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Abstract 

 
 

This dissertation proposes new mixed-integer optimization models and 

computational strategies for optimal offshore oil and gas field infrastructure 

planning under fiscal rules of the agreements with the host government, 

accounting for endogenous uncertainties in the field parameters using a stochastic 

programming framework. First, a multiperiod mixed-integer nonlinear 

programming (MINLP) model is proposed in Chapter 2 that incorporates field 

level investment and operating decisions, and maximizes the net present value 

(NPV). Two theoretical properties are proposed to remove the bilinear terms from 

the model, and further converting it to an MILP approximation to solve the 

problem to global optimality. Chapter 3 extends the basic deterministic model in 

Chapter 2 to include complex fiscal rules maximizing total contractor’s (oil 

company) share after paying royalties, profit share, etc. to the host government. 

The resulting model yields improved decisions and higher profit than the previous 

one. Due to the computational issues associated with the progressive (sliding 

scale) fiscal terms, a tighter formulation, a relaxation scheme, and an 

approximation technique are proposed. Chapter 4 presents a general multistage 

stochastic MILP model for endogenous uncertainty problems where decisions 

determine the timings of uncertainty realizations. To address the issue of 

exponential growth of non-anticipativity (NA) constraints in the model, a new 

theoretical property is identified. Moreover, three solution strategies, i.e. a k-stage 

constraint strategy; a NAC relaxation strategy; and a Lagrangean decomposition 

algorithm, are also proposed to solve the realistic instances and applied to process 

network examples. In Chapter 5, the deterministic formulations in Chapter 2 and 3 

for oilfield development are extended to a multistage stochastic programming 

formulation to account for the endogenous uncertainties in field sizes, oil 

deliverabilities, water-oil-ratios and gas-oil-ratios. The Lagrangean decomposition 

approach from Chapter 4 is used to solve the problem, with parallel solutions of 

the scenarios. To improve the quality of the dual bound during this decomposition 
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approach, a novel partial decomposition is proposed in Chapter 6. Chapter 7 

presents a method to update the multipliers during the solution of a general two-

stage stochastic MILP model, combining the idea of dual decomposition and 

integer programming sensitivity analysis, and comparing it with the subgradient 

method. Finally, Chapter 8 summarizes the major findings of the dissertation and 

suggests future work on the subject. 
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Chapter 1 

 

Introduction 

 

 

The development planning of offshore oil and gas field infrastructures has 

received significant attention in recent years given the new discoveries of large oil 

and gas reserves in the last decade around the world. These have been facilitated 

by the new technologies available for exploration and production of oilfields in 

remote locations that are often hundreds of miles offshore. Surprisingly, there has 

been a net increase in the total oil reserves in the last decade because of these 

discoveries despite increase in the total demand (BP, Statistical review Report 

2011). Therefore, there is currently a strong focus on exploration and 

development activities for new oil fields all around the world, specifically at 

offshore locations. However, installation and operating decisions in these projects 

involve very large investments that potentially can lead to large profits, but also to 

losses if these decisions are not made carefully. Therefore, the goal of this thesis 

is to develop efficient mixed-integer optimization models and computational 

strategies for optimal development planning of offshore oil and gas field 

infrastructure considering multi-field site, nonlinear reservoir profiles, complex 

fiscal rules, and endogenous uncertainties in the field parameters using a 

stochastic programming framework. 

This chapter begins with an overview of the offshore oil and gas field 

infrastructure planning problem. Then, the various approaches used in the 

literature to model and solve this problem ranging from a basic deterministic 

model to incorporate fiscal and uncertainty considerations. A brief review of 

stochastic programming is presented with a particular focus on the endogenous 

(decision-dependent) uncertainty problems. Finally, we outline the specific 
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research objectives of the work, and conclude it with a unified modeling 

framework used in the thesis for this oil and gas field development problem and a 

brief overview of the corresponding chapters. 

 

1.1  Development planning of offshore oil and gas fields 

The development planning of offshore oil and gas field infrastructures represents 

a very critical problem since it involves multi-billion dollar investments 

(Babusiaux et al., 2007). An offshore oilfield infrastructure (Figure 1.1) is usually 

very complex and comprises various production facilities such as Floating 

Production, Storage and Offloading (FPSO), Figure 1.2, Tension Leg platform 

(TLP), Figure 1.3, and connecting pipelines to produce oil and gas from the 

reserves. Each oilfield consists of a number of potential wells to be drilled using 

drilling rigs, which are then connected to the facilities through pipelines to 

produce oil. The produced oil is transported to the shore either though pipelines or 

using large tankers. 

 

 

 

 Figure 1.1: Offshore oilfield infrastructure  
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The life cycle of a typical offshore oilfield project consists of the following 

five steps: 

(1) Exploration: This activity involves geological and seismic surveys 

followed by exploration wells to determine the presence of oil or gas.  

(2) Appraisal: It involves drilling of delineation wells to establish the size and 

quality of the potential field. Preliminary development planning and 

feasibility studies are also performed.  

(3) Development: Following a positive appraisal phase, this phase aims at 

selecting the most appropriate development plan among many alternatives. 

This step involves capital-intensive investment and operating decisions that 

include facility installations, drilling, sub-sea structures, etc. 

(4) Production: After the facilities are built and wells are drilled, production 

starts where gas or water is usually injected in the field at a later time to 

enhance productivity. 

(5) Abandonment: This is the last phase of an oilfield development project 

and involves the decommissioning of facility installations and subsea 

structures associated with the field. 

Given that most of the critical investments are usually associated with the 

development planning phase of the project, this thesis focuses on the key 

strategic/tactical decisions during this phase of the project. The major decisions 

involved in the oilfield development planning phase are the following: 

(i)  Selecting platforms to install and their sizes 

 Figure 1.2: FPSO facility  Figure 1.3: TLP facility 
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(ii)  Deciding which fields to develop and what should be the order to develop 

them 

(iii) Deciding which wells and how many are to be drilled in the fields and in 

what sequence 

(iv)  Deciding which fields are to be connected to which facility 

(v)  Determining how much oil and gas to produce from each field  

Therefore, there are a very large number of alternatives that are available to 

develop a particular field or group of fields. However, these decisions should 

account for the physical and practical considerations, such as the following: a 

field can only be developed if a corresponding facility is present; nonlinear 

profiles of the reservoir that are obtained from reservoir simulators (e.g. 

ECLIPSE) to predict the actual flowrates of oil, water and gas from each field; 

limitation on the number of wells that can be drilled each year due to availability 

of the drilling rigs; and long-term planning horizon that is the characteristic of 

these projects. Therefore, optimal investment and operating decisions are essential 

for this problem to ensure the highest return on the investments over the time 

horizon considered. By including all the considerations described here in an 

optimization model, this leads to a large-scale multiperiod mixed-integer 

nonlinear programming (MINLP) problem that is difficult to solve to global 

optimality.  The extension of this model to the cases where we explicitly consider 

the fiscal rules with the host government and the uncertainties can further lead to 

a very complex problem to model and solve.  

In the next sub-sections we briefly review the various approaches used in the 

literature to address this problem either using a deterministic formulation or a 

stochastic one.  

1.1.1 Deterministic approaches for oil and gas field development planning 

The oilfield development planning has traditionally been modeled as LP (Lee and 

Aranofsky, 1958; and Aronofsky and Williams, 1962) or MILP (Frair, 1973) 

models under certain assumptions to make them computationally tractable. 

Simultaneous optimization of the investment and operating decisions has been 

addressed in Bohannon (1970), Sullivan (1982) and Haugland et al. (1988) using 
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MILP formulations with different levels of details. Behrenbruch (1993) 

emphasized the need to consider a correct geological model and to incorporate 

flexibility into the decision process for an oilfield development project.  

Iyer et al. (1998) proposed a multiperiod MILP model for optimal planning 

and scheduling of offshore oilfield infrastructure investment and operations. The 

model considers the facility allocation, production planning, and scheduling 

within a single model and incorporates the reservoir performance, surface 

pressure constraints, and oil rig resource constraints. To solve the resulting large-

scale problem, the nonlinear reservoir performance equations are approximated 

through piecewise linear approximations. As the model considers the performance 

of each individual well, it becomes expensive to solve for realistic multi-field 

sites. Moreover, the flow rate of water was not considered explicitly for facility 

capacity calculations.  

Van den Heever and Grossmann (2000) extended the work of Iyer et al. 

(1998) and proposed a multiperiod generalized disjunctive programming model 

for oil field infrastructure planning for which they developed a bilevel 

decomposition method. As opposed to Iyer and Grossmann (1998), they explicitly 

incorporated a nonlinear reservoir model into the formulation but did not consider 

the drill-rig limitations. 

Grothey and McKinnon (2000) addressed an operational planning problem 

using an MINLP formulation where gas has to be injected into a network of low 

pressure oil wells to induce flow from these wells. Lagrangean decomposition and 

Benders decomposition algorithms were proposed for the efficient solution of the 

model. Kosmidis et al. (2002) considered a production system for oil and gas 

consisting of a reservoir with several wells, headers and separators. The authors 

presented a mixed integer dynamic optimization model and an efficient 

approximation solution strategy for this system. 

Barnes et al. (2002) optimized the production capacity of a platform and the 

drilling decisions for wells associated with this platform. The authors addressed 

the problem by solving a sequence of MILPs. Ortiz-Gomez et al. (2002) presented 

three mixed-integer multiperiod optimization models of varying complexity for 
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the oil production planning. The problem considers fixed topology and is 

concerned with the decisions involving the oil production profiles and 

operation/shut in times of the wells in each time period assuming nonlinear 

reservoir behavior. 

Lin and Floudas (2003) considered the long-term investment and operations 

planning of the integrated gas field site. A continuous-time modeling and 

optimization approach was proposed introducing the concept of event points and 

allowing the well platforms to come online at potentially any time within the 

planning horizon. A two-level solution framework was proposed to solve the 

resulting MINLP problems which showed that the continuous time approach can 

reduce the computational efforts substantially and solve problems that were 

intractable for the discrete-time model.  

Kosmidis et al. (2005) presented a mixed integer nonlinear (MINLP) model 

for the daily well scheduling in petroleum fields, where the nonlinear reservoir 

behavior, the multiphase flow in wells and constraints from the surface facilities 

were simultaneously considered. The authors also proposed a solution strategy 

involving logic constraints, piecewise linear approximations of each well model 

and an outer approximation based algorithm. Results showed an increase in oil 

production of up to 10% compared to typical heuristic rules widely applied in 

practice. 

Carvalho and Pinto (2006a) considered an MILP formulation for oilfield 

planning based on the model developed by Tsarbopoulou (2000), and proposed a 

bilevel decomposition algorithm for solving large-scale problems where the 

master problem determines the assignment of platforms to wells and a planning 

subproblem calculates the timing for the fixed assignments. The work was further 

extended by Carvalho and Pinto (2006b) to consider multiple reservoirs within the 

model.  

Barnes et al. (2007) addressed the optimal design and operational 

management of offshore oil fields where at the design stage optimal production 

capacity of a main field was determined with an adjacent satellite field and a well 

drilling schedule. The problem was formulated as an MILP model. Continuous 
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variables involved individual well, jacket and topsides costs, whereas binary 

variables were used to select individual wells within a defined field grid. An 

MINLP model was proposed for the operational management to model the 

pressure drops in pipes and wells for multiphase flow. Non-linear cost equations 

were derived for the production costs of each well accounting for the length, the 

production rate and their maintenance. Operational decisions included the oil 

flowrates, the operation/shut-in for each well and the pressures for each point in 

the piping network. 

Gunnerud and Foss (2010) considered the real-time optimization of oil 

production systems with a decentralized structure and modeled nonlinearities with 

piecewise linear approximations, resulting in an MILP model. The Lagrange 

relaxation and Dantzig–Wolfe decomposition methods were studied on a semi-

realistic model of the Troll west oil rim in Norway, which showed that both 

approaches offers an interesting option to solve the complex oil production 

systems as compared to the fullspace method. 

1.1.2 Incorporating complex fiscal rules  

The major limitation with the above approaches in the oilfield development 

planning is that they do not consider the fiscal rules explicitly in the optimization 

model that are associated to these fields, and mostly rely on the simple net present 

value (NPV) as an objective function. Therefore, the models with these objectives 

may yield the solutions that are very optimistic, which can in fact be suboptimal 

after considering the impact of fiscal terms. Bagajewicz (2008) discussed the 

merits and limitations of using NPV in the investment planning problems and 

pointed out that additional consideration and procedures are needed for these 

problems, e.g. return on investments, to make the better decisions. Laínez et al. 

(2009) emphasizes that enterprise-wide decision problems must be formulated 

with realistic detail, not just in the technical aspects, but also in the financial 

components in order to generate solutions that are of value to an enterprise. This 

requires systematically incorporating supplier/buyer options contracts within the 

framework of supply-chain problems. 
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In the context of oilfield planning, fiscal rules of the agreements between the 

oil company (contractor) and the host government, e.g. production sharing 

contracts, usually determine the share of each of these entities in the total oil 

production or gross revenues and the timing of these payments. Hence, including 

fiscal considerations as part of the oilfield development problem can significantly 

impact the optimal decisions and revenue flows over the planning horizon, as a 

large fraction of the total oil produced is paid as royalties, profit share, etc. The 

models and solutions approaches in the literature that consider the fiscal rules 

within oilfield infrastructure planning are either very specific or simplified. Van 

den Heever et al. (2000) and Van den Heever and Grossmann (2001) considered 

optimizing the complex economic objectives including royalties, tariffs, and taxes 

for the multiple gas field site where the schedule for the drilling of wells was 

predetermined as a function of the timing of the installation of the well platform. 

Moreover, the fiscal rules presented were specific to the gas field site considered, 

but not in general form. Based on a continuous time formulation for gas field 

development with complex economics of similar nature as Van den Heever and 

Grossmann (2001), Lin and Floudas (2003) proposed an MINLP model and 

solved it with a two-stage algorithm. Approaches based on simulation (Blake and 

Roberts, 2006) and meta-modeling (Kaiser and Pulsipher, 2004) have also been 

considered for the analysis of the different fiscal terms. However, the papers that 

address the mathematical programming models and solution approaches for the 

oilfield investments and operations with fiscal considerations are still very 

limited.  

1.1.3 Incorporating uncertainties in the development planning  

In the literature work described above, one of the major assumptions is that there 

is no uncertainty in the model parameters, which in practice is generally not true. 

Although limited, there has been some work that accounts for uncertainty in the 

problem of optimal development of oil and/or gas fields. Haugen (1996) proposed 

a single parameter representation for uncertainty in the size of reserves and 

incorporates it into a stochastic dynamic programming model for scheduling of oil 

fields. However, only decisions related to the scheduling of fields were 
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considered. Meister et al. (1996) presented a model to derive exploration and 

production strategies for one field under uncertainty in reserves and future oil 

prices. The model was analyzed using stochastic control techniques.  

Jonsbraten (1998a) addressed the oilfield development planning problem 

under oil price uncertainty using an MILP formulation that was solved with a 

progressive hedging algorithm. Aseeri et al. (2004) introduced uncertainty in the 

oil prices and well productivity indexes, financial risk management, and 

budgeting constraints into the model proposed by Iyer and Grossmann (1998), and 

solved the resulting stochastic model using a sampling average approximation 

algorithm.  

Jonsbraten (1998b) presented an implicit enumeration algorithm for the 

sequencing of oil wells under uncertainty in the size and quality of oil reserves. 

The author uses a Bayesian approach to represent the resolution of uncertainty 

with investments. The paper considers investment and operation decisions only 

for one field. Lund (2000) addressed a stochastic dynamic programming model 

for evaluating the value of flexibility in offshore development projects under 

uncertainty in future oil prices and in the reserves of one field using simplified 

descriptions of the main variables. 

Cullick et al. (2003) proposed a model based on the integration of a global 

optimization search algorithm, a finite-difference reservoir simulation, and 

economics. In the solution algorithm, new decision variables were generated 

using meta-heuristics, and uncertainties were handled through simulations for 

fixed design variables. They presented examples having multiple oil fields with 

uncertainties in the reservoir volume, fluid quality, deliverability, and costs. Few 

other papers, (Begg et al., 2001; Zabalza-Mezghani et al., 2004; Bailey et al., 

2005; and Cullick et al., 2007), have also used a combination of reservoir 

modeling, economics and decision making under uncertainty through simulation-

optimization frameworks. 

Ulstein et al. (2007) addressed the tactical planning of petroleum production 

that involves regulation of production levels from wells, splitting of production 

flows into oil and gas products, further processing of gas and transportation in a 
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pipeline network. The model was solved for different cases with demand 

variations, quality constraints, and system breakdowns. 

Elgsæter et al. (2010) proposed a structured approach to optimize offshore 

oil and gas production with uncertain models that iteratively updates setpoints, 

while documenting the benefits of each proposed setpoint change through 

excitation planning and result analysis. The approach is able to realize a 

significant portion of the available profit potential, while ensuring feasibility 

despite large initial model uncertainty. 

However, most of these works either consider the very limited flexibility in 

the investment and operating decisions, or handle the uncertainty in an ad-hoc 

manner. Stochastic programming provides a systematic framework to model 

problems that require decision-making in the presence of uncertainty by taking 

uncertainty into account of one or more parameters in terms of probability 

distribution functions, (Birge and Louveaux, 1997). The concept of recourse 

action in the future, and availability of probability distribution in the context of 

oilfield development planning problems, makes it one of the most suitable 

candidates to address uncertainty. Moreover, extremely conservative decisions are 

usually ignored in the solution utilizing the probability information given the 

potential of high expected profits in the case of favorable outcomes.  

In the context of stochastic programming, Goel and Grossmann (2004) 

considered a gas field development problem under uncertainty in the size and 

quality of reserves where decisions on the timing of field drilling were assumed to 

yield an immediate resolution of the uncertainty, i.e. the problem involves 

decision-dependent uncertainty as discussed in Jonsbraten et al. (1998); Goel and 

Grossmann (2006); and Gupta and Grossmann (2011a). Linear reservoir models, 

which can provide a reasonable approximation for gas fields, were used. In their 

solution strategy, the authors used a relaxation problem to predict upper bounds, 

and solved multistage stochastic programs for a fixed scenario tree for finding 

lower bounds. Goel et al. (2006) later proposed the theoretical conditions to 

reduce the number of non-anticipativity constraints in the model. The authors also 

developed a branch and bound algorithm for solving the corresponding 
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disjunctive/mixed-integer programming model where lower bounds were 

generated by Lagrangean duality. The proposed decomposition strategy relies on 

relaxing the disjunctions and logic constraints for the conditional non-

anticipativity constraints while dualizing the initial ones at the root node. Ettehad 

et al. (2011) presented a case study for the development planning of an offshore 

gas field under uncertainty optimizing facility size, well counts, compression 

power and production policy. A two-stage stochastic programming model was 

developed to investigate the impact of uncertainties in original gas in place and 

inter-compartment transmissibility. Results of two solution methods, optimization 

with Monte Carlo sampling and stochastic programming, were compared which 

showed that the stochastic programming approach is more efficient. The models 

were also used in a value of information (VOI) analysis.  

Moreover, the gradual uncertainty reduction has also been addressed for 

problems in this class. Stensland and Tjøstheim (1991) have worked on a discrete 

time problem for finding optimal decisions with uncertainty reduction over time 

and applied their approach to oil production. These authors expressed the 

uncertainty in terms of a number of production scenarios. Their main contribution 

was combining production scenarios and uncertainty reduction effectively for 

making optimal decisions. Dias (2002) presented four propositions to characterize 

technical uncertainty and the concept of revelation towards the true value of the 

variable. These four propositions, based on the theory of conditional expectations, 

are employed to model technical uncertainty.  

Tarhan et al. (2009) addressed the planning of offshore oil field 

infrastructure involving endogenous uncertainty in the initial maximum oil 

flowrate, recoverable oil volume, and water breakthrough time of the reservoir, 

where decisions affect the resolution of these uncertainties. The authors extend 

the work of Goel and Grossmann (2004) and Goel et al. (2006) but with three 

major differences: (a) The model focuses on a single field consisting of several 

reservoirs rather than multiple fields but more detailed decisions are considered. 

(b) Nonlinear, rather than linear, reservoir models are considered. (c) The 

resolution of uncertainty is gradual over time instead of being resolved 
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immediately. The authors also developed a multistage stochastic programming 

framework that was modeled as a disjunctive/mixed-integer nonlinear 

programming model consisting of individual non-convex MINLP subproblems 

connected to each other through initial and conditional non-anticipativity 

constraints. A duality-based branch and bound algorithm was proposed taking 

advantage of the problem structure and globally optimizing each scenario problem 

independently. An improved solution approach was also proposed that combines 

global optimization and outer-approximation to optimize the investment and 

operations decisions (Tarhan et al., 2011). However, it considers either gas/water 

or oil/water components for single field and single reservoir at a detailed level. 

Hence, realistic multi-field site instances can be expensive to solve with this 

model.  

In the next section we briefly outline the basic elements of the stochastic 

programming that will be used as a modeling framework in this thesis.  

1.2 Stochastic Programming 

A stochastic program is a mathematical program in which some of the parameters 

defining a problem instance are random (e.g. uncertain reservoir size, product 

demand, yields, prices). In general, multiperiod industrial planning, scheduling, 

supply-chain etc. problems under uncertainty are formulated as stochastic 

programs since it allows to incorporate probability distribution of the uncertain 

parameters explicitly into the model while making investment and operating 

decisions, and provides an opportunity to take corrective actions in the future 

(recourse) based on the actual outcomes (see Ierapetritou and Pistikopoulos, 1994; 

Clay and Grossmann, 1997; Iyer and Grossmann, 1998; Schultz, 2003; Ahmed 

and Garcia, 2003; Sahinidis, 2004; Ahmed et al. 2004; Li and Ierapetritou, 2012). 

This area is receiving increasing attention given the limitations of deterministic 

models.   

Discrete probability distributions of the uncertain parameters are widely 

considered to represent uncertainty in terms of the scenarios where a scenario is 

given by the combination of the realization of the uncertain parameters. 
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Depending on the number of decision stages involved in the model, the stochastic 

program corresponds to either a two-stage or a multistage problem. The main idea 

behind two-stage stochastic programming is that we make some decisions (stage 

1) here and now based on not knowing the future outcomes of the uncertain 

parameters, while the rest of the decisions are stage-2 (recourse actions) decisions 

that are made after uncertainty in those parameters is revealed. In this work, we 

focus on more general multistage stochastic programming models where the 

uncertain parameters are revealed sequentially, i.e. in multiple stages (time 

periods), and the decision-maker can take corrective actions over a sequence of 

the stages. In the two-stage and multistage case the cost of the decisions and the 

expected cost of the recourse actions are optimized. 

Based on the type of uncertain parameters involved in the problem, 

stochastic programming models can be classified into two broad categories 

(Jonsbraten, 1998b): exogenous uncertainty where stochastic processes are 

independent of decisions that are taken (e.g. demands, prices), and endogenous 

uncertainty where stochastic processes are affected by these decisions (e.g. 

reservoir size and its quality).  In the process systems area, Ierapetritou and 

Pistikopoulos (1994), Clay and Grossmann (1997) and Iyer and Grossmann 

(1998) solved various production planning problems that considered exogenous 

uncertainty and formulated as the two-stage stochastic programs. Furthermore, 

detailed reviews of previous work on problems with exogenous uncertainty can be 

found in Schultz (2003) and Sahinidis (2004). However, a number of planning 

problems involving very large investments at an early stage of the project have 

endogenous (technical) uncertainty that is at-least comparable if not greater than 

the exogenous (market) uncertainty. In such cases, it is essential to incorporate 

endogenous uncertain parameters while making the investment decisions since it 

can have a large impact on the overall project profitability.  

In the context of endogenous uncertainty, our decisions can affect the 

stochastic processes in two different ways (Goel and Grossmann, 2006): either 

they can alter the probability distributions (type 1) (see Viswanath et al., 2004; 

and Held and Woodruff, 2005), or they can determine the timing when 
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uncertainties in the parameters are resolved (type 2) (see Goel et al., 2006; Tarhan 

et al., 2009). Surprisingly, these problems have received relatively little attention 

in the literature despite their practical importance. Pflug (1990) addressed 

endogenous uncertainty problems in the context of discrete event dynamic 

systems where the underlying stochastic process depends on the optimization 

decisions. Jonsbraten et al. (1998) proposed an implicit enumeration algorithm for 

the problems in this class where decisions that affect the uncertain parameter 

values are made at the first stage. Ahmed (2000) presented several examples 

having decision dependent uncertainties that were formulated as MILP problems 

and solved by LP-based branch and bound algorithms. Moreover, Viswanath et al. 

(2004) and Held and Woodruff (2005) addressed the endogenous uncertainty 

problems where decisions can alter the probability distributions. 

There are multiple sources of uncertainty in the oil and gas field 

development problem as can be seen from the literature work afore-mentioned.  

The market price of oil/gas, quantity and quality of reserves at a field are the most 

important sources of the uncertainty in this context. The uncertainty in oil prices 

is influenced by the political, economic or other market factors and it belongs to 

the exogenous uncertainty problems. The uncertainty in the reserves on the other 

hand, is linked to the accuracy of the reservoir data (technical uncertainty). While 

the existence of oil and gas at a field is indicated by seismic surveys and 

preliminary exploratory tests, the actual amount of oil in a field, and the 

efficiency of extracting the oil will only be known after capital investment has 

been made at the field (Goel and Grossmann, 2004), i.e. endogenous uncertainty. 

Both, the price of oil and the quality of reserves directly affect the overall 

profitability of a project, and hence it is important to consider the impact of these 

uncertainties when formulating the decision policy. However, due to the 

significant computational challenge in this thesis we only address the uncertainty 

in the field parameters where timing of uncertainty realizations is decision-

dependent. In particular, we focus on the type 2 of endogenous uncertainty where 

the decisions are used to gain more information, and resolve uncertainty either 

immediately or in a gradual manner. Therefore, the resulting scenario tree is 
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decision-dependent that requires modeling a superstructure of all possible 

scenario trees that can occur based on the timing of the decisions (see Goel et al., 

2006; Tarhan et al., 2009). 

  

 

 

 

 

 

 

Specifically, to address the stochastic programming problem under 

consideration, we assume in this thesis that the uncertain parameters follow 

discrete probability distributions and that the planning horizon consists of a fixed 

number of time periods that correspond to decision points. Using these two 

assumptions, the stochastic process can be represented with scenario trees. In a 

scenario tree (Figure 1.4-a) each node represents a possible state of the system at 

a given time period. Each arc represents the possible transition from one state in 

time period t to another state in time period t+1, where each state is associated 

with the probabilistic outcome of a given uncertain parameter. A path from the 

root node to a leaf node represents a scenario.  

An alternative representation of the scenario tree was proposed by 

Ruszczynski (1997) where each scenario is represented by a set of unique nodes 

(Figure 1.4-b). The horizontal lines connecting nodes in time period t mean that 

nodes are identical as they have the same information and those scenarios are said 

to be indistinguishable in that time period. These horizontal lines correspond to 

the non-anticipativity (NA) constraints in the model that link different scenarios 

and prevent the problem from being amenable to decomposition. In this work, 

since we focus on multistage stochastic programming (MSSP) problems with 

endogenous uncertainty where the structure of scenario tree is decision-

               (a) Standard Scenario Tree with uncertain parameters θ1 and  θ2                          (b) Alternative Scenario Tree 
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Figure 1.4: Tree representations for discrete uncertainties over 3 stages 
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dependent, we use the above alternative scenario tree representation to model 

these problems effectively.  

In addition to the oil and gas field development problems under endogenous 

uncertainties (type 2) as described in the previous section (Goel and Grossmann, 

2004; Goel et al., 2006; and Tarhan et al., 2009), there are few other practical 

applications that have been addressed. In particular, Tarhan and Grossmann 

(2008) applied endogenous uncertainty in the synthesis of process networks with 

uncertain yields, and used gradual uncertainty resolution in the model. Solak 

(2007) considered the project portfolio optimization problem that deals with the 

selection of research and development projects and determination of optimal 

resource allocations under decision dependent uncertainty where uncertainty is 

resolved gradually. The author used the sample average approximation method 

for solving the problem, where the sample problems were solved through 

Lagrangean relaxation and heuristics. Boland et al. (2008) addressed the open pit 

mine production scheduling problem considering endogenous uncertainty in the 

total amount of rock and metal contained in it, where the excavation decisions 

resolve this uncertainty. These authors also compared the fullspace results for this 

mine-scheduling problem with the one where non-anticipativity constraints were 

included as the ‘lazy constraints’ during the solution. Colvin and Maravelias 

(2008, 2010) presented several theoretical properties, specifically for the problem 

of scheduling of clinical trials having uncertain outcomes in the pharmaceutical 

R&D pipeline, and developed a branch-and-cut framework to solve these MSSP 

problems with endogenous uncertainty under the assumption that only few non-

anticipativity constraints be active at the optimal solution. 

1.3 Research Objectives 

Following are the major objectives of this thesis: 

1. Develop an efficient deterministic model for offshore oil and gas field 

development planning considering multiple fields, facility expansions in 

the future, lead times for facility installation and expansions, individual 
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oil, water and gas flowrates, drilling rig limitations, with the objective to 

maximize the net present value for the given planning horizon  

2. Extend the simple NPV based deterministic oilfield planning model to 

include general complex fiscal rules such as the ones in production sharing 

agreements 

3. Develop reformulation, approximation and decomposition based 

approaches to improve the computational efficiency of the oilfield model 

with fiscal rules  

4. Apply these deterministic models with/without fiscal contracts and 

computational strategies to realistic oilfield development planning 

examples 

5. Formulate a general multistage stochastic mixed-integer linear 

programming model for addressing endogenous uncertainties where the 

optimization decisions affect the timing when uncertainties in the 

parameters are resolved 

6. Develop model reduction approaches and solution strategies to overcome 

the computational expense of the above multistage stochastic model  

7. Apply these multistage stochastic model and solution strategies to the 

process network planning problem under uncertain yields, and to the 

oilfield development planning under uncertain field parameters 

with/without fiscal contracts 

8. Develop and implement a new Lagrangean decomposition algorithm based 

on grouping of the scenarios for efficiently solving general multistage 

stochastic programs under endogenous uncertainties, and apply it to 

process network and oilfield planning examples to compare it with the 

standard approaches 

9. Develop a method for improving the dual bound generated during the 

solution of a stochastic mixed-integer linear programming model using the 

dual decomposition and integer programming sensitivity analysis, and 

benchmark the results against the standard subgradient method  
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1.4 Overview of thesis 

 

  

 

 

 

 

 

 

 

Figure 1.5: A unified framework for oilfield development planning under 

complex fiscal rules and endogenous uncertainties 

In this thesis we consider a unified modeling framework (Figure 1.5) to 

address the offshore oil and gas field development planning problem under 

complex fiscal rules and endogenous uncertainties. We start by developing a basic 

deterministic model in Chapter 2 that includes sufficient level of detail to be 

realistic as well as computationally efficient. Then, we discuss the extension of 

the model to incorporate fiscal rules defined by the terms of the contract between 

oil companies and governments in Chapter 3. In addition, several computational 

strategies are proposed to solve the realistic instances of the fiscal model.  

To address the issue of endogenous uncertainties in the field parameters 

where timing of uncertainty realization depends on investment decisions, we first 

consider a general multistage stochastic programming model in Chapter 4 and 

propose solution strategies to handle the large instances. The stochastic 

programming framework and solution approach presented in Chapter 4 is used for 

the oilfield problem in Chapter 5 considering the deterministic models from 

Chapter 2 and 3 as basis. An improved decomposition approach to solve the 

general multistage stochastic formulation under endogenous uncertainties is also 

proposed in Chapter 6. In Chapter 7 we present a new method to update the 

Lagrangean multipliers during dual decomposition for two-stage stochastic 
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mixed-integer linear programs under exogenous uncertainties. A more detailed 

overview of the chapters in the thesis is presented below:    

1.4.1 Chapter 2 

Chapter 2 presents an efficient basic deterministic model for offshore oil and gas 

field development problem.  In particular, we develop a multiperiod non-convex 

MINLP model for multi-field site that includes three components (oil, water and 

gas) explicitly in the formulation using higher order polynomials avoiding bilinear 

and other nonlinear terms. With the objective of maximizing total NPV for long-

term planning horizon, the model involves decisions related to FPSO (floating 

production, storage and offloading) installation and expansions, field-FPSO 

connections, well drilling and production rates in each time period. Furthermore, 

it is reformulated into an MILP after piecewise linearization and exact 

linearization techniques that can be solved to global optimality in an efficient 

way. Solutions of realistic instances involving 10 fields, 3 FPSOs, 84 wells and 20 

years planning horizon are reported, as well as comparisons between the 

computational performance of the proposed MINLP and MILP formulations.   

1.4.2 Chapter 3 

In Chapter 3, we extend the simple NPV (net present value) based optimal oilfield 

development planning model developed in Chapter 2 to include general complex 

fiscal rules having progressive fiscal terms and ringfencing provisions. The 

progressive fiscal terms penalize higher production rates based on the certain 

profitability measures such as cumulative oil produced, daily production, rate of 

return defined in the contract. On the other hand, ringfencing provisions divide 

the fields in certain groups such that only fields in a given ringfence can share the 

cost and revenues for fiscal calculations, but not with the fields from other 

ringfences. Therefore, these provisions further increase the complexity of the 

model. We explain the reduction of the proposed fiscal model to a variety of 

contracts. The impact of the explicit consideration of the fiscal terms during 

oilfield development planning on the investment and operating decisions is 

analyzed. Since, the fiscal model can become computationally very expensive to 
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solve, we propose logic constraints and valid inequalities to reformulate the model 

that can be solved more efficiently. A relaxation scheme and an approximation 

technique are also provided that work as good heuristics for the large-scale 

problems. The proposed model and computational strategies are applied to several 

instances of the oilfield development problems with fiscal contracts. Preliminary 

results on a bi-level decomposition approach are provided that can predict the 

rigorous bounds for the large instances involving ringfencing provisions.    

1.4.3 Chapter 4 

Chapter 4 considers a general multistage stochastic mixed-integer linear 

programming (MSSP) model with endogenous uncertainty in some of the 

parameters, where the optimization decisions affect the times when the 

uncertainties in those parameters are resolved. To address the issue that the 

number of non-anticipativity (NA) constraints increases exponentially with the 

number of uncertain parameters and/or its realizations, we present a new 

theoretical property that significantly reduces the problem size and complements 

two previous properties proposed by Goel and Grossmann (2006). Since one 

might generate reduced models that are still too large to be solved directly, we 

also propose three solution strategies: a k-stage constraint strategy where we only 

include the NA constraints up to a specified number of stages, an iterative NAC 

relaxation strategy, and a Lagrangean decomposition algorithm that decomposes 

the problem into scenarios. Numerical results for two process network examples 

are presented to illustrate the performance of the proposed solution strategies. 

1.4.4 Chapter 5 

Chapter 5 presents a multistage stochastic programming model for investment and 

operations planning of offshore oil and gas field infrastructure.  In particular, we 

consider the deterministic models proposed in Chapters 2 and 3 as basis, and 

utilize the stochastic programming framework presented in Chapter 4 to formulate 

the model with/without fiscal contracts. We also consider correlations among the 

endogenous uncertain parameters for a field such as field size, oil deliverability, 

water-oil ratio and gas-oil ratio, which reduce the total number of scenarios in the 
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resulting multistage stochastic formulation. To solve the large instances of the 

problem, the Lagrangean decomposition approach proposed in Chapter 4 allowing 

parallel solution of the scenario subproblems is implemented in the GAMS grid 

computing environment. Computational results on a variety of oilfield 

development planning examples are presented to illustrate the efficiency of the 

model and the decomposition approach. 

1.4.5 Chapter 6 

In Chapter 6, we propose a new decomposition algorithm for solving general 

large-scale multistage stochastic programs (MSSP) with endogenous 

uncertainties. Instead of dualizing all the initial non-anticipativity constraints 

(NACs) and removing all the conditional non-anticipativity constraints to 

decompose the problem into scenario subproblems as in Chapters 4 and 5, the 

basic idea relies on a partial decomposition scheme. It is proved that the algorithm 

provides a dual bound that is at least as tight as the standard approach. The 

algorithm has been applied to process network examples and oilfield development 

planning problem to compare the quality of the bounds obtained at the root node 

and impact on the computational effort. 

1.4.6 Chapter 7 

Chapter 7 presents a method for improving the dual bound of decomposable 

MILP models using integer programming sensitivity analysis based on the 

previous work by Tarhan (2009). In particular, it proposes a new linear program 

that involves constraints from the primal and dual sensitivity analysis (Dawande 

and Hooker, 2000) using the information from branch and bound tree of each 

subproblem solution during Lagrangean decomposition, and yields improved 

multipliers which results in faster convergence of the algorithm. The method has 

been applied to several example problems to compare its performance against 

standard subgradient method. 
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1.4.7 Chapter 8 

Chapter 8 provides a summary of the major contributions of the thesis and 

suggestions for future work.  
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Chapter 2 

 

An efficient multiperiod MINLP 

model for optimal planning of 

offshore oil and gas field 

infrastructure 

 
 

2.1 Introduction  

In this chapter, we focus on developing a basic deterministic model for the 

strategic/tactical planning of offshore oil and gas fields, which includes sufficient 

level of details to be useful for realistic oilfield development projects, as well as it 

can be extended to include fiscal and uncertainty considerations as in the 

subsequent chapters. In particular, there are following major extensions and 

differences that are addressed in the proposed deterministic model as compared to 

the previous work:  

(1) We consider three components (oil, water and gas) explicitly in the 

formulation for a multi-field site, which allows considering realistic 

problems for facility installation and capacity decisions.  

(2) Nonlinear reservoir behavior in the model is approximated by 3
rd

 and 

higher order polynomials to ensure sufficient accuracy for the predicted 

reservoir profiles. 

(3) The number of wells is used as a variable for each field to capture the 

realistic drill rig limitations and the resulting trade-offs among various 

fields. 
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(4) We include the possibility of expanding the facility capacities in the 

future, and including the lead times for construction and expansions for 

each facility to ensure realistic investments.  

A typical offshore oilfield infrastructure (Figure 2.1) consists of various 

production facilities such as Floating Production, Storage and Offloading (FPSO), 

fields, wells and connecting pipelines to produce oil and gas from the reserves. 

Each oilfield consists of a number of potential wells to be drilled using drilling 

rigs, which are then connected to the facilities through pipelines to produce oil. 

There is a multi-phase flow in these pipelines due to the presence of gas and 

liquid that comprises oil and water. Therefore, there are three main components 

present, and their relative amounts depend on certain parameters like cumulative 

oil produced. The field to facility connection involves trade-offs associated to the 

flowrates of oil and gas for a particular field-facility connection, connection costs, 

and possibility of other fields to connect to that same facility, while the number of 

wells that can be drilled in a field depends on the availability of the drilling rig 

that can drill a certain number of wells each year.  

 

 

 

 

 

 

 

 

 

 

 

We assume in this work that the type of offshore facilities connected to fields 

to produce oil and gas are FPSOs with continuous capacities and ability to expand 

them in the future. These FPSO facilities costs multi-billion dollars each 

depending on their sizes and have the capability of operating in remote locations 

FPSO FPSO 

Field 

 
Field Field 

 

Field 

 

Total Oil/Gas 

Production 

 Figure 2.1: Typical Offshore Oilfield Infrastructure Representation 
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for very deep offshore oilfields (200m-2000m) where seabed pipelines are not 

cost effective. FPSOs are large ships that can process the produced oil and store 

until it is shipped to the onshore site or sales terminal. Processing includes the 

separation of oil, water and gas into individual streams using separators located at 

these facilities. Each FPSO facility has a lead time between the construction or 

expansion decision, and the actual availability. The wells are subsea wells in each 

field that are drilled using drilling ships. Therefore, there is no need to have a 

facility present to drill a subsea well. The only requirement to recover oil from it 

is that the well must be connected to a FPSO facility.  

The facilities and connection involved in the offshore planning are often in 

operation over many years, and it is therefore important to take future conditions 

into consideration when designing an initial infrastructure or any expansions. This 

can be incorporated by dividing the planning horizon, for example, 20 years, into 

a number of time periods with a length of 1 year, and allowing investment and 

operating decisions in each period, which leads to a multi-period planning 

problem.  

When oil is extracted from a reservoir oil deliverability, water-to-oil ratio 

(WOR) and gas-to-oil ratio (GOR) change nonlinearly as a function of the 

cumulative oil recovered from the reservoir. The initial oil and gas reserves in the 

reservoirs, as well as the relationships for WOR and GOR in terms of fractional 

oil recovery (fc), are estimated from geologic studies. Figures 2.2 (a)–(c) represent 

the oil deliverability from a field per well, WOR and GOR versus fractional oil 

recovered from that field. We can see from these figures that there are different 

nonlinear field profiles for different field-FPSO connections to account for the 

variations in the flows for each of these possible connections.  

The maximum oil flowrate (field deliverability) per well can be represented 

as a 3
rd

 order polynomial equation (2.1) in terms of the fractional oil recovery.  

Furthermore, the actual oil flowrate (xf ) from each of the wells is restricted by 

both the field deliverability
d

fQ , eq. (2.2), and facility capacity. We assume that 

there is no need for enhanced recovery, i.e., no need for injection of gas or water 

into the reservoir. The oil produced from the wells (xf ) contains water and gas 
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and their relative rates depend on water-to-oil ratio (worf)  and gas-to-oil ratio 

(gorf) that are approximated using 3
rd

 order polynomial functions in terms of 

fractional oil recovered (eqs. (2.3)-(2.4)). The water and gas flow rates can be 

calculated by multiplying the oil flowrate (xf ) with water-to-oil ratio and gas-to-

oil ratio as in eqs. (2.5) and (2.6), respectively. Note that the reason for 

considering fractional oil recovery compared to cumulative amount of oil was to 

avoid numerical difficulties that could arise due to very small magnitude of the 

polynomial coefficients in that case.  
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In Appendix A we derive the polynomial equations for the cumulative water 

and cumulative gas produced as a function of fractional oil recovery using 

equations (2.3) and (2.4), respectively, in order to avoid the bilinear terms (2.5)-

(2.6) that are required in the model based on the above reservoir equations. Notice 

that in this chapter we focus on a multi-field site and include sufficient details in 

the model to account for the various trade-offs involved without going into much 

detail for each of these fields. However, the proposed model can easily be 

extended to include various facility types and other details in the oilfield 

development planning problem.    
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Figure 2.2: Nonlinear Reservoir Characteristics for field (F1) for 2 FPSOs 
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The outline of this chapter is as follows. In section 2.2, we provide a formal 

description of the oilfield development problem considered that is formulated as 

an MINLP problem in section 2.3. The MINLP model is then reformulated as an 

MILP problem in section 2.4. Furthermore, section 2.5 introduces a procedure to 

reformulate both the models with reduced number of binary variables. Section 2.6 

presents numerical results on the three realistic oilfield development cases 

involving up to 10 oilfields, 20 years of planning horizon and 84 wells, and 

compares the performance of the proposed models.  

2.2 Problem Statement 

Given is a typical offshore oilfield infrastructure consisting of a set of oil fields F 

= {1,2,…}   available for producing oil using a set of FPSO (Floating, Production, 

Storage and Offloading) facilities, FPSO = {1,2,…},  (see Figure 2.1). To produce 

oil from a field, it must be connected to a FPSO facility that can process the 

produced oil, store and offload it to the other tankers.  

We assume that the location of each FPSO facility and its possible 

connections to the given fields are known (Figure 2.1). Notice that each FPSO 

facility can be connected to more than one field to produce oil while a field can 

only be connected to a single FPSO facility. In addition, the potential number of 

wells in each field is also given. There can be a significant amount of water and 

gas that comes out with the oil during the production process that needs to be 

considered while planning for FPSO capacity installations and expansions. The 

water is usually re-injected after separation from the oil while the gas can be sold 

in the market. In this case for simplicity we do not consider water or gas re-

injection i.e. natural depletion of the reserves. 

To develop and operate such a complex and capital intensive offshore 

oilfield infrastructure, we have to make the optimum investment and operation 

decisions to maximize the net present value considering a long-term planning 

horizon. The planning horizon is discretized into a number of time periods t, 

typically each with 1 year of duration. Investment decisions in each time period t 

include which FPSO facilities should be installed or expanded, and their 
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respective installation or expansion capacities for oil, liquid and gas, which fields 

should be connected to which FPSO facility, and the number of wells that should 

be drilled in a particular field f given the restrictions on the total number of wells 

that can be drilled in each time period t over all the given fields. Operating 

decisions include the oil/gas production rates from each field f in each time period 

t. It is assumed that all the installation and expansion decisions occur at the 

beginning of each time period t, while operation takes place throughout the time 

period. There is a lead time of l1 years for each FPSO facility initial installation 

and a lead time of l2 years for the expansion of an earlier installed FPSO facility. 

Once installed, we assume that the oil, liquid (oil and water) and gas capacities of 

a FPSO facility can be expanded only once.  

Field deliverability, i.e. maximum oil flowrate from a field, WOR and GOR 

are approximated by a cubic equations, while cumulative water produced and 

cumulative gas produced from a field are represented by fourth order polynomials 

in terms of the fractional oil recovered from that field. Notice that these 4
th

 order 

polynomials correspond to the integration of the cubic equations for WOR and 

GOR as explained in Appendix A. The motivation for using polynomials for 

cumulative water produced and cumulative gas produced as compared to WOR 

and GOR is to avoid bilinear terms in the formulation and to allow converting the 

resulting model into an MILP formulation. Furthermore, all the wells in a 

particular field f are assumed to be identical for the sake of simplicity leading to 

the same reservoir profiles, eqs. (2.1)-(2.6), for each of these wells. However, the 

model can easily be extended to include different reservoir profiles for each of 

these wells for a specific field-FPSO connection, which may result in a significant 

increase in the computational effort due to the additional nonlinearities and 

constraints in the model.   

2.3 MINLP Model 

We present in this section a multiperiod MINLP model for the offshore oil and 

gas field infrastructure optimization problem. Reader should refer to the 

nomenclature section at the end of this chapter for the definitions of the various 
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parameters and variables used in the model. The objective function (2.7) is to 

maximize the total net present value (NPV) of the project. Constraint (2.8) 

represents the overall NPV as a function of the difference between total revenue 

and total cost in each time period t taking the discount factors dt into account.   

NPVMax
        (2.7)

)( tt

t

t COSTREVdNPV 
      

(2.8) 

The total revenues (2.9) in each time period t are computed based on the total 

amount of oil and gas produced in that time period and respective selling prices 

where total oil, water and gas flowrates in each time period t, (
tot

t

tot

t

tot

t gwx ,, ) 

are calculated as the sum of the production rate of these components over all the 

FPSO facilities in equations (2.10)-(2.12), respectively. 
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The total cost incurred in (2.13) is the sum of capital and operating expenses 

in each time period t. The overall capital expenses (2.14) consist of the fixed 

installation costs for FPSO facilities, variable installation and expansion costs 

corresponding to the FPSOs liquid and gas capacities, connection costs between a 

field and a FPSO facility and cost of drilling the wells for each field in each time 

period t. The total operating expenses (2.15) are the operation cost occurred 

corresponding to the total amount of liquid and gas produced in each time period 

t. 

 ttt OPERCAPCOST 
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Constraints (2.16)-(2.19) predict the reservoir behavior for each field f in 

each time period t. In particular, constraint (2.16) restricts the oil flow rate from 

each well for a particular FPSO-field connection in time period t to be less than 

the deliverability (maximum oil flow rate) of that field per well where equation 

(2.17) represents the field deliverability per well at the beginning of time period 

t+1 for a particular FPSO-field connection as the cubic equation in terms of the 

fractional oil recovered by the end of time period t from that field. Constraint 

(2.17a) corresponds to the oil deliverability in time period 1 while (2.17b) 

represents for the rest of time periods in the planning horizon. Constraints (2.18) 

and (2.19) represent the value of water-to-oil and gas-to-oil ratios in time period t 

for a specific field-FPSO connection as cubic equations in terms of the fractional 

oil recovery by the end of previous time period, respectively.  
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The predicted WOR and GOR values in equations (2.18) and (2.19) are 

further used in equations (2.20) and (2.21) to calculate the respective water and 

gas flowrates from field to FPSO in time period t by multiplying it with the 

corresponding oil flow rate. Notice that these equations give rise to the bilinear 

terms in the model. 

tfpsoftfpsoftfpsof xworw ,,,,,,      tfpsof ,,
  (2.20)    

tfpsoftfpsoftfpsof xgorg ,,,,,,     tfpsof ,,   (2.21) 

The total oil flow rate in (2.22) from each field f in time period t is the sum 

of the oil flow rates that are directed to FPSO facilities in that time period t, 

whereas oil that is directed to a particular FPSO facility from a field f is calculated 

as the multiplication of the oil flow rate per well and number of wells available 

for production in that field, eq. (2.23). 
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Eq. (2.24) computes the cumulative amount of oil produced from field f  by 

the end of time period t, while (2.25) represents the fractional oil recovery by the 

end of time period t. The cumulative oil produced is also restricted in (2.26) by 

the recoverable amount of oil from the field.   
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Eqs. (2.27)-(2.29) compute total oil, water and gas flow rates into each FPSO 

facility, respectively, in time period t from all the given fields.  
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There are three types of capacities i.e. oil, liquid (oil and water) and gas that 

are used for modeling the capacity constraints for FPSO facilities. Specifically, 

constraints (2.30)-(2.32) restrict the total oil, liquid and gas flow rates into each 

FPSO facility to be less than its corresponding capacity in each time period t 

respectively. These three different kinds of capacities of a FPSO facility in time 

period t are computed by equalities (2.33)-(2.35) as the sum of the corresponding 

capacity at the end of previous time period t-1, installation capacity at the 

beginning of time period t-l1 and expansion capacity at the beginning of time 

period t-l2. Specifically, the term
oil

ltfpsoQI
1,  in equation (2.33) represents the oil 

capacity of a FPSO facility that started to install l1 years earlier and is expected to 

be ready for production in time period t, to account for the lead time of l1 years for 

a FPSO facility installation. The term 
oil

ltfpsoQE
1,   represents the expansion 

decision in the oil capacity of an already installed FPSO facility that is taken l2 

years before time period t, to consider the lead time of l2 years for capacity 

expansion. Similarly, the corresponding terms in equations (2.34) and (2.35) 

represent the lead times for liquid and gas capacity installation or expansion, 

respectively. Notice that due to one installation and expansion of a FPSO facility,

oil

ltfpsoQI
1,  and

oil

ltfpsoQE
1,  can have non-zero values only once in the planning 

horizon while 
oil

tfpsoQ 1,  can be non-zero in the multiple time periods.  
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Inequalities (2.36) and (2.37) restrict the installation and expansion of a 

FPSO facility to take place only once, respectively, while inequality (2.38) states 

that the connection between a FPSO facility and a field can be installed only once 

during the whole planning horizon. Inequality (2.39) ensures that a field can be 

connected to at most one FPSO facility in each time period t, while (2.40) states 

that at most one FPSO-field connection is possible for a field f during the entire 

planning horizon T due to engineering considerations. Constraints (2.41) and 

(2.42) state that the expansion in the capacity of a FPSO facility and the 

connection between a field and a FPSO facility, respectively, in time period t can 

occur only if that FPSO facility has already been installed by that time period. 
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Inequality (2.43) states that the oil flow rate per well from a field f to a FPSO 

facility in time period t will be zero if that FPSO-field connection is not available 

in that time period. Notice that equations (2.23) and (2.43) ensure that for 

production from a field in time period t there must be a field-FPSO connection 

and at-least one well available in that field at the beginning of time period t.  

Constraints (2.44)-(2.49) are the upper-bounding constraints on the installation 

and expansion capacities for FPSO facilities in time period t corresponding to the 

three different kinds of capacities mentioned earlier.  
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The additional restrictions on the oil, liquid and gas expansion capacities of 

FPSO facilities, (2.50)-(2.52), come from the fact that these expansion capacities 

should be less than a certain fraction (µ) of the initial built capacities, 

respectively.  Notice that available capacities in the previous time period can be 

used in the expression instead of initially built FPSO capacities given that only 

one installation and expansion is allowed for each of these facilities. 
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The number of wells available for the production from a field is calculated 

from (2.53) as the sum of the wells available at the end of previous time period 

and the number of wells drilled at the beginning of time period t. The maximum 

number of wells that can be drilled over all the fields during each time period t 

and in each field f during complete planning horizon T are restricted by respective 

upper bounds in (2.54) and (2.55). Notice that the important resource restriction 

due to the availability of drill rigs as in constraint (2.54) makes the proposed 

model more practical and useful. This restriction can easily be removed by 

relaxing this constraint if there are no drilling limitations. Moreover, the resulting 

model, which can be considered as a specific case of the proposed model, will 

most likely become easier to solve. 
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f

well

tf UNN ,      
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   (2.55) 

The non-convex MINLP model (Model 1) for offshore oilfield investment 

and operations planning involves constraint (2.7)-(2.55). In particular, constraints 

(2.17b)- (2.21) and (2.23) are nonlinear and non-convex constraints in the model 

that can lead to suboptimal solutions when solved with a method that assumes 

convexity. 

 In contrast to Model 1, the proposed MINLP model (Model 2) involves all 

the constraints as in Model 1 except (2.18)-(2.21) that are replaced with the 

reservoir profiles based on cumulative water and cumulative gas produced for 

each field-FPSO connection. The motivation for using polynomials for 

cumulative water produced and cumulative gas produced as compared to WOR 

and GOR is to avoid bilinear terms (2.20)-(2.21) in the formulation and allow 
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converting the resulting MINLP model into an MILP formulation. In particular, 

the cumulative water and cumulative gas produced by the end of time period t 

from a field are represented by 4
th

 order polynomial equations (2.56) and (2.57), 

respectively, in terms of fractional oil recovery by the end of time period t. Notice 

that these 4
th

 order polynomials (2.56) and (2.57) correspond to the cubic 

equations for WOR and GOR, respectively, that are derived in Appendix A.  
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Notice that variables 
wc

tfpsofQ ,,  
and 

gc

tfpsofQ ,, will be non-zero in equations 

(2.56) and (2.57) if tffc , is non-zero even though that particular field-FPSO 

connection is not present. Therefore, 
wc

tfpsofQ ,, and 
gc

tfpsofQ ,,  represent dummy 

variables in equations (2.56) and (2.57) instead of actual cumulative water (

tfpsofwc ,, ) and cumulative gas ( tfpsofgc ,, ) recoveries due to the fact that only 

those cumulative water and cumulative gas produced can be non-zero that has the 

specific FPSO-field connection present in that time period t. Therefore, we 

introduce constraints (2.58)-(2.61) to equate the actual cumulative water 

produced, tfpsofwc ,, , for a field-FPSO connection by the end of time period t to 

the corresponding dummy variable 
wc

tfpsofQ ,, only if that field-FPSO connection is 

present in time period t else tfpsofwc ,, is set to zero. Similarly, constraints (2.62)-

(2.65) equate the actual cumulative gas produced, tfpsofgc ,, , to the dummy 

variable 
gc

tfpsofQ ,, only if that field-FPSO connection is present in time period t, 

otherwise it is set to zero.
 

wc

fpsofM ,  and 
gc

fpsofM , correspond to maximum amount 

of cumulative water and gas that can be produced for a particular field and FPSO 
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connection during the entire planning horizon, respectively. Note that the 

motivation for using dummy variables (
wc

tfpsofQ ,, and
gc

tfpsofQ ,, ) for cumulative 

water and cumulative gas flows in equations (2.56)-(2.57) followed by big-M 

constraints (2.58)-(2.65), instead of using disaggregated variables for the 

fractional recovery in equations (2.56)-(2.57) directly, was to avoid large number 

of SOS1 variables while MILP reformulation of this model as explained in the 

next section.     





t

c

fpsof

wc

fpsof

wc

tfpsoftfpsof bMQwc
1

,,,,,,, )1(




 

tfpsof ,,
 (2.58) 





t

c

fpsof

wc

fpsof

wc

tfpsoftfpsof bMQwc
1

,,,,,,, )1(




 

tfpsof ,,
 (2.59) 





t

c

fpsof

wc

fpsoftfpsof bMwc
1

,,,,,




    

tfpsof ,,
 (2.60) 





t

c

fpsof

wc

fpsoftfpsof bMwc
1

,,,,,




   

tfpsof ,,
 (2.61) 





t

c

fpsof

gc

fpsof

gc

tfpsoftfpsof bMQgc
1

,,,,,,, )1(




  

tfpsof ,,
 (2.62) 





t

c

fpsof

gc

fpsof

gc

tfpsoftfpsof bMQgc
1

,,,,,,, )1(




  

tfpsof ,,
 (2.63) 





t

c

fpsof

gc

fpsoftfpsof bMgc
1

,,,,,




    

tfpsof ,,
 (2.64) 





t

c

fpsof

gc

fpsoftfpsof bMgc
1

,,,,,




    

tfpsof ,,
 (2.65)  

Eq. (2.66) and (2.67) compute the water and gas flow rates in time period t 

from a field to FPSO facility as the difference of cumulative amounts produced by 

the end of current time period t and previous time period t-1 divided by the time 

duration of that period.  

ttfpsoftfpsoftfpsof wcwcw /)( 1,,,,,, 
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The non-convex MINLP model (Model 2) involves constraint (2.7)-(2.17) 

and (2.22)-(2.67) where constraints (2.17b), (2.56) and (2.57) are univariate 

polynomials while constraint (2.23) involves bilinear terms with integer variables. 

The correspondence between reservoir profiles for both the MINLP models and 

their comparison is presented in Appendices A and B, respectively. In the 

following section, we reformulate MINLP Model 2 into an MILP problem that 

can be solved to global optimality in an effective way. Notice that due to the 

presence of bilinear terms in equations (2.20) and (2.21), Model 1 cannot be 

reformulated into an MILP problem.  

2.4 MILP Reformulation 

The nonlinearities involved in Model 2 include univariate polynomials (2.17b), 

(2.56), (2.57) and bilinear equations (2.23). In this section, we reformulate this 

model into an MILP model, Model 3 using piecewise linearization and exact 

linearization techniques that can give the global solution of the resulting 

approximate problem.  

To approximate the 3
rd

 and 4
th
 order univariate polynomials (2.17b), (2.56) 

and (2.57)  SOS1 variables
l

tfb , are introduced to select the adjacent points l-1 and 

l for interpolation over an interval l. Constraints (2.68)-(2.71) represent the 

piecewise linear approximation for the fractional recovery and corresponding oil 

deliverability, cumulative water and cumulative gas produced for a field in each 

time period t, respectively, where
lcf

~
,

lwelld

fpsofQ ,,

,

~
,

lwc

fpsofQ ,

,

~
and

lgc

fpsofQ ,

,

~
are the 

values of the corresponding variables at point l used in linear interpolation based 

on the reservoir profiles (2.17b), (2.56) and (2.57). Note that only 
l

tfb ,  
variables 

are sufficient to approximate the constraints (2.17b), (2.56) and (2.57) by 

selecting a specific value of the fractional recovery for each field in each time 

period t that applies to all possible field-FPSO connections for that field. This 

avoids the requirement of a large number of SOS1 variables and resulting increase 

in the solution times that would have been required in the case if constraints 
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(2.56) and (2.57) were represented in terms of the disaggregated variables for 

fractional recovery in Model 2.     
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Equation (2.72) allows only one of the point l to be selected for which 
l

tfb ,

equals 1 while equation (2.73) states that 
l

tf , can be non-zero for only two 

consecutive points l and l-1 that are used for convex combination during 

interpolation, eq. (2.74). Thus, the corresponding lth piece is used for linear 

interpolation as all other 
l

tf ,
 are zero for a field in time period t and determines 

the value of the interpolated variable as a convex combination of their values at 

both the end of this piece l in equations (2.68)-(2.71).
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The other nonlinear constraints (2.23) in Model 2 contain bilinear terms that 

can be linearized using exact linearization (Glover, 1975). To linearize constraint 

(2.23) we first express the integer variable,
well

tfN , , for the number of wells in 

terms of the binary variables
well

tkfZ ,,  
using eq. (2.75) where 

well

tkfZ ,,  determines the 

value of the kth term of the binary expansion. 
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The bilinear term in constraint (2.23) can then be rewritten as follows,  
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Constraint (2.76) can be reformulated as a linear constraint (2.77) by 

introducing a nonnegative continuous variable
well

tfpsof

well

tkf

well

tkfpsof xZZX ,,,,,,,   

which is further defined by constraints (2.78)-(2.81) by introducing an auxiliary 

variable
well

tkfpsofZX ,,,1 .  
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The reformulated MILP Model 3 involves constraints (2.7)-(2.16), (2.17a), 

(2.22), (2.24)-(2.55), (2.58)-(2.75) and (2.77)-(2.81) which are linear and mixed-

integer linear constraints and allow to solve this approximate problem to global 

optimality using standard mixed-integer linear programming solvers. 

Remarks          

The previous two sections present a multiperiod MINLP model for the 

oilfield investment and operations planning problem for long-term planning 

horizon and its reformulation as an MILP model using linearization techniques. 

The MINLP models involve non-convexities and can yield suboptimal solutions 

when using an MINLP solver that relies on convexity assumptions, while the 

reformulated MILP model is guaranteed to be solved to global optimality using 

linear programming based branch and cut methods.  However, given the 

difficulties involved in solving large scale instances of the MINLP and MILP 
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models, especially due to the large number of binary variables, we extend these 

formulations by reducing the number of the binary variables. The next section 

describes the proposed procedure for binary reduction for MINLP and MILP 

formulations.      

2.5 Reduced MINLP and MILP models 

Due to the potential computational expense of solving the large scale MINLP and 

MILP models presented in the previous sections, we further reformulate them by 

removing many binary variables, namely
C

tfpsofb ,, . These binary variables 

represent the timing of the connections between fields and FPSOs and are used 

for discounting the connection cost in the objective function along with some 

logic constraints in the proposed models. The motivation for binary reduction 

comes from the fact that in the solution of these models the connection cost is 

only ~2-3% of the total cost, and hence, this cost can be removed from the 

objective function as its exact discounting does not have a significant impact on 

the optimal solution. In particular, we propose to drop the index t from
C

tfpsofb ,, , 

which results in a significant decrease in the number of binary variables (~33% 

reduction) and the solution time can be improved significantly for both the 

MINLP and MILP formulations.  

Therefore, to formulate the reduced models that correspond to Model 2 and 3 

we use the binary variables 
R

fpsofb , to represent the connection between field and 

FPSOs instead of using 
C

tfpsofb ,, which results in a significant decrease in the 

number of binary variables in the model. As an example, for a field with 5 

possible FPSO connections and 20 years planning horizon, the number of binary 

variables required can be reduced from 100 to 5. The connection cost term in the 

eq. (2.14) is also removed as explained above yielding constraint (2.82).  

Moreover, some of the constraints in the previous MINLP and MILP models that 

involve binary variables
C

tfpsofb ,, are reformulated to be valid for 
R

fpsofb ,  based 

reduced model, i.e. constraints (2.83)-(2.93). Notice that constraints (2.93) and 
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(2.23) ensure that the oil flow rate from a field to FPSO facility in time period t, 

tfpsofx ,, , will be non-zero only if that particular field-FPSO connection is installed 

and there is at-least one well available in that field for production in time period t, 

i.e. 
R

fpsofb , equals 1 and
well

tfN ,  is non-zero, otherwise tfpsofx ,,  is set to zero. 

Moreover, it may be possible that variable 
well

tfpsofx ,,  can take non-zero value in 

equation (2.93) if 
R

fpsofb ,  equals 1 even though there is no well available in that 

field in time period t, but this will not have any effect on the solution given that 

the fractional recovery from a field and other calculations/constraints in the model 

are based on the actual amount of oil produced from the field, i.e. variable tfpsofx ,,

which is still zero in this case. Therefore, variable 
well

tfpsofx ,, can be considered as a 

dummy variable in the reduced model. 
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The non-convex MINLP Model 2R for offshore oilfield investment and 

operations planning after binary reduction involves constraints (2.7)-(2.13), 

(2.15)-(2.17), (2.22)-(2.37), (2.41), (2.44)-(2.57), (2.66)-(2.67) and (2.82)-(2.93). 

The reformulated MILP Model 3R after binary reduction involves constraints 

(2.7)-(2.13), (2.15)-(2.16), (2.17a), (2.22), (2.24)-(2.37), (2.41), (2.44)-(2.55), 

(2.66)-(2.75) and (2.77)-(2.93) which are linear and mixed-integer linear 

constraints. Similarly, Model 1R corresponds to the non-convex MINLP model, 

which is based on WOR and GOR expressions after binary reduction as described 

above.  

The resulting reduced models with fewer binaries can be solved much more 

efficiently as compared to the original models. To calculate the discounted cost of 

connections between field and FPSOs that corresponds to the reduced model 

solution, we use the well installation schedule 
well

tfN , from the optimal solution of 

reduced models to find the Field-FPSO connection timing and subtract the 

corresponding discounted connection cost from the optimal NPV of the reduced 

model. The resulting NPV represents the optimal NPV of the original models in 

case connection costs are relatively small. 

2.6 Numerical Results 

In this section we present 3 instances of the oilfield planning problem where we 

consider from 3 to 10 fields while the time horizon ranges from 10 to 20 years. 

The maximum number of possible FPSOs is taken 3 in all the instances. We 

compare the computational results of the various MINLP and MILP models 

proposed in the previous sections for these 3 instances. Table 2.1 summarizes the 
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main features of these MINLP and reformulated MILP models. In particular, the 

reservoir profiles and respective nonlinearities involved in the models are 

compared in the table.  

Table 2.1: Comparison of the nonlinearities involved in 3 model types 

 Model 1 Model 2 Model 3 

Model Type MINLP MINLP MILP 

Oil Deliverability 3rd order polynomial 3rd order polynomial Piecewise Linear 

WOR 3rd order polynomial - - 

GOR 3rd order polynomial - - 

wc - 4th order polynomial Piecewise Linear 

gc - 4th order polynomial Piecewise Linear 

Bilinear Terms N*x 

x*WOR 

x*GOR 

N*x None 

MILP Reformulation Not Possible Possible Reformulated MILP  

 

2.6.1 Instance 1    

In this instance (Figure 2.3) we consider 3 oil fields that can be connected to 

3 FPSOs with 7 possible connections among these fields and FPSOs. There are a 

total of 25 wells that can be drilled, and the planning horizon considered is 10 

years, which is discretized into 10 periods of each 1 year of duration. We need to 

determine which of the FPSO facilities is to be installed or expanded, in what 

time period, and what should be its capacity of oil, liquid and gas, to which fields 

it should be connected and at what time, and the number of wells to be drilled in 

FPSO 1 FPSO 3 

Field 1 

 

Field 3 

Field 2 

 
Figure 2.3: Instance 1 (3 Fields, 3 FPSOs, 10 years) 

Total Oil/Gas 

Production 

FPSO 2 
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each field during each time period. Other than these installation decisions, there 

are operating decisions involving the flowrate of oil, water and gas from each 

field in each time period. The objective function is to maximize total NPV over 

the given planning horizon. 

The problem is solved using DICOPT 2x-C solver for Models 1 and 2, and 

CPLEX 12.2 for Model 3. These models were implemented in GAMS 23.6.3 and 

run on Intel Core i7 machine. The optimal solution of this problem that 

corresponds to Model 2, suggests installing only FPSO 3 with a capacity of 300 

kstb/d, 420.01 kstb/d and 212.09 MMSCF/d for oil, liquid and gas, respectively, 

at the beginning of time period 1. All the three fields are connected to this FPSO 

facility at time period 4 when installation of the FPSO facility is completed and a 

total of 20 wells are drilled in these 3 fields in that time period to start production. 

One additional well is drilled in field 3 in time period 5 and there are no 

expansions in the capacity of FPSO facility. The total NPV of this project is 

$6912.04 M.  

  Table 2.2: Performance of various solvers with Model 1 and 2 for Instance 1 

  Model 1  Model 2  

Constraints 1,357 1,997 

Continuous Var. 1,051 1,271 

Discrete Var. 151 151 

 Solver 

Optimal NPV 

(million$) 

Time (s) Optimal NPV 

(million$) 

Time (s) 

DICOPT 6980.92 3.56 6912.04 3.07 

SBB 7038.26 211.53 6959.06 500.64 

BARON 9.0.6 6983.65 >36,000 6919.28 >36,000 

 

Table 2.2 compares the computational results of Model 1 and 2 for this 

instance with various MINLP solvers. Notice that based on the computational 

experiments, we only include those global/local MINLP solvers that were 

performing reasonably well as compared to the other solvers. We can observe 

from these results that DICOPT performs best among all the MINLP solvers in 

terms of computational time, while solving directly both Models 1 and 2. The 

number of OA iterations required is approximately 3-4 in both cases, and solving 

Model 2 is slightly easier than solving Model 1 directly with this solver. 
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However, the solutions obtained are not guaranteed to be the global solution. SBB 

is also reasonable in terms of solution quality but it takes much longer time to 

solve. BARON 9.0.6 can in principle find the global optimum solution to models 

1 and 2, but it is very slow and takes more than 36,000s to be within ~23% and 

~10% of optimality gap for these models, respectively. Note that we use the 

DICOPT solution to initialize in this case, but BARON 9.0.6 could only provide a 

slightly better solution (6983.65 vs. 6980.92 and 6919.28 vs. 6912.04) than 

DICOPT in more than 10 hours for both cases. 

Table 2.3: Comparison of models 1, 2 and 3 with and without binary reduction 

*Model 1 and 2 solved with DICOPT 2x-C, Model 3 solved with CPLEX 12.2 

The performance of Models 1 and 2 are compared before and after reducing 

the binary variables for connection, i.e. Models 1R and 2R, in Table 2.3. There is 

one third reduction in the number of binary variables for both models. It can also 

be seen that there is a significant decrease in the solution time after binary 

reduction (for e.g. 1.55s vs. 3.56s for Model 1). Moreover, the reduced models 

also yield better local solutions too for both the MINLP formulations. Notice that 

these MINLP Models are solved with DICOPT here for comparison as it is much 

faster as compared to other solvers as seen from the previous results. 

The MILP Model 3 and its binary reduction Model 3R that are formulated 

from Model 2 and Model 2R, respectively, solved with CPLEX 12.2 and results in 

Table 2.3 show the significant reduction in the solution time after binary 

reduction (6.55s vs. 37.03s) while both the models give same optimal NPV i.e. 

$7030.90M. Notice that these approximate MILP models are solved to global 

optimality in few seconds while global solution of the original MINLP 

formulations is much expensive to obtain. Although the higher the number of 

  Model 1 Model 1R Model 2 Model 2R Model 3 Model 3R 

Constraints 1,357 1,320 1,997 1,960 3,094 3,057 

Continuous 

Var. 1,051 988 1,271 1,208 2,228 2,165 

Discrete Var. 151 109 151 109 219 177 

SOS1 Var. 0 0 0 0 120 120 

NPV(million$) 6980.92 7049.54 6912.04 6919.28 7030.90 7030.90 

Time(s) 3.56 1.55 3.07 2.85 37.03 6.55 
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points for the approximate MILP model the better will be the solution quality, but 

we found that beyond 5 points at equal distance for the piecewise approximation 

there was not much significant change in the optimal solution, while it led to large 

increases in the solution time due to increase in the SOS1 variables in the model. 

Therefore, we use 5 equal distance points for piecewise linearization to formulate 

Model 3 and 3R for all the instances. 

The global solution from the MILP approximation Model 3R gives a higher 

NPV for this example as compared to solving Model 2 directly (7030.90 vs. 

6912.04). Therefore, this model can potentially be used for finding global or near 

optimal solution to the MINLP formulation. We fix the discrete variables coming 

from Model 3R in the original Models 1 and 2 (MINLPs) and solve the resulting 

NLPs. The local solutions obtained in this manner are significantly better for 

these MINLP models, i.e. 7076.62 vs. 6980.92 for Model 1 and 7004.08 vs. 

6912.04 for Model 2. Notice also that no other solver could find the better 

solutions directly in reasonable computational time as can be seen from Table 2.2. 

Moreover, it is interesting to note that the discrete decisions that come from the 

MILPs that corresponds to Model 2 seems to be optimal for Model 1 too which 

ensures the close correspondence between Models 1 and 2 and its reformulations.  

2.6.2 Instance 2    

This is a slightly larger instance for oilfield planning problem than the 

previous one where we consider 5 oil fields that can be connected to 3 FPSOs 

with 11 possible connections. There are a total of 31 wells that can be drilled in 

all of these 5 fields and the planning horizon considered is 20 years. Table 2.4 

compares the results of Model 1 and 2 with various MINLP solvers for this 

example. DICOPT still performs best even for this larger instance in terms of 

solution quality and time. SBB, which relies on a branch and bound based 

scheme, becomes very slow due to the increase in the number of binary variables 

and problem size. BARON also becomes expensive to solve this larger instance 

and could not improve the DICOPT solution that is used for its initialization for 

both cases in more than 10 hours. 
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Table 2.4: Comparison of various models and solvers for Instance 2 

  Model 1  Model 2  

Constraints 3,543 5,543 

Continuous Var. 2,781 3,461 

Discrete Var. 477 477 

 Solver 

Optimal NPV 

(million$) 

Time (s) Optimal NPV 

(million$) 

Time (s) 

DICOPT 11412.48 58.53 11204.86 18.43 

SBB 11376.57 1057.68 11222.34 3309.73 

BARON 9.0.6 11412.48 >36,000 11204.86 >36,000 

There are significant improvements in computational times for Model 1 and 

2 after binary reduction as can be seen in Table 2.5 (5.69s vs. 58.53s and 9.92s vs. 

18.43s). Moreover, there are possibilities to find even better local solution too 

from the reduced model as in the case of Model 2. The reduced models (Model 

1R and 2R) should yield the same optimal solutions as the original models (Model 

1 and 2), respectively, for small connection costs but there are slight differences 

in the NPV values reported in Table 2.5 as these models are solved here with 

DICOPT that gives the local solutions. The reformulated MILP after binary 

reduction Model 3R becomes slightly expensive to solve as compared to finding 

local solutions for the original MINLP models, but the solution obtained in this 

case is the global one (within 2% optimality tolerance). Notice that the MILP 

solutions can be either lower (instance 1) or higher (instance 2) than the global 

optimal for MINLP models as these involve approximations of the three 

functions, i.e. oil deliverability, cumulative water and cumulative gas produced. 

Therefore, the resulting MILP can over or underestimate the original NPV 

function. We do not present the result of Model 3 here as it gives the same NPV 

as Model 3R but at a much higher computational expense since a larger number of 

binary variables is involved in the model.  

Note that some of the binary variables are pre-fixed in all of the models 

considered based on the earliest installation time of the FPSO facilities and 

corresponding limitations on the FPSO expansions, field-FPSO connections and 

drilling of the wells in the fields that improves the computational performance of 

these models.  The solution of Model 3R can also be used to fix discrete variables 
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in the MINLPs to obtain near optimal solutions to the original problem as done 

for instance 1. The solutions of the NLPs obtained after fixing binary decisions in 

Model 1 and 2 are 11412.48 and 11356.31 respectively. We can observe that none 

of the solver in Table 2.4 could provide better NPV values than this case. Overall, 

we can say that the results for this larger instance also show similar trends as what 

is observed for instance 1. 

    Table 2.5: Comparison of models 1, 2 and 3 with and without binary reduction 

  Model 1 Model 1R Model 2 Model 2R Model 3R 

Constraints 3,543 3,432 5,543 5,432 8,663 

Continuous 
Var. 2,781 2,572 3,461 3,252 6,103 

Discrete Var. 477 301 477 301 451 

SOS1 Var. 0 0 0 0 400 

NPV(million$) 11412.48 11335.01 11204.86 11294.82 11259.61 

Time(s) 58.53 5.69 18.43 9.92 871.80 

     *Model 1 and 2 solved with DICOPT 2x-C, Model 3 solved with CPLEX 12.2 

2.6.3 Instance 3  

 

 

In this instance we consider 10 oil fields (Figure 2.4) that can be connected 

to 3 FPSOs with 23 possible connections. There are a total of 84 wells that can be 

drilled in all of these 10 fields and the planning horizon considered is 20 years. 

Field-9

FPSO-2 FPSO-3

Field-2

Field-1

Field-3 Field-5

FPSO-1

Field-4

Total Oil/Gas 

Production

Field-10

Field-6

Field-8
Field-7

Figure 2.4: Instance 3 (10 Fields, 3 FPSOs, 20 years) 
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The optimal solution of this problem that corresponds to Model 2R solved 

with DICOPT 2x-C, suggests to install all the 3 FPSO facilities in the first time 

period with their respective liquid (Figure 2.5-a) and gas (Figure 2.5-b) capacities. 

These FPSO facilities are further expanded in future when more fields come 

online or liquid/gas flow rates increases as can be seen from these figures.  

 

 Figure 2.5: FPSO installation and expansion schedule 

 

 

After initial installation of the FPSO facilities by the end of time period 3, 

these are connected to the various fields to produce oil in their respective time 

periods for coming online as indicated in Figure 2.6. The well drilling schedule 

for these fields in Figure 2.7 ensures that the maximum number of wells drilling 

limit and maximum potential wells in a field are not violated in each time period t. 
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Figure 2.6: FPSO-field connection schedule 
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We can observe from these results that most of the installation and expansions are 

in the first few time periods of the planning horizon.  

  

 

 

 

 

 

 

Other than these investment decisions, the operations decisions are the 

production rates of oil and gas from each of the fields, and hence, the total flow 

rates for the installed FPSO facilities that are connected to these fields as can be 

seen from Figures 2.8 (a)-(b). Notice that the oil flow rates increases initially until 

all the fields come online and then they start to decrease as the oil deliverability 

decreases when time progresses. Gas flow rate, which depends on the amount of 
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Figure 2.8: Total flowrates from each FPSO facility 

(a) Total oil flowrates from FPSO’s        (b) Total gas flowrates from FPSO’s 
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oil produced, also follows a similar trend. The total NPV of the project is 

$30946.39M. 

Table 2.6: Comparison of various models and solvers for Instance 3 

  Model 1  Model 2  

Constraints 5,900 10,100 

Continuous Var. 4,681 6,121 

Discrete Var. 851 851 

 Solver 

Optimal NPV 

(million$) 

Time (s) Optimal NPV 

(million$) 

Time (s) 

DICOPT 31297.94 132.34 30562.95 114.51 

SBB 30466.36 4973.94 30005.33 18152.03 

BARON 9.0.6 31297.94 >72,000 30562.95 >72,000 

 

  Table 2.7: Comparison of models 1, 2 and 3 with and without binary reduction  

  Model 1 Model 1R Model 2 Model 2R Model 3R 

Constraints 5,900 5,677 10,100 9,877 17,140 

Continuous 

Var. 4,681 4,244 6,121 5,684 12,007 

Discrete Var. 851 483 851 483 863 

SOS1 Var. 0 0 0 0 800 

NPV(million$) 31297.94 30982.42 30562.95 30946.39 30986.22 

Time(s) 132.34 53.08 114.51 67.66 16295.26 

  *Model 1 and 2 solved with DICOPT 2x-C, Model 3 with CPLEX 12.2 

Tables 2.6-2.7 represent the results for the various model types considered 

for this instance. We can draw similar conclusions as discussed for instances 1 

and 2 based on these results. DICOPT performs best in terms of solution time and 

quality, even for the largest instance compared to other solvers as can be seen 

from Table 2.6. There are significant computational savings with the reduced 

models as compared to the original ones for all the model types in Table 2.7. Even 

after binary reduction of the reformulated MILP, Model 3R becomes expensive to 

solve, but yields global solutions, and provides a good discrete solution to be 

fixed/initialized in the MINLPs for finding better solutions.   

The optimal NPV that come from the Models 1 and 2 after fixing discrete 

variables based on the MILP solution (even though it was solved within 10% of 

optimality tolerance) are $31329.81 M and $31022.48M, respectively. These are 

the best solutions among all other solutions obtained in Table 2.6 for the 
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respective MINLPs. Notice that although the advantage from using the MILP 

formulation in terms of the NPV value is not very significant for this instance 

since the required solution time is large, but it does yield a global solution that is 

difficult to obtain for the MINLPs. In addition, when we increase the complexity 

of the basic deterministic model such as to fiscal contracts and/or stochastic 

model, the advantage of MILP formulation becomes more apparent due to the 

availability of the robust MILP solvers compared to MINLP.  

Remarks 

(a) The optimal NPV of both models 1 and 2 are very close (within ~1-3%) for all 

the instances. Moreover, the difference is even smaller when we compare the 

global solutions and they tend to have identical discrete decisions at the 

optimal solution.  Hence, in principle we can use either of these models for the 

oilfield problem directly or with some other method. However, since Model 1 

involves a large number of non-convexities because of the extra bilinear terms 

in equations (2.20)-(2.21), it is more prone to converging to local solutions, 

and may need good initializations as compared to Model 2. Moreover, as 

opposed to Model 2, it is not possible to convert Model 1 to an MILP model 

that can be solved to global optimality.  

(b) Model 2 is more accurate in terms of physical representation of water and gas 

flow profiles than Model 1 as explained in Appendix B, especially when the 

length of each time period is large. Model 1 usually overestimates the NPV as 

it assumes constant GOR and WOR for a time period t while extracting the oil 

from a field during that time period, where WOR and GOR are calculated 

based on the fractional recovery by the end of time period t-1, i.e. point 

estimates are used for WOR and GOR. On the other hand, Model 2 estimates 

the cumulative water and gas flow rates at the end of time period t taking into 

account the amount of oil produced in that time period and variability of 

WOR and GOR during current time period t i.e. average values of WOR and 

GOR over the time period. Because of the general trend of increasing WOR 

and GOR as time progresses and hence underestimating the actual water and 

gas flow rates in Model 1 during each time period t due to point estimates for 
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WOR and GOR at the end of time t-1, it yields a slightly higher NPV as can 

be seen from the solutions obtained. In contrast, if WOR and GOR are 

estimated at the end of time period t instead t-1, the solutions from Model 1 

should give lower NPV values as compared to Model 2.   

2.7 Conclusions 

In this chapter, we have proposed a new deterministic MINLP model for offshore 

oilfield infrastructure planning considering multiple fields, three components (oil, 

water and gas) explicitly in the formulation, facility expansions decisions and 

nonlinear reservoir profiles. The model can determine the installation and 

expansion schedule of facilities and respective oil, liquid and gas capacities, 

connection between the fields and FPSO’s, well drilling schedule and production 

rates of oil, water and gas simultaneously in a multiperiod setting. The resulting 

model yields good solutions to the realistic instances when solving with DICOPT 

directly. Furthermore, the model is reformulated into an MILP using piecewise 

linearization and exact linearization techniques with which the problem can be 

solved to global optimality in a more consistent manner. The proposed MINLP 

and MILP formulations are further improved by using a binary reduction scheme 

resulting in the improved local solutions and more than an order of magnitude 

reduction in the solution times. Realistic instances involving 10 fields, 3 FPSOs 

and 20 years planning horizon have been solved to compare the computational 

performance of the proposed MINLP and MILP formulations. The models 

presented here are very general and can either be used for simplified cases (e.g. 

linear profiles for reservoir, fixed well schedule etc.) or extended to include other 

complexities.  

Nomenclature 

Indices 

t, τ          time periods, Tt ,  

f          field        

fpso  FPSO facility 
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Integer Variables    

well

tfI ,  
   Number of wells drilled in field f at the beginning of time period t                                                                                                                    

well

tfN ,         Number of wells available in field f for production in time period t         

Binary Variables 

tfpsob ,   whether or not FPSO facility fpso is installed at the beginning of  

  time period t 

ex

tfpsob ,           whether or not FPSO facility fpso is expanded at the beginning of 

time period t  

C

tfpsofb ,,  whether or not a connection between field f and FPSO facility fpso 

is installed at the beginning of time period t 

R

tfpsofb ,,  whether or not a connection between field f and FPSO facility fpso 

is installed  

Continuous Variables 

 NPV            net present value 

tREV            total revenues in time period t 

tCOST
 

total costs in time period t 

tCAP         total capital costs in time period t 

tOPER
 

total operating costs in time period t 

tot

tx             total oil flow-rate in time period t 

tot

tw             total water flow-rate in time period t 

tot

tg             total gas flow-rate in time period t 

tfx ,             oil production rate from field f in time period t 

tfw ,              water production rate from field f in time period t 

tfg ,  
 gas production rate from field f in time period t 
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tfxc ,   
cumulative oil produced from field f by the end of time period t 

tfpsofwc ,,  
cumulative water produced from field f to FPSO facility fpso by  

  the end of time period t 

tfpsofgc ,,  
cumulative gas produced from field f to FPSO facility fpso by the  

  end of time period t 

tffc ,   fraction of oil recovered from field f  by the end of time period t 

well

tfpsofx ,,  
oil flow rate per well from field f to FPSO facility fpso in time  

  period t 

welld

tfpsofQ ,

,,          field deliverability (maximum oil flow rate) per well for field f and 

  FPSO facility fpso combination in time period t  

wc

tfpsofQ ,,          dummy variable for cumulative water produced from field f to  

  FPSO facility fpso by the end of time period t 

gc

tfpsofQ ,,          dummy variable for cumulative gas produced from field f to FPSO  

  facility fpso by the end of time period t 

tfpsox ,              total oil flow rate into FPSO facility fpso in time period t 

tfpsow ,              total water flow rate into FPSO facility fpso in time period t 

tfpsog ,   total gas flow rate into FPSO facility fpso in time period t 

tfpsofx ,,  
total oil flow rate from field f to FPSO facility fpso in time period t 

tfpsofw ,,            total water flow rate from field f to FPSO facility fpso in time  

  period t 

tfpsofg ,,            total gas flow rate from field f to FPSO facility fpso in time  

  period t 

oil

tfpsoQ ,  oil processing capacity of FPSO facility fpso in time period t                

liq

tfpsoQ ,  liquid (oil and water) capacity of FPSO facility fpso in time  

  period t                    
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gas

tfpsoQ ,  gas capacity of FPSO facility fpso in time period t                                                                     

oil

tfpsoQI ,  oil installation capacity of FPSO facility fpso at the beginning of  

  time period t  

liq

tfpsoQI ,  liquid installation capacity of FPSO facility fpso at the beginning  

  of time period t  

gas

tfpsoQI ,  gas installation capacity of FPSO facility fpso at the beginning of  

  time period t  

oil

tfpsoQE ,  oil expansion capacity of FPSO facility fpso at the beginning of  

  time period t  

liq

tfpsoQE ,     liquid expansion capacity of FPSO facility fpso at the beginning of  

  time period t  

gas

tfpsoQE ,      gas expansion capacity of FPSO facility fpso at the beginning of  

  time period t  

Parameters 

tfpsoFC ,    fixed capital cost for installing FPSO facility fpso at the beginning  

  of time period t  

tfpsofFC ,,     fixed cost for installing the connection between field f and  FPSO  

  facility fpso at the beginning of  time period t  

well

tfFC ,       fixed cost for drilling a well in field f at the beginning of time  

  period t  

liq

tfpsoVC ,  variable capital cost for installing or expanding the liquid (oil and 

water) capacity of FPSO facility fpso at the beginning of  time 

period t 

gas

tfpsoVC ,           variable capital cost for installing or expanding the gas capacity of 

FPSO facility fpso at the beginning of  time period t 



 
 

59 
 

liq

tOC           operating cost for per unit of liquid (oil and water) produced in  

  time period t  

gas

tOC        operating cost for per unit of gas produced in time period t  

fREC              total amount of recoverable oil from field f 

oilwell

fpsofU ,

,       Upper bound on the oil flow rate per well from field f to FPSO  

  facility fpso    

oil

fpsoU     Upper bound on the installation or expansion of oil capacity of a  

  FPSO facility  

liq

fpsoU         Upper bound on the installation or expansion of liquid capacity of  

  a FPSO facility 

gas

fpsoU       Upper bound on the installation or expansion of gas capacity of a  

  FPSO facility  

well

tUN  Maximum number of wells that can be drilled in field f during  

  planning horizon T 

well

tUI      Maximum number of wells that can be drilled during each time  

  period t       

wc

fpsofM ,          Maximum cumulative water that can be produced for a field-FPSO 

  connection 

gc

fpsofM ,        Maximum cumulative gas that can be produced for a field-FPSO  

  connection   

 l1  lead time for initial installation of a FPSO facility   

l2  lead time for expansion of an earlier installed FPSO facility                                                                             

µ  Maximum fraction of the initial built FPSO capacities that can be  

  expanded            

 αt          price of oil in time period t                                                                                              

βt           price of gas in time period t                 
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dt                   discounting factor for time period t                                                                                   

δt           number of days in time period t       

 a( ),b( ),c( ),d( )   coefficients for polynomials used for reservoir models      
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Chapter 3 

 

Modeling and computational 

strategies for optimal development 

planning of offshore oilfields under 

complex fiscal rules 

 

 

3.1 Introduction  

In this chapter, we address the optimal development planning of offshore oil and 

gas fields under complex fiscal rules considering the multi-field site deterministic 

model presented in chapter 2 as a basis. The proposed fiscal model considers the 

trade-offs between optimal investment and operating decisions that correspond to 

the simple NPV based model and resulting overall NPV for the oil company after 

paying government share, and yields improved decisions in a more realistic 

setting for the enterprise (see Figure 3.1). 

  

 

 

 

 

 

 

 

Decisions,           

Total NPV                          

Contractor’s NPV                                    

after govt. share 

Oilfield Design and Operational 

planning model 

Fiscal calculations including 

royalty, cost oil, profit share, etc.  

Optimal Decisions 

and Contractor’s NPV 

Figure 3.1: Oilfield Planning with fiscal considerations 
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3.1.1 Type of Contracts  

When an oil company needs to sign a contract or agreement with the host 

government to explore and develop the petroleum resources in a country, there are 

a variety of contracts that are used in the offshore oil and gas industry (Babusiaux 

et al., 2007; Johnston, 1994; Sunley et al., 2002; and Tordo, 2007). Although the 

terms of a particular agreement are usually negotiated between both the entities in 

practice, these contracts can broadly be classified into two main categories: 

(i) Concessionary System 

A concessionary (or tax and royalty) system usually involves royalty, cost 

deduction and tax. Royalty is paid to the government at a certain percentage of the 

gross revenues. The net revenue after deducting costs becomes taxable income on 

which a pre-defined percentage is paid as tax which may include both corporate 

income tax and a specific profit tax. The total contractor’s share involves gross 

revenues minus royalty and taxes in each year. The basic difference as compared 

to the production sharing agreement is that the oil company keeps the right to all 

of the oil and gas produced at the wellhead and pays royalties, bonuses, and other 

taxes to the government. These contracts are used in countries such as Canada, 

USA and the UK. 

(ii) Production Sharing Agreements (PSAs)  

The revenue flow in a typical Production Sharing Agreement can be seen as in 

Figure 3.2 (World Bank, 2007). First, in most cases, the company pays royalty to 

the government at a certain percentage of the total oil produced.  After paying the 

royalties, some portion of the remaining oil is treated as cost oil by the oil 

company to recover its costs. There is a ceiling on the cost oil recovery to ensure 

revenues to the government as soon as production starts. The remaining part of 

the oil, called profit oil, is divided between oil company and the host government 

at a certain percentage. The oil company needs to further pay income tax on its 

share of profit oil. Hence, the total contractor’s (oil company) share in the gross 

revenue comprises of cost oil and contractor’s profit oil share after tax. The other 

important feature of a PSA is that the government keeps rights to the oil produced 

at wellhead, and transfers title to a portion of the extracted oil and gas to oil 
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company that works as a contractor at an agreed delivery point. Notice that the 

cost oil limit is one of the key differences with a concessionary system. These 

contracts are used in countries such as Cambodia, China, Egypt, India, Angola 

and Nigeria. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.2 Type of Fiscal terms for Concessionary Systems and PSA 

The specific rules defined in such a contract (either concessionary or PSA, 

hybrid) between oil company and host government determine the profit that the 

oil company can keep, as well as the royalties and profit oil share that are paid to 

the government. These profit oil fractions, royalty rates define the fiscal terms of 

a particular contract and can be either of the following two types: 

(i) Regressive Fiscal Terms:  

These fiscal terms are not directly linked to the profitability of the project, e.g. 

fixed percentage of royalty or profit oil share for the entire planning horizon. 

Therefore, the so called tier structure (levels) is usually absent.  

(ii) Progressive (Sliding scale) Fiscal Terms:   

In this case fiscal terms (e.g. profit oil shares, royalty rates) are based on the 

profitability of the project, i.e. these terms penalize higher production rates, where 

cumulative oil produced, daily production, rate of return, R-factor, are the typical 

Income 

Tax 

Production 

Cost Oil Profit Oil 

Contractor’s 

Share 

Government’s 

Share 

Total Government’s Share Total Contractor’s Share 

Contractor’s 

after-tax Share 

Royalty 

Figure 3.2: Revenue flow for a typical Production Sharing Agreement 
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profitability measures that determine the tier structure (levels) for these contract 

terms. For instance, if the cumulative production is in the range of first tier,

2000  txc , the contractor receives 50% of the profit oil, while if the cumulative 

production reaches in tier 2, 400200  txc , the contractor receives 40% of the 

profit oil, and so on (see Figure 3.3). In practice, as we move to the higher tier, the 

percentage share of contractor in the total production decreases. Notice that this 

tier structure is a step function, which requires additional binary variables to 

model and makes the problem harder to solve. 

 

 

3.1.3 Ringfencing Provisions 
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Ringfencing is an important concept that is usually part of the fiscal contracts 

and imposed by the government, which affects the cash flows over the planning 

horizon. In a typical ringfencing provision, investment and operational costs for a 

specified group of fields or block can only be recovered from the revenue 

generated from those fields or block (see Figure 3.4). It means that the set of 

particular fields are “ringfenced”. Therefore, income derived from one contract 

area or project cannot be offset against losses from another contract area or 

project. In financial terms, a ringfencing provision basically defines the level at 

which all fiscal calculations need to be done, and restricts the oil companies to 

balance the costs and revenues across various projects/blocks for minimizing the 

tax burden. For example, fiscal calculations for Fields 1-3 (Ringfence 1) and Field 

4-5 (Ringfence 2) in Figure 3.4 cannot be consolidated at one place. Notice that in 

general a field is associated to a single ringfence, while a ringfence can include 

more than one field. In contrast, a facility can be connected to multiple fields from 

different ringfences for producing oil and gas. Ringfencing provisions are more 

popular in production sharing contracts. 

 The main motivation of including ringfencing provisions by the host 

governments is to protect the tax revenues. However, the existence and extent of 

ringfencing affects the overall level of tax receipts. The more restrictive 

ringfencing provisions (e.g. individual field is separately ringfenced) can lead to 

situations that may not be economically viable to develop/operate for the oil 

companies. On the other hand, the relaxation of the ringfencing provisions (e.g. 

cost and revenues can be shared across any field for tax calculations) may lead to 

significant tax saving for the oil companies since revenues from the favorable 

fields can be used to offset the losses from other fields. Therefore, the number of 

ringfences and distribution of the fields among ringfences involve various trade-

offs that include productivity of the field, crude quality, reservoir size, 

development costs etc., so that these fiscal provisions are neither very 

conservative nor very relaxed. Moreover, each ringfence can be assigned a 

different cost recovery limit, profit sharing rate etc. based on these factors.   
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Ringfencing provisions and income tax rates are usually legislated in the 

country and do not provide opportunity for negotiation, while cost recovery and 

profit sharing rates can be subject to negotiation.  Therefore, from the perspective 

of the oil companies, since they have limited control over the ringfencing 

provisions and distribution of fields among various ringfences, they usually try to 

include many fields from multiple ringfences in the model for making investment 

and operational decisions that allows to consider the trade-offs among these fields 

and/or ringfences. In general, it is better to have more fiscal aspects of a contract 

that are subject to negotiation, since flexibility is often required to offset 

differences between basins, regions, and license areas within a country (Johnston, 

1994) . 

The above fiscal contracts, terms and ringfencing provisions are the 

backbone of most of the contracts that are currently used, and can have significant 

impact on the revenues. In addition, there can be some other fiscal considerations 

for a particular contract of interest, but for simplicity we only consider the 

important financial elements as described above. Notice that the royalties and/or 

government profit oil share that result from a particular contract can represent a 

significant amount of the gross revenues. Therefore, it is critical to consider these 

contract terms explicitly during the oilfield planning phase to assess the actual 

economic potential of such a project.  

This chapter is organized as follows: we first describe the oilfield planning 

problem with fiscal considerations in section 3.2 and present a general model in 

section 3.3 that includes progressive fiscal terms and ringfencing provisions. The 

ways to derive a specific contract from the general model are highlighted in the 

next section. In section 3.5, we propose new reformulation, relaxation and 

approximation schemes to reduce the computational burden for the problems in 

this class. Numerical results of several instances of the development planning 

problem under complex fiscal rules are reported in section 3.6.  
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3.2 Problem Statement 

We consider the offshore oilfield infrastructure as in chapter 2 that consists of a 

set of oil fields F = {1,2,…} for producing oil using a set of FPSO facilities, 

FPSO = {1,2,…} as seen in Fig. 3.4. Each oilfield consists of a number of 

potential wells to be drilled using drilling rigs, which are then connected to these 

FPSO facilities through pipelines to produce oil. We assume that the location of 

each potential FPSO facility and its possible connections to the given fields are 

known. Notice that each FPSO facility can be connected to more than one field to 

produce oil, while a field can only be connected to a single FPSO facility due to 

engineering requirements and economic viability of the offshore oilfield 

development projects. There can be a significant amount of water and gas that 

comes out with the oil during the production process that needs to be considered 

while planning for FPSO capacity installations and expansions. The water is 

usually re-injected after separation from the oil, while the gas can be sold in the 

market. In this case we do not consider water or gas re-injection, i.e. we consider 

natural depletion of the reserves. For simplicity, we only consider FPSO facilities. 

The proposed model can easily be extended to other facilities such as tension leg 

platforms (TLPs). 

In addition, there are fiscal aspects that need to be accounted for. 

Particularly, we consider the cost recovery ceiling that is linked to gross revenues, 

profit oil share and taxes as the main elements of the fiscal terms (see Figure 3.2). 

Progressive (sliding scale) profit share of the contractor is also considered that can 

be linked to any of the profitability measures, e.g. cumulative oil produced, daily 

oil production, R-factor, IRR, where I = {1,2,…} is the set of corresponding tiers 

for this sliding scale. The definition of R-factor can be contract specific but in its 

most general form, it is calculated as the ratio of the contractor’s cumulative 

revenue after taxes and royalty to the contractor’s cumulative cost (Kaiser and 

Pulsipher, 2004). On the other hand, the internal rate of return (IRR) on an 

investment or project is defined as the "annualized effective compounded return 

rate" or "rate of return" that makes the net present value of the cash flows (both 

positive and negative) from a particular investment equal to zero. In general, as 
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values of the above profitability measures increase, the profit oil share of the 

contractor decreases.   

Notice that we do not consider explicit royalty provisions here as cost oil 

ceiling and royalties both are usually not imposed simultaneously in a PSA 

contract. However, including royalty provisions with cost oil ceiling is 

straightforward. A set of ringfences RF = {1,2,…} among the given fields is 

specified (see Figure 3.4) to ensure that fiscal calculations are to be done for each 

ringfence separately. These ringfences may or may not have the same fiscal rules. 

Notice that, the fiscal terms considered here collectively define a general 

progressive PSA with ringfencing provisions. The variety of other contracts can 

be derived as a special case from these rules. Notice that for simplicity, the cost 

recovery ceiling fraction and tax rates are assumed to be fixed percentages (no 

sliding scale). However, for the problems where these fiscal terms are also 

progressive, a similar approach as used for progressive profit oil fraction can 

directly be applied. 

The objective is to determine the optimum investment and operation 

decisions to maximize the contractor’s NPV for a long-term planning horizon 

after paying the government share based on the above fiscal considerations. The 

planning horizon is discretized into a number of time periods t, typically each 

with 1 year of duration. Investment decisions in each time period t include, which 

FPSO facilities should be installed or expanded, and their respective installation 

or expansion capacities for oil, liquid and gas, which fields should be connected 

to which FPSO facility, and the number of wells that should be drilled in a 

particular field f given the restrictions on the total number of wells that can be 

drilled in each time period t over all the given fields. Operating decisions include 

the oil/gas production rates from each field f in each time period t. It is assumed 

that the installation and expansion decisions occur at the beginning of each time 

period t, while operation takes place throughout the time period. There is a lead 

time of l1 years for each FPSO facility initial installation, and a lead time of l2 

years for the expansion of an earlier installed FPSO facility. Once installed, we 
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assume that the oil, liquid (oil and water) and gas capacities of a FPSO facility 

can be expanded only once.  

Field deliverability, i.e. maximum oil flowrate from a field, water-oil-ratio 

(WOR) and gas-oil-ratio (GOR) are approximated by a cubic equations (a)-(c) as 

in the previous chapter, while cumulative water produced and cumulative gas 

produced from a field are represented by fourth order separable polynomials, eq. 

(d)-(e), in terms of the fractional oil recovered from that field, respectively. 

Notice that these fourth order polynomials correspond to the integration of the 

cubic equations for WOR and GOR as explained in chapter 2. The motivation for 

using polynomials for cumulative water produced and cumulative gas produced, 

eq. (d)-(e), as compared to WOR and GOR, eq. (b)-(c), is to avoid bilinear terms, 

eq. (f)-(g), in the formulation and allow converting the resulting model into an 

MILP formulation using piecewise linear approximations. Furthermore, all the 

wells in a particular field f are assumed to be identical for the sake of simplicity 

leading to the same reservoir profiles, eq. (a)-(g), for each of these wells.  

 

1,1

2

,1

3

,1 )()( dfccfcbfcaQ ffffff

d

f 
  

f          (a) 

ffffffff dfccfcbfcawor ,2,2

2

,2

3

,2 )()( 
 

f
         (b) 

ffffffff dfccfcbfcagor ,3,3

2

,3

3

,3 )()( 
 

f
         (c) 

fffffffff fcdfccfcbfcawc ,4

2

,4

3

,4

4

,4 )()( 
 

f           (d)
 

fffffffff fcdfccfcbfcagc ,5

2

,5

3

,5

4

,5 )()( 
 

f
         (e) 

fff xworw .
      

f   (f) 

fff xgorg .
      

f
         (g) 

 

A general MINLP model for oilfield development planning with fiscal 

considerations is presented next based on the infrastructure, fiscal terms and 

reservoir characteristics described in this section. 
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3.3 Oilfield Development Planning Model 

(a) Models without fiscal considerations: 

In chapter 2, we proposed efficient multiperiod MINLP models (Models 1 and 2) 

for oilfield infrastructure planning problem described above without fiscal 

considerations. Model 2 is also reformulated into an MILP (Model 3) to solve it 

to global optimality. These models were further reduced (Models 1R, 2R and 

3R) by neglecting the timing of the piping investments to improve the 

computational efficiency. The basic features of these models can be summarized 

as follows: 

Model 1: MINLP based on WOR, GOR and corresponding bilinear terms 

Model 2: MINLP based on separable functions for cumulative water and 

cumulative gas produced derived from integration of WOR and GOR expressions   

Model 3: Derived from MINLP Model 2 using piecewise linearization and exact 

linearization techniques  

Model 1R, 2R and 3R: Derived from corresponding Models 1, 2, and 3, 

respectively, using binary reduction scheme that relies on the fact that connection 

costs are much smaller as compared to other investment costs.   

Based on the computational experience in the previous chapter, Model 3R is 

the most efficient as it can directly be solved to global optimality in reasonable 

time as compared to other models. Furthermore, its solution can be used to fix the 

design decisions in the MINLP models to obtain near optimal solutions of these 

models. 

(b) Proposed Models with fiscal considerations: 

In this section, we incorporate the complex fiscal rules in the above 

MINLP/MILP models. Particularly, we consider the progressive PSA with 

ringfencing provisions that is the most general form of fiscal terms. The proposed 

models consider the trade-offs involved between investment and operations 

decisions and resulting royalties, profit shares that are paid to the government, and 

yield the maximum overall NPV for the contractor (see Figure 3.1) due to 
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improved decisions. The indices, variables and parameters used in the model are 

summarized in Appendix C.    

(i) Objective Function: The objective function is to maximize total NPV of the 

contractor as in (3.1), which is the difference between discounted total 

contractor’s gross revenue share and total cost (total capital plus operating costs) 

over the planning horizon (3.2). The total contractor’s share in a particular time 

period t is the sum of the contractor’s share over all the ringfences as given in 

equation (3.3). Similarly, constraints (3.4) and (3.5) represent the total capital and 

operating expenses in time period t, which is the sum of respective costs over all 

the ringfences in that time period.  

NPVMax
         (3.1) 
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t OPEROPER ,
     

t
                (3.5)   

(ii) Capital Costs: The overall capital expenses associated to a ringfence rf 

contains two components as given in equation (3.6), see Figure 3.4. One capital 

cost component, equation (3.7), is field specific and accounts for the connection 

costs between a field and a FPSO facility, and cost of drilling the wells for each of 

the field in that ringfence rf, i.e. set Frf ,  for each time period t. The second 

capital cost component for a ringfence is FPSO specific as given in equation (3.8), 

and it depends on the capital expenses for the corresponding FPSO facilities that 

are installed during the planning horizon. 
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
fpso

tfpsorftrf DFPSOCCAP ,,,2
    

trf ,  (3.8) 

The total cost of an FPSO facility (3.9) consists of fixed installation costs, 

variable installation and expansion costs corresponding to liquid and gas 

capacities. Each FPSO facility can be connected to multiple fields from different 

ringfences as can seen from Figure 3.4. Therefore, to calculate the second cost 

component in (3.8) for a specific ringfence these FPSO costs need to be 

disaggregated as in (3.10) over various fields (and therefore ringfences as in 

(3.11)) based on the size of the fields, where set Ffpso is the set of all the fields that 

can be connected to FPSO facility fpso. Constraint (3.12) sets the binary variable 

on

fpsofb , to 1 only if that field-FPSO connection comes online during the given 

planning horizon. This binary variable is further used in constraint (3.13) to 

ensure that the disaggregated FPSO cost can only be accounted for a field if that 

field is connected to the FPSO facility. Constraint (3.14) calculates the value of 

disaggregated FPSO cost for a specific field based on the ratio of the size of that 

field to sum of the total field sizes that are connected to that FPSO facility during 

given planning horizon. Notice that only those fields sizes are considered for 

calculations that are actually connected to that FPSO facility, i.e. for which the 

binary variable 
on

fpsofb , equals 1. In general, we consider a long planning horizon 

for the development planning in which the fields may not be depleted completely 

during this time horizon. However, the installed FPSO facilities and connections 

usually remain in operation until it becomes uneconomical to produce from the 

given fields, which may exceed few years over the time horizon considered in the 

planning model. Therefore, it allows us to disaggregate the FPSO costs over the 

various ringfences based on the recoverable volume of the oil from a field as 

described above to be sufficiently accurate and computationally efficient by 

avoiding nonlinearities.        
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Constraint (3.14) can be re-written as constraint (3.15), which can be further 

simplified by setting the positive variables field
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terms involving binary variables on

fpsofb , ,we perform exact linearization, Glover 

(1975), for defining the variables  
field

tfpsoffZD ,,',  and tfpsofZD ,, as in constraints (3.17)-

(3.20) and (3.21)-(3.24), respectively, which in fact is equivalent to the convex 

hull of the corresponding disjunction of the nonlinear form. 
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(iii) Operating Costs: The total operating expenses that correspond to ringfence 

rf , eq. (3.25), are the operation costs corresponding to the total amount of liquid 

and gas produced in each time period t from that ringfence. 
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(iv) Revenues: The gross revenues (3.26) in each time period t for a ringfence rf, 

are computed based on the total amount of oil produced and its selling price, 

where total oil flow rate in a time period t for ringfence rf, is calculated as the sum 

of the oil production rates over all the fields in that ringfence, i.e. set Frf , as given 

in equation (3.27).  Given that all the fiscal terms are defined on the basis of total 

oil produced, for simplicity we only consider the revenue generated from the oil 

sales, which is much larger in general as compared to the revenue from gas. In 

practice, due to large transportation costs involved in shipping gas from offshore 

locations, it is usually re-injected or flared, if the gas revenue represents a small 

fraction of the oil revenues. However, extension to include the gas sales and/or 

fiscal terms associated is straightforward if the gas revenues are substantial.
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(iv) Total Contractor Share: The total contractor share that corresponds to 

ringfence rf in time period t is calculated in constraint (3.28) as the sum of 
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contractor’s profit oil share for that ringfence (after paying income tax) and the 

cost oil that it keeps to recover the expenses. The contractor needs to pay income-

tax on its profit oil share. Therefore, the contractor’s profit oil share before tax is 

the sum of contractor’s profit oil share after tax and income tax paid as in 

constraint (3.29).
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The contractor’s share before tax in each time period t is some fraction of the 

total profit oil during that period t for ringfence rf. Note that we assume here that 

this fraction, which is called profit oil fraction(
po

irff , ),
  

is based on a decreasing 

sliding scale system, where i is the index of the corresponding tier. The sliding 

scale system considered here is linked to the cumulative amount of oil produced

trfxc ,  by the end of that time period t from ringfence rf, see Figure 3.5. The other 

variables for this type of sliding scale system could be for instance the 

contractor’s IRR or R-factor. Therefore, for possible levels i (i.e. tiers) of 

cumulative amount of oil produced by the end of time period t, the corresponding 

contractor’s profit oil share, Figure 3.6, can be calculated from disjunction (3.30). 

In particular, variable tirfZ ,,  in the disjunction will be true if cumulative oil 

produced in time period t for a ringfence rf, lies between 
oil

irfL ,  and 
oil

irfU , , i.e. tier i 

is active in that time period t and corresponding profit oil fraction po

irff , is used for 

calculating the contractor’s profit oil share for ringfence rf. This disjunction 

(3.30) can further be rewritten as integer and mixed-integer linear constraints 

(3.31)-(3.38) using the convex-hull formulation (Raman and Grossmann, 1994). 

The solution time with the big-M formulation was much higher as compared to 

convex-hull formulation due to its weaker LP relaxation. Notice that the binary 

variables tirfZ ,, can also be represented as SOS1 variables. However, we did not 
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observe any specific improvements in the computational time with this alternate 

approach.  
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Figure 3.5: Sliding scale profit oil fraction  Figure 3.6: Contractor’s share of profit oil  
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The cumulative amount of oil produced from a ringfence rf  by the end of 

time period t is calculated in constraint (3.39) as the sum of the cumulative 

amount of oil produced by that time period from all the fields associated to that 

ringfence.           


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trf ,  (3.39) 

The tax paid by the contractor on its profit oil share depends on the tax rate (

tax

trff , ) as in constraint (3.40), which is a given parameter assumed to have a fixed 

value.   

beforetax

trf

tax

trftrf ConShfTax ,,, 
    

trf ,
 

(3.40) 

Constraint (3.41) states that total profit oil in time period t for a ringfence rf, 

is the portion of the gross revenue that remains after subtracting the cost oil in that 

period t.  

trftrftrf COREVPO ,,, 
     

trf ,
 

(3.41) 

The portion of the total revenues that the oil company can claim for cost 

recovery, i.e. cost oil, is normally bounded above by the so-called “cost recovery 

ceiling” or “cost stop”. Therefore, the cost oil in time period t for a ringfence rf, 

constraint (3.42), is calculated as the minimum of the cost recovery in that time 

period and maximum allowable cost oil (cost recovery ceiling). The cost recovery 

ceiling can be a fixed fraction ( 10 ,  CR

trff )
 
of the gross revenue (Kaiser and 

Pulsipher, 2004) or it might be based on a sliding scale system. We assume here 

that the fraction
CR

trff ,  
is independent of project economics, i.e. a fixed parameter. 

Constraint (3.42) can further be rewritten as mixed-integer linear constraints 

(3.43)-(3.48). Notice that equation (3.42) can also be represented as a disjunction 

and its corresponding convex-hull formulation. However, based on our 

computational experience, we observed that using the convex-hull instead of the 

big-M constraints, (3.43)-(3.48), was much slower due to additional continuous 
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variables that were required to model the problem, whereas the LP relaxation was 

almost identical.   

),min( ,,,, trf

CR

trftrftrf REVfCRCO 
   

trf ,
 

(3.42) 

)1( ,,,

co

trftrftrf bMCRCO 
    

trf ,
 

(3.43) 

)1( ,,,

co

trftrftrf bMCRCO 
    

trf ,
 

(3.44) 

co

trftrf

CR

trftrf bMREVfCO ,,,, 
    

trf ,
 

(3.45) 
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trftrf

CR

trftrf bMREVfCO ,,,, 
    

trf ,
 

(3.46) 

trftrf CRCO ,,        
trf ,

 
(3.47) 

trf

CR

trftrf REVfCO ,,,       
trf ,

 
(3.48) 

Cost recovery in time period t for a ringfence rf, constraint (3.49), is the sum 

of capital and operating costs in that period t and cost recovery carried forward 

from previous time period t-1. Any unrecovered cost (that is carried forward to 

the next period) in time period t for a ringfence rf,  is calculated as the difference 

between the cost recovery and cost oil in time period t as given in constraint 

(3.50). Notice that constraints (3.43)-(3.50) state that any capital and operating 

costs that are not recovered in the form of cost oil due to cost recovery ceiling in 

any time period t for a ringfence rf, are carried forwarded to the next time period 

for the cost recovery purposes.   

1,,,,  trftrftrftrf CRFOPERCAPCR
   

trf ,
 

(3.49) 

trftrftrf COCRCRF ,,, 
     

trf ,
 

(3.50) 

Constraints (3.1)-(3.13), (3.16)-(3.29), (3.31)-(3.41), (3.43)-(3.50) are linear 

and mixed-integer linear constraints that correspond to the fiscal part of the 

problem. Notice that we also have the non-negativity restriction on all of the 

variables involved in these constraints, except NPV, as revenues, costs, tax, profit 
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share, etc., that cannot be less than zero in any time period. These fiscal 

constraints can be included in either of the MINLP/MILP formulations in the 

previous chapter which corresponds to the reservoir constraints, field-FPSO flow 

constraints, FPSO capacity constraints, well drilling limitations and logic 

constraints. 

The resulting oilfield infrastructure planning models with fiscal 

considerations (Models 1F, 2F and 3F) correspond to MINLP (for Models 1 and 

2) or MILP (for Model 3) based on the type of reservoir profiles or their 

approximations used, which are described in chapter 2.  Table 3.1 summarizes the 

main features of the proposed MINLP and MILP models with fiscal 

considerations. Notice that Models 1-3 are the simple NPV based models in 

Figure 3.1, while Models 1F-3F consider the fiscal aspects described above and 

associated trade-offs during planning.  

 Table 3.1: Comparison of the proposed oilfield planning models 

 Model 1F Model 2F Model 3F 

Model Type MINLP MINLP MILP 

Oil Deliverability 3rd order polynomial 3rd order polynomial Piecewise Linear 

WOR 3rd order polynomial - - 

GOR 3rd order polynomial - - 

wc - 4th order polynomial Piecewise Linear 

gc - 4th order polynomial Piecewise Linear 

Bilinear Terms N*x 

x*WOR 

x*GOR 

N*x None 

MILP Reformulation Not Possible Possible Reformulated MILP  

Fiscal Calculations Yes Yes Yes 

 

It should be noted that the fiscal part of the problem only involves 

calculations as in constraints (3.1)-(3.13), (3.16)-(3.29), (3.31)-(3.41), (3.43)-

(3.50) for a given set of investment and operational decisions. In particular, all 

fiscal variables (cost oil, profit oil, tax etc.) are dependent variables that are pre-

defined functions of costs and revenues (or flows) as can also be seen from Figure 

3.1, and hence the total contractor’s share is also a function of costs and revenues, 

eq. (3.51). However, including the fiscal part in the problem provides a way to 

make investment and operations decisions that are also optimal in terms of fiscal 

aspects.     
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),....,;,.....,( ,2,1,,2,1,, trfrfrftrfrfrftrf REVREVREVCOSTCOSTCOSTfTotalConSh 
   

        
trf ,  (3.51) 

Remarks:  

The proposed non-convex MINLP models (Model 1F and 2F) for offshore oilfield 

planning with fiscal rules involves nonlinear non-convex constraints due to 

reservoir profiles that can lead to suboptimal solutions when solved with an 

MINLP method that assumes convexity (e.g. branch and bound, outer-

approximation; see Grossmann, 2002). However, the MILP formulation (Model 

3F) corresponds to Model 3 with fiscal constraints and can be solved to global 

optimality. The computational efficiency of the proposed MINLP and MILP 

models can be further improved by neglecting the timing of the piping 

investments. In particular, Model 1RF, 2RF and 3RF can be derived from 

corresponding Models 1R, 2R, and 3R, respectively, that are described in the 

previous chapter by including the fiscal constraints, (3.1)-(3.13), (3.16)-(3.29), 

(3.31)-(3.41) and (3.43)-(3.50).  

In summary, Model 3RF, which is an MILP and derived from Model 3R, 

corresponds to the oilfield planning with fiscal considerations after binary 

reduction, is most efficient as it can be directly solved to global optimality in 

reasonable time as compared to other models described above. Moreover, its 

solution can also be used to fix the investment decisions in the MINLP models to 

obtain the near optimal solution of the original problem. Therefore, we use Model 

3RF as a basis for the proposed reformulations, solution strategies and 

computational experiments presented in the next sections. Notice that these 

approaches are directly applicable to the other models, but it would be much 

expensive to either solve (e.g. Model 3F) or obtain good quality solutions (Model 

1F, 1RF, 2F, 2RF) for these models directly as compared to Model 3RF as per the 

computational experience on the respective non-fiscal models in chapter 2. 

The deterministic models with fiscal considerations proposed here are very 

general, and can either be used for simplified cases (e.g. linear profiles for 
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reservoir, fixed well schedule, single field site, etc.), or be extended to include 

other complexities such as uncertainties, or more details of the specific contracts.  

3.4  Deriving Specific Contracts from the Proposed Model  

In the previous section, we proposed a general oilfield planning model with fiscal 

rules (Model 3RF). The model is an extension of the Model 3R (MILP) from 

chapter 2 to include progressive PSA terms with ringfencing provisions that 

encapsulates a variety of contracts and  fiscal terms that are used in practice. 

Therefore, the fiscal models for specific cases based on the type of contracts, 

fiscal terms and other provisions can be derived from this general formulation. 

For instance, we reduce the general model (Model 3RF) to a variety of specific 

cases as follows: 

(a) No-ringfencing Provisions: The fiscal terms without ringfencing provisions 

can be trivially considered as the specific case of the proposed model with 

only 1 ringfence. In financial terms, it represents the consolidation of the 

fiscal calculations for the various fields at one place. Therefore, constraints 

(3.1)-(3.50) can be written without index for ringfence rf in this case. 

Moreover, as all the given fields belong to the same ringfence, the costs and 

revenues over various ringfences need not be disaggregated. In particular, 

constraints (3.6)-(3.24) reduce to the simple total capital cost equation (3.52) 

which is same as it was used in the models without fiscal calculations. 

 
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        t                (3.52) 

(b) Concessionary System: The fiscal rules in a typical concessionary system 

can be considered as the specific case of PSA where we do not have any cost 

oil recovery limit and profit oil share. Therefore, only royalties, cost deduction 

and taxes are involved. Royalties can be calculated as a certain fraction ( Royal

trff ,

) of the gross revenues, i. e. eq. (3.53). There are no cost ceiling provisions; 

and therefore, cost oil ceiling fraction is one in equation (3.42) (i.e. 1, CR

trff ), 
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which yields equation (3.54). Notice that it allows to consider the total oil 

produced in a given year to be recovered for the capital and operating 

expenses after paying royalty. Equation (3.54) can further be rewritten as 

mixed-integer linear constraints similar to (3.43)-(3.48) where 1, CR

trff . Notice 

that the cost recovery term trfCR ,  used in eq. (3.54) has the same definition as 

in PSA model described earlier. Therefore, it can be represented by the 

constraints (3.49)-(3.50). The remaining part of the oil after royalties and cost 

oil becomes profit, eq. (3.55).    

trf

royal

trftrf REVfRoyalty ,,,      
trf ,

 
(3.53) 

),min( ,,, trftrftrf REVCRCO 
    

trf ,
 

(3.54) 

trftrftrftrf CORoyaltyREVPO ,,,, 
  

trf ,
 

(3.55) 

 In addition, due to the absence of profit oil split layer in the fiscal 

calculation (Figure 3.2), for concessionary system, the contractor’s share 

before tax can be set as equal to the profit oil, equation (3.56), which 

corresponds to the profit oil fraction as one, ( 1,, PO

tirff ). Therefore, disjunction 

(3.30) is not required. The company needs to pay tax on its profit, eq. (3.57), 

where an effective tax rate may involve income tax and a specific profit tax, 

eq. (3.58), which are assumed to have a fixed value. The resulting tax is used 

to calculate the contractor’s after tax share in eq. (3.59). 

trf

beforetax

trf POConSh ,, 
     

trf ,
 

(3.56) 

beforetax

trf

taxrateeff

trftrf ConShfTax ,

,

,,     
trf ,

 
(3.57) 

taxprofit

trf

tax

trf

taxrateeff

trf fff ,,

,

, 
    

trf ,
 

(3.58) 

trf

beforetax

trf

aftertax

trf TaxConShConSh ,,, 
   

trf ,
 

(3.59) 

 Notice that a particular concessionary system can also have a sliding scale 

royalty rates and/or sliding scale profit tax rates to penalize the production 

over a certain threshold. However, including those fiscal considerations is 

straightforward based on the modeling approach presented in the previous 

section for profit oil share in a typical PSA.
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(c) Regressive fiscal terms: It can be considered as a specific case of the 

progressive fiscal terms with only one tier. In particular, disjunction (3.30) 

and its corresponding reformulation (3.31)-(3.38) is not required in the model. 

Therefore, the contractor’s share in the profit oil can directly be written in 

terms of the given profit oil fraction for ringfence rf without index for tier i, 

constraint (3.60). Notice that since the binary variables corresponding to the 

disjunction are eliminated from the model for regressive fiscal terms, the 

model is likely to solve much faster than the progressive fiscal terms.  

trf

po

rf

beforetax

trf POfConSh ,, 
    

trf ,
 

(3.60)
  

(d) Different Sliding scale variables: The variables that define the tier structure 

for sliding scale can be contract specific. For instance, cumulative oil 

produced, R-factor or IRR. Therefore, a sliding scale variable trfSV , for the 

fiscal system of interest can be used in disjunction (3.30) that yields 

disjunction (3.61), with its corresponding definition in eq. (3.62). Notice that 

depending on the definition of the sliding scale variable trfSV , in eq. (3.62), 

there is the possibility that additional nonlinearities be introduced in the 

model, e.g. IRR as a sliding scale variable. 
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,...),,( ,,,,, trftrftrftrftrf REVCOSTxcfSV 

  
trf ,

 (3.62) 

  In some cases, for instance sliding scale royalties where average daily oil 

production is the sliding scale variable, higher royalty rates are only 

applicable on the oil production rate that is above the given threshold value in 

each year, i.e. incremental sliding scale. Therefore, an effective overall royalty 

should be used in disjunction (3.61) for each tier i in each time period t instead 

of higher royalty rate on the total oil production. This situation mainly occurs 

in the concessionary systems.       
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Discussions:  

1. Including fiscal rules in simple NPV based development planning models are 

traditionally assumed to be very expensive. However, this may not always be 

the case. For instance regressive (only 1 tier) fiscal terms may improve the 

computational performance of the model without any fiscal terms (e.g. 

regressive Model 3RF vs. Model 3R, see Table 3.9), or at least perform in the 

similar way. The progressive fiscal terms (tier structure as the disjunction in 

(3.30)) are usually the ones most responsible for increasing the computational 

time when we include the fiscal terms (see sections 3.6.2 and 3.6.3). This is 

due to the additional binary variables and resulting weak relaxation, as good 

bounds on the revenue, cost oil, profit oil for each time period are not known a 

priori. However, due to the importance of explicitly considering the fiscal 

aspects for planning optimization (see sections 3.6.1 and 3.6.2), it may be a 

worthwhile effort despite the increase in the solution time.  

2. The model with ringfencing provisions is usually much more expensive to 

solve (see sections 3.6.2 and 3.6.3) than the model without any ringfence, as 

binary variables for tiers as in constraints (3.31)-(3.38) are required for each 

ringfence separately. In addition, the relaxation becomes even worse due to 

the cost disaggregation over each ringfence and additional binary variables as 

in constraints (3.6)-(3.24). Therefore, the computational efficiency of the 

fiscal model with many ringfences will rely on the efficiency of solving the 

model without any ringfence or just with few ringfences. 

3. Concessionary or PSA fiscal system should have similar computational 

complexity as the solution time is associated to the progressive (tier) vs. 

regressive terms and ringfencing provisions that can be part of either of these 

contracts. For example, a regressive PSA model can be orders of magnitude 

faster than a progressive Concessionary system. 

4. Although the proposed Model 3RF is a general formulation, the computational 

time requirements may vary significantly depending on the variables that 

define tiers in disjunction (3.30). Furthermore, additional nonlinearities may 

be introduced in some cases, for instance the IRR as a sliding scale variable, 
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that may require expensive global optimization based approaches for solving 

the resulting non-convex MINLP model. However, these rules are not very 

common in practice.   

3.5  Computational Strategies 

In this section, we propose some reformulation/approximation techniques and 

solution strategies to overcome the computational expense that can arise from 

incorporating the fiscal part in planning, specifically the models where 

progressive fiscal terms are present. Notice that the proposed approaches and 

results are presented taking Model 3RF (MILP) as a basis, where tiers are defined 

on the basis of cumulative oil produced for profit oil share, disjunction (3.30), that 

are widely used in practice. However, these approaches can directly be extended 

to other models that are proposed and a different sliding scale variable. Notice 

also that the proposed strategies are independent of ringfencing provisions.  

Reformulation/Approximation Techniques 

The following reformulation/approximation techniques in the proposed Model 

3RF can improve its computational performance significantly: 

(i) Tighter Formulation using additional  Logic Constraints and Valid 

Inequalities  

The additional logic constraints (3.63) and (3.64) can be included in Model 3RF if 

the sliding scale variable is a monotonically increasing function as time evolves, 

e.g. cumulative oil produced. In particular, constraints (3.63) ensure that once tier 

i is active in current period t, earlier tiers (i’< i) cannot be active in the future. 

Similarly, constraints (3.64) state that higher tiers (i’> i) cannot to be active 

before time period t if tier i is active in that period.  




,',,, irf
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t
tirf ZZ 

      
tiiirf ,',, 

 
(3.63) 



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tirf ZZ 
      

tiiirf ,',, 
 

(3.64) 

These logic constraints (3.63) and (3.64) can be expressed as integer linear 

inequalities, (3.65) and (3.66), respectively, (Raman and Grossmann, 1991). 
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1,',,,  irftirf ZZ
    

Tttiiirf  ,,',,
       

(3.65) 

1,',,,  irftirf ZZ
    

ttiiirf  1,,',,
        

(3.66) 

In addition, we derive the following valid inequalities (3.67), see Appendix 

D (Proposition 3.1) for derivation, that can also be included in Model 3RF where 

cumulative oil produced is the sliding scale variable. The LHS of the inequality 

represents the cumulative contractor share in the profit oil by the end of time 

period t in terms of the oil volume, where t is the price of oil. Since, profit oil in 

a given year, eq. (3.41), is the difference of total oil produced in that year less cost 

oil that contractor used to recover its costs. Therefore, the RHS in (3.67) 

corresponds to an upper bound on the cumulative contractor’s share in the 

cumulative profit oil by the end of time period t based on the sliding scale profit 

oil share and cost oil that has been recovered. In particular, the first term in RHS 

of inequality (3.67) accounts for the amount of the cumulative oil that contractor 

can receive by the end of time period t if tier i is active in the current time period 

t, based on the given tier thresholds without considering the impact of the cost oil. 

On the other hand, the second term in RHS is used to include the impact of cost 

oil recovery in the profit oil calculation to provide the tighter bound on 

cumulative contractor’s share, where profit oil fraction of the last tier PO

irf endf
,

 with 

minimum value is used so that it yields a valid upper bound for any tier i. Notice 

that these inequalities act as tight dynamic bounds on the cumulative contractor 

share that appears in the objective function for the corresponding value of the 

cumulative oil produced by the end of current year t. Therefore, this leads to a 

much tighter formulation than Model 3RF.  
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tirf ,,  (3.67) 

We observed more than threefold improvement in the fullspace solution time 

with these additional mixed-integer linear constraints and valid inequalities, i.e. 

constraints (3.65)-(3.67) in Model 3RF, which we refer Model 3RF-L. This is 
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due to the improved relaxation and significant reduction in the total number of 

nodes needed in the branch and bound search tree.  
 

Notice that the same logic constraints (3.65)-(3.66) can be used for any other 

problem where sliding scale variable is monotonically increasing function as time 

progresses. A different set of logic constraints can be derived for a particular case 

of interest where this condition does not hold. Moreover, it is straightforward to 

derive similar inequalities (3.67) for other tier variables (e.g. daily oil produced), 

see Appendix D (Proposition 3.2).  The general rule is that as long as we can 

represent the contractor’s share (or cumulative one) as a direct fraction of gross 

revenues in the current period (or cumulative revenue) and the sliding scale 

variable is the daily oil produced (or cumulative oil), it is easy to generate similar 

inequalities. However, in some cases like with the IRR might require additional 

effort.   

(ii) Alternate formulation: Sliding scale Fiscal Rules without Binary Variables  

Model 3RF, that relies on disjunction (3.30) and corresponding binary variables to 

represent the sliding scale fiscal terms, usually becomes expensive to solve for 

large instances. These instances may still be intractable even after we include the 

above logic constraints and valid inequalities. Therefore, in this section we 

present an alternative formulation of development planning Model 3RF with 

progressive fiscal terms that does not use disjunctions to represent the tier 

structure. Notice that although we consider the cumulative oil produced as the 

sliding scale variable, but the reformulation can also be used for a variety of other 

sliding scale variables.   

In particular, the proposed Model 3RI is formulated from Model 3RF using 

valid inequalities described above (3.67), without considering the constraints 

(3.31)-(3.38) that correspond to the disjunction (3.30). This alternate Model 3RI 

may yield the optimal solution to a typical concessionary system or some special 

cases of PSAs, for which the valid inequalities (3.67) reduce to the simpler ones, 

(see Appendix E for more details).  

However, for the general case of progressive PSA that has cost oil limit 

provisions, the proposed Model 3RI yields the relaxation of the original 
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disjunctive Model 3RF as constraints (3.31)-(3.38) are not present. Therefore, we 

outline the following two possibilities to use this alternate model for general PSA 

fiscal terms that can be considered as a good heuristics to obtain the near optimal 

solution to realistic instances of the fiscal problem: 

 Case 1: Relaxed Model (Model 3RI) 

In this case, the valid inequalities are directly used in Model 3RF as 

described earlier, i.e. constraints (3.67) in place of constraints (3.31)-(3.38) that 

correspond to the disjunction (3.30). This yields a relaxed solution to the original 

problem, and therefore an upper bound. However, its solution can be used to 

generate a lower bound by fixing the discrete decisions in the original model. 

Furthermore, this model can be used in either a bi-level decomposition, 

disjunctive branch and bound, or branch-and-cut solution algorithm to close the 

gap between the upper and lower bounds. In general, this relaxed model provides 

reasonable bounds, and good discrete decisions in orders of magnitude less time 

than the disjunctive formulation used for sliding scales in Model 3RF.  

Case 2: Approximate Model (Model 3RI-A) 

In this case, the valid inequalities (3.67) are defined in Model 3RI such that 

they yield an approximate solution to the original problem, i.e. these are replaced 

with constraints (3.68). Notice that the inequalities (3.67) and (3.68) that are used 

in Models 3RI and 3RI-A, respectively, only differ in the second term in RHS. In 

the first case (eq. 3.67), as we use the least value of this term ( PO

irf endf
,

) for it to be 

valid for all tiers, so it turns out to be the relaxation. On the other hand, in eq. 

(3.68) we use the highest value of this term ( PO

rff 1, ) to approximate the initial tiers 

as close to reality as possible when costs are high yielding near optimal solutions. 

Since, Model 3RI-A is an approximate model, neither an upper or lower bound is 

guaranteed from this model, but in practice, it yields the solution within 2-3% of 

accuracy based on our computational experiments. Moreover, its solution can be 

used to generate a near optimal solution to the original problem in orders of 

magnitude less time than the disjunctive approach used in Model 3RF. The 

detailed description of the correspondence between these two different set of 
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inequalities, (3.67) vs. (3.68), and derivation of inequalities (3.68) is explained in 

Appendix F. 
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Remarks: 

1. The advantage of using Model 3RI and Model 3RI-A is that these are orders 

of magnitude faster to solve than other fiscal models relying on the disjunctive 

constraints, and even 3-4 times faster than solving the models without any 

fiscal terms (i.e. Model 3R) as observed by the computational experiments. 

The extreme instances of the oilfield planning problem with fiscal terms, i.e. 

progressive PSA with ringfencing, are solved in reasonable time using these 

alternate models which were intractable for Model 3RF. 

2. Notice that the alternate Model 3RI and its approximation Model 3RI-A are 

defined for the tier structure that is assumed to be linked to the cumulative oil 

produced. Other sliding scale variables, e.g. daily oil produced, R-factor are 

also used in practice. The similar approaches as described in the chapter can 

be explored to model these fiscal considerations without explicitly using 

disjunctions and corresponding binary variables.  

  

 These reformulation/approximation techniques can be used for the other 

models directly. Tables 3.2 and 3.3 summarize all of the proposed models 

(MINLP and MILP) for oilfield development planning problem with and 

without fiscal considerations. In particular, Table 3.2 involves basic models 1, 

2 and 3 with their fiscal counterparts considering detailed investment timing 

for the pipeline connections. Whereas, Table 3.3 represents the respective 

reduced models that are obtained by removing a large fraction of binary 

variables that represent connection timings to improve the computational 

efficiency without significant loss in the solution quality. 
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Table 3.2: Comparison of the proposed oilfield planning models (detailed 

connections) 

 

 

Table 3.3: Comparison of the proposed oilfield planning models (neglecting 

piping investments) 

 

 

 

 

 MINLP MINLP MILP 

Basic Model Model 1 Model 2 Model 3 

Basic model with fiscal terms  

(using Disjunctions (3.30)) 

Model 1F Model 2F Model 3F 

Basic model with fiscal terms  

(using Disjunctions (3.30), Logic constraints 

(3.65)-(3.66) and valid Inequalities (3.67)) 

Model 1F-L Model 2F-L Model 3F-L 

Basic model with fiscal terms  

(no binary variables for sliding scales i.e. 

using only  valid Inequalities (eq. (3.67) for 

relaxed/exact model or eq. (3.68) for 

approximate model)) 

Model 1I 

(relaxed/exact) 

Model 2I 

(relaxed/exact) 

Model 3I 

(relaxed/exact) 

Model 1I-A 

(approximate) 

Model 2I-A 

(approximate) 

Model 3I-A 

(approximate) 

 MINLP MINLP MILP 

Basic Model with binary reduction Model 1R Model 2R Model 3R 

Basic model with binary reduction and 

fiscal terms (using Disjunctions (3.30)) 

Model 1RF Model 2RF Model 3RF 

Basic model  with binary reduction and 

fiscal terms (using Disjunctions (3.30), 

Logic constraints (3.65)-(3.66) and valid 

Inequalities (3.67)) 

Model 1RF-L Model 2RF-L Model 3RF-L 

Basic model with binary reduction and  

fiscal terms (no binary variables for sliding 

scales i.e. using only  valid Inequalities 

(eq. (3.67) for relaxed/exact model or eq. 

(3.68) for approximate model)) 

Model 1RI 

(relaxed/exact) 

Model 2RI 

(relaxed/exact) 

Model 3RI 

(relaxed/exact) 

Model 1RI-A 

(approximate) 

Model 2RI-A 

(approximate) 

Model 3RI-A 

(approximate) 
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3.6  Numerical Results 

In this section, we consider three instances of the oilfield planning problem with 

fiscal considerations where ringfencing provisions may or may not be present, and 

examine the efficiency of the proposed models and solution strategies. 

3.6.1 Instance 1 

 

 

 

 

 

  

 

  

 

 

 

In this instance (Figure 3.7) we consider 3 oil fields that can be connected to 

3 FPSOs with 7 possible connections among these fields and FPSOs. There are a 

total of 25 wells that can be drilled, and the planning horizon considered is 15 

years, which is discretized into 15 periods of each 1 year of duration. Table 3.4 

represents the data corresponding to the field sizes and their initial deliverability 

per well for a particular field-FPSO connection. There is a cost recovery ceiling of 

50% and 3 tiers that are defined for profit oil split between the contractor and the 

host government, and are linked to cumulative oil production as seen in Table 3.5. 

This represents the fiscal terms of a typical progressive Production Sharing 

Agreement without ringfencing provisions. 

We need to determine which of the FPSO facilities is to be installed or 

expanded, in what time period, and what should be its capacity, to which fields it 

should be connected and at what time, and the number of wells to be drilled in 

each field during each time period. Other than these installation decisions, there 

FPSO 1 FPSO 3 

Field 1 

 

Field 3 

Field 2 

 

Total Oil/Gas 

Production 

FPSO 2 

 Figure 3.7: Instance 1 (3 Fields, 3 FPSO, 15 years, No Ringfencing) 
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are operating decisions involving the flowrate of oil, water and gas from each 

field in each time period. The problem is solved to maximize the NPV of the 

contractor’s share after paying taxes, and corresponding optimal investment and 

operations decisions over the planning horizon.   

 Table 3.4: Field characteristics for instance 1 

Fields Field Size 

(MMbbl) 

Initial Oil derivability per well (kstb/d) 

FPSO 1 FPSO 2 FPSO 3 

Field 1 230 16 18 16 

Field 2 280 - 18 20 

Field 3 80 15 - 12 

 Table 3.5: Sliding scale Contractor’s profit oil share for instance 1 

Tiers Cumulative Oil Produced Contractor’s Share in Profit 

Oil 

Tier 1 0-150    MMbbl 50% 

Tier 2 150-325 MMbbl 40% 

Tier 3 >325       MMbbl 20% 

The models are implemented in GAMS 23.6.3 and run on Intel Core i7, 4GB 

RAM machine using CPLEX 12.2. The optimal solution of this problem is 

presented in Table 3.6, that corresponds to Model 3F involving detailed 

connections, suggests installing only FPSO 3 with a capacity 297.75 kstb/d and 

161.90 MMSCF/d for liquid and gas, respectively, at the beginning of year 1. It 

takes 3 years for this FPSO to be available for production. Fields 1 and 2 are 

connected to this FPSO at the beginning of year 4, where 7 wells are drilled in 

Field 1 and 6 wells are drilled in Field 2 to start the production. These fields are 

preferred compared to Field 3 due to their large sizes and deliverabilities. Liquid 

capacity of FPSO 3 facility is expanded by 103.93 kstb/d in year 5 that becomes 

available in year 6 due to 1 year of lead time involved. Field 3 that is smaller in 

size comes online at the beginning of year 6 when deliverability of fields 1 and 2 

decreases, where 3 wells are drilled in this field with an additional well in year 9 

when production goes down. There are no further expansions and well drillings 

after year 9. Notice that most of the investments occur in early stages of the 
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project. The total NPV of this project is $ 1497.69M after paying government 

share. 

 Table 3.6: Optimal Installation and Drilling Schedule for instance 1 

Year 1 2 3 4 5 6 7 8 9 10-15 

Facility 

Installations 

Install 

FPSO3 

- - - Expand 

FPSO3 

- - - - - 

Field 1 

 

- - - Drill   

7 wells 

- - - - - - 

Field 2 - - - Drill  

6 wells 

Drill  

1 well 

Drill  

2 wells 

- - - - 

Field 3 - - - - - Drill  

3 wells 

- - Drill  

1 well 

- 

  

 

 

Figures 3.8-3.9 represent the total oil and gas flow rates for the FPSO facility 

during the planning horizon considered. Given that the timing of the particular tier 

activation depends upon the cumulative oil production for this instance (Table 

3.5) Tier 2 becomes active after fifth year while Tier 3 is active after the eighth 

year involving less share in profit oil for contractor, see Figure 3.10. 

In contrast, the sequential approach that first maximizes NPV i.e. Model 3, 

without considering the impact of the fiscal terms, and then calculates the 

contractor share based on these decisions and fiscal rules, yields a very different 

solution. The optimum in this case suggests installing FPSO3 with a large 

capacity (liquid 445.54 kstb/d and gas 211.65 MMSCF/d) at the beginning of the 
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Figure 3.8: Total oil flowrate for FPSO 3  Figure 3.9: Total gas flowrate for FPSO 3  
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planning horizon without any future expansions. The drilling decisions are also 

front ended compared to the solution of the fiscal model, Model 3F. However, the 

total NPV of the contractor’s share in the sequential case turns out to be $ 

1362.67M, which is significantly lower than the optimal solution ($ 1497.69M) of 

the model with fiscal considerations (Model 3F). These results represent the 

optimistic nature of the sequential approach that tries to generate as much revenue 

as possible at the beginning of the planning horizon neglecting the trade-offs that 

are associated to the fiscal part. Therefore, it may lead to the decisions that can 

incur large losses in the long term after considering the impact of the fiscal 

calculations.  

 

  

Table 3.7: Comparison of the computational performance of various models for 

instance 1 

 Model 

Solver # of 

constraints 

# of 

continuous 

variables 

# of 

discrete 

variables 

NPV 

($Million) 

Time 

(s) 

Model 2F 

(MINLP) 

 

BARON 

9.0.6 
3,557 

 

2,236 

 

345 

 

1,198.44 

(<60% gap) 

>36,000 

 

Model 3F 

(MILP) 

CPLEX 

12.2 
5,199 3,668 399 1,497.69 3,359 

Model 3RF 

(MILP) 

CPLEX 

12.2 
5,147 3,570 322 1,497.69 337 
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Figure 3.10: Cumulative Oil Produced vs. Timing of Tier activation  
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Table 3.7 compares the computational performance of the various models. In 

particular, Model 3RF which is obtained after binary reduction from Model 3F 

yields the same solution in an order of magnitude less time (337s vs. 3,359s), 

when solved to optimality.  In contrast, solving the corresponding MINLP 

formulation Model 2F with BARON 9.0.6 can only provide a solution having 

NPV of $ 1198.44M with a 60% gap in more than 10 hours. Moreover, we 

observe that solving Model 2F directly with DICOPT requires a good 

initialization due to the additional binary variables and constraints that are added 

in this fiscal model compared to Model 2. Therefore, the optimal solution from 

corresponding MILP formulations (Model 3F and Model 3RF) provides a way to 

obtain a near optimal solution of the original Model 2F. We fixed the design 

decisions in Model 2F from the optimal solution of Model 3RF and solved the 

resulting NLP problem that yields an NPV of $1496.26 M, which shows that the 

accuracy of the MILP solution is within 0.1% of the MINLP formulation. 

Therefore, the proposed MILP formulations are computationally efficient and 

provide near optimal solutions. In the next section, we will use these MILP 

models as the basis and examine the performance of the proposed computational 

strategies for the larger instances.  

 

3.6.2 Instance 2  

(i) PSA without ringfencing provisions for Instance 2  

  

 

   Figure 3.11: Instance 2 (5 Fields, 3 FPSOs, 20 years, No ringfencing) 
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In this instance, we consider 5 oilfields that can be connected to 3 FPSOs 

with 11 possible connections, see Figure 3.11. There are a total of 31 wells that 

can be drilled in these 5 fields, and the planning horizon considered is 20 years. 

There is a cost recovery ceiling of 50% and 4 tiers (see Fig. 3.3) that are defined 

for profit oil fraction between the contractor and host government based on the 

cumulative oil production. The problem is solved to maximize the NPV of the 

contractor’s share after paying taxes and the corresponding optimal 

investment/operations decisions.   

Table 3.8 compares the performance of the MILP (Model 3F) involving 

detailed connections and reduced MILP model (Model 3RF) that are the extension 

of the Models 3 and 3R, respectively, with progressive PSAs. The models are 

implemented in GAMS 23.6.3 and run on Intel Core i7, 4GB RAM machine using 

CPLEX 12.2. We can observe that there is significant increase in the 

computational time with fiscal consideration for the MILP formulation Model 3F 

with this larger instance, which takes more than 10 hours with a 14% of 

optimality gap as compared to the reduced MILP model (Model 3RF), which 

terminates the search with a 2% gap in reasonable time.  

Table 3.8: Computational Results for Instance 2 (Model 3F vs. Model 3RF) 

 Model 

# of 

constraints 

# of 

continuous 

variables 

# of 

discrete 

variables 

NPV 

($Million) 

Time (s) Optimality 

Gap 

Model 3F 9,474 6,432 727 2,183.63 >36,000 <14%  

Model 3RF 9,363 6,223 551 2,228.94 1,164 <2%  
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The optimal solution from Model 3RF suggests installing 1 FPSO facility 

(FPSO3) with expansions in the future (see Fig. 3.12), while Fig. 3.13 represents 

the well drilling schedule for this example. The tiers 2, 3 and 4 for profit oil split 

become active in years 6, 8 and 12, respectively, based on the cumulative oil 

production profile during the given planning horizon. Notice that the optimal 

solution of this problem fails to develop field 1, which is not intuitive. The reason 

for not developing field 1 is that the size of the field 1 is quite small as compared 

to the other fields and the superstructure we consider does not allow connecting 

field 1 to FPSO 3, which is the only FPSO that is installed. Therefore, based on 

the superstructure and field size, it is not worth to install an additional FPSO to 

produce from this field after paying government share. In contrast, the solution 

from the sequential approach suggests exploring field 1 as well since it is worth in 

that case to install 2 small FPSO facilities and also produce from field 1 given that 

the trade-offs due to fiscal rules are neglected. Whereas, the total NPV of the 

contractor’s share in this case is lower than the optimal solution of Model 3RF 

($1,914.71M vs. $2,228.94M ).Therefore, we can observe that incorporating fiscal 

terms within development planning can yield significantly different investment 

and operations decisions compared to a simple NPV based optimization. 

 

  

Note that fiscal terms without tier structure, for instance fixed percentage of 

profit share, royalty rates, often reduces the computational expense of solving the 

deterministic model directly without any fiscal terms instead. Surprisingly, the 

problem with flat 35% of the profit share of contractor is solved in 73s which is 
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Figure 3.13.  Optimal well drilling schedule for Instance 2 
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even smaller than the solution time for deterministic case without any fiscal terms 

(190s). On the other hand, the problem with 2 tiers instead of 4 as considered 

above is solved in 694s which is more than the model without fiscal terms and 

less than the model with 4 tiers as can be seen in Table 3.9. Therefore, the 

increase in computational time while including fiscal rules within development 

planning, is directly related to the number of tiers (levels) that are present in the 

model to determine the profit oil shares or royalties.  

Table 3.9: Comparison of number of tiers vs. solution time for Model 3RF  

 # of tiers Time (s) 

4  1,164 

2  694 

 1 73 

No fiscal rules 190 

 

Table 3.10 compares the further improvements in the solution time for 

Model 3RF (1,164s) after using the reformulation/approximation techniques and 

strategies that are proposed. In particular, the tighter formulation Model 3RF-L 

that is obtained after including logic constraint and valid inequalities, (3.65)-

(3.67), is solved in one fourth of the time than Model 3RF. Notice that these 

MILP models are solved with a 2% of optimality tolerance yielding a slightly 

different objective values for Model 3RF and Model 3RF-L. Model 3RI, which 

relaxes the disjunction (3.30), can be solved more than 20 times faster than the 

original Model 3RF. Although the solution obtained is a relaxed one (upper bound 

of 2,591.10), it gives the optimal investment decisions that result in the same 

solution as we obtained from solving Model 3RF directly. The approximate 

version of this Model 3RI-A, takes only 82s as compared to Model 3RF (1164s) 

and yields the optimal solution after we fix the decisions from this model in the 

original one. Notice that the quality of the approximate solution itself is very good 

(~1.5% accurate) and both relaxed/approximate models  are even ~3 times faster 

than the model without any fiscal terms (Model 3R) that takes 190s.  
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Table 3.10: Results for Instance 2 after using various solution strategies  

Model 
# of 

constraints 

# of 

continuous 

variables 

# of 

discrete 

variables 

NPV 

($Million) 

NPV after 

fixing 

decisions in 

Model 3RF 

($Million) 

Time (s) 

Model 3RF 9,363 6,223 551 2,228.94 - 1,164 

Model 3RF-L 11,963 6,223 551 2,222.40 - 275 

Model 3RI-A 8,803 5,903 471 2,197.63 2,228.94 82 

Model 3RI  8,803 5,903 471 2,591.10 2,228.94 48 

 

(ii) PSA with ringfencing provisions for Instance 2 

In this case, we consider two ringfences for the above Instance 2 (see Figure 

3.4) where progressive PSA terms are defined for each of these ringfences 

separately. Based on the computational performance of the Model 3RF as 

compared to Model 3F in the previous case, we only show the results for Model 

3RF, which is more efficient. 

Table 3.11: Results for Instance 2 with ringfencing provisions  

Model 
# of 

constraints 

# of 

continuous 

variables 

# of 

discrete 

variables 

NPV 

($Million) 

NPV 

after 

fixing 

decisions 

in Model 

3RF 

($Million) 

Time 

(s) 

 %  

gap 

Model 3RF 14,634 9,674 651 2,149.39 - >36,000 <15.4% 

Model 3RF-L 19,834 9,674 651 2,161.27 - 3,334 <2% 

Model 3RI-A 13,514 9,034 491 2,148.90 2,142.75 134 <2% 

Model 3RI 13,514 9,034 491 2,533.06 2,151.75 112 <2% 

 

Table 3.11 compares the results for various models for this case. We can 

observe that including ringfencing provisions makes Model 3RF expensive to 

solve (>10 hrs), compared to the previous instance without any ringfences that 

required only 1,164s. This is due to the additional binary variables that are 

required in the model for each of the two ringfences, their trade-offs and FPSO 

cost disaggregation. In contrast, since Models 3RI and 3RI-A do not need binary 

variable for the sliding scale in disjunction (3.30), they solve much faster than 

Model 3RF (>300 times faster) and Model 3RF-L (~30 times faster). Notice that 

even after including ringfencing provisions, these two models are faster than the 
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simple NPV based Model 3R. This is due to the trade-off from the fiscal part in 

the simple NPV based model without binary variables for the sliding scale.  

Notice that Model 3RI and 3RI-A are solved here in one of the most general 

forms of the fiscal terms where the solutions may not be the global optimal, but 

the relaxed Model 3RI, which provides a valid upper bound, also allows to 

compare the solution quality. The optimal NPV after ringfencing provisions is 

lower as compared to the earlier case without ringfencing provisions due to the 

additional restrictions it imposes on the revenue and cash flows.  

In addition, we also consider a bi-level decomposition approach (see 

Appendix G) to solve this ringfencing instance. The algorithm considers an 

aggregate fiscal model at upper level by neglecting the ringfencing provisions that 

yields an upper bound ($2,222.40 M) as can be seen in Table 3.12. The lower 

level detailed fiscal model is solved for the infrastructure selected from the upper 

level problem to yield the feasible solution ($2,161.27 M). In the next iteration, 

the upper level problem is solved with additional integer cuts that avoid the same 

investment decisions to be selected. The objective value of this model ($2,040.23 

M) becomes smaller than the lower bound obtained during the first iteration and 

the algorithm stops. The MILP models are solved in this instance with a 2% of 

optimality tolerance and total solution time is 869s. Based on these preliminary 

results, the algorithm can be considered as an alternative to solve the oilfield 

problems involving ringfencing provisions. However, the efficiency of the 

algorithm relies on the efficiency of solving the lower and upper level problems 

which may itself become expensive to solve for the large instances and/or may 

need several iterations to close the gap.  

  

    Table 3.12: Bi-level decomposition for Instance 2 with ringfencing provisions 

Iteration 
UB 

($Million) 

LB 

($Million) 

Optimality 

gap 

(%) 

1 2,222.40 2,161.27 2.75% 

2 2,040.23 - 0.00% 
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3.6.3 Instance 3 

(i) PSA without ringfencing provisions for Instance 3  

  

 

 

In this case, we consider a larger instance of the oilfield planning problem 

with fiscal considerations. There are 10 oil fields (Figure 3.14) that can be 

connected to 3 FPSOs with 23 possible connections. There are a total of 84 wells 

that can be drilled in all of these 10 fields and the planning horizon considered is 

20 years. There is a cost recovery ceiling of 50% and 4 tiers are defined for profit 

oil split between the contractor and host government that are linked to cumulative 

oil production. The objective is to maximize the NPV of the contractor’s share 

after paying taxes and corresponding optimal investment/operations decisions.   

Table 3.13: Results for Instance 3 after using various solution strategies 

Model 
# of 

constraints 

# of 

continuous 

variables 

# of 

discrete 

variables 

NPV 

($Million) 

NPV after 

fixing 

decisions 

in Model 

3RF 

($Million) 

Time 

(s) 

 % 

gap 

Model 3RF 17,640 11,727 963 6,440.58 - >72,000 <22% 

Model 3RF-L 20,240 11,727   963 6,498.45 - 22,500 <10% 

Model 3RI-A 17,080 11,407 883 6,355.00 6,452.36 2,035 <10% 

Model 3RI 17,080 11,407 883 7,319.60 6,484.12 1,569 <10% 

Field-9

FPSO-2 FPSO-3

Field-2

Field-1

Field-3 Field-5

FPSO-1

Field-4

Total Oil/Gas 

Production

Field-10

Field-6

Field-8
Field-7

 Figure 3.14: Instance 3 with 10 Fields, 3 FPSO, 20 years 
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Table 3.13 compares the solution time required for Model 3RF with the 

proposed reformulation/approximation techniques.  We can observe that even 

Model 3RF without any ringfences becomes expensive to solve for this larger 

instance as compared to instance 2. Moreover, it takes more than 20hrs to reach 

within 22% of optimality for Model 3RF, whereas the relaxed Model 3RI can be 

solved in less than half an hour within 10% of optimality.  The solution that is 

obtained after fixing the design decisions in the original formulation is also better 

than Model 3RF. Model 3RI-A, which is an approximation, also performs similar 

to the relaxed model and gives an even improved solution than Model 3RF with a 

~2% of accuracy. Both models are more than 20 times faster than even the tighter 

formulation Model 3RF-L involving logic constraints and valid inequalities. 

Surprisingly, these models perform again better than the model without any fiscal 

terms, i.e. the simple NPV based model (Model 3R) takes more than 12,000s to 

reach within 10% of optimality gap due to the trade-off that is missing between 

production and fiscal part.  

Notice that the times reported in Table 3.13 for Model 3RI-A and 3RI are the 

times to solve Models 3RI-A and 3RI only. We did not include the time required 

to solve Model 3RF with fixed decisions in all the examples considered since it 

was negligible as compared to solution time of Models 3RI-A, 3RI and 3RF. For 

instance, it is ~2 orders of magnitude smaller than the solution time required for 

Model 3RI-A (25s vs. 2035s) for this case. It is due to the fact that the critical 

discrete variables that represent the infrastructure and well drilling are fixed in the 

model and most of the remaining decisions correspond to the continuous 

operational decisions.     

(ii) PSA with ringfencing provisions for Instance 3 

In this case, we consider three ringfences for the above Instance 3 with 10 

fields (see Figure 3.14) where Table 3.14 and 3.15 represent data corresponding 

to the field sizes, ringfencing provisions and sliding scale profit oil divisions. 
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 Table 3.14: Field Sizes and Ringfencing Provisions for Instance 3  

Field F-1 F-2 F-3 F-4 F-5 F-6 F-7 F-8 F-9 F-10 

Field Size 

(MMbbl) 

60 100 170 230 280 80 200 320 400 500 

Corresponding 

Ringfence 

RF-1 RF-1 RF-1 RF-2 RF-2 RF-2 RF-3 RF-3 RF-3 RF-1 

 

Table 3.15: Fiscal data for Instance 3 with ringfencing provisions 

(i) Sliding scale Contractor’s Profit  (ii) Tax rates and Cost Oil Ceilings 

Oil share         

  

Table 3.16 compares the computational results of various models for this 

case of instance 3. It can be observed that including ringfencing provisions for 

this largest instance makes even both Model 3RF and Model 3RF-L very 

expensive compared to the previous case without any ringfences. This is due to 

the additional binary variables that are required in the model for each of the three 

ringfences separately and resulting weak relaxations. 

Table 3.16: Results for Instance 3 with Ringfencing provisions 

Model 
# of 

constraints 

# of 

continuous 

variables 

# of 

discrete 

variables 

NPV 

($Million) 

NPV after 

fixing 

decisions 

in Model 

3RF 

($Million) 

Time 

(s) 

  

% 

gap 

Model 3RF 33,403 22,150 1,163 6,382.46 - >72,000 <57% 

Model 3RF-L 41,203 22,150 1,163 6,469.30 - >72,000 <22% 

Model 3RI-A 31,723 21,190 923 6,273.59 6,442.68 3,383 <10% 

Model 3RI 31,723 21,190 923 7,166.70 6,349.99 4,003 <10% 

  

Ringfence 

Income Tax Rate   

( % of 

Contractor's 

Profit Oil Share) 

Cost Recovery 

Ceiling  

(% of Gross 

Revenues from 

the Ringfence) 

RF-1 30% 50% 

RF-2 30% 50% 

RF-3 30% 50% 

 
Ringfences: RF-1, RF-2, RF-3 

  
Cumulative oil 

Produced 

Contractor's 

Profit Oil Share 

Tier-1 0 - 200 MMbbl 50% 

Tier-2 200 - 400 MMbbl 40% 

Tier-3 400 - 600 MMbbl 30% 

Tier-4 > 600 MMbbl  20% 



 
 

104 
 

In contrast, since Models 3RI and 3RI-A do not require binary variables for 

sliding scales, they perform much better than Model 3RF and its tighter version 

Model 3RF-L as observed in the earlier cases. Model 3RI is a relaxation and 

yields a reasonable upper bound, while Model 3RI-A yields an approximate 

solution within 3% of accuracy.   

 

 

Figure 3.15 represents the optimal installation and connections between 

fields and FPSO for this problem, where we can observe that each of the installed 

FPSO (1 and 3) is connected to a total of 5 fields that do not belong to the same 

ringfence. The optimal cumulative oil production profile for various ringfences is 

shown in Figure 3.16, and the sliding scale rules in Table 3.15(i), results in the 

different times of higher tier activations for these three ringfences as shown in 

Table 3.17. Notice that ringfence 3, which involves larger size fields, enters into 

higher tier (Tier 4) sooner as compared to the other ringfences. Moreover, in 

ringfence 2 which has smaller fields, only 3 tiers become active. 

Table 3.17: Optimal timings of Tier activations for various Ringfences 

FPSO-3FPSO-1

Total Oil/Gas 

Production

Field-2

Field-1

Field-3

Field-10

Field-8

Field-9Field-7

Field-5

Field-4

Field-6

Ringfence-1

Ringfence-2

Ringfence-3

Ringfence Tier-1 Tier-2 Tier-3 Tier-4 

RF-1 Year 1- Year 6 Year 7- Year 8 Year 9- Year 12 Year 13- Year 20 

RF-2 Year 1- Year 6 Year 7- Year 10 Year 11- Year 20 - 

RF-3 Year 1- Year 6 Year 7- Year 8 Year 9- Year 11 Year 12- Year 20 

 Figure 3.15: Optimal Solution for Instance 3 with Ringfencing provisions 
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It is important to note that the performance of Models 3RI and 3RI-A is 

independent of the number of ringfences that are present in the fiscal terms, as it 

can be seen that the increase in solution time is negligible compared to the 

previous case without ringfencing provisions. This is due to the fact that 

increasing ringfences in these models only increases the number of continuous 

variables and linear constraints, except a few binary variables that are required for 

cost oil recovery calculation. In contrast, the complexity of Models 3RF and 3RF-

L that rely on disjunction (3.30) increases exponentially with an increase in the 

number of ringfences or tiers. Moreover, it is also interesting to note that even 

after including one of the extreme cases of the fiscal term (progressive PSA with 

ringfencing) for a large instance involving 10 fields, the proposed 

relaxed/approximate models still perform extremely well, and they are in fact 

even 3-4 times better than the simple NPV based Model 3R without fiscal 

considerations.  

3.7 Conclusions 

In this chapter, we have introduced the fiscal aspects within offshore oil and gas 

field planning problem. These fiscal considerations are usually either ignored or 
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considered in an ad-hoc manner, which may have a very large impact on the 

planning decisions. In particular, we have proposed a general model for the multi-

field site problems that accounts for the fiscal calculations in the objective 

functions and constraints explicitly. The model is an extension of the 

strategic/tactical planning model presented in the previous chapter to progressive 

PSAs involving ringfencing provisions. Few simpler cases of the fiscal contracts 

have also been derived from the proposed general model as an illustration. The 

model yields investment and operating decisions that are not only optimal in the 

sense of NPV after taxes for the project at hand, but also provides a more 

appropriate basis to compare a portfolio of different projects involving different 

fiscal contracts and other details. However, as the computational expense can be a 

serious issue with the incorporation of fiscal terms for some particular contract, 

we have also proposed a tighter formulation using additional logic constraints and 

valid inequalities, two heuristic approaches yielding good solutions to the large 

instances, and a bi-level decomposition approach. Numerical results in realistic 

examples show that these models and solution strategies are quite efficient, and 

reduce the solution time orders of magnitude than using the MILP for the 

disjunctive formulation. We hope that this work has shown that explicit 

consideration of the fiscal rules is important for oilfield infrastructure planning, 

and that the models/methods described here can serve as the basis for further 

extensions and improvements in the computational effort. 
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Chapter 4 

 

Solution strategies for multistage 

stochastic programming with 

endogenous uncertainties in the 

planning of process networks 

 

 

4.1 Introduction  

In this chapter, we consider a general multistage stochastic mixed-integer linear 

programming model for multiperiod planning problems where optimization 

decisions determine the times when the uncertainties in some of the parameters 

will be resolved, i.e. decision-dependent uncertainty (Jonsbraten et al., 1998; Goel 

and Grossmann, 2006; and Tarhan and Grossmann, 2008). To address the issue of 

computational expense in solving these endogenous uncertainty problems, we also 

present several solution strategies and apply them to process network examples 

having uncertainty in the process yields which can only be revealed once an 

investment is made in the process. 

The outline of this chapter is as follows. First, in sections 4.2 and 4.3 we 

present the problem statement for the endogenous uncertainty problems under 

consideration and the corresponding multistage stochastic programming model, 

respectively. In section 4.4, three theoretical properties are identified for the 

model and used to formulate a reduced model in the subsequent section. To solve 

the large instance of the problems in this class a k-stage constraint solution 

approach, NAC relaxation strategy, and a Lagrangean decomposition algorithm 
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are proposed in section 4.6. The proposed models and solution strategies are then 

applied to two process network problems under uncertain yields in section 4.7 to 

illustrate the advantages of these approaches. 

4.2 Problem Statement 

In the class of problems under consideration, the time horizon is represented by 

the discrete set of time periods T = {1, 2, . . . . }. Set I = {1, 2, . . . .} represents the 

set of “sources” of endogenous uncertainty, while θi represents the endogenous 

uncertain parameter associated with source     . The discrete set of possible 

realizations for θi is represented by Φi. The resolution of uncertainty in θi depends 

on the binary decision variables bi,t. Specifically, the uncertainty in θi will be 

resolved in time period t if binary decision bi,t = 1 and  bi,τ = 0,  τ < t.  Note that 

the parameters θi represent intrinsic properties of source i and are assumed to be 

independent and time invariant. Besides the decisions represented by variables bi,t, 

other decisions to be made in time period t are represented by variables yt and xt 

where these are decisions made at the beginning and end of the corresponding 

time period t.   

The sequence of events in each time period is as follows. Decisions yt and bi,t 

are implemented at the beginning of time period t . This is followed by the 

resolution of uncertainty in the endogenous parameter θi for source i if bi,t = 1 and 

bi,τ = 0  τ < t. The state variables ( tw ) are calculated based on the decision 

variables that are selected, while the recourse variables ( tx ) are decisions 

implemented at the end of each period.  

In general, the variables bi,t  may represent investment decisions associated 

with source i. In the gas field problem considered by Goel et al. (2006), these 

variables represent whether or not investment is made at field i in time period t. 

The uncertainty associated with a field is resolved in time period t only if 

investment is carried out at that field in time period t, while no investments have 

been made at that field in the past. Similarly, for capacity expansion planning 

problems these decisions represent whether or not unit i is installed in time period 

t. However, in this case we assume that the uncertainty associated with a process 
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gets resolved as soon as initial investment is made in that process and it is 

independent of the plant capacity.  

Note that for ease of exposition, we assume that there is only one 

endogenous uncertain parameter associated with source i for all     . Thus, θi is a 

scalar for all     . Moreover, the problem statement presented here is the specific 

case of the one that is described in Goel and Grossmann (2006). 

4.3 Model 

The multistage stochastic programming model (MSSP
0
) with endogenous 

uncertainty can be represented as a mixed-integer linear disjunctive programming 

model as described in Goel and Grossmann (2006). 
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0
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The objective function (4.1) in the above model (MSSP
0
) minimizes the 

expectation of an economic criterion. For a particular scenario, inequality (4.2) 

represents constraints that govern decisions in time period t and link decisions 

across time periods. First time period non-anticipativity (NA) constraints are 
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given by equations (4.3a) and (4.3b), while conditional NA constraints that are 

written for the later time periods in terms of decisions s

tib ,  
are given by (4.4) and 

(4.5). Note that the set D(s,s’) that is used in the equation (4.4) is defined as 

follows: 

 ',)',( s

i

s

iIiissD    

The idea of non-anticipativity is that the decisions at time t can only be 

affected by the decisions ( s

ti

s

t by ,, ) made before time period t. These constraints 

state that if two scenarios s and s’ are indistinguishable in time period t (i.e. they 

are the same), then decisions for these scenarios in time period t should be the 

same. It should also be noted that problem (MSSP
0
) can be reformulated as an 

MILP as described in Goel and Grossmann (2006) by replacing the equations 

(4.4) and (4.5) with integer and mixed-integer constraints, respectively.  

4.4 Model Reduction Scheme 

NA constraints like the ones in (4.3a), (4.3b) and (4.5) are essential in multistage 

stochastic programming to ensure that our current decisions do not anticipate 

future outcomes. When the model (MSSP
0
) is reformulated as an MILP problem, 

the difficulty is that the NA constraints typically represent around 80% of the total 

constraints and grow quadratically in the number of scenarios, making real-world 

size problems intractable. To overcome this limitation, we present three 

theoretical properties that allow us to formulate significantly reduced MSSP 

models. 

Let us assume that there are p uncertain parameters (θ1, θ2, θ3,.........., θp) 

each of which has k  realizations (l1, l2, l3,.........., lk ). Then the total number of 

combinations of realizations of these parameters will be pk each of which will 

define a scenario s. For these pkS  scenarios there will be a total of )1( SS

scenario pairs (s, s’) each of which corresponds to a NA constraint in each time 

period t. The following properties significantly reduce the problem size by 

reducing the number of these scenario pairs (s, s’) and the corresponding NA 
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constraints. The first two properties were proposed by Goel and Grossmann 

(2006). 

Property 1. If scenario pair (s, s’) is indistinguishable at stage t, so is (s’, s). 

Therefore, we have to consider only one of these scenario pairs (i. e. (s, s’) such 

that s < s’). 

Proof. See Goel and Grossmann (2006). 

Property 2. It is sufficient to express NA constraints for the pairs of scenarios (s, 

s’) that differ in the outcome of only one uncertain parameter. 

Proof. See Goel and Grossmann (2006). 

Property 1 is based on the symmetry of the scenario pairs (s, s’) and prevents 

duplication of the NA constraints for the same pair of scenarios (s, s’) in the 

model. On the other hand, Property 2 exploits the fact that the NA constraints 

between those scenarios which differ in the realizations of more than one 

uncertain parameter is implicitly enforced by considering the NA constraints for 

the one that differ in realization of only one uncertain parameter. Therefore, it is 

sufficient to include a subset of scenario pairs corresponding to those that differ in 

realization of one uncertain parameter. Properties 1 and 2 are further illustrated by 

a small example in the next section. Although, these two properties significantly 

reduce the number of scenario pairs for the NA constraints, there are still many of 

these scenario pairs that are connected implicitly and that can be removed. This 

motivates us to find these scenario pairs systematically to further reduce the size 

of the problem and establish a new Property 3.  

Property 3 basically exploits transitivity relationship among scenario pairs (s, 

s’) that results after applying Properties 1-2, and is an extension of Property 2 to 

those cases where uncertain parameters have more than two realizations (i.e. k 

>2). In that case, according to the Property 2 all the scenario pairs that differ in 

just one uncertain parameter will be included in the model for the NA constraints 

and there will be multiple links among those scenarios pairs that corresponds to a 

single uncertain parameter. Some of these multiple links among scenarios are not 

needed because of the fact that many of these scenarios that corresponds to a 

single uncertain parameter are such that they can be only realized at the same time 
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irrespective of any decisions taken during the planning horizon and hence, we can 

take advantage of the transitivity relation among these scenarios.  

Therefore, the new property establishes that for an endogenous uncertainty 

problem with p uncertain parameters and each having k realizations, it is 

sufficient to express NA constraints only for those scenario pairs (s, s’) such that

,),....,,()',( 21 ksssss  where pk Lsss ),....,,( 21  for each uncertain parameter θp 

and s, s’ are the consecutive elements in this set. The required set pL
 
is defined as 

follows:
  

p
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The k scenarios within each of these ),....,,( 21 ksss sets can only be realized at 

the same time irrespective of the other realizations during the given time horizon 

because they differ in the realization of the same uncertain parameter θp. 

Therefore, unique linking among only these scenarios will be sufficient to enforce 

non-anticipativity. Specifically, Property 3 can be stated as follows:
 

Property 3. For an endogenous uncertainty problem having p uncertain 

parameters and S scenarios, the maximum number of scenario pairs (s, s’) 

required to represent the non-anticipativity are )(
/1 pp

SSp


 .  

Proof.   Suppose that for an endogenous uncertainty problem,     

                p is the number of uncertain parameters = (θ1, θ2, θ3,.........., θp) 

                k  is the number of realizations of each uncertain parameter   

 = (l1, l2, l3,.........., lk ) 

              Therefore, the total number of scenarios are S = pk  

      For each uncertain parameter θp, there will be a total of 1pk  number of 

scenario sets ),....,,( 21 ksss , i.e.
1 p

p kL , each having k  scenarios. The 

characteristic of these k scenarios within a set pk Lsss ),....,,( 21  
is that uncertainty 

in these scenarios
 
can be realized at the same time irrespective of the other 

realization during the specified time horizon because these scenarios have the 

same realizations for all the uncertain parameters except for that particular 
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uncertain parameter θp. In other words, the k scenarios in a set pk Lsss ),....,,( 21

differ only in the realization of the uncertain parameter θp and can be realized at 

the same time irrespective of other realizations. Also, according to Property 2, it is 

sufficient to express NA constraints for those scenario pairs that differ in the 

realization of only one uncertain parameter. Therefore, we do not need to include 

scenario pairs (s, s’) that differ in realization of more than one uncertain 

parameter. As the uncertainty in these k scenarios in a set ),....,,( 21 ksss
 
is realized 

at same time, it is sufficient to express non-anticipativity uniquely in these k 

scenarios only. Hence, 1k  scenario pairs (s, s’) will be required to link k 

scenarios in each of these sets ),....,,( 21 ksss , i.e. 1k  equations are required to 

represent non-anticipativity for each of these 1pk  number of sets for a particular 

uncertain parameter θp. Therefore, the total number of scenario pairs (s, s’) 

required for non-anticipativity are )1(1  kpk p

 or )(
/1 pp

SSp


 .            □ 

The proposed Property 3 can be used in addition to earlier Properties 1 and 2 

to reduce the model size as explained in the next section with a small example. 

Qualitatively, the end result of using these 3 properties is that they lead to the 

minimum number of independent links between the scenarios to represent the NA 

constraints.   

4.5 Reduced Model Formulation  

In this section we apply the three properties described above in order to reduce the 

size of the model (MSSP
0
). Let us define,   

P:  Set of scenario pairs (s, s’) for NACs in the model (MSSP
0
)   

P1: Set of scenario pairs (s, s’) for NACs after applying Property 1 

P2: Set of scenario pairs (s, s’) for NACs after applying Properties 1 and 2 

P3: Set of scenario pairs (s, s’) for NACs after applying Properties 1,2 and 3 

Therefore, 

 ',',)',( ssSssssP   

 ',',)',(1 ssSssssP 
  

 1)',(,',',)',(2  ssDssSssssP  
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 pLsssssssssP pkkk   ),...,,(),(),....,,(),,( 21132213

 

The relation between these sets can be stated as, PPPP  123 . 

The reduced model (MSSP
R
) that is formulated from the original model 

(MSSP
0
) by considering NA constraints for scenario pairs (s, s’) within the set P3 

for the equations (4.3a), (4.3b), (4.4) and (4.5) is given as follows:  
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Theorem 4.1. The optimum solution of the Reduced model (MSSP
R
) is the same 

as the optimum solution of the Original Model (MSSP
0
).   

The proof follows trivially from applying Properties 1-3. To illustrate the 

effect of the proposed properties on the problem size, we consider a case of 

endogenous uncertainty problem having 2 uncertain parameters, i.e. (θ1, θ2). Each 

of these uncertain parameters has three realizations (l1, l2, l3) which give rise to a 

total of 9 scenarios shown in Table 4.1. 
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According to the original model (MSSP
0
), a total of 72 scenario pairs will be 

required to represent non-anticipativity in the above problem as shown in Table 

4.2(a) where each element in the table represent the indices of uncertain 

parameters, (θ1, θ2) that differentiate the corresponding scenarios s and s’, i.e. set 

D(s, s’).  

However, if we use Property 1 (i.e. (s, s’) such that s < s’) the number of 

scenario pairs reduces to 36 from 72 due to the symmetry of the scenario pairs as 

seen in Table 4.2(b). Now, if we apply Property 2 (i.e. consider the scenario pairs 

which differ in realization of only one uncertain parameter) then (s, s’) becomes 

18 by removing those scenario pairs have more than one element in the set D(s, 

s’) as seen in Table 4.2(c). But out of these 18 scenario pairs, only 12 are 

sufficient as seen in Table 4.2(d) to uniquely define the non-anticipativity that 

also satisfies the requirement of Property 3. This is due to the transitivity relation 

among the scenarios pairs corresponding to a single uncertain parameter and their 

characteristic of being realized at the same time irrespective of the other decisions 

as explained in the previous section. Hence, there is 83.33% reduction (i.e. from 

72 to 12) in the scenario pairs (or problem size) on using the three theoretical 

properties. Note that for this example L1 = {(s1, s2, s3), (s4, s5, s6), (s7, s8, s9)} and  

L2 = {(s1, s4, s7), (s2, s5, s8), (s3, s6, s9)} according to the definition of these sets 

described earlier. 

 

 

 

 

 

 

Scenario (s) 1 2 3 4 5 6 7 8 9 

θ1 l1 l2 l3 l1 l2 l3 l1 l2 l3 

θ2 l1 l1 l1 l2 l2 l2 l3 l3 l3 

Table 4.1: 9 Scenarios for the given example 
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Table 4.2: Scenario pairs and corresponding differentiating set D(s, s’) for the 9 scenario example 

 

 

D(s,s’)  1 2 3 4 5 6 7 8 9 

1   1  1  2  1,2 1,2 2 1,2 1,2 

2 1   1 1,2 2  1,2 1,2 2  1,2 

3 1  1    1,2 1,2 2  1,2 1,2 2  

4 2 1,2  1,2    1  1  2  1,2 1,2 

5 1,2 2 1,2 1   1 1,2 2  1,2 

6 1,2   1,2 2  1  1    1,2 1,2  2  

7 2  1,2 1,2 2  1,2 1,2   1  1  

8 1,2 2  1,2 1,2 2  1,2 1   1 

9 1,2 1,2 2  1,2 1,2 2  1  1    

 

                                                                                                                                             

D(s,s’)  1 2 3 4 5 6 7 8 9 

1   1  1  2  1,2 1,2 2 1,2 1,2 

2 

 

  1 1,2 2  1,2 1,2 2  1,2 

3 

   

1,2 1,2 2  1,2 1,2 2  

4 

   

  1  1  2  1,2 1,2 

5 

     

1 1,2 2  1,2 

6 

     

  1,2 1,2  2  

7 

       

1  1  

8 

       

  1 

9 

          

 

D(s,s’)  1 2 3 4 5 6 7 8 9 

1   1  1  2       2     

2     1   2      2    

3           2      2  

4         1  1  2      

5           1   2    

6                 2  

7               1  1  

8                 1 

9                   

D(s,s’)  1 2 3 4 5 6 7 8 9 

1   1    2            

2     1   2          

3           2        

4         1  

 

2      

5           1   2    

6                 2  

7               1  

 8                 1 

9                   

(a) 72 Scenario pairs in the original model (MSSP0) 

(b) 36 Scenario pairs after using Property 1 

   

(c) 18 Scenario pairs after using Properties 1-2 (d) 12 Scenario pairs after using Properties 1-3 
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The graphical illustration of the model reduction scheme for the above 9 

scenario example can be seen in Figure 4.1. Property 1 basically removes one of 

the two links between scenarios 1 and 2 in the figure. Scenarios 1 and 5 differ in 

both the uncertain parameters and due to the implicit connection between these 

scenarios through links 1-2 and 2-5 each of which corresponds to a single 

uncertain parameter, Property 2 can be used to remove the link 1-5. Because 

scenarios 1, 4 and 7 differ in the realization of just the second uncertain parameter 

θ2 and can only be realized simultaneously, they can be expressed by unique link 

among them. Therefore, Property 3 removes the link 1-7 and still allowing 

scenarios 1 and 7 to take non-anticipative decisions through the links 1-4 and 4-7. 

The other similar links removed by these properties are not shown in the figure 

for clarity. 

 

 

Property 3 can be easily extended to the cases where there is a different 

number of realizations for each uncertain parameter. In that case, we need to 

create some dummy realizations for some of the uncertain parameters to make the 

same number of realizations for all the uncertain parameters and apply Property 3 

to find out the least number of scenario links required for this new scenario set. 

Figure 4.1: Model Reduction Scheme for 9 scenario example 
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Finally, we can remove those scenario pairs from the NA constraints set that 

involve dummy realizations of the uncertain parameters leading to the least 

number of NA constraints for the given realizations. 

Note that the number of scenario pairs using Properties 1-3 will be smaller 

compared to using Properties 1-2 only if the number of realization of uncertain 

parameters is more than two. Otherwise we will get the same number of scenarios 

in both cases. Therefore, in contrast to the earlier properties by Goel and 

Grossmann (2006), the proposed Property 3 can be regarded as the extension of 

the Property 2 to the cases where uncertain parameters have more than two 

realizations. Moreover, the effect of these properties on the problem size and 

solution time becomes very significant for the problems having large number of 

scenarios and/or having many realizations of each uncertain parameter. 

4.6 Solution Strategies 

Although the model formulation in the previous section greatly reduces the size of 

the multistage stochastic programs with endogenous uncertainties, given the 

exponential increase in the problem size with the number of uncertain parameters 

and its realizations, these problems may not be solvable in reasonable 

computational time. Hence, we may need some special solution techniques to 

solve large-scale problems in this class as discussed in this section.  

4.6.1  k-stage Constraint Strategy 

We know that NA constraints play a major role in the size of any multistage 

stochastic program and most of them are inactive at the optimum solution of the 

problem, particularly in the later time periods since investments tend to take place 

in the earlier periods. This observation motivates us to include only the subset of 

these constraints, corresponding up to the first k-stages of the problem which are 

assumed to be critical for defining the optimum solution of the problem. By 

defining ST as the set of k initial stages for which NA constraints are to be 

included, the proposed k-stage constraint formulation that is obtained from the 

reduced model by replacing the set T with ST in equations (4.7) and (4.8) is as 

follows: 



 
 

119 
 

(MSSP
SC

)   
 











Tt Ii

s

ti

bs

ti

s

t

ys

t

s

t

xs

t

s

t

ws

t

Ss

s bcycxcwcp ,,min   (4.1) 

s

t

t
T Ii

s

i

bs

ti

sys

t

sxs

t

sws

t abAyAxAwAts 







 


 





,

,,,,,,..  TtSs  ,            (4.2) 

        

   IiPss  ,),( 3         (4.6a) 

             

   3),( Pss                            (4.6b)    
        

           

      STtPss  ,),( 3        (4.9) 

        

        

          

      STtPss  ,),( 3    (4.10) 

 

 

  

 

The above model can be solved successively by starting with a fixed number 

of stages (say k=2) with NA constraints and increasing the number of stages, i.e. 

the value of k, if NA constraints of those stages greater than k are violated. The 

following two propositions are established to implement the proposed k-stage 

constraint strategy: 

Proposition 4.1. The k-stage constraint model (MSSP
SC

) provides a valid lower 

bound on the Original Model (MSSP
0
) and the Reduced Model (MSSP

R
). 

Proof. It can be seen from Reduced Model (MSSP
R
) and the stage constraint 

model (MSSP
SC

) that they are identical except the constraints that corresponds to 

the conditional NA constraints. More specifically, equations (4.9) and (4.10) are 

written for the subset of stages ST instead of all the stages T in equations (4.7) and 

(4.8) respectively. Therefore, the k-stage constraint model (MSSP
SC

) can be 

regarded as the relaxation of the Reduced Model (MSSP
R
) where we neglect the 
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conditional NA constraints for the stages that are not the elements of the set ST. 

Hence, the k-stage constraint model (MSSP
SC

) provides a valid lower bound on 

the Reduced Model (MSSP
R
). As models (MSSP

R
) and (MSSP

0
) are equivalent, 

the k-stage constraint model (MSSP
SC

) also provides a valid lower bound on the 

Original Model (MSSP
0
).                             □  

Proposition 4.2. The k-stage constraint model (MSSP
SC

) provides the optimum 

solution to the Original Model (MSSP
0
) and the Reduced Model (MSSP

R
), if there 

is no realization of any of the endogenous uncertain parameter after specified 

stages in the solution that is obtained.  

Proof. The proof follows from the fact that if there is no realization of any of the 

uncertain parameter after specified stage k in the solution, then there will be no 

new information available to any scenario from period k +1 to end of the planning 

horizon T. Therefore, the state of the system corresponding to each scenario will 

be the same from period k to T. Moreover, the scenario pairs that have already 

being distinguished within the first k stages according to the logic condition of the 

non-anticipativity, there will not be any need to include NA constraints for these 

scenario pairs. On the other hand, if there are some scenario pairs that have not 

been distinguished until stage k, and as there in no further realization of 

uncertainty, these scenarios will have the same information from period 1 to T and 

will have the same decisions. Hence, the NA constraints from period k+1 to T 

will automatically be satisfied for these scenario pairs. Given that the reduced 

model (MSSP
R
) and the stage constraint model (MSSP

SC
) are identical except the 

conditional NA constraints that were relaxed, i.e. from period k+1 to T in the 

stage constraint model, and because the NA from period k+1 to T are satisfied in 

the solution of k stage constraint model if there is no realization of uncertain 

parameter after stage k as discussed earlier, the solution of the stage constraint 

model corresponding to the current stage k will be the optimum solution for the 

reduced model (MSSP
R
). As models (MSSP

R
) and (MSSP

0
) are equivalent, the k-

stage constraint model (MSSP
SC

) also provides an optimal solution to the Original 

Model (MSSP
0
) if the above condition is satisfied.              □ 
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The step-by-step procedure to implement the proposed k-stage constraint 

strategy is as follows: 

Step 1:  Set the effective number of stages k (usually k=2) and lower bound to -∞. 

Step 2:  Include NA constraints for the specified number of stages k in the model 

(MSSP
SC

) and solve. 

Step 3:  If Proposition 4.2 is satisfied, i.e. there is no realization of any of the 

uncertain parameter after the current stage k, Stop. Optimal solution is found; 

else go to Step 4. 

Step 4:  If Proposition 4.2 is not satisfied, update the lower bound using the 

solution of the model (MSSP
SC

) for the specified value of k. Set k=k+1 and go to 

Step 2. 

The following remarks can be made about the proposed k-stage constraint 

strategy: 

1. There are two cases involved while checking whether Proposition 4.2 holds in 

step 3 of the above procedure. In the first case, if there is neither investment nor 

expansion decision in the later stages in the solution, then we can ensure that 

Proposition 4.2 is satisfied and the solution obtained is optimal by inspection. In 

case that there are expansions in the later stages and no new investments, then the 

NA constraints corresponding to the later stages are also satisfied, i.e. Proposition 

4.2 holds true and the solution is optimal.   

2. The lower bounds obtained from the above procedure are generally very tight 

and the corresponding solution is very close to the feasible solution to the original 

problem. Therefore, this solution can be used to obtain a good feasible solution, 

i.e. upper bound, and one can also evaluate the quality of the solution that is 

obtained. 

 3. In case that the iterations during the above solution procedure are 

computationally expensive, one can use the solution of the previous iteration to 

determine a good value of k that can be used in the next iteration to fix the 

number of stages instead of increasing k value by just 1 in each iteration. 

Therefore, one can skip the expensive calculations for those values of k that are 

less likely to be optimum.     
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The proposed k-stage constraint strategy can be quite effective for the 

investment planning models because the trend in problems of this class is that 

their optimum solution involves investments in the earlier stages of the project. 

The reason behind this is the effect of economies of scale, as in general, it pays to 

make investments only once and earlier because of the fixed cost charges. Second, 

if one expands the capacity, it is better to do it early as otherwise one will not take 

full advantage of the investment. This implies that the investment and operation 

decisions in the early stages of planning horizon are critical for these problems 

and require enforcing the NA constraints in these stages, while the ones for later 

stages can be ignored making the large-scale investment planning problems easier 

to solve. Specific examples for these problems are process network planning, or 

oil and gas fields infrastructure planning problems.  

4.6.2 NAC Relaxation Strategy  

The k-stage constraint strategy presented in the previous section involves the 

solution of the reduced model for the specified number of stages iteratively and 

has advantage for the investment planning problems where only first few stages 

involve uncertainty realization. This is due to the economies of scale in these 

problems as explained earlier. On the other hand, if there are endogenous 

uncertainties that are revealed later in the planning horizon, then the stage 

constraint approach can become expensive for finding the optimal solution due to 

the solution of MILP problems for multiple times, although a strong lower bound 

to the problem can still be obtained.  

Therefore, for the more general problems we propose a NAC relaxation 

strategy. This strategy is motivated by the fact that very few inequality NA 

constraints become active at the optimal solution of the problem (e.g. see Colvin 

and Maravelias, 2010). In this strategy (Figure 4.2), we divide the solution 

procedure in two phases, Phase I and Phase II. Phase I involves removing all 

inequality NA constraints from the reduced model (MSSP
R
) and solving its LP 

relaxation (LP-MSSP
R
). Then we check the feasibility of the NA constraints and 

add the violated NA constraints in the LP relaxation and solve iteratively until 

there is no violation of the NA constraints in the LP relaxation. In Phase II of the 
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NAC relaxation strategy, the resulting model from Phase I with the added cuts is 

solved as an MILP problem to obtain a lower bound that is usually very tight. The 

upper bound is obtained by fixing the binary decisions in the reduced model 

(MSSP
R
) using the solution of the lower bounding MILP problem such that NA 

constraints are not violated and solving the problem in fullspace. If the gap 

between lower and upper bounds is more than the specified tolerance, we check 

the feasibility of the NA constraints for the MILP solution in the current iteration 

and solve the new MILP problem with violated NA constraints that serve as 

added cuts in the next iteration. The procedure of solving lower and upper 

bounding problems in Phase II continues until the gap between upper and lower 

bound is within the specified optimality tolerance.  

 

 

 

 

 

 

 

 

 

Note that in comparison to the branch and cut solution method by Colvin and 

Maravelias (2010), the proposed NAC relaxation strategy is much easier to 

implement directly using the available commercial solvers, although there might 

be some trade-offs between these solution strategies in terms of the solution 

times. Furthermore, it has been observed that very few inequality NA constraints 

(~6-7% of the total inequality NA constraints in the reduced model) are added as 

cuts in the complete solution procedure and most of the violated NA constraints 

Figure 4.2: NAC Relaxation Strategy 
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as cuts are added in Phase I itself which is very fast compared to Phase II. 

Although, the most expensive part of this procedure is the solution of the MILP 

problems during the Phase II iterations, it has been observed in most of the cases 

that only one or two iterations are required in Phase II to obtain a strong lower 

bound as well as the to generate the optimal solution from it. Moreover, due to the 

very small problem size compared to the reduced model, the solution of the MILP 

problems in Phase II are significantly faster during these iterations.  

4.6.3 Lagrangean Decomposition Algorithm 

The solution strategies presented in the previous two sections basically require the 

solution of a fullspace model and do not take the advantage of the decomposable 

structure of the model by scenarios. We should notice that the reduced model 

(MSSP
R
) is composed of scenario subproblems connected through initial and 

conditional NA constraints. If these NA constraints are relaxed or dualized, then 

the problem decomposes by scenarios, and each sub-problem can be solved 

independently within an iterative scheme for the multipliers as described in Carøe 

and Schultz (1999) and in Goel and Grossmann (2006). In this way, we can 

effectively decompose the large scale problems in this class.   

In the Lagrangean Decomposition algorithm (Figure 4.3) the lower bound 

(LB) is obtained by solving the Lagrangean problem with fixed multipliers that is 

obtained from the reduced model (MSSP
R
) by relaxing the conditional NA 

constraints and dualizing the first time period NA constraints as penalty terms in 

the objective. Each sub-problem in the following Lagrangean problem (LR
R
- 

MSSP
R
) corresponds to a scenario:  

(LR
R
 -MSSP

R
)         

  

           (4.11)  

 
s

t

t
T Ii

s

i

bs

ti

sys

t

sxs

t

sws

t abAyAxAwAts 







 


 





,

,,,,,,..     TtSs  ,         (4.2) 

     

 



 













33 )',(

'

11

',

1,

'

1,1,

',

1,,

)',(

,,min

Pss

ssss

y

Ii

s

i

s

i

ss

ib

Pss

Tt Ii

s

ti

bs

ti

s

t

ys

t

s

t

xs

t

s

t

ws

t

Ss

s

yybb

bcycxcwcp





 
 

125 
 

 1,0,,, ,  s

ti

s

t

s

t

s

t

s

t

s

t

s

t bYyXxWw

 IiTtSs  ,,      

The upper bound (UB) is generated by using a heuristic based on the solution 

of the Lagrangean problem. In this heuristic, we fix the decisions obtained from 

the above problem (LR
R
- MSSP

R
) in the reduced problem (MSSP

R
) such that 

there is no violation of NA constraints and solve it to obtain the upper bound. The 

sub-gradient method by Fisher (1985) is used during each iteration to update the 

multipliers for the Lagrangean problem. The algorithm stops when either a 

maximum iteration limit is reached, or the difference between the bounds LB and 

UB is less than a pre-specified tolerance. 

 

 

 

 

 

 

 

 

 

 

 

The major advantage with the above Lagrangean decomposition algorithm 

for  endogenous uncertainty problems is that it provides good bounds on the 

optimal solution at the root node by taking advantage of the decomposable 

structure of the problem. Notice that in contrast to the method presented by Goel 

and Grossmann (2006), no branch and bound method is performed here with 

which the dual gap may not be closed for the problem. Therefore, if the gap 

between lower and upper bounds is large then in principle we would have to also 
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Figure 4.3: Lagrangean Decomposition algorithm 
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incorporate a branch and bound procedure to reduce this gap. In our experience, 

however, we have observed for problems in this class that a good feasible solution 

within a small optimality tolerance is often found at the root node with this 

algorithm. 

It should be noted that as opposed to the k-stage constraint method described 

earlier, in both the NAC relaxation strategy and Lagrangean decomposition 

algorithm, it is possible to assess the quality of the solution obtained (UB) with 

the lower bound at each iteration. On the other hand, in the k-stage constraint 

strategy we obtain the solution with optimal number of stages k. 

4.7 Numerical Results 

In this section we apply the proposed solution strategies to two process network 

examples and examine their performance compared to the original and reduced 

models. 

4.7.1 Example 1  

To illustrate the application of the various solution strategies for multistage 

stochastic programming with endogenous uncertainties, we consider the following 

problem from Goel and Grossmann (2006). Given is a process network (Figure 

4.4) that is used to produce product A. Currently, the production of A takes place 

only in Process III with installed capacity of 3 tons/hour that consumes an 

intermediate product B that is purchased. If needed, the final product A can also 

be purchased so as to maintain its inventory. The demand for the final product, 

which is known, must be satisfied for all time periods over the given time horizon. 

Two new technologies (Process I and Process II) are considered for producing the 

intermediate B from two different raw materials C and D. These new technologies 

have uncertainty in the yields. The yield of Process I and Process II can be 

(0.67,0.69,0.81,0.83,0.84) and (0.62,0.65,0.85,0.88,0.89), respectively, with equal 

probability of 0.2. These five realizations of yield for each of Process I and 

Process II give rise to a total of 25 scenarios. 

The problem consists of finding the optimum expansion and operation 

decisions for this process network for a 10 year planning horizon to minimize the 
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Figure 4.4: Process Network Example 1 

total expected cost of the project. Applying the original model (MSSP
0
) and 

solving it with XPRESS 20.00, we obtain the results shown in Figures 4.5(a)-(e).  

  

The total expected cost is $369,124 and the solution suggests to install 

Process II with a capacity of 1 tons/hr and expand the existing Process III from a 

capacity of 3 tons/hr to 6.914 tons/hr in the first year. If the yield of Process II 

turns out to be low, i.e. 0.65 (Figure 4.5-a) or 0.62 (Figure 4.5-b), then in the 

second year it is not expanded and the new Process I is installed. On the other 

hand, if yield of Process II turns out to be high, i.e. 0.89, (Figure 4.5-c), 0.88 

(Figure 4.5-d) or 0.85 (Figure 4.5-e), then Process II is expanded in the second 

year to slightly different capacities close to 8 tons/hr in each of these three cases 

and there is no installation of Process I. There are no further installations or 

expansions of any of the processes.   

It is interesting to note that the solution of the two-stage stochastic model of 

this example that considers no expansions, i.e. no recourse actions for the 

investment decisions of the processes, yields an expected cost of $379,706 or 

about 3% higher than the multistage model. In this case the solution suggests to 

install Process I and Process II with capacities of 4.246 tons/hr, and 4.541 tons/hr 

respectively, and expand Process III to a capacity of 7.384 tons/hr in the first year. 

The savings in the expected cost using the multistage stochastic model are due to 

the fact that multistage stochastic solution takes advantage of favorable scenarios 

corresponding to the high yields of Process II, while minimizing the losses due to 

the low yield of Process II by taking appropriate recourse action in the future on 

the basis of the outcome of the yield of Process II. It can be seen from the Figures 

4.5 (c)-(e), that there is no investment made in Process-I for the scenarios 

corresponding to the high yields of Process II and from Figures 4.5(a)-(b), that 

ratey1
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Figure 4.5: Installation Schedule for the Process Network Example 1 

there is installation of Process I for the scenarios corresponding to low yields of 

Process II. 
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 Table 4.3: Comparison of the various solution strategies for Example 1   

If we reformulate the original (MSSP
0
) and reduced (MSSP

R
) models into 

MILP problems (see Goel and Grossmann, 2006) for this example, the 

comparison of problem sizes and solution times between these models using 

XPRESS 20.00 solver is given in Table 4.3. It can be seen that problem size has 

reduced approximately 90% using Properties 1-3. Therefore, the advantage of 

including the new Property 3 with the earlier Properties 1 and 2 is very significant 

for this problem. 

 

*Size of the last MILP with NA constraints in Phase II.  

** Solved using XPRESS 20.00 solver in GAMS 23.0 on an Intel Pentium-IV machine with 3 GB 

of RAM. 

The comparison of the k-stage constraint strategy with the original (MSSP
0
) 

and the reduced (MSSP
R
) models for this 3 process network is also given in Table 

4.3 where it can be seen that the global optimum is obtained using the k-stage 

constraint strategy and the solution time is greatly decreased to only 8.4s. We 

should note that the problem was solved with 2-stages initially and was stopped 

after the first iteration itself because there was no installation in time periods after 

k=2, and therefore Proposition 4.2 is satisfied. When the NAC relaxation strategy 

is applied to this problem, it provides the optimal solution significantly faster 

compared to the fullspace model as seen in Table 4.3, and its performance is 

slightly slower than the k-stage constraint strategy. The problem size of the MILP 

in the last iteration with this strategy after adding the violated NA constraints is 

also comparable to the size of the k-stage model.  

Problem Type 

Expected 

Cost 

($10
3
) 

Number of 

Constraints 

Continuous 

Variables 

Binary 

Variables 

Solution 

Time(s) 

Original Model (MSSP0) 369.12 192,376 11,026 750 243.33 

Reduced Model: Property 1 369.12 98,576 8,026 750 224.79 

Reduced Model: Properties 1-2 369.12 32,376 6,026 750 56.76 

Reduced Model (MSSPR): 

Properties1-3 

369.12 15,816 5,426 750 35.94 

 k-stage constraint Model for 

k=2 

369.12 7,096 5,106 750 8.36 

NAC Relaxation Strategy 369.12 8,187* 5,426* 750* 12.00 
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The Lagrangean decomposition algorithm was also used for solving the 

process network Example 1 using the reduced model. The results in Table 4.4 

show that with the Lagrangean decomposition algorithm the problem can be 

solved within 1% of optimality at the root node in just 27 s compared to 243 s in 

the case of the original model. Note that the global optimum is also obtained in 

this case. To further reduce the gap one may have to incorporate a branch and 

bound method. 

 

 

 

 

 

  

 

 

 

 

 

 

 

*Problems are solved in fullspace. 

Sub-gradient 

Iteration No. 

Lower 

Bound 

($10
3
) 

Upper 

Bound 

($10
3
) 

% 

Gap  

1* 360.408 369.124 2.361 

2* 362.594 369.124 1.769 

3* 363.795 369.124 1.444 

4 363.795 369.124 1.444 

5* 364.244 369.124 1.322 

6 364.789 369.124 1.174 

7* 364.816 369.124 1.167 

8 364.883 369.124 1.149 

9 364.883 369.124 1.149 

10* 365.374 369.124 1.016 

27 366.135 369.124 0.810 

Time(s) 21.95 5.18  0.810  

Number of 

Scenarios 

Solution Time(s) 

Original Model* 

Solution Time(s) 

Reduced Model* 

% Optimality 

Gap 

4 1.30 0.96 0 

9 19.38 4.98 0 

16 133.09 14.71 0 

25 243.33 35.94 0 

36 731.37 42.26 < 0.5% 

64 2516.709 102.04 < 0.5% 

81 NA 105.03 < 0.5% 

100 NA 120.19 < 0.5% 

     Table 4.4: Iterations during Lagrangean Decomposition 

*problem solved for upper bound generation 

Table 4.5: Comparison of the original and reduced models for Example 1  

               considering different scenarios 
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Figure 4.6: Comparison of constraints in Original and Reduced Models for Example 1  

                considering different scenarios 

Furthermore, to investigate the impact of the model reduction using 

Properties 1-3, we also consider other cases for this example where the number of 

realization of uncertain yields are changed for Process I and Process II from 2 to 

10, and the results are shown in Table 4.5. It is clear that the problem size is 

reduced significantly and hence the solution time for all the cases. Also, note that 

we can solve all the problems with the reduced model, while the larger ones 

cannot be solved with the original model. The main reason is the much smaller 

size of the reduced model as can be seen in Figure 4.6. 

 

 

 

 

 

0 

500,000 

1,000,000 

1,500,000 

2,000,000 

2,500,000 

3,000,000 

3,500,000 

0 10 20 30 40 50 60 70 80 90 100 

Original Model 

Reduced Model 

0 

10,000 

20,000 

30,000 

40,000 

50,000 

60,000 

70,000 

80,000 

0 10 20 30 40 50 60 70 80 90 100 

N
u

m
b
er

 o
f 

C
o
n
st

ra
in

ts
 

Number of Scenarios 

Total Constraints 

Total NACs 

Inequality NACs 

Cuts Added 

Number of Scenarios 

 

Number of 

Constraints 

 

   Figure 4.7: Cuts Added vs. Total Constraints in the Reduced Model for   

                      NAC Relaxation Strategy  
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As discussed earlier, the number of active NA constraints at the optimal 

solution of these problems is very small. It can be observed from Figure 4.7 that 

very few (~6-7%) inequality NA constraints of the reduced model are added as 

cuts during the NAC relaxation strategy for all scenario instances of  Example 1. 

Also, the computational advantage of this strategy can be seen in Table 4.6.  It 

should be noted that very few Phase II iterations are needed to obtain the optimal 

solution. 

 

 

4.7.2 Example 2 

 

 

 

 

  

 

 

  

To illustrate the solution of a larger instance, we consider a 5 process 

network (Figure 4.8) having 4 uncertain parameters, i.e. yield of Process I, 

Process II, Process IV and Process V. Notice that here we consider 2 new 

additional processes compared to the previous example in which Process IV 

converts E into B and Process V that converts B into final product A. Each of the 

uncertain yields has 3 realizations and gives rise to a total of 81 scenarios with 

Number 

of 

Scenarios 

Optimal 

Solution  

($10
3

 )  
Gap 

% 
 Phase I 

Iterations  
Phase II 

Iterations  

Solution 

Time (s)  

NAC 

Relaxation 

Strategy  

Solution 

Time(s) 

Reduced 

Model  
4 379.072 0.000 3 1 1.136 0.96 

9 390.944 0.012 3 1 3.701 4.98 

16 377.364 0.002 3 1 10.837 14.71 

25 369.124 0.002 3 1 12.005 35.94 

64 376.824 0.000 5 2 51.577 102.04 

100 376.747 0.003 3 1 76.537 120.19 

B 

B 

B 

C Process I 

Process II D 

Process IV E 

A 

B 

B 

Purchases A 

Sales A 

Inventory A 

Process III 

Process V 

Figure 4.8: Process Network Example 2 

Table 4.6: Reduced Model vs. NAC-Relaxation Strategy for various scenario instances 
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equal probabilities. The problem consists of finding the expansion and operation 

decisions for this process network over a 10 year planning horizon to minimize 

the total expected cost of the project.  

The optimum installation schedule of the processes for this problem can be 

seen in Figure 4.9.  Only one node in time period 1 in Figure 4.9 corresponds to 

the initial state of the system when there is no realization of any of the uncertain 

yields. The uncertain Process II, Process IV and Process V are installed in the first 

year with small capacities in all the scenarios and due to the 3 possible 

realizations of the yield of each of these 3 processes, there are total 27 nodes at 

time period 2 in the scenario tree (Figure 4.9) that correspond to the 27 possible 

states of the system at the beginning of the second year. On the basis of these 

yield realizations, the recourse actions involve installation of the new Process I 

for low yield scenarios and expansion of the already installed processes for high 

yield scenarios. Note that in Figure 4.9, the number of nodes (states) in time 

period 3 is greater than the ones in period 2 due to the installation of Process I in 

some of the states in the second year and its corresponding 3 possible yield 

realizations for each of these new installations. From period 3 to end of the 

planning horizon there is no further realization of uncertainty in any of the 

scenarios and no new branches appeared as can be seen from Figure 4.9. 

Moreover, we can observe from this solution that the structure of the scenario tree 

for these problems depends on our decisions, i.e. decision-dependent scenario tree 

as explained earlier.     

Table 4.7: Comparison of the various solution strategies for Example 2 

*Size of the last MILP with NA constraints in Phase II.  

Problem Type 

Expected 

Cost ($10
3
) 

Number of 

Constraints 

Continuous 

Variables 

Binary 

Variables 

Solution 

Time(s) 

Original Model (MSSP0) - 3,158,272 90,802 4,050 NA 

Reduced Model: Property 1 - 1,591,732 58,402 4,050 NA 

Reduced Model: Properties 1-2    369.590 151,552 29,242 4,050 1627.51 

Reduced Model (MSSPR): 

Properties 1-3 

368.972 109,432 28,162 4,050 1160.34 

k-Stage Constraint Model for 

k=2 

368.916 44,200 26,434 4,050 371.53 

NAC Relaxation Strategy 368.650 45,797* 28,162* 4,050* 250.64 
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               Figure 4.9: Optimal Solution (Example 2) 

The results for this problem are compared in Table 4.7 for the original 

(MSSP
0
), reduced (MSSP

R
), k-stage constraint (MSSP

sc
) models and NAC 

relaxation strategy. The problem was solved within 0.5% optimally tolerance in 

all the cases which gives slightly different optimal values.  It can be seen that the 

problem cannot be solved in the fullspace for the original model and even after 

using Property 1, while using the reduced model with Properties 2 and 3, we can 

solve it. The solution time for only considering Properties 1-2 is 1.5 times more 

than the solution time from considering Properties 1-3, which is expected due to a 

factor of around the same order in the number of scenario pairs included in these 

models.  

The k-stage constraint model was initially solved for two stages (k =2) and it 

gives the optimal solution to the problem as there was no realization of any 

uncertain parameter after k=2. Because of the inherent property of these 

problems, the proposed k-stage constraint model does not need many iterations 

and performs better than the reduced model. On the other hand, the NAC 

relaxation strategy works well in all the cases because of its generality. As it can 

be seen in Table 4.7, the optimal solution obtained from the NAC relaxation 

strategy has a slightly lower cost than the other strategies, and it is also 

significantly faster than the reduced model and comparable to the k-stage model. 
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The Lagrangean decomposition algorithm was also applied to this 5 process 

network problem using the reduced model. The results in Table 4.8 show that 

using Lagrangean decomposition algorithm with the reduced model, the problem 

can be solved within about 3.5% of optimality gap at the root node after 30 

iterations. The solution obtained (UB) at the root node has a higher cost than the 

solution obtained from the NAC relaxation strategy ($371,579 vs. $368, 650). On 

the other hand, it is faster than the NAC relaxation strategy (181s vs. 251s). 

The Lagrangean decomposition strategy has the advantage that if the 

problem size is too large to be generated for all the scenarios at once, the model 

can be decomposed by scenarios. The k-stage constraint and NAC relaxation 

strategies will not work in this case as they need to be solved for all scenarios at 

once. It is only in smaller to moderate size problems that the k-stage constraint 

strategy and the NAC relaxation strategy may perform better than Lagrangean 

decomposition strategy because of the tight lower bounds and corresponding 

better solutions obtained in these cases. These trends can be clearly seen from the 

two examples considered.  

Sub-gradient 

Iteration No. 

Lower Bound 

($10
3
) 

Upper Bound 

($10
3
) 

% 

Gap  

1* 351.577 371.579 5.383 

2* 352.517 371.579 5.130 

3* 354.426 371.579 4.616 

4* 354.426 371.579 4.616 

5* 354.869 371.579 4.497 

6* 354.869 371.579 4.497 

7* 354.929 371.579 4.481 

8* 354.929 371.579 4.481 

9 355.235 371.579 4.399 

10 355.235 371.579 4.399 

30 358.361 371.579 3.557 

Time(s) 167.19 13.63  3.557  

*problem solved for upper bound generation 

          Table 4.8: Iterations during Lagrangean Decomposition 

algorithm 
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It is also interesting to note that the two-stage stochastic model 

corresponding to this example gives about 5% higher total expected cost 

($387,421 vs. $368,650) and suggests to invest in all the processes in period 1. 

Similar to the Example 1, in the two-stage case the higher cost occurs due to the 

absence of appropriate recourse for the investment decisions in the model. 

Furthermore, the larger savings compared to the previous example indicate the 

advantage of using the multistage stochastic model. Also, note that the total 

expected cost is about 3-6 % higher for the expected value problem (EVP) in 

comparison to the multistage stochastic programming model for all the cases 

considered.  

The numerical results presented in this section are very encouraging to solve 

multistage stochastic programming problems with endogenous uncertainty using 

the proposed solution strategies in reasonable computational time. Although there 

are several trade-offs involved in using a particular solution strategy for a 

particular class of the problems under uncertainty, the proposed solution strategies 

are fairly general and can be applied to many problems classes, specifically to all 

the problems that involve endogenous uncertain parameters.   

4.8 Conclusions 

In this chapter, we have proposed several solution strategies for multistage 

stochastic programming problems with endogenous uncertainty. We have 

identified a new Property 3 for the models in this class that together with two 

properties previously presented by Goel and Grossmann (2006), significantly 

reduce the problem size and the solution time. To solve the large instance of these 

problems, we have proposed a k-stage constraint strategy that yields the global 

optimum in particular cases and is useful for problems where endogenous 

uncertainty is revealed during the first few time periods of the planning horizon. 

To solve the more general problems of large size, we also proposed a NAC 

relaxation strategy based on relaxing the NA constraints and adding them if they 

are violated. Finally, we described a Lagrangean Decomposition algorithm that 

can predict the rigorous lower bounds for the solution obtained. The proposed 
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solution strategies have been successfully applied to two process network 

problems. Moreover, these strategies are applicable to a wide range of problems 

having endogenous uncertainty in some of the parameters. 
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Chapter 5 

 

Multistage stochastic programming 

approach for offshore oilfield 

infrastructure planning under 

production sharing agreements and 

endogenous uncertainties 

 

 

5.1 Introduction  

In this chapter, we present a general multistage stochastic programming model for 

multiperiod investment and operations planning of offshore oil and gas field 

infrastructure. The model considers the deterministic models proposed in chapter 

2 and 3 as a basis to extend to the stochastic programming using the modeling 

framework presented in chapter 4 for endogenous (decision-dependent) 

uncertainty problems. In terms of the fiscal contracts, we consider progressive 

production sharing agreements, whereas the endogenous uncertainty (type 2) in 

the field parameters i.e. field size, oil deliverability, water-oil ratio and gas-oil 

ratio is considered, that can only be revealed once an investment is made in the 

field and production is started in it. Compared to the conventional models where 

either fiscal rules or uncertainty in the field parameters are taken into account, the 

proposed model is the first one in the literature that also allows considering both 

of these complexities simultaneously. To solve large instances of the problem, the 

Lagrangean decomposition approach similar to chapter 4, allowing parallel 



 
 

139 
 

solution of the scenario subproblems, is implemented in the GAMS grid 

computing environment.  

The outline of this chapter is as follows. First, in section 5.2 we present a 

detailed problem description for offshore oilfield development planning under 

production sharing agreements and endogenous uncertainties. The corresponding 

multistage stochastic programming model is presented in extensive as well as 

compact forms in sections 5.3 and 5.4, respectively. The Lagrangean 

decomposition algorithm adapted from chapter 4 is explained in section 5.5 to 

solve large instances of the stochastic oilfield planning model. The proposed 

model and solution approach are then applied to multiple instances of the two 

oilfield development problems in section 5.6 to illustrate their performances. 

5.2  Problem statement 

               

 

Figure 5.1: A typical offshore oilfield infrastructure representation 

In this chapter, we consider the development planning of an offshore oil and gas 

field infrastructure under complex fiscal rules and endogenous uncertainties. In 

particular, a multi-field site, F = {1,2,…}, with potential investments in floating 

production storage and offloading (FPSO) facilities, FPSO = {1,2,…}  with 
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continuous capacities and ability to expand them in the future is considered 

(Figure 5.1), as in the previous chapters. The connection of a field to an installed 

FPSO facility and a number of wells need to be drilled to produce oil from these 

fields for the given planning horizon. The planning horizon is discretized into T 

time periods, typically each with one year duration. The location of each FPSO 

facility and its possible connections to the given fields are assumed to be known. 

Notice that each FPSO facility can be connected to more than one field to produce 

oil, while a field can only be connected to a single FPSO facility due to 

engineering requirements and economic viability of the project. For simplicity, we 

only consider FPSO facilities. The proposed model can easily be extended to 

other facilities such as tension leg platforms (TLPs). The water produced with the 

oil is usually re-injected after separation, while the gas can be sold in the market. 

In this case, we consider natural depletion of the reserves, i.e. no water or gas re-

injection. Notice that for convenience to the reader, we included the detailed 

problem statement and model in this chapter which contain few common elements 

from the previous chapters.  

There are three major complexities in the problem considered here: 

5.2.1 Nonlinear Reservoir Profiles: We consider three components (oil, 

water and gas) explicitly during production from a field. Field deliverability, i.e. 

maximum oil flowrate from a field, water-oil-ratio (WOR) and gas-oil-ratio 

(GOR) are approximated by cubic equations (a)-(c) (see Figure 5.2), while 

cumulative water produced and cumulative gas produced from a field are 

represented by fourth order separable polynomials, eqs. (d)-(e), that are derived in 

Appendix A. The motivation for using the polynomials for cumulative water 

produced and cumulative gas produced in eqs. (d)-(e) as compared to WOR and 

GOR in eqs. (b)-(c) is to avoid bilinear terms, eqs. (f)-(g), in the formulation and 

allow converting the resulting model into an MILP formulation using piecewise 

linear approximations. All the wells in a particular field f are assumed to be 

identical for the sake of simplicity leading to the same reservoir profiles, eqs. (a)-

(g), for each of these wells.  
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Figure 5.2: Nonlinear Reservoir Characteristics for field (F1) for 2 FPSOs    

(FPSO 1 and 2) 
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5.2.2 Production Sharing Agreements: There are fiscal contracts with the 

host government that need to be accounted for during development planning. In 

particular, we consider progressive (sliding scale) production sharing agreements 

with ringfencing provisions, which are widely used in several countries. The 

revenue flow in a typical production sharing agreement (PSA) can be seen as in 

Figure 5.3 (World Bank, 2007). First, in most cases, the company pays royalty to 

the government at a certain percentage of the total oil produced.  After paying the 

royalties, some portion of the remaining oil is treated as cost oil by the oil 

company to recover its costs. There is a ceiling on the cost oil recovery to ensure 

revenues to the government as soon as production starts. The remaining part of 

the oil, called profit oil, is divided between oil company and the host government 

at a certain percentage. The oil company needs to further pay income tax on its 

share of profit oil. Hence, the total contractor’s (oil company) share in the gross 

revenue is comprised of cost oil and contractor’s profit oil share after tax.  

  

 

 

 

 

 

 

 

 

 

 

In this work, we consider a sliding scale profit oil share of the contractor 

linked to the cumulative oil produced. For instance, if the cumulative production 

(in MMbbl) is in the range of first tier, 2000  txc , the contractor receives 50% 

of the profit oil, while if the cumulative production (in MMbbl) reaches in tier 2,

400200  txc , the contractor receives 40% of the profit oil, and so on (see Figure 

5.4). Notice that this tier structure is a step function, which requires additional 

Income 

Tax 

Production 

Cost Oil Profit Oil 

Contractor’s 

Share 

Government’s 

Share 

Total Government’s Share Total Contractor’s Share 

Contractor’s 

after-tax Share 

Royalty 

Figure 5.3: Revenue flow for a typical Production Sharing Agreement 
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binary variables to model and makes the problem harder to solve. Moreover, the 

cost recovery ceiling is considered to be a fraction of the gross revenues in each 

time period t. For simplicity, the cost recovery ceiling fraction and income tax 

rates are assumed to be a fixed percentages (no sliding scale), and there are no 

explicit royalty provisions which is a straightforward extension.  

 

Figure 5.4: Progressive profit oil share of the contractor 

A set of ringfences RF = {1,2,…} among the given fields is specified (see 

Figure 5.1) to ensure that fiscal calculations are to be done for each ringfence 

separately (see chapter 3 for details). For example, the fiscal calculations for 

Fields 1-3 (Ringfence 1) and Field 4-5 (Ringfence 2) in Figure 5.1 cannot be 

consolidated in one place. These ringfences may or may not have the same fiscal 

rules. Qualitatively, a typical ringfencing provision states that the investment and 

operational costs for a specified group of fields or block can only be recovered 

from the revenue generated from those fields or block. Notice that in general a 

field is associated to a single ringfence, while a ringfence can include more than 

one field. In contrast, a facility can be connected to multiple fields from different 

ringfences for producing oil and gas. 

5.2.3 Endogenous Uncertainties: 

(a)       Uncertain Field Parameters: We consider here the uncertainty in the 

field parameters, i.e. field size, oil deliverability per well, water-oil ratio and gas-

oil ratio. These are endogenous uncertain parameters since investment and 

operating decisions affect the stochastic process (Jonsbraten et al., 1998; Goel et 

al., 2006; Tarhan et al., 2009; and Gupta and Grossmann, 2011a). In particular, 
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the uncertainty in the field parameters can only be resolved when an investment is 

made in that field and production is started in it. Therefore, optimization decisions 

determine the timing of uncertainty realization, i.e. decision-dependent 

uncertainty (type 2).  

 

Figure 5.5: Oil deliverability per well for a field under uncertainty 

The average profile in Figure 5.5 represents the oil deliverability per well for 

a field as a nonlinear polynomial in terms of the fractional oil recovery (eq. (a)) 

under perfect information. However, due to the uncertainty in the oil 

deliverability, the actual profile is assumed to be either the lower or upper side of 

the average profile with a given probability. In particular, eq. (h) represents the oil 

deliverability per well for a field under uncertainty where parameter oilf ,  is used 

to characterize this uncertainty.  
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inverse function of the fraction oil recovery, a higher field size will correspond to 

the low fractional oil recovery, whereas a small field size will correspond to the 

higher fractional oil recovery for a given amount of the cumulative oil production.   

Similarly, eqs. (i) and (j) correspond to the uncertain field profiles for water-

oil-ratio and gas-oil-ratio that are characterized by the uncertain parameters 

worf , and gorf , , respectively. Notice that since the cumulative water produced 

(eq. (d)) and the cumulative gas produced (eq. (e)) profiles are used in the model, 

instead of water-oil-ratio (eq. (b)) and gas-oil-ratio (eq. (c)), the uncertainty in the 

parameters worf , and gorf ,  can be transformed into the corresponding 

uncertainty in the parameters wcf , and gcf ,  as in eqs. (k) and (l), respectively. 

In particular, we use the correspondence among the coefficients of these two sets 

of the polynomials (see Appendix A) for this transformation. 

  fworff rowwor ˆ
, 

  
f          (i) 

  fgorff roggor ˆ
, 

  
f          (j) 

 
 fwcff cwwc ˆ

,  
  

f          (k) 

  fgcff cggc ˆ
, 

   
f          (l) 

Moreover, the uncertain parameters for every field, i.e. 

 gorfworfoilfff REC ,,, ,,,    are considered to have a number of possible 

discrete realizations 
k

f
~

 with a given probability. Therefore, all the possible 

combinations of these realizations yield a set of scenarios 
supSs where each 

scenario has the corresponding probability
sp .  

(b) Correlation among the uncertain parameters: If the uncertain 

parameters are considered to be independent, the total number of scenarios in set 

supS grows exponentially with the number of uncertain parameters and their 

possible realizations, which makes the problem intractable. For instance, if there 

are only 2 fields, then 4 uncertain parameters for each field having 2 realizations 

will require 256 scenarios. Therefore, it becomes difficult to solve a multi-field 
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site problem with independent uncertainties in the set

 gorfworfoilfff REC ,,, ,,,   .  Since in practice normally uncertainties are 

not independent, we can overcome this limitation by considering that there are 

correlations among the uncertain parameters for each individual field. In 

particular, the uncertain parameters for a field  gorfworfoilfff REC ,,, ,,,    are 

considered to be dependent. Therefore, only a subset of the possible scenarios 

supSS  is sufficient to represent the uncertainty. For instance, based on the 

practical considerations, we can assume that if a field is of lower size than 

expected, then the oil deliverability is also lower ( 1, oilf ). Therefore, the 

scenarios with a combinations of higher oil deliverability ( 1, oilf ) and lower 

field size are not included in the reduced scenario set and vice-versa. Similarly, 

correlations for the water-oil ratio and gas-oil ratio can be considered to 

substantially reduce the original scenario set 
supS . Therefore, the problem can be 

considered as selecting a sample of the scenarios for each field, where a scenario 

for that field will be equivalent to the selected combinations of the realizations of 

the uncertain parameters  gorfworfoilfff REC ,,, ,,,   . 

In the computational experiments, we only consider the extreme cases of the 

scenarios assuming perfect correlations, i.e. all uncertain parameters for a field 

have either low, medium or high realizations. Note that these assumptions on 

correlation among the field parameters are flexible and can be modified 

depending on the problem at hand. In addition to the correlation among the 

uncertain parameters for each individual field, one can also take into account the 

correlation among the fields based on the available information for a particular 

oilfield development site to further reduce the total number of scenarios. Notice 

also that the model and solution method presented in the chapter is irrespective of 

whether a reduced scenario set S  is considered or the complete one (
supS  ).  

(c) Uncertainty Resolution Rules: Instead of assuming that the 

uncertainties are resolved as soon as a well is drilled in the field, i.e. immediate 

resolution, we assume that several wells need to be drilled and production has to 
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be started from the field for this purpose. Moreover, since the uncertain 

parameters for a field  gorfworfoilfff REC ,,, ,,,    are assumed to be 

correlated as described above, the timing of uncertainty resolution in these 

parameters is also considered to the same. This allows solving much larger multi-

field site instances without losing much in terms of the quality of the solution.  

In contrast, Tarhan et al. (2009) considered a single field at a detailed level 

where no correlations among the uncertain parameters of the field were 

considered, and these parameters were allowed to be revealed independently at 

different time periods in the planning horizon. However, the resulting scenario 

tree even for a single field became very complex to model and solve. Therefore, 

we assume that the uncertainty in all the field parameters 

 gorfworfoilfff REC ,,, ,,,    is resolved if at-least N1 number of wells have 

been drilled in the field, and production has been performed from that field for a 

duration of at-least N2 years. Notice that these assumptions on uncertainty 

resolution rules are flexible and can be adapted depending on the field 

information that is available. Moreover, the model can also be extended to the 

case where each parameter for a field is allowed to be revealed in different years 

based on the work of Tarhan et al. (2009) that will result in a significant increase 

in the computation expense.   

(d) Decision-dependent scenario trees: The multiperiod planning horizon 

and the discrete set of the selected scenarios for each field with given probabilities 

can be represented by scenario trees. However, since the timing of the uncertainty 

realization for a field (or its corresponding scenarios) depends on the drilling and 

operating decisions, the resulting scenario tree is also decision-dependent as was 

seen in chapter 4. For instance, if we consider a set of two uncertain fields 

 2,1F  and the selected scenario set based on the parameter correlations for 

each field has 2 elements, }
~

,
~

{ 21

ff  , with equal probability. Therefore, the problem 

involves the following 4 scenarios each with a probability of 0.25: 

)}
~

,
~

(:4);
~

,
~

(:3);
~

,
~

(:2);
~

,
~

(:1{ 2

2

2

1

1

2

2

1

2

2

1

1

1

2

1

1 S  
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Notice that each of these elements, }
~

,
~

{ 21

ff  , is equivalent to a selected 

combination of the realization of the corresponding uncertain parameters, for 

example },,,{
~ 1

,

1

,

1

,

11

gorfworfoilfff REC   . Figure 5.6 represents the scenario tree 

for this problem, where the uncertainty in the first field is resolved at the end of 

first year, since we drill N1 wells in the field at the beginning of year 1 and 

produce from this field during that year (N2 =1). The system can be in two 

different states in year 2 depending on the realized value of the uncertain 

parameter
k

1

~
 .  Similarly, uncertainty in the field 2 is resolved in year 4 under the 

scenarios 3 and 4 due to drilling and operating decisions, whereas it remains 

uncertain in the scenarios 1 and 2. Therefore, the resulting scenario tree depends 

on the optimization decisions, which are not known a priori, requiring modeling a 

superstructure of the all possible scenario trees that can occur based on our 

decisions. Notice that the scenario-tree also allows considering the cases where 

the number of wells drilled in a field is less than the one required for the 

uncertainty resolution (i.e. N1 wells), and therefore, the corresponding scenarios 

remain indistinguishable.  

 

Figure 5.6: Decision-dependent scenario tree for two fields 

An alternate representation of the decision-dependent scenario-tree (chapter 

4) is used to model the problem as a multistage stochastic program in which the 

Drill N1 wells in field 1 Year 1

Year 2

Year 5

Year 3

Year 4

1

1

~
 2

1

~


1

2

~
 2

2

~


Drill N1 wells in field 2 

1,2 3 4
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scenarios are treated independently and related through the non-anticipativity 

constraints for states of different scenarios that are identical (see Goel and 

Grossmann, 2006; and Gupta and Grossmann, 2011a).       

The problem is to determine the optimal investment and operating decisions 

to maximize the contractor’s expected NPV for a given planning horizon 

considering the above production sharing agreements and endogenous 

uncertainties. In particular, investment decisions in each time period t and 

scenario s include FPSO facilities installation or expansion, and their respective 

installation or expansion capacities for oil, liquid and gas, fields-FPSO 

connections, and the number of wells that need to be drilled in each field f given 

the restrictions on the total number of wells that can be drilled in each time period 

t over all the given fields. Operating decisions include the oil/gas production rates 

from each field f in each time period t under every scenario s.  

It is assumed that the installation and expansion decisions occur at the 

beginning of each time period t, while operations take place throughout the time 

period. There is a lead time of l1 years for each FPSO facility initial installation, 

and a lead time of l2 years for the expansion of an earlier installed FPSO facility. 

Once installed, we assume that the oil, liquid (oil and water) and gas capacities of 

a FPSO facility can only be expanded once. These assumptions are made for the 

sake of simplicity, and both the model and the solution approaches are flexible 

enough to incorporate more complexities. In the next section, we propose a 

multistage stochastic programming model for oilfield development planning with 

production sharing agreements and decision-dependent uncertainty in the field 

parameters as described.  

5.3  Multistage Stochastic Programming Model  

In this section, we present a general multistage stochastic programming model for 

offshore oilfield development planning. The proposed model considers the trade-

offs involved between investment and operating decisions, uncertainties in the 

field parameters and profit share with the government while maximizing the 

overall expected NPV for the contractor. Notice that the model is intended to be 
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solved every year in a rolling horizon manner with updated information, not just 

once for the entire planning horizon.  The constraints involved in the model are as 

follows:  

(i) Objective Function: The objective function is to maximize the total expected 

NPV of the contractor as in (5.1), which is the summation of the NPVs over all 

the scenarios having probabilities
sp . The NPV of a particular scenario s is the 

difference between discounted total contractor’s gross revenue share and total cost 

over the planning horizon (5.2). The total contractor’s share in a particular time 

period t and scenario s is the sum of the contractor’s share over all the ring-fences 

(rf) as given in equation (5.3). Similarly, constraints (5.4) and (5.5) represent the 

total capital and operating expenses for each scenario s in time period t.  

ENPVMax
       (5.1) 

 
t

stot

t

stot

t

stot

tt

s

s OPERCAPTotalConShdispENPV )( ,,,

  (5.2) 
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s

trf

stot

t TotalConShTotalConSh ,
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st,   (5.3) 
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s

trf
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t CAPCAP ,

,

    
st,   (5.4) 


rf

s

trf

stot

t OPEROPER ,

,

    
st,

                (5.5)    

(ii) Cost Calculations: The total capital expenses in scenario s for a ring-fence rf 

contains two components as given in equation (5.6). One is field specific (eq. 5.7) 

that accounts for the connection costs between a field and a FPSO facility, and 

cost of drilling the wells for each of the field in that ring-fence rf. The other cost 

component is FPSO specific (eq. 5.8) that includes the capital expenses for the 

corresponding FPSO facilities. Eq. (5.9) calculates the total cost of an FPSO 

facility in time period t for scenario s which is disaggregated in eq. (5.10) over 

various fields (and therefore ring-fences as in (5.11)). The cost disaggregation is 

done on the basis of the field sizes to which the FPSO is connected (eq. (5.12)-

(5.14)), where set Ffpso is the set of all the fields that can be connected to FPSO 
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facility fpso and the binary variable 
son

fpsofb ,

,  represents the potential connections. 

Notice that there is an uncertainty in the recoverable oil volume of the field (

s

fREC ) used in eq. (5.14) that multiplies the binary variable 
son

fpsofb ,

, . To linearize 

the bilinear terms in eq. (5.14), we use exact linearization technique (Glover, 

1975) by introducing the positive variables (
sfield

tfpsoff

sfield

tfpsoff ZDZD ,

,,,'

,

,,,' 1, ) and 

)1,( ,,,,

s

tfpsof

s

tfpsof ZDZD that results in the constraints (5.15)-(5.23).  

s
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The total operating expenses for scenario s in time period t for ring-fence rf , 

eq. (5.24), are the operation costs corresponding to the total amount of liquid and 

gas produced. 
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(iii) Total Contractor Share Calculations: The total contractor share in scenario 

s for ring-fence rf in time period t, eq. (5.25), is the sum of contractor’s after-tax 

profit oil share for that ring-fence and the cost oil that it keeps to recover the 

expenses. The contractor’s profit oil share after tax in scenario s is the difference 

of the contractor’s profit oil share before tax and income tax paid as in constraint 

(5.26). The tax paid by the contractor on its profit oil share depends on the given 

tax rate (
tax

trff , ) as in constraint (5.27).   
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(5.27) 

The contractor’s share before tax for scenario s in each time period t is some 

fraction of the total profit oil during that period t for ring-fence rf. Note that we 

assume here that this profit oil fraction,
po

irff , ,
 
is based on a decreasing sliding scale 

system that is linked to the cumulative amount of oil produced
s

trfxc , , where i is 

the index of the corresponding tier. Therefore, for possible levels i (i.e. tiers) of 

cumulative amount of oil produced by the end of time period t in scenario s, the 

corresponding contractor’s profit oil share can be calculated using disjunction 

(5.28) where the boolean variable tirfZ ,,  is true if the cumulative oil produced lies 

between the tier i threshold. This disjunction (5.28) can further be rewritten as 

integer and mixed-integer linear constraints (5.29)-(5.36) using the convex-hull 

formulation (Raman and Grossmann, 1994).  
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The cumulative amount of oil produced from a ring-fence rf  by the end of 

time period t in scenario s is calculated as the sum of the cumulative amount of oil 

produced by that time period from all the fields associated to that ring-fence, eq. 

(5.37). Constraint (5.38) represents the total profit oil in time period t for a ring-

fence rf as the difference between gross revenue and the cost oil for scenario s. 

The gross revenues (5.39) in each time period t for a ring-fence rf in scenario s, 

are computed based on the total amount of oil produced and its selling price, 

where total oil flow rate in a time period t for ring-fence rf, is calculated as the 

sum of the oil production rates over all the fields in that ring-fence, i.e. set Frf , in 

equation (5.40).  For simplicity, we only consider the revenue generated from the 

oil sales, which is much larger in general as compared to the revenue from gas. 
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The cost oil in time period t for a ring-fence rf, constraint (5.41), is 

calculated as the minimum of the cost recovery in that time period and maximum 

allowable cost oil (cost recovery ceiling) in scenario s. Eq. (5.41) can further be 

rewritten as mixed-integer linear constraints (5.42)-(5.47). Cost recovery in time 

period t for a ring-fence rf in scenario s, constraint (5.48), is the sum of capital 

and operating costs in that period t and cost recovery carried forward from 

previous time period t-1. Any unrecovered cost (that is carried forward to the next 

period) in time period t for a ring-fence rf, is calculated as the difference between 

the cost recovery and cost oil in time period t for a scenario s (eq. (5.49)).  



 
 

155 
 

),min( ,,,,

s

trf

CR

trf

s

trf

s

trf REVfCRCO 
   

strf ,,
 

(5.41) 

)1( ,

,,,

sco

trf

s

trf

s

trf bMCRCO 
   

strf ,,
 

(5.42) 

)1( ,

,,,

sco

trf

s

trf

s

trf bMCRCO 
   

strf ,,
 

(5.43) 

sco

trf

s

trf

CR

trf

s

trf bMREVfCO ,

,,,, 
   

strf ,,
 

(5.44) 

sco

trf

s

trf

CR

trf

s

trf bMREVfCO ,

,,,, 
   

strf ,,
 

(5.45) 

s

trf

s

trf CRCO ,,       
strf ,,

 
(5.46) 

s

trf

CR

trf

s

trf REVfCO ,,,      
strf ,,

 
(5.47) 

s

trf

s

trf

s

trf

s

trf CRFOPERCAPCR 1,,,, 
  

strf ,,
 

(5.48) 

s

trf

s

trf

s

trf COCRCRF ,,, 
    

strf ,,
 

(5.49) 

(iv) Tightening Constraints:  The logic constraints (5.50) and (5.51) that 

defines the tier sequencing are included in the model to tighten its relaxation.  

These constraints can be expressed as integer linear inequalities, (5.52) and 

(5.53), respectively, (Raman and Grossmann, 1991). In addition, the valid 

inequalities (5.54), are also included that bounds the cumulative contractor’s share 

in the cumulative profit oil by the end of time period t based on the sliding scale 

profit oil share and cost oil that has been recovered (see chapter 3 for details). 
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(v) Reservoir Constraints: Constraints (5.55)-(5.58) predict the reservoir 

behavior for each field f in each time period t for a scenario s. In particular, 

constraint (5.55) restricts the oil flow rate from each well for a particular FPSO-

field connection in time period t to be less than the deliverability of that field per 

well in scenario s. Equation (5.56) represents the field deliverability per well in 

scenario s at the beginning of time period t+1 for a particular FPSO-field 

connection as the cubic equation in terms of the fractional oil recovered by the 

end of time period t from that field. In particular, (5.56a) corresponds to the oil 

deliverability in time period 1, while (5.56b) corresponds to the rest of the time 

periods in the planning horizon. Notice that the uncertainty in the oil 

deliverability profile is characterized by the uncertain parameter s

oil . Constraints 

(5.57) and (5.58) represent the separable polynomials for the cumulative water 

and cumulative gas produced by the end of time period t for a specific field-FPSO 

connection in scenario s, where s

wc  and s

gc are the respective uncertain 

parameters. The motivation for using polynomials for cumulative water produced 

and cumulative gas produced as compared to WOR and GOR is to avoid bilinear 

terms in the formulation, and allow converting the resulting MINLP model into an 

MILP formulation as explained in the chapter 2.   
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Notice that variables 
swc

tfpsofQ ,

,, and 
sgc

tfpsofQ ,

,, will be non-zero in equations 

(5.57) and (5.58) if
s

tffc , is non-zero even though that particular field-FPSO 

connection is not present. Therefore, additional constraints (5.59)-(5.66) need to 

be included to equate the actual cumulative water produced (
s

tfpsofwc ,, ) and 

cumulative gas produced (
s

tfpsofgc ,, ) for a field-FPSO connection by the end of 

time period t to the corresponding dummy variables 
swc

tfpsofQ ,

,, and 
sgc

tfpsofQ ,

,, only if 

that field-FPSO connection is present in time period t, else it is zero. Note that the 

motivation for using dummy variables (
swc

tfpsofQ ,

,,  
and 

sgc

tfpsofQ ,

,, ) for cumulative 

water and cumulative gas flows in equations (5.57)-(5.58) followed by big-M 

constraints (5.59)-(5.66), instead of using disaggregated variables for the 

fractional recovery in equations (5.57)-(5.58) directly, is to avoid large number of 

SOS1 variables while MILP reformulation of this model, as explained in chapter 

2.     
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Eq. (5.67) and (5.68) compute the water and gas flow rates in time period t 

from a field to FPSO facility in scenario s as the difference of cumulative amounts 

produced by the end of current time period t and previous time period t-1 divided 

by the time duration of that period.  

t
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(vi) Field-FPSO flow constraints: The total oil flow rate in (5.69) from each 

field f in time period t for a scenario s is the sum of the oil flow rates that are 

directed to FPSO facilities in that time period t, whereas oil that is directed to a 

particular FPSO facility from a field f in scenario s is calculated as the 

multiplication of the oil flow rate per well and number of wells available for 

production in that field (eq. (5.70)). Eq. (5.71) computes the cumulative amount 

of oil produced from field f by the end of time period t in scenario s, while (5.72) 

represents the fractional oil recovery by the end of time period t. The cumulative 

oil produced in scenario s is also restricted in (5.73) by the recoverable amount of 

oil from the field. Eqs. (5.74)-(5.76) compute the total oil, water and gas flow 

rates into each FPSO facility, respectively, in time period t from all the given 

fields in each scenario s. The total oil, water and gas flowrates in each time period 

t for scenario s are calculated as the sum of the production rate of these 

components over all the FPSO facilities in equations (5.77)-(5.79), respectively.
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(vii) FPSO Capacity Constraints: Eqs. (5.80)-(5.82) restrict the total oil, liquid 

and gas flow rates into each FPSO facility to be less than its corresponding 

capacity in each time period t, respectively. These three different kinds of 

capacities of a FPSO facility in time period t are computed by equalities (5.83)-

(5.85) as the sum of the corresponding capacity at the end of previous time period 

t-1, installation capacity at the beginning of time period t-l1 and expansion 

capacity at the beginning of time period t-l2, where l1 and l2 are the lead times for 

FPSO installation and expansions, respectively.
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(viii) Logic Constraints: Inequalities (5.86) and (5.87) restrict the installation 

and expansion of a FPSO facility to take place only once, respectively, while 

inequality (5.88) states that the connection between a FPSO facility and a field 

can be installed only once during the whole planning horizon. Inequality (5.89) 

ensures that a field can be connected to at most one FPSO facility in each time 

period t, while (5.90) states that at most one FPSO-field connection is possible for 

a field f during the entire planning horizon under each scenario s. Constraints 

(5.91) and (5.92) state that the expansion in the capacity of a FPSO facility and 

the connection between a field and a FPSO facility, respectively, in time period t 

can occur only if that FPSO facility has already been installed by that time period. 
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(ix) Upper bounding constraints: Inequality (5.93) states that the oil flow rate 

per well from a field f to a FPSO facility in time period t will be zero if that 

FPSO-field connection is not available in that time period in a scenario s. 

Constraints (5.94)-(5.99) are the upper-bounding constraints on the installation 

and expansion capacities for FPSO facilities in time period t for each scenario s. 

The additional upper bounds on the oil, liquid and gas expansion capacities of 

FPSO facilities, (5.100)-(5.102), come from the fact that these expansion 

capacities should be less than a certain fraction (µ) of the initial built capacities, 

respectively.    
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(x) Well drilling limitations: The number of wells available for production from 

a field in scenario s is calculated from (5.103) as the sum of the wells available at 

the end of previous time period and the number of wells drilled at the beginning 
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of time period t. The maximum number of wells that can be drilled over all the 

fields during each time period t and in each field f during complete planning 

horizon are restricted by the respective upper bounds in (5.104) and (5.105).   
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(xi) Initial Non-anticipativity Constraints: In addition to the above constraints 

(5.1)-(5.105) that are equivalent to the constraints for the deterministic model 

with fiscal rules for each scenario s as in chapter 3, we need the initial non-

anticipativity constraints, eqs. (5.106)-(5.115), for time periods TTI  where the 

set IT  may include only first or few initial time periods. These constraints ensure 

that we make the same decisions (FPSO installations, expansions and their oil,  

liquid, gas capacities; well drilling schedule and field-FPSO connections) in 

scenarios s and s’ until uncertainty in the any of the parameters cannot be 

revealed.  
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(xii) Conditional Non-anticipativity Constraints: To determine the scenario 

pairs (s, s’) that are indistinguishable at the beginning of time period t, we 

consider the uncertainty resolution rule as explained in section 5.2.3. In particular, 

we assume that the uncertainty in all the parameters of a field is revealed if we 

drill at-least N1 number of wells in the field, and produce from that field for at-

least N2 number of years. Therefore, eq. (5.116) is used relate the number of wells 

in the field to the binary variable
s

tfw ,1

, such that the variable 
s

tfw ,1

,  is true if and 

only if the number of wells drilled in the field are less than N1. Similarly, the 

production from the field f has been made for less than N2 years, if and only if 

s

tfw ,2

, is true as represented in eqs. (5.117)-(5.118). The logic constraint (5.119) 

sets the value of the binary variable 
s

tfw ,3

,  to be true if and only if either of 
s

tfw ,1

,  or 

s

tfw ,2

,  are true, i.e. uncertainty in the field f  has not been revealed in scenario s at 

the beginning of time period t.  
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Based on the above value of the variable 
s

tfw ,3

,  equation (5.120) determines 

the value of the boolean variable ',ss

tZ . In particular, two scenarios (s, s’) will be 

indistinguishable at the beginning of time period t if and only if for each field f 

that distinguishes those scenarios (i.e. )',( ssDf  ), 
s

tfw ,3

,  is true. Therefore, eqs. 

(5.116)-(5.120) can be used to determine the indistinguishable scenarios at the 

beginning of time period t based on the decisions that have been implemented 

before that time period. Notice that as a special case, where either well drilling or 

production from the field is sufficient to observe the uncertainty, then one only 
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needs to consider eq. (5.116) or eqs. (5.117)-(5.118), respectively, and eq. (5.120) 

without introducing the additional variable 
s

tfw ,3

, .  
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(5.120) 

The conditional non-anticipativity constraints in disjunction (5.121) equate 

the decisions in scenarios s and s’ for the later time periods TTC  , if these 

scenarios are indistinguishable at the beginning of time period t, i.e. for which 

',ss

tZ is true calculated in eq. (5.120). 
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The multistage stochastic mixed-integer nonlinear disjunctive programming 

model (MSSP-ND) for offshore oilfield investment and operations planning 

involves constraints (5.1)-(5.13), (5.15)-(5.27), (5.29)-(5.40), (5.42)-(5.49), 

(5.52)-(5.121) that consider endogenous uncertainty in the field parameters and 

sliding scale production sharing agreements with ringfencing provisions. In 

particular, constraints (5.56b)- (5.58) and (5.70) are nonlinear and non-convex 

constraints in the model. These constraints can be linearized using exact 
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linearization and piecewise linear approximation techniques described in chapter 

2 to convert the nonlinear model (MSSP-ND) to a linear one (MSSP-LD). Notice 

that the resulting model will be an extension of the deterministic MILP fiscal 

model (Model 3F) in chapter 3 to the stochastic case using the modeling 

framework presented in chapter 4.  

5.4  Compact representation of the multistage stochastic model  

The proposed multistage stochastic mixed-integer linear disjunctive programming 

model (MSSP-LD) in the previous section can be represented in the following 

compact form:  
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The objective function (5.122) in the above model (MD) maximizes the 

expectation of an economic criterion over the set of scenarios Ss , and over a set 

of time periods Tt , which is equivalent to eq. (5.1). For a particular scenario s, 

inequality (5.123) represents constraints that govern decisions s

tx  in time period t 

and link decisions across time periods. These individual scenario constraints 

correspond to the eqs. (5.2)-(5.13), (5.15)-(5.27), (5.29)-(5.40), (5.42)-(5.49) and 

(5.52)-(5.105), where the nonlinear and non-convex constraints (5.56b)- (5.58) 
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and (5.70) have been linearized using exact linearization and piecewise linear 

approximation techniques described in chapter 2.  

Non-anticipativity (NA) constraints for initial time periods TTI   are given 

by equations (5.124) for each scenario pair (s,s’) to ensure the same decisions in 

all the scenarios, which are the compact representation for constraints (5.106)-

(5.115). The conditional NA constraints are written for the later time periods 

TTC   in terms of logic propositions (5.125) and disjunctions (5.126). Notice 

that the set of initial time periods IT  may include first few years of the planning 

horizon until uncertainty cannot be revealed, while CT  represents the rest of the 

time periods in the planning horizon. The function )....,( 121

s

t

ss xxxF  in eq. (5.125) 

is an uncertainty resolution rule for a given pair of scenarios s and s’ that 

determines the value of the corresponding boolean variable 
',ss

tZ based on the 

decisions that have been implemented so far as shown in eqs. (5.116)-(5.120). The 

variable 
',ss

tZ is further used in disjunction (5.126) to ensure the same decisions in 

scenarios s and s’ if these are still indistinguishable in time period t, which is 

similar to the disjunctions (5.121). Equations (5.127)-(5.128) define the domain of 

the discrete and continuous variables in the model.  

Notice that the model with a reduced number of scenario pairs (s,s’) that are 

sufficient to represent the non-anticipativity constraints can be obtained from 

model (MD) after applying the three properties presented in chapter 4. These 

properties are defined on the basis of symmetry, adjacency and transitivity 

relationship among the scenarios. The reduced model (MDR) can be formulated 

from (MD) as follows, where 3P  is the set of minimum number of scenario pairs 

that are required to represent non-anticipativity in each time period t,  

(MDR)   
 


Ss Tt

s

tt

s xcpzmax                (5.122) 

   staxAts s

t

t

ss ,.. 


                 (5.123) 

   3

' )',(, PssTtxx I

s

t

s

t                  (5.129) 
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t                 (5.130)  
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   ',, JjstIxs

jt                 (5.127) 

   '\,, JJjstRxs

jt                  (5.128)  

The mixed-integer linear disjunctive model (MDR) can be further converted 

to a mixed-integer linear programming model (MLR). First, the logic constraints 

(5.130) are re-written as the mixed-integer linear constraints eq. (5.132) based on 

the uncertainty resolution rule where 
',ss

tz is a binary variable that takes a value of 

1 if scenario pair (s,s’) is indistinguishable in time period t, else it is zero. The 

disjunction (5.131) can then be converted to mixed-integer linear constraints 

(5.133) and (5.134) using the big-M formulation. The resulting mixed-integer 

linear model (MLR) includes constraints (5.122), (5.123), (5.129), (5.132), 

(5.133), (5.134), (5.127) and (5.128).  

3

', )',(, PssTtdzCxB C

s

t

ss

t

s

t

s

t

s

t                     (5.132) 

3

'', )',(,)1( PssTtxxzM C
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t
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ss

t                                    (5.133) 

3

'', )',(,)1( PssTtxxzM C

s

t

s

t

ss

t                     (5.134) 

Figure 5.7 represents the block angular structure of model (MLR), where we 

can observe that the initial (eq. (5.129)) and conditional (eqs. (5.132), (5.133) and 

(5.134)) non-anticipativity constraints link the scenario subproblems. Therefore, 

these are the complicating constraints in the model. However, this structure 

allows decomposing the fullspace problem into smaller subproblems by relaxing 

the linking constraints as in chapter 4. It should be noted that the NACs 

(especially conditional NACs) represent a large fraction of the total constraints in 

the model. For clarity, we use this compact representation (MLR) in the next 

section to describe the solution approach instead of the detailed model (MSSP-

LD) presented in the previous section.   
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Figure 5.7: Structure of a typical Multistage Stochastic Program with Endogenous 

uncertainties 

5.5  Solution Approach  

The reduced model (MLR) is composed of scenario subproblems connected 

through the initial (eq. (5.129)) and conditional (eqs. (5.132), (5.133) and (5.134)) 

non-anticipativity (NA) constraints. If these NA constraints are either relaxed or 

dualized using Lagrangean decomposition, then the problem decomposes into 

smaller subproblems that can be solved independently for each scenario within an 

iterative scheme for the multipliers as described in Carøe and Schultz (1999) and 

in Gupta and Grossmann (2011a). In this way, we can effectively decompose and 

solve the large-scale oilfield development planning instances. The Lagrangean 

decomposition algorithm of Figure 5.8 for MSSP with endogenous uncertainties 

as proposed in chapter 4 involves obtaining the upper bound (UB) by solving the 

Lagrangean problem (L1-MLR) with fixed multipliers
',ss

t . The Lagrangean 

problem (L1-MLR) is formulated from the mixed-integer linear reduced model 

(MLR) by relaxing all the conditional NA constraints (5.132), (5.133) and 

(5.134), and dualizing all the initial NA constraints (5.129) as penalty terms in the 

objective function.  This gives rise to the subproblems for each scenario Ss , 

(L1-MLR
s
) that can be solved in parallel. 

Scenario Constraints

Initial NACs

Conditional NACs
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The lower bound (LB) or feasible solution is generated by using a heuristic 

based on the solution of the Lagrangean problem (L1-MLR). In this heuristic, we 

fix the decisions obtained from the above problem (L1-MLR) in the reduced 

Initial Multipliers (λ0)                     

and iteration no. k = 0 

LB = -∞              

UB = ∞ 

Yes 

Solve Lagrangean subproblem 
with fixed multipliers to get UB 

 

 

Gap < ε             

or k > kmax 

Stop 

Find LB (Feasible Solution)                               

by using a heuristic 

 

 
No 

Update Lagrangean multipliers 

using Sub-gradient method 

 

 

Figure 5.8: Lagrangean Decomposition algorithm 



 
 

170 
 

problem (MLR) such that there is no violation of NA constraints and solve it to 

obtain the lower bound. The sub-gradient method by Fisher (1985) is used during 

each iteration to update the Lagrangean multipliers. The algorithm stops when 

either a maximum iteration/time limit is reached, or the difference between the 

lower and upper bounds, LB and UB, is less than a pre-specified tolerance.  

Notice that the extended form of this method relying on duality based branch 

and bound search, has also been proposed in Goel and Grossmann (2006), Tarhan 

et al. (2009), and Tarhan et al. (2011) to close the gap between the upper and the 

lower bounds. Moreover, a new Lagrangean decomposition algorithm is proposed 

in the next chapter 6 to further improve the quality of the dual bound at the root 

node. 

5.6  Numerical results 

In this section, we present computational results for the offshore oilfield 

development planning examples under endogenous uncertainty in the field 

parameters, which resolves as a function of investment and operating decisions as 

described before. Moreover, we consider a case where progressive production 

sharing agreements are also present. The multistage stochastic MILP model 

(MLR) presented in section 5.4 is considered that maximizes the expected NPV 

value over the given planning horizon. The model is implemented in GAMS 

23.6.3 and run on an Intel Core i7, 4GB RAM machine using CPLEX 12.2 solver 

for all the instances. 

5.6.1 3 Oilfield Planning Example  

Case (i): Uncertainty in the field size only (4 scenarios) 

In this instance, we consider 3 oilfields and 3 potential FPSO’s that can be 

installed. There are a total of 9 possible connections among field-FPSO (Figure 

5.9), and 30 wells can be drilled in the fields over the planning horizon of 10 

years. Field 3 has a recoverable oil volume (field size) of 500 MMbbls. However, 

there is uncertainty in the size of fields 1 and 2, where each one has two possible 

realizations (low, high) with equal probability. Therefore, there are a total of 4 

scenarios each with a probability of 0.25 (see Table 5.1). Notice that for 
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simiplicity we only consider the cases with same probabilities for all the scenarios 

thoughout this chapter. In our future paper, if it would be possible, we will 

include more realistic probability values for the examples. 

 

Figure 5.9: 3 oilfield planning example 

   Table 5.1: 3 oilfield planning example, case (i) 

Scenarios s1 s2 s3 s4 

Field 1 Size (MMbbls) 57 403 57 403 

Field 2 Size (MMbbls) 80 80 560 560 

Scenario Probability 0.25 0.25 0.25 0.25 

  

It is assumed that the uncertainty in field 1 size is revealed after drilling 3 

wells (N1= 3) in the field and producing for 1 year (N2= 1) from it. Whereas, field 

2 needs at-least 4 wells to be drilled (N1= 4) and one year of production (N2= 1) 

for this purpose. The problem is to determine the optimum investment (FPSO 

installations and expansions, field-FPSO connections and well drilling) and 

operating decisions (oil production rate) with an objective to maximize the total 

expected NPV (ENPV) over the planning horizon.  

  Table 5.2: Model statistics for the 3 oilfield example, case (i)  

FPSO 1 FPSO 3

Field 1

Field 3

Field 2

Total Oil/Gas 
Production

FPSO 2

Problem Type 

Number of 

Constraints 

Continuous 

Variables 

Discrete 

Variables 

SOS1 

Variables 

Reduced Model (MLR) 16,473 9,717 876 240 

Individual Scenario 3,580 2,390 179 60 
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  Figure 5.10: Optimal solution for 3 oilfield example, case (i) 

  

The optimal ENPV for the problem is $11.50 x10
9
 when the reduced model 

(MLR) is solved in fullspace using CPLEX 12.2 solver requiring 1184s. Table 5.2 

presents the model statistics for this instance. The solution suggests installing only 

FPSO 3 in the first year (see Figure 5.10) with a capacity of 500 kstb/d and 333.5 

MMSCF/d for liquid and gas, respectively. The facility is available to produce at 

the beginning of year 4 due to a lead time of three years.  Then, we drill 3, 5 and 

12 wells in fields 1,2 and 3, respectively, given the drilling-rig limitation of a total 

20 wells in a year. Since, fields 1 and 2 have uncertainties, based on the 

realization of the uncertainty in their field sizes, more wells are drilled in these 

fields in the future for the favorable scenarios compared to the unfavorable 

outcomes, whereas no more wells are drilled in field 3. In particular, the favorable 

scenarios for field 1 are scenarios 2 and 4, where a total of 7 wells are drilled in 

the field. On the other hand, field 2 has favorable scenarios 3 and 4, where a total 

of 11 wells are drilled in the field. Due to the different drilling and production 

decisions in different scenarios based on the uncertainty realizations, the capacity 

L,L H,H

drill (3,5,12)

drill (1,0) (4,0) (0,6) (4,6)

H,L L,H
Uncertainty 

Revealed

Year 1

Year 4

Year 5

Year 6

Year 7

Year 8

Year 9

Year 10

Build FPSO 3 (500, 333.5)

drill (0,2) (0,4) (3,0)
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of FPSO3 is expanded in year 5 for scenarios 2, 3 and 4, whereas no expansion is 

made in the FPSO3 capacity in scenario 1. We can observe that the optimal 

scenario-tree is decision-dependent which is not known a-priori (Figure 5.10).  

 

 

Figure 5.11: Lagrangean decomposition results for 3 oilfield example, case (i) 

 

The multistage stochastic model (MLR) is also solved using the Lagrangean 

decomposition algorithm presented in the previous section that relies on dualizing 

the initial NACs and removing the conditional NACs. Figure 5.11 demonstrates 

the progress of the bounds obtained at the root node using this decomposition 

approach. A termination criterion of either 1% gap or 20 sub-gradient iterations is 

used. We can observe that the problem can be solved in ~1% optimality tolerance 

in only 466s for the sequential implementation compared to the fullspace model 

that takes 1184s. Moreover, the parallel implementation of the Lagrangean 

decomposition algorithm in GAMS with 8 processors only takes 259s. Therefore, 

the proposed strategy reduces the solution time for this 4 scenario instance by 

more than 75% compared to the fullspace model. It is also important to note that 

the reformulation of the MINLP model (Model 2) to MILP approximation (Model 

3) in chapter 2 allows us to use this decomposition strategy with valid upper and 
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lower bounds on the objective function value, without solving the non-convex 

MINLP model to global optimality which is quite expensive. Notice that the 

solution of the expected value problem considering the mean value of the field 

sizes is $11.28 x10
9
. Therefore, the value of the stochastic solution for this case is 

$220 x10
6
 or ~2%.    

 

Case (ii): Uncertainty in the field size, oil deliverability, WOR and GOR (4 

scenarios) 

In this case, we consider uncertainty in the field size, oil deliverability, water-oil 

ratio (WOR) and gas-oil-ratio (GOR) for oilfields 1 and 2. Notice that oil 

deliverability, WOR and GOR are represented by the univariate polynomials in 

terms of the fractional oil recovery as shown in equations (5.143)-(5.145), 

respectively.  

   )( fcgQ o

d       (5.143) 

   )( fcgwor w       (5.144) 

   )( fcggor g       (5.145) 

The uncertainty in oil deliverability, WOR and GOR is characterized by the 

uncertainty in corresponding parameters o , w  and g . We assume that the 

uncertain parameters for a field are correlated, and that uncertainty in these 

parameters is resolved at the same time as explained earlier. This allows us to 

reduce a large number of scenarios in the problem. The two possible 

combinations of these parameters for each field results in a total of 4 scenarios 

each with a probability of 0.25 as can be seen in Table 5.3. The data for the rest of 

the problem are as in case (i) presented above. 

Table 5.4 summarizes the computational results for this case, and we can 

observe the similar trends as in the previous case.  In particular, the fullspace 

multistage stochastic model using CPLEX 12.2 takes >10,000s to solve the 

problem to optimality and it yields an expected NPV value of $11.95x10
9
. The 

sequential and parallel implementations (8 processors) of the proposed 
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Lagrangean decomposition approach provide a solution of $11.94x10
9
 with more 

than an order of magnitude reduction in solution times. To further reduce the gap 

between the upper and the lower bounds, the algorithm can be extended to the 

duality based branch and bound search procedure as proposed in Goel and 

Grossmann (2006). In addition, an improved Lagrangean decomposition approach 

that yields a tighter dual bound at the root node is also presented in the next 

chapter. 

  Table 5.3: 3 oilfield planning example, case (ii) 

Scenarios s1 s2 s3 s4 

 

 

Field 1 

 

Size (MMbbls) 57 403 57 403 

o  0.75 1.25 0.75 1.25 

w  0.75 1.25 0.75 1.25 

g  0.75 1.25 0.75 1.25 

 

 

Field 2 

Size (MMbbls) 80 80 560 560 

o  0.75 0.75 1.25 1.25 

w  0.75 0.75 1.25 1.25 

g  0.75 0.75 1.25 1.25 

Scenario Probability 0.25 0.25 0.25 0.25 

  Table 5.4: Computational results for 3 oilfield example, case (ii) 

 Fullspace Lagrangean Decomposition 

Sequential Parallel 

 UB ($10
9
) 11.95 12.14 12.14 

LB ($10
9
) 11.95 11.94 11.94 

Solution Time (s) 10390 438 257 

% Gap 0% 1.66% 1.66% 

Subgradient iterations - 20 20 

Case (iii): Uncertainty in the field size and progressive production sharing 

agreements  

We also extend the 3 oilfield example to the case where we include the 

progressive production sharing agreements and a planning horizon of 15 years. 
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Table 5.5 represents the sliding scale profit share of the contactor involving 3 tiers 

that are defined on the basis of the cumulative oil production. The cost recovery 

ceiling of 50% of the gross revenue every year and an income tax rate of 30% is 

also considered. There is uncertainty in the field sizes (field 1 and 2) with a total 

of 4 scenarios as described in Table 5.1.  

Table 5.5: Sliding scale contractor’s profit oil share for the 3 oilfield example, 

case (iii) 

Tiers Cumulative Oil Produced Contractor’s Share in Profit 

Oil 

Tier 1 0-350    MMbbl 50% 

Tier 2 350-700 MMbbl 40% 

Tier 3 >700       MMbbl 20% 

 

Table 5.6: Computational results for 3 oilfield example, case (iii) 

 Fullspace Model Lagrangean Decomposition 

# 

Constraints 

# 

Dis. 

Var. 

# 

Cont. 

Var. 

ENPV 

($10
9
) 

Time 

(s) 

ENPV 

($10
9
) 

Sequential 

Time (s) 

Parallel 

Time 

(s) 

27,113 1,536 15,857 $2.97 

(>21%) 

>36,000 $3.04 

(0.7%) 

8,990 4,002 

The multistage stochastic model becomes very difficult to solve for this 

instance in fullspace due to the complexities introduced in the model by the non-

anticipativity constraints, and the disjunction for representing the sliding scale 

fiscal rules. In particular, the best solution obtained after 10 hours in fullspace 

using CPLEX 12.2 solver is $2.97x10
9  

with more than 21% of optimality gap (see 

Table 5.6). On the other hand, the proposed Lagrangean decomposition can solve 

this problem in approximately 2 hrs for the sequential implementation of the 

scenario subproblem solutions, and in about 1 hr for the parallel implementation 

(8 processors). Both the cases yield a higher ENPV $3.04x10
9
 within a 0.7% of 

optimality tolerance. Therefore, this example illustrates the importance of the 
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decomposition algorithm, and its parallel implementation, as more complexities 

are added to the problem, such as the progressive fiscal rules.  

5.6.2   5 Oilfield Planning Example 

Case (i): Uncertainty in the field size only (8 scenarios) 

 

Figure 5.12: 5 oilfield planning example 

This is a larger example for oilfield planning problem under uncertainty than 

the previous one, where we consider 5 oilfields that can be connected to 3 FPSOs 

with 13 possible connections (Figure 5.12). A total of 51 wells can be drilled in 

the fields over the planning horizon of 20 years. There is uncertainty in the size of 

fields 1, 3 and 5, where each one has two possible realizations (low, high) with 

equal probability. Therefore, there are a total of 8 scenarios each with a 

probability of 0.125 (see Table 5.7). Fields 2 and 4 have known recoverable oil 

volumes of 200 and 400 MMbbls, respectively.  

It is assumed that the uncertainty in field 1 size is revealed after drilling 3 

wells (N1= 3) in the field and producing for 1 year (N2= 1) from it. Fields 3 and 5 

need at-least 4 wells to be drilled (N1= 4) and one year of production (N2= 1) for 

this purpose. The problem is to determine the optimum investment (FPSO 

installations and expansions, field-FPSO connections and well drilling) and 

operating decisions (oil production rate) with an objective to maximize the total 

expected NPV (ENPV) over the planning horizon.   

 

FPSO-2 FPSO-3

Field-4

Field-1

Field-3 Field-5

FPSO-1

Field-2

Total Oil/Gas 

Production
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 Table 5.7: 5 oilfield planning example, case (i) 

Scenarios s1 s2 s3 s4 s5 s6 s7 s8 

Field 1 Size 

(MMbbls) 

57 403 57 403 57 403 57 403 

Field 3 Size 

(MMbbls) 

80 80 560 560 80 80 560 560 

Field 5 Size 

(MMbbls) 

125 125 125 125 875 875 875 875 

Scenario 

Probability 

0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 

  

  Table 5.8: Model statistics for the 5 oilfield example, case (i)  

 

Table 5.8 compares the size of the fullspace multistage stochastic MILP 

model with the individual scenario where a significant number of constraints and 

variables can be observed in the former.  Therefore, the fullspace model becomes 

very difficult to solve directly using CPLEX 12.2 which takes more than 10 hours 

to reach 32% of the optimality tolerance with an expected NPV value of 

$20.27x10
9
. The solution of the sequential implementation of the proposed 

Lagrangean decomposition approach also becomes expensive, but provides a 

solution with 3.1% higher ENPV than the fullspace model ($20.91x10
9
 vs. 

$20.27x10
9
) in 31,350s with 2.1% of the optimality gap. The parallel 

implementation is the most efficient, and takes only 9,340s to yield the same 

objective function value as the sequential approach. Table 5.9 summarizes the 

computational results for this case, and we can observe that the impact of 

decomposition becomes more prominent for the larger instances. To further 

reduce the gap between the upper and the lower bounds, the algorithm can be 

Problem Type 

Number of 

Constraints 

Continuous 

Variables 

Discrete 

Variables 

SOS1 

Variables 

Reduced Model (MLR) 94,837 54,537 5,144 1600 

Individual Scenario 9,986 6,688 513 200 
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extended to the duality based branch and bound search procedure as proposed in 

Goel and Grossmann (2006).  

  Table 5.9: Computational results for 5 oilfield example, case (i) 

 Fullspace Lagrangean Decomposition 

Sequential Parallel 

 UB ($10
9
) 26.78 21.37 21.37 

LB ($10
9
) 20.27 20.91 20.91 

Solution Time (s) >36,000 31,350 9,340 

% Gap >32% 2.1% 2.1% 

Subgradient iterations - 20 20 

Case (ii): Uncertainty in the field size, oil deliverability, WOR and GOR (8 

scenarios) 

In this case, we consider uncertainty in the field size, oil deliverability, water-oil 

ratio (WOR) and gas-oil-ratio (GOR) for oilfields 1, 3 and 5 in Figure 5.12. The 

uncertainty in oil deliverability, water-oil ratio (WOR) and gas-oil-ratio (GOR) is 

characterized by the corresponding parameters, o , w  and g  in equations 

(5.143)-(5.145), respectively. Two possible combinations of these parameters for 

each uncertain field results in a total of 8 scenarios, each with a probability of 

0.125 as can be seen in Table 5.10. The data for the rest of the problem are similar 

to the case (i) presented above for 5 oilfield example.    

Table 5.11 represents the computational results for this case. The fullspace 

multistage stochastic model can only provide a solution with ENPV of 

$21.26x10
9
 in 10hrs when solved using CPLEX 12.2. The sequential as well as 

parallel implementation of the proposed Lagrangean decomposition approach 

provide a higher ENPV $21.78x10
9
 and a significantly tighter upper bound than 

the fullspace model (2.5% gap vs. >28% gap) in less time. Overall, the results in 

this case also emphasize the efficiency of the proposed Lagrangean 

decomposition compared to the fullspace model solved with a state-of-art 

commercial solver. 
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Table 5.10: 5 oilfield planning example, case (ii) 

Scenarios s1 s2 s3 s4 s5 s6 s7 s8 

 

 

Field 1 

 

Size 

(MMbbls) 

57 403 57 403 57 403 57 403 

o  0.75 1.25 0.75 1.25 0.75 1.25 0.75 1.25 

w  0.75 1.25 0.75 1.25 0.75 1.25 0.75 1.25 

g  0.75 1.25 0.75 1.25 0.75 1.25 0.75 1.25 

 

 

Field 3 

Size 

(MMbbls) 

80 80 560 560 80 80 560 560 

o  0.75 0.75 1.25 1.25 0.75 0.75 1.25 1.25 

w  0.75 0.75 1.25 1.25 0.75 0.75 1.25 1.25 

g  0.75 0.75 1.25 1.25 0.75 0.75 1.25 1.25 

 

 

Field 5 

Size 

(MMbbls) 

125 125 125 125 875 875 875 875 

o  0.75 0.75 0.75 0.75 1.25 1.25 1.25 1.25 

w  0.75 0.75 0.75 0.75 1.25 1.25 1.25 1.25 

g  0.75 0.75 0.75 0.75 1.25 1.25 1.25 1.25 

Scenario Probability 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 

  Table 5.11: Computational results for 5 oilfield example, case (ii) 

 Fullspace Lagrangean Decomposition 

Sequential Parallel 

 UB ($10
9
) 27.31 22.34 22.34 

LB ($10
9
) 21.26 21.78 21.78 

Solution Time (s) >36,000 36,000 14,872 

% Gap >28% 2.5% 2.5% 

Subgradient iterations - 20 20 

5.7 Conclusions 

A general multistage stochastic programming model has been presented for 

offshore oil and gas field infrastructure planning considering endogenous 

uncertainties in the field parameters and progressive production sharing 

agreements. Discrete probability distribution functions of the uncertain 
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parameters, i.e. field size, oil deliverability, water-oil-ratio and gas-oil ratio, are 

considered to represent the scenarios where uncertainty in these parameters can 

only be revealed once an investment is made in the field. The resulting decision-

dependent scenario tree is modeled using initial and conditional non-anticipativity 

constraints considering the basic oilfield models developed in chapters 2 and 3. 

The model yields optimum investment and operating decisions while maximizing 

the expected NPV. Correlations among the endogenous uncertain parameters of a 

field are considered, which reduce the dimensionality of the model for large 

instances. The Lagrangean decomposition algorithm proposed in chapter 4 is 

adapted to the corresponding multistage stochastic model for oilfield development 

with parallel solution of the scenario subproblems. Numerical results on the two 

oilfield development planning examples show that the proposed Lagrangean 

decomposition algorithm, either sequential or parallel implementation, is efficient 

as compared to the fullspace method, and allows the solution of intractable 

instances of the problem. The model and solution approach can be further used as 

a basis to incorporate additional complexities such as exogenous uncertainties in 

oil/gas prices.   
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Chapter 6 

 

A new decomposition algorithm for 

multistage stochastic programs with 

endogenous uncertainties 

 

 

6.1  Introduction 

In this chapter, we focus on type 2 of endogenous uncertainty for the multiperiod 

planning problems where decisions are used to gain more information, and 

resolve uncertainty either immediately or in a gradual manner. Therefore, the 

resulting scenario tree is decision-dependent that requires modeling a 

superstructure of all possible scenario trees that can occur based on the timing of 

the decisions as observed in chapters 4 and 5. In this context, we focus here on a 

general multistage stochastic programming framework to model the problems in 

this class in which special disjunctive constraints with propositional logic are 

considered to enforce the conditional non-anticipativity constraints that define the 

decision-dependent scenario tree.  

In general, these multistage stochastic programs (MSSP) become very 

difficult to solve directly as deterministic equivalent since the problem size 

(constraints and variables) increases with the number of scenarios, whereas the 

solution time increases exponentially. Therefore, special solution techniques are 

used to solve problems in this class. Several fullspace based approaches for the 

medium-size problems exploiting the properties of the model and the optimal 

solution have been proposed. In particular, Colvin and Maravelias (2010) 

developed a branch-and-cut framework, while in chapter 4 we proposed a NAC 
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relaxation strategy to solve these MSSP problems under the assumption that only 

few non-anticipativity constraints be active at the optimal solution.  

Lagrangean decomposition is a widely used technique to solve large-scale 

problems that have decomposable structure as in stochastic programs (Fisher, 

1985; Ruszczynski, 1997; Carøe and Schultz, 1999; Guignard, 2003; Conejo et al. 

2006). It addresses problems where a set of constraints links several smaller 

subproblems. If these constraints are removed by dualizing them, the resulting 

subproblems can be solved independently. In the case of multistage stochastic 

programs with endogenous uncertainty initial and conditional non-anticipativity 

constraints are the linking constraints, while each subproblem corresponds to the 

problem for a given scenario. Therefore, the model has the decomposable 

structure that is amenable to Lagrangean decomposition approaches. In this 

context, a Lagrangean decomposition algorithm based on dualizing all the initial 

NACs and relaxing all the conditional NACs that allow parallel solution of the 

scenario subproblems has been proposed in chapter 4. An extended form of this 

decomposition approach relying on the duality based branch and bound search is 

also presented in Goel and Grossmann (2006), Tarhan et al. (2009), and Tarhan et 

al. (2011) to close the gap between the upper and lower bounds. Solak (2007) 

used a sample average approximation method for solving the problems in this 

class, where the sample problems were solved through Lagrangean relaxation and 

heuristics. However, there are several limitations with these methods including a 

weak dual bound at the root node, a large number of iterations to converge at each 

node, and many nodes that may be required during the branch and bound search 

to close the gap depending on the branching rules and variables. Moreover, the 

number of subproblems to be solved during each iteration at every node grows 

linearly with the number of scenarios. In this chapter, we propose a new 

decomposition scheme for solving these multistage stochastic programs that 

overcomes some of the limitations of the standard approaches.  

The outline of this chapter is as follows. First, in section 6.2 we introduce the 

problem statement with particular focus on the problems where timing of 

uncertainty realization depends on the optimization decisions. Then, a general 
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multistage stochastic mixed-integer linear disjunctive programming model for 

endogenous uncertainty problems is presented in section 6.3. Several Lagrangean 

decomposition approaches that have been used and their limitations are identified 

next. To overcome these limitations, in section 6.5 we propose a new Lagrangean 

decomposition scheme that relies on the concept of scenario group partitions. In 

section 6.6, we present the computational results on process network and oilfield 

planning problems adapted from chapters 4 and 5, respectively, to compare the 

various decomposition approaches. 

6.2  Problem Statement 

We consider multiperiod planning problems that have endogenous uncertainty in 

some the parameters (type 2), i.e. where timing of uncertainty realization depends 

on optimization decisions. In particular, the time horizon is represented by the 

discrete set of time periods T = {1, 2, . . . . }. The set of endogenous uncertain 

parameters ,....},{ 21   is considered where each parameter has a discrete set 

of possible realizations. Therefore, a scenario s represents the possible 

combination of the realizations of these uncertain parameters with a probability 

sp . Note that when some of the parameters
p  are correlated as they may belong 

to a particular uncertainty source, then the resulting scenario set will be smaller 

(see chapter 5). The timing of uncertainty resolution in each uncertain parameter 

depends on the decisions s

tx (both discrete and continuous) that have been 

implemented so far. Furthermore, the uncertainty resolution rule can be 

immediate (Goel and Grossmann, 2006) or gradual (Tarhan et al., 2009) 

depending on the problem at hand. Therefore, the resulting scenario tree is 

decision-dependent, and hence we need to use a superstructure of all possible 

scenario-trees that can occur based on the decisions. In particular, we use logic 

propositions and disjunctions as in chapter 4 (Goel and Grossmann, 2006; and 

Gupta and Grossmann, 2011a) to represent the scenario-tree for the problems in 

this class. The uncertainty realizations for each parameter p   are assumed to be 

time invariant. In the next section, we present a MSSP model corresponding to 

this description. 
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6.3  Model 

A multistage stochastic mixed-integer linear disjunctive program with 

endogenous uncertainties can be represented in the following compact form: 
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The objective function (6.1) in the above model (MD) minimizes the 

expectation of an economic criterion over the set of scenarios Ss , and over a set 

of time periods Tt . For a particular scenario s, inequality (6.2) represents 

constraints that govern decisions s

tx  in time period t and link decisions across 

time periods. Non-anticipativity (NA) constraints for initial time periods TTI   

are given by equations (6.3) for each scenario pair (s,s’) to ensure the same 

decisions in all the scenarios. The conditional NA constraints are written for the 

later time periods TTC   in terms of logic propositions (6.4) and disjunctions 

(6.5). Notice that the set of initial time periods IT  may include the first few years 

of the planning horizon until uncertainty cannot be revealed, while CT  represents 

the rest of the time periods in the planning horizon. The function )....,( 121

s

t

ss xxxF 

in eq. (6.4) is an uncertainty resolution rule for a given pair of scenarios s and s’ 

that determines the value of the corresponding boolean variable 
',ss

tZ based on the 
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decisions that have been implemented so far. The variable ',ss

tZ is further used in 

disjunction (6.5) to ensure the same decisions in scenarios s and s’ if these are still 

indistinguishable in time period t. Eqs. (6.6)-(6.7) define the domain of the 

discrete and continuous variables in the model. 

Notice that the model with reduced number of scenario pairs (s,s’) that are 

sufficient to represent the non-anticipativity constraints can be obtained from 

model (MD) after applying the three properties presented in the chapter 4. These 

properties are defined on the basis of symmetry, adjacency and transitivity 

relationship among the scenarios. The reduced model (MDR) can be formulated 

as follows, where 3P  is the set of minimum number of scenario pairs that are 

required to represent non-anticipativity in each time period t,  
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We then define the following sets, 
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   ppkkk LsssssssssP ),...,,(),(),....,,(),,( 21132213   (6.10) 

Notice that the minimum scenario pair set 3)',( Pss  can be obtained by first 

defining a scenario group set pk Lsss ),....,,( 21 for each uncertain parameter p  

with  k  realizations (eq. 6.8) such that the  k  scenarios in each of these 

),....,,( 21 ksss set can only be realized at the same time irrespective of the other 

realizations during the given time horizon.  The basic idea to identify such 

scenario sets ),....,,( 21 ksss  is that all the scenarios in each of these sets only differ 

in the realization of the uncertain parameter θp for which the corresponding set is 

defined. Therefore, for any scenario pair ),....,,()',( 21 ksssss  , the value of 

 pssD )',(  where )',( ssD represents the index of the uncertain parameter 

p  in eq. (6.9) that distinguish the two scenarios s and s’ having values 
s

p̂

and 
'ˆ s

p , respectively. The required minimum scenario pair set 3P  (eq. 6.10) then 

corresponds to the consecutive elements in the scenario group sets 

pk Lsss ),....,,( 21   for each uncertain parameter p . The cardinality of the set 3P  

is )(
/1 

 SS  as shown in chapter 4. For instance, if there are 2 uncertain 

parameters, i.e. (θ1, θ2). Each of these uncertain parameters has three realizations 

(L, M, H) which give rise to a total of 9 scenarios. The original model (MD) 

requires a total of 72 scenario pairs to represent the non-anticipativity, while the 

reduced model (MDR) only requires 12 scenario pairs, i.e. 123 P  in each time 

period t (see Gupta and Grossmann (2011a) for details). 

The mixed-integer linear disjunctive model (MDR) can further be converted 

to a mixed-integer linear programming model (MLR). First, the logic constraints 

(6.4a) are re-written as the mixed-integer linear constraints eq. (6.4b) based on the 

uncertainty resolution rule, where 
',ss

tz is a binary variable that takes a value of 1 

if scenario pair (s,s’) is indistinguishable in time period t, and zero otherwise. The 

disjunction (6.5a) can then be converted to mixed-integer linear constraints (6.5b) 

and (6.5c) using the big-M formulation. The resulting mixed-integer linear model 
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(MLR) includes constraints (6.1), (6.2), (6.3a), (6.4b), (6.5b), (6.5c), (6.6) and 

(6.7).  
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Figure 6.1: Structure of a typical Multistage Stochastic Program with Endogenous 

uncertainties 

Figure 6.1 represents the block angular structure of model (MLR), where we 

can observe that the initial (eq. (6.3a)) and conditional (eqs. (6.4b), (6.5b) and 

(6.5c)) non-anticipativity constraints link the scenario subproblems (eq. (6.2)), i.e. 

these are the complicating constraints in the model. However, this structure 

allows decomposing the fullspace problem into smaller subproblems by relaxing 

the linking constraints. It should be noted that the NACs (especially conditional 

NACs) represent a large fraction of the total constraints in the model.   

6.4  Conventional Lagrangean Decomposition Algorithms 

The reduced model (MLR) is composed of scenario subproblems connected 

through initial (eq. (6.3a)) and conditional (eq. (6.4b), (6.5b) and (6.5c)) NA 

constraints. If these NA constraints are either relaxed or dualized using 

Scenario Constraints

Initial NACs

Conditional NACs
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Lagrangean decomposition, then the problem decomposes into smaller 

subproblems that can be solved independently for each scenario within an 

iterative scheme for the multipliers as described in Carøe and Schultz (1999) and 

in chapter 4. In this way, we can effectively decompose the large scale problems 

in this class. However, there are several decomposition schemes that can be used 

for this structure (Figure 6.1) as described below:     

6.4.1 Lagrangean Decomposition based on relaxing conditional NACs 

(Standard approach): In the decomposition algorithm of Figure 6.2 for MSSP 

with endogenous uncertainties as proposed in chapter 4, the lower bound (LB) is 

obtained by solving the Lagrangean problem with fixed multipliers
',ss

t ,  
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In particular, the Lagrangean problem (L1-MLR) is formulated from the 

mixed-integer linear reduced model (MLR) by relaxing all the conditional NA 

constraints (6.4b), (6.5b) and (6.5c) and dualizing all the initial NA constraints 

(6.3a) as penalty terms in the objective function.  Figure 6.3 represents the 

structure of the resulting model (L1-MLR).  Notice that the each sub-problem 
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(L1-MLR
s
) in the Lagrangean problem (L1-MLR) corresponds to a scenario that 

can be solved in parallel. 

 

 

 

 

 

 

 

 

 

 

 

 

The upper bound (UB) is generated by using a heuristic based on the solution 

of the Lagrangean problem (L1-MLR). In this heuristic, we fix the decisions 

obtained from the above problem (L1-MLR) in the reduced problem (MLR) such 

that there is no violation of NA constraints and solve it to obtain the upper bound. 

The sub-gradient method by Fisher (1985) or an alternative update scheme (see 

Mouret et al., 2011; Oliveira et al., 2013; and Tarhan et al. 2013) is used during 

each iteration to update the Lagrangean multipliers. The algorithm stops when 

either a maximum iteration/time limit is reached, or the difference between the 

lower and upper bounds, LB and UB, is less than a pre-specified tolerance. Notice 

that the extended form of this method relying on duality based branch and bound 

search has also been proposed in Goel and Grossmann (2006); Tarhan et al. 

(2009), and Tarhan et al. (2011) to close the gap between the upper and the lower 

bounds. 

 

Initial Multipliers (λ0)                     

and iteration no. k = 0 

LB = -∞              

UB = ∞ 

Yes 

Solve Lagrangean subproblem 

with fixed multipliers to get LB 

 

 

Gap < ε             

or k > kmax 

Stop 

Find UB (Feasible Solution)                               

by using a heuristic 

 

 
No 

Update Lagrangean multipliers 

using Sub-gradient method 

 

 

Figure 6.2: Lagrangean Decomposition algorithm 
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Figure 6.3: Lagrangean Decomposition based on relaxing conditional NACs 

Limitations: We can observe from Figure 6.3 that the major limitation of this 

Lagrangean Decomposition algorithm for endogenous uncertainty problems 

(Gupta and Grossmann, 2011a; Goel and Grossmann, 2006; Tarhan et al., 2009; 

and Tarhan et al., 2011) is that all the conditional non-anticipativity constraints 

(6.4b), (6.5b) and (6.5c) are removed while formulating the scenario subproblems 

at the root node. These constraints represent a large fraction of the total 

constraints in the model and can have significant impact on the decisions. For 

instance, in Figure 6.4, the scenario tree for the later time periods CT  (conditional 

NACs) can be constructed in several ways even though the initial NACs (for time 

periods IT ) are satisfied.   

 

Figure 6.4: Impact of conditional NACs on the scenario tree structure 

Scenario

Subproblems

Dualize all 

Initial NACs

Remove all 

Conditional NACs

TI

TC

1 2 3,4 3,41,2 1,2 3 4 1 2 3 4
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Therefore, there can be several undesired consequences that can occur with 

this relaxation approach: 

1. The dual bound at root node can be significantly weaker since a large amount 

of information from the conditional NACs is ignored. In particular, only the 

initial NAC are considered (dualized) while formulating the subproblems at 

the root node, which represent only a first few time periods in the model. This 

means that the dynamics of the problem corresponding to the later periods is 

completely relaxed. 

2. It is theoretically impossible to obtain a dual bound that is stronger than the 

optimal solution of the model without all conditional NACs at the root node. 

3. The total number of nodes in the branch and bound search tree and the number 

of iterations required at each node can be very large. 

4. Since many constraints are relaxed form the model, a good heuristic is needed 

to generate a feasible solution based on the solution of the dual problem.   

5. The number of subproblems grows with the number of uncertain parameters 

and their realizations in an exponential manner. 

6. It is problem specific and non-intuitive to define the branching rules/variables 

in the tree search since there are several alternatives. 

6.4.2 Lagrangean Decomposition based on dualizing all the NACs: 

(i) In this decomposition approach, we dualize all the NACs (both initial 

(6.3a) and conditional (6.5b) and (6.5c)) in the objective function directly while 

formulating the lower bounding Lagrangean problem (L2-MLR), which is still 

decomposable into individual scenarios. Notice that since (6.5b) and (6.5c) are 

inequality constraints, the corresponding Lagrangean multipliers 
',ss

tg and 
',ss

tl  

need to be non-negative.  
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Figure 6.5 represents the structure of the model (L2-MLR) where L2-MLR
s
 

correspond to the scenario sub-problems in this decomposed model.  
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It is important to observe that we assign the shared binary variable 
',ss

tz and 

its corresponding constraints (6.4b) and objective function term to the scenario 

problem s for all 3)',( Pss  where (s < s’). This allows to decompose the problem 

into independent scenarios. For instance in the case of 4 scenarios, the minimum 

scenario pair set )}4,3(),4,2(),3,1(),2,1{(3 P  and, therefore, the corresponding 

shared variables 
3,12,1 , tt zz are assigned to scenarios 1; 

4,2

tz to scenario 2; and 
4,3

tz

to scenario 3. As an alternative, one can also create a copy of the shared variable 

',ss

tz as 
ss

tz ,'
 and its corresponding constraints (6.4b), (6.5b) and (6.5c) for all
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3)',( Pss  that will allow to keep these variables in both the sub-problems s and 

s’. However, the performance of the two alternative decomposition approaches 

should not be very different.   

 

Figure 6.5: Lagrangean Decomposition based on dualizing all NACs directly 

(ii)  Another way to decompose the model (MLR) while considering all the 

NACs, is based on first reformulating the constraints (6.3a), (6.5b) and (6.5c) as 

(6.3b), (6.5d) and (6.5e) respectively, where 
',~ ss

tx represents the value of the 

variable 
's

tx  for 3)',(, PssTt  .  
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',)',(,~
3

',' ssPssTtxx ss

t

s

t       (6.5f)  

In addition, eq. (6.5f) is required to ensure that all the copy variables 
',~ ss

tx  for 

's

tx  have the same values in all the scenario pairs it occurs. Notice that the 

reformulated model (MLR
C
) includes constraints (6.1), (6.2), (6.3b), (6.4b), 

Scenario

Subproblems

Dualize all 

Initial NACs

Dualize all 

Conditional NACs
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(6.5d), (6.5e), (6.5f), (6.6) and (6.7). Model (MLR
C
) can now be decomposed into 

individual scenarios by dualizing only constraints (6.5f) as can be seen in Figure 

6.6. L3-MLR
C
 and L3-MLR

Cs
 represent the Lagrangean problem and scenario 

sub-problems for this indirect decomposition approach, respectively.   

 

 

 Figure 6.6: Structure of the Reduced Model after reformulation (MLR
C
) 
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(L3-MLR
 Cs

) 
]~[min

'
)',(

',',

'
),'(

,'

33

 









ss
Pss

ss

t

ss

t

Tt
ss

Pss

ss

t

s

t

Tt

s

tt

s xxxcp 
 (6.1f) 

 taxAts s

t

t

ss 


..         (6.2a) 

  ',)',(,~
3

', ssPssTtxx I

ss

t

s

t     (6.3c) 

 ',)',(,~)1( 3

',', ssPssTtxxzM C

ss

t

s

t

ss

t    (6.5g) 

 ',)',(,~)1( 3

',', ssPssTtxxzM C

ss

t

s

t

ss

t    (6.5h) 

',)',(, 3

', ssPssTtdzCxB C

s

t

ss

t

s

t

s

t

s

t    (6.4c) 

  ',,}1,0{ Jjstxs

jt     (6.6a) 

  '\,, JJjstRxs

jt     (6.7a)  

Notice that once the scenario subproblems L2-MLR
s
 and L3-MLR

Cs
 

corresponding to the direct and indirect approaches, (i) and (ii), are formulated, 

the rest of the algorithmic steps are similar to as we have seen in the previous 

section (Figure 6.2).  

Limitations: Based on the computational experiments, approach (ii) performs 

slightly better than the approach (i). However, the main limitation with both of 

these decomposition approaches (i) and (ii) is that the number of Lagrangean 

multipliers becomes very large since the conditional NACs represent a very large 

fraction of the total constraints in the problem. In addition, these constraints 

appear as big-M constraints in the model where only a small fraction of these 

constraints become active at the optimal solution, so the improvement in the 

resulting lower bound is usually very slow and one may need several iterations to 

converge. Overall, the performance with the decomposition approaches that rely 

on considering all the conditional NACs can even be worse than the 

decomposition approach presented in section 6.4.1 which relaxes all of these 

constraints.   
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However, for the problems with exogenous uncertainties, there is no big-M 

involved in the NACs. Therefore, on dualizing these NACs (all time periods) for 

scenario decomposition, the quality of the lower bound is usually strengthened. 

6.5 Proposed Lagrangean Decomposition Algorithm 

The decomposition approaches presented in the previous section may perform 

reasonably well for a certain class of problems with a given set of data. However, 

as we mentioned these methods also have some limitations. To overcome them, 

we propose a new decomposition scheme that neither relaxes nor dualizes all the 

conditional NACs. The basic idea relies on decomposing the fullspace model into 

scenario group subproblems instead of individual scenarios. This allows keeping a 

subset of the NACs in the subproblems as constraints, while dualizing and 

relaxing the rest of the NACs. Therefore, it can be considered as a partial 

decomposition approach. Since, the formulation of the scenario groups is a key 

element in the proposed decomposition algorithm, we first describe the 

methodology to construct these scenario groups for the MSSP with endogenous 

uncertainties.    

6.5.1 Formulating the Scenario Groups: The proposed algorithm divides the 

reduced model (MLR) into scenario group subproblems as explained in this 

section. Let us consider that there are two endogenous uncertain parameters 

},{ 21  where each one has 2 possible realizations (L, H). Therefore, there are 4 

scenarios (1: LL, 2: HL, 3: LH, 4: HH). The scenario pairs (s,s’) required to 

represent the NA constraints in each time period t based on the three properties 

in chapter 4 are {(1,2),(1,3),(2,4),(3,4)} as can be seen in Figure 6.7(a). Notice 

that the double line between scenario pairs is used to emphasize the fact that 

there are initial as well as conditional NACs between each of these scenario 

pairs, whereas each node represents the index of an individual scenario. The 

dash lines correspond to the dualized NA constraints.  
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Figure 6.7: An illustration for the 4 Scenarios and its scenario group 

decomposition (top view) 

 

Figure 6.8: An illustration for the 4 Scenarios and its scenario group 

decomposition (front view) 

The Lagrangean decomposition scheme corresponding to the section 6.4.1 is 

represented by Figure 6.7(b) where we remove all the conditional NACs and 
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decomposition scheme presented in section 6.4.2 that relies on dualizing all the 

NACs (initial and conditional) either directly (i) or after reformulation (ii).  In 

contrast, the proposed algorithm decomposes the fullspace model into scenario 

groups as shown in Figures 6.7(d) or 6.7(e). In particular, Figure 6.7(d) 

corresponds to the two scenario group problems {g1: (1,2),  g2: (3,4)} where 

6.7(e) represents the scenario group problems { g1: (1,3), g2: (2,4)}. Notice that 

Figures 6.7(a)-(e) correspond to the top view of the scenario-tree representation in 

Figures 6.8(a)-(e), respectively. Each node in Figures 6.8(a-e) represents the state 

of the system in a given time period t while the linking lines correspond to the NA 

constraints. 

The rules to formulate the scenario groups for the proposed algorithm are as 

follows: 

1. Each scenario s occurs in only one of the scenario group gS and every 

scenario is included in at-least one of the groups G . All the scenario groups 

GSg  have equal number of scenarios. Therefore, the total number of 

scenarios equal to the number of scenario groups times the number of 

scenarios in each group i.e., gSGS  . Notice that here we assume the 

symmetry of the scenario groups to formulate the subproblems that have 

almost similar complexity. However, we can always consider an asymmetric 

approach as shown in Figure 6.9 for the 4 scenario instance described above. 

Specifically, Figure 6.9(a) and 6.9(b) decompose the problem into two 

scenario groups {g1: (1,2,3),  g2: (4)} and {g1: (1,3,4),  g2: (2)}, respectively, 

where the subproblems with 3 scenarios should be more expensive to solve 

than the one with a single scenario.  

 

Figure 6.9: Asymmetric scenario group decomposition 
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2. Scenario groups gS are formulated by first selecting an endogenous uncertain 

parameter and then taking those scenarios in a group which differ in the 

realization of only that particular uncertain parameter.  For instance, in Figure 

6.7(a), we first select parameter }{ 1 and write only those scenario groups that 

differ in the realization of this uncertain parameter, i.e.  {(1,2),(3,4)}  which 

results in the scenario groups as in Figure 6.7(d). Similarly, the uncertain 

parameter }{ 2 leads to the scenario groups {(1,3),(2,4)} in Figure 6.7(e). 

Notice that these scenario groups are nothing but the scenario sets 

pk Lsss ),....,,( 21  (eq. 6.8) that are required to formulate the reduced model 

(MLR).   

3. Since there can be many uncertain parameters }{ p  each with its own 

scenario set pk Lsss ),....,,( 21 , the selection of a particular set of scenario groups 

is not unique.  

(i)  Ideally, one may consider selecting a scenario group set that provides 

the tightest initial bound compared to the others. However, in general 

unless all the combinations are tested, it is not obvious how to select 

such a scenario group set.  

(ii) A relatively simpler approach can be to first solve each scenario 

independently, and selecting the scenario group set corresponding to 

that uncertain parameter, which has the largest total difference in the 

objective function values of the corresponding scenarios. This is due to 

the fact that most likely the corresponding NACs for those scenarios 

will be active at the optimal solution. Therefore, keeping these NACs 

in the subproblem as constraints should yield a tighter bound. For 

instance, select 7(e) if scenario group set corresponding to 2  exhibits 

larger total variation in the objective function value than the scenario 

group set for uncertain parameter 1 . In other words, this idea relies on 

the sensitivity of the objective function value for an uncertain 

parameter and its possible realizations. 
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Notice that for simplicity we only consider the cases with same 

probabilities for all the scenarios during this work. If it would be possible, the 

impact of different scenario probability values on scenario group partitions 

will be addressed in our future paper. 

4. Even after selecting a scenario group set that corresponds to an uncertain 

parameter }{ p , it may still be difficult to solve the resulting scenario group 

subproblems. For instance if a parameter has many realizations, then each 

scenario group subproblem will have that many scenarios which may increase 

the computational expense. Therefore, one may further divide the scenario 

groups into subgroups and solve the resulting smaller problems.  

 

Figure 6.10: 2 parameters, 16 scenarios and its scenario/scenario group 

decomposition  

 As an example, say if we have 2 uncertain parameters and 4 realizations of 

each parameter, there are a total of 16 scenarios. There are two possibilities of 

the scenario groups {(1,2,3,4), (5,6,7,8), (9,10,11,12), (13,14,15,16)} (Figure 

6.10(c)) and {(1,5,9,13), (2,6,10,14), (3,7,11,15), (4,8,12,16)}  (Figure 6.10 

(d)) according to the rules 1-3.  Based on the problem characteristics, it may 

be difficult to solve each scenario group subproblem with 4 scenarios. 

Therefore, these groups can be further decomposed into a total of 8 scenario 
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groups each with 2 scenarios, respectively (Figure 6.11(a) and 11(b)). 

However, the quality of the bound may deteriorate since the corresponding 

conditional NACs need to be relaxed. Therefore, there is a trade-off between 

the quality of the bound and the complexity of solving a scenario group 

problem. 

 

Figure 6.11: Decomposition of the scenario groups into subgroups 

5. In general, if the problem is expensive to solve for each scenario, it is better to use 

scenario groups each with only few scenarios. On the other hand, if individual 

scenarios are not expensive to solve, then one may consider more scenarios in 

each group to improve the quality of the bound.   

The above rules are general and can be applied to a problem with any 

number of uncertain parameters and many realizations of each uncertain 

parameter. For instance, Figure 6.12(a) represents the extension to three uncertain 

parameter case where each parameter has 2 realizations (total 8 scenarios).  

There are 6 possibilities to formulate the scenario groups in symmetric form:  

(a) Taking 4 scenarios in each group:   

    {(1,2,3,4), (5,6,7,8)} i.e. Figure 6.12(c)  

    {(1,2,5,6), (3,4,7,8)} i.e. Figure 6.12(d) 

    {(1,3,5,7), (2,4,6,8)} i.e. Figure 6.12(e) 

(b) Taking 2 scenarios in each group:  

    {(1,2),(3,4), (5,6),(7,8)} i.e. Figure 6.12(f)  

    {(1,5),(2,6), (3,7),(4,8)} i.e. Figure 6.12(g) 

     {(1,3),(2,4), (5,7),(6,8)} i.e. Figure 6.12(h) 
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Figure 6.12: 3 parameters, 8 scenarios and its scenario/scenario group 

decomposition  

6.5.2 Decomposition Algorithm: Based on the scenario groups that are 

constructed in the previous section, we now first present the corresponding 

reformulated Reduced (MILP) model. Notice that these scenario group partitions 

will be used to decompose the resulting reduced model into scenario group 

subproblems during the proposed Lagrangean decomposition algorithm.   

Let us consider that G  is the set of scenario groups GS g   that are selected 

based on the rules presented in the previous section, where each of these scenario 

groups gS may have 1 or more scenarios. The reduced model (MLR) can now be 

represented as an equivalent model (MLR
G
) in terms of the scenario groups 

GS g   where we disaggregate the total NACs for the scenario pairs that 

corresponds to the same scenario group gSss )',(  (i.e. eqs. (6.3i), 

(6.4i),(6.5i),(6.5j)) with those which belong to the different scenario groups 

)'()( gg SsSs  (i.e. eqs. (6.3j), (6.4j),(6.5k),(6.5l)). 
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In contrast to the previous approaches, we can observe that the main idea in 

the proposed decomposition approach is that instead of removing all the 

conditional NACs from the model (as in section 6.4.1) or dualizing all the 

conditional NACs either directly or in an indirect manner (as in section 6.4.2), we 

only remove a subset of conditional NACs from the model and dualize a subset of 

the initial NACs in the objective function instead of dualizing all the initial NACs 

while formulating the Lagrangean problem (L4-MLR
G
). This results in the 

decomposition of the reduced model (MLR) into scenario group subproblems 

(L4-MLR
Gs

) rather than individual scenarios in the previous cases. Therefore, we 

also refer it as a partial decomposition approach. 
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',,}1,0{ JjSstx g
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s

jt      (6.7k) 

The structure of model (L4-MLR
G
) can be seen in Figure 6.13, where each 

scenario group subproblem that contains its corresponding initial and conditional 

NACs can be solved independently, and where only a small fraction of the total 

initial and conditional NACs are dualized and removed, respectively. Since, the 

resulting subproblems capture the more relevant information, i.e. the one 

corresponding to the later time periods, the dual bound should be tighter. 

 

Figure 6.13: Scenario decomposition approach in the proposed Lagrangean 

Decomposition 

We can then state the following proposition: 

Proposition 6.1: The dual bound obtained from the proposed Lagrangean 

problem (L4-MLR
G
) at root node is at-least as tight as the dual bound obtained 

from the standard Lagrangean decomposition approach (L1-MLR) i.e. the 

model (L1-MLR) is a relaxation of the model (L4-MLR
G
). 

Proof: To prove this proposition it is sufficient to establish that,  

(a) The feasible region of the proposed Lagrangean problem (L4-MLR
G
) is 

contained within the feasible region of the model L1-MLR.  

Scenario Group

Subproblems having 

corresponding NACs

Dualize remaining 

Initial NACs

Remove remaining 

Conditional NACs
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(b)  The objective function value of the proposed Lagrangean problem (L4-

MLR
G
) over its feasible solutions

s

tx is at-least as large (assuming 

minimization case) as the objective function value of the model L1-MLR.  

For (a), since scenario constraints (6.2) in L1-MLR are equivalent to constraints 

(6.2i) in L4-MLR
G
. Therefore, the only difference between both of these models 

is that L4-MLR
G
 has the additional constraints (6.3i), (6.4i), (6.5i) and (6.5j) in 

the model. Hence, the feasible region of the model L4-MLR
G 

is contained within 

the feasible region of the standard Lagrangean problem L1-MLR which has more 

feasible solutions.  

For (b), we first rewrite the model L1-MLR as L1-MLR’ where 0', ss

t  

represent the Lagrangean multipliers corresponding to the dualized inequalities 

)0( '  s

t

s

t xx and multipliers 0', ss

t  correspond to the inequalities

)0( '  s

t

s

t xx . We use the inequality format of the initial NACs (eq. (6.3a)) to 

dualize them in the objective function.    

(L1-MLR’)   

   
   


1 31 3 )',(

'',

)',(

'', )()(min
Tt Pss

s

t

s

t

ss

t

Tt Pss

s

t

s

t

ss

t

Ss Tt

s

tt

s xxxxxcp   (6.1l) 

 s.t. (6.2), (6.6) and (6.7) 

Similarly, model L4-MLR
G
 can be rewritten as follows:  
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 s.t. (6.2i), (6.3i), (6.4i), (6.5i), (6.5j), (6.6i) and (6.7i) 

On subtracting the objective functions (6.1l) and (6.1m), we have the following 

summation,  
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To prove that the objective function value of the model L4-MLR
G
 over its feasible 

solutions
s

tx is at least as large as the objective function value of the model L1-

MLR, it is sufficient to prove that, 
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For any feasible solution 
s

tx  to the model L4-MLR
G
 and for any 0', ss

t  and 

0', ss

t
TtPss  ,)',(

3 , the penalty terms )( '', s

t

s

t

ss

t xx   and )( '', s

t

s

t

ss

t xx   in 

the objective function are less than or equal to zero. Hence, their summation in 

inequality (6.1o) also holds true. In other words, we can also state that the model 

L1-MLR is a Lagrangean relaxation of the model L4-MLR
G
 and therefore, it 

provides a valid lower bound on the objective function value of the model L4-

MLR
G
.                                     □  

The rest of the steps of the algorithm are similar to the standard Lagrangean 

decomposition (Figure 6.2) where scenario group subproblems L4-MLR
Gs

 are 

solved during each iteration, and multipliers are updated using either subgradient 

method (Fisher, 1985) or an alternative scheme as in Mouret et al. (2011); 

Oliveira et al. (2013), and Tarhan et al. (2013). Moreover, the algorithm can be 

further extended within a duality based branch and bound search (as proposed in 

Goel and Grossmann, 2006; Tarhan et al., 2009; and Tarhan et al., 2011) if the 

gap between the lower and upper bound is still large. As will be shown in the 

results, the main advantage with the proposed approach is that the resulting dual 

bound is significantly strengthened at the root node itself since a large fraction of 

the NACs are included as explicit constraints in the subproblems. This will 

eventually reduce the number of iterations required to converge at each node and 

the total number of nodes in the branch and bound search.  

6.5.3 Alternate Proposed Lagrangean Decomposition Algorithm 

It should be noted that few conditional NACs (eqs. (6.5k) and (6.5l)) still need to 

be removed while formulating the scenario group subproblems (L4-MLR
Gs

) in the 
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above method. Therefore, the best lower bound at the root node cannot be better 

than the optimal solution of the model without these conditional NACs. To further 

close the gap at the root node, we also propose an alternate Lagrangean 

decomposition approach that may provide a stronger bound at the root node. 

However, it involves solving more subproblems, and it may be computationally 

more expensive than the proposed approach in the previous section. Therefore, it 

is only useful for a certain class of problems.  

The main idea is that we select all the scenario groups instead of a subset of 

the scenario groups as we did in the previous section 6.5.1. However, since a 

scenario can appear in more than one of these scenario groups, we need to equate 

the decisions for this scenario in all of these scenario groups where it occurs. In 

other words, we create a copy of each scenario for every scenario group problem 

where it can appear and equating the decisions corresponding to all time periods 

for that scenario for each of these scenario groups. The resulting model (Figure 

6.14(b)) will be equivalent to the reduced model (MLR) (Figure 6.14(a)) where 

{1’,2’,3’,4’} are the copy of the scenarios {1,2,3,4} and the connections between 

them are the added equality constraints.  

Therefore, to decompose the resulting problem (Figure 6.14(b)) into 4 

scenario group subproblems {(1,2),(1’,3’),(2’,4’), (3,4)}, we dualize the equality 

constraints correspond to each scenario and its copy variables, instead of 

dualizing or removing the NAC constraints. This yields a set of 4 scenario group 

subproblems (Figure 6.14(c)) i.e. {(1,2),(1’,3’),(2’,4’), (3,4)}. Since, none of the 

conditional and initial NAC constraints are removed from the subproblems, the 

bound is in general stronger. We can compare this decomposition with the 

proposed one in Figure 6.7 where we obtain 2 scenario group problems.  

 

Figure 6.14: Alternate proposed Lagrangean decomposition approach for 4 

scenario problem 
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Qualitatively, this decomposition can be considered as the decomposition of 

the reduced model (Figure 6.14(a)) at vertices as compared to the arcs in 

standard/proposed decomposition described earlier. Notice that although this 

alternate decomposition is computationally expensive since more subproblems are 

involved than in the previous method, it can however be used in a hybrid scheme 

with the proposed decomposition to improve the quality of lower bound. For 

instance in Figure 6.10, we can first select the 4 scenario groups based on the 

rules that are defined earlier, and then use this approach to further decompose 

each group into subgroups by creating a copy of the scenarios in each of these 

groups instead of the partitions used in Figure 6.11. 

 

6.6 Numerical Results  

6.6.1 Process network planning under uncertain yield  

 

Figure 6.15: 3 Process Network Example 

Case (i): Planning of 3 process network over 10 years 

To illustrate the application of the various decomposition approaches for 

multistage stochastic programming with endogenous uncertainties, we consider 

the following problem from Goel and Grossmann (2006). Given is a process 

network (Figure 6.15) that is used to produce product A. Currently, the production 

of A takes place only in Process III with installed capacity of 3 tons/hour and 

yield of 0.70, that consumes an intermediate product B which is purchased. If 

needed, the final product A can also be purchased so as to maintain its inventory. 

The demand for the final product, which is known, must be satisfied for all time 

periods over the given time horizon. Two new technologies (Process I and 

Process II) are considered for producing the intermediate B from two different 
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raw materials C and D. These new technologies exhibit uncertainty in the yields. 

The yield of Process I and Process II can take 2 discrete values each with equal 

probability of 0.5. These two realizations of yield for each of Process I and 

Process II give rise to a total of 4 scenarios (Table 6.1).  

The problem consists of finding the expansion and operation decisions for 

this process network for a 10 year planning horizon so as to minimize the total 

expected cost of the project. The size of the resulting fullspace model (MLR) and 

each individual scenario can be seen in Table 6.2 where the optimal expected cost 

of the problem is $379,070. Notice that there is a significant increase in the total 

number of constraints for the fullspace MSSP model due to the non-anticipativity 

requirements.   

Table 6.1: 3 Process Network Example (4 Scenarios) 

Scenario s1 s2 s3 s4 

Process I yield 0.69 0.81 0.69 0.81 

Process II yield 0.65 0.65 0.85 0.85 

Scenario Probability 0.25 0.25 0.25 0.25 

  

 Table 6.2: Model statistics for the 3 Process Network Example   

 

 

 

After applying the various decomposition approaches, we obtain the results 

shown in Figure 6.16 and Table 6.3, where an optimality tolerance of 1% and 

maximum of 30 subgradient iterations (whichever comes first) are used as the 

termination criteria. It can be observed that the proposed approach (section 6.5.2) 

using SG2 scenario groups {(1,3),(2,4)} outperforms the other approaches since it 

yields the tightest lower bound ($378,710) within 2 iterations (see Table 6.3). The 

lower bound at the root node from the standard approach (section 6.4.1) after 

many iterations is worse than the initial bound with the proposed approach 

($375,880 vs. $377,290). In addition, the best upper bound from the proposed 

Problem Type 

Number of 

Constraints 

Continuous 

Variables 

Binary 

Variables 

Reduced Model (MLR) 1,869 845 120 

Individual Scenario 192 202 30 
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approach is same as the optimal solution ($379,070) whereas the standard 

approach could only yield the feasible solution with expected cost of $380,880 

even after 30 iterations (see Table 6.3). The decomposition approaches based on 

dualizing all the initial and conditional NACs do not yield good bounds 

(especially the direct approach (i) in section 6.4.2) compared to the proposed 

approach with SG2 partitions.  

 

Figure 6.16: Comparison of the various decomposition schemes for 3 process 

network example 

The alternate decomposition (section 6.5.3) using all the 4 scenario groups 

also performs reasonably well. Since, the total variations in the scenario costs for 

the scenario group set SG2 {(1,3),(2,4)} is large compared to the scenario group 

set SG1 {(1,2),(3,4)} ($69,990
 
vs. $44,590), it yields tighter bounds and faster 

convergence (see Table 6.4). Notice that the scenario groups in SG1 represent the 

sensitivity of the Process I yield with respect to the cost, whereas SG2 correspond 

to the sensitivity of the Process II yield that has a large variance (Table 6.3) and a 

larger impact on the scenario costs. The MILP models for all the process network 

370 

371 

372 

373 

374 

375 

376 

377 

378 

379 

380 

0 5 10 15 20 25 30 

L
o
w

e
r
 B

o
u

n
d

 (
$

1
0

3
) 

Iterations 

Optimal Solution 

LB_Standard 

LB_All_Dualized(i) 

LB_All_Dualized(ii) 

LB_Proposed_SG1 

LB_Proposed_SG2 

LB_Poposed_Alternate 



 
 

213 
 

examples are implemented in GAMS 23.6.3 and run on Intel Core i7, 4GB RAM 

machine using XPRESS 21.01 solver. 

Table 6.3: Comparison of the various decomposition schemes for 3 Process 

Network Example 

 

Table 6.4: Variations in the objective function value with uncertain parameters(a) 

Individual Scenario Costs   (b) Scenario groups cost variations 

 

 

 

 

 

Case (ii): Planning of 5 process network over 10 years 

 

 

 

  

 

 

 

  

In this instance, we consider a 5 process network (Figure 6.17) having 3 

uncertain parameters, i.e. yield of Process I, Process II, and Process V. Here we 

consider 2 new additional processes compared to the previous example in which 

 Standard All Dualized 

(i) direct 

All Dualized 

(ii) indirect 

Proposed 

SG1 

Proposed 

SG2 

Proposed 

Alternate 

 UB ($103) 380.88 380.88 380.88 380.88 379.07 379.07 

LB ($103) 375.88 371.88 376.27 376.42 378.71 375.75 

Solution Time (s) 8.89 5.24 9.51 5.86 0.94 2.12 

% Gap 1.33% 2.42% 1.22% 1.19% <1% <1% 

# iterations 30 30 30 30 2 4 

  Cost ($10
3
) 

s1 410.32 

s2 365.73 

s3 353.03 

s4 353.03 

  SG1 SG2 

s1-s2 44.59 -  

s3-s4 0  - 

s1-s3  - 57.29 

s2-s4  - 12.70 

Total cost 

variations ($10
3
) 44.59 69.99 
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Figure 6.17: 5 Process Network Example  
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Process IV converts E into B with a yield of 0.75, and Process V that converts B 

into final product A. Each of the uncertain yields has 2 realizations and gives rise 

to a total of 8 scenarios with equal probabilities as shown in Table 6.5. The 

problem consists of finding the expansion and operation decisions for this process 

network over a 10 year planning horizon to minimize the total expected cost of 

the project (see chapter 4 for details). 

Table 6.5: 5 Process Network Example (4 Scenarios) 

Scenario s1 s2 s3 s4 s5 s6 s7 s8 

Process I yield 0.69 0.81 0.69 0.81 0.69 0.81 0.69 0.81 

Process II yield 0.65 0.65 0.85 0.85 0.65 0.65 0.85 0.85 

Process V yield 0.60 0.60 0.60 0.60 0.80 0.80 0.80 0.80 

Scenario Probability 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 

To use the proposed decomposition approach for this 8 scenario problem, we 

partition the scenarios into scenario groups where each one has either 2 or 4 

scenarios as in Figure 6.12. These scenario groups are denoted as follows:  

(a) SG1: {(1,2),(3,4), (5,6),(7,8)};  SG2: {(1,5),(2,6), (3,7),(4,8)}; SG3: 

{(1,3),(2,4), (5,7),(6,8)};  

(b) SG4: {(1,2,3,4), (5,6,7,8)}; SG5: {(1,2,5,6), (3,4,7,8)}, and SG6: {(1,3,5,7), 

(2,4,6,8)}  

After applying the proposed decomposition approach (section 6.5.2) to these 

6 scenario group sets, we can see from Figure 6.18 that the quality of the lower 

bound improves from $357,920 (SG1) to $361,500 (SG6) as the total cost 

variations for the corresponding scenario group set increases from $41,000 to 

$224,810 as in the previous instance. Moreover, the bound obtained from the 

larger subproblems having 4 scenarios (SG4, SG5, SG6) is tighter as compared to 

the subproblems having 2 scenario each as in SG1, SG2 and SG3.  This is due to 

the fact that larger subproblems need only few conditional NACs to be relaxed 

compared to the smaller subproblems. Table 6.6 and Figure 6.19 compare the 

progress of the lower bounds, number of iterations and solution time required to 

reach within 1% of optimality tolerance (or 30 iterations) for the standard and 

proposed approaches with different scenario partitions. We can observe that 
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scenario group set SG6 outperforms other approaches since it provides the 

strongest lower bound ($361,500) in just 2 iterations within 8.9s. Moreover, there 

is a trade-off between the computational cost per iteration and the quality of the 

bound obtained. It is interesting to note that in most of the cases, even the initial 

bound using proposed scenario decompositions is much better than the final 

bound from the standard approach ($355,180) and the rate of convergence to the 

best possible dual bound is faster.  

Table 6.6: Comparison of the standard vs. proposed approach for 5 process 

network example 

 

 

Figure 6.18: Variations in the scenario costs vs. bound obtained for different 

scenario partitions 
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Lower Bound 

Total Cost 

Variations 

 Standard Proposed 

SG1 

Proposed 

SG2 

Proposed 

SG3 

Proposed 

SG4 

Proposed 

SG5 

Proposed 

SG6 

 UB ($103) 364.12 364.12 364.12 364.12 364.12 364.12 364.12 

LB ($103) 355.18 357.92 358.08 358.62 360.82 361.35 361.50 

Solution 

Time (s) 

16.32 24.59 15.38 20.40 7.63 12.44 8.9 

% Gap 2.52% 1.73% 1.69% 1.53% <1% <1% <1% 

# iterations 30 30 30 30 2 5 2 
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Figure 6.19: Comparison of the standard vs. proposed approach for 5 process 

network example 

 

6.6.2 Oilfield development planning under uncertain field parameters  

 

 

Figure 6.20: 3 oilfield planning example 
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Case (i): Uncertainty in the field size only (4 scenarios) 

In this instance, we consider 3 oilfields, 3 potential FPSO’s and 9 possible 

connections among field-FPSO (Figure 6.20).  A total of 30 wells can be drilled in 

the fields and the planning horizon is 10 years. Field 3 has a recoverable oil 

volume (field size) of 500 MMbbls. However, there is uncertainty in the size of 

fields 1 and 2 where each one has two possible realizations (low, high) with equal 

probability. Therefore, there are a total of 4 scenarios each with a probability of 

0.25 (see Table 6.7). The problem is to determine the investment (FPSO 

installations and expansions, field-FPSO connections and well drilling) and 

operating decisions (oil production rate) for this infrastructure with an objective to 

maximize the total expected NPV (ENPV) over the planning horizon.  

We consider the multistage stochastic MILP model presented in chapter 5 for 

this oilfield development planning problem, which is an extension of the previous 

deterministic model presented in chapter 2. The model for all the oilfield planning 

instances are implemented in GAMS 23.6.3 and run on Intel Core i7, 4GB RAM 

machine using CPLEX 12.2 solver. The optimal ENPV for this problem is $11.50 

x10
9
 when the reduced model (MLR) is solved in fullspace, and requires 1184s. 

Table 6.8 represents the model statistics for this instance.  

Table 6.7: 3 Oilfield Example (4 Scenarios), case (i) 

Scenarios s1 s2 s3 s4 

Field 1 Size (MMbbls) 57 403 57 403 

Field 2 Size (MMbbls) 80 80 560 560 

Scenario Probability 0.25 0.25 0.25 0.25 

 

 Table 6.8: Model statistics for the 3 Oilfield Example, case (i)   

 

Problem Type 

Number of 

Constraints 

Continuous 

Variables 

Discrete 

Variables 

SOS1 

Variables 

Reduced Model (MLR) 16,473 9,717 876 240 

Individual Scenario 3,580 2,390 179 60 
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Figure 6.21: Comparison of the various decomposition schemes for oilfield 

example, case (i) 

Figure 6.21 compares the performance of the upper bounds obtained at the 

root node using standard Lagrangean decomposition based on dualizing the initial 

NACs and removing the conditional NACs (section 6.4.1) with the decomposition 

approaches proposed in section 6.5. A termination criterion of either 1% gap or 20 

iterations is used. The proposed algorithm based on scenario groups SG1: 

{(1,2),(3,4)} and SG2: {(1,3),(2,4)} yield stronger upper bounds, $11.59 x10
9
 and 

$11.56 x10
9
 respectively, than the standard Lagrangean decomposition (section 

6.4.1)  ($11.62 x10
9
). Additionally, the total computational effort is less with the 

proposed approach since only 2 subproblems need to be solved at each iteration, 

and only few iterations are needed to satisfy a 1% of optimality tolerance (Table 

6.9). SG2 performs better than SG1 as can be observed from the total variations in 

the scenario NPVs with respect to the change in the field sizes as calculated in 

Table 6.10 ($6.63 x10
9
 vs. $4.77 x10

9
). This result is similar to the process 

network example in the previous section. We can also observe that the alternate 

proposed approach that considers 4 scenario groups (Figure 6.14(c)) performs 

well but it is more expensive to solve (429s). It is important to see that the quality 
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of upper bound from SG2 is similar in the first iteration with the quality of UB 

obtained from the scenario subproblems (section 6.4.1) after 20 iterations (see 

Figure 6.21). Moreover, for clarity we only plotted the progress of the upper 

bounds with iterations and the optimal NPV in Figure 6.21.  

Table 6.9: Comparison of the various decomposition schemes for oilfield 

example, case(i) 

 Standard Proposed SG1 Proposed SG2 Proposed Alternate 

 UB ($109) 11.62 11.59 11.56 11.58 

LB ($109) 11.50 11.50 11.50 11.50 

Solution Time 

(s) 

466 382 172 429 

% Gap 1.02% <1% <1% <1% 

# iterations 20 5 2 3 

 

Table 6.10: Variations in the objective function value with uncertain parameters, 

case (i) 

(a) Individual Scenario NPV   (b) Scenario groups NPV variations 

 

 

 

 

 

 

Case (ii): Uncertainty in the field size, oil deliverability, WOR and GOR (4 

scenarios) 

In this case we consider uncertainty in the field size, oil deliverability, water-oil 

ratio (WOR) and gas-oil-ratio (GOR) for oilfields 1 and 2. Notice that oil 

deliverability, WOR and GOR are represented by the univariate polynomials in 

terms of the fractional oil recovery as shown in equations (6.11)-(6.13) 

respectively. The uncertainty in these parameters is characterized by the 

corresponding parameters o , w  and g . We assume that the uncertain 

  NPV ($109) 

s1 8.95 

s2 11.39 

s3 12.32 

s4 14.65 

  SG1 SG2 

s1-s2 2.44 -  

s3-s4 2.33  - 

s1-s3  - 3.37 

s2-s4  - 3.26 

Total NPV 

variations ($109) 4.77 6.63 
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parameters for a field are correlated and uncertainty in these parameters is 

resolved at the same time. This allows reducing a large number of scenarios. The 

two possible combinations of these parameters for each field results in a total of 4 

scenarios each with a probability of 0.25 as can be seen in Table 6.11. The data 

for the rest of the problem are as in case (i).   

 )( fcgQ o

d         (6.11) 

 )( fcgwor w         (6.12) 

 )( fcggor g         (6.13) 

Figure 6.22 and Table 6.12 compare the performance of the upper bounds 

obtained at the root node using standard Lagrangean decomposition (section 

6.4.1) with the proposed decomposition approaches and the similar trends can be 

observed as in the previous instance. SG2 {(1,3), (2,4)} performs best compared 

to the other approaches due to the stronger initial bound ($12.07x10
9
). Moreover, 

since the scenario group set SG2 has a larger total NPV variations ($8.70x10
9
) 

than set SG1 {(1,2), (3,4)} ($5.72x10
9
), it yields a stronger dual bound. Although, 

SG1 and the alternate approach are somewhat more expensive compared to the 

standard decomposition approach, they yield a stronger dual bound in a given 

amount of solution time. This will eventually reduce the total number of nodes in 

the branch and bound search tree.   

 Table 6.11: 3 Oilfield Example (4 Scenarios), case (ii) 

Scenarios s1 s2 s3 s4 

 

 

Field 1 

 

Size (MMbbls) 57 403 57 403 

o  0.75 1.25 0.75 1.25 

w  0.75 1.25 0.75 1.25 

g  0.75 1.25 0.75 1.25 

 

 

Field 2 

Size (MMbbls) 80 80 560 560 

o  0.75 0.75 1.25 1.25 

w  0.75 0.75 1.25 1.25 

g  0.75 0.75 1.25 1.25 

Scenario Probability 0.25 0.25 0.25 0.25 
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Figure 6.22: Comparison of the various decomposition schemes for oilfield 

example, case (ii) 

 

Table 6.12: Comparison of the various decomposition schemes for oilfield 

example, case(ii) 

Case (iii) and (iv): Extension of the cases (i) and (ii), respectively, for 9 

scenarios 

In these instances we consider 3 realizations for each uncertain parameter (low, 

medium, high) compared to two realizations (low, high) in the previous cases (i) 

and (ii) of oilfield development problem. This results in the corresponding 9 

scenario cases (iii) and (iv). Figures 6.23 and 6.24 compare the performance of 
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 Standard Proposed SG1 Proposed SG2 Proposed Alternate 

 UB ($109) 12.14 12.10 12.07 12.06 

LB ($109) 11.94 11.94 11.94 11.94 

Solution Time (s) 438 1780 84 1045 

% Gap 1.66% 1.28% <1% <1% 

# iterations 20 20 1 5 
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the dual bounds at the root node from various decomposition schemes for these 3 

oilfield and 9 scenario instances, whereas Table 6.13 summarizes the 

computational results. Since the alternate decomposition (section 6.5.3) is very 

expensive to solve for these cases, we only compare the proposed approach 

relying on the scenario groups SG1 {(1,2,3),(4,5,6),(7,8,9)} and SG2 

{(1,4,7),(2,5,8),(3,6,9)} with the standard approach (section 6.4.1). We can 

observe that the initial bound with the proposed strategy ($11.93 x10
9
) is much 

better as compared to the final bound obtained from the standard Lagrangean 

decomposition at the root node ($11.96 x10
9
) for case (iii). It takes only 2 and 1 

iterations in cases (iii) and (iv), respectively, for the proposed approach using set 

SG2 to reach within 1% of optimality tolerance. On the other hand, the standard 

and the proposed approach with set SG1 cannot reach within this gap even after 

20 iterations or a given time limit of one hour.   

 

 

Figure 6.23: Comparison of the various decomposition schemes for oilfield 

example, case (iii) 
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Figure 6.24: Comparison of the various decomposition schemes for oilfield 

example, case (iv) 

 

Table 6.13: Comparison of the decomposition schemes for oilfield example, case 

(iii) and (iv) 

 Case (iii) Case (iv) 

 Standard Proposed 

SG1 

Proposed 

SG2 

Standard Proposed 

SG1 

Proposed 

SG2 

 UB ($109) 11.96 11.92 11.88 12.31 12.26 12.23 

LB ($109) 11.78 11.78 11.78 12.11 12.11 12.11 

Solution Time (s) 1327 >3,600 764 1542 >3,600 439 

% Gap 1.47% 1.15% <1% 1.62% 1.27% <1% 

# iterations 20 10 2 20 8 1 

 

Remarks:  

1. Based on the computational results, we can observe that the selection of a 

particular scenario group set is critical in the proposed approach such as 

set SG2 performs better than SG1 in all the instances.  

2. The increase in the solution time per iteration with the proposed approach 

is problem specific. For instance, the increase in the solution time per 
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iteration for the process networks examples is not that significant as in the 

oilfield planning problem. Therefore, if the solution time per iteration for a 

given problem increases drastically using the proposed decomposition, 

then one may want to use the standard scenario based approach to explore 

more nodes quickly in the branch and bound search tree or use 

subproblems with smaller sizes in the proposed approach.  

3. In general, for a given amount of the solution time the proposed approach 

yields better dual bound and feasible solution as can be seen from the 

numerical experiments. This is due to the fact that the increase in the 

solution time per iteration is offset by the significant reduction in the total 

number of iterations resulting in the lesser total solution time.  

4. It should be noted that although the initial gap between lower and upper 

bounds for the examples presented is not very large for the given data set. 

However, based on Proposition 6.1 and computational experiments, we 

can conclude that the performance of the proposed approach should be 

similar for the large gap problems given that we select the scenario group 

sets as described.      

6.7 Conclusions 

In this chapter, we have proposed a new approach for solving multistage 

stochastic programs (MSSP) with endogenous uncertainties using Lagrangean 

decomposition. The proposed approach relies on dividing the fullspace model into 

scenario groups. Since the number of these scenario groups can be large, there are 

several alternatives to select a particular set of scenario groups. Therefore, we also 

presented few rules to identify and formulate a reasonable scenario group set that 

can be used for the proposed partial decomposition approach within an iterative 

scheme to update the multipliers. Specifically, the resulting subproblems involve 

a subset of the NACs as explicit constraints while dualizing and relaxing the rest 

of these constraints, which enhances the overall performance. An alternate 

decomposition scheme that may even yield a tighter bound, but usually becomes 

more expensive for the large cases, is also proposed.  
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The results on the process network and oilfield planning problems show that 

the dual bound obtained at the root node from the proposed approaches are 

stronger than the standard one used in chapters 4 and 5 since the impact of the 

later time periods is also considered in the subproblems. Moreover, there is a 

significant reduction in the number of iterations required to converge within a 

specified tolerance.  In most of the cases, even the initial bound with the proposed 

approach is stronger than the corresponding final bound in the standard approach. 

Given the tighter bound at the root node, the total number of potential nodes that 

will be required in the branch and bound search should be smaller and branching 

rules will be easier to identify. However, the solution time required per iteration 

in the proposed approach is usually larger as compared to the standard approach, 

but the difference is problem specific. Therefore, the comparison between the 

qualities of the bounds obtained within a given amount of solution time should 

also be considered while selecting a particular decomposition approach for the 

problems in this class.  
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Chapter 7 

 

Improving dual bound for     

stochastic MILP models using 

sensitivity analysis 

 

 

7.1 Introduction  

In this chapter, based on the previous work by Tarhan (2009),  we introduce a 

method to improve the dual bound during the solution of a general two-stage 

stochastic mixed-integer linear programming model using dual decomposition 

(Carøe and Schultz, 1999) and integer programming sensitivity analysis 

(Dawande and Hooker, 2000). In particular, the method extracts the relevant 

sensitivity information from the branch and bound tree of every scenario 

subproblem, and uses that information to update the Lagrange multipliers and 

improve the dual bound.  

The outline of the chapter is as follows: In section 7.2, we introduce the two-

stage stochastic programming model under consideration and the standard 

Lagrangean decomposition procedure to solve the model in the subsequent 

section. To overcome the limitations of the standard approach, integer or mixed-

integer programming sensitivity analysis methods that will be used are introduced 

in section 7.4. Sections 7.5 and 7.6 outline the procedure to combine the 

sensitivity analysis with Lagrangean decomposition to improve the dual bounds of 

stochastic integer or mixed-integer programming. Section 7.7 illustrates the 

proposed method with numerical examples and compares it with the conventional 

subgradient method.  
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7.2 Two-stage Stochastic programming 

The main idea behind two-stage stochastic programming (see Figure 7.1) is that 

we take some decisions (stage 1) here and now based on the possibility of future 

outcomes of the uncertain parameters. While the rest of the decisions are stage -2 

(recourse actions) decisions that are taken after uncertainty in those parameters is 

revealed (e.g. low, medium or high scenarios). The objective is to minimize the 

total cost of the first stage decisions and expected cost of the second stage 

decisions.    

 

Figure 7.1: Scenario tree for a two-stage stochastic programming 

A typical two-stage stochastic mixed-integer linear (MILP) model (P-MILP) 

involves discrete and continuous decisions in the first and/or second stages where 

all the constraints and objective function are in linear or mixed-integer linear 

form. Objective function (7.1) is the minimization of the expected cost over all 

the scenarios s where 
sp  is the probability of scenario s. First stage decisions sx  

are taken here and now, while second stage decisions 
sy are taken after the 

uncertainty is revealed. Constraints (7.2) and (7.3) correspond to each scenario 

separately. To ensure that the first stage decisions are same for all the scenarios, 

non-anticipativity (NA) constraints (7.4) are introduced in the model, which 

makes the problem harder to solve since it couples all the scenarios. Constraints 

(7.5)-(7.8) define the domain of the first and second stage variables. Reader 

should refer to the nomenclature section at the end of this chapter. 

Medium HighLow

Stage-1 decisions are 

taken here and now

Scenario 1 Scenario 2 Scenario 3

Stage-2 decisions are 

taken after uncertainty 

gets revealed 
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(P-MILP) )(min ss

Ss

ss ydcxpz 




   
(7.1)  

   SsaAxts s ..      (7.2) 

   SsbTxyB ssss      (7.3) 

   ',',' ssSssxx ss      (7.4) 

   ', JjSsxs

j  

    
(7.5) 

   '\, JJjSsRxs

j 
    

(7.6) 

   ', KkSsys

k  

    (7.7) 

   '\, KKkSsRys

k 
    (7.8) 

In general industrial planning, scheduling, supply-chain etc. problems under 

uncertainty are formulated as a two-stage stochastic MILP shown above. These 

problems become difficult to solve directly in practice since the problem size 

increases (constraints and variables) with the number of scenarios, whereas the 

solution time increasers exponentially. Therefore, special solution techniques are 

used to solve the problems in this class. 

 

 

 Figure 7.2: Decomposable MILP model structure 

Lagrangean decomposition is a widely used technique to solve the problems 

that have similar decomposable structure as two-stage stochastic MILPs (see 

Figure 7.2). It exploits the fact that there are certain set of constraints that make 

subproblem 1

subproblem n  

subproblem 2

Scenario 

constraints are 

in blocks

Non-anticipativity

constraints link the scenarios

(complicating constraints)
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the problem harder to solve since it links the different small subproblems. If these 

constraints are removed the resulting subproblems can be solved independently in 

an efficient manner. In the case of two-stage stochastic MILPs, non-anticipativity 

constraints (7.4) are the difficult constraint and each subproblem corresponds to 

the scenario problem. Therefore, model (P-MILP) has the decomposable structure 

that is required for the Lagrangean decomposition. In the next section we briefly 

outline the conventional Lagrangean decomposition procedure. 

7.3 Lagrangean Decomposition 

 

Figure 7.3: Lagrangean Decomposition Algorithm (standard) 

The standard Lagrangean decomposition approach involves three steps (see 

Figure 7.3): 

(a) Dualize complicating constraints in the objective function using 

Lagrangean multipliers )( to decompose the problem into subproblems 

(b) Solve each subproblem independently to obtain the lower bound (LB) on 

the original problem and use a heuristic procedure to generate the feasible 

solution i.e. an upper bound (UB) 

Solve Lagrangean Problem

to obtain LB

Stop





UB

LB

Find UB by using a heuristic

Update Multipliers using 

nonsmooth optimization 

(e.g. subgradient method)

Initial Multipliers (0 )

k=0

No

Yes

Gap  <  ε or  

k > kmax
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(c) Based on the subproblem solutions and UB update the Lagrangean 

multipliers )( using a non-smooth optimization (e.g. subgradient method) 

for the next iteration  

The procedure is repeated until the gap between upper and lower bound is 

within a specified tolerance or a maximum iteration limit is reached. Due to the 

presence of discrete variables, a duality gap may exist. Notice that if we dualize 

the non-anticipativity constraints (7.4) in the objective function (7.1), problem (P-

MILP) decomposes into scenario subproblems (SP-MILP) and we can solve it 

using Lagrangean decomposition. 

(SP-MILP) 

 )])[(min
'

,'

'

', sss

ss

sss

Ss ss

sss ydpxcpz  
 

      (7.9) 

   s.t.   (7.2), (7.3), (7.5)-(7.8). 

The main drawback of the above nonsmooth optimization approach used 

within Lagrangean decomposition algorithm for MILPs (e.g. 2-stage stochastic) is 

that only the optimal solution of each subproblem is considered while updating 

the multipliers in each iteration. All the relevant information generated during 

branch and bound algorithm while solving each subproblem is discarded. This 

information could be useful to improve the lower bound efficiently. Therefore, the 

total number of iterations required to reach convergence within the tolerance limit 

is usually very large using the standard nonsmooth optimization approach such as 

subgradient method (Fisher, 1985). In addition, it needs a heuristic procedure to 

update the step size and an upper bound during each iteration. Overall, it may 

result in slow convergence of the Lagrangean decomposition algorithm. There has 

been some work done in this direction e.g. Bundle methods (Lemaréchal, 1974), 

Volume algorithm (Barahona and Anbil, 2000), etc. However, the improvement in 

the number of iterations is not very significant using these approaches. Our work 

is motivated by using more information from each subproblem solution to 

improve the performance of the Lagrangean decomposition algorithm. The main 

goals of this work can be summarized as follow:  
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1. Extract the useful information from the branch and bound tree of each 

subproblem during Lagrangean decomposition and use it to improve the 

lower bound efficiently 

2. Propose a new Lagrangean decomposition algorithm for MILP models 

with decomposable structure (e.g. 2-stage stochastic) and benchmark the 

results against the subgradient method  

In the next section, we show that how the integer programming (IP) 

sensitivity analysis can be used to extract useful information from the branch and 

bound tree of each subproblem, and  how it can further be used in the context of 

Lagrangean decomposition algorithm to update the multipliers in each iteration. 

Although we introduce the idea as a possible improvement over current stochastic 

programming solution methods, the method is fairly general and can be applied to 

a majority of the problems where Lagrangean decomposition is applicable. 

7.4  Integer Programming (IP) Sensitivity Analysis 

IP sensitivity Analysis (Primal Analysis and Dual Analysis) allow us to find valid 

tight bounds for the objective function value when the objective function 

coefficients are perturbed, using the information coming from the branch and 

bound solution tree.  

To understand this, let us consider that ( P ) is the original MILP model 

whereas ( P̂ ) is the perturbed problem after changing the objective function 

coefficients from ( c ) to ( cc  ). Given that ( P ) is an MILP, it is solved with a 

branch and bound (or cut) method. The IP sensitivity analysis can be used to 

calculate the range of the objective function value of the perturbed problem ( P̂ ) 

without resolving this model. In particular, IP sensitivity analysis involves two 

parts: Primal analysis and Dual analysis, which provide the upper and lower 

bounds, respectively, on the perturbed problem ( P̂ ). 

Original Problem ( P ):
  

cxz min       (7.10) 

     aAxts ..
   (7.11) 

     'Jjx j  
   (7.12) 
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     '\ JJjRx j 
   

(7.13) 

     
JjUxL jjj 

  (7.14) 

Perturbed Problem ( P̂ ):
  

xccz )(ˆmin       (7.15)
 

     s.t. (7.11) - (7.14)  

Bounds on the perturbed problem using IP sensitivity analysis:   

     
UBzLB  ˆ  

   
(7.16)

 
 

     Dual        Primal 

     Analysis    Analysis 

7.4.1 Primal Analysis  

When the IP or MIP problem is solved using the branch and bound method, each 

leaf node belongs to one of the following three sets of nodes (Figure 7.4): 

N1: Set of nodes pruned by optimality (feasible integer solutions. e.g. node 3)  

N2: Set of nodes pruned by bound (non-integer feasible solutions. e.g. node 1) 

N3: Set of nodes pruned by infeasibility (leaf nodes pruned by infeasibility. 

       e.g. node 4)  

 

Figure 7.4: A typical branch and bound solution tree for MILP 

Primal Analysis says that the feasible solutions at any node in N1 stays 

feasible (but not necessarily optimal) when the objective function coefficients 

change to ( cc  ). The best feasible solution is the minimum of the available 

solutions. Therefore, the tightest upper bound on the objective function value of 
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the perturbed problem ( P̂ ) can be obtained by solving the following optimization 

problem (PA-LP) that uses the information from the feasible nodes (N1) of the 

branch and bound solution tree of the original problem ( P ).   

(PA-LP)  

UBmax
     

(7.17) 

   



Jj

j

n

jn NncvzUBts 1..  
 

(7.18)
 

In particular, for the given optimal values of the variables jx  at node n  (i.e.

n

jv  ) and perturbations jc the problem can be solved for the tightest upper bound 

(UB ) on the perturbed problem. However, it should be noted that during the 

proposed method jc  will be treated as a variable instead of a parameter to obtain 

the desired perturbations. 

7.4.2 Dual Analysis  

Dual analysis involves a set of linear constraints (DA-LP) that give the maximum 

amount of decrease in the objective function value ( 0z ) when the objective 

function coefficients are perturbed from c  to cc  , see Dawande and Hooker 

(1998) for details. In particular, the analysis states that the lower bound on the 

objective function value of the perturbed problem ( P̂ ), i.e. LBzzz ˆ , 

remains valid if we can find free variables nr and 
n

js
 
that satisfy the constraints 

(7.19)-(7.24). 

(DA-LP)  
21)( NNnrvvsvc n

n

j

n

j

n

j

Jj

n

jj 
  

(7.19) 

   
1Nnzzavqr n

nn

j

Jj

n

jn  


   (7.20) 

   
2Nnzzavqr n
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n

jn  




 
(7.21) 

   
21, NNnJjcs j

n

j 
  

(7.22)
 

   
21, NNnJjqs n

j

n

j 
   

(7.23)
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   where
 

cAq nn

j  
    

(7.24) 

Notice that the parameters 
n

jv  (lower bound on variables), 
n

jv  (upper bound 

on variables) 
n  (shadow price of the constraints), nz (objective value) and nz

(incumbent solution) at node n are obtained from the branch and bound solution 

tree of the original problem ( P ). In addition to calculating the possible decrease 

in the objective function value ( 0z ) for a given change in the objective 

function coefficients ( c ), the analysis also allows us to find the possible 

perturbations c that are allowed for a given value of z . 

7.5  Application of IP Sensitivity Analysis for Multiplier Updating 

in Two-stage Stochastic Programs  

In this section, we explain how we combine the above integer programming 

sensitivity analysis to extract the information from the branch and bound solution 

tree of each scenario subproblem, and then update the multipliers during 

Lagrangean decomposition for a two-stage stochastic MILP program. Notice that 

here we consider two-stage stochastic MILPs having decomposable structure to 

illustrate the proposed approach, but the method is general and can be applied to 

any MILP model involving similar structure such as multistage stochastic, large 

scale MILPs.   

First, we can observe that in each iteration of the Lagrangean decomposition 

algorithm (Figure 7.3) we update the multiplier values that only appear in the 

objective function coefficients and resolve the resulting subproblems. Therefore, 

eventually only the objective functions coefficients are perturbed during each 

iteration (e.g. eq. (7.9)). This perturbation in the objective function coefficients 

has direct correspondence to the perturbation that is explained in the IP sensitivity 

analysis section above. For instance eq. (7.9) and (7.15) yield eq. (7.25).  

   





ss

ss

ss

sssc
'

,'

'

', 
    

(7.25) 
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In addition, we also know that the integer programming sensitivity analysis 

provides LB and UB on the perturbed problem objective value without resolving 

it, by using the information from branch and bound tree of the original problem.  

Based on these observations we extract the information required for 

sensitivity analysis from the branch and bound tree of each subproblem during 

Lagrangean decomposition. This additional information, rather than just the 

optimal solution, can be used to construct a linear program that allow us to search 

for those perturbations in the objective function coefficients (i.e. sc ) for the next 

iteration that can potentially give us better directions and step size. The resulting 

perturbations from such a linear program can therefore improve the lower bound 

in an efficient manner than a simple nonsmooth optimization method.  

(SA-LP) LBwUBw 21max 
     

(7.26) 
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Therefore, the main idea now is to formulate such a multiplier updating 

linear program (SA-LP) that maximizes a weighted sum of upper and lower 

bounds generated by primal and dual analysis (7.26), while taking into account 

the branch and bound tree information of the subproblem solutions from the 

previous iteration. The reason for maximizing the sum of tightest possible upper 

bound for each scenario is to move in the direction that overall improves the 

lower bound on the original problem based on the feasible nodes that have been 

explored so far. The idea to maximize the sum of lower bounds is to reduce the 

possibility of decrease ( 0z ) in the current lower bound on the original 

problem. This corresponds to minimizing the risk of finding a worse solution 

when the model is re-optimized after the objective function coefficients are 

changed to the values proposed by the method.  

The proposed linear program (SA-LP) involves linear constraints (7.27)-

(7.28) and (7.29)-(7.35) that correspond to the primal and dual analysis, 

respectively. The additional restriction (7.36) on the search space for the 

perturbations is included to keep the LP solution bounded considering the fact that 

all the feasible solutions for each subproblem are usually not explored in branch 

and bound method and therefore the search space may be too relaxed. In 

particular, we bound the s

jc  value to be less than or equal to a fraction (  ) of 

the maximum of the absolute value of objective function coefficients s

jc  

corresponding to the duplicated variables to keep the search space neither very 

restrictive nor relaxed.  

Notice that the accumulation of the feasible nodes (N1) generated during the 

previous iterations (k=1,2,….k-1) in the form of additional cuts (i.e. constraints 

(7.28)) ensures that the search space for the new perturbations is restricted to only 

to what has not been explored so far. It may potentially reduce the oscillations in 

the lower bounds in successive iterations and reduce the number of iterations 

required, while ensuring convergence. Notice that both sc and 
sz are variables 

in the model that allow us to obtain the optimal multipliers values considering the 

trade-offs associated with the potential improvement in the lower bound on the 
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original problem while minimizing the risk of deteriorations in the current lower 

bound for these perturbations. The subjective parameters values ( ,, 21 ww ) are 

explained in the results section. 

7.6  Proposed Lagrangean Decomposition Algorithm 

In comparison to the standard nonsmooth optimization method for multiplier 

updating, the proposed Lagrangean decomposition algorithm for two-stage 

stochastic programming involves solution of the linear program (SA-LP) during 

each iteration as can be seen from Figure 7.5. Particularly, the proposed algorithm 

allows us to extract the information from the branch and bound solution tree of 

each subproblem using IP sensitivity analysis, and uses that information 

constructively in the LP problem so that a better estimate of the Lagrangean 

multipliers can be obtained as compared to a simple nonsmooth optimization 

method.  

 

Figure 7.5: Lagrangean Decomposition Algorithm (proposed) 

Therefore, the algorithm has the potential to reduce the number of iterations 

and the corresponding solution time, especially when each subproblem solution 

(MILPs) is expensive. Moreover, it can also be applied to other decomposable 
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MILPs. In the next section, we investigate the performance of the proposed 

algorithm as compared to the subgradient method for two examples of two-stage 

stochastic MILP models. Notice that we are not focusing on feasible solution 

(UB) generation during this work since the idea is to improve the lower bound 

efficiently. The upper bound can be calculated by using an efficient heuristic 

procedure. In addition, comparison of the algorithm performance is in terms of 

number of iterations since a basic branch and bound implementation is used for 

subproblem solutions. 

7.7  Numerical  Results 

7.7.1 Example 1  

We consider a two-stage stochastic integer program (7.37)-(7.42) from Carøe and 

Schultz (1999) with uncertainty in the right-hand side of the constraints, i.e. 

parameters ),( 21  . Two instances of the problem involving 3 and 50 scenarios 

are generated based on the values of the uncertain parameters. The sizes of the 

deterministic equivalent models are presented in Table 7.1. In the 3 scenario 

instance, it is assumed that the uncertainty is represented by the three scenarios 

)}12,15(),7,10(),8,5{(),( 21   with each one being equally likely. The optimal 

solution of the problem with 3 scenarios is -64.33.  For the larger instance having 

50 scenarios, parameters have been sampled randomly and each scenario is 

assumed to have equal probability.  

 ),(45.1min 2121 xxQpxx
Ss

ss




       (7.37) 
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Table 7.1: Model statistics (deterministic equivalent) for Example 1 instances 

Scenarios Discrete 

Variables 

Continuous 

Variables 

Constraints First Stage 

Variables 

Second Stage 

Variables 

 3 18 0 12 6 12 

50 300 0 2,550 100 200 

In the proposed method, the sensitivity problem (SA-LP) is used to update 

the multipliers during each iteration of the Lagrangean decomposition. In 

particular, after solving each scenario independently all the necessary data (

snsnsn

j

sn

j

sn

nj

s

n

s

n

sss qvvvzzzNN ,,,,,

,,21 ,,,,,,,,  ) for the sensitivity problem are extracted 

and used in the model (SA-LP) to optimize. The result of the sensitivity problem 

(SA-LP) proposes the multipliers (
',ss ) and the resulting objective function 

coefficients (
s

jc ) that improve the dual bound. After some experience with the 

method on a number of instances, we have set using the weights in the objective 

function as 21 10ww   and the value of parameter 
sp  in eq. (7.36) throughout 

all the examples.  

On the other hand, during the subgradient iterations, a step length is 

calculated using the solutions of scenario subproblems and prediction of the 

optimal objective function value. Since we try to make the comparison between 

methods as fair as possible, we have employed the optimal solution of the 

example as predicted solution during the calculation of the stepsize in the 

subgradient optimization. This gives subgradient method an advantage, but if the 

proposed method performs better even under these conditions, then it will be a 

clear evidence for potentially better performance in actual situations.  

Both the methods are implemented in AIMMS 3.11 and problems are solved 

using CPLEX 12.2 solver for all the instances. The initial multipliers are assumed 

to be zero for both the approaches. The first subgradient iteration corresponds to 

solving each scenario subproblem individually, which is also required for 

generating the data for the model SA-LP. The methods have been compared over 

iterations instead of solution time. The main reason is that during the time of 
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implementation, it was not possible to collect some of the necessary information 

for SA-LP using a commercial solver via callbacks. In order to extract the 

necessary information, such as 
sn, values, a simple branch and bound procedure 

has been implemented. Since, it would not be fair to compare our branch and 

bound implementation with a commercial one, we decided performing a 

comparison over iterations. The time difference between the two approaches 

occurs since the subgradient method uses a simple arithmetic operation to update 

multipliers whereas in SA-LP a relatively more time consuming LP is optimized. 

However, for all the instances solved the additional time needed for solving such 

LP is just a few seconds. The proposed method improves the bound to −65.983 in 

3 iterations for this 3 scenario instance (Table 7.2(b)) whereas the subgradient 

method reaches to the same bound in 70 iterations (Table 7.2(a)). Therefore, 

extracting useful sensitivity data from the branch and bound procedure at each 

iteration, and utilizing them within the SA-LP model, cuts down the number of 

iterations needed to achieve same bound. 

 Table 7.2: Results for example 1 with 3 scenarios 

(a) Subgradient Method      (b) Proposed Method 

Iteration 

Number 

Lower 

Bound 

1 -69.5 

14 -68.536 

22 -67.345 

28 -67.037 

32 -66.344 

47 -66.00 

70 -65.983 

 

The same problem was scaled up for 50 scenarios. The optimal solution of 

the problem is −65.30. As shown in Figure 7.6, the proposed method improved 

the bound to −66.775 in 6 iterations, while the subgradient method provides a 

Iteration 

Number 

Lower 

Bound 

 1 -69.5 

2 -66.9 

3 -65.983 
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dual bound of −66.761 in 75 iterations. Therefore, the method outperforms the 

subgradient method in terms of the number of iterations. 

 

 

Figure 7.6: Results for example 1 with 50 scenarios (Proposed vs. Subgradient 

method)  

7.7.2 Example 2 (Dynamic Capacity Allocation Problem (DCAP)) 

We investigate the performance of the proposed algorithm on Dynamic Capacity 

Allocation Problem (DCAP) which is formulated as a two-stage stochastic MILP. 

Data and problem details are adapted from Ahmed and Garcia (2003). This 

problem has mixed-integer first-stage variables, pure binary second-stage 

variables, and discrete distributions of the uncertain parameters. Uncertainty is in 

the coefficient matrix of the constraints. Table 7.3 represents the sizes of the 

deterministic equivalents for 2 problem instances (10 and 200 scenarios). Notice 

that the fullspace problem is modeled in the extensive form considering NA 

constraints (7.4). 

Both instances (10 and 200 scenarios) are initially solved as fullspace 

problems that yield the solutions 1571.682 and 1756.592, respectively. Given the 

decomposable structure of this two-stage stochastic MILP problem, it is also 
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solved using the subgradient method as well as the proposed method. The results 

in Figures 7.7 (a)-(b) show that the convergence of the subgradient method is 

relatively slow and it takes more than 200 iterations to converge to the best 

possible lower bound for both the instances.  

Table 7.3: Model statistics (deterministic equivalent) for Example 2 (DCAP) 

instances 

Scenarios Discrete 

Variables 

Continuous 

Variables 

Constraints First Stage 

Variables 

Second Stage 

Variables 

10 330 60 840 120 270 

200 6,600 1,200 2,44,800 2,400 5,400 

 

In contrast, the proposed method converges in less than 10 iterations to yield 

the solution of similar quality as the subgradient method for both the instances. 

This more than an order of magnitude reduction in the number of iterations, is due 

to the fact that during the subgradient method only the optimal solution of the 

scenario subproblems is used to update the multipliers, whereas the proposed 

method solves a linear program formulated using the information from the branch 

and bound tree of each subproblem solution and search in the space of multipliers. 

Notice that we use a higher weight on primal analysis as compared to the dual 

analysis ( 101 w  and 12 w ) and restrict the search space for perturbation based 

on the probability of the scenario (i.e. 
sp ) during the proposed method as in 

the previous example.  

Remarks: 

The solution time of the proposed linear program is negligible as compared 

to the solution time of MILP subproblem. Therefore, the reduction in the number 

of iterations using the proposed method dominates the additional cost of solving 

the LP problem at each iteration. Moreover, for the models where each 

subgradient iteration is expensive to perform due to many MILP subproblems to 

be solved at each iteration, the proposed method can potentially decrease the total 

solution time significantly since it reduces the number of iterations. 
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(a) 10 Scenario instance 

  

 

    (b) 200 Scenario instance  

Figure 7.7: Results for example 2 (Proposed vs. Subgradient method)  
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However, similar to other nonsmooth optimization methods, the proposed 

method has some arbitrary components such as the weights assigned to primal (

1w ) and dual ( 2w ) bound in the objective function of SA-LP. The value of these 

weights depends on the user’s experience with the proposed method. As explained 

during the numerical examples, these weights were fixed as 21 10ww  . Our 

experience shows that the method performs well for various instances with 

weights fixed at those values. We believe although such values are a good starting 

point, more insight will be gained as the method is applied to other problems.  

Moreover, there is a direct relation between the relative weight assigned to 

the dual bound and the fraction of all feasible solutions explored in search tree. If 

most of the feasible solutions are explored during the search process, then the 

weight on dual bound can be much lower than weight on primal. In such a case, 

for any value of ( s

jc ) the optimal solution is most likely be one of the feasible 

solutions already explored in the search tree. Since in practice we do not 

enumerate all possible solutions during the branch and bound search, we need a 

nonnegative value for the dual weight and some bounds on ( s

jc ). 

7.8  Conclusions  

In this chapter, we have proposed a method for improving the dual bound of 

decomposable MILP models using IP sensitivity analysis. In particular, a new 

linear program is proposed based on the ideas of primal and dual analysis that 

uses the information from branch and bound tree of each subproblem solution 

during Lagrangean decomposition, and yields improved multipliers that results in 

faster convergence of the algorithm. Based on the computational experiments on 

two-stage stochastic MILPs, the method outperforms standard subgradient 

method in terms of number of iterations (more than an order of magnitude 

reduction). Given that a large number of subproblems (MILPs) are solved during 

each iteration of the Lagrangean decomposition algorithm, the reduction in the 

number of iterations can result in significant potential computational savings 

where optimizing each of these subproblem takes a long time. Moreover, the 
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algorithm can be applied to more general classes of MILPs such as multistage 

stochastic models, and MILPs with decomposable structure.  
 

Nomenclature 

A   : matrix of constraint coefficients. 

a   : vector of right-hand-side coefficients. 

c   : vector of objective function coefficients. 

jc   : change in the objective function coefficient corresponding to variable jx  

J   : set of variables. 

j   : element of set J . 

S   : set of scenarios. 

',ss   : element of the set S . 

LB   : lower bound for the optimal solution of problem ( P̂ ). 

1N   : set of leaf nodes pruned by optimality in branch and bound tree. 

2N   : set of leaf nodes pruned by bound in branch and bound tree. 

3N  : set of leaf nodes pruned by infeasibility in branch and bound tree. 

n   : element of sets 321 NNN  . 

nr  : free variable. 

n

js  : free variable. 

UB   : upper bound for the optimal solution of problem ( P̂ ). 

n

jv   : optimal value of variable jx  at node n . 

n

jv  : upper bound for variable jx  at node n . 

n

jv  : lower bound for variable jx  at node n . 

jx   : continuous or discrete variable. 

x   : vector of variable jx  . 

nz   : objective function value of node n in branch and bound tree. 

nz  : incumbent solution used for pruning node n . 
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z   : optimal objective function value of the original model ( P ). 

ẑ   : optimal objective function value of the perturbed model ( P̂ ). 

z   : maximum allowable change in the objective function value. ( z  ≥ 0) 

n  : vector of Lagrange multipliers found at node n during branch and bound   

   algorithm. 

   : parameter used for setting a bound on the change in the objective      

   function coefficients. 
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Chapter 8 

 

Conclusions 

 

 

In this thesis, we have developed new mixed-integer optimization models and 

solution strategies for optimal development planning of offshore oil and gas field 

infrastructure. Particularly, we considered a multi-field site with realistic 

information in the planning such as fiscal rules of the agreements with the host 

government and endogenous uncertainties in the field parameters. In chapters 2 

and 3, we have proposed the deterministic models for the problem with/without 

fiscal considerations. In chapter 4, we have presented a general multistage 

stochastic programming framework and solution approaches for the endogenous 

uncertainty problems, where timing of uncertainty realization is decision-

dependent. The deterministic oilfield planning models are then extended in 

chapter 5 to include uncertainty in the field parameters relying on the ideas from 

chapter 4. To improve the quality of the bounds during Lagrangean 

decomposition in chapters 4 and 5, a new decomposition scheme is proposed in 

chapter 6. Finally, in chapter 7 we introduced a new method for improving the 

dual bound generated during the solution of a general two-stage stochastic mixed-

integer linear program.  

8.1 An efficient multiperiod MINLP model for optimal planning 

of offshore oil and gas field infrastructure 

In chapter 2 we presented a novel deterministic mixed-integer nonlinear 

programming (MINLP) model for offshore oil and gas infrastructure planning. As 

compared to the previous work, the proposed realistic model considers multiple 

fields, three components (oil, water and gas) explicitly in the formulation, facility 
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expansions decisions in the future, drilling rig limitations and nonlinear reservoir 

profiles with an objective to maximize the net present value for the enterprise. 

The decisions involve installation and expansion schedule of FPSO facilities and 

respective oil, liquid and gas capacities, connection between the fields and 

FPSO’s, well drilling schedule, and production rates of oil, water and gas in a 

multiperiod setting to consider a long-term planning horizon incorporating several 

economic trade-offs.  

The major nonlinearities in the model are univariate polynomials and bilinear 

terms (both involving continuous and discrete variables). In order to solve the 

problem reliably, especially for the instances when more complex features are 

incorporated into the model such as fiscal rules or uncertainties in the following 

chapters, we first proposed to reformulate the MINLP formulation (Model 1) 

using two new properties (see Appendix A). Using integration, the properties 

allow representing the reservoir profiles in terms of the cumulative water and 

cumulative gas produced as univariate polynomials rather than water-oil ratio and 

gas-oil ratio and corresponding bilinear terms. Therefore, the new MINLP (Model 

2) has nonlinearities only in term of the univariate polynomials and bilinear terms 

involving discrete variables. The reformulation allows converting the MINLP 

model to an MILP approximation (Model 3). In particular, the Model 2 has been 

reformulated into an MILP using piecewise linearization and exact linearization 

techniques with which the problem can now be solved to global optimality in a 

more consistent manner. The proposed MINLP and MILP formulations are 

further improved by using a binary reduction scheme based on the assumption 

that the connection costs are relatively small compared to the other costs.   

In terms of the numerical experiments on the proposed models, we 

considered 3 realistic oilfield development instances involving up to 10 fields, 3 

FPSO’s and 20 years planning horizon. The models were implemented in GAMS 

23.6.3 and run on Intel Core i7 machine. In the first instance, we considered 3 oil 

fields, 3 FPSOs, a total of 25 wells and the planning horizon of 10 years. Based 

on the computational results, we observed that DICOPT performs best among 

other MINLP solvers (e.g. SBB) in terms of computational time for Models 1 and 



 
 

249 
 

2. The number of OA iterations required was approximately 3-4 in both cases, and 

solving Model 2 was slightly easier than solving Model 1 directly with this solver. 

However, the solutions obtained were not guaranteed to be the global solution. 

The global solver BARON 9.0.6 took more than 36,000s to be within ~10% of 

optimality gap even for this small instance. The binary reduction scheme allowed 

one third reduction in the number of binary variables for both models and a 

significant decrease in the solution time. In contrast, the MILP Model 3 and its 

binary reduction Model 3R that are formulated from Model 2 and Model 2R, 

respectively, solved with CPLEX 12.2 and results showed the significant 

reduction in the solution time after binary reduction (6.55s vs. 37.03s), while both 

the models gave the same optimal NPV i.e. $7030.90M. Notice that the 

approximate MILP models are solved to global optimality in few seconds, while 

global solution of the original MINLP formulations is much more expensive to 

obtain. The MILP solution was further used to improve the quality of local 

solutions obtained from the MINLP formulations. Similar trends were observed 

for the other two larger instances.  

Therefore, it can be concluded that while the proposed MINLP models may 

sometimes lead to near optimal solutions, the MILP approximation is an effective 

way to consistently obtain these solutions. These MILP solutions also provide a 

way to assess the quality of suboptimal solutions from the MINLPs, or finding 

optimal or near optimal solutions by using the discrete decisions from this model. 

None of the MINLP solvers could find better solutions than the ones obtained 

using the MILP solution within a certain amount of time. Moreover, the solutions 

from the convex MINLP solvers can be sub-optimal when we extend it to more 

complex cases (chapter 3), and they cannot provide any guarantees of the valid 

upper bound in the Lagrangean decomposition unless each subproblem is solved 

to global optimality (chapter 5). Therefore, we used the MILP model for including 

complex fiscal rules and/or uncertainties in the subsequent chapters.   

The results of the chapter led to many challenges that need to be addressed. 

The global solution of the proposed MINLP models is expensive using a state-of-

the-art solver directly. Therefore, the models can be used as a basis to develop 
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global optimization based approaches even though the MINLP solvers that rely on 

convexity assumption can yield good solutions in an ad-hoc manner. The MILP 

approximate model can be solved to global optimality using more reliable 

commercial MILP solvers. However, the solution time for the realistic instances is 

still large, especially if we consider many point estimates for the polynomials. 

Therefore, a more reliable approximation scheme or a decomposition approach 

such as a bi-level decomposition algorithm can be investigated to reduce the total 

computational effort while maintaining the solution quality.  

8.2 Modeling and computational strategies for optimal 

development planning of offshore oilfields under complex 

fiscal rules 

In chapter 3, we extended the deterministic models presented in chapter 2 for 

offshore oil and gas field infrastructure planning to incorporate complex fiscal 

rules of the agreements with the host government. In particular, we considered 

progressive production sharing agreements with ringfencing provisions in the 

proposed general model so that it can be used as a basis to represent a variety of 

contracts used in the industry. The fiscal model considers the trade-offs between 

optimal investment and operating decisions and resulting NPV for the oil 

company after paying government share, and yields improved decisions compared 

to a simple NPV based optimization used in chapter 2. However, the major 

challenge with this extension is that the computational expense increases 

significantly mainly due to the progressive nature of the profit share, and the 

ringfencing provisions. In particular, additional binary variables need to be 

introduced to represent the tiers that define the progressive terms, and the 

relaxation of the model is generally weak due to the absence of the good bounds 

on the variables. Therefore, we have also proposed a tighter formulation (Model 

3RF-L) by introducing additional logic constraints and valid inequalities in the 

model that improve the relaxation and reduce the branch and bound search tree. 

Heuristic approaches that relax and approximate the sliding scale terms, Model 
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3RI and Model 3RI-A, respectively, in the form of simple linear inequalities are 

also proposed to obtain the reasonable solutions for the large instances. 

To illustrate the impact of the fiscal terms and the proposed approaches, we 

considered three instances of the realistic oilfield planning problem involving 

progressive production sharing agreements. The models were implemented in 

GAMS 23.6.3 and run on Intel Core i7, 4GB RAM machine using CPLEX 12.2. 

Instance 1 did not involve ringfencing provisions, while instances 2 and 3 were 

solved with and without ringfencing provisions to illustrate the additional 

computational cost associated to these provisions. The first instance considered 3 

fields, 3 FPSOs, a total of 25 wells that can be drilled, and 15 years planning 

horizon. The sequential approach that first maximizes NPV, i.e. Model 3, and 

then calculates the contractor share based on these decisions and fiscal rules 

yields a total NPV of $1362.67M, which is significantly lower than the optimal 

solution ($1497.69M) of the model with fiscal considerations (Model 3F). In 

addition, investment and operating decisions were also very different, i.e. mostly 

front ended in the case of sequential approach. This is due to the optimistic nature 

of the sequential approach that tries to generate as much revenue as possible at the 

beginning of the planning horizon, neglecting the trade-offs that are associated to 

the fiscal part. Therefore, it may lead to the decisions that can incur large losses in 

the long term after considering the impact of the fiscal calculations since higher 

tiers (higher tax rates) become active in the earlier years during the planning 

horizon. Model 3RF which is obtained after binary reduction from Model 3F 

yields the same solution in an order of magnitude less time (337s vs. 3,359s). In 

contrast, solving the corresponding MINLP formulation Model 2F with BARON 

9.0.6 could only provide a solution having NPV of $1198.44M with a 60% gap in 

more than 10 hours. Moreover, we observed that solving Model 2F directly with 

DICOPT requires a good initialization due to the additional binary variables and 

constraints that are added in this fiscal model compared to Model 2. Therefore, 

the optimal solution from the corresponding MILP formulations (Model 3F and 

Model 3RF) provides optimal or near optimal solutions of the original Model 2F. 

We fixed the design decisions in Model 2F from the optimal solution of Model 
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3RF, and solved the resulting NLP problem that yields an NPV of $1496.26 M, 

which shows that the accuracy of the MILP solution is within 0.1% of the MINLP 

formulation. Therefore, the proposed MILP formulations performed very 

efficiently and provided near optimal solutions.  

Similarly, significant savings and different decisions were obtained with 

fiscal considerations during planning for instance 2 having 5 fields and 20 years 

of time horizon. The tighter formulation Model 3RF-L is solved in one fourth of 

the time than Model 3RF. The relaxed Model 3RI was solved more than 20 times 

faster than the original Model 3RF, while the approximate Model 3RI-A took 

only 82s as compared to Model 3RF (1164s), and yielded the optimal solution 

after we fixed the decisions from this model in the original one. Both the relaxed 

and approximate models were even ~3 times faster than the model without any 

fiscal terms (Model 3R) that took 190s. We also considered two ringfences for 

instance 2 where progressive PSA terms were defined for each of these ringfences 

separately. We observed that including ringfencing provisions made Model 3RF 

expensive to solve (>10 hrs) compared to the one without any ringfences that 

required only 1,164s. This is due to the additional binary variables that were 

required in the model for each of the two ringfences, their trade-offs and FPSO 

cost disaggregations. In contrast, since Models 3RI and 3RI-A did not require 

binary variables for the sliding scale in disjunction (3.30), they solved much faster 

than Model 3RF (>300 times faster) and Model 3RF-L (~30 times faster). 

Preliminary results on a bi-level decomposition approach were also presented for 

this instance that provided the rigorous bounds on the objective function value for 

the fiscal model involving ringfencing provisions. The largest instance we solved 

involves 10 oil fields, 3 FPSOs, a total of 84 wells, 20 years planning horizon, and 

3 ringfences.   

The main conclusion that can be drawn from this chapter is that the explicit 

consideration of the fiscal rules is important for the oilfield infrastructure 

planning instead trying to solve a simple NPV based model to global optimality, 

since it may yield a completely different solution and significant improvement in 

the net present value.  This is due to the fact that the royalties and/or government 
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profit oil share that result from a particular contract can represent a significant 

amount of the gross revenues (~50% or more). Therefore, it is critical to consider 

these contracts explicitly during the oilfield planning phase to assess the actual 

economic potential of such a project. Moreover, the mathematical programming 

model presented in this chapter is the first one in the literature that considers 

progressive fiscal terms with ringfencing provisions and can serve as a basis to 

further develop more efficient solution approaches.   

8.3 Solution strategies for multistage stochastic programming 

with endogenous uncertainties in the planning of process 

networks  

In chapter 4, we presented a general multistage stochastic mixed-integer linear 

programming model for multiperiod planning problems where optimization 

decisions determine the times when the uncertainties in some of the parameters 

will be resolved, i.e. decision-dependent uncertainty (Jonsbraten et al., 1998; Goel 

and Grossmann, 2006; and Tarhan and Grossmann, 2008). The model involves 

initial and conditional non-anticipativity constraints in terms of the equalities and 

disjunctions, respectively, to enforce the same decisions among the scenarios in 

time period t if they are in the same state. Since, the number of NACs increases 

exponentially with the number of uncertain parameters and/or their realizations, 

realistic problem instances becomes intractable to solve. To reduce the required 

NACs in the model, we have identified a new Property 3 that together with two 

properties previously presented by Goel and Grossmann (2006), significantly 

reduces the problem size and the solution time. In particular, the property exploits 

the transitivity relation among the scenarios and can be considered as an extension 

to the previous properties to those cases where each uncertain parameter has more 

than two realizations. 

The resulting reduced model still may be too large to solve directly. 

Therefore, we have proposed a k-stage constraint strategy that yields the global 

optimum in particular cases, and is useful for problems where endogenous 

uncertainty is revealed during the first few time periods of the planning horizon. 
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To solve more general problems of large size, we also proposed a NAC relaxation 

strategy based on relaxing the NA constraints and adding them if they are 

violated. It has been observed that very few inequality NA constraints (~6-7% of 

the total inequality NA constraints in the reduced model) are added as cuts in the 

complete solution procedure that involves two phases. As compared to the 

branch-and-cut solution method by Colvin and Maravelias (2010), the proposed 

NAC relaxation strategy is much easier to implement using the available 

commercial solvers directly, although there might be some trade-offs between 

these solution strategies in terms of the solution times. Finally, we described a 

Lagrangean decomposition algorithm that relaxes the conditional NACs and 

dualize the initial NACs to decompose the model into individual scenarios, and 

predicts rigorous lower bounds for the optimal solution. Notice that in contrast to 

the method presented by Goel and Grossmann (2006), no branch and bound 

method is performed here with which the dual gap may not be closed for the 

problem. Therefore, if the gap between lower and upper bounds is large then in 

principle we would have to also incorporate a branch and bound procedure to 

reduce this gap. In our experience, however, we have observed that for problems 

in this class a good feasible solution is often found at the root node itself.  

The proposed solution strategies have been applied to two process network 

problems having uncertainty in the process yields that can only be revealed once 

an investment is made in the process. The first problem that involves 3 processes 

is taken from Goel and Grossmann (2006) but with more realizations for the 

uncertain parameters, i.e. a total of 25 scenarios. The second larger example has 5 

processes and there are 4 uncertain parameters with 81 scenarios. This problem 

could not be solved in the fullspace for the original model and even after using 

Property 1. The solution time with only considering Properties 1-2 (Goel and 

Grossmann, 2006) is 1.5 times more than the solution time from using Properties 

1-3 proposed in the chapter since the model has fewer NACs. The k-stage 

constraint model and the NAC relaxation strategy take significantly less time 

(~70% less) than the reduced model. The Lagrangean decomposition strategy is 

most efficient in terms of the solution time but terminates with a gap of ~3.5%. 
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However, it is only up to moderate size problems that the k-stage constraint 

strategy and the NAC relaxation strategy may perform better than Lagrangean 

decomposition strategy because of the tight lower bounds and corresponding 

better solutions obtained in these cases. However, for realistic instances 

Lagrangean decomposition has the advantage that it allows solving each scenario 

independently. The two-stage stochastic model corresponding to this example 

gives about 5% higher total expected cost ($387,421 vs. $368,650) due to the 

absence of appropriate recourse for the investment decisions in the model. The 

total expected cost is about 3-6 % higher for the expected value problem (EVP) in 

comparison to the multistage stochastic programming model for all the cases 

considered. Notice that the proposed solution strategies are fairly general and can 

be applied to a wide range of problems having endogenous uncertainty in some of 

the parameters such as oilfield development planning. 

8.4 Multistage stochastic programming approach for offshore 

oilfield infrastructure planning under production sharing 

agreements and endogenous uncertainties 

In chapter 5, we presented a multistage stochastic programming model for 

offshore oil and gas field development planning that maximizes the expected 

NPV for the given planning horizon. The model is an extension of the 

deterministic models presented in chapters 2 and 3 considering decision-

dependent uncertainty in the field parameters, which resolves as a function of 

investment and operating decisions as ones in chapter 4. As compared to the 

conventional models in the literature where either fiscal rules or uncertainty in the 

field parameters are considered, the proposed model is the first one that includes 

both of these complexities simultaneously in an efficient manner. In particular, a 

tighter formulation for the production sharing agreements based on chapter 3, and 

correlation among the endogenous uncertain parameters (field size, oil 

deliverability, water-oil ratio and gas-oil ratio) are considered that reduce the total 

number of scenarios in the resulting multistage stochastic formulation. To solve 

large instances of the problem, the Lagrangean decomposition approach proposed 
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in chapter 4 was implemented with parallel solution of the scenario subproblems 

with up to 8 processors. Notice that in practice the model needs to be solved not 

just once for the entire planning horizon, but multiple times in a rolling horizon 

manner with updated information.   

The model was implemented in GAMS 23.6.3 and ran on Intel Core i7, 4GB 

RAM machine using CPLEX 12.2 solver. Computational results on a variety of 

oilfield development planning examples with/without fiscal considerations have 

been presented to illustrate the efficiency of the model and the proposed solution 

approach. In particular, the first example considered 3 oilfields, 3 potential 

FPSO’s and 9 possible connections among field-FPSO. A total of 30 wells could 

be drilled in the fields and the planning horizon was 10 years. However, there was 

uncertainty in the sizes of 2 fields that resulted in a total of 4 scenarios each with 

a probability of 0.25. The optimal scenario-tree from the proposed model was 

decision-dependent, which was not known a-priori. In particular, more wells were 

drilled in the favorable scenarios compared to the unfavorable ones. We also 

observed that the problem solved to ~1% optimality tolerance within only 466s 

using Lagrangean decomposition compared to the fullspace model that takes 

1184s. However, the solution of the expected value problem, considering mean 

value of the field sizes, is $11.28 x10
9 

with which the value of stochastic solution 

for this case is $220 x10
6
 or ~2%. We also considered the extension of 3 oilfield 

instance to the case where we included the progressive production sharing 

agreements with 15 years of planning horizon. The resulting fullspace model 

became very difficult to solve with CPLEX 12.2 since the best solution obtained 

after 10 hours is $2.97x10
9 

with more than 21% of optimality gap. On the other 

hand, Lagrangean decomposition could solve this problem in approximately 2 hrs 

for sequential implementation of the scenario subproblem solutions and in about 1 

hr for a parallel implementation involving 8 processors, and yielded a higher 

ENPV $3.04x10
9
 within 0.7% optimality tolerance.  

Therefore, the importance of the decomposition algorithm, especially the one 

with parallel solution of the scenario subproblems, increases as more complexities 

are added to the deterministic problem such as fiscal contracts. Similar trends 
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were also obtained for the large instance involving 5 fields and 20 years of 

planning horizon. In particular, only the parallel implementation could solve the 

problem within a limit of 10hrs of solution time. Notice that the MILP model 

allows using robust and advanced commercial solvers to solve the problem 

globally, and also to use the Lagrangean decomposition with valid bounds which 

may have been difficult if one considers the original MINLP formulation. 

However, based on the computational results, it is still challenging to solve the 

large instances involving many scenarios or fiscal contracts with progressive 

terms and ringfencing provisions.   

8.5 A new decomposition algorithm for multistage stochastic 

programs with endogenous uncertainties 

The Lagrangean decomposition approach presented in chapters 4 and 5 may 

perform reasonably well for a certain class of problems with a given set of data. 

However, due to the limitations of the quality of the dual bound obtained at root 

node with this approach, since conditional NACs are relaxed, we have proposed a 

novel decomposition approach in chapter 6 for solving a general multistage 

stochastic mixed-integer linear programming model with endogenous 

uncertainties. In particular, we considered type 2 endogenous uncertainty 

problems where decisions are used to gain more information, and resolve 

uncertainty either immediately or in a gradual manner. Therefore, the resulting 

scenario tree is decision-dependent and requires modeling a superstructure of all 

possible scenario trees that can occur based on the timing of the decisions as can 

be seen in chapters 4 and 5. In contrast to the standard approaches that either relax 

or dualize all conditional NACs that appear as big-M constraints in the model, the 

proposed approach relies on dividing the fullspace model into scenario groups. 

Due to the several possible alternatives to formulate the scenario groups, we 

presented few rules to identify and formulate a reasonable scenario group set that 

can be used for the proposed partial decomposition approach within an iterative 

scheme to update the multipliers. In particular, the resulting subproblems involve 

a subset of the NACs as explicit constraints, while dualizing and relaxing the rest 
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of these constraints, which enhances the overall performance. An alternate 

decomposition scheme that may even yield a tighter bound, but usually becomes 

more expensive for the large cases, has also been proposed.  

The computational results have been presented on two process network 

examples (chapter 4) and four instances of an oilfield planning problem (chapter 

5). The process networks examples involve 3 and 5 processes with 4 and 8 

scenarios, respectively. The results show that the dual bound obtained at the root 

node from the proposed approach are significantly stronger than the standard one 

used in chapter 4 since the impact of the later time periods is also considered in 

the subproblem formulations. Moreover, there is a significant reduction in the 

number of iterations required to converge within a specified tolerance. In both the 

cases, even the initial bound with the proposed approach is stronger than the 

corresponding final bound in the standard approach. We also observed that the 

selection of a particular scenario group set is critical in the proposed approach 

such as set SG2 performs better than SG1 in both instances since it involves large 

variations in the corresponding scenario costs. The results on the oilfield problem 

having 3 oilfield and scenarios ranging from 4 to 9 in cases (i)-(iv), also showed 

similar trends.  

Since, we obtained a tighter bound at the root node with the proposed 

approach, the total number of potential nodes that will be required in the branch 

and bound search should be smaller and branching rules should be easier to 

identify. However, the solution time required per iteration in the proposed 

approach is usually larger as compared to the standard approach, but the 

difference is problem specific. For instance, the increase in the solution time per 

iteration for the process networks examples is not that significant as in the oilfield 

planning problem. Therefore, if the solution time per iteration for a given problem 

increases drastically using the proposed decomposition, then one may want to use 

the standard scenario based approach to explore more nodes quickly in the branch 

and bound search tree or use subproblems with smaller sizes in the proposed 

approach. In general, for a given amount of the solution time the proposed 

approach yields better dual bound and feasible solution as can be seen from the 
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numerical experiments in the chapter. This is due to the fact that the increase in 

the solution time per iteration is offset by the significant reduction in the total 

number of iterations resulting in lower total solution time. Overall, the 

comparison between the qualities of the bounds obtained within a given amount 

of solution time should also be considered while selecting a particular 

decomposition approach for the problems in this class.  

8.6 Improving dual bound for stochastic MILP models using 

sensitivity analysis     

In chapter 7, based on the previous work by Tarhan (2009), we have introduced a 

method to improve the dual bound during the solution of a general two-stage 

stochastic mixed-integer linear programming model that appears in several 

planning, scheduling and supply-chain problems. Combining the idea of dual 

decomposition (Carøe and Schultz, 1999) and integer programming sensitivity 

analysis (Dawande and Hooker, 2000), the method extracts the relevant sensitivity 

information from the branch and bound tree of every scenario subproblem, and 

uses that information to update the Lagrange multipliers and improve the dual 

bound. In particular, a new linear program has been proposed that involves 

constraints from the primal and dual sensitivity analysis using the information 

from branch and bound tree of each subproblem solution during Lagrangean 

decomposition. The objective function is to maximize the weighted sum of the 

upper and lower bounds from these analysis, and the model yields improved 

multipliers which result in the faster convergence of the algorithm.  

Several instances of the two-stage stochastic MILPs have been considered 

for the computational experiments, and to compare the method with the standard 

subgradient approach. The method was implemented in AIMMS 3.11 and 

problems were solved using the CPLEX 12.2 solver. The first example was 

adapted from Carøe and Schultz (1999) involving 3 and 50 scenarios, while the 

second one was from Ahmed and Garcia (2003) and involved 10 and 200 

scenarios. The results for both the examples showed that the subgradient method 

takes approximately an order of magnitude more iterations to converge to the best 
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possible lower bound compared to the proposed method that converges in less 

than 10 iterations in most of the instances. This is due to the fact that during the 

subgradient method only the optimal solution of the scenario subproblems is used 

to update the multipliers, where the proposed method solves a linear program 

formulated using the information from the branch and bound tree of each 

subproblem solution and search in the space of multipliers.  

Notice that for the models where each subgradient iteration is expensive to 

perform due to many MILP subproblems to be solved in each iteration, the 

proposed method can potentially decrease the total solution time very 

significantly by reducing the number of iterations, since the solution time for the 

proposed LP is negligible. However, the method should not be considered a 

substitute for the non-smooth optimization methods, but a viable alternative for 

the cases in which optimizing each scenario subproblem takes a long time, thus 

preventing the use of non-smooth optimization methods for large number of 

iterations. In addition, there are still many implementation challenges to overcome 

such as efficient data gathering and storage for large scale systems, integrating the 

commercial solvers for the subproblem solutions, application to a variety of 

problems, etc. 

8.7  Contributions of the thesis 

The main contributions of the thesis can be summarized as follows. 

1. A new realistic and general MINLP model is proposed in chapter 2 for 

offshore oil and gas field infrastructure planning considering multiple 

fields, three components (oil, water and gas) explicitly in the formulation, 

facility expansions decisions, drilling rig limitations and nonlinear 

reservoir profiles.   

2. Two theoretical properties are proposed in chapter 2 for the above model 

to reformulate the water-oil ratio and gas-oil ratio profiles in terms of 

cumulative water produced and cumulative gas produced, respectively. It 

allows removing the bilinear terms from the model and further converting 

the resulting non-convex MINLP into an MILP using piecewise linear 
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approximations and exact linearization techniques with which the problem 

can be solved to global optimality. Realistic instances involving 10 fields, 

3 FPSO’s and 20 years planning horizon have been solved in reasonable 

times.  

3. A new model for multi-field site problems is proposed in chapter 3 that 

accounts for the fiscal calculations in the objective functions and 

constraints explicitly. A variety of the fiscal contracts have also been 

derived from the proposed general model. It is shown that the model 

yields an optimal NPV significantly higher than the case where fiscal 

considerations are not accounted for. 

4. Logic constraints and valid inequalities are derived to be included in the 

above fiscal model to tighten the relaxation and improve the solution time. 

In addition, to solve large-scale instances with orders of magnitude less 

CPU times compared to a state-of-art commercial solver, heuristic 

approaches are also proposed that relax and approximate the sliding scale 

fiscal rules using inequalities avoiding the disjunctions.  

5. Efficient solution strategies are proposed in chapter 4 for general 

multistage stochastic mixed-integer linear programming problems with 

endogenous uncertainties, where timings of uncertainty realizations 

depend on the optimization decisions. In particular, we have identified a 

new Property 3 to reduce the model size; a k-stage constraint strategy that 

is useful for problems where endogenous uncertainty is revealed during 

the first few time periods; a NAC relaxation strategy based on the fact that 

only few inequality NA constraints are active at the optimal solution; and 

a Lagrangean decomposition algorithm that can predict the rigorous lower 

bounds for the solution obtained.  

6. A multistage stochastic programming model for offshore oil and gas field 

infrastructure planning is presented in chapter 5 that considers nonlinear 

reservoir profiles, progressive production sharing agreements, and 

endogenous uncertainty in the field parameters. Correlations among the 

endogenous uncertain parameters for a field such as field size, oil 
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deliverability, water-oil ratio and gas-oil ratio are also considered that 

reduce the model size significantly. In order to solve large instances of this 

model, a Lagrangean decomposition algorithm with parallel solution of the 

scenario subproblems in the GAMS grid computing environment is 

implemented, which outperforms the sequential approach and the direct 

solution using a commercial solver.  

7. A novel partial decomposition approach for solving multistage stochastic 

programs with endogenous uncertainties is proposed in chapter 6 that 

relies on dividing the fullspace model into certain scenario groups. The 

method yields a tighter dual bound at root node and requires fewer 

iteration to converge within a specified tolerance compared to the standard 

approach. An alternate decomposition scheme that may even yield a better 

bound, but usually becomes more expensive for the large cases, is also 

proposed.  

8. A new method for improving the dual bound of decomposable MILP 

models using integer programming sensitivity analysis has been 

investigated. In particular, a new linear program is proposed that uses the 

information from branch and bound tree of each subproblem solution 

during Lagrangean decomposition, and yields improved multipliers which 

result in faster convergence of the algorithm. Based on the computational 

results on two-stage stochastic MILPs, the method outperforms standard 

subgradient method in terms of number of iterations (more than an order 

of magnitude reduction), which can result in potential significant 

computational savings.   

8.8  Recommendations for future work 

1. The oilfield development planning model presented in chapter 2 assumes 

that there is no water or gas re-injection i.e. natural depletion of the 

reserves. It may be useful to extend the model to include this flexibility so 

that more realistic investment and operating decisions can be made. In 

addition, the model is formulated considering approximate reservoir 
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profiles in terms of the polynomials (for MINLPs) and piecewise linear 

functions (for MILPs). Integrating reservoir simulators such as ECLIPSE 

(Schlumberger, 2008) with the optimization model more tightly using a 

specific response surface methodology (Myers and Montgomery, 2002) to 

approximate the output of the simulator should yield decisions with a 

higher quality. An improved piecewise linear approximation scheme for 

polynomials such as based on logarithmic number of binary variables can 

also be investigated (Vielma et al., 2010).      

2. In chapter 3, we have primarily focused on modeling and solving the 

oilfield problem assuming that the fiscal parameters are known. It may be 

more interesting for an oil company to analyze the sensitivity of the 

objective function value for different values of fiscal parameters such as a 

range of cost oil recovery limits, tier thresholds and profit oil fractions 

(Tordo, 2007) so that better contract terms can be negotiated. The impact 

of the crude oil price and discounting factors on optimization decisions 

should also be analyzed. However, few sliding scale parameters, e.g. rate 

of return may introduce nonlinearities in the model and require expensive 

global optimization approaches to solve the problem. Therefore, further 

investigation is required to develop efficient models and solution 

strategies to overcome the computational expense for the fiscal models 

relying on these parameters.    

3. The proposed multistage stochastic models and algorithms in chapters 4, 5 

and 6 only consider endogenous uncertain parameters. Therefore, it would 

be interesting to extend the methods to incorporate exogenous uncertain 

parameters such as oil price to be applicable to more general class of 

problems. Moreover, the objective functions in the proposed stochastic 

models are based on an expectation criterion neglecting the risk due to the 

potential additional computational effort. Therefore, there is an 

opportunity to incorporate various risk management strategies, e.g. 

variance reduction, downside risk, probabilistic financial risk, etc. (You et 
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al., 2009) in the proposed model especially that allow decomposing the 

fullspace model, and analyze their impact on the solution. 

4. The total number of scenarios for multistage stochastic oilfield planning 

model in chapter 5 increases exponentially with the number of fields. 

Therefore, it may be interesting to investigate the correlations among the 

parameters for a single field and among the fields to reduce the number of 

scenarios in the model while maintaining the quality of the solution. 

Scenario reduction techniques (Heitsch and Römisch, 2003) and Monte 

Carlo sampling procedures (Shapiro, 2003) that are tailored for the 

endogenous uncertainty problems also need to be developed so that 

realistic problem instances can be solved.  

5. During the proposed Lagrangean decomposition algorithm (chapters 4, 5 

and 6), the subproblems at any iteration differs from the subproblems at 

the previous iteration only in terms of the coefficients in the objective 

function. Therefore, the branch and bound trees generated during the 

subproblem solutions can be used to provide a warm start for solving the 

subproblems in the next iteration that can significantly reduce the total 

solution time (Ralphs and Guzelsoy, 2006). In addition, as compared to 

the subgradient method to update the Lagrangean multipliers, alternative 

schemes as in Mouret et al. (2011), Oliveira et al. (2013), etc. should also 

be investigated to improve the efficiency of the proposed algorithm. We 

consider the GAMS grid computing facility for solving scenario problems 

independently on a CPU with multiple processors (chapter 5), there is an 

opportunity to take advantage of the more advanced parallel and grid 

computing facilities to solve the realistic problems instances (Linderoth 

and Wright, 2003). 

6. In chapter 3, we have included the preliminary results on a bi-level 

decomposition approach for solving fiscal model that involves ringfencing 

provisions. The method can further be tested on a variety of examples. In 

addition, there is a potential to incorporate this approach with the 

Lagrangean decomposition algorithm in chapter 5 to develop a hybrid 
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scheme as in Terrazas-Moreno and Grossmann (2011) for solving 

multistage stochastic oilfield planning models with fiscal contracts 

involving ringfences. 

7. Given the impact of the fiscal contracts on the optimization decisions and 

the profit as seen in chapter 3, it would be interesting to incorporate the 

relevant financial elements in the planning models for a variety of 

applications, rather using a simple objective function such as NPV or cost. 

For instance, modeling of purchase and sales contracts in supply chain 

optimization (Park et al., 2006, and Lanez et al., 2009), capacity 

expansions planning using internal rate of return or return on investments 

rather NPV (Bagajewicz, 2008), etc. In addition, the proposed multistage 

stochastic model and algorithms for endogenous uncertainty problems can 

be applied to several other interesting applications such as project 

portfolio optimization problem (Solak, 2007), open pit mine production 

scheduling problem (Boland et al., 2008), new drug development (Colvin 

and Maravelias, 2008), or it can be used as a basis to introduce new 

applications in this area. 

8. Although the multistage stochastic model for endogenous uncertainties 

provides decisions with higher quality, the exponential increase in the 

model size with uncertain parameters and their realizations is still an issue. 

Alternate approaches to incorporate this uncertainty more efficiently and 

their impact on the solution need to be investigated.  For example, there 

have been some real options approaches for oilfield development projects 

(Lund, 2000; and Dias, 2002) that can be compared with stochastic 

programming methods. In addition, Vayanos et al. (2011) recently 

considered an approximation scheme for multistage problems with 

decision-dependent information discovery based on robust optimization 

techniques. The authors presented a mixed-binary linear program by 

restricting the spaces of measurable binary and real-valued decision rules 

to those that are representable as piecewise constant and linear functions 

of the uncertain parameters, respectively. A further investigation can 
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provide a better insight about the advantages and limitations of this 

approach for the large instances of oilfield development projects.   

9. The sensitivity based multiplier updating method of chapter 7 can be 

applied to more general class of MILPs (e.g. multistage stochastic models, 

MILPs with decomposable structure) to investigate its performance and 

scaling. Since, a basic branch and bound implementation is used for the 

computational study during this thesis, the integration of the procedure 

with branch-and-cut solvers may be the next step to improve the 

implementation efficiency of the method. After this integration, it will 

allow the solution of larger instances taking advantage of the 

commercial/open source MIP solvers. Finally, the decomposable structure 

of the problems in this class can further be exploited by potential 

parallelization of the subproblem solutions in HPC environment during 

each iteration.  
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Appendices 

 

Appendix A  

Derivation of the Reservoir Profiles for Model 2 from 

Model 1 in Chapter 2  

Model 1 involves nonlinearities in the form of three polynomials for oil 

deliverability, water-oil ratio (WOR) and gas-oil ratio (GOR), (A.1)-(A.3), and 

two bilinear equations for water and gas flow rates, (A.4)-(A.5), respectively.  
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To derive the reservoir profile for Model 2 from the above equations of 

Model 1 we consider the following two properties: 

1. The area under the curve GOR vs. cumulative oil produced for a field 

yields the cumulative amount of gas produced. 

2. The area under the curve WOR vs. cumulative oil produced for a field 

yields the cumulative amount of water produced. 

Explanation of Property 1 

From equation (A.3) we have GOR for a field as a cubic function in terms of 

fractional oil recovery, i.e. (A.6), or alternatively in terms of the cumulative oil 

produced fxc  and recoverable oil volume fREC  as in eq. (A.7) that corresponds to 

Model 1.  
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A differential change in the cumulative oil produced multiplied by the GOR 

yields the corresponding fractional change in the cumulative amount of gas 

produced, fgc , as seen in Figure A.1 and corresponding equation (A.8).  
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We should note that Figure A.1 corresponds to GOR vs. fc but it is easy to 

convert it to GOR vs. fxc  given that the reservoir size ( fREC ) is known. 

Integrating in (A.8) both sides from zero, i.e. area under the curve between GOR 

and fxc , that yields eq. (A.9) and hence we can obtain equations (A.10)-(A.14).
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Figure A.1: GOR profile for field (F1) and FPSO (FPSO 1) connection 
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Eq. (A.14) is the desired expression for the cumulative gas produced as a 

function of fractional oil recovery (or cumulative oil produced), i.e. area under the 

curve GOR vs. fractional oil recovery (or cumulative oil produced) that is used in 

Model 2. We can see that the order of the polynomial for fgc  expression (4
th

 

order) is one more than the order of the polynomial corresponding to the GOR 

expression in (A.6). Also, there is a direct correspondence between the 

coefficients of the both of these polynomials. The fgc  vs. fc curve (4
th
 order 

polynomial) corresponding to the Figure A.1 (GOR vs. fc) that represents 

expression (A.14) is shown in Figure A.2.  
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Similarly, we can derive the following expression (A.15) for cumulative 

water produced fwc  as a function of fractional oil recovery (or cumulative oil 

produced) using corresponding WOR expression (A.2), i.e. Property 2.  
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(A.15) 

Notice that using the same procedure we can derive the expressions 

(polynomial or any other functions) from the existing model of GOR and WOR to 

fgc  and fwc  in terms of fractional oil recovery (or cumulative oil produced), 

respectively, and vice-versa.  
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Appendix B  

Comparison of the models based on (GOR, WOR) and 

(gc, wc) functions, i.e. Model 1 and 2, in Chapter 2  

1. Model 1 (GOR and WOR as a function of cumulative oil produced) requires 

the bilinear equations (B.1) and (B.2) for gas and water flow rates while 

Model 2 does not need these equations as these flowrates can be expressed as 

equations (B.3) and (B.4) given that the polynomials for cumulative gas 

produced ( fgc ) and cumulative water produced ( fwc ) are available. Hence, 

Model 2 involving only univariate separable polynomials should 

computationally perform better.  

tftftf xgorg ,,,       
tf ,

  
(B.1) 

tftftf xworw ,,,       tf ,
  (B.2)

ttftftf gcgcg /)( 1,,,      tf ,
  (B.3)

ttftftf wcwcw /)( 1,,,      tf ,   (B.4) 

 

 

2. The WOR and GOR functions in (A.2) and (A.3) introduce a large number of 

non-convexities in Model 1 as compared to the fwc  and fgc  functions in 

(A.15) and (A.14), respectively, that are univariate monotonically increasing 

functions. Hence, these functions will be better to approximate using 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

0 0.2 0.4 0.6 0.8 1 

G
O

R
 (

k
sc

f/
st

b
) 

fc 

gas-oil-ratio vs. fractional recovery 

gor(F2-FPSO2) 

gor(F2-FPSO3) 

0 

0.2 

0.4 

0.6 

0.8 

1 

0 0.2 0.4 0.6 0.8 1 

g
c/

R
E

C
*1

0
0

0
 

fc 

cumulative gas produced vs.  

fractional recovery 

gc(F2-FPSO2) 

gc(F2-FPSO3) 

Figure B.1: GOR and gc profiles for 1 field and 2 FPSO connections 



 
 

272 
 

piecewise linearization techniques. As an example the GOR and 

corresponding fgc  functions for a field are shown in Figure B.1. 

3. In Model 1 we assume that the WOR and GOR equations (B.5) and (B.6) used 

in time period t are calculated in terms of the fractional oil recovery by the 

end of previous time period t-1, i.e. point estimates are used. Therefore, WOR 

and GOR essentially perform as constants in current time period t, and the oil 

flowrate does not account for the variability in WOR and GOR values during 

that time period.  

ftfftfftfftf dfccfcbfcawor ,21,,2

2

1,,2

3

1,,2, )()(         
tf ,     (B.5) 

ftfftfftfftf dfccfcbfcagor ,31,,3
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1,,3, )()(        tf ,
      (B.6) 

tftftf xworw ,,,            tf ,  (B.7)    

tftftf xgorg ,,,   
         tf ,   (B.8)  

 However, equations (B.9) and (B.10) for fwc  and fgc  explicitly predicts 

the cumulative amount of water and gas produced, respectively, by the end of 

period t as a function of cumulative oil produced by the end of period t, and 

hence also accounts for the variability of the WOR and GOR values during 

current period t. In other words these profiles consider the average values of 

WOR and GOR over the time period t. Therefore, Model 2 is also better in 

terms of representing the physical reservoir characteristics. 
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Notice that equations (B.5) and (B.6) for Model 1 could also be represented 

as a function of fractional oil recovery by the end of time period t instead of time 

period t-1, however, the model will still consider the WOR and GOR values based 

on the point estimate instead average values over the time period t as used in 

Model 2.        
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Appendix C 

Nomenclature for the Fiscal Model in Chapter 3 

 

Indices 

t, τ           time periods, Tt ,  

f           field        

fpso   FPSO facility        

rf   ringfence        

i   tier   

Integer Variables    

well

tfI ,  
    Number of wells drilled in field f at the beginning of time  

   period t  

Binary Variables 

FPSO

tfpsob ,    whether or not FPSO facility fpso is installed at the   

   beginning of time period t 

tfpsofb ,,   whether or not a connection between field f and FPSO 

 facility fpso is  installed at the beginning of time period t 

on

fpsofb ,   whether or not a connection between field f and FPSO 

 facility fpso is  installed  

tirfZ ,,    whether or not tier i is active in time t for ringfence rf 

co

trfb ,            whether or not cost ceiling is active in time period t for 

 ringfence rf 

Continuous Variables 

 NPV             net present value 

tot

tTotalConSh
 

total contractor share in time period t 

tot

tCAP
  

total capital costs in time period t 
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tot

tOPER
  

total operating costs in time period t 

trfTotalConSh ,  contractor share in time period t for ringfence rf 

trfCOST ,    total capital and operating costs in time period t for 

 ringfence rf 

trfCAP ,    capital costs in time period t for ringfence rf 

trfCAP ,1    field specific capital costs in time period t for ringfence rf 

trfCAP ,2    FPSO specific capital costs in time period t for ringfence rf 

trfOPER ,   
operating costs in time period t for ringfence rf 

tfpsoFPSOC ,   
total cost of FPSO facility fpso in time period t  

tfpsorfDFPSOC ,,  
disaggregated cost of FPSO facility fpso in time period t for 

 ringfence rf 

field

tfpsofDFPSOC ,,  
disaggregated cost of FPSO facility fpso in time period t for 

 field f 

trfREV ,              total revenues in time period t for ringfence rf 

field

tfpsoffZD ,,,'   
auxiliary variable for 

field

tfpsof

on

fpsof DFPSOCb ,,',   

field

tfpsoffZD ,,,'1
  

auxiliary variable for 
field

tfpsof

on

fpsof DFPSOCb ,,', 

 

tfpsofZD ,,   
auxiliary variable for tfpso

on

fpsof FPSOCb ,,   

tfpsofZD ,,1
  

auxiliary variable for tfpso

on

fpsof FPSOCb ,, 

 
tot

trfx ,              total oil production rate from ringfence rf in time period t 

tot

trfw ,              total water production rate from ringfence rf in time t
  

tot

trfg ,              total gas production rate from ringfence rf in time period t
  

trfxc ,    
cumulative oil produced from ringfence rf by the end of  

   time period t 

tfx ,              oil production rate from field f in time period t 
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tfw ,               water production rate from field f in time period t 

tfg ,  
  gas production rate from field f in time period t 

field

tfxc ,    
cumulative oil produced from field f by the end of time  

   period t 

tfpsofwor ,,              water-to-oil ratio for field-FPSO connection in time t 

tfpsofgor ,,  
 gas-to-oil ratio for field-FPSO connection in time period t 

tfpsofwc ,,   
cumulative water produced from field f to FPSO facility  

   fpso by the end of time period t 

tfpsofgc ,,   
cumulative gas produced from field f to FPSO facility fpso  

   by the end of time period t 

tffc ,    fraction of oil recovered from field f  by the end of time  

   period t 

welld

tfpsofQ ,

,,           field deliverability (maximum oil flow rate) per well for  

   field f and FPSO facility fpso combination in time period t  

liq

tfpsoQI ,   liquid installation capacity of FPSO facility fpso at the  

   beginning of time period t  

gas

tfpsoQI ,   gas installation capacity of FPSO facility fpso at the  

   beginning of time period t  

liq

tfpsoQE ,      liquid expansion capacity of FPSO facility fpso at the  

   beginning of time period t 

 
gas

tfpsoQE ,       gas expansion capacity of FPSO facility fpso at the   

   beginning of time t  

trfCO ,    cost oil in time period t for ringfence rf 

trfPO ,    profit oil in time period t for ringfence rf 

trfCR ,    cost recovery in time period t for ringfence rf 
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trfCRF ,    cost recovery carried forward in time t for ringfence rf 

trfTax ,    income tax in time period t for ringfence rf 

beforetax

trfConSh ,    contractor before tax share in profit oil in time period t for  

 ringfence rf 

aftertax

trfConSh ,    contractor after tax share in profit oil in time period t for 

 ringfence rf 

tirfDPO ,,    disaggregated profit oil for tier i in time period t for 

 ringfence rf  

beforetax

tirfDConSh ,,   disaggregated contractor before tax share in profit oil for 

 tier i in time period t for ringfence rf 

tirfDxc ,,   
disaggregated cumulative oil produced from ringfence rf by 

   the end of time period t for tier i 

trfRoyalty ,    amount of royalty in time period t for ringfence rf
 

trfSV ,    sliding scale variable in time period t for ringfence rf 

Parameters 

FPSO

tfpsoFC ,     fixed capital cost for installing FPSO facility fpso at the  

   beginning of time period t  

tfpsofFC ,,      fixed cost for installing the connection between field f and   

   FPSO facility fpso at the beginning of  time period t  

well

tfFC ,        fixed cost for drilling a well in field f at the beginning of  

   time period t  

liq

tfpsoVC ,   variable capital cost for installing or expanding the liquid 

 (oil and water) capacity of FPSO facility fpso at the 

 beginning of  time period t 



 
 

277 
 

gas

tfpsoVC ,            variable capital cost for installing or expanding the gas 

 capacity of FPSO facility fpso at the beginning of  time 

 period t 

liq

trfOC ,            operating cost for per unit of liquid (oil and water)   

   produced in time period t for ringfence rf  

gas

trfOC ,         operating cost for per unit of gas produced in time period t  

   for ringfence rf 

fREC               total amount of recoverable oil from field f 

tax

trff ,         income tax rate in time period t for ringfence rf  

CR

trff ,         cost recovery ceiling fraction in time t for ringfence rf  

PO

irff ,         profit oil fraction of the contractor in tier i for ringfence rf  

royal

trff ,         royalty rate in time period t for ringfence rf  

taxrateeff

trff ,

,         effective tax rate in time period t for ringfence rf 

taxprofit

trff ,         profit tax rate in time period t for ringfence rf 

oil

irfL ,         lower threshold for profit oil split in tier i for ringfence rf  

oil

irfU ,         upper threshold for profit oil split in tier i for ringfence rf  

l1   lead time for initial installation of a FPSO facility                  

l2   lead time for expansion of an earlier installed FPSO facility                                                                              

αt           price of oil in time period t                                                                              

dist                    discounting factor for time period t                                                                                   

δt            number of days in time period t   

M, U   big-M parameters 

a( ),b( ),c( ),d( )    coefficients for polynomials used for reservoir models      
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Appendix D 

Proof of the Propositions in Chapter 3 

Proposition 3.1: If the sliding scale variable for profit oil share of the contractor 

is cumulative oil produced, the following inequalities are satisfied at the optimal 

solution of Model 3RF:  
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tirf ,,  (D.1) 

Proof. The proof follows from bounding the cumulative contractor’s share in each 

time period for every ringfence. We know that the revenue generated from a 

ringfence rf in time period t, equation (D.2), is the total oil produced from this 

ringfence in that time period times the price of oil )( t . From Figure 3.2, we can 

observe that the total profit oil for a ringfence in time period t is the difference 

between revenue and cost oil for that ringfence, where we consider no royalty 

provisions that yields equation (D.3).  

tot

trfttrf xREV ,, 

      

trf ,   (D.2) 

trftrftrf COREVPO ,,, 

     

trf ,   (D.3)

 
If tier i(t) is active in time period t for ringfence rf, then the contractor share 

in the profit oil for that ringfence can be calculated in eq. (D.4) as the 

corresponding profit oil times the tier fraction which is active in the current period 

t, PO

tirff )(, . Equation (D.4) can be re-written as eq. (D.5) using eq. (D.3), and 

dividing the both sides of the resulting equation by price of oil to represent the 

contractor’s share in terms of oil volume instead of price.  
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, where tier i(t) is active for rf in time period t   
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trf COREVfContSh  /)(/ ,,)(,,  , where tier i(t) is active for rf in 

time t           trf ,   (D.5) 
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The cumulative contractor’s share by the end of time period t can be 

obtained in equation (D.6) by summing (D.5) from period 1 to current period t, 

which can further be re-written as equation (D.7) using revenue definition form 

equation (D.2). 
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The first term in RHS of equation (D.7) can be written as in equation (D.8) 

for an active tier i(t) for ringfence rf in time period t, where, t1, t2 and so on are the 

time periods until previous tiers 1, 2, 3, etc. were active, respectively, for the 

corresponding ringfence. Equation (D.9) represents (D.8) in terms of cumulative 

oil produced in each tier until tier i(t). 
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The maximum amount of cumulative oil produced during each tier that lies 

before tier i(t) as in (D.10), will be the difference between the lower thresholds of 

the corresponding consecutive tiers as represented in inequality (D.11) and can be 

seen in Figure 3.5. 
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Inequality (D.11) can further be rewritten as (D.12), which by reformulating 

the last term as in (D.13) and rearranging the corresponding terms for each tier 

gives inequality (D.14). 
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As it is unknown a priori which tier i gets active at what time, we need to 

write constraint (D.14) for each tier i in each time t. For those tiers that are not 

active in current period t, i.e. )(tii  , (D.14) must be relaxed to be a valid 

inequality. Therefore, for )(tiib  , RHS of inequality (D.14) becomes: 
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Furthermore, on subtracting RHS of eq. (D.14) and (D.15), it gives (D.16), 

and therefore, we obtain (D.17): 
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Therefore, (D.17) yields (D.18) and hence we get (D.19) which say that the 

first term in equation (D.7) will be relaxed for all )(tiib  compared to an active 

tier i(t).  
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For those tiers that lies after active tier i(t), i.e. )(tiia  , then RHS of 

inequality (D.14) becomes: 
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On subtracting RHS of eq. (D.14) and (D.20), it gives (D.21), which reduces 

to (D.22): 
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Therefore, (D.22) yields (D.23) and hence we get (D.24) which say that the 

first term in equation (D.7) will be relaxed for )(tiia   as compared to i(t). 

0)())((  aiRHStiRHS
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)())(( aiRHStiRHS 
     

trftiia ,),(       (D.24) 

Therefore, for any tier i which may be an active tier in time t, the first term in 

eq. (D.7) can be represented as inequality (D.14). 

Equation (D.25) represents the second term of RHS for equation (D.7) in 

disaggregated form for each tier as explained above for total oil produced, i.e. 

equation (D.8).  However, here we do not have any predefined threshold for the 

cost oil in each tier in contrast to the cumulative oil produced, we need to 

represent this term in the relaxed form to be valid for all tiers. Given that profit oil 

fraction decreases as we move to higher tier, eq. (D.10) and 0, trfCO , 0t , we can 

replace the profit oil fractions for the previous tiers )(tiib  with the profit oil 

fraction of the current tier i(t) that ensures a lower bound on the LHS of equation 

(D.25). Using this relaxation idea we obtain equation (D.26) which on further 

aggregation yields equation (D.27) and (D.28). 
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Similarly, for other tiers )(tii  , we have: 
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However, 
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Therefore, for equation (D.27) guaranteed to be valid for any tier i , we can 

use the last tier 
endi  fraction instead which has minimum value, that yields 

equation (D.30): 
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 Substituting (D.14) and (D.30) back in equation (D.7) for any active tier i in 

time t, we can obtain (D.31) which is same as the desired expression (D.1). 
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Proposition 3.2: If the sliding scale variable for profit oil share of the contractor 

is daily oil production, the following inequalities are satisfied at the optimal 

solution of Model 3RF: 
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        tirf ,,  (D.32) 

Proof. The proof follows similarly as for Proposition 3.1. However, in this case as 

the daily oil produced is the sliding scale variable, we do not apply the summation 

over time as we did for equation (D.5). In addition, it is also assumed that the 

incremental tax is applicable only on the amount of oil production rate that is 

above the given tier threshold of the previous tier which is usually the case in 

practice. However, this type of tier structure is more popular for sliding scale 

royalties than profit oil described here.  
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Appendix E 

Sliding scale fiscal terms without binary variables in 

Chapter 3 

Proposition 3.3: Any sliding scale (either appearing in PSA, Concessionary 

system, etc.) where the sliding scale variable (e.g. cumulative oil, daily oil 

produced) and portion of oil that needs to split between oil company and 

government can be represented in terms of a fraction of the current revenues 

(production) or cumulative revenue (cumulative production), and the sliding scale 

is incremental, then we can represent the sliding scale fiscal terms without binary 

variables.    

For example, in the following cases, we do not need any binary variable for 

representing the sliding scale fiscal terms:  

(a) A concessionary/PSA system where the sliding scale is defined only for 

royalties based on the production. Eq. (E.3(a)) 

(b) A concessionary/PSA system where the sliding scale is defined only for profit 

oil where royalty is a given fraction of the revenue and there is no cost oil.  

Eq. (E.3(b)) 

(c) A concessionary/PSA system where the sliding scale is defined only for profit 

oil where royalty and cost oil are a given fraction of the revenues. Eq. (E.3(c)) 
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Proof. The proof follows directly as in Proposition 3.1 where we use eff

irff ,
in place 

of irff , . However, here we consider those cases (a)-(c) where the contractor’s 

share can be represented directly as a fraction of revenue generated, the term that 

corresponds to the cost oil in RHS of equation (D.5) will not appear as 
eff

irff , has 

accounted for the cost oil and/or royalty if these are present. Therefore, we have 

(E.4) instead, that reduces to the simpler version of equation (D.1), i.e. (E.5) in 

the case of cumulative oil produced as the sliding scale variable. Whereas, if the 

sliding scale variable is daily oil produced then corresponding eq. (D.32) reduced 

to (E.6) instead of eq. (E.5) 
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In general, at-least one of the equation that corresponds to the active tier in 

(E.5) or (E.6) will be active in the optimal solution as contractor’s share appears 

in the objective function. Therefore, the solution that it yields is usually the 

optimal for these cases, else it can serve as the valid inequality to generate the 

tight upper bound. This represents the sliding scale fiscal terms without binary 

variables. 
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Appendix F 

Proposition used for the Approximate Model in     

Chapter 3 

Proposition 3.4: If the sliding scale variable for profit oil share of the contractor 

is cumulative oil produced, the following inequalities will provide a good 

approximation of the optimal solution of Model 3RF:  
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Proof.  Notice that in equation (D.7), we use a relaxation of the second term in 

RHS as we do not know a priori when a tier i(t) becomes active and there is no 

limits that are available for cost oil for each tier which were available for 

cumulative oil produced. Ideally, it should be PO

rff 1,
for the years until first tier is 

active and then PO

rff 2,  for the duration of second tier and so on, to represent the 

second term accurately. Therefore, to obtain a better approximation of the second 

term, we can use the practical aspects of the problem. We know that most of the 

investments, cost oil recoveries take place in the initial years when low tier (1 or 

2) are active, so it is better to use that fraction which approximate at-least the 

initial tiers as close the exact one as possible when costs are high. In the later 

years, cost oil values are small, so the approximation for the later years will not 

have significant impact on the solution quality. Therefore, fraction PO

rff 1, is the best 

choice to use as an approximation in equation (D.30) for the second term in 

equation (D.7). 
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On substituting (F.2) in equation (D.7) for any active tier i in current period t 

and using (D.1), we can obtain equation (F.1). 
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Appendix G 

Bi-level decomposition approach for the Fiscal Model in 

Chapter 3 

The fiscal Model 3RF involving ringfencing provisions becomes expensive to 

solve directly using commercial MILP solvers such as CPLEX as can be seen in 

the results section 3.6.2. Even the tighter formulation Model 3RF-L obtained after 

adding logic constraints and valid inequalities takes significant amount of time to 

close the gap if ringfencing provisions are present in the problem. This is due to 

the additional binary variables and constraints required to incorporate these 

provisions in the model and resulting in weak LP relaxations. Therefore, we 

propose a bi-level decomposition strategy to solve the fiscal model having 

ringfencing provisions in a more efficient manner that can be used for either of 

the proposed MILP formulations. However, we consider here Model 3RF-L as a 

basis to present the algorithm. 

The proposed bi-level decomposition strategy involves two levels (see 

Figure G.1): 

(a) Upper Level:  At the upper level, an aggregate fiscal model (MILP) is 

solved that is formulated from the detailed fiscal Model 3RF-L by neglecting the 

ringfencing provisions. This is equivalent to a specific case of the model with 

only 1 ringfence that involves all the fields in it. Therefore, constraints (3.1)-

(3.50) are written without index for ringfence rf in the aggregate model. 

Moreover, costs and revenues over various ringfences need not be disaggregated. 

Therefore, constraints (3.6)-(3.24) reduce to the simple total capital cost equation 

(3.52) as explained in section 3.4. The tier thresholds over various ringfences are 

also aggregated in disjunctions (3.30). The resulting aggregate fiscal model 

represents a relaxation of the original problem since it allows revenue and cost 

sharing among the ringfences, and yields an upper bound on the objective 

function value.      
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(b) Lower Level:  At the lower level, the detailed fiscal model (Model 3RF-

L) involving ringfencing provisions is solved as an MILP for the selected FPSO 

installations and field-FPSO connection decisions from the upper level problem. 

The model yields a feasible solution to the original problem in the restricted space 

and a lower bound on its objective function value. In particular, the remaining 

investment decisions such as well drilling, FPSO expansions and their capacities, 

and operating decisions, e.g. oil production rates are obtained at this level. 

If the gap between the upper and lower bounds coming from the aggregate 

and detailed fiscal models, respectively, is less than the pre-specified tolerance, 

the procedure stops. Otherwise, an integer cut is added to the upper level problem 

in the next iteration that eliminates the selection of the same investment decisions 

that have already been explored in the previous iterations.  

  

 

Figure G.1: Bi-level Decomposition Approach for the Fiscal model with 

Ringfencing provisions 
 

Upper Level:

Solve Aggregate Fiscal model 

(all fields in a single ringfence)

Lower Level:

Solve Detailed Fiscal model 

(multiple-ringfences) with fixed binaries for 

FPSO installation and field-FPSO connections

If  UB- LB < ɛ

Add Integer cuts

Stop

UB, Design Decisions

LB, Capacities, Well Drilling Schedule, 

Operational decisions

Yes

No
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Notice that the efficiency of the proposed bi-level decomposition approach 

depends on the efficiency of solving the upper and lower level problems. If the 

original problem size is large, even these individual models can become 

expensive to solve and/or may require several iterations to close the gap. 

However, the approach can still be used to generate “good” feasible solutions to 

these ringfencing problems. Moreover, it can be considered as a basis to solve the 

medium-size instances in reasonable time and can further be extended to improve 

the computational efficiency. Preliminary results on an oilfield instance are 

presented in section 3.6.2 based on this approach. 
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