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Abstract 

Atmospheric aerosols exert a large influence on the Earth’s climate and cause adverse 

public health effects, reduced visibility and material degradation. Secondary organic aerosol 

(SOA), defined as the aerosol mass arising from the oxidation products of gas-phase organic 

species, accounts for a significant fraction of the submicron atmospheric aerosol mass. Yet, there 

are large uncertainties surrounding the sources, atmospheric evolution and properties of SOA. 

This thesis combines laboratory experiments, extensive data analysis and global modeling to 

investigate the contribution of semi-volatile and intermediate volatility organic compounds 

(SVOC and IVOC) from combustion sources to SOA formation. The goals are to quantify the 

contribution of these emissions to ambient PM and to evaluate and improve models to simulate 

its formation.   

To create a database for model development and evaluation, a series of smog chamber 

experiments were conducted on evaporated fuel, which served as surrogates for real-world 

combustion emissions. Diesel formed the most SOA followed by conventional jet fuel / jet fuel 

derived from natural gas, gasoline and jet fuel derived from coal. The variability in SOA 

formation from actual combustion emissions can be partially explained by the composition of the 

fuel. 

Several models were developed and tested along with existing models using SOA data 

from smog chamber experiments conducted using evaporated fuel (this work, gasoline, fischer-

tropschs, jet fuel, diesels) and published data on dilute combustion emissions (aircraft, on- and 

off-road gasoline, on- and off-road diesel, wood burning, biomass burning). For all of the SOA 

data, existing models under-predicted SOA formation if SVOC/IVOC were not included. 



 IV 

For the evaporated fuel experiments, when SVOC/IVOC were included predictions using 

the existing SOA model were brought to within a factor of two of measurements with minor 

adjustments to model parameterizations. Further, a volatility-only model suggested that 

differences in the volatility of the precursors were able to explain most of the variability 

observed in the SOA formation. 

For aircraft exhaust, the previous methods to simulate SOA formation from SVOC and 

IVOC performed poorly. A more physically-realistic modeling framework was developed, which 

was then used to show that SOA formation from aircraft exhaust was (a) higher for petroleum-

based than synthetically derived jet fuel and (b) higher at lower engine loads and vice versa. 

All of the SOA data from combustion emissions experiments were used to determine 

source-specific parameterizations to model SOA formation from SVOC, IVOC and other 

unspeciated emissions. The new parameterizations were used to investigate their influence on the 

OA budget in the United States. Combustion sources were estimated to emit about 2.61 Tg yr
-1

 

of SVOC, IVOC and other unspeciated emissions (sixth of the total anthropogenic organic 

emissions), which are predicted to double SOA production from combustion sources in the 

United States. 

The contribution of SVOC and IVOC emissions to global SOA formation was assessed 

using a global climate model. Simulations were performed using a modified version of GISS 

GCM II’. The modified model predicted that SVOC and IVOC contributed to half of the OA 

mass in the atmosphere. Their inclusion improved OA model-measurement comparisons for 

absolute concentrations, POA-SOA split and volatility (gas-particle partitioning) globally 

suggesting that atmospheric models need to incorporate SOA formation from SVOC and IVOC 

if they are to reasonably predict the abundance and properties of aerosols. 
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This thesis demonstrates that SVOC/IVOC and possibly other unspeciated organics 

emitted by combustion sources are very important precursors of SOA and potentially large 

contributors to the atmospheric aerosol mass. Models used for research and policy applications 

need to represent them to improve model-predictions of aerosols on climate and health outcomes.  

The improved modeling frameworks developed in this dissertation are suitable for 

implementation into chemical transport models.   
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Chapter 1: Introduction 

 
1.1 Motivation 

 Atmospheric aerosols or particulate matter, defined as tiny particles suspended in air, 

play a key role in many ecological and environmental processes. Aerosols absorb and scatter 

solar radiation and affect the formation, lifetime and precipitation of clouds. The 

Intergovernmental Panel on Climate Change (IPCC) estimates that aerosols might be masking 

close to half of the global warming caused by greenhouse agents (IPCC, 2007). Aerosols smaller 

than 2.5 micron or PM2.5 have a large impact on human health. There is ample evidence for their 

adverse health effects as seen with increases in mortality, and cardio-pulmonary, respiratory and 

allergic diseases (Bernstein et al., 2004). Every year, exposure to elevated fine PM is suspected 

to result in 60,000 deaths in the United States alone and about half a million deaths globally 

(Kaiser, 2005;Nel, 2005). Despite incriminating evidence, there are large gaps in our 

understanding of the sources, atmospheric evolution and properties of aerosols that are needed to 

ascertain and eventually mitigate their influence. 

Atmospheric aerosols are composed of the following major constituents: organics, 

elemental carbon, sulfate, nitrate, ammonium, sea salt, dust and metals, all of which have both 

natural and anthropogenic sources. Of those mentioned, organic aerosol (OA) accounts for about 

a third of the atmospheric aerosol mass (Zhang et al., 2007;Jimenez et al., 2009). Yet, it remains 

the least understood because organics (gas+particle) comprises of a mixture of tens of thousands 

of organic compounds (Goldstein and Galbally, 2007), each with a different set of physical and 

chemical properties that continuously evolve with changes in gas-particle partitioning and 

atmospheric oxidation. The complexity has meant that we have limited knowledge about their 

sources, atmospheric evolution and properties. 
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Aerosol models are regularly used in both research and regulatory applications to study 

their climate and human health outcomes with the intention to develop technologies and policies 

that eventually mitigate those adverse outcomes. Typically, these aerosol models under-predict 

OA mass concentrations on urban, regional and global scales. The under-prediction can 

sometimes reach an order of magnitude, especially on global scales and downstream of urban 

areas during photo-chemically active periods. (Heald et al., 2005;Vutukuru et al., 2006;Johnson 

et al., 2006;Morris et al., 2006;Dzepina et al., 2009;Dzepina et al., 2010). These models also tend 

to predict a dominance of directly emitted OA or primary organic aerosol (POA) (Farina et al., 

2010) when ambient measurements suggest that OA is dominated by aerosol formed through the 

oxidation of gas-phase emissions or secondary organic aerosol (SOA) (Zhang et al., 

2007;Jimenez et al., 2009). The poor model performance has made it very hard to evaluate the 

effects of OA on climate and human health. 

It is important that models predict the right sources, composition and properties of 

ambient OA. For example, ambient OA is highly oxygenated and therefore has a higher 

propensity to uptake water and affect cloud formation, both of which have a strong influence on 

aerosol’s radiative forcing on climate. Hence, an effort to accurately simulate global OA 

formation should help reduce the large uncertainty in the aerosol radiative forcing reported by 

the IPCC (IPCC, 2007). To protect human health and the environment, the Clean Air Act has 

required the Environmental Protection Agency to set National Ambient Air Quality Standards for 

PM2.5 and other pollutants. Recently, the EPA reported that according to the standards revised in 

2006, 17 million people in the United States lived in counties that were not in compliance for 

PM2.5 (EPA, 2012). OA might need to be controlled to bring PM2.5 mass levels into attainment, 

especially in counties like Los Angeles that are not in compliance (EPA, 2012) and where PM2.5 
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is dominated by OA (Sardar et al., 2005). Additionally, there is considerable uncertainty in 

understanding the mechanism or fraction of PM2.5 that affects human health. Hence, a regulation 

simply based on PM2.5 mass (as in the United States) may be inefficient and possibly ineffective. 

A preliminary step in designing effective regulation would be to understand the cause and effect 

relationship better through models that predict the correct source contribution, composition and 

properties of PM2.5. 

As defined earlier, SOA is the OA mass arising from the oxidation of gas-phase organic 

species. Until recently, SOA formation was believed to be dominated by the first-generation 

oxidation products of high-flux volatile organic compounds (VOC) such as terpenes and single-

ring aromatics. SOA formed from speciated VOCs is defined as traditional SOA (T-SOA) and is 

explicitly accounted for in most SOA models. However, a potential shortcoming is that these 

traditional SOA models might be missing a group of SOA precursors, particularly from 

combustion sources. Recent laboratory experiments show that combustion emissions when 

photo-oxidized form substantial SOA mass, greatly in excess of what can be explained by 

traditional SOA models (Robinson et al., 2007;Grieshop et al., 2009;Miracolo et al., 

2011;Miracolo et al., submitted). Similarly, field studies show that SOA formation measured 

downwind of urban areas or large combustion sources is under-predicted by traditional SOA 

models (Hodzic et al., 2010;Dzepina et al., 2009;Volkamer et al., 2006). Robinson et al. (2007) 

proposed that a significant part of the unexplained SOA stemmed from the oxidation of low-

volatility organic vapors; they have been defined by Donahue et al. (2009) as semi-volatile and 

intermediate volatility organic compounds (SVOC and IVOC). Fundamentally, SVOC/IVOC 

form SOA in the same manner as VOCs; oxidation adds functional groups to the organic 

molecule, which reduces the volatility (vapor pressure) of the product and leads to condensation 
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into the particle phase. However, the lower initial volatility of SVOC/IVOC means that they can 

have higher SOA yields than VOCs (Lim and Ziemann, 2009;Presto et al., 2010). Donahue et al. 

(2009) defined SOA from SVOC/IVOC as non-traditional SOA (NT-SOA). 

A key attribute of SVOC/IVOC is that they are hard to measure and even harder to 

speciate with traditional gas chromatography (GC) techniques (Schauer et al., 1999, 2002). The 

problem is fundamentally caused by the number of isomers growing exponentially with carbon 

number; these isomers co-elute from the GC-column (Goldstein and Galbally, 2007). Since the 

molecular identity of the vast majority of SVOC/IVOC cannot be ascertained, SOA formation 

from these compounds cannot be investigated or modeled in the same manner as T-SOA formed 

from speciated VOCs (benzene, alpha-pinene, and others). Instead, models that represent SOA 

formation from SVOC/IVOC have been based on the volatility of the emissions and their 

transformation in volatility space (Robinson et al., 2007;Dzepina et al., 2009;Murphy and 

Pandis, 2009;Pye and Seinfeld, 2010). 

SVOC/IVOC could be important SOA precursors and therefore influential in determining 

the abundance and properties of atmospheric aerosols that impact climate and public health. 

However, there are large uncertainties surrounding the sources and transformation of 

SVOC/IVOC in the atmosphere. . 

 

1.2 Objectives 

The objectives of this thesis are to develop methods to represent NT-SOA formation from 

SVOC/IVOC in models using laboratory experiments and quantify their influence on the 

formation and properties of SOA in the atmosphere on local, regional and global scales. 
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The first objective of this thesis is to develop methods to represent NT-SOA formation 

from SVOC/IVOC in OA models. This work is primarily motivated by the absence of well-

constrained mechanisms and parameters to model NT-SOA formation. The existing mechanisms 

are either conservatively developed from first principles or built on a handful of experimental 

data from a single combustion source. The mechanisms use the same parameters for different 

combustion sources assuming that different sources have similar potentials to form NT-SOA. 

This work aims to use laboratory experiments conducted in this work and elsewhere to develop 

realistic methods to model NT-SOA formation from the oxidation of SVOC/IVOC emissions 

arising from different combustion sources. At the same time, this work also tries to test, integrate 

and improve the entire SOA model. 

The second objective of this thesis is to conduct laboratory experiments specifically 

designed to provide additional data to accomplish the first objective. SOA data for combustion 

sources are needed for use in the first objective. However, only a few datasets are available since 

SOA experiments on combustion emissions are complicated and expensive to run. This work 

addresses that need by conducting laboratory experiments on reasonable surrogates for real 

combustion emissions that are simpler, easy to characterize and cheaper to run. 

The third objective of this thesis is estimate the influence SVOC/IVOC exert on the 

abundance and properties of ambient OA on a regional and global scale. Contemporary models 

do not perform well in predicting the concentrations and properties of OA on a global scale. 

Although regional models perform slightly better, they could be deficient in predicting the source 

apportionment of OA. This work intends to use the mechanisms and parameters developed as 

part of the earlier objectives to model NT-SOA formation from SVOC/IVOC using a simplified 

model for the United States and a global climate model for the world. 
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1.3 Outline 

 Each chapter in this thesis maps to one of the objectives mentioned above. Below, we 

provide a brief overview for each chapter. 

 In chapter 2, we employ the volatility-based method proposed by Robinson et al. (2007) 

to model NT-SOA formation from SVOC/IVOC. The NT-SOA model is built inside an existing 

OA model coupled to a climate model. Predictions from the climate model are used to determine 

the influence of SVOC/IVOC on the global OA budget. Predictions are also used to evaluate the 

model by comparing model-predictions of OA mass and properties to measurements made across 

the globe. 

In chapter 3, we use SOA data collected from two field campaigns to test existing 

methods and build new methods to represent NT-SOA formation from SVOC/IVOC. The SOA 

data consist of several smog chamber experiments conducted on emissions from two different 

aircraft engines run at different engine loads with two types of fuel. 

In chapter 4, we conduct smog chamber experiments on evaporated fuels to quantify the 

formation and properties of SOA arising from them. The data are compared against SOA 

formation from emissions of engines that use those fuels and the comparison is used to examine 

how fuel composition can influence SOA formation from engine exhaust. 

In chapter 5, the SOA data collected in chapter 4 are used to test different SOA models. 

The objective is to assess how well a model is able to capture SOA formation as a function of the 

precursor’s volatility and/or molecular structure.  

In chapter 6, we use data from several campaigns where SOA formation was measured 

from emissions of different combustion sources. The data are used to develop a source-resolved 
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parameterization to model NT-SOA. Next, the parameterizations are used in a model to identify 

the influence of NT-SOA and also the contribution of different sources to the OA budget in the 

United States. 

In chapter 7, we summarize the key findings from this thesis, make recommendations to 

policy-makers interested in aerosol research and address future work. 

 

1.4 References 

Bernstein, J. A., Alexis, N., Barnes, C., Bernstein, I. L., Bernstein, J. A., Nel, A., Peden, D., 

Diaz-Sanchez, D., Tarlo, S. M., and Williams, P. B.: Health effects of air pollution, The Journal 

of Allergy and Clinical Immunology, 114, 1116-1123, 2004. 

Dzepina, K., Volkamer, R., Madronich, S., Tulet, P., Ulbrich, I., Zhang, Q., Cappa, C., Ziemann, 

P., and Jimenez, J.: Evaluation of recently-proposed secondary organic aerosol models for a case 

study in mexico city, Atmospheric Chemistry and Physics, 9, 5681-5709, doi:10.5194/acp-9-

5681-2009, 2009. 

Dzepina, K., Cappa, C. D., Volkamer, R. M., Madronich, S., DeCarlo, P. F., Zaveri, R. A., and 

Jimenez, J. L.: Modeling the multiday evolution and aging of secondary organic aerosol during 

milagro 2006, Environmental Science & Technology, 45, 3496-3503, doi: 10.1021/es103186f, 

2010. 

EPA: Our nation’s air: Status and trends through 2010, Environmental Protection Agency, 2012. 

Farina, S. C., Adams, P. J., and Pandis, S. N.: Modeling global secondary organic aerosol 

formation and processing with the volatility basis set: Implications for anthropogenic secondary 

organic aerosol, Journal of Geophysical Research, 115, D09202, doi:10.1029/2009JD013046, 

2010. 

Goldstein, A. H., and Galbally, I. E.: Known and unexplored organic constituents in the earth's 

atmosphere, Environmental Science & Technology, 41, 1514-1521, doi:10.1021/es072476p, 

2007. 

Grieshop, A., Donahue, N., and Robinson, A.: Laboratory investigation of photochemical 

oxidation of organic aerosol from wood fires 2: Analysis of aerosol mass spectrometer data, 

Atmospheric Chemistry and Physics, 9, 2227-2240, 2009. 

Heald, C. L., Jacob, D. J., Park, R. J., Russell, L. M., Huebert, B. J., Seinfeld, J. H., Liao, H., and 

Weber, R. J.: A large organic aerosol source in the free troposphere missing from current 

models, Geophys. Res. Lett., 32, doi:10.1029/2005GL023831, 2005. 



 8 

Hodzic, A., Jimenez, J., Madronich, S., Canagaratna, M., DeCarlo, P., Kleinman, L., and Fast, J.: 

Modeling organic aerosols in a megacity: Potential contribution of semi-volatile and 

intermediate volatility primary organic compounds to secondary organic aerosol formation, 

Atmospheric Chemistry and Physics, 10, 5491-5514, doi:10.5194/acp-10-5491-2010, 2010. 

IPCC, W.: Climate change 2007: The physical science basis, Summary for Policy Makers, 

Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental 

Panel on Climate Change, 2007. 

Jimenez, J., Canagaratna, M., Donahue, N., Prevot, A., Zhang, Q., Kroll, J., DeCarlo, P., Allan, 

J., Coe, H., Ng, N., and others: Evolution of organic aerosols in the atmosphere, Science, 326, 

1525, 2009. 

Johnson, D., Utembe, S. R., Jenkin, M. E., Derwent, R. G., Hayman, G. D., Alfarra, M. R., Coe, 

H., and McFiggans, G.: Simulating regional scale secondary organic aerosol formation during 

the torch 2003 campaign in the southern uk, Atmos. Chem. Phys., 6, 403-418, 2006. 

Kaiser, J.: Mounting evidence indicts fine-particle pollution, Science, 307, 1858-1861, 2005. 

Lim, Y. B., and Ziemann, P. J.: Chemistry of secondary organic aerosol formation from oh 

radical-initiated reactions of linear, branched, and cyclic alkanes in the presence of no x, Aerosol 

Science and Technology, 43, 604-619, 2009. 

Miracolo, M., Hennigan, C., Ranjan, M., Nguyen, N., Gordon, T., Lipsky, E., Presto, A., 

Donahue, N., and Robinson, A.: Secondary aerosol formation from photochemical aging of 

aircraft exhaust in a smog chamber, Atmos. Chem. Phys, 11, 4135-4147, doi:10.5194/acp-11-

4135-2011, 2011. 

Miracolo, M. A., Drozd, G. T., Jathar, S. H., Presto, A. A., Lipsky, E. M., Corporan, E., and 

Robinson, A. L.: Fuel composition and secondary organic aerosol formation: Gas-turbine 

exhaust and alternative aviation fuels, Environmental Science & Technology, submitted. 

Morris, R. E., Koo, B., Guenther, A., Yarwood, G., McNally, D., Tesche, T. W., Tonnesen, G., 

Boylan, J., and Brewer, P.: Model sensitivity evaluation for organic carbon using two multi-

pollutant air quality models that simulate regional haze in the southeastern united states, Atmos. 

Environ., 40, 4960-4972, 2006. 

Murphy, B., and Pandis, S.: Simulating the formation of semivolatile primary and secondary 

organic aerosol in a regional chemical transport model., Environmental science & technology, 

43, 4722-4728, doi:10.1021/es803168a, 2009. 

Nel, A.: Air pollution-related illness: Effects of particles, Science, 308, 804-806, 2005. 

Presto, A. A., Miracolo, M. A., Donahue, N. M., and Robinson, A. L.: Secondary organic aerosol 

formation from high-no x photo-oxidation of low volatility precursors: N-alkanes, 

Environmental Science & Technology, 44, 2029-2034, 2010. 



 9 

Pye, H., and Seinfeld, J.: A global perspective on aerosol from low-volatility organic 

compounds, Atmos. Chem. Phys, 10, 4377-4401, doi:10.5194/acp-10-4377-2010, 2010. 

Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M., Grieshop, 

A. P., Lane, T. E., Pierce, J. R., and Pandis, S. N.: Rethinking organic aerosols: Semivolatile 

emissions and photochemical aging, Science, 315, 1259-1262, 2007. 

Sardar, S. B., Fine, P. M., and Sioutas, C.: Seasonal and spatial variability of the size-resolved 

chemical composition of particulate matter (pm10) in the los angeles basin, Journal of 

Geophysical Research, 110, D07S08, 2005. 

Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.: Measurement of emissions 

from air pollution sources. 2. C1 through c30 organic compounds from medium duty diesel 

trucks, Environ. Sci. Technol, 33, 1578-1587, 1999. 

Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.: Measurement of emissions 

from air pollution sources. 5. C1- c32 organic compounds from gasoline-powered motor 

vehicles, Environ. Sci. Technol, 36, 1169-1180, 2002. 

Volkamer, R., Jimenez, J. L., San Martini, F., Dzepina, K., Zhang, Q., Salcedo, D., Molina, L. 

T., Worsnop, D. R., and Molina, M. J.: Secondary organic aerosol formation from anthropogenic 

air pollution: Rapid and higher than expected, Geophys. Res. Lett, 33, 17, 2006. 

Vutukuru, S., Griffin, R. J., and Dabdub, D.: Simulation and analysis of secondary organic 

aerosol dynamics in the south coast air basin of california, J. Geophys. Res., 111, 

doi:10.1029/2005JD006139, 2006. 

Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R., 

Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P. 

F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, 

N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Williams, 

P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J., Rautiainen, J., Sun, J. Y., Zhang, Y. M., 

and Worsnop, D. R.: Ubiquity and dominance of oxygenated species in organic aerosols in 

anthropogenically-influenced northern hemisphere midlatitudes, Geophys. Res. Lett, 34, L13801, 

doi:10.1029/2007GL029979, 2007. 

 

 



 10 

Chapter 2: The influence of semi-volatile and reactive primary 

emissions on the abundance and properties of global organic 

aerosol! 
 

Abstract 

Semi-volatile and reactive primary organic aerosols are modeled on a global scale using the 

GISS GCM II' “unified” climate model. We employ the volatility basis set framework to 

simulate emissions, chemical reactions and phase partitioning of primary and secondary organic 

aerosol (POA and SOA). The model also incorporates the emissions and reactions of 

intermediate volatility organic compounds (IVOCs) as a source of organic aerosol (OA), one that 

has been missing in most prior work. Model predictions are evaluated against a broad set of 

observational constraints including mass concentrations, degree of oxygenation, volatility and 

isotopic composition. A traditional model that treats POA as non-volatile and non-reactive is also 

compared to the same set of observations to highlight the progress made in this effort. The 

revised model predicts a global dominance of SOA and brings the POA/SOA split into better 

agreement with ambient measurements. This change is due to traditionally defined POA 

evaporating and the evaporated vapors oxidizing to form non-traditional SOA. IVOCs 

(traditionally not included in chemical transport models) oxidize to form condensable products 

that account for a third of total OA, suggesting that global models have been missing a large 

source of OA. Predictions of the revised model for the SOA fraction at 17 different locations 

compared much better to observations than predictions from the traditional model. Model-

predicted volatility is compared with thermodenuder data collected at three different field 

                                                
*
 Originally published as: Jathar, S. H., Farina, S. C., Robinson, A. L., and Adams, P. J.: The 

influence of semi-volatile and reactive primary emissions on the abundance and properties of 

global organic aerosol, Atmos. Chem. Phys., 11, 7727-7746, doi:10.5194/acp-11-7727-2011, 

2011. 
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campaigns: FAME-2008, MILAGRO-2006 and SOAR-2005. The revised model predicts the OA 

volatility much more closely than the traditional model. When compared against monthly 

averaged OA mass concentrations measured by the IMPROVE network, predictions of both the 

revised and traditional model lie within a factor of two in summer and mostly within a factor of 

five during winter. A sensitivity analysis indicates that the winter comparison can be improved 

either by increasing POA emissions or lowering the volatility of those emissions. Model 

predictions of the isotopic composition of OA are compared against those computed via a 

radiocarbon isotope analysis of field samples. The contemporary fraction, on average, is slightly 

under-predicted (20%) during the summer months but is a factor of two lower during the winter 

months. We hypothesize that the large wintertime under-prediction of surface OA mass 

concentrations and the contemporary fraction is due to an under-representation of biofuel 

(particularly, residential wood burning) emissions in the emission inventory. Overall, the model 

evaluation highlights the importance of treating POA as semi-volatile and reactive in order to 

predict accurately the sources, composition and properties of ambient OA. 

 

2.1 Introduction 

Atmospheric aerosols play a key role in many ecological and environmental processes. 

They influence the earth's climate (IPCC, 2007) and have a large impact on public health 

(Bernstein et al., 2004). Organics account for a significant fraction of the fine atmospheric 

aerosol mass (Zhang et al., 2007) and hence have been extensively studied using climate models 

to determine their global impact (Penner et al., 1998;Cooke et al., 1999;Koch, 2001;Chung and 

Seinfeld, 2002;Park et al., 2003;Park et al., 2006). However, when evaluated against 

observations, these models usually under-predict surface organic aerosol (OA) mass 
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concentrations (Liousse et al., 1996;Chung and Seinfeld, 2002;Park et al., 2003;Tsigaridis and 

Kanakidou, 2003;De Gouw et al., 2005;Heald et al., 2005;Volkamer et al., 2006). For example, 

Chung and Seinfeld (2002), on average, under-predicted organic carbon (OC) mass 

concentrations by a factor of 3 to 4. Tsigaridis and Kanakidou (2003) observed a similar under-

prediction over rural and marine areas where measured OC mass concentrations were lower than 

1 !g m
-3

. Volkamer et al. (2006) noted that the discrepancy between model predicted secondary 

OA and observations increased with the photochemical age. Park et al. (2006), however, 

predicted OA concentrations within a factor of 2 with very little bias. This poor performance 

makes it difficult to evaluate the effects of OA on global climate and human health. 

Previous quantitative evaluations of model performance have mainly focussed on 

absolute OA mass concentrations and not considered other properties such as chemical 

composition, volatility and isotopic composition. This has been due to the lack of field 

measurements and/or the limited prediction capabilities of models. Recently, instruments like the 

Aerosol Mass Spectrometer (AMS), Particle-Into-Liquid Sampler (PILS) and thermodenuders 

and techniques like radiocarbon isotope analysis have provided new insight into the sources, 

composition and reactivity of OA typically unavailable from mass measurements (Weber et al., 

2001;Zhang et al., 2005;An et al., 2007;Schichtel et al., 2008). For example, global models tend 

to predict a dominance of primary organic aerosol (POA) or direct particulate emissions, which 

have been assumed to be non-volatile and non-reactive (Kanakidou et al., 2005;Jimenez et al., 

2009). However, AMS results suggest that atmospheric OA is dominated by secondary organic 

aerosol or SOA which is aerosol mass formed from the oxidation products of gas-phase organic 

precursors (Robinson et al., 2007;Zhang et al., 2007). This is one example which points to 

potentially significant problems with how OA is simulated in global models.   
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The shortcomings in current OA models may partly be due to their assumption that POA 

is non-volatile and non-reactive. Recently, various studies have challenged these views 

(Grieshop et al., 2009a;Grieshop et al., 2009b;Robinson et al., 2007;Huffman et al., 2009). First, 

they showed that diesel engine, biomass burning and meat cooking POA emissions are semi-

volatile, i.e. they contained species that span a large range of vapor pressures that exist in a gas-

particle equilibrium as dictated by absorptive partitioning theory (Pankow, 1994). Second, 

Robinson et al. (2007) argued that certain intermediate volatility organic compounds (IVOCs), 

capable of forming OA, were missing from emission inventories compiled using conventional 

techniques. Using source test data, Shrivastava et al. (2008) estimated the missing IVOCs to 

account for 0.25 to 2.8 times the POA mass measured using conventional filter techniques. 

Third, smog chamber experiments demonstrated that photooxidation of diesel exhaust and 

woodsmoke enhanced OA concentrations beyond that predicted by the oxidation of conventional 

VOC precursors (Grieshop et al., 2009b;Robinson et al., 2007;Miracolo et al., 2010;Sage et al., 

2008). It is suspected that semi-volatile and IVOC vapors oxidize to generate additional SOA; 

this SOA has been recently termed non-traditional SOA (Donahue et al., 2009). 

On a regional scale, recent efforts in modeling carbonaceous aerosols have considered the 

semi-volatile and reactive nature of POA (Robinson et al., 2007;Shrivastava et al., 2008;Murphy 

and Pandis, 2009). The only study, so far, to have attempted that in a global model is that by Pye 

and Seinfeld (20110). All of these new models predict a global dominance of SOA and bring the 

POA/SOA split in better agreement with field measurements. Although they arrive at similar 

qualitative conclusions, the schemes used to model semi-volatile and reactive POA are not well 

constrained due to the lack of available experimental data and are therefore very uncertain. In 
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light of this uncertainty, an important next step is to assess these schemes by evaluating model 

performance in direct comparison with observations.  

In this paper, we model semi-volatile and reactive POA and IVOC emissions using the 

volatility basis set (VBS) in conjunction with a global climate model. The VBS is an efficient 

framework for simulating the gas-particle partitioning, dilution and chemical aging of semi-

volatile organics. Model performance is evaluated using observations of surface concentration, 

oxygenation, volatility and isotopic composition. 

 

2.2 Model description 

In this work, we use a ‘unified’ general circulation model (GCM) to simulate global OA. 

The model is based on the Goddard Institute for Space Studies General Circulation Model II' 

(GISS GCM II') (Hansen et al., 1983;Rind and Lerner, 1996;Rind et al., 1999) and includes 

online tropospheric chemistry (Harvard tropospheric O3-NOx-hydrocarbon chemical model (Liao 

et al., 2003)) and aerosol modules (Adams et al., 1999;Chung and Seinfeld, 2002;Liao et al., 

2004;Farina et al., 2010). The GCM has a horizontal resolution of 4° latitude by 5° longitude 

with 9 vertical layers. The simulated period represents a non-specific year near the end of the 

20th century. In addition to organics and elemental carbon (soot), the GCM explicitly treats 

sulfate, nitrate, ammonium, sea salt and mineral dust as described in Liao et al. (2005).   

The OA model is based on the work of Farina et al. (2010). Farina et al. (2010) 

implemented the VBS to simulate the formation and gas-particle partitioning of SOA produced 

from the oxidation of VOC precursors (isoprene, monoterpenes, sesquiterpenes, alkanes, alkenes 

and aromatics). In addition, they also used the VBS to model the gas-phase aging of 

anthropogenic SOA. They assumed that POA was non-volatile and non-reactive and also did not 
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account for IVOCs. In this paper we modified the model of Farina et al. (2010) to account 

explicitly for semi-volatile and reactive POA and IVOCs.  We use the VBS to describe their 

emissions, mixing, gas-particle partitioning and aging. The ensuing sections describe in detail the 

revised OA model. 

 

 
Figure 2.1: Schematic for the volatility basis set (VBS) framework as used in this study. The 

saturation concentration spectrum is divided into semi-volatile (SVOC, C* = 0.01-10
3
 !g m

-3
) and 

intermediate volatility (IVOC, C* = 10
4
-10

6
 !g m

-3
) organic compounds. VOCs are graphically 

presented with C*>10
6
. bVOCs and aVOCs are biogenic and anthropogenic VOCs respectively. See 

Sections 2.2.1.1 and 2.2.1.2 for a detailed discussion. 

 

2.2.1 Organic aerosol (OA) modeling 

2.2.1.1 Volatility basis set and equilibrium partitioning 

The VBS framework describes OA by separating low volatility organics into decadally 

spaced bins of effective saturation concentration (C*) between 0.01 to 10
6
 !g m

-3
 (Figure 2.1) 

(Donahue et al., 2006). C* (inverse of the Pankow-type partitioning coefficient, Kp) is 

proportional to the saturation vapor pressure and is a semi-empirical property that describes the 

gas-particle partitioning of an organic mixture (Pankow, 1994).  Each C* ‘bin’ contains species 
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that span a range of volatilities, i.e. the 1 !g m-
3
 bin contains species with C* between 0.3 !g m

-3
 

and 3 !g m
-3

. The lowest volatility bin, 0.01 !g m
-3

, contains all species lower in volatility than 

0.03 !g m
-3

. The C* spectrum is conventionally divided into semi-volatile (SVOC, 0.01-10
3
 !g 

m
-3

) and intermediate volatility (IVOC, 10
4
-10

6
 !g m

-3
) organic compounds. 

Unlike previous models, the revised model explicitly treats the gas-particle partitioning of 

all low volatility organics. The model assumes ambient OA to exist in an equilibrium between 

the gas and particle phases as dictated by Raoult's law and that the organics in the particle phase 

form a pseudo-ideal solution (Pankow, 1994). The partitioning equations are as follows 

(Donahue et al., 2006): 

  (2.1) 

where !i is the fraction of organic mass in volatility bin ‘i’ in the particulate phase, Ci
*
 is the 

effective saturation concentration of bin ‘i’ in !g m
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and SOA) to form a single phase. In addition, Shrivastava et al. (2008) found that multiple 

phases had a very small effect on predicted OA mass concentrations in simulations that treated 

POA as semi-volatile and reactive. 
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where Tref is the reference temperature (298 K), ∆Hv is the enthalpy of vaporization and R is the

universal gas constant. ∆Hvapis an uncertain parameter and therefore simulations are performed to

assess the sensitivity of the results to a varying ∆Hvap.

2.1.2 OA terminology

OA has been traditionally divided into two categories: POA and SOA. POA is organic material140

directly emitted in the particle phase; it has traditionally been assumed to be non-volatile and non-

reactive. SOA is OA formed in the atmosphere from reactions of gaseous precursors; traditional

chemical transport models have only accounted for SOA production from very volatile precursors.

However, recent research has blurred the distinction between POA and SOA. Hence, it is necessary

to revise certain conventionally used terms that are now either obsolete and/or confusing.145

Figure 1 represents the various classes of OA with the help of a tree diagram. Using the VBS

framework, we define primary organic carbon (POC) as the sum of all the emissions that have a

C* lower than 106 µg m−3. This includes all traditionally defined POA emissions and any IVOC

emissions added to the model. We assume that organic emissions with C* higher than 106 µg m−3

are explicitly accounted as VOC species. As POC is semi-volatile, it dynamically partitions between150

the gas and particle phases with changes in dilution and temperature. We define POA as the particle
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phase component of POC. We further categorize POC into SVOCs and IVOCs, where SVOCs 

refer to the gas+particle organic mass in the 0.01 to 1000 !g m
-3

 bins and IVOCs refer to the 

organic mass in the 10
4
 to 10

6
 !g m

-3
 bins. The exact boundary between the SVOCs and IVOCs 

is somewhat artificial; SVOCs exist in both the gas and particle phase while IVOCs exist 

exclusively as vapors in the atmosphere but are less volatile than VOCs. This distinction is made 

to examine the influence of IVOCs on the OA budget, an influence that has been explored by 

only a handful of studies (Shrivastava et al., 2008;Murphy and Pandis, 2009;Farina et al., 

2010;Pye and Seinfeld, 2010).  

 

 
Figure 2.2: Tree diagram of various classes of OA in the revised model. 

 

A key objective of this work is to study the fate of SVOC and IVOC vapors which are 

believed to oxidize in the atmosphere to form lower volatility products, which condense into the 
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from the oxidation of IVOC vapors. SI-SOG is the sum of S-SOG and I-SOG and SI-SOA is the 

sum of S-SOA and I-SOA. The sum of SI-SOG and SI-SOA is called SI-SOC.  

Gas and particle phase products from the oxidation of VOCs are referred as V-SOG and 

V-SOA respectively, with their sum defined as V-SOC. The traditional abbreviations are 

prefixed with ‘a’ to identify the anthropogenic contribution and ‘b’ for the biogenic contribution. 

OA, hence, is a sum of POA, SI-SOA and V-SOA while SOA is the sum of SI-SOA and V-SOA. 

This VBS framework can efficiently track material from any number of different sources 

and precursors. However, given the computational resources available and the goals of the paper, 

the model separately tracks four classes of organics as shown in Figure 2.1: POC, SI-SOC (S-

SOC and I-SOC together), aV-SOC and bV-SOC. POC and SI-SOC are tracked using two 

separate 9 bin VBS while bV-SOC and aV-SOC are tracked using two separate 4 bin VBS 

(Figure 2.1). The VOC precursors for V-SOC shown in Figure 2.1 are described in detail in 

Farina et al. (2010). 

 
Table 2.1: Definitions and abbreviations used for classes of OA. 

 
 

Other recent papers have also proposed new definitions for different classes of OA. To 

help the reader, Table 2.1 relates the different types of OA referred to in this paper to those used 

in recent manuscripts that deal with semi-volatile POC and SOC. 
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Table 1. Definitions and abbreviations used for classes of OA.

Publication

Categories This work/ Shrivastava Murphy and Pandis Dzepina et al. Dzepina et al.

Tsimpidi et al. (2009) (2008) (2009) (2009) (2010)

Unoxidized POA POA POA FPOA POA POA

or fresh POA

SOA from SVOCs S-SOA+ OPOA OPOA NT-SOA SOASVOC
and IVOCs or non- I-SOA= +SOAIVOC
traditional SOA SI-SOA

Biogenic and an- bV-SOA, Biogenic SOA, BSOA, T-SOA Traditional

thropogenic SOA aV-SOA Anthro. SOA ASOA SOA

from VOCs or traditional SOA

Table 2. Annual emissions of POC and elemental carbon (EC) by

source category.

Annual Emissions (Tg yr−1)

Source POCa EC

Fossil Fuels

North America (Heald)b 1.14 1.35

North America (Bond)c 0.66 0.42

Rest of the world (Bond)c 3.67 2.62

Bio Fuels

North America (Heald)b 2.04 0.19

North America (Bond)c 0.98 0.10

Rest of the world (Bond)c 10.7 1.52

Open Burning (GFEDv2)d 38.9 2.74

Total (Heald +Bond +GFEDv2) 56.4 8.42

Total (Bond +GFEDv2) 54.9 7.40

a Assuming an OM:OC of 1.8, b Heald et al. (2005), c Bond et al. (2004), d Van der

Werf et al. (2006).

the amount of IVOC emissions missing is between 0.25 and

2.8 times the POC emissions measured using a quartz filter

(Schauer et al., 1999, 2001, 2002).

For this work, we used the traditional fossil and biofuel

POA emissions from Bond et al. (2004), which are not based

on a specific year. The open burning emissions are based on

GFEDv2 (Van der Werf et al., 2006); they are from 2005

as the annual emissions for that year lie close to the me-

dian for the 1997 through 2006 period. Although the Bond

et al. (2004) inventory is the most recent for fossil and bio-

fuel combustion emissions, the North American winter-time

predictions based on this inventory are a factor of 2 too low

when compared to observations (Heald et al., 2006b). There-

fore, we updated the Bond et al. (2004) North American

traditional POA and EC emissions using the Cooke et al.

(1999) fossil fuel inventory and the Park et al. (2003) biofuel

inventory (Heald et al., 2005). We use an organic-matter-

to-organic-carbon ratio of 1.8 to convert the POC emission

inventory values from TgC yr−1to Tg yr−1(Turpin and Lim,
2001; El-Zanan et al., 2005; Zhang et al., 2005).

Following the approach of Shrivastava et al. (2008), we

assume the SVOC emissions to be completely represented

by the traditional emission inventory or 56.4 Tg yr−1and that
the IVOC emissions are 1.5 times the traditional emission

inventory or 84.6 Tg yr−1.
Pye and Seinfeld (2010) used a different approach to es-

timate the missing IVOC emissions. They use naphthalene

as a surrogate and estimate IVOC emissions to be 27 Tg

yr−1which is close to the lower end of the range suggested by
the source test data. Given the large uncertainty, simulations

are performed to investigate the sensitivity of the predictions

to the amount of IVOC emissions.

The revised model requires that the POC emissions be dis-

tributed across the VBS. This requires knowing the volatility

distribution of the emissions. In this work, we assume that all

POC emission sources (fossil fuels, biofuels, open burning)

have the same volatility distribution as there are currently in-

adequate data to perform a more refined analysis (Robinson

et al., 2007). This volatility distribution is the same as that

determined for diesel exhaust (Robinson et al., 2007) and

used by Shrivastava et al. (2008) to predict the evolution of

OA in the eastern US. In reality, the emissions from each

source have a distinct composition of organic species and

therefore a unique volatility distribution. However, volatility

data are available for very few sources (Robinson et al., 2007;

Grieshop et al., 2009a). To address potential uncertainty as-

sociated with our assumption we conducted different model

simulations using different volatility distributions.

2.1.4 Photochemical aging

Organic vapors react with atmospheric oxidants which

change their volatility, gas-particle phase partitioning and

hence the amount of OA. This process, within the bounds
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2.2.1.3 POC emissions 

To simulate POC, we need to the know the total emissions of low volatility (C*<10
6
 !g 

m
-3

) organics and their volatility distribution. However, this information is only known for a very 

small number of sources. Therefore, we estimate the POC emissions using existing inventories 

and data from studies of diesel exhaust and woodsmoke to distribute these emissions in volatility 

space.  

 
Table 2.2: Annual emissions of POC and elemental carbon (EC) by source category 

 
 

Table 2.2 lists the annual global emissions of POC and elemental carbon (EC) by source 

category. The POC emissions are the sum of the traditional POA emissions from existing 

inventories plus an estimate of the missing IVOC emissions. The combined inventory, 

representative of emissions for the early 21st century, provides a monthly averaged value for 

each grid cell. 
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on a specific year. The open burning emissions are based on

GFEDv2 (Van der Werf et al., 2006); they are from 2005

as the annual emissions for that year lie close to the me-

dian for the 1997 through 2006 period. Although the Bond
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inventory values from TgC yr−1to Tg yr−1(Turpin and Lim,
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Following the approach of Shrivastava et al. (2008), we

assume the SVOC emissions to be completely represented

by the traditional emission inventory or 56.4 Tg yr−1and that
the IVOC emissions are 1.5 times the traditional emission

inventory or 84.6 Tg yr−1.
Pye and Seinfeld (2010) used a different approach to es-

timate the missing IVOC emissions. They use naphthalene

as a surrogate and estimate IVOC emissions to be 27 Tg

yr−1which is close to the lower end of the range suggested by
the source test data. Given the large uncertainty, simulations

are performed to investigate the sensitivity of the predictions

to the amount of IVOC emissions.

The revised model requires that the POC emissions be dis-

tributed across the VBS. This requires knowing the volatility

distribution of the emissions. In this work, we assume that all

POC emission sources (fossil fuels, biofuels, open burning)

have the same volatility distribution as there are currently in-

adequate data to perform a more refined analysis (Robinson

et al., 2007). This volatility distribution is the same as that

determined for diesel exhaust (Robinson et al., 2007) and

used by Shrivastava et al. (2008) to predict the evolution of

OA in the eastern US. In reality, the emissions from each

source have a distinct composition of organic species and

therefore a unique volatility distribution. However, volatility

data are available for very few sources (Robinson et al., 2007;

Grieshop et al., 2009a). To address potential uncertainty as-

sociated with our assumption we conducted different model

simulations using different volatility distributions.

2.1.4 Photochemical aging

Organic vapors react with atmospheric oxidants which

change their volatility, gas-particle phase partitioning and

hence the amount of OA. This process, within the bounds
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Traditional particulate matter emission inventories are compiled using emission factors 

that are determined using quartz and/or teflon filters collected at elevated aerosol concentrations 

(100-10,000 !g m
-3

). Hence, these inventories do not capture all of the POC emissions up to C* 

=10
6
 !g m

-3
 (Robinson et al., 2010;Shrivastava et al., 2008). Shrivastava et al. (2008) assumed 

that traditional emission inventories account for all SVOC emissions but only a fraction of the 

IVOC emissions. Source test data suggest that the amount of IVOC emissions missing is 

between 0.25 and 2.8 times the POC emissions measured using a quartz filter (Schauer et al., 

1999, 2001, 2002). 

For this work, we used the traditional fossil and biofuel POA emissions from Bond et al. 

(2004), which are not based on a specific year. The open burning emissions are based on 

GFEDv2 (Van der Werf et al., 2006); they are from 2005 as the annual emissions for that year lie 

close to the median for the 1997 through 2006 period. Although the Bond et al. (2004) inventory 

is the most recent for fossil and biofuel combustion emissions, the North American winter-time 

predictions based on this inventory are a factor of 2 too low when compared to observations 

(Heald et al., 2006). Therefore, we updated the Bond et al. (2004) North American traditional 

POA and EC emissions using the Cooke et al. (1999) fossil fuel inventory and the Park et al. 

(2003) biofuel inventory (Heald et al., 2005). We use an organic-matter-to-organic-carbon ratio 

of 1.8 to convert the POC emission inventory values from TgC yr
-1

 to Tg yr
-1

 (Turpin and Lim, 

2001;El-Zanan et al., 2005;Zhang et al., 2005).  

Following the approach of Shrivastava et al. (2008), we assume the SVOC emissions to 

be completely represented by the traditional emission inventory or 56.4 Tg yr
-1

 and that the 

IVOC emissions are 1.5 times the traditional emission inventory or 84.6 Tg yr
-1

. 
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Pye and Seinfeld (2010) used a different approach to estimate the missing IVOC 

emissions. They use naphthalene as a surrogate and estimate IVOC emissions to be 27 Tg yr
-1

 

which is close to the lower end of the range suggested by the source test data.  Given the large 

uncertainty, simulations are performed to investigate the sensitivity of the predictions to the 

amount of IVOC emissions. 

The revised model requires that the POC emissions are distributed across the VBS. This 

requires knowing the volatility distribution of the emissions. In this work, we assume that all 

POC emission sources (fossil fuels, biofuels, open burning) have the same volatility distribution 

as there are currently inadequate data to perform a more refined analysis (Robinson et al., 2007). 

This volatility distribution is the same as that determined for diesel exhaust (Robinson et al., 

2007) and used by Shrivastava et a. (2008) to predict the evolution of OA in eastern US. In 

reality, the emissions from each source have a distinct composition of organic species and 

therefore a unique volatility distribution. However, volatility data are available for very few 

sources (Robinson et al., 2007;Grieshop et al., 2009b). To address potential uncertainty 

associated with our assumption we conducted different model simulations using different 

volatility distributions.  

 

2.2.1.4 Photochemical aging 

Organic vapors react with atmospheric oxidants which changes their volatility, gas-

particle phase partitioning and hence the amount of OA. This process, within the bounds of the 

VBS, is termed aging. Here, aging does not include the oxidation of VOCs, which is dealt with 

explicitly in other parts of the model. In this paper, aging also does not include the microphysical 

processes (condensation and coagulation) that produce an internally mixed aerosol. Finally, the 
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model also does not account for any aging due to heterogeneous, aqueous phase and condensed-

phase reactions. We recognize that these processes might be important but given the uncertainty, 

we choose to focus on the gas phase aging of organic vapors.  

We use a simple aging mechanism as used in previous studies employing the VBS 

(Farina et al., 2010;Lane et al., 2008;Shrivastava et al., 2008). The basic scheme is illustrated 

using red arrows in Figure 2.1. Aging proceeds by a first-order reaction of VBS vapors with OH 

radicals producing a product that has a C* one order of magnitude lower than its precursor. The 

vapor concentration after time "t is given in equation (2.1) where OGi
t
 represents the mass of 

gas-phase organics in bin ‘i’ at time t, [OH] is the OH radical concentration and kOH is the 

reaction rate constant.  

  (2.3) 

We assume that the oxidation products in the vapor phase continue to age and form even 

lower volatility products. Although oxidation might result in additional mass being added to the 

products, we are conservative in our aging scheme and do not add any additional mass. Primary 

organic vapors or POG and SI-SOG are assumed to age with a reaction rate of 4 x 10
-11

 cm
3
 

molecules
-1

 s
-1

, based on the work of Shrivastava et al. (2008).   

The aging mechanism used in this work is very different from that of Pye and Seinfeld 

(2010). They model SVOC aging using a single oxidation step that adds 50% additional mass 

and assign the aged products a C* value two orders of magnitude lower than the precursors. 

They model IVOC oxidation by assuming that the SOA forming potential of IVOCs is the same 

as naphthalene. Therefore, a fundamental difference is that Pye and Seinfeld (2010) assume that 

the aging process can be captured in a single oxidation step and hence they have a specific C* for 

their aged products. Our mechanism, in contrast, implicitly assumes that the gas phase aged 

each source have a distinct composition of organic species and therefore a unique volatility distri-220

bution. However, volatility data are available for very few sources (Robinson et al., 2007; Grieshop

et al., 2009a). To address potential uncertainty associated with our assumption we conducted differ-

ent model simulations using different volatility distributions.

2.1.4 Photochemical aging

Organic vapors react with atmospheric oxidants which changes their volatility, gas-particle phase225
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phase aging of organic vapors.
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product that has a C* one order of magnitude lower than its precursor. The vapor concentration after

time ∆t is given in Eq 3 where OGt
i represents the mass of gas-phase organics in bin ‘i’ at time t,

[OH] is the OH radical concentration and kOH is the reaction rate constant.
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iexp(−kOH [OH]∆t)+OGt
i+1 [1−exp(−kOH [OH]∆t)] (3)

We assume that the oxidation products in the vapor phase continue to age and form even lower240

volatility products. Although oxidation might result in additional mass being added to the products,

we are conservative in our aging scheme and do not add any additional mass. Primary organic vapors
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based on the work of Shrivastava et al. (2008).
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They model SVOC aging using a single oxidation step that adds 50% additional mass and assign

the aged products a C* value two orders of magnitude lower than the precursors. They model

IVOC oxidation by assuming that the SOA forming potential of IVOCs is the same as naphthalene.

Therefore, a fundamental difference is that Pye and Seinfeld (2010) assume that the aging process

can be captured in a single oxidation step and hence they have a specific C* for their aged products.250

Our mechanism, in contrast, implicitly assumes that the gas phase aged products continue to oxidize

to form products that steadily move down in C* space. In addition, our lowest VBS C* bin (0.01

8
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products continue to oxidize to form products that steadily move down in C* space. In addition, 

our lowest VBS C* bin (0.01 !g m
-3

) is much lower than most of the C*s used by Pye and 

Seinfeld (2010) to represent their aged products (0.2 and 16.46 !g m
-3

 for SVOCs and 0.0001 

and 1.69 !g m
-3

 for IVOCs). Therefore, given time, our aging scheme will tend to form more OA 

than Pye and Seinfeld (2010) though it is difficult to say which is correct based on available data. 

Although we know very little about how aging proceeds, we believe it has a large influence on 

the OA budget and the ability of the model to reproduce observations. To illustrate its influence, 

we run a simulation where the POC is treated as semi-volatile but not allowed to age. 

Farina et al. (2010) assumed that the SOA mass yields for biogenic VOCs represent 

completed reactions and hence they do not need to be aged. We realize that this is a significant 

assumption that requires additional study that is outside the scope of this manuscript. However, 

simple “first guess” aging parameterizations, when applied to biogenic SOA, lead to gross over-

predictions in regional models (Lane et al., 2008;Murphy and Pandis, 2009). Hence, as per 

Farina et al. (2010), the biogenic V-SOG is not allowed to age while the anthropogenic V-SOG 

is allowed to age with a reaction rate of 4 x 10
-11

 cm
3
 molecules

-1
 s

-1
. 

Previous studies that have modeled POA as non-volatile have considered a hydrophobic 

to hydrophilic conversion of POA, which has been referred to as “aging” without being very 

precise about what processes were being represented. Although, it was initially meant to 

represent the evolution of POA from an externally mixed to an internally mixed state (Cooke et 

al., 1999), it has also been interpreted to represent a heterogeneous oxidation of OA to more 

hydrophilic products. In either case, “aging” in traditional models is different than “aging” here, 

which is defined as ongoing oxidation of organics in the vapor phase. Moreover, we argue, based 
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on the arguments by Kroll et al. (2011), that heterogenous chemistry appears to be a much slower 

process than the photochemical aging described in this section. 

 

2.2.1.5 Deposition 

Gas and particle phase organics are subject to dry and wet deposition. Dry deposition of gas-

phase organics is based on the resistance-in-series scheme of Wesley (1989). Particle-phase dry 

deposition velocities are calculated based on the treatment of sulfate as described in Koch et al. 

(1999). Wet deposition of gas and particle phase organics are treated separately for large-scale 

and convective clouds, following the GCM cloud schemes described in Del Genio and Yao 

(1993) and Del Genio et al. (1996). Dissolved gases and aerosols are scavenged within and 

below precipitating clouds. The solubility of gases is defined by their effective Henry's law 

constants and all organic gases are assigned a Henry's law constant of 10
5
 M atm

-1
. It is likely 

that higher volatility products on account of being less oxygenated have a lower Henry's law 

constant and vice-versa but in the absence of any robust data, we consider it to be constant across 

volatility. Also, we do not perform a sensitivity simulation with the Henry's law constant because 

the effect was previously explored by Farina et al. (2010). 

The previous version of the unified model (Farina et al., 2010) divided POA into 

hydrophobic and hydrophilic categories which had different wet deposition characteristics 

(Chung and Seinfeld, 2002). By assuming that OA forms a single phase (Section 2.2.1.1), we use 

the same wet deposition characteristics for all OA and hence avoid this additional categorization 

all together. Following Chung and Seinfeld (2002), all organic particles are assigned a 

scavenging efficiency of 80%. Again, it is likely that the scavenging efficiency, just like the 
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Henry's law constant, is a function of volatility but in the absence of any robust data, we consider 

it to be constant across volatility. 

 

2.3 Simulations 

Multiple simulations were performed to evaluate the performance of the new modeling 

framework. Each simulation was performed for a one-year period with four months of spin up 

time to initialize concentration fields. Given the uncertainty in many input variables, we have 

evaluated the sensitivity of model results to the POC emissions, the POC volatility distribution, 

IVOC emissions, and the partitioning process. The sensitivity scenarios run in this study are 

listed in Table 2.3 and briefly described below. 

 
Table 2.3: Overview of simulations 

 
 

BASE: This simulation represents our best estimate for all the input parameters. As described 

previously, fossil and bio fuel emissions of POC are from Heald et al. (2006) for North America 

and Bond et al. (2004) for the rest of the world and open burning emissions are from GFEDv2 

(Van der Werf et al., 2006). All POC sources (fossil fuel, bio fuel, open burning) are treated alike 

and have the same volatility distribution, shown in Figure 2.3(a). IVOC emissions are assumed 

to be 1.5 times the published POC emission inventories. To represent the dependence of COA on 

7734 S. H. Jathar et al.: Influence of semi-volatile and reactive POA on global organic aerosol

Table 3. Overview of simulations.

Framework Name POA Aging? US Inventory Compared to BASE

Traditional TRAD Non-volatile No Heald Non-volatile and non-reactive POA

Revised

BASE Semi-volatile Yes Heald –

LOEM Semi-volatile Yes Bond Lower emissions in North America

LOVL Semi-volatile Yes Heald Lower volatility POC

NOIV Semi-volatile Yes Heald No IVOCs

HVAP Semi-volatile Yes Heald !Hvap as a function of C
∗ and T

NOAG Semi-volatile No Heald No POC Aging
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Fig. 5: Annual-average surface concentrations of POA, SI-SOA, V-SOA and total OA in
µg m−3 for BASE simulation. Area-weighted surface concentrations are shown in parentheses.
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Fig. 4. Annual-average surface mass concentrations of POA, SI-SOA, V-SOA and total OA in µgm−3 for BASE simulation. Area-weighted
surface concentrations are shown in parentheses.

temperature for the VBS – using the revised heat of va-

porization values will not have a large effect on the SOA

mass yields.

– NOAG (NO AGing): To investigate the influence of

gas-phase POC aging on OA burdens, we run the NOAG

scenario where POC is treated as semi-volatile but the

vapors are not allowed to age to form SI-SOA.

4 Results

4.1 Model predictions

4.1.1 Surface concentrations

Figure 4 plots the annually-averaged global surface mass

concentration for POA, SI-SOA, V-SOA and total OA pre-

dicted using the BASE model. Their domain-averaged

surface mass concentrations are 0.11, 0.42, 0.30 and

0.83 µgm−3 , respectively. The highest OA mass concen-

trations are predicted in the Amazon, Congo and southeast

Asian tropical forests. They are due to a combination of

biomass burning emissions and SOA formed from biogenic

VOCs. Higher OA mass concentrations are also predicted in

the northeastern US and parts of India and China where there

are substantial fossil and biofuel combustion emissions.

Appreciable amounts of POA are only present in locations

where total OA mass concentrations are high (>5 µgm−3),
i.e. close to locations with high emissions. However, over

most of the modeling domain, OA mass concentrations are

low (< 5 µgm−3) and most (97%) of the POC evaporates
leaving very little directly-emitted organic mass in the parti-

cle phase. Therefore, the POA concentrations in the revised

model are spatially inhomogeneous. In contrast, the spa-

tial distribution of SI-SOA, which is formed from POC va-

pors, is more homogenous and exhibits a well-mixed regional

Atmos. Chem. Phys., 11, 7727–7746, 2011 www.atmos-chem-phys.net/11/7727/2011/
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temperature, we use a "Hvap value of 30 kJ mol
-1

, a value that has been used by Farina et al. 

(2010).  

 

 
Figure 2.3: Volatility distribution of POC emissions for (a) BASE and (b) LOVL scenarios as a 

fraction normalized to the POC emission inventory total. Panel (c) shows the change in aerosol 

mass fraction for the BASE and LOVL volatility distributions as a function of COA at 298 K. The 

normalized SVOC emissions fully represent the traditional POC emission inventory and hence sum 

to 1. The normalized IVOC emissions are 1.5 times the emission inventory and hence sum to 1.5.  

 

TRAD (TRADitional): To compare and quantify the progress made in this research effort, the 

model is also run in the traditional configuration where we treat POC as non-volatile and non-

reactive. This is the same version of the model that Farina et al. (2010) ran except for changes in 

the POC emission inventory. 

 

LOEM (LOw EMissions): To investigate the sensitivity of the model to the magnitude of the 

POC emissions, we run the LOEM scenario that utilizes the Bond et al. (2004) inventory over 

North America. This reduces the fossil and bio fuel POC emissions over North America by 

slightly less than 50%.  

 

LOVL (LOw VoLatility): To investigate the sensitivity of the model to the volatility distribution 

of the POC emissions, we employ a low volatility distribution which is constructed by moving 
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half of the mass in the SVOC bins to the lowest bin without altering the IVOC distribution. 

Figure 2.3(b) plots the LOVL volatility distribution.  

 

NOIV (NO IVocs): To quantify the contribution of IVOCs to global OA, we run the NOIV 

scenario where no IVOCs are added to the inventory. 

 

HVAP (Heat of VAPorization): To quantify the sensitivity of the results to the enthalpy of 

vaporization, we use the work of Epstein et al. (2010) to describe "Hvap as a function of C* and 

temperature. Epstein et al. (2010) propose a much larger and wider range of "Hvap's (40-150 kJ 

mole
-1

) than used in the BASE case. One needs to exercise caution when interpreting results 

from the HVAP scenario as yields for SOA formation have been derived using a single value for 

the heat of vaporization ("Hvap =30-60 kJ mole
-1

 depending on the study). However, given that 

most SOA chamber experiments are done quite close to 298 K - the reference temperature for the 

VBS - using the revised heat of vaporization values will not have a large effect on the SOA mass 

yields. 

 

NOAG (NO AGing): To investigate the influence of gas-phase POC aging on OA burdens, we 

run the NOAG scenario where POC is treated as semi-volatile but the vapors are not allowed to 

age to form SI-SOA. 

 

2.4 Results 

2.4.1 Model predictions 

2.4.1.1 Surface concentrations 



 29 

 

 
Figure 2.4: Annual-average surface concentrations of POA, SI-SOA, V-SOA and total OA in !g m

-3
 

for BASE simulation. Area-weighted surface concentrations are shown in parentheses. 

 

Figure 2.4 plots the annually-averaged global surface mass concentration for POA, SI-

SOA, V-SOA and total OA predicted using the BASE model. Their domain-averaged surface 

mass concentrations are 0.11, 0.42, 0.30 and 0.83 !g m
-3

, respectively. The highest OA mass 

concentrations are predicted in the Amazon, Congo and southeast Asian tropical forests. They 

are due to a combination of biomass burning emissions and SOA formed from biogenic VOCs. 

Higher OA mass concentrations are also predicted in the northeastern US and parts of India and 

China where there are substantial fossil and biofuel combustion emissions.  

Appreciable amounts of POA are only present in locations where total OA mass 

concentrations are high (>5 !g m
-3

), i.e. close to locations with high emissions. However, over 

most of the modeling domain, OA mass concentrations are low (<5 !g m
-3

) and most (97%) of 

the POC evaporates leaving very little directly-emitted organic mass in the particle phase. 

Therefore, the POA concentrations in the revised model are spatially inhomogeneous. In 

contrast, the spatial distribution of SI-SOA, which is formed from POC vapors, is more 
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Fig. 5: Annual-average surface concentrations of POA, SI-SOA, V-SOA and total OA in
µg m−3 for BASE simulation. Area-weighted surface concentrations are shown in parentheses.
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homogenous and exhibits a well-mixed regional presence. In fact, SI-SOA, although derived 

from POC emissions, resembles traditional SO or V-SOA in terms of its spatial distribution. 

 

 
Figure 2.5: (a) Comparison of observed OOA to OA ratios with model results of SOA to OA ratios 

from the BASE and TRAD scenarios. Model-predicted global distribution of SOA to OA ratio for 

(b) TRAD and (c) BASE cases. Data in (a) are from Zhang et al. (2007). 

 

In contrast to most previous models, the BASE model predicts a global distribution of 

OA that is dominated by SOA. To illustrate this, Figure 2.5(b-c) plots the model-predicted global 

distribution of the SOA-to-OA ratio using annually-averaged values for the TRAD and BASE 

scenarios. The BASE model consistently predicts a SOA-to-OA ratio of 0.8 or higher for all 

locations except for the Amazon, Congo, Alaska and east coast of China. In the TRAD case, OA 

in most locations is predicted to be POA. For example, over land the SOA-to-OA ratio ranges 

0.0!

0.2!

0.4!

0.6!

0.8!

1.0!

U
S

 E
a

s
t 

C
o

a
s
t 

(J
u

l)
!

U
S

 E
a

s
t 

C
o

a
s
t 

(A
u

g
)!

L
o

n
d

o
n
!

W
e

y
b

o
u

rn
e
!

H
o

h
e

n
p

e
is

s
e

n
b

e
rg
!

T
a

u
n

u
s
!

F
u

k
u

e
 (

M
a

r)
!

F
u

k
u

e
 (

A
p

r)
!

F
u

k
u

e
 (

M
a

y
)!

O
k
in

a
w

a
 (

O
c
t)
!

O
k
in

a
w

a
 (

N
o

v
)!

O
k
in

a
w

a
 (

D
e

c
)!

O
k
in

a
w

a
 (

M
a

r-
A

p
r)
!

O
k
in

a
w

a
 (

A
p

r)
!

C
h

e
ju

 I
s
la

n
d
!

S
to

rm
 P

e
a

k
!

D
u

k
e

 F
o

re
s
t!

P
in

n
a

c
le

 S
ta

te
 P

a
rk
!

C
h

e
b

o
g

u
e
!

J
u

n
g

fr
a

u
jo

c
h
!

M
a

c
e

 H
e

a
d
!

Q
u

e
s
t 

(F
in

la
n

d
)!

H
y
y
ti
a

la
!

F
in

o
k
a

lia
!

O
O

A
 /

 O
A

 o
r 

S
O

A
 /

 O
A
!

Observations! TRAD! BASE!

 180
o
W  120

o
W   60

o
W    0

o
    60

o
E  120

o
E  180

o
W 

  60
o
S 

  30
o
S 

   0
o
  

  30
o
N 

  60
o
N 

 

 

0

0.2

0.4

0.6

0.8

1

 180
o
W  120

o
W   60

o
W    0

o
    60

o
E  120

o
E  180

o
W 

  60
o
S 

  30
o
S 

   0
o
  

  30
o
N 

  60
o
N 

 

 

0

0.2

0.4

0.6

0.8

1

Urban-downwind Rural/Remote

(a)

(b) (c)TRAD BASE



 31 

from 0.4 to 0.7 while over oceans the ratio is close to 0.1. Therefore, the TRAD case predicts a 

higher SOA fraction near source regions and a lower SOA fraction away from source regions, a 

trend that is reversed in the BASE case.  

 

 
Figure 2.6: Schematic showing annual production (arrows, Tg yr

-1
) and burdens (textboxes, Tg) for 

the gas and particle phase classes of organic aerosol predicted by the BASE model. 

 

2.4.1.2 OA budgets 

Figure 2.6 presents the breakdown of the overall OA budget . POC emissions, directly 

and indirectly via chemistry, contribute 57.5 Tg yr
-1

 of OA and traditional VOC oxidation forms 

33.1 Tg yr
-1

 of OA to yield a total OA production rate of 90.6 Tg yr
-1

. Of the 141 Tg yr
-1

 (or 78.3 

TgC yr
-1

) of POC mass emissions, only 7.7 Tg yr
-1

 (5%) partitions into the particle phase, 

without undergoing chemical reactions, to form POA. The remainder (POG) is chemically 

transformed in the atmosphere to form lower volatility products, some of which (49.8 Tg yr
-1

) 

partitions into the condensed phase to form SI-SOA. SVOC oxidation forms 22.5 Tg yr
-1

 (45%) 

of SI-SOA which means that slightly less than half of the traditional POC emissions are 

'recovered' into the particle phase through the oxidation of SVOC vapors. IVOC oxidation forms 
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27.3 Tg yr
-1

 (55%) of the SI-SOA and hence contributes to more than half of the SI-SOA and to 

slightly less than a third (30%) of the total OA formed, making it an important contributor to OA 

formation.  

We can divide the amount of SI-SOA formed by the amount of POG reacted to compute 

an effective aerosol mass yield of 53%. The yield, when compared at a COA of 1 !g m
-3

, is much 

higher than the aerosol mass yields observed for biogenic VOCs like alpha-pinene (4%) and 

isoprene (1%) in smog chamber experiments (Farina et al., 2010). However, the yield is similar 

to those of aromatics like benzene (33%) and naphthalene (66%) (Ng et al., 2007;Chan et al., 

2009). Hence, the mechanism used in this work to represent the gas-phase chemistry of POC 

would be similar to a traditional mechanism, which treated all POC like aromatics.  

Table 4 compares the OA burdens for the different sensitivity runs and from previous 

studies. Across the set of sensitivity runs, the POA and SI-SOA burden, counted together, 

remains fairly constant (1.34-1.45 Tg) except for the NOIV and NOAG scenarios. This suggests 

that the OA burden is insensitive to the POC volatility distribution and the "Hvap. This is because 

changes in partitioning affected by changes in the volatility distribution and "Hvap are offset by 

the low volatility products formed via oxidation of the evaporated vapors. Further, the difference 

in total OA burden between the BASE and the NOIV scenario (0.89 Tg) highlights the potential 

contribution that oxidation of IVOCs can have on the global burden (38% of the total). Of this 

0.89 Tg, oxidation products of IVOCs contribute 0.73 Tg directly and 0.16 Tg indirectly by 

providing a larger absorbing phase which shifts the gas-particle partitioning towards the particle 

phase. In addition, the difference between the BASE and NOAG scenarios (1.56 Tg) emphasizes 

the large contribution that POC oxidation or “aging” has on the OA burden. 
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While our estimate for the total OA produced (90.6 Tg yr
-1

) lies between that of previous 

studies (63 and 116 Tg yr
-1

) (Heald et al., 2008;Hoyle et al., 2007;Chung and Seinfeld, 

2002;Henze et al., 2008;Pye and Seinfeld, 2010;Kanakidou et al., 2005) a detailed comparison of 

the burdens predicted by BASE reveal important differences from those predicted with models 

that treat POA as non-volatile and non-reactive (Chung and Seinfeld, 2002;Liao and Seinfeld, 

2005;Koch, 2001;Tsigaridis and Kanakidou, 2003;Farina et al., 2010). The BASE model reduces 

the POA burden by an order of magnitude compared to those other models, which significantly 

changes the POA-SOA split. But, if the primary-in-origin OA, i.e. POA and SI-SOA, are 

considered together, the burden is similar to that predicted by other models. This indicates that 

the evaporated POC returns back to the condensed phase through the oxidation of SVOC and 

IVOC vapors to produce roughly the same burden one would predict in a model with non-

volatile and non-reactive POA. Although we predict a similar burden, we estimate a very 

different spatial distribution of OA (Section 2.4.1.1) and a very different extent of oxygenation 

of OA (Section 2.4.2.2).  

The BASE burdens are much closer to the predictions of Pye and Seinfeld (2010) which 

is the only other global model that accounts for semi-volatile and reactive POC. The BASE 

model predicts a POA/SOA split of 4/96% while Pye and Seinfeld (2010) predict it to be 2/98%. 

In comparison, the TRAD model predicts a POA/SOA split of 47/53%. Similarly, the BASE 

model predicts SI-SOA to account for 53% while Pye and Seinfeld (2010) predict SI-SOA to 

account for 54% of the total OA burden. Further, the OA burden predicted by BASE also 

compares well with the burden proposed by Heald et al. (2010). 

In this work, we used the model of Farina et al. (2010) to treat SOA formation from 

VOCs. However, since the simulation of POA and SOA is integrated under the VBS, changes in 
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handling the POA can influence the V-SOA burden. Across the BASE, LOEM, LOVL and 

NOIV scenarios, the V-SOA burden does not change significantly. However, there is a two-fold 

increase in the V-SOA burden in the HVAP scenario due to the enhanced sensitivity of the gas-

particle partitioning of biogenic V-SOCs to changes in temperature. Our model does not allow 

for aging of biogenic V-SOCs, which results in most (90%) of the biogenic V-SOC mass to exist 

in the gas phase. In the free troposphere, where temperatures are lower, a lot of this gas-phase 

mass condenses into the particle phase yielding a higher burden in the HVAP scenario. In 

contrast, anthropogenic V-SOCs, which are allowed to age, account for only 13% of the total 

gas+particle mass burden with a much lower fraction (50%) in the gas phase. Hence, we do not 

see a significant shift in the anthropogenic V-SOA burden due to the changes in temperature in 

the HVAP scenario.  

 

2.4.2 Comparison with field measurements 

To evaluate model performance, we compare predictions to a wider set of observations 

than considered by previous studies. The evaluation considers OA composition, volatility and 

isotopic composition in addition to surface OA mass concentrations. While total OA 

concentrations are important in understanding the abundance, the other metrics are useful in 

identifying the sources, chemistry and composition of ambient OA. 

 

2.4.2.1 Surface OA  concentrations 

 

United States: Figure 2.7 shows scatter plots comparing model-predicted total OA mass 

concentrations from BASE, LOEM, LOVL, HVAP and NOAG with measured values from the 
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Interagency Monitoring of Protected Visual Environments (IMPROVE) network (IMPROVE, 

August, 1995). Table 2.5 presents the statistical performance metrics for all the model runs 

including the TRAD scenario. The IMPROVE network measures PM concentrations across 

~200, mostly remote/rural, locations within the United States. Each point on the scatter plot 

represents a monthly averaged value at a particular grid cell. The IMPROVE network reports OA 

mass concentrations in !gC m
-3

. To compare with model predictions they are converted to !g m-

3 using a conservative organic-mass-to-organic-carbon ratio of 1.8, based on the work of Turpin 

and Lim (2001) and Aiken et al. (2008). In Figure 2.7, red points represent the summer months 

of June, July and August and blue points represent the winter months of December, January and 

February.  

 

 
Figure 2.7: Scatter plots comparing model predictions from BASE, LOEM, LOVL, HVAP and 

NOAG with observations at IMPROVE sites from the 2001 to 2002. Red represents the summer 

months of June, July and August (JJA) and blue represents the winter months of December, 
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January and February (DJF). The solid grey line is the 1:1 line and the dashed lines are the 1:2 and 

2:1 lines. 

 

We initially compare observations to results from the BASE scenario (Figure 2.7(a)) and 

then highlight differences amongst the different sensitivity cases. In summer, the BASE 

predictions for OA mass concentration lie within a factor of 2 of observations with little bias. 

The winter-time predictions of the BASE model, however, are centered around the 1:2 dashed 

line with most (83%) predictions lying within a factor of 5.  

Statistical metrics of fractional bias and fractional error were calculated to quantitatively 

evaluate model performance.  
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For the BASE scenario, both the fractional bias and error are smaller in summer than in 

winter. The TRAD model, in comparison, has similar performance metrics in summer but better 
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TRAD model performs better than the BASE model due to differences in wintertime results. In 

the BASE model, reduced photochemistry in winter results in reduced aerosol formation through 

gas-phase oxidation of POC emissions. The TRAD model, on the other hand, predicts higher OA 

concentrations because none of the POC emissions evaporate. We are not surprised by the 

performance seen of the TRAD model because Park et al. (2006), using the same emissions 

inventory and IMPROVE observations, arrived at a similarly good model-measurement 
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of POC emissions. The TRAD model, on the other hand, predicts higher OA concentrations because

none of the POC emissions evaporate. We are not surprised by the performance seen of the TRAD

model because Park et al. (2006), using the same emissions inventory and IMPROVE observations,460

arrived at a similarly good model-measurement comparison. Park et al. (2006) achieved the better

model performance by increasing the fossil and biofuel OC emissions over North America by a

factor of ∼2.

Figure 7(b) indicates that the lower emissions (in the LOEM case) lead to a greater under-prediction

during the winter months without significantly changing the summer comparison. This result is465

consistent with the finding of Heald et al. (2006a) that North American winter-time predictions

using the Bond et al. (2004) inventory are low when compared to observations. The lower volatility

distribution (in the LOVL case) improves winter performance without significantly changing the

summer performance. This occurs because the OA emitted from primary organic sources (POA and

SI-SOA) accounts for a larger fraction of the winter OA (65%) than the summer OA (30%). Hence,470

any change in the magnitude or volatility distribution of POC emissions has a bigger influence over

the OA mass concentrations in winter than in summer. The HVAP scenario, using a wider range

of enthalpy of vaporization values, better reproduces the winter data with a slight over-prediction

during the summer. Overall, both the LOVL and HVAP scenarios better predict the absolute OA

concentrations than the BASE and LOEM scenarios due to an improved winter-time comparison.475

Both LOVL and HVAP predict, on an annual basis, a negligible fractional bias and a fractional

error of ∼50%. Model predictions from the NOAG scenario suggest that the model-measurement

comparison worsens as the OA mass concentration decreases. That model does well in polluted

locations (high OA mass concentration) presumably because the OA is very close to the source and

is still fresh. This implies that as the OA moves away from source regions, there is an enhancement480

in the OA mass that the NOAG model does not account for. It is clear, when compared to the BASE

15

model performance.

Fractional Bias =
1
N

N∑

i=1

M−O
M+O

2

(4)450

Fractional Error =
1
N

N∑

i=1

|M−O|
M+O

2

(5)

where M are predicted values, O are observed values and N is the sample size.

For the BASE scenario, both the fractional bias and error are smaller in summer than in winter.

The TRAD model, in comparison, has similar performance metrics in summer but better metrics in

winter than the BASE model. So on an absolute OA mass concentration basis, the TRAD model455

performs better than the BASE model due to differences in wintertime results. In the BASE model,

reduced photochemistry in winter results in reduced aerosol formation through gas-phase oxidation

of POC emissions. The TRAD model, on the other hand, predicts higher OA concentrations because

none of the POC emissions evaporate. We are not surprised by the performance seen of the TRAD

model because Park et al. (2006), using the same emissions inventory and IMPROVE observations,460

arrived at a similarly good model-measurement comparison. Park et al. (2006) achieved the better

model performance by increasing the fossil and biofuel OC emissions over North America by a
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SI-SOA) accounts for a larger fraction of the winter OA (65%) than the summer OA (30%). Hence,470

any change in the magnitude or volatility distribution of POC emissions has a bigger influence over

the OA mass concentrations in winter than in summer. The HVAP scenario, using a wider range

of enthalpy of vaporization values, better reproduces the winter data with a slight over-prediction

during the summer. Overall, both the LOVL and HVAP scenarios better predict the absolute OA

concentrations than the BASE and LOEM scenarios due to an improved winter-time comparison.475

Both LOVL and HVAP predict, on an annual basis, a negligible fractional bias and a fractional

error of ∼50%. Model predictions from the NOAG scenario suggest that the model-measurement
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is still fresh. This implies that as the OA moves away from source regions, there is an enhancement480

in the OA mass that the NOAG model does not account for. It is clear, when compared to the BASE
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comparison. Park et al. (2006) achieved the better model performance by increasing the fossil 

and biofuel OC emissions over North America by a factor of ~2. 

Figure 2.7(b) indicates that the lower emissions (in the LOEM case) lead to a greater 

under-prediction during the winter months without significantly changing the summer 

comparison. This result is consistent with the finding of Heald et al. (2006) that North American 

winter-time predictions using the Bond et al. (2004) inventory are low when compared to 

observations. The lower volatility distribution (in the LOVL case) improves winter performance 

without significantly changing the summer performance. This occurs because the OA emitted 

from primary organic sources (POA and SI-SOA) accounts for a larger fraction of the winter OA 

(65%) than the summer OA (30%). Hence, any change in the magnitude or volatility distribution 

of POC emissions has a bigger influence over the OA mass concentrations in winter than in 

summer. The HVAP scenario, using a wider range of enthalpy of vaporization values, better 

reproduces the winter data with a slight over-prediction during the summer. Overall, both the 

LOVL and HVAP scenarios better predict the absolute OA concentrations than the BASE and 

LOEM scenarios due to an improved winter-time comparison. Both LOVL and HVAP predict, 

on an annual basis, a negligible fractional bias and a fractional error of ~50%. Model predictions 

from the NOAG scenario suggest that the model-measurement comparison worsens as the OA 

mass concentration decreases. That model does well in polluted locations (high OA mass 

concentration) presumably because the OA is very close to the source and is still fresh. This 

implies that as the OA moves away from source regions, there is an enhancement in the OA mass 

that the NOAG model does not account for. It is clear, when compared to the BASE scenario, 

that aging the POC emissions is an essential process that needs to be modeled in order to enable 

a better model-measurement comparison. 
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Presumably, the wintertime comparison could also be improved by aging biogenic SOA. 

However, given that biogenic VOC emissions are higher (Guenther et al., 2006) and 

photochemical processing is stronger in the summer, aging biogenic SOA at the same rate as 

anthropogenic SOA would influence the summertime IMPROVE comparison much more than 

the wintertime IMPROVE comparison.  

 

 
Figure 2.8: Scatter plot comparing model predictions from BASE, LOVL, NOIV, HVAP and 

NOAG with observed values at rural, remote and marine sites across the globe (Liousse et al., 

1996;Chung and Seinfeld, 2002;Zhang et al., 2007). Red represents the months of June, July and 

August (JJA), black represents the months of September, October and November (SON), blue 

represents the months of December, January and February (DJF) and green represents the months 

of March, April and May (MAM) The solid grey line is the 1:1 line and the dashed lines are the 1:10 

and 10:1 lines. 

 

Rest of the World: Figure 2.8 shows scatter plots comparing model-predicted OA mass 

concentrations from BASE, LOVL, NOIV, HVAP and NOAG with observations from across the 

globe (Liousse et al., 1996;Chung and Seinfeld, 2002;Zhang et al., 2007). The performance in 
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the summer and winter months across the four comparisons is similar to that shown in Figure 

2.7. The scatter, however, is much greater than the IMPROVE comparisons and the predictions 

sometimes lie an order of magnitude below observations. For example, for the BASE case, the 

annual fractional bias is -83% and the fractional error is 105%, both much larger than the annual 

IMPROVE metrics. The large scatter might be due to inconsistent and non-standardized 

measurement methods used by the different global networks such as differences in artifact 

correction, carbon analysis method or sampling duration. The IMPROVE network, in contrast, is 

an integrated effort employing standardized protocols and instruments for measurement, making 

it a much more consistent dataset to compare against. 

 

2.4.2.2 Oxygenated organic aerosol 

Recent work, using aerosol mass spectroscopy and factor analysis, has identified two 

chemically distinct classes of OA: hydrocarbon-like OA (HOA) and oxygenated OA (OOA) 

(Zhang et al., 2005). HOA is oxygen depleted OA and is associated with fresh POA emissions; 

and OOA is oxygen rich OA and is associated with aged OA/SOA and biomass burning (Zhang 

et al., 2007;Zhang et al., 2005;Robinson et al., 2007;Donahue et al., 2009). Zhang et al. (2007) 

estimated the fraction of HOA and OOA in OA at numerous locations around the world. We 

compare those estimates with model predictions assuming HOA to be equivalent to POA and 

OOA to be a sum of SI-SOA and V-SOA. Based on our discussion in Section 2.2.1.4, for the 

TRAD model, we consider all non-volatile POA to be “unaged” and therefore as HOA and V-

SOA to be OOA. 

Figure 2.6(a) compares the observed OOA-to-OA ratio at urban-downwind and 

rural/remote locations to model predictions of the SOA-to-OA ratio from the TRAD and BASE 
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models. The comparison deliberately omits urban locations due to the GCM's low spatial 

resolution. The observations indicate that OOA accounts for a large fraction of ambient OA. The 

BASE case reproduces more accurately the fraction of OOA with model predictions lying 

between -21 and +27% of observations. In comparison, the TRAD model, on an average, under-

predicts the OOA fraction by a factor of two. To determine the sensitivity of the model 

predictions to different input parameters, we calculate a concentration-weighted average SOA-

to-OA ratio for the urban-downwind and rural/remote location categories for the various 

sensitivity runs. The sensitivity runs predict a range from 0.79 to 0.93 for the urban-downwind 

locations and 0.71 to 0.90 for rural/remote locations respectively. The observed average, in 

comparison, was 0.83 and 0.95. In contrast, the TRAD model-predicted average was 0.56 and 

0.45 respectively. This suggests that a high SOA-to-OA ratio that is consistent with observations 

is an outcome of the revised framework (semi-volatile and reactive POA) and is not sensitive 

across the range of possible input parameters. Therefore, the revised framework better predicts 

the high fractional contribution of SOA as reported by field studies.   

 

2.4.2.3 OA volatility 

Figure 2.9 compares model-predicted OA volatility to measurements from three different 

field campaigns: (a) FAME campaign in May-June of 2008 (FAME-2008) at Finokalia, a remote 

site in the northeast of Crete, Greece, (b) Mexico City campaign in March-April 2006 

(MILAGRO-2006) and (c) Riverside campaign in July-August 2005 (SOAR-2005). The OA 

volatility was measured using thermodenuders and is represented as a thermogram, which is a 

plot of the OA mass fraction remaining as a function of temperature. The measured thermograms 

have been corrected for non-equilibrium effects in the thermodenuder using the work of Lee et 
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al. (2010) for FAME-2008 and the work of Cappa and Jimenez (2010) for MILAGRO-2006. For 

SOAR-2005, the thermogram has not been corrected for non-equlibrium conditions in the 

thermodenuder. A thermogram for the model predictions is computed using a simple equilibrium 

model that changes the OA gas-particle partitioning with temperature based on the Clausius-

Clapeyron equation.  

 

 
Figure 2.9: Thermograms comparing equilibrium-corrected data from the (a) the FAME-2008 

campaign and (b) MILAGRO-2006 campaign with model results. (c) Thermogram comparing raw 
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measured data from SOAR-2005 with model results. Data are from Lee et al. (2010), Cappa and 

Jimenez (2010) and Huffman et al. (2009b). 

 

At all three locations, the BASE case predicts the OA volatility better than the TRAD 

case. The TRAD model, at all locations, predicts a low volatility OA due to a large presence of 

non-volatile POA that does not evaporate with increase in temperature. The initial decrease in 

the mass fraction remaining for the TRAD model is due to the evaporation of semi-volatile V-

SOC. At higher temperatures, the flat response of the thermogram reflects the remaining POA, 

which is treated as non-volatile by the TRAD model and does not evaporate at any temperature. 

Amongst the various sensitivity runs, the NOIV scenario predicts a somewhat more volatile OA 

while the LOVL predicts a somewhat lower volatility OA; however, these differences are likely 

to be within the measurement uncertainty. The HVAP case, in contrast, predicts a much higher 

volatility OA, overpredicting the evaporation of ambient OA with temperature and highlighting 

the sensitivity of the gas-particle partitioning to "Hvap. Cappa and Jimenez (2010) also found that 

Epstein et a. (2010) formulation of "Hvap produces a much too strong C* sensitivity to 

temperature. 

For the MILAGRO data-set, a possible explanation for a higher observed volatility could 

be the proximity of the measurement site (T0 supersite) to the urban source region. This means a 

shorter time for aging and thus a potentially more volatile OA. The model results, on the other 

hand, are representative of a well-mixed and aged aerosol in a 4° latitude by 5° longitude grid 

cell. In contrast, FAME-2008 is a better data-set to evaluate the model predictions against 

because it is isolated from large sources and therefore indicative of OA transported and aged 

over longer distances. For the SOAR dataset, the BASE scenario predicts a slightly more volatile 

OA perhaps because the field data is not in equilibrium during measurement. 
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2.4.2.4 OA isotopic composition 

 

 
Figure 2.10: Contemporary fraction of OA at IMPROVE sites during the (a) summer and (b) 

winter months compared with model results from BASE and BASE (Revised). Data are from 

Schichtel et al. (2008).  

 

The radioactive isotope of carbon (
14

C) is used to distinguish fossil (coal, gasoline, 

diesel) and contemporary (wood, agricultural waste, pollen, vegetation) contributions to ambient 

OA (Szidat, 2009). Schichtel et a. (2008) present the isotopic composition for 12 rural sites 

collocated with the IMPROVE network. Figure 2.10 shows a comparison between Schichtel et 

al. (2008) measured contemporary fractions during the (a) summer and (b) winter months and 

model results from the BASE scenario (all sensitivity runs predict similar results). To calculate 

the fossil and contemporary fractions, we include both OC and EC. Fossil carbon includes EC, 

POA and anthropogenic SOA from fossil fuel sources. Contemporary carbon includes EC, POA 
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and anthropogenic SOA from biofuels and open burning, and biogenic SOA. The emission 

inventory for VOC precursors of aV-SOA do not allow for separate tracking of fossil and 

contemporary sources. Hence, we divide aV-SOA into its fossil and contemporary fractions in 

the same proportion as the total annual fossil and contemporary emissions of anthropogenic 

VOCs in the US.  

For summer, the observed contemporary fractions vary from 0.8 to 1.0, which the BASE 

model slightly under-predicts (0.62 to 0.85). In winter, the observed contemporary fractions 

range from 0.67 to 1.0 which are significantly under-predicted by the BASE model (0.35 to 

0.55). There are two possible reasons for the shortcoming of the model in predicting the 

contemporary fraction in winter. First, for the observations, the EC on average, accounts for 15% 

of the total carbon (TC) in summer and 22% of the TC in winter. In comparison, the BASE 

model predicts that EC on average, accounts for 22% of the TC in summer and 60% of the TC in 

winter. Hence, the BASE model predicts the correct EC:TC ratio in the summer but over-predicts 

EC concentrations in the winter, which are mostly fossil in origin (80% of US EC emissions), at 

all locations except Mt Rainier (refer to Figure S.1 in supplementary material). Second, the 

BASE scenario under-predicts OC concentrations in winter, which are mostly contemporary in 

origin (78% of US OC emissions), at all locations except Grand Canyon. This leads to a larger 

fossil fraction and a smaller contemporary fraction in winter. Therefore, lower predicted EC 

concentrations and higher predicted OC concentrations will likely improve wintertime 

comparisons. To that effect, we take EC concentrations from the LOEM (LOw EMissions) 

scenario and pair them with OC concentrations from the LOVL (LO VoLatility) scenario to 

predict the contemporary fraction. This combination, labeled “BASE revised” modestly 

improves the comparison during the winter months. 
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It is also possible that the model-predicted contemporary fraction in winter is low 

because the biogenic SOA, which is all contemporary, is not allowed to age. However, as 

mentioned in Section 2.4.2.1, this would badly over-predict the summertime OA mass 

concentration as was seen by Lane et al. (2008) and Murphy and Pandis (2009). Hence, it is not 

clear whether the aging of biogenic SOA is important in predicting the correct contemporary 

fraction in winter. 

 

2.5 Discussion and Conclusions 

In this work, we develop a global OA model that treats POA as semi-volatile and reactive 

and incorporates the emissions and oxidation of IVOCs as an additional source of OA. The OA 

model employs the volatility basis set (VBS) framework to simulate the emissions, chemical 

reactions and phase partitioning of all OA. Model sensitivity was assessed by varying the POC 

emissions, volatility distribution and the heat of vaporization. 

The BASE version of the revised model predicts an annual OA production rate of 90.6 Tg 

yr
-1

 and a global burden of 2.37 Tg. In contrast to previous models that treat POA as non-volatile 

and non-reactive, the revised model predicts that most of OA is SOA, i.e. formed from the 

oxidation of vapor/gas phase organics. This happens because most of the POA evaporates and 

reacts with atmospheric oxidants to form low volatility products that condense into the particle 

phase as SI-SOA. This brings the POA/SOA split predicted by the revised model in better 

agreement with ambient measurements. This work also emphasizes the importance of oxidation 

of IVOCs as an additional source of OA. The revised model predicts that they contribute to more 

than a third of the total OA formed in the atmosphere. This implies that global and regional 

models that do not account for IVOCs could be under-estimating OA formation by 50%. The 
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amount of OA arising from IVOC oxidation depends on the magnitude of IVOC emissions and 

the mechanisms that model its oxidation in the atmosphere both of which remain fairly uncertain. 

Pye and Seinfeld (2010) use a different method to model IVOC emissions and reactivity, and 

hence predict a very different (5% compared to our 30%) contribution of IVOCs to the global 

OA budget. If we wish to determine their true influence, more effort needs to be made to 

constrain their emissions, concentration and reactivity in the atmosphere. 

We evaluated model performance by comparing predictions not only against ambient OA 

mass concentrations but also against observations that provide insight into the sources, chemistry 

and properties of OA. These additional observations include degree of oxygenation, volatility 

and isotopic composition. The revised versions of the model perform much better on all those 

additional observations than the traditional version of the model. This illustrates that by treating 

POA as semi-volatile and reactive and accounting for emissions and oxidation of IVOCs, we 

have improved the model's capability in predicting the sources, chemistry and properties of OA. 

For example, we are able to predict the degree-of-oxygenation of OA. This has important 

implications for climate models that determine the effects of aerosols on radiative forcing since 

oxygenated OA have a higher propensity to uptake water and affect cloud formation. We are also 

able to predict the volatility of OA which is important in determining its lifetime and fate in the 

atmosphere.  

Amongst the sensitivity runs, the scenario where IVOC emissions are set to zero does 

reasonably well in predicting the observed degree-of-oxygenation and volatility but significantly 

under-predicts wintertime OA mass concentrations over the United States. The BASE version 

performs similar to the no-IVOC version but has a slightly better wintertime performance. The 

simulation, where we use the parameterization by Epstein et al. (2010) to represent the enthalpy 
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of vaporization, performs well in predicting the OA mass concentrations over the United States 

and the degree-of-oxygenation. But, it predicts an ambient OA that has a very high volatility 

compared to measurements at the FAME, MILAGRO and SOAR field campaigns. The low 

volatility version of the model, however, performs reasonably well across all three metrics. 

Given the simulations performed in this work, we could argue that to get model predictions to 

agree with observations across mass concentrations, degree-of-oxygenation and volatility, the 

ideal model would need a (1) high IVOC contribution to the OA burden, (2) volatility lower than 

that of diesel exhaust for POC emissions and (3) a lower sensitivity of the OA to changes in 

temperature than those proposed by Epstein et al. (2010).  

A comparison of OA mass concentrations between the revised model and the IMPROVE 

network revealed good agreement in the summer months and an under-prediction in the winter 

months. The sensitivity runs suggest that the comparison during the winter months can be 

improved, without affecting the summer comparison, by increasing emissions or decreasing the 

volatility of the POC emissions. The under-prediction of OA mass concentrations and the 

contemporary fraction in winter lead us to hypothesize that the emission inventory is probably 

under-representing a contemporary source in winter. To support that argument, Bond et al. 

(2004) show that about 60% of contained POC emissions in the US are from residential biofuel 

use and that more than 50% of the uncertainty in those emissions arises from residential wood 

burning. Hence, it is likely that residential biofuel emissions are under-represented in the 

emission inventory in winter.  

Models that simulate the abundance and properties of OA need to account for the semi-

volatile and reactive nature of POA. However, there are currently significant uncertainties in 

building models that represent that behavior. Future work needs to focus on quantifying the total 
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POC (vapor+particle) emissions, volatility and atmospheric processing. Further, models that are 

used to simulate OA need to be evaluated by comparing model predictions with observations of 

intensive properties that provide clues about their physical and chemical processes: degree of 

oxygenation, volatility and isotopic composition.  

 

2.6 Supplementary material 

 
Figure S.1: EC concentrations at IMPROVE sites during the (a) summer and (b) winter months 

compared with model results from the BASE and LOEM scenarios. Data are from Schichtel et al. 

(2008). 
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Chapter 3: Modeling the formation and properties of traditional 

and non-traditional secondary organic aerosol: Problem 

formulation and application to aircraft exhaust! 

 

Abstract 

We present a methodology to model secondary organic aerosol (SOA) formation from the photo-

oxidation of low-volatility organics (semivolatile and intermediate volatile organic compounds). 

The model is parameterized and tested using SOA data collected during two field campaigns that 

characterized the atmospheric evolution of dilute gas-turbine engine emissions using a smog 

chamber. Photo-oxidation formed a significant amount of SOA, much of which cannot be 

explained based on the emissions of traditional, speciated precursors; we refer to this as non-

traditional SOA (NT-SOA). The NT-SOA can be explained by emissions of low-volatility 

organic vapors measured using sorbents. Since these vapors could not be speciated, we employ a 

volatility-based approach to model NT-SOA formation. We show that the method proposed by 

Robinson et al. (2007) is unable to explain the timing of NT-SOA formation because it assumes 

a very modest reduction in volatility of the precursors with every oxidation reaction. In contrast, 

a Hybrid method, similar to models of traditional SOA formation, assumes a larger reduction in 

volatility with each oxidation step and results in a better reproduction of NT-SOA formation. 

The NT-SOA yields estimated for the low-volatility organic vapor emissions are similar to 

literature data for large n-alkanes and other low-volatility organics. The yields vary with fuel 

composition (JP8 versus Fischer-Tropsch) and engine load (idle versus non-idle). These 

                                                
* 

Originally published as: Jathar, S. H., Miracolo, M. A., Presto, A. A., Adams, P. J., and 

Robinson, A. L.: Modeling the formation and properties of traditional and non-traditional 

secondary organic aerosol: problem formulation and application to aircraft exhaust, Atmos. 

Chem. Phys. Discuss., 12, 9945-9983, doi:10.5194/acpd-12-9945-2012, 2012. 
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differences are consistent with the expected contribution of high (aromatics and n-alkanes) and 

low (branched alkanes and oxygenated species) SOA forming species to the exhaust. 

 

3.1 Introduction 

Atmospheric aerosols exert a large influence on climate and public health (Bernstein et 

al., 2004;IPCC, 2007). Secondary organic aerosol (SOA), defined as the organic particulate mass 

arising from the oxidation products of gas-phase organic species, accounts for a significant 

fraction of the submicron atmospheric aerosol mass (Zhang et al., 2007). Until recently, SOA 

formation was believed to be dominated by the first-generation oxidation products of high-flux 

volatile organic compounds (VOCs) such as terpenes and single-ring aromatics. SOA formed 

from speciated VOCs is defined as traditional SOA (T-SOA) and is explicitly accounted for in 

chemical transport models. However, these models systematically under-predict organic aerosol 

levels (Heald et al., 2005;Vutukuru et al., 2006;Johnson et al., 2006;Morris et al., 2006;Dzepina 

et al., 2009;Dzepina et al., 2010), especially during photochemically active periods. 

Recent laboratory and field studies show that combustion emissions when photo-oxidized 

form substantial SOA mass, greatly in excess of what can be explained by T-SOA models 

(Robinson et al., 2007;Grieshop et al., 2009;Hodzic et al., 2010;Miracolo et al., 2011;Miracolo et 

al., submitted). Robinson et al. (2007) proposed that a significant part of the unexplained SOA 

stemmed from the oxidation of low-volatility organic vapors, i.e. semi-volatile and intermediate 

volatility organic compounds (SVOCs and IVOCs). SVOCs refer to the organic mass that have 

an effective saturation concentration (C*) less 10
3
 !g m

-3
 and IVOCs refer to the organic mass 

that have a C* greater than 10
4
 but less than 10

7
 !g m

-3
. In the remainder of this text, we refer to 

SVOCs and IVOCs together as primary organic carbon (POCs). POCs are co-emitted by 
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combustion sources but are less volatile than VOCs. However, these emissions are not included 

in models because the vast majority of them cannot be speciated, they do not contribute 

significantly to ozone formation, and their measurement requires difficult-to-use sorbents. 

Fundamentally, POC vapors form SOA in the same manner as VOCs; oxidation adds functional 

groups to the organic molecule, which reduces the volatility (vapor pressure) of the product and 

leads to condensation into the particle phase. However, the lower initial volatility of POCs mean 

that they can have higher SOA yields than VOCs (Lim and Ziemann, 2009;Presto et al., 2010). 

SOA formed from POC vapors is denoted as non-traditional SOA (NT-SOA). 

A key attribute of POC vapors is that the vast majority of the mass cannot be speciated 

with traditional GC-based techniques (Schauer et al., 1999, 2002). Instead it is classified as an 

unresolved complex mixture (UCM) that is thought to be dominated by branched and cyclic 

alkanes (Robinson et al., 2007;Robinson et al., 2010). The problem is fundamentally caused by 

the number of isomers growing exponentially with carbon number; these isomers co-elute from 

the GC-column (Goldstein and Galbally, 2007). Since the molecular identity of the vast majority 

of POC vapors cannot be ascertained, SOA formation from these compounds cannot be 

investigated or modeled in the same manner as traditional speciated SOA precursors (benzene, 

alpha-pinene, et al.). Instead, NT-SOA models have been based on the volatility of the emissions 

and a volatility-based oxidation mechanism (Robinson et al., 2007;Dzepina et al., 2009;Murphy 

and Pandis, 2009;Jathar et al., 2011). 

Robinson et al. (2007) proposed a method (Robinson-2007) for NT-SOA formation in 

which POC vapors react with the hydroxyl radical (OH) to form products that were one order of 

magnitude lower in volatility than their precursor. Pye and Seinfeld (2010) proposed a single-

step mechanism for SVOCs where the products of oxidation were two orders of magnitude lower 
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in volatility than the precursor and used SOA-yield data for naphthalene as a surrogate for all 

IVOCs. Both methods have been implemented in plume, regional and global chemical transport 

models and are known to close large gaps between observed and predicted SOA concentrations 

(Shrivastava et al., 2008;Tsimpidi et al., 2009;Dzepina et al., 2010;Pye and Seinfeld, 2010;Jathar 

et al., 2011).  

However, there are several shortcomings with existing methods to model NT-SOA 

formation. First, the parameters for those methods were based on very limited or no experimental 

data. For example, the parameters in Robinson et al. (2007) for SVOCs/IVOCs and Pye and 

Seinfeld (2010) for SVOCs have not been constrained using any laboratory data. Shrivastava et 

al. (2008) later showed that the parameters used in Robinson et al. (2007) were able to 

reasonably predict the measured SOA formation from diesel exhaust; it has been assumed that 

the diesel exhaust parameters can be used to model all emissions (fossil fuel, bio fuel and 

biomass burning) (Shrivastava et al., 2008;Jathar et al., 2011). Further, Pye and Seinfeld (2010) 

used naphthalene as a surrogate for IVOCs even when IVOC UCM is thought to be mainly 

composed of branched and cyclic alkanes (Robinson et al., 2007;Robinson et al., 2010). Second, 

both methods assumed that each oxidation reaction reduces the volatility of the precursor by one 

to two orders of magnitude, which is much less than that required to make SOA from VOCs 

(Kroll and Seinfeld, 2008). Third, the IVOC emissions were not directly measured. For the 

Robinson-2007 method they were estimated by scaling POA based on the work of Schauer et al. 

(1999, 2001, 2002); for the Pye and Seinfeld (2010) method they were estimated by scaling 

naphthalene emissions.  

In this paper, we present a new method (Hybrid method) to represent NT-SOA formation 

from POC vapors. First we present the theoretical framework which is based on the volatility 
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basis set approach (Donahue et al., 2006) and the work of Pankow (1994) and Odum et al. 

(1996). Next, the Hybrid method is applied to SOA data from smog chamber experiments 

conducted on diluted aircraft exhaust. A limitation of smog chamber experiments is that it only 

captures the atmospheric evolution of the first few generations of oxidation of the precursors and 

its immediate products. Therefore, we focus on the SOA production from only the first 

generation of oxidation. Although this work focuses on aircraft exhaust, the techniques described 

can be applied to develop parameterizations for NT-SOA formation from other combustion 

sources. 

 

3.2 SOA model formulation 

The modeling of both T-SOA and NT-SOA is based on the approach of Pankow (1994) and 

Odum et al. (1996), which parameterizes smog chamber SOA data using a set of semi-volatile 

surrogate products. The amount of SOA is defined by the gas-particle partitioning of these 

surrogate products. While Odum et al. (1996) represented SOA with two surrogate products, 

more recently, researchers (Hildebrandt et al., 2009;Shakya and Griffin, 2010) have used four or 

more surrogates expressed using the volatility basis set (VBS) (Donahue et al., 2006). The VBS 

(Donahue et al., 2006) separates low-volatility organics into logarithmically spaced bins of 

effective saturation concentration (C*) between 0.01 to 10
7
 !g m

"3
 at 298 K. C* (inverse of the 

Pankow-type partitioning coefficient, Kp) is proportional to the saturation vapor pressure; it is a 

semi-empirical property that describes the gas-particle partitioning of an organic mixture 

(Pankow, 1994). The gas-particle partitioning is calculated using absorptive partitioning theory: 
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where, !i is the fraction of mass in volatility bin ‘i’ in the particulate phase, Ci* is the effective 

saturation concentration of bin ‘i' in !g m
"3

, COA is the total particulate OA concentration in !g 

m
"3

, Mi|g+p is the total organic concentration (gas+particle) in bin ‘i’ in !g m
"3

 and N is the 

number of basis set bins. The volatility basis set (VBS) is used to track the concentration of all 

low-volatility organics (SOA and POC). Although both the SOA formation and POC can be 

tracked using single basis set, for this work we use three separate basis sets to separately track 

different types of material. One VBS tracks the traditional SOA produced from the oxidation of 

speciated VOC precursors. A second tracks the fresh, unoxidized POC and a third tracks the 

SOA produced from the oxidation of POC. 

T-SOA has traditionally been modeled using a distribution of first-generation, non-

reactive surrogate products that were much lower in volatility than their precursor. More 

recently, multi-generational oxidation of the first-generation products was considered (Lane et 

al., 2008). Previous work has modeled NT-SOA formation from POC emissions with a simple, 

volatility-based multi-generational oxidation scheme (Robinson-2007) (Robinson et al., 

2007;Shrivastava et al., 2008;Jathar et al., 2011). However, there are two potential shortcomings 

with this approach for NT-SOA. First, the Robinson-2007 parameterization assumes that each 

oxidation reaction only reduces the volatility of the precursor by one order of magnitude. 

However, oxidation reactions form a variety of products with different volatilities; for example 

the addition of a carbonyl, alcohol, nitrate or acid group creates a product with a volatility 

approximately 1, 3, 3 or 4 orders of magnitude lower than the precursor (Kroll and Seinfeld, 
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2008). Therefore, a more realistic NT-SOA parameterization would distribute the products over a 

set of volatility bins, with some of the bins having much lower volatility than the precursor 

species (similar to T-SOA models). Second, the Robinson-2007 parameterization assumes the 

same reduction in volatility for each generation of oxidation. Recent experiments indicate that 

the reduction in volatility due to oxidation reactions changes as the molecules become more 

oxygenated and fragmentation (carbon-carbon scission) becomes important (Chacon-Madrid et 

al., 2010;Chacon-Madrid and Donahue, 2011;Kroll et al., 2011).  

To address these shortcomings, we propose that the first generation of NT-SOA 

production from the oxidation of POCs be treated similar to T-SOA (with precursor specific 

parameters) and that multi-generational oxidation be treated the same for all SOA. We call this 

the Hybrid approach, which enables a single, unified framework to be used to model both T-

SOA and NT-SOA. We first describe that framework and then its application to develop 

parameterizations for NT-SOA formation. 

The framework can be represented using the following equations: 

! 

d[X j ]

dt
= "kOx,X j

[Ox][X j ]  (3.2) 

  

! 

d[Mi g+ p
]

dt
= " i, jkOx,X j

[Ox][X j ]

j

#

first$generation products

! " # # # $ # # # 

+ % i,kkOx,M k
[Ox][Mk g

]

k

N

#

production

! " # # # $ # # # 

$ kOx,M i
[Ox][Mi g

]

loss

! " # # $ # # 

multi$generational oxidation
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  (3.3) 

Equation (3.2) represents the first-generation oxidation of SOA precursors (speciated VOC or 

POC) where kOx,Xj is the reaction rate between the oxidant [Ox] and SOA precursor [Xj]. The 

index j indicates different precursors, either speciated VOC precursors or volatility bins of the 

POC distribution. Equation (3.3) tracks the secondary organic material in each VBS bin ‘i’. 

Mi|g+p is the total gas+particle organic mass in the ‘i’
th

 bin of the VBS; its gas-particle 
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partitioning is calculated using equation (3.1). The first term in equation (3.3) represents the 

first-generation products formed in ‘i’
th

 bin as a result of the precursor oxidation where "i,j is the 

mass yield for the first-generation oxidation reaction. The second and third terms in equation 

(3.3) account for the evolution of material in the VBS due to multi-generational oxidation where 

we assume that only vapors in the VBS (M|g) react. !k,i is the mass yield from multi-generational 

oxidation reactions in bin ‘k’ and kOx,M is the oxidation rate of vapors in the VBS. 

To interpret smog chamber data, the framework (equations 3.1-3.3) is implemented in a 

box model that is comprised of two modules: a T-SOA and a NT-SOA module, both of which 

are described below. The T-SOA module is based on a standard SOA model (Pankow, 

1994;Odum et al., 1996); it uses the speciated VOC emissions and oxidant data to predict the 

amount of T-SOA that is formed. In the NT-SOA module, the amount of NT-SOA formed is first 

estimated by subtracting off the predicted T-SOA from the measured SOA. Then, the parameters 

in equations (3.1-3.3) are determined by fitting the NT-SOA data.  

Defining the NT-SOA by difference effectively assumes that the T-SOA module is 

correct. However, published yields for T-SOA precursors (e.g. toluene) vary by more than a 

factor of two (Ng et al., 2007;Lane et al., 2008;Hildebrandt et al., 2009). As discussed below, the 

T-SOA model used for this work is based on upper end of the published data and therefore the 

difference approach may systematically underestimate NT-SOA. 

 

3.2.1 Traditional SOA (T-SOA) 

We define T-SOA as the SOA mass formed through the oxidation of speciated VOC 

precursors. To simulate T-SOA, Xj in equation (3.2) represents an individual precursor (e.g. 

benzene, toluene, n-dodecane, or cyclohexane) and OH is assumed to be the only oxidant. We 
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use the SAPRC 2007 lumping and the mass-yields ("i,j in equation 3.2) proposed by Murphy and 

Pandis (2010) for all the speciated VOC precursors listed in Table 3.2. The mass yields are at the 

high end of those reported in the literature; therefore the T-SOA prediction is an upper bound 

estimate, which, in turn, results in a lower bound estimate for NT-SOA. The lumping and 

parameters (kOx,Xj and "i,j) for the T-SOA model are provided in Tables S.1 and S.2 

(supplementary material). Figure 3.1(a) shows a schematic for the T-SOA model.  

 

 
Figure 3.1: Schematics that demonstrate the SOA mechanism for the T-SOA model, Robinson-2007 

method and Hybrid method. 

 

To treat multi-generational oxidation of T-SOA, we use the parameterizations recently 

applied to anthropogenic SOA in regional and global models (Shrivastava et al., 2008;Murphy 
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and Pandis, 2009;Murphy and Pandis, 2010;Farina et al., 2010;Jathar et al., 2011). Gas-phase 

mass of the T-SOA products reacts with the OH radical (kOx,M = 1 x 10
-11

 cm
3
 molecules

-1
 s

-1
)

 
to 

form a product that is one order of magnitude lower in volatility than the precursor or shifted by 

one C* bin relative to the precursor. To account for the addition of oxygen, 7.5% of the 

precursor’s mass is added to the product. Hence, for T-SOA, the #i,k in equation (3.3) takes the 

form: 

! 

"i,k =
+1.075 if k = i +1;

0 otherwise

# 
$ 
% 

  (3.4) 

 

3.2.2 Non-traditional SOA (NT-SOA) 

 NT-SOA is defined as the SOA mass formed through the oxidation of POC vapors. The 

mass of NT-SOA is the difference between the measured SOA and the predicted T-SOA. In this 

section, we present two different approaches to parameterize the NT-SOA formation using the 

VBS framework (equations 3.1-3.3). The methods differ in whether and how they account for 

first-generation oxidation and ongoing multi-generational oxidation (see Figure 3.1(b) and (c)). 

  

Robinson-2007 method 

Robinson et al. (2007) proposed a simple method to model NT-SOA formation, which 

uses a single oxidation kernel for all POC oxidation reactions. This method omits a detailed 

description of the volatility distribution of first-generation products and instead includes only a 

simple, multi-generational oxidation scheme. The scheme is shown schematically in Figure 

3.1(b). 

The simplest way to implement this scheme is to place the volatility-resolved POC 

precursor mass (Xj) directly into the corresponding VBS (Mi) and eliminating equation (3.2) and 
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the first term in equation (3.3). Similar to the treatment of multi-generational oxidation for T-

SOA (Lane et al., 2008), any gas-phase mass in the VBS is reacted with the OH radical to form a 

product that is in a lower volatility bin than its precursor. For NT-SOA (Robinson-2007), #i,k 

takes the form:  

! 

"i,k =
+(1+ foxy ) if k = i + q;

0 otherwise

# 
$ 
% 

  (3.5) 

where, q is the shift in volatility for the product and foxy is the fraction of oxygen added to the 

product per reaction. 

To simulate NT-SOA formation using the Robinson-2007 method, one must define kOx,M , 

foxy and q. Robinson et al. (2007) and Shrivastava et al. (2008) used a kOx,M of 4 x 10
-11

 cm
3
 

molecules
-1

 s
-1

, a foxy of 0.075 and a q of 1 based on SOA data for diesel exhaust. Grieshop et al. 

(2009a) proposed a kOH,M of 4 x 10
-11

 cm
3
 molecules

-1
 s

-1
, a foxy of 0.40 a q of 2 based on SOA 

data for dilute woodsmoke. Dzepina et al. (2009, 2010) and Hodzic et al. (2010) have applied 

these parameterizations to simulate SOA formation over Mexico City. In addition to evaluating 

the previously proposed sets of kOH,M, foxy and q values, we also fit the NT-SOA data to 

determine an optimum set of values for these parameters. 

 

Hybrid method 

The Hybrid method is similar to the previously discussed T-SOA model. The first-

generation of NT-SOA formation is parameterized by fitting equations (3.1-3.3) to smog 

chamber data. A generic multigenerational aging scheme is then used for subsequent generations 

of oxidation. The allows for a more physically realistic treatment of the first-generation oxidation 

that better represents known effects of photochemical aging on volatility. The Hybrid scheme is 

shown schematically in Figure 3.1(c). 
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In the Hybrid scheme, for the first generation of oxidation, the volatility-resolved POC 

emissions are treated as precursors or as Xj in equation (3.2) and are assumed to react only with 

the OH radical. We assume that kOx,Xj is 4 x 10
-11

 cm
3
 molecules

-1
 s

-1
 for POCs with a C* < 10

4
 

!g m
-3

 and 3x10
-11

 cm
3
 molecules

-1
 s

-1
 for POCs with a C* # 10

4
 !g m

-3 
based on reactivity data 

for alkanes in these volatility ranges (C12+ iso-alkanes, C10+ cycloalkanes, multi-ring aromatics) 

(Atkinson and Arey, 2003). 

The mass-yield matrix ("i,j in equation 3.3) for the Hybrid method is derived by fitting the 

NT-SOA data. Since there are ten precursors (C* = 0.01 to 10
7
 !g m

-3
; Table 3.2) and each 

precursor’s products are fit across 4 VBS bins, the Hybrid method potentially requires 40 free 

parameters (many more than can be constrained with the data). Presto et al. (2010), following the 

work of Lim and Ziemann (2009), found that for n-alkanes, the addition of 2 carbon atoms to an 

n-alkane shifted its corresponding SOA product distribution, on average, by one C* bin or one 

order of magnitude in C* space. Therefore, we assume the same product distribution arising from 

each POC precursor, but shifted in volatility space by one order of magnitude. This approach 

reduces the number of free parameters to four. For instance, if [a1 b1 c1 d1] represents the mass 

yield for the precursor C* = 10
6
 !g m

-3
 across C* bins [1 10 100 1000] (!g m

-3
), the mass-yield 

matrix "i,j would take the form, 
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For multi-generational oxidation, we use the same set of parameters used to model the multi-

generational oxidation of T-SOA (equation 3.4). 

 

3.3 Experimental data 

3.3.1 Overview of experimental methods 

 The SOA modeling is performed on data from smog chamber experiments conducted on 

diluted emissions from two different gas-turbine aircraft engines. Here, we provide a brief 

overview of both field campaigns; further details can be found in Miracolo et al. (2011), Presto et 

al. (2011), Miracolo et al. (submitted) and Drozd et al. (in prep). The first study investigated 

SOA formation from dilute emissions from a CFM56-2B gas turbine engine operating on Jet 

Propellant – 8 (JP8) fuel (Presto et al., 2011;Miracolo et al., 2011) at four different engine loads 

(4% - ground idle, 7% - idle/taxing, 30% - landing and 85% - takeoff). In the second study, 

experiments were conducted on dilute emissions from a T63 gas turboshaft engine operating on 
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JP8, Fischer-Tropsch (FT) and JP8/FT 50:50 blend fuels at idle and cruise loads. On a mass-

basis, JP8 consists of 53% straight/cyclic alkanes, 30% branched alkanes and 17% aromatics 

while FT consists of 88% branched alkanes and 12% cyclic alkanes. The experiments used in 

this work are listed in Table 3.1, including the naming convention used in the paper. 

 
Table 3.1: List of smog chamber experiments conducted at the 171

st
 Air Refueling Wing in 

Pittsburgh and Wright-Patterson Air Force Base.  

Number Experiment Name Engine Load Fuel 

1 CFM56-JP8-Idle(1) CFM56-2B 4% JP8 

2 CFM56-JP8-Idle(2) CFM56-2B 4% JP8 

3 CFM56-JP8-Idle(3) CFM56-2B 4% JP8 

4 CFM56-JP8-Taxi CFM56-2B 7% JP8 

5 CFM56-JP8-Landing CFM56-2B 30% JP8 

6 CFM56-JP8-Takeoff CFM56-2B 85% JP8 

7 T63-JP8-Idle T63 Idle JP8 

8 T63-FT-Idle(1) T63 Idle FT 

9 T63-FT-Idle(2) T63 Idle FT 

10 T63-Blend-Idle T63 Idle JP8:FT Blend 

11 T63-JP8-Cruise T63 Cruise JP8 

12 T63-FT-Cruise T63 Cruise FT 

 

Briefly, the experiments involved collecting emissions from about 1-m downstream of 

the engine exit plane and then transferring them through a heated transfer line into a portable 

Teflon smog chamber. The emissions were diluted with clean (HEPA- and activated-carbon 

filter) air to achieve concentration levels in the chamber that were representative of those 

typically found roughly 100-m downstream of the engine exit plane. The concentrations 

correspond to a dilution ratio of 50 to 200. To initiate photo-oxidation, the chamber was exposed 

to natural or artificial sunlight; a suite of instruments tracked the evolution of the gas- and 

particle-phase pollutants. 
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We are aware that experimental uncertainty could affect the quality of data from smog 

chamber experiments and therefore the conclusions from our analysis. The experimental 

uncertainty can be thought of as that associated with measurements, repeatability and 

atmospheric relevance. Of the three, the uncertainty in measurements is probably the lowest as 

the instruments and techniques used to characterize smog chamber data have evolved over the 

past two decades. In this work, measurement uncertainties are quantified and wherever possible, 

included in our analysis. Particularly for experiments used in this work, there is slightly more 

uncertainty associated with repeatability partly because it is too expensive to repeat every 

experiment and partly because there might be factors that have a larger than anticipated effect on 

the experiment (ambient temperature, relative humidity, VOC/NOx ratio). The uncertainty was 

kept to a minimum by undertaking tasks such as cleaning the chamber for 12 hours before use, 

ensuring a minimum background concentration and running a blank experiment. But the largest 

uncertainty results from whether our static and controlled experiments are truly representative of 

the dynamic processes in the atmosphere. Atmospheric relevance was ensured by diluting the 

emissions and maintaining VOC/NOx ratios to those found in the atmosphere and in some cases 

exposing the chamber to natural sunlight than artificial UV light.  

 

3.3.2 Overview of PM and SOA data 

Figure 3.2 compiles the primary (black carbon and primary organic aerosol or POA) and 

secondary PM (sulfate and SOA) data from the two field campaigns. Details can be found in 

Miracolo et al. (2011, 2012). The secondary PM data were measured after three to four hours of 

oxidation inside the smog chamber. The sum of the measured primary PM emissions and 

secondary PM formation spans two orders of magnitude (60-3300 mg kg-fuel
-1

) and is a strong 

function of the engine type, load and fuel. These variations are discussed in detail in companion 
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publications (Presto et al., 2011;Miracolo et al., 2011;Miracolo et al., submitted;Presto et al., 

submitted;Drozd et al., in prep); here the focus is on modeling the SOA formation measured in 

the smog chamber. Briefly, at the end of every experiment, the wall-loss corrected secondary PM 

formation exceeded the direct primary PM emissions, by as much as a factor of 75. Further, SOA 

accounts for more than half of the secondary PM mass (remainder is sulfate) except for in the 

CFM56-JP8-takeoff and T63-FT-cruise experiments and more than three quarters of the PM 

mass in the idle experiments. On average, the T63 engine had higher emissions and higher 

secondary PM formation than the CFM56 engine. Both the SOA formation and precursor 

emissions decrease substantially with increasing engine load, i.e. idle vs. takeoff and idle vs. 

cruise. 

 

 
Figure 3.2: Average black carbon, POA, sulfate and SOA from aircraft exhaust across the two field 

campaigns. CFM56 and T63 are gas turbine engines. JP8 is a petroleum-based aviation fuel, FT is a 

Fischer-Tropsch fuel derived from coal and Blend is a 50:50 JP8:FT mixture. The results for 

CFM56-JP8-Idle are the average of three independent experiments and the results for T63-JP8-Idle 

are the average of two independent experiments. For the repeat experiments, we do not see a large 

experiment-to-experiment variability. We did not perform a cruise experiment for T63-Blend. 
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Simulating SOA formation requires detailed information on SOA precursor 

concentrations. Table 3.2 reports VOC and POC (IVOC and SVOC) emissions data for the 

different experiments. The VOC data were measured using SUMMA canisters and analyzed 

using a GC-MS (Presto et al., 2011). VOC measurements were only made for one of three 

CFM56-JP8-Idle experiments and the measured VOC emission profile was applied to the other 

two experiments. For the CFM56-JP8-Taxi and CFM56-JP8-Landing experiments, only a small 

number of VOCs were measured (Presto et al., 2011) and therefore we estimated emissions of 

additional VOCs using data from the APEX study (Wey et al., 2006). The VOC emissions at taxi 

were assumed to be 40% of those at idle and VOC emissions at landing were assumed to be the 

same as those at takeoff. 

 
Table 3.2: Emission factor (mg kg-fuel

-1
) for speciated VOCs and POCs for each engine, fuel and 

engine load. 

CFM56-JP8 T63-JP8 T63-FT T63-Blend 

 Species Idle Taxi Landing Takeoff Idle Cruise Idle Cruise Idle 

1-butene 194.6 58.4 2.2 2.2 388.6 1.2 155.2 1.4 379.3 

1-heptene 61.5 18.5 - - 0.1 0.0 6.2 0.0 15.0 

1-hexene 81.1 24.3 - - - - - - - 

1-methylcyclohexene 5.2 1.6 - - - - - - - 

1-octene 5.9 1.8 1.2 1.2 - - - - - 

1-pentene 91.2 27.4 10.8 10.8 79.2 0.0 67.8 0.0 0.0 

1,2-butadiene 6.4 1.9 - - 1.4 0.0 4.8 0.0 4.7 

1,2-diethylbenzene 10.9 3.3 1.9 1.9 - - - - - 

1,2,3-

trimethylbenzene 47.0 14.1 1.7 1.7 4.1 0.0 10.5 0.0 42.4 

1,2,4-

trimethylbenzene 41.9 12.6 7.4 7.4 24.1 0.0 29.7 0.0 155.3 

1,2,4,5-

tetramethylbenzene 27.2 8.2 - - - - - - - 

1,3-butadiene 230.3 69.1 - - 379.0 2.7 75.2 1.3 0.0 

1,3-diethylbenzene 10.2 3.1 1.8 1.8 14.2 1.1 176.4 0.0 162.5 

1,3,5-

trimethylbenzene 14.4 4.3 1.0 1.0 15.9 0.0 38.0 0.0 61.8 

1,4-diethylbenzene 46.7 14.0 1.9 1.9 3.6 3.8 73.7 0.0 88.4 

2-ethyltoluene 12.6 3.8 34.2 34.2 15.5 2.8 10.8 0.0 39.7 

VOC 

2-methyl-1-butene 30.3 9.1 1.0 1.0 50.9 0.0 78.5 0.0 34.5 
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2-methyl-1-pentene 10.6 3.2 - - 5.0 0.0 10.4 0.0 5.3 

2-methyl-2-butene 6.0 1.8 - - 9.3 0.0 21.2 0.0 31.2 

2-methyl-2-pentene 2.1 0.6 0.6 0.6 - - - - - 

2-methylheptane 7.1 2.1 - - 8.6 0.0 5.4 0.0 11.2 

2-methylhexane 6.7 2.0 - - 29.3 0.0 8.3 0.0 26.1 

2-methylpentane 50.2 15.1 1.0 1.0 - 2.1 11.1 0.0 22.0 

2,2-dimethylbutane 1.5 0.5 - - 62.7 0.0 19.3 0.0 0.0 

2,3-dimethyl-2-

pentene 7.5 2.3 1.0 1.0 14.3 0.0 5.1 0.0 18.7 

2,3-dimethylbutane 2.8 0.8 2.0 2.0 52.4 4.4 15.8 0.0 76.4 

2,3,4-

trimethylpentane 5.3 1.6 - - 8.2 0.0 27.2 0.0 30.8 

2,4-dimethylpentane - - - - 2.5 0.0 18.8 0.0 24.5 

3-ethyltoluene 15.8 4.7 - - 8.8 0.5 33.8 0.0 24.5 

3-methyl-1-butene 29.5 8.9 - - - - - - - 

3-methylheptane 5.7 1.7 2.9 2.9 - 0.8 5.8 0.0 5.6 

3-methylhexane 24.5 7.4 - - 2.5 0.8 9.3 0.0 20.3 

3-methylpentane 12.5 3.8 - - 4.5 0.0 7.2 0.0 30.7 

4-ethyltoluene 7.7 2.3 3.1 3.1 26.3 0.0 64.4 0.0 85.4 

4-methyl-1-pentene 27.2 8.2 0.7 0.7 - - - - - 

4-methylheptane 5.6 1.7 1.8 1.8 - 0.0 9.1 0.0 8.9 

a-pinene 6.2 1.9 - - 16.9 0.8 85.7 0.0 78.6 

acetylene 2858.9 857.7 9.2 9.2 834.9 36.3 839.3 10.9 1080.9 

benzene 232.0 69.6 72.4 72.4 273.2 4.7 123.2 0.7 282.2 

butane 24.8 7.4 29.2 29.2 38.9 0.0 252.3 1.4 366.0 

butylbenzene 8.5 2.6 - - 5.0 0.5 108.5 0.0 16.9 

c-1,3-

dimethylcyclopentane  - - - - 0.7 0.0 11.8 0.0 2.8 

c-2-butene 11.7 3.5 0.9 0.9 14.7 0.5 85.5 1.0 78.9 

c-2-hexene 6.1 1.8 14.4 14.4 17.8 0.0 16.9 0.0 36.7 

c-2-pentene 8.4 2.5 - - 59.6 0.0 66.9 0.0 45.3 

c-3-hexene 7.2 2.2 - - - - - - - 

cyclohexane 51.9 15.6 - - 1.5 0.0 57.2 0.0 4.7 

cyclohexene 14.5 4.4 3.7 3.7 4.4 0.0 4.3 0.0 18.2 

cyclopentane 12.6 3.8 1.8 1.8 26.5 0.0 34.1 0.0 18.9 

cyclopentene 95.5 28.7 - - 1.9 0.0 23.6 0.0 16.0 

cyclopropane 2.9 0.9 - - - - - - - 

decane 2.5 0.8 33.4 33.4 5.3 9.1 173.1 0.0 231.4 

dodecane 108.3 32.5 16.1 16.1 - - - - - 

ethane 115.5 34.7 83.3 83.3 149.6 26.6 143.7 0.0 158.6 

ethene 77.3 23.2 28.1 28.1 2865.5 49.6 1379.7 8.8 2984.4 

ethylbenzene 3.9 1.2 1.0 1.0 24.1 0.0 59.2 0.0 75.3 

 

heptane 5.9 1.8 - - 132.8 0.0 16.3 0.0 114.0 
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hexane 15.4 4.6 2.4 2.4 231.9 66.9 26.9 0.0 149.9 

hexylbenzene 16.6 5.0 - - - - - - - 

i-butane 42.7 12.8 42.2 42.2 4.9 0.4 89.5 0.0 0.0 

i-butene 71.7 21.5 5.5 5.5 119.8 0.0 512.3 0.0 425.4 

i-pentane 34.0 10.2 29.9 29.9 0.0 0.0 0.0 0.0 270.7 

isoprene 56.0 16.8 - - 82.3 0.0 38.6 0.0 5.0 

i-propylbenzene 4.8 1.4 0.8 0.8 8.3 0.0 102.6 0.0 90.5 

limonene/indan 7.9 2.4 - - 0.0 0.0 0.0 0.0 0.0 

m-xylene 26.4 7.9 1.1 1.1 37.6 0.0 55.5 0.0 7.3 

methylcyclohexane 14.4 4.3 - - 5.1 0.0 5.8 0.0 15.9 

methylcyclopentane 11.2 3.4 - - 2.6 0.0 11.8 0.0 14.2 

naphthalene 45.9 13.8 1.6 1.6 - - - - - 

nonane 36.1 10.8 - - 112.5 0.0 3.4 0.0 121.3 

o-xylene 5.2 1.6 - - 24.1 0.0 66.4 0.0 80.9 

octane 7.5 2.3 0.9 0.9 14.9 0.0 3.4 0.0 21.7 

p-xylene 4.8 1.4 3.8 3.8 19.6 1.0 44.4 0.0 95.8 

pentane 12.0 3.6 15.6 15.6 12.3 0.0 60.9 0.0 4.6 

propane 37.4 11.2 32.6 32.6 30.3 0.0 15.5 0.0 13.9 

propene 696.2 208.9 6.3 6.3 1087.8 5.3 1120.6 13.0 1545.6 

propylbenzene 16.6 5.0 1.4 1.4 14.6 0.0 35.3 0.0 38.4 

propyne 72.3 21.7 - - 84.0 0.7 97.6 0.1 123.3 

sec-butylbenzene 39.4 11.8 1.6 1.6 - - - - - 

styrene 8.2 2.5 - - 12.4 0.0 7.5 0.0 24.2 

tetradecane 4.9 1.5 0.9 0.9 - - - - - 

toluene 84.7 25.4 3.0 3.0 108.5 1.5 34.0 0.3 98.6 

1,3-hexadiene (trans) 6.3 1.9 - - 7.6 0.0 29.7 0.0 9.1 

t-2-butene 61.0 18.3 4.3 4.3 53.0 1.1 116.8 0.4 108.2 

t-2-hexene 9.5 2.9 - - 9.9 0.0 13.0 0.0 13.4 

t-2-pentene 15.7 4.7 - - 102.1 0.0 28.2 0.0 138.4 

tridecane 47.4 14.2 1.9 1.9 - - - - - 

 

undecane 93.7 28.1 15.8 15.8 2.2 2.5 45.4 0.0 99.1 

           

C* = 10
-2

 !g m
-3

 4.8 1.7 3.2 2.1 31.0 0.3 21.8 3.8 17.6 

C* = 10
-1

 !g m
-3

 4.8 2.8 4.4 3.1 48.6 0.5 38.1 6.1 27.6 

C* = 10
0
 !g m

-3
 6.4 3.4 4.7 3.8 24.7 0.2 28.7 7.7 18.7 

C* = 10
1
 !g m

-3
 4.8 10.6 7.0 4.5 61.8 0.6 76.6 14.0 56.4 

C* = 10
2
 !g m

-3
 4.8 23.5 7.0 4.9 85.5 0.8 118.8 3.1 73.6 

C* = 10
3
 !g m

-3
 11.2 158.8 16.4 13.4 15.0 0.1 1.8 0.0 8.0 

C* = 10
4
 !g m

-3
 25.6 285.1 10.4 8.4 56.2 0.5 9.7 0.0 26.6 

C* = 10
5
 !g m

-3
 80.0 34.1 4.0 5.9 984.0 9.4 196.3 12.6 493.3 

C* = 10
6
 !g m

-3
 1459.4 39.1 20.0 11.3 4901.3 46.6 3613.6 12.4 3814.1 

POC 

C* = 10
7
 !g m

-3
 1459.4 0 0 0 4901.3 0 3613.6 0 3814.1 
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POC emissions were characterized by GC-MS analysis of quartz filter and Tenax TA 

sorbent tube samples (Presto et al., 2011). Formally, we define POC as the sum of (both 

speciated and unspeciated) emissions that have a C* lower than or equal to 10
7
 !g m

-3
. Presto et 

al. (2011) speciated less than 10% of the POC emissions (similar to studies done with other 

sources (Schauer et al., 1999, 2002)) the remainder was reported as an unresolved complex 

mixture. To estimate the total mass of POC emissions, Presto et al. (submitted) developed a 

calibration curve for the UCM mass with fuel and lubricating oil used by the aircraft. The 

emissions were then distributed into the VBS based on the GC elution time (Presto et al., 

submitted). Further, they found that the chromatogram for all idle emissions appeared to peak 

near a C* of 10
6
 !g m

-3
 implying that there were considerable emissions of species with a C* 

greater than 10
6
 !g m

-3
 that could not be quantified but were entirely capable of forming SOA. 

To ensure the inclusion of all low volatility organics that are capable of forming SOA, we 

assume that the mass of emissions in the C*=10
7
 !g m

-3
 bin equals the mass in the C*=10

6
 !g m

-

3
 bin for all the idle experiments. Table 3.2 reports measured POC emissions as a function of C*. 

Figure 3.3 plots the measured SOA and its precursors – POC and VOC– for the different 

experiments. The VOCs include only those that form SOA based on the SAPRC classification. 

Apart from the T63-JP8-Cruise experiment, the measured SOA is smaller than the sum of the 

precursors (POC + VOC). Theoretically, the precursor mass would need to be larger than the 

SOA mass if we believe that the SOA is a product of gas-phase oxidation of organic emissions. 

So, it is likely that the precursors in the cruise experiments are mostly oxygenated species and 

therefore not accounted for in Figure 3.3 because our instrumentation largely targets 

hydrocarbons and modestly polar species. The POC emissions, on average, are larger than the 
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speciated SOA precursors and therefore likely to be very important SOA precursors. Most of the 

POC emissions are IVOCs. 

 

 
Figure 3.3: Average emission factors for SOA, POC (SVOC and IVOC) and VOC (SOA 

precursors) across the two field campaigns. The results for T63-JP8-Idle are the average of two 

independent experiments. We did not perform a cruise experiment for T63-Blend. 

 

3.3.4 Oxidant concentrations 

The vast majority of the SOA precursors in aircraft exhaust are saturated species (there 

are significant unsaturated light VOCs, which do not form SOA); therefore the oxidation 

chemistry in the smog chamber experiments are largely driven by the hydroxyl radical (OH) and 

not by ozone. OH concentrations were not directly measured but inferred from the measured 

decay of organic (e.g. toluene) and inorganic (e.g. SO2) species. The OH concentration varied 

with time and was about 10
7
 molecules cm

-3
 at the beginning of the experiment and dropped to 
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10
6
 molecules cm

-3
 by the end. For some experiments, we estimated the OH exposure only using 

high reactivity species (kOH > 10
-11

 cm
3
 molecules

-1
 s

-1
) to reduce uncertainties associated with 

any bag leakage. Figure S.1 shows the median OH exposure (orange cross) with the standard 

error of the mean (green bars) calculated for each experiment. The OH exposure ranges from 4 to 

almost 50 hours of atmospheric oxidation at a typical OH concentration of 10
6
 molecules cm

-3
.  

 

3.4 Results 

3.4.1 T-SOA  

Model predictions for T-SOA are compared to the measured SOA in Figure 3.4(a). Each 

point represents a time-averaged value over 100 seconds from an individual experiment. The 

CFM56 and T63 data are presented in separate panels. The model predicts that aromatics are the 

most important T-SOA precursors. In order to quantify the model-measurement comparison, we 

calculate the fractional error: 

! 

Fractional Error =
1

N

P "M
P +M

2i=1

N

#   (3.7) 

where P is the predicted OA, M is the measured OA mass and N is number of data points. 

Fractional error values are listed in Figure 3.4(a). Except for the CFM56-JP8-Takeoff and T63-

FT-Idle experiments, the T-SOA module predicts about half of the measured SOA. We 

hypothesize that the large unexplained SOA is a direct result of unspeciated POC oxidation and 

is hereon referred to as NT-SOA. 
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Figure 3.4: Modeled vs measured OA mass for the T-SOA model and two versions of the NT-SOA 

model (Robinson-2007 and Hybrid). The top row shows experiments done on the CFM56 engine 

and the bottom row shows experiments done on the T63 engine. 

 

3.4.2 NT-SOA formed versus POC reacted 

 The NT-SOA is estimated by subtracting the T-SOA prediction from the measured SOA. 

Except for the T63-FT experiments, NT-SOA accounts for anywhere between 30 and 96% of the 

SOA measured in the chamber. Although the T-SOA model explains essentially all of the SOA 

formed in the T63-FT experiments, the mass yields of Murphy and Pandis (2010) are at the high 

end of those reported in the literature and therefore the T-SOA model may overestimate T-SOA. 

Before applying the NT-SOA models, we first evaluate a mass balance between the 

estimated NT-SOA and the estimated mass of reacted POC. For this calculation, we assume that 

the POCs with C* < 10
4
 !g m

-3
 react with the OH radical with a reactivity of 4 x 10

-11
 cm

3
 

molecules
-1

 s
-1

 and POCs with C* # 10
4
 !g m

-3
 react with the OH radical with a reactivity of 3 x 
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10
-11

 cm
3
 molecules

-1
 s

-1
. To quantify the mass balance, we calculate an effective NT-SOA yield, 

which is defined as follows: 

! 

Effective NT " SOA Yield =
NT " SOA formed

POC reacted
  (3.8) 

Figure 3.5 plots the effective NT-SOA yield as a function of the OA concentration (COA). 

There are several important points to make from the plot. First, from a mass balance perspective, 

the NT-SOA yields are reasonable (i.e. they are less than 1), which means that the amount of 

NT-SOA formed is less than the amount of POC reacted. Second, the effective NT-SOA yields 

are similar to published yield data for IVOCs, such as n-dodecane and n-tridecane (Presto et al., 

2010) and large (C10+) branched and cyclic alkanes (Lim and Ziemann, 2009). Figure 3.5 

indicates that for the JP8 experiments, the effective NT-SOA yields fall between the measured 

yields for n-dodecane (C12) and n-tridecane (C13). This is not surprising since the UCM 

distribution of both the emissions and unburned fuel peak between C11 and C15 (Corporan et al., 

2011;Presto et al., 2011). Finally more most experiments, the NT-SOA yields increase with 

increasing COA, implying that the NT-SOA is semi-volatile, similar to T-SOA formed in smog 

chamber experiments (Odum et al., 1996). 

The effective yields in Figure 3.5 appear to depend on both engine load and fuel 

composition. First, the idle experiments appear to have higher yields than non-idle experiments. 

This could be due to differences in precursor composition; the idle POC emissions are comprised 

of compounds that more efficiently produce SOA than non-idle emissions. If true, then different 

NT-SOA parameterizations would need to be developed for different engine loads. Alternatively, 

the higher idle-experiment yields may also be due to partitioning differences (idle experiments 

were conducted at higher COA). Second, the NT-SOA yields for JP8-Idle are higher than Blend-

Idle which are higher than FT-Idle. Accounting for differences in COA values, it could be argued 
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that Blend-Idle yields are an arithmetic average of the JP8-Idle and FT-Idle yields. Miracolo et 

al. (submitted) showed that the differences in SOA formation between JP8 and FT could mostly 

be attributed to compositional differences in the fuels. FT is comprised of mainly branched 

alkanes with low SOA yields versus JP8 which contains much higher yield n-alkanes and 

aromatics. Therefore, different NT-SOA parameterizations may be needed for different fuel 

types.  

 

 
Figure 3.5: NT-SOA yield plotted as a function of COA. For reference, we also include SOA yields 

for n-dodecane and n-tridecane (dotted grey lines). 

 

3.4.3 Parameterizing NT-SOA formation  

In this section we develop parameterizations for NT-SOA formation by fitting the 

measured SOA production. The goal is to determine an optimum parameter-set for the Robinson-

2007 (kOH,M, foxy and q) and Hybrid approaches ("i,j; equation 3.5). 
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Figure 3.6: Model predictions of OA compared to those measured during the experiment. NT-SOA 

is predicted using the Hybrid method using best fits for each experiment. 

 

Robinson-2007 method 

The Robinson-2007 method, when using the Robinson et al. (2007) and Grieshop et al. (2009) 

parameter sets, under-predicts the NT-SOA formed during idle-experiments but over-predicts it 

during non-idle experiments. Therefore, we fit the NT-SOA data to find an optimum parameter 

set for the Robinson-2007. We considered a wide but realistic range of reaction rates (kOH), 

fraction of oxygen added to the product per reaction (foxy) and shift in volatility (q). For kOH, we 

use a range of 1 to 5 x 10
-11

 cm
3
 molecules

-1
 s

-1
 based on Atkinson and Arey (2003). For foxy, we 

use a range of 0.05 to 0.4, which corresponds to the addition of 1 to 5 oxygen atoms per 

generation to a C15 alkane. For q, we use a value of either 1 to 2, which corresponds to 1 to 2 

orders of magnitude change in the product volatility with each oxidation reaction. Within these 
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ranges, the optimum set was determined by minimizing the fractional error (equation 3.5) 

between model predictions and measurements for each experiment. 

 

 
Figure 3.7: Measured OA compared to model predictions using best-fits of the Robinson-2007 

method for the T63-Blend-Idle experiment.  
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3
 molecules

-1
 s

-1
, foxy = 0.05-0.4, q = 2) is required to reproduce the SOA data. In 

comparison, a more modest parameter-set (kOH = 1-3 x 10
-11

 cm
3
 molecules

-1
 s

-1
, foxy = 0.05-0.3, q 

= 1) is sufficient to describe the non-idle SOA data. The results are illustrated in Figure 3.4(b), 

which plots model predictions using the Robinson-2007 method with the best fit for each 

experiment against the OA measured in the chamber. Compared to predictions from the T-SOA 

model alone, we see model predictions improve for the CFM56 experiments but only slightly for 

the T63 experiments. The improvement is quantified by the fractional error values listed in 
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Although an optimum parameter set provides some improvement over the T-SOA model, 

the Robinson-2007 method cannot reproduce the temporal trend in the data. The measured SOA 

mass varies linearly or rolls over with OH exposure in the chamber (Figure 3.6). However, the 

NT-SOA calculated using the Robinson-2007 method shows the opposite trend with little NT-

SOA formed initially and significantly more is formed later. This effect is clearly seen for the 

T63-Blend-Idle case in Figure 3.7. This happens because the Robinson-2007 approach requires 

several generations of oxidation (a lot of OH exposure) before a large fraction of the products 

have a C* low enough to partition into the particle phase. The problem is most severe in the idle 

experiments where almost all of the emissions are IVOCs (Table 3.2). The Robinson-2007 

method works for the CFM56-JP8-Taxi and CFM56-JP8-Takeoff experiments primarily because 

a sizeable fraction of the emissions are already found in lower C* bins (C* = 10
2
-10

4
 !g m

-3
; 

Table 3.2).  

 The O:C ratio of OA reveals additional problems with the Robinson-2007 method. The 

O:C of the POA is measured before the oxidation phase of the experiment. For T-SOA, we use 

the work of Chhabra et al. (2010) to assign the O:C for SOA formed from alkenes and aromatics 

and the work of Presto et al. (2010) to assign the O:C for SOA formed from alkanes. For NT-

SOA, we calculate O:C by explicitly tracking the addition of oxygen per reaction (foxy). For a few 

of the experiments, the optimum parameter-set for the Robinson-2007 method predicts a very 

high O:C ratio (>0.8) of OA. This occurs because precursors have to go through multiple 

generations of oxidation before they reach a low enough volatility to partition into the particle 

phase. A consequence of this is that a lot of oxygen is added, with the exact amount depending 

on the values of foxy and q. For example, for the optimized parameter-set for the T63-JP8-Idle 

experiment (kOH = 5 x 10
-11

 cm
3
 molecules

-1
 s

-1
, foxy = 0.40, q = 2), the O:C of the product would 
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be close to 1 after only two generations of oxidation versus 0.32 for the measured data. It is clear 

the Robinson-2007 method with a modest reduction in volatility with each oxidation reaction is 

unable to reproduce both the temporal dependence of NT-SOA and the O:C of OA.  

 

Hybrid method 

We fit the NT-SOA data to determine a set of VBS yields (equation 3.5) for the Hybrid 

parameterization for each experiment individually. Figure 3.6 plots the time series of measured 

and predicted OA for each experiment, with the NT-SOA calculated using the best fit for the 

Hybrid method. The upper and lower bounds of the SOA are presented to indicate experimental 

uncertainty due to wall-losses (we have not accounted for uncertainty in the T-SOA model). The 

predicted contribution from the first generation of oxidation of POC is labeled ‘NTSOA (1st 

generation)’ and the contribution from multi-generational oxidation is labeled ‘NTSOA (aged)’. 

Figure 3.6 indicates that the multi-generational oxidation -- as defined by equation (3.4) -- 

contributes negligibly to the SOA mass over the range of oxidant exposures observed in these 

experiments. Scatter plots of the model versus measurements are shown in Figure 3.4(c). The 

Hybrid method is able to reproduce the data better than the Robinson-2007 method with 

significantly lower fractional error. 

To compare the Hybrid method fits across different experiments, Figure 3.8 plots the 

effective NT-SOA yields for select POC precursors as a function of COA for the JP8 experiments. 

The effective yield is defined as the SOA formed by each discrete POC precursor divided by the 

mass of POC precursor reacted. Figure 3.8(a) shows yields for the precursors 10
3
 and 10

4
 !g m

-3
 

and 8(b) shows yields for precursors 10
5
, 10

6
 and 10

7
 !g m

-3
. For visual clarity, we have 

excluded points for all POC precursors that contribute less than 15% to the NT-SOA mass. The 
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lower C* surrogates generally do not contribute much NT-SOA mass because their emissions are 

either low and/or because very little of their mass exists as vapors and is therefore available for 

oxidation 

 

 
Figure 3.8: SOA yield plotted for POC precursors that contribute more than 15% of NT-SOA mass 

as a function of COA (symbols). For reference, we also plot SOA yields for n-decane (estimated), n-

dodecane, n-tetradecane, n-hexadecane and n-octadecane (estimated) (dotted lines). The different 

colors connect the symbols to the dotted lines. For example, the SOA yields for the C*=106 !g m-3 

bin for all the experiments are plotted with blue squares and the SOA yield for C* equivalent n-

dodecane (C12) is plotted with a blue dotted line. 

 

For all of the idle experiments (Figure 3.8(b)), irrespective of the field campaign, almost 
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5
,10

6
 and 10
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-3
). This 

is expected because 90% of the POC emissions are IVOCs which peak at C*=10
6
 !g m

-3
. These 

emissions appear to be mostly composed of unburned fuel (Miracolo et al., submitted). In 
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POCs in 10
3
 and 10

4
 !g m

-3
 bins. We hypothesize that at higher loads the combustion efficiency 

is higher and hence the fuel (C* peak of 10
6
 or 10

7
 !g m

-3
) might be partially oxidized to form 

intermediates that have a slightly lower volatility (10
3
 or 10

4
 !g m

-3
). 

 Figure 3.8(a) shows that the effective SOA yields for POCs in the 10
3
 and 10

4
 !g m

-3 
bins 

(symbols) are lower than the published yields for n-alkanes (Presto et al., 2010) in the same C* 

range (dashed lines; C18 ~ 10
3
 !g m

-3
 and C16 ~ 10

4
 !g m

-3
). This suggested that the unspeciated 

POC mass in the 10
3
 and 10

4
 !g m

-3 
is likely

 
composed of branched and oxygenated compounds 

which have lower yields than corresponding n-alkanes (Lim and Ziemann, 2009). In comparison, 

Figure 3.6(b) shows that the SOA yields for POCs in the 10
5
, 10

6
 and 10

7
 !g m

-3 
bins (symbols) 

are equal or higher than published yields for n-alkanes in the same C* range (dashed lines; C14 ~ 

10
5
 !g m

-3
, C12 ~ 10

6
 !g m

-3
 and C10 ~ 10

7
 !g m

-3
). Therefore, the unspeciated POC mass in the 

10
5
, 10

6
 and 10

7
 !g m

-3 
bins is likely

 
composed of cycloalkanes, alkylbenzenes and polycyclic 

aromatics which have higher yields than n-alkanes (Ng et al., 2007;Hildebrandt et al., 2009). 

This seems consistent with the emissions in these bins being comprised of unburned fuel when 

the engine is idling. 

 

3.5 Conclusions and discussion 

In this work, we investigated the potential contribution of low-volatility organic vapors to 

SOA formation from diluted aircraft exhaust. First, we propose that unspeciated low-volatility 

organic vapors (POC; S/IVOC) are important classes of SOA precursors in aircraft exhaust 

because speciated VOCs could only account for less than half of the measured SOA. Second, we 

demonstrated that the method proposed by Robinson et al. (2007) to model NT-SOA formation 

does not have a large enough volatility shift to reproduce the temporal evolution of the SOA 
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production. Third, we developed a new method (Hybrid) to model NT-SOA (similar to 

traditional SOA models) that separated the first generation of oxidation – which was constrained 

using laboratory data – from future generations of oxidation. To explain the measured data, the 

first generation of oxidation produces much lower volatility products than the Robinson et al. 

(2007) approach and therefore provides a realistic representation of chemistry.  

 In addition to varying with organic aerosol concentration, the NT-SOA yields appear to 

be a function of both the (a) fuel composition and (b) engine load. This is not surprising since 

both molecular structure in addition to volatility influences SOA yields (Lim and Ziemann, 

2009). For example, the effective NT-SOA yield is highest for JP8 and lowest for FT while the 

50:50 blend appears to be an average of JP8 and FT. The JP8 consists mostly of straight/cyclic 

alkanes (53%) and aromatics (17%), which form more SOA than branched alkanes that mostly 

constitute FT (88%) (Lim and Ziemann, 2009). The effective NT-SOA yields also appear to be 

higher for JP8 idle emissions than for JP8 non-idle emissions. Therefore, the NT-SOA yields 

also appear to depend on engine load, again, presumably due to differences in precursor 

composition. The idle emissions appear to be comprised of unburned alkanes and aromatic 

compounds found in the fuel which have higher SOA yields than the non-idle emissions, which 

appear to be comprised of partially burned fuel. Therefore, different NT-SOA parameterizations 

may be needed for different fuels and different engine loads. 
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Table 3.3: VBS yields for POCs for non-idle and idle emissions. 

Non-Idle Yields  Idle Yields 

POC C* 
C*=10

0
 

!g m
-3

 

(a1) 

C*=10
1
 

!g m
-3

 

(b1) 

C*=10
2
 

!g m
-3

 

(c1) 

C*=10
3
 

!g m
-3

 

(d1) 

 

C*=10
0
 

!g m
-3

 

(a1) 

C*=10
1
 

!g m
-3

 

(b1) 

C*=10
2
 

!g m
-3

 

(c1) 

C*=10
3
 

!g m
-3

 

(d1) 

10
3
 !g m

-3
 0.000 0.310 1.000 0.000  0.195 0.000 0.863 0.000 

10
4
 !g m

-3
 0.000 0.089 1.000 0.000  0.085 0.000 0.994 0.000 

10
5
 !g m

-3
 0.000 0.000 0.302 0.000  0.000 0.000 0.938 0.000 

10
6
 !g m

-3
 0.000 0.000 0.034 0.000  0.000 0.000 0.601 0.000 

10
7
 !g m

-3
 0.000 0.000 0.001 0.000  0.000 0.000 0.370 0.000 

 

Table 3.3 provides Hybrid-parameterizations determined in this work for aircraft 

emissions. They are suitable for use with the VBS framework in any box, plume, regional or 

global OA model in conjunction with the emissions data listed in Table 3.2. Although the 

emissions data are representative of specific engines, emissions data for another gas-turbine 

engine could be estimated by scaling the emissions (both VOC and POC) using a high-flux 

species like acetylene, propene or benzene. For different engine loads, we use the JP8 non-idle 

experiments to determine a mass yield matrix ("i,j) for JP8 non-idle emissions and the JP8 idle 

experiments to determine a mass yield matrix ("i,j) for JP8 idle emissions. Figure S.2 indicates 

reasonable model-measurement comparison when the JP8 non-idle mass yield matrix is used for 

the JP8 non-idle experiments and JP8 idle mass yield matrix is used for the JP8 idle experiments.  

Future research is needed to extend the methods developed here to model SOA formation 

from other combustion sources.  

 

3.6 Supplementary material 

Table S.1: SAPRC07 lumping and reaction rate for each speciated precursor 

  Species Lumping kOH (cm
3
 molecules

-1
 s

-1
) 

1-butene OLE1 3.14E-11 

1-heptene OLE1 3.34E-12 

VOC 

1-hexene OLE1 3.70E-11 
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1-methylcyclohexene OLE1 9.64E-12 

1-octene OLE1 3.70E-11 

1-pentene OLE1 3.14E-11 

1;2-butadiene OLE1 2.60E-11 

1;2-diethylbenzene ARO1 5.80E-12 

1;2;3-trimethylbenzene ARO2 3.27E-11 

1;2;4-trimethylbenzene ARO2 3.25E-11 

1;2;4;5-tetramethylbenzene ARO2 3.25E-11 

1;3-butadiene OLE2 6.66E-11 

1;3-diethylbenzene ARO2 3.25E-11 

1;3;5-trimethylbenzene ARO2 5.67E-11 

1;4-diethylbenzene ARO2 3.25E-11 

2-ethyltoluene ARO1 1.18E-11 

2-methyl-1-butene OLE2 6.10E-11 

2-methyl-1-pentene OLE2 6.30E-11 

2-methyl-2-butene OLE2 8.69E-11 

2-methyl-2-pentene OLE2 8.90E-11 

2-methylheptane ALK4 4.77E-12 

2-methylhexane ALK4 4.77E-12 

2-methylpentane ALK4 5.20E-12 

2;2-dimethylbutane NONE 2.23E-12 

2;3-dimethyl-2-pentene OLE2 1.03E-10 

2;3-dimethylbutane ALK4 5.78E-12 

2;3;4-trimethylpentane ALK4 6.60E-12 

2;4-dimethylpentane ALK4 6.75E-12 

3-ethyltoluene ARO1 1.19E-11 

3-methyl-1-butene OLE1 3.18E-11 

3-methylheptane ALK4 5.20E-12 

3-methylhexane ALK5 8.11E-12 

3-methylpentane ALK4 5.20E-12 

4-ethyltoluene ARO2 1.86E-11 

4-methyl-1-pentene OLE2 6.30E-11 

4-methylheptane ALK4 5.20E-12 

a-pinene TERP 5.23E-11 

acetylene NONE 8.15E-13 

benzene ARO1 1.22E-12 

butane NONE 2.36E-12 

butylbenzene ARO1 4.50E-12 

c-1;3-dimethylcyclopentane ALK5 9.64E-12 

c-2-butene OLE2 5.64E-11 

c-2-hexene OLE1 3.70E-11 

c-2-pentene OLE2 6.50E-11 

c-3-hexene OLE1 3.70E-11 

cyclohexane ALK5 6.97E-12 

 

cyclohexene OLE2 6.77E-11 
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cyclopentane ALK4 4.97E-12 

cyclopentene OLE2 6.70E-11 

cyclopropane NONE 8.15E-14 

decane ALK5 1.10E-11 

dodecane ALK5 1.32E-11 

ethane NONE 2.48E-13 

ethene NONE 8.52E-12 

ethylbenzene ARO1 7.00E-12 

heptane ALK4 6.76E-12 

hexane ALK4 5.20E-12 

hexylbenzene ARO2 1.13E-10 

i-butane NONE 2.36E-12 

i-butene OLE1 3.14E-11 

i-pentane ALK4 3.80E-12 

isoprene ISOP 1.01E-10 

i-propylbenzene ARO1 6.30E-12 

limonene TERP 1.64E-10 

m-xylene ARO2 2.31E-11 

methylcyclohexane ALK5 9.64E-12 

methylcyclopentane ALK4 3.80E-12 

naphthalene ARO2 2.30E-11 

nonane ALK5 9.70E-12 

o-xylene ARO2 1.36E-11 

octane ALK5 8.11E-12 

p-xylene ARO2 1.43E-11 

pentane ALK4 3.80E-12 

propane NONE 1.09E-12 

propene NONE 2.63E-11 

propylbenzene ARO1 5.80E-12 

propyne NONE 7.13E-12 

sec-butylbenzene ARO1 5.80E-12 

styrene ARO2 5.80E-11 

tetradecane ALK5 1.79E-11 

toluene ARO1 5.63E-12 

1;3-hexadiene (trans) OLE2 1.12E-10 

t-2-butene OLE2 6.40E-11 

t-2-hexene OLE1 3.70E-11 

t-2-pentene OLE2 6.70E-11 

tridecane ALK5 1.51E-11 

 

undecane ALK5 1.23E-11 
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Table S.2: VBS yields for SAPRC07 lumped species    

High Nox (Low Yield)   Low Nox (High Yield) 

  C* (!g/m3)   C* (!g/m3) 

Group 1 10 100 1000   1 10 100 1000 

ALK4 0.0000 0.0375 0.0000 0.0000   0.0000 0.0750 0.0000 0.0000 

ALK5 0.0000 0.1500 0.0000 0.0000   0.0000 0.3000 0.0000 0.0000 

OLE1 0.0008 0.0045 0.0375 0.1500   0.0045 0.0090 0.0600 0.2250 

OLE2 0.0030 0.0255 0.0825 0.2700   0.0225 0.0435 0.1290 0.3750 

ARO1 0.0107 0.2571 0.4821 0.7500   0.0107 0.2571 0.7500 0.9643 

ARO2 0.0015 0.1950 0.3000 0.4350   0.0750 0.3000 0.3750 0.5250 

ISOP 0.0003 0.0225 0.0150 0.0000   0.0090 0.0300 0.0150 0.0000 

SESQ 0.0750 0.1500 0.7500 0.9000   0.0750 0.1500 0.7500 0.9000 

TERP 0.0120 0.1215 0.2010 0.5070   0.1073 0.0918 0.3587 0.6075 

 

 
 

Figure S.1: Interpreted OH exposure range (molecules hr cm-3) for the twelve different 

experiments. The median value represented using the orange cross is what is used in our analysis. 
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Figure S.2: Model-measurement comparison for the JP8 experiments using (a) NT-SOA yields 

derived from the non-idle experiments and (b) NT-SOA yields derived from the idle experiments. 
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Chapter 4: Secondary organic aerosol formation from photo-

oxidation of evaporated fuel: experimental results and implications 

for aerosol formation from combustion emissions
*
 

 

Abstract 

 Photo-oxidation experiments were conducted using a smog chamber to investigate 

formation and properties of secondary organic aerosol (SOA) from evaporated fuel. We perform 

experiments on gasoline (commercial California Summer), three types of jet fuel (conventional 

JP-8 and two Fischer-Tropschs fuels derived from coal and natural gas) and six different diesels; 

the fuels span a modest range of volatility and molecular structure. We find that for a unit 

amount of fuel reacted, evaporated diesel forms the most SOA followed by JP-8, FT (natural 

gas), gasoline and FT (coal). Qualitatively, these trends are consistent with the differences in 

volatility and molecular structure of these fuels. Chemically, the SOA from our experiments is 

moderately oxygenated (O:C~0.2-0.4) and similar to semi-volatile oxygenated organic aerosol 

(SV-OOA). The dominant mass-to-charge ratios of 43 and 44 for JP-8 SOA are similar to those 

for n-alkane SOA and so is FT SOA similar to branched alkane SOA and gasoline SOA similar 

to aromatic SOA. When we compare the SOA yields for the evaporated fuels (SOA/Fuel reacted) 

to SOA yields from emissions experiments conducted on combustion sources that use those fuels 

(SOA/NMOG reacted; non-methane organic gas), we find that they compare within a factor of 

two for jet fuels and diesels. This implies that the observed differences in SOA formation from 

combustion emissions can partly be explained by differences in the fuel’s composition. But for 

gasoline combustion emissions, the emission standard applicable to the engine plays a much 

more important role suggesting that other variables in a combustion system can also influence 

SOA formation. When results from this work and SOA work done on gasoline combustion 

                                                
* 
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emissions are used to predict SOA formation from on-road gasoline vehicles in California and 

the US, we observe that tailpipe emissions form much more SOA than evaporative emissions 

(9:1) where the bulk of the tailpipe-related SOA (90%) arises from LEV-I and LEV-II vehicles. 

 

4.1 Introduction 

 Atmospheric aerosols exert a large influence on climate and public health (Bernstein et 

al., 2004;IPCC, 2007). Secondary organic aerosol (SOA) is defined as the organic aerosol (OA) 

arising from the oxidation products of gas-phase organic species and accounts for a significant 

fraction of the submicron atmospheric aerosol mass or fine particulate matter (PM) (Zhang et al., 

2007). Atmospheric SOA formation is a result of oxidation of organic emissions from both 

combustion- and non-combustion based, anthropogenic and natural sources. Examples of 

anthropogenic combustion sources are vehicles, fireplaces, ships, airplanes and prescribed 

burning while those for anthropogenic non-combustion sources are evaporated gasoline, solvent 

use and coatings. Examples of natural combustion sources are wildfires while those for natural 

non-combustion sources are biogenic emissions of isoprene, terpenes and sesquiterpenes. Of the 

four sources mentioned, anthropogenic combustion sources is the only classification that could 

be regulated to reduce total SOA formation because anthropogenic non-combustion sources 

mostly emit light volatile organic compounds (VOC) that do not form any SOA (Simon et al., 

2010) and controlling the natural sources could lead to unintended consequences. 

 A novel approach to control anthropogenic combustion emissions is to control the fuel. In 

the past, amendments to the Clean Air Act in 1990 had required the use of reformulated gasoline 

to abate ozone production. Serving as motivation, Odum and coworkers (Odum et al., 

1996;Odum et al., 1997a;Odum et al., 1997b) conducted photo-oxidation experiments on 
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evaporated gasoline and concluded that SOA formation from evaporated gasoline, and therefore 

possibly from emissions of gasoline engines, could be limited by controlling the fraction of 

single-ring aromatics in the fuel. The statement holds true for gasoline since single-ring 

aromatics form a lot more SOA compared to similar carbon-number alkanes and alkenes (C5-C9) 

but may not hold true for fuels like jet fuel and diesel that have higher carbon-number alkanes 

and alkenes (C8-C18) that are shown to form SOA (Lim and Ziemann, 2009a, b, 2005;Presto et 

al., 2010;Tkacik et al., submitted;Forstner et al., 1997;Na et al., 2006;Keywood et al., 2004). In 

fact, single component studies have demonstrated that SOA formation depends both on the 

precursor’s carbon-number (or volatility) and molecular structure. For example, SOA formation 

increases for alkanes as the carbon number increases (or volatility decreases) (Tkacik et al., 

submitted;Lim and Ziemann, 2005, 2009b, a;Presto et al., 2010), cyclic alkanes form more SOA 

followed by straight alkanes than branched alkanes (Lim and Ziemann, 2005, 2009a, b), and 

single-ring aromatics (benzene, toluene and xylenes) form much more SOA than similar carbon-

number (C5-C9) alkanes or alkenes (Chan et al., 2009;Ng et al., 2007;Song et al., 

2007;Hildebrandt et al., 2009;Ng et al., 2006). 

Odum and coworkers (Odum et al., 1996;Odum et al., 1997a;Odum et al., 1997b) 

hypothesized that SOA experiments on evaporated gasoline could serve as surrogates for SOA 

experiments on gasoline engine emissions. Presto et al. (Presto et al., 2011) and Miracolo et al. 

(Miracolo et al., submitted) have found evidence for that with aircraft engines, where emissions 

at low engine loads resemble a mixture of unburned fuel and oil. Jathar et al. (submitted) have 

gone further to show that the SOA formation from those emissions is similar to the SOA 

observed for C12 and C13 n-alkanes, carbon numbers representative of where most of the fuel 

resides. However, until recently (Gordon et al., in preparation-a), no SOA experiments have been 
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done on gasoline engine emissions and the hypothesis has remained unverified. Odum and 

coworkers (Odum et al., 1996;Odum et al., 1997a;Odum et al., 1997b) also hypothesized that 

single-ring aromatics would dominate SOA formation from gasoline emissions. But, Gordon et 

al. (in preparation-a) showed that single-ring aromatics and other light VOCs accounted for very 

little of the measured SOA formation. Earlier, Robinson et al. (2007), Grieshop et al. (2009) and 

Miracolo et al. (2011) have found the same pattern where single-ring aromatics and other light 

VOCs are unable to explain most of the SOA formation measured from diesel exhaust, 

woodstove emissions and aircraft exhaust respectively. It is suspected that the remainder of the 

SOA might be formed from compounds like substituted alkanes that are hard to speciate 

(unresolved complex mixture; UCM) (Schauer et al., 2002, 1999) and large enough (or low in 

volatility) to form plenty of SOA. Furthermore, SOA models developed using the Odum 

framework (i.e. models skewed towards single-ring aromatics) have under-predicted SOA 

formation in real-world environments (Vutukuru et al., 2006;Johnson et al., 2006;Morris et al., 

2006;Dzepina et al., 2009;Dzepina et al., 2010;Grieshop et al., 2009). 

Studying SOA formation from individual organic compounds is beneficial in 

understanding the fundamental chemical mechanisms of SOA formation but they are too simple 

to represent the complexity found in real-world emissions. On the other hand, the reason why 

there have been very few experiments to study SOA formation from combustion emissions is 

that they are very expensive and complicated to run. Also, emissions of other pollutants such as 

soot, inorganics and metals make it difficult to study the SOA system independently. In this 

work, we propose to study SOA formation in smog chamber experiments from different types of 

evaporated fuel that have different volatility distributions and molecular structures. The 

evaporated fuel-based SOA model system is less complex than the emissions-based system but 
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more complex than an individual species-based system. By doing so, we intend to meet several 

research needs. First, we will able to see for the first time how the formation and properties of 

SOA vary with the precursor’s volatility and molecular structure in a complex mixture system. 

Second, the data collected in this work will be used in a follow-up paper to test and build SOA 

models that account for the precursor’s volatility and structure (Jathar et al., in preparation). 

Third, for the first time, we will be able to compare SOA data from evaporated fuels with 

recently collected SOA data from emissions of engines using those fuels. And finally, we intend 

to use the fuel- and emissions-based SOA data to assess the importance of evaporative and 

tailpipe emissions from on-road gasoline vehicles in the state of California and the United States 

(US). 

 

4.2. Materials and methods 

4.2.1 Fuels 

We conducted a total of twenty three, high-NOx, photo-oxidation, smog chamber 

experiments on evaporated fuels; three on commercial California summer gasoline, two on 

Fischer-Tropsch made from coal (FT-coal), two on Fischer-Tropsch made from natural gas (FT-

natural gas), six on two different JP-8s and ten on seven different diesels from the FACE fuel 

study commissioned by the Coordinating Research Council (CRC). The experiments are listed in 

Table 4.1. 

The fuel composition data are presented in Tables S.1 through S.5. To compare the 

different fuels in terms of volatility and molecular structure, we represent the fuels using the 

volatility basis set (VBS) (Donahue et al., 2006). The VBS is a modeling framework that 

classifies organics into logarithmically spaced bins of effective saturation concentration (C*). C* 
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(inverse of the Pankow-type partitioning coefficient, Kp) is proportional to the saturation vapor 

pressure; it is a semi-empirical property that describes the gas-particle partitioning of an organic 

mixture (Pankow, 1994). 

Table 4.1: List of experiments 

 
 

To represent a fuel in the VBS, one needs to know the vapor pressure (or C*) of each 

individual species in the fuel. However, the granularity of the composition data varies a lot 

across the fuels. For gasoline, we have alkane and aromatic data by carbon number but no 

information about the specific species and no resolution in the alkene data. The FT-coal data are 

poorly resolved since FT-coal is mostly composed of iso-alkanes that are difficult to speciate. 

For FT-natural gas and JP-8, we have data for n-alkanes ranging from n-heptane to n-nonadecane 

but lumped data for branched alkanes, cyclic alkanes and aromatics. For diesels, we have finely-

*estimate

Number Date Fuel

Fuel injected

(!g m-3)

OH exposure

(molecules cm-3 hr)

VOC/NOx

(ppbC/ppb)

Fuel reacted

(!g m-3)

SOA formed

(!g m-3) Yield O:C

1 1/14/11 JP8 476 1.50E+07* 0.6 215 12.6 6% NA

2 1/17/11 JP8 476 1.50E+07* 0.6 215 17.0 8% NA

3 6/16/11 JP8 635 1.50E+07* 0.8 287 71.7 25% 0.21

4 1/28/11 JP8 635 1.50E+07* 0.8 287 86.7 30% NA

5 2/15/11 JP8 635 1.50E+07* 0.8 287 89.8 31% NA

6 11/8/11 JP8 318 1.63E+07 0.4 152 9.6 6% 0.33

7 3/30/11 Gasoline 525 1.35E+07 1.5 184 2.4 1% 0.40

8 4/27/11 Gasoline 1050 1.50E+07* 3.1 394 11.3 3% 0.38

9 11/28/11 Gasoline 1973 1.20E+07 2.1 609 12.2 2% NA

10 7/15/11 FT-natural gas 610 2.66E+07 0.8 373 2.3 1% 0.31

11 7/22/11 FT-natural gas 1128 1.90E+07 1.1 564 8.0 1% 0.13

12 10/20/11 FT-coal 1106 1.29E+07 2.1 418 73.2 18% 0.25

13 10/22/11 FT-coal 590 6.74E+06 0.8 131 14.8 11% 0.25

14 8/22/11 Diesel (1) 129 2.63E+07 0.1 99 1.6 2% 0.28

15 12/8/11 Diesel (2) 232 2.70E+07 0.3 174 32.9 19% 0.20

16 2/4/10 Diesel (3) 134 1.92E+07 0.2 86 16.6 19% NA

17 2/15/10 Diesel (3) 184 1.77E+07 0.2 113 30.3 27% NA

18 3/4/10 Diesel (5) 258 1.35E+07 0.3 134 17.3 13% NA

19 12/21/11 Diesel (7) 304 9.84E+06 0.3 142 15.4 11% 0.28

20 10/24/11 Diesel (8) 138 1.50E+07* 0.2 98 6.7 7% 0.21

21 3/26/10 Diesel (9) 135 1.48E+07 0.1 85 23.8 28% NA

22 4/1/10 Diesel (9) 135 1.86E+07 0.2 94 11.7 12% NA

23 7/26/11 Diesel (9) 505 1.17E+07 0.5 280 79.6 28% 0.19
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resolved data both by organic class and carbon number. To translate the fuel composition data to 

the VBS, we develop a mathematical relationship to calculate C* based on the carbon number of 

a hydrocarbon. The relationship was derived using vapor pressure (C*) data from NIST for n-

alkanes, pure cyclic alkanes, simple branched alkanes, single ring aromatics, naphthalene, 

straight and cyclic alkenes, isoprene, and common terpenes. Aromatics (C* = e
(22.3-carbon #)/0.806

) 

have a slightly different relationship than alkanes and alkenes (C* = e
(24.5-carbon #)/0.899

). For JP-8 

and FT-natural gas where there is no information for branched and cyclic alkanes and aromatics 

by carbon number, we assume their distribution is similar to the distribution of n-alkanes in that 

fuel. For FT-coal, we assume that the distribution of branched and cyclic alkanes is similar to the 

distribution of n-alkanes in FT-natural gas since Corporan et al. (2011) suggest that the 

hydrocarbon distribution in vapor pressure (or C*) space is very similar for those two fuels. 

Figure 4.1 plots a representation of the fuels in the VBS, color-coded by molecular 

structure. In terms of volatility, gasoline is the most volatile followed by FT, JP-8 and diesel; the 

mass-weighted average (avg log10C*) of the volatility distribution is presented using the magenta 

arrows. In terms of molecular structure (shown by the inset pies), diesels generally have the 

largest aromatic fraction followed by gasoline and JP-8; the FT fuels have no aromatics. Further, 

the diesels also have a much wider volatility distribution compared to the other fuels with an 

alkane-dominated fraction in the C*=10
2
 to C*=10

6
 !g m

-3
 space and an aromatic-dominated 

fraction in the C*=10
6
 to C*=10

9
 !g m

-3
 space. 

 

4.2.2 Experimental 

We performed experiments in the Carnegie Mellon University smog chamber, a 10 m
3
 

Teflon bag suspended in a temperature-controlled room. Prior to an experiment, the chamber was 
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cleaned by heating, flushing with HEPA and activated carbon filtered air and irradiation with UV 

lights for a minimum of 12 hours. 

 

 
Figure 4.1: Volatility and molecular structure distributions for (a) gasoline, (b) FT-coal, (c) FT-

natural gas, (d) JP-8 and (e-k) Diesel 1, 2, 3, 5, 7, 8 and 9 represented in the volatility basis set. For 

each plot, the bars sum up to one. The inset pie shows the relative fractions of n-alkanes, 

branched/cyclic alkanes and aromatics in the fuel. The magenta arrow shows the mass-weighted 

average of the volatility distribution. 

 

A brief outline of the experimental procedure is presented. First, ammonium sulfate seed 

(7-25 !g m
-3

) was added to the chamber to minimize losses of vapors to the walls and prevent 

nucleation of SOA products. Second, nitrous acid (HONO) was bubbled into the chamber. Third, 

the precursor (fuel) and, in some experiments, tracers (single-ring aromatics, 2-butanol (d9), 

acetonitrile) were introduced into the chamber by passing clean-filtered air through a heated 

septum into which the precursor/tracer was slowly injected using a syringe. Photo-oxidation was 
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initiated by turning on the chamber UV black lights (General Electric model 10526), which yield 

an NO2 photolysis rate of 0.2 min
-1

. The UV light photolyzed HONO to produce hydroxyl 

radicals (OH). NO and NO2 formed as by-products of HONO irradiation resulted in a low 

VOC/NOx ratio that was consistent with ratios found in urban polluted regions. The experiment 

was performed at low relative humidity (<5%) and a temperature of around 298 K. 

Concentrations of gas-phase organic compounds (fuel species and their oxidation 

products) were tracked using a GC-MS (Logue et al., 2009) and a proton-transfer reaction mass 

spectrometer (PTR-MS, Ionicon Analytik). Between the two instruments, we were able to track 

the oxidation of single-ring aromatics such as benzene, toluene, xylenes, trimethylbenzenes, C7 

and higher n-alkanes and 2-butanol (d9) which were present in the precursor fuel and/or 

deliberately added as tracers, and the production of small oxygenated compounds like acetone 

and methyl ethyl ketone, which were oxidation products. Unfortunately, most of the gas-phase 

precursor mass and its products in the gas phase remain invisible to our instruments. We also 

tracked acetonitrile, which was used to check for smog chamber leakage. The OH concentration 

was interpreted by tracking the decay of either a detectable single-ring aromatic or 2-butanol 

(d9). In experiments without gas-phase data we estimated OH concentrations from the average of 

other experiments conducted using the same fuel. On average, the OH concentration was 1-3 x 

10
7
 molecules cm

-3
 in the first 30 to 60 minutes but dropped to less than 10

6
 molecules cm

-3
 over 

the next few hours. The estimated OH exposure ranges from 7 to 27 hours of atmospheric 

oxidation at a typical OH concentration of 10
6
 molecules cm

-3
. 

Particle-phase measurements were made using a scanning mobility particle sizer (SMPS, 

TSI Inc.) to measure the particle size distribution and a quadrupole or high resolution aerosol 

mass spectrometer (Q-AMS or HR-AMS, Aerodyne Research Inc.) to measure non-refractory 
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aerosol mass, size and composition. Both SMPS and Q-AMS/HR-AMS results were wall-loss 

corrected to calculate a lower and upper bound on the total SOA formation (Weitkamp et al., 

2007;Hildebrandt et al., 2009). The wall-loss rates were estimated by characterizing the decay of 

ammonium sulfate before the lights were turned on. The lower bound was calculated assuming 

that the oxidation products only condense on the suspended particles while the upper bound was 

calculated assuming that the oxidation products could condense not only on the suspended 

particles but also on particles lost to the walls. 

 The SOA composition was determined from the Q-AMS and HR-AMS data. We use the 

toolkit Squirrel (version 1.51B) to obtain time series for various mass components (sulfate, 

nitrate, ammonium, organics) and mass spectra at unit mass resolution (UMR). We use the 

toolkit Pika (version 1.10B) to run an elemental analysis and determine molar ratios of H:C and 

O:C for SOA. 

We are aware that experimental uncertainty could affect the quality of data from smog 

chamber experiments and therefore the conclusions from our analysis. The experimental 

uncertainty can be thought of as that associated with measurements, repeatability and 

atmospheric relevance. Of the three, the uncertainty in measurements is probably the lowest as 

the instruments and techniques used to characterize smog chamber data have evolved over the 

past two decades. In this work, measurement uncertainties are quantified and wherever possible, 

included in our analysis. Particularly for experiments used in this work, there is slightly more 

uncertainty associated with repeatability because there might be factors that have a larger than 

anticipated effect on the experiment (ambient temperature, relative humidity, VOC/NOx ratio). 

The uncertainty was kept to a minimum by undertaking tasks such as cleaning the chamber for 

12 hours before use, ensuring a minimum background concentration and running a blank 
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experiment. But the largest uncertainty results from whether our static and controlled 

experiments are truly representative of the dynamic processes in the atmosphere. We ensure 

atmospheric relevance by diluting the emissions and maintaining VOC/NOx ratios to those found 

in the atmosphere. 

 

4.2.3 SOA yields 

To compare the SOA formation across fuels, we calculate an SOA yield for each 

experiment. The SOA yield is calculated as a ratio of the SOA formed to the mass of fuel 

reacted; the approach is the same as that employed by Odum and coworkers in describing SOA 

formation from gasoline vapors (Odum et al., 1996;Odum et al., 1997a;Odum et al., 1997b). We 

analyze the SMPS and AMS results independently and from that analysis estimate a minimum 

and maximum amount of SOA formed. For the SMPS results, we use an aerosol density of 1.4 g 

cm
-3

 to estimate the SOA mass from the volume measurement. In some experiments where some 

of the SOA mass nucleated, we did not use the AMS results because a significant fraction of the 

SOA mass was too small to be detected by the AMS. The amount of fuel reacted is calculated by 

assuming that each fuel species undergoes a first order decay due to reaction with the OH 

radical, as shown in equation (4.1): 

! 

d[X
i
]

dt
= "k

OH ,X i

[OH][X
i
]

#Fuel reacted = #X
i$

  (4.1) 

where [Xi] is the fuel species concentration in !g m
-3

, k is the reaction rate constant in cm
3
 

molecules
-1

 s
-1

, [OH] is the OH radical concentration in molecules cm
-3

 and "Fuel reacted is the 

mass of fuel reacted in !g m
-3

. The reaction rate constant used for each fuel species is listed in 

Tables S.1 through S.5. As mentioned earlier, the fuel composition data is incomplete and hence 
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we need to assume reaction rate constants for fuel constituents that are lumped, e.g. branched 

alkanes. We assign a surrogate compound to the lumped fuel constituent based on the average 

carbon number of the fuel and use its reaction rate constant to represent the reactivity of that 

entire fuel constituent. The initial concentration of a fuel species is calculated by multiplying the 

mass of fuel injected and its percentage mass listed in the fuel composition (Tables S.1 through 

S.5 in supplementary material). We assume a smog chamber volume of 10 m
3
. 

 To address uncertainty in our assumptions and measurements, we estimate a low and high 

value for the SOA yield. The lower value is calculated using the minimum estimate of SOA 

formed and an injection efficiency of 100% while the higher value is calculated using the 

maximum estimate of SOA formed and an injection efficiency of 90%.  

 

4.3 Experimental results 

 Figure 4.2 plots measured time series of particle- and gas-phase concentrations from an 

experiment performed on Diesel (2) on 12/8/11. Figure 4.1(a) plots the suspended PM0.5 volume, 

suspended ammonium sulfate seed and the wall-loss corrected OA concentration as a function of 

time. After photo-oxidation is initiated (lights turned on), a lot of OA (or SOA) is formed in a 

short amount of time (~20-40 mins). Figure 4.2(a) shows both the lower (light green) and upper 

(dark green) bound estimates of wall-loss corrected OA. The difference between these two 

estimates is small because the SOA formation timescale is much shorter than the timescale 

associated with particle loss to the wall. Figure 4.2(b) shows the measured evolution of 1-

butanol, m-xylene and trimethylbenzene with time. As soon as the lights are turned on, the 

compounds rapidly decay, which coincides with prompt SOA formation. 
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Figure 4.2: Particle-phase (top panel) and gas-phase (bottom panel) concentrations measured 

during the Diesel (2) experiment (12/08/11). The PM0.5 and seed concentrations are as measured by 

the SMPS. The OA concentrations are wall-loss corrected. 

 

4.3.1 SOA yield 

 Figure 4.3 plots the SOA yield as a function of the wall-loss corrected OA concentration 

(COA). Each point represents a six-minute average from an individual experiment. For each fuel, 

the SOA yield increases with increasing COA, implying that the oxidation products are semi-

volatile and are actively participating in gas-particle partitioning. Across all fuels, the SOA yield 

varies by an order of magnitude across the plotted COA range. Diesel has the highest SOA yield 

followed by JP-8/FT-natural gas, gasoline and FT-coal. Qualitatively, this trend agrees with our 

understanding of SOA formation being dependent on volatility and molecular structure. Diesel 

fuels form a lot of SOA because they have a lower volatility (avg log10C* = 5.2-6.4)  and a 
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higher aromatic fraction (42%). JP-8 forms less SOA than diesel because it is slightly more 

volatile than diesel (avg log10C* = 6.2) and has a significantly smaller aromatic fraction (24%). 

Surprisingly, FT-natural gas forms as much SOA as JP-8 even though it is more volatile (avg 

log10C* = 7.4) and does not have any aromatics. Gasoline forms even less SOA because it is 

dominated by high volatility alkanes (avg log10C* = 8.1) that do not form any SOA; most of the 

SOA it forms probably comes from single-ring aromatics (28%). The gasoline SOA yield is in-

line with the results of Odum et al (1997a). FT-coal forms the least amount of SOA because it is 

very volatile (log10C* = 7.4) and is mostly composed of branched alkanes (88%) that fragment 

during oxidation and form very little SOA.  

 

 
Figure 4.3: SOA Yield (SOA / Fuel reacted) plotted as a function of the OA concentration (COA). 

The solid lines represent fits for different fuels based on five bin VBS. For reference, we plot SOA 

yields for n-decane, n-dodecane, n-tridecane and n-heptadecane. 
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A simple approach to fit the SOA data is to assume that all species in a given fuel react 

with OH to form the same set of semi-volatile products, which can be represented using a five-

bin VBS (C*=0.1, 1, 10, 100 1000 !g m
-3

) (Donahue et al., 2006;Pankow, 1994). Figure 4.3 

shows that we need different curves (solid lines) to fit the SOA data for different fuels. Two 

curves are required to fit the diesel SOA data: one curve for diesels (1), (2), (5), (7) and (8) and 

another curve for diesels (3) and (9). 

Even though the different diesels have a slightly different composition (similar volatility 

but different molecular structure), their SOA yield is quite similar. We suspect that the SOA 

yield for diesel is less sensitive to molecular structure because diesel is comprised of relatively 

low volatility alkanes, alkenes and aromatics, all of which form SOA. Therefore, substituting n-

alkanes with branched alkanes, cyclic alkanes or single ring aromatics only marginally changes 

the SOA potential of diesel. In contrast, for FT-natural gas and FT-coal (that are much more 

volatile than diesel) that share the same volatility profile but have very different molecular 

structure (50:50 n-alkanes:branched alkanes versus 88% branched alkanes), the SOA yield is an 

order of magnitude different. This suggests that for lower volatility precursors, the SOA yield 

might have a lower sensitivity to molecular structure but for higher volatility precursors, 

molecular structure might become very important.  

The emissions from a combustion system (exhaust) and therefore the SOA from it are 

partly a function of the composition of the fuel. To explore this relationship, we first analyze 

SOA data from experiments conducted on combustion emissions that used fuels considered in 

this work (Miracolo et al., 2011;Miracolo et al., submitted;Gordon et al., in preparation-a;Gordon 

et al., in preparation-b). For each system, we calculate an SOA yield which is defined as the ratio 

of the mass of SOA formed to the mass of precursor reacted; the precursor is the total non-
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methane organic gas (NMOG). The mass of precursor reacted is calculated in the same way as 

we calculate the mass of fuel reacted in this work (equation (4.1)). Here, Xj is either a speciated 

VOC or lumped unspeciated mass. The reaction rate constants for speciated VOCs are based on 

literature and we assume that the lumped unspeciated mass has an OH reactivity of 1 x 10
-11

 cm
3
 

molecules
-1

 s
-1

. 

 

 
Figure 4.4: SOA yield plotted against the OA concentration. The solid lines represent the SOA yield 

calculated from the fuel SOA data (same as fits in Figure 4.3); dotted lines show a factor of two 

uncertainty. The points represent the SOA yield calculated from data measured from real exhaust. 

The SOA yield is expressed as the ratio of SOA formed to the amount of NMOG reacted. 
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from this work. For exhaust, most SOA yields range between 0.2 and 50%, which is similar to 

the SOA-yield range observed for evaporated fuel (0.4-40%) across the entire COA range. Despite 

the variability seen with the exhaust SOA yields, they appear to be more or less within a factor of 

two of the SOA yields for evaporated fuel, with the exception of the gasoline LEV-I and LEV-II 

data (LEV: Low Emissions Vehicle). This would imply that the observed differences in SOA 

formation between the different combustion sources can partly be explained by differences in the 

fuel composition. For gasoline exhaust, a lot of the variability can be explained if the 

experiments are also sorted by the emission standard applicable to the vehicle (pre-LEV, LEV-I 

and LEV-II). Hence, for gasoline, it seems like the emission standard on the engine has a much 

larger influence on the SOA yield than the fuel composition. Similar to gasoline exhaust, 

variability in the diesel exhaust data also seems to be weakly dependent on the engine size, i.e. 

light-duty has slightly higher SOA yields than heavy-duty. The comparison presents a much 

more complicated picture where the fuel-based SOA yields explain some of the variability in the 

exhaust-based SOA yields but other variables of the combustion source like engine type and size 

could also be influential in affecting SOA formation. 

 

4.3.2 SOA composition 

 Previously, the AMS has been extensively used to characterize the chemical composition 

and thereby gain insight into the properties and sources of OA (Zhang et al., 2005;Ulbrich et al., 

2009;Ng et al., 2010;Heald et al., 2010;Chhabra et al., 2010). We use the work of Ng et al. 

(2010), who have used the mass fraction at m/z=43 (f43) and mass fraction at m/z=44 (f44), to 

visualize and interpret the AMS data. The m/z=43 signal is a result of the C3H7
+
 and C2H3O

+
 

ions, where C3H7
+
 is believed to be part of the hydrocarbon signature and C2H3O

+ 
is thought to 
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represent non-acid oxygenates. The m/z=44 signal is dominated by the CO2
+
 ion and is thought 

to denote the presence of organic acids and peroxides and therefore a strong indicator of the 

extent of oxidation of OA. Ng et al. (2010) suggested that as OA (irrespective of their source or 

location) evolved (or aged) in the atmosphere (or laboratory), its f43 decreased and f44 increased, 

and eventually converged to an f43 of 0.02 and an f44 of 0.3. Using the same data and positive 

matrix factorization, they were also able to separate oxygenated organic aerosol (OOA) into two 

factors: a semi-volatile oxygenated organic aerosol (SV-OOA) that had a higher f43 intensity and 

a low-volatility oxygenated organic aerosol (LV-OOA) that had a higher f44 intensity. 

  

 
Figure 4.5: SOA aerosol mass spectrometer data presented using a triangle plot (Ng et al., ACP, 

2010). The small dots show SOA data from this work. The colored symbols show SOA data from 

literature. SV-OOA and LV-OOA regions adapted from Ng et al., ACP, 2010. 
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Figure 4.5 plots f44 against f43 for all the experiments from this work. Each point 

represents a two- to four-minute average from an individual experiment. We excluded two JP-8 

experiments (1/17/11 and 6/16/11) and one FT-natural gas (7/15/11) experiment because of poor 

AMS signal. Figure 4.5 also shows the triangular region occupied by SV-OOA and LV-OOA 

from Ng et al. (2010) and plots f43-f44 data from single component and emissions studies using 

solid symbols (Sage et al., 2008;Ng et al., 2010). 

The fuel data span a large range in the f43 and f44 space and lie near the base of the 

“triangle”. SOA formed from FT-coal, FT-natural gas and most diesels lie in the SV-OOA region 

while the JP-8 and gasoline data lie just outside the SV-OOA region. This suggests that the SOA 

formed from photo-oxidation of evaporated fuel resembles ambient SV-OOA.  

For FT-natural gas and FT-coal the f44 changes by a lot (0.05 to 0.1) implying that the 

SOA is becoming more oxidized. For gasoline, JP-8 and diesel (individual experiment) there is 

very little change in both f43 or f44 implying that, once formed, the SOA from gasoline, JP-8 and 

diesel does not evolve significantly. This might be because most of the SOA formation is driven 

by a short burst of OH (1-3 x 10
7
 molecules cm

-3
) in the first 30 to 60 minutes but there is very 

little OH (~ 10
6
 molecules cm

-3
) available after the first hour to interact with the SOA. 

 We notice several interesting trends when we compare SOA from this work to SOA from 

single-compounds and emissions experiments in f43-f44 space. The SOA formed from an aircraft 

engine running on JP-8 (Presto et al., in preparation) has an f43 and f44 similar to that of SOA 

formed from evaporated JP-8 fuel. Similarly, in f43-f44 space, the SOA formed from an aircraft 

engine running on FT-coal is close to SOA from evaporated FT-coal and SOA from diesel 

exhaust looks like the average SOA from evaporated diesel. Qualitatively, this suggests that, in 

terms of composition, the SOA from evaporated fuel is probably a reasonable surrogate for SOA 
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from emissions of engines that use those fuels. Furthermore, the SOA from n-decane, n-

dodecane, n-pentadecane and n-heptadecane (Presto et al., 2010) have an f43 and f44 similar to 

that of SOA from evaporated JP-8 fuel and the SOA from two single-ring aromatics (toluene and 

m-xylene) (Ng et al., 2010) have an f43 and f44 similar to that of SOA from evaporated gasoline. 

This could mean that, not only is SOA from evaporated fuel similar to SOA from emissions of an 

engine that uses that fuel, but also that the SOA is probably dominated by a certain organic class.  

Recently, Heald et al. (2010) and Ng et al. (2011) have used AMS data to determine 

molar ratios of H:C and O:C and plotted them against each other on a Van-Krevelen diagram. 

Both studies showed that H:C and O:C ratios for ambient and laboratory OA were inversely 

correlated (slope of -1 to -0.5), implying that as the OA aged in the atmosphere, the OA was on 

average being functionalized with a carbonyl and an alcohol group. When we plot our data on a 

Van-Krevelen diagram, most of our data lies in the SV-OOA region proposed by Ng et al. (2011) 

and the data have a slope of -0.87 (Figure S.1; supplementary material). The average end-of-

experiment H:C and O:C ratios are listed in Table 4.1. 

 

4.4. Summary and discussion 

 In this work, we conducted high-NOx photo-oxidation experiments on evaporated fuel to 

investigate the formation and properties of SOA arising from it. Diesel had the highest SOA 

potential followed by JP-8 and FT-natural gas, gasoline and FT-coal. The SOA potential can be 

qualitatively explained by differences in volatility and molecular structure of the precursor fuel. 

The f43 and f44 of the SOA from the evaporated fuel were similar to the SV-OOA factor 

estimated from ambient measurements. For FT-coal, JP-8 and diesel, there was additional proof 



 115 

that the SOA from evaporated fuel, when compared in f43-f44 space, was similar to the SOA from 

emissions of engines using that fuel. 

 

 
Figure 4.6: NMOG emissions and corresponding SOA production from on-road gasoline vehicles in 

California and the US after one day of atmospheric processing. The production is stacked 

according to the source type: tailpipe (pre-LEV), tailpipe (LEV-I), tailpipe (LEV-II) and 

evaporative. 
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emissions might benefit by conducting SOA experiments on evaporated fuel instead. 

Additionally, it will help single out the influence of SOA from other pollutants that are present in 

real emissions (soot, inorganics, primary organic aerosol, metals). 

 On-road gasoline vehicles account for about a third of all NMOG (or VOC) emissions 

from combustion sources in the US (EPA, 2008) and therefore are an important source of SOA 

precursors. The NMOG emissions arise either as part of the exhaust from the tailpipe or from 

evaporative emissions. Nationally, the tailpipe-to-evaporative emissions ratio is slightly more 

than 2:1 (NRC, 2001) while in California the ratio is close to 1:1 (CARB, 2011). The evaporative 

gasoline results from this work and the tailpipe results from Gordon et al. (in preparation-a) can 

be used to estimate SOA formation from tailpipe and evaporative emissions from on-road 

gasoline vehicles in California and the US. We assume that the SOA yield for evaporated 

gasoline from this work can be used to model SOA formation from evaporative emissions. We 

assume that the median SOA yield for pre-LEV, LEV-I and LEV-II vehicles can be used to 

model SOA formation from the corresponding vehicles (median shown in Figure S.2 in 

supplementary material). NMOG estimates for tailpipe emissions from pre-LEV, LEV-I and 

LEV-II vehicles and total evaporative emissions for California are obtained from the online 

EMFAC database for 2011 (CARB, 2011). NMOG estimates for total tailpipe and evaporative 

emissions in the US are obtained from the National Emissions Inventory (NEI). Since the NEI 

inventory is not categorized by LEV type, we assume the same distribution of pre-LEV, LEV-I 

and LEV-II vehicles over the US as in California. The model is run to simulate one day of 

atmospheric processing (OH exposure = 10
6
 molecules cm

-3
 x 24 hours). Figure 4.6 plots the 

NMOG emissions and SOA production (assuming a typical atmospheric COA of 5 !g m
-3

) from 

tailpipe and evaporative NMOG emissions from on-road gasoline vehicles in California and the 
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US; 3900 ktons of NMOG form 120 ktons of SOA per year over the US and 150 ktons of 

NMOG form slightly less than 4 tons of SOA per year over California after one day of 

atmospheric processing. The figure indicates that tailpipe emissions dominate SOA production in 

both regions even when evaporative emissions represent 45% and 30% of total NMOG 

emissions from on-road gasoline vehicles. Further, LEV-I and LEV-II vehicles account for 26 to 

35% of NMOG emissions but account for 73-80% of the SOA from on-road gasoline vehicles, 

making them a much important source than pre-LEV vehicles and all evaporative emissions 

together.  

 

4.5 Supplementary material 

Table S.1: Composition information and reactivity with OH for California summer gasoline 

Species Mass % k_OH 

C4 Paraffin 0.3 2.36E-12 

C5 Paraffin 10.9 3.80E-12 

C6 Paraffin 12.3 5.20E-12 

C7 Paraffin 9.4 6.76E-12 

C8 Paraffin 9.8 8.11E-12 

C9 Paraffin 3.1 9.70E-12 

C10 Paraffin 1.2 1.10E-11 

C11+ Paraffin 0.7 1.23E-11 

C6 Aromatic 0.6 1.22E-12 

C7 Aromatic 5.8 5.63E-12 

C8 Aromatic 9.3 1.43E-11 

C9 Aromatic 8.8 1.43E-11 

C10 Aromatic 2.7 1.43E-11 

C11+ Aromatic 1.0 1.43E-11 

Olefins 14.0 3.70E-11 

C5 Cycloalkane 0.1 4.97E-12 

C6 Cycloalkane 0.2 6.97E-12 

C7 Cycloalkane 0.1 6.76E-12 

C8 Cycloalkane 0.0 8.11E-12 

C9 Cycloalkane 0.0 9.70E-12 

poly-N 0.0 1.42E-11 

 

Table S.2: Composition information and reactivity with OH for Fischer-Tropsch (coal) 
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Species Mass % k_OH 

n-alkanes 0.2 1.10E-11 

monoaromatics 0.5 1.43E-11 

diaromatics 0.1 2.30E-11 

Isoalkanes 84.9 1.10E-11 

cycloalkanes 12.6 1.10E-11 

 

Table S.3: Composition information and reactivity with OH for Fischer-Tropsch (natural gas) 

Species Mass %  k_OH 

n-heptane  0.0 6.76E-12 

n-octane  1.6 8.11E-12 

n-nonane  22.4 9.70E-12 

n-decane  25.1 1.10E-11 

n-undecane  3.8 1.23E-11 

n-dodecane  0.3 1.32E-11 

n-tridecane  0.0 1.51E-11 

n-tetradecane  0.0 1.79E-11 

n-pentadecane 0.0 2.07E-11 

n-hexadecane  0.0 2.32E-11 

n-heptadecane 0.0 2.85E-11 

n-octadecane  0.0 3.51E-11 

n-nonadecane 0.0 4.32E-11 

isoalkanes 46.8 1.10E-11 

 

Table S.4: Composition information and reactivity with OH for JP-8 

Species Mass % k_OH 

n-heptane  0.1 6.76E-12 

n-octane  0.3 8.11E-12 

n-nonane  1.2 9.70E-12 

n-decane  3.5 1.10E-11 

n-undecane  4.2 1.23E-11 

n-dodecane  3.7 1.32E-11 

n-tridecane  2.8 1.51E-11 

n-tetradecane  1.8 1.79E-11 

n-pentadecane 0.9 2.07E-11 

n-hexadecane  0.3 2.32E-11 

n-heptadecane 0.1 2.85E-11 

n-octadecane  0.0 3.51E-11 

n-nonadecane 0.0 4.32E-11 

monoaromatics 15.4 1.43E-11 

diaromatics 1.7 2.30E-11 
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isoalkanes 23.1 1.23E-11 

cycloalkanes 34.2 1.23E-11 

 

Table S.5: Composition information and reactivity with OH for diesels 

Mass %   

Species 
(1) (2) (3) (5) (7) (8) (9) k_OH 

C3 n-alkane 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.09E-12 

C4 n-alkane 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.36E-12 

C5 n-alkane 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.80E-12 

C6 n-alkane 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.20E-12 

C7 n-alkane 0.0 0.1 0.0 0.0 0.0 0.0 0.0 6.76E-12 

C8 n-alkane 0.0 0.0 0.2 0.1 0.1 0.0 0.1 8.11E-12 

C9 n-alkane 0.3 0.2 0.6 0.7 0.5 0.0 0.4 9.70E-12 

C10 n-alkane 0.4 0.2 1.7 2.9 1.5 0.1 0.8 1.10E-11 

C11 n-alkane 0.4 0.2 1.4 2.9 2.0 0.1 1.1 1.23E-11 

C12 n-alkane 0.2 0.1 2.0 3.5 1.7 0.1 0.8 1.32E-11 

C13 n-alkane 0.0 0.0 1.3 2.4 1.2 0.4 0.9 1.51E-11 

C14 n-alkane 0.2 0.0 1.3 12.0 18.2 16.4 1.2 1.79E-11 

C15 n-alkane 0.5 0.0 1.4 7.0 10.1 8.5 1.7 2.07E-11 

C16 n-alkane 0.6 0.0 1.0 1.0 1.5 1.1 1.0 2.32E-11 

C17 n-alkane 0.5 0.0 0.6 0.0 0.1 0.3 1.0 2.85E-11 

C18 n-alkane 0.8 0.0 0.3 0.0 0.0 0.0 0.4 3.51E-11 

C19 n-alkane 0.6 0.0 0.0 0.0 0.0 0.0 0.2 4.32E-11 

C20 n-alkane 0.3 0.0 0.0 0.0 0.0 0.0 0.0 4.32E-11 

C21 n-alkane 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.32E-11 

C3 branched alkane 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.09E-12 

C4 branched alkane 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.36E-12 

C5 branched alkane 0.0 0.0 0.0 0.0 0.0 0.1 0.0 3.80E-12 

C6 branched alkane 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.20E-12 

C7 branched alkane 0.0 0.0 0.0 0.1 0.0 0.0 0.0 6.76E-12 

C8 branched alkane 0.1 0.1 0.4 0.2 0.1 0.1 0.2 8.11E-12 

C9 branched alkane 0.5 0.1 0.7 0.8 0.6 0.0 0.0 9.70E-12 

C10 branched alkane 2.0 1.0 2.9 3.3 1.6 0.0 1.1 1.10E-11 

C11 branched alkane 4.7 4.5 3.2 2.0 0.4 0.0 0.2 1.23E-11 

C12 branched alkane 0.5 1.1 0.9 2.3 0.8 0.0 0.1 1.32E-11 

C13 branched alkane 3.0 7.8 3.1 3.1 1.5 0.0 1.0 1.51E-11 

C14 branched alkane 4.1 5.5 1.9 2.3 1.0 1.8 3.0 1.79E-11 

C15 branched alkane 3.9 1.1 2.8 1.0 0.3 1.5 3.3 2.07E-11 

C16 branched alkane 3.6 0.6 1.1 0.5 0.2 1.1 3.3 2.32E-11 

C17 branched alkane 2.5 0.2 0.3 0.0 0.0 1.1 2.6 2.85E-11 

C18 branched alkane 1.5 0.1 0.0 0.0 0.0 0.0 1.2 3.51E-11 

C19 branched alkane 1.6 0.1 0.0 0.0 0.0 0.0 0.2 4.32E-11 

C20 branched alkane 0.7 0.0 0.0 0.0 0.0 0.0 0.0 4.32E-11 

C21 branched alkane 0.2 0.0 0.0 0.0 0.0 0.0 0.0 4.32E-11 

C3 cycloalkane 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.09E-12 

C4 cycloalkane 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.36E-12 
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C5 cycloalkane 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.80E-12 

C6 cycloalkane 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.20E-12 

C7 cycloalkane 0.0 0.0 0.1 0.0 0.0 0.0 0.0 6.76E-12 

C8 cycloalkane 0.3 0.0 0.4 0.4 0.2 0.0 0.3 8.11E-12 

C9 cycloalkane 0.6 0.1 0.8 1.0 0.8 0.0 0.9 9.70E-12 

C10 cycloalkane 1.0 0.1 1.7 2.9 1.4 0.0 0.7 1.10E-11 

C11 cycloalkane 1.4 0.7 2.1 3.3 1.1 0.0 0.7 1.23E-11 

C12 cycloalkane 1.1 2.4 4.3 5.8 2.8 0.0 2.3 1.32E-11 

C13 cycloalkane 1.8 2.1 4.0 4.6 2.5 1.0 5.9 1.51E-11 

C14 cycloalkane 2.3 1.5 2.4 1.7 1.4 1.0 3.2 1.79E-11 

C15 cycloalkane 2.9 0.9 1.4 1.6 0.6 3.3 7.9 2.07E-11 

C16 cycloalkane 2.3 0.7 0.5 2.5 0.2 2.3 4.5 2.32E-11 

C17 cycloalkane 1.9 0.7 0.1 2.0 0.5 4.1 7.2 2.85E-11 

C18 cycloalkane 1.5 1.0 0.0 0.9 0.0 1.0 2.3 3.51E-11 

C19 cycloalkane 1.4 1.3 0.0 0.5 0.5 6.1 1.9 4.32E-11 

C20 cycloalkane 1.0 1.2 0.0 0.2 0.0 1.5 1.1 4.32E-11 

C21 cycloalkane 0.7 2.5 0.0 0.0 0.0 2.0 0.5 4.32E-11 

C3 aromatic 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00E+00 

C4 aromatic 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00E+00 

C5 aromatic 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00E+00 

C6 aromatic 0.1 0.0 0.0 0.0 0.0 0.0 0.0 1.22E-12 

C7 aromatic 0.1 0.1 0.1 0.1 0.0 0.0 0.2 5.63E-12 

C8 aromatic 5.0 7.1 5.4 1.8 0.5 0.1 3.1 1.43E-11 

C9 aromatic 27.0 34.5 26.8 11.7 19.2 2.9 15.1 1.43E-11 

C10 aromatic 4.4 5.6 0.8 0.7 0.9 0.0 0.3 1.43E-11 

C11 aromatic 0.8 2.9 2.6 2.6 2.5 0.0 1.0 1.43E-11 

C12 aromatic 0.3 0.4 1.5 1.6 1.3 1.4 0.6 1.43E-11 

C13 aromatic 0.3 0.2 1.0 0.9 0.5 0.2 0.5 1.43E-11 

C14 aromatic 0.3 0.2 1.0 0.4 2.9 6.1 0.8 1.43E-11 

C15 aromatic 0.2 0.1 0.5 0.0 0.1 0.0 0.5 1.43E-11 

C16 aromatic 0.2 0.1 0.3 0.0 0.0 0.1 0.4 1.43E-11 

C17 aromatic 0.2 0.1 0.1 0.1 0.0 0.1 0.4 1.43E-11 

C18 aromatic 0.1 0.1 0.0 0.1 0.0 0.1 0.4 1.43E-11 

C19 aromatic 0.1 0.1 0.0 0.0 0.0 0.2 0.3 1.43E-11 

C20 aromatic 0.1 0.2 0.0 0.0 0.0 0.3 0.2 1.43E-11 

C21 aromatic 0.0 0.2 0.0 0.0 0.0 0.3 0.1 1.43E-11 

benzocycloalkanes 3.9 3.3 8.1 3.6 4.9 6.3 6.4 4.09E-11 

diaromatics 1.5 3.6 4.4 0.9 11.9 26.5 4.4 4.09E-11 

triaromatics 0.0 0.0 0.0 0.0 0.0 0.1 0.0 4.09E-11 

tetraaromatics 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.09E-11 

olefins 1.8 2.5 0.1 0.2 0.1 0.0 0.1 5.00E-11 
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Figure S.1: SOA high resolution aerosol mass spectrometer data presented on a Van-Krevelen 

diagram (Heald et al., 2010). The small dots show SOA data from this work. The colored symbols 

show SOA data from literature. SV-OOA and LV-OOA regions adapted from Ng et al., ACP, 2011. 
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Figure S.2: SOA yield from emissions experiments shown using box-plots for different combustion 

sources. The SOA yield is expressed as the ratio of SOA formed to the amount of NMOG reacted. 
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Chapter 5: Modeling the influence of the precursor’s volatility and 

molecular structure on secondary organic aerosol formation* 
 

Abstract 

 We use SOA data from smog chamber experiments conducted on evaporated fuel to 

better understand the influence of the precursor’s volatility and molecular structure on secondary 

organic aerosol (SOA) formation. The goals are to test SOA models, identify problems (if any), 

propose modifications and build new models that are able to represent SOA formation better. 

SOA data from twenty-three experiments conducted on evaporated gasoline, jet fuel and diesels 

were used. A traditional (speciated) SOA model (SAPRC lumping, yields parameterized from 

chamber data, estimated oxidant concentrations, gas-particle partitioning using the volatility-

basis set) severely under-predicts the SOA formation when compared to measurements 

(fractional error = -170%, fractional bias = -130%), mostly because the model includes only the 

precursor mass that would typically be speciated (volatile n-alkanes, single-ring aromatics, 

unsubstituted cycloalkanes). If we include all the precursor mass, the traditional (base) SOA 

model results in a much improved model-measurement comparison (fractional error = 76%, 

fractional bias = 26%) suggesting that the simple failure to account for all precursors results in a 

significant bias in traditional SOA models. The traditional (base) SOA model over-predicts SOA 

in the FT-coal experiments because it is not configured to account for branched alkanes, which 

have very low yields compared to straight/cyclic alkanes and which mostly constitute FT-coal. It 

over-predicts SOA in the gasoline experiments probably because published yields for single-ring 

aromatics are biased too high. When we add a branched alkane and multi-ring aromatic model 

species to the existing SAPRC scheme and “tune” yields for the traditional (base) SOA model, 

                                                

* To be submitted to Environmental Science and Technology 
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we improve the model-measurement comparison significantly (fractional error = 54%, fractional 

bias=-2%). On using a volatility-based model that does not account for differences in the 

precursor’s molecular structure, we find that the model (when fit) is marginally better than the 

traditional (base) SOA model when its predictions are compared to measurements (fractional 

error = 73%, fractional bias=13%). This implies that the SOA formation across these precursor 

fuels can be reasonably modeled using their volatility alone. Since the volatility-based model 

uses only four yield parameters compared to the traditional model’s thirty six yield parameters, it 

would be much more efficient to use in computationally expensive regional and global aerosol 

models.  

 

5.1 Introduction 

Secondary organic aerosol (SOA) is defined as the aerosol mass formed by the 

atmospheric processing of gas-phase organic species emitted by natural and anthropogenic 

sources. Since it accounts for a significant fraction of the atmospheric fine dry aerosol mass 

(Zhang et al., 2007), it is believed to have a large impact on the earth’s climate and public health 

(IPCC, 2007;Bernstein et al., 2004). However, most SOA models tend to under-predict SOA 

formation both in the laboratory and in the atmosphere (Heald et al., 2005;Vutukuru et al., 

2006;Johnson et al., 2006;Morris et al., 2006;Dzepina et al., 2009;Dzepina et al., 2010;Grieshop 

et al., 2009;Miracolo et al., 2011). This is probably because there are large gaps in understanding 

the numerous precursors and pathways to SOA formation (gas-phase oxidation, multi-

generational aging, heterogeneous chemistry, condensed-phase reactions, cloud processing), 

which have resulted in large uncertainties in SOA models. To build effective models, the 
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different precursors and pathways need to be independently studied, parameterized in models 

and rigorously tested before they are employed in chemical transport models (CTMs).  

Gas-phase oxidation of organic compounds is believed to be the dominant source of SOA 

formation and hence, has been extensively studied using smog chamber experiments. However, 

most organic compounds have been studied independently and traditional SOA models based on 

those studies perform poorly when evaluated for real-world mixtures. Several studies have 

shown that traditional SOA models are able to explain only a small fraction of the SOA 

measured from gasoline, diesel and aircraft exhaust and woodsmoke (Gordon et al., in 

preparation-a;Gordon et al., in preparation-b;Robinson et al., 2007;Miracolo et al., 

2011;Miracolo et al., submitted;Grieshop et al., 2009). Combustion emissions and their physico-

chemical evolution is complex and the uncertainties mentioned above might be why traditional 

SOA models fail to perform well. Therefore, there is a research need to test traditional SOA 

models with realistic mixtures that are less complex than combustion emissions before they are 

applied to real-world emissions in the laboratory or in the atmosphere.  

 Single-component studies using smog chambers have demonstrated that SOA formation 

depends both on the precursor’s volatility and molecular structure. Lim and Ziemann (2009a, b, 

2005), Presto et al. (2010) and Tkacik et al. (submitted) showed that SOA formation from 

alkanes increased as the carbon-number increased or the volatility (vapor pressure) decreased. 

For the same carbon-number or volatility, Lim and Ziemann (2009a, b, 2005) and Tkacik et al. 

(submitted) showed that cyclic alkanes formed more SOA followed by straight alkanes and 

branched alkanes. Keywood et al. (2004) observed the same dependency for cycloalkenes and 

also found that the SOA formation was affected by the location of the double bond (endocyclic 

vs exocyclic). Experiments on single-ring aromatics (benzene, toluene and xylenes) have shown 
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that they form much more SOA than similar volatility (C6 to C9) n-alkanes or alkenes (Ng et al., 

2007;Song et al., 2007;Hildebrandt et al., 2009). However, multi-ring aromatics are found to 

form as much SOA as similar volatility n-alkanes (Chan et al., 2009;Shakya and Griffin, 2010). 

Large biogenic compounds like sesquiterpenes (C15) are extremely efficient in forming SOA (Ng 

et al., 2006) with yields as high as 50%. Monoterpenes like alpha-pinene (C10) form much less 

SOA than sesquiterpenes but are comparable to equivalent volatility n-alkanes (Ng et al., 

2006;Presto et al., 2010). Isoprene (C5) forms less SOA than monoterpenes although it is much 

more efficient at forming SOA than any similar volatility organic compound (Ng et al., 2006). In 

general, SOA formation increases with decrease in volatility but has a complex dependence on 

molecular structure. Most SOA models have incorporated this influence of volatility and 

molecular structure. For example, the SAPRC lumping scheme has different model species to 

account for differences in volatility, i.e. ALK4 (C5-C7) versus ALK5 (C7+) and molecular 

structure, i.e. alkanes (ALK) versus alkenes (OLE) versus aromatics (ARO). 

 Several studies have pointed out that evaporated primary organic aerosol (POA; also 

known as semi-volatile organic compounds or SVOC) and intermediate-volatility organic 

compounds (IVOC) form SOA similar to some of the speciated compounds mentioned above 

(Grieshop et al., 2009;Robinson et al., 2007;Shrivastava et al., 2008). However, SVOC and 

IVOC – especially from combustion emissions – are hard to speciate (Schauer et al., 2002a, 

1999a, 2001, 1999b, 2002b) and therefore are not very well understood in terms of their SOA 

potential. Since most SVOC and IVOC cannot be speciated, many aerosol models have adopted 

a volatility-based approach to model SOA formation from them. For example, in Robinson et al. 

(2007), SVOC and IVOC react with the hydroxyl radical (OH) to form products that were one 

order of magnitude lower in volatility than their precursor. In contrast, Pye and Seinfeld (2010) 
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proposed a single-step mechanism for SVOC where the products of oxidation were two orders of 

magnitude lower in volatility than the precursor and used SOA yield-data for naphthalene as a 

surrogate to model IVOC in the traditional way. Jathar et al. (submitted) suggested that SVOC 

and IVOC reacted with the OH radical to form a distribution of products that were several orders 

of magnitude lower than their precursor. Although different, the various methods have provided 

insight and helped close large gaps between predicted and measured SOA concentrations 

(Shrivastava et al., 2008;Tsimpidi et al., 2009;Dzepina et al., 2010;Pye and Seinfeld, 2010;Jathar 

et al., 2011). These new generation of models use a lump-and-yield scheme to model SOA 

formation from speciated emissions and use a volatility-based scheme to model SOA formation 

from unspeciated emissions like SVOC and IVOC. However, given the success of volatility-

based schemes, it could be worthwhile to explore their capabilities for modeling all of SOA. 

In this work, we use data gathered from smog chamber experiments run on evaporated 

fuel to better understand the dependence of the precursor’s volatility and molecular structure to 

form SOA. We test SOA models the way they are currently run in chemical transport or global 

aerosol models. Based on their performance, we suggest modifications or propose new 

frameworks to model SOA formation. Since smog chamber data typically capture only the first 

generation of oxidation, this work does not consider multigenerational aging of SOA products. 

 

5.2 Materials and Methods 

5.2.1 SOA experiments and data 

Jathar et al. (in preparation) conducted twenty three high-NOx photo-oxidation 

experiments in the Carnegie Mellon University smog chamber to measure SOA formation from 

twelve different fuels (gasoline: 3 experiments, Fischer Tropsch-coal: 2 experiments, Fischer 



 132 

Tropsch-natural gas: 2 experiments, JP-8: 6 experiments, Diesels: 10 experiments). The fuels 

modestly vary in volatility and molecular structure. In the previous work, we developed 

representations of the volatility and molecular structure for each fuel using the volatility basis set 

(VBS; Figure S.1).  

We provide a brief outline of the experiments; details can be found in Jathar et al. (in 

preparation). First, ammonium sulfate seed was added to the chamber to facilitate condensation 

and prevent nucleation of SOA products. Second, nitrous acid (HONO) was bubbled into the 

chamber. Third, the precursor (fuel) was introduced into the chamber using a heated septum. 

Photo-oxidation was initiated by turning on the chamber UV black lights, which photolyzed 

HONO to produce hydroxyl radicals (OH). NO and NO2 formed as by-products of HONO 

irradiation resulted in a low VOC/NOx ratio that was consistent with ratios found in urban 

polluted regions. The experiment was performed at low relative humidity (<5%) and a 

temperature of around 298 K. 

Concentrations of gas phase organic compounds were tracked using a GC-MS (Logue et 

al., 2009) and a proton-transfer reaction mass spectrometer (PTR-MS, Ionicon Analytik) and 

were used to calculate OH concentrations and OH exposure during the experiment. Particle-

phase measurements were made using a scanning mobility particle sizer (SMPS, TSI Inc.) and a 

quadrupole or high resolution aerosol mass spectrometer (Q-AMS or HR-AMS, Aerodyne 

Research Inc.) to measure non-refractory aerosol mass, size and composition. Both SMPS and Q-

AMS/HR-AMS results were wall-loss corrected to calculate a lower and upper bound on the total 

SOA formation (Weitkamp et al., 2007;Hildebrandt et al., 2009).  
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The initial concentration of a fuel species was calculated by multiplying the mass of fuel 

injected by its percentage mass listed in the fuel composition (Tables S.1 through S.5 in 

supplementary material). We assume a smog chamber volume of 10 m
3
. 

 

 
Figure 5.1: Schematics that demonstrate the (a) Empirical, (b) Traditional and (c) Volatility-Based 

SOA models. 

 

We are aware that experimental uncertainty could affect the quality of data from smog 

chamber experiments and therefore the conclusions from our analysis. The experimental 

uncertainty can be thought of as that associated with measurements, repeatability and 

atmospheric relevance. Of the three, the uncertainty in measurements is probably the lowest as 

the instruments and techniques used to characterize smog chamber data have evolved over the 

past two decades. In this work, measurement uncertainties are quantified and wherever possible, 

included in our analysis. Particularly for experiments used in this work, there is slightly more 

uncertainty associated with repeatability partly because there might be factors that have a larger 
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than anticipated effect on the experiment (ambient temperature, relative humidity, VOC/NOx 

ratio). The uncertainty was kept to a minimum by undertaking tasks such as cleaning the 

chamber for 12 hours before use, ensuring a minimum background concentration and running a 

blank experiment. But the largest uncertainty results from whether our static and controlled 

experiments are truly representative of the dynamic processes in the atmosphere. Atmospheric 

relevance was ensured by diluting the emissions and maintaining VOC/NOx ratios to those 

found in the atmosphere.  

 

5.2.2 SOA models 

 In this work, we model the SOA formed in the chamber using a set of semi-volatile 

surrogate products represented through the VBS framework (Donahue et al., 2006). The amount 

of SOA is defined by the gas-particle partitioning of these surrogate products. The VBS 

separates low-volatility organics into logarithmically spaced bins of effective saturation 

concentration (C*) between 10
-2

 to 10
6
 !g m

"3
 at 298 K. C* (inverse of the Pankow-type 

partitioning coefficient, Kp) is proportional to the saturation vapor pressure; it is a semi-empirical 

property that describes the gas-particle partitioning of an organic mixture (Pankow, 

1994;Donahue et al., 2006). The gas-particle partitioning is calculated using absorptive 

partitioning theory: 

! 

" i = 1+
Ci

*

COA

# 

$ 
% 

& 

' 
( 

)1

COA = " i *Mi g+ p

i=1

N

+
(5.1) 

where, !i is the fraction of mass in volatility bin ‘i’ in the particulate phase, Ci* is the effective 

saturation concentration of bin ‘i' in !g m
"3

, COA is the total particulate OA concentration in !g 
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m
"3

, Mi is the total organic concentration (gas+particle) in bin ‘i’ in !g m
"3

 and N is the number 

of basis set bins.  

All models can be described using the following equations: 

! 

d[X j ]

dt
= "kOH ,X j

[OH][X j ]  (5.2) 

  

! 

d[Mi g+ p
]

dt
= " i, jkOH ,X j

[OH][X j ]

j

#

first$generation products

! " # # # $ # # # 

  (5.3) 

Equation (5.2) represents the first-generation oxidation of an SOA precursor where kOH,Xj is the 

reaction rate constant between the oxidant [OH] and SOA precursor [Xj]. The index j indicates 

different precursors, either fuel species or volatility bins of the fuel. The kOH for each fuel species 

is listed in the supplementary material (Tables S.1-S.5). Equation (5.3) tracks the first-generation 

secondary organic mass formed in ‘i’
th

 bin as a result of the precursor oxidation where "i,j is the 

mass yield for the first-generation oxidation reaction. Mi|g+p is the total gas+particle organic 

mass in the ‘i’
th

 bin of the VBS; its gas-particle partitioning is calculated using equation (5.1).  

 We do not consider the multi-generational aging of semi-volatile products because the 

smog chamber data only represents first-generation oxidation products. 

 

5.2.2.1 Empirical 

 In the Empirical model, each fuel is modeled separately. For each fuel, we assume that 

every fuel species has the same mass yield or in other words "i,j = "i. We fit the SOA data to 

determine "’s for each fuel. Figure 5.1(a) shows a schematic of the Empirical model. The 

empirical model represents a “best fit” to the experimental data, against which other theoretical 

models can be judged. 
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To implement the Empirical model in a CTM, one needs as many model precursors as 

there are source types. Here, we consider six model precursors for six different fuels. Each fuel is 

fit across a 5-bin VBS. Therefore, the Empirical model will have 30 free parameters. 

 

5.2.2.2 Traditional 

 In the Traditional model, all fuels are modeled using the same methodology and 

parameters. Figure 5.1(b) shows a schematic of the Traditional model. We use the SAPRC 

scheme to lump fuel species into a model species, i.e. n-decane is lumped as ALK5, benzene is 

lumped as ARO1 and so on. The lumping used for each fuel species is listed in the 

supplementary material (Tables S.1-S.5). We use mass yields ("i,j) published by Murphy and 

Pandis (2010) for SAPRC model species to predict SOA formation; the mass yields are listed in 

Table S.6.  

Due to the SAPRC lumping, the Traditional model accounts for differences in both the 

precursor’s volatility and molecular structure to form SOA. The model treats different molecular 

structures, i.e. alkanes (ALK), alkenes (OLE), aromatics (ARO), isoprene (ISOP) and terpenes 

(TERP), separately. Since there are no terpenes or isoprene in the fuel, we do not discuss them in 

the rest of the chapter. Within each molecular structure (ALK, OLE and ARO), there are two or 

more model species that stand for different reactivities with the OH radical or also different 

volatilities, since reactivity within a molecular structure correlates well with the volatility of the 

species. SAPRC (or any other gas-phase mechanism) was initially designed to simulate 

hydrocarbon-NOx-ozone photochemistry and the different reactivities were supposed to capture 

the efficiency with which a given species produced ozone. The Traditional model seems to be 

well-resolved in molecular structure but coarsely-resolved in volatility.  
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 The Traditional model is run in three configurations: 

Traditional (speciated): In this configuration, the model is run similar to contemporary SOA 

models. Contemporary SOA models only consider speciated organic compounds that are 

available as part of an emissions inventory. Therefore, in this configuration we only include n-

alkanes, single-ring aromatics and smaller (<C12) alkenes and branched and cyclic alkanes and 

ignore organics that typically remain unspeciated. 

 

Traditional (base): In this configuration, the model includes both the speciated and unspeciated 

organics. The unspeciated organics are included in the model using engineering judgment.  

  

Traditional (extended): The Traditional (extended) model is a modified version of the 

Traditional (base) model. With respect to lumping, we add a model species to represent all 

branched alkanes (BALK) and change the lumping for aromatics where all single-ring aromatics 

are lumped into ARO1 and all multi-ring aromatics are lumped into ARO2. The new lumping is 

listed in the supplementary material (Tables S.1-S.5). With respect to yields ("i,j), we use a 

genetic optimization technique to assign new yields to BALK, ARO1 and ARO2 and adjust the 

Murphy and Pandis (2010) yields for ALK4, ALK5, OLE1 and OLE2 so that there is better 

agreement between model predictions and measurements. 

To implement the Traditional (speciated/base) models in a CTM, one would need 9 

model precursors. Each model precursor would have a 5-bin VBS parameterization. Therefore, 

the Traditional (speciated/base) models would have 45 free parameters. To implement the 

Traditional (extended) model in a CTM, one would need 10 model precursors. Therefore, the 

Traditional (extended) model will have 50 free parameters. 
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5.2.2.3 Volatility-based 

In the volatility-based model (VBM), we assume that SOA formation is a function of the 

precursor’s volatility alone; the volatility is expressed using the VBS. Each precursor C* bin 

(corresponding to an Xj in equation (2)) forms a certain product distribution with mass yields "i,j. 

Each higher (or lower) precursor C* bin forms the same product distribution but shifted by one 

C* bin; we base this assumption on the work of Presto et al. (2010), who found that for n-

alkanes, the addition of 2 carbon atoms to an n-alkane shifted its corresponding SOA product 

distribution, on average, by one C* bin. Figure 5.1(c) shows a schematic of the VBM. The top 

panel shows how each precursor C* bin forms products while the bottom panel illustrates how a 

‘precursor’ volatility distribution transforms into a ‘product’ volatility distribution.  

 A key input to the VBM is the fuel’s volatility distribution, which is constructed using 

fuel composition data; details are in Jathar et al. (in preparation). Figure S.1 shows the volatility 

distribution for each fuel. Another key input to the VBM is the precursor C* bin’s reaction rate 

with the OH radical (kOH,Xj). Using Atkinson and Arey (Atkinson and Arey, 2003), we develop a 

mathematical relationship between C* of a hydrocarbon and kOH. We find that alkanes, alkenes 

and aromatics have very different relationships; alkanes: kOH = -1.84x10
-12

 log(C*) + 4.27x10
-11

, 

alkenes: kOH = 4.0x10
-11

, aromatics: kOH = -5.7x10
-12

 log(C*) + 1.14x10
-10

.  

 To implement the VBM in a CTM, one would need 8 model precursors. Each model 

precursor would have the same 5-bin VBS parameterization but shifted in volatility space. 

Therefore, the VBM will only have 5 free parameters. 
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Figure 5.2: SOA predictions from the (a) Empirical, (b) Traditional (speciated), (c) Traditional 

(base) and (d) Traditional (extended) models compared to measurements. The fractional error (f.e.) 

and fractional bias (f.b.) are mentioned in parentheses. 

 

5.3. Results 

5.3.1 Empirical 

The Empirical model uses "’s, that were determined by fitting the SOA data for each 

fuel. Model predictions for the SOA mass concentration for the Empirical model are compared 

against measurements in Figure 5.2. For visual clarity, we only show end-of-experiment values 

for the comparison. We use statistical metrics of fractional error and fractional bias to 

quantitatively evaluate the model performance, which are calculated using all time-resolved data.  
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 The Empirical model represents the best fit to the data and therefore its statistical metrics 

present an upper limit on the performance of other models. The Empirical model produces a 

good model-measurement comparison but still results in a high fractional error. The high 

fractional error is likely due, in part, to the experiment-to-experiment variability and uncertainty 

in the measurements. For example, fits to toluene SOA data collected from Hildebrandt et al. 

(2009) and Ng et al. (2007) imply an uncertainty of a factor of two. SOA data for similar 

experiments on naphthalene from Chan et al. (2009) and Shakya and Griffin (2010) vary by at 

least a factor of two. Across the experiments, it is possible that modest changes in the wall-loss 

rates, oxidant or radical concentrations and VOC to NOx ratios result in a slightly different 

chamber environment that affects SOA formation. The fractional error and fractional bias for all 

models used in this work are plotted in Figure 5.6; the Empirical model is plotted using a red 

star. 

 

5.3.2 Traditional 

 Figure 5.2(b) plots the model-measurement comparison for the Traditional (speciated) 

model. The model severely under-predicts the SOA formation when compared to measurements. 

The model results in both a high fractional error (-170%) and fractional bias (-130%).  

 When we include all the precursor mass in the Traditional (base) model, it does 

substantially better (fractional error = 76%, fractional bias = 26%) compared to the Traditional 

(speciated) model but does not do as well when compared to the Empirical model. The 
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improvement in performance of the Traditional (base) model (purple square) over the Traditional 

(speciated) model (blue circle) is substantial and can be clearly see in Figure 5.6. For the 

Traditional (base) model, the FT-natural gas, JP-8 and diesel data are predicted within a factor of 

two but the gasoline and FT-coal data are over-predicted. When we look closely at the 

Traditional (base) model’s predictions by organic class, we find that for gasoline, most of the 

predicted SOA comes from aromatics. Given that published yields for precursors like toluene 

vary by more than a factor of two (Ng et al., 2007;Lane et al., 2008;Hildebrandt et al., 2009), it is 

possible that the SOA yields for aromatics in Murphy and Pandis (2010) are biased high. Further, 

SAPRC does not distinguish between different alkane structures and hence straight, branched 

and cyclic alkanes with similar volatility are assigned the same yields. But, previous work (Lim 

and Ziemann, 2009;Tkacik et al., submitted) has shown that branched alkanes have much smaller 

SOA yields than straight and cyclic alkanes. Hence, it is no surprise that the Traditional (base) 

model over-predicts SOA formation for FT-natural gas, which is dominated by branched alkanes 

(88%). 

 The performance of the Traditional (base) model can be further improved by making a 

few changes to the SAPRC model species and adjusting the Murphy and Pandis (2010) yields 

(see section 5.2.2.3 for more detail). If the model’s prediction for FT-coal needs to be improved, 

branched alkanes would need to be modeled separately. Similarly, if the model’s predictions for 

gasoline are to be improved, the single-ring aromatic yields would need to be lowered. But 

adding a branched alkane model species and lowering the single-ring aromatic yields would also 

change the model’s predictions for FT-natural gas, JP-8 and diesels. To overcome the problem, 

we develop a genetic optimization algorithm where we try different lumping strategies for fuel 

species, determine a set of yields for the branched alkane model species, lower yields for single-
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ring aromatics and adjust yields for the other model species (ALK4, AL5, OLE1, OLE2) all at 

the same time. The objective of the algorithm is to improve the model-measurement comparison 

by minimizing the fractional error. The optimum solution requires the Traditional (base) model 

to undergo two major changes: (1) addition of a branched alkane model species (BALK) that 

includes only branched alkanes with carbon-number 7 and higher and (2) single-ring aromatics 

will be lumped under ARO1 and multi-ring aromatics will be lumped under ARO2. New yields 

for BALK and extended yields for ARO1, ARO2, ALK4, AL5, OLE1 and OLE2 are listed in 

Table 5.1. We call this new model Traditional (extended).  

 Figure 5.2(c) compares model predictions from the Traditional (Extended) model to 

measurements. The Traditional (Extended) model performs better than the Traditional (base) 

model as most of its predictions lie within a factor of two of the measurements; the performance 

is also reflected through the improved statistical metrics and location in Figure 5.6 (green 

diamond). As expected, most of the improvement stems from better (lower) predicted yields 

from gasoline and FT-coal. 

 
Table 5.1: SOA VBS yields for model precursors in Traditional (extended) 

C* (!g/m3) 
Group 

0.1 1 10 100 1000 

BALK 0.001 0.000 0.000 0.000 0.000 

ALK4 0.001 0.039 0.042 0.040 0.977 

ALK5 0.001 0.018 0.102 0.359 0.746 

OLE1 0.000 0.001 0.005 0.038 0.150 

OLE2 0.000 0.003 0.026 0.083 0.270 

ARO1 0.001 0.015 0.089 0.034 0.404 

ARO2 0.007 0.218 0.162 0.255 0.022 

ISOP
*
 0.000 0.000 0.023 0.015 0.000 

SESQ
*
 0.000 0.075 0.150 0.750 0.900 

TERP
*
 0.000 0.012 0.122 0.201 0.507 

      *
same as Murphy and Pandis (2010) 

5.3.3 Volatility-based 
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Table 5.2: SOA VBS yields for model precursors in VBM 

 Product C* (!g m
-3

) 

Precursor C* 0.1 1 10 100 1000 

10
2
 !g m

-3
 0.431 0.000 0.000 0.000 0.000 

10
3
 !g m

-3
 0.210 0.191 0.029 0.000 0.000 

10
4
 !g m

-3
 0.142 0.000 0.271 0.018 0.000 

10
5
 !g m

-3
 0.097 0.023 0.013 0.290 0.008 

10
6
 !g m

-3
 0.011 0.078 0.034 0.006 0.297 

10
7
 !g m

-3
 0.000 0.011 0.080 0.028 0.060 

10
8
 !g m

-3
 0.000 0.000 0.011 0.078 0.041 

10
9
 !g m

-3
 0.000 0.000 0.000 0.011 0.085 

10
10

 !g m
-3

 0.000 0.000 0.000 0.000 0.022 

 

 For the VBM, all SOA data is fit to determine a mass yield matrix ("i,j) for the precursor 

C* bins; "i,j is listed in Table 5.2. Figure 5.3(a) compares SOA model predictions from the VBM 

to measurements. The VBM is substantially better than the Traditional (speciated) model, 

marginally better than the Traditional (base) model but not as good as the Traditional (extended) 

or Empirical models. The VBM is plotted in Figure 5.6 using an orange triangle. The reasonable 

comparison implies that a model based on volatility alone can explain a lot of the variability in 

the measured SOA data. However, there are several instances where the VBM’s performance is 

limited. For the diesel data at lower COA, the VBM predicts roughly the same SOA mass despite 

variability in the measured SOA mass because all the diesels have roughly the same volatility 

distribution. The VBM predicts the same SOA formation for FT-coal and FT-natural gas since 

they share the same volatility profile although they have different structures; FT-coal is mostly 

composed of branched alkanes while FT-natural gas is an equal mix of n-alkanes and branched 

alkanes. Therefore, the VBM over-predicts the FT-coal SOA and under-predicts the FT-natural 

gas SOA. 
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Figure 5.3: (a) SOA predictions from the Volatility-Based model compared to measurements and 

(b) SOA yield curves for C* precursors 10
5
, 10

6
 and 10

7
 !g m

-3
 (solid lines). For comparison, we plot 

the SOA yield curves for n-decane (estimated), n-dodecane and n-tetradecane (dotted lines). The 

colors connect the solid lines to the dotted lines as the C* bins roughly correspond to the C* of the 

n-alkanes. 

 

 Figure 5.3(b) plots the SOA yields for the 10
5
, 10

6
 and 10

7
 C* precursor bins. For 

reference, we also plot SOA yields for n-decane, n-dodecane and n-tetradecane. The colors are 

supposed to connect VBM’s precursors to similar volatility n-alkanes. The SOA yields for the 

VBM precursors, on average, are lower than equivalent-volatility n-alkanes suggesting that the 

evaporated fuel emissions, on average, behave more like branched alkanes than n-alkanes, 

cycloalkanes or aromatics. 

 Figure 5.4 plots the SOA yield for various SOA precursors at a COA of 5 !g m
-3

. The 

SOA yields for precursors from the VBM are plotted as a yellow band; the band captures 

uncertainty in the fit. We also plot SOA yields for various species based on published literature; 

the error bars represent an uncertainty of a factor of two. The SOA yields interpreted using the 

VBM compare reasonably well with those measured for the range of single species. This is 

despite the VBM using no a-priori information about what the SOA yields might be for species 
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in a given volatility range. The plot suggests that the parameters used in the VBM are able to 

modestly capture the variability in SOA yields observed with volatility. 

 

 
Figure 5.4: SOA yield presented as a function of precursor C* at a COA of 5 !g m

-3
. The yellow 

band represents fits for the Volatility-based model. n-alkane data is from Presto et al. (2010), c-

alkane and iso-alkane data is from Tkacik et al. (submitted), biogenic data is from Farina et al. 

(2010), alkene data is from Forstner et al. (1997), Na et al. (2006) and Keywood et al. (2004) and 

aromatic data is from Ng et al. (2007), Song et al. (2007), Hildebrandt et al. (2009), Chan et al. 

(2009) and Shakya et al. (2010). C* values are determined either from the NIST database or EPA’s 

Estimation Program Interface suite. 

 

 Figure 5.5 plots the SOA production from gasoline, FT, JP-8 and diesel for unit precursor 

emissions assuming that all of the precursor is reacted. The SOA is stacked and color coded 

based on the C* of the precursor. Inline with our experimental results, Figure 5.5 shows that for 

unit precursor emissions, diesel forms the most SOA followed by JP-8, FT and gasoline. It also 

shows that, as one moves to lower volatility fuels (gasoline to FT to JP-8 to diesel), the 

contribution to total SOA from lower volatility species increases significantly. Traditional 

(speciated) SOA models have only included organic species that have a C* greater than 10
6
 !g 

m
-3

, an approximation that is appropriate for gasoline and Fischer-Tropschs fuels but not for JP-8 

and diesel. If we assume that combustion emissions correlate with the fuel in terms of their 
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volatility, Figure 5.5 implies that these models may be able to capture the entire SOA formation 

from emissions of engines using gasoline and FT but might miss most of the SOA formed from 

the use of JP-8 and diesel. 

 
Figure 5.5: Cumulative SOA production as a function of C* for the four different fuels (see Fig S.2 

for details). The different colors represent SOA arising from precursors with different C*s: OPOA 

(blue) is SOA from precursors in C* bins less than 10
3
 !g m

-3
, NT-SOA (green) is SOA from 

precursors in C* bins 10
4
 to 10

6
 !g m-3 and T-SOA (maroon) is from SOA from precursors in C* 

bins 10
7
 !g m

-3
 and higher. 

  

 One could extend the VBM to also incorporate molecular structure by having a different 

set of yields for different molecular structures. However, SOA data used in this work are 

insufficient to determine a molecular structure-resolved VBM. 
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Figure 5.6: Fractional error and fractional bias plotted for different models used in this study. 

 

5.4 Summary and Discussion 

 We use SOA data from smog chamber experiments conducted on evaporated fuel to 

parameterize and test SOA models that include the influence of the precursor’s volatility and/or 

molecular structure. A Traditional (speciated) SOA model – run similar to contemporary SOA 

models where only the speciated mass is included in the model – severely under-predicts 

measured SOA formation. The Traditional (base) model reasonably predicts the measured SOA 

formation when all the precursor mass in included in the model. The performance of the 

Traditional (base) model can be improved somewhat by adding a model species to track 

branched alkanes and multi-ring aromatics and further tuning its SOA yields for straight/cyclic 

alkanes and single-ring aromatics. A volatility-based model (VBM) that models SOA as a 

function of the precursor’s volatility alone is able to modestly fit the data and produce a model-

measurement comparison slightly better than the Traditional (base) model. 
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 Figure 5.6 plots the statistical metrics for different models (Empirical, Traditional, VBM) 

used in this study. From the figure, it is clear that the Traditional (speciated) model heavily 

under-predicts SOA formation. When contrasted with other models where all the precursor mass 

is included, we find that the models predict SOA formation substantially better than the 

Traditional (speciated) model. This suggests that simply including all the precursor mass in the 

models, would to some extent, correct the under-prediction seen with contemporary SOA 

models. Studies have found that precursor mass, especially from combustion processes, is hard to 

speciate, which makes it difficult to include explicitly in models (Schauer et al., 2002a, 1999a, 

2001, 1999b, 2002b). There have been several efforts to speciate a larger fraction of complex 

organic mixtures using sophisticated chromatographic techniques (Edam et al., 2005;Isaacman et 

al.) but until those analyses reveal organic species that can be studied for their SOA potential, we 

will need alternative methods to incorporate the unspeciated mass in SOA models. Recently, 

Presto et al. (submitted, 2011) developed a technique to determine volatility mass distributions 

for emissions lower than a C* of 10
6
 !g m

-3
 using a thermal desorption GC-MS; they very able 

to speciate very little of the emissions mass. The technique could provide the perfect input to the 

VBM which models SOA formation only based on the volatility of the precursor. So, although 

the model does not incorporate the influence of molecular structure, it becomes fairly easy to 

include all the precursor mass into the model.  

 The SOA models described in this work and used elsewhere in CTMs are semi-empirical 

because the organic compounds present in SOA and their interactions are currently too complex 

to be represented using first principles. So fundamentally, a model that is more finely resolved in 

terms of its precursors and (fit) parameters would do better than a less resolved model. The 

Empirical and Traditional (extended) models have many more parameters (30 and 50 
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respectively) than the VBM (5 parameters) but their performance is only marginally better than 

the VBM. This would imply that the VBM is a much simpler but more insightful method to 

represent SOA formation from gas-phase oxidation of organic emissions. Further, in a CTM 

where each precursor adds computational expense, one would like to keep the model precursors 

to a minimum. The Empirical model provides the best model-measurement comparison but 

would be computationally very expensive to implement in a CTM. Assuming different sources 

have different SOA potentials, each source would need a separate model precursor, i.e. for a 

CTM with 20 sources (conservative), using the Empirical model would mean 20 model 

precursors. In contrast, the Traditional (base/extended) models, which have a slightly poorer 

model-measurement comparison, would be much more computationally efficient since they 

would need 9/10 model precursors. This is assuming that the unspeciated mass can be well 

represented with the existing model precursors. Presently, SOA models in CTMs treat 

unspeciated SVOC and IVOC separately and hence add to the computational burden; Shrivastava 

et al. (2008), Jathar et al. (2011), Tsimpidi et al. (2009), Dzepina et al. (2009) used 9 model 

precursors while Pye and Seinfeld (2010) have used 3. The VBM produces a similar model-

measurement comparison as the Traditional (base) model and would need 8 model precursors 

(C*=10
2
 to C*=10

9
 !g m

-3
) for implementation in a CTM. Opposed to the Traditional models, 

the VBM also, offers the advantage of representing the SVOC and IVOC within the existing 9 

model precursors. So, although molecular structure does influence SOA formation, SOA 

formation as a function of volatility alone (represented through the VBM) is probably sufficient 

for use in CTMs.  

Based on this work, we make several recommendations for models simulating SOA 

formation from gas-phase oxidation of organic emissions. First, we propose that contemporary 
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SOA models critically review emission inventories for their unspeciated mass and find ways to 

include the mass in their models. Second, for SOA models that are currently using SAPRC-type 

schemes, we advise that they change their lumping schemes to account for branched alkanes and 

multi-ring aromatics and change their yields for alkanes and single-ring aromatics based on 

Table 5.1. Third, for modelers intent on adding or revising SOA schemes in regional or global 

models, we suggest that they consider the use of a volatility-based scheme. We recommend 

representing the precursor using the VBS and using the SOA yields in Table 5.2 to model SOA 

formation. And finally, for experimentalists working on characterizing combustion emissions, 

we would encourage them to pursue techniques to characterize the entire volatility spectrum of 

emissions for use in volatility-based models. 

 

5.5 Supplementary material 

Table S.1: Composition information for California summer gasoline 

Lumping 

Species Mass % k_OH Traditional 

(speciated) 

Traditional 

(base) 

Traditional 

(extended) 

C4 Paraffin 0.3 2.36E-12 NONE NONE NONE 

C5 Paraffin 10.9 3.80E-12 ALK4 ALK4 NONE 

C6 Paraffin 12.3 5.20E-12 ALK4 ALK4 NONE 

C7 Paraffin 9.4 6.76E-12 ALK4 ALK4 BALK 

C8 Paraffin 9.8 8.11E-12 ALK5 ALK5 BALK 

C9 Paraffin 3.1 9.70E-12 ALK5 ALK5 BALK 

C10 Paraffin 1.2 1.10E-11 ALK5 ALK5 BALK 

C11+ Paraffin 0.7 1.23E-11 NONE ALK5 BALK 

C6 Aromatic 0.6 1.22E-12 ARO1 ARO1 ARO1 

C7 Aromatic 5.8 5.63E-12 ARO1 ARO1 ARO1 

C8 Aromatic 9.3 1.43E-11 ARO2 ARO2 ARO1 

C9 Aromatic 8.8 1.43E-11 ARO2 ARO2 ARO1 

C10 Aromatic 2.7 1.43E-11 ARO2 ARO2 ARO1 

C11+ Aromatic 1.0 1.43E-11 ARO2 ARO2 ARO1 

Olefins 14.0 3.70E-11 OLE1 OLE1 OLE1 

C5 Cycloalkane 0.1 4.97E-12 ALK4 ALK4 ALK4 

C6 Cycloalkane 0.2 6.97E-12 ALK5 ALK5 ALK5 

C7 Cycloalkane 0.1 6.76E-12 ALK5 ALK5 ALK5 
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C8 Cycloalkane 0.0 8.11E-12 ALK5 ALK5 ALK5 

C9 Cycloalkane 0.0 9.70E-12 ALK5 ALK5 ALK5 

poly-N 0.0 1.42E-11 ALK5 ALK5 ALK5 

 

Table S.2: Composition information for Fischer-Tropsch (coal) 

Lumping 

Species Mass % k_OH Traditional 

(speciated) 

Traditional 

(base) 

Traditional 

(extended) 

n-alkanes 0.2 1.10E-11 ALK5 ALK5 ALK5 

monoaromatics 0.5 1.43E-11 ARO2 ARO2 ARO1 

diaromatics 0.1 2.30E-11 NONE ARO2 ARO2 

Isoalkanes 84.9 1.10E-11 NONE ALK5 BALK 

cycloalkanes 12.6 1.10E-11 NONE ALK5 ALK5 

 

Table S.3: Composition information for Fischer-Tropsch (natural gas) 

Lumping 

Species Mass %  k_OH Traditional 

(speciated) 

Traditional 

(base) 

Traditional 

(extended) 

n-heptane  0.0  ALK4 ALK4 ALK4 

n-octane  1.6 6.76E-12 ALK5 ALK5 ALK5 

n-nonane  22.4 8.11E-12 ALK5 ALK5 ALK5 

n-decane  25.1 9.70E-12 ALK5 ALK5 ALK5 

n-undecane  3.8 1.10E-11 ALK5 ALK5 ALK5 

n-dodecane  0.3 1.23E-11 ALK5 ALK5 ALK5 

n-tridecane  0.0 1.32E-11 NONE ALK5 ALK5 

n-tetradecane  0.0 1.51E-11 NONE ALK5 ALK5 

n-pentadecane 0.0 1.79E-11 NONE ALK5 ALK5 

n-hexadecane  0.0 2.07E-11 NONE ALK5 ALK5 

n-heptadecane 0.0 2.32E-11 NONE ALK5 ALK5 

n-octadecane  0.0 2.85E-11 NONE ALK5 ALK5 

n-nonadecane 0.0 3.51E-11 NONE ALK5 ALK5 

isoalkanes 46.8 4.32E-11 NONE ALK5 BALK 

 

Table S.4: Composition information for JP-8 

Lumping 

Species Mass % k_OH Traditional 

(speciated) 

Traditional 

(base) 
Traditional (extended) 

n-heptane  0.1 6.76E-12 ALK4 ALK4 ALK4 

n-octane  0.3 8.11E-12 ALK5 ALK5 ALK5 

n-nonane  1.2 9.70E-12 ALK5 ALK5 ALK5 

n-decane  3.5 1.10E-11 ALK5 ALK5 ALK5 

n-undecane  4.2 1.23E-11 ALK5 ALK5 ALK5 

n-dodecane  3.7 1.32E-11 ALK5 ALK5 ALK5 

n-tridecane  2.8 1.51E-11 NONE ALK5 ALK5 

n-tetradecane  1.8 1.79E-11 NONE ALK5 ALK5 

n-pentadecane 0.9 2.07E-11 NONE ALK5 ALK5 

n-hexadecane  0.3 2.32E-11 NONE ALK5 ALK5 
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n-heptadecane 0.1 2.85E-11 NONE ALK5 ALK5 

n-octadecane  0.0 3.51E-11 NONE ALK5 ALK5 

n-nonadecane 0.0 4.32E-11 NONE ALK5 ALK5 

monoaromatics 15.4 1.43E-11 ARO2 ARO2 ARO1 

diaromatics 1.7 2.30E-11 NONE ARO2 ARO2 

isoalkanes 23.1 1.23E-11 NONE ALK5 BALK 

cycloalkanes 34.2 1.23E-11 NONE ALK5 ALK5 

 

Table S.5: Composition information for diesels 

Mass %   Lumping 

Species 
(1) (2) (3) (5) (7) (8) (9) k_OH 

Traditional 

(speciated) 

Traditional 

(base) 

Traditional 

(extended) 

C3 n-alkane 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.09E-12 NONE NONE NONE 

C4 n-alkane 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.36E-12 NONE NONE NONE 

C5 n-alkane 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.80E-12 ALK4 ALK4 ALK4 

C6 n-alkane 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.20E-12 ALK4 ALK4 ALK4 

C7 n-alkane 0.0 0.1 0.0 0.0 0.0 0.0 0.0 6.76E-12 ALK4 ALK4 ALK4 

C8 n-alkane 0.0 0.0 0.2 0.1 0.1 0.0 0.1 8.11E-12 ALK5 ALK5 ALK5 

C9 n-alkane 0.3 0.2 0.6 0.7 0.5 0.0 0.4 9.70E-12 ALK5 ALK5 ALK5 

C10 n-alkane 0.4 0.2 1.7 2.9 1.5 0.1 0.8 1.10E-11 ALK5 ALK5 ALK5 

C11 n-alkane 0.4 0.2 1.4 2.9 2.0 0.1 1.1 1.23E-11 ALK5 ALK5 ALK5 

C12 n-alkane 0.2 0.1 2.0 3.5 1.7 0.1 0.8 1.32E-11 ALK5 ALK5 ALK5 

C13 n-alkane 0.0 0.0 1.3 2.4 1.2 0.4 0.9 1.51E-11 NONE ALK5 ALK5 

C14 n-alkane 0.2 0.0 1.3 12.0 18.2 16.4 1.2 1.79E-11 NONE ALK5 ALK5 

C15 n-alkane 0.5 0.0 1.4 7.0 10.1 8.5 1.7 2.07E-11 NONE ALK5 ALK5 

C16 n-alkane 0.6 0.0 1.0 1.0 1.5 1.1 1.0 2.32E-11 NONE ALK5 ALK5 

C17 n-alkane 0.5 0.0 0.6 0.0 0.1 0.3 1.0 2.85E-11 NONE ALK5 ALK5 

C18 n-alkane 0.8 0.0 0.3 0.0 0.0 0.0 0.4 3.51E-11 NONE ALK5 ALK5 

C19 n-alkane 0.6 0.0 0.0 0.0 0.0 0.0 0.2 4.32E-11 NONE ALK5 ALK5 

C20 n-alkane 0.3 0.0 0.0 0.0 0.0 0.0 0.0 4.32E-11 NONE ALK5 ALK5 

C21 n-alkane 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.32E-11 NONE ALK5 ALK5 

C3 branched 

alkane 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.09E-12 NONE NONE NONE 

C4 branched 

alkane 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.36E-12 NONE NONE NONE 

C5 branched 

alkane 
0.0 0.0 0.0 0.0 0.0 0.1 0.0 3.80E-12 ALK4 ALK4 NONE 

C6 branched 

alkane 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.20E-12 ALK4 ALK4 NONE 

C7 branched 

alkane 
0.0 0.0 0.0 0.1 0.0 0.0 0.0 6.76E-12 ALK4 ALK4 BALK 

C8 branched 

alkane 
0.1 0.1 0.4 0.2 0.1 0.1 0.2 8.11E-12 ALK5 ALK5 BALK 

C9 branched 

alkane 
0.5 0.1 0.7 0.8 0.6 0.0 0.0 9.70E-12 ALK5 ALK5 BALK 

C10 branched 

alkane 
2.0 1.0 2.9 3.3 1.6 0.0 1.1 1.10E-11 ALK5 ALK5 BALK 
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C11 branched 

alkane 
4.7 4.5 3.2 2.0 0.4 0.0 0.2 1.23E-11 NONE ALK5 BALK 

C12 branched 

alkane 
0.5 1.1 0.9 2.3 0.8 0.0 0.1 1.32E-11 NONE ALK5 BALK 

C13 branched 

alkane 
3.0 7.8 3.1 3.1 1.5 0.0 1.0 1.51E-11 NONE ALK5 BALK 

C14 branched 

alkane 
4.1 5.5 1.9 2.3 1.0 1.8 3.0 1.79E-11 NONE ALK5 BALK 

C15 branched 

alkane 
3.9 1.1 2.8 1.0 0.3 1.5 3.3 2.07E-11 NONE ALK5 BALK 

C16 branched 

alkane 
3.6 0.6 1.1 0.5 0.2 1.1 3.3 2.32E-11 NONE ALK5 BALK 

C17 branched 

alkane 
2.5 0.2 0.3 0.0 0.0 1.1 2.6 2.85E-11 NONE ALK5 BALK 

C18 branched 

alkane 
1.5 0.1 0.0 0.0 0.0 0.0 1.2 3.51E-11 NONE ALK5 BALK 

C19 branched 

alkane 
1.6 0.1 0.0 0.0 0.0 0.0 0.2 4.32E-11 NONE ALK5 BALK 

C20 branched 

alkane 
0.7 0.0 0.0 0.0 0.0 0.0 0.0 4.32E-11 NONE ALK5 BALK 

C21 branched 

alkane 
0.2 0.0 0.0 0.0 0.0 0.0 0.0 4.32E-11 NONE ALK5 BALK 

C3 cycloalkane 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.09E-12 NONE NONE NONE 

C4 cycloalkane 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.36E-12 NONE NONE NONE 

C5 cycloalkane 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.80E-12 ALK4 ALK4 ALK4 

C6 cycloalkane 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.20E-12 ALK4 ALK4 ALK4 

C7 cycloalkane 0.0 0.0 0.1 0.0 0.0 0.0 0.0 6.76E-12 ALK4 ALK4 ALK4 

C8 cycloalkane 0.3 0.0 0.4 0.4 0.2 0.0 0.3 8.11E-12 ALK5 ALK5 ALK5 

C9 cycloalkane 0.6 0.1 0.8 1.0 0.8 0.0 0.9 9.70E-12 ALK5 ALK5 ALK5 

C10 cycloalkane 1.0 0.1 1.7 2.9 1.4 0.0 0.7 1.10E-11 ALK5 ALK5 ALK5 

C11 cycloalkane 1.4 0.7 2.1 3.3 1.1 0.0 0.7 1.23E-11 NONE ALK5 ALK5 

C12 cycloalkane 1.1 2.4 4.3 5.8 2.8 0.0 2.3 1.32E-11 NONE ALK5 ALK5 

C13 cycloalkane 1.8 2.1 4.0 4.6 2.5 1.0 5.9 1.51E-11 NONE ALK5 ALK5 

C14 cycloalkane 2.3 1.5 2.4 1.7 1.4 1.0 3.2 1.79E-11 NONE ALK5 ALK5 

C15 cycloalkane 2.9 0.9 1.4 1.6 0.6 3.3 7.9 2.07E-11 NONE ALK5 ALK5 

C16 cycloalkane 2.3 0.7 0.5 2.5 0.2 2.3 4.5 2.32E-11 NONE ALK5 ALK5 

C17 cycloalkane 1.9 0.7 0.1 2.0 0.5 4.1 7.2 2.85E-11 NONE ALK5 ALK5 

C18 cycloalkane 1.5 1.0 0.0 0.9 0.0 1.0 2.3 3.51E-11 NONE ALK5 ALK5 

C19 cycloalkane 1.4 1.3 0.0 0.5 0.5 6.1 1.9 4.32E-11 NONE ALK5 ALK5 

C20 cycloalkane 1.0 1.2 0.0 0.2 0.0 1.5 1.1 4.32E-11 NONE ALK5 ALK5 

C21 cycloalkane 0.7 2.5 0.0 0.0 0.0 2.0 0.5 4.32E-11 NONE ALK5 ALK5 

C3 aromatic 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00E+00 NONE NONE NONE 

C4 aromatic 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00E+00 NONE NONE NONE 

C5 aromatic 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00E+00 NONE NONE NONE 

C6 aromatic 0.1 0.0 0.0 0.0 0.0 0.0 0.0 1.22E-12 ARO1 ARO1 ARO1 

C7 aromatic 0.1 0.1 0.1 0.1 0.0 0.0 0.2 5.63E-12 ARO1 ARO1 ARO1 

C8 aromatic 5.0 7.1 5.4 1.8 0.5 0.1 3.1 1.43E-11 ARO2 ARO2 ARO1 

C9 aromatic 27.0 34.5 26.8 11.7 19.2 2.9 15.1 1.43E-11 ARO2 ARO2 ARO1 



 154 

C10 aromatic 4.4 5.6 0.8 0.7 0.9 0.0 0.3 1.43E-11 ARO2 ARO2 ARO1 

C11 aromatic 0.8 2.9 2.6 2.6 2.5 0.0 1.0 1.43E-11 ARO2 ARO2 ARO1 

C12 aromatic 0.3 0.4 1.5 1.6 1.3 1.4 0.6 1.43E-11 ARO2 ARO2 ARO1 

C13 aromatic 0.3 0.2 1.0 0.9 0.5 0.2 0.5 1.43E-11 ARO2 ARO2 ARO1 

C14 aromatic 0.3 0.2 1.0 0.4 2.9 6.1 0.8 1.43E-11 ARO2 ARO2 ARO1 

C15 aromatic 0.2 0.1 0.5 0.0 0.1 0.0 0.5 1.43E-11 ARO2 ARO2 ARO1 

C16 aromatic 0.2 0.1 0.3 0.0 0.0 0.1 0.4 1.43E-11 ARO2 ARO2 ARO1 

C17 aromatic 0.2 0.1 0.1 0.1 0.0 0.1 0.4 1.43E-11 ARO2 ARO2 ARO1 

C18 aromatic 0.1 0.1 0.0 0.1 0.0 0.1 0.4 1.43E-11 ARO2 ARO2 ARO1 

C19 aromatic 0.1 0.1 0.0 0.0 0.0 0.2 0.3 1.43E-11 ARO2 ARO2 ARO1 

C20 aromatic 0.1 0.2 0.0 0.0 0.0 0.3 0.2 1.43E-11 ARO2 ARO2 ARO1 

C21 aromatic 0.0 0.2 0.0 0.0 0.0 0.3 0.1 1.43E-11 ARO2 ARO2 ARO1 

benzocycloalkanes 3.9 3.3 8.1 3.6 4.9 6.3 6.4 4.09E-11 NONE ARO2 ARO2 

diaromatics 1.5 3.6 4.4 0.9 11.9 26.5 4.4 4.09E-11 NONE ARO2 ARO2 

triaromatics 0.0 0.0 0.0 0.0 0.0 0.1 0.0 4.09E-11 NONE ARO2 ARO2 

tetraaromatics 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.09E-11 NONE ARO2 ARO2 

olefins 1.8 2.5 0.1 0.2 0.1 0.0 0.1 5.00E-11 OLE2 OLE2 OLE2 

 

Table S.6: VBS yields for SAPRC07 lumped species    

High Nox (Low Yield)   Low Nox (High Yield) 

  C* (!g/m3)   C* (!g/m3) 

Group 1 10 100 1000   1 10 100 1000 

ALK4 0.0000 0.0375 0.0000 0.0000   0.0000 0.0750 0.0000 0.0000 

ALK5 0.0000 0.1500 0.0000 0.0000   0.0000 0.3000 0.0000 0.0000 

OLE1 0.0008 0.0045 0.0375 0.1500   0.0045 0.0090 0.0600 0.2250 

OLE2 0.0030 0.0255 0.0825 0.2700   0.0225 0.0435 0.1290 0.3750 

ARO1 0.0107 0.2571 0.4821 0.7500   0.0107 0.2571 0.7500 0.9643 

ARO2 0.0015 0.1950 0.3000 0.4350   0.0750 0.3000 0.3750 0.5250 

ISOP 0.0003 0.0225 0.0150 0.0000   0.0090 0.0300 0.0150 0.0000 

SESQ 0.0750 0.1500 0.7500 0.9000   0.0750 0.1500 0.7500 0.9000 

TERP 0.0120 0.1215 0.2010 0.5070   0.1073 0.0918 0.3587 0.6075 
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Figure S.1: Volatility and molecular structure distributions for unburned (a) gasoline, (b) FT-coal, 

(c) FT-natural gas, (d) JP-8 and (e-k) Diesel 1, 2, 3, 5, 7, 8 and 9 represented in the volatility basis 

set. For each plot, the bars sum up to one. The inset pie shows the relative fractions of n-alkanes, 

branched/cyclic alkanes and aromatics in the fuel. The magenta arrow shows the mass-weighted 

average of the volatility distribution. 
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Figure S.2: (a) Average SOA yield for the Volatility-Based Model presented as a function of 

precursor C* at a COA of 5 !g m
-3

 and volatility distribution for diesel (9) (normalized). (b) 

Product of emissions and SOA yield presented as a cumulative distribution. The different colors 

represent SOA arising from precursors with different C*s: OPOA (blue) is SOA from precursors in 

C* bins less than 10
3
 !g m-3, NT-SOA (green) is SOA from precursors in C* bins 10

4
 to 10

6
 !g m-3 

and T-SOA (maroon) is from SOA from precursors in C* bins 10
7
 !g m-3 and higher. 

 

5.6 Acknowledgements 

Funding was provided by the U.S. Department of Defense Strategic Environmental Research and 

Development Program (SERDP) under project WP-1626 and by the U.S. Environmental 

Protection Agency National Center for Environmental Research (NCER) through the STAR 

program (R833748). 

 

5.7 References 

Atkinson, R., and Arey, J.: Atmospheric degradation of volatile organic compounds, Chemical 

Reviews, 103, 4605-4638, 2003. 

Bernstein, J. A., Alexis, N., Barnes, C., Bernstein, I. L., Bernstein, J. A., Nel, A., Peden, D., 

Diaz-Sanchez, D., Tarlo, S. M., and Williams, P. B.: Health effects of air pollution, The Journal 

of Allergy and Clinical Immunology, 114, 1116-1123, 2004. 

Chan, A. W. H., Kautzman, K. E., Chhabra, P. S., Surratt, J. D., Chan, M. N., Crounse, J. D., 

Kurten, A., Wennberg, P. O., Flagan, R., and Seinfeld, J. H.: Secondary organic aerosol 

formation from photooxidation of naphthalene and alkylnaphthalenes: Implications for oxidation 

of intermediate volatility organic compounds (ivocs), Atmospheric Chemistry and Physics, 9, 

3049-3060, 2009. 

Donahue, N., Robinson, A., Stanier, C., and Pandis, S.: Coupled partitioning, dilution, and 

chemical aging of semivolatile organics, Environ. Sci. Technol, 40, 2635-2643, 

doi:10.1021/es052297c, 2006. 

Dzepina, K., Volkamer, R., Madronich, S., Tulet, P., Ulbrich, I., Zhang, Q., Cappa, C., Ziemann, 

P., and Jimenez, J.: Evaluation of recently-proposed secondary organic aerosol models for a case 

study in mexico city, Atmospheric Chemistry and Physics, 9, 5681-5709, doi:10.5194/acp-9-

5681-2009, 2009. 

Dzepina, K., Cappa, C. D., Volkamer, R. M., Madronich, S., DeCarlo, P. F., Zaveri, R. A., and 

Jimenez, J. L.: Modeling the multiday evolution and aging of secondary organic aerosol during 

milagro 2006, Environmental Science & Technology, 45, 3496-3503, doi: 10.1021/es103186f, 

2010. 



 157 

Edam, R., Blomberg, J., Janssen, H. G., and Schoenmakers, P.: Comprehensive multi-

dimensional chromatographic studies on the separation of saturated hydrocarbon ring structures 

in petrochemical samples, Journal of chromatography A, 1086, 12-20, 2005. 

Gordon, T. D., Nguyen, N. T., May, A. A., Presto, A. A., Lipsky, E. M., Maldonado, S., 

Chattopadhyay, S., Gutierrez, A., Maricq, M., and Robinson, A. L.: Secondary organic aerosol 

formed from light duty gasoline vehicle exhaust dominates primary particulate matter emissions, 

Environ. Sci. Technol, in preparation-a. 

Gordon, T. D., Nguyen, N. T., Presto, A. A., Lipsky, E. M., Maldonado, S., Maricq, M., and 

Robinson, A. L.: Impacts of aftertreatment, fuel chemistry and driving cycle on the production of 

secondary organic aerosol from diesel vehicle exhaust, Environ. Sci. Technol, in preparation-b. 

Grieshop, A. P., Logue, J. M., Donahue, N. M., and Robinson, A. L.: Laboratory investigation of 

photochemical oxidation of organic aerosol from wood fires 1: Measurement and simulation of 

organic aerosol evolution, Atmospheric Chemistry and Physics, 9, 1263-1277, 10.5194/acp-9-

1263-2009, 2009. 

Heald, C. L., Jacob, D. J., Park, R. J., Russell, L. M., Huebert, B. J., Seinfeld, J. H., Liao, H., and 

Weber, R. J.: A large organic aerosol source in the free troposphere missing from current 

models, Geophys. Res. Lett., 32, doi:10.1029/2005GL023831, 2005. 

Hildebrandt, L., Donahue, N., and Pandis, S.: High formation of secondary organic aerosol from 

the photo-oxidation of toluene, Atmospheric Chemistry and Physics, 9, 2973-2986, 

doi:10.5194/acp-9-2973-2009, 2009. 

IPCC, W.: Climate change 2007: The physical science basis, Summary for Policy Makers, 

Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental 

Panel on Climate Change, 2007. 

Isaacman, G., Wilson, K. R., Chan, A. W. H., Worton, D. R., Kimmel, J. R., Nah, T., Hohaus, T., 

Gonin, M., Kroll, J. H., and Worsnop, D. R.: Improved resolution of hydrocarbon structures and 

constitutional isomers in complex mixtures using gas chromatography-vacuum ultraviolet-mass 

spectrometry (gc-vuv-ms), Analytical Chemistry,  

Jathar, S., Farina, S., Robinson, A., and Adams, P.: The influence of semi-volatile and reactive 

primary emissions on the abundance and properties of global organic aerosol, Atmospheric 

Chemistry and Physics, 11, 7727-7746, doi:10.5194/acp-11-7727-2011 2011. 

Johnson, D., Utembe, S. R., Jenkin, M. E., Derwent, R. G., Hayman, G. D., Alfarra, M. R., Coe, 

H., and McFiggans, G.: Simulating regional scale secondary organic aerosol formation during 

the torch 2003 campaign in the southern uk, Atmos. Chem. Phys., 6, 403-418, 2006. 

Lane, T. E., Donahue, N. M., and Pandis, S. N.: Simulating secondary organic aerosol formation 

using the volatility basis-set approach in a chemical transport model, Atmospheric Environment, 

42, 7439-7451, 2008. 



 158 

Lim, Y. B., and Ziemann, P. J.: Chemistry of secondary organic aerosol formation from oh 

radical-initiated reactions of linear, branched, and cyclic alkanes in the presence of no x, Aerosol 

Science and Technology, 43, 604-619, 2009. 

Logue, J., Huff-Hartz, K., Lambe, A., Donahue, N., and Robinson, A.: High time-resolved 

measurements of organic air toxics in different source regimes, Atmospheric Environment, 43, 

6205-6217, 2009. 

Miracolo, M., Hennigan, C., Ranjan, M., Nguyen, N., Gordon, T., Lipsky, E., Presto, A., 

Donahue, N., and Robinson, A.: Secondary aerosol formation from photochemical aging of 

aircraft exhaust in a smog chamber, Atmos. Chem. Phys, 11, 4135-4147, doi:10.5194/acp-11-

4135-2011, 2011. 

Miracolo, M. A., Drozd, G. T., Jathar, S. H., Presto, A. A., Lipsky, E. M., Corporan, E., and 

Robinson, A. L.: Fuel composition and secondary organic aerosol formation: Gas-turbine 

exhaust and alternative aviation fuels, Environmental Science & Technology, submitted. 

Morris, R. E., Koo, B., Guenther, A., Yarwood, G., McNally, D., Tesche, T. W., Tonnesen, G., 

Boylan, J., and Brewer, P.: Model sensitivity evaluation for organic carbon using two multi-

pollutant air quality models that simulate regional haze in the southeastern united states, Atmos. 

Environ., 40, 4960-4972, 2006. 

Ng, N., Kroll, J., Chan, A., Chhabra, P., Flagan, R., and Seinfeld, J.: Secondary organic aerosol 

formation from m-xylene, toluene, and benzene, Atmos. Chem. Phys, 7, 3909-3922, 

doi:10.5194/acp-7-3909-2007, 2007. 

Ng, N. L., Kroll, J. H., Keywood, M. D., Bahreini, R., Varutbangkul, V., Flagan, R. C., Seinfeld, 

J. H., Lee, A., and Goldstein, A. H.: Contribution of first-versus second-generation products to 

secondary organic aerosols formed in the oxidation of biogenic hydrocarbons, Environmental 

Science & Technology, 40, 2283-2297, 2006. 

Pankow, J. F.: An absorption model of gas/particle partitioning of organic compounds in the 

atmosphere, Atmospheric Environment, 28, 185-188, 1994. 

Presto, A. A., Miracolo, M. A., Donahue, N. M., and Robinson, A. L.: Secondary organic aerosol 

formation from high-no x photo-oxidation of low volatility precursors: N-alkanes, 

Environmental Science & Technology, 44, 2029-2034, 2010. 

Pye, H., and Seinfeld, J.: A global perspective on aerosol from low-volatility organic 

compounds, Atmos. Chem. Phys, 10, 4377-4401, doi:10.5194/acp-10-4377-2010, 2010. 

Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M., Grieshop, 

A. P., Lane, T. E., Pierce, J. R., and Pandis, S. N.: Rethinking organic aerosols: Semivolatile 

emissions and photochemical aging, Science, 315, 1259-1262, 2007. 

Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.: Measurement of emissions 

from air pollution sources. 2. C1 through c30 organic compounds from medium duty diesel 

trucks, Environ. Sci. Technol, 33, 1578-1587, 1999a. 



 159 

Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.: Measurement of emissions 

from air pollution sources. 1. C1 through c29 organic compounds from meat charbroiling, 

Environmental Science & Technology, 33, 1566-1577, 1999b. 

Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.: Measurement of emissions 

from air pollution sources. 3. C1- c29 organic compounds from fireplace combustion of wood, 

Environ. Sci. Technol, 35, 1716--1728, 2001. 

Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.: Measurement of emissions 

from air pollution sources. 5. C1- c32 organic compounds from gasoline-powered motor 

vehicles, Environ. Sci. Technol, 36, 1169-1180, 2002a. 

Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.: Measurement of emissions 

from air pollution sources. 4. C1-c27 organic compounds from cooking with seed oils, 

Environmental Science & Technology, 36, 567-575, 2002b. 

Shakya, K. M., and Griffin, R. J.: Secondary organic aerosol from photooxidation of polycyclic 

aromatic hydrocarbons, Environmental Science & Technology, 44, 8134-8139, 

doi:10.1021/es1019417, 2010. 

Shrivastava, M. K., Lane, T. E., Donahue, N. M., Pandis, S. N., and Robinson, A. L.: Effects of 

gas particle partitioning and aging of primary emissions on urban and regional organic aerosol 

concentrations, Journal of Geophysical Research-Atmospheres, 113, D18301, 

doi:10.1029/2007JD009735, 2008. 

Song, C., Na, K., Warren, B., Malloy, Q., and Cocker III, D. R.: Secondary organic aerosol 

formation from the photooxidation of p-and o-xylene, Environmental Science & Technology, 41, 

7403-7408, 2007. 

Tkacik, D. S., Presto, A. A., Donahue, N. M., and Robinson, A. L.: Secondary organic aerosol 

formation from intermediate-volatility organic compounds: Cyclic, linear, and branched alkanes, 

Environmental Science & Technology, submitted. 

Tsimpidi, A., Karydis, V., Zavala, M., Lei, W., Molina, L., Ulbrich, I., Jimenez, J., and Pandis, 

S.: Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation 

in the mexico city metropolitan area, Atmos. Chem. Phys, 10, 525-546, doi:10.5194/acp-10-525-

2010, 2009. 

Vutukuru, S., Griffin, R. J., and Dabdub, D.: Simulation and analysis of secondary organic 

aerosol dynamics in the south coast air basin of california, J. Geophys. Res., 111, 

doi:10.1029/2005JD006139, 2006. 

Weitkamp, E. A., Amy, M., Pierce, J. R., Donahue, N. M., and Robinson, A. L.: Organic aerosol 

formation from photochemical oxidation of diesel exhaust in a smog chamber, Environmental 

Science & Technology, 41, 6969-6975, 2007. 

Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R., 

Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P. 



 160 

F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, 

N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Williams, 

P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J., Rautiainen, J., Sun, J. Y., Zhang, Y. M., 

and Worsnop, D. R.: Ubiquity and dominance of oxygenated species in organic aerosols in 

anthropogenically-influenced northern hemisphere midlatitudes, Geophys. Res. Lett, 34, L13801, 

doi:10.1029/2007GL029979, 2007. 

 

 



 161 

Chapter 6: Unspeciated organic emissions from combustion sources 

and their influence on the secondary organic aerosol budget in the 

United States 
 

Abstract 

 Combustion sources are a major source of organic emissions and therefore a potentially 

important source for secondary organic aerosol (SOA) formation in the atmosphere. Although 

speciated organic emissions from combustion sources are considered in models to form SOA, a 

large fraction of the organics are unspeciated. In this work, we analyze data from numerous 

smog chamber experiments, which photo-oxidized dilute emissions from different combustion 

sources (on-road gasoline vehicles, aircraft, on-road diesel vehicles, wood burning and open 

biomass burning), to determine the contribution that unspeciated emissions make to SOA 

formation. An SOA model based on speciated organics is able to explain, on average, 8-31% of 

the SOA measured in the experiments. We hypothesize that the remainder results from the gas-

phase oxidation of unspeciated emissions, which account on average for 25-75% of the non-

methane organic gas (NMOG) emissions. Using the SOA data, we develop, for the first time, 

source-specific parameterizations to model SOA from unspeciated emissions; all sources seem to 

have median SOA yields similar to large n-alkanes (C12+). To assess the influence of unspeciated 

emissions on SOA formation regionally, we use the parameterization to predict SOA production 

in the United States. Using emissions data collected during the smog chamber experiments and 

data available in literature, we build a gross inventory for unspeciated emissions in the United 

States. We discover that unspeciated organics might be included in the current generation of 

SOA models but misallocated in terms of its SOA potential. The top six combustion sources (on- 

and off-road gasoline, on- and off-road diesel, open biomass and wood burning) emit 2.61 Tg yr
-
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1
 of unspeciated emissions (20% of US anthropogenic VOC emissions from combustion sources) 

and are estimated to form a minimum of 0.68 Tg yr
-1

 of SOA; the estimate is a third of the 

biogenic SOA produced in the US. We predict that accounting for SOA from unspeciated 

emissions will double modeled SOA formation from anthropogenic combustion sources.  

 

6.1 Introduction 

 Both natural and anthropogenic combustion sources such as wildfires, vehicles, aircraft, 

ships, electric generating units and fireplaces emit a complex mixture of gaseous and particulate 

pollutants (Turns, 1996) that influence the Earth’s climate and ecology and human health (IPCC, 

2007). While certain pollutants like carbon dioxide, methane, sulfur dioxide and nitrogen oxides 

have been well-studied and in some cases even regulated, the formation and evolution of 

secondary organic aerosol (SOA) from the atmospheric oxidation of non-methane organic gas 

(NMOG) emissions is still an open research question (Hallquist et al., 2009). SOA is the 

dominant fraction of organic (OA) aerosol and accounts for a third of the dry fine aerosol mass 

in the atmosphere (Zhang et al., 2007;Jimenez et al., 2009).  

 Over the past several years, Carnegie Mellon University’s Center for Atmospheric 

Particle Studies (CAPS) has investigated SOA formation from diluted emissions from important 

combustion sources (aircraft: Miracolo et al. (2011), Miracolo et al. (submitted); gasoline light-

duty vehicles: Gordon et al. (in preparation-a); diesel light- and heavy-duty vehicles: Gordon et 

al (in preparation-b); wood smoke: Grieshop et al. (2009a,b); open biomass burning: Hennigan et 

al. (2011)). For all sources, SOA accounts for a substantial fraction of the (primary+secondary) 

aerosol mass after a few hours of photochemical processing. Except for Henningan et al. (2011), 

the studies suggest that speciated organics are unable to explain the SOA formation measured 
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during the experiments. SOA from speciated organics is defined as traditional SOA (T-SOA). 

They hypothesize that the unexplained SOA arises from the oxidation of high molecular weight 

(C6 and higher) and/or oxygenated compounds that are unspeciated by standard gas-

chromatography mass spectrometry (GC-MS) techniques (Robinson et al., 2007). The 

unexplained SOA or the measured SOA minus the T-SOA has been defined as non-traditional 

SOA (NT-SOA) (Donahue et al., 2009).  

 Unspeciated emissions might comprise of two different types of species - unresolved: 

species that elute together through a GC column which makes it hard for them to be individually 

identified (e.g. iso-alkanes) and uneluted: species that do not pass through a GC column (e.g. 

substituted polar compounds while using a non-polar column). The unresolved species emissions 

often elute as an unresolved hump in a chromatogram and are referred to as an unresolved 

complex mixture (UCM). Over the years, numerous studies have found a significant amount of 

unresolved emissions while analyzing particle and gas-phase organic emissions from combustion 

sources (Fraser et al., 1997;Rogge et al., 1998, 1993, 1991;Schauer et al., 2002a, 1999a, 2001, 

1999b, 2002b). Although detected, very rarely have they been quantified. Recently, Presto et al. 

(submitted) took a step forward and estimated the mass and volatility of unresolved emissions 

from aircraft exhaust using a thermal desorption GC-MS (TD-GC-MS). They estimated the mass 

and volatility by developing a calibration curve with the fuel and lubricating oil used by the 

aircraft. On average, these emissions were of a similar magnitude as the mass of speciated SOA 

precursors (Jathar et al., submitted). In a follow-up study, Jathar et al. (submitted) suggested that 

the unresolved emissions from aircraft exhaust were efficient in forming SOA and had SOA 

yields similar to large n-alkanes (C12-C13). Further, Nguyen et al. (in preparation) reported that 

unresolved emissions from gasoline and diesel engines accounted for less than 10% of the total 
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hydrocarbon mass and suspected that most of the unspeciated emissions did not elute. Semi-

volatile organic compounds (SVOC) arising from the evaporation of directly emitted primary 

organic aerosol (POA) and intermediate-volatility organic compounds that have been defined 

using their volatility are probably a part of these unspeciated emissions. 

 At present, unspeciated emissions are poorly represented by the current generation of 

SOA models. Recently, a handful have modeled NT-SOA formation from the SVOC/IVOC 

fraction of unspeciated emissions (Tsimpidi et al., 2009;Pye and Seinfeld, 2010;Jathar et al., 

2011;Shrivastava et al., 2008;Dzepina et al., 2009). Accounting for SVOC/IVOC has improved 

model performance but their inventories and SOA mechanisms still remain poorly constrained. 

For example, SVOC inventories were built only using gas-particle partitioning data for diesel 

exhaust and IVOC inventories were not based on direct measurements but estimated either using 

source test data from Schauer et al. (1999-2002) or using naphthalene as a surrogate. Further, the 

SOA mechanisms were based on very limited experimental data and assumed that different 

sources had the same potential to form NT-SOA. In turn, it follows that the OA budgets 

predicted by these models are not robust enough to answer important questions such as the 

contribution of NT-SOA to OA or source apportionment of OA. Also, no modeling study so far 

has explicitly accounted for the SOA formation from all unspeciated emissions.  

 Typically, SOA models use precursors that are already setup as model species in the gas-

phase mechanism. Emission inventories are created by multiplying a total volatile organic 

compound (VOC) emissions rate by a normalized emissions profile (Simon et al., 2010). 

However, the source profiles in EPA’s SPECIATE database (Simon et al., 2010) or used by 

models like CMAQ (Carlton et al., 2010) typically contain little or no unspeciated emissions. For 

example, in EPA SPECIATE, on-road gasoline vehicles, aircraft, woodstoves and open burning 
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have no unspeciated emissions while on-road and off-road diesel vehicles have 14% and 21% 

respectively of its VOC emissions allotted to a lumped unspeciated model-species. In CMAQ, 

on-road gasoline vehicles, aircraft, wood burning and on-road diesel vehicles have no 

unspeciated emissions while open burning has only 4% of its VOC emissions allotted to a 

lumped unspeciated model-species. This is in sharp contrast to the work of Rogge et al. (1991, 

1993a, 1993b, 1998), Schauer et al. (1999a, 1999b, 2001, 2002a, 2002b) and the data presented 

in this work, where unspeciated emissions account for a substantial fraction of the NMOG. We 

suspect that most of the emissions profiles in EPA SPECIATE and CMAQ have been normalized 

to the sum of the speciated emissions instead of normalizing to the NMOG emissions and 

therefore have none to very little unspeciated emissions. Assuming that the total VOC emissions 

rate accounts for all NMOG from a source, the lack of unspeciated emissions in the emissions 

profile has resulted in the unspeciated emissions being under-represented and the speciated 

emissions being over-represented in models. For example, assume that source X emits 10 tons yr
-

1
 of VOCs where X has an emissions profile of 33% ethane, 33% single-ring aromatics and 33% 

unspeciated. In CMAQ, the model would represent those emissions as 5 Tg yr
-1

 of ethane and 5 

Tg yr
-1

 of single-ring aromatics instead of 3.3 Tg yr
-1

 each of ethane, single-ring aromatics and 

unspeciated i.e. the unspeciated are allocated to the speciated emissions. The misallocation might 

not have a large effect if the unspeciated organics on average have the same SOA potential as the 

speciated organics. However, as mentioned earlier, unspeciated organics possibly consist of 

higher molecular weight compounds that are likely to have higher SOA yields than speciated 

organics. The problem with emissions profiles is expected to propagate and potentially affect 

several components in a chemical transport model (CTM) and in the context of this work, both 

the gas-phase mechanism and the SOA model. 
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In this work, we use smog chamber data compiled from literature (Grieshop et al., 

2009a;Grieshop et al., 2009b;Miracolo et al., 2011;Hennigan et al., 2011;Miracolo et al., 

submitted;Gordon et al., in preparation-b;Gordon et al., in preparation-a) to quantify the 

influence of unspeciated emissions to SOA formation in the United States (US). First, the data 

are used to determine what fraction of the SOA can be explained by speciated organics (T-SOA). 

Next, using the data, source-resolved parameterizations are developed to model residual SOA 

(NT-SOA) from the unspeciated fraction in combustion emissions. Then, we use smog chamber 

data and data from literature to build a gross inventory for unidentified emissions in the US. And 

finally, the new parameterizations are coupled with the gross inventory data to investigate the 

SOA budget in the US. 

 

6.2. Methods 

6.2.1 SOA data 

 In this work, we analyze POA and SOA data gathered from smog chamber experiments 

conducted on different combustion sources by Carnegie Mellon University’s (CMU) Center for 

Atmospheric Particle Studies (CAPS) and Paul Scherrer Institute’s (PSI) Laboratory of 

Atmospheric Chemistry. The PSI data are only used in Figure 6.1. Table 6.1 lists the campaign 

name and year, combustion sources tested, fuel(s) used, relevant references for each data set, 

notes and number of experiments used in this work. 
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Table 6.1: List of smog chamber experiment data used in this work 

Campaign-

Year 
Source Fuel(s) used References Notes 

# of 

expts 

CMU-2009 Woodstove Logwoods 
Grieshop et al., 

ACP, 2009a,b 

Limited 

gas-phase 

organic 

data 

6 

PIT-2009 
Commerical jet 

engine (CFM56) 
JP-8 

Miracolo et al., 

ACP, 2011 
- 6 

FLAME3-2009 Open burning 

Trees, Pines, 

Grasses, 

Shrubs 

Hennigan et al., 

ACP, 2011 
- 18 

CARB-2010 

LEV-I and LEV-

II light-duty 

vehicles 

Gasoline, 

Diesel, 

Biodiesel 

Gordon et al. (in 

prep) 
- 14 

WPAFB-2010 

Helicopter gas 

turbine engine 

(T63) 

JP-8, Fischer-

Tropsch 

Miracolo et al., 

ES&T, 2012 
- 2 

PSI-2010 

Light-duty 

vehicles w/ and 

w/o 

aftertreatment 

Diesel 
Chirico et al., 

ACP, 2010 

No gas-

phase 

organic 

data 

6 

CARB-2011 

Heavy-duty 

vehicles w/ and 

w/o 

aftertreatment 

Diesel 
Gordon et al. (in 

preparation-b) 
- 15 

CARB-2012 

Light-duty 

vehicles, Off-

road gasoline 

engines 

Gasoline 
Gordon et al. (in 

preparation-a) 
- 21 

PSI-2011 Woodstoves 

Beech 

logwood, 

Pellets 

Heringa et al., 

ACP, 2011 

No gas-

phase 

organic 

data 

6 

  

Here, we provide a brief overview of a typical smog chamber experiment. The 

experiments involved collecting emissions from the source and then transferring them through a 

heated transfer line into a portable Teflon smog chamber. The emissions were diluted with clean 

air to achieve particle concentrations in the smog chamber that were representative of those 

typically found in urban plumes. To initiate photo-oxidation, the smog chamber was exposed to 

natural or artificial sunlight; a suite of instruments tracked the evolution of the gas- and particle-
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phase pollutants. In most experiments, gas-phase organic measurements were made online using 

a proton transfer reaction mass spectrometer (PTR-MS) and a flame ionization detector (FID) 

and offline using GCMS. The PTR-MS tracked the emission and decay of single-ring aromatics, 

which were then used to estimate OH concentrations in the smog chamber. Across the 

experiments (which typically lasted a few hours), the OH exposure ranged from 4x10
6
 to 5x10

7
 

molecules-hr cm
-3

 with a median value of 1.1x10
7
 molecules-hr cm

-3
, which corresponds to a 

range of 4 hours to 2 days of atmospheric processing at a typical OH concentration of 10
6
 

molecules cm
-3

. The GC-MS was used to identify hydrocarbon and in some cases light-

oxygenated species in the combustion emissions, which were then used in models to predict 

SOA formation. Typically, a GC-MS analysis is able to quantify straight-, branched- and cyclic- 

alkanes and alkenes, single-ring and double-ring aromatics and light carbonyls that have a carbon 

number less than or equal to 12. The number of species that can be quantified using the GC-MS 

can vary depending on the complexity of the emissions and the methods and internal standards 

used with the instrument. For FLAME3-2009, we were able to quantify 66 species while for 

CARB-2009/2010/2011 we were able to quantify 202 species. Particle-phase measurements were 

made online with a scanning mobility particle sizer (SMPS) and aerosol mass spectrometer 

(AMS). A combination of SMPS and AMS measurements were used to estimate SOA formed in 

the smog chamber. 

The data are organized across five source categories: on-road gasoline, aircraft, on-road 

diesel, wood burning and open burning. The on-road gasoline source category includes data from 

twenty-eight experiments conducted on diluted emissions from five pre-LEV (Low Emission 

Vehicle), eleven LEV-I and twelve LEV-II light-duty gasoline vehicles from CARB-2010 and 

CARB-2012. The on-road diesel source category includes data from fifteen experiments 
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conducted on light duty and heavy-duty diesel vehicles from CARB-2010 and CARB-2011 and 

six experiments conducted on light duty diesel vehicles from PSI-2010. The aircraft source 

category includes data from eight experiments conducted on a commercial jet engine at idle, taxi, 

landing and takeoff loads and a helicopter engine at idle and cruise loads from PIT-2009 and 

WPAFB-2010. The wood burning source category includes data from twelve experiments 

conducted on woodstoves from CMU-2008 and PSI-2011. The open burning source category 

includes data from eighteen experiments conducted on open biomass burning from FLAME3-

2009. 

 We are aware that experimental uncertainty could affect the quality of data from smog 

chamber experiments and therefore the conclusions from our analysis. The experimental 

uncertainty can be thought of as that associated with measurements, repeatability and 

atmospheric relevance. Of the three, the uncertainty in measurements is probably the lowest as 

the instruments and techniques used to characterize smog chamber data have evolved over the 

past two decades. In this work, measurement uncertainties are quantified and wherever possible, 

included in our analysis. Particularly for experiments used in this work, there is slightly more 

uncertainty associated with repeatability partly because it is too expensive to repeat every 

experiment and partly because there might be factors that have a larger than anticipated effect on 

the experiment (ambient temperature, relative humidity, VOC/NOx ratio). The uncertainty was 

kept to a minimum by undertaking tasks such as cleaning the chamber for 12 hours before use, 

ensuring a minimum background concentration and running a blank experiment. But the largest 

uncertainty results from whether our static and controlled experiments are truly representative of 

the dynamic processes in the atmosphere. Atmospheric relevance was ensured by diluting the 
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emissions and maintaining VOC/NOx ratios to those found in the atmosphere and in some cases 

exposing the chamber to natural sunlight than artificial UV light.  

 

6.2.2 Terminology 

Across the campaigns, several different instruments were used to measure the gas- and 

particle-phase mass, composition and properties of organics. To undertake a modeling effort, we 

need to ensure that the measurements map to a consistent set of definitions not only across the 

campaigns but also to definitions commonly used in the aerosol community. Figure 6.1 presents 

a schematic that shows the various instruments used and the measurements made that are 

relevant to this work. For simplicity and transparency, we describe the terms in light of the 

measurements and methods used to calculate them. We also note exceptions if any. 

The FID was used to measure TOG for the on-road gasoline, on-road diesel and open 

burning experiments. FIDs detect functionalized carbon with lower efficiency (McNair et al., 

1969). Therefore, depending on the extent of oxygenation of organic emissions, an FID would 

under-predict the TOG mass. For the aircraft experiments, we do not have a TOG measurement 

and therefore TOG is calculated as a sum of all the speciated and measured unspeciated organic 

gases. Further, the TOG is measured at a dilution level lower than the dilution level achieved in 

the smog chamber. So semi-volatile organic carbon (OC) measured along with the TOG would 

evaporate at the higher dilution levels found in the smog chamber, which might contribute to 

SOA formation. Hence, for each experiment the OC (CVS/tunnel) and POA (chamber) values 

are used to determine the evaporated OC and added to the TOG. The speciated organics are 

simply the sum of all the gas-phase organics that have been speciated using GC-MS. The SVOC 

and IVOC are organics measured and estimated using the TD-GC-MS. A very small fraction 



 171 

(<10%) of the SVOC and IVOC mass is actually speciated and we assume that all of the SVOC 

and IVOC mass, for the purpose of this work, is unspeciated. The NMOG or VOC is defined as 

the methane mass subtracted from the TOG mass. The total unspeciated mass is defined as the 

speciated organics subtracted from the NMOG. By definition, the unspeciated mass includes the 

SVOC, IVOC and evaporated OC mass. The instruments and methods used to measure and 

estimate TOG, NMOG and unspeciated mass ensure that our values serve as a lower bound 

estimates. The TOG breakdown can be visualized using the schematic in Figure S.1. 

 

 
Figure 6.1: Schematic describing the instruments used to make measurements of gas- and particle-

phase organics and elemental carbon during a typical experiment. 

 

6.2.3 SOA model 
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A key objective of this work is to determine a way to represent SOA formation from 

unspeciated emissions. The first step is to predict T-SOA formation from speciated organics and 

subtract that from the measured SOA to calculate NT-SOA. The next step is to develop source-

resolved parameters for NT-SOA by tying the estimated NT-SOA formation to the oxidation of 

unspeciated emissions. 

 We model all SOA formed in the smog chamber using a set of semi-volatile surrogate 

products represented using the volatility basis set (VBS) framework (Donahue et al., 2006). The 

VBS separates low-volatility organics into logarithmically spaced bins of effective saturation 

concentration (C*) between 10
-1

 to 10
3
 !g m

"3
 at 298 K. C* (inverse of the Pankow-type 

partitioning coefficient, Kp) is proportional to the saturation vapor pressure; it is a semi-empirical 

property that describes the gas-particle partitioning of an organic mixture (Pankow, 1994). The 

amount of SOA is defined by the gas-particle partitioning of these surrogate products calculated 

using absorptive partitioning theory: 

(6.1) 

where, !i is the fraction of mass in volatility bin ‘i’ in the particulate phase, Ci* is the effective 

saturation concentration of bin ‘i' in !g m
"3

, COA is the total particulate OA concentration in !g 

m
"3

 into which the organics partition, Mi|g+p is the total organic concentration (gas+particle) in 

bin ‘i’ in !g m
"3

 and N is the number of VBS bins.  

The production of semi volatile species is described by the following equations: 

! 

d[X j ]

dt
= "kOH ,X j

[OH][X j ]  (6.2) 
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! 
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]

dt
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  (6.3) 

Equation (6.2) represents the first-generation oxidation of an SOA precursor where kOH,Xj is the 

reaction rate between the oxidant [OH] and SOA precursor [Xj]. The index j indicates different 

precursors, individual species and lumped precursors. The first term in equation (6.3) represents 

the production of first-generation products in the ‘i’
th

 bin due to precursor oxidation (equation 

6.2) where "i,j is the stoichiometric mass yield for the first-generation oxidation reaction. The 

second and third terms in equation (6.3) account for the evolution of material in the VBS due to 

multi-generational oxidation; here we assume that only vapors in the VBS (M|g) react. !k,i is the 

mass yield from multi-generational oxidation reactions in bin ‘k’ and kOH,M is the oxidation rate 

of vapors in the VBS. Mi|g+p is the total gas+particle organic mass in the ‘i’
th

 bin of the VBS; its 

gas-particle partitioning is calculated using equation (6.1). 

 

6.2.3.1 Traditional SOA 

 We define T-SOA as the SOA mass formed through the oxidation of speciated organic 

emissions. Here, we use the speciated organics quantified using the GC-MS to predict T-SOA for 

all smog chamber experiments. To simulate T-SOA, Xj in equation (6.2) represents an individual 

precursor (e.g. benzene, toluene, n-dodecane, or cyclohexane) and OH is assumed to be the only 

oxidant. We use the SAPRC lumping and mass-yields ("i,j in equation 6.2) proposed by Murphy 

and Pandis (2010) to model T-SOA. The mass yields for the lumped model species are listed in 

Table S.1.  

The multi-generational oxidation of T-SOA is highly uncertain since it has not be 

constrained using experimental data. Here, we use the parameterizations recently applied to 
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anthropogenic SOA in regional and global models (Shrivastava et al., 2008;Murphy and Pandis, 

2009;Murphy and Pandis, 2010;Farina et al., 2010;Jathar et al., 2011). T-SOA vapors reacts with 

the OH radical (kOx,M = 1 x 10
-11

 cm
3
 molecules

-1
 s

-1
)

 
to form a product that is one order of 

magnitude lower in volatility than the precursor or shifted by one C* bin relative to the 

precursor. To account for the addition of oxygen, 7.5% of the precursor’s mass is added to the 

product. Hence, for T-SOA, #i,k in equation (6.4) takes the form: 

! 

"i,k =
+1.075 if k = i +1;

0 otherwise

# 
$ 
% 

  (6.4) 

 

6.2.3.2 Unspeciated emissions and Non-Traditional SOA 

Figure 6.2 shows the unspeciated emissions as a fraction of the NMOG emissions using a 

box-plot for the four sources; we are unable to plot the fraction for the wood burning source 

because very few gas-phase organics were measured for those experiments. Figure 6.2 suggests 

that a significant fraction of the NMOG is unspeciated; the median ranges from 25 to 65%. 

Qualitatively, the result agrees with the work of Schauer et al. (1999a, 2001, 2002a) who report 

that 43% of catalyst-equipped gasoline vehicle emissions, 15% of non-catalyst-equipped 

gasoline vehicle emissions, 20% of medium-duty diesel truck emissions and 7% of wood 

fireplace emissions are unspeciated. 

We define NT-SOA as the SOA mass not explained by the T-SOA model or, based on 

our hypothesis, SOA mass arising from the gas-phase oxidation of unspeciated emissions. Prior 

work has represented the SVOC/IVOC fraction of unspeciated emissions using the VBS 

(Tsimpidi et al., 2009;Jathar et al., 2011;Shrivastava et al., 2008;Dzepina et al., 2009). But since 

the total unspeciated mass is calculated as a difference, we do not have complete information of 

its volatility distribution. Therefore, for our model, we use the approach used by Pye and 
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Seinfeld (2010) to model IVOC emissions, i.e. unspeciated emissions are represented using 

(three) lumped precursors: (1) unresolved emissions that have a C* less than or equal to 10
3
 !g 

m
-3

 (semi-volatile organic compounds or SVOC), (2) unresolved emissions that have a C* 

greater than or equal to 10
3
 !g m

-3
 (intermediate volatility organic compounds or IVOC) and (3) 

uneluted emissions defined by difference (remaining organic compounds or ROC). Hence, Xj in 

equation (6.2) is SVOC, IVOC or ROC. We assume that SVOC and IVOC have a OH reaction 

rate constant of 4 x10
-11

 and 3x10
-11

 cm
3
 molecules

-1
 s

-1
 respectively based on Jathar et al. 

(2012). We assume that ROC have a OH reaction rate constant of 1x10
-11

 cm
3
 molecules

-1
 s

-1
 

based on the range of OH reaction rates measured for alkanes, alkenes, aromatics and carbonyls 

(Figure S.2 plots OH reaction rate constants for compounds in Atkinson and Arey (2003)).   

 

 
Figure 6.2: Unspeciated emissions as a fraction of the non-methane organic gas (NMOG) emissions. 

The colored bar on the right shows the median range for the four sources. *Currently, data 

available for only 9 experiments. 
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The goal is to determine an "i,j for the unspeciated emissions. For simplicity and also due 

to the lack of data, we assume that SVOC, IVOC and ROC have the same "i,j. To determine "i,j, 

we first calculate an effective NT-SOA yield using the following equation: 

! 

NTSOAYield =
NTSOA formed

"SVOC + "IVOC + "ROC
  (6.5) 

where # represents the mass reacted according to equation (6.2). Section 6.3.2.2 describes how 

the effective NT-SOA yields are used to determine "i,j. 

 

6.3 Results 

 In this section, we summarize the POA and SOA data. Next, we present results from the 

T-SOA model and calculate the measured SOA fraction that is explained by T-SOA. Then we 

compare effective NT-SOA yields across combustion sources and describe how those yields can 

be used to parameterize NT-SOA formation in models. 

 

6.3.1 POA emission factors and SOA production 

Figure 6.3 compiles all POA and SOA data for the five source categories as box-plots. 

The box’s edges represent the 25
th

 and 75
th

 percentiles of the data and the horizontal line through 

the box represents the median of the data. Across the five source categories, the median POA 

emission factor varies by slightly less than three orders of magnitude; it is highest for open 

burning and lowest for on-road gasoline vehicles. The POA emission factors are as measured in 

the smog chamber and are representative of atmospherically-relevant conditions (Robinson et al., 

2010). Therefore, they are not directly comparable to literature data because the dilution factor in 

the smog chamber is 20 to 30 times higher than the dilution factors used in most source tests. 
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POA is semi-volatile and therefore a higher dilution factor results in substantial evaporation of 

the POA (Robinson et al., 2010). Except for open burning, the median SOA production is equal 

to or higher than the median POA emitted and therefore SOA would be an equal or majority 

component of ambient OA. In contrast to POA the median SOA production varies much less; by 

slightly more than an order of magnitude. This suggests that when considered together 

(OA=POA+SOA), there is much less variability in the total OA contribution from combustion 

sources, than if one only considers POA. 

 

 
Figure 6.3: Smog chamber POA emission factors and SOA box-plots for five source categories. The 

edges of the box represent the 25
th

 and 75
th

 percentile and the solid line in the box represents the 

median of the data. Outliers are shown by the red ‘+’ sign. The colored bars on the right show the 

median range for the entire data. 
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Based on Figure 6.2, we also make several other interesting observations. First, photo-

oxidation of emissions from on-road gasoline produces a similar SOA range as emissions from 

on-road diesel when compared on a fuel-burned basis. Second, the total OA contribution 

(POA+SOA) from woodstoves and open burning is similar; woodstoves have a median total OA 

value of 1070 mg kg-fuel
-1

 versus 1750 mg kg-fuel
-1

 for open burning. However, these sources 

have very different POA-to-SOA ratios; woodstoves have a median POA-to-SOA ratio of 1:2 

versus 5:1 for open burning. It is likely that woodstoves operating at slightly higher temperatures 

(flaming) have lower POA emissions but higher SOA precursor emissions which results in 

higher SOA formation while open burning at lower temperatures (smoldering) has higher POA 

emissions but lower SOA precursor emissions which results in lower SOA formation. This could 

imply that woodstoves and open burning are equivalent in terms of their total OA contribution.  

 

6.3.2 Modeling smog chamber SOA 

6.3.2.1 Traditional SOA 

We use the SOA model, measured speciated organics data, and estimated OH 

concentrations to predict T-SOA formation. We assume that there is very little multigenerational 

oxidation since the SOA yields used in the model have been derived using similar smog chamber 

experiments, i.e. the second and third terms in equation (6.3) are set to zero. Figure 6.4 presents 

box plots of the ratio of T-SOA to measured SOA for the four sources (we are unable to model 

T-SOA for the wood burning source because very few organic precursors were measured for 

those experiments).  
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Figure 6.4: Ratio of predicted T-SOA to SOA measured during the smog chamber experiment. The 

colored bar on the right shows the median range. *Currently, data available for only 9 experiments. 

 

 Figure 6.4 shows that T-SOA only explains a small fraction of the SOA measured in the 

experiment. For example, the median T-SOA to SOA ratio ranges between 0.08 and 0.31 and 

about 80% of the data lies below a ratio of 0.5. The only exception to that conclusion are three 

experiments that were done on a high emitting 2003 Nissan Altima (on-road gasoline) where 

most of the SOA could be explained by emissions of single-ring aromatics. It is worth 

mentioning that the SAPRC-based lumping and the SOA yields of Murphy and Pandis (2010) 

likely predict an upper bound estimate for T-SOA because even small compounds like butene are 

assumed to form SOA.  
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Figure 6.5(a) plots the effective NT-SOA yield for the four sources as a function of the 

organic aerosol mass loading (COA). Typically, this is how the SOA yield data from single-

component studies is plotted and parameterized. We exclude data from four on-road gasoline 

experiments and four open burning experiments where the NT-SOA was negligible.  

 

 
Figure 6.5: NT-SOA yield plotted (a) as a function of COA and (b) as a box-plot for the four sources. 

 

The effective NT-SOA yield varies by two orders of magnitude and there is plenty of 

scatter within and across the sources. There is some evidence of the gas-particle partitioning 

effect (higher yields with higher COA), but clearly many other processes influence the effective 

NT-SOA yields. The scatter might be a realistic representation of real-world source-to-source 

variability but it may also reflect the large uncertainty in our effective NT-SOA yield estimate. 
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unspeciated emissions includes all the unspeciated organic mass and that the unspeciated mass 

reacts with OH with a certain reaction rate. Future work directed towards characterizing the 

unspeciated emissions (Isaacman et al., 2012) and addressing those assumptions will help to 

constrain the estimates better.  

Although the effective NT-SOA yields span more than two orders of magnitude, the 

median yield for the four sources varies between 14 and 48%. Over the COA ranges observed in 

our experiments, the median yields are comparable to high SOA-yield species such as toluene 

(12-41%) (Hildebrandt et al., 2009), naphthalene (18-40%) (Chan et al., 2009) and n-

pentadecane (32-75%) (Presto et al., 2010). 

The effective NT-SOA yield for on-road gasoline is higher than the other three sources. 

This is surprising because evaporated gasoline forms much less SOA than aircraft JP-8 fuel and 

diesel (Jathar et al., in preparation). The result holds even when we consider an effective SOA 

yield which is defined as the ratio of total SOA formed to total SOA precursors (speciated 

organics that form SOA, SVOC, IVOC, ROC) reacted. Also, some of the effective NT-SOA 

yields are greater than 100% implying that either the unspeciated emissions are extremely 

efficient in forming SOA or we are under-predicting the unspeciated emissions and the fraction 

that have reacted.  

In a single-component study, one would fit the SOA yield data as function of COA to 

derive an "i vector over a VBS. However, given the scatter, we seek to define the "i vector to 

parameterize NT-SOA formation from unspeciated emissions by comparing the results to 

published yields of n-alkanes as parameterized by Presto et al. (2010). Figure 6.4(b) plots the 

NT-SOA yield using a box-plot for the four sources and super-imposes measured SOA yields for 

four n-alkanes: C10, C12, C13 and C17 (Presto et al., 2010). SOA yields for the n-alkanes are 
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shown as colored bands with bounds corresponding to yields at a COA of 5 and 50 !g m
-3

, which 

spans the majority range of experimental COA. By assuming that the median represents the best 

estimate for the set of sources, we assign the unspeciated emissions to have SOA yields equal to 

the corresponding n-alkane (Presto et al., 2010). Table 6.2 lists how the unspeciated emissions 

can be mapped and modeled using n-alkanes. To assess the sensitivity of the parameterization in 

Section 6.4, we also consider the n-alkane corresponding to the 25
th

 and 75
th

 percentiles of the 

effective NT-SOA yield data.  

 
Table 6.2: n-alkane surrogates for estimated NT-SOA yields 

Source type 25
th

 percentile median 75
th

 percentile 

On-road gasoline C12 C13 C17 

Aircraft C10 C13 C13 

On-road diesel C10 C12 C17 

Open burning C10 C13 C17 

 

6.4 Modeling the US OA budget 

 In this section, the new source-resolved NT-SOA parameterizations are combined with 

activity data to assess the influence of unspeciated emissions on the OA budget in the US. It will 

be the first time when a semi-empirical and source-resolved parameterization will be used to 

model NT-SOA from directly measured unspeciated emissions. 

6.4.1 Inventory of unspeciated organic emissions 

 Based on a literature review, there are no model-ready inventories available for 

unspeciated emissions from combustion sources that could be directly used to model NT-SOA 

formation. So first, we estimate emissions of unspeciated organics in the US. Our starting point 

is the 2005 National Emissions Inventory (NEI) for anthropogenic VOC emissions (EPA, 2008). 

The analysis focuses on emissions from six sources (on-road gasoline, off-road gasoline, open 

burning, wood burning, off-road diesel, on-road diesel). These sources account for almost 70% 
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of all combustion-based VOC emissions and slightly less than half of all anthropogenic VOC 

emissions in the US. Anthropogenic non-combustion sources (e.g. solvent utilization) are also 

important but are not included in the analysis because of lack of data (we assume that these non-

combustion sources have smaller unspeciated fractions than combustion emissions). We also do 

not consider minor combustion sources (from the perspective of VOC emissions) such as natural 

gas plants, coal plants and petroleum refineries. Table 6.3 lists VOC emissions in columns 1-3 

for the year 2005. 

We use engineering judgment to estimate the fraction of VOC emissions that might be 

unspeciated (column 4 in Table 6.3) based on data from Schauer et al. (1999b, 2001, 2002b) , the 

recent CMU studies (Miracolo et al., 2011;Hennigan et al., 2011;Miracolo et al., 

submitted;Gordon et al., in preparation-b;Gordon et al., in preparation-a) and EPA SPECIATE 

data. The data are plotted in Figure S.3 (supplementary material). For on-road gasoline, an 

average unspeciated fraction of 34% is calculated using the Schauer et al. (2002b) estimate for 

catalyst-equipped gasoline vehicles (49%), CMU’s median estimate for twenty eight experiments 

(25%) (Gordon et al., in preparation-a) and the Nakashima et al. (2010) estimate for gasoline 

vehicles (27%). For off-road gasoline, we assume an unspeciated fraction of 15% from Schauer 

et al. (2002b) for non-catalyst gasoline vehicles. For open burning, we use an unspeciated 

fraction of 65% based on CMU’s median measurements for eighteen experiments during the 

FLAME-3 study (Hennigan et al., 2011). For residential wood burning, we assume an 

unspeciated fraction of 7% based on the Schauer et al. (2001) estimate for pine wood. For on-

road diesel, an average unspeciated fraction of 27% is calculated using the Schauer et al. (1999b) 

estimate for medium-duty trucks (19%), CMU’s median estimate for fifteen experiments (40%) 

(Gordon et al., in preparation-b) and EPA SPECIATE’s estimate for the dominant on-road diesel 
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profile 4674. For off-road diesel, we use an unspeciated fraction of 14% based on profile 3161 in 

the EPA SPECIATE database.  

 
Table 6.3: VOC and unspeciated emissions for anthropogenic combustion sources in the US. 

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 

Source 
VOC 

(Tg yr
-1

) 

VOC as % of 

US anthro. 

emissions 

Unspeciated 

(%) 

Unspeciated 

(Tg yr
-1

) 

EPA SPECIATE 

/ CMAQ Profile # 

on-road gasoline 3.93 21% 34% 1.34 8750/8751 

off-road gasoline 2.56 14% 15% 0.38 8750/8751 

open burning 1.15 6% 65% 0.75 5560 

wood burning 0.54 3% 8% 0.04 4642 

off-road diesel 0.35 2% 14% 0.05 3161 

on-road diesel 0.18 1% 27% 0.05 4674 

other 4.04 22% 0% 0.00 - 

non-combustion 5.76 31% 0% 0.00 - 

Total 18.51 100% - 2.61 - 

 

Table 6.3 lists estimates for unspeciated emissions (column 5). The six sources emit 2.61 

Tg yr
-1

 of unspeciated emissions, which is about 20% of all combustion-based VOC emissions 

and 14% of all anthropogenic VOC emissions in the US. Even though we only considered six 

sources, our estimate is a factor of five higher than the estimate of 0.47 Tg yr
-1

 of unidentified 

emissions in Simon et al. (2010). Simon et al. (2010) estimated unidentified emissions as a sum 

of ‘unidentified VOCs’, ‘unidentified’ and ‘unknown’ categories present in EPA’s SPECIATE 

profiles. Their estimate is low because the EPA SPECIATE profiles – as shown in Figure S.3 – 

have little to none of the profile allotted to unidentified and unknown categories. We should note 

that our estimate is probably very conservative since we only consider six aggregated 

combustion sources. Further, we assume that the unspeciated emissions are included in the VOC 

emission rates provided by NEI.  

 

6.4.2 POA emissions and SOA formation in the US 
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We use a box model to predict the US OA budget from POA emissions and SOA formed 

from the first-generation oxidation of speciated and unspeciated organic emissions. The analysis 

only considers the six sources discussed previously.  

We calculate POA emissions for the six sources by multiplying the median POA 

emission factor (mg kg-fuel
-1

; shown in Figure 6.1) by the activity (kg-fuel burned) for each 

source. Average fuel consumption data for gasoline, diesel and wood burning are from the 

Energy Information Administration (EIA) website for the years 2006-2011 (EIA, 2012). Average 

activity for open burning is from van der Werf et al. (2006) for the years 1997-2004. Gasoline 

consumption between on-road and off-road applications is split 96 to 4% based on Hwang and 

Davis (2009). Diesel consumption is split 50:50 between on-road and off-road applications based 

on Kean et al. (2000). Since we have not done any experiments on emissions from off-road 

vehicles, we estimate POA emission factors for off-road vehicles by scaling the on-road vehicle 

emission factors. Using the literature summarized in Bond et al. (2004), we assume that the POA 

emission factor for off-road gasoline is 10 times higher than that for on-road gasoline and that 

POA emission factor for off-road diesel is 4 times higher than on-road diesel.  

We use equations (6.1-6.3) to model SOA in two model configurations: (1) 

Contemporary: POA and T-SOA only and (2) Updated: POA, T-SOA and NT-SOA. The POA 

treatment is the same between the two models. For the contemporary model, we use VOC 

emissions from Table 6.3 and emission profiles from CMAQ that are most representative of the 

source category (column 6 of Table 6.3) as inputs for the analysis. For the updated model, we 

modify the emissions profile by adding unspeciated emissions and renormalizing the profile. 

Since accounting for unspeciated organics reduces the emissions of speciated organics, the T-

SOA needs to be modeled again. We use the unspeciated emissions from Table 6.3 and the 25
th
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percentile, median and 75
th

 percentile parameterization in Table 6.2 to model NT-SOA. As we 

only have NT-SOA parameterizations for three out of the six source categories (on-road 

gasoline, on-road diesel, open burning), we assume that the on-road gasoline, on-road diesel and 

open burning parameterizations for NT-SOA applies to off-road gasoline, off-road diesel and 

wood burning respectively. In the box model, we assume a constant background OA 

concentration of 5 !g m
-3

 to determine gas-particle partitioning of the semi-volatile products. 

The model assumes that all emissions are reacted away and therefore the results signify the 

maximum OA that can be produced by the six sources due to first-generation oxidation. 

 

 
Figure 6.6: POA and first generation T-SOA and NT-SOA estimates for two model configurations 

for the top six combustion sources in the US. 

 

Figure 6.6 plots the predicted OA for the two models. The updated model (with the 

median NT-SOA parameterization) predicts more than twice as much SOA than the 

contemporary model primarily because a larger fraction of the VOC emissions are now SOA 
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precursors. Based on Figure 6.2, one would expect that the addition of NT-SOA would triple or 

quadruple the net SOA formation. But the result is not as dramatic because in Figure 6.2 only 

directly measured and speciated VOC emissions are used to predict SOA while in Figure 6.6 the 

net VOC emissions remain the same between the two models; what changes is the emissions 

profile. So, the difference between the contemporary and updated models can be attributed to the 

inclusion of high yield SOA precursors (unspeciated) to the emissions profile. Based on the 25
th

 

and 75
th

 percentile NT-SOA parameterizations, the updated model predicts a minimum SOA 

increase of 12% and a maximum of 325% over the contemporary model.  

Across both models and amongst the sources considered, open burning is the dominant 

POA source and gasoline appears to be the dominant SOA source even after accounting for 

uncertainty. Also, SOA is a factor of 4 to 10 higher than POA, which is in-line with 

contemporary OA model results that have accounted for the semi-volatile and reactive nature of 

POA emissions (Jathar et al., 2011;Pye and Seinfeld, 2010;Shrivastava et al., 2008). Diesel emits 

three times as much POA than gasoline but gasoline dominates diesel in SOA by at least an order 

of magnitude because of the much higher VOC emissions. This is qualitatively similar to the 

conclusion made by Bahreini et al. (2012) for Los Angeles. The source apportionment is not very 

sensitive to the uncertainty in the NT-SOA parameterizations as it predicts that gasoline and 

open burning are the largest contributors to SOA formation in the US.  

 

5. Summary and discussion 

 In this work, we analyzed SOA data from sixty nine (eighty seven for Figure 6.2) smog 

chamber experiments conducted on diluted emissions from four (five for Figure 6.2) types of 

combustion sources. First, we established that SOA is an equal or majority part of the OA 
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emitted and formed and varies much less than POA across the set of combustion sources studied. 

Second, we estimated that SOA from speciated organics (or T-SOA) explains, on average, only 

8-31% of the SOA measured during the experiments. Third, we calculated that unspeciated 

organics had SOA yields similar to high SOA-yield species. And finally, we developed and 

employed a source-specific parameterization to model NT-SOA formation from combustion 

sources.  

 Although we have developed a parameterization to model NT-SOA, its implementation 

in CTMs is not straightforward because there are no model-ready inventories available for 

unspeciated emissions. We suspect that VOC or NMOG emission rates used to build inventories 

include unspeciated organics but are misallocated to speciated organics due to the absence of 

unspeciated organics in emissions profiles. Since, unspeciated emissions are much more efficient 

in forming SOA than all speciated emissions considered together, the inclusion of unspeciated 

emissions will surely increase SOA production in models. By building on the emissions 

characterization work done by Schauer et al. (Schauer et al., 2002a, 1999a, 2001), Carnegie 

Mellon and that available in the EPA SPECIATE database, we were able to build an inventory 

for the unspeciated emissions for six important combustion sources in the US. The inventory 

provides a conservative estimate of unspeciated emissions in the US because we assume that 

they arise only from combustion processes, the top six sources account for the bulk and NEI-

supplied VOC emission rates include all NMOG emissions.  

Our updated box-model predicts that the top six combustion sources produce a total of 

0.68 Tg yr
-1

 of SOA. The estimate is about half to a third of the biogenic SOA production 

predicted by Murphy and Pandis (Murphy and Pandis, 2010) for the eastern US (1.9 Tg yr
-1

; 

simulated using PMCAMx; extrapolated from summer production per day; likely to be an 



 189 

overestimate of the annual values) and that predicted by Guenther et al. (1995) for the US (1.7 

Tg yr
-1

). The estimate is small when compared against the work of Murphy and Pandis (2010) 

that predicted a net SOA production of 5.1 Tg yr
-1

 (extrapolated from summer production per 

day) from all anthropogenic sources (combustion + non-combustion) over the eastern US and the 

work of deGouw et al. (2005) that predicted an SOA production of 2.1 Tg yr
-1

 from urban VOCs 

in the US. One reason the updated model estimate is significantly lower is that it does not model 

multigenerational oxidation. Unfortunately, the multigenerational oxidation mechanism 

described here (and used elsewhere) is not constrained experimentally. When we run the updated 

model using the multigenerational oxidation mechanism and parameters described in Section 

6.3.2.1, the model predicts 1.6 Tg yr
-1

 of SOA production after one day of atmospheric 

processing, which is much more in line with the Murphy and Pandis (2010) and de Gouw et al. 

(2005) results. For gasoline, our updated model predicts 1.2 Tg yr
-1

 of SOA production after one 

day of atmospheric processing, which is close to the estimate of Bahreini et al. (2012) after we 

account for gasoline consumption in the US, i.e. 4 Tg yr
-1

 x 0.25 (fraction of global gasoline 

consumed by the US) ~ 1 Tg yr
-1

. This would imply that without multi-generational oxidation, it 

would be hard for the smog chamber data alone to explain the measured formation (and 

presumably properties) of SOA in the atmosphere. However, if we run the multigenerational 

oxidation mechanism over a longer period the mechanism converts almost all of the first 

generation gas+particle mass into SOA making the SOA production more sensitive to the 

mechanism used to model multigenerational oxidation than the yields used to model first-

generation oxidation products.  
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Unspeciated emissions from combustion sources are an efficient and important precursor 

of SOA formation in the atmosphere and we recommend that they be incorporated in future 

generations of SOA models. 

 

6.6 Supplementary material 

 

 
Figure S.1: Schematic showing breakdown of the total organic gas (TOG) mass emitted by a 

combustion source into different constituents and how those constituents are modeled in this work 

to form SOA.  
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Figure S.2: OH reaction rate constants for alkanes, alkenes, aromatics and carbonyls described in 

Atkison and Arey (2003). 
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Figure S.3: Distribution of alkanes, alkenes, aromatics, oxygenates and unspeciated (calculated by 

difference) emissions from different combustion sources as quantified by different groups, 

organizations and models. 

 

6.7 Acknowledgements 

Funding was provided by the Coordinating Research Council under projects A74/E96.  

 

6.8 References 

Carlton, A. G., Bhave, P. V., Napelenok, S. L., Edney, E. O., Sarwar, G., Pinder, R. W., Pouliot, 

G. A., and Houyoux, M.: Model representation of secondary organic aerosol in cmaqv4. 7, 

Environmental Science & Technology, 44, 8553-8560, 2010. 

Chan, H., Kautzman, K., Chhabra, P., Surratt, J., Chan, M., Crounse, J., Kurten, A., Wennberg, 

P., Flagan, R., and Seinfeld, J.: Secondary organic aerosol formation from photooxidation of 

naphthalene and alkylnaphthalenes: Implications for oxidation of intermediate volatility organic 

compounds(ivocs), Atmospheric Chemistry and Physics Discussions, 9, 1873--1905, 2009. 

Donahue, N., Robinson, A., Stanier, C., and Pandis, S.: Coupled partitioning, dilution, and 

chemical aging of semivolatile organics, Environ. Sci. Technol, 40, 2635-2643, 

doi:10.1021/es052297c, 2006. 

Donahue, N. M., Robinson, A. L., and Pandis, S. N.: Atmospheric organic particulate matter: 

From smoke to secondary organic aerosol, Atmospheric Environment, 43, 94--106, 2009. 

Dzepina, K., Volkamer, R., Madronich, S., Tulet, P., Ulbrich, I., Zhang, Q., Cappa, C., Ziemann, 

P., and Jimenez, J.: Evaluation of recently-proposed secondary organic aerosol models for a case 

study in mexico city, Atmospheric Chemistry and Physics, 9, 5681-5709, doi:10.5194/acp-9-

5681-2009, 2009. 

EIA: Data tools and models, in, Department of Energy, 2012. 

2005 national emissions inventory data & documentation: 

http://www.epa.gov/ttnchie1/net/2005inventory.html, 2008. 

Farina, S. C., Adams, P. J., and Pandis, S. N.: Modeling global secondary organic aerosol 

formation and processing with the volatility basis set: Implications for anthropogenic secondary 

organic aerosol, Journal of Geophysical Research, 115, D09202, doi:10.1029/2009JD013046, 

2010. 

Fraser, M. P., Cass, G. R., Simoneit, B. R. T., and Rasmussen, R.: Air quality model evaluation 

data for organics. 4. C2-c36 non-aromatic hydrocarbons, Environmental Science & Technology, 

31, 2356-2367, 1997. 



 193 

Gordon, T. D., Nguyen, N. T., May, A. A., Presto, A. A., Lipsky, E. M., Maldonado, S., 

Chattopadhyay, S., Gutierrez, A., Maricq, M., and Robinson, A. L.: Secondary organic aerosol 

formed from light duty gasoline vehicle exhaust dominates primary particulate matter emissions, 

Environ. Sci. Technol, in preparation-a. 

Gordon, T. D., Nguyen, N. T., Presto, A. A., Lipsky, E. M., Maldonado, S., Maricq, M., and 

Robinson, A. L.: Impacts of aftertreatment, fuel chemistry and driving cycle on the production of 

secondary organic aerosol from diesel vehicle exhaust, Environ. Sci. Technol, in preparation-b. 

Grieshop, A., Donahue, N., and Robinson, A.: Laboratory investigation of photochemical 

oxidation of organic aerosol from wood fires 2: Analysis of aerosol mass spectrometer data, 

Atmospheric Chemistry and Physics, 9, 2227-2240, 2009a. 

Grieshop, A. P., Logue, J. M., Donahue, N. M., and Robinson, A. L.: Laboratory investigation of 

photochemical oxidation of organic aerosol from wood fires 1: Measurement and simulation of 

organic aerosol evolution, Atmospheric Chemistry and Physics, 9, 1263-1277, 10.5194/acp-9-

1263-2009, 2009b. 

Hallquist, M., Wenger, J., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., 

Donahue, N., George, C., and Goldstein, A.: The formation, properties and impact of secondary 

organic aerosol: Current and emerging issues, Atmospheric Chemistry and Physics, 9, 5155-

5236, 2009. 

Hennigan, C., Miracolo, M., Engelhart, G., May, A., Presto, A., Lee, T., Sullivan, A., 

McMeeking, G., Coe, H., and Wold, C.: Chemical and physical transformations of organic 

aerosol from the photo-oxidation of open biomass burning emissions in an environmental 

chamber, Atmospheric Chemistry and Physics, 11, 7669-7686, doi:10.5194/acp-11-7669-2011 

2011. 

Hildebrandt, L., Donahue, N., and Pandis, S.: High formation of secondary organic aerosol from 

the photo-oxidation of toluene, Atmospheric Chemistry and Physics, 9, 2973-2986, 

doi:10.5194/acp-9-2973-2009, 2009. 

IPCC, W.: Climate change 2007: The physical science basis, Summary for Policy Makers, 

Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental 

Panel on Climate Change, 2007. 

Isaacman, G., Wilson, K. R., Chan, A. W. H., Worton, D. R., Kimmel, J. R., Nah, T., Hohaus, T., 

Gonin, M., Kroll, J. H., and Worsnop, D. R.: Improved resolution of hydrocarbon structures and 

constitutional isomers in complex mixtures using gas chromatography-vacuum ultraviolet-mass 

spectrometry (gc-vuv-ms), Analytical Chemistry, 2012. 

Jathar, S., Farina, S., Robinson, A., and Adams, P.: The influence of semi-volatile and reactive 

primary emissions on the abundance and properties of global organic aerosol, Atmospheric 

Chemistry and Physics, 11, 7727-7746, doi:10.5194/acp-11-7727-2011 2011. 



 194 

Jathar, S. H., Miracolo, M. A., Tkacik, D. S., Adams, P. J., and Robinson, A. L.: Secondary 

organic aerosol from photo-oxidation of evaporated fuel: Experimental results and implications 

for aerosol formation from combustion emissions, Environ. Sci. Technol, in preparation. 

Jathar, S. H., Miracolo, M. A., Presto, A. A., Adams, P. J., and Robinson, A. L.: Modeling the 

formation and properties of traditional and non-traditional secondary organic aerosol: Problem 

formulation and application to aircraft exhaust, Atmospheric Chemistry & Physics Discussions, 

submitted. 

Jimenez, J., Canagaratna, M., Donahue, N., Prevot, A., Zhang, Q., Kroll, J., DeCarlo, P., Allan, 

J., Coe, H., Ng, N., and others: Evolution of organic aerosols in the atmosphere, Science, 326, 

1525, 2009. 

McNair, H. M., Miller, J. M., and MyiLibrary: Basic gas chromatography, Wiley Online Library, 

1969. 

Miracolo, M., Hennigan, C., Ranjan, M., Nguyen, N., Gordon, T., Lipsky, E., Presto, A., 

Donahue, N., and Robinson, A.: Secondary aerosol formation from photochemical aging of 

aircraft exhaust in a smog chamber, Atmos. Chem. Phys, 11, 4135-4147, doi:10.5194/acp-11-

4135-2011, 2011. 

Miracolo, M. A., Drozd, G. T., Jathar, S. H., Presto, A. A., Lipsky, E. M., Corporan, E., and 

Robinson, A. L.: Fuel composition and secondary organic aerosol formation: Gas-turbine 

exhaust and alternative aviation fuels, Environmental Science & Technology, submitted. 

Murphy, B., and Pandis, S.: Simulating the formation of semivolatile primary and secondary 

organic aerosol in a regional chemical transport model., Environmental science & technology, 

43, 4722-4728, doi:10.1021/es803168a, 2009. 

Murphy, B. N., and Pandis, S. N.: Exploring summertime organic aerosol formation in the 

eastern united states using a regional-scale budget approach and ambient measurements, Journal 

of Geophysical Research, 115, D24216, doi:10.1029/2010JD014418, 2010. 

Pankow, J. F.: An absorption model of gas/particle partitioning of organic compounds in the 

atmosphere, Atmospheric Environment, 28, 185-188, 1994. 

Presto, A. A., Miracolo, M. A., Donahue, N. M., and Robinson, A. L.: Secondary organic aerosol 

formation from high-no x photo-oxidation of low volatility precursors: N-alkanes, 

Environmental Science & Technology, 44, 2029-2034, 2010. 

Pye, H., and Seinfeld, J.: A global perspective on aerosol from low-volatility organic 

compounds, Atmos. Chem. Phys, 10, 4377-4401, doi:10.5194/acp-10-4377-2010, 2010. 

Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M., Grieshop, 

A. P., Lane, T. E., Pierce, J. R., and Pandis, S. N.: Rethinking organic aerosols: Semivolatile 

emissions and photochemical aging, Science, 315, 1259-1262, 2007. 



 195 

Robinson, A. L., Grieshop, A. P., Donahue, N. M., and Hunt, S. W.: Updating the conceptual 

model for fine particle mass emissions from combustion systems, Journal of the Air & Waste 

management association, 60, 1204-1222, 2010. 

Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T.: Sources 

of fine organic aerosol. 1. Charbroilers and meat cooking operations, Environmental Science & 

Technology, 25, 1112-1125, 1991. 

Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T.: Sources 

of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel 

trucks, Environmental Science & Technology, 27, 636-651, 1993. 

Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit, B. R. T.: Sources 

of fine organic aerosol. 9. Pine, oak, and synthetic log combustion in residential fireplaces, 

Environmental Science & Technology, 32, 13-22, 1998. 

Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.: Measurement of emissions 

from air pollution sources. 2. C1 through c30 organic compounds from medium duty diesel 

trucks, Environ. Sci. Technol, 33, 1578-1587, 1999a. 

Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.: Measurement of emissions 

from air pollution sources. 1. C1 through c29 organic compounds from meat charbroiling, 

Environmental Science & Technology, 33, 1566-1577, 1999b. 

Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.: Measurement of emissions 

from air pollution sources. 3. C1- c29 organic compounds from fireplace combustion of wood, 

Environ. Sci. Technol, 35, 1716--1728, 2001. 

Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.: Measurement of emissions 

from air pollution sources. 5. C1- c32 organic compounds from gasoline-powered motor 

vehicles, Environ. Sci. Technol, 36, 1169-1180, 2002a. 

Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.: Measurement of emissions 

from air pollution sources. 4. C1-c27 organic compounds from cooking with seed oils, 

Environmental Science & Technology, 36, 567-575, 2002b. 

Shrivastava, M. K., Lane, T. E., Donahue, N. M., Pandis, S. N., and Robinson, A. L.: Effects of 

gas particle partitioning and aging of primary emissions on urban and regional organic aerosol 

concentrations, Journal of Geophysical Research-Atmospheres, 113, D18301, 

doi:10.1029/2007JD009735, 2008. 

Simon, H., Beck, L., Bhave, P. V., Divita, F., Hsu, Y., Luecken, D., Mobley, J. D., Pouliot, G. 

A., Reff, A., Sarwar, G., and Strum, M.: The development and uses of epa’s speciate database, 

Atmospheric Pollution Research, 1, 196-206, doi: 10.5094/APR.2010.026, 2010. 

Tsimpidi, A., Karydis, V., Zavala, M., Lei, W., Molina, L., Ulbrich, I., Jimenez, J., and Pandis, 

S.: Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation 



 196 

in the mexico city metropolitan area, Atmos. Chem. Phys, 10, 525-546, doi:10.5194/acp-10-525-

2010, 2009. 

Turns, S. R.: An introduction to combustion: Concepts and applications, McGraw-hill New 

York, 1996. 

Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R., 

Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P. 

F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, 

N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Williams, 

P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J., Rautiainen, J., Sun, J. Y., Zhang, Y. M., 

and Worsnop, D. R.: Ubiquity and dominance of oxygenated species in organic aerosols in 

anthropogenically-influenced northern hemisphere midlatitudes, Geophys. Res. Lett, 34, L13801, 

doi:10.1029/2007GL029979, 2007. 

 

 

 



 197 

Chapter 7: Conclusions 

 
7.1 Summary of science findings 

 The research presented in this thesis improves our understanding about the formation of 

secondary organic aerosol (SOA) from semi-volatile and intermediate-volatility organic 

compounds (SVOC and IVOC). Below, key results and conclusions from each chapter are 

summarized. 

 In chapter 2, a volatility-based method is used to model non-traditional SOA (NT-SOA) 

from SVOC/IVOC and used in a climate model to make predictions globally. Model-predictions 

suggested that SVOC/IVOC accounted for slightly more than half of the global organic aerosol 

(OA) in the atmosphere. When predictions of the POA-SOA (POA: primary organic aerosol) 

split and OA’s surface concentrations, degree-of-oxygenation, volatility and modern carbon were 

compared to various measurement sets across the globe, the inclusion of SVOC/IVOC seemed to 

improve model performance. Further, model-predictions suggested that inventories might be 

under-predicting emissions from residential wood combustion in the United States. The work 

highlighted the need for aerosol models to incorporate NT-SOA formation from SVOC/IVOC if 

they were to reasonably predict the abundance and properties of aerosols. 

 In chapter 3, an SOA dataset of experiments run on aircraft exhaust was used to test an 

existing method and update it to describe NT-SOA formation from SVOC/IVOC. Speciated 

(traditional) precursors explained less than half of the SOA measured during the experiments. 

With the existing method to model NT-SOA formation (used in chapter 2), the model could not 

reproduce the measured SOA formation. An updated method to model NT-SOA formation was 

developed, which was physically more realistic in its representation and was able to fit the data 

better. Using the updated method, it could be concluded that SOA formation from aircraft 
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exhaust was (a) higher for petroleum-based than synthetically derived jet fuel and (b) higher at 

lower engine loads than at higher engine loads. 

 In chapter 4, smog chamber experiments were conducted to determine the formation and 

properties of SOA from photo-oxidation of evaporated fuels. The work used evaporated fuels 

because they are well characterized and they serve as reasonable surrogates for real combustion 

emissions. For a unit amount of fuel reacted, diesel formed the most SOA, followed by JP-

8/Fischer-Tropsch fuel (derived from natural gas), gasoline and Fischer-Tropsch (derived from 

coal). Qualitatively, the trends were consistent with differences in volatility and molecular 

structure of these fuels. When compared against SOA data from experiments conducted on 

combustion emissions, the observed variability in SOA formation from combustion emissions 

could be partly explained by the composition of the fuel, although other variables such as engine 

size and type could also be influential. Using SOA data for evaporated gasoline and on-road 

gasoline exhaust, the work showed that in California and the United States (a) evaporative 

emissions accounted for less than 10% of the SOA arising from on-road gasoline vehicles despite 

accounting for 30-45% of the non-methane organic gas (NMOG) emissions and (b) relatively 

newer vehicles (LEV-I and LEV-II) accounted for three-quarters of the SOA from on-road 

gasoline vehicles although they only contributed a quarter to a third to the NMOG emissions. 

 In chapter 5, SOA data collected in chapter 4 was used to assess the ability of models to 

capture SOA formation as a function of the fuel constituent’s volatility and molecular structure. 

If SVOC/IVOC-like constituents in the fuel were not included in the SOA model, the model 

severely under-predicted SOA formation. By including them and adjusting the lumping schemes 

and parameters used in the SOA model, the model-predictions were brought to within a factor of 

two of measurements. Further, a model based only the volatility of the fuel’s constituents was as 
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good as an unadjusted traditional SOA model in terms of its predictions. This implied that 

differences in the volatility of the constituents were able to explain most of the variability 

observed in the SOA formation. If used, volatility-based models would be much simpler and 

efficient to use in modeling SOA formation in aerosol models.  

 In chapter 6, we used SOA data from six campaigns (sixty nine experiments) to develop 

source-resolved parameterizations for NT-SOA. The sources on-road gasoline, aircraft, open 

burning and on-road diesel were considered. For the experiments, NT-SOA accounted for three 

quarters of the measured SOA, which meant that NT-SOA precursors (SVOC/IVOC and other 

unspeciated emissions) were extremely efficient in forming SOA. Literature data suggested that 

combustion sources in the United States were emitting 2.61 Tg yr
-1

 of NT-SOA precursors (one-

sixth of the total anthropogenic organic emissions), which were not currently included in OA 

models. Box-model predictions suggested that these NT-SOA precursors would be expected to 

double SOA production from combustion sources in the United States. The model also predicted 

that gasoline usage and open biomass burning would be the two largest sources of SOA in the 

United States. 

 This thesis shows that SVOC/IVOC and possibly other unspeciated organics (as 

described in chapter 6) emitted by combustion sources are very important precursors of SOA 

(chapter 2, 6) because they consistently account for a bulk of SOA production in laboratory 

experiments conducted on real (chapter 2,6) or surrogate (chapter 4) emissions of different 

combustion sources and evaporated fuels. Since they cannot be speciated using traditional 

techniques, it has been challenging to study them in detail and represent them in models. In the 

absence of speciated data, they can be reasonably represented in models either using a simple 

lumped approach (chapter 6) or on the basis of their volatility (chapter 2, 5). Box and global 
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models that have included SOA formation from SVOC/IVOC and/or other unspeciated 

emissions seem to predict a significant enhancement in SOA production in the atmosphere 

(chapter 1,6) and bring model-predictions in better agreement with measurements (chapter 1,6).  

 

7.2 Recommendations for policy-makers 

SOA formation in the atmosphere is a result of oxidation of organic emissions from both 

combustion- and non-combustion based, anthropogenic and natural sources. Of the four 

classifications, ‘anthropogenic combustion sources’ is the only classification that can be 

regulated to reduce SOA formation because anthropogenic non-combustion sources mostly emit 

light volatile organic compounds (VOC) that form very little SOA (Simon et al., 2010) and 

controlling the natural sources could lead to unintended consequences. Results from this thesis 

are used to offer recommendations to policy-makers interested in mitigating the adverse effects 

of aerosols on climate and public health. 

SOA might need to be controlled to bring PM2.5 mass levels into attainment, especially in 

counties like Los Angeles that are not in compliance (EPA, 2012) and where PM2.5 is dominated 

by OA. The National Emissions Inventory (NEI) for 2005 estimates that 12.3 Tg yr
-1

 of NMOG 

emissions are emitted by anthropogenic combustion sources. In chapter 6, six amongst those 

accounted for a majority (70%) of the NMOG emissions and only three (on-road gasoline, off-

road gasoline and open biomass burning) accounted for majority of the SOA formation. 

Therefore, any exercise to reduce the PM2.5 burden at the local or regional level where it is 

dominated by OA would need to consider these sources as prime targets for regulation. 

 Recently, there has been a renewed interest within the aviation industry to assess the 

viability of synthetic fuels over conventional petroleum-based fuels for reasons ranging from 
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environmental concerns to energy security. The methods developed in chapter 3 suggest that the 

use of synthetically-derived Fischer Tropsch fuels in aircraft engines results in much less SOA 

formation than through the use of conventional JP-8 fuel. Considering that SOA accounts for the 

significant fraction of PM2.5 emitted or formed from aircraft exhaust, the use of synthetic fuels 

could reduce the aviation industry’s net impact on the environment. 

On-road gasoline vehicles account for about a third of all NMOG emissions from 

combustion sources in the US (EPA, 2008) and therefore are an important source of SOA and 

PM2.5. Newer vehicles with stricter emission standards (Low Emissions Vehicle (LEV) – I/II) 

make up 90% of the on-road fleet but account for slightly less than 50% of the NMOG 

emissions. However, their NMOG emissions are more efficient in forming SOA than those from 

pre-LEV vehicles, which results in their contributing to three-quarters of the SOA from on-road 

gasoline vehicles. So although newer vehicles emit very low NMOG (two orders of magnitude) 

compared to pre-LEV vehicles, the emission standard on NMOG has not ensured a 

corresponding reduction in SOA (one only order of magnitude).  

On-road gasoline vehicles emit NMOG either as part of the exhaust from the tailpipe or 

from evaporative losses. Using the work in chapter 4, Gordon et al. (in preparation-a) and the 

EMFAC database, the average SOA production for the vehicle fleet can be inter-compared and 

assessed against current and future emissions standards in California. Pre-LEV, LEV-I and LEV-

II vehicles would expect to produce a minimum of 65, 30 and 6 mg mi
-1

 of SOA respectively due 

to atmospheric oxidation of NMOG emissions. Therefore, replacing a pre-LEV vehicle with a 

newer LEV-II vehicle would expect to reduce the absolute SOA production by an order of 

magnitude and the net PM2.5 emitted and formed by roughly the same amount. So, it is important 



 202 

that benefit-cost analyses that evaluate programs to scrap, trade-in, repair or retrofit older 

vehicles consider the benefit associated with the large reduction in the vehicle’s PM2.5 burden.  

 

7.3 Future work 

SVOC/IVOC and other unspeciated organics account for a substantial fraction of the 

NMOG emissions from combustion sources and, as this thesis shows, appear to be responsible 

for a lot of the OA in the atmosphere. Based on our findings in this thesis, we propose a few 

directions for future work. 

The biggest challenge currently in modeling SVOC/IVOC and other unspeciated organics 

is that they cannot be well characterized in terms of their mass, composition and properties using 

traditional instruments and techniques. Recent work at Carnegie Mellon University (Presto et al., 

submitted;Presto et al., 2011) and the University of California at Berkeley (Isaacman et al., 2012) 

have made some progress in developing the instrumentation and techniques to characterize 

emissions in terms of their carbon number (or volatility) and polarity (or base molecular 

structure). But, a much larger effort is needed if we intend to understand more about the species 

present in those emissions and study their reaction pathways that lead to SOA formation. It is 

quite likely that traditional speciation becomes impossible and therefore the emissions would 

need to be characterized using other gross dimensions. Based on the findings in this thesis, as a 

first step to building a better model, it would be useful to characterize these emissions by 

volatility, molecular structure (alkanes versus alkenes versus aromatics…) and degree-of-

oxygenation. 

In chapter 5, the thesis proposed an extended traditional SOA model and developed a 

volatility-based model to represent SOA formation from organic emissions. The extended SOA 
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model needs the entire organic-emission’s mass to be speciated or at least crudely characterized 

by carbon number and organic class. The volatility-based model, however, only needs to know 

the volatility of the organic emissions, which appears to be an easier task than speciation. If the 

volatility of all emissions can be measured, estimated or guessed, its implementation to model 

SOA would be trivial. As future work, an effort needs to be made to create an emission inventory 

of organic emissions that is volatility-resolved, which can then be used with parameterizations in 

chapter 5 to model and evaluate SOA formation in chemical transport models and climate 

models. If found to be better, the volatility-based SOA model would be computationally cheaper 

and therefore an attractive substitute for future use in aerosol models. 

 In chapter 6, we developed source-resolved parameterizations to model NT-SOA from 

SVOC/IVOC and other unspeciated emissions, which were used in a simplified model. They are 

an improvement over those used in chapter 1, where the emissions and parameterizations were 

not source resolved, i.e. SVOC/IVOC from all sources were assumed to have the same potential 

to form SOA. Hence, chapter 6 provides us with source-resolved, model-ready parameterizations 

to be employed in chemical transport models and climate models to assess the influence of 

various combustion sources on the abundance and properties of OA. 
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