharing agreements with ringfencing provisions. In
particular, constraints (5.56b)- (5.58) and (5.70) are nonlinear and non-convex

constraints in the model. These constraints can be linearized using exact
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linearization and piecewise linear approximation techniques described in chapter
2 to convert the nonlinear model (MSSP-ND) to a linear one (MSSP-LD). Notice
that the resulting model will be an extension of the deterministic MILP fiscal
model (Model 3F) in chapter 3 to the stochastic case using the modeling
framework presented in chapter 4.

5.4 Compact representation of the multistage stochastic model
The proposed multistage stochastic mixed-integer linear disjunctive programming
model (MSSP-LD) in the previous section can be represented in the following

compact form:

(MD) max z=3 p°> cX (5.122)
seS teT
s.t. z Ax:<al Vt,s (5.123)
<t
X =x VteT,,Vss'eS (5.124)
2 S F(X,%...X°,) VteT.,Vs,s'eS (5.125)
Zts,s' ZS,S'
v[_' t } VteT,,Vs,s'eS (5.126)
xS = x& '
t t
X,el  WtsYjel (5.127)
X, eR v, s, VjeJ\J' (5.128)

The objective function (5.122) in the above model (MD) maximizes the
expectation of an economic criterion over the set of scenarios s € S , and over a set
of time periods t T , which is equivalent to eg. (5.1). For a particular scenario s,
inequality (5.123) represents constraints that govern decisions x; in time period t
and link decisions across time periods. These individual scenario constraints
correspond to the egs. (5.2)-(5.13), (5.15)-(5.27), (5.29)-(5.40), (5.42)-(5.49) and
(5.52)-(5.105), where the nonlinear and non-convex constraints (5.56b)- (5.58)
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and (5.70) have been linearized using exact linearization and piecewise linear

approximation techniques described in chapter 2.
Non-anticipativity (NA) constraints for initial time periods T, =T are given

by equations (5.124) for each scenario pair (s,s’) to ensure the same decisions in
all the scenarios, which are the compact representation for constraints (5.106)-
(5.115). The conditional NA constraints are written for the later time periods

Tc =T in terms of logic propositions (5.125) and disjunctions (5.126). Notice
that the set of initial time periods T, may include first few years of the planning
horizon until uncertainty cannot be revealed, while T. represents the rest of the

time periods in the planning horizon. The function F(x;,X;...X’;) in eq. (5.125)

is an uncertainty resolution rule for a given pair of scenarios s and s’ that

determines the value of the corresponding boolean variable Z:* based on the

decisions that have been implemented so far as shown in egs. (5.116)-(5.120). The

variable Z:*'is further used in disjunction (5.126) to ensure the same decisions in

scenarios s and s’ if these are still indistinguishable in time period t, which is
similar to the disjunctions (5.121). Equations (5.127)-(5.128) define the domain of
the discrete and continuous variables in the model.

Notice that the model with a reduced number of scenario pairs (s,s’) that are
sufficient to represent the non-anticipativity constraints can be obtained from
model (MD) after applying the three properties presented in chapter 4. These
properties are defined on the basis of symmetry, adjacency and transitivity
relationship among the scenarios. The reduced model (MDR) can be formulated

from (MD) as follows, where P, is the set of minimum number of scenario pairs

that are required to represent non-anticipativity in each time period t,

(MDR) max z=) p°Y CX (5.122)
seS teT
st. D Ax <al  Vts (5.123)
<t
X =x VteT, V(ss)eP, (5.129)
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2 S F(X,%...X,) VteT.,V(s,s)eP, (5.130)

s,s'
Zt

| V{ﬂzts's} VteT.,V(s,s)eR (5.131)
tS — X,[S

X5 €l vt,s,VjeJ' (5.127)

x; R vt,s,VjeJ\J' (5.128)

The mixed-integer linear disjunctive model (MDR) can be further converted
to a mixed-integer linear programming model (MLR). First, the logic constraints
(5.130) are re-written as the mixed-integer linear constraints eq. (5.132) based on

the uncertainty resolution rule where Zf’S' is a binary variable that takes a value of

1 if scenario pair (s,s’) is indistinguishable in time period t, else it is zero. The
disjunction (5.131) can then be converted to mixed-integer linear constraints
(5.133) and (5.134) using the big-M formulation. The resulting mixed-integer
linear model (MLR) includes constraints (5.122), (5.123), (5.129), (5.132),
(5.133), (5.134), (5.127) and (5.128).

Bix*+C’z>° <d’  VteT.,V(s,s)eP, (5.132)
M) <X -xE VteT.,V(s,s)eP, (5.133)
M(@L-2>) >x*—-x VteT.,V(s,s')eP, (5.134)

Figure 5.7 represents the block angular structure of model (MLR), where we
can observe that the initial (eg. (5.129)) and conditional (egs. (5.132), (5.133) and
(5.134)) non-anticipativity constraints link the scenario subproblems. Therefore,
these are the complicating constraints in the model. However, this structure
allows decomposing the fullspace problem into smaller subproblems by relaxing
the linking constraints as in chapter 4. It should be noted that the NACs
(especially conditional NACSs) represent a large fraction of the total constraints in
the model. For clarity, we use this compact representation (MLR) in the next
section to describe the solution approach instead of the detailed model (MSSP-

LD) presented in the previous section.
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Scenario Constraints -

N

Figure 5.7: Structure of a typical Multistage Stochastic Program with Endogenous

uncertainties

5.5 Solution Approach

The reduced model (MLR) is composed of scenario subproblems connected
through the initial (eq. (5.129)) and conditional (egs. (5.132), (5.133) and (5.134))
non-anticipativity (NA) constraints. If these NA constraints are either relaxed or
dualized using Lagrangean decomposition, then the problem decomposes into
smaller subproblems that can be solved independently for each scenario within an
iterative scheme for the multipliers as described in Carge and Schultz (1999) and
in Gupta and Grossmann (2011a). In this way, we can effectively decompose and
solve the large-scale oilfield development planning instances. The Lagrangean
decomposition algorithm of Figure 5.8 for MSSP with endogenous uncertainties

as proposed in chapter 4 involves obtaining the upper bound (UB) by solving the
Lagrangean problem (L1-MLR) with fixed multipliers £ . The Lagrangean

problem (L1-MLR) is formulated from the mixed-integer linear reduced model
(MLR) by relaxing all the conditional NA constraints (5.132), (5.133) and
(5.134), and dualizing all the initial NA constraints (5.129) as penalty terms in the
objective function. This gives rise to the subproblems for each scenario S€ S,
(L1-MLR?®) that can be solved in parallel.
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(L1-MLR) max > p Y e+, DA -%) (5.135)
seS teT teT, (s,s")eP;
st. DY AX <a’ Vs (5.136)
<t
X, {01} Vt,s, Vj e J' (5.137)
X; €R vt,s,VjeJ\J' (5.138)
(L1-MLR’) max > pex+ 2 x( > AT P AT (5.139)
teT teT, (S,S")eP3 gi‘ss')E%
st. D) Ax <a Wt (5.140)
<t
X, {03} vt,Vj e J' (5.141)
X R vt,VjedJ\J' (5.142)

LB = -
UB=w

»

Initial Multipliers (Ao)
and iteration no. k=0 v

Solve Lagrangean subproblem

with fixed multipliers to get UB

Find LB (Feasible Solution)
by using a heuristic

Update Lagrangean multipliers
using Sub-gradient method

'

Gap<eg No

ry

or k> Kmax

Yes

Stop

Figure 5.8: Lagrangean Decomposition algorithm

The lower bound (LB) or feasible solution is generated by using a heuristic

based on the solution of the Lagrangean problem (L1-MLR). In this heuristic, we

fix the decisions obtained from the above problem (L1-MLR) in the reduced
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problem (MLR) such that there is no violation of NA constraints and solve it to
obtain the lower bound. The sub-gradient method by Fisher (1985) is used during
each iteration to update the Lagrangean multipliers. The algorithm stops when
either a maximum iteration/time limit is reached, or the difference between the
lower and upper bounds, LB and UB, is less than a pre-specified tolerance.

Notice that the extended form of this method relying on duality based branch
and bound search, has also been proposed in Goel and Grossmann (2006), Tarhan
et al. (2009), and Tarhan et al. (2011) to close the gap between the upper and the
lower bounds. Moreover, a new Lagrangean decomposition algorithm is proposed
in the next chapter 6 to further improve the quality of the dual bound at the root
node.

5.6 Numerical results

In this section, we present computational results for the offshore oilfield
development planning examples under endogenous uncertainty in the field
parameters, which resolves as a function of investment and operating decisions as
described before. Moreover, we consider a case where progressive production
sharing agreements are also present. The multistage stochastic MILP model
(MLR) presented in section 5.4 is considered that maximizes the expected NPV
value over the given planning horizon. The model is implemented in GAMS
23.6.3 and run on an Intel Core i7, 4GB RAM machine using CPLEX 12.2 solver

for all the instances.

5.6.1 3 Qilfield Planning Example

Case (i): Uncertainty in the field size only (4 scenarios)

In this instance, we consider 3 oilfields and 3 potential FPSO’s that can be
installed. There are a total of 9 possible connections among field-FPSO (Figure
5.9), and 30 wells can be drilled in the fields over the planning horizon of 10
years. Field 3 has a recoverable oil volume (field size) of 500 MMbbls. However,
there is uncertainty in the size of fields 1 and 2, where each one has two possible
realizations (low, high) with equal probability. Therefore, there are a total of 4

scenarios each with a probability of 0.25 (see Table 5.1). Notice that for
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simiplicity we only consider the cases with same probabilities for all the scenarios
thoughout this chapter. In our future paper, if it would be possible, we will
include more realistic probability values for the examples.

| |

» Total Oil/Gas
T Production

FPSO 1 FPSO 2 FPSO 3
Figure 5.9: 3 oilfield planning example
Table 5.1: 3 oilfield planning example, case (i)
Scenarios sl s2 s3 s4
Field 1 Size (MMbbls) 57 403 57 403
Field 2 Size (MMbbls) 80 80 560 560
Scenario Probability 0.25 0.25 0.25 0.25

It is assumed that the uncertainty in field 1 size is revealed after drilling 3
wells (N1= 3) in the field and producing for 1 year (N,= 1) from it. Whereas, field
2 needs at-least 4 wells to be drilled (N1=4) and one year of production (N,= 1)
for this purpose. The problem is to determine the optimum investment (FPSO
installations and expansions, field-FPSO connections and well drilling) and
operating decisions (oil production rate) with an objective to maximize the total
expected NPV (ENPV) over the planning horizon.

Table 5.2: Model statistics for the 3 oilfield example, case (i)

Number of | Continuous | Discrete S0OS1
Problem Type Constraints | Variables | Variables | Variables
Reduced Model (MLR) 16,473 9,717 876 240
Individual Scenario 3,580 2,390 179 60
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Figure 5.10: Optimal solution for 3 oilfield example, case (i)

The optimal ENPV for the problem is $11.50 x10° when the reduced model
(MLR) is solved in fullspace using CPLEX 12.2 solver requiring 1184s. Table 5.2
presents the model statistics for this instance. The solution suggests installing only
FPSO 3 in the first year (see Figure 5.10) with a capacity of 500 kstb/d and 333.5
MMSCF/d for liquid and gas, respectively. The facility is available to produce at
the beginning of year 4 due to a lead time of three years. Then, we drill 3, 5 and
12 wells in fields 1,2 and 3, respectively, given the drilling-rig limitation of a total
20 wells in a year. Since, fields 1 and 2 have uncertainties, based on the
realization of the uncertainty in their field sizes, more wells are drilled in these
fields in the future for the favorable scenarios compared to the unfavorable
outcomes, whereas no more wells are drilled in field 3. In particular, the favorable
scenarios for field 1 are scenarios 2 and 4, where a total of 7 wells are drilled in
the field. On the other hand, field 2 has favorable scenarios 3 and 4, where a total
of 11 wells are drilled in the field. Due to the different drilling and production

decisions in different scenarios based on the uncertainty realizations, the capacity
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of FPSO3 is expanded in year 5 for scenarios 2, 3 and 4, whereas no expansion is
made in the FPSO3 capacity in scenario 1. We can observe that the optimal
scenario-tree is decision-dependent which is not known a-priori (Figure 5.10).

11.85

11.80 v

11.75 \

11.70

11.65 A ~

11.60

ENPV/(billion dollars)

—1LB
11.55

---UB

11.50 —

11.45

0 2 4 6 8 10 12 14 16 18 20
Iterations

Figure 5.11: Lagrangean decomposition results for 3 oilfield example, case (i)

The multistage stochastic model (MLR) is also solved using the Lagrangean
decomposition algorithm presented in the previous section that relies on dualizing
the initial NACs and removing the conditional NACs. Figure 5.11 demonstrates
the progress of the bounds obtained at the root node using this decomposition
approach. A termination criterion of either 1% gap or 20 sub-gradient iterations is
used. We can observe that the problem can be solved in ~1% optimality tolerance
in only 466s for the sequential implementation compared to the fullspace model
that takes 1184s. Moreover, the parallel implementation of the Lagrangean
decomposition algorithm in GAMS with 8 processors only takes 259s. Therefore,
the proposed strategy reduces the solution time for this 4 scenario instance by
more than 75% compared to the fullspace model. It is also important to note that
the reformulation of the MINLP model (Model 2) to MILP approximation (Model

3) in chapter 2 allows us to use this decomposition strategy with valid upper and
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lower bounds on the objective function value, without solving the non-convex
MINLP model to global optimality which is quite expensive. Notice that the
solution of the expected value problem considering the mean value of the field
sizes is $11.28 x10°. Therefore, the value of the stochastic solution for this case is
$220 x10° or ~2%.

Case (ii): Uncertainty in the field size, oil deliverability, WOR and GOR (4
scenarios)

In this case, we consider uncertainty in the field size, oil deliverability, water-oil
ratio (WOR) and gas-oil-ratio (GOR) for oilfields 1 and 2. Notice that oil
deliverability, WOR and GOR are represented by the univariate polynomials in
terms of the fractional oil recovery as shown in equations (5.143)-(5.145),

respectively.

Q’ =a,-g(fc) (5.143)
wor = ¢, - g( fc) (5.144)
gor =, - g(fc) (5.145)

The uncertainty in oil deliverability, WOR and GOR is characterized by the

uncertainty in corresponding parameters «,, «, and «,. We assume that the

uncertain parameters for a field are correlated, and that uncertainty in these
parameters is resolved at the same time as explained earlier. This allows us to
reduce a large number of scenarios in the problem. The two possible
combinations of these parameters for each field results in a total of 4 scenarios
each with a probability of 0.25 as can be seen in Table 5.3. The data for the rest of
the problem are as in case (i) presented above.

Table 5.4 summarizes the computational results for this case, and we can
observe the similar trends as in the previous case. In particular, the fullspace
multistage stochastic model using CPLEX 12.2 takes >10,000s to solve the
problem to optimality and it yields an expected NPV value of $11.95x10°. The

sequential and parallel implementations (8 processors) of the proposed
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Lagrangean decomposition approach provide a solution of $11.94x10° with more

than an order of magnitude reduction in solution times. To further reduce the gap

between the upper and the lower bounds, the algorithm can be extended to the

duality based branch and bound search procedure as proposed in Goel and

Grossmann (2006). In addition, an improved Lagrangean decomposition approach

that yields a tighter dual bound at the root node is also presented in the next

chapter.

Table 5.3: 3 oilfield planning example, case (ii)

Scenarios sl s2 s3 s4
Size (MMbbls) 57 403 57 403
a 0.75 1.25 0.75 1.25
Field 1 o 0.75 1.25 0.75 1.25
a 0.75 1.25 0.75 1.25
Size (MMbbls) 80 80 560 560
a 0.75 0.75 1.25 1.25
Field 2 o 0.75 0.75 1.25 1.25
a 0.75 0.75 1.25 1.25
Scenario Probability 0.25 0.25 0.25 0.25

Table 5.4: Computational results for 3 oilfield example, case (ii)

Fullspace Lagrangean Decomposition
Sequential Parallel
UB ($10°) 11.95 12.14 12.14
LB ($10° 11.95 11.94 11.94
Solution Time (s) 10390 438 257
% Gap 0% 1.66% 1.66%
Subgradient iterations - 20 20

Case (iii): Uncertainty in the field size and progressive production sharing

agreements

We also extend the 3 oilfield example to the case where we include the

progressive production sharing agreements and a planning horizon of 15 years.
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Table 5.5 represents the sliding scale profit share of the contactor involving 3 tiers
that are defined on the basis of the cumulative oil production. The cost recovery
ceiling of 50% of the gross revenue every year and an income tax rate of 30% is
also considered. There is uncertainty in the field sizes (field 1 and 2) with a total
of 4 scenarios as described in Table 5.1.

Table 5.5: Sliding scale contractor’s profit oil share for the 3 oilfield example,

case (iii)
Tiers Cumulative Oil Produced Contractor’s Share in Profit
Qil
Tier 1 0-350 MMbbl 50%
Tier 2 350-700 MMbhl 40%
Tier 3 >700  MMbbl 20%

Table 5.6: Computational results for 3 oilfield example, case (iii)

Fullspace Model Lagrangean Decomposition
# # # ENPV Time ENPV | Sequential | Parallel
Constraints | Dis. Cont. ($10%) (s) ($10% | Time (s) Time
Var. Var. (s)
27,113 1,536 | 15,857 | $2.97 | >36,000 | $3.04 8,990 4,002
(>21%) (0.7%)

The multistage stochastic model becomes very difficult to solve for this
instance in fullspace due to the complexities introduced in the model by the non-
anticipativity constraints, and the disjunction for representing the sliding scale
fiscal rules. In particular, the best solution obtained after 10 hours in fullspace
using CPLEX 12.2 solver is $2.97x10° with more than 21% of optimality gap (see
Table 5.6). On the other hand, the proposed Lagrangean decomposition can solve
this problem in approximately 2 hrs for the sequential implementation of the
scenario subproblem solutions, and in about 1 hr for the parallel implementation
(8 processors). Both the cases yield a higher ENPV $3.04x10° within a 0.7% of

optimality tolerance. Therefore, this example illustrates the importance of the
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decomposition algorithm, and its parallel implementation, as more complexities

are added to the problem, such as the progressive fiscal rules.

5.6.2 5 Oilfield Planning Example

Case (i): Uncertainty in the field size only (8 scenarios)

> Total Oil/Gas
T Production

Field-2

Figure 5.12: 5 oilfield planning example

This is a larger example for oilfield planning problem under uncertainty than
the previous one, where we consider 5 oilfields that can be connected to 3 FPSOs
with 13 possible connections (Figure 5.12). A total of 51 wells can be drilled in
the fields over the planning horizon of 20 years. There is uncertainty in the size of
fields 1, 3 and 5, where each one has two possible realizations (low, high) with
equal probability. Therefore, there are a total of 8 scenarios each with a
probability of 0.125 (see Table 5.7). Fields 2 and 4 have known recoverable oil
volumes of 200 and 400 MMbbls, respectively.

It is assumed that the uncertainty in field 1 size is revealed after drilling 3
wells (N1= 3) in the field and producing for 1 year (N,= 1) from it. Fields 3 and 5
need at-least 4 wells to be drilled (N1= 4) and one year of production (N,= 1) for
this purpose. The problem is to determine the optimum investment (FPSO
installations and expansions, field-FPSO connections and well drilling) and
operating decisions (oil production rate) with an objective to maximize the total

expected NPV (ENPV) over the planning horizon.
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Table 5.7: 5 oilfield planning example, case (i)

Scenarios sl s2 s3 s4 s5 s6 s7 s8
Field 1 Size 57 403 57 403 57 403 57 403
(MMbbls)
Field 3 Size 80 80 560 560 80 80 560 560
(MMbbls)
Field 5 Size 125 125 125 125 875 875 875 875
(MMbbls)
Scenario 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125
Probability
Table 5.8: Model statistics for the 5 oilfield example, case (i)
Number of | Continuous | Discrete SOS1
Problem Type Constraints | Variables | Variables | Variables
Reduced Model (MLR) 94,837 54,537 5,144 1600
Individual Scenario 9,986 6,688 513 200

Table 5.8 compares the size of the fullspace multistage stochastic MILP
model with the individual scenario where a significant number of constraints and
variables can be observed in the former. Therefore, the fullspace model becomes
very difficult to solve directly using CPLEX 12.2 which takes more than 10 hours
to reach 32% of the optimality tolerance with an expected NPV value of
$20.27x10°. The solution of the sequential implementation of the proposed
Lagrangean decomposition approach also becomes expensive, but provides a
solution with 3.1% higher ENPV than the fullspace model ($20.91x10° vs.
$20.27x10% in 31,350s with 2.1% of the optimality gap. The parallel
implementation is the most efficient, and takes only 9,340s to yield the same
objective function value as the sequential approach. Table 5.9 summarizes the
computational results for this case, and we can observe that the impact of
decomposition becomes more prominent for the larger instances. To further

reduce the gap between the upper and the lower bounds, the algorithm can be
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extended to the duality based branch and bound search procedure as proposed in
Goel and Grossmann (2006).

Table 5.9: Computational results for 5 oilfield example, case (i)

Fullspace Lagrangean Decomposition
Sequential Parallel
UB ($10°) 26.78 21.37 21.37
LB ($10°%) 20.27 20.91 20.91
Solution Time (s) >36,000 31,350 9,340
% Gap >32% 2.1% 2.1%
Subgradient iterations - 20 20

Case (ii): Uncertainty in the field size, oil deliverability, WOR and GOR (8
scenarios)

In this case, we consider uncertainty in the field size, oil deliverability, water-oil
ratio (WOR) and gas-oil-ratio (GOR) for oilfields 1, 3 and 5 in Figure 5.12. The
uncertainty in oil deliverability, water-oil ratio (WOR) and gas-oil-ratio (GOR) is

characterized by the corresponding parameters,«,, «, and «, in equations

(5.143)-(5.145), respectively. Two possible combinations of these parameters for
each uncertain field results in a total of 8 scenarios, each with a probability of
0.125 as can be seen in Table 5.10. The data for the rest of the problem are similar
to the case (i) presented above for 5 oilfield example.

Table 5.11 represents the computational results for this case. The fullspace
multistage stochastic model can only provide a solution with ENPV of
$21.26x10° in 10hrs when solved using CPLEX 12.2. The sequential as well as
parallel implementation of the proposed Lagrangean decomposition approach
provide a higher ENPV $21.78x10° and a significantly tighter upper bound than
the fullspace model (2.5% gap vs. >28% gap) in less time. Overall, the results in
this case also emphasize the efficiency of the proposed Lagrangean
decomposition compared to the fullspace model solved with a state-of-art

commercial solver.
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Table 5.10: 5 oilfield planning example, case (ii)

Scenarios sl s2 s3 s4 sb s6 s7 s8
Size 57 403 57 403 57 403 57 403
(MMbbls)
Field 1 a, 0.75 1.25 0.75 1.25 0.75 1.25 0.75 1.25
a, 0.75 1.25 0.75 1.25 0.75 1.25 0.75 1.25
a, 0.75 1.25 0.75 1.25 0.75 1.25 0.75 1.25
Size 80 80 560 560 80 80 560 560
(MMbbls)
Field 3 a, 0.75 0.75 1.25 1.25 0.75 0.75 1.25 1.25
a, 0.75 0.75 1.25 1.25 0.75 0.75 1.25 1.25
a, 0.75 0.75 1.25 1.25 0.75 0.75 1.25 1.25
Size 125 125 125 125 875 875 875 875
(MMbbls)
Field 5 a, 0.75 0.75 0.75 0.75 1.25 1.25 1.25 1.25
a, 0.75 0.75 0.75 0.75 1.25 1.25 1.25 1.25
a, 0.75 0.75 0.75 0.75 1.25 1.25 1.25 1.25
Scenario Probability 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125 | 0.125

Table 5.11: Computational results for 5 oilfield example, case (ii)

Fullspace Lagrangean Decomposition
Sequential Parallel
UB ($10°) 27.31 22.34 22.34
LB ($10°) 21.26 21.78 21.78
Solution Time (s) >36,000 36,000 14,872
% Gap >28% 2.5% 2.5%
Subgradient iterations - 20 20

5.7 Conclusions

A general multistage stochastic programming model has been presented for

offshore oil and gas field infrastructure planning considering endogenous

uncertainties in the field parameters and progressive production sharing

agreements.

Discrete probability distribution functions of the uncertain
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parameters, i.e. field size, oil deliverability, water-oil-ratio and gas-oil ratio, are
considered to represent the scenarios where uncertainty in these parameters can
only be revealed once an investment is made in the field. The resulting decision-
dependent scenario tree is modeled using initial and conditional non-anticipativity
constraints considering the basic oilfield models developed in chapters 2 and 3.
The model yields optimum investment and operating decisions while maximizing
the expected NPV. Correlations among the endogenous uncertain parameters of a
field are considered, which reduce the dimensionality of the model for large
instances. The Lagrangean decomposition algorithm proposed in chapter 4 is
adapted to the corresponding multistage stochastic model for oilfield development
with parallel solution of the scenario subproblems. Numerical results on the two
oilfield development planning examples show that the proposed Lagrangean
decomposition algorithm, either sequential or parallel implementation, is efficient
as compared to the fullspace method, and allows the solution of intractable
instances of the problem. The model and solution approach can be further used as
a basis to incorporate additional complexities such as exogenous uncertainties in

oil/gas prices.
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Chapter 6

A new decomposition algorithm for
multistage stochastic programs with

endogenous uncertainties

6.1 Introduction

In this chapter, we focus on type 2 of endogenous uncertainty for the multiperiod
planning problems where decisions are used to gain more information, and
resolve uncertainty either immediately or in a gradual manner. Therefore, the
resulting scenario tree is decision-dependent that requires modeling a
superstructure of all possible scenario trees that can occur based on the timing of
the decisions as observed in chapters 4 and 5. In this context, we focus here on a
general multistage stochastic programming framework to model the problems in
this class in which special disjunctive constraints with propositional logic are
considered to enforce the conditional non-anticipativity constraints that define the
decision-dependent scenario tree.

In general, these multistage stochastic programs (MSSP) become very
difficult to solve directly as deterministic equivalent since the problem size
(constraints and variables) increases with the number of scenarios, whereas the
solution time increases exponentially. Therefore, special solution techniques are
used to solve problems in this class. Several fullspace based approaches for the
medium-size problems exploiting the properties of the model and the optimal
solution have been proposed. In particular, Colvin and Maravelias (2010)

developed a branch-and-cut framework, while in chapter 4 we proposed a NAC
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relaxation strategy to solve these MSSP problems under the assumption that only
few non-anticipativity constraints be active at the optimal solution.

Lagrangean decomposition is a widely used technique to solve large-scale
problems that have decomposable structure as in stochastic programs (Fisher,
1985; Ruszczynski, 1997; Carge and Schultz, 1999; Guignard, 2003; Conejo et al.
2006). It addresses problems where a set of constraints links several smaller
subproblems. If these constraints are removed by dualizing them, the resulting
subproblems can be solved independently. In the case of multistage stochastic
programs with endogenous uncertainty initial and conditional non-anticipativity
constraints are the linking constraints, while each subproblem corresponds to the
problem for a given scenario. Therefore, the model has the decomposable
structure that is amenable to Lagrangean decomposition approaches. In this
context, a Lagrangean decomposition algorithm based on dualizing all the initial
NACs and relaxing all the conditional NACs that allow parallel solution of the
scenario subproblems has been proposed in chapter 4. An extended form of this
decomposition approach relying on the duality based branch and bound search is
also presented in Goel and Grossmann (2006), Tarhan et al. (2009), and Tarhan et
al. (2011) to close the gap between the upper and lower bounds. Solak (2007)
used a sample average approximation method for solving the problems in this
class, where the sample problems were solved through Lagrangean relaxation and
heuristics. However, there are several limitations with these methods including a
weak dual bound at the root node, a large number of iterations to converge at each
node, and many nodes that may be required during the branch and bound search
to close the gap depending on the branching rules and variables. Moreover, the
number of subproblems to be solved during each iteration at every node grows
linearly with the number of scenarios. In this chapter, we propose a new
decomposition scheme for solving these multistage stochastic programs that
overcomes some of the limitations of the standard approaches.

The outline of this chapter is as follows. First, in section 6.2 we introduce the
problem statement with particular focus on the problems where timing of

uncertainty realization depends on the optimization decisions. Then, a general
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multistage stochastic mixed-integer linear disjunctive programming model for
endogenous uncertainty problems is presented in section 6.3. Several Lagrangean
decomposition approaches that have been used and their limitations are identified
next. To overcome these limitations, in section 6.5 we propose a new Lagrangean
decomposition scheme that relies on the concept of scenario group partitions. In
section 6.6, we present the computational results on process network and oilfield
planning problems adapted from chapters 4 and 5, respectively, to compare the

various decomposition approaches.

6.2 Problem Statement

We consider multiperiod planning problems that have endogenous uncertainty in
some the parameters (type 2), i.e. where timing of uncertainty realization depends
on optimization decisions. In particular, the time horizon is represented by the
discrete set of time periods T = {1, 2, .. .. }. The set of endogenous uncertain
parameters ©={6,,6,,....} is considered where each parameter has a discrete set
of possible realizations. Therefore, a scenario s represents the possible

combination of the realizations of these uncertain parameters with a probability
p*. Note that when some of the parameters g, are correlated as they may belong

to a particular uncertainty source, then the resulting scenario set will be smaller

(see chapter 5). The timing of uncertainty resolution in each uncertain parameter
depends on the decisions x; (both discrete and continuous) that have been

implemented so far. Furthermore, the uncertainty resolution rule can be
immediate (Goel and Grossmann, 2006) or gradual (Tarhan et al.,, 2009)
depending on the problem at hand. Therefore, the resulting scenario tree is
decision-dependent, and hence we need to use a superstructure of all possible
scenario-trees that can occur based on the decisions. In particular, we use logic
propositions and disjunctions as in chapter 4 (Goel and Grossmann, 2006; and
Gupta and Grossmann, 2011a) to represent the scenario-tree for the problems in

this class. The uncertainty realizations for each parameter 6, are assumed to be

time invariant. In the next section, we present a MSSP model corresponding to

this description.
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6.3 Model

A multistage stochastic mixed-integer linear disjunctive program with

endogenous uncertainties can be represented in the following compact form:

(MD) min z:;‘psgctxf (6.1)
st. DY AX <al  Wts 6.2)
=t
X =x VteT,, Vss'eS (6.3)
2 < F(X,%...%,) VteT.,Vs,s'eS (6.4)
2| [ gse .
s ) v[ t } VteT,, Vs,s'eS (6.5)
X, =X
x5 {05} vt,s,Vjeld' (6.6)
Xj €R vt,s,VjeJ\J' (6.7)

The objective function (6.1) in the above model (MD) minimizes the
expectation of an economic criterion over the set of scenarios s € S , and over a set

of time periodsteT . For a particular scenario s, inequality (6.2) represents

constraints that govern decisions x; in time period t and link decisions across

time periods. Non-anticipativity (NA) constraints for initial time periods T, =T

are given by equations (6.3) for each scenario pair (s,s’) to ensure the same

decisions in all the scenarios. The conditional NA constraints are written for the

later time periods Tc =T in terms of logic propositions (6.4) and disjunctions
(6.5). Notice that the set of initial time periods T, may include the first few years
of the planning horizon until uncertainty cannot be revealed, while T represents

the rest of the time periods in the planning horizon. The function F(x;,X;...X;)
in eq. (6.4) is an uncertainty resolution rule for a given pair of scenarios s and s’

that determines the value of the corresponding boolean variable Z>* based on the
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decisions that have been implemented so far. The variable z:*is further used in

disjunction (6.5) to ensure the same decisions in scenarios s and s if these are still

indistinguishable in time period t. Egs. (6.6)-(6.7) define the domain of the

discrete and continuous variables in the model.

Notice that the model with reduced number of scenario pairs (s,s’) that are

sufficient to represent the non-anticipativity constraints can be obtained from

model (MD) after applying the three properties presented in the chapter 4. These

properties are defined on the basis of symmetry, adjacency and transitivity

relationship among the scenarios. The reduced model (MDR) can be formulated

as follows, where P; is the set of minimum number of scenario pairs that are

required to represent non-anticipativity in each time period t,

(MDR) min z=> p°> cX

seS teT

st. DY AX <al  Wis

<t
X =x VteT, V(ss')eP,

Z:¥ & F(E XX ) VT, V(s,8) P

Zts,s' ZS,S‘
v et VteT.,V(s,s)ePR,
X=X
X?t <{0,1} vt,s,Vjeld'
XiteR vt,s,VjeJ\J'

We then define the following sets,

(51,5510--8,)[81:55,--- 8 €5,8, <S, <...<5,,
L, = Ve, e
D(s,s") ={p} V(s,s") €(s;,S,,---5¢)

D(s,s') = {p‘ep c®,05 = é;}

(6.1)

(6.2)

(6.3a)

(6.4a)

(6.5a)

(6.6)

(6.7)

(6.8)

(6.9)
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P, = {(sl,sz), (52:55)s--- Sk 1,SO|(S1: S0 8 ) €L, VO, € G)} (6.10)
Notice that the minimum scenario pair set (S,s") € P;can be obtained by first

defining a scenario group set (s,,s,.....s,) L, for each uncertain parameter 6, € ©

with k realizations (eq. 6.8) such that the k scenarios in each of these

(S,,S,,----,S, ) Set can only be realized at the same time irrespective of the other

realizations during the given time horizon. The basic idea to identify such

scenario sets (s;,S,,....,S,) IS that all the scenarios in each of these sets only differ

in the realization of the uncertain parameter 6, for which the corresponding set is

defined. Therefore, for any scenario pair (s,s')e(s;,S,,....5.), the value of

D(s,s') = { p} where D(s, s") represents the index of the uncertain parameter
6, €O in eq. (6.9) that distinguish the two scenarios s and s’ having values é;

and 93' , respectively. The required minimum scenario pair set P, (eq. 6.10) then
corresponds to the consecutive elements in the scenario group sets

(s.,8,.....8,) €L, for each uncertain parameter 8, € ©. The cardinality of the set P;

is |e|ds||s|**'®) as shown in chapter 4. For instance, if there are 2 uncertain
parameters, i.e. (61, 6,). Each of these uncertain parameters has three realizations
(L, M, H) which give rise to a total of 9 scenarios. The original model (MD)
requires a total of 72 scenario pairs to represent the non-anticipativity, while the
reduced model (MDR) only requires 12 scenario pairs, i.e. [P,/=12 in each time
period t (see Gupta and Grossmann (2011a) for details).

The mixed-integer linear disjunctive model (MDR) can further be converted

to a mixed-integer linear programming model (MLR). First, the logic constraints

(6.4a) are re-written as the mixed-integer linear constraints eq. (6.4b) based on the

uncertainty resolution rule, where Z;” is a binary variable that takes a value of 1

if scenario pair (s,s’) is indistinguishable in time period t, and zero otherwise. The
disjunction (6.5a) can then be converted to mixed-integer linear constraints (6.5b)

and (6.5c¢) using the big-M formulation. The resulting mixed-integer linear model
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(MLR) includes constraints (6.1), (6.2), (6.3a), (6.4b), (6.5b), (6.5c), (6.6) and
(6.7).

Bix +C’z0° <d’  VteT.V(ss)eP (6.4b)
~M@A-27) <x*—-x" VteT.,V(ss)eP, (6.5b)
M@L-2%) >x—x VteT.,V(ss)eP, (6.5c)

Scenario Constraints -

N

Figure 6.1: Structure of a typical Multistage Stochastic Program with Endogenous
uncertainties

Figure 6.1 represents the block angular structure of model (MLR), where we
can observe that the initial (eg. (6.3a)) and conditional (egs. (6.4b), (6.5b) and
(6.5¢)) non-anticipativity constraints link the scenario subproblems (eq. (6.2)), i.e.
these are the complicating constraints in the model. However, this structure
allows decomposing the fullspace problem into smaller subproblems by relaxing
the linking constraints. It should be noted that the NACs (especially conditional

NACSs) represent a large fraction of the total constraints in the model.

6.4 Conventional Lagrangean Decomposition Algorithms

The reduced model (MLR) is composed of scenario subproblems connected
through initial (eq. (6.3a)) and conditional (eq. (6.4b), (6.5b) and (6.5c)) NA

constraints. If these NA constraints are either relaxed or dualized using
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Lagrangean decomposition, then the problem decomposes into smaller
subproblems that can be solved independently for each scenario within an
iterative scheme for the multipliers as described in Carge and Schultz (1999) and
in chapter 4. In this way, we can effectively decompose the large scale problems
in this class. However, there are several decomposition schemes that can be used

for this structure (Figure 6.1) as described below:

6.4.1 Lagrangean Decomposition based on relaxing conditional NACs
(Standard approach): In the decomposition algorithm of Figure 6.2 for MSSP

with endogenous uncertainties as proposed in chapter 4, the lower bound (LB) is

obtained by solving the Lagrangean problem with fixed multipliers A* ,

(L1-MLR) ~Min SZS: psgctxf +;(s§§'sl(>‘f -X%) (6.1a)
st. ;A:X: <a’ Vt,s 6.2)

x5 {05} vt,s,Vjeld' (6.6)

X; €R vt,s,VjeJ\J' (6.7)

which gives rise to the subproblems for each scenario s€ S,

(LIMLRY)  Min Dpeod+ 260 2 &%= > &%) (6.1b)
teT teTy (S,s")eP3 gs>',SSI)EP3
<t
x5, {01} vt,vjeld' (6.6a)
X €R vt,VjeJ\J' (6.7a)

In particular, the Lagrangean problem (L1-MLR) is formulated from the
mixed-integer linear reduced model (MLR) by relaxing all the conditional NA
constraints (6.4b), (6.5b) and (6.5¢) and dualizing all the initial NA constraints
(6.3a) as penalty terms in the objective function. Figure 6.3 represents the

structure of the resulting model (L1-MLR). Notice that the each sub-problem
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(L1-MLR®) in the Lagrangean problem (L1-MLR) corresponds to a scenario that
can be solved in parallel.

LB = -
UB=w
Initial Multipliers (Ao)

and iteration no. k=0 v

Solve Lagrangean subproblem |«
with fixed multipliers to get LB

y

Find UB (Feasible Solution) Update Lagrangean multipliers

by using a heuristic using Sub-gradient method
! 1
Gap<eg No
or kK > Kmax
Yes
Stop

Figure 6.2: Lagrangean Decomposition algorithm

The upper bound (UB) is generated by using a heuristic based on the solution
of the Lagrangean problem (L1-MLR). In this heuristic, we fix the decisions
obtained from the above problem (L1-MLR) in the reduced problem (MLR) such
that there is no violation of NA constraints and solve it to obtain the upper bound.
The sub-gradient method by Fisher (1985) or an alternative update scheme (see
Mouret et al., 2011; Oliveira et al., 2013; and Tarhan et al. 2013) is used during
each iteration to update the Lagrangean multipliers. The algorithm stops when
either a maximum iteration/time limit is reached, or the difference between the
lower and upper bounds, LB and UB, is less than a pre-specified tolerance. Notice
that the extended form of this method relying on duality based branch and bound
search has also been proposed in Goel and Grossmann (2006); Tarhan et al.
(2009), and Tarhan et al. (2011) to close the gap between the upper and the lower

bounds.
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Subproblems

Scenario _J -

Dualize all
Initial NACs

Removeall | | | || loo.
Conditional NACs

Figure 6.3: Lagrangean Decomposition based on relaxing conditional NACs

Limitations: We can observe from Figure 6.3 that the major limitation of this
Lagrangean Decomposition algorithm for endogenous uncertainty problems
(Gupta and Grossmann, 2011a; Goel and Grossmann, 2006; Tarhan et al., 2009;
and Tarhan et al., 2011) is that all the conditional non-anticipativity constraints
(6.4b), (6.5b) and (6.5c) are removed while formulating the scenario subproblems
at the root node. These constraints represent a large fraction of the total
constraints in the model and can have significant impact on the decisions. For
instance, in Figure 6.4, the scenario tree for the later time periods T (conditional

NACSs) can be constructed in several ways even though the initial NACs (for time

periods T, ) are satisfied.

iFsTataViol

Figure 6.4: Impact of conditional NACs on the scenario tree structure
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Therefore, there can be several undesired consequences that can occur with

this relaxation approach:

1.

The dual bound at root node can be significantly weaker since a large amount
of information from the conditional NACs is ignored. In particular, only the
initial NAC are considered (dualized) while formulating the subproblems at
the root node, which represent only a first few time periods in the model. This
means that the dynamics of the problem corresponding to the later periods is
completely relaxed.

It is theoretically impossible to obtain a dual bound that is stronger than the
optimal solution of the model without all conditional NACs at the root node.
The total number of nodes in the branch and bound search tree and the number
of iterations required at each node can be very large.

Since many constraints are relaxed form the model, a good heuristic is needed
to generate a feasible solution based on the solution of the dual problem.

The number of subproblems grows with the number of uncertain parameters
and their realizations in an exponential manner.

It is problem specific and non-intuitive to define the branching rules/variables

in the tree search since there are several alternatives.

6.4.2 Lagrangean Decomposition based on dualizing all the NACs:

(i)

In this decomposition approach, we dualize all the NACs (both initial

(6.3a) and conditional (6.5b) and (6.5c)) in the objective function directly while

formulating the lower bounding Lagrangean problem (L2-MLR), which is still

decomposable into individual scenarios. Notice that since (6.5b) and (6.5c) are

inequality constraints, the corresponding Lagrangean multipliers if;' and A3°

need to be non-negative.

min Z pszctxts +Z Zﬂtsvs‘(xts _th-)

seS teT teT, (s,8")eP;

+ Z z SQSI(XtS' - th -M (1_ ZtSVSI))

(L-MLR) &5 (6.1¢)

2 DA =X = MA-27))

teTe (s,8")epk;
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st. DY AX <al  Wis (6.2)

<t

Bix' +C’z* <d’  VteT.,V(s,s)ePR (6.4b)
X;, €{0,3} vt,s,Vjed (6.6)
x?t eR vt,s,VjeJ\J' (6.7)

Figure 6.5 represents the structure of the model (L2-MLR) where L2-MLR?®

correspond to the scenario sub-problems in this decomposed model.

min Y pex s YH(Y £ YA

teT teT, (s,8)eR; (s',9)eP;
s<s' $>s'
YL DA A - S -]
(L2-MLR®) tele  (s.8)ePy (s'5)eP (6.1d)
s<s' S>s'

=2 2 A=) + 47)M)

teTe (5,58,
s<s'

st ZA:X; < af‘ vt (6.28.)

<t

B'x’ +C’z>* <d VteT.,V(s,s')eP,s<s"  (6.4c)
x;, {01} vt,vjel' (6.6a)
X; €R vt,VjeJ\J' (6.7a)

It is important to observe that we assign the shared binary variable z; * and
its corresponding constraints (6.4b) and objective function term to the scenario
problem s for all (S,s") € Pywhere (s < s°). This allows to decompose the problem
into independent scenarios. For instance in the case of 4 scenarios, the minimum

scenario pair set P, ={(12),(13),(2,4),(34)} and, therefore, the corresponding

. 1,2 1,3 . . 2,4 . 3,4
shared variables Z;" , Z;" are assigned to scenarios 1; Z;" to scenario 2; and Z;

to scenario 3. As an alternative, one can also create a copy of the shared variable

s,S'

Z;" as Zts"s and its corresponding constraints (6.4b), (6.5b) and (6.5c¢) for all
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(s,s") € Pythat will allow to keep these variables in both the sub-problems s and

s’. However, the performance of the two alternative decomposition approaches
should not be very different.

J—

Scenario -

Subproblems

Dualize all
Initial NACs

Dualizeall | [
Conditional NACs

Figure 6.5: Lagrangean Decomposition based on dualizing all NACs directly
(i) Another way to decompose the model (MLR) while considering all the
NACs, is based on first reformulating the constraints (6.3a), (6.5b) and (6.5c) as
(6.3b), (6.5d) and (6.5e) respectively, where X°° represents the value of the

variable X for VteT ,V(s,s') eP,.

X =X VteT,,V(s,s)eP, (6.3b)
~M@A-2*) <x-X** VteT.,V(s,s)eP, (6.5d)
M@A-z) 2x -X* VteT,,V(s,s)eP, (6.5€)
x =X VteT,v(s,s)eP,s<s' (6.5f)

In addition, eq. (6.5f) is required to ensure that all the copy variables x> for

x; have the same values in all the scenario pairs it occurs. Notice that the
reformulated model (MLR®) includes constraints (6.1), (6.2), (6.3b), (6.4b),
194



(6.5d), (6.5e), (6.5f), (6.6) and (6.7). Model (MLR®) can now be decomposed into
individual scenarios by dualizing only constraints (6.5f) as can be seen in Figure
6.6. L3-MLR® and L3-MLR®® represent the Lagrangean problem and scenario

sub-problems for this indirect decomposition approach, respectively.

Scenario constraints | Il

with corresponding NACs
((6.3b),(6.5d),(6.5¢))

.
[ ]
Equality
constraints (6.5f) - - - - --------- - -

Figure 6.6: Structure of the Reduced Model after reformulation (MLRC)

(L3-MLRS) Min > p°>cx+>, D A4 —X*) (6.1¢)
seS teT teT (S,SI')EF’3
st. D AX <a’ Vs (6.2)
<t

X =% VteT,,V(s,s)eP, (6.3b)
~M@-2") <x*-X*° VteT., V(s,s)eP, (6.5d)
M@L-2*) >x-X> VteT,,V(ss)eP, (6.5¢)
Bix +C’z;* <dd  VteT.,V(s,s)eP, (6.4b)

X, {0 Vi, s, Vj e J' (6.6)

X; €R vt,s,Vjed\J' (6.7)
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(L3-MLRCS) min zpscfxfs+z[xts Zﬂ‘f"s_ Zﬂ‘f’S'itS’S'] (6.1f)

teT teT (s',SI)eP3 (S,S")GP3

st. Y AX <al vt (6.2a)
<t

X =X VteT,, V(s,s)eP,s<s (6.3c)
~M@-2*) <x*-X>* VteT,V(s,s)eP,s<s (6.59)
M@-2"*) >x—-X>° VteT.,V(s,s)ePR,s<s' (6.5h)
BEXS + Ctszts,s' <d¢ vteT.,V(s,s)eR,s<s (6.4c)
x; {0} vt,s,VjeJ' (6.6a)
X, eR vt,s,Vj e J\J' (6.7)

Notice that once the scenario subproblems L2-MLR® and L3-MLR®®
corresponding to the direct and indirect approaches, (i) and (ii), are formulated,
the rest of the algorithmic steps are similar to as we have seen in the previous

section (Figure 6.2).

Limitations: Based on the computational experiments, approach (ii) performs
slightly better than the approach (i). However, the main limitation with both of
these decomposition approaches (i) and (ii) is that the number of Lagrangean
multipliers becomes very large since the conditional NACs represent a very large
fraction of the total constraints in the problem. In addition, these constraints
appear as big-M constraints in the model where only a small fraction of these
constraints become active at the optimal solution, so the improvement in the
resulting lower bound is usually very slow and one may need several iterations to
converge. Overall, the performance with the decomposition approaches that rely
on considering all the conditional NACs can even be worse than the
decomposition approach presented in section 6.4.1 which relaxes all of these

constraints.
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However, for the problems with exogenous uncertainties, there is no big-M
involved in the NACs. Therefore, on dualizing these NACs (all time periods) for
scenario decomposition, the quality of the lower bound is usually strengthened.

6.5 Proposed Lagrangean Decomposition Algorithm

The decomposition approaches presented in the previous section may perform
reasonably well for a certain class of problems with a given set of data. However,
as we mentioned these methods also have some limitations. To overcome them,
we propose a new decomposition scheme that neither relaxes nor dualizes all the
conditional NACs. The basic idea relies on decomposing the fullspace model into
scenario group subproblems instead of individual scenarios. This allows keeping a
subset of the NACs in the subproblems as constraints, while dualizing and
relaxing the rest of the NACs. Therefore, it can be considered as a partial
decomposition approach. Since, the formulation of the scenario groups is a key
element in the proposed decomposition algorithm, we first describe the
methodology to construct these scenario groups for the MSSP with endogenous

uncertainties.

6.5.1 Formulating the Scenario Groups: The proposed algorithm divides the
reduced model (MLR) into scenario group subproblems as explained in this
section. Let us consider that there are two endogenous uncertain parameters
{0,,6,} where each one has 2 possible realizations (L, H). Therefore, there are 4
scenarios (1: LL, 2: HL, 3: LH, 4: HH). The scenario pairs (s,s’) required to
represent the NA constraints in each time period t based on the three properties
in chapter 4 are {(1,2),(1,3),(2,4),(3,4)} as can be seen in Figure 6.7(a). Notice
that the double line between scenario pairs is used to emphasize the fact that
there are initial as well as conditional NACs between each of these scenario
pairs, whereas each node represents the index of an individual scenario. The

dash lines correspond to the dualized NA constraints.
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Figure 6.7: An illustration for the 4 Scenarios and its scenario group

0::(1,2) G>=Q> ””””” o
| | 0::(1,3)

decomposition (top view)

O
s

1 2 3 Sy Sz S Sy
9::(1,2) 9,:(3,4) 9:(13) 9224
(d) (e)

Figure 6.8: An illustration for the 4 Scenarios and its scenario group
decomposition (front view)

The Lagrangean decomposition scheme corresponding to the section 6.4.1 is
represented by Figure 6.7(b) where we remove all the conditional NACs and

dualize all the initial NACs. Figure 6.7(c) corresponds to the scenario
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decomposition scheme presented in section 6.4.2 that relies on dualizing all the
NACs (initial and conditional) either directly (i) or after reformulation (ii). In
contrast, the proposed algorithm decomposes the fullspace model into scenario
groups as shown in Figures 6.7(d) or 6.7(e). In particular, Figure 6.7(d)
corresponds to the two scenario group problems {g:: (1,2), 02: (3,4)} where
6.7(e) represents the scenario group problems { gi: (1,3), g2: (2,4)}. Notice that
Figures 6.7(a)-(e) correspond to the top view of the scenario-tree representation in
Figures 6.8(a)-(e), respectively. Each node in Figures 6.8(a-€) represents the state
of the system in a given time period t while the linking lines correspond to the NA
constraints.

The rules to formulate the scenario groups for the proposed algorithm are as
follows:

1. Each scenario s occurs in only one of the scenario group S;and every

scenario is included in at-least one of the groupsG . All the scenario groups

S, eGhave equal number of scenarios. Therefore, the total number of

scenarios equal to the number of scenario groups times the number of

scenarios in each group i.e., |S|=|G|-‘Sg‘. Notice that here we assume the

symmetry of the scenario groups to formulate the subproblems that have
almost similar complexity. However, we can always consider an asymmetric
approach as shown in Figure 6.9 for the 4 scenario instance described above.
Specifically, Figure 6.9(a) and 6.9(b) decompose the problem into two
scenario groups {gi1: (1,2,3), g2: (4)} and {01: (1,3,4), g2: (2)}, respectively,
where the subproblems with 3 scenarios should be more expensive to solve

than the one with a single scenario.

0::(1,2,3)

e

(b)
Figure 6.9: Asymmetric scenario group decomposition
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2. Scenario groups S, are formulated by first selecting an endogenous uncertain

parameter and then taking those scenarios in a group which differ in the

realization of only that particular uncertain parameter. For instance, in Figure

6.7(a), we first select parameter {6, }and write only those scenario groups that

differ in the realization of this uncertain parameter, i.e. {(1,2),(3,4)} which

results in the scenario groups as in Figure 6.7(d). Similarly, the uncertain

parameter {6,}leads to the scenario groups {(1,3),(2,4)} in Figure 6.7(e).

Notice that these scenario groups are nothing but the scenario sets

(s;,8;,.--8) L, (eq. 6.8) that are required to formulate the reduced model

(MLR).

3. Since there can be many uncertain parameters {6,} each with its own
scenario set (s, s,.....s,) €L, , the selection of a particular set of scenario groups
is not unique.

Q) Ideally, one may consider selecting a scenario group set that provides
the tightest initial bound compared to the others. However, in general
unless all the combinations are tested, it is not obvious how to select
such a scenario group set.

(i) A relatively simpler approach can be to first solve each scenario
independently, and selecting the scenario group set corresponding to
that uncertain parameter, which has the largest total difference in the
objective function values of the corresponding scenarios. This is due to
the fact that most likely the corresponding NACs for those scenarios
will be active at the optimal solution. Therefore, keeping these NACs
in the subproblem as constraints should yield a tighter bound. For
instance, select 7(e) if scenario group set corresponding to &, exhibits
larger total variation in the objective function value than the scenario
group set for uncertain parameter &, . In other words, this idea relies on

the sensitivity of the objective function value for an uncertain

parameter and its possible realizations.
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Notice that for simplicity we only consider the cases with same
probabilities for all the scenarios during this work. If it would be possible, the
impact of different scenario probability values on scenario group partitions
will be addressed in our future paper.

Even after selecting a scenario group set that corresponds to an uncertain
parameter{&,}, it may still be difficult to solve the resulting scenario group
subproblems. For instance if a parameter has many realizations, then each
scenario group subproblem will have that many scenarios which may increase
the computational expense. Therefore, one may further divide the scenario

groups into subgroups and solve the resulting smaller problems.

Figure 6.10: 2 parameters, 16 scenarios and its scenario/scenario group

decomposition

As an example, say if we have 2 uncertain parameters and 4 realizations of
each parameter, there are a total of 16 scenarios. There are two possibilities of
the scenario groups {(1,2,3,4), (5,6,7,8), (9,10,11,12), (13,14,15,16)} (Figure
6.10(c)) and {(1,5,9,13), (2,6,10,14), (3,7,11,15), (4,8,12,16)} (Figure 6.10
(d)) according to the rules 1-3. Based on the problem characteristics, it may
be difficult to solve each scenario group subproblem with 4 scenarios.

Therefore, these groups can be further decomposed into a total of 8 scenario
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5.

groups each with 2 scenarios, respectively (Figure 6.11(a) and 11(b)).

However, the quality of the bound may deteriorate since the corresponding

conditional NACs need to be relaxed. Therefore, there is a trade-off between

the quality of the bound and the complexity of solving a scenario group

problem.

a0
§d
o~
o~
9
o

Figure 6.11: Decomposition of the scenario groups into subgroups

In general, if the problem is expensive to solve for each scenario, it is better to use

scenario groups each with only few scenarios. On the other hand, if individual

scenarios are not expensive to solve, then one may consider more scenarios in

each group to improve the quality of the bound.

The above rules are general and can be applied to a problem with any

number of uncertain parameters and many realizations of each uncertain

parameter. For instance, Figure 6.12(a) represents the extension to three uncertain

parameter case where each parameter has 2 realizations (total 8 scenarios).

There are 6 possibilities to formulate the scenario groups in symmetric form:

(a) Taking 4 scenarios in each group:

{(1,2,3,4), (5,6,7,8)} i.e. Figure 6.12(c)
{(1,2,5,6), (3,4,7,8)} i.e. Figure 6.12(d)
{(1,3,5,7), (2,4,6,8)} i.e. Figure 6.12(e)

(b) Taking 2 scenarios in each group:

{(1,2),(3,4), (5,6),(7,8)} i.e. Figure 6.12(f)
{(1,5),(2,6), (3,7),(4,8)} i.e. Figure 6.12(g)
{(1,3),(2,4), (5,7),(6,8)} i.e. Figure 6.12(h)
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(9) (h)
Figure 6.12: 3 parameters, 8 scenarios and its scenario/scenario group

decomposition

6.5.2 Decomposition Algorithm: Based on the scenario groups that are
constructed in the previous section, we now first present the corresponding
reformulated Reduced (MILP) model. Notice that these scenario group partitions
will be used to decompose the resulting reduced model into scenario group

subproblems during the proposed Lagrangean decomposition algorithm.

Let us consider that G is the set of scenario groups S, €G that are selected

based on the rules presented in the previous section, where each of these scenario

groups S, may have 1 or more scenarios. The reduced model (MLR) can now be
represented as an equivalent model (MLR®) in terms of the scenario groups
S, €G where we disaggregate the total NACs for the scenario pairs that
corresponds to the same scenario group (s,s)eS, (i.e. egs. (6.3i),

(6.4i),(6.5i),(6.5))) with those which belong to the different scenario groups
(seS,)A(s'eS, ) (i.e. eqs. (6.3)), (6.4)),(6.5k),(6.5I)).

(MLR®) min Z{Z pszctxf} (6.1i)

S4€G | seSy teT
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o=t
X =% WVteT V(s,s)eP, s5,5€S,eG (6.3i)
Bex: +Cz;* <d’  VteT.,V(s;s')eR,s,s€S, G (6.4i)
~M@A-2°) <x X VteT,,V(s,s)eP,s5eS, eG (65
MA-2") 2x-% VteT, V(ss)eP,sseS, G (65)
X =% VteT, ,V(ss)eP, (seS,)A(s'¢S,).S, €G (6.3))

BX' +Ciz; <df  VteT.,V(s,5)eP, (seS,)A(s'¢S, ) S, €G (6.4))

~M@-2%) <x-x VteT,,V(ss)eP, (seS,)A(s'eS,).S, €G

(6.5K)
M@A-2") 2% -x VteT,,V(ss)eP;, (seS,)A(s'eS,) S, G

(6.51)
x5, €{0,1} Vt,vseS, €G,Vje (6.6i)
xj, €R Vt,VseS, eG,VjeJ\J' (6.7i)

The Lagrangean problem (L4-MLR®) corresponding to the model (MLR®)
can be formulated by dualizing only those initial NAC constraints for the pairs of
scenarios (s,s’) that link the two scenario groups, i.e. eq. (6.3j), and removing the
corresponding conditional NACs (egs. (6.4j),(6.5k) and (6.51)). Therefore, the
initial and conditional NACs (eq. 6.3(i), 6.4(i), 6.5(i) and 6.5(j)) among the
scenario pairs (s,s’) that belong to the same scenario group remain in the
Lagrangean problem as explicit constraints.

(L4-MLR®)

AP eK Y, AT %) (6.1j)

Sy€G | seS, teT teTy (s,s")epky
s.t. (seS, )/\(Ses )
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st. Y Ax <al  WtseS eG (6.2i)

<t

X =X VteT, V(ss)eP,sseS, G (6.3i
Bx; +Ciz;* <df  VteT.,V(s,s)eP,s,5€S, G (6.4
~MQ@-2z*) <x—-X VteT,,V(s;s)eP,sseS, G (6.5i)
M@L-2°) >x-x VteT.,V(ss)eP,ss'e S, €G  (6.5))
x; {0} Vt,VseS, eG,Vjel' (6.61)

X?tGR vt,VseS, eG,VjeJ\J' (6.70)

In contrast to the previous approaches, we can observe that the main idea in
the proposed decomposition approach is that instead of removing all the
conditional NACs from the model (as in section 6.4.1) or dualizing all the
conditional NACs either directly or in an indirect manner (as in section 6.4.2), we
only remove a subset of conditional NACs from the model and dualize a subset of
the initial NACs in the objective function instead of dualizing all the initial NACs
while formulating the Lagrangean problem (L4-MLR®). This results in the
decomposition of the reduced model (MLR) into scenario group subproblems
(L4-MLR®) rather than individual scenarios in the previous cases. Therefore, we

also refer it as a partial decomposition approach.

(L4-MLR®)

min > p Y e+ x( XAST- DB (6.1K)
SR el W,

st. Y AX <al  VtseS, (6.2K)
=

X' =x> VteT,,V(ss)eP,ss'e S, (6.3k)

Bix +Cz;* <dS  VteT.,V(s,s')eP,s,s'€S, (6.4K)

~M@A-2*) <X —-% VteT,,V(ss)eP,s5s%€S, (6.5m)

M@I-2z*) 2x-% VteT,, V(ss)eP,s5eS, (6.5n)
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x5 €{0.5} Vt,vseS,,Vjel (6.6k)

x; €R Vt,VseS,,VjeJ\J' (6.7k)

The structure of model (L4-MLR®) can be seen in Figure 6.13, where each
scenario group subproblem that contains its corresponding initial and conditional
NACs can be solved independently, and where only a small fraction of the total
initial and conditional NACs are dualized and removed, respectively. Since, the
resulting subproblems capture the more relevant information, i.e. the one
corresponding to the later time periods, the dual bound should be tighter.

" m

Scenario Group —
Subproblems having
corresponding NACs

,

Dualize remaining

Initial NACs

Remove remaining | K [S— ]

Conditional NACs

Figure 6.13: Scenario decomposition approach in the proposed Lagrangean

Decomposition

We can then state the following proposition:
Proposition 6.1: The dual bound obtained from the proposed Lagrangean
problem (L4-MLR®) at root node is at-least as tight as the dual bound obtained
from the standard Lagrangean decomposition approach (L1-MLR) i.e. the
model (L1-MLR) is a relaxation of the model (L4-MLR®).
Proof: To prove this proposition it is sufficient to establish that,

(a) The feasible region of the proposed Lagrangean problem (L4-MLR®) is

contained within the feasible region of the model L1-MLR.
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(b) The objective function value of the proposed Lagrangean problem (L4-

MLR®) over its feasible solutions X is at-least as large (assuming

minimization case) as the objective function value of the model L1-MLR.
For (a), since scenario constraints (6.2) in L1-MLR are equivalent to constraints
(6.2i) in L4-MLR®. Therefore, the only difference between both of these models
is that L4-MLR® has the additional constraints (6.3i), (6.4i), (6.5i) and (6.5]) in
the model. Hence, the feasible region of the model L4-MLR® is contained within
the feasible region of the standard Lagrangean problem L1-MLR which has more
feasible solutions.
For (b), we first rewrite the model L1-MLR as L1-MLR’ where 7 >0

represent the Lagrangean multipliers corresponding to the dualized inequalities

(X —x <0)and multipliers >0 correspond to the inequalities

(=% + % <0). We use the inequality format of the initial NACs (eq. (6.3a)) to

dualize them in the objective function.

(L1-MLR’)
min > p Y cx +) DR )Y DR +X) (6.
seS tel teT, (s,5")eR, teT, (s,8")eR

s.t. (6.2), (6.6) and (6.7)
Similarly, model L4-MLRC can be rewritten as follows:
(L4-MLR®)

min- > 1> p > ex + ), DT =% )+, DT (=% %) (6.1m)

Sy€G | seSy teT teT, (s,8)eP; teT; (s,8")eP;
s.t.(seSy )A(s'eSy) s.t.(seSy )A(s'eSy)

s.t. (6.2i), (6.3i), (6.4i), (6.5i), (6.5j), (6.6i) and (6.71)
On subtracting the objective functions (6.11) and (6.1m), we have the following

summation,

z Z Z’]t&s'(xts _th')+z Zﬂtsys‘(_xts +th') (6.1n)

Sy€G | teTy (s,s)eP; teT, (s,8)ePy
s.t.(seSq )A(s'eSy ) s.t.(seSq )A(s'eSy )
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To prove that the objective function value of the model L4-MLR® over its feasible

solutions X; is at least as large as the objective function value of the model L1-

MLR, it is sufficient to prove that,

Z Z Zﬂt&s' (th - th) + Z Z:uts'y(_xts + th-) <0 (6.10)

Sy€G | teTy (s,8")ePy teTy (s,5)ePy
1. (s€Sq )A(s'eSy ) s.t.(s€Sq )A(s'eSy )

For any feasible solution X to the model L4-MLR® and for any #»** >0 and

g5 >0 V(8,8") € Pyt eT the penalty terms 75 (x¢ —x%) and 2 (=x¢ +x°) in
the objective function are less than or equal to zero. Hence, their summation in
inequality (6.10) also holds true. In other words, we can also state that the model
L1-MLR is a Lagrangean relaxation of the model L4-MLR® and therefore, it
provides a valid lower bound on the objective function value of the model L4-
MLRC. 0

The rest of the steps of the algorithm are similar to the standard Lagrangean
decomposition (Figure 6.2) where scenario group subproblems L4-MLR®® are
solved during each iteration, and multipliers are updated using either subgradient
method (Fisher, 1985) or an alternative scheme as in Mouret et al. (2011);
Oliveira et al. (2013), and Tarhan et al. (2013). Moreover, the algorithm can be
further extended within a duality based branch and bound search (as proposed in
Goel and Grossmann, 2006; Tarhan et al., 2009; and Tarhan et al., 2011) if the
gap between the lower and upper bound is still large. As will be shown in the
results, the main advantage with the proposed approach is that the resulting dual
bound is significantly strengthened at the root node itself since a large fraction of
the NACs are included as explicit constraints in the subproblems. This will
eventually reduce the number of iterations required to converge at each node and

the total number of nodes in the branch and bound search.

6.5.3 Alternate Proposed Lagrangean Decomposition Algorithm
It should be noted that few conditional NACs (egs. (6.5k) and (6.51)) still need to

be removed while formulating the scenario group subproblems (L4-MLR®%) in the

208



above method. Therefore, the best lower bound at the root node cannot be better
than the optimal solution of the model without these conditional NACs. To further
close the gap at the root node, we also propose an alternate Lagrangean
decomposition approach that may provide a stronger bound at the root node.
However, it involves solving more subproblems, and it may be computationally
more expensive than the proposed approach in the previous section. Therefore, it
is only useful for a certain class of problems.

The main idea is that we select all the scenario groups instead of a subset of
the scenario groups as we did in the previous section 6.5.1. However, since a
scenario can appear in more than one of these scenario groups, we need to equate
the decisions for this scenario in all of these scenario groups where it occurs. In
other words, we create a copy of each scenario for every scenario group problem
where it can appear and equating the decisions corresponding to all time periods
for that scenario for each of these scenario groups. The resulting model (Figure
6.14(b)) will be equivalent to the reduced model (MLR) (Figure 6.14(a)) where
{1°,2°,3°,4’} are the copy of the scenarios {1,2,3,4} and the connections between
them are the added equality constraints.

Therefore, to decompose the resulting problem (Figure 6.14(b)) into 4
scenario group subproblems {(1,2),(1°,3”),(2°,4°), (3,4)}, we dualize the equality
constraints correspond to each scenario and its copy variables, instead of
dualizing or removing the NAC constraints. This yields a set of 4 scenario group
subproblems (Figure 6.14(c)) i.e. {(1,2),(1°,3°),(2’,4"), (3,4)}. Since, none of the
conditional and initial NAC constraints are removed from the subproblems, the
bound is in general stronger. We can compare this decomposition with the

proposed one in Figure 6.7 where we obtain 2 scenario group problems.

(©

(b)
Figure 6.14: Alternate proposed Lagrangean decomposition approach for 4

scenario problem
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Qualitatively, this decomposition can be considered as the decomposition of
the reduced model (Figure 6.14(a)) at vertices as compared to the arcs in
standard/proposed decomposition described earlier. Notice that although this
alternate decomposition is computationally expensive since more subproblems are
involved than in the previous method, it can however be used in a hybrid scheme
with the proposed decomposition to improve the quality of lower bound. For
instance in Figure 6.10, we can first select the 4 scenario groups based on the
rules that are defined earlier, and then use this approach to further decompose
each group into subgroups by creating a copy of the scenarios in each of these
groups instead of the partitions used in Figure 6.11.

6.6 Numerical Results
6.6.1 Process network planning under uncertain yield

Purchases A

rate rate
yl Wl rate| B
C — 3| Process | > Y3 rate rate
B W, Ws
‘ Process 111 Sales A
yrate Wrate B A
2
D —=2—3»! Process Il >
B Inventory A

Figure 6.15: 3 Process Network Example

Case (i): Planning of 3 process network over 10 years

To illustrate the application of the various decomposition approaches for
multistage stochastic programming with endogenous uncertainties, we consider
the following problem from Goel and Grossmann (2006). Given is a process
network (Figure 6.15) that is used to produce product A. Currently, the production
of A takes place only in Process Il with installed capacity of 3 tons/hour and
yield of 0.70, that consumes an intermediate product B which is purchased. If
needed, the final product A can also be purchased so as to maintain its inventory.
The demand for the final product, which is known, must be satisfied for all time
periods over the given time horizon. Two new technologies (Process | and

Process I1) are considered for producing the intermediate B from two different
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raw materials C and D. These new technologies exhibit uncertainty in the yields.
The yield of Process | and Process Il can take 2 discrete values each with equal
probability of 0.5. These two realizations of yield for each of Process | and
Process |1 give rise to a total of 4 scenarios (Table 6.1).

The problem consists of finding the expansion and operation decisions for
this process network for a 10 year planning horizon so as to minimize the total
expected cost of the project. The size of the resulting fullspace model (MLR) and
each individual scenario can be seen in Table 6.2 where the optimal expected cost
of the problem is $379,070. Notice that there is a significant increase in the total
number of constraints for the fullspace MSSP model due to the non-anticipativity
requirements.

Table 6.1: 3 Process Network Example (4 Scenarios)

Scenario sl s2 s3 s4
Process | yield 0.69 0.81 0.69 0.81
Process |1 yield 0.65 0.65 0.85 0.85

Scenario Probability 0.25 0.25 0.25 0.25

Table 6.2: Model statistics for the 3 Process Network Example

Number of | Continuous Binary
Problem Type Constraints Variables Variables
Reduced Model (MLR) 1,869 845 120
Individual Scenario 192 202 30

After applying the various decomposition approaches, we obtain the results
shown in Figure 6.16 and Table 6.3, where an optimality tolerance of 1% and
maximum of 30 subgradient iterations (whichever comes first) are used as the
termination criteria. It can be observed that the proposed approach (section 6.5.2)
using SG2 scenario groups {(1,3),(2,4)} outperforms the other approaches since it
yields the tightest lower bound ($378,710) within 2 iterations (see Table 6.3). The
lower bound at the root node from the standard approach (section 6.4.1) after
many iterations is worse than the initial bound with the proposed approach
($375,880 vs. $377,290). In addition, the best upper bound from the proposed
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approach is same as the optimal solution ($379,070) whereas the standard
approach could only yield the feasible solution with expected cost of $380,880
even after 30 iterations (see Table 6.3). The decomposition approaches based on
dualizing all the initial and conditional NACs do not yield good bounds
(especially the direct approach (i) in section 6.4.2) compared to the proposed
approach with SG2 partitions.

380

379

w
hy]
oo

g 377
£
T T T T T T T T T T T T T T T T T T T
£ 376
c% Optimal Solution
S 375 —&— [B_Standard
% — - — LB_AIl_Dualized(i)
-1 374

—@— | B_All_Dualized(ii)
— — LB_Proposed_SG1
—&— | B_Proposed_SG2

. — —
. — — —

Iterations

Figure 6.16: Comparison of the various decomposition schemes for 3 process

network example

The alternate decomposition (section 6.5.3) using all the 4 scenario groups
also performs reasonably well. Since, the total variations in the scenario costs for
the scenario group set SG2 {(1,3),(2,4)} is large compared to the scenario group
set SG1 {(1,2),(3,4)} ($69,990 vs. $44,590), it yields tighter bounds and faster
convergence (see Table 6.4). Notice that the scenario groups in SG1 represent the
sensitivity of the Process | yield with respect to the cost, whereas SG2 correspond
to the sensitivity of the Process Il yield that has a large variance (Table 6.3) and a

larger impact on the scenario costs. The MILP models for all the process network
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examples are implemented in GAMS 23.6.3 and run on Intel Core i7, 4GB RAM
machine using XPRESS 21.01 solver.

Table 6.3: Comparison of the various decomposition schemes for 3 Process

Network Example

Standard | All Dualized | All Dualized | Proposed Proposed | Proposed
(i) direct (i) indirect SG1 SG2 Alternate
UB ($10°) 380.88 380.88 380.88 380.88 379.07 379.07
LB ($10°) 375.88 371.88 376.27 376.42 378.71 375.75
Solution Time (s) 8.89 5.24 9.51 5.86 0.94 2.12
% Gap 1.33% 2.42% 1.22% 1.19% <1% <1%
# iterations 30 30 30 30 2 4

Table 6.4: Variations in the objective function value with uncertain parameters(a)

Individual Scenario Costs

Cost ($10%)
sl 410.32
s2 365.73
s3 353.03
s4 353.03

(b) Scenario groups cost variations

Case (ii): Planning of 5 process network over 10 years

E ——»{ Process IV
B

C ——»| Process | > >
B

D ——>» Process Il >
B

Figure 6.17: 5 Process Network Example

SG1 SG2
s1-s2 44.59 -
$3-54 0 -
s1-s3 - 57.29
$2-54 - 12.70

Total cost
variations ($10°%) 44.59 69.99
Process V
Purchases A
Process Il Sales A
A
Inventory A

In this instance, we consider a 5 process network (Figure 6.17) having 3

uncertain parameters, i.e. yield of Process I, Process Il, and Process V. Here we

consider 2 new additional processes compared to the previous example in which
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Process IV converts E into B with a yield of 0.75, and Process V that converts B
into final product A. Each of the uncertain yields has 2 realizations and gives rise
to a total of 8 scenarios with equal probabilities as shown in Table 6.5. The
problem consists of finding the expansion and operation decisions for this process
network over a 10 year planning horizon to minimize the total expected cost of
the project (see chapter 4 for details).

Table 6.5: 5 Process Network Example (4 Scenarios)

Scenario sl s2 s3 s4 s5 S6 s7 s8

Process | yield 0.69 0.81 0.69 0.81 0.69 0.81 0.69 | 0.81

Process Il yield 0.65 0.65 0.85 0.85 0.65 0.65 0.85 | 0.85

Process V yield 0.60 0.60 0.60 0.60 0.80 0.80 0.80 | 0.80

Scenario Probability | 0.125 | 0.125 0.125 0.125 0.125 0.125 | 0.125 | 0.125

To use the proposed decomposition approach for this 8 scenario problem, we
partition the scenarios into scenario groups where each one has either 2 or 4
scenarios as in Figure 6.12. These scenario groups are denoted as follows:

(@ SG1: {(1,2),(3,4), (56),(7.8)}  SG2: {(1,5),(2,6), (3,7),(4.8)} SG3:
{(1,3),(24), (5.7).(6,8)};

(b) SG4: {(1,2,3,4), (5,6,7,8)}; SG5: {(1,2,5,6), (3,4,7,8)}, and SG6: {(1,3,5,7),
(2,4,6,8)}

After applying the proposed decomposition approach (section 6.5.2) to these
6 scenario group sets, we can see from Figure 6.18 that the quality of the lower
bound improves from $357,920 (SG1) to $361,500 (SG6) as the total cost
variations for the corresponding scenario group set increases from $41,000 to
$224,810 as in the previous instance. Moreover, the bound obtained from the
larger subproblems having 4 scenarios (SG4, SG5, SG6) is tighter as compared to
the subproblems having 2 scenario each as in SG1, SG2 and SG3. This is due to
the fact that larger subproblems need only few conditional NACs to be relaxed
compared to the smaller subproblems. Table 6.6 and Figure 6.19 compare the
progress of the lower bounds, number of iterations and solution time required to
reach within 1% of optimality tolerance (or 30 iterations) for the standard and

proposed approaches with different scenario partitions. We can observe that
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scenario group set SG6 outperforms other approaches since it provides the

strongest lower bound ($361,500) in just 2 iterations within 8.9s. Moreover, there

is a trade-off between the computational cost per iteration and the quality of the

bound obtained. It is interesting to note that in most of the cases, even the initial

bound using proposed scenario decompositions is much better than the final

bound from the standard approach ($355,180) and the rate of convergence to the

best possible dual bound is faster.

Table 6.6: Comparison of the standard vs. proposed approach for 5 process

network example

Standard Proposed | Proposed | Proposed | Proposed | Proposed | Proposed
SG1 SG2 SG3 SG4 SG5 SG6
UB ($10%) 364.12 364.12 364.12 364.12 364.12 364.12 364.12
LB ($10°) 355.18 357.92 358.08 358.62 360.82 361.35 361.50
Solution 16.32 24.59 15.38 20.40 7.63 12.44 8.9
Time (s)
% Gap 2.52% 1.73% 1.69% 1.53% <1% <1% <1%
# iterations 30 30 30 30 2 5 2
362 250
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361 // - 200 o
« &
360 e z
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- 359 - =
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Figure 6.18: Variations in the scenario costs vs. bound obtained for different

scenario partitions
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Figure 6.19: Comparison of the standard vs. proposed approach for 5 process

network example

6.6.2 Qilfield development planning under uncertain field parameters

» Total Oil/Gas

T T T - Production

Figure 6.20: 3 oilfield planning example
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Case (i): Uncertainty in the field size only (4 scenarios)

In this instance, we consider 3 oilfields, 3 potential FPSO’s and 9 possible
connections among field-FPSO (Figure 6.20). A total of 30 wells can be drilled in
the fields and the planning horizon is 10 years. Field 3 has a recoverable oil
volume (field size) of 500 MMbbls. However, there is uncertainty in the size of
fields 1 and 2 where each one has two possible realizations (low, high) with equal
probability. Therefore, there are a total of 4 scenarios each with a probability of
0.25 (see Table 6.7). The problem is to determine the investment (FPSO
installations and expansions, field-FPSO connections and well drilling) and
operating decisions (oil production rate) for this infrastructure with an objective to
maximize the total expected NPV (ENPV) over the planning horizon.

We consider the multistage stochastic MILP model presented in chapter 5 for
this oilfield development planning problem, which is an extension of the previous
deterministic model presented in chapter 2. The model for all the oilfield planning
instances are implemented in GAMS 23.6.3 and run on Intel Core i7, 4GB RAM
machine using CPLEX 12.2 solver. The optimal ENPV for this problem is $11.50
x10° when the reduced model (MLR) is solved in fullspace, and requires 1184s.
Table 6.8 represents the model statistics for this instance.

Table 6.7: 3 Qilfield Example (4 Scenarios), case (i)

Scenarios sl s2 s3 s4

Field 1 Size (MMbbls) 57 403 57 403
Field 2 Size (MMbbls) 80 80 560 560
Scenario Probability 0.25 0.25 0.25 0.25

Table 6.8: Model statistics for the 3 Qilfield Example, case (i)

Number of | Continuous Discrete SOs1
Problem Type Constraints Variables Variables | Variables
Reduced Model (MLR) 16,473 9,717 876 240
Individual Scenario 3,580 2,390 179 60
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Figure 6.21: Comparison of the various decomposition schemes for oilfield
example, case (i)

Figure 6.21 compares the performance of the upper bounds obtained at the
root node using standard Lagrangean decomposition based on dualizing the initial
NACs and removing the conditional NACs (section 6.4.1) with the decomposition
approaches proposed in section 6.5. A termination criterion of either 1% gap or 20
iterations is used. The proposed algorithm based on scenario groups SGI.:
{(1,2),(3,4)} and SG2: {(1,3),(2,4)} yield stronger upper bounds, $11.59 x10° and
$11.56 x10° respectively, than the standard Lagrangean decomposition (section
6.4.1) ($11.62 x10%. Additionally, the total computational effort is less with the
proposed approach since only 2 subproblems need to be solved at each iteration,
and only few iterations are needed to satisfy a 1% of optimality tolerance (Table
6.9). SG2 performs better than SG1 as can be observed from the total variations in
the scenario NPVs with respect to the change in the field sizes as calculated in
Table 6.10 ($6.63 x10° vs. $4.77 x10°%). This result is similar to the process
network example in the previous section. We can also observe that the alternate
proposed approach that considers 4 scenario groups (Figure 6.14(c)) performs

well but it is more expensive to solve (429s). It is important to see that the quality
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of upper bound from SG2 is similar in the first iteration with the quality of UB
obtained from the scenario subproblems (section 6.4.1) after 20 iterations (see
Figure 6.21). Moreover, for clarity we only plotted the progress of the upper

bounds with iterations and the optimal NPV in Figure 6.21.

Table 6.9: Comparison of the various decomposition schemes for oilfield

example, case(i)

Standard Proposed SG1 Proposed SG2 | Proposed Alternate
UB (310%) 11.62 11.59 11.56 11.58
LB ($10%) 11.50 11.50 11.50 11.50
Solution Time 466 382 172 429
©)
% Gap 1.02% <1% <1% <1%
# iterations 20 5 2 3

Table 6.10: Variations in the objective function value with uncertain parameters,

case (i)

(a) Individual Scenario NPV

(b) Scenario groups NPV variations

NPV ($10°) SG1 SG2
sl 8.95 s1-s2 2.44
Sg ggg s3-s4 2.33 -
s .
) 1465 s1-s3 3.37
$2-54 3.26
Total NPV
variations ($10°%) 4.77 6.63

Case (ii): Uncertainty in the field size, oil deliverability, WOR and GOR (4
scenarios)

In this case we consider uncertainty in the field size, oil deliverability, water-oil
ratio (WOR) and gas-oil-ratio (GOR) for oilfields 1 and 2. Notice that oil
deliverability, WOR and GOR are represented by the univariate polynomials in
terms of the fractional oil recovery as shown in equations (6.11)-(6.13)
respectively. The uncertainty in these parameters is characterized by the

corresponding parameters «,, «, and «,. We assume that the uncertain

w
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parameters for a field are correlated and uncertainty in these parameters is
resolved at the same time. This allows reducing a large number of scenarios. The
two possible combinations of these parameters for each field results in a total of 4
scenarios each with a probability of 0.25 as can be seen in Table 6.11. The data
for the rest of the problem are as in case (i).

Q! =, -g(fc) (6.11)
wor = ¢, - g( fc) (6.12)
gor =, - g(fc) (6.13)

Figure 6.22 and Table 6.12 compare the performance of the upper bounds
obtained at the root node using standard Lagrangean decomposition (section
6.4.1) with the proposed decomposition approaches and the similar trends can be
observed as in the previous instance. SG2 {(1,3), (2,4)} performs best compared
to the other approaches due to the stronger initial bound ($12.07x10°%). Moreover,
since the scenario group set SG2 has a larger total NPV variations ($8.70x10°%)
than set SG1 {(1,2), (3,4)} ($5.72x10°), it yields a stronger dual bound. Although,
SG1 and the alternate approach are somewhat more expensive compared to the
standard decomposition approach, they yield a stronger dual bound in a given
amount of solution time. This will eventually reduce the total number of nodes in
the branch and bound search tree.

Table 6.11: 3 Oilfield Example (4 Scenarios), case (ii)

Scenarios sl s2 s3 s4
Size (MMbbls) 57 403 57 403
a, 0.75 1.25 0.75 1.25
Field 1 a, 0.75 1.25 0.75 1.25
a, 0.75 1.25 0.75 1.25
Size (MMbbls) 80 80 560 560
a, 0.75 0.75 1.25 1.25
Field 2 a, 0.75 0.75 1.25 1.25
a, 0.75 0.75 1.25 1.25
Scenario Probability 0.25 0.25 0.25 0.25
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Figure 6.22: Comparison of the various decomposition schemes for oilfield

example, case (ii)

Table 6.12: Comparison of the various decomposition schemes for oilfield

example, case(ii)

Standard Proposed SG1 Proposed SG2 | Proposed Alternate
UB ($10°) 12.14 12.10 12.07 12.06
LB ($10°) 11.94 11.94 11.94 11.94
Solution Time (s) 438 1780 84 1045
% Gap 1.66% 1.28% <1% <1%
# iterations 20 20 1 5

Case (iii) and (iv): Extension of the cases (i) and (ii), respectively, for 9

scenarios

In these instances we consider 3 realizations for each uncertain parameter (low,

medium, high) compared to two realizations (low, high) in the previous cases (i)

and (ii) of oilfield development problem. This results in the corresponding 9

scenario cases (iii) and (iv). Figures 6.23 and 6.24 compare the performance of

221




the dual bounds at the root node from various decomposition schemes for these 3
oilfield and 9 scenario instances, whereas Table 6.13 summarizes the
computational results. Since the alternate decomposition (section 6.5.3) is very
expensive to solve for these cases, we only compare the proposed approach
relying on the scenario groups SG1 {(1,2,3),(4,5,6),(7,8,9)} and SG2
{(1,4,7),(2,5,8),(3,6,9)} with the standard approach (section 6.4.1). We can
observe that the initial bound with the proposed strategy ($11.93 x10°%) is much
better as compared to the final bound obtained from the standard Lagrangean
decomposition at the root node ($11.96 x10°) for case (iii). It takes only 2 and 1
iterations in cases (iii) and (iv), respectively, for the proposed approach using set
SG2 to reach within 1% of optimality tolerance. On the other hand, the standard
and the proposed approach with set SG1 cannot reach within this gap even after

20 iterations or a given time limit of one hour.
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Figure 6.23: Comparison of the various decomposition schemes for oilfield

example, case (iii)
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Figure 6.24: Comparison of the various decomposition schemes for oilfield

example, case (iv)

Table 6.13: Comparison of the decomposition schemes for oilfield example, case

(iii) and (iv)
Case (iii) Case (iv)
Standard Proposed Proposed Standard Proposed Proposed
SG1 SG2 SG1 SG2
UB ($10°) 11.96 11.92 11.88 12.31 12.26 12.23
LB ($10%) 11.78 11.78 11.78 1211 12.11 12.11
Solution Time (s) 1327 >3,600 764 1542 >3,600 439
% Gap 1.47% 1.15% <1% 1.62% 1.27% <1%
# iterations 20 10 2 20 8 1
Remarks:

1. Based on the computational results, we can observe that the selection of a

particular scenario group set is critical in the proposed approach such as

set SG2 performs better than SG1 in all the instances.

2. The increase in the solution time per iteration with the proposed approach

is problem specific. For instance, the increase in the solution time per
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iteration for the process networks examples is not that significant as in the
oilfield planning problem. Therefore, if the solution time per iteration for a
given problem increases drastically using the proposed decomposition,
then one may want to use the standard scenario based approach to explore
more nodes quickly in the branch and bound search tree or use
subproblems with smaller sizes in the proposed approach.

3. In general, for a given amount of the solution time the proposed approach
yields better dual bound and feasible solution as can be seen from the
numerical experiments. This is due to the fact that the increase in the
solution time per iteration is offset by the significant reduction in the total
number of iterations resulting in the lesser total solution time.

4. 1t should be noted that although the initial gap between lower and upper
bounds for the examples presented is not very large for the given data set.
However, based on Proposition 6.1 and computational experiments, we
can conclude that the performance of the proposed approach should be
similar for the large gap problems given that we select the scenario group

sets as described.

6.7 Conclusions

In this chapter, we have proposed a new approach for solving multistage
stochastic programs (MSSP) with endogenous uncertainties using Lagrangean
decomposition. The proposed approach relies on dividing the fullspace model into
scenario groups. Since the number of these scenario groups can be large, there are
several alternatives to select a particular set of scenario groups. Therefore, we also
presented few rules to identify and formulate a reasonable scenario group set that
can be used for the proposed partial decomposition approach within an iterative
scheme to update the multipliers. Specifically, the resulting subproblems involve
a subset of the NACs as explicit constraints while dualizing and relaxing the rest
of these constraints, which enhances the overall performance. An alternate
decomposition scheme that may even yield a tighter bound, but usually becomes

more expensive for the large cases, is also proposed.
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The results on the process network and oilfield planning problems show that
the dual bound obtained at the root node from the proposed approaches are
stronger than the standard one used in chapters 4 and 5 since the impact of the
later time periods is also considered in the subproblems. Moreover, there is a
significant reduction in the number of iterations required to converge within a
specified tolerance. In most of the cases, even the initial bound with the proposed
approach is stronger than the corresponding final bound in the standard approach.
Given the tighter bound at the root node, the total number of potential nodes that
will be required in the branch and bound search should be smaller and branching
rules will be easier to identify. However, the solution time required per iteration
in the proposed approach is usually larger as compared to the standard approach,
but the difference is problem specific. Therefore, the comparison between the
qualities of the bounds obtained within a given amount of solution time should
also be considered while selecting a particular decomposition approach for the

problems in this class.
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Chapter 7

Improving dual bound for
stochastic MILP models using

sensitivity analysis

7.1 Introduction

In this chapter, based on the previous work by Tarhan (2009), we introduce a
method to improve the dual bound during the solution of a general two-stage
stochastic mixed-integer linear programming model using dual decomposition
(Carge and Schultz, 1999) and integer programming sensitivity analysis
(Dawande and Hooker, 2000). In particular, the method extracts the relevant
sensitivity information from the branch and bound tree of every scenario
subproblem, and uses that information to update the Lagrange multipliers and
improve the dual bound.

The outline of the chapter is as follows: In section 7.2, we introduce the two-
stage stochastic programming model under consideration and the standard
Lagrangean decomposition procedure to solve the model in the subsequent
section. To overcome the limitations of the standard approach, integer or mixed-
integer programming sensitivity analysis methods that will be used are introduced
in section 7.4. Sections 7.5 and 7.6 outline the procedure to combine the
sensitivity analysis with Lagrangean decomposition to improve the dual bounds of
stochastic integer or mixed-integer programming. Section 7.7 illustrates the
proposed method with numerical examples and compares it with the conventional

subgradient method.
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7.2 Two-stage Stochastic programming

The main idea behind two-stage stochastic programming (see Figure 7.1) is that
we take some decisions (stage 1) here and now based on the possibility of future
outcomes of the uncertain parameters. While the rest of the decisions are stage -2
(recourse actions) decisions that are taken after uncertainty in those parameters is
revealed (e.g. low, medium or high scenarios). The objective is to minimize the
total cost of the first stage decisions and expected cost of the second stage

decisions.

Stage-1 decisions are
taken here and now

Medium High

Stage-2 decisions are
taken after uncertainty
gets revealed . . .
Scenario 1 Scenario 2 Scenario 3

Figure 7.1: Scenario tree for a two-stage stochastic programming

A typical two-stage stochastic mixed-integer linear (MILP) model (P-MILP)
involves discrete and continuous decisions in the first and/or second stages where
all the constraints and objective function are in linear or mixed-integer linear

form. Objective function (7.1) is the minimization of the expected cost over all

the scenarios s where p° is the probability of scenario s. First stage decisions x°

are taken here and now, while second stage decisions y®are taken after the

uncertainty is revealed. Constraints (7.2) and (7.3) correspond to each scenario
separately. To ensure that the first stage decisions are same for all the scenarios,
non-anticipativity (NA) constraints (7.4) are introduced in the model, which
makes the problem harder to solve since it couples all the scenarios. Constraints
(7.5)-(7.8) define the domain of the first and second stage variables. Reader

should refer to the nomenclature section at the end of this chapter.
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(P-MILP) ~ min z=>Y"p*(cx*+ d°y°) (7.1)

seS

st. Ax*>a VseS (7.2)
By +Tx’ >b° VseS (7.3)
x*=x" Vs,s'e€S,s<58' (7.4)
X;eZ" VseS,jel (7.5)
X eR VseS,jed\J (7.6)
Y, €Z" VseSkekK (7.7)
Y, eR VseS keK\K' (7.8)

In general industrial planning, scheduling, supply-chain etc. problems under
uncertainty are formulated as a two-stage stochastic MILP shown above. These
problems become difficult to solve directly in practice since the problem size
increases (constraints and variables) with the number of scenarios, whereas the

solution time increasers exponentially. Therefore, special solution techniques are

~

used to solve the problems in this class.

- subproblem 1
Scenario
constraints are subproblem 2
~
~

inblocks o
- subproblem n
Non-anticipativity
constraints link the scenarios - ————— - - -

(complicating constraints)

Figure 7.2: Decomposable MILP model structure

Lagrangean decomposition is a widely used technique to solve the problems
that have similar decomposable structure as two-stage stochastic MILPs (see

Figure 7.2). It exploits the fact that there are certain set of constraints that make
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the problem harder to solve since it links the different small subproblems. If these
constraints are removed the resulting subproblems can be solved independently in
an efficient manner. In the case of two-stage stochastic MILPs, non-anticipativity
constraints (7.4) are the difficult constraint and each subproblem corresponds to
the scenario problem. Therefore, model (P-MILP) has the decomposable structure
that is required for the Lagrangean decomposition. In the next section we briefly

outline the conventional Lagrangean decomposition procedure.

7.3 Lagrangean Decomposition

Initial Multipliers (4,)
k=0

Solve Lagrangean Problem
AN to obtain LB

Update Multipliers using
Find UB by using a heuristic nonsmooth optimization
(e.g. subgradient method)

Stop

Figure 7.3: Lagrangean Decomposition Algorithm (standard)
The standard Lagrangean decomposition approach involves three steps (see
Figure 7.3):
(a) Dualize complicating constraints in the objective function using

Lagrangean multipliers (1) to decompose the problem into subproblems

(b) Solve each subproblem independently to obtain the lower bound (LB) on
the original problem and use a heuristic procedure to generate the feasible

solution i.e. an upper bound (UB)
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(c) Based on the subproblem solutions and UB update the Lagrangean

multipliers (1) using a non-smooth optimization (e.g. subgradient method)

for the next iteration
The procedure is repeated until the gap between upper and lower bound is
within a specified tolerance or a maximum iteration limit is reached. Due to the
presence of discrete variables, a duality gap may exist. Notice that if we dualize
the non-anticipativity constraints (7.4) in the objective function (7.1), problem (P-
MILP) decomposes into scenario subproblems (SP-MILP) and we can solve it
using Lagrangean decomposition.

(SP-MILP)
min z=Y[(p’c+ X A =D F*)x+ p'dy)] (7.9)

seS s<s' s'<s

st.  (7.2),(7.3), (7.5)-(7.8).

The main drawback of the above nonsmooth optimization approach used
within Lagrangean decomposition algorithm for MILPs (e.g. 2-stage stochastic) is
that only the optimal solution of each subproblem is considered while updating
the multipliers in each iteration. All the relevant information generated during
branch and bound algorithm while solving each subproblem is discarded. This
information could be useful to improve the lower bound efficiently. Therefore, the
total number of iterations required to reach convergence within the tolerance limit
is usually very large using the standard nonsmooth optimization approach such as
subgradient method (Fisher, 1985). In addition, it needs a heuristic procedure to
update the step size and an upper bound during each iteration. Overall, it may
result in slow convergence of the Lagrangean decomposition algorithm. There has
been some work done in this direction e.g. Bundle methods (Lemaréchal, 1974),
Volume algorithm (Barahona and Anbil, 2000), etc. However, the improvement in
the number of iterations is not very significant using these approaches. Our work
is motivated by using more information from each subproblem solution to
improve the performance of the Lagrangean decomposition algorithm. The main

goals of this work can be summarized as follow:
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1. Extract the useful information from the branch and bound tree of each
subproblem during Lagrangean decomposition and use it to improve the
lower bound efficiently

2. Propose a new Lagrangean decomposition algorithm for MILP models
with decomposable structure (e.g. 2-stage stochastic) and benchmark the
results against the subgradient method

In the next section, we show that how the integer programming (IP)
sensitivity analysis can be used to extract useful information from the branch and
bound tree of each subproblem, and how it can further be used in the context of
Lagrangean decomposition algorithm to update the multipliers in each iteration.
Although we introduce the idea as a possible improvement over current stochastic
programming solution methods, the method is fairly general and can be applied to
a majority of the problems where Lagrangean decomposition is applicable.

7.4 Integer Programming (IP) Sensitivity Analysis

IP sensitivity Analysis (Primal Analysis and Dual Analysis) allow us to find valid
tight bounds for the objective function value when the objective function
coefficients are perturbed, using the information coming from the branch and
bound solution tree.

To understand this, let us consider that (P ) is the original MILP model
whereas (P ) is the perturbed problem after changing the objective function
coefficients from (c) to (c+ Ac). Given that (P ) is an MILP, it is solved with a
branch and bound (or cut) method. The IP sensitivity analysis can be used to
calculate the range of the objective function value of the perturbed problem (P )
without resolving this model. In particular, IP sensitivity analysis involves two

parts: Primal analysis and Dual analysis, which provide the upper and lower

bounds, respectively, on the perturbed problem (P ).

Original Problem (P ): min z=cx (7.10)
st. Ax>a (7.11)
X;eZ" Vjel (7.12)
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x;eR Vjel\J (7.13)

L, <x;<U;, Vjel (7.14)

Perturbed Problem (P ): min 2 =(c+Ac)Xx (7.15)
st (7.11) - (7.14)

Bounds on the perturbed problem using IP sensitivity analysis:
LB<Z<UB (7.16)
Dual Primal

Analysis  Analysis

7.4.1 Primal Analysis
When the IP or MIP problem is solved using the branch and bound method, each
leaf node belongs to one of the following three sets of nodes (Figure 7.4):
N;: Set of nodes pruned by optimality (feasible integer solutions. e.g. node 3)
N2: Set of nodes pruned by bound (non-integer feasible solutions. e.g. node 1)
N3: Set of nodes pruned by infeasibility (leaf nodes pruned by infeasibility.
e.g. node 4)

-15 +INF
-15 +INF

Figure 7.4: A typical branch and bound solution tree for MILP
Primal Analysis says that the feasible solutions at any node in N; stays
feasible (but not necessarily optimal) when the objective function coefficients

change to (c+ Ac). The best feasible solution is the minimum of the available

solutions. Therefore, the tightest upper bound on the objective function value of
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the perturbed problem (P ) can be obtained by solving the following optimization
problem (PA-LP) that uses the information from the feasible nodes (N;) of the
branch and bound solution tree of the original problem ( P ).

max UB (7.17)
(PA-LP)
st. UB<z, +>V]Ac; VneN, (7.18)

jed
In particular, for the given optimal values of the variables X; at node n (i.e.

V? ) and perturbations Ac, the problem can be solved for the tightest upper bound

(uB) on the perturbed problem. However, it should be noted that during the

proposed method Ac; will be treated as a variable instead of a parameter to obtain

the desired perturbations.

7.4.2 Dual Analysis

Dual analysis involves a set of linear constraints (DA-LP) that give the maximum
amount of decrease in the objective function value (Az>0) when the objective
function coefficients are perturbed from c to c+Ac, see Dawande and Hooker

(1998) for details. In particular, the analysis states that the lower bound on the
objective function value of the perturbed problem (P), ie. Z>z-Az=LB,
remains valid if we can find free variables r, and s| that satisfy the constraints
(7.19)-(7.24).

D AcVI—-s{(V]-v])=-r, VneN,UN, (7.19)
(DA-LP) =

rL=—>qWV'+i"a-z,+Az vneN, (7.20)
jed

r = _Zq?vj” +Z”a—2n +Az VneN, (7.21)
jeld

sj>—-Ac; VjelJ,vneN,UN, (7.22)

s;‘ Z—q;‘ Vjed,Vne N, UN, (7.23)
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where 0] =A"A-c (7.24)
Notice that the parameters \_/? (lower bound on variables), V;' (upper bound

on variables) 1" (shadow price of the constraints), z, (objective value) and Z,

(incumbent solution) at node n are obtained from the branch and bound solution
tree of the original problem (P ). In addition to calculating the possible decrease
in the objective function value (Az>0) for a given change in the objective
function coefficients (Ac), the analysis also allows us to find the possible

perturbations Ac that are allowed for a given value of Az.

7.5 Application of IP Sensitivity Analysis for Multiplier Updating

in Two-stage Stochastic Programs

In this section, we explain how we combine the above integer programming
sensitivity analysis to extract the information from the branch and bound solution
tree of each scenario subproblem, and then update the multipliers during
Lagrangean decomposition for a two-stage stochastic MILP program. Notice that
here we consider two-stage stochastic MILPs having decomposable structure to
illustrate the proposed approach, but the method is general and can be applied to
any MILP model involving similar structure such as multistage stochastic, large
scale MILPs.

First, we can observe that in each iteration of the Lagrangean decomposition
algorithm (Figure 7.3) we update the multiplier values that only appear in the
objective function coefficients and resolve the resulting subproblems. Therefore,
eventually only the objective functions coefficients are perturbed during each
iteration (e.g. eqg. (7.9)). This perturbation in the objective function coefficients
has direct correspondence to the perturbation that is explained in the IP sensitivity
analysis section above. For instance eq. (7.9) and (7.15) yield eq. (7.25).

AC* =D A= A (7.25)

s<s' s'<s
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In addition, we also know that the integer programming sensitivity analysis

provides LB and UB on the perturbed problem objective value without resolving

it, by using the information from branch and bound tree of the original problem.

Based on these observations we extract the information required for

sensitivity analysis from the branch and bound tree of each subproblem during

Lagrangean decomposition. This additional information, rather than just the

optimal solution, can be used to construct a linear program that allow us to search

for those perturbations in the objective function coefficients (i.e. Ac*) for the next

iteration that can potentially give us better directions and step size. The resulting

perturbations from such a linear program can therefore improve the lower bound

in an efficient manner than a simple nonsmooth optimization method.
(SA-LP) max wuUB + w,LB

st. UB =) UB,
S

UB, <Z* + > VI**Act VseS,Vne N  kefl23..k}

LB=>) (z° -Az%)

D ACVT STV V) > -1’ VseS,Vne Ny UN;

jed

r=-> 90V +A"a-z+Az° VseS,vneN;

jed

P =->0q0V"*+A"a-7+Az° VseS,vneN;

jeld
si°>—-Ac; VseS,Vjel,vneN;UN;
v Z—q?’s VseS,Vjel,VneN; UN;
where q}° =A"A-c

Vjed,vse$S

C

jed

(7.26)

(7.27)

(7.28)

(7.29)

(7.30)

(7.31)

(7.32)

(7.33)
(7.34)

(7.35)

(7.36)
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Therefore, the main idea now is to formulate such a multiplier updating
linear program (SA-LP) that maximizes a weighted sum of upper and lower
bounds generated by primal and dual analysis (7.26), while taking into account
the branch and bound tree information of the subproblem solutions from the
previous iteration. The reason for maximizing the sum of tightest possible upper
bound for each scenario is to move in the direction that overall improves the
lower bound on the original problem based on the feasible nodes that have been
explored so far. The idea to maximize the sum of lower bounds is to reduce the
possibility of decrease (Az>0) in the current lower bound on the original
problem. This corresponds to minimizing the risk of finding a worse solution
when the model is re-optimized after the objective function coefficients are
changed to the values proposed by the method.

The proposed linear program (SA-LP) involves linear constraints (7.27)-
(7.28) and (7.29)-(7.35) that correspond to the primal and dual analysis,
respectively. The additional restriction (7.36) on the search space for the
perturbations is included to keep the LP solution bounded considering the fact that
all the feasible solutions for each subproblem are usually not explored in branch

and bound method and therefore the search space may be too relaxed. In

particular, we bound the |ch value to be less than or equal to a fraction (7 ) of

cs

the maximum of the absolute value of objective function coefficients |c;

corresponding to the duplicated variables to keep the search space neither very
restrictive nor relaxed.

Notice that the accumulation of the feasible nodes (N1) generated during the
previous iterations (k=1,2,....k-1) in the form of additional cuts (i.e. constraints
(7.28)) ensures that the search space for the new perturbations is restricted to only
to what has not been explored so far. It may potentially reduce the oscillations in

the lower bounds in successive iterations and reduce the number of iterations

required, while ensuring convergence. Notice that both Ac®and Az® are variables
in the model that allow us to obtain the optimal multipliers values considering the

trade-offs associated with the potential improvement in the lower bound on the
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original problem while minimizing the risk of deteriorations in the current lower
bound for these perturbations. The subjective parameters values (w,,w,,» ) are

explained in the results section.

7.6 Proposed Lagrangean Decomposition Algorithm

In comparison to the standard nonsmooth optimization method for multiplier
updating, the proposed Lagrangean decomposition algorithm for two-stage
stochastic programming involves solution of the linear program (SA-LP) during
each iteration as can be seen from Figure 7.5. Particularly, the proposed algorithm
allows us to extract the information from the branch and bound solution tree of
each subproblem using IP sensitivity analysis, and uses that information
constructively in the LP problem so that a better estimate of the Lagrangean

multipliers can be obtained as compared to a simple nonsmooth optimization

method.
Initial Multipliers (4,)
k=0
Solve Lagrangean Problem
RN to obtain LB

Update Multipliers using
Find UB by using a heuristic proposed linear program

(SA-LP)

Gap < gor
k> Ky,
Yes

Stop

Figure 7.5: Lagrangean Decomposition Algorithm (proposed)

Therefore, the algorithm has the potential to reduce the number of iterations
and the corresponding solution time, especially when each subproblem solution

(MILPs) is expensive. Moreover, it can also be applied to other decomposable
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MILPs. In the next section, we investigate the performance of the proposed
algorithm as compared to the subgradient method for two examples of two-stage
stochastic MILP models. Notice that we are not focusing on feasible solution
(UB) generation during this work since the idea is to improve the lower bound
efficiently. The upper bound can be calculated by using an efficient heuristic
procedure. In addition, comparison of the algorithm performance is in terms of
number of iterations since a basic branch and bound implementation is used for

subproblem solutions.

7.7 Numerical Results

7.7.1 Example 1

We consider a two-stage stochastic integer program (7.37)-(7.42) from Carge and
Schultz (1999) with uncertainty in the right-hand side of the constraints, i.e.
parameters (&;,&,) . Two instances of the problem involving 3 and 50 scenarios
are generated based on the values of the uncertain parameters. The sizes of the
deterministic equivalent models are presented in Table 7.1. In the 3 scenario

instance, it is assumed that the uncertainty is represented by the three scenarios
(&.£,) ={(5.8),(10,7),(1512)} with each one being equally likely. The optimal
solution of the problem with 3 scenarios is -64.33. For the larger instance having

50 scenarios, parameters have been sampled randomly and each scenario is

assumed to have equal probability.

min —1.5x, —4x, + SZS: P°Q° (X, X,) (7.37)
st. (%, X,) €[0,5]~Z" (7.38)
Q° (X, X,) =min-16y; —19y; — 23y, — 28y, (7.39)
st. 2y +3y, +4y; +5y, <& - X, (7.40)
By, +1y; +3y; +2y, <& —X, (7.41)
Y1, Y20 Ysr Yo {013 (7.42)
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Table 7.1: Model statistics (deterministic equivalent) for Example 1 instances

Scenarios Discrete | Continuous | Constraints | First Stage | Second Stage
Variables | Variables Variables Variables
3 18 0 12 6 12
50 300 0 2,550 100 200

In the proposed method, the sensitivity problem (SA-LP) is used to update
the multipliers during each iteration of the Lagrangean decomposition. In
particular, after solving each scenario independently all the necessary data (

NS, N3 2%, 25, 23, Ve V% U, A7, 0™ ) for the sensitivity problem are extracted

and used in the model (SA-LP) to optimize. The result of the sensitivity problem
(SA-LP) proposes the multipliers (A>*) and the resulting objective function

coefficients (Ac?) that improve the dual bound. After some experience with the
method on a number of instances, we have set using the weights in the objective
function as W, =10w, and the value of parameter y = p° in eq. (7.36) throughout

all the examples.

On the other hand, during the subgradient iterations, a step length is
calculated using the solutions of scenario subproblems and prediction of the
optimal objective function value. Since we try to make the comparison between
methods as fair as possible, we have employed the optimal solution of the
example as predicted solution during the calculation of the stepsize in the
subgradient optimization. This gives subgradient method an advantage, but if the
proposed method performs better even under these conditions, then it will be a
clear evidence for potentially better performance in actual situations.

Both the methods are implemented in AIMMS 3.11 and problems are solved
using CPLEX 12.2 solver for all the instances. The initial multipliers are assumed
to be zero for both the approaches. The first subgradient iteration corresponds to
solving each scenario subproblem individually, which is also required for
generating the data for the model SA-LP. The methods have been compared over

iterations instead of solution time. The main reason is that during the time of
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implementation, it was not possible to collect some of the necessary information

for SA-LP using a commercial solver via callbacks. In order to extract the

necessary information, such as 4"° values, a simple branch and bound procedure

has been implemented. Since, it would not be fair to compare our branch and
bound implementation with a commercial one, we decided performing a
comparison over iterations. The time difference between the two approaches
occurs since the subgradient method uses a simple arithmetic operation to update
multipliers whereas in SA-LP a relatively more time consuming LP is optimized.
However, for all the instances solved the additional time needed for solving such
LP is just a few seconds. The proposed method improves the bound to —65.983 in
3 iterations for this 3 scenario instance (Table 7.2(b)) whereas the subgradient
method reaches to the same bound in 70 iterations (Table 7.2(a)). Therefore,
extracting useful sensitivity data from the branch and bound procedure at each
iteration, and utilizing them within the SA-LP model, cuts down the number of

iterations needed to achieve same bound.

Table 7.2: Results for example 1 with 3 scenarios

(a) Subgradient Method (b) Proposed Method
Iteration Lower Iteration Lower
Number Bound Number Bound

1 -69.5 1 -69.5
14 -68.536 2 -66.9
22 -67.345 3 -65.983
28 -67.037

32 -66.344

47 -66.00

70 -65.983

The same problem was scaled up for 50 scenarios. The optimal solution of
the problem is —65.30. As shown in Figure 7.6, the proposed method improved

the bound to —66.775 in 6 iterations, while the subgradient method provides a
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dual bound of —66.761 in 75 iterations. Therefore, the method outperforms the

subgradient method in terms of the number of iterations.

Iterations
'50 T 1
| 10 100
................................................. g--a—— o ]
iy Zo B T —rT 4 g
v
-90 \\ /J
110 y AR
\ /
-130
e \ I -
3 \
A -150 \ /
= G, T Proposed Method
>
0 -170 \ [
/ Fullspace Solution
1100 \
\ / — — Subgradient Method
-210 y
-230

Figure 7.6: Results for example 1 with 50 scenarios (Proposed vs. Subgradient
method)

7.7.2 Example 2 (Dynamic Capacity Allocation Problem (DCAP))
We investigate the performance of the proposed algorithm on Dynamic Capacity
Allocation Problem (DCAP) which is formulated as a two-stage stochastic MILP.
Data and problem details are adapted from Ahmed and Garcia (2003). This
problem has mixed-integer first-stage variables, pure binary second-stage
variables, and discrete distributions of the uncertain parameters. Uncertainty is in
the coefficient matrix of the constraints. Table 7.3 represents the sizes of the
deterministic equivalents for 2 problem instances (10 and 200 scenarios). Notice
that the fullspace problem is modeled in the extensive form considering NA
constraints (7.4).

Both instances (10 and 200 scenarios) are initially solved as fullspace
problems that yield the solutions 1571.682 and 1756.592, respectively. Given the

decomposable structure of this two-stage stochastic MILP problem, it is also
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solved using the subgradient method as well as the proposed method. The results
in Figures 7.7 (a)-(b) show that the convergence of the subgradient method is
relatively slow and it takes more than 200 iterations to converge to the best
possible lower bound for both the instances.

Table 7.3: Model statistics (deterministic equivalent) for Example 2 (DCAP)

instances
Scenarios Discrete Continuous | Constraints | First Stage | Second Stage
Variables Variables Variables Variables
10 330 60 840 120 270
200 6,600 1,200 2,44,800 2,400 5,400

In contrast, the proposed method converges in less than 10 iterations to yield
the solution of similar quality as the subgradient method for both the instances.
This more than an order of magnitude reduction in the number of iterations, is due
to the fact that during the subgradient method only the optimal solution of the
scenario subproblems is used to update the multipliers, whereas the proposed
method solves a linear program formulated using the information from the branch
and bound tree of each subproblem solution and search in the space of multipliers.
Notice that we use a higher weight on primal analysis as compared to the dual

analysis (w; =10 and w, =1) and restrict the search space for perturbation based

on the probability of the scenario (i.e. » = p®) during the proposed method as in

the previous example.

Remarks:

The solution time of the proposed linear program is negligible as compared
to the solution time of MILP subproblem. Therefore, the reduction in the number
of iterations using the proposed method dominates the additional cost of solving
the LP problem at each iteration. Moreover, for the models where each
subgradient iteration is expensive to perform due to many MILP subproblems to
be solved at each iteration, the proposed method can potentially decrease the total

solution time significantly since it reduces the number of iterations.
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However, similar to other nonsmooth optimization methods, the proposed
method has some arbitrary components such as the weights assigned to primal (

w; ) and dual (w, ) bound in the objective function of SA-LP. The value of these
weights depends on the user’s experience with the proposed method. As explained
during the numerical examples, these weights were fixed asw, =10w,. Our

experience shows that the method performs well for various instances with
weights fixed at those values. We believe although such values are a good starting
point, more insight will be gained as the method is applied to other problems.
Moreover, there is a direct relation between the relative weight assigned to
the dual bound and the fraction of all feasible solutions explored in search tree. If
most of the feasible solutions are explored during the search process, then the

weight on dual bound can be much lower than weight on primal. In such a case,
for any value of (Acj) the optimal solution is most likely be one of the feasible

solutions already explored in the search tree. Since in practice we do not

enumerate all possible solutions during the branch and bound search, we need a

nonnegative value for the dual weight and some bounds on (Ac;).

7.8 Conclusions

In this chapter, we have proposed a method for improving the dual bound of
decomposable MILP models using IP sensitivity analysis. In particular, a new
linear program is proposed based on the ideas of primal and dual analysis that
uses the information from branch and bound tree of each subproblem solution
during Lagrangean decomposition, and yields improved multipliers that results in
faster convergence of the algorithm. Based on the computational experiments on
two-stage stochastic MILPs, the method outperforms standard subgradient
method in terms of number of iterations (more than an order of magnitude
reduction). Given that a large number of subproblems (MILPs) are solved during
each iteration of the Lagrangean decomposition algorithm, the reduction in the
number of iterations can result in significant potential computational savings

where optimizing each of these subproblem takes a long time. Moreover, the
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algorithm can be applied to more general classes of MILPs such as multistage

stochastic models, and MILPs with decomposable structure.

Nomenclature

A
a
c

Ac

: matrix of constraint coefficients.
: vector of right-hand-side coefficients.

- vector of objective function coefficients.

: set of variables.

: element of set J .

: set of scenarios.

: element of the set S .

- lower bound for the optimal solution of problem ( P ).

- set of leaf nodes pruned by optimality in branch and bound tree.

: set of leaf nodes pruned by bound in branch and bound tree.

- set of leaf nodes pruned by infeasibility in branch and bound tree.
: element of sets N, UN, UN;.

: free variable.

: free variable.

: upper bound for the optimal solution of problem ( P ).
. optimal value of variable x; atnode n.

: upper bound for variable x; at node n.

: lower bound for variable x; at node n.

: continuous or discrete variable.

: vector of variable X; .

: objective function value of node n in branch and bound tree.

: incumbent solution used for pruning node n.

: change in the objective function coefficient corresponding to variable x;
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: optimal objective function value of the original model ( P ).

: optimal objective function value of the perturbed model (P ).

: maximum allowable change in the objective function value. (Az > 0)

: vector of Lagrange multipliers found at node n during branch and bound

algorithm.

: parameter used for setting a bound on the change in the objective

function coefficients.
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Chapter 8

Conclusions

In this thesis, we have developed new mixed-integer optimization models and
solution strategies for optimal development planning of offshore oil and gas field
infrastructure. Particularly, we considered a multi-field site with realistic
information in the planning such as fiscal rules of the agreements with the host
government and endogenous uncertainties in the field parameters. In chapters 2
and 3, we have proposed the deterministic models for the problem with/without
fiscal considerations. In chapter 4, we have presented a general multistage
stochastic programming framework and solution approaches for the endogenous
uncertainty problems, where timing of uncertainty realization is decision-
dependent. The deterministic oilfield planning models are then extended in
chapter 5 to include uncertainty in the field parameters relying on the ideas from
chapter 4. To improve the quality of the bounds during Lagrangean
decomposition in chapters 4 and 5, a new decomposition scheme is proposed in
chapter 6. Finally, in chapter 7 we introduced a new method for improving the
dual bound generated during the solution of a general two-stage stochastic mixed-

integer linear program.

8.1 An efficient multiperiod MINLP model for optimal planning

of offshore oil and gas field infrastructure
In chapter 2 we presented a novel deterministic mixed-integer nonlinear
programming (MINLP) model for offshore oil and gas infrastructure planning. As
compared to the previous work, the proposed realistic model considers multiple

fields, three components (oil, water and gas) explicitly in the formulation, facility
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expansions decisions in the future, drilling rig limitations and nonlinear reservoir
profiles with an objective to maximize the net present value for the enterprise.
The decisions involve installation and expansion schedule of FPSO facilities and
respective oil, liquid and gas capacities, connection between the fields and
FPSO’s, well drilling schedule, and production rates of oil, water and gas in a
multiperiod setting to consider a long-term planning horizon incorporating several
economic trade-offs.

The major nonlinearities in the model are univariate polynomials and bilinear
terms (both involving continuous and discrete variables). In order to solve the
problem reliably, especially for the instances when more complex features are
incorporated into the model such as fiscal rules or uncertainties in the following
chapters, we first proposed to reformulate the MINLP formulation (Model 1)
using two new properties (see Appendix A). Using integration, the properties
allow representing the reservoir profiles in terms of the cumulative water and
cumulative gas produced as univariate polynomials rather than water-oil ratio and
gas-oil ratio and corresponding bilinear terms. Therefore, the new MINLP (Model
2) has nonlinearities only in term of the univariate polynomials and bilinear terms
involving discrete variables. The reformulation allows converting the MINLP
model to an MILP approximation (Model 3). In particular, the Model 2 has been
reformulated into an MILP using piecewise linearization and exact linearization
techniques with which the problem can now be solved to global optimality in a
more consistent manner. The proposed MINLP and MILP formulations are
further improved by using a binary reduction scheme based on the assumption
that the connection costs are relatively small compared to the other costs.

In terms of the numerical experiments on the proposed models, we
considered 3 realistic oilfield development instances involving up to 10 fields, 3
FPSO’s and 20 years planning horizon. The models were implemented in GAMS
23.6.3 and run on Intel Core i7 machine. In the first instance, we considered 3 oil
fields, 3 FPSOs, a total of 25 wells and the planning horizon of 10 years. Based
on the computational results, we observed that DICOPT performs best among

other MINLP solvers (e.g. SBB) in terms of computational time for Models 1 and
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2. The number of OA iterations required was approximately 3-4 in both cases, and
solving Model 2 was slightly easier than solving Model 1 directly with this solver.
However, the solutions obtained were not guaranteed to be the global solution.
The global solver BARON 9.0.6 took more than 36,000s to be within ~10% of
optimality gap even for this small instance. The binary reduction scheme allowed
one third reduction in the number of binary variables for both models and a
significant decrease in the solution time. In contrast, the MILP Model 3 and its
binary reduction Model 3R that are formulated from Model 2 and Model 2R,
respectively, solved with CPLEX 12.2 and results showed the significant
reduction in the solution time after binary reduction (6.55s vs. 37.03s), while both
the models gave the same optimal NPV i.e. $7030.90M. Notice that the
approximate MILP models are solved to global optimality in few seconds, while
global solution of the original MINLP formulations is much more expensive to
obtain. The MILP solution was further used to improve the quality of local
solutions obtained from the MINLP formulations. Similar trends were observed
for the other two larger instances.

Therefore, it can be concluded that while the proposed MINLP models may
sometimes lead to near optimal solutions, the MILP approximation is an effective
way to consistently obtain these solutions. These MILP solutions also provide a
way to assess the quality of suboptimal solutions from the MINLPs, or finding
optimal or near optimal solutions by using the discrete decisions from this model.
None of the MINLP solvers could find better solutions than the ones obtained
using the MILP solution within a certain amount of time. Moreover, the solutions
from the convex MINLP solvers can be sub-optimal when we extend it to more
complex cases (chapter 3), and they cannot provide any guarantees of the valid
upper bound in the Lagrangean decomposition unless each subproblem is solved
to global optimality (chapter 5). Therefore, we used the MILP model for including
complex fiscal rules and/or uncertainties in the subsequent chapters.

The results of the chapter led to many challenges that need to be addressed.
The global solution of the proposed MINLP models is expensive using a state-of-

the-art solver directly. Therefore, the models can be used as a basis to develop
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global optimization based approaches even though the MINLP solvers that rely on
convexity assumption can yield good solutions in an ad-hoc manner. The MILP
approximate model can be solved to global optimality using more reliable
commercial MILP solvers. However, the solution time for the realistic instances is
still large, especially if we consider many point estimates for the polynomials.
Therefore, a more reliable approximation scheme or a decomposition approach
such as a bi-level decomposition algorithm can be investigated to reduce the total

computational effort while maintaining the solution quality.

8.2 Modeling and computational strategies for optimal
development planning of offshore oilfields under complex

fiscal rules
In chapter 3, we extended the deterministic models presented in chapter 2 for
offshore oil and gas field infrastructure planning to incorporate complex fiscal
rules of the agreements with the host government. In particular, we considered
progressive production sharing agreements with ringfencing provisions in the
proposed general model so that it can be used as a basis to represent a variety of
contracts used in the industry. The fiscal model considers the trade-offs between
optimal investment and operating decisions and resulting NPV for the oil
company after paying government share, and yields improved decisions compared
to a simple NPV based optimization used in chapter 2. However, the major
challenge with this extension is that the computational expense increases
significantly mainly due to the progressive nature of the profit share, and the
ringfencing provisions. In particular, additional binary variables need to be
introduced to represent the tiers that define the progressive terms, and the
relaxation of the model is generally weak due to the absence of the good bounds
on the variables. Therefore, we have also proposed a tighter formulation (Model
3RF-L) by introducing additional logic constraints and valid inequalities in the
model that improve the relaxation and reduce the branch and bound search tree.

Heuristic approaches that relax and approximate the sliding scale terms, Model
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3RI and Model 3RI-A, respectively, in the form of simple linear inequalities are
also proposed to obtain the reasonable solutions for the large instances.

To illustrate the impact of the fiscal terms and the proposed approaches, we
considered three instances of the realistic oilfield planning problem involving
progressive production sharing agreements. The models were implemented in
GAMS 23.6.3 and run on Intel Core i7, 4GB RAM machine using CPLEX 12.2.
Instance 1 did not involve ringfencing provisions, while instances 2 and 3 were
solved with and without ringfencing provisions to illustrate the additional
computational cost associated to these provisions. The first instance considered 3
fields, 3 FPSOs, a total of 25 wells that can be drilled, and 15 years planning
horizon. The sequential approach that first maximizes NPV, i.e. Model 3, and
then calculates the contractor share based on these decisions and fiscal rules
yields a total NPV of $1362.67M, which is significantly lower than the optimal
solution ($1497.69M) of the model with fiscal considerations (Model 3F). In
addition, investment and operating decisions were also very different, i.e. mostly
front ended in the case of sequential approach. This is due to the optimistic nature
of the sequential approach that tries to generate as much revenue as possible at the
beginning of the planning horizon, neglecting the trade-offs that are associated to
the fiscal part. Therefore, it may lead to the decisions that can incur large losses in
the long term after considering the impact of the fiscal calculations since higher
tiers (higher tax rates) become active in the earlier years during the planning
horizon. Model 3RF which is obtained after binary reduction from Model 3F
yields the same solution in an order of magnitude less time (337s vs. 3,359s). In
contrast, solving the corresponding MINLP formulation Model 2F with BARON
9.0.6 could only provide a solution having NPV of $1198.44M with a 60% gap in
more than 10 hours. Moreover, we observed that solving Model 2F directly with
DICOPT requires a good initialization due to the additional binary variables and
constraints that are added in this fiscal model compared to Model 2. Therefore,
the optimal solution from the corresponding MILP formulations (Model 3F and
Model 3RF) provides optimal or near optimal solutions of the original Model 2F.

We fixed the design decisions in Model 2F from the optimal solution of Model
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3RF, and solved the resulting NLP problem that yields an NPV of $1496.26 M,
which shows that the accuracy of the MILP solution is within 0.1% of the MINLP
formulation. Therefore, the proposed MILP formulations performed very
efficiently and provided near optimal solutions.

Similarly, significant savings and different decisions were obtained with
fiscal considerations during planning for instance 2 having 5 fields and 20 years
of time horizon. The tighter formulation Model 3RF-L is solved in one fourth of
the time than Model 3RF. The relaxed Model 3RI was solved more than 20 times
faster than the original Model 3RF, while the approximate Model 3RI-A took
only 82s as compared to Model 3RF (1164s), and yielded the optimal solution
after we fixed the decisions from this model in the original one. Both the relaxed
and approximate models were even ~3 times faster than the model without any
fiscal terms (Model 3R) that took 190s. We also considered two ringfences for
instance 2 where progressive PSA terms were defined for each of these ringfences
separately. We observed that including ringfencing provisions made Model 3RF
expensive to solve (>10 hrs) compared to the one without any ringfences that
required only 1,164s. This is due to the additional binary variables that were
required in the model for each of the two ringfences, their trade-offs and FPSO
cost disaggregations. In contrast, since Models 3RI and 3RI-A did not require
binary variables for the sliding scale in disjunction (3.30), they solved much faster
than Model 3RF (>300 times faster) and Model 3RF-L (~30 times faster).
Preliminary results on a bi-level decomposition approach were also presented for
this instance that provided the rigorous bounds on the objective function value for
the fiscal model involving ringfencing provisions. The largest instance we solved
involves 10 oil fields, 3 FPSOs, a total of 84 wells, 20 years planning horizon, and
3 ringfences.

The main conclusion that can be drawn from this chapter is that the explicit
consideration of the fiscal rules is important for the oilfield infrastructure
planning instead trying to solve a simple NPV based model to global optimality,
since it may yield a completely different solution and significant improvement in

the net present value. This is due to the fact that the royalties and/or government
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profit oil share that result from a particular contract can represent a significant
amount of the gross revenues (~50% or more). Therefore, it is critical to consider
these contracts explicitly during the oilfield planning phase to assess the actual
economic potential of such a project. Moreover, the mathematical programming
model presented in this chapter is the first one in the literature that considers
progressive fiscal terms with ringfencing provisions and can serve as a basis to

further develop more efficient solution approaches.

8.3 Solution strategies for multistage stochastic programming
with endogenous uncertainties in the planning of process

networks
In chapter 4, we presented a general multistage stochastic mixed-integer linear
programming model for multiperiod planning problems where optimization
decisions determine the times when the uncertainties in some of the parameters
will be resolved, i.e. decision-dependent uncertainty (Jonsbraten et al., 1998; Goel
and Grossmann, 2006; and Tarhan and Grossmann, 2008). The model involves
initial and conditional non-anticipativity constraints in terms of the equalities and
disjunctions, respectively, to enforce the same decisions among the scenarios in
time period t if they are in the same state. Since, the number of NACs increases
exponentially with the number of uncertain parameters and/or their realizations,
realistic problem instances becomes intractable to solve. To reduce the required
NACs in the model, we have identified a new Property 3 that together with two
properties previously presented by Goel and Grossmann (2006), significantly
reduces the problem size and the solution time. In particular, the property exploits
the transitivity relation among the scenarios and can be considered as an extension
to the previous properties to those cases where each uncertain parameter has more
than two realizations.

The resulting reduced model still may be too large to solve directly.
Therefore, we have proposed a k-stage constraint strategy that yields the global
optimum in particular cases, and is useful for problems where endogenous

uncertainty is revealed during the first few time periods of the planning horizon.
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To solve more general problems of large size, we also proposed a NAC relaxation
strategy based on relaxing the NA constraints and adding them if they are
violated. It has been observed that very few inequality NA constraints (~6-7% of
the total inequality NA constraints in the reduced model) are added as cuts in the
complete solution procedure that involves two phases. As compared to the
branch-and-cut solution method by Colvin and Maravelias (2010), the proposed
NAC relaxation strategy is much easier to implement using the available
commercial solvers directly, although there might be some trade-offs between
these solution strategies in terms of the solution times. Finally, we described a
Lagrangean decomposition algorithm that relaxes the conditional NACs and
dualize the initial NACs to decompose the model into individual scenarios, and
predicts rigorous lower bounds for the optimal solution. Notice that in contrast to
the method presented by Goel and Grossmann (2006), no branch and bound
method is performed here with which the dual gap may not be closed for the
problem. Therefore, if the gap between lower and upper bounds is large then in
principle we would have to also incorporate a branch and bound procedure to
reduce this gap. In our experience, however, we have observed that for problems
in this class a good feasible solution is often found at the root node itself.

The proposed solution strategies have been applied to two process network
problems having uncertainty in the process yields that can only be revealed once
an investment is made in the process. The first problem that involves 3 processes
is taken from Goel and Grossmann (2006) but with more realizations for the
uncertain parameters, i.e. a total of 25 scenarios. The second larger example has 5
processes and there are 4 uncertain parameters with 81 scenarios. This problem
could not be solved in the fullspace for the original model and even after using
Property 1. The solution time with only considering Properties 1-2 (Goel and
Grossmann, 2006) is 1.5 times more than the solution time from using Properties
1-3 proposed in the chapter since the model has fewer NACs. The k-stage
constraint model and the NAC relaxation strategy take significantly less time
(~70% less) than the reduced model. The Lagrangean decomposition strategy is

most efficient in terms of the solution time but terminates with a gap of ~3.5%.
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However, it is only up to moderate size problems that the k-stage constraint
strategy and the NAC relaxation strategy may perform better than Lagrangean
decomposition strategy because of the tight lower bounds and corresponding
better solutions obtained in these cases. However, for realistic instances
Lagrangean decomposition has the advantage that it allows solving each scenario
independently. The two-stage stochastic model corresponding to this example
gives about 5% higher total expected cost ($387,421 vs. $368,650) due to the
absence of appropriate recourse for the investment decisions in the model. The
total expected cost is about 3-6 % higher for the expected value problem (EVP) in
comparison to the multistage stochastic programming model for all the cases
considered. Notice that the proposed solution strategies are fairly general and can
be applied to a wide range of problems having endogenous uncertainty in some of
the parameters such as oilfield development planning.

8.4 Multistage stochastic programming approach for offshore
oilfield infrastructure planning under production sharing

agreements and endogenous uncertainties
In chapter 5, we presented a multistage stochastic programming model for
offshore oil and gas field development planning that maximizes the expected
NPV for the given planning horizon. The model is an extension of the
deterministic models presented in chapters 2 and 3 considering decision-
dependent uncertainty in the field parameters, which resolves as a function of
investment and operating decisions as ones in chapter 4. As compared to the
conventional models in the literature where either fiscal rules or uncertainty in the
field parameters are considered, the proposed model is the first one that includes
both of these complexities simultaneously in an efficient manner. In particular, a
tighter formulation for the production sharing agreements based on chapter 3, and
correlation among the endogenous uncertain parameters (field size, oil
deliverability, water-oil ratio and gas-oil ratio) are considered that reduce the total
number of scenarios in the resulting multistage stochastic formulation. To solve

large instances of the problem, the Lagrangean decomposition approach proposed

255



in chapter 4 was implemented with parallel solution of the scenario subproblems
with up to 8 processors. Notice that in practice the model needs to be solved not
just once for the entire planning horizon, but multiple times in a rolling horizon
manner with updated information.

The model was implemented in GAMS 23.6.3 and ran on Intel Core i7, 4GB
RAM machine using CPLEX 12.2 solver. Computational results on a variety of
oilfield development planning examples with/without fiscal considerations have
been presented to illustrate the efficiency of the model and the proposed solution
approach. In particular, the first example considered 3 oilfields, 3 potential
FPSO’s and 9 possible connections among field-FPSO. A total of 30 wells could
be drilled in the fields and the planning horizon was 10 years. However, there was
uncertainty in the sizes of 2 fields that resulted in a total of 4 scenarios each with
a probability of 0.25. The optimal scenario-tree from the proposed model was
decision-dependent, which was not known a-priori. In particular, more wells were
drilled in the favorable scenarios compared to the unfavorable ones. We also
observed that the problem solved to ~1% optimality tolerance within only 466s
using Lagrangean decomposition compared to the fullspace model that takes
1184s. However, the solution of the expected value problem, considering mean
value of the field sizes, is $11.28 x10° with which the value of stochastic solution
for this case is $220 x10° or ~2%. We also considered the extension of 3 oilfield
instance to the case where we included the progressive production sharing
agreements with 15 years of planning horizon. The resulting fullspace model
became very difficult to solve with CPLEX 12.2 since the best solution obtained
after 10 hours is $2.97x10° with more than 21% of optimality gap. On the other
hand, Lagrangean decomposition could solve this problem in approximately 2 hrs
for sequential implementation of the scenario subproblem solutions and in about 1
hr for a parallel implementation involving 8 processors, and yielded a higher
ENPV $3.04x10° within 0.7% optimality tolerance.

Therefore, the importance of the decomposition algorithm, especially the one
with parallel solution of the scenario subproblems, increases as more complexities

are added to the deterministic problem such as fiscal contracts. Similar trends
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were also obtained for the large instance involving 5 fields and 20 years of
planning horizon. In particular, only the parallel implementation could solve the
problem within a limit of 10hrs of solution time. Notice that the MILP model
allows using robust and advanced commercial solvers to solve the problem
globally, and also to use the Lagrangean decomposition with valid bounds which
may have been difficult if one considers the original MINLP formulation.
However, based on the computational results, it is still challenging to solve the
large instances involving many scenarios or fiscal contracts with progressive

terms and ringfencing provisions.

8.5 A new decomposition algorithm for multistage stochastic

programs with endogenous uncertainties
The Lagrangean decomposition approach presented in chapters 4 and 5 may
perform reasonably well for a certain class of problems with a given set of data.
However, due to the limitations of the quality of the dual bound obtained at root
node with this approach, since conditional NACs are relaxed, we have proposed a
novel decomposition approach in chapter 6 for solving a general multistage
stochastic mixed-integer linear programming model with endogenous
uncertainties. In particular, we considered type 2 endogenous uncertainty
problems where decisions are used to gain more information, and resolve
uncertainty either immediately or in a gradual manner. Therefore, the resulting
scenario tree is decision-dependent and requires modeling a superstructure of all
possible scenario trees that can occur based on the timing of the decisions as can
be seen in chapters 4 and 5. In contrast to the standard approaches that either relax
or dualize all conditional NACs that appear as big-M constraints in the model, the
proposed approach relies on dividing the fullspace model into scenario groups.
Due to the several possible alternatives to formulate the scenario groups, we
presented few rules to identify and formulate a reasonable scenario group set that
can be used for the proposed partial decomposition approach within an iterative
scheme to update the multipliers. In particular, the resulting subproblems involve

a subset of the NACs as explicit constraints, while dualizing and relaxing the rest
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of these constraints, which enhances the overall performance. An alternate
decomposition scheme that may even yield a tighter bound, but usually becomes
more expensive for the large cases, has also been proposed.

The computational results have been presented on two process network
examples (chapter 4) and four instances of an oilfield planning problem (chapter
5). The process networks examples involve 3 and 5 processes with 4 and 8
scenarios, respectively. The results show that the dual bound obtained at the root
node from the proposed approach are significantly stronger than the standard one
used in chapter 4 since the impact of the later time periods is also considered in
the subproblem formulations. Moreover, there is a significant reduction in the
number of iterations required to converge within a specified tolerance. In both the
cases, even the initial bound with the proposed approach is stronger than the
corresponding final bound in the standard approach. We also observed that the
selection of a particular scenario group set is critical in the proposed approach
such as set SG2 performs better than SG1 in both instances since it involves large
variations in the corresponding scenario costs. The results on the oilfield problem
having 3 oilfield and scenarios ranging from 4 to 9 in cases (i)-(iv), also showed
similar trends.

Since, we obtained a tighter bound at the root node with the proposed
approach, the total number of potential nodes that will be required in the branch
and bound search should be smaller and branching rules should be easier to
identify. However, the solution time required per iteration in the proposed
approach is usually larger as compared to the standard approach, but the
difference is problem specific. For instance, the increase in the solution time per
iteration for the process networks examples is not that significant as in the oilfield
planning problem. Therefore, if the solution time per iteration for a given problem
increases drastically using the proposed decomposition, then one may want to use
the standard scenario based approach to explore more nodes quickly in the branch
and bound search tree or use subproblems with smaller sizes in the proposed
approach. In general, for a given amount of the solution time the proposed

approach yields better dual bound and feasible solution as can be seen from the
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numerical experiments in the chapter. This is due to the fact that the increase in
the solution time per iteration is offset by the significant reduction in the total
number of iterations resulting in lower total solution time. Overall, the
comparison between the qualities of the bounds obtained within a given amount
of solution time should also be considered while selecting a particular

decomposition approach for the problems in this class.

8.6 Improving dual bound for stochastic MILP models using
sensitivity analysis

In chapter 7, based on the previous work by Tarhan (2009), we have introduced a
method to improve the dual bound during the solution of a general two-stage
stochastic mixed-integer linear programming model that appears in several
planning, scheduling and supply-chain problems. Combining the idea of dual
decomposition (Carge and Schultz, 1999) and integer programming sensitivity
analysis (Dawande and Hooker, 2000), the method extracts the relevant sensitivity
information from the branch and bound tree of every scenario subproblem, and
uses that information to update the Lagrange multipliers and improve the dual
bound. In particular, a new linear program has been proposed that involves
constraints from the primal and dual sensitivity analysis using the information
from branch and bound tree of each subproblem solution during Lagrangean
decomposition. The objective function is to maximize the weighted sum of the
upper and lower bounds from these analysis, and the model yields improved
multipliers which result in the faster convergence of the algorithm.

Several instances of the two-stage stochastic MILPs have been considered
for the computational experiments, and to compare the method with the standard
subgradient approach. The method was implemented in AIMMS 3.11 and
problems were solved using the CPLEX 12.2 solver. The first example was
adapted from Carge and Schultz (1999) involving 3 and 50 scenarios, while the
second one was from Ahmed and Garcia (2003) and involved 10 and 200
scenarios. The results for both the examples showed that the subgradient method

takes approximately an order of magnitude more iterations to converge to the best
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possible lower bound compared to the proposed method that converges in less
than 10 iterations in most of the instances. This is due to the fact that during the
subgradient method only the optimal solution of the scenario subproblems is used
to update the multipliers, where the proposed method solves a linear program
formulated using the information from the branch and bound tree of each
subproblem solution and search in the space of multipliers.

Notice that for the models where each subgradient iteration is expensive to
perform due to many MILP subproblems to be solved in each iteration, the
proposed method can potentially decrease the total solution time very
significantly by reducing the number of iterations, since the solution time for the
proposed LP is negligible. However, the method should not be considered a
substitute for the non-smooth optimization methods, but a viable alternative for
the cases in which optimizing each scenario subproblem takes a long time, thus
preventing the use of non-smooth optimization methods for large number of
iterations. In addition, there are still many implementation challenges to overcome
such as efficient data gathering and storage for large scale systems, integrating the
commercial solvers for the subproblem solutions, application to a variety of

problems, etc.

8.7 Contributions of the thesis

The main contributions of the thesis can be summarized as follows.

1. A new realistic and general MINLP model is proposed in chapter 2 for
offshore oil and gas field infrastructure planning considering multiple
fields, three components (oil, water and gas) explicitly in the formulation,
facility expansions decisions, drilling rig limitations and nonlinear
reservoir profiles.

2. Two theoretical properties are proposed in chapter 2 for the above model
to reformulate the water-oil ratio and gas-oil ratio profiles in terms of
cumulative water produced and cumulative gas produced, respectively. It
allows removing the bilinear terms from the model and further converting

the resulting non-convex MINLP into an MILP using piecewise linear
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approximations and exact linearization techniques with which the problem
can be solved to global optimality. Realistic instances involving 10 fields,
3 FPSO’s and 20 years planning horizon have been solved in reasonable
times.

. A new model for multi-field site problems is proposed in chapter 3 that
accounts for the fiscal calculations in the objective functions and
constraints explicitly. A variety of the fiscal contracts have also been
derived from the proposed general model. It is shown that the model
yields an optimal NPV significantly higher than the case where fiscal
considerations are not accounted for.

Logic constraints and valid inequalities are derived to be included in the
above fiscal model to tighten the relaxation and improve the solution time.
In addition, to solve large-scale instances with orders of magnitude less
CPU times compared to a state-of-art commercial solver, heuristic
approaches are also proposed that relax and approximate the sliding scale
fiscal rules using inequalities avoiding the disjunctions.

Efficient solution strategies are proposed in chapter 4 for general
multistage stochastic mixed-integer linear programming problems with
endogenous uncertainties, where timings of uncertainty realizations
depend on the optimization decisions. In particular, we have identified a
new Property 3 to reduce the model size; a k-stage constraint strategy that
is useful for problems where endogenous uncertainty is revealed during
the first few time periods; a NAC relaxation strategy based on the fact that
only few inequality NA constraints are active at the optimal solution; and
a Lagrangean decomposition algorithm that can predict the rigorous lower
bounds for the solution obtained.

. A multistage stochastic programming model for offshore oil and gas field
infrastructure planning is presented in chapter 5 that considers nonlinear
reservoir profiles, progressive production sharing agreements, and
endogenous uncertainty in the field parameters. Correlations among the

endogenous uncertain parameters for a field such as field size, oil
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deliverability, water-oil ratio and gas-oil ratio are also considered that
reduce the model size significantly. In order to solve large instances of this
model, a Lagrangean decomposition algorithm with parallel solution of the
scenario subproblems in the GAMS grid computing environment is
implemented, which outperforms the sequential approach and the direct
solution using a commercial solver.

7. A novel partial decomposition approach for solving multistage stochastic
programs with endogenous uncertainties is proposed in chapter 6 that
relies on dividing the fullspace model into certain scenario groups. The
method yields a tighter dual bound at root node and requires fewer
iteration to converge within a specified tolerance compared to the standard
approach. An alternate decomposition scheme that may even yield a better
bound, but usually becomes more expensive for the large cases, is also
proposed.

8. A new method for improving the dual bound of decomposable MILP
models using integer programming sensitivity analysis has been
investigated. In particular, a new linear program is proposed that uses the
information from branch and bound tree of each subproblem solution
during Lagrangean decomposition, and yields improved multipliers which
result in faster convergence of the algorithm. Based on the computational
results on two-stage stochastic MILPs, the method outperforms standard
subgradient method in terms of number of iterations (more than an order
of magnitude reduction), which can result in potential significant

computational savings.

8.8 Recommendations for future work
1. The oilfield development planning model presented in chapter 2 assumes
that there is no water or gas re-injection i.e. natural depletion of the
reserves. It may be useful to extend the model to include this flexibility so
that more realistic investment and operating decisions can be made. In

addition, the model is formulated considering approximate reservoir
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profiles in terms of the polynomials (for MINLPS) and piecewise linear
functions (for MILPs). Integrating reservoir simulators such as ECLIPSE
(Schlumberger, 2008) with the optimization model more tightly using a
specific response surface methodology (Myers and Montgomery, 2002) to
approximate the output of the simulator should yield decisions with a
higher quality. An improved piecewise linear approximation scheme for
polynomials such as based on logarithmic number of binary variables can
also be investigated (Vielma et al., 2010).

In chapter 3, we have primarily focused on modeling and solving the
oilfield problem assuming that the fiscal parameters are known. It may be
more interesting for an oil company to analyze the sensitivity of the
objective function value for different values of fiscal parameters such as a
range of cost oil recovery limits, tier thresholds and profit oil fractions
(Tordo, 2007) so that better contract terms can be negotiated. The impact
of the crude oil price and discounting factors on optimization decisions
should also be analyzed. However, few sliding scale parameters, e.g. rate
of return may introduce nonlinearities in the model and require expensive
global optimization approaches to solve the problem. Therefore, further
investigation is required to develop efficient models and solution
strategies to overcome the computational expense for the fiscal models
relying on these parameters.

. The proposed multistage stochastic models and algorithms in chapters 4, 5
and 6 only consider endogenous uncertain parameters. Therefore, it would
be interesting to extend the methods to incorporate exogenous uncertain
parameters such as oil price to be applicable to more general class of
problems. Moreover, the objective functions in the proposed stochastic
models are based on an expectation criterion neglecting the risk due to the
potential additional computational effort. Therefore, there is an
opportunity to incorporate various risk management strategies, e.g.

variance reduction, downside risk, probabilistic financial risk, etc. (You et
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al., 2009) in the proposed model especially that allow decomposing the
fullspace model, and analyze their impact on the solution.

. The total number of scenarios for multistage stochastic oilfield planning
model in chapter 5 increases exponentially with the number of fields.
Therefore, it may be interesting to investigate the correlations among the
parameters for a single field and among the fields to reduce the number of
scenarios in the model while maintaining the quality of the solution.
Scenario reduction techniques (Heitsch and Rémisch, 2003) and Monte
Carlo sampling procedures (Shapiro, 2003) that are tailored for the
endogenous uncertainty problems also need to be developed so that
realistic problem instances can be solved.

During the proposed Lagrangean decomposition algorithm (chapters 4, 5
and 6), the subproblems at any iteration differs from the subproblems at
the previous iteration only in terms of the coefficients in the objective
function. Therefore, the branch and bound trees generated during the
subproblem solutions can be used to provide a warm start for solving the
subproblems in the next iteration that can significantly reduce the total
solution time (Ralphs and Guzelsoy, 2006). In addition, as compared to
the subgradient method to update the Lagrangean multipliers, alternative
schemes as in Mouret et al. (2011), Oliveira et al. (2013), etc. should also
be investigated to improve the efficiency of the proposed algorithm. We
consider the GAMS grid computing facility for solving scenario problems
independently on a CPU with multiple processors (chapter 5), there is an
opportunity to take advantage of the more advanced parallel and grid
computing facilities to solve the realistic problems instances (Linderoth
and Wright, 2003).

In chapter 3, we have included the preliminary results on a bi-level
decomposition approach for solving fiscal model that involves ringfencing
provisions. The method can further be tested on a variety of examples. In
addition, there is a potential to incorporate this approach with the

Lagrangean decomposition algorithm in chapter 5 to develop a hybrid

264



scheme as in Terrazas-Moreno and Grossmann (2011) for solving
multistage stochastic oilfield planning models with fiscal contracts
involving ringfences.

Given the impact of the fiscal contracts on the optimization decisions and
the profit as seen in chapter 3, it would be interesting to incorporate the
relevant financial elements in the planning models for a variety of
applications, rather using a simple objective function such as NPV or cost.
For instance, modeling of purchase and sales contracts in supply chain
optimization (Park et al., 2006, and Lanez et al., 2009), capacity
expansions planning using internal rate of return or return on investments
rather NPV (Bagajewicz, 2008), etc. In addition, the proposed multistage
stochastic model and algorithms for endogenous uncertainty problems can
be applied to several other interesting applications such as project
portfolio optimization problem (Solak, 2007), open pit mine production
scheduling problem (Boland et al., 2008), new drug development (Colvin
and Maravelias, 2008), or it can be used as a basis to introduce new
applications in this area.

. Although the multistage stochastic model for endogenous uncertainties
provides decisions with higher quality, the exponential increase in the
model size with uncertain parameters and their realizations is still an issue.
Alternate approaches to incorporate this uncertainty more efficiently and
their impact on the solution need to be investigated. For example, there
have been some real options approaches for oilfield development projects
(Lund, 2000; and Dias, 2002) that can be compared with stochastic
programming methods. In addition, Vayanos et al. (2011) recently
considered an approximation scheme for multistage problems with
decision-dependent information discovery based on robust optimization
techniques. The authors presented a mixed-binary linear program by
restricting the spaces of measurable binary and real-valued decision rules
to those that are representable as piecewise constant and linear functions

of the uncertain parameters, respectively. A further investigation can
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provide a better insight about the advantages and limitations of this
approach for the large instances of oilfield development projects.

. The sensitivity based multiplier updating method of chapter 7 can be
applied to more general class of MILPs (e.g. multistage stochastic models,
MILPs with decomposable structure) to investigate its performance and
scaling. Since, a basic branch and bound implementation is used for the
computational study during this thesis, the integration of the procedure
with branch-and-cut solvers may be the next step to improve the
implementation efficiency of the method. After this integration, it will
allow the solution of larger instances taking advantage of the
commercial/open source MIP solvers. Finally, the decomposable structure
of the problems in this class can further be exploited by potential
parallelization of the subproblem solutions in HPC environment during

each iteration.
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Appendices

Appendix A

Derivation of the Reservoir Profiles for Model 2 from
Model 1 in Chapter 2
Model 1 involves nonlinearities in the form of three polynomials for oil

deliverability, water-oil ratio (WOR) and gas-oil ratio (GOR), (A.1)-(A.3), and
two bilinear equations for water and gas flow rates, (A.4)-(A.5), respectively.

Qf =a,(fc;)’+b ((fc,)?+c,, fc, +d,, vf (A1)
wor, =a, ; (fc,)*+b, , (fc;)?+c, ( fc, +d, vf (A.2)
gor, =a,, (fc;)>+b, ( (fc;)? +c, ¢ fo, +d, vf (A.3)
W, = WOr, X \4i (A4)
g; = gor; X; M4 (A5)

To derive the reservoir profile for Model 2 from the above equations of

Model 1 we consider the following two properties:

1. The area under the curve GOR vs. cumulative oil produced for a field
yields the cumulative amount of gas produced.
2. The area under the curve WOR vs. cumulative oil produced for a field

yields the cumulative amount of water produced.

Explanation of Property 1

From equation (A.3) we have GOR for a field as a cubic function in terms of

fractional oil recovery, i.e. (A.6), or alternatively in terms of the cumulative oil
produced XC; and recoverable oil volume REC; as in eq. (A.7) that corresponds to

Model 1.
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gor, =a,, fci +b,, fcf +c,, fc, +d, (A.6)

XC;
REC,

XCp XC
)" +Cy (=) +dy ¢ (A7)

3
+
) b3'f(Rch "*REC,

gor; =ag ¢ (

A differential change in the cumulative oil produced multiplied by the GOR

yields the corresponding fractional change in the cumulative amount of gas

produced, 9C; , as seen in Figure A.1 and corresponding equation (A.8).

d(gc,) =gor,.d(xc,) (A.8)

12 gas-oil-ratio vs. fractional recovery

1 /

0.8 e

0.6

0.4

GOR (kscf/stb)

0.2
—» |—

0 0.2 0.4 0.6 0.8 1
fe
Figure A.1: GOR profile for field (F1) and FPSO (FPSO 1) connection

We should note that Figure A.1 corresponds to GOR vs. f; but it is easy to

convert it to GOR vs. XC; given that the reservoir size (REC;) is known.
Integrating in (A.8) both sides from zero, i.e. area under the curve between GOR

and XC;, that yields eq. (A.9) and hence we can obtain equations (A.10)-(A.14).

9C¢ XCt
J.d(gcf): J-gorf d(xcy) (A.9)
0 0
= —— by ()2 H Gy (o) + 0y
0 gcy J 3,f REC, 3 1 REC, 3,1 REC, 3,1 f (A.10)
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xc} b, xc$ Cs¢ , XCZ

+ +d XC
4 'REC?’ 3 (REC$) 2 (rec )T dsr () (ALY

f:a&f.RECf x; ., b REC, xc; c3,f.RECf( XC, .44,  REC, ( XC, )
4 "REC, 3 'REC, 2 'REC, ' REC,
(A.12)
a,,.REC b,  .REC ¢, ;.REC
gc, =—~—L mg4+4ﬂ———i(mJ3+iﬁzr—luq)?+%jRchuq) (A.13)
gcs :als,f(fo)4+b:;,,f(fcf)3+CI3,f(fcf)2+dé,f(fcf) (A.14)

Eqg. (A.14) is the desired expression for the cumulative gas produced as a
function of fractional oil recovery (or cumulative oil produced), i.e. area under the

curve GOR vs. fractional oil recovery (or cumulative oil produced) that is used in
Model 2. We can see that the order of the polynomial for 9C; expression (4™

order) is one more than the order of the polynomial corresponding to the GOR

expression in (A.6). Also, there is a direct correspondence between the
coefficients of the both of these polynomials. The 9C; vs. f. curve (4™ order

polynomial) corresponding to the Figure A.1 (GOR vs. fo) that represents

expression (A.14) is shown in Figure A.2.

Cumulative gas produced vs. fractional recovery
300000

250000
200000 /
S 150000
100000 /
50000 /

0 T T T T 1

0 0.2 0.4 0.6 0.8 1
fc

Figure A.2: gc profile for field (F1) and FPSO (FPSO 1) connection
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Similarly, we can derive the following expression (A.15) for cumulative
water produced WC; as a function of fractional oil recovery (or cumulative oil
produced) using corresponding WOR expression (A.2), i.e. Property 2.

WC; = al2,f (fc; ) +b'2,f (fc; )? +C‘2,f (fc, )& +dl2,f (fce) (A.15)

Notice that using the same procedure we can derive the expressions

(polynomial or any other functions) from the existing model of GOR and WOR to
gc; and WCs in terms of fractional oil recovery (or cumulative oil produced),

respectively, and vice-versa.
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Appendix B

Comparison of the models based on (GOR, WOR) and
(gc, we) functions, i.e. Model 1 and 2, in Chapter 2

1. Model 1 (GOR and WOR as a function of cumulative oil produced) requires
the bilinear equations (B.1) and (B.2) for gas and water flow rates while
Model 2 does not need these equations as these flowrates can be expressed as
equations (B.3) and (B.4) given that the polynomials for cumulative gas

produced (9C; ) and cumulative water produced (WCs ) are available. Hence,

Model 2 involving only univariate separable polynomials should
computationally perform better.

Q¢ = 9Or; X¢ vt (B.1)
Wi ¢ = WO Xy v, t (B.2)
J¢e =(9Cs —0Ct 1)/ 6 v, t (B.3)
Wi =(WCs  —WC, ,)/ 5, v, t (B.4)
gas-oil-ratio vs. fractional recovery 1 cumulative gas produced vs.
fractional recovery
1.2 / 0.8
1 e gc(F2-FPSO2)
9 S e 10(E2-EPSO3)
E 0.8 é 0.6 3 7
4
£ 06 A E 0.4
3 0a e gor(F2-FPSO2) B
' e 0T (F2-FPSO3) 02
0.2 '
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0 0.2 04 (. 06 0.8 1 0 0.2 04 ¢ 06 0.8 1
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Figure B.1: GOR and gc profiles for 1 field and 2 FPSO connections

2. The WOR and GOR functions in (A.2) and (A.3) introduce a large number of
non-convexities in Model 1 as compared to the WC; and 9C; functions in
(A.15) and (A.14), respectively, that are univariate monotonically increasing

functions. Hence, these functions will be better to approximate using
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piecewise linearization techniques. As an example the GOR and
corresponding 9cC; functions for a field are shown in Figure B.1.

In Model 1 we assume that the WOR and GOR equations (B.5) and (B.6) used
in time period t are calculated in terms of the fractional oil recovery by the
end of previous time period t-1, i.e. point estimates are used. Therefore, WOR
and GOR essentially perform as constants in current time period t, and the oil
flowrate does not account for the variability in WOR and GOR values during
that time period.

wor; , =a, ; (fc; ,t—l)s +b, ¢ (fc; ,t—l)z +C, ¢ fep  +d, o VL (B.5)
gor; ; =ag ¢ (fo,t—l)3 +b, ¢ (fcq ,t—1)2 +Cy ¢ fop i+ vi,t (B.6)
W, = WOr; X, VT, t (B.7)

Q¢ =90 X¢ i T (BS)

However, equations (B.9) and (B.10) for WC; and 9C; explicitly predicts

the cumulative amount of water and gas produced, respectively, by the end of
period t as a function of cumulative oil produced by the end of period t, and
hence also accounts for the variability of the WOR and GOR values during
current period t. In other words these profiles consider the average values of
WOR and GOR over the time period t. Therefore, Model 2 is also better in

terms of representing the physical reservoir characteristics.

WGy = alz,f (fcf,t)4 +b'2,f (fo,t)3 JrClz,f (fo,t)2 + dlz,f fc,, Vi, t (B.9)

gC;; = ala,f (fo,t)4 +bll’>,f (fcf,t)3 +Cll’>,f (fo,t)2 + dé,f fe,, Vi, t (B.10)

Notice that equations (B.5) and (B.6) for Model 1 could also be represented

as a function of fractional oil recovery by the end of time period t instead of time

period t-1, however, the model will still consider the WOR and GOR values based

on the point estimate instead average values over the time period t as used in
Model 2.
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Appendix C

Nomenclature for the Fiscal Model in Chapter 3

Indices

LT

f

fpso

rf

i

Integer Variables

well
Ifi

Binary Variables

FPSO
bfmmt

f, fpso,t

bon

f, fpso

ZﬁJJ

co
B

time periods, t,z €T
field

FPSO facility
ringfence

tier

Number of wells drilled in field f at the beginning of time

period t

whether or not FPSO facility fpso is installed at the
beginning of time period t
whether or not a connection between field f and FPSO

facility fpso is installed at the beginning of time period t

whether or not a connection between field f and FPSO

facility fpso is installed

whether or not tier i is active in time t for ringfence rf

whether or not cost ceiling is active in time period t for

ringfence rf

Continuous Variables

NPV
TotalConSh™

CAPttOt

net present value

total contractor share in time period t

total capital costs in time period t
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OPER™
TotalConSh ,

COST, ,

CAP, ,

CAPL,
CAP2,
OPER,
FPSOC

fpso,t

DFPSOC; 0t

DFPSOQC field

f, fpso,t

REV, ,

ZDfield

f', f, fpso,t

Zleield

f', f, fpso,t

ZD

f, fpso,t

total operating costs in time period t
contractor share in time period t for ringfence rf

total capital and operating costs in time period t for
ringfence rf

capital costs in time period t for ringfence rf

field specific capital costs in time period t for ringfence rf
FPSO specific capital costs in time period t for ringfence rf
operating costs in time period t for ringfence rf

total cost of FPSO facility fpso in time period t

disaggregated cost of FPSO facility fpso in time period t for

ringfence rf

disaggregated cost of FPSO facility fpso in time period t for
field f

total revenues in time period t for ringfence rf

auxiliary variable for b?? oo - DFPSOC ff Iilpdsot

auxiliary variable for b, - DFPSOC {'% |

auxiliary variable for b, - FPSOC . .

auxiliary variable for b?'?fpso - FPSOC .,

total oil production rate from ringfence rf in time period t
total water production rate from ringfence rf in time t

total gas production rate from ringfence rf in time period t

cumulative oil produced from ringfence rf by the end of
time period t

oil production rate from field f in time period t
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O

XC fﬂ,et}Id

WOI; oot

gOr; fosot

WCf,fpso,t
OC¢ fpsor
fc,
Qd ,well
f, fpso,t
QI liq
fpso,t
QI gas
fpso,t
liq
QE fpso,t
QE gas

fpso,t

COy
PO,

CRy

water production rate from field f in time period t
gas production rate from field f in time period t
cumulative oil produced from field f by the end of time

period t

water-to-oil ratio for field-FPSO connection in time t
gas-to-oil ratio for field-FPSO connection in time period t

cumulative water produced from field f to FPSO facility
fpso by the end of time period t

cumulative gas produced from field f to FPSO facility fpso
by the end of time period t

fraction of oil recovered from field f by the end of time
period t

field deliverability (maximum oil flow rate) per well for
field f and FPSO facility fpso combination in time period t
liquid installation capacity of FPSO facility fpso at the
beginning of time period t

gas installation capacity of FPSO facility fpso at the
beginning of time period t

liquid expansion capacity of FPSO facility fpso at the
beginning of time period t

gas expansion capacity of FPSO facility fpso at the
beginning of time t

cost oil in time period t for ringfence rf

profit oil in time period t for ringfence rf

cost recovery in time period t for ringfence rf
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CRF;
Tax;

C on Shgelftoretax

aftertax
ConShy';

DPO;; ;

DConshEF

Dxcrf'i,t

Royalty,; |

SV, ¢
Parameters

FC FPSO

fpso,t

f, fpso,t

FCys!

VC”q

fpso,t

cost recovery carried forward in time t for ringfence rf
income tax in time period t for ringfence rf

contractor before tax share in profit oil in time period t for

ringfence rf

contractor after tax share in profit oil in time period t for

ringfence rf

disaggregated profit oil for tier i in time period t for

ringfence rf

disaggregated contractor before tax share in profit oil for
tier i in time period t for ringfence rf
disaggregated cumulative oil produced from ringfence rf by

the end of time period t for tier i

amount of royalty in time period t for ringfence rf

sliding scale variable in time period t for ringfence rf

fixed capital cost for installing FPSO facility fpso at the
beginning of time period t
fixed cost for installing the connection between field f and

FPSO facility fpso at the beginning of time period t
fixed cost for drilling a well in field f at the beginning of
time period t

variable capital cost for installing or expanding the liquid

(oil and water) capacity of FPSO facility fpso at the

beginning of time period t
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vCZe

fpso,t

OC%

OC%

REC,

tax
frf t

CR
frf 't

PO
fn‘ |

royal
fn‘ t

f eff ,taxrate
it

fﬁp;OfittaX
L9,
ug

1

l2

Ot

diSt

Ot

M, U

anb.co.do

variable capital cost for installing or expanding the gas

capacity of FPSO facility fpso at the beginning of time
period t

operating cost for per unit of liquid (oil and water)

produced in time period t for ringfence rf

operating cost for per unit of gas produced in time period t
for ringfence rf

total amount of recoverable oil from field f

income tax rate in time period t for ringfence rf

cost recovery ceiling fraction in time t for ringfence rf
profit oil fraction of the contractor in tier i for ringfence rf
royalty rate in time period t for ringfence rf

effective tax rate in time period t for ringfence rf

profit tax rate in time period t for ringfence rf

lower threshold for profit oil split in tier i for ringfence rf

upper threshold for profit oil split in tier i for ringfence rf

lead time for initial installation of a FPSO facility

lead time for expansion of an earlier installed FPSO facility
price of oil in time period t

discounting factor for time period t

number of days in time period t

big-M parameters

coefficients for polynomials used for reservoir models
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Appendix D

Proof of the Propositions in Chapter 3

Proposition 3.1: If the sliding scale variable for profit oil share of the contractor
is cumulative oil produced, the following inequalities are satisfied at the optimal
solution of Model 3RF:

i'<i

> (Contshir ™=/, ) < 3 (£79 — £72) - (xC Ly )~ 1% - D(CO, , /a,)

<t i=1 <t

v it (D.1)
Proof. The proof follows from bounding the cumulative contractor’s share in each
time period for every ringfence. We know that the revenue generated from a
ringfence rf in time period t, equation (D.2), is the total oil produced from this

ringfence in that time period times the price of oil (¢,) . From Figure 3.2, we can

observe that the total profit oil for a ringfence in time period t is the difference
between revenue and cost oil for that ringfence, where we consider no royalty

provisions that yields equation (D.3).
REV, , = o Xy, vrf ,t (D.2)
PO, , =REV, ,—CO, vrf,t (D.3)

If tier i(t) is active in time period t for ringfence rf, then the contractor share
in the profit oil for that ringfence can be calculated in eq. (D.4) as the

corresponding profit oil times the tier fraction which is active in the current period
t, fi5y. Equation (D.4) can be re-written as eq. (D.5) using eq. (D.3), and
dividing the both sides of the resulting equation by price of oil to represent the

contractor’s share in terms of oil volume instead of price.

ContShy™ ™ = £, - POy . , where tier i(t) is active for rf in time period t
vrf,t (D.4)

ContShyP™ ™/ o, = 5 - (REV% —COy )/ @, , where tier i(t) is active for rf in

time t vrf,t (D.5)
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The cumulative contractor’s share by the end of time period t can be
obtained in equation (D.6) by summing (D.5) from period 1 to current period t,
which can further be re-written as equation (D.7) using revenue definition form

equation (D.2).

t

D ContShi™™®/ o, Zf” o - (REVEL —CO; )/ a, vrf t (D.6)
=1

t
> ContShy*™ ™/ o, me(r) Xy — Zfrf ag vrf ,t (D.7)
7=l =1

The first term in RHS of equation (D.7) can be written as in equation (D.8)
for an active tier i(t) for ringfence rf in time period t, where, ty, t, and so on are the
time periods until previous tiers 1, 2, 3, etc. were active, respectively, for the
corresponding ringfence. Equation (D.9) represents (D.8) in terms of cumulative
oil produced in each tier until tier i(t).

Zt: f ey - Xite fpoz X+ fio Zx;"tr +ot fi0s Zx“’t fir ) ZX“”
=1 r=t+1 r=t;_,+1 =t +1

vrf,t (D.8)

t
Z f i i(2) Xlt‘?tr fn‘P,(leCrf,tl + frfpgxcrf,tz—tl oot frfpl 2XCr et + i i0%Crf 1,
=1
vrf,t (D.9)
The maximum amount of cumulative oil produced during each tier that lies
before tier i(t) as in (D.10), will be the difference between the lower thresholds of
the corresponding consecutive tiers as represented in inequality (D.11) and can be

seen in Figure 3.5.

fig>fio>.> 0 >0, =0 (D.10)

t
Z fo i) XtOt <f PO(er 2~ Lia)+ frfpg(er 3= L)+t frfp,(i)—l(l-rf i—Leia)+ fi |(t)(xcwt Ly i)
=1
vrf,t (D.11)
Inequality (D.11) can further be rewritten as (D.12), which by reformulating

the last term as in (D.13) and rearranging the corresponding terms for each tier

gives inequality (D.14).
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t
Z frf Ji(z) Xlt‘fmr = rf 1f 1l rf z(f frfP,Cl))_ ----- — er ,i(f fn‘P?l)+ frf |(t)XC:fOtt

=

vrf,t (D.12)
t
Z frf i) XifOtr <=Ly f PO - Ly 2(frrpg - fnP?) — i Ly ,i(frfp,? - frfp,(i)—l)
=1
+ xci:’a {(frf‘.’m £PO)+(£70, = £79,) 4. (170 £79) + 179}
vrf,t (D.13)

i<i(t)

an i) X <Z(fpo—fpo_1) (XC ¢ — Ly 1) = RHS(i(1))
vrft (D.14)

As it is unknown a priori which tier i gets active at what time, we need to

write constraint (D.14) for each tier i in each time t. For those tiers that are not

active in current period t, i.e. 1 =i(t), (D.14) must be relaxed to be a valid

inequality. Therefore, for i° <i(t) , RHS of inequality (D.14) becomes:

i'<i®

RHS(I*)= 3 (1,72 = £,f2)- (X~ Ly 1) Vi <i(t), rf t (D.15)

Furthermore, on subtracting RHS of eq. (D.14) and (D.15), it gives (D.16),
and therefore, we obtain (D.17):

RHS (i(t)) —RHS (i°) = z(f — £ 20) (e — L) = D (F L0 = £70) - (e — Ly i)
i'=1 i1
b <i(t), rf,t (D.16)

RHS(i(t)) - RHS (i") = Z(fpo fio) (s —Ly;)

i
b <i(t), rf,t (D.17)
as (fi5—fioi<0)A(xc;, —Ly;.20) Vi'<i(t), rf
Therefore, (D.17) yields (D.18) and hence we get (D.19) which say that the
first term in equation (D.7) will be relaxed for all i® <i(t) compared to an active
tier i(t).

RHS (i(t)) - RHS (i*) <0 ViP <i(t), rf ,t (D.18)
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RHS (i(t)) < RHS(i") Vi <i(t), rf t (D.19)

For those tiers that lies after active tier i(t), i.e. i® >i(t), then RHS of

inequality (D.14) becomes:

i<i®

RHS(ia)=Z(f,f§?— fif o) (s —Lys) Vi? >i(t), rft (D.20)

On subtracting RHS of eq. (D.14) and (D.20), it gives (D.21), which reduces
to (D.22):
i'<i(t) i'<i®

RHS ('(t)) —RHS (ia) = Z( frfp,io' - frfp,(i:?—l) ' (XCrf T er |) - Z( frfP,iO' - frfp,io‘—l) ’ (XCrf T er |)

i=1
Vit >i),rf,t (D.21)

RHS(i(t)) —RHS (i) =— > (f{r - fir) (e —Ley) Vit >i(t),rf,t  (D.22)

i'=i(t)+1
as (fir—fio <O A(XC —L; <0 wi>i(t), rf
Therefore, (D.22) yields (D.23) and hence we get (D.24) which say that the

first term in equation (D.7) will be relaxed fori® > i(t) as compared to i(t).
RHS(i(t)) —RHS(i*) <0 Vi? >i(t), rf,t (D.23)

RHS(i(t)) <RHS(i%) Vit >i(t),rf,t (D.24)

Therefore, for any tier i which may be an active tier in time t, the first term in
eq. (D.7) can be represented as inequality (D.14).

Equation (D.25) represents the second term of RHS for equation (D.7) in
disaggregated form for each tier as explained above for total oil produced, i.e.
equation (D.8). However, here we do not have any predefined threshold for the
cost oil in each tier in contrast to the cumulative oil produced, we need to
represent this term in the relaxed form to be valid for all tiers. Given that profit oil

fraction decreases as we move to higher tier, eq. (D.10) and co,, >0, >0, we can

replace the profit oil fractions for the previous tiers i° <i(t) with the profit oil

fraction of the current tier i(t) that ensures a lower bound on the LHS of equation
(D.25). Using this relaxation idea we obtain equation (D.26) which on further

aggregation yields equation (D.27) and (D.28).
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t 5 t
Z fnc i COy . la, :f,fpycl’ZCOrf o+ f,fpngOnc a, +

7= =1 =t

L t vrf ,t D.25
+ 70, > COy la, +£{0> CO; I (D-25)
T=t_, 7=t
t
> i COy . la, 2 frf?(t)Zcoﬁ o, + frf?(t)Zco,f a, +
= " I vrf,t  (D.26)
+f ;COrf Ja + 1t ZCOM la
t
Z fn‘P?(t) CO a, 2 frfp?(t)zco vrf ,t (D.27)
=1
t
Z frfp?(t) COy , la, < frfp?(t)zcorf ° la, vrf,t (D.28)
=1
Similarly, for other tiersi =i(t) , we have:
t t
_Z frrp,? -CO; . /a, < _frfP,iOZCOrf e vrf ti=i(t) (D.29)
=1 =1
However,

fPOZcoﬁ,/a >f,f22co a,>...f ,f?(t)ZCo,f'r/arz.... fﬁpczndZCOm/a

7=l =1

Therefore, for equation (D.27) guaranteed to be valid for any tier i, we can

use the last tier i®™® fraction instead which has minimum value, that yields
equation (D.30):
Zf,f? CO; Jar, > 170 Zco vrf i (D.30)
7=1

Substituting (D.14) and (D.30) back in equation (D.7) for any active tier i in

time t, we can obtain (D.31) which is same as the desired expression (D.1).

i'<i

Z(ContSfﬁemm/aVZ(f —ffia) (€ =Ly )= f 70 - 2(COy M)

<t <t

vrf it (D.31)
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Proposition 3.2: If the sliding scale variable for profit oil share of the contractor
is daily oil production, the following inequalities are satisfied at the optimal
solution of Model 3RF:

Conts ™= /(5.0,) < 3 (179 £72.)- (X5, ~L, )~ 1%, -CO, , (&)
i=1

vrf it (D.32)
Proof. The proof follows similarly as for Proposition 3.1. However, in this case as
the daily oil produced is the sliding scale variable, we do not apply the summation
over time as we did for equation (D.5). In addition, it is also assumed that the
incremental tax is applicable only on the amount of oil production rate that is
above the given tier threshold of the previous tier which is usually the case in
practice. However, this type of tier structure is more popular for sliding scale

royalties than profit oil described here.
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Appendix E

Sliding scale fiscal terms without binary variables in
Chapter 3

Proposition 3.3: Any sliding scale (either appearing in PSA, Concessionary
system, etc.) where the sliding scale variable (e.g. cumulative oil, daily oil
produced) and portion of oil that needs to split between oil company and
government can be represented in terms of a fraction of the current revenues
(production) or cumulative revenue (cumulative production), and the sliding scale
is incremental, then we can represent the sliding scale fiscal terms without binary
variables.

For example, in the following cases, we do not need any binary variable for
representing the sliding scale fiscal terms:

(&) A concessionary/PSA system where the sliding scale is defined only for
royalties based on the production. Eg. (E.3(a))

(b) A concessionary/PSA system where the sliding scale is defined only for profit
oil where royalty is a given fraction of the revenue and there is no cost oil.
Eq. (E.3(b))

(c) A concessionary/PSA system where the sliding scale is defined only for profit

oil where royalty and cost oil are a given fraction of the revenues. Eg. (E.3(c))

Zn‘,i,t
v| Consh, , = it - REV, vrf t (E.1)

Lii <SSV SUg;

SV, L =XCy , OF X vrf,t (E.2)
(ERHAD (2)

fit=1@— %) 77 (b) vrf i (E.3)
(1_ frfroyal _ fﬁCO). frfP‘(i) (C)
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Proof. The proof follows directly as in Proposition 3.1 where we use ;" in place
of f,,. However, here we consider those cases (a)-(c) where the contractor’s

share can be represented directly as a fraction of revenue generated, the term that

corresponds to the cost oil in RHS of equation (D.5) will not appear as f"| has

accounted for the cost oil and/or royalty if these are present. Therefore, we have
(E.4) instead, that reduces to the simpler version of equation (D.1), i.e. (E.5) in
the case of cumulative oil produced as the sliding scale variable. Whereas, if the
sliding scale variable is daily oil produced then corresponding eq. (D.32) reduced
to (E.6) instead of eq. (E.5)

ContShy ™™/ ar, = 5", - REV,t [ e, , where tier i(t) is active for rf in time t

vrf,t (E.4)
> (ContshE™ ™/ ) < 3 (£ — ££%) - (e, — Ly i) vrf t (E.5)
<t i=1
Contsh™™™ ™ /(5,) <3 (£ = £,%) - (65 — Ly ) vrf it (E.6)

i=1
In general, at-least one of the equation that corresponds to the active tier in
(E.5) or (E.6) will be active in the optimal solution as contractor’s share appears
in the objective function. Therefore, the solution that it yields is usually the
optimal for these cases, else it can serve as the valid inequality to generate the
tight upper bound. This represents the sliding scale fiscal terms without binary

variables.
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Appendix F

Proposition used for the Approximate Model in
Chapter 3

Proposition 3.4: If the sliding scale variable for profit oil share of the contractor
is cumulative oil produced, the following inequalities will provide a good
approximation of the optimal solution of Model 3RF:

i'<i

Z(Contshﬁeﬁmm/ar) < (ffe = o) (Cq =Ly )= fe9 -2 (COy 1)
=

=t =t
vrf it (F.1)
Proof. Notice that in equation (D.7), we use a relaxation of the second term in
RHS as we do not know a priori when a tier i(t) becomes active and there is no
limits that are available for cost oil for each tier which were available for
cumulative oil produced. Ideally, it should be 7 for the years until first tier is

active and then S for the duration of second tier and so on, to represent the

second term accurately. Therefore, to obtain a better approximation of the second
term, we can use the practical aspects of the problem. We know that most of the
investments, cost oil recoveries take place in the initial years when low tier (1 or
2) are active, so it is better to use that fraction which approximate at-least the
initial tiers as close the exact one as possible when costs are high. In the later
years, cost oil values are small, so the approximation for the later years will not

have significant impact on the solution quality. Therefore, fraction £/ is the best

choice to use as an approximation in equation (D.30) for the second term in

equation (D.7).

t t
Y 170.COy, la, ~ 79D CO,. la, vrf,it (F.2)
7=1 =

On substituting (F.2) in equation (D.7) for any active tier i in current period t

and using (D.1), we can obtain equation (F.1).
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Appendix G

Bi-level decomposition approach for the Fiscal Model in
Chapter 3

The fiscal Model 3RF involving ringfencing provisions becomes expensive to
solve directly using commercial MILP solvers such as CPLEX as can be seen in
the results section 3.6.2. Even the tighter formulation Model 3RF-L obtained after
adding logic constraints and valid inequalities takes significant amount of time to
close the gap if ringfencing provisions are present in the problem. This is due to
the additional binary variables and constraints required to incorporate these
provisions in the model and resulting in weak LP relaxations. Therefore, we
propose a bi-level decomposition strategy to solve the fiscal model having
ringfencing provisions in a more efficient manner that can be used for either of
the proposed MILP formulations. However, we consider here Model 3RF-L as a
basis to present the algorithm.

The proposed bi-level decomposition strategy involves two levels (see
Figure G.1):
@ Upper Level: At the upper level, an aggregate fiscal model (MILP) is
solved that is formulated from the detailed fiscal Model 3RF-L by neglecting the
ringfencing provisions. This is equivalent to a specific case of the model with
only 1 ringfence that involves all the fields in it. Therefore, constraints (3.1)-
(3.50) are written without index for ringfence rf in the aggregate model.
Moreover, costs and revenues over various ringfences need not be disaggregated.
Therefore, constraints (3.6)-(3.24) reduce to the simple total capital cost equation
(3.52) as explained in section 3.4. The tier thresholds over various ringfences are
also aggregated in disjunctions (3.30). The resulting aggregate fiscal model
represents a relaxation of the original problem since it allows revenue and cost
sharing among the ringfences, and yields an upper bound on the objective

function value.
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(b) Lower Level: At the lower level, the detailed fiscal model (Model 3RF-
L) involving ringfencing provisions is solved as an MILP for the selected FPSO
installations and field-FPSO connection decisions from the upper level problem.
The model yields a feasible solution to the original problem in the restricted space
and a lower bound on its objective function value. In particular, the remaining
investment decisions such as well drilling, FPSO expansions and their capacities,
and operating decisions, e.g. oil production rates are obtained at this level.

If the gap between the upper and lower bounds coming from the aggregate
and detailed fiscal models, respectively, is less than the pre-specified tolerance,
the procedure stops. Otherwise, an integer cut is added to the upper level problem
in the next iteration that eliminates the selection of the same investment decisions

that have already been explored in the previous iterations.

Upper Level:
Solve Aggregate Fiscal model
(all fields in a single ringfence)

UB, Design Decisions

Lower Level:
Solve Detailed Fiscal model

(multiple-ringfences) with fixed binaries for
FPSO installation and field-FPSO connections

Add Integer cuts

LB, Capacities, Well Drilling Schedule,
Operational decisions

No

If UB-LB<e¢

l Yes

Stop

Figure G.1: Bi-level Decomposition Approach for the Fiscal model with

Ringfencing provisions
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Notice that the efficiency of the proposed bi-level decomposition approach
depends on the efficiency of solving the upper and lower level problems. If the
original problem size is large, even these individual models can become
expensive to solve and/or may require several iterations to close the gap.
However, the approach can still be used to generate “good” feasible solutions to
these ringfencing problems. Moreover, it can be considered as a basis to solve the
medium-size instances in reasonable time and can further be extended to improve
the computational efficiency. Preliminary results on an oilfield instance are

presented in section 3.6.2 based on this approach.
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