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Abstract

Rapid, reliable, and inexpensive detection of biological and chemical species is highly ad-

vantageous in numerous situations. The ability to simultaneously detect multiple targets,

for example in medical or environmental testing settings, in areas where modern labora-

tory equipment is not widely available, is especially desirable. The combination of acoustic

wave sensing and MicroElectroMechanical Systems (MEMS) technology leads to a sensor

with these capabilities. In this thesis we describe the modeling and optimization of such a

membrane-based acoustic wave MEMS biosensor.

Starting from an analytical model of the vibration behavior of an unloaded membrane,

we model the vibration behavior of a mass-loaded membrane both computationally (using

Finite Element Methods) and by using matrix perturbation analysis to develop a compu-

tationally efficient approximate analytical solution. Comparing the two methods, we find

that our two models show excellent agreement for the range of mass loadings we expect to

see.

We then note that we can alter sensor performance by controlling the placement of chem-

ically or biologically functionalized regions on the membrane. Our approximate analytical

model lets us efficiently predict the effects of functionalization geometries, and so we can

optimize performance according to a number of metrics. We develop several optimization

objectives to take advantage of our ability to control sensitivity and to multiplex. We

develop precise formulations for the objective functions and for constraints, both physical

and design-related. We then solve our optimization problems using two complementary
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methods. The first is an analytical approach we developed, which is feasible for simpler

problems, while the second is a stochastic optimization routine using genetic algorithms for

more complex problems. Using this method we were able to confirm the solutions given by

our analytical approach, and find solutions for more complicated optimization problems.

Our solutions allow us to examine the tradeoffs involved in deciding where to place regions

of added mass, including tradeoffs between patches and between modes. This helps to

elucidate the dynamics of our system, and raises questions for further research.

Finally we discuss future research directions, including further optimization possibilities for

single sensors as well as for systems of multiple sensors.

Abstract iii



Dedication

In loving memory:

John Leroy Valentine

Stephen Gregory Szczepaniak

Ethel Patricia Laura O’Reilly Szczepaniak

Elma Jean Hall

iv



Acknowledgements

I would not have been able to complete this research without the support and help of my

colleagues, family, and friends. I am grateful to Todd Przybycien and Steinar Hauan for their

advice and guidance, academic and otherwise. To members of my thesis committee, Jelena
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Chapter 1

Introduction

1.1 Biochemical sensors and applications

Sensors can be used to detect and measure a broad range of physical quantities or phenom-

ena, from a planet orbiting a distant star [88] to blood glucose levels in a diabetic [23, 58, 72].

Of particular interest to us are biochemical sensors: sensors which detect the presence of

a chemical or biological species in a sample. These sensors can be used in areas includ-

ing environmental or agricultural monitoring[22, 67, 20, 71], clinical or research medicine

[3, 78, 55, 1], clinical or research chemistry [42, 23], drug development or discovery [16, 39],

food or water supply safety [41], or food processing monitoring [49, 60], among others.

Biochemical sensors may be based on a large number of different physical, mechanical,

chemical, or biological principles, or systems comprised of combinations thereof. Due to

the wide range of sensor systems in use, it is infeasible to present a comprehensive list of

technologies. However, we can place sensor technologies into broad categories based on the

measured property.
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1.2 Biochemical sensor types and characteristics

1.2 Biochemical sensor types and characteristics

Electrical sensors rely on a specific chemical target changing an electrical property of the

sensor, sometimes via affinity binding. Examples include Metal Oxide Silicon (MOS) gate

sensors [37], Ion Sensitive Field Effect Transistors (ISFETs) [37] and ion conducting poly-

mer systems [54]. For an ISFET the measurand, or measured quantity, of the sensor is the

current across the transistor. Field effect transistors rely on electric fields to control the

conductivity across a channel; ISFETs in particular use the field effects due to ion con-

centrations in a sample to measure those concentrations. Impedance sensors [21] measure

the change in the surface impedance (or current:voltage ratio under an applied steady-state

AC) of an interface when target molecules are bound. Electrical impedance is a complex

quantity, and is the AC circuit analogue of resistance in DC circuits.

Optical sensors take advantage of the physics of light absorption, emission, reflection, and

refraction. To do so, they may rely on the optical properties of the sample and the target

analyte, as Fourier Transform Infrared (FTIR) spectroscopy [76], in which the amount

of light absorbed at various wavelengths is measured and absorption bands are compared

to libraries of empirically known measurements. Other techniques, such as fluorescence

micropscopy, rely on directly measuring the light emitted by flurophores in the sample.

These fluorophores are functional groups within molecules, and different fluorophores are

excited by different (but specific) wavelengths of light, and likewise emit light at specific

and known wavelengths. Therefore an emission spectrum can be compared to spectra

for known fluorophores and associated molecules. Alternatively, optical sensors may rely

on the effects of the target on the optical properties of the sensor substrate, as in Total

Internal Reflection Fluorescence (TIRF) [9, 10]. In TIRF, an evanescent wave is used to

excite flourophores in a sample, and the resulting spectra examined. Optical sensors may

exploit sample preparation techniques such as fluorescent tagging of targets, and use these

artificially created or enhanced optical properties of the target as the basis for detection.

Enzyme-based catalytic sensors such as blood glucose monitors [23, 25] depend on an

Chapter 1. Introduction 2



1.2 Biochemical sensor types and characteristics

enzyme-catalyzed reaction to convert the target in a sample to a detectable product. In the

context of this categorization catalytic sensors are often used with another sensing tech-

nique in order to effect detection of the target molecules via detection of the product of

catalysis. Exceptions include chemical test strips for blood glucose monitoring which are to

be examined visually for changes in color after a blood sample is applied, and lateral flow

immunoassay devices [87] such as home pregnancy tests. In the latter, the sample of interest

moves along a solid substrate by capillary action; it first encounters and is mixed with a

colored reagent, and then subsequently encounters test regions pre-treated with antibodies

or antigens specific to the target of interest. The colored reagent will bind to these test

regions depending on the presence or absence of the target species, and the substrate is

then visually examined for the presence of the reagent in the test regions.

Mechanical sensors measure a change in position of a structural sensor element due to

an adsorbed mass, such as microcantilevers used in bending or static mode [24], as well

as acoustic wave sensors [29, 27, 28], which detect changes in the resonant frequency of a

vibrating structural element due to the adsorption of mass. The measurand for a mechanical

sensor may be the output frequency of a vibrating structure being externally driven [51], the

optically detected shift in the position of a structural element [47], or the electrical resistance

of a piezoresistive structural element [80], among others. Devices such as the Quartz Crystal

Microbalance [89] measure not only frequency of the resonator by the dissipation as well;

this information is used to quantify the damping of the system. Mechanical sensors may

use affinity-binding to target specific analytes.

Due to the wide range in the fundamental operating principles of biochemical sensors, there

is no single fabrication technique used to manufacture biosensors. One technique which is

well-suited to the production of some biosensor technologies, including ISFETs, microflu-

idic devices incorporating catalytic sensor, and acoustic wave devices (all of which have

been produced in this manner) is MicroElectroMechanical Systems (MEMS) fabrication

[43]. MEMS technology uses microfabrication techniques, including many of those used

in the semiconductor industry, to create devices with integrated structural and electronic

Chapter 1. Introduction 3



1.3 Improving sensor performance and developing sensor arrays

components. The components of MEMS devices are generally on the scales of ones or tens

of microns, and are produced by applying patterning, etching, deposition, and milling steps

to a substrate. MEMS devices are small, lightweight, and inexpensive to produce, and the

ability to include on-board electronics reduces the need for external hardware. They are also

easily integrated into larger systems of electronics, and require small sample sizes. These

properties make MEMS technology a good candidate for the production of biochemical

sensors.

1.3 Improving sensor performance and developing sensor ar-

rays

Biochemical sensors vary widely in design, purpose, and fundamental operating principle.

Depending on its use, such a sensor may be designed for robustness to noise [19], sensitivity

[19], specificity [19], rapid response time [83], operating frequency range [27, 83], or the abil-

ity to detect multiple analytes simultaneously [74]. In addition, sensors may be integrated

into sensor arrays to rapidly screen samples for large number of targets [85, 79, 59, 68, 47].

We expect that to be competitive, any new sensor must significantly improve over alternative

existing sensors designed for the same purpose. Our group has developed a MEMS acoustic

wave sensor for which the resonator is a membrane. We expect this sensor to compete in at

least two of the above arenas. First, the high surface area to mass ratio of our membrane

leads to increased sensitivity [75, 5]. Second, the ability of our sensor to detect multiple

targets simultaneously means that a single membrane sensor can function as a sensor array.

Further, both of these properties can be improved upon by optimizing the distribution of

adsorbed mass on the membrane surface.

The effects of non-uniform mass distribution on the resonant frequencies of a resonating

element have been addressed for several systems. The Quartz Crystal Microbalance has been

studied by Ward et al. [33] and Vig et al. [77], who show that device sensitivity depends

on the exact locations of mass changes. Microcantilever sensors are sometimes mass-loaded
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at the tip to maximize sensitivity [53, 34], and Dufour et al. have modeled cantilevers

designed with a small plate at the sensitive free end to increase the area available for mass

binding [24]. Laugeson [40] has modeled the effects on eigenvalues of inhomogeneous circular

membranes with radial mass density constraints, but does not solve the inverse problem.

McCarthy [46] has solved the problem of recovering an approximate density distribution

function on inhomogeneous membranes, but requires axial symmetry in both directions.

In this thesis we will develope a model of the vibrational behavior of a membrane under

unevenly distributed mass loading, and will use that model to optimize the sensitivity of

our device, and to permit easy implementation of multi-plexing, or detection of multiple

analytes simultaneously.

The development of sensor arrays for multiple chemical or biochemical targets (“electronic

noses”) [4, 2, 11] has focused in part on sensor heterogeneity [85], i.e. on incorporating

different sensors, sensor mechanisms, or sensor characteristics (such as size or material) for

target molecules such as hydrogen [11], primary alcohols [4, 2], lysozymes [15], and metals

[53, 11]. We envision an array distinct from these in that it will use a homogeneous array of

sensors, or even a single sensor, distinguished only by the appropriate sizes and locations of

specific binding regions. Such a device would also be distinct from the multi-plexed paper

microfluidic devices designed for use in use in developing regions [45, 44]. While these

sensors can give quantitative measures of multiple analytes simultaneously, they are limited

to analytes for which traditional lateral flow immunoassay techniques are appropriate and

for which the paper devices can be prepared well in advance [45].

1.4 Thesis overview and contributions

This thesis discusses the mathematical modeling and optimization of a MEMS membrane-

based acoustic wave biosensor. The main contributions of this thesis are:

• The development of a reduced-order model of the membrane response to mass-loading,

which is highly accurate for the range of mass-loading we expect to see.
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• An optimization framework comprising objective functions, constraints, and optimiza-

tion methods. This framework allows us to optimize sensor performance under a wide

range of conditions, and can be modified for use with different models or additional

objective functions.

• A description of our sensor’s response surface behavior under different optimization

conditions, elucidating the complex tradeoffs in the optimization search space.

The thesis is organized as follows:

Chapter 2 In this chapter we discuss acoustic wave sensors in general, and give details

on our specific design. We also discuss MicroElectroMechanicalSystems technology,

including an overview of the manufacturing process and the MEMS elements that are

used in our design.

Chapter 3 In this chapter we discuss our efforts to model the vibrational behavior of

our sensor under variable mass-loading, including critical assumptions we made and

their implications. We first developed a computational model, and subsequently an

analytical approximation model. We discuss both, and show that they agree. We

proceed to show that the analytical model can be inverted, allowing us to move from

predicting device behavior to designing device behavior. Finally, we talk about a per-

formance measure we define, called eigenvalue measure, and mention its implications

for optimization.

Chapter 4 This chapter covers optimization in detail. We give a broad outline of the types

of optimization possible, and specify our areas of focus based on several posited real-

world cases. We discuss key assumptions about our system and their implications, and

qualitatively describe the objective functions we will consider in the ensuing chapters.

We then discuss in detail the development and mathematical formulations of our

objective functions and constraints. We formulate objective functions and attendent

constraints for cases where we are optimizing the placement of either two or three
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regions of added mass to our membrane, and distinguish between those objectives

which are generalizable to systems with more regions or more modes and those which

are not.

Chapter 5 This chapter begins with a discussion of possible solution methods for our

optimization problems. The methods we chose are described more fully, and we give

detailed descriptions of our implementations of these methods. We then apply the

methods to our optimization problems, and dicuss the significance of the results,

paying particular attention to issues including the possibility that we are not solving

to optimality, and the tradeoffs involved in multi-patch and multi-mode systems.

Chapter 6 In the final chapter we review the contributions we have made, and discuss

further research directions related to the project, including a sensitivity analysis,

additional objective functions, and multi-membrane optimization.

Appendix A This appendix contains examples of code used in the thesis.
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Chapter 2

Background

2.1 Acoustic wave sensors

Acoustic wave sensors work by exploiting the fact that the resonant frequency of a structure

decreases as its mass increases. It is therefore possible to detect target molecules by mea-

suring the changes in the resonant frequencies of vibrating structural elements (resonators)

induced by the adsorption of targets. Acoustic wave sensors can be customized to detect

particular ligands by fabricating the resonators using materials chosen to bind the ligand,

or by coating the resonators with ligates specific to the ligands in question

The choice of resonator varies across devices, and types in use include bulk-wave devices

such as quartz crystal plates[89, 64], Love-wave devices using a bulk crystal substrate and

interdigitated transducers [31], silicon plates with zinc oxide coatings, [30, 82], and can-

tilevered beams of silicon or silicon nitide [69, 63]. We have developed a MEMS acoustic

wave biochemical sensor [32, 5] for which the resonater is a membrane. The high surface

area to volume ratio of the membrane compared to competing technologies leads to in-

creased sensitivity, and, coupled with our abilities to selectively functionalize regions of the

membrane for target species and to excite higher-order modes, enables us to detect mul-

tiple targets simultaneously or to integrate redundancy in a single sensor. This capability

invites the possibility of optimizing the placement of functionalized regions with respect to

8



2.1 Acoustic wave sensors

characteristics such as sensitivity or accuracy.

Acoustic wave sensors can, in theory, have a resonant structure of any shape. In practice,

however, the range of possible geometries is limited by fabrication techniques and electron-

ics limitations. The most common acoustic wave sensors currently being studied are Bulk

Acoustic Wave (BAW) devices such as the Quartz Crystal Microbalance (QCM) [89] and

Surface Acoustic Wave (SAW) or Shear Horizontal Surface Acoustic Wave (SH-SAW) sen-

sors [86, 62], Flexural Plate Wave (FPW) devices [26, 82, 81], and microcantilevers [53, 24].

Even within these categories, resonator geometries can vary; microcantilevers may be sim-

ple beams, beams with plates at the tip to increase the surface area available for binding,

or V-shaped,among other possibilities. Table 2.1 summarizes the key properties of these

sensors, including the key physical and material parameters determining frequency, typical

operating frequencies f observed in the literature, and the range of noise levels n noted in

the literature.

Resonator Type Key Parameters Typical f Typical n

Bulk Acoustic Wave resonator thickness
film thickness
density 31 - 400 MHz 0.2 - 55Hz

Flexural Plate Wave flexural rigidity
tension
plate thickness
mass density
characteristic geometric parameters 5.5 MHz 0.3 - 2.1 Hz

Microcantilever mass
length
inertial moment 0.005 - 5 MHz 0.01 - 2.1 Hz

Table 2.1: Comparison of some acoustic wave devices and their key charateristics.

Some work on membrane based acoustic wave sensors has been performed by Clark et al.

[15], whose work focused on detecting changes in membrane tension. While their work

did not allow for target specific sensing, it could be modified to do so by using molecular
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imprinting when fabricating the polymer membrane.

2.2 Membrane-based acoustic wave sensors

Acoustic wave sensors take advantage of the fact that for a mechanical resonator, and

increase in mass induces a decrease in the resonant frequency. For a simple harmonic

oscillator (SHO), the relationship between mass m and a harmonic frequency f is dictated

by the equation f =
√

k
m where k is a constant determined by the physical shape and

material properties of the resonator, as well as by the order of the chosen harmonic. In a

mass-spring SHO, m is the inertial mass and k is the spring constant of the massless spring.

Assuming that k is constant, we see that:

f(m) =

√
k

m
=

√
k√
m
. (2.1)

A first order Taylor Series Expansion then shows

df

dm
=

−√
k

2m3/2
. (2.2)

And hence, by discretizing and rearranging, the change in resonant frequency may be ex-

pressed as

∆f =
−∆m

√
k

2m3/2
=

−∆mf

2m
. (2.3)

If we assume that the adsorbed mass is evenly distributed over the entire exposed area, then

the change in mass ∆m will be directly proportional to the surface area of the resonator.

D’Amico et al. [19] define sensitivity as the fractional change in frequency, ∆f
f , and use it

as a figure of merit for acoustic-wave sensors. This definition allows direct comparison of

sensors with different fundamental frequencies. By this definition, a sensor operating in the

kHz range may be more sensitive than one operating in the MHz range, even if its total

frequency shift is much smaller.
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The analysis above implies that a high surface area to mass ratio, as is seen in a membrane,

is desirable in improving the sensitivity of an acoustic wave sensor. Previous work in

our group indicates that our proposed sensor could be several orders of magnitude more

sensitive than competing acoustic wave devices such as microcantilevers and bulk acoustic

wave devices [5]. Table 2.2, using data from Michael Bartkovsky’s 2006 doctoral thesis, gives

the fractional frequency changes, measuring the relative frequency shift per unit mass, for

various competing devices.

Device Sm

QCM 0.011

SAW 0.20

SH-SAW 0.18

FPW 0.38

Cantilever 0.09

MEMS Membrane 0.90

Table 2.2: Fractional frequency changes Sm for acoustic wave devices. Units are
Hz

MHz
ng

cm2
.

Further, studies show that the sensitivity of a membrane sensor can be increased by an

unequal distribution of adsorbed mass [73, 40]. We can select a particular distribution by

choosing which regions of a membrane to functionalize with ligands for the target species.

This opens up the possibility of using a single membrane to simultaneously detect multiple

species, and the question of optimal mass distribution on the membrane surface.

2.3 MicroElectroMechanical Systems

There are several fabrication methods that could be used to make a membrane. We have

chosen a method that is particularly well suited to the production of small-scale devices

with both mechanical and electronic components.
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2.4 Our sensor

MicroElectroMechanical Systems, or MEMS, refers to technology in which micron-scale

electronic and mechanical components are produced using the same processes, often sil-

icon microfabrication or micromachining, to form a single device with fully integrated

components[43]. Examples of these components include electronic circuit components such

as transistors, resistors, logical operators, and multiplexers; as well as simple structural com-

ponents like suspended beams, cavities, wells, and walls; and complex structural elements

like interdigitated combs, valves, and hinges.

Traditional silicon micromachining, used to produce integrated circuits, requires the re-

peated use of three steps to modify silicon wafers: patterning of the exposed surface, etching

of the surface, and deposition of materials onto the wafer. To allow for the formation of

mechanical structures, additional etching steps are performed to release specific elements

from the underlying silicon substrate. This permits the production of suspended mechanical

structures which can act in conjunction with the embedded electronic circuitry.

The advantages of MEMS technology in general, and for sensing applications in particular,

are myriad. Because MEMS devices can be produced using the same batch silicon man-

ufacturing processes used for the production of computer chips and other electronics, the

fabrication cost per device is typically low. Due to their small size, MEMS devices are

also lightweight, leading to potential increases in sensitivity, as discussed above. As they

require little to no ancillary electronics, they have low power consumption and are portable

or easily integrated into larger systems. Finally, MEMS sensors would require only small

volumes of sample solutions.

2.4 Our sensor

Our sensor is manufactured using silicon micromachining techniques. Each sensor is one of

sixteen on a chip, and consists of a aluminum-oxide mesh structure suspended over a cavity

in the silicon substrate of the chip and clamped on all four sides. This mesh structure is

the transducer element for the sensor, converting electrical energy into mechanical energy,
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and we model it as a membrane under tension. While the mesh structures for the current

generation chip are square, measuring approximately 156 µm by 156 µm, in this paper we

will consider only membranes with an aspect ratio of 1.5 : 1. This will allow us to avoid

the degenerate case where multiple modes have the same frequency and eigenvalues. Two

main structural mesh designs have been implemented for our membranes [5]; a grid design

and a brick design, shown in Fig. 2.4. Each design has four variations. The designs have

different void areas and total masses, but are functionally similar.

(a) CAD layout (b) resistor configuration (c) conformally coated mesh

Figure 2.1: Sensor elements.

(a) SEM image of brick mesh (b) SEM image of grid mesh

Figure 2.2: Images of different mesh designs. Photo credit: M. Bartkovsky

The electronic components necessary for actuating the sensor and for detecting the resultant
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frequencies are integrated with the mechanical components. The membranes are actuated

electrostatically via the application of a potential to the mesh, and their motion is inde-

pendently detected using piezoresistive sensing elements embedded in the perimeter of the

mesh.[5] Piezoresistive sensors take advantage of the fact that some materials change their

electrical resistance in response to a mechanical stress. This type of sensing element is es-

pecially well suited to the detection of vibrations as the magnitudes of changes in resistance

are not important as long as they are sufficient to allow for changes in frequency to be

ascertained. Therefore precise calibration of piezoresistive behavior is unnecessary.

Each chip also contains internal logic control circuitry, and a set of 25 bondpads, which

allow the chip to be electronically connected to external devices for both input and output.

The membranes are fabricated as mesh structures for two reasons; to prevent in-plane ten-

sion and resultant out-of-plane buckling, and to allow for release of the membrane structure

from the underlying materials via a chemical etching process. During post-processing, the

mesh is covered with a comformal polystyrene coating, sealing all open spaces in the mesh

and resulting in a solid, uniform surface suitable for functionalization. Despite the com-

posite design, these structures can be modeled as membranes; for the remainder of this

thesis, we will use the term membrane to refer to the composite structure of the metal mesh

conformally coated with polymer, except where the term is used in its stricly mathematical

sense.

In order to electrically isolate the aluminum mesh of the membranes from the electronics of

the chip, the mesh is composed of multiple layers: a metal 1 layer is connected to a metal

2 layer by a non-conductive oxide layer. The metal 2 layer is not continuous, but depends

upon the oxide layer to form a cohesive structure. This allows connections to individual

portions of the membrane to access or shield sensing and actuation mechanisms. Details on

the physical characteristics of this membrane, including the masses and void areas of the

material layers which make it up, are given in Table 2.4.

Detection of a target analyte is a multi-step process. The membrane surface is first pat-

terned via photolithography and functionalized for the specific targets in question; the

Chapter 2. Background 14



2.4 Our sensor

Brick A Grid A

Metal 1 Area[µm2] 12279.20 177383.20

Mass[ng] 21.03 29.77

Metal 2 Area[µm2] 1362.64 2187.20

Mass[ng] 2.33 3.75

Oxide Area[µm2] 13641.84 19570.40

Mass[ng] 26.42 37.41

Vias Number 124 228

Mass[ng] 0.11 0.20

Polystyrene Area[µm2] 24336.00 24336.00

Mass[ng] 73.3 not given

Total Area[µm2] 24336.00 24336.00

Mass[ng] 123.19 not given

Table 2.3: Masses and areas for the Brick A and Grid A meshes; numbers for the other

brick and grid meshes are comparable. The area measurement for polystyrene is given for

the top surface of the membrane, but it fills the void areas from the other layers as well.

All data from [5]
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photolithography allows us to functionalize specific regions of the membrane for particular

targets, opening up the possibilities of increasing sensitivity or specificity of the system. It

is then immersed in a solution which does not contain any molecules that would bind to

the surface, either specifically or non-specifically, but which matches the sample solution

in density, temperature, and viscosity. The membrane is actuated, and the resonant fre-

quencies and attendant eigenvalues of interest are determined. This forms the baseline for

later comparison. The sensor is then immersed in the sample solution for a time sufficient

to allow binding of any targets present. Finally, the sensor is actuated once again and the

new resonant frequencies and eigenvalues are ascertained. The eigenvalue shifts can then

be used to determine the added mass for each functionalized region, via the model devel-

oped below. It is possible to actuate membranes in sets of two, with each functionalized

membrane paired with an unfunctionalized membrane. This second membrane would be

actuated and exposed to the sample solution along with the functionalized one, and the

differential information could be used to control for variables such as sample temperature,

viscosity, density effects, and non-specific binding. Using a second membrane could also

eliminate the need to take a baseline frequency spectrum in solution, or even, potentially,

the need for an initial baseline spectrum.

Because our model does not account for damping due to immersion in a liquid solution, it

may be advisable to modify the detection procedure to minimize the effects of damping. In

this modified procedure the baseline resonance measurements would be performed in air.

The membrane would then be exposed to the sample solution and target analytes bound,

and then the membrane would be drained and dried, and the new resonance measures taken

again in air. This procedure would decrease the effects of liquid damping, but introduces

challenges in terms of designing the drying process to ensure it does not effect the quantity

of target bound to the surface.

During use, our sensor chip would be contained in a clamshell packaging which would create

a reservoir for the sample material and contain an inlet and an oulet to allow for sample

delivery to the surface of the membranes. This reservoir is discussed by Bartkovsky [5], and
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will not be considered for the remainder of this thesis.
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Chapter 3

Modeling mass-loaded membranes

3.1 Membrane model

Given that we have a prototype device, we need to ensure that we are using an appropriate

model. Thin, sheetlike structures such as the one described in the previous chapter can be

modeled either as membranes or as plates. A uniformly stretched membrane is the two-

dimensional analogue of a stretched wire [70], while a plate is the two-dimensional analogue

of a beam [70]; membranes and plates have very different behaviors and are governed by

different physical properties. Membranes are thin structures conforming to a surface, possess

no bending rigidity, and can only support tensile loads. The primary physical characteristics

determing membrane behavior are tension per unit length, T (which has a second order

effect), mass m, and geometry. In contrast, plates have a positive bending rigidity arising

from their elasticity and thickness, are non-conformal, and undergo flexural deformation.

The key characteristics governing plate vibrations are elasticity, flexural rigidity (possessing

a fourth order effect), the Young’s modulus, and geometry. When modeling our device, it is

important to verify that we are using the model which most accurately reflects its real-life

behavior. Clark et al. give the conditions under which each model applies [15]; a membrane

model may be used where:
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3.1 Membrane model

C =
D

(T/t)R2
≤ 1 (3.1)

where D is the flexural rigidity, t is the thickness, and R is a characteristic length. Neumann

et al. [52] provide estimates for both D and T , and values for t and R are extracted from the

design specifications. Using this equation, we find that a membrane model incorporating

only second order effects most accurately describes our system [73].

It is still possible that this is not the best model for the actual device, for multiple reasons.

If our group’s estimates for D or T are inaccurate, or if the mesh structure changes the

effective t or R value for our device, we could find that we do not satisfy the inequality, and

that therefore an alternative model (either a plate model or a combined membrane/plate

model incorporating both second and fourth order effects) would be preferable. In addition,

if the conformally-coated mesh forming the resonator structure introduces new dynamics,

e.g. acts not as a uniform tensile sheet but as a series of coupled units of rods and strings,

we could need a different model for each mesh design to accurately incorporate these effects.

However, the focus of this thesis is the development of a theoretical framework for optimizing

membrane behavior. For this aim, it is important to move forward with a specific model

of the membrane’s response to non-uniform mass loadings. We believe that our membrane

model captures the important behaviors of our device; should experiments later prove it to

be inadequate, an alternate model can be developed which could be used in our optimization

routines in a similar manner.

Rayleigh [56] gives the following model, derived from a force balance, for the position

function of a membrane undergoing transverse (out of plane) vibrations:

T (
∂2u

∂x2
+
∂2u

∂y2
) = ρ

∂2u

∂t2
(3.2)

wherein u(x, y, t) is the position function of the membrane, with the x− y plane parallel to

the membrane surface. T is the tension per unit length, and ρ is the mass per unit area of

the membrane. The left hand side of this equation represents the restoring force imparted

by local curvature of the membrane, while the right hand side represents the mass force
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on the membrane at position (x, y). This model assumes an undamped system. For our

modeling purposes, we assume a rectangular membrane, clamped at the edges, as shown in

3.1. We also assume constant ρ and T . Under these conditions, the solution to this equation

is given by

u(x, y, t) =
∑
n

∑
m

ψmn sin
mπx

a
sin

nπy

b
. (3.3)

Here m and n represent the harmonic modes of a rectangular membrane, while a and b are

the dimensions of the sides of the membrane. Each of the summands is an eigenmode of

the position function, and their coefficients ψmn, which are functions of time, depend on

the initial conditions. As the name suggests, the eigenmodes are orthogonal to each other

and are each associated with an eigenvalue λ given by

λmn = π2
T

ρ
(
m2

a2
+
n2

b2
). (3.4)

Since each eigenvalue is related to the angular frequency ω of the corresponding eigenmode

by λ = ω2 and f = ω
2π this allows us to directly calculate the frequency of vibration for

each eigenmode.

Figure 3.1: Membrane with length a and width b

Anti-nodes are points of maximal out-of-plane motion. The (m,n)th eigenmode will have

m×n anti-nodes: m in the x-direction, and n in the y-direction. Modes other than the (1, 1)

mode will also have nodal lines, lines of zero out-of-plane motion. In a square membrane,
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the (m,n)th and (n,m)th eigenmodes, while distinct, have identical eigenvalues. Therefore,

a mode having m×n anti-nodes may be the (m,n)th mode, the (n,m)th mode, or a linear

combination of the two.

(a) The (1,1) eigenmode. The anti-node, or region of

maximal motion, is in the center

(b) Eigenmode resulting from (2,1) - (1,2). The nodal

line is recognizable along the diagonal.

Figure 3.2: FEMLAB representation of two eigenmodes of a square membrane. Color
indicates out-of-plane motion, with red having the largest positive value, and blue the
largest negative value. Green indicates zero motion.

3.2 Differential mass loading

The derivation above is for a uniformly distributed mass across the entire surface of the

membrane. However, mass sensitivity for a harmonic mode can be increased by concentrat-

ing the mass, and placing it on a specific region. The largest increase is seen when the region

in question is located over an anti-node (a point of maximum motion) for the eigenmode

being used. Table 3.2 shows the simulation results for a mass localization case study. In this

study, we assume a square membrane with side lengths of 100µm,an areal density of 4200 kg
m2 ,

and a uniform tension of 1.154× 106 N
m [7, 52]. A constant mass was distributed evenly over

the entire membrane surface, and the resulting frequency shift from the unloaded case for

Chapter 3. Modeling mass-loaded membranes 21



3.2 Differential mass loading

the first harmonic was calculated. The same mass was then distributed evenly over a 20µm

by 20µm subregion placed in the center of the membrane, and again the frequency shift was

calculated. This analysis was performed for two different levels of added mass, 0.07776ng

and 0.15552ng, using the methods described in 3.2.1. These levels were chosen by assuming

binding of a single antibody (in the case of 0.07776ng) or of an antibody-antibody complex

to the membrane surface. In addition, we assume that the total mass bound was limited by

the available surface area for the localized case, with the further restriction that only 54%

of that area allows binding. This number is derived from Random Sequential Adsorption

(RSA) and indicates the amount of surface area covered when spatially randomized sequen-

tial binding occurs [48]; the relative placement of adsorbed molecules can allow a significant

space between them, but one which is insufficient to allow another molecule to occupy that

space.

Because the fundamental frequency for the unloaded membrane is the same in all cases, the

results summarized in Table 3.2 show that we can significantly increase our sensitivity (in

this case by nearly a factor of four) by using an unequal distribution of mass.

Added Mass ∆f Uniform Mass ∆f Localized Mass

0.07776 50 Hz 190 Hz

0.15552 100 Hz 378 Hz

Table 3.1: Effect of mass localization on membrane frequency shift for the (1,1) mode.

3.2.1 Computational model

Membrane vibration is simulated using the modeling package COMSOL [35]. COMSOL

uses finite element methods (FEM) to numerically model analytically intractable partial

differential equations (PDEs) or ordinary different equations (ODEs). Finite element meth-

ods discretize the given continuous system modeled by PDEs or ODEs, reducing a problem

of infinite degrees of freedom to one with a finite, although generally very large, number

of degrees of freedom. The problem is formulated as a large system of coupled equations,
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which may be linear or non-linear, and this system is then solved numerically.

COMSOL allows the user to choose the among pre-programmed models, as well as solver

types, parameters, and the scale of the discretization, to match the requirements of the

problem and ensure a sufficiently close approximation. COMSOL solutions depend on the

system of equations entered, the boundary and initial conditions, and the solver, all of

which are entered by the user. Our membrane vibration model was implemented as a two-

dimensional partial differential equation model using the general form. The geometry of the

problem was defined numerically, and the boundary conditions (membrane edges fixed on

all four sides) entered as Dirichlet conditions. Values for tension, mass, added mass were

entered as constants which were subsequently entered as parameters for each geometric

region; this allows user-defined regions, or subdomains, to have different properties. In our

case, we held the tension and mass coefficients constant over the entire membrane, and

varied only the added mass coefficient for specific subdomains.

To insure a stable, accurate, and discretization-independent solution, we solve all problems

at multiple levels of discretization. The lowest number of discretization points past which

no measureable improvement or change in solution (within one part per million) is noted

determines the level of discretization we use. In most cases we achieved an accurate solution

for the required number of eigenvalues (between six and thirty) using the default discretiza-

tion level for a triangular mesh; depending on the subdomains defined, this resulted in

approximately 1000 mesh elements.

In the simulations performed for this paper, we use the parameters given in Table 3.2. The

material properties are estimates based on preliminary membrane designs [7, 52]; and the

membrane size was chosen to be close to that used for the actual device. For mathematical

reasons (see Sec. 3.2.2), we chose a non-square membrane. The size of the functionalized

regions was chosen based on the experimental work [6] on patterning the membrane for

selective functionalization.
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3.2.2 Matrix perturbation analysis

While the FEM simulations produce highly accurate approximations of the steady state

membrane vibration problem, we must keep in mind that the goal is to optimize the perfor-

mance of membranes and of arrays of membrane. Optimization at any level [8] requires an

inner loop to describe the fundmental system behavior of interest, in this case the membrane

eigenvalue shifts resulting from an uneven distribution of adsorbed mass. The COMSOL

simulations provide numerical results, but no information as to the governing behavior of the

system, such as gradient values. Running an optimization program with COMSOL simula-

tions as the innermost loop would require a large number of individual simulations, each of

which is computationally expensive. If instead we could analytically approximate the eigen-

value response of the system to added distributed masses, we could enjoy the advantages

of additional information about the system, as well as decreased computational demands.

Matrix perturbation analysis or perturbation theory [17] is a commonly used method to

derive approximate solutions to perturbed systems of differential equations when the exact

solution to the unperturbed system is known.

We follow the perturbation approach developed by Wickert et al. [84, 13] in our analysis.

To perform the perturbation analysis we rewrite our differential equation in operator nota-

tion:

ρ(x, y)utt − T�2u = 0 (3.5)

This equation takes into account the fact that our density ρ may vary with x and y. For

simplicity, we use utt to denote ∂2u
∂t2

and u to denote u(x, y, t). Now we define the mass

operator M , a linear function of the added mass in a particular region, as

M = ρ(x, y) = ρ0h+ εm(x, y). (3.6)

where ρ0h is the areal density of the unloaded membrane, and εm(x, y) is the perturbation

in the density. Here ε is a small, dimensionless, scaling parameter, and m(x, y) is an areal
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density. In addition we define the stiffness operator K:

K = −T�2 (3.7)

We note that the mass operator consists of an inital mass operator, corresponding to ρ0h

and an added, perturbed mass operator, corresponding to εm(x, y), so we may write:

M =M0 + εM1 (3.8)

and

(M0 + εM1)utt +Ku = 0 (3.9)

We know that the solution to our unperturbed system has both a frequency component

dependent on ω and a shape component φ, giving:

u(x, y, t) = eiωtφ(x, y) (3.10)

The eigenvalue problem associated with our PDE is therefore:

Kφ = ω2Mφ = λ(M0 + εM1)φ (3.11)

In this analysis we assume that the φ components are orthonormal with respect to each

other.

Next we assume that our mode shapes and eigenvalues are perturbed in a manner similar

to the mass operator: φmn = φmn0 + εφmn1 and λmn = λmn0 + ελmn1 .
1 We then substitute

these two expressions into 3.11 and examine separately the terms which are zeroth and first

order in ε.

The zeroth order terms return the unperturbed eigenvalue problem, and the first order

terms give the following:

1Here m and n denote the examined mode; note that this m is an index, and is unrelated to the volume

density expression m(x, y).
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Kφmn1 − λmn0M0φmn1 = λmn1M0φmn0 + λmn0M1φmn0 (3.12)

There are two unknowns in this equation: φmn1 and λmn1 . However, if we examine the

left hand side, we see that we use the same operator, K − λmn0M0 as in 3.11. This is a

singular matrix operator. Using Fredholm’s Alternative Theorem [50] we can solve 3.12 by

restricting λmn1 so that the right hand side of 3.12 is in the null-space of K−λmn0M0. This

is equivalent to setting λmn1M0φmn0 +λmn0M1φmn0 orthogonal to each of the unperturbed

mode shapes φmn0 . We observe that φmn0 = Cmn sin
mπx
a sin nπy

b . This observation leads to

the solution:

λmn − λmn0 = −
∫ a

0

∫ b

0
εMC2

mn sin
2(
mπx

a
) sin2(

nπy

b
)dxdy (3.13)

From this equation it is clear that a selective spatial mass distribution can indeed increase

the frequency sensitivity of our sensor.

The use of Fredholm’s Alternative Theorem requires that the eigenvalues λmn all be distinct.

This imposes a constraint on the membrane geometry, in that the side lengths a and b may

not be equal. This condition is sufficient to prevent the degenerate case of multiple identical

eigenvalues. However, if two eigenvalues are close, as in a nearly square membrane, we may

observe a change in the order of eigenvalues when sorted by size (as opposed to being sorted

by the (m,n) index) under differential mass loading conditions. That is, when eigenvalues

are nearly the same, a significant change in one under a particular mass distribution may

result in the smaller eigenvalue (for the unloaded membrane) becoming the larger eigenvalue

(for the loaded case). Although it may be possible to take advantage of this behavior, it

may also serve as a source of confusion, especially when interpreting (possible noisy) output

from our device, and so we choose to eliminate it by considering only relatively large aspect

ratios. The aspect ratio we choose for most of our calculations is 1.5:1; avoiding such issues.
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3.2.3 Model agreement

To demonstrate the excellent agreement between FEM simulation results and the pertur-

bation analysis results, we show in Tables 3.3 and 3.4 and in Figure 3.3 the calculated

frequency shifts caused by mass loading for a scaled system. In Eq. 3.13, the constants

C2
mn need to be appropriately set, or the eigenvalue shifts predicted by this equation will be

in error by a constant factor. To appropriately calibrate the results, we find these constants

by setting the predicted eigenvalue shift resulting from a uniform density increase over the

entire membrane, and set it equal to the known analytical result for such a shift.

Figure 3.3: Agreement between perturbation analysis (solid lines) and simulation (points)

in predicting eigenvalue shifts due to added mass. Simulations used the parameter values

given as Set II in Table 3.2. Regions of added mass were centered on anti-nodes for the

modes being simulated.

We compared the simulation and analytical perturbation results for the (1,1) and (2,1)

harmonics, centering rectangular regions of added mass spanning a range of anticipated

magnitudes at an anti-node of each respective mode. Calculated eigenvalue shifts are listed

in Tables 3.3, and 3.4; the parameter values are listed under Set I in Table 3.2.

Throughout this section we compare only the absolute changes in eigenvalues; as the base-

line eigenvalues and the added masses are held constant for any particular case, it is not

necessary to compare sensitivity values.
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Parameter Value: Set I Value: Set II

Tension T 1.154 × 106N/m2 1.0force/length2

Density ρ 3600kg/m2 0.0036 mass/length2

Membrane length x 150µm 1.5 length

Membrane width y 100µm 1.0 length

Region length ∆x 10µm 0.1 length

Region width ∆y 10µm 0.1 length

Added density ∆ρ 0− 0.1× ρ 0− 0.1 × ρ

Table 3.2: Simulation parameter sets I and II. Set I is based on the expected material and

geometric properties of the device. Set II uses a scaled system of units, allowing for easy

calculation and scaling of results [7, 52].

∆ρ ∆λ11 FEM ∆λ11 Pert. Anal. %Error

0.01 1.043 1.0332 0.94

0.02 2.087 2.0664 0.99

0.03 3.131 3.0996 1.00

0.04 4.176 4.1328 1.03

0.05 5.221 5.1661 1.05

0.06 6.265 6.1993 1.05

0.07 7.311 7.2325 1.07

0.08 8.356 8.2657 1.08

0.09 9.402 9.2989 1.10

0.10 10.448 10.3321 1.11

Table 3.3: Calculation agreement for eigenvalue shifts using FEM simulations and pertur-

bation analysis - in this example there is a single patch of size 0.1 x 0.1 units, centered on

the membrane. The sensitivity for this position and mode is 2.61
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∆ρ ∆λ21 FEM ∆λ21 Pert. Anal. %Error

0.01 1.985 1.985 0.02

0.02 3.972 3.970 0.04

0.03 5.959 5.955 0.06

0.04 7.946 7.940 0.08

0.05 9.935 9.925 0.10

0.06 11.924 11.910 0.12

0.07 13.914 13.895 0.14

0.08 15.905 15.880 0.16

0.09 17.896 17.865 0.18

0.10 19.889 19.850 0.20

Table 3.4: Calculation agreement for eigenvalue shifts using FEM simulations and pertur-

bation analysis. This example uses a single patch of size 0.1 x 0.1 units, centered over one

of the anti-nodes for the (2,1) mode. The sensitivity for this position and mode is 2.61

In addition, we have performed a more detailed analysis of a probable added mass, to ensure

that our calculations cover an appropriate range. We assume that our bound molecules are

generic antibodies, with a molecular weight of 180, 000 and an equivalent spherical radius

of 6.2nm [65]. We estimate the surface area SA, in Å
2
, of the antibody, as:

SA = 6.3mw0.73 (3.14)

where mw is the molecular weight of the antibody [38].We then assume that a uniform one-

molecule layer of water is bound to the surface of the molecule, and will move with it. This

gives us an estimate of the total effective molecular weight of the antibody. Craig et al. [18]

show that bound water molecules may significantly increase the mass, adding as much as five

times the molecular weight to the effective mass. This is therefore a conservative estimate

of the bound water mass. Thus it is necessary to determine if the error will lie within
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acceptable limits when such masses are bound. We assume random sequential absorption

coverage of the binding regions [12, 48], and calculate the number of antibodies bound if we

model the antibody as a sphere, and assume a “footprint” of π(6.2nm)2. The effect of the

increased hydrodynamic radius is counteracted by the reduced number of molecules capable

of binding to the membrane surface, so this case is covered by the work shown in Figure

3.3 and in Tables 3.3, and 3.4.

In Figure 3.3 we show the agreement between the perturbation analysis results (solid line)

and the simulation results (points) for a scaled system. We use the parameter values listed

under Set II in Table 3.2. These are scaled versions of the parameters in Set I, and the scaling

was chosen to minimize numerical scale problems arising in FEM solutions using COMSOL.

For both the (1,1) and the (2,1) mode, we calculate the change in eigenvalue resulting

from increasing the areal mass density on a discrete region of added mass. We performed

simulations and perturbation analysis calculations for added density values between 0.0 and

0.1, with a 0.01 step size; this interval covers the expected range of probable added mass

values. For the (1,1) mode the region of added mass was centered at (0.75, 0.5), the anti-

node for that mode. For the (2,1) mode, the region was centered at (0.5, 0.5), one of two

anti-nodes for that mode.

In Figure 3.4 we show the error between the eigenvalue calculations using the two methods,

given as the difference between the simulation and perturbation analysis results divided by

the perturbation analysis results. The error increases as the added mass increases, which

is expected due to the increase in magnitude of the higher order terms neglected in the

perturbation analysis.

So far we have shown that we can accurately model the effects of a single region of added

mass on the eigenvalue of a particular mode. We wish to further show that our approx-

imation formula is accurate when we change the position, size, and number of regions of

added mass; these can then be used as design variables in future optimization efforts. To

demonstrate that Eq. 3.13 correctly predicts eigenvalue shifts resulting from patches of

different sizes, we performed FEM simulations for two different system configurations. In
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Figure 3.4: Error between perturbation analysis and simulation methods for predicting

eigenvalue shifts. In both modes, the error increases roughly linearly with the added frac-

tional mass density, but remains sufficiently small over the range of expected densities.

one, we again placed a patch of size 0.1 by 0.1 units on the anti-node for the (1,1) mode,

and calculated the resultant eigenvalue shifts for two different added mass densities, rep-

resentative of expected densities for bound antibodies. In the second, we placed a larger

patch off-center so that for the same added density, we would acheive the same eigenvalue

shift; we again calculated the eigenvalue shifts for both density levels. The results of these

calculations are shown in Table 3.5 and show that changes in patch size and position do

not affect the accuracy of the perturbation analysis approximation.

To show that the eigenvalue shifts resulting from multiple regions of added mass are additive,

we simulated the eigenvalue response of the (1,1) mode to two discrete regions of added mass

each considered separately, as well as to the case wherein both regions had simultaneous

density increases. The results, shown in Table 3.6 show that for the expected density levels,

the resulting error is very low, and so we may assume additivity.

Limitations and binding range

To ensure that our approximate analytic solution will be accurate for the expected range

of added masses we first perform a more detailed analysis of a probable added mass. We
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Patch ∆ρ ∆λ11 FEM ∆λ11 Pert. Anal. %Error

1 0.054 5.626 5.579 0.008

1 0.076 7.937 7.854 0.010

2 0.054 5.629 5.564 0.011

2 0.076 7.938 7.832 0.013

Table 3.5: Calculation agreement for eigenvalue shifts in the (1,1) mode using FEM simu-

lations and perturbation analysis. Patch 1 is 0.1 x 0.1 units, with the lower left corner at

(0.7, 0.45) and a sensitivity of 2.61, while Patch 2 is 0.145 x 0.1398 units with the lower left

corner at (0.935, 0.235), and a sensitivity of 1.28

.

∆ρ ∆λ Patch 1 ∆λ Patch 2 ∆λ Total (FEM) ∆λ Summed %Error

0.054 5.626 2.676 8.306 8.302 0.04

0.076 7.937 3.787 11.708 11.724 0.14

Table 3.6: Calculation agreement for eigenvalue shifts in the (1,1) mode using FEM sim-

ulations and showing that the eigenvalue shifts are additive for discrete patches. Patch 1

is 0.1 x 0.1 units, with the lower left corner at (0.7, 0.45) and Patch 2 is 0.1 x 0.1 units

with the lower left corner at (0.935, 0.235). These are the same positions as in the previous

simulation, but the patch size for Patch 2 has been reduced.
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assume that our bound molecules are generic antibodies, with a molecular weight of 180, 000

and a diameter of 12.4nm [65]. We estimate the surface area SA, in Å
2
, of the antibody,

as:

SA = 6.3mw0.73. (3.15)

where mw is the molecular weight of the antibody [38].We then assume that a uniform

one-molecule layer of water is bound to the molecule, and will move with it. This gives

us an estimate of the total effective molecular weight of the antibody. We again assume

RSA coverage of the binding regions, and calculate the number of antibodies bound if we

model the antibody as a sphere, and assume a “footprint” of π(6.2nm)2. We then use

this information to calculate the total added mass on a region when an antibody-antibody

complex (the largest ligand-ligate complex we expect to see) is bound to the surface. We find

that our added mass density is approximately 0.00034 kg/m2, which is less than one tenth

of our baseline mass density of 0.0036 kg/m2; this means that in practice the maximum

value of ε, our dimensionless scaling parameter, will be less than 0.1; for our purposes we

assume ε ≤ 0.1.

Now we wish to ensure that our matrix perturbation analysis result will be sufficiently

accurate for an added mass density of 10%. To do so we note that we could express the

eigenvalue shift as an infinite sum:

∆λ = γ1ε+ γ2ε
2 + γ3ε

3 + . . . (3.16)

where the γi are dependent on the mass distribution function. Our matrix perturbation

analysis solved for the γ1 term, neglecting higher order terms. We can extract the expression

for γ1 from Eq. 3.13:

λj − λ(j0) = −
∫ a

0

∫ b

0
MC2

mn sin
2(
mπx

a
) sin2(

nπy

b
)dxdy × ε = γ1ε (3.17)

If we assume that the γi are all of the same order, than we can approximate the relative

Chapter 3. Modeling mass-loaded membranes 33



3.3 Model inversion

error of our first order matrix perturbation analysis by ε2 for small ε, as higher order terms

would contribute negligibly. As the maximum value for ε is 0.1, we expect the relative error

to be on the order of 0.01, which is acceptable. Therefore we assume that our perturbation

analysis results are accurate for our expected range of binding conditions.

3.3 Model inversion

In the analysis above, we determined the effect of a distributed mass load on the eigenvalues,

and hence the frequencies, of the membrane motion. However, in practice we wish to do

the reverse: determine the mass added (in a known spatial distribution) when a particular

shift in the eigenvalues is measured. This inverse problem is easily solved. From above, we

know that the shifts in eigenvalues are linear in the added masses mj , i.e.

∆λi = ci1m1 + ci2m2 + ...+ cinmn (3.18)

or more compactly,

∆λ̂ = ĉ • m̂ (3.19)

where ĉ is the correction matrix determined by the perturbation analysis. Because ĉ is

invertible, which fact is clear from its form (see Eq.3.13), we can solve for m̂ given only the

matrix λ̂, provided the number of measured harmonics is greater than or equal to the number

of regions of added mass, and that all of the individual equations are linearly independent.

This latter condition will be an important constraint in some of the optimization problems

we will consider. When it is not satisfied our system of equations is underdetermined, and

only partial solutions will be available.
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3.4 Positions and level curves

The perturbation analysis results demonstrate that for a given arbitrary mass distribution

we can calculate the resultant eigenvalue shifts, and that given the spatial distribution

of mass, absent magnitudes, and the eigenvalue shifts generated by the system, we can

determine the added masses. However, during the design process we can choose which

regions of the membrane will be functionalized. Some functionalization schemes will perform

better than others. With this in mind we aim to formulate an optimization procedure to

maximize device performance in terms of discrimination, sensitivity, or signal strength.

There are two fundamental ways to approach this in our optimization schemes.

One option is to consider each arrangement of functionalized regions in physical space,

where each patch is associated with a length, width, and a point on the membrane surface.

This permits us to directly implement constraints on patch positions, both relative to the

membrane and to other patches. However, due to symmetry and continuity, a specific

position for a region of a given size is only one of many such positions that would yield the

same eigenvalue shifts, in a given mode, for a given density factor mj. We can therefore

consider families of equivalent positions for each mode.

This leads to the second approach, where we seek to identify which functionalization pat-

terns will result in the same frequency response for a given mode, as measured by the

change in eigenvalue. We first attempt to understand how the choice of mass placement

affects the eigenvalue shift for the case of a single region of fixed size and mass placed on

the membrane. This will permit us to define our objective function in terms of the relative

frequency shifts desired in each mode, instead of in terms of region placement.

The membrane provides a continuum of possible placements, several of which will result

in the same eigenvalue shift. We desire a measure which approximates the relationship

between the position of the added mass and the induced eigenvalue shift. For the first

harmonic, one simple approach is to consider the planar Euclidean distance from the center

of the added region to the anti-node. We also considered a measure in which two regions
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are equivalent if their centers lie on points which, in the unperturbed solution, have the

same maximum amplitude during vibration. Both of these measures are straightforward to

calculate.

In a perfectly circular membrane, these two conditions are equivalent, and furthermore, can

be used as an eigenvalue measure. This is due to the rotational symmetry of the system.

However, a rectangular membrane such as ours has only two axes of symmetry. This means

that the eigenvalue shifts resulting from two regions which are placed equivalently according

to either of these two measures may be significantly different. As the aspect ratio of each

modal subregion increases, these measures diverge more and more severely from each other

and from the true solution.

We propose instead to invert the perturbation analysis result. Because the original result is a

many-to-one function, the inversion will generate a set of points. These points are equivalent

according to an eigenvalue measure, as opposed to a distance measure, as suggested above.

Therefore, for each eigenvalue shift there exists a level curve (or, in the case of higher modes,

a set of non-contiguous level curves) in the spatial domain; each curve is comprised of points

which are the same eigenvalue distance away from the anti-node. Placement of the region

of added mass anywhere on the same level curve will result in the same eigenvalue shift.

From the form of Eq. 3.13, reproduced here,

λj − λ(j0) = −
∫ a

0

∫ b

0
εMC2

mn sin
2(
mπx

a
) sin2(

nπy

b
)dxdy (3.20)

We can see that inverting it for given mass distribution functionM (a function of both x and

y) requires integrating the right hand side. For an arbitrary mass distribution function this

is not analytically feasible, but by placing appropriate restrictions on M we can guarantee

an integrable function.

For the case of a rectangular region of added mass, i.e. the case where M is identically zero

everywhere but on a rectangular subsection of the membrane, denoted by [x1, x2]× [y1, y2]

and where the density of the added mass is uniform across that subsection, Eq. 3.13 becomes

separable and can be integrated analytically, yielding an even less computationally intensive
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formula for the eigenvalue shift:

λj − λ(j0) = −ε C2
mn

[
x

2
− sin(2mπx

a )
4mπx

a

]x2

x1

·
[
y

2
− sin(2nπyb )

4nπy
b

]y2

y1

(3.21)

This result can also be generalized for arbitrary patch shapes, provided a one-to-one map-

ping from the given mass distribution to an equivalent rectangular one; in this thesis we

restrict ourselves to the rectangular case. Because the eigenvalue shifts due to different

weighted regions are additive in this approximation, we can calculate the impact of each

region individually.

Eq. 3.21 allows us to calculate the aforementioned level curves for the response surface of

each mode; sets of such level curves for the (1,1) and (2,1) response surfaces are shown

in Fig. 3.5; simulation parameters are those for Set II listed in 3.2. While these response

surfaces strongly resemble the unperturbed mode shapes for their respective modes, there

are important differences. The response surfaces have uniformly non-positive values, since

they represent the eigenvalue shifts instead of movement into or out of the plane of motion.

The response surfaces will also change with changes in the size or shape of the functionalized

region; each one is specific to the particular functionalization scheme. However, nodes and

anti-nodes for a mode will coincide with their counterparts on a response surface.

This approach allows us to frame our objective in terms of the relative frequency shifts

desired in each mode. Using multiple modes will constrain our problem and allow us to

efficiently find sets of equivalent functionalization geometries.
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Figure 3.5: Level curves for the eigenvalue shifts induced by regions of added mass.
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Chapter 4

Optimizing ligand patterning

4.1 Single membrane optimization

The development of sensor arrays for multiple chemical or biochemical targets (“electronic

noses”) [4, 2, 11] is often based on two sometimes complementary strategies. The first is

sensor heterogeneity [85], wherein different sensors, sensor mechanisms, or sensor charac-

teristics (such as size or material) are incorporated for the detection of target molecules

such as hydrogen [11], primary alcohols [4, 2], lysozymes [15], and metals [53, 11]. The sec-

ond is the use of at least one individual sensor per target analyte, with additional sensors

sometimes used for redundancy. We propose instead a pseudo-array consisting of a single

sensor capable of simultaneous detection or built in redundancy. This capability arises from

the acoustic characteristics of our sensor and from our ability to functionalize appropriate

sizes and locations of specific binding regions. A similar system has been implemented for

surface plasmon resonance sensors [90] and lateral flow immunoassays [45] but not, to our

knowledge, for any acoustic wave sensors.

We wish to optimize our pseudo-array to maximize its performance, but performance may be

measured by different objectives, including maximizing the eigenvalue shifts resulting from

binding, either of individual targets or of the sum total shifts; maximizing the sensitivity

in specific modes or a weighted average of the sensitivity of multiple modes; or maximizing
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discrimination. Each of these objectives presents difficulties and raises questions about the

limitations of the single-sensor pseudo-array. We will primarily consider cases where we

aim to maximize the sum of the eigenvalue shifts we observe, where we aim to maximize

the minimum of the eigenvalue shifts, and where we aim to maximize the probability of

discrimination between signals when we are not measuring enough modes to guarantee such

discrimination. In the first case we wish to maximize the probability that we will see a

signal shift from all of our target analytes. In the second, we wish to equalize contributions

from multiple analytes, ensuring that shifts from smaller analytes will make significant

contributions to the overall signal. In the third, by carefully choosing the positions of

functionalized regions, we can (sometimes) make our system act as if it were giving us

information from more modes than it actually was.

4.1.1 Critical assumptions

For all optimization in this paper, we assume the following: ease of measurement is not

dependent on absolute eigenvalue shifts, provided the shifts themselves are sufficiently large

to discount the possibility that they arise solely from nonspecific binding or electronic noise.

In other words, if we are certain that the eigenvalue shifts are due to specific binding by

our desired targets, we do not have to consider the magnitude of any absolute eigenvalue

shifts, but instead can consider relative eigenvalue shifts, normalized with respect to the

unperturbed eigenvalue for each mode. This approach allows us to weight information

received from each mode equally, decoupling the effect a particular mode has from the

magnitude of its eigenvalue. Alternatively, we can consider the fractional shift, wherein we

compare the shift induced by a patch at a particular position to the maximum shift it could

induce, taken over all possible positions on the membrane. The fractional shift is therefore

a measure of how good a position is, independent of the specific mass-loading. We will

sometimes refer to objective functions in which we consider fractional shifts as normalized

objective functions.

This assumption is valid provided that noise in the system will remain below some constant
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level significantly below the expected level of meaningful signal. We therefore expect this

assumption to hold for lower order modes, including the fundamental mode, for which the

expected eigenvalue shifts are large compared to the noise levels observed [5].

We further assume that if a target is present in solution, it will bind irreversibly, and binding

will not be mass-transport-limited. In practice, we expect that the quantity of bound

mass and the quantity of target mass in the bulk phase will be related by an equilibrium

isotherm such as the Langmuir or Hill isotherm. These equations will allow us to convert the

quantity of bound mass to the concentration of target in solution, except in cases where the

concentration is above the level that will saturate the functionalized region; concentrations

from saturation level up are indistinguishable from each other. However, the nature of

the conversion from bound mass to solution concentration is unimportant in terms of the

optimization of the surface functionalization. For simplicity we choose irreversible binding,

but note that this choice can easily be revised if necessary.

In all cases, we will assume that if an analyte is present, it will bind either at a specified

fraction of its total binding capacity, or within a specified fractional range of the binding

capacity. (The total binding capacity is determined by the size of the ligands and ligates

and by the area available, as described in Section 3.2.) This is a general form of the problem

for determining the presence or quantity of multiple targets; the case in which we have no

advance knowledge of the range of fractional binding is included. This assumption is valid

for any case where ligands, if present in any amount, will be present above or below certain

thresholds.

We assume that any eigenvalue shift arising from non-specific binding will be negligible

compared to the noise of the system. The validity of this assumption will depend on the

target species, competitor species, and the binding chemistries used, as well as on the

electrical and mechanical noise of the sensor. Without experimental evidence, it is difficult

to estimate the sizes of the various factors, and so we choose to work with the optimistic

and idealized case of no non-specific binding, with the understanding that this parameter

will have to be adjusted for specific real-world cases.
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For all cases, we assume that the ratio of bound mass on the more heavily loaded patch

to the other will be between 1 and 10 for cases where both patches are mass-loaded. We

realize that the expected range of bound masses would be considerably broader than one

order of magnitude. For example, if two targets were antibodies of similar size with sim-

ilar dissociation constants, we might expect their serum concentrations to vary by several

orders of magnitude [66], leading the bound masses in their turn to differ by several orders

of magnitude. However, we chose to restrict ourselves to the cases where the ratio lies

between 1 and 10 because where the ratio becomes much larger the more massive patch will

tend to dominate, regardless of position, and so covering those cases does not reveal more

information about the objective functions. All of our methods can be extended to cover

arbitrary ratios of bound mass, which can be useful in running speciic optimization cases.

Because the eigenvalue shifts for a particular patch are linear with added mass (for small

masses) we need only consider the ratio of masses, not the absolute masses.

Finally, we note that while we could in practice functionalize regions of any shape, we

restrict our attention to rectangular patches the sides of which are parallel to the sides

of the membrane. This is for mathematical reasons: so we can analytically integrate the

results of our perturbation analysis, as discussed in Sec. 3.4. The use of other shapes would

require numerical integration, negating the benefits of the perturbation analysis approach.

4.1.2 Objective functions and constraints

We are now in a position to formulate objective functions with attendant constraints. As

mentioned above in Sec. 4.1, we propose three general objectives: the maximization of the

sum of all induced eigenvalue shifts, the maximization of the minimum of all eigenvalue

shifts, and a “signal overlap” discrimination objective. For each of the first two objectives,

we will examine the cases of two distinct patches and of one, two, and three modes. We then

formulate analogous objectives using fractional eigenvalue shifts, relative eigenvalue shifts,

and combinations of the two, to further reveal the dynamics of the system. We then examine

the signal overlap objective function, which allows discrimination even in underdetermined
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systems.

The placement of functionalized regions is constrained by the geometry of our system.

Functionalized patches may not overlap, and due to imprecision in placement, we enforce

a minimum separation distance between patches, defined as the distance between corre-

sponding corners of two patches. In addition, our formulation requires that all individual

eigenvalue shifts must exceed a threshold, τ , to minimize the effects of noise 1.

The general form of our optimization problem is then as follows:

max f(x1, y1, x2, y2)

s.t. x1, x2 ∈ [0, a]

y1, y2 ∈ [0, b]

d((x1, y1), (x2, y2)) ≥ δ

∆λi(j,k) ≥ τ ∀ i, (j, k)

(4.1)

where f is the objective function, (xi, yi) denotes the lower left corner of the ith patch, and

the membrane dimensions are a× b. The function d is the Euclidean distance metric, δ is

the minimum separation distance between patches, and ∆λij,k , a function of xi, yi, and the

mass loading coefficient, is the eigenvalue shift from patch i in mode (j, k).

As is evident from this formulation, optimization in a particular scenario may involve two

types of tradeoffs. Because functionalized regions must remain separated by a minimum

distance δ, there may be cases where improving the position of one region comes at the

cost of worsening the position of another. The second type of tradeoff is between modes:

mode shapes vary significantly between modes; in fact, an anti-node for one mode may lie

on the nodal line of another, such as is the case with the (1,1) and (2,1) modes, respectively.

This means that improving the position of a region with respect to one mode may worsen

it with respect to another. These two types of tradeoffs, occurring in combination, can lead

1In our simulations, for simplicity, we set τ = 0, but recognize the importance in real-world cases of

setting an appropriate value for the threshold constraint.
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to interesting behaviors on the parts of the objective functions.
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We have now introduced three general types of objective functions: a max-sum type where

we maximize the sum of all such signal shifts; a max-min type where we maximize the

minimum of all signal shifts arising from the combinations of patches and measured modes;

and a signal overlap type, designed for underdetermined cases. Now we will go over each of

these objective functions and their variants in detail, discussing why and when we want to

use each, how our different normalization schemes affect them, and what they can tell us

about our sensor’s behavior.

4.2 Use of optimization

Let us first examine several possible scenarios we might encounter in the use of our sensor,

and consider how to approach them. These hypothetical cases are not intended to cover the

full range of scenarios we expect our sensor to address, but rather to motivate the discussion

of the obective functions we have developed and demonstrate for each a straightforward

application.

Case 0 We assume we can operate in only the primary (1,1) mode. We wish to detect a

single target, and will use only a single functionalized region to do so.

Case 1 We assume we can operate in only the primary mode. We aim to detect a single

target, and, for redundacy, will do so using two functionalized regions.

Case 2 Again operating in only the primary mode, we need to determine whether a sample

contains either of two targets: one of high molecular weight, one of low molecular

weight. We can devote one functionalized region to each target.

Case 3 We need to robustly detect a single target analyte with very high confidence. To

minimize both false positives and false negatives, we will operate in both the primary

and the secondary (2,1) modes, and use two distinct binding chemistries.

Case 4 Now considering only the primary mode, we wish to detect the presence and, if

possible, quantities of two different target species.
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Case 0 is simplest scenario we will face. With only one functionalized region, and only one

operating mode, there are no tradeoffs to consider. The only candidate for optimization is

the eigenvalue shift resulting from target binding. Because the signal-to-noise ratio increases

for larger signal shifts, the larger can make our eigenvalue shift, the more accurately we can

determine the quantity of target bound to the surface. So we maximize this quantity. To

do so, we center the functionalized region over the anti-node for the operating mode.

When we consider Case 1, we find ourselves in an analogous situation. Although we have

two functionalized regions, we do not need to worry about tradeoffs between them. Because

they are functionalized for the same target they are not competing with each other; we

can conceive of them as a single region functionalized for a single target. We then find

that once again our only candidate for optimization is the eigenvalue shift resulting from

target binding. To maximize this shift, we maximize the sum of the two component shifts,

whose positions we allow to vary independently. While we cannot determine the optimal

placement of the regions as easily as in the previous case, the same principle of placing the

regions close to the anti-node applies, and in fact generalizes to the same problem with n

functionalized regions used for redundancy.

Case 2 appears very similar; again we are operating only in the primary mode, using two

functionalized regions. Instead of being used for redundancy, however, they are functional-

ized for two different targets, and this is a critical difference. Now the two functionalized

regions are in competition for the optimal position: if one of them were to move closer

to the anti-node, thus forcing the other, via the minimum separation distance constraint,

to move further away, then the maximum eigenvalue shift acheivable by the latter region

is decreased. This means that for this case we can no longer use our max-sum objective

function, as there are straightforward instances in which its use would lead to placement

schemes that would yield false negatives for samples for which we were capable of detecting

the targets. In other words, the use of the max-sum objective function, in this case, would

worsen the performance of our sensor.
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To see why, recall that we are examining a sample in which we expect to find none, one,

or both of two target species: one of a higher molecular weight than the other. If we were

to use the max-sum objective function to determine the placement of our functionalized

regions, it would place the region for the heavier of the species on the anti-node, where it

can contribute most; the region for the lighter species would be placed at whichever of the

set of points the minimum distance away gave the largest eigenvalue shift.

Now suppose that the heavier target is not at all present in the sample, but the lighter target

is, in very low quantity. So low, in fact, that the eigenvalue shift induced by its binding is

just below the threshold τ required to distinguish signal from noise. If the functionalized

region for the lighter patch had been assigned a more advantageous position, the target

bound to it would have resulted in a larger eigenvalue shift, avoiding a false negative.

The key point here is that this result is asymmetric: the region for the heaver target was

favored because it already produced a larger eigenvalue shift. Inequalities between regions

can become amplified using the max-sum formulation, where we would prefer that they

be minimized instead. To achieve this, we use a max-min formulation: we maximize the

minimum of all the separate eigenvalue shifts. This objective function ensures that all of

the functionalized regions perform well, even though it may penalize some naturally favored

regions to gain such an assurance. The risk here is that a small increase in the objective

function could be purchased at a high cost to the other regions; however, as we shall see

in the next chapter, for cases with few patches and in the lower harmonics, this does not

become an issue.

Case 3 appears very similar to Case 1, in that we have two regions functionalized for the

same target. The key difference seems to be that we are now operating in two modes instead

of only one. However, because we are using our two regions orthogonally, to minimize the

probability of false positives or negatives, we cannot consider the two regions to be operating

as a single region, as we did in Case 1; instead they are competing, as in Case 2. This is

the case not only in the (1,1) mode, but in the (2,1) mode, as well, and so the dynamics

become more complicated: a shift in position may bring an improvement with respect to
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the primary mode at the cost of a worsening with respect to the secondary mode, or vice

versa. In order to robustly detect a single target, even with multiple forms of redundancy

built in, it is important to choose an appropriate objective function.

The final scenario to consider is Case 4, where again a small difference from the previous

cases proves crucial. We are operating in the (1,1) mode. Faced with a sample possibly

containing targets A and B we want to know whether the sample contains target A, target

B, both, or neither. Further, if it contains only one of the targets, can we tell in what

quantity or concentration? Our desire to distinguish the signal shifts resulting from the

different target species is what sets this problem apart from the previous ones. The system

of equations resulting from Eq. 3.19 for this case would consist of only a single equation

(arising from the output of the single operating mode) having two unknowns (the quantities

of mass bound to each of the functionalized regions), and so it seems that we are faced with

an intractable problem. However, if we are fortunate enough to have a priori information

about the likely quantities of each target, we can generate a second equation based on

the positions of the functionalized regions. In the best case, this will allow us to always

distinguish the contributions from targets A and B; in the worst, when we have no advance

information, we will have no such ability. This limits the applicability of this objective

function but not its usefulness when applicable.

The principle underlying this objective function is as follows: suppose we know that target

A, if present, will be present in a specified fractional range of its total binding capacity,

say in a concentration between Amin and Amax. Likewise, target B’s concentration will

either be 0 or within the range Bmin to Bmax. This means that the eigenvalue shifts

produced by each target will also lie within a range, and, crucially, we can adjust the size

and position of these eigenvalue ranges by moving the functionalized regions around the

surface of the membrane. To demonstrate this, we restrict our eigenvalue shift function to

patch positions on a single line from the membrane edge to the (1,1) anti-node, as shown

in Fig. 4.1, and plot the eigenvalue shifts induced by different masses as their positions

along this line change (see Fig. 4.2). We now consider three possible ranges in eigenvalue
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Figure 4.1: Shift measure contours for (1,1) mode overlaid with line along which values in

Fig. 4.2 are taken.
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Figure 4.2: Eigenvalue ranges and range sizes change with membrane position, for two

different mass concentration ranges A and B. The range at any point along the x-axis is

given by the difference between the curves; by moving along the x-axis we can change both

the size and position of the eigenvalue range.
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Figure 4.3: The eigenvalue ranges associated with different targets may overlap. In this

example, part of the range for target A overlaps with part of the range for target B, and

a different section of the range of target B overlaps with the summed output from targets

A and B. Values in the dotted regions therefore cannot be conclusively assigned to a single

case.
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space. We have the ranges associated with targets A and B, and the third: generated by all

possible combinations of the two (see Fig. 4.3) We can easily discern if our sample contains

neither of the targets; to distinguish the remaining three cases (A, B, A and B) we wish

to minimize the overlap between these three ranges. If there is no such overlap, we have

complete discrimination. In some cases this will not be possible, and we will have to settle

for the maximum discrimination possible under our constraints.

4.3 Maximizing the sum of all signal shifts

The simplest form of our first objective function f (which we maximize) is:

f =
∑
i,(j,k)

∆λi(j,k) , (4.2)

where pairs (j, k) denote operating modes and i indexes functionalized regions. Each

mode/region pair will contribute one summand, so if we functionalize two regions and

operate in three modes we will have six total summands. Because of this, we should not be

surprised if some of the individual summands are very small, especially when we consider

that the anti-nodes for some modes coincide with the nodes or nodal lines for other modes.

See, for example, Fig. 4.4, showing that the anti-node for the (1,1) mode, as well as one

of the anti-nodes for the (3,1) mode, lie on the nodal line for the (2,1) mode (given by the

line x = 75 in our canonical example). A position for a functionalized region may therefore

result in a large contribution to our objective function from one of its associated summands,

and in a small contribution from another summand.

Another factor affecting the sizes of contributions from different modes is that the resonant

frequencies (and hence eigenvalues) of the modes differ significantly, as we saw in Subsec.

4.1.1. The shifts from eigenvalues of larger magnitudes will tend to be larger and therefore

to contribute more to the objective function. To counteract this, we can divide each eigen-
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Figure 4.4: Contour plots showing the mode shapes of the (1,1), (2,1), and (3,1) modes.

value shift by the unperturbed eigenvalue of the associated mode.2 Summing these relative

eigenvalue shifts gives the information we receive from each mode equal value:

f =
∑
i,(j,k)

∆λi(j,k)
λi0

. (4.3)

Finally, we note that we may also want to weight the summands relative to maximum

quantity they could achieve in the absence of all constraints. If we let ∆λmax
i(j,k)

denote the

maximum possible value taken by ∆λi(j,k) over all possible pairs (xi, yi), then we can add a

third formulation of our objective function, the fractional formulation:

f =
∑
i,(j,k)

∆λi(j,k)
∆λmax

i(j,k)

. (4.4)

This formulation “pushes” each summand λi(j,k) towards its maximum, but since each func-

tionalized region is associated with multiple summands (one for each mode), each individual

region may be “pushed” in multiple directions simultaneously. The addition of the separa-

tion distance constraint will further contribute to the complexity of this system.

2If we wanted to give custom weights to each mode, for example, reflecting the reliability of the sensor’s

operation in different modes, we could do so by assigning the weights to each eigenvalue shift in this formu-

lation. An example of such a case, where we assign custom weights to individual summands, is discussed in

5.
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4.4 Maximizing the minimum signal shift

The forms of this objective function are analogous to those of the previous. The first

formulation considers neither the relative eigenvalue shifts nor the fractional eigenvalue

shifts; with this formulation contributions from the (1, 1) mode are expected to dominate:

f = min
i,(j,k)

∆λi(j,k) . (4.5)

With this objective function, however, the discrepancy between the sizes of the shifts is

even more of an issue. When operating in more than one mode, the smallest shift may be

negligible in comparison to one or several of the others, even when maximized, so optimizing

that shift will do little to optimize the majority of the shifts, because the minimum shift

will never pressure the others from beneath. 3 The relative formulation therefore becomes

important when operating in multiple modes:

f = min
i,(j,k)

∆λi(j,k)
λi0

. (4.6)

The fractional formulation is as expected and requires no special explanation:

f = min
i,(j,k)

∆λi(j,k)
∆λmax

i(j,k)

. (4.7)

4.5 Minimizing signal overlap

In the cases above, we have always required that the number of modes be equal or greater

than the number of functionalized regions, as stated in Sec. 3.3; along with a small con-

straint on symmetry, this enables us to translate the device output in frequency form (or

equivalently in eigenvalue form) to the quantity of mass bound to each functionalized re-

gion. This objective function is designed to allow us that same discrimination in the case

3This pressure is applied by the minimum shift, under maximization, exceeding another shift in value;

the latter shift then becomes the minimum and is forced upward in value as well. The “floor” of the system

is thus raised.
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where we have one operating mode, but two functionalized regions. While this approach

could potentially be used for more complicated scenarios, it is difficult to generalize and we

limit ourselves here to the simplest case.

As in Sec. 4.2, we have two targets, A and B, each of which is either not present or

present in the concentration range [Amin, Amax] or [Bmin, Bmax] respectively. For a given

functionalized region placement (xi, yi) for one of the targets, say, A, the concentration range

would correspond to a range in the possible resulting eigenvalue shifts. For simplicity, let

[SAmin, SAmax] be the eigenvalue shift range associated with target A, with the ranges for

B and for the shift with both A and B present similarly defined. (We will have a third

eigenvalue shift range, the sum of the other two, denoted by [SABmin, SABmax].) As shown

in Fig. 4.2 above, changing the choice of the functionalized region position not only changes

the magnitude of the eigenvalue shifts, but the width of the resulting range. This means that

each individual target will have an associated range, which can be stretched and translated

by changing the position of the target’s functionalized region. However, instead of seeing the

output from each target individually, we will only see a single output - the total eigenvalue

shift. Given this single point, and the ranges associated with each target, what can we say

about the sample?

Obviously, if neither target is present our job is simple. Otherwise it must fall into at

least one of the following three ranges: that associated with target A ([SAmin, SAmax],),

that associated with target B ([SBmin, SBmax]), or the eigenvalue shift range resulting from

both targets A and B binding ([SABmin, SABmax]). If it falls into only one of these, then

that range indicates which targets are present in the sample. However, if the point lies in

multiple overlapping ranges, we have no way of determining what combination of target

binding gave rise to the eigenvalue shift. To maximize discrimination, therefore, we have

to minimize the regions where these ranges overlap; we do so by moving the functionalized

regions around, thereby stretching and translating the eigenvalue ranges.

To determine the signal overlap we examine each of the three possible pairs of ranges, mea-

sure the overlap in each pair, and sum up. For an arbitrary pair of ranges [Plower, Pupper],
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Figure 4.5: Overlap is

given by a function of the

upper and lower limits of

the two ranges.

[Qlower, Qupper], the overlap between them is given by |minPupper, Qupper−maxPlower, Qlower|
(see Fig. 4.5). We can now define our objective function, which is to be minimized:

f =|min(SAmax, SBmax)−max(SAmin, SBmin)| (4.8)

+ |min(SAmax, SABmax)−max(SAmin, SABmin)|

+ |min(SABmax, SBmax)−max(SABmin, SBmin)|

Note that this function “triple-counts” some overlaps, so that if the eigenvalue ranges for

target A, target B, and the total shift all include a particular value, that is counted in

the objective function for each pair of eigenvalue ranges. This is a feature, not a bug:

the triple overlap is especially detrimental to discrimination; by counting each individual

overlap separately we are penalizing the triple overlap more heavily and helping to drive

the solution to a less ambiguous state.

Another feature is that this function calculates not only the signal overlap, but the sepa-

ration between signal ranges as well. This separation indicates that one or another of the

ranges could be larger than it is, without sacrificing discrimination. Minimizing the signal

separation in addition to the signal overlap will help to ensure that in our optimization

we do not drive the solution to the opposite but equally unpalatable situation where one
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eigenvalue shift range is vanishingly small. 4 To avoid related problems (such as making

all the eigenvalue shift ranges small and tightly packed) we rely on choosing appropriate

running conditions for the genetic algorithms we use to solve the optimization problems.

This objective function can be generalized to the case of multiple modes, but the conditions

for discrimination become intricate and we do not consider them here. As we are only

working with a single mode, there is no need to consider our eigenvalue shifts relative to

the unperturbed eigenvalue or to consider fractional eigenvalue shifts. Therefore our initial

formulation, Eq. 4.7, is the sole version of this objective function we will use.

4.6 Constraints

Our objective functions operate in a common environment; they are all minimized or max-

imized while subject to various constraints. Some of these constraints are imposed by

physical law or the physical and geometrical design of our sensor and ancillary components,

such as the photolithographs used to pattern the surface; these constraints are immutable,

and if they are not implemented in our optimization our results will not reflect what is

physically feasible. The second set of constraints are those we choose to impose; the ques-

tion here is not of actual feasibility but of restricting the search space to eliminate regions

which would return undesireable or unacceptable solutions.

Physical, or hard constraints, include constraints on where functionalized regions may be

placed, how large or small they may be, and what shapes they may take. However, for

simplicity we have chosen to use a fixed patch size, and as discussed in Subsec. 4.1.1,

we restrict ourselves to rectangular functionalized regions for ease of integration; therefore

these two constraints are self-imposed soft constraints, stricter versions of their physical

counterparts. An additional soft constraint is derived from the precision of the patterning

technology used to functionalize regions; to ensure that discrete regions do not overlap,

4We also recognize that there can be an advantage to small but non-zero gaps between the signal ranges,

as this may enable us to avoid confusion as to which range we are in under noisy conditions; this objective

function can easily be modified to require a given separation between ranges.
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we prescribe a minimum separation distance between them, as described in Subsec. 4.1.2.

We also often want to ensure that all of the signal shifts exceed a tuneable minimum

threshold value. In practice, we may also want to enforce a constraint on solutions that are

symmetric (or that would, given the noise of the system, be functionally symmetric) in all

the considered modes simultaneously, as this makes it impossible to determine which patch

contributed which portion of the signal. However, in this thesis we are more interested in

elucidating the behavior of the different objective functions, and choose to examine them in

the absence of this additional constraint. We will see in Chapter 5 that often the returned

solution is symmetric in all eigenmodes, and therefore when we desire this discrimination

explicitly including this constraint will be necessary.

The eigenmodes of a membrane of uniform density have a natural order in eigenvalue space,

determined by the equation

λmn = π2
T

ρ
(
m2

a2
+
n2

b2
) (4.9)

(see Sec. 3.1). When we, by manipulating the distribution of mass on the surface of the

membrane, induce shifts in the eigenvalues λmn, we open up the possibility that the order

of the eigenmodes will be altered, i.e., that some of the eigenvalues will cross over each

other. The risk is that output frequencies could then be mistakenly identified with the

wrong eigenmodes, leading to inaccurate system outputs. To avoid this, we need to be

able to identify mode crossings when they occur, to impose a constraint on the system

prohibiting mode crossings, or to be certain in advance that mode crossings will not occur.

Table 4.6 shows the relative sizes of the fundamental eigenvalues for several of the lower

order modes, given a nominal eigenvalue of 1 for the (1,1) mode; choosing modes that are

more widely separated reduces the chances of mode crossings. However, mode choices are

also constrained by measureability. The separation in frequency space of the modes we use,

coupled with the projected sizes of the induced signal shifts, indicates that for our system

we do not need to worry about mode crossings. Should any of our simulation parameters

change or prove inaccurate, we will need to re-evaluate this possibility.
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Mode (m,n) λmn
λ11

(1,1) 1.0

(1,2) 1.923

(1,3) 3.462

(2,1) 3.077

(2,2) 4.0

(2,3) 5.538

(3,1) 6.538

(3,2) 7.462

(3,3) 9.0

Table 4.1: Relative sizes of the fundamental eigenvalues of the (m,n) modes for each m ∈
{1, 2, 3} and n ∈ {1, 2, 3}.

4.7 Optimization methods

4.7.1 Potential solution methods

Our optimization problems are formulated as non-linear programming problems (NLPs)

with continuous variables. These are optimization formulations in which either the objective

function or the set of constraints contains non-linear parts.

Solution methods for NLPs can be broadly categorized as deterministic, in which a given

input will always yield the exact same solution, or stochastic, in which random processes

are used, and therefore a given input may produce different results each time it is used.

Examples of deterministic methods include gradient-based methods such as steepest descent

or Newton’s method, and interior-point methods which depend on the linearization of convex

functions. Stochastic methods include evolutionary algorithms such as hill-climbing and

genetic algorithms, and probabilistic-based methods such as Monte Carlo simulations and

simulated annealling.
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Typically, deterministic solution methods, such as those mentioned above, explicitly use

some underlying properties or dynamics of the system in question. The steepest descent

method will move from an initialization point to its final output by always stepping in the

direction of the maximally negative gradient for which a step will result in a position inside

the feasible region. Interior point methods use the convexity of the objective function to

generate a linearized version of it, which is then amenable to solution methods for linear

programming problems. In contrast, typical stochastic solvers can treat the objective func-

tion as a black box. The hill-climbing method will move from one position in the solution

space to the next by comparing the objective function value at its current position to one or

several nearby points, and choosing the optimal one among the set. Simulated annealling

uses a similar approach, but one where the probability of moving to the optimal point is

not always equal to one.

This means that deterministic solution methods are well-suited to problems for which the

function’s underlying behavior can easily be found, either analytically or computationally,

and for problems with few local optima. Genetic algorithms are useful when the system

dynamics are not easily accessible, or when a large number of convexities mean that rapidly

finding and comparing many feasible solutions is desirable.

In our formulations the signal shift function is the product of squared sinusoidal functions in

two dimensions. This means that many of our objective functions, as well as the threshold

constraints, are non-convex. Therefore we require solution methods which can handle local

optima (sometimes in large numbers) and non-convex feasible regions.

4.7.2 Linear proxy

In Chapter 3 we introduced the concept of eigenvalue distance, a representation of the

mapping from a position on the membrane to an eigenvalue shift for a given patch size

and mass. We now use the eigenvalue distance function to simplify our optimization prob-

lems, ridding them of some of the non-convexities, both in the objective functions and the

constraints. The fundamental idea is to reduce our solution search space from all possible
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patch positions on the membrane surface to a smaller set of possible patch positions still

representing the full range of eigenvalue distances. We do this by choosing a line that inter-

sects all level curves of the system. If we choose this line appropriately we can move from

a two-dimensional search space for each patch to a one-dimensional search space. Then,

instead of optimizing for a set of patch positions on the membrane, we optimize for a set on

the line. After optimization, we use the level curves to generate sets of positions equivalent

in eigenvalue space to the given solution.

For this method to work, several conditions must be met. While the line acting as the

reduced search space need not, technically, be a straight line, it must be a smooth, contin-

uous, non-self-intersecting curve. For simplicity, in this thesis we work only with straight

lines as optimization proxies, although the use of curves may open up the possibility of

using such proxies for the optimization of higher modes. As mentioned above, the line must

intersect each level curve; if any are neglected a portion of the search space will be left

out and the optimization will be flawed. Crucially, this applies in each mode, and, when

using the max-sum objective function, to the “effective” modes created by the sums of the

component modes; this functionally limits the applicability of this method to single-mode

optimization cases for the most part.

Converting the separation distance constraint on our patches from the full membrane ge-

ometry to a linear subspace is challenging; two positions that are proximal on the proxy

line correspond to many pairs of positions on the membrane, none or many of which may be

far apart. We have chosen to use a conservative separation distance constraint, explained

below, in our linear proxy solution method. This formulation guarantees satisfaction of the

separation distance constraint for all solutions, but is only applicable to two patches and

may exclude some feasible solutions. We are mindful that careful consideration should give

rise to more refined constraints.

Any straight line meeting the conditions described above will function as a linear proxy. To

further simplify the optimization, we require a one-to-one correspondance between points

on the line and level curves; for the (1,1) mode, this means the proxy line runs from the
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edge to the center (where the anti-node lies), but not beyond. As mentioned above, this

constraint restricts the modes to which this method can be applied; in some of the higher

modes, there is no straight line fulfilling all the conditions we have defined for the proxy

line. Curved paths satisfying these conditions may be constructed, leaving additional modes

amenable to this method, but we do not explore this avenue.

To formulate our separation distance constraint, we double the length of the line, as if

extending it to the opposite edge. We then sum the width of each patch, the position of

each patch on the line (i.e. the distance from the edge to the left side of each patch) and the

separation distance - this sum must be less than or equal to the doubled length. If it is, there

is a feasible patch positioning with the separation distance constraint enforced, because the

patches and separation distance may be laid down on the double line without overlap. 5

This constraint formulation is imperfect, however; a pair of eigenvalue level curves may

be sufficiently separated on some proxy lines, and not on others. Therefore, to choose the

angle of the proxy line, we consider the slope in eigenvalue space; given the placement of

the first patch, the separation distance will determine the placement of the second. If our

proxy line is perpendicular to a very steep slope, then the separation distance in physical

space will correspond to a large distance in eigenvalue space. If, however, our proxy line is

perpendicular to a shallow slope, we will see a much smaller change in eigenvalue shifts. As

we see the maximum shift at the anti-node, and want to maximize our eigenvalue shifts, we

will want to choose a proxy line following a shallow gradient rather than a steep one so as to

minimize the decrease in eigenvalue space given by traveling a fixed distance along the linear

proxy. For the (1,1) mode, this corresponds to a line running from one membrane corner to

the anti-node (see Fig. 4.6). For ease of visualization, and because the expressions for these

lines are simpler (due to separability), in this thesis we restrict ourselves to horizontal and

5Note that the patch position in this constraint is determined by the left edge of the patch, while in

implementations the position x1 may be coded to indicate the left side, the center, or the right side of the

patch. This explains discrepancies between the form of this constraint here and how it is shown in some

pieces of code.
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vertical proxy lines. For a real application the optimal, diagonal proxy line could be used;

this implementation is equally straightforward but slighter more computationally intensive.
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Figure 4.6: Two options for linear proxies.

We perform our linear proxy optimization using Mathematica [57], a software program

which allows the use of both symbolic and numerical computation. Mathematica’s built-in

optimization methods allow us to choose from global and local searches, and from symbolic

methods and various numerical methods. Because we are dealing with monotone, smooth,

functions the symbolic methods give accurate results.

An example formulation, for a linear proxy taken along the line y = b/2, is given below.

Here, flp(x1, x2) := f((x1, b/2), (x2, b/2)) .

max flp(x1, x2)

s.t. x1, x2 ∈ [0, a/2]

x1 + x2 + δ + 2×∆x ≤ a

(4.10)
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4.7.3 Genetic algorithms

For objective functions which can not be simplified sufficiently to use the linear proxy

approach, we use genetic algorithms as our solution method. Genetic algorithms allow us

to rapidly find and compare large numbers of potential solutions. Our search space includes

multiple convexities, but the stochastic nature of the solution method keeps us from getting

stuck in local optima.

Genetic algorithms work by imitating the process of biological evolution. The general frame-

work is as follows: after the generation of an initial population of potential solutions, each

member is evaluated for fitness. Lower-fitness members of the population are then elimi-

nated, and a new population is generated by creating combinations of different members of

the previous generation, creating variants of individual members, and by directly preserving

(some) highest-fitness members. In this way, populations of high fitness are bred.

We use a program called the Genetic Algorithm Toolbox [14], a Matlab [36] toolbox, for all

of our optimization work in this area. In this program, each potential solution is represented

by a chromosome, a binary encoding of the position. The chromosome is the data structure

which undergoes mutations to generate new potential solutions. From each chromosome, a

phenotype is generated; in our case, the phenotype for each potential solution is its position

on the membrane. Our convention for positions is that (x, y) denotes the lower-left corner

of a patch of preset size. An objective function is applied to each phenotype to evaluate

its fitness. While the Genetic Algorithm Toolbox is designed to support evaluation of and

selection based on multiple objective functions used simultaneously, we have not used this

capability.

We use a program called the Genetic Algorithm Toolbox [14], a Matlab [36] toolbox, for all

of our optimization work in this area. In this program, each potential solution is represented

by a chromosome, a binary encoding of the position. The chromosome is the data structure

which undergoes mutations to generate new potential solutions. From each chromosome, a

phenotype is generated; in our case, the phenotype for each potential solution is its position
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on the membrane. Our convention for positions is that (x, y) denotes the lower-left corner

of a patch of preset size. An objective function is applied to each phenotype to evaluate

its fitness. While the Genetic Algorithm Toolbox is designed to support evaluation of and

selection based on multiple objective functions used simultaneously, we have not used this

capability.

For all of our optimization work, we use stochastic universal sampling (SUS) to select

members of each population for the breeding phase, in which different population members

are combined to form members of the new generation. In SUS, potential solutions are

mapped to contiguous line segments, where each member’s segment is proportional to its

fitness. Fitter members of the population therefore occupy a larger fraction of the line.

The line is then divided into Nsel equal sections, where Nsel is the number of members of

the population to be chosen. Nsel equally spaced points are then chosen, starting from a

random point in the first section. The population members associated with these points are

the ones selected for breeding. Using this scheme, it is possible for individual members to

be selected more than once.

The selected members are bred using a single-point crossover technique. Two parent mem-

bers are chosen and a random point between 0 and the length of the chromosome is gener-

ated. For each parent, the portion of the chromosome before the randomly selected point

is the head, and the portion after is the tail. Two offspring are then created by swapping

the tails of the chromosomes.

Once all of the offspring have been created, a mutation function is applied. This function

randomly switches bits, with the default probability of any bit being switched of 0.007.

Parameter settings, such as the number of individuals per generation, the number of gen-

erations per simulation, and the fraction of best members retained after each generation,

vary with the individual optimization cases, and will be included in the variable tables for

each case.

We test for convergence by tracking the fitness of the best member of each generation over

time; when this fitness is unchanged over 100 generations, and over at least 3 simulations, we
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judge that the simulations are converged to a steady state solution. The test for convergence

relies on the fitness value rather than on the set of patch positions corresponding to the best

member, because multiple population members, denoting multiple sets of patch positions

may all be equivalent in eigenvalue space (and therefore be equal according to the fitness

metric). Since we are testing convergence over multiple simulations, we have to allow for

different best members, but use fitness as our metric to ensure that we arrive at equivalent

solutions.

Our constraints require that the total signal from each target exceed a certain threshold, and

we want to enforce a minimum separation distance between patches. The Genetic Algorithm

Toolbox can implement linear constraints directly, but not non-linear constraints[14]. We

implement our non-linear signal threshold constraint using a penalty function. This changes

our optimization problem from the form shown previously to the following:

max f(x1, y1, x2, y2)−M

s.t. x1, x2 ∈ [0, a]

y1, y2 ∈ [0, b]

d((x1, y1), (x2, y2)) ≥ δ

M =



0 if ∆λi(j,k) ≥ τ ,

1000 if ∆λi(j,k) < τ.

(4.11)

where M is set to 0 if ∆λi(j,k) ≥ τ , and to a large positive number (commonly 1000, as

here, but sometimes set to a different value for a specific case) if ∆λi(j,k) < τ . The number

must be large compared to a typical objective function value; we choose a positive number

because we are maximizing our function (and subtracting the penalty value); if we were

minimizing it we would choose a negative one.
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4.8 Tradeoffs

In Sec. 4.2, we discussed the issue of patches competing with each other. Two patches can

jostle to occupy the same, optimal spot; past a certain point, an improvement in the position

of one will force the other to move further away, via the separation distance constraint. A

gain for one patch is traded for a loss for another. This is not, however, the only tradeoff

we will see in our optimization. Equally important will be tradeoffs between modes: a

patch position giving rise to a large signal shift in one mode can give rise to a small shift in

another, or a change in position which increases the signal shift from one mode can decrease

the shift from another mode. We will see how our choice of objective function and target

analyte weights will lead to different types of tradeoffs between patches and between modes.
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Chapter 5

Optimization results

5.1 Linear Proxy results

In Section 4.7.2 we describe our linear proxy solution method, whereby we map the the

two-dimensional membrane surface to a one-dimensional search space using the eigenvalue

distance metric. This method, when applicable, is much faster than using genetic algo-

rithms.

Recall that we define a relative eigenvalue shift as one normalized with respect to the unper-

turbed eigenvalue: ∆λrelative :=
∆λ
λ0

In contrast, a fractional eigenvalue shift is normalized

with respect to the eigenvalue shift that patch could achieve were it placed optimally with

respect to the anti-node: ∆λfractional := ∆λ
∆λmax

. Each fractional shift value is therefore

associated one-to-one with a level curve in eigenvalue space. When we discuss normalized

objective functions, we mean those which are formulated with fractional eigenvalue shifts.

As mentioned in Subsec. 4.1.1, in our analysis we show the ratio of the masses of the

functionalized patches captures their behavior even if the absolute masses are not known.

In addition, we work with a fixed patch size, which means we can bundle mass and density

together. Therefore, in all our simulations, we vary the value for one parameter for patch

density, k1, and fix the other at k2 = 1. Values for k1 are 0.0, 0.1, 0.2, ..1.0 (usually; excep-

tions will be noted). The k1 : k2 ratio therefore varies from 0 to 1. We refer to the patch
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with density k1 as patch 1 or the first patch, and to the patch with density k2 analogously.

The standard values we use for important variables are as follows:

Membrane length: 150 µm

Membrane height: 100 µm

Patch size: 10 µm by 10 µm

Minimum separation distance1: 20 µm

Noise threshold: τ = 0 2

Sum of non-normalized signal shifts in the (1,1) mode

We demonstrate our linear proxy method using the objective function resulting from sum-

ming the effects of two patches in the (1,1) mode. In this mode, we know that we have only

one optimal patch position, centered over the anti-node. As we have two patches of added

mass, we expect competition between them for the ideal location.
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Figure 5.1: Function values plotted against k1 : k2, sum of non-normalized signal shifts in

the (1,1) mode.

In Fig. 5.1 we see the objective function value plotted against the k1 : k2 ratio. From this we

1The minimum required distance between corresponding corners of two patches.
2This represents the idealized case of no nonspecific binding.
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Figure 5.2: Function values per unit mass, sum of non-normalized signal shifts in the (1,1)

mode

can see that, as expected, the objective function value increases as the k1 : k2 approaches

one (and simultaneously as the sum k1 + k2 increases). However, from this figure it is

difficult to see any tradeoffs between the two patches. To illuminate these, we consider the

objective function value per unit of added mass, i.e. the objective function value divided

by the sum k1 + k2. We again plot this against the mass ratio, resulting in Fig. 5.2. This

shows us that as the ratio increases, the contribution to the objective function per unit mass

decreases. In Figs. 5.3 and 5.4, which show the positions of each patch on the linear proxy

line (x-axis) as well as the objective function value resulting from each patch (y-axis) for

three pairs of patches ((k1, k2) = (0.1, 1.0), (0.5, 1.0), (1.0, 1.0), we can see why this is so - as

the patch masses become equal, the patches are moving to a more symmetric arrangement

with respect to the anti-node. These dynamics are explored more fully when we consider

the same objective function in Sec. 5.2.
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Figure 5.3: Patch positions and objective function values for three pairs of (k1, k2) (blue,

red) values, superimposed on the curve showing the objective function value for each point

on the linear proxy line. Black lines connect the two patches for each (k1, k2) pair.
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Figure 5.4: Close up of Fig. 5.3. Increasing k1 corresponds to pairs moving towards the

right.
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5.2 Genetic Algorithm results

For cases in which the linear proxy is not applicable, i.e. for cases in which a single proxy

line cannot intersect all the level curves, we use genetic algorithms. This stochastic method

allows us to broadly search the solution space and thereby to consider more complicated

optimization cases.

The genetic algorithm results, unless otherwise indicated, were generated using the same

membrane simulation parameters as used for the linear proxy results. For parameters spe-

cific to the genetic algorithms, such as number of generations, we used the following settings:

Number of individuals per generation: 900

Number of generations: 125

Fraction of best members retained after each generation: 0.2

5.2.1 Summation formulations

Sum of non-normalized signal shifts in the (1,1) mode

In this objective function we consider the (1,1) mode exclusively, and consider two patches

of added mass. The purpose of this objective is to maximize the sum of two eigenvalue

shifts, one arising from each patch. As this function is based on the summation of two

eigenvalue shifts in a mode with only one anti-node, we expect to see tradeoffs between the

two patches, even for low (but non-zero) relative patch densities.

If we consider Fig. 5.5 we see that as our mass ratio increases, so does our objective function

value. This increase is sub-linear, and decreases as our mass ratio increases. As the mass of

patch 1 increases, it is gradually pushing patch 2 further and further off of the anti-node.

Fig. 5.6 shows the value of the objective function per unit density. In this figure we can

clearly see that the fraction of the maximum that we are able to acheive drops as the two

patches become comparable in density. When only patch 2 is present (i.e. k1 = 0), it

Chapter 5. Optimization results 71



5.2 Genetic Algorithm results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
90

100

110

120

130

140

150

160

170

180

190

k1:k2 mass density ratio

ob
je

ct
iv

e 
fu

nc
tio

n 
va

lu
e

Sum of eigenvalue shifts from 2 patches

Figure 5.5: Function values plotted against k1 : k2, sum of non-normalized signal shifts in

the (1,1) mode.
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Figure 5.6: Function per unit mass, sum of non-normalized signal shifts in the (1,1) mode.
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occupies the optimal position; as patch 1 is added and increases in mass, the fraction of

the signal coming from the optimal position is reduced - more and more of the eigenvalue

shift is resulting from less well-placed mass. Partly this is due to patch 2 moving to a less

advantageous position, and partly to patch 1 contributing an increasing portion of the total

signal due to its increasing mass and improving position.

Because our objective function is symmetric with respect to the two patches, we expect to

see a “bottoming out” of the decrease as k1− > k2; here the slope of the curve must be

equal to 1, as adding density to either patch is equivalent.

This symmetric behavior, as well as the competition for the best position, is shown more

explicitly in Fig. 5.7, which shows the fractional shifts achieved by each patch. When

k1 = 0, the second patch, optimally placed, attains a fractional shift value of 1. Patch 1,

being unweighted, is randomly placed and its fractional shift is irrelevant. As k1 increases,

even to only 0.1, it is already affecting the position of patch 2; this means the objective

function overall does better when patch 2 is moved to a less-optimal position than before,

its loss being offset by the gain from patch 1. This indicates that the magnitude of the

gradient of the eigenvalue shift function in the neighborhood of patch 1 (in the direction of

patch 1’s movement as we increase k1 from 0 to 0.1) is greater than the magnitude of the

gradient in the neighborhood of patch 2 (defined in the direction of patch 2’s movement as

k1 is shifted). In fact, because the former gradient includes a factor of k1 and the latter a

factor of k2, and k1 < k2, we can see that the difference in the gradients of the fractional

shift function is even larger. In essence, we are moving the light patch 1 up a steep slope,

and thereby gaining a large value in the objective function, while moving the heavy patch

2 down a shallow slope, losing a lesser amount due to its worsened position. Again, we

see that as the mass of patch 1 approaches that of patch 2, we approach a solution that is

symmetric in eigenvalue space.

Because there is a one-to-one correspondance between fractional shift values and eigenvalue

level curves, with a fractional shift value of 1 corresponding to a position over an anti-node

and a value of 0 corresponding to a position over a node or nodal line, we can interpret
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Fig. 5.7 as representing the individual level curves on which our patches are sitting. And

because we know what our level curves look like in the (1,1) mode (see Fig. 3.5) we can

directly see how altering the relative patch masses alters their positions on the membrane.
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Figure 5.7: Fractional signal strength in (1,1) mode, for sum of non-normalized signal shifts

in the (1,1) mode.

These three functions of the ratio k1 : k2 (the objective function value, the objective func-

tion value per unit mass, and the fractional signal strength of each of the objective function

summands) will be important for comparing objective functions to one another, for evalu-

ating tradeoffs between modes and patches, and for comparing the relative contributions of

different modes and patches.

In most cases we will compare each non-normalized objective function to its normalized

counterpart. Normalizing an objective function multiplies the contributions from each mode

by a specified constant, different for each mode. Objective functions concerning only one

mode are merely scaled when normalized, so it is not necessary to compare the two cases.

When multiple modes are involved the functions are not directly scaled, so normalization

produces substantively different objective functions.

Because this objective function, the sum of non-normalized signal shifts in one mode, is
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a single mode function, we will not consider its normalized version. The next objective

function is the sum of non-normalized signal shifts in two modes.

Sum of non-normalized signal shifts in the (1,1) and (2,1) modes

In this objective function we consider the (1,1) and (2,1) modes simultaneously, and look

at two patches of added mass. The purpose of this objective is to maximize the sum of four

eigenvalue shifts, one arising from each patch/mode pair. As this formulation is a summation

of the non-normalized eigenvalue shifts, we expect to see tradeoffs between the two patches

even for low (but non-zero) relative patch masses. These tradeoffs are complicated by the

facts that we are now considering two modes, and that in the (1,1) mode there is only one

anti-node while in the (2,1) mode there are two.
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Figure 5.8: Function values plotted against k1 : k2, sum of non-normalized signal shifts in

the (1,1) and (2,1) modes.

However, when we consider Fig. 5.8, which shows the objective function value plotted

against the ratio k1 : k2, we see that the increase in objective function value is linearly

proportional to the total mass, indicating that tradeoffs between patches are not important.

This is verified in Fig. 5.9, showing the objective function value per unit mass; this value
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Figure 5.9: Function per unit mass, sum of non-normalized signal shifts in the (1,1) and

(2,1) modes.

is constant, which means that changing the ratio of masses does not change the efficiency

of the system, implying that the two patches are not changing their eigenvalue positions

regardless of their masses. What has happened is that in adding in considerations of the

(2,1) mode we have moved from a system in which there is only one optimal position, to

one in which there are two. Positioning a patch over the anti-node for the (1,1) mode will

result in the single largest eigenvalue shift of the four contributing to this objective function.

However, as the anti-node for the (1,1) mode lies over the nodal line for the (2,1) mode,

that large contribution will be paired with one of nearly zero from the same patch in the

(2,1) mode. In contrast, placing a patch on one of the (2,1) anti-nodes leads to substantial

contributions from both modes, making this position better overall. We are not dealing with

tradeoffs between the patches, but between the modes. To simplify this system, consider

our objective function, written in an expanded form:

f = ∆λ1(1,1) +∆λ1(2,1) +∆λ2(1,1) +∆λ2(2,1) (5.1)

where each ∆λi(j,k) is the integral of the product of a mass term and and a mode shape
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function representing the response surface (recall Eq. 3.21). Because the mass terms for each

patch are identical across the modes, we can regroup these terms, and consider the sum of the

two response surface functions as a single response surface function, affected by two different

mass terms, one from each patch. (Recall from Chap. 3 that this function is the result of an

integration of a mass distribution function and a mode shape function; we convert this to a

product of the mass distribution function and a response surface function by restricting our

mass distribution to rectangular regions, this making our integration seperable and allowing

us to generate (by integrating the mode shapes) new response surfaces specific to the mass

distribution parameters.)

We can think of this new response surface function as being the response surface of the

effective mode of the system, and consider its nodes, anti-nodes, and gradients just as we

would for the response surface of a single mode. Fig. 5.10 shows the level curves for

the response surfaces corresponding to the (1,1) mode, the (2,1) mode, and the combined

(1,1)+(2,1) effective mode, for membranes and added patches using the same parameters

as in our genetic algorithm calculation.
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Figure 5.10: Response surfaces for the (1,1) mode, (2,1) mode, and (1,1) + (2,1) effective

mode.

From this figure we can see that the effective mode generated by the (1,1) and (2,1) modes

has two anti-nodes. As they are separated by more than the minimum separation distance

we have assigned, placing one patch on each of them results in a feasible solution. As we

are not enforcing discrimination constraints (see Sec. 4.6), we do not penalize a symmetric
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solution; therefore this configuration yields the maximum value for this objective function,

regardless of the ratio of patch masses. This is why the objective function value rises linearly

with total added mass.

An important question is whether we can use characteristics of the objective function (such

as the number of modes or patches used) combined with characteristics of the effective mode

(such as the number of local maxima) to predict the general behavior under optimization of

our objective functions. For example, do all summation functions using the (1,1) and (2,1)

modes with 2 patches show the same behavior at the gross level, regardless of normalization

or weighting schemes?

Sum of normalized signal shifts in the (1,1) and (2,1) modes

This is the normalized version of the previous objective function, so we are again considering

the (1,1) and (2,1) modes, and two patches of added mass. The purpose of this objective

is to maximize the sum of all four normalized eigenvalue shifts, one arising from each

patch in each mode. The eigenvalue shift from each patch is normalized by the maximum

eigenvalue shift possible in the considered mode if each patch were considered in isolation.

This maximum possible shift is achieved by centering the patch over the anti-node for the

mode in question. As there is only one anti-node in the (1,1) mode, and two patches, we

will not be able to acheive this maximum for both patches simultaneously in this mode.

Although the corresponding maximum for the sum of the two individual signal shifts is not

feasible, it is a highly useful metric; it allows us to compare our results to the naive case

where each patch is used on a single membrane in isolation, and therefore to monitor the

cost of multiplexing.

In Fig. 5.11 we see that as our mass ratio increases, so does our objective function value.

This increase is linear with the total added mass. For k1 = 0, equivalent to a case of only

one patch, we see that we achieve the maximum shift possible in the (2,1) mode, but not

the (1,1) mode. Because the anti-nodes do not overlap, we cannot achieve the maximum for

both modes simultaneously. In Figs. 5.12, 5.13, and 5.14 we observe that for cases where

Chapter 5. Optimization results 78



5.2 Genetic Algorithm results

k1 > 0, i.e. cases where we are truly dealing with two patches, there is no change in the

positions or eigenvalue shifts per unit mass as we increase k1. This is what we saw with the

previous objective function; normalization has not changed the results. This is because we

are working with the effective mode generated by the (normalized) (1,1) and (2,1) modes;

although this effective mode is somewhat different from the one in the previous case because

the contributing modes are scaled by different factors 3 The distortion due to the differential

scaling is not sufficient to change the relevant properties of the effective mode; it has two

anti-nodes separated by more than the minimum separation distance, so the two patches

always sit on the anti-nodes.
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Figure 5.11: Function values plotted against k1 : k2, sum of normalized signal shifts in the

(1,1) and (2,1) modes.

3In the non-normalized case, the effective mode is given by (1, 1) + (2, 1); in the normalized case, by

(1,1)
max∆λ11

+ (2,1)
max∆λ21

.

Chapter 5. Optimization results 79



5.2 Genetic Algorithm results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.7509

1.7509

1.7509

1.7509

1.7509

1.7509

1.7509

1.7509

1.7509

1.7509

k1:k2 mass density ratio

si
gn

al
 o

ve
rla

p 
pe

r 
un

it 
m

as
s

Objective function value per unit mass

Figure 5.12: Function per unit mass, sum of normalized signal shifts in the (1,1) and (2,1)

modes.
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Figure 5.13: Fractional signal strength in (1,1) mode, for sum of normalized signal shifts in

the (1,1) and (2,1) modes.
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Figure 5.14: Fractional signal strength in (2,1) mode, for sum of normalized signal shifts in

the (1,1) and (2,1) modes.

Sum of non-normalized signal shifts in the (1,1), (2,1), and (3,1) modes

As we have seen in the previous two cases, when considering max-sum objective functions

in multiple modes, it can be helpful to consider the effective mode created by summing

the component modes. In Fig. 5.15 we see the response surfaces of the three component

modes of this objective function, as well as that of the effective mode they generate. Of

particular note is that one of the anti-nodes for the (3,1) mode coincides with the anti-

node for the (1,1) mode and with the nodel line for the (2,1) mode, while the nodal lines

for the (3,1) mode lie over the anti-nodes for the (2,1) mode. Therefore we expect to see

tradeoffs between modes, as in the previous cases, and that, again, no patch can achieve the

maximum in all modes simultaneously. However, the coincident anti-nodes for the (1,1) and

(3,1) modes make that position the single best position on the membrane; thus we expect

the two patches to compete for this optimal position.

Once again we begin by considering the raw objective function value, shown in Fig. 5.16.

The increase in objective function value is approximately linear in added mass, indicating
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Figure 5.15: Response surfaces for the (1,1), (2,1), and (3,1) modes, and for the (1,1) +

(2,1) effective mode.
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Figure 5.16: Function values plotted against k1 : k2, sum of non-normalized signal shifts in

the (1,1), (2,1), and (3,1) modes.
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Figure 5.17: Function per unit mass, sum of non-normalized signal shifts in the (1,1), (2,1),

and (3,1) modes.
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that each unit of mass added to the lighter patch is contributing approximately the same

amount to the objective function. However, as we can see in Fig. 5.17, the increase is

not linear in total mass. This is due to the shape of the response surface of the effective

mode: it has one global maximum. When only one patch contributes to the eigenvalue shifts

(i.e. k1 = 0), that patch is placed on the global maximum, and we see a large combined

eigenvalue shift per unit mass. However, when patch 1 has non-zero density (k1 > 0), it is

placed not on the global maximum, but on a less advantageous position. Patch 2, which is

both heavier and optimally places, therefore has a larger effect per unit mass than patch 1,

and as the latter increases in mass, the average contribution to the objective function per

unit mass decreases.
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Figure 5.18: Fractional signal strength in (1,1) mode, for sum of non-normalized signal

shifts in the (1,1), (2,1), and (3,1) modes.

When we look at the fractional signal shifts achieved in each modes, in Figs. 5.18, 5.19,

and 5.20, we see behavior that changes in all three modes as k1 increases.

For patch 2, the heavier patch, the initial placement yields a fractional signal strength of 1

in both the (1,1) and (3,1) modes, and of 0 in the (2,1) mode, indicating placement on the

anti-node of the former modes and on the nodal line of the latter. This is as expected; in
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Figure 5.19: Fractional signal strength in (2,1) mode, for sum of non-normalized signal

shifts in the (1,1), (2,1), and (3,1 ) modes.
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Figure 5.20: Fractional signal strength in (3,1) mode, for sum of non-normalized signal

shifts in the (1,1), (2,1), and (3,1 ) modes.
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the absence of a competing, second patch (as patch 1 initially has a mass of 0; its placement

is random), patch 2 lies on the maximum for the effective mode.

When we considered a previous case, the sum of non-normalized signal shifts in the (1,1)

mode, we saw that even changing the density on patch 1 from k1 = 0 to k1 = 0.1 alters

the position of patch 2. This is due to the difference in the slopes of the eigenvalue shift

function in the neighborhoods of the patches. In this case, however, we do not see a change

in the position of patch 2 until our k1 value reaches 0.7. This is because now the changes in

contribution from patch 1 and patch 2 are each coming from changes in three modes; while

in the (1,1) mode the change for patch 1 resulting from a shift towards the optimal position

outweighs that of patch 2 as it moves away from the optimum, and in the (2,1) mode the

change for patch 2 is positive, the gradient of the fractional shift function in the (3,1) mode

is nearly as steep in the neighborhood of patch 2 than in that of patch 1. Therefore the

patch density ratio k1 : k2 must be significantly higher for the gains from patch 1 to offset

the losses from patch 2. From this point on, the two patches are competing for the single

optimal position; in Figs. 5.21 and 5.22, which show the absolute eigenvalue shifts induced

by each patch in each mode, we can see that when k1 : k2 = 1, the two patches behave

equivalently with respect to all three modes. Further, we note that for k1 ≥ 0.8, the (2,1)

mode does not contribute significantly for either patch.
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Figure 5.21: Absolute eigenvalue shifts for patch 1.
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Figure 5.22: Absolute eigenvalue shifts for patch 2.
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Sum of normalized signal shifts in the (1,1), (2,1), and (3,1) modes

The normalized version of the previous case shows some similarities. In Fig. 5.23, we see

that again our objective function value increases linearly in added mass. In addition, in Fig.

5.24 we see that, as in the previous case, the increase is not linear in total mass. This is due

to the response surface for the combined normalized modes, which is qualitatively similar

to that of the non-normalized system in that it has one global maximum and additional

local maxima. When patch 2 is the only one in play, it occupies the global maximum and

we see a large eigenvalue shift per unit mass. When patch 1 is added (i.e. k1 > 0), it is

placed on a local maximum, with a smaller total shift value than the global. So patch 2 has

a larger effect per unit mass than patch 1.
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Figure 5.23: Function values plotted against k1 : k2, sum of normalized signal shifts in the

(1,1), (2,1), and (3,1) modes.

When we look at the fractional signal shifts achieved in each mode, in Figs. 5.26, 5.27,

and 5.28, we see that for k1 > 0, our patches are fixed in eigenvalue space for all three

modes. This stands in contrast to what we saw in the non-normalized case, despite some

gross similarities in the effective mode (see Fig. 5.25) This tells us that measures such as

the ratios of global optima to patches, or of local optima to patches, or of modes to patches,
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Figure 5.24: Function per unit mass, sum of normalized signal shifts in the (1,1), (2,1), and

(3,1) modes.

are not sufficient to capture the behavior in a multi-mode system; the weighting attached

to each mode can significantly influence the behavior of the system. In the previous case,

for some weights of k1, the loss of moving patch 2 off of the global maximum was offset by

the gain of moving patch 1 closer to that global maximum. In this case, the latter gains

are not sufficient to offset the former loss, and we see instead a solution that is static in the

ratio k1 : k2.
4 That is, because the size of the membrane means that the separation of the

anti-nodes is greater than the minimum separation distance between patches, the patches

remain located on anti-nodes regardless of their masses.

4Actually, as in all our cases, for the special case of k1 = k2 the two patches are equivalent and can switch

between positions for different instances of our GA program. Otherwise the statement holds.
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Figure 5.25: Effective mode for the (1,1) + (2,1) + (3,1) system; the normalized version

of same; the ratio of the non-normalized to the normalized version of the effective mode,

showing that scaling from the non-normalized to the normalized version varies locally across

the membrane.
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Figure 5.26: Fractional signal strength in (1,1) mode, for sum of normalized signal shifts in

the (1,1), (2,1), and (3,1) modes.
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Figure 5.27: Fractional signal strength in (2,1) mode, for sum of normalized signal shifts in

the (1,1), (2,1), and (3,1) modes.
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Figure 5.28: Fractional signal strength in (3,1) mode, for sum of normalized signal shifts in

the (1,1), (2,1), and (3,1) modes.
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5.2.2 Max-Min formulations

We now turn to the objective functions which maximize the minimum component shifts.

As discussed in Secs. 4.4 and 4.1.1, the relative formulations and fractional formulations of

these objective functions will be important.

Maximizing the minimum of non-normalized signal shifts in the (1,1) mode

In this objective function we consider the (1,1) mode exclusively, and look at two patches

of added mass. The purpose of this objective is to maximize the minimum of two separate

eigenvalue shifts, ensuring that the smaller of the two shifts is not “sacrificed” for the sake

of the larger. Bear in mind that for this formulation the signal shift from the heavier patch

does not directly contribute to the objective function - it contributes only via competing

with the lighter patch. This is contrasted with the objectives we considered previously,

where all eigenvalue shifts contributed directly and additively.

In Fig. 5.29 we see that as our mass ratio increases, so does our objective function value.

This is because the minimum eigenvalue shift grows as the density of the lighter patch (patch

1) grows. (Recall that the signal shift induced by a patch scales linearly with the mass of

the patch.) We initially see a linear increase as patch 1 grows heavier - this is because patch

1 is giving rise to the smaller signal shift, and so its position is optimized - centered on the

optimal spot for a single patch. Increasing its mass therefore simply induces a corresponding

increase in eigenvalue shift. However, as its mass nears that of patch 2, the patch 1 is no

longer necessarily giving the smaller eigenvalue shift. Instead, patch positioning determines

which patch gives rise to the smaller shift. Because of the minimum separation distance

requirement, the two patches cannot both occupy the optimal vspot. Once this dynamic

comes into play, the genetic algorithm will drive the two patches to positions where they

give equal signal shifts.

In Fig. 5.30 we can see the results in terms of the objective function value per unit mass

directly contributing to the objective function. (Recall that the objective function value is the
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Figure 5.29: Function values plotted against k1 : k2, max-min of non-normalized signal

shifts in the (1,1) mode.

smaller of the eigenvalue shifts induced, so it is directly considering only the contribution of

one of the patches.) Therefore, this figure represents the eigenvalue shift per unit mass (i.e.

the patch placement quality) of the patch with the smaller eigenvalue shift. When k1 is low

enough so that patch 1 induces a smaller eigenvalue shift than even a badly placed patch

2, patch 1’s position is optimized. However, as the masses of the two patches converge, the

shift per unit mass drops, because the two patches are competing for the same best spot;

patch 1 is no longer occupying the single best position.

In Fig. 5.31 we see this more clearly. The fraction of the maximum that patch 1 is able

to acheive drops as the two patches become comparable in density. When k1 is small, the

heavier patch has few constraints on position, so the eigenvalue shift it induces is somewhat

arbitrary - rerunning the genetic algorithm would give different values for the fractional

eigenvalues for these cases.

As was the case for the objective function summing the contributions of multiple patches in

the (1,1) mode, this objective function is merely linearly scaled by normalization, because

only one mode is involved. Therefore we do not separately consider the normalized version
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Figure 5.30: Function per unit mass, max-min of non-normalized signal shifts in the (1,1)

mode.

of this function.
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Figure 5.31: Fractional signal strength in (1,1) mode, for max-min of non-normalized signal

shifts in the (1,1) mode.

Maximizing the minimum of non-normalized signal shifts in the (1,1) and (2,1)

modes

In this objective function we consider the (1,1) and (2,1) modes, and two patches of added

mass. The purpose of this objective function is to maximize the minimum of the four

separate signal shifts induced. This case is more complicated than a single mode one, as we

have to consider that improving an individual signal shift can impact the other shift for the

associated patch directly, and not only via competition with the other patch for a better

position.

In Fig. 5.32, we note that the objective function value rises linearly with the mass ratio

(this is confirmed by Fig. 5.33). When we look at Figs. 5.34 and 5.35 we can see why:

excluding the case where patch 1 is not present (i.e. has mass 0), it always occupies the same

position in eigenvalue space for both the (1,1) and the (2,1) modes, even when the mass

ratio equals 1. The position in question is one of the anti-nodes for the (2,1) mode. As we

have not normalized our objective function components by their corresponding unperturbed
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Figure 5.32: Function values plotted against k1 : k2, max-min of non-normalized signal

shifts in the (1, 1) and (2,1) modes.
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Figure 5.33: Function per unit mass, max-min of non-normalized signal shifts in the (1, 1)

and (2,1) modes.
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Figure 5.34: Fractional signal strength in (1,1) mode, for max-min of non-normalized signal

shifts in the (1, 1) and (2,1) modes.

eigenvalues, and as we are not using a fractional formulation, the signal shift for patch 1,

mode (2,1) is consistently the smallest shift, and hence is the one directly optimized. Fig.

5.39 does show that the signal shift for patch 2, mode (2,1) is indirectly optimized via the

aforementioned method of “raising the floor”.

When the masses of the two patches become equal, we see that both of them exhibit identical

performance in both modes. This is because they are each centered on one of the (2,1) anti-

nodes. If we had implemented a discrimination constraint, as discussed in Sec. 4.6, we

would not see this symmetric solution.
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Figure 5.35: Fractional signal strength in (2,1) mode, for max-min of non-normalized signal

shifts in the (1, 1) and (2,1) modes.

Maximizing the minimum of normalized signal shifts in the (1,1) and (2,1)

modes

In this objective function we consider the (1,1) and (2,1) modes, and look at two patches of

added mass. The purpose of this objective is to maximize the minimum of the four separate

signal shifts induced. This case is the normalized version of the previous one.

In Fig. 5.36 we see that as our mass ratio increases, so does our function value. This is

because the minimum signal shift grows as the mass of patch 1 grows. (Recall: the signal

shift induced by a patch scales linearly with the mass of the patch.) We initially see a

linear increase as patch 1 grows heavier - this is because patch 1, as the significantly lighter

patch, is giving rise to the smallest signal shift, and so its position is optimized - centered

on the optimal spot for a single patch. Increasing its mass therefore simply induces a

corresponding increase in signal shift. However, as the mass of the lighter patch nears that

of the heavier, the lighter patch is no longer necessarily giving the smallest signal shift -

now which patch gives a smaller shift is dependent on positioning. Because of the minimum
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separation distance requirement, the two patches cannot both occupy the optimal spot.

Once this dynamic comes into play, the genetic algorithm will drive the two patches to

positions where they give equal signal shifts.

In Fig. 5.37 this is seen more clearly. The fraction of the maximum that the lighter patch

is able to achieve drops rapidly as the two patches become equal in mass.

In Figs. 5.38 and 5.39 we see that the because one of the signals from patch 1 acts as

the minimum in most cases, our optimizer manipulates the position of patch 1 in order to

maximize it. This leaves patch 2 mostly free in terms of position. Because we are dealing

with the normalized cases, achieving 0.8 of the maximum possible signal in the (1,1) mode

is no better than 0.8 in the (2,1) mode, so the normalized eigenvalue shifts for the lighter

patch are driven to the same value in both modes.
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Figure 5.36: Function values plotted against k1 : k2, max-min of normalized signal shifts in

the (1, 1) and (2,1) modes.
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Figure 5.37: Function per unit mass, max-min of normalized signal shifts in the (1, 1) and

(2,1) modes.
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Figure 5.38: Fractional signal strength in (1,1) mode, for max-min of normalized signal

shifts in the (1, 1) and (2,1) modes.

Chapter 5. Optimization results 100



5.2 Genetic Algorithm results

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

k1:k2 mass density ratio

F
ra

ct
io

na
l e

ig
en

va
lu

e 
sh

ift
 in

 (
2,

1)
 m

od
e

Fractional (2,1) shifts for patches 1 (blue) and 2(magenta)

Figure 5.39: Fractional signal strength in (2,1) mode, for max-min of normalized signal

shifts in the (1, 1) and (2,1) modes.

Maximizing the sum of dynamically custom-weighted signal shifts in the (1,1)

and (2,1) modes

We have so far considered only two weighting schemes for our signal shifts - raw, unweighted

shifts (i.e. all shifts weighted by a value of 1), and shifts weighted by their associated,

unperturbed eigenvalues (normalization). However, we are not constrained to these options;

we can introduce arbitrary weighting assignments for any of our basic objective functions.

We present one example here.

Such assignments might reflect confidence (or lack thereof) in, for example, the accuracy

of readout of a particular mode, or in the binding strength or specificity of a particular

patch. Assigning custom weights therefore permits us to choose an objective function (and

therefore a set of patch placements) which is more precisely suited to an individual situation.

From differences between the non-normalized and normalized version of previous objective

functions, we have seen that the weighting applied to a function can change its behavior.

Now we will consider a case that differs from the previous ones in three ways: first, the

weighting assignment depends on the relative sizes of the signal shifts. That is, the largest
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signal shift is assigned a particular weight, whether that signal shift arises from patch 1 in

mode (2,1), patch 2 in mode (1,1), etc. Therefore, as we increase the density of patch 1,

changing the size order of the individual signal shifts, we are also changing their weights.

Second, our weights differ not only between modes, but between patches (i.e. two patches

in the same mode are weighted differently). Finally, we have large disparities between some

of the weights, where previously such disparities were limited to the relative disparities in

unperturbed values of the eigenmodes. In this objective function we consider the (1,1) and

(2,1) modes, and look at two patches of added mass. The purpose of this objective is to

maximize the weighted sum of all four eigenvalue shifts, one arising from each patch in

each mode. However, the weighting depends on the values of the shifts, so this a max-sum

problem with max-min characteristics. The weights are: 1,3,5, and 991 respectively for the

biggest to the smallest shifts. As is usual, we see that the objective function value increases

with increasing mass (see Fig. 5.40). However, this increase is actually superlinear, despite

the fact that (as we shall see subsequently) our patch positions do not change with changing

mass ratios. This is due to our dynamic weighting scheme - while the patch positions do

not change with changing mass ratios, the weights assigned to those patches do. This shows

the significance of understanding subtleties in the effects of the weighting schemes we use.

While the function value increases superlinearly with the mass ratio k1 : k2, it increases

sublinearly with the total added mass, as we can see in Fig. 5.41. This is because the patch

associated with the maximally weighted signal shift contribution (in this case, patch 2) is

remaining on an optimal position on the membrane. As it is contributing the largest signal

shift, its larger contribution is weighted by 991 (and its smaller by either 3 or 5, depending

on the k1 : k2 ratio). When we add more mass to the system, we are adding it to patch 1,

whose contributions are multipled by only 1 and either 3 or 5.

In Figures 5.42 and 5.43, we see that both patch 1 and patch 2 remain fixed in their positions

regardless of the masses (ignoring as usual the case of k1 = 0, in which the position of

patch 1 is irrelevant). So despite the subtleties of the effects of the weighting scheme on the

output of the objective function, it appears that in practical terms it is immaterial - the
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Figure 5.40: Function values plotted against k1 : k2, sum of dynamically weighted signal

shifts in the (1,1) and (2,1) modes.
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Figure 5.41: Function per unit mass, sum of dynamically weighted signal shifts in the (1,1)

and (2,1) modes.
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only consideration determining the placement of the patches is the relationship between the

number of optimal positions and the number of patches. However, there is a subtlety here

as well. We have previously seen that normalization can change the response surface of the

effective mode. We now point out that some weighting schemes can change the number of

anti-nodes in an effective mode, i.e. the number of optimal positions on a response surface.

While that was not the case for this function, it is a consideration for future weighting

schemes, and could be used to screen such schemes for suitability in objective functions.

Finally, we note that the use of different weights for each contribution means that the

response surface in question can differ within the same objective function, depending not

only on which patch we are considering, but on the relative masses of the patches. This

means that the potential for complex behavior increases even further. For this reason, we do

not explore this type of objective function in depth here, but instead assign these functions

to our future work section, discussed in
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Figure 5.42: Fractional signal strength in (1,1) mode, sum of dynamically weighted signal

shifts in the (1,1) and (2,1) modes.
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Figure 5.43: Fractional signal strength in (2,1) mode, sum of dynamically weighted signal

shifts in the (1,1) and (2,1) modes.

5.2.3 Signal overlap

The final objective function we consider is that minimizing signal overlap resulting from two

patches of added mass, in only one mode. This function is designed to allow discrimination

between three cases (patch 1 shows binding, patch 2 shows binding, both patches show

binding) despite an underdetermined system. This function is meaningful only when we

assign ranges instead of individual values to the added mass factors k1 and k2. We therefore

fix k2 = 1 and vary k1 from 0 to 1 as before, but in addition we define range parameters

∆k1 and ∆k2, so that for a given k1, the possible range of bound mass is [k1, k1 + ∆k1]

(similarly for k2). The addition of these two parameters increases the number of interesting

test cases for this function; we present here the case for ∆k1 = ∆k2 = 0.1, i.e. for relatively

small ranges of bound masses.

The formulation of this function minimizes not only the overlap between the induced signal

shift ranges, but also the gaps between ranges, ensuring that we do not guarantee small

overlaps only by making the total signal shifts small and far apart. Because we penalize

gaps between shift ranges, we expect that the performance of our objective function will be
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poor for small k and ∆k values, as even centered on the anti-node these will result in small

signal shift ranges. Therefore, for small enough k and ∆k, we are ensured positive gaps 5.

So we expect to see higher function values for small k1, although this does not reflect the

quality of the patch positions. In constrast, we should see very good function values for

larger k1, while possibly observing decreases in the quality of the patch positions. Indeed,

in Fig. 5.44 this is precisely what we see: the objective function’s minimal value is non-zero

but decreasing for k1 = 0, 0.1, 0.2. Once k1 = 0.3, the signal shift range induced by the

patch is large enough to prevent any gaps between ranges, and the function value goes to

zero, where it remains for further increases of k1.
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Figure 5.44: Function values plotted against k1 : k2, minimizing signal overlap in the (1,1)

mode.

When we consider the quality of the positions chosen by the objective function, we note

again competition between the patches for the single optimal position in the (1,1) mode,

as seen in Fig. 5.45. When k1 is small, patch 2 occupies the anti-node, and patch 1 is

5It is worth noting that small gaps between the ranges may be desirable in order to aid in discriminating

between cases and reducing the confusing effects of noise. The objective function can be altered to prefer a

fixed gap size instead of a gap of zero.
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relegated to a relatively poor position, its distance away dictated by the minimal patch

separation constraint. As k1 increases, so does the size of the signal shift range induced by

patch 1. To avoid overlaps (not only between the range induced by patch 1 and the range

induced by patch 2, but between those ranges and that produced by summing the two of

them), the size of the range induced by patch 2 must decrease, and so it must more to a

less desirably patch position. As k1− > k2, we see again that we are approaching a solution

that is symmetric in the signal shift space.
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Figure 5.45: Fractional signal strength in the (1,1) mode, minimizing signal overlap in the

(1,1) mode.
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Chapter 6

Conclusions and future directions

6.1 Conclusions

The development of sensitive, accurate, and rapid sensors for detecting biological and chemi-

cal sensors has importance for many fields, including medicine and medical research, agricul-

tural and food science, environmental monitoring and research, and anti-terrorism efforts.

The performance and design of a biochemical sensor is enhanced by accurate device modeling

and optimization, and multiplexing (the use of a single sensor to detect multiple substances

simultaneously) expands the capability of such a device. For these reasons, we have cho-

sen to pursue a comprehensive modeling and optimization program for a membrane-based

acoustic wave MEMS biochemical sensor.

Sensors operate under a wide range of modalities. They may detect targets in gas, liquid,

or solid samples. Target analytes may be detected via mechnical, electrical, chemical, or

biological mechanisms, and detection may be signalled by changes in quantities such as

fluoresence, color, capacitance, or mass. Our sensor uses target-specific binding agents to

bind target analytes to the surface of a membrane resonator; the resulting change in mass

is detected by monitoring the frequency response of the membrane.

Because we are using a membrane as our resonator, we can take advantage of the large

surface area to determine where to bind our targets; the ability to control the distribu-
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tion of mass on the surface permits us to both increase the sensitivity of our device; and

to detect multiple targets simultaneously, allowing a single sensor to operate as as sen-

sor array. The first step in taking advantage of these properties is to develop an accurate

model of the membrane’s response to different mass distributions. We begin with a classical

second-order partial differential equation describing the the position function for a mem-

brane undergoing out-of-plane vibrations, and verify that this is the appropriate model for

our case (as opposed to, for example, a plate model or a varying-tension model). For a

rectangular membrane with constant density and tension, the solution is known, allowing

us to analytically calculate the frequency of the component eigenmodes. For uneven mass

(and therefore uneven density) distributions, we use COMSOL, a software finite element

method (FEM) package, to simulate the membrane’s eigenmodes and eigenvalues. While

the finite element simulations produce accurate numerical approximations of response of

the membrane’s frequency characteristics, they do not provide us with information about

gradients, and in addition, each simulation has a high computational cost. This means that

these simulations are not well-suited to the next step in our program, which is optimization.

We therefore have used matrix perturbation analysis to develop an accurate reduced-order

model to describe our sensor’s behavior under distributed mass loading.

To perform the perturbation analysis, we extend the original model to include a small

additional mass term, expressed as a small factor εmultiplied by the original mass term.

We then consider a formal power series in terms of ε. The leading term in this series is the

analytic solution to the unperturbed case, while later coefficients of the ε terms describe

how the new solution deviates from that of the unperturbed case. In our case, we use a

first-order perturbation for simplicity, and verified that the expected additional deviation

resulting from higher-order terms is negligible. In order to prevent degenerate cases, we use

Fredholm’s Alternative Theorem, which imposes an additional restriction on our membrane

geometry, requiring that membranes be non-square.

Having developed an accurate reduced-order model for our membrane’s response to added

mass functions, we can proceed to consider optimal mass distributions under different condi-
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tions. We consider several different types of objectives, including maximizing sensitivity to

one target, maximizing average or minimum sensitivity when several targets are considered,

and ensuring discrimination between signals arising from multiple targets in underdeter-

mined systems. We formulate constraints, beginning with those that make our expression

for eigenvalue shifts, derived from our reduced-order model, analytically integrable. We add

further constraints arising from the sensor characteristics, expected uses, and restrictions

on patch functionalization.

We use two different optimization methods, depending on the specific optimization problem

at hand. The linear proxy method we developed reduces the optimization search space from

from two dimensions to one, and works rapidly and reliably. However, it is applicable in

only a small number of cases. For the other cases, we use genetic algorithms to arrive at

our solutions. Using a Matlab toolbox called the Genetic Algorithm Toolbox, we develop a

program which treats each potential solution as a chromosome, able to undergo mutations.

The fitness of each chromosome is evaluated at each step. Higher fitness chromosomes

are more likely to be selected for mutation or to be included directly in the next genera-

tion of potential solutions. We iterate this process to converge to a set of maximally fit

chromosomes.

We apply these optimization methods to our suite of objective functions, and use the results

to characterize the behavior of our sensor and to examine the effectiveness of different

objective functions under different conditions, such as the number and choice of operating

modes, the number of functionalized patches, the number of target analytes, and the relative

masses and concentrations of those analytes. This is a very broad space, and we often

see tradeoffs in multiple elements, such as between targets and between modes, operating

simultaneously.

The results of this research are

• An accurate reduced-order model of the membrane response to non-uniform mass

distribution, applicable not only to our device’s parameters, but to a wide range of

alternative designs. This means that we can use the model not only to optimize our
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device’s performance, but to develop optimal device designs for different conditions;

this option is discussed further in Sec. 6.2.

• A suite of objective functions and attendant constraints, designed to optimize sensor

performance with respect to several different goals, and under varying conditions.

• A set of optimization methods tailored to the sensor characteristics, objective func-

tions and model characteristics, and verified to work in test cases.

• A description of our sensor’s behavior as we vary parameters of the mass distribution,

selected modes, number of target analytes, and specific optimization goals. This de-

scription allows us to understand complex tradeoffs in the optimization search space,

and to evaluate which operating modes, objective functions, and sensor target com-

binations result in improved sensor performance.

6.2 Future Directions

We envision four main components of the extension of this research. From the most specific

and immediate to the least:

• First, we wish to refine the reduced-order model to capture more of the relevant

physical operating conditions of our sensor, including factors such as viscous damping,

and non-uniform tension within the membrane itself. The more precise and general

our model is (while retaining the simplicity of the reduced-order model), the more we

can use it to optimize operation under varying conditions.

• Second, so far our optimization has focused on implementation, i.e., how to best use

the sensor we have; we have not yet considered optimization of the device design.

Developing metrics for evaluating designs will allow us to close an optimization loop,

and let our understanding of the device’s operation determine the design details of the

sensor itself. For example, this will allow us to choose optimal values for the shape ,

size and thickness of the membrane.
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• Regardless of the design or model we choose, we know that many of the device charac-

teristics will be subject to uncertainty. We need to consider how these uncertainties in

model inputs cause uncertainty in the output. We have a special interest in ensuring

that our system is robust and that our optimization results are meaningful in the face

of the expected uncertainties. Our third branch of future research, therefore, is to

perform uncertainty and sensitivity analyses.

• Finally, we wish to optimize sensor performance under a wider range of conditions. We

have developed a suite of objective functions for the optimization of the performance

of a single sensor, but we have not yet fully explored this space. In addition, we have

considered the optimization of an array of sensors. Adding discrete choices of which

sensor to use for each functionalized region will mean working with Mixed-Integer

Non-Linear Programs (MINLPs) instead of the NLPs we have so far studied. For this

portion of the research, we will again need to carefully formulate appropriate objec-

tive functions and constraints, and to choose and implement the proper optimization

methods for this new set of problems.

6.2.1 Modeling under different physical conditions

The baseline model we use for determining the displacement of a membrane undergoing out-

of-plane vibrations is formulated without any damping coefficients. However, we expect to

operate our sensor in a fluid (either gas or liquid), and therefore need to incorporate viscous

damping in the model. While this is straightforward for the uniform mass distribution case,

or when using computational methods to calculate the frequency response, incorporating

this effect into a reduced order model requires a new matrix perturbation analysis performed

on the damped model.

In addition to damping, we must consider the fact that due to the specific mesh design of

our sensor, we may see non-homogeneities or isotropic behavior in the membrane tension.

To determine if this is the case, we will perform a detailed finite element simulation of

Chapter 6. Conclusions and future directions 112



6.2 Future Directions

membrane vibration, this time including the micro-scale structural elements comprising the

mesh. If we do indeed find that the tension is non-uniform, we will have to characterize this

non-uniformity, and either mitigate it via changes in the mesh design, or include it in our

reduced order model. There is no guarantee that we would be able to analytically develop

a reduced order model that accurately models differential mass loading, viscous damping,

and non-uniform tension. If we cannot, our options are to develop an empirical model from

a large number of simulations, or to rely on numerical simulations as the inner loop of our

optimization problem.

Other modeling options that would be dictacted by the physical properties of our sensor

include altering the boundary conditions for the membrane or switching from a membrane

to a plate, or composite plate and membrane, model.

Because our optimization framework is independent of our model details, we can develop

and evaluate multiple models without rederiving the optimization procedures.

6.2.2 Uncertainty and sensitivity analyses

In this thesis, we have assumed that we have accurate values for all our device parameters.

In the real world, this may not be the case; many of these parameters will be subject to

uncertainty. An experimental uncertainty assessment is thus called for to quantify these

uncertainties. In lieu of a full set of physical experiments, an extensive literature search could

give us uncertainty estimates for some parameters, derived from prior physical experiments

on related structural elements, functionalization methods, measurement systems, etc. Some

experiments characterizing relevant aspect of our membrane have already been performed

by other group members [5], and this information will be a valuable starting point.

In addition to a characterization of the uncertainties, we need to know how sensitive our

sensor response is to variations in parameter values. We therefore propose a sensitivity

analysis to determine how robust our model is to uncertainties in input variables and pa-

rameters. This will allow is to do several things. First, we can identify inputs which lead

to very large or very small uncertainties in outputs. We may be able to eliminate some
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of the latter inputs, simplifying the model, while we will need to focus on ways to reduce

uncertainty in the former to improve the robustness of our model. A clearer understand-

ing of the relationship between inputs and outputs, even where the resulting uncertainties

in the output are neither very large nor very small, will allow us to more easily optimize

our sensor design for specific sets of conditions. The uncertainty analysis coupled with the

sensitivity analysis will allow us to evaluate our confidence in the model and to see where

improvements can best be made.

We propose using a combination of two methods of sensitivity analysis: calculating partial

derivatives to elucidate relationships between specific pairs of inputs and outputs; and

variance-based sensitivity analysis, which treats the model as a black-box [61].

Because we have a relatively simple analytical model, we are able to take partial derivatives

of the relevant outputs (e.g. eigenvalues) with respect to inputs (e.g. x− or y−position

of patch, density) without relying on numerical methods. This will give us a large set of

functions expressing sensitivity to the different possible inputs, and show us which ones are

individually significant. However, this method only considers a single input variable at a

time, and therefore does not account for interactions between variables. To measure these

effects, we turn to variance-based sensitivity methods.

Variance-based methods take a probabilistic approach by modeling both inputs and outputs

as probability distributions. Variance decomposition is then employed to attribute fractions

of the variance to different inputs, and, critically, to interactions between inputs. The

decomposition results in first-order sensitivity indices, one for each input i, which measure

the fractional contribution to the total variance arising from varying i. This contribution

is the effect of varying only i, but it is averaged over variations in other inputs to avoid

measuring the sensitivity to i at only one point. This averaging is what gives this mehod

its global applicability. Higher-order indices are used to measure the contributions from the

interactions between multiple input variables.

Again the fact that our model is a simple analytical one is advantageous; we expect that

some of the sensitivity indices can be calculated analytically. If this is not the case, the
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indices may be estimated using Monte Carlo methods to sample a large sequence of input

values.

6.2.3 Membrane design optimization

The optimization described in this thesis assumed a particular membrane design with fixed

characteristics. However, we have some control over many of these parameters, such as mem-

brane dimensions, density, tension, and material properties. In addition, the use of MEMS

technology means that we can control the distribution of materials within the membrane

itself, building in inhomogeneities to enhance specific sensor properties or mode behaviors.

In order to optimize the design of the membrane, we need first to develop metrics to evaluate

different designs; we again propose considering characteristics such as sensitivity, robust-

ness, etc., and also expect to expand this list to include things like applicability to a broad

range of sensing target characteristics or, on the other end of the spectrum, optimization

for very specific sensing problems.

The use of MEMS technology means that we are not restricted to a uniform density across

the membrane, but instead can specify the distribution of mass within the membrane.

This capability allows us to change the characteristics of individual modes, including mode

shapes and eigenvalues, and raises the possibility of optimizing specific mode characteristics

to improve sensor performance.

6.2.4 Additional objective functions for the single-membrane case

With one brief exception, we considered only uniformly weight signal shifts, or normalized

signal shifts. We wish to consider a broad range of weight assignments for our signal shifts.

Such assignments might reflect confidence (or lack thereof) in, for example, the accuracy of

readout of a particular mode, or in the binding strength or specificity of a particular patch.

Assigning custom weights therefore permits us to choose an objective function (and therefore

a set of patch placements) which is more precisely suited to an individual situation. Further,

we can apply these weight assignments not only to max-sum objective functions, but to any
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type we choose, opening the door to increasingly specialized optimization functions.

The majority of our objective functions showed sensitivity in their results to the ratio of

bound masses on the surface; this means that in cases where we may expect a broad range of

masses, it is unclear which ratio to use to determine patch positioning. We wish to develop

objective functions which will take the distribution of possible mass ratios into to account

when determining where to place patches. These objective functions will naturally vary

depending on whether we are hoping to determine the quantities bound, or to determine

simply whether specific targets are present or absent.

Depending on the application, a false positive (or a false negative) may be a very bad

outcome or a neutral one. Objective functions which take this, and related information,

into account are therefore highly desirable. For example, functions could minimize the false

positive rate; or maximize sensitivity, specificity, accuracy, or positive predictive value. 1

Working within the framework of the receiver operating characteristic and related perfor-

mance measures will allow us to “tune” our sensor to create tests which have the desired

statistical classification properties.

6.2.5 Multiple membrane and multiple chip optimization

We have considered here the optimization of a single membrane with distributed masses.

Given the design of the sensor chip and the need for sensor arrays, there are two natural

extensions to this work: the optimization of a single chip with multiple membranes, and the

optimization of an array consisting of multiple chips. This research again requires the devel-

opment of new objective functions and constraints. For multiple membrane optimization,

we will consider the characteristics of the problem formulation and the single membrane

case, as well as new issues which arise from adding additional membranes. For example,

we will need to quantify changes in sensitivity or accuracy which may come about via the

distribution of functionalized regions over multiple membranes, and re-evaluate constraints

1As such objective functions would depend on estimates of confidence in the validity of the signal shifts

resulting from binding, custom weight assignments are necessary for their development.
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on the placement of regions when more than one membrane is available for functionaliza-

tion. The addition of discrete choices to the set of continuous choices used before, will

mean that we will need to model our optimization problem as an MINLP, necessitating new

optimization methods.

For multiple chip optimization, where each chip will use a separate portion of our sample,

we have to consider additional factors such as unevenly mixed samples, contamination, and

chip-to-chip variability.

The increase in information means that we will be able to use Bayesian statistical methods

to evaluate or improve the accuracy of our output. These methods will allow us to filter noise

arising from background binding and to reduce the adverse effects of individual membrane

failures.
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Code examples and notes

A.1 Mathematica code

We performed shift measure and linear proxy calculations, and produced images of mode

shapes, response surfaces, and effective modes using Mathematica. The following code

calculates shift measures and produces associated contour plots for various modes and

effective modes using our standard simulation parameters.

delx=10;

dely=10;

a=150;

b=100;

k=1;

n1=1;

n2=2;

n3=3;

m1=1;

m2=2;

m3=3;
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d=20;

t=12;

smoneone[x_,y_] = k*Integrate[(Sin[Pi*n1*x/a])^2, {x,x-0.5*delx, x+0.5*delx}]*

Integrate[(Sin[Pi*m1*y/b])^2, {y, y-0.5*dely, y+ 0.5*dely}];

smonetwo[x_,y_] =k*Integrate[(Sin[Pi*n1*x/a])^2, {x,x-0.5*delx, x+0.5*delx}]*

Integrate[(Sin[Pi*m2*y/b])^2, {y, y-0.5*dely, y+ 0.5*dely}];

smtwotwo[x_,y_] =k*Integrate[(Sin[Pi*n2*x/a])^2, {x,x-0.5*delx, x+0.5*delx}]*

Integrate[(Sin[Pi*m2*y/b])^2, {y, y-0.5*dely, y+ 0.5*dely}];

smtwoone[x_,y_] =k*Integrate[(Sin[Pi*n2*x/a])^2, {x,x-0.5*delx, x+0.5*delx}]*

Integrate[(Sin[Pi*m1*y/b])^2, {y, y-0.5*dely, y+ 0.5*dely}];

smonethree[x_,y_] =k*Integrate[(Sin[Pi*n1*x/a])^2, {x,x-0.5*delx, x+0.5*delx}]*

Integrate[(Sin[Pi*m3*y/b])^2, {y, y-0.5*dely, y+ 0.5*dely}];

smtwothree[x_,y_] =k*Integrate[(Sin[Pi*n2*x/a])^2, {x,x-0.5*delx, x+0.5*delx}]*

Integrate[(Sin[Pi*m3*y/b])^2, {y, y-0.5*dely, y+ 0.5*dely}];

smthreeone[x_,y_] =k*Integrate[(Sin[Pi*n3*x/a])^2, {x,x-0.5*delx, x+0.5*delx}]*

Integrate[(Sin[Pi*m1*y/b])^2, {y, y-0.5*dely, y+ 0.5*dely}];

smthreetwo[x_,y_] =k*Integrate[(Sin[Pi*n3*x/a])^2, {x,x-0.5*delx, x+0.5*delx}]*

Integrate[(Sin[Pi*m2*y/b])^2, {y, y-0.5*dely, y+ 0.5*dely}];

cplotsmonetwo=ContourPlot[smonetwo[x,y],{x,0,a}, {y,0,b}, Axes->True,

AxesLabel->{\[Mu]m,\[Mu]m}, ContourShading->False,

AspectRatio->Automatic, ContourStyle->Automatic,

ColorOutput->Automatic, ColorFunction->Hue, Contours ->

20,BaseStyle->{FontFamily->"Times", FontSize ->t}, Frame -> None]

plotsmonetwo=Plot3D[smonetwo[x,y],{x,0,a}, {y,0,b}, Axes->True,

AxesLabel->{\[Mu]m,\[Mu]m}, AspectRatio->Automatic,
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ColorOutput->Automatic, ColorFunction->Hue,

BaseStyle->{FontFamily->"Times", FontSize ->t}, Ticks->{Automatic,

Automatic, None}]

lineplotsmonetwo=Plot[smonetwo[75,y], {y,0,b}, AxesLabel->{"\[Mu]m",

""}, PlotLabel->"eigenvalue shift function for (2,1) mode along the

line y=75", Ticks -> {Automatic, None}]

lineplotsmoneone=Plot[smoneone[75,y], {y,0,b/2},

AxesLabel->{"\[Mu]m", "\[Lambda] shift"}, Ticks->{Automatic, None},

PlotLabel->"eigenvalue shift function for (1,1) mode along the proxy

line x=50"] lineplot2smoneone=Plot[smoneone[75,y], {y,0,b/2},

AxesLabel->{"\[Mu]m", "\[Lambda] shift"}, Ticks->{Automatic, None},

PlotStyle->{Thick, Blue}]

normplot3dcombo123 =

Plot3D[smoneone[x, y]/smoneone[75, 50] +

smtwoone[x, y]/smtwoone[37.5, 50] +

smthreeone[x, y]/smthreeone[75, 50], {x, 0, a}, {y, 0, b},

Mesh -> None, Boxed -> False, Axes -> True,

AxesLabel -> {\[Mu]m, \[Mu]m}, AspectRatio -> Automatic,

ColorOutput -> Automatic, ColorFunction -> Hue,

BaseStyle -> {FontFamily -> "Times", FontSize -> t}]

plot3dcombo123 =

Plot3D[smoneone[x, y] + smtwoone[x, y] + smthreeone[x, y], {x, 0,

a}, {y, 0, b}, Axes -> True, AxesLabel -> {\[Mu]m, \[Mu]m},

Mesh -> None, Boxed -> False, AspectRatio -> Automatic,

ColorOutput -> Automatic, ColorFunction -> Hue,

Appendix A. Code examples and notes 120



A.1 Mathematica code

BaseStyle -> {FontFamily -> "Times", FontSize -> t, Mesh -> None}]

plot3dratio123 =

Plot3D[(smoneone[x, y] + smtwoone[x, y] +

smthreeone[x, y])/ (smoneone[x, y]/smoneone[75, 50] +

smtwoone[x, y]/smtwoone[37.5, 50] +

smthreeone[x, y]/smthreeone[75, 50]), {x, 0, a}, {y, 0, b},

Axes -> True, AxesLabel -> {\[Mu]m, \[Mu]m}, Mesh -> None,

Boxed -> False, AspectRatio -> Automatic, ColorOutput -> Automatic,

ColorFunction -> Hue,

BaseStyle -> {FontFamily -> "Times", FontSize -> t, Mesh -> None}]

An example of linear proxy code:

Needs["PlotLegends‘"]

contourPlotRule = ({EdgeForm[],

r_?(MemberQ[{RGBColor, Hue, CMYKColor, GrayLevel}, Head[#]] &),

i___} :> {EdgeForm[r], r, i});

delx = 10;

dely = 10;

a = 150;

b = 100;

k1 = 0;

k2 = 1;

n1 = 1;

n2 = 2;
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n3 = 3;

m1 = 1;

m2 = 2;

m3 = 3;

d = 10;

smoneone[x_, y_, k_] =

k*Integrate[(Sin[Pi*n1*x/a])^2, {x, x - 0.5*delx, x + 0.5*delx}]*

Integrate[(Sin[Pi*m1*y/b])^2, {y, y - 0.5*dely, y + 0.5*dely}];

smonetwo[x_, y_, k_] =

k*Integrate[(Sin[Pi*n1*x/a])^2, {x, x - 0.5*delx, x + 0.5*delx}]*

Integrate[(Sin[Pi*m2*y/b])^2, {y, y - 0.5*dely, y + 0.5*dely}];

smtwotwo[x_, y_, k_] =

k*Integrate[(Sin[Pi*n2*x/a])^2, {x, x - 0.5*delx, x + 0.5*delx}]*

Integrate[(Sin[Pi*m2*y/b])^2, {y, y - 0.5*dely, y + 0.5*dely}];

smtwoone[x_, y_, k_] =

k*Integrate[(Sin[Pi*n2*x/a])^2, {x, x - 0.5*delx, x + 0.5*delx}]*

Integrate[(Sin[Pi*m1*y/b])^2, {y, y - 0.5*dely, y + 0.5*dely}];

smonethree[x_, y_, k_] =

k*Integrate[(Sin[Pi*n1*x/a])^2, {x, x - 0.5*delx, x + 0.5*delx}]*

Integrate[(Sin[Pi*m3*y/b])^2, {y, y - 0.5*dely, y + 0.5*dely}];

smtwothree[x_, y_, k_] =

k*Integrate[(Sin[Pi*n2*x/a])^2, {x, x - 0.5*delx, x + 0.5*delx}]*

Integrate[(Sin[Pi*m3*y/b])^2, {y, y - 0.5*dely, y + 0.5*dely}];

smthreeone[x_, y_, k_] =

k*Integrate[(Sin[Pi*n3*x/a])^2, {x, x - 0.5*delx, x + 0.5*delx}]*

Integrate[(Sin[Pi*m1*y/b])^2, {y, y - 0.5*dely, y + 0.5*dely}];

smthreetwo[x_, y_, k_] =
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k*Integrate[(Sin[Pi*n3*x/a])^2, {x, x - 0.5*delx, x + 0.5*delx}]*

Integrate[(Sin[Pi*m2*y/b])^2, {y, y - 0.5*dely, y + 0.5*dely}];

t = 12;

lponeone[x_, k_] = smoneone[x, 50, k]

PP = Plot[lponeone[x, 1], {x, 0, 150}]

ContourPlot[smoneone[x, y, 1], {x, 0, 150}, {y, 0, 100},

AspectRatio -> Automatic, ContourShading -> None]

out = Maximize[{lponeone[x1, 1] + lponeone[x2, 1], x1 < a/2, x2 < a/2,

x1 + x2 + delx + d <= a}, {x1, x2}]

For[k1 = -0.1, k1 < 1.1, k1 = k1 + 0.1;

out = Maximize[{lponeone[x1, k1] + lponeone[x2, k2], 0 < x1 <= a/2,

0 < x2 <= a/2, x1 + x2 + delx + d <= a}, {x1, x2}], Print[out]]

llp1 = ListLinePlot[{{0, 98.8198}, {0.1, 107.2}, {0.2,

115.804}, {0.3, 124.59}, {0.4, 133.525}, {0.5, 142.584}, {0.6,

151.746}, {0.7, 160.994}, {0.8, 170.314}, {0.9, 179.685}, {1.0,

189.128}}, PlotMarkers -> {"x", 14},

PlotLabel -> "sum of eigenvalue shifts from 2 patches",

AxesLabel -> {"k1:k2 ratio", ""}, RotateLabel -> True,

PlotRange -> {{-0.1, 1.1}, {90, 190}}]
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A.2 Matlab code

The bulk of our optimization was performed using Matlab and the GA toolbox. We define

baseline functions such as the signal shifts induced by patches in various modes, e.g.:

% Signal11.m

%

% This function calculates the normalized signal in the (1,1) mode

% for a dx by dy patch on a membrane that is a by b units in size.

%

% Syntax:z = Signal11(x,y)

%

% Input parameters: x & y : the (x,y) position of the bottom left

% corner of the patch

%%

% Output parameter: z: the signal

%

function z = Signal11(x,y)

% Membrane and patch size characteristics

a=150;

b=100;

dx=10;

dy=10;

intx=2.*pi.*dx + a.*sin((2.*pi.*x)./a) - a.*sin((2.*pi.*(x+dx)./a));

inty=2.*pi.*dy + b.*sin((2.*pi.*y)./b) - b.*sin((2.*pi.*(y+dy)./b));
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z=(1./(16.*pi.^2)).*intx.*inty;

The baseline functions are called by objective functions.

% OBJJANE5.M (OBJective function - Jane Valentine #1)

%

% This function maximizes the minimum eigenvalue shift in

% the (1,1) mode for two patches.

%

%

% Syntax: ObjVal = objfun1(Phen)

%

% Input parameters:

% Chrom - Matrix containing the chromosomes of the current

% population. Each row corresponds to one individual’s

% string representation.

% Phen - is the real-value representation of the binary

% string representation used in Chrom. Phen is

% recovered from Chrom via Phen = bs2rv(Chrom, FieldD).

%

% Output parameters:

% ObjVal - Column vector containing the objective values of the

% individuals in the current population.

%

%

function ObjVal = objjane5(Phen, k1, k2);
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[Nind, Nvar] = size(Phen);

if Nvar ~= 4

error(’size of matrix Chrom not correct for function evaluation’)

end

if Nind ~= 1

error(’size of matrix Chrom not correct for function evaluation’)

end

% Take columns from Phen and assign as variables

x1 = Phen(:,1);

x2 = Phen(:,2);

y1 = Phen(:,3);

y2 = Phen(:,4);

p1 = 100;

% (x1,y1) represents the bottom left of patch 1, while (x2,y2) is the

% bottom left of patch 2.

%

% This function represents the minimum of two signals

% from the (1,1) mode: we compare the

% signal arising in the (1,1) mode for patch 1 to the signal arising in

% the (1,1) mode for patch 2. We negate the

% minimum as it is to be used in a minimization routine, and we

% want to maximize it.
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%

% M is a penalty function to enforce minimum separation distance

% between two patches.

M=0;

if sqrt((x1-x2).^2 + (y1-y2).^2) < 20;

M=1000;

else

M=0;

end

s1=(k1.*Signal11(x1,y1));

s2=(k2.*Signal11(x2,y2));

s=[s1,s2];

ObjVal = -1.*min(s) + M;

output=ObjVal;

Objective functions are called by a code written to run a genetic algorithm program; many

of the functions in the following piece of code are part of the GA toolbox.

% SGAJANE.M (Genetic Algorithm run on given objective function and

% parameters.)

%

%

% This function implements the Simple Genetic Algorithm described
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% in the examples section of the GA Toolbox manual, and is adapted

% to use objective functions written by Jane Valentine

%

% Author: Andrew Chipperfield

% History: 23-Mar-94 file created

% 12-Oct-05 file adapted by Jane Valentine

% 17-Sep-07 further adaptations by J. Valentine

% 18-Feb-08 further adaptations by J. Valentine

function output = sgajane(objective, k1, k2)

NIND = 50; % Number of individuals per subpopulation

MAXGEN = 150; % maximum Number of generations

GGAP = .9; % Generation gap, how many new individuals are created

NVAR = 4; % Number of decision variables

PRECI = 25; % Precision of binary representation

% Declare global variables

global FieldD Chrom FitnV SelCh

% Build field descriptor

FieldD = [rep([PRECI],[1, NVAR]); 45 45 20 20; 95 95 ...

70 70; rep([1; 0; 1 ;1], [1, NVAR])];

% Initialise population

Chrom = crtbp(NIND, NVAR*PRECI);
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% Reset counters

Best = NaN*ones(MAXGEN,1);% best in current population

gen = 0;% generational counter

lc = 0; % last gen. at which obj. val. changed

% Evaluate initial population, and store in matrix with population values

% ObjV=[feval(objective,bs2rv(Chrom,FieldD),k1,k2), bs2rv(Chrom, FieldD)];

switch objective

case {1}

disp(’Objective function 1’)

ObjV = [objjane1(bs2rv(Chrom,FieldD),k1,k2), bs2rv(Chrom, FieldD)];

case {2}

disp(’Objective function 2’)

ObjV = [objjane2(bs2rv(Chrom,FieldD),k1,k2), bs2rv(Chrom, FieldD)];

case{3}

disp(’Objective function 3’)

ObjV = [objjane3(bs2rv(Chrom,FieldD),k1,k2), bs2rv(Chrom, FieldD)];

end

% Track best individual and display convergence

Best(gen+1) = min(ObjV(:,1));

plot(Best,’ro’); xlabel(’generation’); ylabel(’f(x)’);

text(0.5,0.95,[’Best = ’, num2str(Best(gen+1))],’Units’,’normalized’);

drawnow;

% Generational loop
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while gen < MAXGEN,

% Assign fitness-value to entire population

FitnV = ranking(ObjV(:,1));

% Select individuals for breeding

SelCh = select(’sus’, Chrom, FitnV, GGAP);

% Recombine selected individuals (crossover)

SelCh = recombin(’xovsp’,SelCh,0.7);

% Perform mutation on offspring

SelCh = mut(SelCh);

% Evaluate offspring, call objective function

% ObjVSel=feval(objective,bs2rv(SelCh,FieldD),k1,k2);

switch objective

case {1}

ObjVSel = objjane1(bs2rv(SelCh,FieldD),k1,k2);

case {2}

ObjVSel = objjane2(bs2rv(SelCh,FieldD),k1,k2);

case {3}

ObjVSel = objjane3(bs2rv(SelCh,FieldD),k1,k2);

end

% Reinsert offspring into current population
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[Chrom ObjV(:,1)]=reins(Chrom,SelCh,1,1,ObjV(:,1),ObjVSel);

% Increment generational counter

gen = gen+1;

% Update display and record current best individual

Best(gen+1) = min(ObjV(:,1));

plot(Best,’ro’); xlabel(’generation’); ylabel(’f(x)’);

text(0.5,0.95,[’Best = ’, num2str(Best(gen+1))],’Units’,’normalized’);

drawnow;

% Update last change

if Best(gen+1)~= Best(gen);

lc=gen+1;

else

lc=lc;

end

end

% Export output so I can graph the results.

% output=

% End of GA

Finally, to run over many k values, we loop the genetic algorithm program.

% repeatedly run sgajane (my genetic algorithm m-file) on objective

% function 5 (maximize the minimum of two normalized eigenvalue shifts

% in the (1,1) mode) while varying the k1:k2 ratio (i.e. the
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% alpha:beta: ratio)

% File created 04/16/08

% by Jane E. Valentine

%create empty matrix to hold results - we will fill it up as we go.

varyphen=[]

% run GA program on objective function

for k1=0:0.1:1.0

%run sgajane on objective function 5 with k1 varying, k2=1

phen=sgajane(5, k1, 1);

%extract 10 best results

phen2=phen(1:10,:);

%extract single best result, and append best result to varyphen

varyphen = [varyphen;phen2(1,:)]

end

%assign names to columns

x1=varyphen(:,2);

x2=varyphen(:,3);

y1=varyphen(:,4);

y2=varyphen(:,5);

val=varyphen(:,1);
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%indexing by k1 value

kcol=[0:0.1:1.0];

%plotting raw results

figure

plot(kcol,-val,’bd-’)

xlabel(’k1:k2 mass density ratio’)

ylabel(’objective function value’)

title([’Minimum eigenvalue shift’])

%plot results normalized by mass of smaller patch

kcol2=transpose(kcol);

figure

plot(kcol,-val./kcol2,’bd-’)

xlabel(’k1:k2 mass density ratio’)

ylabel(’normalized signal strength per unit mass density’)

title([’Minimum eigenvalue shift per unit mass’])

% plot tradeoffs between patches: (1,1) mode

mode11_1=zeros(11,3);

mode11_1(:,2)=x1;

mode11_1(:,3)=y1;

for i=1:11

mode11_1(i,1)=Signal11(x1(i),y1(i))/Signal11(70,45);

end

Appendix A. Code examples and notes 133



A.2 Matlab code

mode11_2=zeros(11,3);

mode11_2(:,2)=x2;

mode11_2(:,3)=y2;

for i=1:11

mode11_2(i,1)=Signal11(x2(i),y2(i))/Signal11(70,45);

end

figure

plot(kcol,mode11_1(:,1),’bo:’,kcol,mode11_2(:,1),’mx:’)

xlabel(’k1:k2 mass density ratio’)

ylabel(’Fractional eigenvalue shift in (1,1) mode’)

legend(’patch 1’,’patch 2’)

axis([-0.10 1.10 -0.10 1.10])

title([’Fractional (1,1) shifts’])
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