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Abstract  

The integration of modeling, simulation and optimization provides powerful tools for sup-

porting advanced decision making in the competitive market. However, when applying the 

tools to polymerization processing, the challenging task is to accommodate the predictability 

of the mathematical model and the capability of model-based optimization due to its inher-

ent complexities. In this thesis, novel strategies of modeling and optimization are developed 

and applied to a complex polymerization system, Semi-Interpenetrating Polymer Network 

(SIPN) process. By providing a comprehensive study on SIPNs, we show the great potential 

of advanced modeling and optimization in the polymer industry. 

New mathematical modeling strategies are first presented in this work. In the SIPN pro-

cess, improving the productivity while preserving the quality of final products are usually 

contradictory with each other because of a slow seeded polymerization mechanism. The 

presence and interaction between two polymers imposes complexity in the model. To simu-

late the complex interpenetration and networking process, the model needs to consider 

several key features, such as a particle growth mechanism, intra-particle heterogeneity and 

polymerization kinetics. Hence, the first highlight of the work is a multi-stage modeling 

framework which decouples the modeling complexity: a generalized reaction-diffusion 

model to describe the particle growth and the intra-particle dynamics; and a new multi-

population-balance representation to integrate simultaneous crosslinking, grafting and deg-

radation reactions into the kinetic model. The last component enables the prediction of gel 

content and molecular weight development simultaneously up to full conversion.  

Advanced computational tools are developed to tackle the problem of computation. Ac-

quisition of reliable parameters is the key to predict the process performance over a broad 

range of operation. However, we face the problem of large variation of polymerization pa-

rameters in the literature and limitations in obtaining analytical measurements for polymer 

composites. A hybrid approach is presented to reduce model distortion by selecting the most 

prominent parameters from a large parameter set. Parameters are ranked through successive 

orthogonalization of the sensitivity matrix, and then the selection is iteratively refined 

through statistical inference from simultaneous parameter estimation. Validated models ob-

tained are therefore usable for process optimization. New operation policies are explored 
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through a new profile representation. In addition, Kriging surrogate modeling is introduced 

and combined with dynamic optimization. An efficient optimization algorithm is developed 

for the integrated multi-stage model based on surrogate sub-models. Furthermore, we devel-

op a robust two-stage algorithm for large-scale multi-scenario dynamic optimization 

problems by taking advantage of NLP sensitivity analysis. This enables continuous devel-

opments in parameter estimation and process optimization applications.  

The model derived shows consistent agreement with SIPN pilot plant experiments. New-

ly proposed operation policies significantly improve the productivity while maintaining the 

quality of the final product. The tools developed in this thesis are useful for other complex 

system analysis and optimization.  
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Chapter 1  

Introduction 

1.1 Overview 

The past decades have seen substantial growth of model-based optimization in many disci-

plines and application areas. A large number of mathematical models are developed to 

simulate processes in various domains. With the advance of mathematical foundation and 

improvement of computational implementation of optimization technologies, we can find 

optimal solutions of more complicated models that reflect the detail of the actual process, 

and learn from larger data sets that are collected from the observations in real processes. The 

integration of modeling, simulation and optimization provides powerful supporting tools for 

advanced decision making in the competitive market. This tide has since changed almost all 

industry domains, including the chemical industry. The most profound transformation in the 

chemical industry is observed on the approaches for the process design and operation. With 

process models and simulations, new processes can be developed in a much swifter manner 

and the optimization methods refine the process design for lower cost, better quality and 

higher productivity. Successful applications have been reported for many complex chemical 

systems, and the integration has become an active topic in both academia and industry. 

Polymers are among the largest volume chemical products in the world at present, and 

the global market for polymer products keeps growing rapidly. Model-based optimization 

technologies are being expanded to meet the needs of the polymer industry. While innova-
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tive modeling and optimization technologies have demonstrated vast opportunities in the 

area of polymer manufacturing, development of model-based applications for polymer pro-

cesses face several challenges due to the inherent complexity of the polymerization process. 

First of all, polymer systems are much more complex than other small molecule reaction 

systems. Since there is no uniform polymer species within a system, the macromolecules in 

the system cannot be described with a deterministic structure or measurement. Therefore, 

instead of single-valued parameters, we need distributions to model the characteristics of a 

polymer. For example, instead of using single-valued molecular weight, we use molecular 

weight distribution (MWD) to describe the property of the system. Furthermore, we need 

composition distribution for composite polymers, long chain branching distribution for 

branched polymers, etc. These distributional parameters introduce additional dimensions and 

complicate the modeling and parameter estimation. 

Secondly, the complexity of polymer reaction models often results in overparameterized 

systems. In contrast, when finding parameters for the model, we often face limited infor-

mation from experiments and large uncertainties in the system. These factors lead to large 

distortions in the resulting model. An important aspect of research on modeling polymer re-

actions is to develop systematic approaches to reduce the model distortion. 

Finally, high dimensionality and nonlinearity of the model makes it difficult to optimize. 

Polymer process models usually consist of a large set of equations that are highly nonlinear. 

Standard optimization software packages are usually incapable of finding solutions for these 

problems. Moreover, the complexity of the models can easily become intractable with off-

the-shelf tools. Novel effective and efficient solution algorithms are needed to solve these 

models. 
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In this thesis, comprehensive model-based optimization strategies are developed for a 

class of specialty polymers, Semi-Interpenetrating Polymer Networks (SIPNs). New tools 

and methodologies are developed to address the above challenges, allowing engineers to 

solve increasingly complex problems in polymer industry. 

Interpenetrating polymer networks, IPNs, are a broad class of polymer composites de-

fined as a combination of two polymers in a network form, with at least one of them 

synthesized and/or cross-linked in the immediate presence of the other (Sperling, 1981). 

Semi-IPN refers to a class of IPNs where only one of the polymers is crosslinked.  Individu-

al constituents in IPN are generically polymer resins and fibers, which serve as the matrix 

phase and the reinforcing phase, respectively (Advani, et al., 2002). 

There are several motivations for studying the SIPN process.  First, IPN products are val-

uable. It is an advanced polymer material with design flexibility and relative ease of 

processability. IPNs have been utilized in widespread commercial applications (Klempner, 

et al., 1994), and are considered promising in novel material development (Athawale, et al., 

2002). Improvements in understanding and control of IPN processing will bring significant 

value to polymer composite development. Second, from a modeling point of view, the IPN 

process is representative, especially with regards to its kinetic model. Since kinetic studies 

of polymer mixtures are rare, the modeling approaches developed will not only be beneficial 

for IPNs, but also can help to facilitate the study of other multi-component polymer systems. 

Last but not least, the IPN process model provides a good example for investigating the 

computational challenges of model-based applications in the polymer industry. Develop-

ment of the solution strategy will help the analysis of other complex systems, push the limit 

of computational power and drive the advancement of optimization. Overall, we believe this 
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study can bring new value to IPN manufacturing as well as generate new opportunities for 

broader interests. 

1.2 Scope 

As we have seen, applications of model-based optimization can lead to effective decision 

making, timely improvements and, consequently, enhanced process performance. However, 

crucial problems, which impede further expansion of model-based optimization to the poly-

mer industry, lie in the increasing complexity of polymer process modeling and the resulting 

computational difficulty of associated optimization problems. To address these difficulties, 

the scope of this work includes the essential elements in the model-based process study, as 

shown in Figure 1.1. The synergy of new modeling and optimization tools is demonstrated 

for process improvement on a complex industrial SIPN product. The mathematical modeling 

part includes the development of a new multi-stage modeling framework for the SIPN pro-

cess. The computational part includes novel strategies for parameter estimation and process 

optimization, such as parameter sub-set selection, optimal profile representation, surrogate-

model-based optimization and multi-scenario dynamic optimization. Successful implemen-

tation of the model-based optimization solution is shown in plant trials. 

 

Figure 1.1 An integrated framework for model-based optimization 
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1.3 Objectives  

The main objective of this thesis work is to achieve a close linkage of modeling and optimi-

zation tools to facilitate the application of model-based optimization to polymerization 

processes. In particular, a SIPN process is the application example of this work.  

 

Figure 1.2 An outline of main research problems 

Figure 1.2 outlines the main research problems in this study. On one hand, the challenges 

we face in ―polymerization process modeling‖ are to obtain a mathematical representation 

for a complex industrial SIPN process. New modeling approaches are needed, which should 

be also effective for optimization.  On the other hand, in ―optimization‖, the resulting prob-

lem is difficult to be handled by off-the-shelf optimization tools. We want to develop 

advanced computational tools that are capable of finding novel solutions for the process, 

In summary, this thesis addresses four primary research problems: 

 SIPN process modeling. I aim to develop a comprehensive process model to under-

stand the relationship between process conditions and SIPN product properties, while 

also computationally efficient for process optimization. 

 Parameter estimation.  I develop a systematic parameter estimation procedure for re-

ducing model distortion in the presence of a large number of uncertain model 

parameters. 



1.4  Thesis Outline 

Chapter 1  Introduction 6 

 Complex model optimization. I investigate various model reduction techniques to re-

duce the computational burden of the complex dynamic optimization problem. An 

improved algorithm of surrogate-model-based optimization is proposed. 

 Multi-scenario optimization. A decomposition approach is developed to improve the 

solution robustness of large-scale multi-scenario optimization problems which arise 

from parameter estimation with multiple data sets.  

1.4 Thesis Outline 

This thesis is devoted to the development of a suitable SIPN process model and advanced 

computational techniques for large-scale complex process problems. Therefore, the thesis 

mainly consists of two parts accordingly, as ―Mathematical Modeling‖ (Chapters 3 ~ 5) 

and ―Computational Strategies‖ (Chapters 6 ~ 8). 

Chapter 2 provides a brief overview of the research background, where unique challeng-

es lie. State of the art modeling and optimization technologies in polymer reactor 

engineering are discussed. 

In ―Mathematical Modeling‖, the first highlight of the work is the comprehensive SIPN 

process model. It is featured as a multi-stage modeling framework which decouples the 

modeling complexity. Each sub-stage model reveals key effects during a particular time do-

main.    

In Chapter 3, the SIPN product and process are introduced. An overview of model struc-

ture and modeling procedure is provided. A multi-stage modeling approach is proposed for 

the example SIPN process.    
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In Chapter 4, a particle growth model is developed for Stage I of the SIPN process, as 

one of the sub-models. Particle average properties and intra-particle properties are linked 

with its semi-batch operating conditions. 

In Chapter 5, a SIPN kinetic model is developed for Stage II of the SIPN process, as an-

other sub-model, which involves simultaneous polymerization, grafting, crosslinking and 

degradation. A component-wise decomposition strategy is proposed to simulate joint molec-

ular weight distribution and gel content. 

In the section part, ―Computational Strategies‖, we discuss the computational strategies 

developed to tackle difficulties arising in the SIPN model-based application. 

In Chapter 6, a new parameter selection and estimation approach is presented, which 

shows improved robustness and efficiency in reducing the model distortion under over-

parameterized conditions. Successful applications are demonstrated for SIPN process model 

parameter estimation.  

In Chapter 7, optimal operation policies are explored based on the two-stage SIPN mod-

el. A new profile representation is identified for the SIPN operation. Algorithms for 

surrogate-model-based optimization are studied. The stiff DAE sub-model is replaced by 

low order Kriging models. Optimization is carried out for the integrated model to achieve 

improved solution. 

In Chapter 8, a two-stage decomposition algorithm is developed for multi-scenario dy-

namic optimization, which is particularly useful for parameter estimation from multiple data 

sets and optimization under parameter uncertainty. Improved robustness is achieved for the 

ill-conditioned SIPN problem.  
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Finally, a summary of the most important conclusions and key contributions are present-

ed in Chapter 9. Suggestions and an outlook for potentially interesting future developments 

are presented. 



Chapter 2  Polymerization Reactor Modeling and Optimization: State of the Art 9 

Chapter 2  

Polymerization Reactor Modeling and 

Optimization: State of the Art 

This introductory chapter provides a brief overview of the state of the art technologies in 

polymerization reactor modeling and optimization.  Modeling topics include mathematical 

representation of polymerization kinetics, transport phenomena and polymer reactors. Opti-

mization topics involve parameter estimation and process optimization. Remaining 

challenges are the motivation of this work. 

2.1 History of Polymer Reaction Engineering 

Polymer products have advanced from synthetic rubbers and synthetic fibers to stereospecif-

ic polymers, functional polymers, biosynthetic polymers and hybrid polymer composites. In 

the meantime, polymerization research has improved from empiricism to a multidisciplinary 

integration of chemistry, mathematics and scientific computing (Meyer, et al., 2005). 

―Makromoleküle‖ (Macromolecule), a groundbreaking elucidation by Staudinger (1920), 

showed the chain structure of polymer molecule. This accounts for most special characteris-

tics of polymers. Since then, polymer science and engineering has become a discipline and 

developed rapidly. 

Polymers are an example of ―products-by-process‖, where the final product properties are 

mostly determined during manufacture in the reactor. For example, polyethylene products, 
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though all polymerized from simple ethylene units, vary in a very broad range depending on 

what polymerization condition is taken. Therefore after Denbigh (1947) introduced the con-

cept of Polymer Reaction Engineering (PRE), which considers polymerization reactions at 

both the chemical and at the process levels, the area developed quickly (Meyer, et al., 2005).  

PRE provides a link between the fundamentals of polymerization kinetics and polymer mi-

crostructure achieved in the reactor, which enables control over the final product through 

refinement of the process. 

The needs of quantitative analysis and modeling of polymerization process were soon 

brought into attention in the field of PRE.  Polymerization reactor modeling is recognized as 

an important tool for process study. The early work of Flory and other research groups in the 

1930s (Staudinger, 1920; Kuhn, 1930; Chalmers, 1934; Flory, 1936) introduced models for 

chain length distribution in batch reactors resulting from different polymer chemistries. The 

methodology further developed in the 1940s led to more complex and comprehensive mod-

els, some of which are still being used today.  In the early 1970s, PRE underwent another 

radical development due to the revolutionary advent of digital computers. As computer-

aided modeling and optimization approaches were being introduced to all fields, commercial 

CAD (computer-aid design) packages for polymer processing were later used in the polymer 

industry (Sandland, et al., 1987). Since then, numerous commercial computer simulation 

packages have been developed and marketed. The scope of polymer reaction engineering is 

expanded and revolutionized.  The power of computation brings polymer reaction engineer-

ing to a next new level, from capacity improvement, quality control towards advanced 

―macromolecular engineering‖ (Matyjaszewski, et al., 2007).  
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2.2 Polymerization Reactor Modeling 

Due to the process-determined feature, an understanding of processes occurring in the 

polymerization reactor is therefore crucial to achieving efficient, consistent, safe and envi-

ronmentally friendly production of polymeric materials (Asua, 2007).  While Process 

Modeling technologies are developed as powerful tools for chemical plants, there are dis-

tinct challenges due to the intricacy of polymer processes. 

A major objective of PRE is to understand how the reaction mechanism, the physical 

transport process (e.g. mass and heat transfer, mixing), reactor type and reactor operating 

conditions affect the ―polymer quality‖ of the final product (Kiparissides, 1996). As Figure 

2.1 illustrates, each polymerization process has specific features at three different scales, 

which makes the practice of process modeling for polymerization system more challenging.  

At the micro-scale, we need to consider polymer kinetics. There are two major polymeriza-

tion mechanisms, addition polymerization and step-growth polymerization. Each of the 

mechanisms includes a family of polymerization types. General reaction steps may be simi-

lar for polymers produced in the same reaction class, but variations are not unusual for 

specific polymer products. At the meso-scale, the physical transport phenomena are most 

important. Polymerization systems can be classified into several reaction categories accord-

ing to their phase composition, such as bulk polymerization, suspension polymerization, 

gas-phase polymerization, emulsion polymerization and slurry polymerization. Various 

transport phenomena must to be considered, especially in multi-phase systems. It is general-

ly more complex to model mass transport in heterogeneous systems, such as emulsion 

polymerization, than in homogeneous systems, such as bulk polymerization. Even in a single 

phase reaction system, modeling of diffusion-limited reaction rates is still an important issue 
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to be addressed, as the polymer apparent reactivity changes because of changes of polymer 

chain mobility.  At the macro-scale, i.e. the reactor scale, there are different kinds of reactors, 

such as continuous reactors, batch reactors and semi-batch reactors. The operation and con-

trol are different from each other, which require appropriate problem formulations to focus 

on different modeling objectives.  Hence, there is no general model which is able to be ap-

plied for all polymerization systems.  Instead, polymer reaction modeling technologies are 

systematized at different scales as modeling components. A general guideline for the devel-

opment of a prototype polymerization process model is to start from a basic assembly of 

component models in these three scales. Then model modifications and developments will 

be further customized for the particular class of polymer products. 

 

Figure 2.1 Different scales in polymerization reactor modeling 

Several authors (Ray, 1971; Choi, 1993; Kiparissides, 1996; Dube, et al., 1997; Yoon, et 

al., 2004) have provided comprehensive reviews on polymer reaction modeling development. 

Villa (2007) also reviewed current tools and trends from the industrial point of view. Here, 

the development of polymer reaction modeling is reviewed, following the above three scales.   
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2.2.1 Polymerization Kinetic Modeling 

It is a common observation that the end-use properties of polymeric materials are deter-

mined by the structure properties of the macromolecule. Research also reveals that the 

reaction kinetics determines the structure properties of the macromolecular polymer. 

Polymerization kinetic models aim to link the three factors mentioned above. I.e., how the 

polymer reaction kinetics affects the structure properties of the macromolecular species, and 

how it will ultimately affect the end-use properties. The models enable optimizing the end 

product quality by designing the molecular structure (―quality by design‖), and more practi-

cally by manipulating the control of the process (―quality by control‖).  

There are several molecular properties typically considered in the quality analysis. Since 

polymer materials are mixtures by nature, even processed at a strictly controlled condition, 

they have a chain length distribution. Hence, information about the distribution is needed for 

characterization of the macromolecules, for example, molecular weight distribution (MWD), 

copolymer composition distribution, short / long chain branching distribution and stereoreg-

ularity, etc. Average properties are also used to approximate the distribution, such as number 

average molecular weight (  ̅̅ ̅̅ ), weight average molecular weight (  ̅̅ ̅̅ ̅), and branching ra-

tio etc. 

As shown in Figure 2.2, polymerization systems can be classified into two main catego-

ries according to the reaction mechanism, as addition polymerization and step-growth 

polymerization.  In the addition polymerization, monomers are successively added to the 

active center of the chain to form the macromolecule. The active reaction sites can be 

   (free radical polymerization),   ,    (Ionic polymerization) and coordinate components 

(coordination polymerization). In the step-growth polymerization, polymer chains grow 
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gradually through reactions between monomers with multiple functional groups. Polycon-

densation and ring-open polymerization are examples of step-growth polymerization. 

Various polymerization mechanisms lead to different kinds of polymer structures with dis-

tinctive properties. A comprehensive introduction on polymerization chemistry can be found 

in Flory (1953), Odian (1981), Stevens (1998). The effort of building the kinetic model to 

systematically understand the relationship of polymer structure and reaction mechanism is of 

fundamental importance for model-based applications. In the family of polymerization 

products, addition polymerization composes about 70% of the polymer production, among 

which, free radical polymerization is the most common approach.  Therefore, numerous en-

deavors are put into process modeling for the free radical polymerization system. 

 

Figure 2.2 Classification of polymerization mechanisms  

There are two main approaches to polymer mechanistic kinetic modeling, i.e. statistical 

approaches and population balance approaches. Statistical approaches are mostly used for 

step-growth polymerization, especially for random crosslinking and branching.  The popula-

tion balance approach is based on mass balance of reactive species involved in the reaction, 

and provides more detailed interpretation of reaction kinetics. Table 2.1 highlights some of 
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the kinetic modeling methods developed, with a focus on free radical polymerization sys-

tems. 

As seen in Table 2.1, statistical approaches evolved from simple yet limited probability 

calculations to many powerful but expensive Monte Carlo simulations thanks to the devel-

opment of the power of computing.  Stochastic kinetic modeling starts to gain popularity for 

complex kinetic system analysis when population balance equations are difficult to derive.  

It is versatile in terms of kinetic simulation, but one of its important limitations is the diffi-

culty to be used for optimization due to its stochastic nature. On the other hand, various 

numerical reduction techniques are developed for the population balance model in order to 

solve a large number of differential equations resulting from polymer species. For example, 

there are approximation approaches, generating function approaches, the method of mo-

ments and discrete weighted residuals etc. Interestingly, when the first study based on the 

direct numerical integration approach was published (Liu, et al., 1961), direct integration of 

the population balance model was soon abandoned for its obvious limitations in the early 

computing age. However, direct integration approaches are reconsidered to be a unified so-

lution approach with the increasing computational power (Verros, et al., 2005). 

Computational cost appears to be overlooked in homo-polymerization systems. Nevertheless, 

it is important to point out that, when more complex polymer structures are formed, such as 

co-polymer, network polymer and branching polymer, more efficient numerical algorithms 

are necessary to provide a prediction within a realistic time. Depending on the application, 

models with different complexity may be selected. Meanwhile, development of comprehen-

sive models with reduced complexity remains of great importance for advanced polymer 

kinetic modeling. 
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Table 2.1 Summary of kinetic modeling approaches 

Modeling Approach Property Prediction Case study Features & Limitations 

   Population Balance models 

Direct numerical integration MWD 
(Liu, et al., 1961) 

(Verros, et al., 2005)  

Straightforward implementation, but 

up to a limited chain length 

Instantaneous MWD method MWD 
(Hamielec, 1987; Xie, et al., 1993;  

Fiorentino, 1997)   

Simulate instantaneous chain for-

mation versus accumulative chains 

Continuous variable approximation   ̅̅ ̅̅  ,   ̅̅ ̅̅ ̅ 
(Bamford, et al., 1960; Bailagou, et al., 1985; 

Chaimberg, et al., 1990)  

Require a large kinetic chain length; 

truncation error of Taylor expansion 

and boundary condition;  

Generating functions (GF) 
  

 

 z-transforms MWD (Tirrell, et al., 1975; Mills, 1986)  
Numerical inversion of discrete 

Poisson summation formula 

 Fourier transforms MWD (Nordhus, et al., 1997) 
Convolution integrals have to be 

calculated 

 Laplace transforms MWD, LCB 
(Bamford, et al., 1960; Ray, 1971;  

Asteasuain, et al., 2002; Brandolin, et al., 2004) 

Select possible generating function 

for various MWD 

The method of moments 
  ̅̅ ̅̅  ,   ̅̅ ̅̅ ̅ 

MWD 

(Nagasubramanian, et al., 1970; Ray, 1972)   

(Crowley, et al., 1997) 

Average properties of the distribu-

tion; extended to sectional average 

Deconvolution techniques MWD, LCB (Soares, et al., 1995; Maschio, et al., 1999)  
MWD as a weighted sum of most 
probable MWD 

Discrete weighted residuals: 

 Galerkin finite element 

 Collocation 

 Gelerkin h-p 

MWD, LCB 

 

(Budde, et al., 1991; Canu, et al., 1991)  

(Deuflhard, et al., 1989) 

(Wulkow, 1996) 

 

General usage for different reaction 

mechanism. 

 

Discrete population balance 

approach 
MWD, LCB (Kumar, et al., 1997; Batte, et al., 1999) 

Efficient for nonlinear polymer rep-

resentation 

Numerical fraction Gel, MWD 
(Teymour, et al., 1994; Arzamendi, et al., 1995; 

Papavasiliou, et al., 2002;) 

Gel content predicted by higher pol-

ymer generations 
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Table 2.1 Summary of kinetic modeling approaches (Continue) 

Modeling Approach Property Prediction Case study Features & Limitations 

   Statistical models 

Probability calculation   ̅̅ ̅̅  ,   ̅̅ ̅̅ ̅ 

Linear polycondensation (Orlova, et al., 1979)  

Random crosslinking (Flory, 1953; Tobita, 1995) 

Random branching (Miller, et al., 1998) 

Relatively simple, but conclusions  

are generalized from a single chain 

probability  

Monte Carlo Simulation Gel, LCB, MWD (Tobita, et al., 1989; Tobita, et al., 1995) 
Flexible for various chain structure, 

but computationally expensive  
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In contrast to the mechanistic modeling approach, phenomenological models are also 

used in practice. Phenomenological models are semi-empirical, which are generally devel-

oped based on a relatively simple rate equation which does not consider reaction details for 

each species.  Therefore, it only has a limited predictability.  

2.2.2 Transport Phenomena Modeling 

In this scale, interphase and intraphase transport phenomena would affect the polymer struc-

ture properties through controlling the concentration of a species and altering different 

elementary reaction rates. Modeling of phase equilibria and apparent kinetic rates in 

polymerization systems are important as well as challenging.  

Table 2.2 lists some major polymerization types according to their phase composition. 

The challenges which are confronted are highlighted. Main concerns for bulk system model-

ing would be the intraphase transport limitations, while other polymerization systems face 

different interphase transport problems in addition to the bulk phase. A typical example of 

the multiphase system involving intricate mass transport is emulsion polymerization. Even 

though the underlying polymer kinetics follow the same free radical polymerization mecha-

nisms, compartmentalized effects of the free radicals lead to different final products than 

bulk polymerization. As seen in Table 2.2, a multi-phase system raises challenges in 

transport phenomena modeling. For systems considered at equilibrium, an equation of state 

is generally used. However, for dynamic systems, more investigation is often needed. 

Variation in polymer chain mobility is another important fact to be considered by the 

model. In free radical polymerization, apparent reaction rate constants change during the 

reaction due to the well-known gel effect, glass effect and cage effect. The gel effect refers 
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to the decrease of apparent termination rate (  ) between macro-radicals, also known as 

Trommsdorff-Norrish Effect. Since the viscosity of the system increases with the increase of 

the monomer conversion, the mobility of the macro-radical is confined. Gel effect usually 

results in ―auto acceleration‖ of the polymerization. The glass effect is related to the de-

crease in the propagation rate constant caused by a decrease in the mobility of monomer 

molecules at the glass transition temperature.  The cage effect is associated with the decrease 

of initiator efficiency, since decomposed initiator only has a limited range of diffusivity be-

fore reaching monomer. Discussion of the reaction rate coefficient model is often combined 

with the kinetic modeling. For different polymerization systems, incorporation of these three 

effects has different considerations. For example, gel effect is considered to take place at 

high monomer conversion ratio in bulk polymerization, while it occurs at low conversion in 

emulsion polymerization (van der Hoff, 1958). Some representative models are listed in Ta-

ble 2.2, classified based on their theoretical background.  As seen in Table 2.3, many 

theories and correlations are developed for modeling gel effect. Good agreement in reaction 

rate and molecular weight predictions has been reported by different groups.  Glass effect 

and cage effect are later unified in the same modeling framework by some of the groups. In 

general, models which claim universal applicability based on fundamental principles require 

a large number of input parameters. Some of the empirical models introducing breaking 

points and critical values are also difficult to justify.  Some benchmark studies were done to 

evaluate the rate coefficients experimentally. Propagation rate coefficients for bulk free-

radical polymerizations derived from Pulsed-laser Polymerization (PLP) and Size-Exclusion 

Chromatography (SEC) experiments have been critically evaluated (Beuermann, et al., 1997; 

Asua, et al., 2004). 



2.2  Polymerization Reactor Modeling 

 

Chapter 2  Polymerization Reactor Modeling and Optimization: State of the Art 20 

Table 2.2 Summary of polymerization types according to the phase composition 

Polymeriza-

tion system 

Reaction 

site 
Advantage Limitations Examples 

Mesoscale Model-

ing Challenges 

Bulk bulk high purity; contin-

uous production 

reaction heat 

removal 

LDPE, 

GPPS, HIPS, 

SAN, SMA 

diffusion limited 

reaction rate; reac-

tion heat transfer 

Suspension suspension 

particle 

reaction heat re-

moval; lower 

viscosity of the re-

action medium; 

large spherical par-

ticle. 

post-reaction 

process; diffi-

cult for 

continuous 

operation 

PS, PVC, 

PVDC 

phase equilibria for 

water soluble initia-

tor/ monomer 

system 

Emulsion micelles high molecular 

weight and high 

reaction rate; low 

temperature reac-

tion; reaction heat 

removal 

post-reaction 

process; con-

trol of de-

emulsification 

SBR, PVA, 

PMMA, 

PVC, VAE 

phase equilibria; 

free radical entry 

mechanism 

Solution solution temperature con-

trol; low viscosity; 

direct usage 

chain transfer 

to solvent; 

block copol-

ymers, 

functional 

particles: 

PDMAEMA-

b-PBMA, 

PS-b-PB 

dispersion system 

distribution 

Slurry catalyst site mild operating con-

dition; easy heat 

removal; high 

monomer conver-

sion; high solids 

content; broad 

range of Mw 

low reaction 

rate; purifica-

tion; solvent 

pollution 

HDPE gas-liquid mass 

transfer limitations 

Interfacial interface high molecular 

weight, low tem-

perature 

high reaction 

surface, sur-

factant usage 

Nylons interfacial concen-

tration 

 

However, it is important to note that most of the model predictions were compared with 

the results from batch isothermal experiments; they may fail in special situations of semi-

batch and/or non-isothermal operations, as pointed out by Ghosh et al. (1998) and Srinivas 

et al. (1996), due to the dependence on initial values of molecular weight and/or initiator 
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concentration.  Though significant effort has been made on the study of the coefficient mod-

eling, few successful applications are reported in industrial practice besides empirical 

formulations.  Solving an inverse problem is considered to be a promising and practical al-

ternative to accurately represent polymerization dynamics. 

Table 2.3 Summary of polymerization reaction rate modeling approaches 

 
Modeling approach Background Representative study 

Gel effect 

(  ) 

Empirical approach Viscosity (Duerksen, et al., 1968) 

Monomer conversion / poly-

mer weight fraction  

(Friis, et al., 1976; Ballard, 

et al., 1984) 

Stage-wise function (Qin, et al., 2002) 

Chain length dependent  (Zhu, et al., 1989; Russell, 

et al., 1992) 

Free volume theory  Mobility changes with  poly-

mer free volume 

(Marten, et al., 1979; Chiu, 

et al., 1983) 

Reptation theory  Time‐ dependent rate constant 

for different reaction regimes 

(Ito, 1980; de Gennes, 

1982a; de Gennes, 1982b) 

Entanglement theory Onset depends on polymer 

average size 

(Tulig, et al., 1982) 

Glass effect 

(      ) 

Collision theory Translation diffusion- section-

al diffusion-reaction 

(Chiu, et al., 1983; Ray, et 

al., 1995) 

 Encounter-pair 

model 

Two stage process assumption (Casey, et al., 1992) 

 Generalized free 

volume theory  

Extension of gel effect model (Keramopoulos, et al., 

2002) 

Cage effect  

( ) 

Generalized free 

volume theory  

Extension of gel effect model (Arai, et al., 1976; 

Keramopoulos, et al., 2002) 

 

2.2.3 Polymer Reactor Modeling 

All the above models are eventually related to the polymer reactor where the polymer is be-

ing produced and for which the operation is controlled. Although there are various types of 

polymer reactors, in terms of mixing conditions, they can mainly be divided into four cate-

gories: batch reactor, semi-batch reactor, continuous-flow reactors without back-mixing and 
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continuous-flow reactors with back-mixing. Reactor configuration examples include contin-

uous/semi-continuous CSTR, tubular reactor, fluidized bed, reaction columns and reactors in 

series. Different mixing conditions have important impacts on polymer properties.  In addi-

tion, the formed structure of the polymer affects the flow of the complex fluid. The quality 

distribution within the reactor should be taken into account at this macro-scale level. 

Commodity polymer products are usually produced through continuous operation. Typi-

cal examples are low density polyethylene (LDPE), which is produced in a high pressure 

tubular reactor. Steady-state is often assumed for continuous processes. Therefore, the dy-

namics of the reactions may be simplified. 

Batch/semi-batch processes are common for engineering and specialty polymers.  

Though the capacity of batch and semi-batch processes is much lower than continuous oper-

ation, it allows additional controls to achieve fine product properties. 

For the particulate process, particle size distribution is another important issue of the 

product quality. A particulate population balance equation is considered in the model. Vi-

valdo-Lima, et al. (1997) provided a review on modeling of particle size distribution (PSD) 

in suspension system. A unified population balance approach was reviewed in Kiparissides 

(2006) following the time evolution of molecular and morphological polymer properties in 

batch and continuous polymerization reactors. 

Table 2.4 lists some reactor modeling studies from the literature. The resulting reactor 

models incorporate the micro-scale and meso-scale models with different foci. Special fea-

tures of the reactor configuration are taken into account.  
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Table 2.4 Polymer reactor modeling 

Reactor Configuration Representative Study Representative Study 

Continuous Process Tubular reactor HDPE (Bokis, et al., 2002; 

Buchelli, et al., 2005) 

Fluidized bed reactors LLDPE (Xie, et al., 1994; 

Alizadeh, et al., 2004) 

Reactors in series PP (Zheng, et al., 2011) 

 Reactive distillation  

columns 

Polycondensation  

(Grosser, et al., 1987) 

Batch Process Autoclave reactor Nylon 6,6  

(Robertson, et al., 1995) 

Stirred tank reactor PS (Cherbanski, et al., 2007) 

Semi-batch Process Stirred tank reactor Emulsion polymer (Chylla, et 

al., 1993; Doyle, et al., 2003) 

PS (Crowley, et al., 2000) 

PVC (Xie, et al., 1991) 

 

2.3 Polymerization Process Control and Optimization 

Advanced process simulators provide powerful tools for modern engineering. Reliable pro-

cess models can be used to control, design and optimize a complex process in an accurate, 

prompt and comprehensive way. Successful applications that lead to improved productivity 

and quality have been widely reported among the chemical industry. The needs for advanced 

control and optimization in polymer industry have also been recognized.  Here, there are two 

key challenges when applying the process control and optimization for the polymer process 

model. First, how can we obtain an accurate model? Second, how can we solve the specific 

optimization problem in an effective and efficient way?  Distinguished from the topics dis-

cussed in the previous section on process model development and problem formulation, 

which are mostly from the polymer engineering point of view, the focus of this section is on 

computational issues in the model-based application, especially for the complex polymeriza-
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tion process model. In this respect, these two challenges are related with the problem of pa-

rameter estimation and process optimization, which will be reviewed in the following 

section. 

2.3.1 Parameter Estimation 

Modeling is never complete until all relevant model parameters are determined or estimated. 

In fact, determining the parameters of a kinetic model by using laboratory, pilot plant, or 

plant data is perhaps the most critical step for the successful development of a process model 

and at the same time it might be the most time-consuming, costly, and difficult process 

(Yoon, et al., 2004). Parameter estimation is a discipline that provides tools for the efficient 

use of data for aiding in mathematical model of phenomena and the estimation of constants 

appearing in these models (Beck, et al., 1977). There are three main topics involved in the 

study of parameter estimation. 

 Data fitting: estimation of optimal parameters which best fit the current data; 

 Design of experiments (DOE): maximize the information obtained from the experi-

ment to obtain the best parameter estimates; 

 Model discrimination: the determination of the mathematical model with fitted pa-

rameters which best describes the system from which data are measured, including a 

model of error processes (Zhang, 1997). 

In this content, the parameter estimation problem refers to the first topic, data fitting, spe-

cifically. Estimation problem formulation and analysis, and efficient solution algorithms are 

two main issues in the parameter estimation problem. Here, general background information 

is briefly reviewed, and the specific issues for the polymerization process are highlighted. 
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2.3.1.1 Parameter Estimation in General 

 Parameter estimation problem statement  

A general functional relationship can be written as 

   (   ) (2.1) 

where   is the response (dependent) variable,   is the independent variable,   is the un-

known parameter vector,     (          ). Table 2.5 outlines three main formulations of 

the parameter estimation problem.  

Table 2.5 Parameter estimation problem formulations 

Least Squares 
    ( )  ∑     

      
 

   
 

weighted by experiment (weight   ) and variable ( covariance  ) 

Maximum Likelihood 
Maximize likelihood function: 

 (   )   ( ( )| )   (   (   )| ) 

Bayesian  ( | )  
 ( | )   ( )

  ( | )   ( )  
 

 

where   represents the unknown parameter vector of the deterministic model;   is the di-

mension of  ;   is the number of experiments;   is the moment matrix of the residuals, 

defined by     ∑       
 
   ;   is the sample data. 

Zhang (1997) provided a review on parameter estimation techniques. Computational im-

plementations of linear-in-parameter estimation problems are well studied. Montgomery et 

al. (2001) and Weisberg (2005) provided comprehensive introductions to linear regression 

analysis and applications. Commercial and open source packages are widely used. Nonethe-

less, in chemical engineering problems, systems are often nonlinear and dynamic. Many of 
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the conclusions for linear systems could not be extended for nonlinear systems directly.  

Some of the approaches are modified to consider the nonlinearity. However, the analysis is 

only approximately valid under certain conditions. Special care is required when the system 

is nonlinear.  Nonlinear parameter estimation theory and algorithms are developed for more 

general engineering applications (Aster, et al., 2005). In the polymerization system, the non-

linearity becomes so important that specific approaches are necessary. Some of the typical 

problems are discussed in the next section. 

2.3.1.2 Special Issues for Polymerization Process Model 

 There are several factors making the parameter estimation problem especially challeng-

ing for the polymerization process model. 

 Limited measurement data 

Many of the kinetic and transport parameters are strongly system-dependent in polymeri-

zation processes, and accurate predictions from first principles are often impossible. 

Applying estimated values based on output measurements is a typical approach in polymeri-

zation process model construction. However, although analytical approaches for 

characterization of polymer material become more and more powerful, many polymer struc-

ture properties are still not able to be measured directly. For example, simulation models are 

capable of calculating the 2D molecular weight distribution of LDPE, i.e. backbone chain 

distribution and its long chain distribution, while experiments could not provide such infor-

mation for comparison. Accurate sampling during reaction is not an easy task either. 

Richards, et al. (2006) surveyed the polymerization instrumentation technologies with em-

phasis on, for example, measurement of viscosity, composition, molecular weight, and 

particle size. Even for those offline measureable properties, many analytical experiments are 
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time and resource consuming, and are not always implemented. Lack of measurements is not 

an uncommon case in many parameter estimation problems. 

In terms of mathematical computation, study of parameter estimability and parameter se-

lection is often neglected but critical to reduce the distortion of the obtained model in the 

case of limited data. Sensitivity study is an area closely related with parameter estimation. 

Weakly and linear dependently parameters are aimed to be identified, and removed from the 

parameter estimation problem.  Parameter selection approaches based on local sensitivity 

(Brun, et al., 2001; Velez-Reyes, et al., 1995; Sandink, et al., 2001; Yao, et al., 2003) were 

generalized from the methods for linear-in-parameter systems, assuming initial parameter 

values are close to the optimal. However, the robustness of the selection is often questiona-

ble due to the near-optimal assumption in nonlinear problem. Hence, global sensitivity (Chu, 

et al., 2007; Burgos, et al., 2007) approaches are developed, aiming to overcome the limita-

tion of localized selection. Nevertheless, a large number of simulations are often required, 

and it becomes prohibitively expensive for large-scale problems.  Regularized parameter 

estimation (Eriksson, 1996; Renaut, et al., 2008) is another alternate. Nonetheless, how to 

find suitable regularization parameters is also nontrivial.   

 Complex process model 

As seen in the previous discussion, polymerization process models usually consist of 

highly nonlinear and stiff differential-algebraic equations (DAEs). The obtainment of an op-

timal solution is computationally challenging for this class of problems. DAE / PDAE 

constrained optimization problems drive the need of advanced algorithms to achieve better 

convergence properties and handle higher dimensional optimization problems. 



2.3  Polymerization Process Control and Optimization 

 

Chapter 2  Polymerization Reactor Modeling and Optimization: State of the Art 28 

There are three main solution approaches for dynamic optimization. First, the variational 

method, which calculates the first order necessary conditions for optimality without refor-

mulating model equations, is usually prohibitively expensive to solve. Second, the partial 

discretization approach, considers a discretization of the control problem  ( ), and then ap-

plies dynamic programming or sequential methods. However, these approaches cannot treat 

bounds on state variables or path constraints directly, which will result in difficulties to con-

sider polymer quality as additional constraints, for example. Third, full discretization 

methods, which explicitly discretize all the variables of the DAE system following a simul-

taneous approach, have advantages with state variable constraints and path constraints. 

Though it generates a large-scale nonlinear programming problem, efficient NLP algorithms 

can be applied with special decomposition strategies, such as the NLP solver, IPOPT 

(Wächter, 2002) which can solve large-scale NLP problems efficiently. A more detailed de-

scription of the simultaneous method is given by Biegler (2002). 

2.3.2 Process Optimization 

One of the ultimate goals of process modeling is to obtain an optimized solution which is 

not obvious by a traditional trial-and-error approach.  Model utilization for process optimi-

zation is of great importance in the modeling practice. In general, there are offline and 

online process optimizations designed for different purposes.  

Offline process optimization problems are typically involved in the process design, op-

eration policy development, etc. Optimization is carried out based on steady-state or 

dynamic polymerization process models. When a deterministic model is used, the resulting 

(dynamic) optimization problem can be solved through similar solution strategies like the 

parameter estimation problems discussed above.  If process uncertainty must be considered, 
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special treatments are required in the problem formulation and solution computation. Multi-

scenario formulation is a convenient way to formulate optimization under the uncertainty 

problem (Laird, et al., 2008).  However, its application is limited in polymer process analy-

sis due to the high computational cost resulting from the large-scale nonlinear problem. 

Recently, research has been active in the area of online process optimization that takes 

advantages of state-estimation technology and growing computation power. However, many 

important variables, which are related to end-use polymer properties, cannot be measured 

on-line or can only be measured at low sampling frequencies. State-estimation technologies 

provide ―soft sensors‖ for model predictive control. In each decision step, the process model 

is updated with real-time data, and the optimization solution is determined through online 

calculators based on the online validated model. The online optimization framework over-

comes the uncertainty of the offline model, enabling on-line monitoring of polymer quality 

and improved existing optimization solution. Since some of these topics are beyond the 

scope of our discussion, the interested reader is referred to recent books on state estimation 

(Simon, 2006), and introductory review articles for nonlinear model predictive control 

(Camacho, et al., 2007) for more details. 

In case the simulation model is too expensive to be used for optimization directly, various 

model reduction techniques are developed to obtain an optimum. 

2.4 Commercial Software for Polymerization Reactor 

Modeling 

Due to the time and effort-consuming procedure for developing polymerization process 

model-based application, significant efforts are devoted to develop a general purpose solu-
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tion for polymerization process modeling and optimization that includes above features. As 

a result, commercial software has been heavily investigated. It is reported to achieve notable 

successes for some important commercial polymer processes in industry, and plays an im-

portant role in modern polymer reaction engineering. Some of the competitive commercial 

packages are briefly discussed here. Interested readers can refer to vendors’ websites for 

more details. 

“Aspen Polymers‖, formerly ―Aspen Polymers Plus
TM

‖, is one of the core elements of 

AspenTech’s aspenONE
TM

 Engineering applications. It aims to employ first-principles pol-

ymer modeling technology for conceptual design of polymerization processes. It features 

extensive databases for polymer system physical properties calculation, where polymer ac-

tivity coefficients and equations of state are incorporated. General classes of polymerization 

kinetics are provided, and user-defined reactions may be added. The simulation model is 

solved through an equation-oriented solution strategy. Dynamic optimization with embed-

ded DAE problem is solved with sequential approach. Chen (2002) listed several industrial 

modeling practices through Aspen Polymers, including PBT, PET, Nylon 6, Silicone, LDPE, 

HDPE, PP, PS etc.  Users may take advantage of combining other analysis packages in As-

pen for process study. 

Other general purpose modular modelers, such as gPROMS, Pro II (Polymer II Tm) also 

support polymerization modeling in addition to small molecule chemical processes. 

“PREDICI‖ is a relatively new simulation package for polymerization processes. It 

evolved from a solver for population balances describing molecular weight distribution in 

polymer reaction kinetics to a comprehensive tool for variety of polymer processes 

(Wulkow, 2008).  The main feature of PREDICI lies in its mathematical concepts for model-
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ing and computation.  Polymerization reaction is defined through ―reaction step patterns‖.  It 

enables additional flexibility for polymer kinetic modeling. More importantly, Galerkin h-p-

method is used as its core algorithm. It claims to be capable of simulating complete molecu-

lar weight distributions of any form up to any degree of polymerization. A recent overview 

of PREDICI and a detailed description of the mathematical techniques and algorithms be-

hind PREDICI can be found in Wulkow (2008), as well as in the literature, where advanced 

kinetic models are constructed on PREDICI with customized features. 

Commercial software packages provide a convenient way for construction and demon-

stration of polymer process models. However, a closer integration between modeling and 

optimization tools is needed to facilitate model-based applications for a boarder family of 

polymer products. Continuous efforts are also needed to improve the underlining modeling 

and computational strategies to tackle increasingly complex problems arising in the polymer 

industry. 

2.5 Summary 

In summary, polymer reaction engineering embraces tremendous developments benefiting 

from advanced polymerization reactor modeling and optimization technologies. First-

principle models are being developed at different scales for understanding the relationship 

between process conditions and product properties. Parameter estimation and process opti-

mization are carried out based on polymer reactor models through advanced computational 

strategies. Commercial packages continuously incorporate new advancements in modeling 

and optimization for model-based applications in polymer engineering.  While remarkable 

successes have been achieved in the past, there are unique challenges in polymerization pro-
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cess which remain to be addressed. Therefore, there are broad potential and opportunities for 

further development to handle complex modeling and optimization problems. The invest-

ment in developing polymer process models yields returns in many different ways.  
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Chapter 3  

Interpenetrating Polymer Network Process 

and Modeling Framework 

The Semi-Interpenetrating Polymer Network (SIPN) process is the focus in this work for 

studying model-based application. This chapter introduces the family of Interpenetrating 

Polymer Network products and their process features. Associated modeling and optimization 

problems are identified. An industrial SIPN process is presented as an example, and a multi-

stage modeling framework for SIPN is outlined. 

3.1 Introduction of IPN 

Interpenetrating polymer networks, IPNs, are a broad class of polymer composites defined 

as a combination of two polymers in a network form, with at least one of them synthesized 

and/or cross-linked in the immediate presence of the other (Sperling, 1981). The first known 

IPN material was reported in the patent by Alysworth (1994) (Sperling, 2004). Yet, the term 

of ―interpenetrating polymer network‖ was not used until 1960, where it was first introduced 

by Millar (1960). During that period, cross-linked and grafted polymer products were widely 

developed. Studies on IPN started to attract growing interests. Kahovec et al. (1997) system-

atically defined the nomenclature of IPN materials.  IPNs were formally added to the 

polymer dictionary. 
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Individual constituents in IPN are generically polymer resin and fibers, which serve as 

the matrix phase and the reinforcing phase, respectively (Advani, et al., 2002). IPNs possess 

several interesting characteristics in comparison to normal polyblends, in particular, its valu-

able synergistic effect. The distinctive properties of IPNs have attracted considerable 

attention, and continue to be of interest in both fundamental and applied R&D investigations. 

IPNs have been utilized in widespread commercial applications (Klempner, et al., 1994), 

and are considered promising in novel material development (Athawale, et al., 2002). IPN's 

capability of forming tough but flexible materials enables its utilization for sound and vibra-

tion damping, biomedical applications, natural products and renewable resources, tough and 

impact-resistant materials, etc. Several comprehensive reviews of IPNs can be found in 

Klempner and Frisch (1994), Gupta and Srivastava (1994), Sperling (2004) and Myung et al. 

(2008), where the nomenclature, synthesis and properties of IPN are discussed. 

3.1.1 IPN Molecular Structure 

As its name suggests, two key features of IPN products are ―interpenetrating‖ and ―Net-

work‖, which lead to the characteristics of IPN chemical and mechanism properties. Figure 

3.1 presents schematic representations of IPN structures. Different lines symbolize polymer 

chains which consist of different monomer units. Dots are crosslinking or grafting sites be-

tween two polymers. 

 

Figure 3.1 Schematic representations of IPN structure 
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Figure 3.1(a) illustrates the structure of the full IPN, which has both polymers homo-

crosslinked. The intimately combining crosslinked macromolecular network has advantages 

in controlling the phase separation. Even for polymers which are thermodynamically incom-

patible, permanent entanglements between the different crosslinked networks prevent 

complete phase separation in such system. Consequently, various types of crosslinking for-

mation have important impact on its product morphology. Besides the full IPNs, there are 

semi-IPNs (SIPN). Figure 3.1(b) shows an example of SIPN, which only contains one pol-

ymer network. The other polymer presented in Semi-IPN is linear or branched. There are 

semi-I and semi-II SIPN, which refer to having the first or second polymers cross-linked, 

respectively.  In fact, the formulation of the non-crosslinked polymer plays an important role 

in SIPN phase behavior. Without permanent entanglements between the two polymers, it is 

possible to separate the non-crosslinked polymer from the composite.   Therefore, in order to 

reinforce the apparent compatibility, some degree of branched-structure is preferred in the 

system. The well-interpenetrated structure is thermodynamically more stable. Hence, the 

relationship between IPN crosslinking kinetics and IPN structure is of great interests for 

product development. 

3.1.2 IPN Material Morphology 

Different ways and degrees of interpenetration lead to various IPN morphologies.  IPNs rep-

resent a special example of topological isomerism in macromolecules (Frisch, 1985). The 

growing quantity of one polymer will transform from a separate phase, co-continuous phase 

to become continuous phase, called phase inversion. For example, if one polymer is glassy 

and the other is elastomeric at room temperature, one obtains either a reinforced rubber or a 

high impact plastic depending on which phase is continuous (Frisch, et al., 1974). When the 
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interpenetrating process is well-controlled, gradient composites are possible to be produced. 

Successful applications are widely reported.  Understanding and control of IPN interpenetra-

tion dynamics is important for IPN production. 

3.1.3 IPN Polymerization Process 

The procedure to synthesize IPNs can be generally classified into two categories, i.e., simul-

taneous and sequential approaches. Simultaneous synthetic methods start with a mixture of 

both monomers to form two polymer networks simultaneously through different reaction 

routes. Sequential synthetic methods control different network reactions by sequentially add-

ing different monomers. Currently, many commercial materials are produced as sequential 

IPNs, due to their flexibility and relatively ease of processability. The sequential approach 

also enables post-processing modification of mass-produced commodity polymers into val-

ue-added specialties for a broader range of applications, such as polyethylene based products. 

Molecular properties of SIPNs are strongly affected by their processing conditions. 

 

(a) Simultaneous synthesis method

 

(b) Sequential synthesis method 

Figure 3.2 Schematic representations of IPN synthesis methods 
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In particular, SIPNs synthesized through post-process modification are generally pro-

duced in a particulate form.  Pre-polymerized seed is used for in-situ polymerization. A 

typical process technology is seeded suspension polymerization. 

 

Figure 3.3 A schematic representation of PES semi-batch process 

As shown in Figure 3.3, seeded suspension polymerization begins with a pretreated pol-

ymer seed swollen with monomer. Then, monomer solution is fed under strong agitation into 

the suspension reactor containing water, seed particles, and suspending agents. In-situ 

polymerization is carried out with a controlled feeding of initiator and monomer. Depending 

on the formulary and polymerization conditions, various penetrations can be achieved in the 

seed for different applications. This technology provides unique advantages in controlling of 

particle size distribution and polymerization rate, which is particularly suitable for specialty 

polymer production. 

3.1.4 Examples of IPN Products 

The capability of formulating synergistic polymer composite paves a way for new material 

design. Numerous IPN materials are developed and investigated. Table 3.2 updated from 

(Sperling, 2004) shows some examples of commercial IPN materials. 
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Table 3.1 Examples of commercial IPNs 

Manufacturer Trade Name Composition Application 

Shell Chemical Co. Kraton IPN SEBS-polyester Automotive parts 

LNP Plastics Rimplast Silicon rubber-nylon 

or PU 

Gears or medical 

DSM N.V. Kelburon PP-EP or rubber-PE  

Uniroyal (Reichhold 

Chemical Co) 

TPR EPDM-PP Auto bumper parts 

Rohm & Haas  Anionic-cationic Ion-exchange resins 

Monsanto Santoprene EPDM-PP Tires, hoses, belts and gaskets 

BF Goodrich Telcar EPDM-PP or PE Tubing, liners and  

Exxon Vistalon EPDM-PP Paintable automotive parts 

Cook Composites Acpol Acrylic-urethane-

polystyrene 

Sheet molding compounds 

Dentsply International Trubyte, Bioform Acrylic-based Artificial teeth 

NOVANA Inc Macro-IPN  Healthcare, drug delivery 

Bio Med Sciences Silon PDMS-PTFE Burn dressing, scar abatement 

 

3.2 Related Modeling Studies 

Although SIPN products have been being widely commercialized, mathematical models for 

SIPN process are not yet available.  The process complexity leads to particular challenges 

for applying modeling and optimization technology. In this section, related modeling studies 

are reviewed. Their applicability and restrictions for the SIPN modeling system are high-

lighted.  

3.2.1 SIPN Kinetic Modeling 

Important characteristics of SIPN products include gel content for the insoluble part (net-

work), joint molecular weight for the soluble part (linear), as well as branch content in both 

parts (nonlinear). Therefore, the reactions of grafting, crosslinking, possible degradation and 

polymer interactions should all contribute to the SIPN kinetics.  Though numerous models 
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are developed for free radical polymerization system, no kinetic models are available for 

SIPN binary systems.  

The kinetic modeling approaches summarized in Table 2.1 are generally suitable for line-

ar polymer systems. However, modeling the process beyond the gel point and considering 

polymer, and polymer-polymer reactions are main difficulties for SIPN kinetic modeling.  

Various modifications of linear polymer models are developed for gel and grafting systems. 

The gel point refers to the starting time of the network formation. Type-I SIPN (the first 

synthesized polymer is crosslinked) preparation is different from the crosslinking formation 

during polymerization. As saturated polymer is crosslinked in the presence of peroxides, ge-

lation does not only indicate the decrease of macro-radical mobility as in the linear polymer 

system, but also leads to polymer networks. Some of the main concerns in modeling perox-

ide induced polymer networking have been gel prediction with a     simulation. The 

well-known Saito-Kimura-Tobita scheme (Saito, 1958) was first developed as a simple inte-

gral-differential equation to predict gel content and MWD in a random crosslinking process. 

This was further developed by (Kimura, 1962) and (Tobita, 1995), where a series of solu-

tions for various types of initial polymer distributions were derived. A further class of 

models follows this framework (Zhu, 1996; Cheung, et al., 1997; Tai, 1999), but they suffer 

from several limitations.  First, the gelation point is always a point of discontinuity for kinet-

ic analyses (modeling) (Hamielec, et al., 1991). The gel point is determined by the widely 

known Charlesby-Pinner equation which is valid only when the initial molecular weight dis-

tribution (MWD) is the most probable one.  However, the Charlesby-Pinner equation is 

frequently used for distributions where it is not applicable (Shyichuk, 1996). Furthermore, 

the general solution of MWD starting from an arbitrary initial polymer distribution is not 
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available. When the decomposed initiator participates in reactions other than initiation with 

polymer backbones, calculation of crosslinking density is also not straightforward. Conse-

quently, the model becomes incapable of predicting the polymer composite product. 

A class of models which focuses on gel prediction is developed (Kim, et al., 1984; Sen, et 

al., 1991; Ghosh, et al., 1998a), where exothermic change due to polymerization of the 

monomer is studied by DSC.  These kinetic models achieve good agreement of conversion 

rate despite their simplicity. However, the molecular weight development is not taken into 

account. As a result, the underlying chemical mechanisms are still hidden.  The kinetic study 

of Suwanda, et al. (1993) is considered to be the first kinetic study of this kind.  Here, the 

effect of degree of unsaturation and branch points in the polyethylene chain is studied at a 

very low initiator concentration, and crosslinking and chain scission are neglected in the 

work. Pedernera, et al. (1999) developed a double moment technique, which uses a particu-

lar combination of chain length and vinyl number as moment indices, so that number, 

weight and z-average molecular weight can be calculated. Asteasuain et al. (2002) applied 

the approach of probability generating functions (PGF) to describe complete molecular 

weight distributions for peroxide modification of polyethylene. Three different PGFs are 

defined to describe number, weight and chromatographic distribution.  However, the general 

shortcoming of this class of models is the inability to describe the simulation beyond the gel 

point, as the highest moment or chain length approaches infinity. 

To overcome this barrier, a Monte Carlo (MC) simulation method is introduced for this 

complex system, and becomes a powerful method for investigating the whole molecular 

constitution.  The Monte Carlo sampling technique (Tobita, 1994; Zhu, et al., 2003) is ap-

plied to simulate molecular weight distribution and crosslinking density involving 
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crosslinking, branching as well as degradation reactions for the modification of polymers. 

Wen, et al. (2003a, 2003b) developed kinetic gelation models to simulate kinetics of cross-

linking polymerization on fixed lattices, where propagation and termination reactions are 

restricted to occur only between nearest neighbors. Probability density function and stochas-

tic approaches were applied to simulate network formation and inhomogeneous reaction rate. 

With the MC simulation method, one can obtain and directly observe detailed structural in-

formation for each polymer molecule formed in a straightforward manner (Verros, 2003). 

Despite this capability for property simulation, the MC approach is generally computational-

ly expensive, and its stochastic nature leads to difficulties in process control, design and 

optimization.  

Another fundamental kinetic modeling approach was developed by Likozar, et al. (2002), 

where a detailed model is constructed for simulation of chemical kinetics of an elastomer 

crosslinking by organic peroxides.  A population balance equation is used for the collection 

of elastomer backbone sites and segment reactivity is taken into account. The concentration 

of total crosslinks, elastomer-elastomer bonds, and peroxide-elastomer bonds are predicted 

by the kinetic model. While this approach has roots in fundamental crosslinking chemistry, 

it is not able to predict molecular weight distribution and gel content properties. Hence, no 

direct comparison to the process data can be made through this kinetic model. As MWD and 

gel content prediction are both desirable properties for quality indication, more work is 

needed in developing a comprehensive model which is capable of considering detailed ki-

netics while maintaining satisfactory simplicity. 

Finally, although polymer degradation is not intended for the SIPN process, it is worth 

noting that peroxide-induced degradation could take place in such systems.  Modeling of 
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peroxide enhanced degradation was studied (Kim, et al., 2000). When both polymers in the 

composite undergo degradation, a similar approach can be applied (Sivalingam, et al., 2004).  

Inclusion of possible degradation mechanisms are important for SIPN product quality con-

trol, and therefore require further investigation. 

3.2.2 SIPN Particle Modeling and Semi-batch Operation 

Seeded suspension polymerization is an important class of heterogeneous polymerization 

technology. The in-situ polymerization stage is different from conventional suspension 

polymerization in several aspects. The heterogeneous nature complicates the study of this 

process.  Gonçalves, et al. (2008) showed that different average molecular weights were ob-

tained through seeded suspension polymerization. This could result from the high viscosity 

of the monomer swollen particle, which limits mobility of the growing chains and decreases 

their termination rate. Understanding and exploiting the relationship between process opera-

tion conditions and polymer particle properties are crucial for product quality control and 

process improvement. 

However, while numerous models have been developed for suspension polymerization, 

models for seeded suspension polymerization are scarce. Conventional styrene batch/semi-

batch reactor models, which are similar to the bulk system model, would encounter difficul-

ties in describing heterogeneous seeded particles. Also, the single particle model developed 

for batch reactors by Zhang, et al. (1997), which assumes equilibrium mass partition and 

constant particle density, becomes inappropriate for semi-batch dynamics. A more detailed 

meso-scale particle model for an emulsion modified semi-batch styrene suspension polymer-

ization process is developed by Lenzi, et al. (2005), where mass transfer and various kinetic 

mechanisms are taken into account. However, intra-particle composition and swelling are 
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not considered for their single polymer system; this limits model applicability for the SIPN 

seeded particulate process.  

Determination of SIPN particle size distribution in semi-batch process is complicated by 

several factors, such as initial seed PSD, monomer-polymer interaction, second particle for-

mation, semi-batch feeding rate and mixing conditions.  A uniform PSD of SIPN product is 

typically desired for better end-use properties.  Therefore, process conditions are required to 

meet several constraints in the operation.  

3.3 Modeling and Optimization Framework 

Due to the complexity of IPN products, experimental studies are often time and resource 

consuming.  Reduction in production cost and more stringent product quality requirements 

become major challenges for polymer manufacturers in the increasingly competitive poly-

mer market. While specific polymer structures are desired for various applications, poor 

control of process conditions can prevent the formation of the preferred structure, and con-

sequently affects ultimate properties. Advanced mathematical models and optimization 

approaches are pursued to provide insights for process operation and material design. In this 

section, an example of a commercial SIPN process is described. An overview of SIPN mod-

eling and optimization framework is sketched. Confronting modeling and optimization 

problems are discussed. 

3.3.1 An Example SIPN Process 

Since polyethylene is currently the largest commodity polymer product, SIPN modification 

of polyethylene is of particular interest. On the other hand, styrenic resin is one of the main 

commercial resins produced by suspension polymerization processes.  A sequential SIPN 
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process from polyethylene seed with styrenic monomer modification, {net-polyethylene}-

ipn-{polystyrene} Semi-I IPN, is considered as an application example for our study. The 

product produced serves as an advanced impact-resistant packaging material, with rigidity, 

impact strength and good dimensional stability. Here ―PES‖ is used as an abbreviation of its 

full name. A description of PES is provided here.  

 PES process 

Polymerization of PES begins with polyethylene seeds that are swollen with styrene 

monomer. Fine structured PES particles are formed and grown by semi-batch feeding of 

monomer and initiator solution. 

Figure 3.4 illustrates the development of a PES particle. The particle undergoes pretreat-

ment, polymerization and crosslinking. At the beginning of the process, polyethylene seed is 

suspended in the suspension reactor; a portion of styrene monomer solution is slowly added 

at a non-reacting condition; and the reactor is held until initial swelling is completed.  Then, 

initiator and monomer are slowly added to the suspension reactor to initiate in-situ polymer-

ization process following a free radical polymerization mechanism. When the styrene 

polymerization approaches completion, polyethylene is crosslinked into networks at a high 

temperature.  

This SIPN modification technology significantly improves conventional polymer particle 

properties. Many successful results have been reported and patented (eg. Kitamori, 1976; 

Kitamori, 1979; Kajimura, et al., 1981; Kobayashi, et al., 1985; Adolph, et al., 1987; Adolph, 

et al., 1987).  Thus, it is desirable to develop model-based optimization strategies based on 

this example.  
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3.3.2 Proposed Modeling Framework 

 A modeling framework is sketched for an SIPN process based on the example of the PES 

process. The SIPN modeling procedure is featured as a multi-stage modeling approach. Sub-

models are developed for each stage of the SIPN process accordingly, in order to decouple 

the modeling complexity. The main assumptions include that crosslinking and monomer dif-

fusion are negligible in each stage correspondingly. 

Figure 3.4 and Table 3.2 outline the modeling and optimization framework for the SIPN 

process, and provides an organized reference for the following chapters. The polymerization 

stage is considered as the first stage in the modeling which starts from the condition after 

pretreatment. A single particle model is developed to link the polymerization kinetics and 

semi-batch operation at the particle level. Since polyethylene is assumed to be inert during 

this stage, the evaluation of the ―interpenetrating‖ feature is the main focus in the particle 

growth model. The second part of the model focuses on SIPN kinetics. The full kinetic 

mechanism is considered to simulate the final product properties. Then the two sub-models 

are connected to represent a complete SIPN process. Optimization is carried out individually 

and jointly to obtain an optimal semi-batch feeding rate. Dynamic optimization and surro-

gate-model-based optimization strategies are developed accordingly.  

 

Figure 3.4  A two-stage SIPN process 
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Table 3.2 Modeling and optimization framework for the SIPN process 

 Stage I Stage II 

Features 
Complex diffusion;  

Single component reaction. 

Complex composite networking 

reaction 

Modeling Particle Growth model SIPN Kinetic model 

Optimization 

variables 

 Monomer feeding rate 

 Initiator feeding rate 

 Initial polymer 

 Monomer concentration 

 Initiator mixture concentration 

 Holding temperature 

 Holding duration 

Optimization 

approaches 

Dynamic optimization Surrogate modeling 

Integrated optimization; multi-scenario optimization 

 

The process models intend to answer the following questions: 

 How process conditions affect SIPN structure properties.  

 How to produce the SIPN product in an optimal way.  

Prototype process modeling, parameter estimation and dynamic optimization are foci in 

the following sections. 

3.4 Summary 

SIPN is a class of advanced polymer composites, which has been used for a broad range of 

applications. It is typically synthesized through a sequential approach, where two key fea-

tures of IPN, ―interpenetration‖ and ―network‖, are able to be produced and controlled 

relatively conveniently. An example of commercial SIPN product, PES, is examined in more 

detail. Main research questions are brought forward during the model-based optimization 

practice. A modeling and optimization framework is outlined as a road map of this thesis 

work. 
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Chapter 4  

Stage I Model: Single Particle Modeling  

In this chapter, we focus on the SIPN system at the polymerization stage, which is a seeded 

suspension polymerization process. A single particle growth model is developed, with con-

sideration of three key features of the seeded suspension polymerization — particle growth 

mechanism, intra-particle heterogeneity and polymerization kinetics. The moving boundary 

integral-differential-algebraic equation is solved by dimensionless coordinate discretization. 

Intra-particle dynamics are able to be revealed through model simulation. 

4.1 Model Development 

As shown in Figure 3.4, Stage I of SIPN process is a semi-batch seeded suspension polymer-

ization process. Here, a sub-model is built for this stage, assuming crosslinking reaction is 

negligible.  

Semi-batch seeded suspension polymerization systems present unique characteristics that 

greatly differ from classical suspension polymerization, such as the monomer feeding rate 

and the mass transfer mechanisms of monomer to the polymer particles (Gonçalves, et al., 

2008). To the best of our knowledge, this study is the first to use a single particle model to 

develop composite particles in suspension polymerization systems.  
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4.1.1 Single Particle Model Representation 

The mathematical model for the seeded suspension styrene polymerization process was cre-

ated using the following assumptions on process conditions, which mirror observations in 

the pilot plant.    

1) The polymerization reactor is perfectly mixed.  

2) Reactions occur under isothermal conditions.  

3) The solubility of the monomer and initiator in the aqueous phase is negligible.  

4) Swollen seed particles maintain spherical geometry.  

5) Coalescence and breakage of seed particles do not occur at the polymer particle level.  

6) Secondary particle formation is avoided in the studied system, when homogeneous 

nucleation and monomer droplet nucleation are restricted.  

7) Phase separation is restricted by pretreatment of seed particles.  

8) Pre-polymerized seed polymer is monodisperse and inert during second stage 

polymerization.  

9) Imbibition of styrene and initiator are diffusion limited, following a Fickian diffusion 

mechanism in the radial direction. Also, polymer diffusion is negligible.  

10) Kinetic parameters are independent of polymer chain length.  

The reaction mechanism is presented in Table 1, following the well-known steps of free 

radical polymerization: initiation, propagation, termination and chain transfer. 

Assumptions (5) ~ (7) are desirable conditions for seeded suspension polymerization 

manufacturing. Particle coalescence and breakage phenomenon are affected by a combina-

tion of different factors, such as the suspension agent, the degree of agitation, the design of 

stirrer/reactor system etc. (Vivaldo-Lima, et al., 1997). Seeded suspension polymerization is 
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Table 4.1 Free Radical Polymerization of Styrene 

Initiation Reactions   
  
→    

    
   
→    ( )

  
   
→    ( )

 

Initiator scission 

Radical initiation 

Thermal initiation 

Propagation Reactions 
  ( )   

  
→   (   ) 

 

Termination Reactions   ( )    (  )
  
→  (    ) Combination 

Chain Transfer Reactions 
  ( )   

   
→  ( )    ( ) 

Transfer to monomer 

 

different from conventional suspension polymerization, because seed particle integrity is 

mainly controlled by the property of the monomer swollen seed. In addition, to control the 

reactor mixing conditions, the seed particle is chosen so that it cannot be dissolved by the 

monomer after pretreatment. The monomer to seed polymer composition ratio is usually 

limited to avoid particle breakage (Gonçalves, et al., 2008). In addition, it is observed that 

the type of monomer strongly influences the formation of secondary particles. The fraction 

of secondary particles decreases when monomers with lower water solubility are used. Sty-

rene, which is essentially water insoluble (water solubility is 0.0271% at 25
○
C) (Bovey, et 

al., 1950) is observed to be almost totally incorporated in the seeds with negligible second-

ary particles formed (Gonçalves, et al., 2009). A series of styrenic monomers, such as alpha-

methylstyrene, para-t-butylstyrene, monochlorostyrene, dichlorostyrene, also fall into this 

category. Hence, from a modeling point of view, a single particle model is an appropriate 

representation for the seeded suspension process. Assumption (8) is a valid simplification.  

For the application of suspension polymerized polymers, an important task in the process is 

to obtain polymer particles of a narrow size distribution (Kichatov, et al., 2003). The major 

aim in suspension polymerization is the formation of a dispersion of monomer droplets in 
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the aqueous phase that is as uniform as possible by controlled coalescence of these droplets 

during the polymerization process (Vivaldo-Lima, et al., 1997). Monodisperse seed is usual-

ly adopted for particle size control in seeded polymerization, since it is considered to be 

suitable to achieve a very narrow particle size distribution with such a technique (Salamone, 

1996). From industrial practice, the particles produced have a similar narrow size distribu-

tion as the initial added seeds. The inert seed assumption can be applied for seed polymer 

with only a few functional groups.  For functional seed polymers, the model can be further 

modified with different reaction mechanisms, while the presented modeling procedure will 

remain valid. Finally, as justified in Stubbs, et al. (1999), we consider the assumption of 

Fickian diffusion sufficient for the purpose of these calculations, although we recognize that 

more complex diffusion phenomena can occur in these systems (e.g., we may require case II 

diffusion). 

Based on the above conditions, we define spherical coordinates at the center of the seed 

particle and write the mass conservation equation for the monomer and initiator in a single 

particle as: 

   (   )

  
  (     )     

 

  
 

  
(   

 
   
  

)           (4.1) 

where   represents monomer   and initiator  , (   ) specifies the state at radius   at time  , 

   is the molar concentration,    is molar consumption rate, and    is the effective diffusion 

coefficient of  .  Though various models are developed to model diffusion behavior in poly-

mers, no general formulation of diffusion rate could be obtained over a wide concentration 

range of the monomer in polymer solution. In the case that styrene monomer can be easily 
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and rapidly absorbed in the polyolefin resin beads (Kobayashi, et al., 1985), a constant aver-

age    is used in our model. Equation (4.1) is then reduced to 

   (   )

  
 
  
  

 

  
(  

   
  

)           (4.2) 

For the polymer species, swelling is considered to be the main effect on the concentration 

change. The rate equation for polymer is derived as equation (4.3), where we consider pol-

ymer diffusion to be negligible. 

    (   )

  
   ( ) (4.3) 

Here     is the molar concentration of  ( ) , live or dead polymer of chain length  , and 

    is the production rate of  ( ) . Equations (4.2) and (4.3) are the basis for the single parti-

cle model, discussed in more detail in the following sections. 

4.1.2 Particle Growth Mechanism 

Solving the mass conservation equation (4.2) and (4.3) is complicated by a moving bounda-

ry condition, since the particle growth mechanism includes both monomer absorption and 

heterogeneous diffusion-reaction. For distinguishing properties of seeded suspension 

polymerization, mass transfer as well as varying particle density must be taken into account 

for rigorous particle size modeling, and a collision-absorption mechanism and particle vol-

ume approximation are introduced to determine the boundary condition. 

4.1.2.1 Collision-absorption Mechanism 

Monomer absorption is the initial step in particle growth. Whereas the semi-batch polymeri-

zation is usually not operated at equilibrium, the collision-absorption mechanism can be 
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applied to make a valid modeling simplification. This mechanism assumes that once the dis-

persed monomer droplets collide with the seed polymer particles, they swell the seed 

boundary instantaneously to reduce the chemical potential of the system. Also, the aqueous 

phase boundary layer resistance and surfactant layer resistance of the seed are negligible 

compared to the intra-particle diffusion resistance. 

  Finally, in seeded suspension systems, monomer droplets are smaller, providing a large 

relative surface area, and are much less stable than the seed particle.  As also observed in 

emulsion modified semi-batch suspension processes, irreversible mass transfer is favored 

under these conditions.  Emulsified monomer droplets tend to aggregate onto the larger sus-

pension beads to form an outer shell of the particle (Lenzi, et al., 2005), Unlike mass 

transfer models for partially water soluble monomer, mass-transfer resistance of the aqueous 

phase and surfactant layer is not considered to be important in our single particle model 

(Zhang, 1997). Thus, the resistance of the aqueous phase boundary for water insoluble mon-

omer is expected to be even smaller and the boundary layer resistance can be ignored, 

provided that monomer feeding is controlled and the agitation speed is high. 

Under ideal mixing conditions, the chance of collision with a monomer droplet is identi-

cal for every seed from all directions, and the boundary condition at the surface of the seed 

can be represented as equation (4.4). 

       ( )        ( )    
   

  
   ( )             (4.4) 

where  ( ) is the particle radius at time  ,   ( ) is the molar absorption rate of reactants   

and   by each particle. Based on the mono-disperse assumption, equation (4.5) is considered 

for the single particle model. 
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  ( )  
  ( )

     
 (4.5) 

where   ( )the molar feeding is rate of reactant M and I into the reactor, and       is the 

total number of seed particles in the reactor, calculated based on average particle size. If a 

distributed seed particle is used, a population balance equation will need to be introduced to 

compute   ( ). 

At the center of the seed, there is no diffusional driving force, so the boundary condition 

is set as: 

         
   
  

   (4.6) 

Also, the initial condition is defined as the initial state of the polymerization stage. 

              ( ) (4.7) 

4.1.2.2 Particle Volume Approximation 

Intra-particle heterogeneity is an important feature of seeded suspension polymerization 

which is not considered in other single component particle systems. The absorbed monomer 

swells the seed, while diffusing and polymerizing inside the particle. The changes in particle 

density are calculated from partial volume properties. The partial molar volume of species  , 

 ̅ , is defined as equation (4.8). 

 ̅   
  

   
|     

    
 (4.8) 

where polymer species are represented by their composite segments. Hence, the particle volume 

can be represented as a sum of the volume for each component through equation (4.9) : 
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  ∑    ∑∫  ̅    
          

 (4.9) 

In spherical coordinates, this is written as: 

                
     (4.10) 

Since only a small amount of initiator is used in the process, the contribution of initiator 

volume is neglected. By substituting (4.10) into (4.9), the overall volume of the particle can 

be written as: 

 ( )  
 

 
  ( )     ( )     ( )    ( )

    (∫    

 ( )

 

  ̅    
     ∫      ̅    

   
 ( )

 

 ∫     ̅      )
 ( )

 

 (4.11) 

where  ̅  ,  ̅  ,  ̅  are the partial molar volumes for seed polymer, second stage polymer and 

styrene monomer respectively, and they are functions of states. 

As the absorption does not reach equilibrium, an empirical relationship is proposed, as 

equation (4.12). The particle molar volume is assumed to be a function of monomer concen-

tration and the coefficients   
  and   

  represent the contributions from the bulk volume and 

the monomer swelling effect for species  , as the monomer is a solvent for both polymers: 

 ̅    
    

     (4.12) 

Here  ̅  is the partial molar volume for  . Substituting equation (4.12) into equation (4.11) 

we obtain 
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    )   

   )

 (4.13) 

Equations (4.4), (4.6) and (4.13) are then used to describe the moving boundary of the 

seed particle. 

4.1.3 Particle Property Simulation 

Mechanical properties of the polymer are usually reflected through polymer molecular char-

acteristics, which are developed during the polymerization stage. In addition, for composite 

polymer particles, the formation of intra-particle morphology is of particular significance on 

the end-use properties. This morphology development can be affected by several factors. 

One of the important factors is the mechanism of diffusion controlled kinetics for the 

polymerization system, i.e., the apparent reaction rate is affected by the mobility of the re-

acting chain. Hence, the single particle modeling framework, which incorporates intra-

particle dynamics, shows advantages for particulate properties simulation. 

Also, in free radical polymerization, one of the main reaction steps, chain termination by 

macro-radical combination, is significantly influenced by the macro-radical diffusion ability, 

which is reflected by changes in intra-particle viscosity. The decrease of the termination rate 

at high monomer conversion ratio, known as the gel effect, becomes position dependent in-

side the particle.  Hence, change of apparent termination rate needs to be incorporated in the 

reaction rate and molecular weight simulation.  
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There are several mechanistic models that describe the gel effect in the bulk system. A 

comprehensive review can be found in (Tefera, et al., 1997). For industrial modeling appli-

cations, the empirical formula from (Hui, et al., 1972) is typically considered. 

          ,  (         
      

 )- (4.14) 

where     is a termination constant in an ideal system without gel effect,         are tem-

perature dependent coefficients, and xs is the monomer conversion ratio. Adapting equation 

(4.14) to the single particle model, we define a local monomer conversion ratio,   (   ) as: 

  (   )  
   (   )

   (   )    (   )
 (4.15) 

Where    (   ) and   (   ) are polymerized polymer and added monomer concentration at 

radius   at time  , respectively. 

Finally, there are several approaches used to compute the polymerization rate and poly-

mer molecular weight. Here we choose the method of moments, as it permits solution of the 

leading chain length distribution moments with considerably less computational effort 

(McKenna, et al., 2001). Let    denote molar concentration of the     moment of living pol-

ymer,    denote molar concentration of the     moment of dead polymer, and  ( ) and  ( ) 

are concentrations of living and dead polymer with   monomer units. The moments can be 

written as 

   ∑     ( )       
 

   
 ∑     ( )

 

   
 (4.16) 

Applying the quasi-steady-state approximation (QSSA) for the primal free radical, we ob-

tain the following equations: 
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 (4.17) 

The local monomer conversion ratio can be written as: 

  (   )  
  (   )

  (   )    (   )
 (4.18) 

and the overall monomer conversion ratio is calculated as 

  ̅( )  
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 ∫         

 

 

 (4.19) 

The number average and weight average molecular weight at radius   can be computed 

by the leading polymer moments as: 

  ̅̅ ̅̅  ( )  
(     )

(     )
    

  ̅̅ ̅̅  ̅( )  
(     )

(     )
   

 (4.20) 

where    is the average molecular weight of polymer segments. Similarly, particle average 

molecular weight can be evaluated through equation (4.21): 
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 (4.21) 

Therefore, while only the properties of particle composition and polymer average molec-

ular weight are measured, it is important to point out that applying a lumped model to 

predict average properties will not capture the effect of diffusion controlled kinetics. 

4.1.4 Solution Strategy 

As equations (4.1)-(4.21) show, the derived model features coupled differential-integral-

algebraic equations.  Differential equations describe the inside of the particle, an integral 

equation describes the moving boundary and algebraic equations describe the output proper-

ties. To reduce the computational complexity, a shell-type spatial discretization approach is 

proposed to solve the coupled equations efficiently. 

 

Figure 4.1 Representation of shell-type spatial discretization 

As shown in Figure 4.1, the single particle is discretized into a number of hypothetical 

shells, which can be equally spaced in radius or in volume size. Each shell is regarded as an 

individual reaction zone, as in pseudo-homogeneous micro-bulk systems.  Diffusion is con-
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sidered for monomer and initiator from shell to shell. These shells are labeled from the core 

to the skin,, - for the center, which is a full sphere, and ,  - for the surface. The , -   (  

      ) shell has an inner radius  ,   -, outer radius  , -, and volume  , -, where  , -   . 

While there are other discretization approaches for spatial discretization, e.g. based on 

method of weighted residuals, the finite difference scheme presents a particularly easy form 

in the case of growing shells. The discretized representation of the model can be obtained in 

a finite difference scheme. From equation (4.1), we define diffusion flux between the shells 

as (4.22), and represent monomer and initiator diffusion reaction dynamics in each shell as 

(4.23) - (4.25). 

  
, -

      
, -    

   
  

|   , -    
   
  

|   , -  
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 (4.22) 

At the surface layer,     : 
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 (4.23) 

At the     layer,           : 
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 (4.24) 

 

At the central layer    : 
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For the polymer species, no diffusion term is included and we write (4.26) as the discre-

tized versions of equation (4.3). 

For the     layer,        
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 (4.26) 

As a result, the partial differential equations are reduced to ordinary differential equations 

in time and the integral equation (4.13) is transformed to a set of algebraic equations, (4.27)-

(4.28), based on the shell structure. 
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The shell average molecular weights remain as algebraic equations, (4.20): 
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and the overall average molecular weights from (4.21) are: 
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    (4.30) 

With this spatial discretization, the algebraic and ordinary differential equations (DAEs) 

(4.22) to (4.30) represent the dynamics of the original moving boundary reaction-diffusion 

model. In practice, the number of discretized shells is chosen to be sufficiently large to ob-

tain the desired accuracy of the predicted parameters. For the PES particle simulation, 20 

shells are adequate. With the kinetic parameters and process condition provided, this model 

can be solved by a DAE solver to predict particle growth, monomer conversion ratio, aver-

age molecular weight and the spatial composition distribution. 

4.2 Results and Discussion 

4.2.1 Intra-particle Dynamics 

Given process parameters, SIPN intra-particle dynamics can be revealed by the single 

particle model. Here, model parameters are obtained through a parameter estimation ap-

proach based on sample measurements of   ̅̅ ̅̅ ̅   ̅̅ ̅  and  ( ), which will be discussed in 

chapter 6. Simulations of particle development which could not be directly measured are 

interesting topics discussed here.    
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The intra-particle composition distribution and average molecular weight are properties 

of interest. Therefore, simulations are carried out to provide some insight of particle proper-

ty distribution and development. Figure 4.2 shows an example of styrene and polystyrene 

distribution evolution across the particle from an initial radius of 0.485mm for the monomer 

swollen seed. Monomer concentration, as shown in Figure 4.2 (a), increases with time due to 

external monomer feeding. Polystyrene concentration, shown in Figure 4.2 (b), also increas-

es with time, while the concentration gradient is influenced by the external monomer feed. 

The simulation also indicates small radial concentration gradients for polystyrene within the 

particle. Moreover, as monomer conversion ratio increases above a certain level, an intra-

particle gel effect develops, the termination rate decreases significantly and we can observe 

changes in the shape of the polystyrene concentration gradient. Finally, Figure 4.3 shows the 

molecular weight development across the radius. Due to fast diffusion of styrene monomer, 

the molecular weight gradient inside the particle is relatively small. 

  
(a) Styrene monomer concentration (b) Polystyrene concentration 

Figure 4.2 Simulation of Intra-particle concentration development 
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Figure 4.3 Simulation of Intra-particle polystyrene Mw development 

In this example, the SIPN particle presents a near uniform distribution at given feeding 

rate in terms of polymer concentration and molecular weights. However, it is important to 

notice that, intra-particle dynamics are affected by a combination of factors from diffusion 

and polymerization, which are different from a batch process in a bulk system. Changing 

either the seed polymer, monomer, initiator or feeding rate, can lead to different dynamics 

from these depicted shown above.  

4.3 Summary 

This chapter developed a generalized reaction-diffusion single particle model for seeded 

suspension polymerization, as Stage I of the SIPN process. Key product properties, such as 

molecular weight, particle size and composition are modeled. An effective mass transport 

mechanism is proposed, which builds a relationship between the semi-batch operation and 

product properties. Rigorous particle size modeling includes polymer swelling, intra-particle 

heterogeneity, and position dependent kinetic rates. This leads to a shell model which de-

couples the integral-differential-algebraic moving boundary formulation. Intra-particle 

dynamics and effects of process conditions can be simulated. The model provides an im-

portant component for the SIPN model-based study. 
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Chapter 5  

Stage II Model: SIPN Kinetic Modeling 

In this chapter, we focus on the SIPN systems at the crosslinking stage. A comprehensive 

kinetic model is developed, which involves simultaneous crosslinking, grafting and degrada-

tion, to predict SIPN gel content and molecular weight development simultaneously up to 

full conversion. Computational expense has been reduced considerably through a new com-

ponent-decomposition strategy. Continuous variable approximation is applied for monomer 

polymerization and grafting reactions. Discrete population balance approach is introduced 

for simulation of crosslinking reaction as well as simultaneous chain transfer and chain scis-

sion. The inter-polymer formulation is reconstructed through a statistical approach. 

5.1 Model Development 

5.1.1 Reaction Mechanism  

We propose a component-wise modeling strategy which provides a straightforward descrip-

tion for the reaction mechanism, and enables efficient computational methods to be applied 

similarly to linear polymer systems. The following assumptions are made in the model: 

1) The SIPN system is maintained in co-continuous morphology during the reaction.  

2) Single phase properties are assumed for concentration calculations. 

3) Indifferent backbone reactivity is maintained in the same polymer chain. 

4) The macromolecular free radical contains a single radical center. 
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Co-continuous morphology is a typical property for the IPN material. If two polymers are 

processed under proper conditions of composition and viscosity, it may be possible for the 

two components to form continuous interlocking phases regardless of the miscibility 

(Sperling, 1976; Renfree, et al., 1999).  In this type of dual phase co-continuous structure, 

the two phases intertwine in such a way that both phases remain continuous throughout the 

material. Co-continuous morphology usually leads to a desirable synergistic effect, and is 

generally a required condition for IPN processing (Sperling, 1994). Therefore, the system is 

treated as a single phase system for the concentration calculation of this apparent compati-

bility. The second assumption, indifferent backbone reactivity, can be relaxed for different 

polymers, but is shown to be sufficient for low density polyethylene (LDPE) in our system. 

Finally, the single radical center assumption might be violated as the size of polymer net-

work grows. A maximum network size is introduced in the simulation to avoid such possible 

deviation. 

 

Figure 5.1 Schematic representation of the PES structure 

As shown in Figure 5.1 several types of polymers are formed in the PES process, such as 

linear polystyrene, polystyrene-grafted-polyethylene, and crosslinked polyethylene networks. 

It is challenging to describe this topology directly. Instead, a component-wise decomposition 

strategy is proposed to address this problem as shown in Figure 5.1. The polymer mixture is 

divided into three classes of structure components, which are polyethylene chain (A), linear 
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polystyrene chain (B) and grafted-polystyrene chain (gB). Each of them is treated as a single 

species.  

 

Figure 5.2 A component decomposition modeling strategy 

We denote   as monomer,   as polymer and   as the radicals.   ( ),   ( ),    ( ) 

and   
 ( ),   

  ( ),    
 ( ) represent the polymers and their radicals, respectively.     are 

the numbers of repeated units in the polymer A and B.   refers to ethylene units, and   re-

fers to styrene units. Thus, the kinetic mechanism of IPN can be described by these 

components in a straightforward manner. Since certain reaction rates are expected to in-

crease with the number of available reaction sites with molecular weight (MW), a 

proportional MW dependent reaction rate assumption (Kim, et al., 2000; Sterling, et al., 

2001), is adopted. This linear dependence is expressed in the form of Equation (5.1), 

  ( )      (5.1) 

where    represents MW dependent kinetic rate,    denotes the reaction rate of chain length 

1, and   is the size of the particular chain, either   or  . The following reaction mechanisms 

(steps A-G) are considered in the model. 

(A) Initiation. 
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The primal free radicals are mainly generated by peroxide dissociation, where peroxide 

decomposes into two identical radicals as Reaction (5.2). 

  
  
→    (5.2) 

  and    represent the peroxide and its primary radicals. 

Peroxide radicals initiate monomer ( ) or abstract hydrogen from the polymer backbone 

through the following Reaction (5.3). 

    
     
→      

 ( )

     ( )
     
→      

 ( )

     ( )
   
→       

 ( )

      ( )
   
→        

 ( )

 (5.3) 

where       is the rate constant for initiation of monomer double bond,       and       are 

the rate constants for hydrogen abstraction from polymer A, B/gB accordingly, and are con-

sidered proportional to polymer chain length.             and           .     is 

expected to be much higher than     and    . Thus, Reaction (5.2) is the rate controlling 

step over the polymer modification in the presence of monomer. Styrene monomer can also 

undergo thermal initiation, as Reaction (5.4). 

   
   
→    

 ( ) (5.4) 

where      is styrene thermal initiation rate. 

(B) Propagation. 

 

In the presence of monomer B, live polymer chains quickly propagate to form linear pol-

ymer B and grafted polymer B as Reaction (5.5). 
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 ( )   

    
→   

 (   )

  
 ( )   

    
→   ( )     

 ( )

   
 ( )   

    
→    

 (   )

 
(5.5) 

Notice that the growth of polymer B branch from polymer A backbone is modelled as the 

last two reactions in (5.5). Because polymer A backbone and polymer B side chain are mod-

elled separately, the size of   ( ) remains the same after grafting of monomer B. Therefore, 

the grafting reaction is described as moving the backbone free radical from polymer A to the 

beginning of the side chain B as in the second reaction in Reaction (5.5). This representation 

significantly reduces the modeling complexity. 

(C) Chain transfer to monomer. 

 

For styrene free radical polymerization, chain transfer to monomer is considered. B and 

gB are modelled similarly in Reaction (5.6). 

  
 ( )   

     
→    ( )    

 ( )

   
 ( )   

     
→     ( )    

 ( )
 (5.6) 

(D) Reversible hydrogen abstraction. 

 

Polymer radicals can abstract hydrogen from another chain. When the hydrogen abstrac-

tion takes place between the same polymer components, reversible interchange of a polymer 

to a radical (eg. Kim, et al., 2000; Sivalingam, et al., 2004) is often assumed as a simplified 

representation of the reaction. Here, we adopt this expression for all the components. The 

ratio of the reversible reaction rate approximately follows the Arrhenius relationship. While 

this reaction rate could be modified or even removed due to the confinement of grafted chain, 

we have not considered this in the model. As a result, the same reaction rates for free poly-

mer and grafted polymer are used in the current model. Nevertheless, the low concentration 
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of the grafted polymer and its radical leads to a very small reaction rate. Hence, Reaction 

(5.7) is considered.  

  

(5.7) 

where           ,           . Notice that, the reversed hydrogen abstraction reac-

tion rates     ,       are not dependent on the chain length because of the single radical 

center assumption. Reversible hydrogen abstraction essentially leads to a radical center re-

distribution and long chain polymers are affected more by the redistribution.  

(E) Interaction between polymers. 

 

Similar to mechanism (D), hydrogen abstraction can occur between different types of 

polymers. In the case of polymer mixtures, the interaction between the polymers can lead to 

an alteration in the reaction rate of individual polymers (Sivalingam, et al., 2004). In the 

study of thermal degradation, a mixture of polyethylene and polystyrene shows strong inter-

action through hydrogen abstraction (Lee, et al., 2002). An analogous mechanism is 

considered here. Since polystyrene radical is a strong hydrogen-acceptor and polyethylene is 

a strong hydrogen-donor polymer, hydrogen is considered to be abstracted from polyeth-

ylene chain by polystyrene radical, as Mccaffery, et al. (1996) also proposed and observed in 

the thermolysis experiment.  

  
 ( )    ( )

   
→    ( )    

 ( )

   
 ( )    ( )

   
→    ( )    

 ( )
 (5.8) 
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where           .  

(F) Chain scission. 

Chain scission reactions can take place on both polymer radicals. However, the detailed 

kinetic mechanism of random scission of branched polymer chains is a complex problem, 

and the role of random scission is not fully understood (Krallis, et al., 2007). Following the 

polystyrene degradation model (Sivalingam, et al., 2004) and polyethylene modification 

model (Pedernera, et al., 1999), the mid-chain radical and the end-chain radical are not dis-

criminated. Instead, a compact representation of chain scission can be written as Reaction 

(5.9). 

  
 ( )

   
→    

 (  )    (    ) (5.9) 

  
 ( )

   
→     

 (  )    (    ) (5.10) 

   
 ( )

   
→      

 (  )    (    ) (5.11) 

   
 ( )

   
→     

 (  )     (    ) (5.12) 

where      and     are  -scission rate for radical A and B.  

Notice that there are two possible pathways for radical    
    -scission, either to generate 

a live linear chain   
  and a dead grafted chain     or to form a live grafted chain    

  and a 

dead linear chain   . Both reactions are included as Reaction (5.11) and (5.12). Chain scis-

sion reactions lead to decrease of MW, and can become noticeable side reactions. 

(G) Termination. 

Based on the properties of each polymer, polystyrene radicals undergo combination termina-

tion, while polyethylene radicals are terminated either by combination or disproportion.  The 

reactions can be written as follows. 
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Termination by combination 

  
 ( )    

 (  )
    
→    (    ) (5.13) 

  
 ( )    

 (  )
    
→    (    ) (5.14) 

  
 ( )     

 (  )
    
→     (    ) (5.15) 

Termination by disproportion  

  
 ( )    

 (  )
    
→    ( )    (  ) (5.16) 

In principle, grafted-polystyrene radicals (   
 ( )) can terminate with another (   

 ( )) 

radical. Nevertheless, these reactions are less frequent compared to other termination steps 

due to low radical concentration. Thus, this type of termination is not modelled. In compari-

son to homo-polymer termination, the rate of termination between two polymer species is 

also negligible due to relative difficulties of the reaction-diffusion process. Whether the pol-

ymer mixture becomes a semi-I or semi-II SIPN is mainly determined by the relative rate of 

radical combination and  -scission. In this case, the predominant reaction for polyethylene 

(A) is chain combination, while the degradation reaction is enhanced for polystyrene (B) in 

the presence of peroxide. Thus, Reaction (5.13) contributes mostly to the final network for-

mation. As the reaction proceeds, polymer chain length increases exponentially and the 

formed network becomes the insoluble fraction in the gel measurement. Since some of pol-

ymer B is grafted on polymer A, the obtained gel consists of a polymer A network with a 

fraction of the grafted B chain.  

5.1.2 Population Balance Approach 

In this section, population balance equations for each component are derived based on the 

Reactions (5.2)-(5.16). Different solution strategies are employed for each component ac-
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cording to its structural characteristics. As shown in Figure 5.2, MWD of component B is 

solved by continuous variable approximation, and MWD of component A is solved by the 

fixed pivot technique. Then a statistical approach is applied to recover the structure of the 

mixture. Details are discussed in this section.  

5.1.2.1 Population Balance for Polystyrene Components and their Radicals 

Here, the chain length of polymer B is treated as a continuous variable. This assumption 

then combined with the method of moments to provide an effective way to consider the side 

reaction of polymer degradation. The molecular weight moments are defined by 

 ( )( )  ∫  (   )
 

 

                  (5.17) 

where the superscript ( ) represents the     moment of the distribution, so that  ( )  is the 

molar concentration of polymer,  ( )   is the mass concentration, and  ( )  determines the 

spread of the distribution. The number- and weight- average chain length are defined as 

   
 ( )

 ( )
    

 ( )

 ( )
 (5.18) 

The population balances for polystyrene component are written as Equation (5.19)-(5.22). 
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 (5.19) 
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    ( )

  
            ( )        ( )           ( )         ( )

       ( )∫     (  )   
 

 

    ∫    (  ) (    )   
 

 

     ∫   (  )   (    )   
 

 

 (5.22) 

where  (    ) and  (    ) are the kernel functions of chain scission for    and     respec-

tively, which represent the probability of producing a fragment of chain length   radical 

from a chain length    radical. Based on the indifferent reactivity assumption, the possibility 

of    random scission is considered to be 
 

  
  in the continuous variable approximation ap-

proach, i.e. for the asymmetric scission of    ,  (    )  
 

 
 (    )  

 

   
. The continuous 

variable approximation thus shows advantage in obtaining the moment equations, because 

the moments of the integrals apply the continuous kernel function, they have analytical ex-
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pressions. For example, denoting an expression as:         (  ) (    )  
 

 
, the fol-

lowing relationship holds: 

 ( )     
  
( )

(   )
 (5.23) 

where  ( ) is the     moment of the expression  , and          corresponds to the zeroth, 

first, and second moments, respectively. Similarly, the integrals for the rate of     and       

can be evaluated. Thus, applying the moment operation to the above equations yields the 

ordinary differential Equation (5.24) - (5.27), 
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 (5.24) 

where               
( )
    (   

( )     
( )
). 
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where                
( )
      (    

( )      
( )
) , 
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where    
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(   )
        (           
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)   
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 (   )
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 (5.27) 

where      
( )
   
( )
    .  

( )   
( )    

( )   
( )/    .   

( )  
( )      

( )  
( )     

( )  
( )/.  

A closure form is required to compute the third moment involved. In this study, a log-

normal distribution was assumed. The third moment of the distribution can be expressed as 

Equation (5.28) 

   (
  
  
)    (5.28) 

where    is the     moment of the log-normal distribution. The above closure method is ap-

plied to the dead polymer B chains. 

5.1.2.2  Population Balance for Polyethylene Components and their Radicals 

The population balance equations for polymer   are derived. Net formation rate of live pol-

ymer   of chain length   is written as: 

   ( )

  
          ( )      ( )          ( )        ( )

       ( )∫ (  (  )     (  ))   
 

 

 (         )  ( )∫   (  )   
 

 

      ( )     ∫   (  ) (    )   
 

 

 (5.29) 

Net formation rate of dead polymer   of chain length  : 



5.1  Model Development 

 

Chapter 5  Stage II Model: SIPN Kinetic Modeling 76 
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 (5.30) 

where  (    ) is the random scission kernel function as stated before. It is important to 

point out that due to the network formation, the continuous variable approximation approach 

no longer applies, as the higher order moments of polyethylene approach infinity, and the 

moment closure approximation no longer holds. To overcome this difficulty, we combine 

the fixed pivot technique, also known as the sectional grid method, with the method of mo-

ments. The zero-th moment is obtained through moment operation of the population, while 

discrete-continuous equations are derived for each sectional grid to avoid the involvement of 

higher order terms. The zero-th moment equations are derived as Equation (5.31) and (5.32): 
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 (5.32) 

The fixed pivot technique is discussed in the following section. 

5.1.2.3 Fixed Pivot Technique 

The fixed pivot technique was first proposed by Kumar, et al. (1996) to solve the continuous 

population balance equations (PBEs) for a population of particles which undergo break-up 
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as well as aggregation.  The discrete equations are internally consistent with regard to the 

selected moments of the distribution. This technique was recently introduced by Krallis, et al. 

(2007) to simulate of MWD of several polymerization systems involving branching. In our 

study, the fixed pivot technique is adapted for modeling reactions of crosslinking and chain 

scission, and shown to be an effective solution strategy to solve the PBEs of polyethylene 

component. A detailed description of the fixed pivot technique can be found in Kumar, et al. 

(1996). A brief introduction is summarized here.  

 

Figure 5.3 A general grid representation of the fixed pivot technique 

A population of polymer with chain length distributed from 1 to      is discretized into  

   sections, as shown in Figure 5.3. A representative chain length     is chosen for each grid. 

Combination or breakage reactions of the entire population are described only through the 

discrete distribution at the particular chain length. Notice that discrete representation is an 

exact match only when the reactions generate polymers at the representative chain length 

from chains also at representative sizes; this is generally not exact for arbitrary chain lengths.  

The fixed pivot technique is such an approach that preserves selected properties for arbitrary 

sizes after discretization. For example, to preserve two properties,    and   , for any size of 

  in the distribution, interpolation Equations (5.33) should be satisfied:  
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 (    )  (  )   (      )  (    )     ( )

 (    )  (  )   (      )  (    )     ( )             
 (5.33) 

where    and      are two closest neighbour grids of  . The exact properties   ( ),   ( ) are 

then represented through a linear combination of their neighbourhoods. Here,   and   are 

coefficients of the combination, which depend on the relationship between   and      . For 

MWD simulation, the number- (the zero-th moment) and weight (the first moment) distribu-

tion are of particular importance. Therefore,    and    are chosen to be     and      

moments of the distribution, and the coefficients are calculated accordingly. 

 

Figure 5.4 An illustrative example of the fixed pivot technique 

Figure 5.4 shows a simple example of the procedure. Continuous chain lengths are divid-

ed into sections with                etc. The representative grids    in each section are 6, 

20, 45, etc. For instance, assume a radical of chain length 6 combines with a radical of chain 

length 20 to form a dead polymer of chain length 26. The produced polymer is no longer at 

the fixed grid size. To conserve the number and mass change of the population, the reaction 

is re-described by the given grids as: 

  ( )    (  ) →
  

  
 (  )  

 

  
 (  ) (5.34) 

After reassignment, there is still ―1‖ polymer chain (
  

  
 

 

  
  ) with total weight of 26 

(
  

  
    

 

  
      ). Prediction of the number and weight properties of the population 

remains exact. Based on this idea, higher order moments can be expressed in the same way 

2       10                            30                                       60

6                 20                                  65 

× × ×
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by adding more grid balance equations. Nevertheless, prediction up to the first moment is 

sufficient for the gel content calculation and only the zero-th and first moments are needed. 

The derived continuous-discrete equations can be written as follows, where the index ( ) 

denotes the     representative grid. Continuous-discrete rate for live polymer  : 

   ( )

  
           ( )      ( )           ( )        ( )

        ( )∫ (
 

 

  (  )     (  ))   

 (         )  ( )∑   ( )
  

   

      ( )     ∑ (       )  ( )
  

   

 (5.35) 

Continuous-discrete rate for dead polymer A: 
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where  
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The first moments of the population are conserved as Equation (5.39) 

  
( )

 ∑   
  

   
  ( )

  
( )

 ∑   
  

   
  ( )

 (5.39) 

5.1.2.4 Population Balance for Monomer and Initiator 

Concentration of monomer (  ), initiator (   ) and primary free radicals (   ) are derived 

as Equation (5.40). Based on the long chain approximation (LCA), monomer consumed by 

thermal initiation is ignored and   denotes the initiator efficiency. 
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)        (  
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           (         (  
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 (5.40) 

With Equation (5.24)-(5.28), (5.31)-(5.32) and (5.35)-(5.40), the population balance 

equations are complete for the reactions considered in the model. 

5.1.3 Property Calculation  

The final molecular properties can be rebuilt in several ways. Statistical assumptions are in-

troduced to attain an expected formulation from the information of each component. 
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5.1.3.1 Homo-Polystyrene Average Molecular Weight 

For polystyrene remaining in the linear form, the average molecular weight is computed 

from its leading moments. 

 ̅  
     

( )
   

( )
  ̅  

 ̅  
    

( )
   

( )
  ̅  

 (5.41) 

where  ̅  is the molecular weight of styrene unit. 

5.1.3.2 Polystyrene-g-Polyethylene Molecular Weight Distribution 

The MWD of polystyrene-g-polyethylene is a bivariate distribution. The original formation 

of polymer chains should be recovered. With an approximated polystyrene grafting ratio, a 

statistical approach is applied to evaluate the expected MWD of polystyrene-g-polyethylene. 

The grafting ratio is defined as the ratio of grafted polystyrene versus overall polyethylene 

by weight. 

   
   

  
 
   
( )
   ̅   

  
( )
  ̅   

 (5.42) 

Considering the most probable chain formation, equation (5.43) represents the expected 

molecular weight for original polyethylene of molecular weight    ̅̅ ̅̅  ̅  after grafting.  

  ̅̅ ̅̅ ̅    (    ) (5.43) 

Thus, the expected MW for polyethylene-g-polystyrene from original polyethylene in grid i 

is represented as equation (5.44). 

  ̅̅ ̅̅ ̅   ( )    ̅̅ ̅̅ ̅ ( )(    ) (5.44) 
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5.1.3.3 Gel Content 

As justified from an experimental point of view  (Plessis, et al., 2001), gel is defined as pol-

ymer which cannot be dissolved in the solvent, rather than one whose molecular weight 

approaches infinity. An indication of the maximum molecular weight of soluble polymer is 

obtained from gel permeation chromatography (GPC). Therefore, the gel content can be de-

fined as the polymer size that exceeds the maximum soluble chain length. In our study, a 

critical gel size is obtained from GPC measurements, as approximately       g/mol for 

polyethylene (           ). Since the gel of this IPN contains crosslinked A with grafted 

B, both components are taken into account. 

    
  

∑       (  ( )    ( )) ̅ 

  
      (5.45) 

            
  (    ) (5.46) 

where     
  denotes the insoluble fraction of polymer A in all polymer A;    is the lowest 

grid defining a gel. The representative chain length in    grid refers to the critical gel size, 

which is set to be      .      is the overall gel content. In addition, we define the gel con-

tent of the final product as: 

     
    

      
      (5.47) 

Hence, Equation (5.41)-(5.46) are used to simulate molecular weights of polystyrene, 

polystyrene-g-polyethylene and gel content of the product. 
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5.1.4 Specification of Rate Constants 

Before the model solution can be obtained, expressions for the rate parameters must be spec-

ified. Assuming the validity of the Arrhenius relationship for the elementary reaction steps, 

chain length independent reaction rate and unit reaction rate for chain length dependent reac-

tion can be stated as   (  )          (      ) . It is well known that the termination 

reaction in a free radical reaction is a diffusion-controlled process. 

Here, a separate treatment is used for each termination reaction. A classical empirical 

form (Hui, et al., 1972) is adopted for styrene polymerization as shown in Equation (5.48):  

              ,  (         
      

 )- (      ) (5.48) 

where       is a termination constant in an ideal polymerization system without gel effect, 

         are temperature-dependent coefficients, and    is the styrene monomer conversion 

ratio, defined as                  (               ), where              and    are the 

concentration of  polystyrene and styrene, respectively. When styrene reaches full conver-

sion, i.e.     ,      approaches a constant value.  For crosslinking/degradation reactions, a 

molecular weight independent rate constant was assumed (Pedernera, et al., 1999; McCoy, 

et al., 2001; Sivalingam, et al., 2004). A satisfactory fit to the experimental data was 

achieved for the studied cases, and this assumption is considered to be valid for a certain 

range of MWs.  On the other hand, a chain length dependent termination rate was also con-

sidered in previous studies (Berchtold, et al., 2001; Andrzejewska, et al., 2005; Kruse, et al., 

2002). Also, the simplified Smoluchowski equation was adapted (Kruse, et al., 2002), where 

the termination rate was assumed to be proportional to the average of the inverse chain 
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length. In our study, to maintain the simplicity and validity of the model, a lumped rate is 

used in the form of Equation (5.49): 

        
  (5.49) 

where     denotes      and      .    
  represents the termination rate constant following Ar-

rhenius relationship, and the   constant is an adjustable parameter which depends on the 

polymer properties and processing conditions. For example, polymer with the same initial 

MWD above its melting point is regarded to have the same    value. The   value is estimat-

ed experimentally. Finally, although an inversely proportional relationship between polymer 

chain transfer rate and size of the abstracting radical for branched polystyrene is suggested, 

(Kruse, et al., 2002) we do not consider the difference of chain transfer mobility for the pol-

ystyrene radical in this model, due to the (mostly) linear structure of the polystyrene chain. 

Instead an average reaction rate which follows Arrhenius relationship is applied on     .   

5.2 Results and Discussion 

The model in the previous section is now examined and validated through comparison with 

experimental studies. In order to understand the interaction of styrene, polyethylene and 

polystyrene in the polyethylene/polystyrene inter-polymer process, and to demonstrate the 

validity of the model, data from two single polymer systems as well the as polymer mixture 

system are collected and compared. The cases are listed as follows: 

a) Polyethylene modification by dicumyl peroxide (DiCup). Gel content was compared. 

b) Peroxide enhanced degradation of polystyrene. Number and weight average MW 

were compared. 
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c) Polyethylene/polystyrene SIPN product was analyzed. Gel content, grafting ratio, 

polystyrene molecular weight, and joint MWD were compared. 

Finally, the sensitivity of product properties to the process operation conditions was in-

vestigated. 

5.2.1 Single Polyethylene Crosslinking 

We first consider the crosslinking of polyethylene through modification using DiCup. Here 

we consider the behaviour of the model using the equations for polymer  . 

5.2.1.1 Experimental Data 

The study of LDPE modification by DiCup is taken from (Kim, et al., 1984).  Four grades of 

LDPE samples were shown in Table 5.2. The concentration of DiCup was varied from 0.5 to 

3.5 w/w%. The samples were crosslinked at       for 1hr, at less than 50 psig. Soluble 

fractions were measured by the extraction test according to ASTM D2765 standard test 

method. The data are converted to gel contents presented in Figure 5.5. 

5.2.1.2 Model Validation 

In the absence of polystyrene and styrene, the model is reduced to peroxide-induced poly-

ethylene modification. Since the MWDs of the test samples are not available, a log-normal 

distribution is assumed for the initial MWD. It is found that inclusion of reversible hydrogen 

abstraction has little effluence on gel prediction. As also justified in (Pedernera, et al., 1999) 

a reasonable prediction of the molecular weight could be accomplished with or without pol-

ymer transfer mechanism for polyethylene modification. Because only PE is present, a 

reduced form of the model is used. The representative crosslinking parameters are presented 

in Table 5.1.       is estimated based on the relationship of           for secondary free 
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radical. (Huskic, et al., 1993). Because it provides a reasonable fit to data, initiator efficien-

cy is set to be 0.65 for all the runs, and the   values for the sample A, B, C, D are 0.1, 0.17, 

0.18, 0.23 respectively. The increase of   reflects the effect of MWD from different samples. 

Figure 5.5 is a plot of gel content vs.     . It summarizes the comparison between simulation 

and experimental data provided, and a consistent trend is observed for all the samples. Con-

sidering the variation of initiator efficiency due to the difference in sample impurity and 

initiator concentration, gel contents can be fitted exactly when allowing the initiator effi-

ciency (  in (5.40)) to vary from 0.6 ~ 0.8. Figure 5.5 shows the simulation results with 

initiator efficiency set to 0.65.  

Table 5.1 Representative kinetic constants for the single polyethylene crosslinking system 

Reaction Constant k0 E

s¡1 or l ¢mol¡1s¡1 kcal ¢mol¡1

peroxide decomposition kI 7:47£ 1015 36.5 a)

hydrogen abstraction from polyethylene ·HA 5:00£ 10 7 15.0 b)

¯-scission (polyethylene) kbA 4:47£ 1014 38.5 c)

radical recombination (polyethylene) k0
tca 2:60£ 10 9 15 b)

radical disproportionation (polyethylene) k0
tda 3:65£ 10 8 15 d)

Reaction Constant k0 E

s¡1 or l ¢mol¡1s¡1 kcal ¢mol¡1

peroxide decomposition kI 7:47£ 1015 36.5 a)

hydrogen abstraction from polyethylene ·HA 5:00£ 10 7 15.0 b)

¯-scission (polyethylene) kbA 4:47£ 1014 38.5 c)

radical recombination (polyethylene) k0
tca 2:60£ 10 9 15 b)

radical disproportionation (polyethylene) k0
tda 3:65£ 10 8 15 d)

 

a) Arkema, INC;  b) (Pedernera, et al., 1999); c) (Likozar, et al., 2009); d)     
  is estimated 

based on the relationship of           for secondary free radical (Huskic, et al., 1993). 

5.2.2 Single Polystyrene Degradation  

We now consider the degradation of polystyrene with DiCup and demonstrate how the ki-

netic model predicts this behaviour using the equations for polymer B. 



5.2  Results and Discussion 

 

Chapter 5  Stage II Model: SIPN Kinetic Modeling 87 

 

Figure 5.5 Predicted and experimentally measured gel content for the polyethylene 

Table 5.2 Experiment data from Kim, et al. (1984) 

Designation ¹Mn PDI Melt Density

g ¢mol¡1 = ¹Mw= ¹Mn Index g ¢ cm¡3

LDPE-A 11,300 7.60 1.0 0.920

LDPE-B 10,600 7.34 1.5 0.920

LDPE-C 9,300 7.19 3.0 0.919

LDPE-D 9,000 9.74 2.0 0.919

Designation ¹Mn PDI Melt Density

g ¢mol¡1 = ¹Mw= ¹Mn Index g ¢ cm¡3

LDPE-A 11,300 7.60 1.0 0.920

LDPE-B 10,600 7.34 1.5 0.920

LDPE-C 9,300 7.19 3.0 0.919

LDPE-D 9,000 9.74 2.0 0.919

 

5.2.2.1 Experimental Data 

Peroxide enhanced polystyrene degradation experiments were carried out in an industrial lab 

with and without styrene monomer. A set of polystyrene samples was prepared from stand-

ard commercial grade products with             and         g/mol, polydispersity  

    ~ 3.1. In one group of experiments, dicumyl peroxide (DiCup) (Akzo Nobel Perkadox 

BC-FF, 99%) was mixed with 75g polystyrene powder samples in a batch mixer at room 

temperature to obtain different peroxide concentrations: 0, 0.025 and 0.045 wt/wt%. In an-

other group of experiments, the ratio of polystyrene/DiCup was kept the same, while 7.5g 

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
x

2

G
e

l 
fr

a
c
ti
o

n

 

 

data A

simulation A

data B

simulation B

data C

simulation C

data D

simulation D



5.2  Results and Discussion 

 

Chapter 5  Stage II Model: SIPN Kinetic Modeling 88 

styrene monomer (Lyondell Chemical Co, 99.95%) is used to mix with DiCup at the begin-

ning. Once DiCup is well dispersed in the polymer, the mixture is sealed into glass ampoules 

under nitrogen and reacted by heating the glass ampoule reactor at       for 12 hours to 

ensure complete reaction. MWDs of obtained samples were determined by GPC. A calibra-

tion curve of retention time versus Mw was based on polystyrene standards. Figure 5.6 

shows the experimental results obtained from polystyrene degradation study as markers. 

5.2.2.2 Model Validation 

In the absence of the polyethylene component, the reduced model is similar to the single 

polystyrene degradation model. Notice that, styrene monomer is present in the system at the 

beginning and both polymerization and degradation occur for polystyrene macro-radicals. 

Here the polymerization reaction is dominant, because the radical termination rate is much 

higher than the chain scission rate when the concentration of polystyrene radicals is high. In 

this study, polystyrene   ̅̅ ̅̅ ̅ increases until the monomer is consumed. Then, polystyrene 

   ̅̅ ̅̅ ̅̅ decreases as the reaction of hydrogen abstraction from polystyrene starts to take effect.  

Since additional styrene monomer changed the initial MWD before PS degradation, differ-

ent final   ̅̅ ̅̅ ̅ and   ̅̅ ̅̅  in two groups were observed. The parameters used for simulation are 

summarized in Table 5.3.  

Figure 5.6 shows the comparison between simulation and experimental results. Con-

sistent agreement on number and weight average molecular weight was observed for 

different levels of peroxide within 10% experimental error. This model shows several dis-

tinctions with the polystyrene degradation model developed in the literature (eg. Kim, et al., 

2000; Sterling, et al., 2001; Sivalingam, et al., 2004). First, an important assumption, quasi-

steady state radical concentration (QSSA), used in the previous models to obtain a solution, 



5.2  Results and Discussion 

 

Chapter 5  Stage II Model: SIPN Kinetic Modeling 89 

is not required here. Also, the assumption of self-similar distributions can be relaxed to 

compute both   ̅̅ ̅̅ ̅ and   ̅̅ ̅̅ , since the model includes up to the second moment equation. 

Different closure forms can be chosen depending on the actual distribution; this introduces 

more flexibility for modeling different raw materials. 

Table 5.3 Representative kinetic constants for the polystyrene degradation system 

Reaction Constant k0 E

s¡1 or l ¢mol¡1s¡1 kcal ¢mol¡1

peroxide decomposition kI 7:47£ 1015 36.5 a)

thermal initiation kth 2:19£ 10 5 27.4 b)

hydrogen abstraction from styrene kIM 1:00£ 10 7 7.1 b)

hydrogen abstraction from polystyrene ·HB 5:00£ 10 7 15.5

polystyrene chain propagation kp 1:00£ 10 7 7.1 b)

chain transfer to monomer kfs 2:31£ 10 7 12.6 b)

reversible hyrogen abstraction (polystyrene) ·hb1 1:00£ 10 0 10.5

reversible hyrogen abstraction (polystyrene) khb2 2:10£ 10 6 10.5 c)

¯-scission (polystyrene) kbB 4:10£ 1012 26.0 c)

radical recombination (polystyrene) ktcb 3:16£ 10 6 1.7 b)
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a) Arkema, INC;  b) (Curteanu, 2003); c) (Kruse, et al., 2002). 

 

  

 

Figure 5.6 Predicted and experimentally measured polystyrene average molecular weight for 
the polystyrene degradation system 
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5.2.3 Simultaneous Reaction of Polyethylene/Polystyrene Semi-

IPN  

We now consider the crosslinking of both polystyrene and polyethylene and demonstrate the 

behaviour of our model for both polymers A and B. 

5.2.3.1 Experimental Data 

Process data from PES Stage II were collected in the industrial lab. Manufacturing details 

can refer to the patent (Matsumura, et al., 2007). Low density polyethylene (    ) was 

prepared as nucleus particles, suspended in an aqueous medium. Crosslinking agent, di-

cumyl peroxide (Akzo Nobel,99%) was dissolved in styrene (Lyondell Chemcial,99.95% ) 

solution and fed dropwise to the aqueous medium to cause absorption by the polyethylene 

resin particles. After styrene was partially polymerized in polyethylene particle at a lower 

temperature  (    ) with the addition of peroxide, a ramped temperature was applied un-

til the reactor was heated up to     . The reaction is held at constant temperature (140   

    ) for 2   4 hours, then was gradually cooled down to room temperature.  The final gel 

content was measured based on the standard test method ASTM D2765. A SEC FTIR vis-

cometry method (Zhang, et al., 2007) was applied for the determination of molar mass 

averages, molar mass distribution, and composition distributions of the soluble fraction of 

the synthesized SIPN.  Size-exclusion chromatography (SEC) provides a rapid method for 

determining polymer molar mass distributions. The combination of online FT-IR and vis-

cometry enables universal calibration of copolymer composition. Samples of experimental 

resins were prepared and measured as described in (Zhang, et al., 2007).  Figure 7(d) and 7(e) 

show the measurement of the initial distribution of the inter-polymers as dashed lines. On-
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line FT-IR detection by Temperature Rising Elution Fractionation (TREF) technique (Zhang, 

2009) was used to study the grafting ratio of polystyrene. The initial condition for the pro-

cess model is considered to be the beginning of the temperature ramp, and was determined 

through sample measurement. Two product grades,    and   , which contain different pol-

ystyrene compositions, are examined. 

5.2.3.2 Model Validation 

The polyethylene/polystyrene Semi-I IPN model includes all reactions above and the poly-

mer interactions. Assuming the volume change during the process is negligible, reactant 

concentrations are computed based on ideal mixing rules. The molar volume of each species 

is set to be the average value in the process. Since initiator efficiency varies widely in differ-

ent conditions, the value of initiator efficiency is re-estimated to be 0.5 in this system. 

Polystyrene gel pre-factor is set to 0.085.  Representative kinetic values are summarized in 

Table 5.4.  

Figure 5.7 summarizes the model simulation results for the two grades,    and   . Fig-

ure 5.7 (a) shows the development of gel content over time. At the beginning of the process, 

DiCup mainly participates in styrene polymerization, hence, no gel is observed. After a cer-

tain point, when styrene monomer has been consumed, the polyethylene gel content starts to 

increase as DiCup continues to decompose. This result suggests that it is possible to poly-

merize styrene monomer in situ without generating crosslinked polyethylene even though a 

crosslinking agent is present.  Consistent results have been found in recently patented inven-

tions (Matsumura, et al., 2006), where linear low density polyethylene (LLDPE) is used for 

lower crosslinking capability, and crosslinking agent promotes the grafting reaction during 

polymerization. As a result, a non-crosslinked polyethylene-based modified polystyrene res-
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in is obtained, where the gel consists of a grafting polymer. On the other hand, when cross-

linking structure is intended, polymer with higher crosslinking capability, such as branched 

low-density polyethylene and its copolymer are preferred. (Matsumura, et al., 2007). 

Table 5.4 Representative kinetic constants for the PES system 

Reaction Constant k0 E

s¡1 or l ¢mol¡1s¡1 kcal ¢mol¡1

peroxide decomposition kI 7:47£ 1015 36.5 a)

thermal initiation kth 2:19£ 10 5 27.4 e)

hydrogen abstraction from styrene kIM 1:00£ 10 7 7.1 e)

hydrogen abstraction from polyethylene ·HA 5:00£ 10 7 15.0 b)

hydrogen abstraction from polystyrene ·HB 5:00£ 10 7 15.5

polystyrene chain propagation kp 1:00£ 10 7 7.1 e)

chain transfer to monomer kfs 2:31£ 10 6 12.6 e)

reversible hydrogen abstraction (polystyrene) ·hb1 1£ 10 0 10.5

reversible hyrogen abstraction (polystyrene) khb2 2:10£ 10 6 10.5 f)

chain transfer to polyethylene kfb 2:50£ 10 5 13.0

¯-scission (polyethylene) kbA 4:47£ 1014 38.5 c)

¯-scission (polystyrene) kbB 4:1£ 1012 26.0 f)

radical recombination (polyethylene) ktca 2:6£ 10 9 15.0 b)

radical disproportionation (polyethylene) ktda 3:65£ 10 8 15.0 d)

radical recombination (polystyrene) ktcb 3:16£ 10 6 1.7 e)
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reversible hyrogen abstraction (polystyrene) khb2 2:10£ 10 6 10.5 f)

chain transfer to polyethylene kfb 2:50£ 10 5 13.0

¯-scission (polyethylene) kbA 4:47£ 1014 38.5 c)

¯-scission (polystyrene) kbB 4:1£ 1012 26.0 f)
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radical recombination (polystyrene) ktcb 3:16£ 10 6 1.7 e)

 

a) Arkema, INC;  b) (Pedernera, et al., 1999); c) (Likozar, et al., 2009); d)     
  is estimated 

based on the relationship of           for secondary free radical. (Huskic, et al., 1993); e) 

(Curteanu, 2003); f) (Kruse, et al., 2002). 

 

Figure 5.7 (c) shows the simulation of grafting ratio development. The styrene grafting ratio 

first increases during the styrene polymerization, then it starts to decrease due to degradation 

by the remaining peroxide after polymerization.  The trend of the grafting polymer growth 

during polymerization is also consistent with the results in recent patents (Matsumura, et al., 

2006). The development of polystyrene average molecular weight is shown in Figure 5.7 (b).  

Degradation of polystyrene is shown during polyethylene crosslinking.  Samples were taken 

at the end of the reaction. The endpoints of the simulation values lie within the 10% error 
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bar of experimental measurements. Also, the MWD of polystyrene-only fraction could be 

well represented through the log-normal distribution. To investigate the development of the 

inter-polymer joint MWD, polymer composition distributions of the soluble fraction before 

and after modification are compared for grades    and    in Figure 5.7 (d) and Figure 5.7 

(e). The dashed lines represent the initial composition distribution of polystyrene by weight. 

The solid lines are the final distributions of polystyrene by weight after SIPN modification. 

Solid lines are simulated distribution based on the calculation of MWD of polyethylene, 

polystyrene and polyethylene-g-polystyrene, where PS MWD is simulated from the comput-

ed   ̅̅ ̅̅ ̅ and   ̅̅ ̅̅  based on the log-normal distribution. Note that crosslinking of polyethylene 

leads to a significant increase of polystyrene content in the soluble fraction, and the amount 

of increase does not exhibit dependence on the polymer chain length. Finally, note that the 

simulation results with our model agree well with the experimental data in Figure 5.7(d) and 

Figure 5.7(e). The simulation suggests that the crosslinking reactions generally take place at 

the end of the polymerization. A batch reactor is currently expected to be used for SIPN 

property control.   

5.2.4 Effect of Process Conditions 

Several reaction conditions can vary in the process, such as peroxide types, polyethylene 

types, component compositions, peroxide loading and reaction temperature.  Sensitivity 

studies are carried out based on the kinetic model in order to understand the relationship be-

tween process conditions and product properties. The effect of reaction temperature and 

peroxide concentration are presented and discussed in this section.   
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(a) Gel content (b) Polystyrene   ̅̅ ̅̅ ̅ 

 

(c) Grafting ratio 

  

(d) Polystyrene composition distribution of 
Grade G1 

(e) Polystyrene composition distribution of 
Grade G2 

Figure 5.7 Predicted and experimentally measured SIPN properties for two grades of PES   
products 
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5.2.4.1 Effect of Reaction Temperature 

Reaction temperature is one of the important controls in the process and has a strong effect 

on the inter-polymer properties. A set of simulations were run at increments of      for dif-

ferent holding temperatures of the process for Grade   . The output results are summarized 

in Figure 5.8. Figure 5.8 (a) shows that the gel content first increases with the increase in 

temperature, then starts to decrease for temperatures above      due to polymer degrada-

tion. Figure 5.8 (b) and Figure 5.8 (c) reflect the effect of degradation on the MW of free 

polystyrene and grafted-polystyrene. Both of their molecular weights decrease as the tem-

perature increases. Figure 5.8 (d) presents the overall effect on the joint MWD. There is a 

significant increase of polystyrene soluble fraction from the condition of      to     . 

However, distributions from the condition of      to      are similar, since both poly-

ethylene crosslinking and polystyrene degradation reactions accelerate. Thus, low 

temperature slows down initiator decomposition, which leads to lower gel content. On the 

other hand, high temperature enhances polymer degradation, which could also lead to de-

crease of gel content. Joint MWD is affected by both of the effects. Hence, selecting an 

appropriate operating temperature is critical for product quality control. 

  

(a) Gel content (b) Polystyrene   ̅̅ ̅̅ ̅ 
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(c) Grafting ratio (d) Polymer composition 

Figure 5.8 The effect of reaction temperature on PES properties 
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(e) Gel content (f) Polystyrene   ̅̅ ̅̅ ̅ 

  

(g) Grafting ratio (h) Polymer composition 

Figure 5.9 The effect of Initiator concentration on PES properties 
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gel experiments and MWD measurements. This modeling framework can be extended to 

other binary systems and physical phenomena can be taken into account, together with the 

kinetic mechanism model for various process conditions.  With appropriate modification of 

the polymerization mechanism, it is also possible to consider additional monomers in the 

modeling system. The general decomposition modeling approach can still be applied.  

Therefore, given desired macromolecular properties, the proposed model can serve as a ba-

sis for SIPN process design and optimization, and provides a promising approach for other 

polymer mixture systems. 
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Chapter 6  

Parameter Selection and Estimation 

From this chapter, foci are moved to computational strategies for large-scale nonlinear opti-

mization, which are the challenges in polymerization model application. First, model-based 

quality control and process optimization is not possible until all the relevant model parame-

ters are determined. Parameter estimation is a crucial but challenging step in model 

development.  This chapter deals with parameter estimation problem in an over-

parameterized system. A hybrid parameter selection and estimation approach is developed to 

reduce model distortion. Parameter estimation results for SIPN Stage I model are shown. 

Consistent predictions validate the model and the parameters we obtained.   

6.1 A Hybrid Parameter Estimation Strategy 

In free radical polymerization, apparent kinetic rates are dependent on the conversion regime. 

Kinetic parameters found in the literature show a high variability in their values (Almeida, et 

al., 2007) and no interpretation for free-radical polymerization is completely ―model free‖ 

(Gilbert, 1992). Often the number of uncertain parameters is large, the system dynamics are 

complex and available analytical measurements are limited (Almeida, et al., 2007) . 

As a result, determining a subset of estimable parameters and evaluating their goodness 

of fit is an important task in parameter estimation. Here, an effective approach for parameter 

selection and estimation is proposed. The approach employs an initial pre-selection that ex-

tends from Lund, et al. (2008), and a post optimal analysis following a simultaneous 
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parameter estimation strategy (Zavala, et al., 2008). With this approach, we can assess the 

influence and linear dependency of the parameters with little additional effort. The proce-

dure is outlined in Figure 6.1.  

 

Figure 6.1 A diagram of hybrid parameter estimation procedure 

Four steps are applied in this approach.  

1. Select an initial subset by pre-screening. Based on parametric sensitivity at their 
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3. Estimation quality evaluation. Compute a reliability factor ― ‖ based on scaled pa-

rameter variance estimation from post-optimal analysis and update the parameter 

ranking.  If the largest   value (    ) does not satisfy the reliability threshold    , 

then go to step 4. Otherwise, stop. The optimal subset is obtained.  

4. Update the selected set by removing one of the parameters from the subset. If this 

step follows step 2, then the parameter with the largest      ̂  (individual variance 

contribution) in the pre-screening list will be removed.  If this step follows step 3, 

then the parameter with the largest   value (    ) should be removed. Continue 

with step 2 and re-estimate a smaller subset of parameters.     

The details of each step are discussed next. 

6.1.1 Parameter Ranking and Pre-screening 

The first step before solving any optimization problem is to pre-screen estimating parame-

ters based on a local ranking strategy.  Parameter estimability is an important but often 

overlooked step, when preparing to fit a mathematical model to a set of experimental data 

(Vajda, et al., 1989).  However, a rigorous analysis of parameter subset selection for nonlin-

ear models is generally computationally demanding. Approaches utilizing nominal 

sensitivity vectors for parameter selection help to provide effective means for parameter pre-

screening. In particular, algorithms based on orthogonal factorization have clear geometric 

interpretation of linear dependency, and can be adapted easily. Here we use QR factoriza-

tions with a column permutation (QRcp) approach (Lund, et al., 2008), where the magnitude 

of the variance contribution for each parameter (assuming a Gaussian distribution) can be 

obtained in a particularly easy form. Parameter initial ranking based on QRcp approach is 
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used to select a large initial subset. More rigorous statistical inference can be further ex-

plored through optimization. 

The QRcp algorithm is based on the analysis of a sensitivity coefficient matrix and the 

Cramer Rao inequality. In our system, the (scaled) sensitivity coefficient matrix for multi-

response system is expressed as (Yao, et al., 2003) : 
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 (6.1) 

where (       ) is a set of parameters to be estimated, (       ) is a set of responses, 

  
    

  are the reference values that scale    and   ,  and (       ) is a set of selected sam-

ple points in time. The elements of the matrix are individual parametric sensitivity 

coefficients, which are determined numerically. 

We assume that measured output is a function of the parameters affected by measurement 

noise that follows a Gaussian distribution with zero mean and covariance matrix  .  (With-

out loss of generality, the outputs in S were scaled so that the covariance matrix is reduced 

to   in the analysis.) 

The Cramer Rao inequality, Equation (6.2), expresses a lower limit of the estimation var-

iance of selected parameters. 
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     ̂    ( )   (6.2) 

where   is the Fisher information matrix, defined by: 

 ( )   ,
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   ( ̃| )-  (

  

  
)    

  

   
     (6.3) 

It is shown by a recursive procedure that through a successive orthogonalization of  , in-

dividual variance contribution (      ̂ ) can be associated with a measure of    . Here, 

      ̂  refers to an additional cost to the whole parameter set after inclusion of parameter    

in the ranked set of {         +. 

Thus, QR factorization with column permutation is carried out for  , as      , the 

permutation matrix   provides a reference ranking of parameters, while the matrix   offers 

a value of individual parameter variance. 

Redefining   by extracting the diagonal,     ̅, we evaluate 

(      )   ( ̅        ̅)   ( ̅    ̅)     ̅      ̅          (6.4) 

where         ,       -,  ̅ is upper unit triangular, and    ̅  . Then, the norm of the 

individual variance contribution of each parameter,       ̂  , is then given by: 

      ̂  
‖  ‖

 

  
       (6.5) 

where    is the     column in  . Magnitudes of       ̂  can be used as a criterion to deter-

mine the number of parameters to be estimated. More details can be found in (Lund, et al., 

2008). 

Notice that using one set of nominal parameter values to define the ranking is usually not 

sufficient and Lund, et al.(2008) suggested generating the sensitivities for as many values of 
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the parameter vector as available.  Therefore, QRcp is only applied for preliminary set selec-

tion in our approach and only leads to elimination of the least sensitive parameters from the 

estimation.  In this work, a variance range of 3 orders of magnitude is allowed in the pre-

screening to keep the candidate parameter set large enough for simultaneous parameter es-

timation. The final parameter ranking and validation is left for the post-optimal analysis. 

6.1.2 Simultaneous Parameter Estimation 

In this step, optimal parameter values are determined and their qualitative influence is ana-

lyzed in order to reevaluate the parameter ranking. Here, the objective is to minimize the 

prediction error subject to constraints imposed by model equations and known bounds on the 

parameters (Li, 2003), in the form of (6.6). 

    ∑ ( (  )   (  )
 )    ( (  )   (  )

 )
  

   

                         

   (   )

 (
  

  
  ( )  ( )  ( )    )   

  ( (  )  (  )  (  )     ))   

                    ( )    
           ( )    

    ( )    

       

 (6.6) 

where    is the number of data sets,         , and  (  )  (  )
  are simulation and 

measurement values at   , respectively.   are differential-algebraic constraints,    are addi-

tional point constraints at times      are differential variables,   are algebraic variables,  ( ) 

are control profiles, and   are parameter vectors to be estimated. 
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For dynamic optimization problems, a comprehensive review can be found in (Biegler, 

2007). Following (Kameswaran, et al., 2006), differential and algebraic variables are discre-

tized using orthogonal collocation on finite elements, leading to a large-scale, structured 

nonlinear programming (NLP) problem of the form (6.7). 

        ( )

     ( )   

       
 (6.7) 

where   represents the parameters and polynomial coefficients of the approximated state 

variable profiles, *    →             →   +. The transcribed NLP model can be solved 

efficiently by a large-scale NLP solver. An interior point NLP solver, IPOPT (Wachter, et 

al., 2004) is used in our study. A unique local solution is necessary for the post-optimal 

analysis.  If the KKT matrix of (6.6) is non-singular with appropriate inertia, it satisfies se-

cond-order sufficient conditions. In IPOPT, a quick, direct test for the uniqueness of the 

solution is through the output of the regularization value of the reduced barrier Hessian at 

the solution. If no regularization is required at the optimal point, then sufficient second order 

conditions are satisfied and the local solution and estimated parameters are unique. More 

details on this test can be found in Zavala, et al. (2008).  

6.1.3 Estimation Quality Evaluation 

Once optimal parameters are uniquely determined, the reduced Hessian,   , is extracted 

from the factorized KKT matrix, as described in Zavala, et al. (2008).  

A reliability factor,  , is defined for the estimated parameters based on the obtained re-

duced Hessian information.   is the ratio of parameter variance to its estimated value: 
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   ̂   | ̂ | (6.8) 

and  ̂  , the estimated standard deviation for parameter   , can be computed following 

(Bard, 1974), based on the reduced Hessian matrix at the optimal point: 

 ̂      

 ̂ 
  (    ( ̂ ))

 (6.9) 

where  ̂  is the approximated covariance matrix. In practice, we set an acceptable threshold 

value of   as    .    is used as a user defined confidence level, and can be a scalar or vector 

depending on the parameter estimation requirement. 

6.1.4 Selection Set Reduction 

The selected parameter subset should be reduced under two scenarios, and is implemented 

differently in the pre-screening and post-optimal steps. In the pre-screening, insensitive pa-

rameters are removed from the QRcp ranking list to obtain a unique solution, while in the 

post-optimal step the parameter is removed if the      exceeds its threshold variance range 

   to improve the estimation quality. 

When removed from the selection set, the parameter is fixed to its nominal value in the 

following parameter estimation run. While the goodness of fit for the reduced parameter set 

hardly changes, the uncertainty in the parameters can be greatly reduced. It is important to 

point out that the final selection may differ from the initial ranking in Step 1, since the sensi-

tivity matrix changes at the new optimal solution.  If the reliability threshold (  ) is too low 

to be satisfied by any of the parameters, then additional measurements are probably required 

to meet the desired estimation criteria. 
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6.2 Results and Discussion 

6.2.1 An Illustrative Example 

We illustrate the parameter selection and estimation approach using a CSTR reaction model 

from Muske, et al. (2003). In addition, comparison with other approaches is discussed. The 

description of the example is provided here. 

 

Figure 6.2 A CSTR example for parameter estimation 

In a CSTR reaction system shown in Figure 6.2, component A undergoes a first-order, 

exothermic reaction to form a product component B 

 →             (     )   (6.10) 

The CSTR system is described by the following three ODEs. Three state variables are 

concentration of component A (  ), reactor temperature ( ), and coolant temperature (  ). 
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 (6.11) 

The nominal values of the parameters are listed in Table 6.1. 

Feed

Coolant
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Table 6.1 Nominal operating values of the CSTR example 

Parameter   Variable   Value Parameter   Variable   Value 

Feed flow                Activation energy              

Feed temperature            Pre-exponential factor              

Feed composition     
 
                Coolant flow rate                    

Reactor volume             Coolant inlet temp            

Heat transfer area             Cooling jacket volume                 

Fluid density                   Coolant density                   

Fluid heat capacity               (    ) Coolant heat capacity                (    ) 

Heat of reaction                     

 

Assume that only the reactor temperature measurements are available, and the sensor 

measurement noise is          . The objective of the parameter estimation problem is to 

estimate as many uncertain parameters as possible, while keeping the estimation variance 

within a 10% threshold (      ). Here, 12 sampling data (15 min/sample) of   is generat-

ed from the model with ―true‖ parameter value. A random noise    is added to the generated 

data to simulate the process condition. Table 6.2 summarizes the parameter estimation re-

sults following the procedure described previously. 

Table 6.2 Parameter selection result for the CSTR example 

Ranked Pa-

rameters 
   (  ) 

Estimation and  value for    parameters (Chu, et 

al., 2007)                        

 ̅   (0.99)  0.0002 1.02(2.68) 0.92(0.31) 0.996(0.01) 1.001(0.01) x 

  ̅
 
  (1.02)  0.0029 0.92(2.88) 1.03(0.09) 1.007(0.02) x x 

 ̅ (0.99)  0.0701 0.92(0.47) 0.91(0.34) x x x 

  ̅ (1.10)  0.7710 0.88(3.14) x x x 1.04 

  ̅ (1.01)  7.0130 x x x x x 

  ̅ 
 
  (0.99)  32.2659 x x x x x 

  ̅  (0.95)  . x x x x x 

  ̅  (1.05)  . x x x x 1.31 

   ̅̅̅ (1.01)  . x x x x * 

Residual sum of squares 7.79 7.87 8.12 160.62 9.51 
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The value shown in the first column of the Table 6.2 is the ―true‖ value of the 9 parame-

ters (normalized by its nominal value in Table 6.1. Implementation details are described 

below. 

 Step 0. A preparation step. The model is initialized with nominal parameters as 

shown in Table 6.2.  Before solving any optimization problem, all the parameters in 

the estimation problem are normalized by their nominal values. Hence, all the pa-

rameters are approximately within the same range. Normalization enables easier 

comparison in this procedure. 

 Step 1. Pre-screening. Perturbing the parameters around ―1‖, we obtain local sensi-

tivity information at the sampling points. The parameter ranking based on parameter 

variance contribution is shown in the     column. Following the rule of a factor of 

1,000, 4 parameters,      
 
    and  , are selected in the first step. All the rest param-

eters are fixed to nominal value 1.  

 Steps 2 and 3. Simultaneous parameter estimation with variance approximation. 

When     , the estimation results are shown in the     column. The value in the 

bracket is the   ratio at current optimal point. As seen in the table, the estimation 

variances exceed the 10% threshold, indicating a further refinement of the selection 

pool is necessary. 

 Step 4. Selection set reduction. As shown in the     and     column,     are sequen-

tially removed from the simultaneous estimation and fixed to 1 in the following 

estimation problem. Until          and   
 

 are selected, and both   values are 

within 10% range. 
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 Terminate and proceed to the optimal estimation selection. The parameter estimation 

procedure is terminated at     . It indicates that at most two of the parameters 

could be estimated at the desired estimation accuracy, based on the available infor-

mation. For comparison, the last column shows the result for     . The increased 

residual sum of squares indicates a poor data fitting circumstance. It is because ad-

justing one parameter is not sufficient to fit the data. 

This result is compared with the global sensitivity approach discussed in Chu, et al. 

(2007). From their results, three parameters are selected, which are     and   . However, in 

the estimation test, this subset shows higher estimation variance at the optimal point. Our 

hybrid parameter selection approach outperforms the previous approach. 

6.2.2 Parameter Estimation for PES Stage I Model 

We implemented the parameter estimation procedure for the Stage I model. Data are collect-

ed through sampling from an industrial PES pilot plant for styrene monomer and a 

polyethylene seed, which is extruded and screened to be monodisperse. Examples of the 

process examples can be found in patents (eg. Kitamori, 1979). Polyethylene seeds, with an 

average particle diameter of 0.8mm to 1.0mm, were suspended in the aqueous medium with 

suspending agent and strong agitation in a 10 L suspension reactor. An initial charge of sty-

rene monomer and initiator mixture (typically 10%   30% of the total amount of the recipe) 

was added to the reactor, and the reactor was brought to a desired temperature. The system 

was held for 1-2 hours until the seeds were well swollen. Thereafter, the remaining mono-

mer and initiator were added continuously following a piecewise constant feeding strategy 

(see Figure 7.2) to begin polymerization inside the seed particles. The polymerization stage 

takes place at a constant temperature in the range of           for a maximum of 10 hours. 
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Samples are taken during polymerization. For all pilot plant tests, no oscillatory or chaotic 

behavior was observed in the experiments. 

The process model consists of Equations (4.22) - (4.30). Initial conditions are defined at 

the start of polymerization stage, and all the state variables are constrained with loose lower 

and upper bounds. Bounds on the parameters are set to a factor of 100 around their nominal 

values. 

Four types of kinetic and physical parameters are present in the model. 

1. Polymerization kinetic parameters: initiator efficiency ― ‖, initiator decomposition 

rate ―  ‖, propagation rate ―   ‖, termination rate ―  ‖ and chain transfer rate ―   ‖, 

2. Transport properties: monomer effective diffusion coefficients ―  ‖, initiator effec-

tive diffusion coefficient ―  ‖, 

3. Partial molar volume coefficients: ―  
 ‖, ―  

 ‖, ―  
   ‖, ―  

  ‖, ―  
  ‖, ―  

  ‖. 

4. Initial conditions of the polymerization stage: initial weight average molecular 

weight ―  ̅̅ ̅̅ ̅ ‖ and initial conversion ratio of monomer ― ̅  ‖. These initial condi-

tions need to be estimated due to pretreatment during the seeding stage. 

In the objective function of (6.6), data from 3 different grades of products are available. 

Based on the initial size of the seed, the total number of seed particles,       are     

            and         , respectively. Each process includes      samples during 

the reaction, which leads to a total of 26 data sets(     ). Also three types of property 

measurements are available at sample time    for each grade of resin. 

1. Weight average molecular weight   ̅̅ ̅̅ ̅  of polystyrene, measured by GPC. 

2. Styrene conversion ratio  ̅ , measured by FTIR. 
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3. Average particle radius  , measured by a laser diffraction particle analyzer. 

Hence, the multi-set parameter estimation problem based on (6.6) is formulated as (6.12). 

    ∑ ∑ ( (   )   (   )
 )   

  ( (   )   (   )
 )

   

   

  

   

    *         (    )  (    )+       *      +

                       
          

    ( )    
 

  
    ( )    
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where       , denoting number of grades available,     is the number of samples taken 

from each grade.   is the output vector of ,  ̅̅ ̅̅ ̅   ̅   - , and subscript    refers to sample   

in grade   measurement.     is set to be a diagonal matrix with the diagonal element as 

measurement variance of  . Equations (4.22)-(4.30) are applied for each grade. The initial 

condition   
 

 is specified from production recipes and initial sample measurements.   refers 

to above 19 parameters. 

To initialize the parameter estimation problem, nominal kinetic values are specified from 

(Curteanu, 2003). The effective diffusion rate refers to a similar diffusion system of toluene 

(Hong, et al., 1996), as shown in Table 6.2, and we assume the initiator has the same diffu-

sion coefficient as the monomer.  An initial guess of partial molar coefficients is 

approximated from the following equation: 

  ∑ (  
    

 

 
   ̅)     (6.13) 

The initial conditions of the polymerization stage are based on sample measurements. These 

are scaled to one in Table 6.2 and listed along with the initial values for the other parameters. 
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Because the product is produced under isothermal conditions throughout the polymeriza-

tion stage, the temperature variation for different grades is small (   ). Hence, only pre-

factors of the kinetic parameters are estimated and the activation energies are set to their lit-

erature values. The kinetic and physical parameters for different grades of product are 

estimated jointly, while the initial conditions for each polymerization stage are estimated 

individually, as a result of the difference in the pretreatment stage. The initial sensitivity ma-

trix is computed from the simulation model for the above 19 parameters at their nominal 

values. 

For the studied case, 20 shells were used for spatial discretization of the seed particle, 

which leads to 160 differential equations and 103 algebraic equations. Since Radau colloca-

tion is known to be suited for stiff ODEs, 3 point Radau collocation is used for the 

simultaneous approach with 15 to 25 unequally-spaced finite elements for each model. The 

model for a single data set contains around 12,000 to 20,000 variables after temporal dis-

cretization. To estimate model parameters that describe three process data sets, the multi-set 

parameter estimation problem leads to 50,411 variables. The parameter estimation is imple-

mented in the modeling platform AMPL with the solver IPOPT 3.4 compiled with the 

METIS (Karypis, et al., 1999)  package, running on a Linux box with Intel Core2 Quad CPU 

at 2.4 GHz. 
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Table 6.3 Results of parameter selection and estimation for Stage I model 

EP(¯) of SM
RP ¢varµ̂i

Np = 13 Np = 12 Np = 11
LM

kp 0:017 1:0683(0:04) 1:0683(0:04) 1:0912(0:04) 1:0385(0:20)

xs
I
0 0:134 1:1031(0:06) 1:1031(0:06) 1:0955(0:06) 1:1442(0:08)

aM
0 0:167 0:8203(0:25) 0:8192(0:21) 1:0138(0:15) 0:9369(0:43)

f 0:270 0:7070(0:26) 0:7069(0:21) 0:7350(0:17) 0:7055(0:37)

xs
II
0 0:393 1:0002(0:14) 1:0002(0:10) 1:0003(0:09) 1:0005(0:05)

xs
III
0 0:495 0:9998(0:01) 0:9998(0:01) 0:9985(0:01) 0:9745(0:26)

Mw
I

0 0:498 1:0655(0:04) 1:0654(0:04) 1:0380(0:04) 1:1367(0:58)

Mw
III

0 0:495 1:5062(0:13) 1:5061(0:13) 1:5138(0:12) 1:4487(0:62)

Mw
II

0 0:981 0:6473(0:25) 0:6471(0:25) 0:6118(0:26) 0:9666(1:00)

aP1

0 1:310 1:0548(0:21) 1:0537(0:21) 0:9973(0:22) 1:3521(1:50)

aP2

0 3:611 1:0412(0:08) 1:0422(0:08) 0:9820(0:08) 0:8864(1:12)

aP1

1 23:332 1:0033(0:35) 0:9997(0:33) X

aM
1 6:117 0:4548(0:96) X X

kfs 69:192 X X X

aP2

1 134:449 X X X

kt 410:389 X X X

DM 23995:3 X X X

DI 205781 X X X

kd X X X X

RP: Ranked parameter

EP(¯) Estimated parameter value with ¯ ratio

SM Shell model

LM Lumped model

 

The threshold ratio    is set to be 30%, and the optimized parameters for different selec-

tion sets are summarized in Table 3. The estimated values shown are scaled with their 

nominal values. The column of ―      ̂ ‖ is computed through QRcp approach at the pa-

rameter initial guesses; this is Step 1 as discussed in section 6.1.1.  Notice that, the initiator 

decomposition constant ―  ‖ and initiator efficiency ― ‖ are dependent in the model, only 

one of the parameters is included for further analysis.  In this case,   is included in the esti-

mation, while    is fixed to its nominal value. In Step 1, ―   ‖ has the smallest variance 

contribution, with        ̂  of 0.017, on the order of     . Following the 3 orders of magni-

tude cutoff rule, the threshold for       ̂  becomes orders of               . Ranking 

the parameters according to       ̂   in Table 6.3, suggests that the initial subset could in-
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clude parameters from ―   ‖ to ―    ‖. From Table 6.3, ―  
  ‖ and the rest of parameters ex-

ceed the limit, and are removed from the pre-screening. Parameters ranked after ―  
  ‖ are 

removed from further analysis. Then, following the procedure of Step 2, 14 parameters are 

selected for simultaneous estimation. However, no unique solution can be obtained within 

the search region. ―    ‖ is then removed from the subset and fixed to its initial guess based 

on the criteria in Step 4, and the remaining 13 parameters continue to be estimated to obtain 

a unique solution. The ratio   is computed from (6.8) at the solution point as shown in the 

3
rd

 column of the Table 6.3. The optimal parameter values are scaled by their nominal values 

for comparison and the   ratio is reported in parentheses. Notice that          . The 

parameter with the largest ―  
 ‖ is removed at this step and fixed to 1. Consequently, esti-

mation was done similarly for 12 and 11 parameters. Note that the reduced set with 11 

parameters meets the requirement of 30% ratio of estimated variance, suggesting that the 

first 11 parameters can be reliably estimated based on the measurements. Hence, the selec-

tion and estimation procedure stops. Based on the estimation, the proposed model describes 

the particle evolution for all considered data sets very well. 

The scaled comparison results are presented in Figure 6.3, with the data and model pre-

diction shown for conversion ratio, weight average molecular weight and average particle 

radius.  Model results compare favorably with experimental data as shown. 

In order to study the importance of the diffusion reaction mechanism of the single particle 

system, we also run a parameter estimation study using a lumped model (LM), which re-

duced the multi-shell structure into a single core. The 11 selected parameters from the full 

model were estimated based on the reduced model with the same measurement data and ob-

jective function. The result obtained is compared in Table 6.3. The corresponding outputs for 
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Figure 6.3 Result of parameter estimation for 3 grade products 

Grade   product are also shown in Figure 6.4 as dashed lines. It may be observed that inclu-

sion of the intra-particle dynamics does not change the average prediction significantly since 

the diffusivity is relatively high for styrene monomer in our system. However, due to the 

diffusion controlled kinetics, intra-particle distribution still plays an important role in the 

particle average properties. Notice that better predictions are achieved with the full model. 

The overall residual is reduced by 29% by using the shell model.   This difference is also 

reflected in the parameter estimation results. From the comparison shown in Table 6.3, it is 

found that the estimated optimal parameter values are close in both cases. Nevertheless, the 

reliability ratio   is affected in the lumped model due to the lack of fit. Hence, fewer param-

eters could be regarded as reliably estimated from the reduced model. 

6.3 Uncertainty Quantification before New Estimation 

A successful parameter estimation procedure confirms output predictions within their meas-

urement error. For this studied process, the model prediction satisfied such requirements 

through direct comparison with experimental data.  When users want to use the simulation 

model for a different system without experimental data available, uncertainty quantification 
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Figure 6.4 Comparison with the lumped model on parameter estimation results 

of the model prediction is of importance when further actions are to be considered and valid 

conclusions are drawn.  In this case, parameters are supplied using literature values without 

estimation from the process. Prior knowledge gives an uncertain range of the input parame-

ters, and it is useful to access the estimation variance at the given conditions.  Therefore, 

uncertainty quantification is shown for general use of the current model. 

Assume that, the monomer is replaced with a different styrenic monomer. The kinetic 

mechanism of monomer polymerization remains the same, but model parameters are 

changed for this system.  The uncertain parameters considered are    and  . The user sup-

plies a nominal value for    from the literature, assuming the actual value follows a uniform 

distribution in the range of [-10%, +10%] from its reference value, and   is assumed to vary 

0 0.2 0.4 0.6 0.8 1
0.46

0.48

0.5

0.52

0.54

0.56

0.58

Time (scaled)

P
a

rt
ic

le
 R

a
d

iu
s
 (

m
m

)

 

 

Shell Model

Lumped Model

Measurement

0 0.2 0.4 0.6 0.8 1
10

20

30

40

50

60

70

Time (scaled)

M
o

n
o

m
e

r 
C

o
n

v
e

rs
io

n
 R

a
ti
o

 (
%

)

 

 

Shell Model

Lumped Model

Measurement

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5
x 10

5

Time (scaled)

A
v
e

ra
g

e
 M

w
 (

g
/m

o
l)

 

 

Shell Model

Lumped Model

Measurement



6.3  Uncertainty Quantification before New Estimation 

 

Chapter 6  Parameter Selection and Estimation 118 

between 0.5 and 0.8. Monte Carlo simulation is carried out in the uncertain space of    and 

 . Prediction of   ̅̅ ̅̅ ̅  and   ̅̅ ̅ is shown in Figure 6.5, accordingly.  

  

  

Figure 6.5  Scatter plot of simulation results under uncertainty 

The true value of the outcome is expected to lie in the distribution as shown due to the 

uncertainty in model parameters. This again, shows that accurate propagation rate is more 

important to make a reliable prediction. This analysis can be convenient and useful for the 

user to decide if additional experiments are needed to satisfy the desired prediction accuracy. 

Discussion on optimal experimental design is beyond the scope of this work. Uncertainty 
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quantification helps to provide some intuition for new model predictions under different 

conditions.  

6.4 Summary 

In this chapter, a systematic approach is proposed to obtain reliable estimated parameters; 

this combines successive orthogonalization of the sensitivity matrix with post-optimal anal-

ysis derived from simultaneous parameter estimation. As a result, a subset of model 

parameters can be estimated with little additional computational effort. 

The proposed model has been validated for the studied case of a PES system. The simula-

tion results achieve excellent agreement with experimental measurements on particle size 

growth, polymerized polymer average molecular weight and monomer conversion ratio. Fi-

nally, an improved monomer feeding policy is obtained, which has been implemented and 

validated in a pilot plant. It validates the reliability of parameter estimation results. Predic-

tion uncertainty analysis is demonstrated for new estimation problems, when the model is 

adapted for different processes at various conditions.  



Chapter 7  Operation Policy Optimization 120 

Chapter 7  

Operation Policy Optimization 

One of the main incentives of SIPN model development is to develop a minimum time oper-

ation to meet product quality requirements within a defined molecular weight and 

composition. This chapter discusses optimization strategies for a single stage model and then 

for the integrated model. A special pattern of the optimal operation policy is revealed by the 

optimal solution. In addition, an algorithm for dynamic optimization with surrogate sub-

models is developed, and applied to the complex integrated process model. 

7.1 Optimization of Stage I - Singular Control Problem 

Semi-batch feeding is a key time-limiting step in an SIPN process; therefore it is the main 

focus for optimization.  The single particle model for the Stage I process which is developed 

in chapter 4 is first considered in the optimization. 

The objective is to minimize the duration of Stage I, the polymerization stage, subjected to 

product quality constraints at the end of Stage I. The control variables are monomer and initia-

tor feeding rates: ―  ( )‖ and ―  ( )‖. The optimization problem is formulated as follows: 

     
                   (    )  (    )

                            

  ̅̅ ̅̅ ̅     ̅̅ ̅̅ ̅(  )    ̅̅ ̅̅ ̅  

 ̅ 
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where   ̅̅ ̅̅ ̅(  ),  ̅ (  ) are the weight average molecular weight and monomer conversion 

ratio at the end of Stage I, respectively.   ̅̅ ̅̅ ̅ ,   ̅̅ ̅̅ ̅  ,  ̅ 
  and  ̅ 

  are the lower and upper 

bounds on product quality and   
 ,   

 ,   
  and   

  are the lower and upper bounds of the 

monomer and initiator feed rates, respectively. The upper bounds of the feeding rate are ob-

tained from the pilot plan study, and the lower bounds are set to zero. Exceeding the 

maximum feeding rate could violate operating assumptions and may form secondary parti-

cles. Only the lower bound of quality constraints is specified based on sample measurements 

from each grade.   

Since   ,    are variables with indefinite dimensions, without previous knowledge of the 

optimal solution, a piecewise constant function is applied for each feeding rate in the opti-

mization problem. Figure 7.1 presents an optimal solution of   . 

 

Figure 7.1 Optimal monomer feeding policy using piecewise constant formulation 

However, as Figure 7.1 shows, the feeding rates present bang-bang and oscillatory behav-

ior because of the inherent singular control properties of the dynamic optimization problem. 

Such solutions are not practical for plant operation. Strategy to reformulate this singular 

problem is discussed in the following. 
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7.1.1 Strategy for Reformulation of SIPN Singular Control Problem 

Singular problems occur when the control appears linearly in the problem. General formula-

tion of the optimal control problem is written as: 

    ( (  ))

    
  

  
( )   ( ( )  ( )  ( )  )  ( )    

  ( ( )  ( )  ( )  )   

  ( ( )  ( )  ( )  )   

  ( (  ))      ( (  ))   

 

(7.2) 

where  ( ),  ( ) are algebraic and differential states, respectively;     is the differential var-

iable at final time;  ( )  is the time dependent control variable;   are time independent 

variables.  One of the optimality conditions of problem (7.2) requires condition (7.3). 

  ( )

  
   (7.3) 

where,      (       )        (       )
        (       )

    . 

When  ( ) appears linearly in            . (7.3) is not explicit in the control variable  ( ). 

The optimal control profile would be either at its upper bound or its lower bound, which is 

known as a ―bang-bang‖ solution, or the optimal solution is strictly between the control 

bounds.  The evaluation of the Pontryagin Minimum Principle shows that optimal controls 

are composed of bang-bang and singular arcs. The optimal control problem induces a finite-

dimensional optimization problem with respect to the switching times between bang-bang 

and singular arcs.  However, reformulation of the control problem is required, and is consid-

erably more complicated (Biegler, 2007). Non-smoothness regularization and prior 

smoothness assumptions are often applied in the problem formulation. However, several pit-

falls of these approaches are found for various examples. The arc-parameterization is an 
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efficient method for solving the induced optimization problems and allows satisfaction of 

second-order sufficient conditions (SOSC). The key question is how to search for a suitable 

parameterization scheme for this problem. 

To address this question, the solution of (7.1) is re-examined from process point of view.  

An interesting pattern of the solution is found for the SIPN process. In Figure 7.1, monomer 

consumption rate is plotted and compared with the optimal monomer feeding rate. It is 

found that the ratio of these two is kept at an almost constant level. It suggests that, the op-

timal policy maintains the system at a pseudo steady-state condition; the feeding rate could 

be a smooth function when it reaches the optimal pseudo steady-state, while it is discontinu-

ous at the beginning and the end. This process insight helps to adopt a reduced order prior 

function for the monomer and initiator feeding rate. Hence, monomer feeding rate is defined 

to consist of 3 piecewise linear functions for the beginning, the pseudo steady-state and the 

end. The original singular control problem is reformed.  

7.1.2 Results and Discussion 

The new solution representation of feeding rate is then solved in the optimization prob-

lem (7.1). Figure 7.2(a) shows an optimal feeding policy with the maximum feeding rate 

scaled to 1. An implementable solution is obtained with little trade-off (    lose) of the 

optimal efficiency. This optimal solution differs substantially from the original policy, and 

suggests a new pattern for the semi-batch operation.  In Figure 7.2(a), the solid line is the 

computed optimal monomer feeding rate, and the dashed line is the monomer consumption 

rate. Comparing these profiles, again, we observe that the optimal feed rate and monomer 

consumption rate have the same trend. The monomer accumulation ratio is adjusted by the 

operation to remain nearly constant. This enables the process to meet particle quality and 
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productivity more efficiently. For the initiator feeding policy, higher concentration is pre-

ferred at the very beginning, and continued feeding is not required afterwards. This allows a 

higher polymerization rate earlier in the cycle. This pattern of optimal policies has been ob-

tained with different quality constraints. For the optimal feeding policy, the same particle 

property requirements are met while saving 14% of the process time compared to the origi-

nal feeding profile. 

  

(a) Optimal monomer feeding rate (b) Optimal initiator feeding rate 

Figure 7.2 New optimal feeding policy for Stage I 

We note that model prediction and experimental measurements based on the optimal 

feeding policy shown in Figure 7.2 also yields very good agreement, similar to that observed 

in Figure 6.5. Figure 7.3 shows the comparison of weight average molecular weight and 

monomer conversion ratio measured in the pilot plant test with model prediction for grade   

product. Two quality constraints are satisfied in the reduced time from different evolution 

path. The consistency also validates our parameter estimation result in Chapter 5. 
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(a) Monomer conversion  ratio (b) Polystyrene  ̅  

Figure 7.3 Comparison of model simulation and experiment for Stage I optimal policy 

7.2 Optimization of Stage I and II -- Optimization with 

Surrogate Models 

The optimization results shown previously do not include Stage II of the process. An im-

proved optimization strategy is expected when the full process is considered. The final 

product quality indices include the SIPN gel content and the PS molecular weight at the end 

of Stage II.  When conditions in the Stage II are allowed to be adjusted, i.e. introducing ad-

ditional degrees of freedom, the end quality constraints in Stage I (e.g. PS Mw, styrene 

conversion) can be relaxed. However, the Stage II model is a large set of highly nonlinear 

and stiff DAEs; direct solution for the integrated process model is exceptionally challenging.  

A tailored approach is required to tackle this problem.  In this section, an algorithm for using 

surrogate modeling in dynamic optimization is developed. 
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7.2.1 Strategy for Combining Stage II Model 

We consider that Stage II reactions start from a uniform distribution of polymer and mono-

mer mixture. This assumption is valid for PES process because the composition gradient at 

the end of Stage I is negligible and the monomer feeding is complete. As a result, average 

particle properties are used to link the two stage models to represent the integrated process. 

The full optimization problem is formulated as shown in (7.4). If the monomer concentration 

or polymer molecular weight gradient is significant before crosslinking, the Stage II model 

should include the dynamics in space as well. For a shell-represented particle, the bulk SIPN 

kinetic model can be used for each shell accordingly. The optimization problem (7.4) is a 

simplified case, which is suitable for the studied example. 

         
                   (    )  (    )

                (    )  (    ) (    )  (    )

                            

          ̅̅ ̅̅ ̅       ̅̅ ̅̅ ̅   
                     
                
          

       
 

    

where    denotes all decision variables (control variables) in the process, including mono-

mer and initiator feeding rate (     )  present in Stage I, and crosslinking 

temperature(  , ), crosslinking duration (       ), crosslinking initiator mixture concentra-

tion (  
 
               ) presenting in Stage II.        and   ̅̅ ̅̅ ̅    are targeted Gel 

content and PS   ̅̅ ̅̅ ̅ at the end of the process respectively. However, even without consider-

ing the spatial variation, the integrated optimization problem still faces the challenge of 

computational complexity from Stage II. With 15 sectional grids for the representation of PE 

molecular weight distribution, Stage II kinetic model contains 45 nonlinear differential 
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equations. If solved directly with Stage I model together, the increased problem size, stiff-

ness and nonlinearity becomes particularly difficult to handle. 

One alternative approach is model reduction. It is noticed that the control variables in 

Stage II are not time dependent. This suggests a simplified model relationship as a surrogate 

model for the output prediction: 

     (  
     

  ) (7.4) 

where output     are    ̅̅ ̅̅ ̅   and Gel content at the end of Stage II,    
   refers to the Stage II 

control variable,   
   is the initial condition of Stage II, and   is a surrogate model function, 

mapping the controls to the final output.  Function (7.4)  is then used to replace the original 

Stage II model in the optimization problem of (7.3) to alleviate the computational burden. 

This surrogate sub-model imbedded optimization strategy is the approach we will concen-

trate on.   

The next three sub-sections are organized as follows. Section 7.2.2 briefly introduces sur-

rogate modeling techniques and their applications in optimization. In section 7.2.3, a 

suitable surrogate modeling approach, Kriging, is suggested and discussed in more detail. 

An algorithm for Kriging-model-imbedded optimization is developed in section 7.2.4. 

7.2.2 Surrogate Modeling 

Surrogate model, also called response surface, metamodel, emulators, auxiliary models, 

etc., is a low computational burden alternative to the original simulation model.  The surro-

gate model construction involves experimental design, model selection and model fitting. 

There is considerable flexibility in the form of the surrogate model.  The key aspect of this 

approach is that use of a surrogate model trades accuracy for efficiency. Successful surro-
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gate models must be computationally economical while maintaining the desired fidelity. The 

final goals of surrogate modeling could be Validation and Verification (V&V) of the simula-

tion model, sensitivity analysis, and optimization of the simulated system (Kleijnen, 2009). 

The surrogate models can be created through physics-based reduction or mathematical 

reduction. The physics-based reduction approach neglects some of the detail or complexity 

that is modeled in the original simulation. For example, in the Stage I model, the crosslink-

ing effect is assumed to be negligible during polymerization. Hence, crosslinking reactions 

are not considered in the population balance equation, and the number of differential equa-

tions in the model is greatly reduced. On the other hand, the mathematical reduction 

approach does not interpret the physical meaning of the original model.  Surrogate model is 

created by fitting a multidimensional surface function to a set of simulated data points, such 

as low-order polynomials, response surface model (RSM), neural networks (NN), radial ba-

sis functions (RBF), and Kriging modeling etc.  Table 7.1 summarizes basic steps for 

approximating approaches from Simpson (2001). Various surrogate modeling approaches 

are derived from different combinations in each step.   

  Table 7.1 Surrogate modeling procedure 
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Surrogate models play an important role in aerospace engineering, architecture, mechan-

ics and geostatistics for 2D/3D complex shape simulation, design and optimization. 

Surrogate modeling approaches are also shown to be important in general Input-Output ap-

proximation in   (   ) dimension, for engineering design and control. Several researchers 

compared the performance of alternative surrogate models for different problems in terms of 

approximation of the exact functions (Simpson, et al., 2001; Goel, et al., 2008; Peter, et al., 

2008). It is generally believed that the Kriging method is superior in describing non-

quadratic functions compared to general RSMs; and it is also superior in computational effi-

ciency to NN approximation, which incurs a high computational cost for learning (Sakata, et 

al., 2003). For this reason, our focus is put on the Kriging approach.  Optimization algorithm 

with the Kriging surrogate model is studied. 

7.2.3 Kriging: Basics 

Kriging was originally applied to the identification of optimum drilling locations for min-

ing applications and has been applied frequently for 3-D visualization in geostatistical 

applications (Krige, 1951).  While the Kriging approach is still an important methodology in 

geo-study, this mathematical method has gained popularity in many fields involving input-

output modeling.  

Kriging is an interpolation method using inverse distance weighting. It has been used for 

both deterministic simulation and random simulation. Here, we only consider the determin-

istic case, where the same input gives the same output prediction.  The constructed model is 

considered to be exact at the sampling points, and the estimation error increases as it devi-

ates from    sampling points.  Since the Kriging approach does not assume any predefined 

shape in the model reconstruction, it results in a global model with high accuracy, especially, 
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when the RSM model fails to fit the system as quadratic functions. It is also useful that both 

prediction value and its variance can be estimated from Kriging interpolation approach.  A 

brief description of the Kriging approach is provided here. The interested reader can also 

refer to review articles (Barton, 1994; Van, et al., 2004; Kleijnen, 2009). 

The Kriging predictor is represented as (7.5): 

 ( )   (   )   (   ) (7.5) 

 (   ) is a regression problem as (7.7). 

 (   )     (7.6) 

where   is the regression function,     ,  ( )   ( )     ( )-,   is the regression coeffi-

cient.  (   )  is assumed to be a stochastic Gaussian process with expected value zero 

 ( ( ))      and covariance    . (  )  (  )/     (     )    (     ) is a spatial cor-

relation function (SCF), considered in the form of (7.7).  

 (       )   ∏  (     
    

 )

  

   

 (7.7) 

Where    is the number of inputs,    are correlation parameters to be optimized, and   
  , 

  
  are the     components of sample points       respectively. We maximize the likelihood 

of the observed data y generated from input  . The optimal solution of coefficient    and 

variance     are obtained as (7.9). 

   (      )        

   
 

 
(     )    (     )

 (7.8) 

The Kriging predictor is expressed as 
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          (    ) (7.9) 

Where   , (      )    (      )-
 . 

When a function is smooth, the choice of regression function does not affect significantly 

the resulting metamodel fit because  ( ) captures the most significant behavior of the func-

tion (Caballero, et al., 2008). But if we have better prior knowledge of the original model, 

more complex basis functions are recommended, which could better interpreter long range 

effect and improve the convergence of Kriging parameter optimization (Martin, et al., 2004). 

There are many choices of SCF, for example, exponential function, exponential Gaussian 

function, Gaussian function, linear function, spherical function, cubic function, spline func-

tion, etc.  The choice of SCF depends on the behavior of function near the origin, such as 

linearly or parabolic approach to the interpolation point. In general, the correlation function 

of form (7.11) is often a popular selection.  

       (   |  
    

 |
 
) (7.10) 

where    represents the importance of input  . The higher    is, the less correlation input 

  has.    the model smoothness. When    , it is an exponential correlation; when    , 

it is a Gaussian correlation. We prefer to use Gaussian correlation for Kriging for the pur-

pose of optimization, since the model function is continuous and differentiable.  Since the 

Kriging technique optimizes both function and fitting parameters, it is considered to be more 

accurate than the fixed basis simulation. 

Several optimization algorithms are developed based on the Kriging approach for black-

box function and complex model optimization. Davis (2008) showed that a Kriging-RSM 

algorithm is more robust in finding the global optimal for a black-box function, compared 
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with other RSM based algorithms, such as DS-RSM( Direct search RSM  approach), RSM-S, 

(Stand RSM based on local sub-region), RSM-G (Modified RSM based on global  feasible 

region). The Kriging model helps to first locate a near optimal point and then the accuracy 

of the solution is further refined with the RSM model. Examples are shown for 2 to 10 de-

sign variables. The Kriging model is also applied as a meta-model with other rigorous 

models in flow sheet optimization. Caballero et al. (2008) proposed an algorithm for the use 

of the Kriging model in modular flow-sheet optimization.  The Kriging model was re-

evaluated in successive contraction or moving steps.  It is considered to better handle highly 

constrained problems. 

The main challenges of the Kriging model or other surrogate-model-based optimization 

include extension to high dimensionality and validation of solution optimality. For systems 

with many independent variables, there are well known issues of ―curse of dimensionality‖. 

Surrogate models should be capable of approximating the global picture of the original 

model without exhausting the computational power. On the other hand, an accurate optimal 

solution should be retained with the surrogate model.   

To address these challenges, an improved approach for surrogate-model based optimiza-

tion is proposed. The advantages of the approach are due to its ability to: 

 Apply an effective design and sampling technique to improve model robustness. 

 Implement a well-defined termination step to identify a local optimal. 

 Execute a simple refinement step. 
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7.2.4 Optimization with Kriging Metamodel 

Figure 7.4 outlines the framework of surrogate model based optimization. In particular, 

Kriging metamodel is considered. The main steps involved are preparation and optimization; 

each step consists of several sub-steps.  

 

Figure 7.4  Diagram of surrogate model-based optimization framework 

The optimization algorithm is summarized in the following box. Step 0 is the preparation 

step. In this step, the complex objective function or constraints in the original optimization 

problem are identified, and replaced with the surrogate model. Surrogate sub-model is de-

noted as       ( ).  The original objective function is represented as O. The optimization 

problem is formulated as a minimization problem. Steps 1 to 3 successively refine the surro-

gate model and optimized solution until it converges to a local optimal.  
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Algorithm 7.1 :  Conditional refinement of Kriging-model-imbedded optimization solution 

Step 0:  Initialization.  An initial guess      and a Kriging model    of correlation pa-

rameter    , built from initial design *     +.  Set k    . 

Step 1:  Optimization of the reduce problem.  Optimal solution based on     is obtained at 

  . 

Step 2:   Check  for optimality conditions 

Step 2.1:  Compare the output of Kriging model. If  |    (  )     (  )|     is sat-

isfied, go to step 2.2. Otherwise, go to Step 3.  

Step 2.2: Check objective value at perturbed solutions. If O (     )     O (  ) 

holds, local optimum of original problem is found. Otherwise, go to step 3. 

Step 3:  Update Kriging model.  Set      *     +,       *     
   +.  

If *     |  
 
     

 
|      *     +     + ,      is evaluated at   . Otherwise, re-

estimate Kriging parameters. New model      is obtained at     . Increase   by one and go 

to Step 1. 

The procedure of each step is described next in detail. 

 Step 0. Preparation for optimization 

1: Problem formulation 

The first step is to formulate the optimization problem in its original form, identifying which 

part of the model can be replaced with the Input-Output function.  The surrogate model can 

be used for the objective function directly, or for part of the constraints, based on the source 

of complexity and computational cost. This step forms a basis for the rest of the steps. Equa-

tion (7.11) shows an example where part of the model constraints (model of   ) can be 

approximated by a surrogate model. 
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    (     )

     {

   (   )

 (   )   

 (   )   

 (7.11) 

where   is the independent variable, y is dependent variable,   is model parameter,    and   

are equality and inequality constraints accordingly. In this case,   is computed through a 

complex function   that is difficult to solve in the optimization problem. Inexpensive surro-

gate models    (   ) will be generated in the design space of   to replace the original 

model.   

2: Initial Kriging estimation 

The next step is to build an initial Kriging model    ( ) in place of the original model 

in problem Error! Reference source not found..  Computational cost reduction in surro-

gate modeling and prediction accuracy improvement for the fitted model which are two 

important but contradictory issues need to be balanced in this step. 

a. Variable screening 

For problems rooted in geometric applications, independent variables are typically spatial 

dimensions. Variable screening is generally not necessary. However, when the surrogate 

model is applied for a general type function reduction with relatively large degrees of free-

dom, variable screening should be an important step to be taken into account. Effective 

variable screening strategy helps to reduce the cost in model evaluation while retaining satis-

fied accuracy. Only variables of certain significance should be considered in the design 

space, since inclusion of weak effect or linearly dependent variables significantly increase 

the computational cost and prediction variance as well. Therefore, this is a step where par-

ticular emphasis should be placed first.  
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Variable screening is an issue associated with sensitivity analysis. However, sophisticated 

sensitivity studies generally require ample coverage of the entire space, where variable 

screening is taken afterwards. In contrast, for the purpose of optimization, the algorithm 

seeks for a surrogate model to quickly locate a near optimal point, where more local proper-

ties could be explored. Hence, construction of surrogate models for optimization is 

considered to be different from building ones for sensitivity analysis.  The step taken for 

variable screening in optimization is considered in the following ways.  The discussion fo-

cuses on Gaussian correlation function. Most conclusions are applicable to other correlation 

functions. 

(1) Model observation. Prior knowledge of the original model is helpful in defining the 

model structure. If there is access to the computer simulation model, primary analysis 

on linearly dependence and separability should be investigated.  

(2) Correlation parameter analysis. In principle,    is an indicator of the importance of 

input correlations.  Therefore,     is first examined based on the initial Kriging model, 

which is built from a relatively small number of design points. Two rules are applied 

to reduce the dimension of the Kriging model: (a) a small ratio of  
    

    
 ; (b) to avoid 

  reaching either the upper bound or lower bound.  One observation of the Kriging 

approach is that estimation of   is more difficult for non-isotropic function than for 

isotropic function. When 
    

    
 is above the order of 10, the Kriging model is ill-

conditioned. Numerical difficulty could be a dominant factor in obtaining   value, 

consequently, leading to a poorly formulated model for optimization (refer to 

(Lophaven, et al., 2002b) for a detail discussion for   computation). In particular, if 
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some   goes to its lower bound, it is usually a weak effect or a separable input, since 

its correlation is almost equally strong for all variables in the design space. If   

reaches to its upper bound, some inputs might be separable.  

(3) Mean square error comparison.  When weak effect parameters are contained in the 

Kriging model, estimated mean square error   appears to be insensitive to the sample 

size. This is also due to the small  , which result in difficulties with factorization of  .  

A rule of thumb is that the input dimension for Kriging is suggested to be kept as low as 

possible. If the output is highly nonlinear, the dimension of the model should be even less. 

For a system with multiple outputs (dependent variables), input variables are screened for 

each output, and surrogate models are built accordingly. Usually, no more than 10 inputs 

which have the same order of magnitude   value will be considered as design variables. 

Maintaining the problem in a low dimension helps to improve the model robustness.  

b. Design space definition 

 It is well accepted that the design space should be as tight as possible to reduce the sam-

pling cost. For chemical process models, feasible operation ranges are considered for the 

optimization variables. 

c. Sampling  

An appropriate sampling strategy is a key for efficient computation. Investigation of the 

effect of different sampling methods on surrogate model simulation is carried out by several 

groups. Simpson, et al. (2001) compared five experimental design types: Hammersley se-

quence sampling, Latin hypercube, orthogonal array, random design and uniform design, 

and four approximation model types: Kriging approximation, multivariate adaptive regres-

sion splines, radial basis functions, second-order polynomial response surface for computer 
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experiments design and analysis.  Detailed error analysis reveals that uniform designs pro-

vide good sampling for generating accurate approximations using different sample sizes 

while Kriging models provide accurate approximations that are robust for use with a variety 

of experimental designs and sample sizes. Caballero, et al. (2008) also highlighted some of 

the sampling approaches used in surrogate modeling. Variance reduction techniques, such as 

Latin hypercube sampling (Tang, 1993; Tang, 1994; Beattie, et al., 1997), Hammersley 

(Kalagnanam, et al., 1997) Hammersley (Hammersley, 1960), Halton (Halton, 1960), Sobol 

sequences (Sobol, 1967) are superior to simple Monte Carlo methods in prediction, because 

the uniformity of the sampling is improved in the variance reduction approaches so as to in-

crease the gain of information for the unknown space.  One criterion, so-called discrepancy, 

is introduced as a measure of the uniformity of the scattered sampling points in design space 

for different sampling strategies (Fang, et al., 1996; Santner, et al., 2002). Huang, et al. 

(2009) proposed a quasi-MC approach, the Number-Theoretical net method (NT-net), to fur-

ther improve the discrepancy.  

Many of the comparison results are based on one-shot design in spite of sequential prop-

erties in model building and the optimization loop. In our study, it is found that the Sobol 

sequence is a preferable choice because it allows new sample points to distribute uniformly 

with previous samples. Performance of low discrepancy is well kept during initial model 

fitting and update.  

d. Kriging model construction  

To fit the Kriging model based on the simulation points, computation packages are avail-

able. In particular, MATLAB "DACE" toolbox (Lophaven, et al., 2002) is well developed 

and freely available for Kriging model construction on computer experiments.  
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Selection of regression and correlation functions is problem dependent.  

e. Initial model validation 

To compare surrogate models, generalized mean square cross-validation error is often 

used as a measure of quality of fit (Goel, et al., 2007). A leave-one-out representation can be 

written as Equation (7.12) 

     
 

 
∑(    ̂(  )

 

 

)      (7.12) 

Where  ̂(  )  is the prediction at    using the surrogate model built from all samples but 

(     ). The global cross-validation error is also known as the predicted residual sum of 

squares (PRESS) in polynomial response surface approximation terminology.      is also 

used in Caballero, et al.(2008) for initial Kriging model validation before optimization, but 

no discussion for initial model construction based on     . We thus investigated the po-

tential usage of error (    ̂(  ))
  for design improvement for optimization. However, as 

also pointed out in Goel, et al. (2007), high standard deviation of the surrogate model could 

suggest a high uncertain region, but small standard deviation does not necessarily prove the 

opposite. Thus, a quick check for error evaluation before applying more sophisticated analy-

sis is to refer to the MSE value (  ) , Equation (7.9), predicted from the Kriging model. It is 

found that, the initial Kriging model does not require a small    in order to carry out optimi-

zation. Model refinement in Step 5 can help to improve its accuracy during optimization. 

 Step 1. Surrogate model based optimization 

Once a surrogate meta-model is obtained or updated, it is combined with the remaining 

rigorous model for the integrated optimization. A gradient based optimization algorithm can 
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be able to be applied to obtain a solution efficiently. In our case, the surrogate model is 

solved with other differential equations through a dynamic optimization approach. 

Note that there could be multiple local optima for the nonlinear function. Optimization 

from multiple initial guesses is suggested to explore a global picture. If optimization con-

verges to different local solution, each solution will be further compared. 

 Step 2. Optimal solution validation  

Though there are many discussions about validation of surrogate model simulation, little 

emphasis was put on validation of optimization solution based on surrogate models. 

Kleijnen (2009) pointed out that derivative information which is available from DACE 

should be used for checking the first-order optimality. But when the Kriging model is only 

used as part of the constraints, this conclusion does not apply. Empirical rules are often 

adapted, which could lead to a premature termination before converging to the true optimum.  

In this study, there are two considerations to evaluate the solution. First, whether the so-

lution is accurate according to the original model; second, whether this solution is a local 

optimal point as in the original optimization problem. The validation steps are designed to 

answer these two questions. 

The first question can be easily answered by running a simulation at solution   . If the 

difference in output prediction is smaller than tolerance, |    (  )     (  )|     , a de-

sired accuracy is validated. Otherwise, go the refinement step.  

The second question is more challenging. Biegler, et al. (1985) proved that a necessary 

condition for an appropriate simplified model for optimization is that the gradients of the 

simplified and rigorous models be the same at the optimum. However, in many approaches, 
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this condition is not considered directly. In heuristic approaches (Caballero, et al., 2008; 

Davis, 2008), the algorithm is considered to converge if the optimal solution is the same in 

two successive major iterations. The authors expected the gradients to match the ―true gradi-

ents‖ by excluding the possibility of the same but mismatched gradients in the iteration, 

assuming the Kriging model matches well with the local function.  However, this conclusion 

may not be valid. Optimization could be terminated prematurely by taking the accuracy of 

the metamodel for granted.  A systematic approach for optimality validation is required to 

address this problem. In this study, the first-order optimality conditions are directly taken 

into account by examining the gradient at the solution point. Therefore, this approach guar-

antees a local optimum if the condition is satisfied. 

A simple approach is considered in the implementation. Simulations are run at perturbed 

solutions. If the relationship (7.13) holds (for minimization problem),    is validated to be a 

local optimum in the original model. 

 O (     )     O (  ) (7.13) 

Otherwise, if the current solution fails to satisfy condition (7.13), continued iterations are 

required. We turn to Step 3 for surrogate model refinement. 

 Step 3. Surrogate model refinement 

Model refinement is an important step for optimization. In the case that |    (  )   

  (  )|    , it indicates a noticeable mismatch  between the surrogate model and the orig-

inal model. It can result from two possibilities. In an optimistic scenario, the Kriging model 

is able to locate a near-optimal point, but desired solution accuracy must be obtained by in-

creasing the model local fidelity. Or, it might be the case that the initial surrogate model 



7.3  Results and Discussion 

 

Chapter 7  Operation Policy Optimization 142 

fails to represent a correct contour in the space. Thus, the current solution stays far away 

from the true optimum. The surrogate model should be reconstructed to provide more in-

formation accordingly.  

There are many possible strategies to update the surrogate model. We observe that by 

gradually adding new optimal points to the previous design following a combination of local 

and global strategy, an optimal solution can be found with few model simulations.  

Local strategy refers to addition of the new optimal solution to the design without re-

estimating Kriging parameters. It is applied when the new solution is close to the previous 

optimum, i.e. *   
 
 |  

 
     

 
|      *     +     + , where   is a minimum dis-

tance between design samples in one dimension.  It is based on the observation that a small 

distance between successive optimal points could result in a near optimal solution.  Re-

estimation of the Kriging parameter is not necessary in this case. Otherwise, a global strate-

gy is performed, i.e. to re-fit Kriging parameters with the augmented points. Since the 

prediction error could result from high uncertainty in this un-sampled region, a re-estimated 

parameter could help to reduce the global prediction error. More results for comparison are 

shown in examples, demonstrating superior performance in computational cost. 

7.3 Results and Discussion 

7.3.1 An Illustrative Example 

A modified Six-hump Camel Back function is used as an illustrative example. A minimiza-

tion problem is considered as (7.15). 
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     (       
  

  
 

 
)   

       (      
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 (7.14) 

The original model only contains variables of      . Here,   ,   ,    are augmented to the 

objective function in order to illustrate the variable screening step.  

(1)  Preparation for optimization 

Assuming the original function is unknown, variable screening is carried out based on an 

initial correlation function analysis before getting into optimization. A 30 point Sobol se-

quence is generated from 5 dimensions after dropping the previous 2500 points. The initial 

Kriging model is built based on a constant regression function and Gaussian correlation 

function. Initial guess    ,              - ; lower and upper bound are    

,                   -    ,               - The initial Kriging model gives    

,                            -              Increasing the sample size to 50 points, 

the same    is reached, but    only reduces to      . From the examination of the solution 

of        
  and   

  are at the lower bound;   
  is close to lower bound. It suggests that an ill-

conditioned Kriging model is formed in this design space.  In order to separate or remove 

variables from the design space, one-dimensional models are built for          accordingly, 

maintaining the rest of variables fixed. In this case, fixed variables are set to 1.  10 points are 

sampled for each input. Figure 7.5 shows the scatter plot of each result.  
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Figure 7.5   Fitting of one dimensional model for variable screening 

A low order polynomial is used to fit the one dimensional model. In this case, a linear 

function is sufficient. From the result of reduced regression coefficients,         

          . Thus,   ,    are identified as weak parameters, and    is considered to be 

separable.  The design space is consequently reduced to      . The original model is con-

sidered as in the form of (7.16), where        are set to 0 in this case (as the minimum in 

Figure 7.5). 

            
        (           )

                          

       

       

 (7.15) 

  is considered as the output in Kriging. Reduced Initial Kriging model is fitted based on 15 

design points in 2 dimensions from SOBOL sequence after dropping the first 1400 points, as 

shown in Figure 7.6 (a).  The regression constant is           , and correlation function 

is Gaussian,    ,             -. 
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Figure 7.6 An initial design and Kriging model 

(2) Surrogate model based optimization 

The optimization problem is solved with ―fmincon‖ in MATLAB. Desired accuracy of the 

final solution is set to be        (        ), prediction accuracy is set to be        

(        ), and the minimum distance is       . The actual value of   is shown in 

Figure 7.7. It has 2 global optima ( ,  
    

 -  [0.0898,-0.7126], [-0.0898, 0.7126]), and 

 (  
    

 )          .  Thus, the minimum of (7.15) locates at [0.0898,-0.7126, 0, 0, -1], [-

0.0898, 0.7126, 0, 0, -1], and  (  )             The function is highly nonlinear in the 

feasible region.   

 

Figure 7.7  Surface and contour plot of six hump function in 2 dimensions 
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Table 7.2 summarized iteration results based on Algorithm 7.1. Figure 7.7 marks new so-

lutions in the original design space. With only 5 additional points, the problem converged to 

the same optimal point as the original function with satisfactory accuracy.  Another global 

optimum can be found with different initial guess in ―fmincon‖. 

Table 7.2 Summary of iterations of problem (7.16) 

      (  )     (  )   

0 

1 

2 

3 

4 

5 

optimum 

0             0 

   -0.1203    0.7417 

   -0.1192    0.7470 

   -0.1436    0.7385 

   -0.0984    0.7006 

   -0.0858    0.7128 

   -0.0902    0.7126 

         0 

   -1.0198 

   -1.0218 

   -1.0259 

   -1.0337 

   -1.0322 

   -1.0316 

         0 

   -1.0217 

   -1.0192 

   -1.0162 

   -1.0301 

   -1.0316 

   -1.0316 

         0 

   -3.0217 

   -3.0192 

   -3.0162 

   -3.0301 

   -3.0316 

   -3.0316 

  

Figure 7.8 Solution iterations and Kriging prediction at convergence 

It is interesting to compare the effect of different refinement strategies on solution con-

vergence.  Table 7.3 lists some of the results through three refinement approaches obtained 

from different initial guesses. It shows that it is possible to find an optimum without re-

estimating the Kriging model, however more iterations are required for optimization. There-

fore, the total number of simulations is larger. On the other hand, conditional refinement and 
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direct refinement approaches give similar results in this case. Some extra iterations in the 

direct approach are due to movement of optimum solutions between two global optima. 

Conditional refinement thus provides certain flexibility to switch rules depending on the dis-

tribution of the computational cost and condition of the Kriging model. The proposed 

approach is able to locate an optimum with few iterations even if the initial Kriging model is 

small. 

Table 7.3 Comparison of different refinement strategies 

 Conditional refinement Fixed correlation Direct refinement 

   [1,1] [0,0] [0,1] [1,1] [0,0] [0,1] [1,1] [0,0] [0,1] 

# Iter,        6 8 8 15 16 11 6 9 9 

# Iter,        4 5 5 10 11 4 6 4 4 

# Iter,        6 5 6 7 9 4 6 5 6 

To demonstrate the importance of valid termination criteria, solutions based on the heuris-

tic termination rule and the optimality validation rule are compared. Here,           , 

which is the same as   . It is found that when a fixed Kriging model is used for optimization, 

the heuristic rule could terminate at a non-optimum point, or points without sufficient accu-

racy. Introducing the test for optimality ensures the solution quality. Table 7.4 shows some 

examples of the comparison, where  ̂  is the solution indicated at termination. Initial 

Kriging model is based on 25 Sobol points. Compared to the true optimum, [0.0898,-0.7126], 

the heuristic rule terminates the optimization problem incorrectly.  

     In next section, we would like to apply this algorithm to the complex integrated model to 

find an improved operation policy.  
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Table 7.4 Comparison of different termination criteria 

 Termination criteria 

      |       |        Optimality validation 

   1.9         -1.0 -1.8          1.0 1.9         -1.0 -1.8          1.0 

Iterations 

 

0.0952   -0.6389 

0.1315   -0.8163 

1.1940   -0.9179 

 

-0.1378    0.5810 

-0.1072    0.7930 

-0.1705    0.7569 

-0.1386    0.7296 

-0.0950    0.7059 

 

0.0952   -0.6389 

0.1315   -0.8163 

0.0864   -0.7084 

0.0514   -0.7198 

0.0897   -0.7099 

-0.0858    0.7500 

-0.1378    0.5810 

-0.1072    0.7930 

-0.1705    0.7569 

-0.1191    0.7195 

-0.0970    0.7084 

-0.0941    0.7088 

 ̂  1.1983   -0.9216 -0.0978    0.7063 0.0904   -0.7117 -0.0899    0.7128 

7.3.2 Optimization with Stage II Surrogate Model  

The original optimization problem for an integrated process is described in Error! Ref-

erence source not found.. Six potential input variables in the Stage II surrogate model are: 

Temperature, (   ) , Stage II duration (        ), two initiator mixture concentration 

(  
    

          ), conversion ratio ( ̅ , %), and    ̅̅ ̅̅ ̅  at the beginning of the stage II 

(   ̅̅ ̅̅ ̅    ,        
  ).   ,        

 
  are control variable in Stage II only.   ̅  and   ̅̅ ̅̅ ̅    are 

connection variables to the Stage I model. Optimization of the connection variables would 

affect the solution of both stages. The two outputs considered are:        (Gel content at the 

end of Stage II) and   ̅̅ ̅̅ ̅    (PS   ̅̅ ̅̅ ̅ at the end of Stage II). Kriging models are fitted for 

them separately.  

Following the proposed algorithm, 6 input variables were screened for the outputs of 

       and   ̅̅ ̅̅ ̅    . Based on the results of Figure 5.8 and Figure 5.9, a first order polyno-

mial is used as the regression function, and the Gaussian function is assumed for the 

correlation function. The range of input variables is set from 50% to 150% compared to its 

nominal value. Simulations are taken at 30 initial design points. It is interesting to note that 

correlation parameters reach their upper bound in the initial Kriging model for Gel content, 
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suggesting that all inputs are separable. In addition,    ̅̅ ̅̅ ̅     has little impact in the regres-

sion function, suggesting it may be removed from the model.  Linear regression analysis 

further validates this conclusion. Therefore, the surrogate model for Gel content becomes a 

linear function of             and  ̅ . The model of   ̅̅ ̅̅ ̅    presents higher nonlinearity. 

Linear regression is no longer sufficient. Input   appears to be separable. Therefore, the 

Kriging model for   ̅̅ ̅̅ ̅    is built based on other five inputs. The integrated optimization 

problem is formulated as follows: 

         
                 

                           

  *          (  
  )     ̅̅ ̅̅ ̅       (  

  ) + 

                
     ̅̅ ̅̅ ̅      ̅̅ ̅̅ ̅   
              
  
       

 

   (7.16) 

Notice that     is one of the inputs, and also present in the objective function. The optimi-

zation problem will push     to its lower bound, if all the constraints could still be satisfied. 

It turns out to be the case in this problem. 

A nice feature of the Stage II surrogate model is that the function is close to linear in the 

design space. After the initial optimal solution is obtained for the integrated process, only 

one refinement step is sufficient to satisfy the optimality condition. An example of the solu-

tion is shown in Figure 7.9. The new optimal solution reduces the process time by 23.4% 

over the original recipe. 

Optimization based on surrogate sub-model provides a cost effective way to solve this 

large complex problem. 
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Figure 7.9 Optimal monomer feeding policy based on the integrated model 

7.3.3  Sensitivity study  

It is also interesting to know how sensitive the optimal solution is to the change of quality 

constraints. Therefore, a series optimization is run and compared. Figure 7.10 shows the 

change of monomer feeding rate to the change of final product properties. 

 

 

 

 

Figure 7.10 Sensitivity study for the optimal policy 

In Figure 7.10, solutions A, B, C and D correspond to different final quality criteria 

(         ̅̅ ̅̅ ̅   )  Denote nominal quality values as          ̅̅ ̅̅ ̅    .  Selected values for the 
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four cases are listed in the notation table above. It is found that optimal monomer feeding 

rates are not sensitive to the final Gel content constraint, but to PS Mw quality constraints. 

In general, higher PS Mw requires slower monomer feeding rate, and lower initiator concen-

tration. In general higher quality constraints result in longer processing time. Gel content 

and PS Mw quality have different effects on the optimal feeding profile. The constraint of 

PS   ̅̅ ̅̅ ̅  dominates the Stage II optimization solution.  

Finally, it should be noted that the prediction is based on constant initiator efficiency. In 

practice, initiator efficiency would change from run-to-run. In addition, more information is 

needed to understand the reactivity of different initiator radicals. Therefore, there is consid-

erable uncertainty of the prediction due to possible deviations from the simplified 

assumptions. For example, if the initiator efficiency changes from 0.3 to 0.7,        will 

increase by 40%, and PS   ̅̅ ̅̅ ̅    decreases by 12%. 

Optimal solutions as shown in Figure 7.9 were implemented in the pilot plant experi-

ments. Preliminary analytical analyses show good agreement with the model prediction. 

With the assistance of model-based optimization, more aggressive operation policies are ob-

tained, and shown to be valid and economical in production.  

7.4 Summary 

Semi-batch feeding is the main time-limiting step in the SIPN process. Model-based op-

timization is carried out to explore an optimal operation policy which retains satisfactory 

polymer properties with minimum process duration. A special pattern of optimal feeding 

policy is revealed through dynamic optimization combined with process knowledge. New 

profile representation is applied to reformulate the SIPN singular control problem. Further-
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more, Kriging, a surrogate modeling approach is introduced to alleviate the difficulty in op-

timizing the integrated multi-stage process model. The stiff DAE sub-model is replaced by 

low order Kriging models. Computational strategy for dynamic optimization with surrogate 

sub-models is developed. The obtained optimal feeding policies are implemented in the pilot 

plant, and show significant efficiency improvement compared to the original recipe.  
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Chapter 8  

Multi-Scenario Optimization 

Improvement of model-based applications is an iterative process. For example, the accuracy 

of the estimated parameter should be improved when additional process information be-

comes available. On the other hand, the effectiveness of the optimal strategy could be 

improved if the uncertainty of the model parameters is taken into account.  Consequently, 

the need for information expansion leads to formulating multi-scenario optimization prob-

lems, which are large-scale yet structured. A two-stage decomposition algorithm is 

developed in this chapter, focusing on parameter estimation problem from multiple data sets. 

The new algorithm shows significant improvements on robustness for ill-conditioned prob-

lems, which is particularly usefully for the application of polymerization process models. 

8.1 Introduction of Multi-scenario Optimization 

Multi-scenario optimization is an important class of optimization problems, which are espe-

cially useful in process design, parameter estimation and optimization under uncertainty. A 

general formulation of the multi-scenario problem can be written in the form of (8.1): 

   ∑   (  
    )

  

   
  (   )

    
  (  

    )   

  (  
    )   

}   *      +

 (8.1) 
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where    is the number of scenarios, and the subscript   (   *      + ) denotes an indi-

vidual scenario in the set. In particular, one ―scenario‖ refers to a complete model 

representation, which consists of a set of equality constraints (  ) and inequality constraints 

(  ).  For dynamic problems,   and   are a discrete representation of original DAE or 

PDAE models. The important relationship between each scenario is through the global vari-

ables,   , which are present in all the scenarios,  while the differences among scenarios are 

the local variables,   , which can vary from scenario to scenario. The objective function of 

the multi-scenario optimization is typically expressed in a summation form, where    repre-

sents functions dependent on both local and global variables,    represents functions that 

only depend on global variables. It is a convenient formulation when a common decision is 

to be found over a set of different conditions.   

For optimization of a few small-size scenarios, problem (8.1) might be solved directly 

through general purpose NLP algorithms. However, for a large-scale problem with a realis-

tic size of scenarios, the size of multi-scenario optimization can easily grow intractably. For 

example, dynamic models lead to large-scale single scenarios after discretization, and a 

large number of scenarios are required as a discrete representation of multivariable distribu-

tion. In such cases, even a few scenarios could exceed current solution limits through a 

direct solution approach. This is due to numerical instability and the limitations of computa-

tional power.  

Therefore, a decomposition method is proposed to address this problem. The solution of 

the multi-scenario problem is divided into an outer problem and an inner problem. While 

efficient algorithms can be applied at each stage by taking advantage of its particular struc-
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ture, the robustness of the solution is improved by the decomposition as well. This technique 

enables to solve complex multi-scenario problems with up-to-date computational technology. 

We focus on multi-set parameter estimation problem to illustrate the decomposition algo-

rithm. The framework can be extended to the problem of Optimization Under Uncertainty 

(OUU). 

8.2 Parameter Estimation with Multiple Data Sets 

One important class of the multi-scenario optimization problem is parameter estimation 

from multiple data sets. It is in the form of (8.2) when the sum of least squares formulation 

is applied.  

   
        

∑ (     
 )   (     

 )
  

   

    

     (     
    )

  (     
    )   

  (     
    )   

}   *      +

 (8.2)  

where       are the parameters to be estimated, which is further classified into global 

parameters,   , and local parameters,   
 .    correspond to local variables in     scenario.  

     
      are dependent variables and corresponding measurements in the     scenario. 

         are equalities and inequalities define the sub-model of     scenario, which can be 

the same or different functions.    is the number of data set, i.e. scenario, in parameter es-

timation. 

In principle, the solution algorithm for a single scenario optimization problem can be ap-

plied in the same way as the multi-scenario problem. However, there are several cases when 

customized algorithm is required to handle the increased dimensionality and complexity of 
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the problem. For example, the error-in-variables-measured (EVM) formulation usually leads 

to a large-scale problem for every single scenario, as shown in Equation (8.3), considering 

     
           

 (    )    . 
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 ∑ (    
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  (     

 )
  

   

    

     (        
    )

  (        
    )     

  (        
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}      *     +

 (8.3) 

Where   is error in  , and   is error in y,    and     are the covariance for   and   respec-

tively. The EVM function accounts for errors in all the measured variables, both dependent 

and independent variables, implementing simultaneous parameter estimation and data rec-

onciliation. Though there are clear advantages of EVM consideration, the size of the 

optimization problem could soon become too large to handle. Furthermore, it is often the 

case that data are collected from a large number of scenarios for a dynamic system, resulting 

in a structured large-scale parameter estimation problem. As model-based optimization is 

being applied for more and more realistic industrial problems, the issues of increasing prob-

lem size and complexity attract considerable attention. The following section introduces two 

main classes of solution algorithms which take advantage of the multi-scenario structure in 

parameter estimation.  

8.2.1 NLP Solution Algorithm 

The multi-scenario formulation leads to a nested NLP problem. Several NLP algorithms are 

developed for efficiently handling the nested structure through decomposition. The decom-

position strategy can be generally divided into two groups: sequential approach with 

external decomposition and simultaneous approach with internal decomposition. The gain in 
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computational efficiency through parallel computing has also been a strong motivation for 

the decomposition algorithm. Problem level decomposition might conform to the existing 

numerical techniques to a new architecture, while algebraic level decomposition often intro-

duces new paradigms in devising solution strategies. The following sections review these 

two types of decomposition algorithm in more detail. 

8.2.1.1 Sequential Approach 

Sequential approaches are explicit decomposition strategies. The needs of developing the 

decomposition strategy first arise from the EVM formulation with multiple data sets. Rod, et 

al. (1980) developed an iterative algorithm, which originates from the fact that the model 

parameters (  ) are common to the set of experiments, while the incidental parameters 

(     ) are specific to individual experiments. The routine searches for the minimum of the 

maximum likelihood objective function in an iterative manner. Optimization of the model 

parameter (  ) is solved in inner loop 1, given incidental parameters, and then optimization 

of incidental parameters is performed in the loop 2, given the model parameters. An outer 

loop 3 checks the effect of the changes of the incidental parameters on    and return to loop 

1 until the convergence of all parameters is reached.  Reilly et al. (1981) studied a Bayesian 

formulation of EVM problem through a nested approach. For a given set of parameters, the 

constraint equations are linearized or successively linearized at measured variables. A La-

grangian method is used for optimization. Explicit calculation of the reconciled 

measurements is not necessary. Kim et al. (1990) further improved the robustness of the al-

gorithm by a two-stage approach, where a set of decoupled NLPs instead of the linearized 

model is solved in the inner problem for independent and state variables. Dovi et al. (1989) 

proposed a constrained variation approach to decouple the problem. All the state and local 
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parameters (   and   ) are eliminated by model simulation and optimality conditions. The 

optimization problem is carried out in terms of linking parameters    only.  The problem 

size is greatly reduced and selection of NLP algorithms becomes more flexible. However, 

the price to pay is that an increased amount of information is required for the first and se-

cond derivatives of the equations that describe the model. Faber et al. (2003) extended the 

work of Dovi et al. (1989) and Kim et al. (1990) by presenting a nested three-stage algo-

rithm. The upper stage is an NLP with only the parameters (  ) to be estimated. The middle 

stage consists of multiple sub-NLPs in which the independent variables of each data set are 

treated as optimization variables.  In the lower stage the dependent variables and their sensi-

tivities are computed through a simulation step. In this approach, only Jacobians of the 

model equations are required at the lower stage by simulation.  User supplied derivative in-

formation is not required for its implementation. A schematic representation of (Faber, et al., 

2003) is shown in Figure 8.1. 

 

Figure 8.1 A framework of the multi-stage sequential approach 
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The main advantages of the sequential approach include that few mathematical manipula-

tions are required and implementation is easy to carry out with standard NLP software. 

However, the limitation of current sequential approaches is the computational difficulty and 

efficiency in evaluating Jacobian and Hessian information from the decomposed problem. 

Hence, the sequential approach often suffers limited scaling properties. 

8.2.1.2 Simultaneous Approach 

In contrast, another class of solution strategy is the simultaneous approach with internal de-

composition. Exploring a particular matrix structure in general purpose algorithms is of 

great interest for NLP problem, because of its potential for fast parallel computing.  

Lootsma and Ragsdell (1987) reviewed hierarchical problems with linking variables in 

nonlinear optimization, and commented on the promising approaches for solving large-scale 

well-structured constrained problems. Tjoa and Biegler (1991, 1992) developed a reduced 

Hessian SQP method for solving the EVM problem. By introducing new variables and addi-

tional constraints to each data set, a range and null space decomposition was applied.  The 

approach was shown to be more efficient than general purpose NLP solver MINOS 5.2 and 

contemporaneous RND SQP. An internal decomposition algorithm was further improved as 

the development of parallelization of linear algebra. The Interior-Point Algorithm, in partic-

ular, which is mainly limited by the efficiency of linear algebra, significantly benefits from 

the parallel implementation of linear algebra kernels (Migdalas, et al., 2003). Gondzio (2004) 

developed full-space approaches for linear and quadratic programming problems by exploit-

ing nested block-structure. The idea for block structure decomposition is then extended to 

nonlinear nonconvex problems. Zavala et al. (2008) developed an interior-point method with 

Schur complement decomposition strategy implemented in parallel computing architectures 
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for parameter estimation of an industrial polymerization model. An NLP solver, SCHUR-

IPOPT, which is a modification of standard IPOPT, is designed for large-scale general non-

linear optimization problems.  Successful applications of SCHUR-IPOPT algorithm have 

been reported for industrial-scale problems. To show the convergence properties of internal 

decomposition, the algorithm in Zavala et al. (2008) is outlined here. 

The dynamic multi-scenario problem is first translated into a large-scale, general NLP 

problem through a full discretization approach as discussed in Chapter 5. The problem can 

be written as: 

   
    

∑   (    )
  

   

  (  )   
      

      ̅    

}   *      +

 (8.4) 

where    contains all the parameters and variables corresponding to the discretization of the 

DAEs  for a particular scenario     is a linking variables vector (e.g. global parameter   ). 

   and  ̅  extract and assign linking components. Inequalities in (8.4) are added to the ob-

jective function to formulate a barrier function in IPOPT. Then, a primal-dual approach is 

applied to solve the Karush-Kuhn-Tucker(KKT) condition of the barrier function. As a re-

sult, one block bordered diagonal structure is generated at the iteration: 
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The key step is to solve (8.3) in parallel by computing    through forming Schur com-

plement. 

,    ∑   
 (  )

    -  
  

   
    ∑   

 (  )
    

  

   
 (8.6) 

Once    is known, the remaining variables can be found by solving the following: 

                        (8.7) 

The internal decomposition algorithm is well-suited for well-conditioned systems, i.e. 

KKT matrix has the correct inertia, and      and    are   or close to   during iteration.  In 

principle, this parallel computing framework enjoys a good complexity property, and is ca-

pable of handling a large number of scenarios. Zavala et al. (2008) argued that the advantage 

of this decomposition strategy is that it retains the same convergence properties as the origi-

nal IPOPT, since the core NLP algorithm is not altered in the decomposition.  However, 

excessive computation cost and poor convergence behavior are observed for large-scale non-

linear and ill-conditioned systems. Increasing the number of scenarios in this case often 

leads to failed solutions even with the original IPOPT. The robustness of the decomposition 

is challenged for highly nonlinear and ill-conditioned problems. When examining the solu-

tion output from IPOPT, it is found that this behavior is mainly attributed to the difficulties 

in the inertia correction step, which occurs in the matrix factorization. Matrix inertia is used 
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to verify the optimality conditions, and should be kept constant throughout the iteration.  

Nonzero    and    values are included to temporally modify the singularity and non-descent 

conditions in order to return a proper KKT inertia. Without regularization, a successful step 

   is easy to obtain at each iteration. However, when the full KKT matrix or    is ill-

conditioned, determination of appropriate    and    values becomes particularly difficult for 

this large matrix.  

8.2.2 A Two-stage Decomposition Algorithm 

In this work, we present a new two-stage decomposition algorithm for large-scale multi-

scenario nonlinear problems. It is a hybrid algorithm extended from both sequential and 

simultaneous approaches. It aims to combine the advantages of easy manipulation as in the 

sequential approach and high efficiency for large degrees of freedom as in the simultaneous 

approach. The ill-conditioned system can be handled more robustly in this approach.  The 

optimization variables are divided into two levels, as global variable and local variable. In 

the outer problem, there are only global variables (  ), namely, variables sharing the same 

value for all the scenarios. The dimension of the optimization problem (  ) is generally 

small. In the inner problem, the degrees of freedom are local variables (  ), which are vari-

ables allowed to vary in different scenario. The dimension of separate variables (   ) and 

stage variables in a single scenario problem can be large.  

Figure 8.2 illustrates the basic idea of the two-stage approach based on formulation (8.2). 

Extension to the EVM problem is also straightforward, as long as the objective function ( ) 

can be decoupled as a function of inner problem objective functions from each scenario (  ). 

Here,  ( )
  represents global parameters at iteration  .     is local variable in     scenario.  
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   and    represent constraints in scenario  . The objective function gradient and Hessian 

(optional) with respect to   , as       and  
  
   , are obtained from the inner stage, and 

passed to the outer stage for optimization. 

 

Figure 8.2 A framework of two-stage decomposition approach for multi-scenario optimization 

The algorithm is outlined as follows: 

 Step 1. Identify global parameters,   , in the multi-scenario problem. Set the itera-

tion counter for the outer NLP as    . Initialize all variables in the optimization. 

 Step 2. At each iteration  : 

o Solve the inner optimization problem at fixed linking parameter  ( )
 . In this 

case, inner problem, sum of least squares or EVM is solved.  

o Evaluate objective function, gradient and Hessian (optional) with respect to 

  ( )
   at inner optimization solution. 

 Step 3. Stop, if optimality condition of the outer NLP is satisfied at  ( )
 . Otherwise, 

call a constrained NLP solver to update   ( )
  .       . Return to Step 2.  
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The main difference of this approach with previous sequential approaches lies in Step 2, 

which is capable of handling the large-scale single-scenario problem efficiently, as well as 

obtaining the gradient and Hessian information cheaply. A simulation step is no longer nec-

essary. Compared with the simultaneous approach, updating   ( )
  is equivalent to solve    

in Equation (8.5) after converging each block structure of   . Since the ill-conditioned 

properties are handled in the inner problem, the outer NLP is generally well-conditioned 

in   . Therefore, more robust convergence properties are expected. The implementation de-

tails are presented in the following. 

8.2.2.1 Sensitivity Analysis of Inner Optimization Problem 

One of the key components in this two-stage algorithm is an efficient derivative evaluation 

approach at the solution of the inner optimization problem.  In this work, exact first order 

information is computed by taking advantage of NLP sensitivity analysis.  A package named 

―sIPOPT‖ (Pirnay, et al., 2011) (previously named ―AsNMPC‖) is adapted for this usage.  

―sIPOPT‖ is an add-on for the standard IPOPT. It was designed to facilitate the imple-

mentation of the advance-step NMPC algorithm developed by Zavala (2008).  It is 

essentially a sensitivity analysis step for the NLP problem. The value of state variables at a 

perturbed parameter value is estimated by a first order Taylor expansion, where the first de-

rivative of state variable with respect to parameter is obtained from KKT matrix at the 

current solution point. For its usage in the two-stage algorithm, sensitivity of the inner ob-

jective function with respect to the global parameter, 
  

  ( )
 , is the gradient information 

required for the outer optimization problem. It can be retrieved readily through the NLP sen-
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sitivity.  Here, the solution strategy of ―sIPOPT‖ is briefly described. Interested readers can 

refer to (Zavala, et al., 2008) for more details. 

―sIPOPT‖ computes a perturbed NLP solution in addition of the nominal solution based 

on KKT matrix at optima. For example, a general NLP problem is written as (8.8), 

                  
    
 

 (   )

     (   )   

   

 (8.8) 

where   is a parameter vector with a fixed value,   is the variable vector. Denote the optimal 

solution of (8.7) at   as   ( ). As-NMPC computes an additional solution   ̂ (  ) after the 

convergence of nominal problem, which is an approximated solution of (8.7) at user speci-

fied   .   ̂ (  )  has a first order accuracy compared to the true value of   (  ). It is shown 

to be particularly useful for fast online updates of state variables when the perturbation of 

the system parameter is small. For our purpose of computation, the first derivative of   with 

respect to   at the optimal point, 
  

  
| , is computed through (8.9). 

                  
  

  
|  

 ̂ (   )     (  )

    
  (8.9) 

  

  
|  obtained above is an exact first derivative, if strict complementarity, LICQ and SSOC 

hold. Since our interest is to recover  
  

  
| , not to accurately estimate the state of  ̂ (  ) , we 

don’t require    to be in the neighborhood of  . Therefore,    is set to be (   )  regardless 

of the nominal value of  .  (8.9) is reduced to (8.10). 

                  
  

  
|   ̂  (   )    (  )  (8.9) 
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The reason for allowance of an arbitrary choice of    is because  
  

  
|  is solved prior to 

estimating  ̂ (  )  in the sIPOPT solver.  The underlining mechanism for computing  
  

  
|  is 

equivalent to evaluating the exact first derivative at the optimum. The derivation is summa-

rized below. 

The Lagrange function of problem (8.8) is defined as (8.11).  

                  
   ( )          (8.11) 

where   and   are Lagrange multipliers for bounds and the equality constraints. At the opti-

mal point, the KKT condition is satisfied. We have   *     +   . Denoting   ,     -, we 

have        . Considering   is a function of model parameter   and  , Equation (8.12) 

holds at the nominal parameter value   at the optimal solution   . 

 (  ( )  )    (8.12) 

Applying the implicit function theorem to (8.12), Equation (8.13) is obtained. 

  ( )
   

  
  

  (  ( )  )

  
 (8.13) 

where   ( ) is the KKT matrix of the primal-dual system at   ( ). A nice property of (8.13) 

is that   ( ) is already factorized at the optimal solution. Solving this linear system with 

different right hand sides only costs a single back-solve. Matrix factorization, which is the 

most expensive step in the interior point algorithm, is not required. In the sIPOPT calcula-

tion, the right hand side of (8.13) is substituted by  
  (  ( )   )

  
  in order to compute 

   

  
. If 

the solution satisfies strict complementarity, LICQ and SSOC at the nominal   value,    is 

at some neighboring region of  , then the activity set of inequality equations does not 
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change at   , and equation (8.13) would be first-order accurate in terms of state estimation. 

 ̂ (  ) is the estimated solution at   , which is reported as output in sIPOPT.  

 ̂(  )    ( )  
   

  
(    ) (8.14) 

Therefore, Equation (8.9) can be used to recover 
   

  
 based on sIPOPT solution. This feature 

enables to tackling the gradient evaluation problem in the conjugation of the multi-stage al-

gorithm efficiently. The global variable,   , though fixed in the inner optimization problem, 

is defined as an artificial variable for sIPOPT processing. Thus, solution of the objective 

function at a new set of global parameter values can be solved in this manner.  At the end of 

each iteration, the inner optimization problem returns a function value and a gradient vector 

with respect to the linking variables. 

8.2.2.2 NLP Algorithm for Outer Optimization Problem 

In principle, any general NLP solver could be used for the outer optimization problem.  

Nevertheless, the outer problem is a simple bound-constrained problem in the form of  

(8.15), 

                        ( )
                      

 (8.15) 

where,   corresponds to global parameters for all the scenarios. Therefore, the choice of the 

outer NLP solver is considered particularly for the bound-constrained problem, which al-

lows more efficient implementation for this problem structure. Several NLP algorithms are 

available. Here L-BFGS-B (Zhu, et al., 1997) and TRON (Lin, et al., 1999) are used in this 

work, which is briefly described in the following.  
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―L-BFGS-B‖ is a limited-memory quasi-Newton code for bound-constrained optimiza-

tion. At each iteration, a search direction is computed in two steps.  Active variables are first 

identified through a gradient projection approach; then free variables are computed to ap-

proximately minimize a quadratic function. See the details of L-BFGS-B in Byrd et 

al.(1995). Since Hessian is updated through a limited memory BFGS approximation, no 

Hessian information needs to be extracted from the inner optimization problem. The exact 

first derivative, 
   

  ( )
 , is directly provided from the output of the inner optimization solution. 

L-BFGS-B is considered to be efficient for unconstrained optimization.  

―TRON‖ is a trust region Newton method for the solution of large bound-constrained op-

timization problems.  The search direction is computed through a preconditioned conjugate 

gradient method with an incomplete Cholesky factorization. A projected search approach 

keeps the constrained variables in bounds during iterations. TRON is suitable for solving 

large-scale problems for its efficiency of examining feasible sets by generating a small num-

ber of minor iterations.   

Besides the gradient information, the Hessian is required for TRON’s algorithm. Hence, 

an additional routine should be included to evaluate the Hessian from the inner problem. No-

tice that, one does not need to compute the Hessian matrix directly. Instead, the Hessian 

vector product is used in the computation. Hessian vector product refers to ―   ‖, where   

stands for Hessian matrix of ―
   

    
‖, and ― ‖ is the search direction. It can be approximated 

by a finite different scheme, such as central difference.  

     
 (     )   (     )

  
 (8.16) 
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where  ( ) is the gradient of   with respect to  .  Each Hessian vector product calculation 

requires two gradient evaluations, i.e., two inner problem solutions.  

8.3 Results and Discussion 

8.3.1  -Pinene Isomerization Example 

 -Pinene model which contains 5 estimating parameters is taken from the COPS (Large-

Scale Optimization Problems) collection, discussed in (Dolan, et al., 2000; Box, et al., 1973; 

Tjoa, et al., 1991; Averick, et al., 1991). A brief summary of the example is provided here. 

The model describes the reaction scheme of thermal isomerization of  -pinene (  ) to di-

pentene (  ) and alloocimene (  ), which yields   and   pyronene (  ) and a dimer (  ), 

as shown in the Figure 8.3. 

 

Figure 8.3 Reactions of   Pinene example 

Five ordinary differential equations are considered in the model, as shown in. 
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The objective function of parameter estimation problem is set to be a sum of squares 

function. ODE system (8.17) is discretized at 2-point Radau collocation points, and trans-

formed to NLP. For illustration purposes, assume that    and    are local parameters, 

         are linking parameters. Data sets are generated based on the same value of 

        , but different values of    and   .  Therefore, the degree of freedom is 2 for the 

inner NLP, and the degree of freedom is 3 for the outer NLP.  

                
        

  ∑  

  

   

(        )

                  

 (8.18) 

                
     

   ‖ ( )   ‖ 

                      (    )

            

 (8.19) 

For the outer NLP, the termination criteria of L-BFGS-B are set to be:          

       (Stop when (   *|       |        +       ), where         is the      compo-

nent of the projected gradient.)  The termination criteria of TRON are set to be:        

                                 .  For the inner NLP, IPOPT V3.9 trunk 1955 

was used for this task. Default termination setting was applied for solution accuracy. In ad-

dition, solutions from direct approach are also compared.  IPOPT V3.9 is used for 

computation. Results from L-BFGS-B, TRON and direct solution approach are summarized 

in Table 8.1.    is a adjusting parameter used to change the problem size;    is the total 

number of variables;     is the number of major iterations in L-BFGS-B;    is wall-clock 

time in seconds;     
   is the max number of iterations for an inner NLP;   is the maximum 
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solution time for an inner NLP;    is the number of function evaluations in TRON;    is the 

number of iterations by direct solution approach using IPOPT. 

 

Table 8.1  A comparison of  - pinene example  

 NLP  Statistics L-BFGS-B TRON Direct 

NS       Outer  Inner  Outer Inner IPOPT 

    ( )     
   ( )     ( )     

   ( )     ( ) 

10 120 21660 11 31.28 121 2.2 24 53.31 6 0.04 9 2.33 

 1200 128160 11 509.24 438 82.5 24 850.36 8 1.71 11 82.5 

20 120 43320 11 56.77 121 2.1 17 91.87 6 0.04 15 9.29 

 1200 256320 11 948.84 438 86.6 19 1388.5 8 1.7 19 349.1 

30 120 64980 11 83.11 121 2.1 20 139.01 6 0.04 15 14.4 

 1200 384480 11 1388.78 438 83.4 19 2191.2 8 1.7 19 891.3 

 

It is seen from Table 8.1, that the decomposed problems, in general, are insensitive to the 

increased problem size, in terms of total number of iterations for the inner NLP and outer 

NLP. Notice that the L-BFGS-B algorithm takes many more iterations at some of the steps 

than the others. For example, the maximum number of iterations for a single scenario prob-

lem with 21660 variables reaches to 121.  This is due to a large step size generated from the 

outer NLP. It is difficult for Inner NLPs to converge from a poor starting point. In contrast, 

the number of iterations in TRON is more regular for the inner NLP, since trust-region 

properties insure the reliability of generated steps. However, convergence is much slower, 

and the cost in evaluation of Hessian also slows down the overall process.  Comparing the 

wall-clock time, the direct solution approach performed the best for this example. Since both 

inner NLP and direct NLP problem are well-conditioned, no inertia correction was observed 

in the iteration. Direct solution should be a good choice even for a very large problem size. 
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Yet, it is also worth to noting that the solution time shown above is from sequential imple-

mentation of the inner problem.  In fact, the two-stage NLP is naturally suitable for parallel 

computing. Inner NLPs can be handled independently, while the Outer NLP is usually in a 

low dimension requiring few interactions.  Therefore, in a parallel processing framework, 

the solution time for main iteration would be dominated by the most expensive inner NLP 

problem.  Extra savings from parallel computing would be significant for problems with a 

large number of scenarios. 

8.3.2 Marine Population Dynamics Example 

A marine population dynamics model is also taken from COPS, studied in Rothschid, et al. 

(1997).  The model describes the population of a marine species at each stage as a function 

of time. Parameter estimation is carried out to determine stage specific growth and mortality 

rates. Population at    stage is described as following: 

  
            (     )                (8.20) 

Where    and    are the unknown mortality and growth rate at stage   with         . 

Notice that initial conditions for the differential equation are also unknown to this system. 

Therefore, it is treated as local parameters in the multi-scenario formulation.    and    are 

considered to be linking parameters in this case.  The model is discretized at a 2-point La-

grange collocation point.     is the number of finite elements used for discretization. 
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 (8.21) 

Decomposing the problem into two stages, we have 
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The same termination criteria are used for the marine population problem.  Table 8.2 sum-

marizes the computational results based on the three approaches. 

Table 8.2 Marine population dynamics solution comparison 

 
NLP 

Statistics 
L-BFGS-B TRON Direct 

NS       Outer  Inner  Outer Inner IPOPT 

    ( )     
   ( )     ( )     

   ( )     ( ) 

10 200 32160 13 35.0 7 0.42 19 85.3 5 0.10 31 12.2 

 400 64160 13 89.4 12 1.2 19 148.8 7 0.41 21 21.0 

 800 128160 13 188.16 15 3.4 19 350.5 8 1.04 30 72.8 

20 200 64320 13 88.3 7 0.6 14 144.2 5 0.03 15 20.9 

 400 128320 13 210.2 12 4.2 16 334.9 8 0.30 20 66.2 

 800 256320 13 364.4 17 6.3 15 734.1 8 0.95 18 241.1 

30 200 96480 13 196.0 11 0.22 18 355.1 5 0.08 21 34.3 

 400 192480 13 422.1 14 3.5 19 615.9 5 0.22 25 130.2 

 800 384480 13 754.2 19 5.2 19 1269 8 0.36 19 820.8 

 

In this example, similar observations are shown.  The solution time in the decomposition 

method began to be comparable to direct solution approach when the number and size of the 

scenario increased. 

8.3.3 Application to Parameter Estimation of Stage I model 

In chapter 6, we have shown that properties of three different grades of products can be pre-

dicted with the same set of kinetic parameters. Simultaneous optimization was applied to 
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obtain the parameter estimation solution. To extend the model application and improve the 

parameter accuracy, it is interesting to consider a broader range of products which share the 

same or part of the kinetic mechanisms. However, the resulting large-scale highly nonlinear 

NLP is particularly difficult to solve.  

Parameter estimation of the Stage I model shares some similarities as with example of 

marine population dynamics model in terms of the classification of global and local parame-

ters. Initial conditions varied in each scenario due to the swelling pretreatment before 

polymerization. In addition, initiator efficiency also changes at different process conditions. 

Kinetic parameters are considered to be the same for the same system.  Since experimental 

data are not all available at this time, simulated data are used to examine the use of the algo-

rithm. PS    ̅̅ ̅̅ ̅ , styrene conversion ratio and particle size are simulated at different feeding 

rates and initial conditions. Parameters of interests include kinetic parameters for all the sce-

narios. Hence    {     
 }                 = *  ̅̅ ̅̅ ̅    ̅̅ ̅   +.   *      +. Table 8.3 

summarizes the result from two different solution approaches.  

Table 8.3  Multi scenario solution of Stage I model 

 NLP  

Statistics 
L-BFGS-B Direct 

      
Outer Inner IPOPT 

    ( )     
   ( )     ( ) 

3 37811 2 781.1 200 386.2 10 40.6 

4 50414 2 365.7 22 60.6 26 171.7 

5 63017 3 488.6 22 52.5 32 274.3 

6 75620 3 3152 200 364.2 132* 1163* 

7 88223 3 4133 200 591.8 x x 

8 100826 3 3450 77 281.1 x x 

9 113429 3 4099 34 116.1 x x 

10 126032 3 4122 55 143 x x 

          *  Converged with inertia correction 

          x  Failed to converge   
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It is found that the direct-solution approach starts to experience difficulties as the number 

of scenarios increases. For the Stage I model, when    is below 5, the direct solution was 

still able to proceed from temporarily linear-dependent points. However, when    reaches 6, 

regulation and re-factorization of ill-conditioned KKT matrix becomes the most expensive 

and difficult step in the iteration. The process terminated at a point after 132 iterations, with 

           in the KKT matrix. When    goes above 7, the direct solution terminated with 

an error message without a solution. In comparison, the two-stage decomposition approach 

remains capable, and insensitive to the increased problem size. This feature provides a good 

basis for implementing larger and more difficult parameter estimation problems in the future. 

8.4 Summary 

A two-stage decomposition algorithm is developed for multi-scenario dynamic optimization 

problems. Decision variables (which are the degrees of freedom) are decomposed into global 

variables and local variables. Local variables, which are separable, are solved at the inner 

stage given the value of global parameters. Then global parameters are updated at the outer 

stage based on the sensitivity analysis from the inner NLP. An efficient approach for NLP 

sensitivity evaluation adapted from the sIPOPT package enables determination of the exact 

first derivative without expensive computational cost. Bound-constrained NLP optimization, 

which is separated from inner NLP optimization, alleviates the difficulty resulting from ill-

conditioned scenarios. The trust region type algorithm is considered to handle ill-

conditioned global variables more robustly, but slow convergence is observed in TRON. 

Larger scenarios of the SIPN process model are studied. Improved robustness and capability 

compared to the direct solution approach is shown with the proposed algorithm.  Adaption 

of the two-stage decomposition algorithm for parallel computing is also straightforward. 
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Considerable gain in computational efficiency is expected for parallel processing of large-

scale inner problems.  
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Chapter 9  

Conclusions and Future Research Directions 

Model-based optimization provides a systematic, efficient and cost effective way to facili-

tate innovative advancement and operational effectiveness in chemical engineering. In 

particular, the polymer industry has seen great potential for advanced modeling and optimi-

zation tools in supporting decision making. 

This thesis work focuses on the synergy of modeling and optimization tools for complex 

system study. A Semi-Interpenetrating Polymer Networks process is studied as a representa-

tive example for the development of model-based optimization in polymer industry. SIPNs 

are a class of specialty polymers in the IPN family, which are of great importance because of 

their broad applications.  However, challenges in SIPN product quality control and produc-

tivity improvement stimulate new advances on mathematical modeling and optimization 

tools.  

We have successfully built effective models for the SIPN process, and implemented new 

operation policies for process improvement based on the tools we developed in this work. 

Modeling of the SIPN process provides a comprehensive understanding of the relationship 

between process conditions and SIPN macromolecular properties. Furthermore, it enables 

process optimization to be carried out effectively. On the other hand, by developing ad-

vanced computational tools, unknown parameters are obtained and validated based on 
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process data, and novel optimal operation policies are explored. The combination of the 

power of modeling and optimization demonstrates a promising direction for future research.  

9.1 Summary of Contributions 

This thesis contributes in both modeling and optimization areas, and makes an effective in-

tegration of both tools for model-based optimization. Major contributions of this thesis are 

summarized from two aspects, as shown in Figure 9.1. 

Effective modeling 

approaches 

 

Advanced computational 

tools 

 Multi-stage modeling 

framework for complex 

process study. 

 Modeling of seeded sus-

pension polymerization 

process. 

 Comprehensive kinetic 

models for SIPN compo-

site. 

 Parameter subset selection 

and estimation. 

 Solution profile representa-

tion. 

 Optimization with surrogate 

sub-models. 

 Decomposition algorithm 

for multi-scenario dynamic 

optimization. 

Figure 9.1 Summary of main contributions 

9.1.1 Mathematical Modeling  

 A multi-stage modeling framework for complex process study  

Polymerization processes usually contain multiple chemical and physical phenomena. 

Getting a unified model to include all the phenomena does not seem to be practical nor nec-

essary for the purpose at hand. The multi-stage representation presents an effective way to 

decouple modeling difficulties.  Thus, different key effects are considered at each stage. 

Complex problems are broken down into manageable pieces so that effective solution ap-
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proaches can be developed accordingly. Linkages between sub-models are kept for con-

structing an integrated model.  

As for SIPN process modeling, a two-stage model is built to understand the complex 

SIPN dynamics. Two key features of IPN, ―Interpenetrating‖ and ―networking‖, are decou-

pled in different modeling stages.  Temperature is the factor for the stage partition in this 

work. At a low temperature (      ), the main consideration is the monomer diffusion 

and the particle growth. A generalized particle growth model is developed to describe inter-

particle and intra-particle dynamics under semi-batch operation. Simplified polymerization 

scheme is adapted since networking reactions are negligible at this temperature. ―Interpene-

trating‖ properties are able to be represented. Then, at a high temperature (        ), all 

the reactions start to take place, while the particle growth is stabilized because of the com-

pletion of monomer feeding. The key effect becomes the SIPN kinetics in this stage. A SIPN 

kinetic model is constructed to consider detailed kinetic mechanisms including polymeriza-

tion, crosslinking, grafting, degradation and polymer interaction when diffusion is 

insignificant. ―Networking‖ characteristics come to be attainable. Construction of a model 

from essential building blocks facilitates comprehensive representation for complex systems.  

This multi-stage modeling methodology is readily generalizable for more complex sys-

tem analysis. Different factors can be used to divide different modularized stages. The 

complexity of sub-models can be significantly reduced, while the predictability of the model 

is little affected. 

 Single particle model for seeded suspension polymerization process 

The seed polymerization technique is receiving increasing attention and becoming a 

promising technique for novel material development. Its advantages in particle size control 
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and versatile customizable properties make it a competitive choice in many areas of applica-

tion. However, due to the complexity of the particle growth, the efforts toward modification 

and control are not intuitively obvious and many experimental observations remain unex-

plained. Modeling intricate particle growth and morphology, which is significant for the 

design and operation of particulate processes, was not yet developed.  

In this work, a generalized single particle growth model is developed in order to facilitate 

this progress. To depict the special features of seed polymerization, the interactions of exter-

nal mass transfer and internal diffusion are considered with polymer kinetic model and 

connected with the macro-scale feeding strategy for further purposes of optimal control. Dif-

ferent from traditional single particle models, the particle size growth is modeled in a more 

rigorous way, where the seed property and the dynamic density change are taken into ac-

count. In particular, the morphology evolution of these complex polymer particles is 

simulated along with realistic kinetic phenomena, where the apparent kinetic rates are dy-

namic functions of the states that reveal more insights about the polymer properties. 

Numerical simulations are performed through a special discretization approach. The sin-

gle particle is discretized into a certain number of moving shells. The coupled differential-

integral-algebraic equations are transformed to be differential-algebraic equations.  The re-

sulting model leads to an efficient simulation study and enables its further application in 

optimization. 

 Comprehensive SIPN kinetic models 

The properties of IPNs are found to be closely related with their network structure and 

joint molecular weight distribution. While specific polymer structure is desired for various 

applications, poor control of the process condition can prevent the formation of the desired 
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structure, so as to affect their ultimate properties. This is an incentive to develop a systemat-

ic mathematical model to understand and control of such processes, and to provide insights 

for the material design. Since polyethylene is the largest commodity polymer product nowa-

days, IPN modification of polyethylene is of particular interest. A polyethylene/polystyrene 

semi-I IPN process is chosen as a case study in this work, and discussed in detail. 

A comprehensive kinetic model is developed, which involves simultaneous crosslinking, 

grafting and degradation, to predict SIPN gel content and molecular weight development 

simultaneously up to full conversion. Computational expense has been reduced considerably 

through a new component-decomposition strategy. Continuous variable approximation is 

applied for monomer polymerization and grafting reactions. Discrete population balance ap-

proach is introduced for simulation of crosslinking reaction as well as simultaneous chain 

transfer and chain scission. Multiple representations of population balance models, including 

a novel fixed pivot technique, are adapted, providing comprehensive information on the 

MWD and gel content of the IPN to predict product properties. The final inter-polymer for-

mulation is reconstructed through a statistical approach.  

This SIPN kinetic model is extendable to the full IPN process as well as other polymer 

composite systems. The simplicity and effectiveness of the multi-population balance repre-

sentation can be easily adapted to general purpose computational packages.   

9.1.2 Optimization 

 Parameter selection and estimation 

Using large-scale nonlinear programming tools, we have developed parameter ranking, 

selection and estimation strategies to improve estimation and prediction quality. Often, only 
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a portion of parameters can be estimated reliably due to inherent model structure and data 

availability. Improper inclusion of estimating parameters would lead to large distortions of 

the model prediction. In this work, parameter estimability is investigated in parameter esti-

mation. A hybrid approach to select and identify parameters in nonlinear dynamic system is 

presented.   

Local sensitivity analysis is used for initial parameter screening. A primary parameter 

ranking is obtained through a QRcp (QR decomposition with column permutation) approach. 

Weak-effect parameters are removed from the selected subset.  Then parameter estimation is 

carried out for the selected parameters simultaneously. The effect of prior ranking as well as 

parameter uncertainty is minimized. Moreover, by applying the NLP sensitivity analysis, the 

covariance matrix of the estimated parameter from a maximum likelihood formulation can 

be extracted easily from a pre-factored KKT matrix. This approach enables statistical infer-

ence and systematic pruning of parameter selection to be conducted within this model 

building study. Satisfied parameters are identified with little additional cost.  

This parameter estimation procedure is successfully applied to the SIPN process model 

study. A sub-set of parameters is selected and estimated reliably, which demonstrates diffu-

sion limited features of polymer reactions and molecular weight distributions (MWD) in the 

development of the complex polymer network.  This approach can be implemented with 

standard parameter estimation processes efficiently. 

 Surrogate model based optimization 

Polymerization models often contain highly nonlinear and stiff DAEs, which are particu-

larly difficult to optimize through the direct transcription (full discretization) approach 

compared with other dynamic optimization problems.  The difficulties in realizing optimiza-
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tion for the full SIPN model make requests for alternative approaches for complex system 

optimization.    

Surrogate modeling is a low cost substitution for evaluating computationally expensive 

models. Among different modeling approaches, Kriging is chosen in this work for its supe-

rior performance in both prediction accuracy and construction efficiency. Several important 

questions are brought up in Kriging-model-based optimization. First, does the Kriging mod-

el used for optimization need to have the same accuracy as for simulation? Second, does the 

optimal solution based on surrogate models converge to the same optimal point as the origi-

nal model? Last but not least, how is the surrogate model refined efficiently to find a 

satisfactory optimal solution? 

A framework of surrogate-model-based optimization is developed to address the above 

questions. The comparison results show that constructing the Kriging model for optimiza-

tion could start from a relatively small number of initial design points. Variable screening 

should be implemented before exhaustive design and simulation. Second, the optimal solu-

tion should be validated in a systematic way. Examination of KKT conditions at the solution 

point prevents premature termination in the optimization loop. The optimization approach 

based on surrogate models therefore returns to a local optimum of the original optimization 

problem through the solution validation step. Finally, a conditional refinement approach is 

presented. Total number of function evaluations can be reduced significantly. 

Optimization with surrogate models enables integrated optimization strategies to be em-

ployed for multi-stage process models. The Stage II sub-model of the two-stage SIPN 

process is replaced by two Kriging models for process optimization. The newly proposed 

operation policy further improves the productivity significantly. 
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 Multi-scenario dynamic optimization 

Parameter estimation based on multiple data sets leads to large-scale multi-scenario op-

timization problems. When a single scenario model is complex and the number of scenarios 

is large, resulting optimization problem is often difficult to solve with off-the-shelf optimi-

zation tools. In addition, polymerization process models are often ill-conditioned. Solution 

convergence is the main concern in this case.  

A two-stage decomposition algorithm is developed to improve the solution robustness 

and capability.  This two-stage structure is based on the formulation of the parameter estima-

tion problem for global parameters and local parameters accordingly. Global parameters 

share the same value for all the scenarios, while local parameters vary in different scenarios. 

Therefore, local parameters can be solved in the inner stage given global parameters; global 

parameters can be updated in following search step using sensitivity from the inner stage 

model.  

In this work, the inner optimization problem takes advantage of an efficient interior point 

NLP algorithm and fast NLP sensitivity analysis to provide exact derivative information, 

while the outer optimization problem is solved with a bound constrained algorithm in a low 

dimension to better handle ill-conditioned variables in the system. The computational com-

plexity in each stage has good scaling properties for problems with a large number of 

scenarios. Parameter estimation with multiple data sets with the proposed algorithm outper-

formed a direct solution approach in terms of convergence. A test problem based on SIPN 

Stage I model is shown. The robustness of this algorithm allows handling a growing number 

of data sets and applying for future model improvement. 
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9.1.3 Model Validation and Implementation    

Moreover, these models were developed in close conjunction with an industrial experi-

mental program which validated the model. The predictive model enabled dynamic 

optimization of the process in order to control the product quality and reduce the production 

time. The optimal results were validated in the pilot plant and indicated that significant per-

formance gains (around 20%) can be obtained with novel operating strategies for this 

polymer process. This integrated model-based optimization framework demonstrates great 

potential for polymerization process model-based applications.  

9.2 Recommendations for Future Work 

 Model formulation enhancement   

1) Establish structure-property relationship for SIPN products 

IPNs and other polymer products in general, are specified by end-use properties when 

used in practice, such as density, tensile modulus, impact strength, electric properties, ther-

mal stability, optical properties etc. The relationship between basic parameters of polymer 

macromolecular structure and end-use properties would be an important link to be included 

in future process optimization for product improvement and process design. Current SIPN 

quality indices, such as   ̅̅ ̅̅ ̅ and Gel content, might be modified in such optimization prob-

lems based on obtained correlations. New characteristics may need to be considered to 

characterize the complex polymer composite.  

2) Consideration of various optimization criteria 

Besides improvements in the mechanistic modeling, various optimization objectives are 

also worthy of consideration. In this work, productivity is the main focus in the optimization 
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problem. Reaction duration is minimized to reach a maximum production capability. In 

practice, other objective functions can be of interest as well. For example, an economic 

based objective function permits the user to explicitly evaluate operational cost and produc-

tion value. Energy consumption based optimization is also of interest, since the reactor 

undergoes several cycles of heating and cooling. Novel operating strategies may be explored 

with a detailed reactor model and focused objective.  

 Efficient and robust bound-constrained NLP algorithm 

Bound-constrained NLP optimization is an important step in the two-stage decomposition 

approach for multi-scenario optimization problems. We have seen that a trust region algo-

rithm has the advantage of retaining a good iteration for inner NLP, without generating a 

wild step. However, convergence is slower and more function evaluations are required in 

total. The efficiency of the bound-constrained NLP algorithm can be improved without sac-

rificing the nice trust region properties by adapting newly developed research in this area. 

Here, Adaptive Cubic Overestimation (ACO) (Cartis, et al., 2009) is a promising approach 

to be used.  Consider the solution for smooth function  ( ) in (9.1) with bound constraints,  

   
   

 ( ) (9.1) 

A cubic model  ( ) is solved at iterate    within feasible region  .  

  (    )   (  )           
 

 
           

 

 
  ‖  ‖

  (9.2) 

where       donotes the Euclidean inner product,       (  ),    is a symmetric matrix 

approximating     (  ) .   is a non-negative regularization parameter, which is updated 

analogous  to the trust region method.  Good global and local convergence properties and 

worst-case iteration complexity bounds are shown by ACO approach, superior to the classi-
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cal trust-region algorithm. This would be a good direction to take to improve the conver-

gence rate of the two-stage algorithm. 

 NLP sensitivity implementation 

NLP sensitivity analysis is shown to be useful for implementing the two-stage decompo-

sition algorithm for complex problems. However, several issues are suggested for 

improvement when it is realized on different platforms.  Introducing artificial variables and 

equalities is necessary for including parameters of interest in the KKT structure. However, 

disabling variable substitution for the entire problem could have negative effects on the con-

vergence compared to the original problem. Many manual tasks are required to incorporate 

current NLP sensitivity analysis into the model. A flexible and well-specified approach to 

incorporate KKT sensitivity calculation is worth developing for better implementation. In 

addition, extracting Hessian information of the parameter more efficiently is also an interest-

ing topic. 

 Optimization under uncertainty with the two-stage decomposition algorithm 

The parameter estimation problem is one of the foci for multi-scenario optimization in 

this work, whereas, the usage for the Optimization Under Uncertainty (OUU) problem is 

worth further investigated. OUU for a dynamic process as shown in (9.2) (Samsatli, et al., 

1998), can be reformulated into an equivalent deterministic problem as a multi-scenario 

NLP problem as shown in (9.3) 

          * ( ̇            )+          ∫  ( ) ( ̇            )  
   

 (9.3) 

                 ( ̇( )  ( )    ( )      )    

 ( ̇            )    
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 ( ̇            )    

where   are the differential state variables,  ̇ their derivatives with respect to time,   the al-

gebraic state variables,   the time-dependent optimization parameters (controls),   the time-

invariant optimization parameters,   time,   the final time,   the uncertain model parameters 

over the domain  ,   the joint probability density function (PDF),   a performance metric 

to be optimized, and  * + the expected value of  . The equations    represent the initial 

conditions of the system. Discretization of the distribution   ( ) allows problem (9.3) to be 

represented as (9.4). 

   
     

  ∑   (          )

  

   

 

{
  (          )   
  (          )   

              

(9.4) 

where   represents discretized state variables and their derivatives;    and    are equality 

and inequality constraints in scenario   after discretization.  

The main difference between (9.4) and (8.1) is that inequalities can become active in dif-

ferent scenarios. Since the inequality constraints are more commonly associated with 

performance requirements (e.g., product purity specifications), equipment limitations, and 

safety regulations, the inner problem can become infeasible as well. Direct application of the 

previous two-step decomposition algorithm will challenge the sensitivity calculation, since 

the sensitivity might be undefined if the active set of inequalities is changed. Potential appli-

cation of "soft" constraints, where some violation of inequality can be tolerated, or 

penalizing infeasibility in the outer NLP objective function could be considered. Depending 

on the problem specification, one-sided or two-sided penalties might be defined. The result-
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ing challenge is to handle ill-conditioned outer NLPs after decomposition. Recovering from 

a poor search step is important for the success of the algorithm. Including some heuristic to 

customize the outer NLP algorithm might be useful for this extension. 

 On-line parameter estimation /optimization for batch operation 

Modeling and optimization studies are carried out off-line for the SIPN process in this 

work.  Accommodating uncertainty in policy design is a challenging task, since the process 

optimization solution is obtained based on previously estimated parameter values, where 

uncertainties are unavoidable. A more rigorous optimization strategy would be based on 

online process optimization where uncertainty of parameters can be significantly reduced. 

Realization of this improvement will rely on the development of online monitor systems and 

incorporation of ―soft sensors‖ from model prediction.  Performance of model-based optimi-

zation can be improved by such advances for complex polymer manufacture.  

In summary, model-based optimization is a rich field to explore. Advanced nonlinear 

programming tools and more sophisticated process modeling strategies will help to facilitate 

innovative developments in many different ways.  
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A. Appendix  

A.1. Notation 

  
  = partial molar volume coefficient of species  ,           

  
  = partial molar volume coefficient of species  ,           

   = first order gel factor coefficient,                           

   = second order gel factor coefficient,                           

   = third order gel factor coefficient,                           

   = concentration of species  ,           

  ̅  = number average chain length 

    = concentration of polystyrene,         

  ̅ = weight average chain length 

    = concentration of peroxide,         

    = concentration of peroxide primal radical,         

    = effective diffusion coefficient for species  ,        

  = fraction 

  ( ) = molar absorption rate of reactant   by each particle,         

 = molar feeding rate of reactant l to the reactor,         

   = the lowest grid defining a gel, referring to the critical gel size 

  = Initiator species 

  = diffusion flux,              

   = chain length of the     section divider 

     = maximum chain length of the section divider 

  = monomer species 

   = average molecular weight of polymer segments 

 ̅   = average molecular weight of the repeating unit of polymer A,         

 ̅  = average molecular weight of the repeating unit of polymer B,         

  ̅̅ ̅̅   = number average molecular weight,         
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  ̅̅ ̅̅ ̅ = weight average molecular weight,         

  ̅̅ ̅̅    = number average molecular weight at particle radius position   ,         

   ̅̅ ̅̅ ̅̅  = weight average molecular weight at particle radius position   ,         

   = number of grids 

 = total number of seed particles in the reactor 

    = rate constant of polymer A chain scission,     

    = rate constant of polymer B chain scission,     

    = rate constant of hydrogen abstraction from polymer A by radical B,          

              

    = rate constant of polystyrene chain transfer rate,               

   = rate constant of peroxide dissociation,               

    = rate constant of initiation of monomer double bond,               

    = rate constant of hydrogen abstraction from polymer A by peroxide radical,  

             

     = rate constant of reversible hydrogen abstraction for polymer A,          
    

     = rate constant of reversible hydrogen abstraction for radical A,          
    

    = rate constant of hydrogen abstraction from polymer B by peroxide radical, 

             

     = rate constant of reversible hydrogen abstraction for polymer B,         
    

     = rate constant of reversible hydrogen abstraction for radical B,          
    

   = rate constant of polystyrene radical termination,              

    = rate constant of radical A termination,              

   
  = rate constant of radical A termination in ideal system without a gel effect, 

             

     = rate constant of radical A combination termination,              

    
  = rate constant of radical A combination termination in ideal system without a 

gel effect,              

     = rate constant of radical B combination termination,              

    
  = rate constant of radical B combination termination in ideal system without a 

gel effect,              

     = rate constant of radical A disproportion termination,              
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  = rate constant of radical A disproportion termination in ideal system without a 

gel effect,              

    = rate constant of styrene thermal initiation,              

   = rate constant of styrene polymerization,              

 = a class of rate constants which are molecular weight dependent 

 = rate constant of chain length 1 accordingly 

  = Pressure,    

 ( ) = terminated polymer (dead polymer) with   repeating unit 

 ( ) = concentration of   ( ),         

 ( ) = concentration of     moment of polymer P,         

  = particle radius,   

  = Intra-particle radial position,    

  ( ) = polymer radical (live polymer) with   repeating unit 

 ( ) = concentration of    ( ),         

 ( ) = concentration of      moment of radical   ,         

  = number of repeat units in polymer 

  = time,    

   = duration of the Stage I,    

    = duration of the Stage II,    

   = consumption rate of species  ,            

  = volume of the system,     

  ̅  = partial molar volume of species  ,     

     = weight of gel content,   

       = total weight of polymer,   

   = peroxide species 

   = primal radial generated by peroxide dissociation 

   = styrene monomer conversion ratio 

 ̅  = overall monomer conversion ratio of the particle 

   = representative chain length in the     grid  

   

Greek letters 

  = adjustable parameter for rate constant of termination combination 



Bibliography 

 

Appendix 193 

   = grafting ratio 

   = Kronecker delta function. If           if         . 

   =      moment of either polymer A or polymer B 

 (    ) = kernel function of     chain scission, which is the probability producing a 

fragment of chain length   radical    
 ( ) from a chain length    radical 

   
 (  ) 

 (    ) = kernel function of    chain scission, which is the probability producing a 

fragment of chain length   radical   
 ( ) from a chain length    radical 

  
 (  ) 

   

Subscripts and superscripts 

  = crosslinked polymer, polyethylene in the studied case 

  = linear polymer, linear polystyrene in the studied case 

    = polymer A with grafted component B 

   = grafted component, grafted-polystyrene in the studied case 

    = gel content 

  = grade 

( ) =     moment of the distribution 

( ) =     grid (italic) 

  = lower bound 

   = seed polymer 

   = in situ polymerized polymer 

  = upper bound 
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