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ABSTRACT 

Mathematical models improve our fundamental understanding of pollutant fate in the environment 

and facilitate risk assessment, environmental management, and policy development activities.  For 

nearly a decade, researchers have struggled with the question of how to model nanoparticles (NPs), 

an emerging class of environmental contaminants whose behavior in surface waters and sediments is 

controlled by complex interactions between particle properties and environmental factors.  

Population balance models, which track the size distribution of a particle population as it changes 

due to physicochemical processes, are a promising alternative to classical mass balance models that 

only track the total NP mass.  However, the strengths and weaknesses of different population 

balance methods have not yet been explored in-depth for NPs.  This work introduces three projects 

that, together, (1) probe the influence of spatiotemporal variation in environmental conditions on 

NP fate, (2) investigate the influence of common simplifying assumptions on model predictions, and 

(3) explore population balance for problems of NP dissolution and aggregation in water.  Focus is 

placed on spherical metal and metal oxide NPs.  Chapter 1 reviews past and current approaches in 

NP fate modeling, highlights key challenges, and frames the scope and objectives of this work.  

Chapter 2 presents a sediment diagenesis model that explores the influence of organic carbon, 

dissolved oxygen, and naturally-occurring sulfides on the distribution and speciation of antibacterial 

silver NPs and their reaction by-products in freshwater sediments. Chapter 3 presents a coupled 

hydrologic, agricultural, and water quality model that predicts silver and zinc oxide NP fate in a 

freshwater watershed under spatiotemporally variable environmental conditions.  This basin-scale 

model reveals the unintended consequences of simplifying assumptions commonly used in large-

scale fate models of NPs.  Chapter 4 compares alternative population balance modeling frameworks 

that vary with respect to runtimes, accuracy, and extensibility to environmentally relevant systems 

and complex particle types.  Chapter 5 summarizes key findings and identifies high-priority research 
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areas for experimentalists and modelers interested in the development of next-generation models 

with greater relevance for scientific investigations at the laboratory scale as well as risk management 

and regulation at the river or watershed scale. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

TABLE OF CONTENTS 
1 Introduction ................................................................................................................................................... 1 

1.1 Motivation and Scope ......................................................................................................................................... 1 

1.2 Literature Review ................................................................................................................................................ 3 

1.3 Objectives and Approach ................................................................................................................................ 11 

2 Modeling Nanosilver Transformations in Freshwater Sediments ........................................... 13 

2.1 Introduction ......................................................................................................................................................... 13 

2.2 Methods .................................................................................................................................................................. 15 

2.3 Results..................................................................................................................................................................... 25 

2.4 Discussion ............................................................................................................................................................. 31 

3 Stream dynamics and chemical transformations control the environmental fate of silver 
and zinc oxide nanoparticles in a watershed-scale model .................................................................. 35 

3.1 Introduction ......................................................................................................................................................... 35 

3.2 Methods .................................................................................................................................................................. 38 

3.3 Results..................................................................................................................................................................... 42 

3.4 Discussion ............................................................................................................................................................. 49 

4 A comparison of population balance frameworks for models of nanoparticle aggregation 
and surface transformations in aqueous media...................................................................................... 54 

4.1 Introduction ......................................................................................................................................................... 54 

4.2 Methods .................................................................................................................................................................. 56 

4.3 Results..................................................................................................................................................................... 75 

4.4 Discussion ............................................................................................................................................................. 83 

5 Summary, Outlook, and Policy Implications .................................................................................... 87 

5.1 Summary of Key Findings ............................................................................................................................... 87 

5.2 Recommendations for Future Work........................................................................................................... 88 

5.3 Related Publications ......................................................................................................................................... 98 

Bibliography ......................................................................................................................................................... 99 



ix 
 

Appendix A. Supplement to Chapter 2, the Sediment Model ....................................................... 114 

A.1 Supporting Methods ....................................................................................................................................... 114 

A.2 Supporting Tables ........................................................................................................................................... 119 

A.3 Supporting Figures ......................................................................................................................................... 125 

Appendix B. Supplement to Chapter 3, the Watershed Model .................................................... 131 

B.1 Supporting Methods ....................................................................................................................................... 131 

B.2 Supporting Tables ........................................................................................................................................... 137 

B.3 Supporting Figures ......................................................................................................................................... 140 

Appendix C. Supplement to Chapter 4, the Population Balance Models ................................. 148 

C.1 Supporting Methods ....................................................................................................................................... 148 

C.2 Supporting Figures ......................................................................................................................................... 184 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 
 

LIST OF TABLES 
 

Table 1-1. Metal and metal oxide NPs of environmental concern ............................................................ 1 

Table 2-1. Ranges of sediment model parameters ..................................................................................... 24 

Table 4-1. Runtime efficiencies of the three PB methods ........................................................................ 78 

Table A-1. Sediment model state variables .............................................................................................. 119 

Table A-2. Sediment model reaction equations and terms .................................................................... 120 

Table A-3. Justification of model parameter values in Table 2-1 ......................................................... 121 

Table A-4. Sediment model elasticities, ranked from highest to lowest .............................................. 123 

Table B-1. Land uses modeled in the Phase 5.3.2 Chesapeake Bay Watershed Model .................... 137 

Table B-2. James River Basin model inputs (constants only) ............................................................... 138 

Table B-3. Maximum of simulated 95th percentile total metal concentrations originating from NP 
sources over all segments (averaged over 2 cm sediment depth) compared to observed metal 
concentrations (from all sources) in the James River basin downstream of the modeled region ..... 139 

Table B-4. Aeration tank model system parameters and outputs ........................................................ 139 

Table B-5. ZnO speciation in the aeration tank model for different scenarios ................................. 139 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



xi 
 

LIST OF FIGURES 
 
 

Figure 1-1. Chemical transformations impacting the toxicity and mobility of reactive NPs and their 
reaction by-products in the environment ....................................................................................................... 5 

Figure 2-1. Model schematic for the nanosilver sediment chemistry model ......................................... 18 

Figure 2-2. Sediment model calibration results. ......................................................................................... 26 

Figure 2-3. Results for the nominal case under five different Ag NP percent sulfidation scenarios. 28 

Figure 2-4. System response to low, mid, and high levels of organic carbon for 85% sulfidized Ag 
NPs..................................................................................................................................................................... 30 

Figure 3-1. Structure of the coupled WSM/WASP7 model. ................................................................... 37 

Figure 3-2. Location and speciation over time of a) Zn from ZnO NPs and b) Ag from Ag NPs, 
expressed as percent by mass in the water column, oxic surface sediments, and anoxic deep 
sediments ........................................................................................................................................................... 44 

Figure 3-3. Comparison of the cumulative total zinc and silver load to the river over time from 
effluent and agricultural runoff to the total mass remaining in the river and sediment bed over time
 ............................................................................................................................................................................ 45 

Figure 3-4. Cumulative distribution functions (CDFs) of total metal concentrations over time for 
each segment in surface water and sediment for Ag and Zn. ................................................................... 47 

Figure 3-5. Average total metal concentrations in each river segment vs. the total metal load to that 
segment (upstream load + effluent load + runoff load) over the course of the simulation. ................ 48 

Figure 3-6. Total Ag concentrations (ng Ag/L) for two river segments for the five-year period that 
includes the driest year and wettest year in the simulation ........................................................................ 49 

Figure 4-1. Approximation of the particle size distribution in the Sectional Method, the classical and 
Direct Quadrature Method of Moments, and the Extended Quadrature Method of Moments ......... 60 

Figure 4-2. Model results for aggregation, dissolution, and aggregation + dissolution of 100 g/m3 of 
a lognormal population of ~50±10 nm NPs (aggregation, dissolution) or 50±2 nm NPs (aggregation 
+ dissolution).................................................................................................................................................... 77 

Figure 4-3. Evolution of the particle size distribution (PSD) for the cases shown in Figure 4-2. ..... 80 

Figure 4-4. Effect of the number of size bins on error in the SM for dissolution of ~50±10 nm 
NPs..................................................................................................................................................................... 81 

Figure 4-5. Comparison of  a simple one-parameter, size-independent conventional mass balance 
model to benchmarked population balance models for initial distributions with varying 
polydispersity and skewness ........................................................................................................................... 83 



xii 
 

Figure 5-1. NP fate processes that require univariate, bivariate, and trivariate methods..................... 92 

Figure A-1. Change in depth profiles of all state variables over time after a pulse input of 2.9 g of 
85% sulfidized nanoparticles ....................................................................................................................... 125 

Figure A-2. Sensitivity of seasonal trends in Ag+ efflux to temperature coefficients and oxygen 
availability ....................................................................................................................................................... 126 

Figure A-3. Loss of Ag0 over time for a pulse input of 85% sulfidized Ag NPs ............................... 127 

Figure A-4. System response to constant inputs of 85% sulfidized nanoparticles (0.03 mg Ag/m2-d)
 ......................................................................................................................................................................... 128 

Figure A-5. Change in concentration profile and sulfidation of Ag NPs in the sediment over time
 ......................................................................................................................................................................... 129 

Figure A-6. A diagram of the exponentially expanding grid space showing key variables ............... 130 

Figure B-1. GIS plots of the James River Basin ..................................................................................... 140 

Figure B-2. Seasonal trends in key environmental drivers (system conditions) ................................ 141 

Figure B-3. Non-point versus point sources of NP stream loads in the James River Basin model 142 

Figure B-4. Resuspension and deposition rate predictions in the James River Basin model .......... 143 

Figure B-5. Sensitivity of the accumulation of Ag NPs in the river and sediments over time to 
spatiotemporal variability in sediment resuspension and deposition rates ........................................... 144 

Figure B-6. Total Ag concentrations for each segment in which concentrations are non-zero for the 
five year stretch which contains the driest and wettest years in the simulation................................... 145 

Figure B-7. Sensitivity of the predicted mass accumulation of Ag in the river and sediments at t = 
20 years to assumptions about the strength of the association of Ag NPs with sediments in the water 
column and river bed.................................................................................................................................... 146 

Figure B-8. Speciation of Zn in the WASP7 river simulation model for an alternative input scenario 
in which 85% of Zn in effluent is present as ZnO NPs (based on the aeration tank model sensitivity 
analysis, Table B-5) and the lowest ZnO dissolution rate is used. ........................................................ 146 

Figure B-9. Total suspended solids (TSS) calibration details. .............................................................. 147 

Figure C-1. Model results compared to experimental data for the calibration procedure used to 
provide an order-of-magnitude estimate of the ZnO NP dissolution rate and aggregation rate for all 
test cases ......................................................................................................................................................... 184 

Figure C-2. Model results for dissolution of 100 g/m3 of a lognormal population of NPs with 
different initial particle sizes for sink conditions ...................................................................................... 185 



xiii 
 

Figure C-3. Model results for dissolution of 100 g/m3 of a lognormal population of NPs with 
different initial particle sizes for dissolution to equilibrium ................................................................... 186 

Figure C-4. Model results for aggregation of 100 g/m3 of a lognormal population of NPs with 
different initial particle sizes. ....................................................................................................................... 187 

Figure C-5. Error in the EQMOM, the DQMOM without ratio constraints, and the SM compared 
to the analytical solution for estimates of the evolution of the (normalized) number concentration 
during dissolution ......................................................................................................................................... 188 

Figure C-6. Initial particle size distributions in the Sectional Method for the error analysis shown in 
Figure 4-4. ...................................................................................................................................................... 188 

Figure C-7. Effect of the resolution of the size coordinate on error and runtimes in the SM for 
aggregation of ~50±10 nm NPs ................................................................................................................. 189 

Figure C-8. Initial particle size distributions used in the analysis presented in Figure 4-5  
transformed to be in terms of the internal coordinate, particle mass. .................................................. 189 

Figure C-9. First-order linear inhomogenous equation (Equation 4-24) fit for the case of 
dissolution to equilibrium ............................................................................................................................ 190 



1 
 

1 Introduction 

"A number of choices need to be made at the start of any model development ... The compromise is between simplicity 
and realism.  The best solution emphasizes the former without undue violence to the latter." 

- Dominic Di Toro (2001) 

1.1 Motivation and Scope 
 

The recent emergence of a global market for textiles, paints and pigments, cosmetics, packaging, and 

other products containing metal or metal oxide nanoparticles (Me/MeO NPs) such as silver (Ag), 

zinc oxide (ZnO), copper oxide (CuO), and titania (TiO2) (Table 1-1) has incited concerns about the 

potential ecotoxicity of these NPs following accidental release to the environment during product 

use or disposal.1  

 

Table 1-1. Metal and metal oxide NPs of environmental concern  

2 

 Me/MeO NP Applications with high environmental releases 
Max estimated  

global production  
(metric tons/year) 

TiO2 Paints, protective coatings, UV filter in sunscreens & cosmetics 75,000 

Fe & Fe Oxides Pigments in coatings, plastics, cosmetics 19,000 

ZnO UV filter in cosmetics & sunscreen, antimicrobial agent 16,000 
Al2O3 Coatings and paints, cosmetics 12,000 

Ag Antibacterial coatings (textiles, plastics), antibacterial in cosmetics 300 
Cu & Cu Oxides Anti-microbial, -biotic, -fungal agent in coatings 50 

 

Mathematical models of the transport and physicochemical transformation of Me/MeO NPs in the 

environment enhance scientific understanding and facilitate environmental decision-making.  For 

scientific purposes, models can be used to test hypotheses, identify key uncertainties, and identify 

the processes controlling fate in complex systems.  For regulatory purposes, modelers test release 

and exposure scenarios in the presence or absence of risk management practices in order to 

determine whether NPs pose environmental risks and guide management strategy development.3   

 To date, most models of NP fate and transport in rivers and lakes have been designed to 

predict environmental concentrations (PECs) and compare them to "no adverse effect" 
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concentrations (PNECs) in order to determine risk.4  However, models have also been used (with 

mixed success) to (1) compare the relative fate of NPs with different chemical identities and/or 

prioritize NPs for additional scrutiny,5-7 (2) identify important fate processes or parameters via 

parametric analysis or sensitivity analysis,8, 9 (3) estimate potential for long-range transport,8, 9 (4) 

estimate overall residence times,10 and (5) compare the impact of spatially and temporally 

heterogeneous environmental conditions on fate.11  In the future, they may be used to (6) evaluate 

likely recovery times of contaminated environments should loadings cease, and (7) as a tool for 

ranking the sources and nature of contamination and proposed remediation strategies.  

Many NP fate models rely on mathematical frameworks developed to describe 

homogeneous solutions of molecular and ionic contaminants.  However, this approach can fall short 

when applied to particulates.  Unlike solutions of dissolved contaminants, particle suspensions are 

two-phase systems controlled by surface chemistry and interfacial phenomena.  Particle transport 

depends on kinetic processes with no direct analogue for dissolved contaminants, such as surface 

dissolution and particle-particle aggregation.12  Process rates depend on complex interactions 

between environmental conditions (e.g., ionic strength, pH, redox, background particle composition) 

and particle properties (e.g., diameter, shape, surface area, surface charge).1  Since 2010,13 the NP 

fate modeling community has therefore increasingly turned to “population balance” frameworks 

designed to describe colloidal (< 1 µm particulate) suspensions.  Although these methods are 

theoretically superior, they can also be more mathematically complex, more computationally 

demanding, and more data-intensive.  If scientific uncertainty is high, data are limited, and NP fate 

models are insensitive to NP properties, complex frameworks designed to explicitly model those 

properties may ultimately more harm than good.14 

 In short, the NP fate modeling enterprise presently struggles to distill the extensive and 

evolving scientific understanding of NP behavior in environmental media down to its most essential 
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features in order to develop models that are, as stated in the apocryphal quote by Einstein, “as 

simple as possible, but no simpler.”  This body of work provides guidance for the development of a 

new generation of NP fate models that are more finely tuned to the particular needs of a given 

scientific or regulatory question.  Focus is placed on (1) the impact of spatiotemporal variability in 

environmental conditions such as redox, river and surface hydrology, and sediment transport on 

Me/MeO NP transport and speciation in surface waters and sediments, (2) the impact of particle 

size on NP dissolution and aggregation in water, and (3) the impact of simplifying assumptions, 

spatiotemporal resolution, and framework selection on model runtimes and accuracy. 

1.2 Literature Review 

1.2.1 Processes Impacting NP Fate: Aggregation and Dissolution 
 
Contaminants in natural surface waters will associate with water, suspended particulate matter 

(SPM), or bed sediments.  Because ions, molecules, and NPs are all vanishingly small, their advective 

(unidirectional) and diffusive (multidirectional) transport in environmental media will mirror that of 

their carrier phase.  NP transport, like that of any contaminant, therefore results primarily from 

stream flow, turbulent mixing, gravitational settling of suspended solids, sediment resuspension and 

deposition, and so on.  

 Models of ions, molecules, and particles may differ, however, with respect to their 

mathematical description of contaminant interactions with solid phases, a size-dependent process.  

Small molecules and ions are said to undergo reversible chemical or physical "sorption" to solid 

phases, which generally occurs rapidly enough to be treated as an equilibrium process.  Large 

molecules and particles instead undergo aggregation (particle-particle) or deposition (particle-

surface) processes, which are kinetically controlled and do not reach thermodynamic equilibrium.12, 15 
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 As the smallest possible particle size class, NPs can undergo especially rapid aggregation via 

Brownian motion in the presence of other nanoparticles (homoaggregation) or naturally-occurring 

SPM such as suspended sediment, microorganisms, macromolecules, or particulate organic matter 

(heteroaggregation).9, 16  Aggregation rates are, however, strongly impacted by surface charge, which 

depends on the chemical composition of the NP as well as the composition and morphology of 

surface coatings.  Coatings include engineered polymer surfactants as well as natural sorbents (e.g., 

natural organic matter, polysaccharides).17, 18 

 Some Me/MeO NPs, such as TiO2 and SiO2, are highly insoluble and thus virtually inert in 

the environment.  Others exhibit complex and highly variable chemistry.19  Figure 1-1 summarizes 

the chemical transformations that impact the mobility and toxicity of soluble Me/MeO NPs in the 

environment.  Dissolution of MeO NPs or oxidative dissolution of Me NPs, which occurs more 

rapidly and to a greater extent for small particles than for large particles,20 forms dissolved metal 

ions, which are relatively bioavailable, potentially toxic, and which transport with the aqueous phase.  

NP sulfidation results in either the formation of a core-shell structure which inhibits further NP 

sulfidation and oxidation (e.g., Ag NPs)21 or the formation of 3-5 nm metal sulfide NPs that do not 

impact dissolution rates (e.g., ZnO and CuO NPs).22, 23  NPs and their sulfidation by-products travel 

primarily with the solid phase.  Reaction of metal ions with naturally-occurring sulfides and metal 

ion complexation with solid phases (e.g., organic matter, inorganic mineral surfaces such as iron 

hydroxides24) reduces toxicity.25-29  Metal ion speciation will ultimately depend on whether the metals 

are “hard” or “soft”—terms which refer to the polarizability of the metal’s electron cloud.  

Extremely soft metal ions like Ag+ preferentially form highly insoluble metal complexes with sulfide.  

Borderline metal ions like Cu2+ and Zn2+ form an array of species. 
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Figure 1-1. Chemical transformations impacting the toxicity and mobility of reactive NPs 
and their reaction by-products in the environment.  Although as-manufactured NPs are known 
to be toxic, there is disagreement in the literature as to whether toxicity results solely from ion 
formation during dissolution or whether the particles themselves exhibit enhanced toxicity ("particle 
effect").  
 
Ion complexation and solid phase partitioning are determined to a large extent by environmental 

conditions, especially redox potential and pH.30  The EPA Framework for Metals Risk Assessment 

(2007) states, “Because the behavior of metals defies simple generalities, understanding the 

chemistry of the particular metal and the environment of concern is necessary.” 30  The same is also 

true of NPs, whose chemistry is further complicated by surface area-dependent reaction kinetics and 

the formation of partially-transformed NPs such as core-shell structures.  Dissolution, like 

aggregation, may also be impacted by engineered and natural surface coatings.31  The experimental 

and modeling challenges posed by surface coatings are considerable and still poorly understood, and 

will be only minimally addressed in this work. 

 

1.2.2 Critical Review of Past and Current Approaches in NP Fate Modeling  

1.2.2.1 Material Flow Analysis for Risk Assessment 

Some of the earliest approaches to NP fate modeling relied on material flow analysis (MFA), a mass 

balance-based assessment methodology developed in the field of industrial ecology to track the 
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stocks and flows of substances into and between technological "compartments" (e.g., wastewater 

treatment plants, incinerators) and environmental "compartments" (e.g., soil, air, water) in order to 

conceptualize a material's life cycle.  

 In one of the most widely cited NP fate models, Mueller and Nowack (2008) predicted 

"best" and "worst case" estimates of environmental concentrations (PECs) of Ag, TiO2, and carbon 

nanotubes released from products in air, water, soil, and landfills in Switzerland using a deterministic 

MFA model.32 All model parameters were later treated as probability distributions rather than single-

value estimates in order to better account for large uncertainty in NP production volumes and 

behavior.33  Probabilistic approaches continue to improve today.6, 7  MFA models have also been 

applied recently at regional scales,34, 35  and the first explicitly dynamic (time-resolved) MFA was 

published earlier this year.36 

 MFAs spurred early research into the life cycle of NPs in the environment by identifying 

sewage treatment plants, biosolids, landfills, and incinerators as key intermediaries between the usage 

phase of nano-enabled products and the environment. They have provoked the risk community to 

ask if risk assessment methods (both for hazard and exposure) developed for other pollutants can be 

directly applied to NPs. They have highlighted ongoing uncertainties in the estimation of production 

volumes and emissions and have been used to rank the environmental risks from NPs.  Because they 

are simple, they accommodate probabilistic or statistical methods such as Monte Carlo simulation 

more easily than other model types. Until data on NP production volumes and environmental 

releases become available or analytical methods are developed and applied, estimates of 

environmental emissions from MFAs will continue to be used in process-based numerical models 

such as those described below (e.g., 5, 8, 37).   

 However, MFAs as they are currently applied to NPs lack spatial resolution (i.e., they average 

predicted contaminant mass over the entire environmental compartment, such as all surface water in 
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a nation) and thus are inappropriate for predicting environmental concentrations.  In surface waters, 

rapid heteroaggregation leads to sedimentation and the accumulation of NMs in sediments at "hot 

spots" near points of release.9, 16, 38  Thus the nationally or even regionally averaged PECs reported in 

MFAs may have little practical relevance for regulatory purposes.  MFA models also rely more 

extensively on simplifying assumptions than other fate model types.  Particle properties, 

environmental conditions, and fate processes are generally not treated explicitly, but are implicit in 

the choice of transfer factors between environmental compartments.2, 33, 34 Recent probabilistic 

MFAs have included simple estimates of NP mass loss during sewage treatment due to Ag NP 

sulfidation and ZnO dissolution,6 but this modeling framework is not truly designed to handle the 

complexities of NP processes in wastewater treatment facilities and environmental media. 

 

1.2.2.2 Numerical Modeling for Risk Assessment 

Several NP fate models employ classical process-based numerical frameworks that predict changes 

over time in the total mass of a chemical species associated with a solid or fluid phase in one or 

more zero-dimensional (completely mixed) "control volumes" or "boxes" from the sum of all 

changes resulting from every relevant transformation or transport process occurring in that time 

step.  Unlike MFAs, which lump all processes into a single inter-compartment transfer factor, 

numerical models of this type assign each process a different mathematical expression.3, 39  In 

addition, these models generally differ from MFAs in that they only describe NP fate in 

environmental media; emissions from sewage treatment facilities and other anthropogenic sources 

are treated as boundary conditions.  Models which assign a single control volume to each 

environmental medium are called "multimedia box models" or "fugacity models."3 

 Boxall et al. (2007) were the first to predict NP concentrations in air, soil and water.40  Blaser 

et al. (2008) used a model of the Rhine river to estimate silver PECs originating from biocidal 
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plastics and fabrics in wastewater treatment plant effluent, surface waters, and sediments.41 

Gottschalk et al. (2011) estimated environmental concentrations of TiO2, ZnO, and Ag NPs in a 

spatially resolved probabilistic model of Swiss rivers.42 

 The numerical models and MFAs described up to this point either disregarded NP 

interaction with suspended particulate matter or relied on simple descriptors such as equilibrium 

partition coefficients.  Recently published opinion pieces12, 15 favored the Smoluchowski equation, a 

kinetic descriptor of particle aggregation designed for use in size-resolved models that sum 

aggregation events across multiple size classes of interacting particles.43 

 

𝑑𝑛𝑘
𝑑𝑡

=
1

2
∑ 𝛼𝑖𝑗𝛽𝑖𝑗𝑛𝑖𝑛𝑗 − 𝑛𝑘∑𝛼𝑖𝑘𝛽𝑖𝑘

∞

𝑖=1

𝑖=𝑘−1

𝑖+𝑗→𝑘
𝑖=1

𝑛𝑖 

 Equation 1-1 

 

where 𝑛𝑘 is the number concentration of particles in size class k, 𝛽𝑖𝑗 is the rate of collisions between 

particles of size i and size j that could lead to formation of new aggregates of size k, and 𝛼𝑖𝑗 is the 

probability that collisions lead to a successful aggregation event.  We will revisit this approach with 

greater rigor in Chapter 4.  

 While the theoretical superiority of Equation 1-1 over equilibrium descriptors is 

uncontestable, a compelling case for its practical superiority in NP fate models designed for risk 

assessment purposes has not been made.  Indeed, given the lack of kinetic data with which to 

parameterize or validate size-resolved NP frameworks at present, the relative complexity of size-

resolved alternatives (which is at odds with the modeling principle of parsimony), and the speed with 

which NPs are expected to heteroaggregate in complex natural media in any case (which implies low 
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model sensitivity to the choice of aggregation rate law), approaches using Equation 1-1 may be less 

practical and more error-prone at present than models that rely on simple heuristics.  For a more 

comprehensive treatment of this debate, we refer the reader to Dale et al. (2015).14   

 Nonetheless, Equation 1-1 is increasingly found in large-scale NP fate models.  Some recent 

works apply it to systems that describe only one size class of heteroaggregates, homoaggregates, 

and/or unaggregated NPs.37, 44  Most authors, however, employ the size-resolved form.  In 2011, 

Arvidsson et al. described homoaggregation and sedimentation of TiO2 NPs45 in an aqueous 

suspension.  In 2012, Praetorius et al.8 adapted the model by Blaser et al. (2008)41 to include 

Equation 1-1.  Liu and Cohen (2014) later adapted this equation for use in a multimedia box model 

of NPs.  Unlike previous authors, they used time-independent partitioning ratios in place of kinetic 

descriptors of aggregation.5  Sani-Kast et al. (2015) expanded the model by Praetorius et al. (2012) to 

account for the influence of spatial variation in water chemistry on NP heteroaggregation.11  de 

Klein et al. (2016) introduced the first attempt to validate this class of models against field data.46   

 Models that implement a size-resolved approach to Equation 1-1 implicitly take a 

“population balance” approach, or one in which the distribution of particle properties across the 

population (here, the particle size distribution) is tracked over time and space.  By tracking size, 

population balance methods readily track changes in particle number concentrations and surface 

area concentrations as well as mass concentrations.8  These metrics are not very useful at present in 

NP risk assessment, since toxicity thresholds and regulatory limits are almost always expressed in 

terms of mass concentrations.  Nonetheless, they are considered to be better indicators of NP 

toxicity than mass concentrations,45 and may be useful in the future as more data become available.  

Finally, population balance can describe surface transformations as readily as it describes size-

dependent NP aggregation kinetics.  However, to my knowledge, it has only been used once to date 

in environmental fate models to describe NP dissolution.5   
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 Environmental NP fate modelers that use process-based numerical models face several 

challenges beyond the debate over kinetic vs. equilibrium descriptors of heteroaggregation and the 

influence of NP size.  Most models developed to date have assumed steady state conditions and 

therefore cannot capture time varying effects.  Spatial resolution in most cases is either low or, in the 

case of multimedia box models, entirely lacking.  However, recent models show a welcome trend 

towards increased spatial and/or temporal variation with respect to stream hydrology.44, 46-48  

Processes of potential significance that exhibit high spatiotemporal variability but have largely 

escaped the attention of the modeling community to date include agricultural runoff of NP-

containing biosolids into river and lakes (non-point source pollution)49-52 and the deposition and 

scour of suspended sediments to and from river beds.53   

 Modelers have been slow to adopt the most recent research on NP reaction kinetics, even 

though dissolution rates and other transformations rates have been published recently for several 

reactive metal and metal oxide NPs.  Indeed, only one large-scale NP fate model to date included a 

kinetic description of NP dissolution;5 others either disregarded the chemical transformations of 

soluble NPs or simply assumed that reactions instantaneously reached thermodynamic equilibrium.32-

34, 42, 48  Similarly, no numerical models to date have tracked dissolution by-products (metal ions) and 

their speciation, even though the generation of toxic dissolved ions is a primary source of reactive 

metal and metal oxide NP ecotoxicity.54  

 

1.2.2.3 Population Balance Modeling for Scientific Inquiry 

In spite of the simplicity of current population balance approaches at the river scale or larger and 

their limited applicability at present, in the author's view, to NP fate models designed for decision-

making, population balance has tremendous near-term potential for scientific investigations backed 

by experimental data.  Hypothetically, detailed models can be used to elucidate the effect of a wide 
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range of particle sizes on a wide range of surface transformations and aggregation processes 

occurring simultaneously among many SPM types.  They can be used to track changes in the 

distribution of properties other than size, such as surface area and surface charge.  Models that track 

variation in multiple particle properties simultaneously can be used to study non-spherical particles, 

NP-SPM heteroaggregates, core-shell structures, natural and engineered surface coatings, and 

nanohybrids.  Population balance methods developed  to describe aerosol particle microphysics,55, 56 

flocculation in surface waters,43 droplet evaporation,57 and crystal growth58 may be useful in 

addressing NP modeling challenges. 

Some of the introductory material presented here was published in 2015 in Environmental 

Science: Nano14 and Environmental Science and Technology.59 

1.3 Objectives and Approach 
 
This work aims to 

(1) Explore the impact of spatiotemporal variability in environmental conditions on 

Me/MeO NP transport and speciation in surface waters and sediments, 

(2) Explore the impact of size on NP dissolution and aggregation in simple media, 

(3) Determine how assumptions and mathematical frameworks affect model runtimes and 

accuracy, and 

(4) Provide guidance for the development of improved scientific and regulatory models of 

NP fate in surface waters and sediments from the laboratory scale to the watershed scale. 

I used three independent projects to narrow the project scope while still addressing these aims.  

Each is presented here as a separate chapter. 
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CHAPTER 2: THE SEDIMENT MODEL.  An existing one-dimensional sediment diagenesis modeling 

framework (Di Toro et al., 1996)60 was adapted in order to explore the influence of organic carbon, 

dissolved oxygen, and naturally-occurring sulfides on the distribution and speciation of silver Ag 

NPs and their reaction by-products in quiescent freshwater sediments.   This work was published in 

Environmental Science & Technology in 2013.61  

 

CHAPTER 3. THE WATERSHED MODEL. A hydrologic and agricultural model, the Phase 5 

Chesapeake Bay Watershed Model,62 was adapted and coupled to a river network water quality 

model in order to predict the fate of Ag NPs and ZnO NPs in a freshwater watershed.  The model 

predicted the contribution of agricultural runoff to total metal stream loads from Ag and ZnO NPs 

and their reaction by-products, explored the combined impact of chemical transformations and 

sediment transport on the speciation and mobility of NP-derived metals in freshwater rivers, and 

explored the influence of spatial and temporal variability in environmental conditions on NP fate 

and effects in order to elucidate the influence of model resolution on fate predictions. This work 

was published in Environmental Science & Technology in 2015.63 

 

CHAPTER 4. THE POPULATION BALANCE MODELS.  Three promising numerical approaches from 

the population balance literature were developed and compared with respect to runtime and 

accuracy for problems of surface area-dependent NP dissolution and homoaggregation in simple 

aqueous suspensions: the Sectional Method (SM), the Direct Quadrature Method of Moments 

(DQMOM), and the Extended Quadrature Method of Moments (EQMOM).  Major sources of 

error and the potential future applications of each approach were identified and addressed. 
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2 Modeling Nanosilver Transformations in Freshwater 
Sediments 

2.1 Introduction 
 
The global market for nanotechnology is estimated to have reached $16 billion in 2010 and is 

expected to grow to approximately $27 billion by 2015.64  Products containing silver nanoparticles 

(Ag NPs), such as antibacterial cosmetics and textiles, represent a major use of nanotechnology in 

the consumer goods sector.65  Ag NPs are toxic to a wide range of organisms,27 and textiles and 

cosmetics demonstrate relatively high environmental releases; initial estimates suggest Ag NP 

emissions to air, soil, and water during manufacturing, use, disposal, and/or recycling may equal as 

much as 50% of annual production.2 

 The toxic effects of as-manufactured, untransformed silver nanoparticles, which are mostly 

Ag0, have been observed in microorganisms, algae, fungi, vertebrates, invertebrates, and aquatic and 

terrestrial plants.27  Ag NPs tend to oxidize in oxic aquatic environments.21, 66-69 This process releases 

silver ions (Ag+), which can non-selectively interfere with cell respiration and membrane transport.27  

The toxic effects of silver are exacerbated by the tendency of the ionic form to persist and 

bioaccumulate.70, 71  

 Another particulate species, silver sulfide (Ag2S), forms in the presence of naturally occurring 

sulfides.  In an oxygen-mediated process termed “sulfidation,” the Ag NPs react with sulfide to 

form a surface layer of Ag2S.72  Partial sulfidation results in what has been termed a core-shell 

structure, although TEM images have shown that complex Ag0-Ag2S morphologies may also 

occur.21, 27, 72  Complete sulfidation is possible.72  In 2010, Kim et al. characterized Ag2S NPs found in 

sewage sludge and proposed that that the sulfide-rich, anoxic environment of sewage treatment 

plants (STPs) facilitates rapid sulfidation.73  This transformation is of great importance, both because 
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the highly insoluble Ag2S shell reduces the rate of Ag NP oxidation21 and because Ag2S is less toxic 

to microorganisms than Ag0 NPs and Ag+.26, 27, 74 

 The differential toxicity of silver species necessitates the development of environmental fate 

models that can predict their relative abundance in a system of interest.  Although several models 

have recently been developed to describe nanoparticle transport in environmental media,8, 32, 33, 41, 42, 45 

no attempts have been made to model the complex chemical transformations of Ag NPs in surface 

waters or sediments. 

Smoluchowski coagulation theory indicates nanoparticles will heteroaggregate rapidly with 

clays, minerals, and other natural colloids upon entering surface water.43  Aggregation is expected to 

lead to settling, which will lead in turn to accumulation of NPs in sediments.13, 43, 75  This conclusion 

is borne out by laboratory experiments on the behavior of nanoparticles,76, 77 as well as the most 

recent mathematical models of nanoparticle fate and transport in surface waters.8, 33, 41, 45 

The biodiversity and health of aquatic systems can be negatively impacted by the biouptake 

of Ag NPs and toxic Ag+ by sediment-dwelling organisms.  Biomagnification resulting from 

ingestion of sediment-dwelling organisms by species higher in the food web is a potential concern,78 

since trophic transfer of NPs has been reported in a simulated terrestrial ecosystem.79  Resuspension 

of particulate silver species and diffusion of silver ion from sediments are also possible sources of 

silver in the water column.   

The model developed in this paper is based on a mass balance model by Di Toro et al.60 that 

describes the speciation of cadmium in sediments in response to redox conditions established in the 

sediment as a function of oxygen consumption during organic carbon diagenesis, or 

mineralization.24, 80  As described below, this adaptation is appropriate because the speciation of both 

Ag and Cd in sediments is contingent on the displacement of iron from iron sulfide to form highly 

stable (i.e., very low solubility) metal sulfides.29  The model was calibrated to experimental data 
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collected from Ag0 NP-dosed artificial freshwater wetland mesocosms operated by the Center for 

Environmental Implications of Nanotechnology (CEINT).  The reader is referred to Lowry et al. 

(2012) for an in-depth treatment of the mesocosm experiment.38  After calibration, several input 

scenarios were selected for further investigation.     

2.2 Methods 
 
2.2.1 Model Structure and Framework 
 
Figure 2-1 outlines the reactions and physical processes modeled.  The diagram distinguishes 

between oxic and anoxic sediment layers for visual simplicity; however, concentrations of oxygen 

and all other species were modeled continuously over depth.  

 Silver ion, Ag+, is derived from the oxidation of the elemental silver (Ag0) core of the Ag 

NPs or from the oxidation of sulfur in silver sulfide. Silver sulfide exists either as a coating on the 

particle surface, Ag2S (NP), or as a free (not bound to the initial Ag NP) inorganic precipitate 

formed by the interaction of iron sulfide with silver ion diffusing freely in the pore water, Ag2S 

(free).  This distinction between the two locations of Ag2S, “NP” and “free,” was necessary to 

properly track the extent of sulfidation of the Ag NPs during the simulation. This approach 

distinguishes transformations undergone by the nanoparticles from those undergone by the silver 

ions released from the particles.  No such distinction was necessary for Ag0, which is assumed to be 

present only in the Ag NP cores.  The relevant reactions are: 

 

   

Equation 2-1 

 

     

Equation 2-2 
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Equation 2-3 

 

The main driver of aerobic Ag NP oxidation is the depth of oxygen penetration in the sediments, 

which depends primarily on its consumption during the microbially-mediated oxidation of 

particulate organic carbon (POC): 

 

    

Equation 2-4 

 

Silver ion freely diffusing in the pore water is converted to silver sulfide, Ag2S (free), via a 

displacement reaction, in which iron sulfide acts as the source of sulfide. 

 

        

Equation 2-5 

 

Iron sulfide serves as a proxy in the model for all available sulfides in the system (e.g., acid-volatile 

sulfide, or AVS).  Iron sulfide is gained via the anaerobic oxidation of organic carbon, which reduces 

sulfate to sulfide, 

 

   

Equation 2-6 

 

   

Equation 2-7 
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and is lost by oxidation to form iron oxyhydroxide (FeOOH): 

 

 

Equation 2-8 

 

Finally, iron oxyhydroxide and particulate organic carbon reversibly sorb silver ion. 

 

      

Equation 2-9 

 

    

Equation 2-10 

 

Physical processes modeled include particle mixing due to bioturbation, diffusive mixing of 

dissolved species, efflux of dissolved species as a result of diffusion at the sediment-water interface, 

and influx of organic carbon, Ag NPs, and oxygen.  Note that, in the tradition of conventional mass 

balance models, “particle” refers here to all particulate (solid phase) species: POC, FeS, FeOOH, 

Ag0, Ag2S (“NP” and “free”), AgPOC, and AgFeOOH. “Nanoparticle” refers only to the 

particulate species representing the core and shell of the transforming Ag NP, Ag0 and Ag2S (NP). 
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Figure 2-1. Model schematic for nanosilver sediment chemistry  model (adapted from 60).  
Nanoparticle reactions are highlighted in gray and represent an extension of the model proposed by 
Di Toro et al. (1996) for cadmium speciation and solid phase partitioning.   
 

 Table A-1 lists the model state variables.  Changes in the depth profile of each state variable 

over time are modeled dynamically using the one-dimensional continuous advective-dispersive mass 

balance equation: 

 

       

Equation 2-11 

 

where C(z) is the concentration at depth z, fp is the particulate fraction of the total concentration, Dp 

is the particle mixing coefficient, fd is the dissolved fraction of the total concentration, Dd is the 

diffusive mixing coefficient, and jRj represents all reactions resulting in gain or loss of the species. 
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2.2.2 Reactions 
 
In general, reaction rates were assumed to exhibit a linear dependence on the concentrations of all 

reactants.60  The exceptions to the assumption of linear dependence were aerobic and anaerobic 

oxidation of organic carbon, for which we applied the Michaelis Menton expression for oxygen 

dependency.  Table A-2 summarizes the reaction equations, which are of the general form 

 

        

Equation 2-12 

 

where kj is the reaction rate constant, j is the Arrhenius temperature coefficient, T is the 

temperature in degrees Celsius, and [C1] and [C2] are the concentrations of the reactants.    

 Previous work suggests the rate constants for Ag NP oxidation and Ag NP 

sulfidation,  𝑘𝐴𝑔0,𝑂2 and 𝑘𝑠𝑢𝑙𝑓, decrease exponentially in response to Ag NP sulfidation.21, 

72, 81  The Ag NP oxidation rate was thus modeled using Equation 2-13, where S/Ag 

represents the molar ratio of sulfur to silver.  Ag NP sulfidation, in contrast, could not be 

accurately modeled using Equation 2-13 without drastically reducing the time step (and 

vastly increasing model runtime).  For fully unsulfidized Ag NPs, the rate of sulfidation 

was assumed to decrease rapidly upon dosing so that a constant “long -term average” 

sulfidation rate would be appropriate over the time scale considered (see  Table A-3 for 

details).  The effect of additional factors (e.g., temperature, pH, organic carbon, particle 

size, capping agent)66, 68 on the initial rate of Ag NP oxidation before sulfidation (S/Ag = 

0) was captured by calibration. 
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Equation 2-13 

 

2.2.3 Partitioning 
 
For simplicity, all dissolved sulfides were modeled as the dissolved form of FeS using the 

partitioning coefficient FeS.  The governing equations for iron sulfide “partitioning” are provided by 

Di Toro et al. (1996).  Equilibrium partitioning of silver between the sediment pore water (Ag+) and 

the relevant solid phases (AgPOC and AgFeOOH) was described with a Langmuir isotherm 

analogous to that described by Di Toro et al. for cadmium.60  Details are provided as supporting 

information (Equation A-1 to Equation A-7).  The complexation of Ag with chloride ion, while 

strong, is significantly less so than for sulfide and for organic matter,82 and is assumed to be 

negligible in the freshwater (low chloride) environment. AgCl(s) was not detected by XAS 

measurements on the mesocoms sediments.38 

 

2.2.4 Particle Mixing and Porosity 
 
The particle mixing coefficient, which represents the rate of sediment mixing as a result of biological 

activity, is temperature-dependent and is assumed to decrease exponentially with depth, z, according 

to the equation 

 

 

Equation 2-14 
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where zDp represents the depth of bioturbation.   

 Since sediments at depth are compacted by the weight of overlying layers, porosity was 

assumed to decrease exponentially with a decay constant of k from a value of 0.99 at the interface 

(0) to a value of 0.25 at depth.  Porosity at the interface and at depth was estimated from mesocosm 

data38 which produced good agreement between silver concentrations vs. depth observed in the 

mesocosms and those predicted by the model. 

 

2.2.5 Temperature 
 
Annual temperature variation is assumed to be sinusoidal.  Coefficients were estimated 

from water column temperatures in the mesocosms used to calibrate the model 38 and air 

temperature data at the mesocosm site (http://ceint.duke.edu/chart/mesocosm-air-temp).  

Higher temperatures increase rates of reaction and solute diffusion via Arrhenius 

temperature coefficients (not shown in Table 2-1; see Table A-3) and correspond with 

increases in biological activity in the sediment and water column.  This leads to higher 

particle mixing, higher organic carbon influx to the sediment, and the depletion of 

dissolved oxygen. 

 

2.2.6 Parameter Values 
 

Table 2-1 summarizes parameter values used in the simulations.  Table A-3 presents the 

assumptions underlying the selected values.  Sensitivity analysis revealed that model 

outputs were not overly sensitive to local variation in those parameters for which only 

point estimates were found (Table A-4). 
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 The nominal values of four model parameters (k, Dp, Koc, 𝑘𝐴𝑔0,𝑂2(
𝑆
𝐴𝑔⁄ = 0)) were 

determined by calibration.  System parameters were matched to conditions in the mesocosms, 

including loss on ignition (L.O.I. ≈ 2*foc,
39 where foc is the initial organic carbon composition of the 

sediment), sediment AVS, oxygen concentration at the sediment-water interface, annual temperature 

variation, Ag NP mass input, and time of dosing.38  The simulation was run for t=18 months after 

introducing a simulated pulse input of 2.9 g of “pristine” (unsulfidized) Ag0 NPs.  The Ag NPs 

added to the mesocosms had a thin oxidized Ag (e.g. Ag2O) shell,38 which was an implicit 

determinant of the initial rate of nanoparticle oxidation, 𝑘𝐴𝑔0,𝑂2(
𝑆
𝐴𝑔⁄ = 0).  For the calibration, 

mean total silver concentrations calculated by the model over sediment depths of 0-1 cm, 1-2 cm, 2-

4 cm, and > 4 cm were matched to the median silver concentrations observed in the mesocosms 

eighteen months after dosing.  Model outputs were also matched to the relative abundances of Ag0, 

Ag+-organics, and Ag2S in the surficial sediments of the mesocosms eighteen months after dosing, as 

determined from linear combination fits of X-ray Absorption Spectroscopy (XAS) spectra collected 

on surficial sediment in the mesocosms.38  The calibration was performed using the non-linear 

parameter estimation software PEST (http://www.pesthomepage.org/), which minimizes the 

weighted sum of the squared residuals.  Weights were calculated as the inverse standard deviation of 

each field observation. 

Silver ion efflux from the sediment to the overlying water at time t was estimated by the 

model from the predicted concentration profile of Ag+ at the sediment-water interface. 

 

2.2.7 Solution Method 
 
A fully implicit finite difference approximation was used to simultaneously solve the mass balance 

equations for all state variables.  The Gauss-Seidel iteration method (e.g., as described by 
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Ramaswami et al.3) was used to achieve rapid convergence.  To avoid dynamic instability associated 

with the central differencing approach to numerical methods,3 model resolution (z=1 mm, t=0.05 

days) was chosen to ensure 

      

Equation 2-15 

 

where Dmax was the maximum value of the time- and depth-dependent diffusion coefficients Dp and 

Dd. 

 An exponentially expanding spatial grid was implemented in order to focus computational 

efforts on transformations occurring near the sediment-water interface while eliminating undue 

computational burdens at depth (see Equation A-8 to Equation A-17 for details). 83, 84  Model results 

for the expanded grid were compared to those for an unexpanded grid to affirm the accuracy of the 

method.   

 The diagenetic model was run for a year before simulated introduction of the Ag NPs to 

ensure periodicity in seasonally variable redox conditions had been achieved. 
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Table 2-1. Ranges of sediment model parameters
a,b 

Symbol Parameter Units Value 

0 Sediment porosity at the sediment-water interface85 m3/m3-bulk (0.25, 0.4, 0.99) 

k Rate of decrease in sediment porosity with depth m-1 
0.058 

 Sediment density24 g-sed/m3-sed (1.5x106, 2.5x106, 2.7x106) 

Dd Diffusive mixing coefficient24 m2/d (7.0x10-5,7.5x10-5, 1.7x10-4) 

Dp Particle mixing coefficient86 m2/d (5.5x10-11, 4.0x10-7, 1x10-4) 

 e-folding depth of particle mixing86 m (0.02, 0.10, 0.30) 

 Fraction of POC in G1 reactivity class24 [-] 0.50-0.65 

 Fraction of POC in G2 reactivity class24 [-] 0.16-0.25 

 Rate of aerobic oxidation of G1 carbon24 d-1 (0.019, 0.048, 0.07) 

 Rate of aerobic oxidation of G2 carbon24 d-1 (0.0038, 0.004, 0.0088) 

 Rate of anaerobic oxidation of G1 carbon24 d-1 (0.02, 0.024, 0.027) 

 Rate of anaerobic oxidation of G2 carbon24 d-1 (0.0012, 0.002, 0.003) 

 Half saturation constant for POC oxidation using O2
24 mg O2/m

3 100 

 Rate of oxidation of FeS to form FeOOH24 d-1(mg O2/m
3)-1 (3x10-6, 0.001, 3) 

 Rate of Ag0 NP dissolution21, 67, 69 d-1(mg O2/m
3)-1 (1.3x10-8, 8.5x10-6, 5.1x10-4) 

ksulf Rate of AgNP sulfidation (long-term average) 72, 81 
(mmol S2-/m3) 

(mg O2/m
3)d-1  

(0, 2.0x10-7, 3.5x10-5) 

cpass Rate of decrease in 
    

   

k
Ag 0 ,O2

, 
  

   

ksulf
 as a function of S/Ag21 [-] (14, 20, 24) 

 
Fraction Ag0 by mass in input dose of NPs87 [-] (0, 0.15, 1.0) 

 Rate of oxidation of sulfur in Ag2S
88 d-1(mg O2/m

3)-1 (0, 1.5x10-7, 4.5x10-7) 

 
Rate of displacement reaction24 d-1(mmol FeS/m3)-1 0.1 

 Max flux of organic carbon from overlying water89, 90 mg/m2-d (75, 150, 300) 

    

  

log KOC
 Partition coefficient to POC91 L/kg  (4.1, 7.3, 7.8) 

 Sorption capacity for POC24 
mol/g 1.7 x 103 

 Partition coefficient to FeOOH24 m3/mmol 1.0 x 103 

 Sorption capacity for FeOOH24 mol/mol 0.2 

 Partition coefficient for FeS: [FeSp]/[FeSd]
24 m3/g 10-4-10-2 

 

Initial and Boundary Conditions
  

O2(z=0) Oxygen concentration at the interface mg/m3 (500, 3600, 14,000) 

foc(t=0) Fraction of organic carbon in sediment (at t=0)24, 39 [-] (0.001, 0.02, 0.15) 

FeS(t=0) Sediment iron sulfide (AVS) concentration (at t=0)24 μmol/g (0.01, 10, 100) 

a 
Nominal values are bolded and values determined by calibration are italicized.  Note that nominal values represent 

a “typical” freshwater system and do not necessarily correspond with the values used to calibrate the model, which 

were selected to match conditions in the mesocosms. 
b 
See note in Table A-3 on the selection of Arrhenius temperature coefficients for mixing and reaction rates (not 

shown) 
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2.2.8 Initial and Boundary Conditions 
 
No-flux boundary conditions were assumed at the sediment-water interface for all particulate species 

except those entering the system—POC, Ag0, and Ag2S (NP)—which assumed known influx (Type 

II/Neumann) boundaries.  This boundary condition was assumed to be sufficient to capture the net 

effect of particle deposition and resuspension in a quiescent wetland environment.  Influx of organic 

carbon was described piecewise in time with a sine curve that peaked at JPOC,max in summer (mid-May 

to mid-September) and was 15 mg/m2-d in fall, spring, and winter.  This idealized influx scenario 

agrees with seasonal trends in community respiration and carbon mineralization observed in a 

freshwater marsh.92  Known constant concentration (Type I/Dirichlet) boundaries were assumed for 

all dissolved species.  ICP-MS analysis of mesocosm water column samples detected no total silver 

after initial settling (detection limit of <2 g/L),38 so it was assumed that the silver ion concentration 

at the sediment-water interface could be approximated as zero.  At t =0, the oxygen concentration 

was decreased linearly from its value at the interface to zero at a depth of 5 mm.  The depth profile 

of oxygen exhibited exponential decay within one day of launching the simulation.   

 The mesocosms were dosed with 4.2 g of polydisperse, partially oxidized (80-85 wt % Ag0) 

30-80 nm PVP-coated Ag NPs, resulting in initial water column concentrations of 25 mg/L Ag NPs.  

Ag0 was assumed to exhibit an exponentially declining flux such that all silver added to the water 

column as a finite square pulse input would penetrate the sediment within ten days, as observed in 

the mesocosms.38  At depth, no-flux boundary conditions were implemented for all species. 

2.3 Results 
 
Figure 2-2 compares total Ag concentration vs. depth as measured in the mesocosm sediment to the 

simulated concentration profile of total silver, which represents the sum of all silver species in the 

system: Ag0, Ag2S (“NP” and “free”), Ag+, AgPOC, and AgFeOOH.  Silver concentrations (in 
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mg Ag/kg dry weight of sediment) are highest at the sediment-water interface, since the dry weight 

of sediment in a given volume is lowest when porosity is high.  Calibration to XAS data on the 

speciation of silver in the surficial sediments (~5 mm depth) of the mesocosms eighteen months 

after dosing ensured that, as reported,38 silver was present as 55% Ag2S (“NP” and “free,” in our 

model), 27% Ag+-organic compounds (AgPOC), and 18% Ag0.  The concentrations of the other 

silver species considered in the model (Ag+, AgFeOOH; see Figure 2-1) were low (<0.01%). 

 

 

Figure 2-2. Sediment model calibration results.  Total sediment silver concentration profile 
predicted by the model (curve) versus sample data collected from the water-column-dosed 
mesocosm eighteen months after dosing (boxplots).  Boxplots describe the distribution of nine 
sample measurements (six measurements for the > 40 mm depth) at each of four sediment depths 

(0-10 mm, 10-20 mm, 20-40 mm, >40 mm).  Crosses () indicate mean values.  
 
 

For those parameters with ranges estimated from the literature (𝑘𝐴𝑔0,𝑂2(
𝑆
𝐴𝑔⁄ = 0), Dp, Koc), 

calibrated values fall within their expected range (italicized values in Table 2-1).  The initial rate of 

Ag NP dissolution, 𝑘𝐴𝑔0,𝑂2(
𝑆
𝐴𝑔⁄ = 0), exceeds rate constants estimated from the equilibrium 

solubility of equivalently sized (38-80 nm) Ag NPs (3 x 10-8 to 2 x 10-6 d-1(mg O2/m3)-1), assuming 

8.6 mg/L DO (as reported) and the reaction rate equation used in the model.69  The difference may 
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be explained by partial oxidation of the mesocosm Ag NPs before dosing (15-20 wt %),38 which 

facilitates rapid initial oxidation.93  In contrast, 𝑘𝐴𝑔0,𝑂2(
𝑆
𝐴𝑔⁄ = 0) was lower than rates predicted 

for 40-80 nm Ag NPs at pH 4 (8.6 mg/L DO assumed).67  The Ag NP oxidation rate is expected to 

decrease with an increase in pH.66 

 The calibrated value of the silver ion-organic carbon partitioning coefficient is on the upper 

end of its expected range (log Koc =4.1-7.8 L/kg).  This suggests the organic carbon in the 

mesocosms sediments had a relatively high affinity for Ag+, perhaps due to the presence of strong 

chelating groups like reduced sulfur.  The overall correlation coefficient representing agreement 

between model output and mesocosm data is 0.997. 

 Figure 2-3(a) shows the silver ion efflux from the sediment to the overlying water as a 

function of time for a simulated pulse input of 2.9 g of Ag NP under typical environmental 

conditions for a freshwater wetland (the “nominal” case; see bolded values in Table 2-1).  The 

modeled system was ‘dosed’ in July in order to maximize initial efflux.  This represents a worst-case 

scenario, in which the maximum amount of toxic Ag+ escapes into the water column before the 

nanoparticles have the chance to sulfidize and Ag NP oxidation rates decrease.   

Changes in the depth profile of all state variables over time are provided in Figure A-1.  

Oxygen concentration peaks in winter, as has been observed in natural systems.92, 94  However, Ag+ 

efflux peaks in summer.  Figure A-2 reveals the mid-July peak in Ag+ efflux is driven by the 

temperature dependence of mixing and reaction rates.  
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Figure 2-3. Results for nominal case under five different Ag NP percent sulfidation 

scenarios.  a) Silver ion efflux vs. time after dosing, b) Concentration profiles in the sediment one 
year after dosing in July.  The black dashed curve indicates the unrealistic upper bound on Ag NP 
oxidation, in which the system is dosed with pristine particles (0% Ag2S) and sulfidation is not 
allowed to occur.  Colored curves correspond with NP inputs that are 0%, 50%, 85%, and 100% 
sulfidized before dosing when sulfidation is allowed to occur. 
 

The five scenarios in Figure 2-3 demonstrate the role sulfidation plays in the release of Ag+ from Ag 

NPs. Scenarios include an unrealistic worst case, in which a pulse input of pristine Ag0 NPs enters 
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the system (t=0) and the Ag NP sulfidation process is artificially turned off  (i.e., nanoparticles 

remain 100% Ag0 over the course of the simulation).  The other four scenarios demonstrate system 

responses to a dose of pristine particles (0% Ag2S before dosing), fully sulfidized particles (100% 

Ag2S before dosing), and partially sulfidized particles (50% and 85% Ag2S before dosing) when 

sulfidation is allowed to occur.  This last scenario (85% Ag2S) reflects the extent of sulfidation 

expected for silver particles exiting a sewage treatment plant by way of effluent.87  Figure 2-3(b) 

shows depth profiles under these four scenarios one year after dosing. 

  We observe no differences in the extent of Ag NP oxidation and the speciation, solid phase 

partitioning, and efflux of silver ion over time between 50%, 85%, and 100% Ag2S nanoparticles.  

This is because the rate of Ag NP oxidation decreases exponentially with the extent of Ag NP 

sulfidation (Equation 2-13).  Ag NPs that enter the system fully unsulfidized similarly behave as if 

fully sulfidized within a year of dosing, although elevated Ag2S (free) concentrations are observed as 

a result of Ag NP oxidation—and subsequent reaction of the released Ag+ with sulfide—within the 

first several months. 

 Figure 2-3(b) (top right panel) reveals that the predominant form of silver in the sediment 

will be the partially or fully sulfidized nanoparticles.  Percent sulfidation decreases with depth in this 

pulse input case because the Ag NPs that remain at the interface longer spend more time in the 

presence of O2.  Although FeS and O2 do not coexist at equilibrium,72 O2 mediates Ag NP 

sulfidation.  The principal forms resulting from speciation and solid phase partitioning of Ag+ 

released during Ag NP oxidation are the thermodynamically favored species, Ag2S (free), and 

AgPOC (silver associated with particulate organic carbon).  This is unsurprising, since silver reacts 

strongly with the sulfur-containing functional groups prevalent in organic compounds.  AgPOC 

may be especially high in this model because of the high Koc value determined by calibration.  Truly 
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dissolved (highly toxic) Ag+ is present only at very low concentrations, consistent with observations 

in field samples.88   

The normalized sensitivities of model outputs to small (±0.05%) changes in model inputs 

around the nominal case (i.e., elasticities), reported in Table A-4, reveal that environmental 

conditions strongly affect the system response.  Figure 2-4 describes oxidation, sulfidation, and 

persistence of the Ag NPs as a function of organic carbon content.   

 

 

Figure 2-4. System response to low (JPOC,max=75 mg/m2-d, foc=0.001), mid (JPOC,max=150 

mg/m2-d, foc=0.02; the “nominal” case in Figure 2-3), and high (JPOC,max=300, foc=0.15) levels 

of organic carbon (OC) for 85% sulfidized Ag NPs.   (a) Ag+ efflux vs. time.  The semi-log 
scale reveals orders-of-magnitude differences between the three scenarios.  (b) Ag NP sulfidation as 
a function of depth one year after dosing (July).  (c) Total amount (moles) of Ag NPs in system over 
time.  Nanoparticle half-life time is primarily a function of oxidant availability in the sediment. The 
decrease in total Ag NP amount within 10 years of dosing was fit to an exponential function, where 
t was expressed as months after dosing.  Ag NP half-lives estimated from the best-fit curves are 6.6 
years (low OC), 77 years (mid OC), and 280 years (high OC). 
 

Aerobic diagenesis of carbon in high organic carbon systems results in low oxygen availability, and 

subsequent sulfate reduction results in high sulfide availability.  Thus Ag+ efflux occurs less readily 

(Figure 2-4, top left panel) but sulfidation occurs more readily (Figure 2-4, bottom left panel) in high 
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OC systems.  The half-life of the 85% sulfidized Ag NPs was found to vary from 6.6 years to as 

much as 280 years in the model depending on oxygen availability (Figure 2-4, right panel).  Ag NP 

half-lives were relatively insensitive to whether the particles were partially sulfidized or pristine 

(100% Ag0) upon dosing—half-lives for the pristine Ag NPs ranged from 3 months (low OC) to 280 

years (high OC).  Loss of Ag0 from the Ag NP cores (Figure A-3) results from Ag+ formation and 

sulfidation, and does not exhibit first-order exponential decay. 

The mesocosm experiment used a single pulse input of a relatively high concentration of Ag 

NPs.  A continuous input of low concentrations of nanoparticles from a wastewater treatment plant 

is a more realistic scenario.  We assumed a continuous input scenario in which 20 million gallons per 

day of STP effluent (76,000 m3/d) containing 33 μg/L 85% sulfidized Ag NPs were released to a 

small (75 km2) lake, and that all silver entered the sediments.  Results for the constant input case are 

provided in Figure A-4 and Figure A-5.  Trends agree with those observed in the pulse input case 

(Figure 2-4).  Ag NP accumulation occurs over time in this chronic low dose input case. 

2.4 Discussion 
 
Nanoparticles are expected to accumulate in sediments after release to surface waters.  The toxicity 

of surface-reactive nanoparticles in environmental media depends greatly on chemical 

transformations undergone by the nanoparticles and released ions.  Recent work has shown particle 

properties strongly affect Ag NP transformations.67-69  The present work reveals environmental 

conditions also play an important role.   

Particulate organic carbon (POC) diagenesis has long been recognized as a key determinant 

of oxygen penetration depth and a driving force for sediment processes.  The model suggests this 

process similarly drives Ag NP transformations in sediments.  Eutrophic (high organic carbon, low 

oxygen, high AVS) systems maximize rates of Ag NP sulfidation and minimize toxic silver ion 
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production and diffusion into the water column.  Ag NPs may persist in a partially or fully sulfidized 

form for over a century under these conditions.   

Seasonal redox cycles may play a role in silver speciation, bioavailability, and toxicity.  The 

model predicts Ag+ efflux will be lowest in winter and highest in summer, although seasonal patterns 

in oxygen availability will vary across natural systems as a function of temperature, organic carbon, 

light, water currents, and bioturbation.95  Figure 2-4 reveals that seasonal variation becomes relatively 

unimportant over long time scales, especially when compared to the importance of inter-site 

heterogeneity in sediment conditions. 

The rate of Ag NP oxidation was assumed to decrease exponentially with Ag NP sulfidation 

(Equation 2-13).  Because sulfidation occurs readily in the sediments in the nominal case, the initial 

extent of sulfidation becomes relatively unimportant within a year of dosing (Figure 2-3). Ag NPs 

that are ≥ 50% Ag2S by mass, as expected for Ag NPs released to natural waters, will exhibit 

behavior effectively identical to that of fully sulfidized (100% Ag2S) NPs.   

The Ag NP oxidation and sulfidation rates used here are specific to 30 nm Ag NPs.  They do 

not account for the inverse relationship between Ag NP size and rates of transformation (e.g., as 

observed by 26, 72, 81 and captured by the ranges in Table 2-1) or the effects of aggregation.  In a 

toxicity study on earthworms, Shoults-Wilson et al. (2011) concluded that soil conditions are a more 

important determinant of Ag NP toxicity than size.96  This is consistent with our finding that model 

predictions of Ag+ release are relatively insensitive to the rates of Ag NP oxidation and sulfidation 

(Table A-4) compared to model variables describing the environmental conditions. 

In several environmental risk studies of nanosilver,32, 33, 42 Predicted Environmental 

Concentrations (PECs) were compared to No Observed Effect Concentrations (NOECs) or LC50 

values for the pristine Ag0 NPs.  Nanosilver risk is overestimated by this approach, which overlooks 

the significant reduction in acute toxicity expected after Ag NP sulfidation.27  To improve risk 
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estimates, sediment PECs should be compared to toxicity thresholds for partially and fully sulfidized 

Ag NPs.  

Even under oxic conditions, the toxic species Ag+ represents <0.01 wt-% of the total silver 

in the system. Thus the toxicity of environmentally transformed Ag NPs and released ions may be 

quite low.  However, Ag NP risk may be underestimated if, as has historically been the case, Ag+ is 

considered the only bioavailable silver species in freshwater environments.29, 71, 78  Ingestion, uptake, 

or surface interactions with unsulfidized or partially sulfidized Ag NPs by aquatic plants and 

sediment organisms may lead to higher exposures.38 

Because Ag2S is the principle product of Ag NP transformation, the rate of oxidation of 

sulfur in Ag2S is of particular interest.  Previous work reveals that complexation with metal ions 

stabilizes thiols and sulfides against oxidation under aerobic conditions.27  Although Ag2S is highly 

stable against dissolution (Ksp=5.92  10-51),27, 97 Ag2S can exhibit greater solubility in the presence of 

sediments.  The authors suggest this occurs because Fe(III) in the sediments facilitates oxidation.88 

At concentrations orders of magnitude higher than observed here (≥ 10 mmol Ag/m3), Ag+ has 

been shown to transform into Ag0 NPs in the presence of reduced humic acids.98, 99  This reaction 

occurs most rapidly in anoxic and suboxic environments.  Because FeS and organic matter act as 

competing ligands in such environments, we do not anticipate that the in situ formation of Ag0 NPs 

will play a significant role in nanoparticle fate for low-level releases of Ag+ in sediments. 

Future experimental work may reveal that other oxidants (e.g., Fe3+, Mn4+, NO3
-, SO4

2-) can 

oxidize Ag NP in sediments under non-equilibrium conditions.  One strength of our approach is the 

ease with which different oxidants or transformative processes (e.g., bacterially mediated oxidation 

of sulfur in Ag2S) can be incorporated into the model. 

Regulatory and industry decision-making for the safe production, use, and disposal of 

nanomaterials requires models that can track the environmentally relevant species. Although 
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process-based models capable of describing the temporal evolution of particle size and aggregation 

state are highly desirable, they present unique theoretical challenges and computational demands.  

This work reveals that a mass balance model with no explicit inclusion of aggregation can 

successfully reproduce observations from a freshwater mesocosm experiment.   

By omitting aggregation, the model assumes Ag NPs mix in the sediment at approximately 

the same rate as the sediment particles themselves.  Since Ag NPs are largely expected to 

heteroaggregate (and thus co-transport) with sediments in natural environments,75 this assumption 

appears justified.  However, since the overall particle mixing rate (Dp) was determined by calibration, 

there is no way to test the assumption in this work.  In general, data collected at high spatial and 

temporal density are needed on another Ag NP type or on a different environmental system to 

validate the model.  Nonetheless, we believe the incorporation of nanoparticle chemistry into a 

conventional mass balance sediment metal modeling framework represents a significant step towards 

more accurate environmental risk models for nanoparticles.31  
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3 Stream dynamics and chemical transformations control 
the environmental fate of silver and zinc oxide 
nanoparticles in a watershed-scale model 

3.1 Introduction 
 
In the absence of monitoring data, mathematical models are commonly used to predict the 

concentrations and speciation of chemical contaminants in the environment. The predicted 

environmental concentrations (PECs) can then be compared to laboratory-determined dose-

response information to estimate risk.  Several recent large-scale models5, 6, 8, 10, 11, 32-34, 37, 40-42, 48 have 

estimated PECs and/or predicted the environmental fate of engineered nanoparticles (NPs), which 

are now entering surface waters at low levels due to their use in products such as paints, sunscreens, 

textiles, and cosmetics.2  

 Recent environmental fate models focus on "nano-specific" aspects of NP fate, or aspects 

that differentiate NPs from molecular contaminants (e.g., kinetic rather than equilibrium descriptors 

of NP heteroaggregation with soils and sediments5, 8, 11, 37, 45, 100).  Less attention has been paid to 

aspects of NP fate that are common to all contaminants, which are nonetheless important risk 

determinants.    For example, most models have been solved at steady state8, 37, 41 and/or been 

spatially unresolved, averaging concentrations over large regions (e.g., nations).5, 6, 32, 33, 37  All have 

disregarded stream loads from surface runoff of NP-containing biosolids used as fertilizer or found 

them to be insignificant,5, 37 and none have considered spatiotemporal variability in sediment 

transport rates, described NP chemistry as a function of environmental conditions, or tracked NP 

reaction by-products (metal ions, metal sulfides, etc.).  We present results from a watershed-scale 

model designed to predict the fate of two NPs with different chemistries, silver (Ag) and zinc oxide 

(ZnO), at comparatively high spatial and temporal resolution and assess the impact of these 

simplifying assumptions on the utility of NP fate models for risk assessment. 
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 NPs and their reaction by-products primarily enter surface waters via municipal wastewater.2  

During sewage treatment, most NP mass associates with the solid waste (biosolids),6, 52 so 

agricultural runoff following the application of treated biosolids to crops may contribute to total 

metal stream loads in regions where biosolids are land-applied.  Runoff is an important vehicle for 

many pollutants found in biosolids.49-51  

 The affinity of NPs and metal ions for ubiquitous natural particles such as soil, sediment, 

micro-organisms, and insoluble organic matter, ensures that solids transport in the environment 

controls metal transport.75, 77, 101-103  Sediment deposition and scour in streams is highly variable. 

Deposition dominates in reservoirs and coastal plains, whereas scour dominates in mountainous 

regions with high bed slopes and water velocities.  Scour also peaks during rain events.25, 26  

Capturing the site-specific and dynamic (time-dependent) nature of sediment transport is essential in 

predicting the fate of strongly sediment-associated pollutants101-103 but has not yet been attempted 

for NPs.  

 Finally, the environmental toxicity of reactive NPs such as ZnO and Ag depends upon their 

speciation, which is impacted by environmental factors such as temperature, pH, dissolved oxygen, 

and sulfide.31  Metal ions formed by NP dissolution can be highly toxic,54, 104 but reaction of NPs and 

metal ions with naturally-occurring sulfides and metal ion complexation with solid phases often 

reduces toxicity.25-29   

We coupled the James River Basin (VA) portion of the Phase 5.3.2 Chesapeake Bay 

Watershed Model (WSM)62 to the USEPA's publically available water quality modeling suite 

WASP7105 and configured both to model ZnO and Ag NP fate.  The James River Basin contains 

large and small population centers, reservoirs, mountainous and low-lying stream reaches, forests, 

and extensive agricultural production (Figure 3-1, Figure B-1).  ZnO and Ag NPs and their 

transformation by-products entered the model via wastewater treatment facility effluent and 
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biosolids applications to row crops, hay, and pasture land.  Land-applied biosolids and soil were 

eroded and carried to streams during rain events.  The river simulation calculated sediment transport 

rates as a function of spatiotemporal variability in stream flow; distinguished between oxic and 

anoxic sediment bed layers; and tracked temperature-dependent chemical reactions including ZnO 

NP dissolution, oxygen-dependent dissolution of Ag NPs, sulfide-dependent sulfidation of metal 

ions, and metal ion complexation with particulate phases.   

 

 

Figure 3-1. Structure of the coupled WSM/WASP7 model.  The modeled region (Figure B-1) 
is divided into 65 land segments and 68 river segments.  For each of 30 land use types in each land 
segment, runoff loads are apportioned to river segments.  Runoff loads, effluent loads, and stream 
hydrology from the WSM are read into WASP7, which performs in-stream sediment and metal 
transport and chemical transformations.  Physical processes in-stream affect either all chemical 
species (solid black arrows), solid-associated species (striped arrows), or dissolved species only 
(white arrows). Abbreviations: WWTP - wastewater treatment plant. NP - nanoparticles. 
 

The coupled model was run for 20 years using historic hourly weather data and an NP loading 

scenario representing estimated 2010 concentrations of Ag and ZnO NPs in wastewater effluent and 

biosolids.33 Although it can be considered representative of current conditions, this loading scenario 
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suffers from the same weakness of all such estimates: it is impossible to verify due to analytical and 

data limitations. Thus the simulation is not intended to predict the environmental concentrations in 

the region over a specific time period, but rather to explore natural variability in the environmental 

fate of NPs and to identify major factors controlling their behavior in rivers. 

 

3.2 Methods 
 
3.2.1 Model region 
 
The modeled region was the 17,600 km2 Upper and Lower James River Basins in Virginia (Figure 

B-1).106, 107  The region is 80% forest, 13% agriculture, and 5% developed.  The basin encompasses 

Lynchburg and Charlottesville.  Richmond lies at the lower boundary.  

 

3.2.2 Model framework and resolution 
 
The WSM is an implementation of HSPF (Hydrological Simulation Program--FORTRAN) designed 

to facilitate sediment and nutrient management planning in the Chesapeake Bay.62  We used the 

WSM to predict stream loads from surface runoff and effluent discharges and to configure the 

stream hydrology of the river model.  The river model was implemented in WASP7 (Figure 3-1).  

Input data, code, and complete documentation for the WSM can be found at 

ches.communitymodeling.org/models/CBPhase5/index.php. 

 Like most pollutant fate models,3, 39 WASP7 and the WSM break the modeled region into 

environmental "compartments" in which constituent masses are assumed to be completely mixed.62, 

105  The land simulation has 3 soil layers x 30 land uses (listed in Table B-1) x 65 land segments, or 

5,850 soil compartments.  Land segment boundaries follow county boundaries according to a 

1:100,000 scale data set, but were subdivided further in mountainous regions to differentiate ridges 
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from valleys.  The drainage area for each river segment was specified using 30-meter-resolution 

Digital Elevation Map (DEM) data.62  The 68 stream segments have a mean hydraulic residence time 

of 0.6 days and a mean length of 30 km.  Two stream segments represent reservoirs. The WSM has 

an hourly time step and outputs were averaged for use in WASP7, which has a daily time step.  

WASP7 uses a variable (< 1 day) computational time step as needed to ensure numerical accuracy. 

 Our WASP7 model used the WSM river segmentation scheme (channel length, width, and 

slope) and predicted stream hydrology (daily volume, velocity, and depth for each river segment), 

which was calibrated prior to this work to data from 33 monitoring stations in the modeled region.62   

The simulation reflects the 20-year meteorological record from 1986-2005.62  Other WSM outputs 

used in WASP7 included daily effluent and runoff loads to each river segment (sediment and 

metals), average daily stream temperature, and average daily dissolved oxygen (DO) concentration.   

 

3.2.3 NP Release Scenario 
 
Parameter values and sources are provided in Table B-2 and Figure B-2.  NP concentrations in 

effluent and biosolids were fixed at the mode of U.S. estimates by Gottschalk et al.,33 which were 

more conservative (higher) than corresponding values predicted for Ag NPs by Hendren et al.108 

Effluent discharge volumes and biosolids application rates were based on 2010 data reported at the 

plant scale (effluent) or county scale (biosolids).62  Daily variation in effluent discharge was not 

considered.  Thus metal mass loads from effluent remained constant over time, which is 

approximately correct if the use and disposal of Ag and ZnO NP-containing products also remains 

constant. The 82 municipal wastewater treatment facilities in the basin range in capacity from 8 to 

43,000 m3/d. Two plants account for 68% of effluent loads.  

 Biosolids application rates were calculated with the Scenario Builder tool,40 which was 

parameterized prior to this work using agricultural census data.  Scenario Builder has a higher 
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resolution than the WSM (e.g., it includes over 100 crop types).  Rates varied monthly according to 

crop nutrient need, reflecting spatiotemporal variation in tillage practice, crop type, and growing 

season.107  Simulated biosolids applications occurred every third day and were split between the 1 cm 

surface layer (30% by mass) and the variable (~7-12 cm) upper soil layer (70%).  Error resulting 

from these simplifying assumptions is minimized by calibration of the sediment and nutrient runoff 

predictions, as described below. 

 The ratio of NP-derived metal mass applied to the land surface versus discharged directly to 

the stream, as predicted by the WSM upon adaption for NPs, was 23:1.  This ratio is consistent with 

a wastewater NP removal efficiency of 98%, which agrees well with literature values,2, 6 and with 

application of 48% of solid waste to fields as fertilizer, the estimated 2010 national average.109  

Average estimated application rates across all land uses and land segments were 0.3 kg Ag/km2-yr 

and 4.4 kg Zn/km2-yr. All Zn in soils was assumed to be complexed (particulate-associated) Zn2+, 

since ZnO NPs are converted to Zn2+ complexed with phosphate or adsorbed to ferrihydrite during 

aerobic post-processing of sewage sludge.110, 111  Zn in wastewater effluent was modeled as 7.5% 

ZnO NPs and 92.5% Zn2+ based on results from a simple sewage treatment plant chemistry model 

(Appendix B, Supporting Methods, "Aeration tank model").  Ag NPs were assumed to be over 50% 

sulfidized in biosolids and effluent, as observed experimentally.81, 87  Sulfidized Ag NPs resist 

oxidative dissolution during aerobic treatment of biosolids.111   

 The formation of a passivating shell of Ag2S causes partially sulfidized Ag NPs to exhibit far 

lower solubility than untransformed Ag NPs.21  In contrast, sulfidation of ZnO NPs does not form a 

protective shell of ZnS on the NP or impact its dissolution rate22 (Figure 3-1). Because WASP7 

cannot model core-shell structure formation, and because the reaction kinetics of > 50% Ag2S Ag 

NPs are effectively the same as that of 100% Ag2S Ag NPs,21, 61 further Ag NP sulfidation in the 

river and sediments was not modeled. 
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 Direct environmental emissions during NP-containing product use were assumed to be 

insignificant.  ZnO NPs in sunscreens may be an important exception.  However, it would be very 

difficult to accurately predict sunscreen emissions from bathers swimming in the modeled region.   

 

3.2.4 Land Simulation and River Network Simulation Assumptions 
 
NPs were assumed to heteroaggregate completely in all media.  For surface waters, the assumption is 

justified by characteristic times to heteroaggregation that are close to or below our daily time step.  

Therezein et al. predicted a half-life of less than a day for unaggregated particles when total 

suspended sediment (TSS) concentrations exceed ~15 mg/L and α (the probability of attachment 

upon particle collision) exceeds 0.05.9  For PVP-coated Ag NPs in freshwater when TSS = 9 mg/L 

(our modeled average), experimental rates reported by Quik et al. under quiescent conditions would 

result in unaggregated NP half-lives below 3 days.112  In systems exhibiting periodic turbulence and 

resuspension, heteroaggregation would occur in 0.1-0.5 days.16 Aggregation may occur even more 

readily in soils than in surface waters due to high background particle concentrations.  Meesters et al. 

(2014) predicted nearly complete NP heteroaggregation on soils.37   We revisit this assumption in the 

Discussion. 

 Surface runoff of sediments during rain events was modeled for a "representative acre" of 

each land use in each land segment.  The ability of tillage, plowing, and crop cover to promote or 

prevent runoff was handled separately for each land use.  The fraction of the runoff that reached the 

stream was proportional to the land area for each land use and the average distance from the land 

use to the stream.62  Runoff predictions were calibrated prior to this work against expected annual 

runoff loads based on alternative models, observations, and the published literature.62  Assuming 

that NP transport is highly correlated with sediment transport, the calibrated sediment runoff 

predictions from the WSM should predict NP runoff equally well.    
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 Sediment runoff loads were split at the stream edge into silts/fines (average diameter: 6 µm, 

approximately 95% of runoff) and sand (130 µm) using segment-specific factors previously 

calibrated for the WSM.62  All sediment-bound metals were assumed to transport with silts/fines 

because of the high surface area of the latter.11  This is generally the case for strongly sediment-

associating pollutants.113 

 Each modeled river segment has a 1 mm subaquatic surface sediment layer and a 10 cm 

deeper sediment layer.  These depths are typical of two-layer sediment models.24  The surface layer is 

assigned half the dissolved oxygen concentration of the overlying water.  Deep sediments are anoxic.  

The sediment transport equations used by WASP7 to model sediment deposition and resuspension 

as a function of the spatiotemporally variable, flow-dependent shear stress at the sediment-water 

interface are presented in Appendix B (Supporting Methods, "WASP7 sediment transport 

equations").114  Related parameters (Table B-2) were determined by calibration of the simulated TSS 

concentrations to over 750 observations at a downstream monitoring station using established 

metrics (NSE, PBIAS, RSR)115 (Supporting Methods, "TSS calibration").  

  We used the midpoints of ranges of reported dissolution rates that included many NP sizes 

and surface coatings (Table B-2).  Reaction rates were assumed to depend linearly on the 

concentrations of all reactants (NPs, O2, S
2-). 

 Following convention for hydrologic models,62 we minimized the influence of initial 

conditions on results by running the model for two years (meteorological years 1984-1985) prior to 

the first reported "simulation year." 

3.3 Results 
 
3.3.1 Agricultural runoff contributes to NP-derived metal stream loads  
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Runoff of land-applied biosolids during rain events accounted for 23% of the total stream load of 

Ag and Zn from NPs over 20 simulation years, even though only 1.3% of the metal mass applied to 

the land surface reached the river.  Figure B-3 shows spatial and temporal trends in runoff.  Daily 

total runoff of NP-derived metal loads exceeded daily total effluent loads on 2.5% of days.  Runoff 

loads on these days exceeded effluent loads by up to two orders of magnitude. 

   

3.3.2 Ag and ZnO NPs were extensively transformed 
 
Figure 3-2 describes the simulated mass distribution and speciation of NP-derived (a) zinc and (b) 

silver in the water column, the oxic surface sediments, and the underlying anoxic sediments.  The 

ZnO NPs in WWTP effluent (see Methods) dissolved so quickly in the river that they accounted for 

< 0.05% by mass of NP-derived Zn found in all layers.  Dissolved Zn2+, which is bioavailable and 

potentially toxic, was relatively abundant in oxic surface waters, whereas particle-associated Zn2+ 

predominated in oxic sediments.  A drop in dissolved oxygen in summer in the usually oxic 

sediments resulted in annual peaks of ZnS, the dominant Zn species in the anoxic deep sediments.  

Results agree with expectations for Zn2+ in aerobic and anaerobic environments.116, 117   

Following empirical studies, we assumed that >50% of the Ag had formed a shell of 

insoluble Ag2S on the surface of the NPs prior to environmental release via effluent and biosolids 

(see Methods).81, 87  Unlike ZnO NPs, these Ag2S-coated NPs were highly persistent.  The sediment 

half-life for sulfidized Ag NPs ranges from 5 years to over a century, depending on redox 

conditions, with a typical half-life of 77 years.61 
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Figure 3-2. Location (top graphs) and speciation (bottom six graphs) over time of a) Zn 

from ZnO NPs and b) Ag from Ag NPs, expressed as percent by mass in the water column 

(WC), oxic surface sediments (SS), and anoxic deep sediments (DS). Both metals accumulate 
rapidly in surface sediments and penetrate deep sediments more slowly.  ZnO NPs disappear due to 
rapid dissolution during sewage treatment and in the river.  In contrast, Ag NPs persist in their 
partially or fully sulfidized form. 
 

3.3.3 Most of the NP metal stream load escapes the basin   
 
Comparing the cumulative stream load to the metal mass remaining in the river and sediment bed 

over time (Figure 3-3) reveals surprisingly high metal mobility. Only 5.4% of Ag and 2.6% of Zn 

loads were retained.  Mobility was due to flow-dependent sediment transport.  Transient peaks in 

flows prevented deposition and scoured the sediment bed where NPs and particle-associated metal 

ions accumulated.  High deposition and low scour occurred in segments with low average stream 

velocities; low deposition and high scour occurred in segments with high average velocities (Figure 

B-4). 

 

 

 



45 
 

 

Figure 3-3. Comparison of the cumulative total zinc (left) and silver (right) load to the 

river over time from effluent (black) and agricultural runoff (purple) to the total mass 

remaining in the river and sediment bed over time (yellow).  Little (<6%) metal accumulation 
occurs in the river (solid yellow line).  Much more accumulates (42% Zn, 87% Ag) in a scenario 
where sediment resuspension and deposition rates are treated as spatiotemporally invariant (dashed 
yellow line).  
 

We also present results for an alternative sediment transport scenario in which there was no barrier 

to deposition (gravitational settling only) and resuspension rates were held constant at their 

spatiotemporal average (1.2 mm/yr)--common assumptions in NP fate modeling.8, 11, 41  This 

scenario resulted in 87% of Ag and 42% of Zn loads accumulating in the river (Figure 3-3; dashed 

yellow lines).  Overall, this scenario over-predicted surface sediment concentrations of Ag and Zn by 

a factor of 4,000 and a factor of 7, respectively, relative to the scenario with dynamic and 

geographically variable sediment transport assumptions.  Figure B-5 reveals that over-prediction of 

accumulation occurs over the full range of expected average resuspension rates in rivers reported by 

ref 113 (1-30 mm/year). It also shows that gravitational settling is not a good predictor of deposition 

rates in this river model, and that geographic variability had a greater influence than temporal 

variability. 

 Zn accumulated less than Ag because dissolved Zn2+ transported with the aqueous phase 

rather than the sediments.   
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3.3.4 Metal accumulation in sediments is observed locally but not basin-wide  
 
To visualize spatiotemporal variation in predicted environmental concentrations (PECs), cumulative 

distribution functions (CDFs) of total NP-derived metal concentrations over time were plotted for 

each river segment (Figure 3-4).  Sediment bed concentrations on a dry mass basis are reported here 

as the average concentration over 2 cm of depth in order to match model results to standard 

monitoring procedures (sediment coring) used to compare metal concentrations to regulatory 

standards. On a total volume basis (pore water and sediment), NP-derived metal concentrations 

were three orders of magnitude higher on average in the sediment bed than in the water column. 

Metal concentrations in the 1 mm surface sediment layer were, on average, two orders of magnitude 

higher than in the deeper sediments. 

 Predicted NP-derived Ag and Zn concentrations varied by several orders of magnitude 

across river segments. However, the PECs remained at least 75 times smaller than USEPA water 

quality criteria (WQC) and sediment quality guidelines (SQG) for metals (Figure 3-4) in all stream 

segments at all times (see Supplementary Methods, "Regulatory thresholds").  The PECs resulting 

from NP inputs were also smaller than total metal concentrations previously observed downstream 

of Richmond in the James River Basin (Table B-3).  Because we are not confident that the loading 

scenario represents actual NP loads in the region, these comparisons should be viewed as suggestive 

but not definitive. 
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Figure 3-4. Cumulative distribution functions (CDFs) of total metal concentrations over 

time for each segment in surface water and sediment for Ag (above) and Zn (below). 
Concentrations do not exceed EPA water and sediment quality thresholds for metals (red vertical 
lines; see "Regulatory thresholds" in Appendix B, Supporting Methods).  GIS plots show where in 
the modeled region 95th percentile concentrations are closest to exceeding thresholds.  Large point 
source loads are marked by asterisks. The open-source software QGIS was used to visualize 
geospatial data.   
 

Spatial variation in PECs (variation between CDFs in Figure 3-4) was greater than temporal 

variation (variation within CDFs).  Figure 3-5 shows the extent to which spatial variation in 

temporally averaged predicted total metal concentrations in each segment can be explained solely by 

the total NP-derived metal loads from runoff, effluent, and upstream.  Results show that the 

explanatory power of the total load is imperfect.  The highest concentrations occurred, not in river 
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segments that received the highest loads, but in segments that also had low stream velocities and 

high sediment deposition.  Total load is a particularly poor predictor of sediment Ag PECs because 

Ag (unlike Zn) moves entirely with sediments in this model.  

 

 

Figure 3-5. Average total metal concentrations in each river segment vs. the total metal 

load to that segment (upstream load + effluent load + runoff load) over the course of the 

simulation. Variation that is not explained by input load is explained by spatial differences in stream 
hydrology and sediment transport.  Zn concentrations are better explained by load than Ag 
concentrations because Ag is present mostly as sediment-bound NPs in the water column and 
sediment bed whereas much of the Zn is present as dissolved ion.  Sediment Ag concentrations are 
least well predicted by load alone.  The highest metal concentrations occur in segments that 
experience low velocities as well as high loads.  Colors as in Figure 3-4. Abbreviations: WC – water 
column, Sed – sediment.  
 

Figure 3-6 shows the total Ag concentration vs. time for two segments over the five-year period that 

included both the driest (brown) and wettest (blue) year.  When agricultural runoff was a significant 

fraction of stream loads to the segment and average stream velocities within the segment were low 

(left panel), concentrations increased during high flows (the wettest year).  In contrast, 

concentrations were diluted by high flows when point sources predominated (right panel).  Trends 

in sediment bed concentrations varied even more widely over this time period (Figure B-6).   
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Figure 3-6. Total Ag concentrations (ng Ag/L) for two river segments (left and right) for 

the five-year period that includes the driest year (brown) and wettest year (blue) in the 

simulation. Segment 66 (left) has a low average water velocity and receives most of its Ag load from 
runoff, so Ag concentrations peak with high flows.  In contrast, dilution is observed during high 
flows for Segment 59 (right) receiving primarily effluent loads. 
 

3.4 Discussion 
 
Previous NP fate models have relied on relatively simple representations of sediment transport, 

agricultural runoff, and NP chemistry.  Our results suggest that models neglecting or over-

simplifying these processes have under-predicted NP mobility in rivers and misrepresented risk.  

The high spatiotemporal variability observed here suggests that spatially averaged and steady state 

models have limited use for risk assessment at the watershed scale or larger.     

 Metal mobility was strikingly high in our model due to flow-dependent sediment scour and 

deposition.  A spatiotemporally invariant alternate sediment transport scenario based on prevailing 

approaches in NP fate models8, 11, 37, 41 did not share this high metal mobility.  In the case of Ag, 87% 

of input Ag loads accumulated in the river under the constant transport scenario compared to less 

than 6% under more realistic sediment transport assumptions.  Note that associating the NPs with 

sand-sized particles rather than silts/fines did not appreciably change their mobility; accumulation in 

the river and sediment bed remained below 6% (not shown).  Mobility may be even higher than 

predicted here due to bedload shift.8, 11, 41  However, bedload shift is not usually an important 

transport process for silts/fines, our assumed NP-carrying sediment fraction.113  Metals that escape 
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the basin will accumulate in tidal, estuarine, or coastal sediments downstream, and there is a need for 

better understanding of NP fate and toxicity in such environments.   

 As expected from experiments in soils118 and sediments,38 simulated metal concentrations 

were highest in the surface sediment layer.  Penetration to deep sediments was slow.  Average 

sediment PECs varied up to nine orders of magnitude across the basin and average water column 

PECs varied five orders of magnitude (Figure 3-4), which calls into question the relevance of the 

practice of averaging PECs over regions or nations.5, 6, 32, 33, 37  In agreement with refs 42, 48, we find 

that spatial variation in loading is important.  Indeed, its importance is probably under-predicted 

here because we did not consider variation in biosolids and effluent concentrations (see Table B-2 

for reported ranges).  In agreement with ref 10, we find that natural variation in system hydrology and 

sediment transport must also be considered in order to identify regions of enhanced metal 

accumulation at spatial scales that are relevant for regulatory and management efforts (Figure 3-5).  

Low velocity environments such as river impoundments or wetlands downstream from point source 

discharges are of particular concern.  

 The model predicted that agricultural runoff was a non-trivial source of total metal stream 

loads (23%).  This agrees with recent findings for non-NP metals51, 119 but contrasts with predictions 

from two recent NP models that lacked spatial resolution.5, 37  Spatial and temporal resolution are 

needed to model runoff, which is highly localized and transient in nature. 

 Several NP fate models have predicted biosolids, effluent, or environmental concentrations 

of ZnO or Ag NPs without modeling chemical transformations (beyond simply noting that 

transformations may occur).32-34, 40, 42, 48 And yet, in agreement with experiments, 20-22, 61, 81, 87, 110, 111, 120-123  

we found that Ag and ZnO NPs will not be released to surface waters or occur in the environment 

in their as-manufactured state (Figure 3-2).  Risk model predictions for untransformed NPs are thus 

environmentally irrelevant.  Sulfidized Ag NPs persisted in both oxic and anoxic environments.21, 61 
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ZnO NPs dissolved rapidly regardless of our choice of NP dissolution rate (see Appendix B, 

Supporting Methods, "Aeration tank model" for sensitivity analysis). 

 Calibration and validation of NP concentrations in fate models is precluded at present by the 

same lack of field data that makes their development so necessary.  This potential handicap is not of 

great concern here, since our NP loading scenario is purely illustrative. Our goal was not to predict 

environmental concentrations of NPs with certainty, but rather to determine the effect of 

environmental variability on NP fate and explore the influence of simplifying assumptions on the 

accuracy and usefulness of model predictions.  Nonetheless, we believe that transport is generally 

well-predicted by the model, since NPs are strongly sediment-associating and our sediment 

predictions were calibrated to observed data. 

 Several shortcomings of the model should be noted.  First, including a background pool of 

metal ions from non-NP sources would have created a concentration gradient that promoted net 

metal transport from the sediment bed during pore water exchange, rather than the net transport to 

the sediments that occurred in our model when sediment concentrations were zero.  However, 

turning off pore water exchange in our model only decreased Zn accumulation in sediments by 1%, 

so this effect was not significant.  For Ag NPs, no effect was observed.  Second, at the moderate 

spatial resolution employed here (30 km average stream segment length), overall advective transport 

(contaminant mobility) is accurate, but spatial variation is underpredicted, and transient 

concentration peaks during high- or low- flow events may be somewhat dampened.124, 125  Thus 

improving the spatial resolution of the model would only strengthen our conclusions about the 

importance of spatiotemporal variability.  Third, not all metal ion complexation reactions form 

soluble products, so the reversibility of complexation that is assumed when using metal ion partition 

coefficients will not always be correct.  For this reason, the formation and dissolution of low-

solubility metal sulfides was treated separately (Figure 3-1).  We did not treat Zn3(PO4)2 separately 
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from other Zn2+ complexes in this work, since it is only one of many Zn species found in biosolids, 

effluent, and the environment and its dissolution rate is (to our knowledge) unknown.  However, 

Zn3(PO4)2 can account for up to 40% of transformed ZnO NP mass in sewage biosolids.110, 111  If 

Zn3(PO4)2 dissolution is exceedingly slow, the mobility of the NP-derived Zn will approach that of 

the highly insoluble Ag2S NPs. Fourth, this model did not consider overbank flow and the possible 

deposition of NPs in the floodplain. Depending on the river system, this could significantly change 

NP transport rates.126  

 Unlike many recent works,5, 8, 11, 37, 45 we do not account for "nano-specific" aspects of NP 

fate such as surface area-dependent reaction kinetics and size-dependent, kinetic NP 

heteroaggregation.  For ZnO NPs, "nano-specific" aspects of fate are moot because the ZnO NPs 

are present at less than 0.05 wt-% in all media relative to transformed species.  NP size and Ag2S 

shell layer thickness similarly had little effect on Ag NP dissolution, since dissolution was very low 

regardless.  Finally, rather than using a mechanistic, population balance-based colloid model (the 

Smoluchowski coagulation equation) to describe NP-sediment heteroaggregation, we assumed fast 

heteraggregation leading to 100% NP association with sediments (see Methods).  In spite of this 

assumption, over 90% of the Ag NPs escaped the basin because the sediments themselves were 

highly mobile.  The sensitivity analysis shown in Figure B-7 reveals that predicted Ag NP 

accumulation dropped from 5% to 0.15% as the assumed affinity of the NPs for the solid phase 

decreased.  Note that, even if we had used the Smoluchowski equation, we would still have predicted 

complete association of NPs with sediments, since heteroaggregate break-up is generally not 

modeled at present and NPs are likely to undergo at least one successful collision with solid particles 

in sewage treatment plants or on crop fields before release to surface waters. Ultimately, lack of 

model sensitivity to NP-specific effects suggests that fate processes common to all contaminants 

drive NP fate.  However, this is a major topic of current research.  Next-generation models that 
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account for heteroaggregate break-up and the stabilizing influence of environmental factors such as 

organic carbon11 may yet disprove our hypothesis. 

 Of course, conditions in the James River Basin are not representative of all basins 

worldwide.  For instance, in countries that do not allow the land application of biosolids, non-point 

sources--and their influence on stream concentrations --would be irrelevant.  NPs such as TiO2 and 

SiO2 are chemically inert in aquatic systems. Nonetheless, it is clear that environmental fate models 

for NPs must be careful to describe environmental variability at the level of detail needed to identify, 

locate and quantify environmental risks from these emerging chemical pollutants. 
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4 A comparison of population balance frameworks for models of nanoparticle 
aggregation and surface transformations in aqueous media 

4.1 Introduction 
 
Within the past decade, rising concerns about the environmental and human health risks posed by 

nanoscale pollutants have motivated the development of mathematical models that capture 

nanoparticle (NP) behaviors and fate in laboratory suspensions and natural surface waters.  

Although early efforts relied on frameworks designed to describe chemical reactions and/or 

sorption processes in homogenous solutions of molecular and ionic contaminants (e.g., material 

flow analysis, mass balance), the field has increasingly moved towards frameworks designed to 

describe colloidal suspensions.12, 14, 59   

 Implicitly or explicitly, all NP fate models based on colloid science are either representative 

of, or are variants upon, "population balance" frameworks, a modeling method that has historically 

been applied to a diverse array of particle processes including aerosol particle microphysics,55, 56 

flocculation during water treatment,43 contaminant transport in granular media filters,127 microbe 

transport in soils,128 crystal growth,58 soot particle formation in flames,129 and droplet formation 

during spray combustion.57  Although population balance is often defined simply as an 

implementation of the population balance equation (PBE), a continuity equation that describes the 

evolution of a particle size distribution over time and/or space during particle 

aggregation/fragmentation and growth/dissolution,58, 130 population balance more generally describes 

the evolution of the distribution of any particle property or combination of properties (so-called 

"internal coordinates") over time and space ("external coordinates").131  However, as the definitional 

property of NPs, size is the major focus of this work.   

 Population balance methods can model every particle in a population separately,132 treat size 

distributions as continuous, or model every possible aggregate size.  The last of these approaches has 
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in fact already been applied to problems of NP homoaggregation and settling.45, 133  However, 

because these alternatives are computationally burdensome, even intractable, most models instead 

discretize the size distribution to reduce computational demands.  The three most popular PB 

frameworks are the sectional method, Monte Carlo methods, and moment methods.58, 134-136   

 In the sectional method (SM) or the "method of classes," 58, 129 the size domain is divided 

into sections, or bins, and the particle size distribution is treated like a histogram.  Therezien et al. 

(2014) used the SM to describe the homoaggregation and heteroaggregation of monodisperse NP 

suspensions.9  Simplified variants on classical sectional approaches have also been developed at the 

river scale in order to assess the environmental fate of NPs.   NP and aggregate populations in river 

models have typically been described by 5 or fewer size bins divided at even intervals across a fixed 

grid.8, 11, 37, 44, 46  Most such models have only described NP transport processes (e.g., advection, 

heteroaggregation, and settling), but one also included surface-dependent NP dissolution kinetics.5   

 Monte Carlo (MC) simulation explicitly models a finite population of (e.g., > 103-104) 

particles.58, 136, 137  Although MC simulation is considered too computationally expensive for 

incorporation with computational fluid dynamics (CFD) code or for use in systems with more than 

one internal coordinate,131, 134, 138 it is a reasonable alternative for the treatment of particle size in 

batch reactor-type systems.  MC simulations have been used to describe NP synthesis139, 140 as well as 

NP homoaggregation in simple media.137  A MC model of silver NP homoaggregation and 

dissolution was also recently developed to predict dosimetry in cellular toxicity studies.141 

 Relative to MC and the SM, moment methods conserve computational resources by tracking 

the lower-order statistical moments of a particle size distribution instead of tracking the entire 

distribution.58, 142  As described shortly, the moments capture the essential descriptive metrics 

associated with a distribution and can also, in specific cases, be used to reconstruct it.  Moment 
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methods have been used extensively to describe the intentional and incidental synthesis of NPs,129, 

143, 144 but they have not yet been applied to problems of NP fate and behavior in aqueous media.   

 For this work, we applied three population balance models to problems of NP dissolution, 

aggregation, and simultaneous dissolution and aggregation: two moment methods (Direct 

Quadrature Method of Moments131, 145 and the Extended Quadrature Method of Moments57) and the 

SM.130, 146  We chose moment methods because they were previously unexplored in the NP fate 

literature and their computational efficiency makes them a compelling alternative to the SM.  Results 

were analyzed with respect to runtime and accuracy.  The SM was then investigated in greater detail.   

4.2 Methods 
 
This section provides a brief overview of the population balance frameworks for tracking particle 

transformations developed for this work.  Interested readers will find more details in the Supporting 

Methods (Appendix C). 

 

2.1 General Principles of Population Balance 

2.1.1 The Population Balance Equation 

The following population balance equation (PBE) describes the time evolution of the particle size 

distribution, f, due to simultaneous dissolution and aggregation43, 55, 56, 58, 130, 142 

 

𝜕𝑓

𝜕𝑡
= −

𝜕(𝐴𝑓)

𝜕𝑚
+
1

2
∫ 𝛼(𝑚 −𝑚′, 𝑚′)𝛽(𝑚 −𝑚′, 𝑚′)𝑓(𝑚 −𝑚′)𝑓(𝑚′)
𝑚

0

𝑑𝑚′

− 𝑓(𝑚)∫ 𝛼(𝑚,𝑚′)𝛽(𝑚,𝑚′)𝑓(𝑚′)
∞

0

𝑑𝑚′ 

Equation 4-1 

 



57 
 

where m (particle mass) was our chosen internal coordinate, A=dm/dt describes the change in 

particle size due to dissolution,130, 142, 146 β is the frequency of particle-particle collisions that can lead 

to an aggregation event, and α is the probability that two particles will remain attached upon 

collision.  α is alternatively called the "sticking coefficient" or "attachment efficiency," and is a major 

focus of current nanoparticle research.112, 147, 148  Equation 4-1 can also include terms for processes 

such as aggregate breakage or settling.   

 We chose to describe NP size using particle mass, rather than radius, for several reasons.  

The mass of every newly formed aggregate can be calculated exactly from the masses of the colliding 

species.  In contrast, the radius of a new aggregate must be estimated from the assumed geometry of 

the colliding species and the aggregate itself.9  In Supporting Methods (Appendix C), we also show 

that using mass instead of radius resolves a potentially crippling problem with population balance 

equations that rely on the Nernst-Brunner modified Noyes Whitney equation to describe 

dissolution.  For this rate law (which we do not employ in our model for reasons discussed in the 

Appendix), A=dr/dt approaches infinity as particles become infinitely small.56   

The second and third terms on the right-hand side, which is the Smoluchowski equation for 

particle aggregation, describe (respectively) the formation of new aggregates of size m via the 

aggregation of particles or aggregates of size (m-m') with those of size m', and the loss of particles of 

size m due to the aggregation of particles of that size with those of any other size.  The 

Smoluchowski equation applies equally to heteroaggregation9 and to homoaggregation, the focus of 

this work. 

 

2.2 The Sectional Method 
 
2.2.1. Binning Approach 
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In the Sectional Method (the SM), Equation 4-1 is discretized.  Particles are distributed into bins at 

time 0 based on their size and are re-binned during each time step according to their rates of 

aggregation and dissolution (Figure 4-1).  Rates may or may not be size-dependent.   

 We used the binning method and numerical solution proposed by Lister et al.130  This 

method differs from sectional methods used to date in the NP environmental fate literature at the 

river scale in that the size grid is not broken into evenly spaced bins.8, 11, 46  Rather, a geometric series 

is used to create a grid with increasing bin sizes.  This approach has two benefits: (1) it allows the 

modeler to capture a particle size distribution that is spread over many orders of magnitude in size 

(e.g., aggregates typically occur in the micron size range)20, 120, 122 with a relatively small number of 

bins, and (2) it places the highest model resolution (and computational burden) on the smallest 

particles, for which aggregation and dissolution occur more rapidly, numerical error is more likely to 

arise, and the dissolution flux (introduced in Section 2.3.2) must be estimated.55 

 A ratio, mrat, is chosen such that the representative particle size at the lower boundary of each 

bin i+1, mi+1,lo, is related to the size of the lower boundary of next smallest bin, bin i, by the non-

negative integer q.   

 

mrat = mi+1,lo/mi,lo  = 21/q   q ≥ 1     

Equation 4-2 

 

When q = 1, each bin is twice the size of the previous bin.146  We observed little to no benefit for 

model resolutions above q = 7.   
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2.2.2 Numerical Solution for Dissolution 
 
We used a Second Order Finite Difference approximation146, 149 as described in Supporting Methods 

(Section C.1.3.b) to describe particle dissolution:  

  

 

(
𝑑𝑁𝑖
𝑑𝑡
)
𝑑𝑖𝑠𝑠

=
1

𝑚𝑖,𝑙𝑜

(𝑎𝐴𝑖−1𝑁𝑖−1 + 𝑏𝐴𝑖𝑁𝑖 + 𝑐𝐴𝑖+1𝑁𝑖+1) 
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𝑏 = −
2
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𝑐 =
2𝑚𝑟𝑎𝑡

(1 + 𝑚𝑟𝑎𝑡)(𝑚𝑟𝑎𝑡
2 − 1)

 

 
Equation 4-3 

 

Ni is the number of particles in bin i at time t, and Ai is A=dm/dt evaluated for particles in bin i 

according to their representative size. 

 
2.2.3 Numerical Solution for Aggregation 

We used the formulation by Lister et al.130 to capture all possible re-binning events that occur on the 

geometric grid described by Equation 4-2 during aggregation between two particles of any size. 
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Equation 4-4 

 

Equation 4-4 is a rigorous alternative to the "weight ratio" approximation in which volume-

conserving ratios are used to apportion newly formed aggregates into the two adjacent bins that 

most closely approximate the aggregate size.9 

 

 

Figure 4-1. Approximation of the particle size distribution (dotted line) in the Sectional 
Method, the classical and Direct Quadrature Method of Moments, and the Extended 
Quadrature Method of Moments. The SM breaks the distribution into size bins (note that, in 
order to overlay the distributions, as shown here, the number concentration in each bin must be 
divided by the bin width).  The DQMOM and classical QMOM represent the distribution with a 
small number (N < 6) of quadrature points, the sum of which equals the total particle number 
concentration (the area under the distribution).  The EQMOM represents the distribution with a set 
of primary (N < 6) quadrature points (bold arrows) surrounded by a set of secondary quadrature 
points (thin arrows).  The distribution is then approximated as the sum of beta distributions (dashed 
lines) reconstructed from each set of secondary quadrature points.  
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2.3 Moment Methods 

2.3.1 General Principles 

The statistical moments, 𝜇𝑘, of a particle size distribution, f(m), are defined as142 

 

𝜇𝑘 = ∫𝑚
𝑘𝑓(𝑚)𝑑𝑚     

Equation 4-5 

 

𝜇0 (the "zeroth moment") is the total particle number concentration.  By the same logic, the 

moment sequence k = 0, 1/3, 2/3, 1 can be shown to be directly proportional to the total particle 

number concentration, the sum of all particle radii (which can be used to estimate the mean particle 

size), the surface area concentration, and the total mass concentration of the particle population.  By 

tracking this moment sequence over time, we are thus able to track any descriptive metric of 

practical interest in assessments of NP bioavailability or risk.  Note that, if we were to select radius 

instead of mass as the internal coordinate, the metrics described here would correspond with the 

integer sequence k = 0, 1, 2, 3. 

 In classical quadrature-based moment methods, Equation 4-5 is replaced with a discrete 

approximation using an n-point Guassian quadrature rule.142 

 

𝜇𝑘 ≈∑𝑚𝑖
𝑘𝑤𝑖

𝑛

𝑖=1

 

Equation 4-6 

 

In effect, the continuous function f(m) is replaced with a discrete approximation defined by its 

"quadrature points," or the set of n "abscissas" and "weights" (mi, wi) that exactly predict the lower 



62 
 

2n-1 moments of the distribution.  Quadrature points are calculated from the (known) moments of 

the distribution using a matrix inversion algorithm such as Product-Difference or the modified 

Wheeler algorithm (as described by 58, 142, 152).  Quadrature-based approaches are generally much 

faster than sectional approaches because they allow the modeler to track the moments of the 

distribution using a small number (e.g., N < 6) of quadrature points in lieu of many size bins (Figure 

4-1). 

 In classical QMOM, the PBE (Equation 4-1) is replaced with a continuity equation (the 

"moment evolution equation") that balance the moments of the distribution.  For the processes of 

dissolution and aggregation,142 

 

𝑑𝜇𝑘
𝑑𝑡

= [
𝑑𝜇𝑘
𝑑𝑡
]
𝑑𝑖𝑠𝑠

+ [
𝑑𝜇𝑘
𝑑𝑡
]
𝑎𝑔𝑔

 

[
𝑑𝜇𝑘
𝑑𝑡
]
𝑑𝑖𝑠𝑠

= 𝑘∫ 𝑚𝑘−1𝐴(𝑚)
∞

0

𝑓(𝑚)𝑑𝑚 

[
𝑑𝜇𝑘
𝑑𝑡
]
𝑎𝑔𝑔

=
1

2
∫ ∫ 𝛼(𝑚,𝑚′)𝛽(𝑚,𝑚′)[(𝑚 +𝑚′)𝑘 −𝑚𝑘 − (𝑚′)𝑘]𝑓(𝑚)𝑓(𝑚′)

∞

0

∞

0

𝑑𝑚𝑑𝑚′ 

Equation 4-7 

 

The quadrature approximation of Equation 4-7 is  

 

𝑑𝜇𝑘
𝑑𝑡

≈ 𝑘∑𝑚𝑖
𝑘−1𝐴𝑖𝑤𝑖 +

𝑛

𝑖=1

1

2
∑∑𝛼𝑖𝑗𝛽𝑖𝑗[(𝑚𝑖 +𝑚𝑗)

𝑘
−𝑚𝑖

𝑘 −𝑚𝑗
𝑘]𝑤𝑖𝑤𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

Equation 4-8 
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In classical QMOM, quadrature points are estimated from the moments calculated during the 

previous time step (or the initial conditions) using matrix inversion.  The moments of the 

distribution are then updated at each time step according to Equation 4-8. 

 

2.3.2 The Dissolution Flux Problem 

As particles dissolve completely, they cross the lower boundary of the size domain.  This creates an 

efflux of particles from the system, 𝜑, which may be estimated (for a lower boundary of zero) as57 

 

𝜑 = 𝐴(0)𝑓(0)  

Equation 4-9 

 

In moment methods, only the moments of the distribution are known.  Thus we have no way of 

evaluating f(0).  Because the classical QMOM typically tracks six or fewer quadrature points, 

abscissas rarely lie close enough to the lower boundary to permit an accurate estimate of f(0).  We 

will refer to this as the "dissolution flux problem."  It has only recently gained attention in the 

population balance literature at large for the case of evaporating droplets (for which it is referred to 

as the "evaporative flux problem").57, 145, 153  In this work, we test three proposed solutions to the 

generic problem of disappearing particle fluxes: The Direct Quadrature Method of Moments with 

and without ratio constraints, and the Extended Quadrature Method of Moments. 

 

2.3.3 The Direct Quadrature Method of Moments 

2.3.3.1 General Principles 

The DQMOM approximates the particle size distribution as a sum of i Dirac delta functions with n 

weights wi at locations (abscissas) mi, i = 1 ... n. 
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𝑓(𝑚) =∑𝑤𝑖𝛿(𝑚 −𝑚𝑖)

𝑛

𝑖=1

 

Equation 4-10 

 

In the univariate case (i.e., for one internal coordinate), this representation is mathematically 

identical to the quadrature point approximation used in the classical QMOM (Figure 4-1).131  In the 

DQMOM, however, the PBE (Equation 4-1) is re-written in terms of the derivatives of the weights 

and abscissas of the distribution so that the quadrature points may be evolved directly at each time 

step.  This approach is much faster than the classical approach.131 

 

2.3.3.2 Numerical Solution of the DQMOM 

Let 𝑎𝑖 and 𝑏𝑖 describe the evolution of weights and weighted abscissas over time 

 

𝑎𝑖 =
𝜕𝑤𝑖

𝜕𝑡
, 𝑏𝑖 =

𝜕(𝑤𝑖𝑚𝑖)

𝜕𝑡
  

Equation 4-11 

 

ai and bi may then be found by solving the following system of equations, where 𝑆𝑘̅̅ ̅ is a vector of 

terms describing the evolution of the moments over time (Equation 4-8).154   

 

(1 − 𝑘)∑𝑚𝑖
𝑘𝑎𝑖

𝑛

𝑖=1

+ 𝑘∑𝑚𝑖
𝑘−1𝑏𝑖

𝑛

𝑖=1

= 𝑆𝑘̅̅ ̅ 

Equation 4-12 
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Thus the set of quadrature points is evolved directly, and the moments of the distribution can be 

calculated ex post facto using Equation 4-6. 

  

2.3.3.3 Estimating Dissolution Flux with Ratio Constraints 

As described in Section 2.3.2, a flux term must be added to Equation 4-12 when NPs are able to 

undergo complete dissolution.  For a lower size boundary of zero, 

 

 

(1 − 𝑘)∑ 𝑚𝑖
𝑘𝑎𝑖

𝑛
𝑖=1 + 𝑘∑ 𝑚𝑖

𝑘−1𝑏𝑖
𝑛
𝑖=1 − 𝛿𝑘0𝜑 = 𝑆𝑘̅̅ ̅  

Equation 4-13 

 

𝛿𝑘0 equals one for k=0 and zero for any other value of k. 

 Since moment methods cannot evaluate 𝜑, this system of equations has one too many 

unknowns.  We can solve this problem by adding constraints. 145  Fox et al. suggest the following 

"ratio constraints," which simply state that the change in the particle size distribution due to 

dissolution will be smooth. 

 

𝑑

𝑑𝑡
(
𝑤𝑖
𝑤𝑖+1

) = 0,
𝑑

𝑑𝑡
(
𝑚𝑖

𝑚𝑖+1
) = 0  

Equation 4-14 

 

Ratio constraints are expected to perform poorly for highly monodisperse particle populations, for 

which the entire population dissolves completely and instantaneously in a stepwise manner.  In such 

cases, traditional DQMOM (without ratio constraints) may suffice.  In this method, the weight 

associated with an abscissa is simply set to zero when the abscissa crosses the lower size boundary.145 
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2.3.3.4 Initial Conditions 

The DQMOM does not specify initial values for the set (wi, mi).  To determine initial conditions, we 

used a matrix inversion procedure (the Product-Difference algorithm58) to estimate initial quadrature 

points from the (known) initial moments of the distribution.   

 

2.3.4 Extended Quadrature Method of Moments 

2.3.4.1 General Principles 

As its name suggests, the extended quadrature method of moments57 is an extension of the classical 

QMOM.  In both methods, the particle size distribution is approximated by a set of quadrature 

points calculated from the lower-order moments of the distribution at each time step using a matrix 

inversion algorithm, and the moments are evolved directly. 

 Unlike the classical QMOM and the DQMOM, which treat each abscissa like a discrete 

node, the EQMOM assumes that each abscissa describes the central tendency of a statistical 

distribution, 𝛿𝜎𝛽(𝑚,𝑚𝑖).  The entire particle size distribution is thus described by a weighted sum 

of n probability density functions: 

 

𝑓(𝑚) = ∑ 𝑤𝑖𝛿𝜎𝛽(𝑚,𝑚𝑖)
𝑛
𝑖=1   

Equation 4-15 

 

𝛿𝜎𝛽(𝑚,𝑚𝑖) takes a pre-specified form.  When it represents a beta distribution, f(m) may be rewritten 

as follows: 
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𝑓(𝑚) =∑𝑤𝑖
𝑚𝑚𝑖−1(1 − 𝑚)𝜇𝑖−1

𝐵(𝑖, 𝜇𝑖)

𝑛

𝑖=1

 

Equation 4-16 

 

where 𝑖 = 𝑚𝑖/𝜎𝛽 and 𝜇𝑖 = (1 −𝑚𝑖)/𝜎𝛽 are the parameters of the distribution and 𝜎𝛽 is a 

measure of spread.  Every abscissa 𝑚𝑖 is assumed to have the same 𝜎𝛽.   

 When 𝜎𝛽 = 0, the EQMOM is equivalent to the DQMOM.  Otherwise, 𝜎𝛽 is used to find a 

set of "secondary" quadrature points distributed around the first (Figure 4-1).  Thus the EQMOM 

employs two nested quadrature steps.  Unlike the primary quadrature step, which relies on matrix 

inversion procedures that can estimate fewer than 10 quadrature points with accuracy, the secondary 

quadrature step is accurate and efficient up to any number of quadrature points.   In Beta EQMOM, 

a simple coordinate transformation recasts the secondary quadrature problem in terms of Jacobi 

polynomials that are orthogonal with respect to a weight function described by 𝑖 and 𝜇𝑖.  In this 

special case, any number of quadrature points can be calculated exactly. 

  

2.3.4.4 Numerical solution 
 

The Supporting Methods describe the multi-step algorithm that the EQMOM uses to find 𝜎𝛽 and 

the primary and secondary quadrature points.  Once these values are known, a "dual quadrature 

approximation" of the moment evolution equation is employed.57  Note its similarity to the 

quadrature approximation used in the classical QMOM and the DQMOM (Equation 4-8).   

 

[
𝑑𝜇𝑘
𝑑𝑡
]
𝑎𝑔𝑔

=
1

2
∑ ∑ ∑ ∑ 𝜌𝑖1,𝑖2𝜌𝑗1,𝑗2

𝑛2

𝑗2=1

𝑛1

𝑗1=1

𝑛2

𝑖2=1

𝑛1

𝑖1=1

[(𝑚𝑖1,𝑖2 +𝑚𝑗1,𝑗2)
𝑘 −𝑚𝑖1,𝑖2

𝑘 −𝑚𝑗1,𝑗2
𝑘 ]𝛼𝑖𝑗𝛽𝑖𝑗 
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[
𝑑𝜇𝑘

𝑑𝑡
]
𝑑𝑖𝑠𝑠

= 𝑘∑ ∑ 𝑚𝑖1,𝑖2
𝑘−1𝜌𝑖1,𝑖2𝐴𝑖1,𝑖2

𝑛2
𝑖2=1

𝑛1
𝑖1=1

 where   𝜌𝑖1,𝑖2 = 𝑤𝑖1𝑤𝑖1,𝑖2 

Equation 4-17 

 

2.3.4.5 Estimation of the Dissolution Flux 

The EQMOM provides two approximations of the PSD: Equation 4-15 and Equation 4-17.  In 

order to estimate the dissolution flux over a given time step, we integrated Equation 4-15 over the 

range of particle sizes predicted by 𝐴𝑖1,𝑖2  (=d𝑚𝑖1,𝑖2/dt) (Equation 4-19, below) to dissolve completely 

within that time step.  Once the flux was estimated, the secondary abscissas were advected towards 

the lower boundary according to 𝐴𝑖1,𝑖2.  The weight associated with any abscissa that crossed the 

lower boundary was set to zero. 

 

2.3.4.3 Choice of Moments 

The matrix inversion algorithm from the classical QMOM requires the first 2n moments of the 

distribution.142  The EQMOM requires one additional moment (2n+1) in order to find 𝜎𝛽.57  The 

DQMOM and the SM do not rely on the matrix inversion algorithm, so any choice of moments will 

suffice.   

 In the DQMOM and the SM, we used the fractional moments of the distribution (k = 0, 

1/3, 2/3, 1).  For simplicity, we used integer moments in the EQMOM.  The fractional moments 

were estimated ex post facto from the integral under the reconstructed particle size distribution 

(Equation 4-15) using the definition of the moments (Equation 4-5).   
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2.4 Test Cases 

We applied the Sectional Method, the Direct Quadrature Method of Moments with and without 

ratio constraints, and the Extended Quadrature Method of Moments to problems of NP dissolution, 

homoaggregation, and simultaneous dissolution and aggregation in simple media in a zero-

dimensional, no-flow (batch reactor) model such as would be used to describe a test tube 

experiment. This simplified system was chosen for the purpose of contrasting the three PB 

frameworks: Since all three are expected to perform similarly for transport processes such as 

aggregation, aggregate break-up, and settling, we simplified our analysis by using a single empirical 

parameter to describe their net effect.  In contrast, as a particle growth/loss process that is subject 

to numerical diffusion in the SM55 and the flux approximation in moment methods,57 dissolution 

required a more detailed treatment.  

 

2.4.1 Initial Conditions 

Each simulation began with 100 g/m3 of undissolved and unaggregated NPs that were lognormally 

distributed with respect to size.  For the methods presented here, the size distribution can in fact 

take any arbitrary form at time 0 or throughout the simulation.  However, lognormal distributions 

are widely used to describe NP distributions5, 8, 11 and other particles,55, 56  and their fractional and 

integer moments can be calculated directly from the distribution parameters.  In addition, analytical 

solutions are available for “dissolution only” and “aggregation only” cases in which the initial 

particle size distribution is lognormal (see Supporting Methods, Section C.1.6).155, 156   

Since most experimental NP studies implicitly assume normality by reporting only the 

average particle radius and its standard deviation,20, 120 we used lognormal distributions with low 

skews.  In particular, we fit our initial lognormal distributions to the following normal distributions: 

5±1 nm, 15±3 nm, 50±10 nm, 100±20 nm, and 500±100 nm.  We chose these sizes because the 
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standard deviations of newly synthesized NP populations generally increase along with their means.20  

We performed a coordinate transformation during the fitting procedure so that distributions were 

expressed in terms of our internal coordinate, particle mass, rather than radius.  Note that symmetry 

with respect to radius implies skew with respect to mass (e.g., see Figure C-8). We also tested 

distributions with high skews and high monodispersity.   

 

2.4.2 Dissolution Rate 

We used the Noyes Whitney dissolution rate law as modified by Brunner and Tolloczko (1900)157 to 

describe the change in the metal ion concentration in solution during NP dissolution as a function 

of 𝑘𝑆,𝑚𝑏, a surface-area normalized reaction rate, and Stot, the total surface area of all particles in 

solution.  [𝑀𝑒+]𝑡 is the mass concentration of the metal ion in solution at time t and [𝑀𝑒+]𝑒𝑞 is the 

ion concentration in solution at equilibrium. 

 

𝑑[𝑀𝑒+]𝑡
𝑑𝑡

= 𝑘𝑆,𝑚𝑏𝑆𝑡𝑜𝑡([𝑀𝑒
+]𝑒𝑞 − [𝑀𝑒

+]𝑡) 

Equation 4-18 

 

The Supporting Methods compare this model to the oft-cited but rarely used Nernst-Brunner 

modification37, 120, 121, 158 and describe how it is used to derive the rate law (A) found in Equation 4-1.  

Note that the empirical coefficient has changed and the right-hand side is re-expressed in terms of 

the particle mass by assuming spherical particles. 

 

𝐴 =
𝑑𝑚

𝑑𝑡
= 𝑘𝑆,𝑝𝑏𝑚

2/3([𝑀𝑒+]𝑡 − [𝑀𝑒
+]𝑒𝑞) 

Equation 4-19 
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We modeled dissolution in two ways. In the first case, the ion concentration in solution was 

increased until the equilibrium solubility was reached.  The size dependence of the equilibrium 

solubility was estimated from the Ostwald-Freundlich relation (see Supporting Methods) using the 

initial characteristic diameter of the particles, which is described below.20  In the second case, ions 

were assumed to be instantaneously removed from the solution ("sink conditions").  We present the 

results for the second approach, which maximizes the dissolution rate, the dissolution flux, and the 

numerical error associated with each model, in the main text.  Results for the first approach are in 

Appendix C. 

 We chose a realistic value for 𝑘𝑆,𝑝𝑏 by calibrating our sectional model to experimental data 

on the ion release rate for 20 mg/L 52±9 zinc oxide (ZnO) NPs in 25oC Moderately Hard Water 

reaching an equilibrium ion solubility of 2.04 mg/L (Figure C-1).159  We chose ZnO NPs because 

they are produced in greater volumes than any other reactive NP and their dissolution behavior has 

been widely studied.  Additionally, because ZnO NP dissolution is relatively rapid, models are more 

likely to exhibit numerical stiffness.  ZnO NPs therefore provide a good test case for investigations 

of the limitations of each framework with respect to numerical instability. 

 For all test cases that included dissolution, the characteristic primary (unaggregated) particle 

size was taken to be the surface-weighted geometric mean diameter, 𝐷𝑔𝑒𝑜𝑚,0.160 

 

𝐷𝑔𝑒𝑜𝑚,0  = 𝑒𝑥𝑝 [
∑ 𝑊𝑖𝐷𝑖

2 ln𝐷𝑖
𝑛
𝑖=1

∑ 𝑊𝑖𝐷𝑖
2𝑛

𝑖=1

] 

Equation 4-20 
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where 𝐷𝑖 is the particle diameter associated with a given size class (SM) or quadrature point 

(QMOM) and Wi is the particle number concentration associated with that size class (𝑊𝑖=𝑁𝑖) or 

quadrature point (𝑊𝑖=𝑤𝑖).  Note that 𝐷𝑖 in Equation 4-20 was re-expressed in terms of mass before 

implementation by assuming a spherical particle.   

 This measure has several advantages over more traditional estimates of particle diameter 

including the (number-weighted) mean and the geometric mean. The geometric mean of a skewed 

distribution is a better estimate of its central tendency than its average.  For reactive NPs, the 

surface-weighted diameter is more relevant than the number-weighted diameter because of the 

controlling influence of surface area on dissolution kinetics.  In addition, the surface-weighted 

diameter does not rely on the zeroth moment (the total number concentration) and is thus robust to 

numerical errors introduced by approximation of the dissolution flux. 

 

2.4.3 Aggregation Rate 

For simplicity, we treated the attachment efficiency, α, as a known and size-independent constant.  

Our estimate of 𝛽 assumed that collisions occur due to Brownian motion.  In this case, Equation 

4-21 describes the collision rate between aggregates of size 𝑚𝑖 and 𝑚𝑗 

 

𝛽𝑖,𝑗 =
2𝑘𝐵𝑇

3𝜇
(𝑚𝑖

1/𝐷𝑓 +𝑚𝑗
1/𝐷𝑓)(𝑚𝑖

−1/𝐷𝑓 +𝑚𝑗
−1/𝐷𝑓)  

Equation 4-21 

 

where 𝐷𝑓 is the fractal dimension of the aggregates.154, 161  We assumed 𝐷𝑓 = 1.8 (for all particle 

sizes), which is approximately correct for aggregates formed by Brownian diffusion.43, 161  More 
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detailed and rigorous alternatives to Equation 4-21 exist,162-165 but a simple approach is better suited 

to an illustrative analysis such as ours, performed largely in the absence of experimental data. 

 In order to estimate the constant α, we calibrated our sectional aggregation + dissolution 

model to the time-resolved Dynamic Light Scattering data corresponding with the ZnO NP samples 

used to estimate 𝑘𝑆,𝑝𝑏.159  Because we used the single empirical parameter α to describe the net 

effect of aggregation, aggregate break-up, and settling, we do not expect it to apply broadly across 

NP types or media properties.  However, it provides a reasonable first estimate for our comparison 

of model frameworks. 

 

2.4.4 Simultaneous Aggregation & Dissolution 

For the case of simultaneous NP dissolution and aggregation, we assumed an approximately 

monodisperse population of 50±2 nm NPs.  This allowed us to accurately estimate the number and 

size of the particles within aggregates of a given size.  If each aggregate had contained particles of 

many different sizes, a joint size distribution would have been needed to describe both aggregation 

(which depends on the aggregate size) and dissolution (which depends on the primary particle sizes 

in each aggregate).  The characteristic aggregate size was calculated as shown, where 𝑋𝑖 is the 

geometric mean number of particles in an aggregate with a given mass.162 

 

𝐷𝑖,𝑎𝑔𝑔 = 𝐷𝑔𝑒𝑜𝑚,0(𝑋𝑔𝑒𝑜𝑚,𝑖)
1/𝐷𝑓

 

Equation 4-22 

 

The effect of aggregation on the surface area available for dissolution is poorly understood at 

present for NPs, and is also an active area of research in the particle modeling community at large.  

In order to bound this effect, we considered two extreme cases.  We first maximized the dissolution 
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rate by assuming that aggregation has no effect.  This approach agrees loosely with experimental 

results, since small particles have been shown to dissolve faster than large particles even when they 

form larger or similarly sized aggregates.166  In the second case, which placed a very conservative 

lower bound on the dissolution rate, we assumed that every aggregation event was followed by 

complete particle fusion to form a new hard sphere.  This assumption is a common convenience in 

most models of NP homoaggregation based on the Smoluchowski equation.43   

 

2.4.5 Model Resolution 

In order to ensure that runtimes reported in the Results reflected the most efficient model 

performance possible in each case, the procedure used to select the model resolution accounted for 

tradeoffs between accuracy and runtime.  For the “dissolution only” and “aggregation only” test 

cases, we chose the lowest size resolution (i.e., the number of size bins and the bounds on the 

particle size domain in the SM; the number of primary quadrature points in the DQMOM and the 

EQMOM; and the number of secondary quadrature points in the EQMOM) for which the 

simulation outputs presented in Figure 4-2 fell within 2% of the analytical solution.  Error was 

calculated as 

 

𝐸𝑟𝑟𝑜𝑟 (%) =
Value𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙(𝑡)−Value𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙(𝑡)

Value𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙(𝑡=0)
  

Equation 4-23 

 

Because values often approached zero during the simulation, relative error approached infinity and 

could not be used.  Error in characteristic diameter estimates was not used in the “aggregation only” 

case, since normalization by initial conditions in Equation 4-23 led to high percent errors (e.g., see 
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Figure C-7) even when absolute error was low.  If the model was unable to achieve 2% error or less, 

the size resolution was simply increased until further increases failed to visibly reduce error. 

For cases that included dissolution, the SM required q=7 (as defined in Equation 4-2).  

Aggregation required only q=3.  Across all major test cases (Figure 4-2 and Figure C-2 to Figure 

C-4), the number of size bins implied by q varied from 144 to 353.  For the DQMOM, three 

quadrature points were required for the “aggregation only” case.  Only two were needed in cases 

that included dissolution.  For the EQMOM, we used 2, 2, and 1 primary quadrature points and 20, 

80, and 50 secondary quadrature points to describe “aggregation only,”  “dissolution only,” and 

“aggregation and dissolution,” respectively. 

For each trial, we chose the longest possible time step (within the nearest half order of 

magnitude) that exhibited numerical stability and maintained error within 2%. 

 

2.4.6 System Properties 

All simulations were run in MATLAB on a Dell XPS 8300 computer with an Intel(R) CoreTM i7-

2600 quad-core processor (3.40 GHz processor speed, 12.0 GB RAM). 

 

4.3 Results 
 
Figure 4-2(a) shows the time evolution of a population of 50±10 nm ZnO NPs undergoing 

aggregation and dissolution (separately) and 50±2 nm ZnO NPs undergoing simultaneous 

aggregation and dissolution in the SM, DQMOM, and EQMOM as calculated from the fractional 

moments k=0, 1/3, 2/3, 1.  Trends agree with expectations: Aggregation caused a rapid decrease in 

the total particle number concentration (note the log scale) and an increase in the characteristic 

particle diameter.  The total NP mass remained constant.  We assumed that the surface area 
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obscured by contact points between particles in each aggregate was negligible such that the surface 

area concentration also remained constant.  Dissolution decreased the average NP size, NP mass 

concentration (recall however that ions are formed such that the total metal mass remains the same), 

and surface area concentrations.  The particle number concentration only began to decrease once 

the smallest particles in the system dissolved completely.  The behavior in the aggregation + 

dissolution case was a hybrid of the behaviors observed for each process separately.  Figure C-2 to 

Figure C-4 present these same results for NP populations of size 5±1 nm, 15±3 nm, 50±10 nm, 

100±20 nm, and 500±100 nm.  As expected, small particles dissolved faster than large particles and 

aggregated more quickly.  Although aggregation did not reach steady state within 48 hours, small 

particles also appeared to form larger aggregates.  However, without explicit inclusion of processes 

such as settling and break-up, the influence of shear flow, or extensive model calibration to 

experimental results, these results should be viewed as supportive but not especially informative. 
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Figure 4-2. Model results for aggregation, dissolution, and aggregation + dissolution of 
100 g/m3 of a lognormal population of ~50±10 nm NPs (aggregation, dissolution) or 
50±2 nm NPs (aggregation + dissolution).   Dissolution and aggregation rates were determined 
by calibration to data for ZnO NPs (Figure C-1). Solid grey = Analytical Solution, Dot-dashed blue 
= Sectional Method (SM), Dashed orange = Direct Quadrature Method of Moments (DQMOM) 
with ratio constraints, Dashed yellow = DQMOM without ratio constraints, Dotted red = Extended 
Quadrature Method of Moments (EQMOM).  All methods are accurate for aggregation.  Error 
arises in the DQMOM and the EQMOM for dissolution test cases due to the dissolution flux term.   
 

 
For NP aggregation without dissolution, all three mathematical frameworks were equally accurate.  

The one exception was a small (< 1%) error in the SM estimate of the initial mass concentration that 

arose from the discretization of the initial size distribution.  Although the models were comparably 

accurate, the DQMOM was up to 500 times faster than the SM for the test cases presented in Figure 

4-2 and Figure C-4 (Table 4-1), and the EQMOM was up to 11 times faster.  Time savings were 
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especially beneficial for 5±1 nm NPs, since the rapid initial aggregation events undergone by 

unaggregated particles at early time steps demanded a small simulation time step (0.05 µs).  Even 

though we reduced runtimes significantly by increasing the time step later in the simulation, the 

absolute runtime for our SM simulation of 5±1 nm NP aggregation took just under three hours.  

The DQMOM solved the same problem in less than 30 seconds. 

 

Table 4-1. Runtime efficiencies of the three PB methods.  Numbers represent the ratios of the 
SM method runtime relative to those of the QMOM models. The ranges represent the effects of 
different initial ZnO NPs sizes for aggregation and for dissolution to sink conditions and to 
equilibrium (Figure 4-2 and Figure C-2 to Figure C-4). 
 

 

Dissolution Aggregation 

Aggregation 

& Dissolution 

SM  1  1  1  
DQMOM  0.04 - 40  260 - 500 5300  
EQMOM  0.02 - 0.3  3 - 11  750 

 

 

 For dissolution, the SM agrees well with the analytical solution.  In contrast, neither the 

DQMOM flux approximation with ratio constraints (orange dashed line) or without ratio constraints 

(yellow dashed line) accurately described the changes in the number concentration or average 

particle size over time.  Because of its stepwise nature, the DQMOM without ratio constraints was 

also highly unstable.  The EQMOM captured the overall shape of the dissolution curve but 

ultimately under-predicted the dissolution rate at early time steps and over-predicted it later in the 

simulation.  Error in the EQMOM for this case never exceeded 13%.  Similar errors are observed 

for 5 to 500 nm NPs (Figure C-5).  Although the EQMOM ran up to 60 times more slowly for 

dissolution than the SM, runtimes were not restrictive in the absence of aggregation; the SM ran in 

less than three minutes in all cases.  In spite of their inaccuracies with respect to number 

concentrations and characteristic particle size, the moment methods accurately predicted changes in 
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the surface area concentration and mass concentration over time.  Recall that the dissolution flux, 

which is the major source of error in moment methods, only affected the zeroeth moment 

(Equation 4-13), which was only used to calculate the number concentration.   

 All models performed similarly in the case of simultaneous aggregation and dissolution, 

which suggests that error in estimates of the size of the NPs comprising each aggregate had little 

impact on the number of aggregates or the characteristic aggregate size.  The error in the SM could 

be greatly reduced by setting initial EQMOM and DQMOM values equal to initial SM values rather 

than their true values calculated from the parameters of the lognormal distribution.  This reveals that 

much of the error in the SM again results from the initial discretization of the size distribution.  

Because a small initial time step was needed in this case, the SM took over 5.5 hours to run.  In 

contrast, the EQMOM took less than 30 seconds and the DQMOM took less than four.  All models 

were terminated once the mass concentration dropped below 1 µg/m3 to eliminate large errors that 

occurred when only a small number of particles remained in the system. 

 Figure 4-3 compares the time evolution of the particle size distribution as calculated directly 

by the SM to the estimate provided by the EQMOM using Equation 4-15.  Size is expressed in 

terms of particle or aggregate mass in femtograms (10-15).  We truncated the peaks for plotting so 

that changes in the diffuse regions of the distribution could be inspected.  Trends again match 

expectations: Dissolution caused a narrowing of the size distribution and a shift towards the lower 

boundary.  Aggregation resulted in the formation of a large and increasingly diffuse peak.  Since the 

analytical solution for the “aggregation only” case, which agreed well with our numerical predictions, 

assumed that the distribution remained lognormal over time, we can safely state that this was the 

case.  In contrast, previous studies using the dissolution rate law presented here indicate that the 

distribution becomes increasingly skewed to the right as dissolution occurs, eventually losing its 

lognormal character.167  Thus the distribution would not necessarily remain lognormal during 
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dissolution even if the lower portion of the distribution were not “falling off the end” of the size 

domain as particles fully dissolved.  The “aggregation and dissolution” case blended the behaviors 

observed in the dissolution case and the aggregation case.   

Although the EQMOM captured the peak behavior observed in the SM, it was not as 

faithful to the tails of the distribution.  For dissolution, the bimodal nature of the approximation 

caused small but visible bimodality in the reconstructed distribution.  The horizontal stripes in the 

reconstructed distribution reflect numerical error in the evaluation of the particle size distribution 

using Equation 4-16.  This error also caused the variation in the EQMOM prediction of the 

characteristic diameter that can be observed in Figure 4-2.  

 

 
 

Figure 4-3. Evolution of the particle size distribution (PSD) for the cases shown in Figure 
4-2. In the SM, the PSD is tracked directly.  In the EQMOM, the size distribution is reconstructed 
from the moments at every time step.  DQMOM cannot reproduce the size distribution. 

 
 

All three frameworks tended to fail completely if the time step was too large.  In contrast, decreasing 

the number of bins in the SM degraded model performance gradually.  Figure 4-4 explores this 
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effect.  For this analysis, we first narrowed the size domain to ensure that as many bins as possible 

fell within the 1-100 nm range.  Size distributions corresponding with each case are shown in Figure 

C-6.168  

 

 
 

Figure 4-4. Effect of the number of size bins on error in the SM for dissolution of 

~50±10 nm NPs.  Error is reported relative to the analytical solution (solid grey)  

according to Equation 4-23. 

 
 
With only 25 bins, error in the number concentration, characteristic diameter, and NP mass 

concentration approached or exceeded 10%.  Model performance degraded quickly for bin numbers 

below 25.  At 10 bins, error in the characteristic diameter and mass concentration estimates reached 

140%.  This error had several sources.  First, simulations with small bin numbers poorly represented 

the initial particle size distribution.  This resulted in poor initial estimates of the moments as well as 

errors introduced during the simulation because model predictions were based on a flawed initial 

distribution.  Error likely also resulted from numerical diffusion.  Recall that dissolution in 

discretized models that perform a particle number balance is described as a loss in the particle 

number in a given size bin (Equation 4-3).  In effect, this approach forces complete dissolution of a 

fraction of the particles to occur in lieu of partial dissolution of all of the particles.  The end result is 
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numerical dispersion during particle growth or shrinkage (e.g., processes that change the particle 

mass but do not change the particle number), which widens and flattens the size distribution 

unrealistically over time.169  Figure C-7 shows results for aggregation. 

 Several authors suggest that ion release curves due to NP dissolution may be predicted by a 

simple two-parameter first-order linear inhomogeneous differential equation39, 159  

 

[𝑀𝑒+]𝑡 = [𝑀𝑒+]𝑒𝑞[1 − 𝑒
−𝑘𝑡] 

Equation 4-24 

 

in which k is an empirical rate constant determined by data fitting.  In a batch reactor model, 

[𝑀𝑒𝑥𝑂𝑥]𝑡 can be calculated directly from [𝑀𝑒+]𝑡  because [𝑀𝑒]𝑡𝑜𝑡𝑎𝑙 (g 𝑀𝑒/m3) remains constant.  

Under sink conditions, [𝑀𝑒+]𝑡 is set to zero and NP mass concentration can be assumed to 

undergo simple exponential decay.  Figure 4-2 appears to agree.  Figure 4-5(a) tests this simple 

model against benchmark results for particle size distributions that ranged from roughly exponential 

to roughly monodisperse, the two extremes of a unimodal distribution, when defined in terms of our 

internal coordinate, particle mass (see Figure C-8 for size distributions in terms of mass as well as 

radius).  Polydispersity was varied by multiplying the “base case” scale parameter of the initial 

lognormal distribution by ¼ (most monodisperse), 2, and 4 (most polydisperse).  Figure 4-5(b) 

shows model fits for the “aggregation and dissolution” case.  The effect of aggregation on 

dissolution was bounded (blue shaded region) by assuming no fusion (lower bound) or complete 

fusion (upper bound) during aggregation as described in Section 2.4.4.  Equation 4-24 was fit to the 

benchmark curves by minimizing root mean squared error over all time steps.  The benchmarks for 

Figure 4-5(a) are SM results validated against the analytical solution; the benchmarks for Figure 

4-5(b) are DQMOM results validated against EQMOM results.   



83 
 

 

 
 

Figure 4-5. Comparison of  a simple one-parameter, size-independent conventional mass 
balance model (pink) to benchmarked population balance models (solid grey) for initial 
distributions with varying polydispersity/skewness (indicated by line style).  a) For both 
highly monodisperse and highly skewed distributions, the simple model captures changes in the NP 
mass concentration over time in the pure dissolution case.  b) Conventional mass balance even 
performs reasonably when accounting for the possible influence of aggregation on dissolution.  The 
blue shaded region bounds the effect of aggregation on dissolution (lower bound = no particle 
fusion following aggregation; upper bound = complete particle fusion following aggregation).   
 
 
In all cases, this size-independent analytical approximation predicted the dissolution curve within 

9% error.  For the two-parameter case, which describes NP dissolution to equilibrium (Figure C-9), 

fits were exceptional except in the case of complete fusion during aggregation; error remained below 

0.9% in all cases.  

4.4 Discussion 
 
We developed and compared three population balance frameworks with potential applications in NP 

fate and effects modeling: the Sectional Method,130 the Direct Quadrature Method of Moments,131 

and the Extended Quadrature Method of Moments.57   

 The EQMOM was slower and less numerically stable than the DQMOM (with ratio 

constraints) and was less accurate than the SM in the case of pure dissolution.  For dissolution, 

EQMOM simulations generally failed if more than three primary quadrature points were used.  The 

EQMOM algorithm was also relatively complex and prone to failure during the search procedure to 



84 
 

find σβ.  In contrast, we found the DQMOM to be a powerful alternative to the SM for inert NPs 

(e.g., TiO2, SiO2, Al2O3) undergoing aggregation.  Because it requires fewer scalars (e.g., 3 quadrature 

points instead of > 25 size bins), it is especially promising for model systems with high memory or 

runtime demands.  Of the three frameworks, the DQMOM was also the simplest to implement.  

Numerical errors (ill-conditioning and singularities, described in Supporting Methods) were easily 

identified and managed.  Although neither moment-based approach performed well for rapidly 

dissolving ZnO NPs in the absence of aggregation, both performed well for the more realistic case 

of simultaneous dissolution and aggregation. 

 The Sectional Method was the clear winner for NPs that exhibited fast dissolution.  

However, in cases where a fine resolution is required at the lower particle size boundary to 

accurately resolve rapid surface area-dependent processes such as dissolution or aggregation, over 

100 bins may be needed to achieve accuracy within 2% even when using an expanding grid to 

improve model performance.  In our dissolution case, SM models with fewer than 25 bins exhibited 

significant (>10%) model error.  Most size-discretized NP fate models developed to date have used 

5 or fewer bins8, 11, 46 or do not report the number of bins used.5, 9  Whether or not the number of 

bins is adequate will vary from model to model depending on the reactivity of the NPs, the chosen 

numerical framework, and the required accuracy of model predictions.    Modelers can demonstrate 

the adequacy of the chosen number of bins simply by showing that increasing the resolution of the 

size distribution does not improve the accuracy of model results.  

 We suggest several improvements upon current SM modeling frameworks.  First, we find 

that expanding grids (as also employed by 9, 46) are efficient and accurate alternatives to the uniform 

grids used to date in NP models at the river scale.    Second, we find that the assumption that NPs 

fuse completely upon aggregation (Figure 4-5(b)), which is common in aggregation models,43 can 

artificially increase particle lifetimes by nearly two orders of magnitude in those models that also 



85 
 

describe the surface-dependence of NP dissolution.  For the case of pure aggregation, we present 

the numerical solution by Lister et al. as a robust alternative to the weight ratio approximation used 

previously.9  Finally, we recommend the use of particle mass, rather than radius, as the internal 

coordinate, and the use of surface-weighted geometric mean diameter as the characteristic particle 

diameter.   

 If data for model calibration or validation are sparse, error tolerance is within 10%, and only 

information on the ion release rate or NP loss rate is required, Equation 4-24 is an attractive 

alternative to population balance methods.159  Quik et al. (2014) have similarly observed that first-

order rates of NP removal due to aggregation and sedimentation show good agreement with a 

population balance alternative.133  However, it is important to note that the dissolution rate of the 

particle population, and its attendant effects on (e.g.) the bioavailability of metal ions in nanotoxicity 

experiments, is a clear function of the distribution’s skewness and polydispersity as well as its mean 

size; the first-order dissolution rates associated with the curves in Figure 4-5(a) varied by almost an 

order of magnitude. 

Thus engineering models designed to predict environmental concentrations of NPs and 

compare them to mass-based toxicity thresholds may benefit little from population balance at 

present.14  However, incorporation of population balance models of aerosol particle chemistry and 

physics into global atmospheric models suggests that scale-up of the methods presented here is 

computationally feasible.55, 56  Indeed, most of the cases presented in this work took only minutes to 

run.  The exception--slow runtimes due to numerical instability in models that included the rapid 

initial aggregation of small unaggregated NPs--is easily addressed by seeding simulations with NPs 

that have already partially or fully aggregated.  Nonetheless, large-scale systems that employ 

population balance have substantial memory and runtime demands relative to size-unresolved 

alternatives.  To this end, they may benefit from the application of moment-based alternatives.  For 
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highly soluble NPs, we hypothesize that the flux approximation error observed here for purely 

moment-based methods can be managed using a hybrid sectional/moment method, a promising 

area of future research.153, 169 

 Bivariate or multivariate models are needed to resolve the influence of variation in particle 

morphology and composition on the behavior of particle populations with complex morphologies 

(e.g., rods and cubes) or complex compositions (e.g., heteroaggregates, core-shell structures, natural 

and engineered surface coatings, nanohybrids).170, 171  In fact, we show in this work that is impossible 

to retain information about the polydispersity of an NP population upon homoaggregation without 

using a bivariate framework to track the NP size within aggregates of a given size.  In addition to 

primary and aggregate particle sizes, secondary internal coordinates of interest include surface area 

and surface charge.  The literature from related fields suggests that the SM and Monte Carlo 

simulation will be too computationally demanding for use in bivariate models.172, 173  In contrast, 

moment methods are uniquely well-suited to such problems.  In fact, DQMOM has already been 

used to describe the bivariate problem of NP aggregation and sintering during high-temperature 

syntheses.129, 171  

 In summary, particle-particle interactions and NP surface-dependent chemical 

transformations in aqueous suspensions pose daunting modeling challenges.  Size-resolved 

frameworks are not only more computationally burdensome than size-unresolved alternatives but 

are also subject to additional sources of model error.  The ad hoc approaches developed to date fail 

to systematically address these potential shortcomings and means of overcoming them.  This work 

presents several numerical frameworks that can be applied directly to problems of NP dissolution 

and aggregation, coupled with field-scale models, or adapted to describe other particle properties or 

processes of interest.   
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5 Summary, Outlook, and Policy Implications 

5.1 Summary of Key Findings 
 
 Chapters 2-4 presented three analyses that improved understanding of NP fate and effects in 

environmental systems and provided guidance for the development of better models. 

 Chapter 2 presented a simple one-dimensional diagenetic model for predicting Ag NP 

distribution and silver ion speciation in freshwater sediments.61  The model was calibrated to data 

collected from Ag NP-dosed freshwater wetland mesocosms.  Ag NP sulfidation retarded NP 

oxidation and ion release.  Silver speciation and persistence in the sediment as predicted by the 

model depended on the seasonally variable availability of organic carbon and dissolved oxygen. The 

half-life of typical sulfidized (85% Ag2S) Ag NPs varied from less than ten years to over a century 

depending on redox conditions. No significant difference in silver speciation and distribution was 

observed between ≥50% Ag2S and 100% Ag2S Ag NPs. Formation and efflux of toxic silver ion was 

reduced in eutrophic systems and maximized in oligotrophic systems. 

Chapter 3 presented a spatially resolved environmental fate model for the James River Basin, 

Virginia (USA) that explored the influence of daily variation in stream flow, sediment transport, and 

stream loads from point and non-point sources on water column and sediment concentrations of 

ZnO and Ag NPs and their reaction by-products.63  Spatial and temporal variability in sediment 

transport rates led to high NP transport such that less than 6% of NP-derived metals were retained 

in the river and sediments.  Chemical transformations entirely eliminated ZnO NPs and doubled Zn 

mobility in the stream relative to Ag.  Agricultural runoff accounted for 23% of total metal stream 

loads from NPs.  Average NP-derived metal concentrations in the sediment varied spatially up to 

nine orders of magnitude, highlighting the need for high resolution models.  Overall, results 

suggested that "first generation" NP risk models have probably misrepresented NP fate in 
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freshwater rivers due to low model resolutions and the simplification of NP chemistry and sediment 

transport. 

Chapter 4 developed and compared three population balance approaches in order to 

determine their strengths and weaknesses when applied to inert and highly soluble NPs: the 

Sectional Method (SM), the Direct Quadrature Method of Moments (DQMOM), and the Extended 

Quadrature Method of Moments (EQMOM).  When describing aggregation, the DQMOM was up 

to three orders of magnitude faster than the SM.  The SM was best for models tracking dissolution 

because the methods based on statistical moments (the DQMOM and EQMOM) had trouble 

handling complete NP dissolution. However, the SM required up to 25 size bins to accurately 

describe NP dissolution.  Thus the five or fewer size bins currently favored in SM models of NP fate 

in surface waters are unlikely to suffice for soluble NPs.  Because large-scale models are 

computationally demanding and SM runtimes increase exponentially as internal coordinates (particle 

properties) are added, moment-based frameworks have greatest potential for field-scale models and 

bivariate or multivariate models that describe NPs with complex morphologies or compositions, 

such as non-spherical NPs, core-shell structures, NPs coated in natural or engineered surfactants, 

and nanohybrids. 

 

5.2 Recommendations for Future Work 
 
5.2.1 Environmental Fate Modeling 
 
NP fate models are evolving to reflect the dynamic and increasingly quantitative state of the science 

surrounding NP behaviors. The next generation of models will better address key NP-specific 

behaviors, including heteroaggregation and surface area-dependent chemical transformations. They 

will have improved spatial and temporal resolution. They will be able to handle a greater range of 
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NP types and environmental systems, including estuarine and coastal environments. It may take 

another generation or more before these models can credibly interface with NP bioaccumulation 

and trophic transfer models, which are being developed in parallel, but this too is expected. Such 

efforts, and discussions within the scientific community, should contribute to the development of an 

acceptable minimum set of principles for modeling NP fate in the aquatic environment in the not-

distant future. 

A critical review of the literature and the analyses presented in Chapters 2 through 4 suggests 

several high-priority areas for modelers focused on the next generation of NP fate models.  Many 

will require input from experimentalists, as described shortly.   

 

We suggest the following improvements to spatial and temporal resolution: 

(1) Shift from the national/regional scale to the watershed scale and smaller in order to predict local 

accumulation and effects and facilitate environmental management activities, 

(2) Parameterize models with site-specific data (e.g., environmental emissions, stream flow and 

sediment transport parameters, dissolved oxygen, sulfide, pH, and organic carbon), 

(3) Include high temporal and spatial resolution system hydrology/stream flow dynamics in river 

models, and 

(4) Investigate seasonal trends. 

 

We suggest that modelers couple sensitivity analyses with experimental research in order to 

(1) Identify NP properties and environmental conditions that are dominant/irrelevant in complex 

systems for inclusion/exclusion from models, 

(2) Compare the influence of NP properties to that of environmental drivers to determine whether 

one or the other can be ignored in complex systems, 
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(3) Determine the level of detail needed to model NP heteroaggregation with suspended particulate 

matter (SPM).  (How many size classes are required?  Should variation in geochemical identity be 

accounted for?), 

(4) Devise first-order alternatives to more complex rate equations, where justified, 

(5) Determine whether sources and sinks that are generally ignored in NP fate models are 

potentially significant (e.g., incinerators, landfill leachate, crop soil runoff, biouptake and trophic 

transfer), and 

(6) Be aware of sources of model error and uncertainty beyond parameter uncertainty, including 

model structure (e.g., choice of rate law, choice of framework) and discretization (numerical 

error, inadequate spatial and temporal resolution).  Simple models generally have higher 

predictive power than complex models.  This is especially true when data are limited and 

scientific uncertainty is high. 

 

Models that include heteroaggregation and transport will benefit from approaches that 

(1) Apply kinetic, but not necessarily size-dependent, descriptors of heteroaggregation rather than 

equilibrium descriptors, 

(2) Model heteroaggregate break-up/disaggregation, 

(3) Express heteroaggregation rates as a function of environmental drivers (e.g. natural organic 

matter, pH, ionic strength) and NP properties (e.g., particle size, engineered coating, pHPZC), and 

(4) Include bedload shift and other relevant sediment transport processes in stream models. 

 

Models that include reactive NP chemistry will benefit from approaches that 

(1) Express reaction rates as a function of environmental drivers (e.g., oxygen, temperature, pH) and 

particle properties (e.g., surface area, size), 



91 
 

(2) Express reaction rates as a function of particle transformations (e.g., NP dissolution rate as a 

function of particle sulfidation) and aggregation state (e.g., fractal dimension, coordinate 

number), and 

(3) Track the formation and speciation of reaction by-products (e.g., metal ions). 

 

Promising next steps for population balance modeling of NPs include 

(1) Empirical or mechanistic models based on experimental research or  (e.g.) principles of fractal 

geometry that describe the influence of aggregate morphology (e.g., coordination number, fractal 

dimension) on the surface area of aggregates available for surface-dependent transformation 

processes, 

(2) Direct comparisons of Monte Carlo methods to moment methods and sectional methods in 

order to determine their relative accuracy and runtimes, 

(3) Development of hybrid moment/sectional methods and “moving grid” sectional methods as 

efficient alternatives to purely moment-based or sectional approaches 

(4) (i) Incorporation of zero-dimensional population balance models into 2-D advection-dispersion 

river models or (ii) Modification of existing large-scale size-resolved NP fate models to explicitly 

incorporate rigorous numerical methods from the population balance literature (e.g., highly 

resolved particle size distributions, sectional models with non-linear binning schemes, 

computationally efficient frameworks such as moment methods) 

(5) Models of environmentally relevant bivariate or trivariate systems (Figure 5-1). 
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Figure 5-1. NP fate processes that require univariate, bivariate, and trivariate methods. 
The internal coordinates needed to describe the fate processes listed on the left are shown on the 
right.  mx=mass of x, ax=surface area of x; NP = nanoparticle, sed = sediment. 
 

5.2.1 Experimental Research to Support Modeling Efforts 
 
As a result of over a decade of research into NP fate and effects, it is now straightforward to identify 

key processes and anticipate the impact of various particle properties and environmental conditions 

on NP behaviors.  However, experimental research is still needed to prioritize and quantify observed 

relationships.  To facilitate model design and parameterization, fundamental research is still badly 

needed in the following areas:  
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(1) Identification of the key physicochemical properties of NPs and environmental 

conditions that impact NP fate and transport in the environment: Modeling efforts at large 

scales require an objective consensus on which NP properties, environmental properties, and 

fate and transport processes are needed to assess the environmental fate of NPs and which can 

be safely disregarded.  Coupled with experimental research, side-by-side comparisons of 

alternate modeling frameworks and sensitivity and uncertainty analysis will enable modelers to 

determine which simplifying assumptions can be made safely at various scales and which cannot.  

Such analyses are of course the focus of this dissertation.  However, much work remains.  

 

(2) Quantification of reaction rates and heteroaggregation rates in a manner that reflects 

their dependence on NP properties and environmental conditions.  Determining rates of 

heteroaggregation or chemical transformations is challenging for many reasons:  (i) It is 

practically impossible to test every combination of NP property and environmental condition 

that could affect the aggregation and dissolution rates of an NP with a given elemental 

composition. (ii) Several NP transformation processes, such as aggregation and dissolution, are 

interdependent. (iii) Many NPs only partially transform, with the transformation rates of the 

partially transformed NPs being intermediate between pristine and fully transformed NPs. (iv) 

More laboratory studies are needed to capture behaviors observed in complex media but not 

simple media, such as disaggregation of heteroaggregates under changing environmental 

conditions,174 reaction rate modification by microbes,61 or the impact of heterogeneity in 

naturally-occurring SPM on NP heteroaggregation.17 

 For inclusion in models, the relationships between particle properties and environmental 

conditions must be quantified using rate laws and rate constants rather than simply observed.  
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This will require assays that are well-controlled but that contain sufficient complexity to capture 

environmental behaviors.  

 

(3) Finally, there is a need for further research into the form and (if possible) concentration of 

NPs within wastewater effluent and biosolids (e.g., 81, 111) for use in realistic emissions scenarios 

for NP fate models. 

 

Current NP loadings are poorly quantified, and detection of NPs in complex environmental media is 

difficult to impossible.  Absence of field and mesocosm-scale data for NP fate model calibration and 

validation is thus the biggest obstacle at present to obtaining accurate predictions of environmental 

NP concentrations and to confidence that NP fate models are predictive as well as descriptive.  New 

analytical tools and NP-specific sample extraction protocols are badly needed to quantify NP 

amounts and speciation at environmentally relevant concentrations in environmentally complex 

samples. 175, 176   

We note finally that NP fate models only predict exposures. To determine risk, a function of 

both hazard and exposure, toxicology studies are needed that consider all relevant NP 

transformation states (as opposed to the current focus on the toxicity of pristine NPs).1 

 

5.2.3 Environmental Regulation of Nanomaterials in the U.S. 
 

Relative to the European Union, whose rapid development of strict regulatory oversight of 

the nanotechnology industry has been "empirically and theoretically remarkable" given the recent 

economic crisis, scientific uncertainty, and a general lack of public outcry,177 the U.S. has responded 

slowly to the possible environmental and consumer health risks of nanotechnology.  U.S. regulatory 

agencies are still in the exploratory stage, and the future of nanomaterials regulation is uncertain.178  

The economic and social drivers behind differential E.U. and U.S. responses to new technologies 
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that pose possible ecotoxicological concerns and impact multiple industries as well as consumers--as 

demonstrated most dramatically by genetically modified foods--elude simple arguments (e.g., "The 

E.U. applies the precautionary principle, the U.S. does not.").179, 180  However, we can say with 

confidence that that the slower U.S. response reflects not only the evolving state of the science but a 

lack of pressure from the American public181 as well as experts: A recent survey reveals that even 

nano risk assessors and nano regulators generally perceive the benefits of nanotechnology to 

outweigh the risks.182  Further, in spite of over a decade of research, the scientific community has 

not yet reached a consensus on the question of whether or not nano risks are "novel" and demand 

new regulations.178, 182, 183  Although novelty is still hotly contested in the field of nanotoxicology for 

even the most widely studied NPs,184 consensus has primarily been stymied by the staggering 

diversity of nanoparticle and nanohybrid compositions and morphologies that have yet to be tested 

at all.185  To bridge remaining gaps, federal research funding agencies have increasingly invested in 

the development of rapid screening tools such as high-throughput and in silico toxicity tests.178, 186, 187  

These efforts are still ongoing.   

The exposure scenarios presented in Chapters 2-4 are far from comprehensive.  

Nonetheless, it is encouraging to see that--in agreement with both current public opinion and the 

average views of nano risk assessors and regulators, as described above--they suggest no cause for 

immediate concern.  The sediment model and watershed model61, 63 supported experimental findings 

that ZnO NP and Ag NP toxicity decrease rapidly in environmental media due to dissolution and 

the subsequent transformation of metal ions.31  In addition, predicted environmental concentrations 

of Zn and Ag from ZnO and Ag NPs in the watershed model remained below existing regulatory 

thresholds for total metal concentrations. 

Hot spots immediately downstream from production facilities do present a potential 

concern.63  However, even in this case, industry-wide effluent limits already in place for metals are 
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likely to suffice because NPs will be indistinguishable from other sources of metals in the 

environment unless their direct ingestion by organisms or their dissolution within a confined 

medium (e.g., sediments) results in atypical ion release or other highly localized toxic effects (e.g., as 

observed recently for ZnO NPs in soils).188  In the author's view, it is unlikely that these effects will 

enhance NP risks enough to undermine the effectiveness of the conservative regulatory limits 

already in place for metals.   

Regulations can be classified as "upstream" or "downstream" according to where they fall in 

a material's life cycle.  Two upstream regulations administered by the US EPA that explicitly 

differentiate nano formulations from their bulk or ionic counterparts include (1) the registration of 

nanopesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), which uses 

data on nanosilver toxicity rather than data on ionic silver to evaluate the safety of nanosilver-

containing pesticides,189 and (2) the control of nanomaterial manufacturing, importation, or 

processing under the Toxic Substances Control Act (TSCA).  Significant New Use Rules (SNURs) 

proposed or already promulgated under TSCA require companies to report their intent to 

manufacture specific NP types (e.g., functionalized carbon nanotubes, graphene nanoplatelets) 90 

days prior to beginning these activities.  EPA also intends to promulgate a new rule under Section 

8(a) of TSCA in October 2016 that will introduce new reporting and recordkeeping requirements for 

all companies that manufacture nanomaterials.190  The Federal Food, Drug, and Cosmetic Act 

(FFDCA) gives the U.S. Food and Drug Administration the authority to regulate food, drugs, 

cosmetics, dietary supplements, and medical devices on a product-by-product basis, but it does not 

explicitly distinguish nano-enabled products from others.  "End-of-pipe" regulations such as the 

Resource Conservation and Recovery Act, the Clean Water Act, and the Safe Drinking Water Act 

would limit allowable NP concentrations or loads in industrial or commercial effluents or waste, 

surface waters, and drinking water.178  At present, however, such downstream regulations are 
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impossible to implement for NPs because the analytical tools needed to differentiate NPs from their 

ionic or bulk counterparts in complex media are still under development.175  In addition to these 

"hard" laws, agencies may issue "soft" laws, or recommendations for best practices.  In August 2015, 

for example, the FDA provided guidance for the use of nanoparticles as an animal food additive.191 

TSCA, FIFRA, and the FFDCA place the burden of proof of risk on the government rather 

than on the producer.  They are subject to under-reporting, and they can be costly and inefficient 

relative to “end-of-pipe” regulations because the need for oversight is determined on a case-by-case 

basis.178  In addition, most products regulated under the FFDCA do not require pre-market 

approval.  Fortunately, recent surveys indicate that the nanotechnology industry views itself as 

responsible for the safety of its products and manufacturing processes.192  Industry can ameliorate 

public concerns about the current lack of regulatory oversight and industry concerns about strict 

regulatory oversight in the future by promoting voluntary reporting, establishing industry standards, 

and otherwise endorsing self-regulation. 

Environmental fate models predict environmental concentrations and are therefore most 

relevant for decision-making when used to enforce or inform "end of pipe" environmental 

management efforts.  My work has shown that if the complexity of the transformations that 

Me/MeO nanoparticles undergo in the environment is not adequately captured, the resulting 

estimates of contaminant concentrations of NPs will be worthless, as would be environmental policy 

developed based upon them. Given the evolving state of the science and the lack of data for model 

calibration and validation, predicted environmental concentrations from NP fate models of any type 

must currently be viewed as merely suggestive. However, as frameworks improve and data 

limitations decrease, the predictive performance of NP fate models could become a valid basis for 

regulatory decision-making.  To make research relevant to decision-makers, experimentalists and 
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modelers must prioritize site-specific models validated against site-specific field data as well as 

extensive evaluation of model uncertainty and parameter uncertainty/variability. 

5.3 Related Publications 
 
In addition to the work presented in Chapter 2-4, I co-authored the following works during my 

graduate studies. Chapters 1 and 5 were based on excerpts from the first two works in this list, 

which expand upon the ideas presented here.   

 

 A. Dale, E. Casman, G. Lowry, J. Lead, E. Viparelli, M. Baalousha. "Modeling 
nanomaterial environmental fate in aquatic systems." Environmental Science & 
Technology, 49 (5), 2587-2593 
 

 A. Dale, G. Lowry, E. Casman.  "Much ado about α: reframing the debate over 
appropriate fate descriptors in nanoparticle environmental risk 
modeling." Environmental Science: Nano, 2, 27-32 
 

 S. Louie, A. Dale, E. Casman, G. Lowry. "Challenges Facing the Environmental 
Nanotechnology Research Enterprise." Chapter 1 of Wiley - IUPAC series on 
biophysico-chemical processes in environmental systems, Volume 4, "Engineered 
Nanoparticles and the Environment: Biophysicochemical Processes and 
Biotoxicity" by B. Xing, C. Vecitis, and N. Senesi (in press) 
 

 C. Levard, E. Hotze, B. Colman, A. Dale, L. Truong, X. Yang, A. Bone, G. Brown 
,Jr., R. Tanguay , R. Di Giulio, E. Bernhardt, J. Meyer, M. Wiesner, and G. Lowry. 
“Sulfidation of silver nanoparticles:  Natural antidote to their toxicity.” Environmental 
Science & Technology, 47 (23), 13440–13448 
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Appendix A.  Supplement to Chapter 2, the Sediment Model 

A.1 Supporting Methods 
 
A.1.1   Silver Ion Partitioning 
 
The partitioning of the total silver ion concentration ([AgT

+]) between the dissolved form (Ag+) and 

the two sorbed forms (AgPOC and AgFeOOH) is governed by the partitioning coefficients KOC 

and KFeOOH. 

 

 

Equation A-1 

 

 

Equation A-2 

 

where [POC] and [FeOOH] are the concentration of available binding sites on the organic carbon 

and iron oxyhydroxide, respectively. 

From these and other principles of solid phase partitioning (see Di Toro et al., 1996), the 

following equations can be derived. 

 

Equation A-3 

 

 

Equation A-4 
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where FeOOH and POC represent the specific binding capacity of the sorbent, such that 

 

Equation A-5 

 

 

Equation A-6 

 

Here, [FeOOH]T and [POC]T represent the total concentration of binding sites (free and silver-

bound). 

It can be shown that the dissolved ion concentration is the solution for x in the cubic 

equation q3x
3 + q2x

2 + q1x + q0 = 0, where x = [Ag+]. 

 

 

 

Equation A-7 
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A.1.2   Exponential Expanding Finite Difference Grid 
 
The distance between volume elements i and i+1 in an exponentially expanding finite difference grid 

expands with overall distance from the top boundary according to the formula: 

 

 

Equation A-8 

 

where z is the thickness of the first volume element and 0<<0.5 is a constant.  In our model, 

=0.005.   

The following equations describe the distance between the top boundary (the sediment-

water interface) and the inner and outer boundary of each grid volume, respectively. 

 

 
 

Equation A-9 
 
 

 
 

Equation A-10 
 

The location of the average concentration in each grid volume is described by the following 

equation: 

 

Equation A-11 
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Note that this point is not located exactly in the center of each volume element (Figure A-6).  To 

correct for this, the non-uniform grid is mapped to a uniform grid by adjusting the mixing 

coefficients Dp and Dd (denoted here as the general term D).  In this case, dimensionless diffusion 

coefficients at the upper and lower boundaries of each grid space are calculated as: 

 

         

Equation A-12 

 

 

Equation A-13 

 

 

Equation A-14 

 

where D* = Dt/z2 is simplifying notation used in the solution to the mass balance equation.  

 As a proof of concept, consider a species C1 present entirely in either its dissolved or 

particulate form (fp=1 or fd=1) undergoing a single reaction that is first order with respect to two 

reactants.  For a uniform grid, the fully implicit form of the solution to the mass balance equation 

can be expressed in its simplest form as: 

 

Equation A-15 

      



C1(i,n 1) C1(i,n)   

D * C1(i 1,n 1) C1(i,n 1) 

D * C1(i,n 1) C1(i 1,n 1) 
tkC1(i,n 1)C2(i,n 1)

























(S1 5)
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Note that, in our model, D’s are depth-dependent before implementation of the exponentially 

expanding grid. 

For a non-uniform grid, taking into account changes in z as well as changes in diffusion 

coefficients, the solution becomes 

 

Equation A-16 

 
Applying the equations above and simplifying, the solution takes the form: 

 

Equation A-17 

 
which must be then solved for the unknown concentration at time step n+1, C1(i,n+1), using the 

quadratic equation.   

A complete treatment of this approach is provided by Feldberg (1981). 

 
 
 
 
 
 
 
 
 

      



C1(i, n 1)  C1(i, n)   t

D

zi

C1(i 1, n 1) C1(i, n 1)

z  i1  z  i










D

zi

C1(i, n 1) C1(i 1, n 1)

z  i  z  i1









kC1(i, n 1)C2(i, n 1)































(S16)

      



C1(i,n 1) C1(i,n)   

Di" C1(i 1,n 1) C1(i,n 1) 

Di' C1(i,n 1) C1(i 1,n 1) 
tkC1(i,n 1)C2(i,n 1)

























(S1 7)
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A.2 Supporting Tables 
 
 Table A-1. Sediment model state variables  

a 

POC1 G1 carbon (most reactive) g C/g-sed 
POC2 G2 carbon (less reactive) g C/g-sed 
POC3 G3 carbon (unreactive on the timescale considered) g C/g-sed 
O2 Dissolved oxygen g O2/m3 
FeS Iron sulfide mol/m3 
FeOOH Iron oxyhydroxide mol/m3 
Ag0 Elemental silver (associated with Ag NP) mol/m3 
Ag2S (NP) Silver sulfide (coating particle surface) mol/m3 
Ag2S (free) Silver sulfide (not coating particle surface) mol/m3 

 
Dissolved (Ag+) and sorbed (AgPOC, AgFeOOH) silver mol/m3 

 
a The organic carbon concentration is divided into three fractions (fPOC1, fPOC2, fPOC3; see Table 
2-1), each having different reactivity, i.e. ability to be oxidized.  This simplification is based on 
the G model first proposed by Westrich and Berner in 1984193 and presents a reasonable first 
approximation of organic carbon diagenesis in sediments.85 Note that Ag+ can bind to labile 
POC, which is included in the model despite not being able to oxidize.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AgT

+
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Table A-2. Sediment model reaction equations and termsa   
Variable Reaction Equation 

POC1 Loss by aerobic oxidation 
 

 
Loss by anaerobic oxidation 

 
POC2 Loss by aerobic oxidation 

 
 

Loss by anaerobic oxidation 

 
FeS Gain by anaerobic oxidation of POC 

 
Loss by oxidation 

 
Loss by displacement 

 
FeOOH Gain by oxidation of FeS 

 
Ag0 Loss by oxidation 

 
Loss by sulfidation 

 
Ag2S 

(NP) 
Gain by sulfidation 

 
Loss by oxidation 

 
Ag2S 

(free) 
Gain by displacement 

 
Loss by oxidation 

 
Ag+ Gain by oxidation of Ag0 

 
Gain by oxidation of Ag2S (NP) 

 
Gain by oxidation of Ag2S (free) 

 
Loss by displacement 

 
O2 Loss by oxidation of POC1 

 
Loss by oxidation of POC2 

 
Loss by oxidation of Ag2S (NP) 

 
Loss by oxidation of Ag2S (free) 

 
Loss by oxidation of Ag0 

 
Loss by sulfidation 

 
Loss by oxidation of FeS 

 
a Reaction equations are of the general form Rj=kjj

(T-20)[C1][C2], where kj is the reaction rate constant, j is the Arrhenius 
temperature coefficient, T is the temperature in degrees Celsius, and [C1] and [C2] are the concentrations of the reactants. 
Each reaction is represented by a single Rj: stoichiometric coefficients, denoted a1,2, relate Rj to all reactants and products 
for that equation.  

 
 
 
 

 

 

    

  

a
FeS , Ag + RDisp

    

  

aO2 ,POC RPOC1 ,O2

  

aO2 ,POCRPOC2 ,O2
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aO2 , Ag2S RAg2S free ,O2
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Table A-3. Justification of model parameter values in Table 2-1 a 

Parameter   

General note on Arrhenius temperature coefficients, x:  A range of 1.08-1.15 reflects the variation in temperature dependence 
reported by Di Toro (2001)24 throughout the text.  We assumed the nominal values assumed by Di Toro et al. (1996)60 [as reported 
in Di Toro (2001)] in the cadmium sediment model on which this work is based (referred to below as “the Cd model”). The 

temperature dependence of Ag0 and Ag2S oxidation ( ) was assumed to equal FeS and CdS from the Cd model. 
 
General note on organic carbon fractions 1, 2, and 3 and associated oxidation rates: Ranges were based on Table 12.1 and 
12.2 of Di Toro (2001), pp. 253-254 (data pooled from 9 sources). 

0 Range: See Figure 4.9, p.130 (observed  values pooled from 10 sources) 

k Nominal value: Determined by calibration 

 
Range: See text, p. 4 
Nominal value: As in the Cd model 

Dd 

Range: Table 2.1, p.42 provides an average diffusion coefficient of 1.22(0.52) cm2/d.  Note that this does not 
reflect the full natural variability in Dd; Berg et al. (2001) report that bioturbation by sediment-dwelling fauna 
may double solute transport.194  In contrast, tortuosity will decrease apparent mixing rates.80 
Nominal value: As in the Cd model 

Dp 
Range: Min to max values in Table 1, p.1245 (observed values from >30 tracer studies).  Note unit conversion. 
Nominal value: Determined by calibration 

 
Range: Min to max values in Table 1, p. 1245 (for mixing depth L; observed values from >30 tracer studies)   
Nominal value: Represents the reported worldwide mean mixing depth of 9.8 ± 4.5 cm 

 
Range: See general note above on organic carbon fraction and associated oxidation rates 
Nominal value: As in the Cd model 

 Nominal value: As in the Cd model 

 
Nominal value: Rates assumed in the Cd model were an order of magnitude higher than suggested by Table 
12.2 of Di Toro (2001)  Here, rate constants were chosen to be twice the rate of anaerobic decay. 

 Nominal value: Rates chosen to be twice the rate of anaerobic decay 

 Nominal value: Average value reported in Table 12.2 of Di Toro (2001) 

 Nominal value: Average value reported in Table 12.2 of Di Toro (2001) 

 Nominal value: As in the Cd model 

 

Range: See Table 21.3, p. 523 and text, p. 521 of Di Toro (2001) (note unit conversions) 
Nominal case: Calibrated values determined for the Cd model (Experiments 1 and 2) were used.  The calibrated 
value based on the field experiment data (Experiment 3) was not used because it resulted in an unexpectedly 
low value due to oligotrophic lake conditions. 

    

  

k
Ag 0 ,O2

( S
Ag = 0) 

Range: Upper bound is the oxidation rate constant reported for 4.8 nm unsulfidized Ag NPs by Liu et al. 
(2010) adjusted for oxygen-dependence assuming 8 mg/L DO (“air-saturated”).  Lower bound is the lowest 
oxidation rate estimated from the equilibrium solubility of Ag NPs reported by Ma et al. (2012) assuming 8.6 
mg/L DO (reported).  Other estimates from the literature cited fall within this range. 
Nominal value: Determined by calibration 

cpass

 

Experimental data (Figure 6 from Levard et al. (2011) for Ag NP oxidation; Table S3 from Kaegi et al. (2011) 
for Ag NP sulfidation) was fit to the passivation equation (Equation 2-13, this work).  Values from the fits 
ranged from 14-21 for Ag NP sulfidation and 24 for Ag NP oxidation.  A representative value of 20 was 
selected for the nominal case.  Although Ag NP oxidation and Ag NP sulfidation both exhibit surface 
passivation due to the formation of an Ag2S shell, the sulfidation rate decreased so rapidly within the first time 
step after dosing (for a dose of 100% Ag0 Ag NPs) that truncation error due to the finite difference 
approximation significantly overestimated the rate of both processes (i.e., led to numerical instability).  
Decreasing the timestep to 3 min greatly increased the model runtime but had no significant effect on model 
output. The rate of sulfidation was therefore modeled instead as a constant, as described below. 

ksulf
 

Nominal: Liu et al. (2011) report a long-term “second stage” rate of sulfidation of 0.00016 (mM Ag)-1min-1 for 
30 nm Ag NPs at pH 11.  We assume the DO and sulfide concentrations reported in the text (DO≈0.25 mM, 
S2-≈1 mM) and a speed-up factor of 3.5 from pH 11 to pH 7 (the factor found by the authors for the “first 
stage” rate).   
Range: We assume a lower bound of zero for the sulfidation of a predominantly Ag2S Ag NP sulfidizing by a 
dissolution-precipitation mechanism (in agreement with the lower bound on Ag2S oxidation of 0).  The upper 
bound is based on an observation (not reported) that Ag NPs sulfidized fully within 4 months during the 
mesocosm study (t95%,sulf=120 days). 
 
Caution should be used if extrapolating these values to other studies.  Sulfidation is more accurately 
represented as a passivation process (e.g., see Equation 2-13 in this work).  Experimental fits of Table S3 data 
by Kaegi et al. (2013) assuming the reported DO and sulfide concentrations (Adjusted R2 values of 0.66-0.96) 



zDp

   

fPOC1

   

fPOC2

  

kPOC1 ,O2

   

kPOC2 ,O2

  

kPOC1 ,SO4

  

kPOC2 ,SO4

   

KM ,O2

   

kFeS,O2
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suggest the initial rate of sulfidation (e.g., for a fully unsulfidized particle) may be much faster, on the order of 
0.041– 0.0086 (mmol S2-/m3)(mg O2/m3)d-1 for 10 nm Ag NPs and 0.0016–0.00058 (mmol S2-/m3)(mg 
O2/m3)d-1 for a mix of 10-100 nm Ag NPs.  100 nm Ag NPs showed effectively no sulfidation over 24 hours, 
revealing the strong size-dependence of the sulfidation rate. 

 Nominal value: Percent sulfidation reported by Kaegi et al. (2011) for Ag NPs in the effluent of a pilot WWTP 

 

Derivation: With a forward difference approximation, we see that a first-order rate constant k can be described 
in terms of the concentration of the reacting chemical species: 

 

 

 
Multiplying numerator and denominator by a constant volume (and noting that Ag mass is conserved), we see 
that the rate constant provided by Di Toro et al. (1998)—expressed as (rate of Ag released/mass of Ag present) 
in units of mg Ag/(g Ag-day)—approximates the more familiar first-order rate constant in units day-1 with a 
simple unit conversion (mg Ag to g Ag). 
 
Oxidation rates in Figure 5 (Di Toro et al., 2001) were estimated using the software tool GraphClick 
(http://www.arizona-software.ch/graphclick/) for the spiked sediment (nominal case) and the sediment core 
(upper bound).  A second-order rate constant was approximated assuming [O2]=8000 mg/L for the values 
reported.  A lower bound of zero was chosen based on the insolubility of Ag2S.   

 
Nominal value: Chosen to match the calibrated value for the three experiments reported in Table 21.3 p. 523.  
Good agreement was found during calibration to mesocosm data. 

 

Range: POC deposition fluxes were assumed based on observed sedimentation accumulation fluxes and an 
assumed organic carbon content of settling solids of 20%.  Gasiorowski et al. (2008) provide mean 
sedimentation rates for five shallow lakes in Poland.  Rose et al. (2011) provide sediment accumulation rates for 
207 European lakes (incl. mountain lakes and lowland lakes).  For a eutrophic lake in China, Wan et al. (2005) 
estimate JPOC=160 to 440 mg/m2-d (note unit conversion) between 1970-1997 with an average value of 270 
mg/m2-d, suggesting that 300 is an acceptable upper limit for a nutrient-enriched system.  It was necessary to 
limit the range of values considered in the model to ensure numerical stability. 

log KOC
 

Range: See Table 4, p. 3-11 for log(Kd) values for Ag+ partitioning between pore water and sediments (2.1-5.8).  
We assume all Ag+ is bound to organic carbon and L.O.I. is 1.83% (value observed in mesocosms, transformed 
assuming foc ≈ L.O.I./2).  From Schwarzenbach et al. (2002), p. 292:39 

  

   

KOC =
Kd

foc

 

σOC 

Nominal value: Assumed in the Cd model (for cadmium).  Benjamin and Leckie (1981) suggest Cd2+ and Ag+ 

exhibit comparably low critical adsorption densities * for sorption to amorphous iron oxyhydroxides,195 

revealing the two species have similar preferences for a small number of preferred binding sites (* values 
ordered by metal species: Pb< Ag< Cd < Cu < Hg < Zn < Co). Ag+ adsorption to mineral species is relatively 
poorly studied. 

 

Nominal value: As in the Cd model (for cadmium).  Overlapping Kd values were reported for cadmium (mean 
of 3.3, range of 0.5-7.3) and silver (mean of 3.6, range of 2.1-5.8) by Allison and Allison (2005).91  Ag+ and 
Cd2+ preferentially sorb to POC, suggesting this assumption has little impact on the system response. 

σFeOOH Nominal value: As in the Cd model (for cadmium).  See notes for and  

πFeS 
Range: Calibrated values calculated in the Cd model (Table 21.3, p. 523).  Natural variability in this parameter is 
likely larger than reported. 
Nominal value: Calibrated values determined for the Cd model (Experiments 1 and 2) 

 

Initial and Boundary Conditions
 

 

O2(z=0) Range: Values represent a range of conditions at the sediment-water interface, from anoxic to oxic 

foc(t=0) 

Range: See text, p. 15 of Di Toro et al. (2001) for observed values for coastal marine and harbor sediments.  
Range agrees with Schwarzebach et al. (2002) (Figure 9.7, p.292).39  Field studies report L.O.I. values from 1 to 
70%.  Assuming fom=2*foc suggests a wider range for foc of 0.5-0.35, but we do not think it is equally 
representative. 
Nominal: Selected from Figure 1.9, p. 16 of Di Toro et al. (2001) to represent a “typical” (non-eutrophic, non-
oligotrophic) system. 

FeS(t=0) 

Range: See Figure 1.9, p.16 of Di Toro (2001) for AVS (acid volatile sulfide) concentrations for coastal marine 
and harbor sediments.  FeS is a proxy for AVS in this model.   
Nominal value: Selected from Figure 1.9 to represent a “typical” (non-eutrophic, non-oligotrophic) system. 

aListed tables, figures, and page numbers correspond with sources cited in Table 1-1  
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Table A-4. Sediment model elasticities, ranked from highest to lowest  

Symbol Parameter Elasticity
a
 

 Correction for Arrhenius temperature dependence 16 

 Correction for Arrhenius temperature dependence -16 

 Correction for Arrhenius temperature dependence 9.5 

 Correction for Arrhenius temperature dependence -2.3 

 Correction for Arrhenius temperature dependence 2.2 

0 Sediment porosity at the sediment-water interface 2.2 

O2(z=0)
 

Oxygen concentration at the interface 1.9 

foc(t=0) Fraction of organic carbon in sediment (at t=0) -1.3 


 

Sediment density -1.1 

 Correction for Arrhenius temperature dependence -1.0 

 Rate of oxidation of sulfur in Ag2S 0.99 

Dp Particle mixing velocity -0.87 

σOC Sorption capacity for POC -0.86 

 Partition coefficient to POC -0.86 

Dd Molecular diffusion coefficient 0.61 

 
Correction for Arrhenius temperature dependence -0.58 

 
Flux of organic carbon from the overlying water -0.46 

 Fraction of POC in G1 reactivity class -0.37 

k Rate of decrease in sediment porosity with depth -0.36 

πFeS Partition coefficient for FeS: [FeSp]/[FeSd] 0.20 

 Fraction of POC in G2 reactivity class -0.16 

 Rate of oxidation of FeS to form FeOOH -0.13 

 Correction for Arrhenius temperature dependence 0.083 

 Rate of anaerobic oxidation of G2 carbon -0.060 

 e-folding depth of particle mixing -0.053 

 Rate of aerobic oxidation of G1 carbon 0.032 

 Rate of anaerobic oxidation of G1 carbon -0.028 

 Rate of aerobic oxidation of G2 carbon 0.027 

 Rate of displacement reaction -0.021 

 Correction for Arrhenius temperature dependence -0.0040 

 Percent elemental silver by mass in input dose of NPs 0.0038 
k

Ag0 ,O2

(S
Ag = 0) Initial rate of nanoparticle dissolution 0.0034 

σFeOOH Sorption capacity for FeOOH -0.00093 

 Half saturation constant for oxidation using O2 0.00089 

 Partition coefficient to FeOOH -0.00081 

FeS(t=0)
 

Sediment iron sulfide (AVS) concentration (at t=0) -0.00057 

ksulf
 

Rate of Ag NP sulfidation 0.00039 

cpass Rate of decrease in Ag0 oxidation rate as a function of S/Ag 0.00 
a The measured output is the peak concentration of dissolved silver ion in the sediment within six months of dosing.  
Green shading indicates parameters for which uncertainty stems predominantly from natural variability.  Blue shading 
indicates parameters for which uncertainty stems predominantly from experimental uncertainty in constants or 
coefficients.  The most influential parameters appear to be the temperature coefficients of the reaction and mixing rates.  
However, the effect of temperature sensitivity on model results is limited by relatively small uncertainty surrounding the 
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true values of these parameters (Table 1-1).  System parameters such as porosity at the interface, 0, the initial organic 

carbon composition of the sediment, foc(t=0), sediment density, , and the oxygen concentration at the sediment-water 
interface, O2(z=0), reveal the importance of sediment redox conditions in determining the extent of nanoparticle 
oxidation.  The most influential reaction rate constants and coefficients are the rate of oxidation of sulfur in silver 
sulfide, kAg2S,O2, and parameters describing the partitioning behavior of silver ion (the silver ion-organic carbon partition 

coefficient, KOC, and the sorption capacity for organic carbon, OC). 
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A.3 Supporting Figures 
 
 

 
 

Figure A-1. Change in depth profiles of all state variables over time after a pulse input of 

2.9 g of 85% sulfidized nanoparticles. Temperature and oxygen availability are anticyclical 
(oxygen concentration peaks in winter).  Since high oxygen concentrations (winter) and high 
temperatures (summer) both facilitate oxidation, complex periodic behavior results.  Natural systems 
are expected to exhibit more complexity and variability. 
 
 



126 
 

 
 

 
 

Figure A-2. Sensitivity of seasonal trends in Ag+ efflux to temperature coefficients and 

oxygen availability. In spite of increased oxygen penetration in winter, the model predicts Ag+ will 
peak in summer due to increased oxidation and increased mixing (particulate and dissolved). 
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Figure A-3. Loss of Ag0 over time for a pulse input of 85% sulfidized Ag NPs.Sulfidation 
of Ag NPs during nanoparticle influx leads to lower peak amounts of Ag0 in environments with 
more organic carbon (higher sulfide availability).  The cores are affected by two loss processes 
simultaneously (Ag NP oxidation leading to Ag+ release and sulfidation).  The overall loss rate 
decreases over time, and the first order decay exhibited by the entire transformed Ag NP (Figure 
2-4) is not observed. 
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Figure A-4. System response to constant inputs of 85% sulfidized nanoparticles (0.03 mg 

Ag/m2-d). Above: Silver ion efflux vs. time after dosing for low (JPOC,max=50 mg/m2-d, foc=0.001), 
middle (JPOC,max=150, foc=0.02), and high (JPOC,max=300, foc=0.15) levels of organic carbon (OC).  Silver 
ion release will be maximized in low carbon environments, which have lower oxygen demand and 
thus correspond to oxic conditions.  The accumulation of Ag NPs over time leads to an increase in 
the formation and efflux of silver ion from the sediment. Below: Percent sulfidation within a year of 
dosing increases as the organic carbon content of the sediments increases, since sulfide is formed by 
the degradation of organic carbon in the anoxic sediments. 
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Figure A-5. Change in concentration profile (above) and sulfidation (below) of Ag NPs in 

the sediment over time. Results are shown only for the mid OC case (JPOC,max=150, foc=0.02).  For 
the concentration profiles, only minor differences are observed between this case and the low/high 
OC cases because the Ag NPs are highly persistent. Ag NP concentrations at the interface decrease 
in summer as a result of increased particle mixing and increased oxidation, which results from higher 
temperatures. Liu et al. (2011) have shown that Ag NP sulfidation requires a strong oxidant, which 
we assume is dissolved oxygen.  Thus there is a greater extent of sulfidation near the oxic sediment-
water interface than occurs at depth.  The extent of sulfidation drops at the interface, reflecting the 
less sulfidized nature of the incoming particles. 
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Figure A-6. A diagram of the exponentially expanding grid space showing key variables.  
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Appendix B.  Supplement to Chapter 3, the Watershed Model 

B.1 Supporting Methods 
 
As referenced in the main text, the following sections provide more details on (1) the model used to 

estimate ZnO NP speciation in wastewater effluent, (2) the calibration of the suspended sediment 

concentrations in the river model, (3) the equations WASP7 uses to transport NPs as a function of 

stream flow, and (4) the selection of regulatory thresholds displayed in Figure 3-4. 

 
B.1.1 Aeration tank model 
 
ZnO NPs dissolve so rapidly that it is unlikely they will enter the environment in their pristine form.  

To predict the speciation of ZnO NPs in sewage treatment plant effluent, a simple box model 

receiving a constant (arbitrary) load of pristine NPs was built in WASP7 to mimic the speciation of 

ZnO NPs that remain in aqueous suspension in a sewage treatment plant aeration tank.  Modeled 

processes included inflow/outflow, ZnO NP dissolution, metal ion reaction with sulfides, and metal 

ion sorption/complexation with suspended solids.  System parameters are provided in Table B-4.  

Reaction rates and sorption constants were the same as those used in the river model (Table B-2, 

described in the main text).   

Table B-5 shows the model output (percent speciation of the ZnO NPs) for a range of 

possible system conditions and rate constants.  This model is very sensitive to assumptions.  

However, the river model is not sensitive to the output from this aeration tank model. Figure B-8 

shows ZnO speciation in the water column and sediment bed for a scenario where the dissolution 

rate was set to its lowest possible value (Table B-2) in both the aeration tank model and the river 

simulation. In this scenario, 85%  of the original ZnO NPs remain untransformed in wastewater 

effluent. The Zn speciation in the river and sediment bed for this scenario is similar to that in Figure 

3-2. 
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B.1.2 TSS calibration 
 
Predicted total suspended sediment (TSS) concentrations were compared to observations from a 

USGS station downstream in the basin (Figure B-9, top panel).  Because monthly averages are more 

representative than daily estimates, the 761 observations available for that station were averaged for 

every month and compared to simulated monthly average TSS.  Data were used if there were at least 

10 observations in a given month.   

The Nash-Sutcliffe Efficiency (NSE), which measures the divergence of simulated values 

from a 1:1 fit with observations, was used to calibrate the model.  Other tests determined bias 

(PBIAS) and the ratio of the error to the standard deviation (RSR).115  The bottom panel of Figure 

B-9 compares observed monthly averages to simulated values.  The table inset in this panel provides 

the values of the calibration metrics. The calibration exhibits low bias and is satisfactory (although 

not exceptional) with respect to RSR and NSE.  An NSE between zero and one (optimal) indicates 

the model would outperform a simpler model that used the mean observed value.115   

 

B.1.3 WASP7 sediment transport equations 
 
Here, we briefly introduce the equations that WASP7 uses to describe sediment resuspension and 

deposition as a function of geographic and temporal variation in stream flow.  These equations are 

currently being updated for WASP8 and were documented with the help of Dr. Robert Ambrose 

(WASP development team, pers. corr.).  Any mistakes are our own. 

Sediment transport in streams is driven by the shear stress of the stream flow at the 

sediment-water interface.  For a given stream reach at a given time step, the boundary shear stress, 

𝜏𝑏 (N/m2) is calculated as  

𝜏𝑏 =
0.24𝜌𝑢2

8𝑙𝑜𝑔2 (12𝐻/𝑘𝑠)
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where 𝜌 is the water density (kg/m3), u is the segment water velocity (m/s), H is the segment water 

depth (m), and ks is the equivalent roughness height (m), which is the larger of either  0.01*H or 

3*D50, the median sediment diameter for the bed.  Transport processes will occur when 𝜏𝑏 exceeds 

(resuspension) or drops below (deposition) the critical shear stress for that process, which is either 

calculated from the diameter of the sediment particles, parameterized using site-specific data, or 

determined by calibration.  

Rates of sediment mass transfer between the water column and the surface sediments (in 

units of g/s) are calculated at each time step as W*C*Abed, where W is the sediment transport 

velocity in m/s, C is the sediment concentration in the water column (for deposition) or surface 

sediments (for resuspension), and Abed is the cross-sectional area of the bed.  Abed is specified for each 

stream reach based on its initial geometry (length and width).  Equations for sediment transport 

velocities (W) are described below for each process. Sediment burial rates are simply the net effect 

of resuspension and deposition processes at each time step.   

For our model, values for all sediment parameters (bolded below) are provided in Table B-2. 

 

B.1.3.1 Deposition 

The maximum settling rate for sediment particles in a given size class i is their gravitational settling 

velocity, WS,i (m/s), which is defined by Stokes' equation.  This equation can be expressed in the 

(less common) form 

𝑊𝑠,𝑖 =
𝑅𝑑,𝑖
18

√𝑔𝑖′𝐷𝑖 
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where 𝑅𝑑,𝑖 =
𝐷𝑖√𝑔𝑖′𝐷𝑖

𝑣
 is the sediment particle densimetric Reynolds number (we will use this later), 

𝑔𝑖′ = 𝑔 (
𝜌𝑠,𝑖

𝜌⁄ − 1), Di is the particle diameter, g is acceleration due to gravity (9.81 m/s2), 𝜌𝑠,𝑖 is 

the sediment particle density (kg/m3), and 𝑣 is the dynamic viscosity of water (m2/s). 

The boundary shear stress, 𝜏𝑏, provides a barrier to deposition as described in the following 

equation.  αD,i, the probability that the particles deposit once they reach the sediment bed, is assumed 

to decrease at a rate ndep,i (the shear stress exponent for deposition, which defaults to 1) from the 

lower critical shear stress, 𝜏𝑐,𝑙𝑜,𝑖, (under which deposition always occurs) to the upper critical shear 

stress, 𝜏𝑐,ℎ𝑖,𝑖 (above which no deposition occurs). 

𝑊𝐷,𝑖 = 𝑊𝑠,𝑖𝛼𝐷,𝑖  where 

{
 

 
𝛼𝐷,𝑖 = 1, 𝜏𝑏 ≤ 𝜏𝑐,𝑙𝑜,𝑖 

𝛼𝐷,𝑖 = (
𝜏𝑐,ℎ𝑖,𝑖−𝜏𝑏

𝜏𝑐,ℎ𝑖,𝑖−𝜏𝑐,𝑙𝑜,𝑖
)
𝑛𝑑𝑒𝑝,𝑖

, 𝜏𝑐,𝑙𝑜,𝑖 < 𝜏𝑏 < 𝜏𝑐,ℎ𝑖,𝑖

𝛼𝐷,𝑖 = 0, 𝜏𝑏 ≥ 𝜏𝑐,ℎ𝑖,𝑖

 

 

B.1.3.2 Non-cohesive resuspension 

The sand fraction (greater than 0.1 mm in diameter) always acts "non-cohesively."  If the silt/fines 

fraction (less than 0.1 mm) in the sediments remains below the critical cohesive sediment fraction, 

the silts/fines fraction also acts non-cohesively.   

In WASP7, non-cohesive resuspension is treated as a two-step process in which sediment 

first erodes into a boundary layer, then entrains from the boundary layer.  The size-dependent 

resuspension velocity, WRS,i, is thus only a fraction, fRS,i, of the erosion velocity, 𝑊𝐸,𝑖 (m/s), where 

𝑊𝐸,𝑖 = 𝐸𝑛𝑜𝑛𝑐𝑜ℎ,𝑖 ∗ 𝑊𝑠,𝑖 and 𝐸𝑛𝑜𝑛𝑐𝑜ℎ,𝑖 is the dimensionless net erosion rate for non-cohesive 

sediments. Note that this implies that 𝐸𝑛𝑜𝑛𝑐𝑜ℎ is the ratio of the speed at which sediments erode 
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into the boundary layer and the speed at which they settle back onto to the sediment bed from the 

boundary layer. 

𝑊𝑅𝑆,𝑖 = 𝑓𝑅𝑆,𝑖𝑊𝐸,𝑖  where 

{
 
 
 

 
 
 

𝑓𝑅𝑆,𝑖 = 0, 𝜏𝑏 < 𝜏𝑐𝑅𝑆,𝑖
 

𝑓𝑅𝑆,𝑖 =
𝑙𝑛 (

𝑢∗
𝑊𝑠,𝑖

) − 𝑙𝑛 (
𝑢∗𝑐𝑅𝑆,𝑖
𝑊𝑠,𝑖

)

𝑙𝑛(4) − 𝑙𝑛 (
𝑢∗𝑐𝑅𝑆,𝑖
𝑊𝑠,𝑖

)
, 𝜏𝑏 ≥ 𝜏𝑐𝑅𝑆,𝑖

 
𝑓𝑅𝑆,𝑖 = 1, 𝑢∗ ≥ 4𝑊𝑠,𝑖

 

Here, u∗ is the shear velocity in m/s (√𝜏𝑏/𝜌) and 𝑢∗𝑐𝑅𝑆,𝑖 is the critical shear velocity for 

resuspension (√𝜏𝑐𝑅𝑆,𝑖/𝜌).  The critical shear stress for resuspension is expressed separately for each 

resuspending size fraction of sediment as 

𝜏𝑐𝑅𝑆,𝑖 =
0.1(400𝑊𝑆,𝑖)

2

𝜌/1000
𝐷𝑖

[
 
 
 
 
 
 
(
𝜌𝑠,𝑖

𝜌⁄ − 1)𝑔

𝑣2

]
 
 
 
 
 
 
−2/3

 

The critical shear stress for non-cohesive erosion, 𝜏𝑐𝐸,𝑖 (N/m2), is calculated internally for each 

sediment size fraction (rather than determined by calibration). 

𝜏𝑐𝐸,𝑖 = (0.22𝑅𝑑,𝑖
−0.6 + 0.06 ∗ 10(−7.7𝑅𝑑,𝑖

−0.6))𝜌𝑔𝐷𝑖 

The non-dimensional rate of non-cohesive sediment erosion is defined as 

𝐸𝑛𝑜𝑛𝑐𝑜ℎ,𝑖 = 0.015
𝐷𝑖

𝑘𝑠
𝜏∗,𝑖
1.5𝑅𝑑,𝑖

−0.2 where {

𝜏∗,𝑖 = 0, 𝜏𝑏 < 𝜏𝑐𝐸,𝑖 

𝜏∗,𝑖 = (
𝜏𝑏

𝜏𝑐𝐸,𝑖
− 1) , 𝜏𝑏 ≥ 𝜏𝑐𝐸,𝑖 

 

The exponent, 1.5, is the recommended and default value for the shear stress exponent for non-

cohesive resuspension listed as a parameter in Table B-2.   
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B.1.3.3 Cohesive resuspension 

When the silts/fines fraction exceeds the critical cohesive sediment fraction, which is generally the 

case in the model presented here, the resuspension velocity (m/s) is defined as 

𝑊𝑐𝑜ℎ =
𝑓𝑐𝑜ℎ𝑀𝜏∗

𝑛𝑐𝑜ℎ

𝐶𝑐𝑜ℎ
 where  {

𝜏∗ = 0, 𝜏𝑏 < 𝜏𝑐𝐸,𝑛𝑜𝑛𝑐𝑜ℎ 

𝜏∗ = (
𝜏𝑏

𝜏𝑐𝐸,𝑛𝑜𝑛𝑐𝑜ℎ
− 1) , 𝜏𝑏 ≥ 𝜏𝑐𝐸,𝑛𝑜𝑛𝑐𝑜ℎ

 

where M is the shear stress multiplier (g/m2-s), 𝑓𝑐𝑜ℎ is the fraction of cohesive sediment in the 

surface sediment layer, Ccoh is the concentration of cohesive sediments (g/m3) in the surface sediment 

layer, ncoh is the shear stress exponent, and 𝜏𝑐𝐸,𝑛𝑜𝑛𝑐𝑜ℎ is the critical shear stress for cohesive 

resuspension. 

 

B.1.4 Regulatory thresholds 
 
The USEPA and individual U.S. states provide a range of chronic and acute regulatory criteria for 

metals in freshwater and saltwater.  In freshwater, USEPA acute Criteria Maximum Concentrations 

(CMCs) for zinc and silver and chronic Criteria Continuous Concentrations (CCCs) for zinc are 

expressed as a function of water hardness.  Sediment quality guidelines are reported either as "effects 

range-median" (adverse effects in 50% of reviewed data) or "effects range-low" (adverse effects in 

10% of reviewed data).196  Figure 3-4 shows only the lowest (most conservative) of the relevant 

thresholds: the Ag surface water threshold is the proposed freshwater CCC for Oregon197 (the 

USEPA does not have a chronic toxicity threshold for Ag), the Zn surface water threshold is the 

USEPA freshwater CCC for a hardness of 50 mg/L,198 and the Ag and Zn thresholds are the lowest 

ERLs for each reported by Roberts et al.196  Note that these thresholds are generally applied only to 

the acid soluble metal fraction, and therefore their comparison in this work to the total metal 

concentration is also conservative.   
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B.2 Supporting Tables 
 

Table B-1. Land uses modeled in the Phase 5.3.2 Chesapeake Bay Watershed Model. Land 
uses that receive biosolids are highlighted.  See the WSM documentation for details.62 NM = 
nutrient managed, CSS = combined sewer system. 

 Land Use Code Description Category 

1 hom Conventional tillage, no manure Row crops 

2 nho Conventional tillage, no manure (NM) 

3 hwm Conventional tillage with manure 

4 nhi Conventional tillage with manure (NM) 

5 lwm Conservation tillage with manure 

6 nlo Conservation tillage with manure (NM) 

7 hyw Hay, fertilized Hay 

8 nhy Hay, fertilized (NM) 

9 alf Alfalfa 

10 nal Alfalfa (NM) 

11 hyo Hay, not fertilized 

12 pas Pasture Pasture 

13 npa Pasture (NM) 

14 trp Degraded riparian pasture 

15 afo Animal feeding operations 

16 cfo Confined animal feeding operations 

17 for Forest, woodlots, wooded areas Forest 

18 hvf Harvested forest 

19 cid Impervious developed (CSS) Impervious urban 

20 rid Impervious developed, regulated 

21 nid Impervious developed, non-regulated 

22 cpd Pervious developed (CSS) Pervious urban 

23 rpd Pervious developed, regulated 

24 npd Pervious developed, non-regulated 

25 ccn Construction (CSS) 

26 rcn Regulated construction 

27 cex Extractive (CSS) Extractive (active and 

abandoned mines) 28 rex Extractive, regulated 

29 nex Extractive, non-regulated 

30 urs Nursery  
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Table B-2. James River Basin model inputs (constants only) 

Parameter Value Units Expected Range Source (notes) 
Ag Loadings 

Biosolids concentration 1.6 

 
 

mg Ag/kg 
d.w. 

1.4 x 10-6-5.9 
 

Nominal: Mode for U.S. 33 The more recent estimates for 
the U.S. by Hendren108 et al are somewhat lower for 
effluent and are far lower for biosolids.  We note that 
estimates for Europe are in approximate agreement with 
these values, although the most recent European 
estimates6 could not be used because they ignored any 
mass lost due to transformations during sewage 
treatment.   
Range: Lower bound108 to upper bound33 

Effluent concentration 21 ng Ag/L 0.133-236 Nominal: Mode for U.S. 33     Range: 108 

Ag Transformation Rates 

Dissolution rate, silver sulfide/ 

sulfidized Ag NP *,† 
2.1 x 10-6 L/mg-d 0 - 4.5x10-4 

Nominal: Rate of oxidative dissolution for an 85% 
sulfidized Ag NP for a calibrated sediment model61  
Range: Lower and upper bounds for Ag2S oxidation61, 88 

Sulfidation rate, Ag+ *,‡ 10 g/µmol-d  Set high (very rapid)24, 199 

Log Kd, Ag+ 4.9 L/kg 1.5-6.3 91 

Zn Loadings 

Biosolids concentration 
23 

mg ZnO/kg 
d.w. 

10-120 
Nominal: Mode for U.S. 33   
Range: Lower bound from 4; Upper bound is for the San 
Francisco Bay area.34 

Effluent concentration 
300 ng ZnO/L 220-12,000 

Nominal: Mode for U.S. 33   
Range: Lower bound from 33; Upper bound is for the San 
Francisco Bay area. 34 

Zn Transformation Rates 

Dissolution rate, ZnO NP * 

72 /d 1-220 

Nominal: 1 hour to equilibrium concentration (t95%) 
assuming exponential decay 
Range: estimated from time to equilibrium concentration 
observed in ZnO NP solubility studies (20 minutes to 72 
hours).20, 22, 120-123  Upper bound agrees with highest rate 
observed by David et al. (2012)121: 0.17 min-1 

Dissolution rate, ZnS *,† 0.025 L/mg-d 0.0038-0.05 199, 200 

Sulfidation rate, Zn2+ *,‡ 10 g/µmol-d  Set high (very rapid)24, 199 

Log Kd, Zn2+ 4.8 L/kg 1.5-6.9 91 

System Parameters (WASP7) 

Pore water exchange rate * 7.5 x 10-5 m2/d 7 x 10-5 to 1.7 x 10-4 24 

Particle diameter for silts/fines 
6.35 µm 4-63 

Nominal: Chesapeake Bay Program (CBP) Phase 5 Model 
Range: WASP 

Particle diameter for sand 127 µm 63-2,000 Nominal: CBP Phase 5 Model   Range: WASP 

Sulfide concentration, water column 
and surface sediments 

6×10-5 mg/L 1 x 10-6  to 5 x 10-3 72 

Sulfide concentration in deep 
sediments 

100 µmole/g 0.01-100 
Nominal: Set to upper end of range (anoxic conditions) 
Range: 24 

Sediment Transport Parameters (All nominal values determined by calibration, all ranges provided in WASP) 

Critical cohesive sediment fraction 0.5 -- 0-1 Critical cohesive sediment fraction 

Critical shear stress for erosion of cohesive bed 0.5 N/m2 0.5-8 Critical shear stress for erosion of cohesive bed 

Shear stress multiplier for cohesive resuspension 0.12 g/m2-s 0.01-100 Shear stress multiplier for cohesive resuspension 

Shear stress exponent for cohesive resuspension 2.5 -- 1.6-4 Shear stress exponent for cohesive resuspension 

Shear stress exponent for noncohesive resuspension 1.5 -- 1.5-2 Shear stress exponent for noncohesive resusp. 

Lower critical shear stress for silt 0.05 N/m2 0-0.05 Lower critical shear stress for silt 

Upper critical shear stress for silt 0.2 N/m2 0.01-0.2 Upper critical shear stress for silt 

Shear stress exponent for silt deposition 2.0 -- 0-2.0 Shear stress exponent for silt deposition 

Lower critical shear stress for sand 0.2 N/m2 0-0.2 Lower critical shear stress for sand; 

Upper critical shear stress for sand 0.2 N/m2 0.01-0.2 Upper critical shear stress for sand 

Shear stress exponent for sand deposition 2.0 -- 0-2.0 Shear stress exponent for sand deposition 

Bed compaction time step (dynamic bed volume) 1 d -- Bed compaction time step (dynamic bed volume) 

*temperature dependent  
†oxygen dependent 
‡sulfide dependent 
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Table B-3. Maximum of simulated 95 th percentile total metal concentrations originating 

from NP sources over all segments (averaged over 2 cm sediment depth) compared to 

observed metal concentrations (from all sources) in the James River basin downstream of 

the modeled region.196, 201 

 
Water Column (ng Me/L) Surface Sediments (ng Me/g-dry) 

PEC Observation PEC Observation 

Total Ag 1.55 (≤ 100) 9.78 (100 to 750) 

Total Zn 43.6 (3,600 to 16,000) 41.9 (500 to 230,000) 

 

 

 

Table B-4. Aeration tank model system parameters and outputs  

Parameter Value Source (notes) 
Basin volume 1500 m3 4 h hydraulic retention time (3-5 h expected for CMAS reactor) 202  

Flow rate 0.1 m3/s Range from 0 to > 4.38 m3/s 202  

 Wastewater temperature 15oC Typical wastewater temperature 202  
Sulfide concentration 0.1 mg/L 0.001 to 10 mg/L expected for WWTPs 72 

Oxygen concentration 2 mg/L Value maintained in aeration basins 202  

TSS concentration 3000 mg/L 1500-4000 mg/L expected for a CMAS reactor 202  

 

 

Table B-5. ZnO speciation in the aeration tank model for different scenarios. Percent ZnS 
is low in all cases because of low sulfide concentrations and high TSS, since Zn2+ is assumed to 
preferentially sorb to mixed liquor suspended solids.  Percentages do not sum to 100% because of 
rounding.   

Scenario % ZnO NP % Zn2+ % ZnS 
Nominal ("best guess") 7.4 92.6 0.001 
Highest ZnO dissolution rate 2.6 97.5 0.001 
Lowest ZnO dissolution rate 85.2 14.8 0.0002 
Highest sulfide concentration 7.4 92.5 0.1 
Lowest sulfide concentration 7.4 92.6 1E-05 
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B.3 Supporting Figures 

 

Figure B-1. GIS plots of the James River Basin. Above: Segmentation of the river network (68 
segments) and location with respect to Virginia and the Chesapeake Bay (stream segment width 
proportional to flow rate).  Middle left: NLDAS land cover data showing the division of the 
modeled region into forest (green, 80%), agriculture (yellow, 13%), and urban regions (red, 5%).  
Middle right: Dark grey regions indicate urban centers, including three cities (Lynchburg, 
Charlottesville, and Richmond).  Asterisks indicate the inflow points of the segments containing the 
two largest point sources dischargers, which contribute 68% of the effluent load (among 82 
dischargers).  Lower left: Elevation plot showing the Ridge and Valley physiographic province.  
Lower right: Land segments (county lines) overlaid on river segments. 
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Figure B-2. Seasonal trends in key environmental drivers (system conditions).  Parameters 
which varied spatially are shown as boxplots, which represent the statistical distribution across the 
river segments (min, Q1, median, Q3, max).  High bottom shear stress corresponds with high 
sediment resuspension from the river bed and low sediment deposition.  Negative burial velocities 
indicate scour.  Temperature and oxygen (below) were varied across time but held at average values 
across segments.    
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Figure B-3. Non-point versus point sources of NP stream loads in the James River Basin 

model. a) GIS plot of the modeled region showing river segments in which the predicted total 
runoff load over the course of the simulation (kg Ag or Zn) exceeds the effluent load (purple) or 
vice versa (black).  Two stream segments receive 68% of effluent loads and are marked with 
asterisks at the inflow points.  b) Comparison of the distribution of the log daily zinc (left) and silver 
(right) runoff load over all segments (purple) to the time-invariant log of the basin-wide daily 
effluent load (black) reveals that daily runoff loads are highly skewed and can exceed effluent loads.  
c) Daily runoff load of Ag basin-wide over time (purple) compared to the basin outflow (secondary 
axis, blue).  Note the reversed secondary axis (right).  Peaks in runoff loads occur during high flow 
events in the watershed.  Zn results are proportional (not shown). 
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Figure B-4. Resuspension and deposition rate predictions in the James River Basin model.  
a) Spatially averaged resuspension and deposition rates for silt (the NP-carrying sediment fraction) at 
each time step.  Rates are plotted against the basin outflow (secondary axis, reversed, in blue) to 
show that, as expected, resuspension rates are highest, and deposition is lowest, when stream flows 
are high.  Deposition is near-constant in some segments, resulting in the flat non-negative baseline 
observed in the lower plot.  b) Temporally averaged resuspension and deposition rates plotted as a 
function of the average stream reach velocity show the same trends observed in (a).  Sand transport 
also exhibits these trends.  The segment represented by the potential outlier in the resuspension plot 
in (b) is atypically shallow, and the high average resuspension rate appears to result from a handful 
of specific resuspension events on days when the segment depth is exceptionally low.  Deposition 
rates never exceed the maximum deposition rate specified by the Stokes Law, 2.7 m/d (red dashed 
line).  Omitting the outlier segment to reduce upward bias, the spatially and temporally averaged silt 
resuspension rate (used in the alternative sediment transport scenario in Figure 3-3) is 3.3*10-6 m/d 
(1.2 mm/year). 
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Figure B-5. Sensitivity of the accumulation of Ag NPs in the river and sediments over 

time to spatiotemporal variability in sediment resuspension and deposition rates.  a) 
Comparison of (1) the "base case" (Figure 3-3) to alternative sediment transport scenarios in which 
there is no barrier to deposition (gravitational settling according to Stokes' Law) and the 
spatiotemporally invariant resuspension rate is set at (2) a value used in previous NP fate models, 0.1 
mm/yr,8, 11, 41 (3) the average value predicted in the base case, used in Figure 3-3 (1.2 mm/year), and 
(4) the maximum value suggested previously for cohesive sediments in rivers based on model 
calibrations (30 mm/year).113  b) Comparison of the influence of spatial and temporal variability in 
sediment transport rates on model predictions.  In scenarios (3), (5), and (6), deposition is 
maximized as shown in (a).  In scenarios (7), (8), and (9), the average deposition rate predicted in the 
base case was used in place of the gravitational settling velocity, thus accounting for the ability of 
stream flow to create a barrier to deposition.  In scenarios (5) and (8), spatial variation in stream flow 
effects was removed by setting constants to their average value.  In scenarios (6) and (9), temporal 
variation in stream flow effects was removed.  Results reveal that over-prediction of NP 
accumulation occurs systematically when spatial or temporal variation is ignored, since average rates 
fail to capture the high flow events and high flow regions that drive sediment mobility; that the large 
jump in NP accumulation in sediments observed when disregarding spatiotemporal variation in 
sediment transport is due largely to ignoring the ability of stream flow to provide a barrier to 
deposition; and that spatial variation has a larger effect on Ag accumulation than temporal variation, 
although both play a role. 
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Total Ag concentration, water column (ng Ag/L)

 
 

Total Ag concentration, sediment (average over 2 cm, ng Ag/kg)

 
Figure B-6. Total Ag concentrations for each segment in which concentrations are non -

zero for the five year stretch which contains the driest (15-16) and wettest (17-18) years in 

the simulation. Compare water column concentrations to Figure 3-6.  Figure 3-4 and Figure 3-5 
(note change in units) show that sediment segments with the highest concentrations have high 
stream loads but also have relatively high sediment deposition. 
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Figure B-7. Sensitivity of the predicted mass accumulation of Ag in the river and 

sediments at t = 20 years (see Figure 3-3) to assumptions about the strength of the 

association of Ag NPs with sediments in the water column and river bed. In the base case 
(results reported in the main text), we assume an effective solid-water "partition coefficient" (Kd, in 
units of L/kg) of infinity, or complete NP association with the silts/fines (orange diamond).  The 
percent of the cumulative Ag NP load to the basin remaining at the end of the simulation appears to 
have a lower bound of approximately 0.15%.  Because NP suspensions never reach equilibrium, 
kinetic descriptors of heteroaggregation are preferable to the partition coefficients used here.  
However, Kd values do permit simple sensitivity analysis as shown.  Experimentally reported Kd 
values for Ag NPs are shown as blue bars.108, 203 
 

 

Figure B-8. Speciation of Zn in the WASP7 river simulation model for an alternative 

input scenario in which 85% of Zn in effluent is present as ZnO NPs (based on the 

aeration tank model sensitivity analysis, Table B-5) and the lowest ZnO dissolution rate is 

used. Even in this extreme case, ZnO NPs do not dominate speciation in the water column and 
sediment speciation is indistinguishable from the base case of 7.5% Zn present as ZnO NPs (Figure 
3-2). 
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Figure B-9. Total suspended solids (TSS) calibration details. Above: Location of USGS 
monitoring station used (circled in red).  Below: Comparison of observed monthly average TSS 
concentrations to simulated concentrations.  Table inset (below): Calibration metrics. 
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Appendix C.  Supplement to Chapter 4, the Population Balance Models 

C.1 Supporting Methods 
 
Nomenclature 
 

𝒌𝑩  Boltzmann constant 

R  Gas constant 

𝝁  Viscosity of water 

T  Temperature 

𝑽𝒔𝒐𝒍  Solution volume 

𝑺𝒕𝒐𝒕  Total initial NP surface area in solution 

𝑽̅  Molar volume of MexOx 

𝜸  Particle surface free energy 

𝝆𝒑  Density of MexOx 

𝑫𝑴𝒆+   Me+ diffusion coefficient in water 

𝒂𝑴𝒆𝒙𝑶𝒙 𝑴𝒆+⁄   Stoichiometric coefficient for MexOx dissolution to form Me+ 

𝒉  Particle boundary layer thickness (Nernst-Brunner modified Noyes Whitney) 

[𝑴𝒆+]𝒕  Metal ion concentration at time t 

[𝑴𝒆+]𝒆𝒒  Metal ion concentration at equilibrium 

[𝑴𝒆𝒙𝑶𝒙]𝒕  MexOx concentration at time t 

t  Time 

r  Particle radius 

m  Particle mass 

𝑫𝒈𝒆𝒐𝒎,𝟎  "Characteristic diameter" of primary NPs: Surface-weighted geometric mean diameter  

𝑫𝒊,𝒂𝒈𝒈  "Characteristic diameter" of aggregates 

   

Total Mass Balance   

MNP,tot  Total (size-unresolved) NP mass in solution 

𝒌mb  Dissolution rate constant, total mass balance model 

𝒌𝑺,𝒎𝒃  Surface-area normalized reaction rate, total mass balance model 

   

Population Balance (all)   

𝒇(m)  Particle size distribution (function of mass) 

𝒎𝒊  
SM: representative bin size for bin i 
Moment methods: abscissa associated with quadrature point i 

𝒘𝒊  Weight associated with quadrature point i (moment methods) 

𝒎𝒂𝒗𝒈  Average primary particle mass 

𝒓𝒂𝒗𝒈  Average primary particle radius 

n  Number of quadrature points (moment methods) 

Xi  Number of primary particles in aggregates of size i 

𝝁𝒌  kth moment of the particle size distribution 

N  Total particle number concentration at time t (N0 = initial concentration) 

A  Dissolution rate, dm/dt 

𝒌𝑺,𝒑𝒃  Surface-area normalized reaction rate, population balance 

𝑲  Proportionality constant for permeable aggregates colliding due to Brownian motion 

𝑫𝒇  Fractal dimension of the aggregate 

β  Collision rate due to Brownian motion 

α  Attachment efficiency 

𝝋  Dissolution flux 

   

Sectional Method   

𝑵𝒊  Number concentration of particles in bin i 

mrat  Ratio used to select bin sizes 

q  Exponent used to select bin sizes 

mi,lo  Mass at the lower boundary of size bin i 

mmin  Minimum particle mass 
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mmax  Maximum particle mass 

𝒏𝒃𝒊𝒏𝒔  Number of size bins 

   

Direct QMOM   

𝒂𝒊  Derivative of weight associated with quadrature point i with respect to t 

𝒃𝒊  Derivative of weighted abscissa associated with quadrature point i with respect to t 

𝑺𝒌̅̅ ̅  Source term for NP processes 

   

 
Extended QMOM 

  

n2  Number of secondary quadrature points 

𝝈𝜷  Measure of spread around primary quadrature points 

𝝈𝜷,𝒎𝒂𝒙  Upper bound on σβ 

𝒘𝒊𝟏,𝒊𝟐   Weight associated with secondary quadrature point 𝒊𝟏, 𝒊𝟐 

𝒎𝒊𝟏,𝒊𝟐  Abscissa associated with secondary quadrature point 𝒊𝟏, 𝒊𝟐 

𝝆𝒊𝟏,𝒊𝟐  𝒘𝒊𝟏𝒘𝒊𝟏,𝒊𝟐 

𝒊  First parameter of the beta distribution associated with primary quadrature point i 

𝝁𝒊  Second parameter of the beta distribution associated with primary quadrature point i 

𝝁𝒌̃  Transformed moment set 

𝝁𝒌
∗̃   Transformed star moment set 

𝒑𝒌
∗   Canonical star moment set 

𝒑𝒌
∗̃   Transformed canonical star moment set 

𝑯𝟐𝒌, 𝑯𝟐𝒌+𝟏, 𝑯𝟐𝒌+𝟏, 𝑯𝟐𝒌  Hankel determinants of the transformed star moment set 

𝑱𝒊  
Difference between predicted and known value of the 2nth moment for a given estimate of 
σβ 

𝜺  First parameter of the weight function w used to find the secondary quadrature points 

𝜻  First parameter of the weight function w used to find the secondary quadrature points 

𝒂𝒋  Diagonals of the Jacobi matrix 

𝒃𝒋  Co-diagonals of the Jacobi matrix 

J  Jacobi matrix used to find the secondary quadrature points 

 
Analytical Solutions 

  

µln  Location parameter of the lognormal distribution at time t (µln,0 = initial condition) 

σln  Scale parameter of the lognormal distribution at time t (σln,0 = initial condition) 

 
 

C.1.i. An introduction to our notation, et cetera: 

In recognition of the complexity and diversity of these methods, and the reader's need to assess their 

most fundamental features without getting bogged down by mathematical obscura, we use a set of 

notations that (we hope) is as simple as possible.  In so doing, we have played "fast and loose" with 

more rigorous formulations found in many of the original works.  We hope the reader will forgive 

this approach.   

 The methods provided here emphasize model development for a simple batch reactor and 

the practical identification and treatment of common errors that arise during their execution, rather 
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than (e.g.) theory, the mathematical derivations of these methods, or the execution of their many 

permutations and extensions.  For details, we refer the reader to the original works. 

 

C.1.1. Total Mass Balance 

Conventional mass balance differs from population balance as described in Section C.1.2 in that the 

particle size distribution (and/or its statistical properties) are not resolved or tracked over time.  

Instead, only the total mass concentration of each species of interest (here, the metal oxide and its 

ions) is tracked. 

 In a simple batch reactor (complete dispersion, no advection), and in the absence of 

dissolution, aggregation has no effect on the total NP mass.  When dissolution does occur, the 

following simple first-order linear inhomogeneous differential equation39 has been used to describe 

dissolution.159  

 

𝑑[𝑀𝑒+]𝑡
𝑑𝑡

= 𝑘𝑚𝑏([𝑀𝑒
+]𝑒𝑞 − [𝑀𝑒

+]𝑡) 

Analytical solution: [𝑀𝑒+]𝑡 = [𝑀𝑒
+]𝑒𝑞[1 − 𝑒

−𝑘𝑚𝑏𝑡] 

Equation C-1 

 

In Equation C-1, [𝑀𝑒+]𝑡 is the mass concentration of the ion in solution at time t, [𝑀𝑒+]𝑒𝑞 is the 

ion concentration in solution at equilibrium, and kmb is an empirical rate constant determined by data 

fitting.  In a batch reactor model, [𝑀𝑒𝑥𝑂𝑥]𝑡 can be calculated directly once [𝑀𝑒+]𝑡  is known 

because the total metal concentration remains constant.  Since an analytical solution is available, 

simulation runtimes are trivial. As a matter of historical interest, we note that Equation C-1 is the 
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original 1897 form of the Noyes Whitney equation before its modification by Nernst and Brunner to 

the form used most often today (see Section C.1.2.b).157   

 As written, Equation C-1 is not a function of particle size.  The size dependence of kmb may 

be determined by data fitting.  The size dependence of the equilibrium solubility, [𝑀𝑒+]𝑒𝑞 , is either 

determined by data fitting or estimated using the Ostwald-Freundlich relation, a theoretical model 

that attributes the observed increase in solubilities as particle radii (r) decrease to an increase in 

surface curvature.   

 

[𝑀𝑒+]𝑒𝑞(𝑟)

[𝑀𝑒+]𝑒𝑞(𝑏𝑢𝑙𝑘)
= 𝑒

2𝛾𝑉̅
𝑅𝑇𝑟
⁄

  

Equation C-2 

 

where γ is the surface free energy, 𝑉̅ is the molar volume, R is the gas constant, and T is the 

temperature.  Early efforts suggest that Equation C-2 may over-estimate the equilibrium solubility of 

NPs. 20, 120-122  Since our analysis is purely theoretical and questions about the appropriateness of 

these models for NPs can only be answered with experiments, we use Equation C-2 in this work 

(applying it in both mass balance and population balance models). Determination of the best rate 

law formulations for NPs is left for future work. 

 In Equation C-2, we used the initial surface-weighted geometric mean radius as the 

characteristic particle size for the distribution. In general, the surface-weighted geometric mean 

diameter, 𝐷𝑔𝑒𝑜𝑚,0 (where “0” here indicates "primary" or unaggregated particles, and not t=0) was 

calculated at every time step as shown.   

𝐷𝑔𝑒𝑜𝑚,0  = 𝑒𝑥𝑝 [
∑ 𝑊𝑖𝐷𝑖

2 ln𝐷𝑖
𝑛
𝑖=1

∑ 𝑊𝑖𝐷𝑖
2𝑛

𝑖=1

] 

Equation C-3 
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where 𝐷𝑖 is the particle diameter associated with a given size class (SM) or quadrature point 

(QMOM) and Wi is the particle number concentration associated with that size class (𝑊𝑖=𝑁𝑖) or 

quadrature point (𝑊𝑖=𝑤𝑖).   

 Eq. 3 was used wherever a measure of the primary particle size was needed.160  This measure 

has several advantages over more traditional estimates of particle diameter including the (number-

weighted) mean and the geometric mean. The geometric mean of a skewed distribution is a better 

estimate of its central tendency than its average.  For reactive NPs, the surface-weighted diameter is 

more relevant than the number-weighted diameter because of the controlling influence of surface 

area on dissolution kinetics.  In addition, the surface-weighted diameter does not rely on the zeroth 

moment (the total number concentration) and is thus robust to numerical errors introduced by 

approximation of the dissolution flux. 

 

C.1.2. Population Balance: General Principles 

Although definitions vary (e.g., population balance is often defined simply as an implementation of 

the "population balance equation," Equation C-4, and its derivatives),58, 130 population balance may 

be defined most generally as a means of modeling particle populations in which the continuity 

equation describes the distribution of particle properties (so-called "internal coordinates") across the 

population in addition to tracking changes in the average or total properties of the population (e.g., 

mass concentration) across space and time ("external coordinates").131  The internal coordinate of 

greatest interest in population balance is nearly always particle size, and we will focus exclusively on 

this property here.   

 By tracking changes in an entire particle size distribution over time and space, rather than 

merely tracking the total particle mass (Section C.1.1), population balance models are able to track 
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changes in the number concentration, surface area concentration, and primary and/or aggregate 

particle sizes in addition to the total NP and ion mass concentrations.  Additionally, population 

balance allows the modeler to explicitly account for size-dependent differences in dissolution and 

aggregation rates across the population at each time step.  However, the mathematical complexity, 

data requirements, and runtime demands of population balance methods are, unsurprisingly, 

substantially greater than that of total mass balance.  Modelers should thus not use this method 

unless it is truly better suited to answering major questions of interest.14 

 The particle size distribution is described differently by different population balance 

methods.  The three most popular alternatives are sectional methods, moment methods, and Monte 

Carlo methods.58, 134-136  In the sectional method (SM), the size domain is divided into sections or 

"bins" such that the particle size distribution is treated like a histogram.  Moment methods conserve 

computational resources relative to the SM by only tracking the evolution of the lower-order 

statistical moments of a particle size distribution instead of tracking the entire distribution.58, 142  As 

described in Section C.1.2.d, the moments of a distribution capture most of the essential features of 

the distribution and can also, in some cases, be used to reconstruct it.  Monte Carlo methods, which 

we do not attempt in this work, explicitly model the behavior of a finite population of (e.g., > 103-

104)58, 136 particles and thus may require high runtimes relative to moment methods to achieve a given 

accuracy.134  Importantly, there are an impressive number of variants upon, and alternatives to, these 

three major approaches. 

 We compare two moment methods in this work: The Direct Quadrature Method of 

Moments (DQMOM)131, 145 and the Extended Quadrature Method of Moments (EQMOM).57  

Differences between these methods, their application to NPs, and their advantages over "classical" 

QMOM142 are described in detail below (Sections C.1.4 and C.1.5).  We chose DQMOM because it 

is extremely fast and relatively simple to implement.  We chose EQMOM because it is specifically 
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designed to deal with the "dissolution flux problem" described in the main text and Section 

C.1.2.e.iii, which is crippling for most moment-based approaches.   

 

C.1.2.a. The population balance equation for dissolution and aggregation 

The following population balance equation (PBE) may be used to describe a change in the particle 

size distribution, f, over time, t, due to dissolution and aggregation 43, 55, 56, 58, 130, 142 

 

𝜕𝑓

𝜕𝑡
= (

𝜕𝑓

𝜕𝑡
)
𝑑𝑖𝑠𝑠

+ (
𝜕𝑓

𝜕𝑡
)
𝑎𝑔𝑔

 

(
𝜕𝑓

𝜕𝑡
)
𝑑𝑖𝑠𝑠

= −
𝜕(𝐴𝑓)

𝜕𝑚
    

(
𝜕𝑓

𝜕𝑡
)
𝑎𝑔𝑔

=
1

2
∫ 𝛼(𝑚 −𝑚′,𝑚′)𝛽(𝑚 −𝑚′,𝑚′)𝑓(𝑚 −𝑚′)𝑓(𝑚′)
𝑚

0

𝑑𝑚′

− 𝑓(𝑚)∫ 𝛼(𝑚,𝑚′)𝛽(𝑚,𝑚′)𝑓(𝑚′)
∞

0

𝑑𝑚′ 

Equation C-4 

 

where m (particle mass) is our chosen size coordinate (for reasons described subsequently), A=dm/dt 

is the dissolution rate law described in Section C.1.2.b,130, 142, 146 β is the frequency of particle-particle 

collisions (#/m3) that may lead to an aggregation event, and α is the probability that two particles 

will remain attached upon collision.  α is alternatively called the "sticking coefficient" or "attachment 

efficiency," and is a major focus of current investigation in the experimental NP fate literature.112, 147, 

148  Several other terms may be included in the PBE if other processes (e.g., aggregate breakage, 

settling) are of interest.  Note, however, that (
𝜕𝑓

𝜕𝑡
)
𝑎𝑔𝑔

 applies equally to both NP homoaggregation, 

modeled in this work, and heteroaggregation (e.g., as demonstrated by Therezien et al.).9 
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 The first term on the right-hand side of the equation for (
𝜕𝑓

𝜕𝑡
)
𝑎𝑔𝑔

 describes the formation of 

new aggregates of size m via the aggregation of primary (unaggregated) particles or aggregates of size 

(m-m') with those of size m' (the coefficient, 1/2, simply eliminates double-counting).  The third term 

describes the loss of particles of size m due to the aggregation of particles of size m with those of any 

other size.  Note that both terms are simply second-order rate laws in which the aggregation rate, 

described by the product αβ, is assumed to be linearly proportional to the number concentrations of 

particles of each size.   

 

C.1.2.b. Dissolution rate 

We use the 1900 variant on Eq. 1 (the original Noyes Whitney equation) by Brunner and 

Tolloczko157 to describe the size-dependent dissolution of NPs.  In this form, kmb is replaced with 

the product of a surface area-normalized rate, 𝑘𝑆,𝑚𝑏, and Stot, the total surface area of all particles in 

solution.   

𝑑[𝑀𝑒+]𝑡
𝑑𝑡

= 𝑘𝑆,𝑚𝑏𝑆𝑡𝑜𝑡([𝑀𝑒
+]𝑒𝑞 − [𝑀𝑒

+]𝑡) 

Equation C-5 

 
Thus this expression simply states that particle dissolution is surface-area dependent and proceeds 

by exponential decay until equilibrium is achieved. 

 To use Equation C-5 in population balance, we must rewrite the right hand side in terms of 

our internal coordinate, particle mass.  We must also rewrite the entire expression in terms of the 

mass loss of a single particle of a given size, rather than the gain in the ion concentration due to 

dissolution of all particles.  A derivation follows in which we assume spherical particles, ignore the 

dependence of the total number concentration on time, and assume that the particle population is 

monodisperse.  These assumptions are not applied elsewhere in our work; they are simply a 
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convenience that allows us to find an appropriate form of Equation C-5 for use in our model.  

𝑎𝑀𝑒𝑥𝑂𝑥 𝑀𝑒+⁄  is the stoichiometric coefficient for 𝑀𝑒𝑥𝑂𝑥 dissolution (g 𝑀𝑒𝑥𝑂𝑥 lost / g 𝑀𝑒+ 

formed), MNP,tot is the total NP mass in solution, Vsol  is the solution volume, and N0 is the initial total 

particle number concentration. 

 

𝑑[𝑀𝑒+]𝑡
𝑑𝑡

= 𝑘𝑆,𝑚𝑏𝑆𝑡𝑜𝑡([𝑀𝑒
+]𝑒𝑞 − [𝑀𝑒

+]𝑡) 

𝑑𝑀𝑁𝑃,𝑡𝑜𝑡

𝑑𝑡
≈ 𝑎𝑀𝑒𝑥𝑂𝑥 𝑀𝑒+⁄ 𝑉𝑠𝑜𝑙𝑘𝑆,𝑚𝑏𝑆𝑡𝑜𝑡([𝑀𝑒

+]𝑡 − [𝑀𝑒
+]𝑒𝑞) 

𝑑𝑚𝑖

𝑑𝑡
≈
𝑎𝑀𝑒𝑥𝑂𝑥 𝑀𝑒+⁄ 𝑉𝑠𝑜𝑙𝑘𝑆,𝑚𝑏𝑆𝑡𝑜𝑡

𝑁0𝑉𝑠𝑜𝑙
([𝑀𝑒+]𝑡 − [𝑀𝑒

+]𝑒𝑞) 

𝑑𝑚𝑖

𝑑𝑡
≈
𝑎𝑀𝑒𝑥𝑂𝑥 𝑀𝑒+⁄ 𝑉𝑠𝑜𝑙𝑘𝑆,𝑚𝑏(𝑁0𝑉𝑠𝑜𝑙4𝜋𝑟𝑖

2)

𝑁0𝑉𝑠𝑜𝑙
([𝑀𝑒+]𝑡 − [𝑀𝑒

+]𝑒𝑞) 

𝑑𝑚𝑖

𝑑𝑡
≈ 𝑎𝑀𝑒𝑥𝑂𝑥 𝑀𝑒+⁄ 𝑉𝑠𝑜𝑙𝑘𝑆,𝑚𝑏4𝜋 (

3

4𝜌𝑝𝜋
)

2/3

𝑚𝑖
2/3([𝑀𝑒+]𝑡 − [𝑀𝑒

+]𝑒𝑞) 

𝐴𝑖 =
𝑑𝑚𝑖

𝑑𝑡
= 𝑘𝑆,𝑝𝑏𝑚𝑖

2/3([𝑀𝑒+]𝑡 − [𝑀𝑒
+]𝑒𝑞)   

Equation C-6 

 

As an alternative to Equation C-5, many authors have proposed the Nernst-Brunner modified 

Noyes Whitney equation, a second modification of Equation C-1.20, 120-122   

 

𝑑[𝑀𝑒+]𝑡
𝑑𝑡

=
𝐷𝑀𝑒+𝑆𝑡𝑜𝑡
ℎ𝑉𝑠𝑜𝑙

([𝑀𝑒+]𝑒𝑞 − [𝑀𝑒
+]𝑡) 

Equation C-7 
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𝐷𝑀𝑒+  is the rate of ion diffusion in water and h is the thickness of a boundary layer around the 

surface of the particles through which ions must diffuse for dissolution to occur.   

If we apply the same logic we applied to Equation C-5 and assume that h approximately equals the 

particle radius, which is generally the case below 30 microns in size,5, 204 we get Equation C-8, which 

is equivalent to the Maxwellian flux expression used in many atmospheric chemistry models 

(compare to Eq. 12.9, p. 591, in 56).  When mass is the internal coordinate,  

 

𝐴𝑖 =
𝑑𝑚𝑖

𝑑𝑡
= 𝐾2𝜋𝐷𝑀𝑒+ (

6𝑚𝑖

𝜌𝑝𝜋
)

1/3

([𝑀𝑒+]𝑡 − [𝑀𝑒
+]𝑒𝑞) 

Equation C-8 

 

Here, K is a coefficient that arises during the conversion and should approximately (if not exactly) 

equal the stoichiometric coefficient. 

 Equation C-6 has many advantages over Equation C-8 for our purposes, and will thus be 

used in this work.  First, Equation C-8 assumes that the rate-limiting step of dissolution is the 

diffusion of metal ions away from the particle surface.  However, for metals and metal sulfides, the 

rate-limiting step is more likely to be the rate of surface oxidation.  Second, the empirical form 

(Equation C-6) is preferable to the theoretical form (Equation C-8) until the theoretical form has 

been extensively tested against experimental data.  Third, Equation C-8 may be unusable in cases 

where the radius, rather than the particle mass, is chosen as the internal coordinate, since dr/dt will 

approach infinity as r approaches zero. 

 The effect of aggregation on dissolution is poorly understood at present.  In order to bound 

its effect, we consider two extreme cases.  In the first, our "base case," we maximize the dissolution 

rate by assuming that aggregation has no effect.  This approach is in general agreement with 
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experimental results, for which the influence of aggregation is uncertain at best, and for which small 

particles have been shown to dissolve faster than large particles even when they form larger 

aggregates.166  We proceed as follows: The model is run once for a "dissolution only" case in order 

to determine the average primary (unaggregated) particle mass at each time step, 𝑚𝑎𝑣𝑔(𝑡).  It is then 

run a second time for the case of simultaneous dissolution and aggregation.  For the second run, 

Equation C-8 is evaluated for 𝐷𝑔𝑒𝑜𝑚,0(𝑡),  then is multiplied for each aggregate size by the 

geometric mean number of primary particles in the aggregate, Xi, to determine the overall 

dissolution rate of the aggregate.  To minimize error in 𝐷𝑔𝑒𝑜𝑚,0(𝑡), we assume a monodisperse 

primary particle population.   

 In the second case, which provides a conservative lower bound on the dissolution rate, we 

assume that aggregation leads to complete fusion of the particles, forming a new spherical particle 

whose dissolution behavior is determined by the aggregate mass, 𝑚𝑖 . 

 

C.1.2.c. Collision rate 

In this work, we treat α (the probability of attachment upon collision) as a known constant with a 

fixed value between 0 and 1.  Collisions, which determine the collision rate (β), are assumed to result 

from Brownian motion. 

 One advantage of choosing mass as our size coordinate is that the mass of every newly 

formed aggregated can be calculated exactly from the masses of the colliding species.  In contrast, 

the radius of the aggregate must be estimated from the assumed geometry of the colliding species 

and the aggregate itself.  However, even if mass is our size coordinate, we must make an assumption 

about the porosity of the aggregates and its effect on their collision rates.  We use the following 

expression for the collision rate between aggregates of size 𝑚𝑖 and 𝑚𝑗 
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𝛽𝑖,𝑗 =
2𝑘𝐵𝑇

3𝜇
(𝑚𝑖

1/𝐷𝑓 +𝑚𝑗
1/𝐷𝑓)(𝑚𝑖

−1/𝐷𝑓 +𝑚𝑗
−1/𝐷𝑓) 

Equation C-9 

 

where 𝐷𝑓 is the fractal dimension of the aggregates.154, 161  We assume 𝐷𝑓 = 1.8 (for all particle sizes), 

which is approximately correct for aggregates formed by Brownian diffusion.43, 161  More detailed and 

theoretically rigorous rate laws exist,162-165 but a simple approach suffices for an illustrative analysis 

performed largely in the absence of experimental data.  

 The characteristic aggregate diameters reported in our results (e.g., Figure 4-2), are estimated 

from the characteristic primary particle diameters at time t, 𝐷𝑔𝑒𝑜𝑚,0(𝑡), as shown in Equation C-10.  

In the absence of dissolution, 𝐷𝑔𝑒𝑜𝑚,0(𝑡) = 𝐷𝑔𝑒𝑜𝑚,0(0).
162 

 

𝐷𝑖,𝑎𝑔𝑔 = 𝐷𝑔𝑒𝑜𝑚,0(𝑋𝑖)
1/𝐷𝑓 

Equation C-10 

 

 

C.1.2.d. Statistical moments of a distribution 

The statistical moments, 𝜇𝑘, of a particle size distribution, f(m), are given as142 

𝜇𝑘 = ∫𝑚𝑘𝑓(𝑚)𝑑𝑚 

Equation C-11 

 

It is easily seen that 𝜇0 (the "zeroth moment") is the total particle number concentration.  By the 

same logic, the moment sequence k = 0, 1/3, 2/3, 1 creates a sequence of values that are directly 

proportional to the total particle number concentration, the sum of all particle radii (which can, for 
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example, be divided by 𝜇0 to find the average particle size), the surface area concentration, and the 

total mass concentration of the particle population.  By tracking this moment sequence over time, 

we are then able to track any dose metric of practical interest with ease.  If radius were our internal 

coordinate, the moment sequence needed to calculate these metrics would be k = 0, 1, 2, 3.   

 If the particle size distribution is described exactly by a particular distribution (e.g., 

exponential, lognormal), its moments can often be calculated directly from the parameters of the 

distribution using known formulas (e.g., see Section C.1.6).  The EQMOM relies on such formulas, 

which can also be used in the EQMOM and the DQMOM to determine the initial (t = 0) moments 

of a known distribution. 

 

C.1.2.e. Introduction to Moment Methods 

C.1.2.e.i. The Quadrature Approximation 

In classical quadrature-based moment methods, Equation C-11 (the moment equation) is replaced 

with a discrete approximation using an "n-point Guassian quadrature rule."142 

 

𝜇𝑘 = ∫𝑚𝑘𝑓(𝑚)𝑑𝑚 =  ∑𝑚𝑖
𝑘𝑤𝑖

𝑛

𝑖=1

 

Equation C-12 

 

In effect, the continuous function f(m) is replaced with a particular discrete approximation defined 

by its "quadrature points," or the set of n "abscissas" and "weights" (mi, wi).  The great strength of n-

point Gaussian quadrature is that it allows the quadrature points to be calculated from the lower-

order moments of the distribution, thus solving the so-called "closure problem" that characterizes 

moment methods.142 
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C.1.2.e.ii. Numerical Solution: The Moment Evolution Equations and Matrix Inversion 

In classical QMOM, the population balance equation used in the SM (Equation C-4) is replaced with 

a continuity equation (the "moment evolution equation") that combines Equation C-4 with the 

derivative of Equation C-11 to instead balance the moments of the distribution, 
𝑑𝜇𝑘

𝑑𝑡
.  The moment 

evolution equations for the processes of dissolution and aggregation are as follows:142 

 

𝑑𝜇𝑘
𝑑𝑡

= [
𝑑𝜇𝑘
𝑑𝑡
]
𝑑𝑖𝑠𝑠

+ [
𝑑𝜇𝑘
𝑑𝑡
]
𝑎𝑔𝑔

 

[
𝑑𝜇𝑘
𝑑𝑡
]
𝑑𝑖𝑠𝑠

= 𝑘∫ 𝑚𝑘−1𝐴(𝑚)
∞

0

𝑓(𝑚)𝑑𝑚 

[
𝑑𝜇𝑘
𝑑𝑡
]
𝑎𝑔𝑔

1

2
∫ ∫ 𝛼(𝑚,𝑚′)𝛽(𝑚,𝑚′)[(𝑚 +𝑚′)𝑘 −𝑚𝑘 − (𝑚′)𝑘]𝑓(𝑚)𝑓(𝑚′)

∞

0

∞

0

𝑑𝑚𝑑𝑚′ 

Equation C-13 

 

The quadrature approximation of Equation C-13 is  

 

𝑑𝜇𝑘

𝑑𝑡
≈ 𝑘∑ 𝑚𝑖

𝑘−1𝐴𝑖𝑤𝑖 +
𝑛
𝑖=1

1

2
∑ ∑ 𝛼𝑖𝑗𝛽𝑖𝑗[(𝑚𝑖 +𝑚𝑗)

𝑘
−𝑚𝑖

𝑘 −𝑚𝑗
𝑘])𝑤𝑖𝑤𝑗

𝑛
𝑗=1

𝑛
𝑖=1        

Equation C-14 

 

Classical QMOM proceeds as follows: (1) Quadrature points are estimated from the moments 

calculated during the previous time step (or the initial conditions) using a matrix inversion algorithm 

such as Product-Difference (described shortly).  The moments of the distribution are then evolved 

from one time step to the next using the Euler approximation of Equation C-14. 



162 
 

 Although the DQMOM and EQMOM differ from the classical QMOM in their description 

of the particle size distribution and their treatment of its dynamic evolution, the algorithms for all 

three methods require the implementation of a matrix inversion procedure in which the lower-order 

moments of the distribution are used to determine its quadrature points.  In this work, we employ  

the Product-Difference algorithm.58, 142  The modified Wheeler algorithm (MATLAB code provided 

in Appendix A of 152, "Adaptive 1-D quadrature algorithm") is a popular alternative that readily 

identifies and handles numerical problems resulting from the use of too many quadrature points 

(where n should not exceed 5-10).57  However, we found that its use of an iterative approach to 

determine an ideal number of quadrature points was unnecessary for successful implementation of 

the DQMOM and unecessarily complicated our implementation of the EQMOM. 

 

C.1.2.e.iii. The Dissolution Flux Problem 

As particles dissolve completely, they cross the lower boundary of the size domain.  This creates an 

efflux of particles from the system, 𝜑, which may be estimated as shown:57 

 

 

𝜑 = 𝐴(0)𝑓(0)  

Equation C-15 

 

Classical moment methods only track six or fewer quadrature points, and these points will not 

generally lie close enough to the lower boundary to allow an accurate prediction of f(0).  We will 

refer to this as the "dissolution flux" problem of classical moment methods.  Although it could be a 

crippling problem when modeling reactive NPs, which readily dissolve completely, it does not seem 

to be of great concern to the population balance modeling community at large; in fact, it is the focus 
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of only a few recent works (in which it is generally described in terms of evaporating sprays and thus 

referred to as the "evaporation flux" problem).  In this work, we test three proposed solutions to the 

problem: The Direct Quadrature Method of Moments with and without ratio constraints and the 

Extended Quadrature Method of Moments. 

 

C.1.3. Population Balance #1: The Sectional Method 

C.1.3.a. Binning approach 

In the sectional method (SM), particles are distributed to sections ("bins") based on their size.  In 

this work, we apply the binning method and numerical solution proposed by Hounslow et al.146 and 

extended by Lister et al.130  This method differs from sectional methods used to date in the 

nanoparticle fate literature5, 8, 9, 11, 37 in that it uses a geometric series to create a grid with expanding 

bin sizes rather than breaking the grid into equal intervals.  Two benefits of such a method are that 

(1) it allows the modeler to capture a particle size distribution spread over many orders of magnitude 

in size (e.g., aggregates typically occur in the micron size range)20, 120, 122 with a relatively small number 

of bins, and that (2) the highest model resolution (and computational burden) is placed on the 

smallest particles, for which aggregation and dissolution occur more rapidly, numerical error is more 

likely to arise, and the dissolution flux (introduced in Section C.1.2.e.iii) must be estimated. 

 The grid of bin sizes is defined as follows: A ratio, mrat, is chosen such that the representative 

particle size at the lower boundary of each bin i+1, mi+1,lo, is related to the size of the lower boundary 

of next smallest bin, bin i, by the non-negative integer q, as shown.   

 

mrat = mi+1,lo/mi,lo  = 21/q   q ≥ 1 

Equation C-16 
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Note that, when q = 1 (mrat= 2), the representative size in each bin is twice the size of the previous 

bin.146  In practice, higher q's result in a higher resolution to the size distribution.  However, little to 

no benefit is generally observed for q ≥ 7.   

 The representative lower boundary size of each bin can then be expressed in terms of the 

lower boundary of the entire size distribution, mmin.
149 

 

𝑚𝑖,𝑙𝑜 = (𝑚𝑟𝑎𝑡
𝑖)𝑚𝑚𝑖𝑛   

Equation C-17 

 

The total number of bins needed to describe the size distribution is55 

𝑛𝑏𝑖𝑛𝑠 = 1 +
ln (𝑚𝑚𝑎𝑥/𝑚𝑚𝑖𝑛)

ln (𝑚𝑟𝑎𝑡)
 

Equation C-18 

 
For the purpose of calculating the moments of the distribution, the central estimate of the 

representative size of each bin, mi, is estimated for a given moment of the distribution, k, as 

follows146, 149 

𝑚𝑖 =
𝑚𝑟𝑎𝑡

𝑘+1 − 1

(𝑘 + 1)(𝑚𝑟𝑎𝑡 − 1)
𝑚𝑖,𝑙𝑜
𝑘  

Equation C-19 

 

C.1.3.b. Numerical solution for dissolution 

We rewrote the Second Order Finite Difference approximation by Hounslow et al. and Kostoglou 

and Karabelas in order to describe particle dissolution under an arbitrary rate law Ai (Section 

C.1.2.b) as opposed to growth.146, 149 
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(
𝑑𝑁𝑖
𝑑𝑡
)
𝑑𝑖𝑠𝑠

=
1

𝑚𝑖,𝑙𝑜

(𝑎𝐴𝑖−1𝑁𝑖−1 + 𝑏𝐴𝑖𝑁𝑖 + 𝑐𝐴𝑖+1𝑁𝑖+1) 

 

where 𝑎 = −
2𝑚𝑟𝑎𝑡

(1+𝑚𝑟𝑎𝑡)(𝑚𝑟𝑎𝑡
2−1)

 

 

𝑏 = −
2

1 +𝑚𝑟𝑎𝑡
 

 

𝑐 =
2𝑚𝑟𝑎𝑡

(1 + 𝑚𝑟𝑎𝑡)(𝑚𝑟𝑎𝑡
2 − 1)

 

 

Equation C-20 

 

Ni is the number of particles in bin i at time t.   

 For dissolution, we used partially implicit time integration via Gauss-Seidel iteration with 

Type I (zero concentration) boundary conditions.3  We also tested an explicit alternative and a partial 

step procedure, fourth-order Runge-Kutta.  Explicit methods were too unstable; Runge-Kutta was 

slow and provided no noticeable improvement in accuracy. 

 

C.1.3.c. Numerical solution for aggregation 

For aggregation, we use the formulation by Lister et al. (Eq 35 in 130), which captures all possible 

particle re-binning events that may occur on the geometric grid described by Equation C-17 during 

an aggregation event between two particles of any size. 

 

(
𝑑𝑁𝑖

𝑑𝑡
)
𝑎𝑔𝑔

= ∑ 𝛼𝑖−1,𝑗𝛽𝑖−1,𝑗𝑁𝑖−1𝑁𝑗
2
𝑗−𝑖+1
𝑞

2
1
𝑞−1

𝑖−𝑄(𝑞)−1
𝑗=1   

+∑ ∑ 𝛼𝑖−𝑘,𝑗𝛽𝑖−𝑘,𝑗𝑁𝑖−𝑘𝑁𝑗
2
𝑗−𝑖+1
𝑞 −1+2

−
𝑘−1
𝑞

2
1
𝑞−1

𝑖−𝑄(𝑞−𝑘+1)−𝑘
𝑗=𝑖−𝑄(𝑞−𝑘+2)−𝑘+1

𝑞
𝑘=2   
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+
1

2
𝛼𝑖−𝑞,𝑖−𝑞𝛽𝑖−𝑞,𝑖−𝑞𝑁𝑖−𝑞

2  

+∑ ∑ 𝛼𝑖−𝑘+1,𝑗𝛽𝑖−𝑘+1,𝑗𝑁𝑖−𝑘+1𝑁𝑗
−2

𝑗−𝑖
𝑞 +2

1
𝑞−2

−
𝑘−1
𝑞

2
1
𝑞−1

𝑖−𝑄(𝑞−𝑘+1)−𝑘+1
𝑗=𝑖−𝑄(𝑞−𝑘+2)−𝑘+2

𝑞
𝑘=2   

−∑ 𝛼𝑖,𝑗𝛽𝑖,𝑗𝑁𝑖𝑁𝑗
2
𝑗−1
𝑞

2
1
𝑞−1

𝑖−𝑄(𝑞)
𝑗=1   

−∑ 𝛼𝑖,𝑗𝛽𝑖,𝑗𝑁𝑖𝑁𝑗
∞
𝑗=𝑖−𝑄(𝑞)+1      

Equation C-21 

 

where 𝑄(𝑞) = ∑ 𝑙𝑞
𝑙=1 .  For aggregation, we use explicit time integration and the Euler method.  As 

with dissolution, an alternative solution that used fourth-order Runge-Kutta provided no clear 

benefit and was discarded. 

 

C.1.4. Population Balance #2: The Direct Quadrature Method of Moments (DQMOM) 

DQMOM approximates the particle size distribution as a sum of i Dirac delta functions with n 

weights wi at locations (abscissas) mi, i = 1 ... n. 

 

𝑓(𝑚) =∑𝑤𝑖𝛿(𝑚 −𝑚𝑖)

𝑛

𝑖=1

 

Equation C-22 

 

In the univariate case (i.e., when only one internal coordinate is considered), this representation is 

mathematically identical to the quadrature point approximation used in classical QMOM (Section 

C.1.2.e).131  In the DQMOM, however, the continuity equation (Equation C-4) is re-written in terms 

of the derivatives of the weights and abscissas of the distribution so that the quadrature points may 
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be evolved directly at each time step.  This approach contrasts with that of classical QMOM, for 

which the continuity equation is expressed in terms of the derivatives of the moments such that 

quadrature points must be recalculated from the moment set at each time step (e.g., using a matrix 

inversion procedure, see Section C.1.2.f).  Direct QMOM is, unsurprisingly, much faster than the 

classical approach.131 

 

C.1.4.a. Numerical solution of the DQMOM 

Marchisio and Fox (2005) derive the DQMOM formulation for the Williams spray equation, a 

specific implementation of the PBE (Equation C-4) that accounts for non-homogeneous flow.131, 145  

We focus here on implementation of their method in a simple batch reactor model (no-flow, 

homogeneous).  Based on 145, we propose two means of addressing the dissolution flux problem. 

Let 𝑎𝑖 and 𝑏𝑖 describe the evolution of weights and weighted abscissas over time 

 

𝑎𝑖 =
𝜕𝑤𝑖

𝜕𝑡
, 𝑏𝑖 =

𝜕(𝑤𝑖𝑚𝑖)

𝜕𝑡
  

Equation C-23 

 

ai and bi may then be found by solving the following system of equations, where Sk is a placeholder 

for functions that describe the evolution of the particle size distribution over time due to specific 

processes (compare to Equation C-14).154   

 

(1 − 𝑘)∑𝑚𝑖
𝑘𝑎𝑖

𝑛

𝑖=1

+ 𝑘∑𝑚𝑖
𝑘−1𝑏𝑖

𝑛

𝑖=1

= 𝑆𝑘̅̅ ̅ 

𝑆𝑘̅̅ ̅ = 𝑆𝑘,𝑑𝑖𝑠𝑠 + 𝑆𝑘,𝑎𝑔𝑔 
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𝑆𝑘,𝑑𝑖𝑠𝑠 = 𝑘∑𝑚𝑖
𝑘−1𝐴𝑖𝑤𝑖

𝑛

𝑖=1

 

𝑆𝑘,𝑎𝑔𝑔 = −
1

2
∑ ∑ 𝛼𝑖𝑗𝛽𝑖𝑗[(𝑚𝑖 +𝑚𝑗)

𝑘
−𝑚𝑖

𝑘 −𝑚𝑗
𝑘]𝑤𝑖𝑤𝑗

𝑛
𝑗=1

𝑛
𝑖=1   

Equation C-24 

 

Equation C-24 is solved with linear algebra as described in the Appendix of 131. 

 We use the Euler method in conjunction with ai and bi to update the weights and abscissas 

from one time step to the next.  The moments may be determined from the set (mi, wi) at any time 

step by simple application of the quadrature approximation (Equation C-12). 

 

C.1.4.b. Error in the DQMOM 

Two sources of error in DQMOM are of especial importance: The matrix defined by the 

coefficients on the left-hand side of Equation C-24 may be ill-conditioned, or it may be singular. 

An "ill-conditioned" matrix is one for which error is introduced during matrix inversion because the 

solution to the linear equation is highly sensitive to round-off error in the coefficient matrix.  Poorly 

conditioned matrices have higher condition numbers than well-conditioned matrices, where the 

condition number is defined as the ratio of the largest singular values of the matrix to the smallest.  

In numerical methods, ill-conditioning causes numerical instability.   

 We found ill-conditioning occurred readily during NP aggregation because it causes a rapid 

increase in the values of the abscissas used to calculate the coefficient matrix.  We solved this 

problem, or at least greatly reduced it, by re-scaling the abscissas at each time step using the scale 

factor introduced in Section 2.4 of 145, max(𝑚𝑖) , 𝑖 = 1…𝑛.  In our case, re-scaling was not needed 

in the absence of aggregation.  Furthermore, we found that this simple re-scaling procedure made 

the stability of the DQMOM comparable to that of the EQMOM and the SM.  Thus we did not 
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attempt more rigorous approaches such as singular value decomposition and/or iterative solution 

methods.145, 154 

 When the condition number of a matrix is infinite, the matrix is singular.  In the univariate 

DQMOM, singularity reflects a lack of independence in the moment sequence, which results when 

two or more abscissas are identical (i.e., the distribution has zero variance).  In this case, the system 

of equations does not have a unique solution.131  In our experience, this rare but fatal error often 

results from initial conditions58 and can generally be eliminated by reducing the number of 

quadrature points; n should not, in any case, exceed 5 or 6.154 Alternatively, the problem can usually 

be solved by perturbing non-distinct abscissas (keeping weights the same) or by averaging the values 

of ai and bi found at neighboring points.131 

 

 

C.1.4.c. Estimating dissolution flux with ratio constraints 

As described in Section C.1.2.e.iii, a flux term must be added to Equation C-24 when NPs are able 

to undergo complete dissolution. 

 

(1 − 𝑘)∑ 𝑚𝑖
𝑘𝑎𝑖

𝑛
𝑖=1 + 𝑘∑ 𝑚𝑖

𝑘−1𝑏𝑖
𝑛
𝑖=1 − 𝛿𝑘0𝜑 = 𝑆𝑘̅̅ ̅  

Equation C-25 

 

Here, 𝜑 is the dissolution flux and 𝛿𝑘0 equals one for k=0 and zero for any other value of k.   

It is important to note that Equation C-25 assumes that the lower boundary of the particle size 

distribution occurs at zero.  In fact, the DQMOM is implemented on a semi-infinite domain, [0, Inf), 

rather than the finite domain [mmin, mmax] used in the SM and (Beta) EQMOM.  However, we found 

that the SM and the EQMOM were insensitive to our choice of mmin.  Thus any error arising from 
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the use of a different lower boundary in the DQMOM had no appreciable effect on model 

predictions. 

 The EQMOM tackles the dissolution flux problem head-on, reconstructing the particle size 

distribution at each time step in order to evaluate it.  Since no reconstruction is available in the 

DQMOM, we are left with a system of equations that has one too many unknowns.  As suggested 

by 145, however, we can approximate a solution with relative ease by adding two more constraints to 

Equation C-25.  These "ratio constraints," which are applied only when calculating the influence of 

dissolution on the weights and abscissas, simply state that the change in the particle size distribution 

due to dissolution will be smooth. 

 

𝑑

𝑑𝑡
(
𝑤𝑖

𝑤𝑖+1
) = 0,

𝑑

𝑑𝑡
(
𝑚𝑖

𝑚𝑖+1
) = 0   

Equation C-26 

 

The ratio constraints for the weights (see Section 2.3 of 145 for the derivation) provide a new system 

of equations which can be solved for i=1,...,n-1 (e.g., via matrix inversion) to find bi. 

 

𝑤𝑖+1𝑚𝑖+1𝑏𝑖
∗ −𝑤𝑖𝑚𝑖𝑏𝑖+1

∗ = 𝐸𝑖 

𝐸𝑖 = 𝑤𝑖𝑤𝑖+1(𝑚𝑖𝐴𝑖+1 −𝑚𝑖𝐴𝑖) 

           where 𝑏𝑖
∗ = 𝑏𝑖 − 𝑤𝑖𝐴𝑖   

Equation C-27 

 

Once bi is known, ai is found using Equation C-28 
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𝑎𝑖 =
𝑤𝑖𝑘 ∑ 𝑚𝑖

𝑘−1(𝑏𝑖
∗)𝑛

𝑖=1
(𝑘 − 1)∑ 𝑚𝑖

𝑘𝑤𝑖
𝑛
𝑖=1

⁄  

Equation C-28 

 

Any value of k other than 1 may be used in Equation C-28.   

Finally, solving Equation C-25 for k=0 gives an approximation of the dissolution flux 

 

𝜑 = −∑ 𝑎𝑖
𝑛
𝑖=1   

Equation C-29 

 

𝜑 cannot be negative.  If the procedure described above results in 𝜑 < 0, it is set to zero along with 

𝑎𝑖 and 𝑏𝑖
∗
. 

 In traditional DQMOM (Equation C-24), scaling factors are only applied to the abscissas 

when re-scaling to ensure numerical stability (Section C.1.4.b).  When the dissolution flux term is 

added to Equation C-24, weights must then be rescaled as well.  We use the scaling factor ∑ 𝑤𝑖
𝑛
𝑖  as 

suggested by 145. 

 Because the ratio constraints assume that the particle size distribution transforms smoothly 

over time, it is expected to perform poorly for highly monodisperse particle populations.  In such 

cases, traditional DQMOM may work better.  The following simple procedure is employed: 

Whenever an abscissa crosses the lower size boundary, its corresponding weight is set to zero.  The 

abscissa itself remains unchanged. 
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C.1.4.d. Initial conditions 

The DQMOM uses an efficient and relatively simple approach to transform the weights and 

abscissas of the particle size distribution over time in response to aggregation and dissolution.  

However, it does not specify the initial value of the set (wi, mi).  At t = 0, we express the locations 

and weights of the initial quadrature points in terms of the lower order moments of the distribution 

and solve using a matrix inversion procedure such as the Product Difference algorithm (see Section 

C.1.2.e.ii).   

 

C.1.5. Population Balance #3: (Beta) Extended Quadrature Method of Moments (EQMOM) 

As its name suggests, extended quadrature method of moments is an extension of classical QMOM 

(Section C.1.2.e).  In both methods, the particle size distribution is approximated by a set of 

quadrature points, which are calculated from the lower-order moments of the distribution at each 

time step using a matrix inversion algorithm, and the moments are evolved directly at each time step. 

 In classical QMOM and DQMOM, the PSD is represented by a sum of Dirac delta 

functions.  In EQMOM, each abscissa mi is instead assumed to describe the central tendency of a 

new statistical distribution, 𝛿𝜎𝛽(𝑚,𝑚𝑖).  The entire distribution is thus described by a weighted sum 

of probability density functions (pdfs) as shown: 

 

𝑓(𝑚) = ∑ 𝑤𝑖𝛿𝜎𝛽(𝑚,𝑚𝑖)
𝑛
𝑖=1   

Equation C-30 

 

𝛿𝜎𝛽(𝑚,𝑚𝑖) takes a pre-specified form.  We employ the Beta distribution (Beta EQMOM) in this 

work; ref 57 provides details for both Beta and Gamma EQMOM.   
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 When 𝛿𝜎𝛽(𝑚,𝑚𝑖) represents a Beta distribution, f(m) may be rewritten as follows: 

 

𝑓(𝑚) = ∑ 𝑤𝑖
𝑚𝑚𝑖−1(1−𝑚)𝜇𝑖−1

𝐵(𝑖,𝜇𝑖)

𝑛
𝑖=1   

Equation C-31 

 

where 𝑖 = 𝑚𝑖/𝜎𝛽 and 𝜇𝑖 = (1 −𝑚𝑖)/𝜎𝛽 are the parameters of the distribution and 𝜎𝛽 captures 

the spread of the each Beta distribution around each "primary" abscissa.  Note that every primary 

abscissas is assumed to have the same 𝜎𝛽.  When 𝜎𝛽 = 0, EQMOM is equivalent to DQMOM and 

(in the univariate case) classical QMOM.  Otherwise, 𝜎𝛽 is used to find a set of "secondary" 

quadrature points, each of which is distributed around the first.  Thus EQMOM employs two nested 

quadrature steps at each time step.   

 Unlike the primary quadrature step, which only estimates 4-6 quadrature points with 

accuracy, the secondary quadrature step is highly efficient and accurate up to any number of 

quadrature points.  As such, the EQMOM provides two relatively accurate approximations of the 

PSD: Equation C-31 and the discrete "dual quadrature approximation," Equation C-41(below).  As 

described in Section C.1.5.f, Equation C-31 can be used to (1) reconstruct the particle size 

distribution from its quadrature points and (2) estimate the particle efflux from the system due to 

complete dissolution. 

 

C.1.5.a. First coordinate transformation 

The Beta EQMOM defines the particle size distribution on the domain [0, 1], rather than upon the 

finite interval [mmin, mmax].
134, 205  At each time step, the first step in the BEQMOM is thus to perform 
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the following coordinate transformation on the moment set calculated during the previous time 

step205 

 

𝜇𝑘̃ =
1

(𝑚𝑚𝑎𝑥−𝑚𝑚𝑖𝑛)
𝑘
∑

𝑘!

𝑗!(𝑘−𝑗)!
(−𝑚𝑚𝑖𝑛)

𝑘−𝑗𝜇𝑘
𝑘
𝑗=0    

Equation C-32 

 

A few notes are in order regarding our choice of moments.  In the DQMOM and the SM, we solve 

for the fractional moments of the distribution.  In contrast, for simplicity, we tracked only the 

integer moments in EQMOM.  Fractional moments (e.g., as shown in Figure 4-2) were estimated ex 

post facto from the reconstructed distribution at each time step using Equation C-11 and Equation 

C-31.   

 The matrix inversion algorithm used in classical QMOM (e.g., Product-Difference) requires 

the first 2n moments of the distribution (where n is the number of quadrature points).  The 

EQMOM requires one additional moment (2n+1) in order to find 𝜎𝛽.  The DQMOM and the SM 

do not rely on a matrix inversion procedure, so any choice of moments will suffice.   

 

C.1.5.b. Set-up for primary quadrature 

EQMOM uses an iterative procedure to simultaneously select 𝜎𝛽 and determine the set of primary 

quadrature points.  This step begins with an initial guess for 𝜎𝛽, such as its theoretical lower bound 

of zero (see Section C.1.5.c for details on the bounds of 𝜎𝛽).   

The parameters of a beta distribution have a known relationship to its moments: 

𝜇𝑘 =
𝑚𝑖+(𝑘−1)𝜎𝛽

1+(𝑘−1)𝜎𝛽
𝜇𝑘−1, 𝑘 > 0  

Equation C-33 
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Let us call the set of (transformed) moments that could be estimated from the primary quadrature 

points of the distribution the "star moments":  

 

𝜇𝑘
∗̃ =∑𝑚𝑖

𝑘𝑤𝑖

𝑛

𝑖=1

 

Equation C-34 

 

Equation C-33 suggests that the (transformed) moment set of the distribution, which is known from 

the previous time step, can be expressed as a function of the 2n (transformed) star moments of the 

distribution and a set of k coefficients, γk, which are solely a function of 𝜎𝛽 (see 57 for the 

derivation). 

 

𝜇𝑘̃ = 𝛾𝑘𝜇𝑘
∗̃ + 𝛾𝑘−1𝜇𝑘−1

∗̃ +⋯+ 𝛾1𝜇1
∗̃ 𝑓𝑜𝑟 𝑘 ≥ 1  

Equation C-35 

 

For example, 

𝜇0̃ = 𝜇0
∗̃  

𝜇1̃ = 𝜇1
∗̃ 

𝜇2̃ =
1

1 + 𝜎𝛽
(𝜇2

∗̃ + 𝜎𝛽𝜇1
∗̃) 

𝜇3̃ =
1

(1 + 2𝜎𝛽)(1 + 𝜎𝛽)
(𝜇3

∗̃ + 3𝜎𝛽𝜇2
∗̃ + 2𝜎𝛽

2𝜇1
∗̃) 

𝜇4̃ =
1

(1 + 3𝜎𝛽)(1 + 2𝜎𝛽)(1 + 𝜎𝛽)
(𝜇4

∗̃ + 6𝜎𝛽𝜇3
∗̃ + 11𝜎𝛽

2𝜇2
∗̃ + 6𝜎𝛽

3𝜇1
∗̃) 
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In order to find the star moments, 𝜇𝑘
∗̃  (k=0, 1, ..., 2n-1), this system of equations is written in matrix 

form and solved via matrix inversion.  The star moment set itself is then inverted using a classical 

QMOM algorithm such as Product-Difference in order to find the set of n primary quadrature 

points suggested by the initial choice of 𝜎𝛽.  Finally, these quadrature points are used in Equation 

C-34 to estimate the 2nth star moment, 𝜇2𝑛
∗̃ .   

 The "goodness of fit" between the true distribution and the distribution suggested by our 

choice of 𝜎𝛽 is described by 𝜇2𝑛̃-𝜇2𝑛
∗̃ , or Equation C-36.  Let us call this difference Ji(𝜎𝛽). 

 

𝐽𝑖(𝜎𝛽) = 𝜇2𝑛̃  − 𝛾2𝑛𝜇2𝑛
∗̃ − 𝛾2𝑛−1𝜇2𝑛−1

∗̃ −⋯−−𝛾1𝜇1
∗̃ 

Equation C-36 

 

The best choice for 𝜎𝛽 is the value for which Ji(𝜎𝛽)=0.  We use a root-finding algorithm to find the 

smallest 𝜎𝛽 which meets this condition. 

 

C.1.5.c. Procedure to find 𝝈𝜷   

𝜎𝛽  is bounded on the interval [0, 𝜎𝛽,𝑚𝑎𝑥], where 𝜎𝛽,𝑚𝑎𝑥 is either chosen arbitrarily134 or is calculated 

from the Hankel determinants of the distribution, which are defined as follows for all integer 

moments k:  

 

𝐻2𝑘 = |
𝜇0
∗̃ ⋯ 𝜇𝑘

∗̃

⋮ ⋱ ⋮
𝜇𝑘
∗̃ ⋯ 𝜇2𝑘

∗̃

| , 𝐻2𝑘+1 = |
𝜇0
∗̃ − 𝜇1

∗̃ ⋯ 𝜇𝑘
∗̃ − 𝜇𝑘+1

∗̃

⋮ ⋱ ⋮
𝜇𝑘
∗̃ − 𝜇𝑘+1

∗̃ ⋯ 𝜇2𝑘
∗̃ − 𝜇2𝑘+1

∗̃

|, 
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                  𝐻2𝑘+1 = |
𝜇1
∗̃ ⋯ 𝜇𝑘+1

∗̃

⋮ ⋱ ⋮
𝜇𝑘+1
∗̃ ⋯ 𝜇2𝑘+1

∗̃

| , 𝐻2𝑘 = |
𝜇1
∗̃ − 𝜇2

∗̃ ⋯ 𝜇𝑘
∗̃ − 𝜇𝑘+1

∗̃

⋮ ⋱ ⋮
𝜇𝑘
∗̃ − 𝜇𝑘+1

∗̃ ⋯ 𝜇2𝑘−1
∗̃ − 𝜇2𝑘

∗̃

|  

Equation C-37 

 

The Hankel determinants (Eq. 1.4.3, p. 20 in 205) are first used in Equation C-38 (Eq. 1.4.5, p. 20 in 

205) to find the "canonical" moments, 𝑝𝑘
∗ , corresponding with the (transformed) star moment set 𝜇𝑘

∗̃ .  

𝜎𝛽,𝑚𝑎𝑥 is then expressed in terms of the canonical moments (Equation C-39): 

 

𝑝𝑘
∗̃ =

𝐻2𝑘+1𝐻2𝑘

𝐻2𝑘+1𝐻2𝑘+𝐻2𝑘+1𝐻2𝑘
  where 𝐻−1 = 𝐻−1 = 𝐻0 = 𝐻0 = 1 

Equation C-38 

 

𝜎𝛽,𝑚𝑎𝑥 =

{
 
 

 
 

𝑝2
∗̃(1−𝑝3

∗̃)

1−𝑝1
∗̃−2∗𝑝2

∗̃−𝑝1
∗̃𝑝2

∗̃+2𝑝2
∗̃𝑝3

∗̃  𝑖𝑓 𝑝𝑘
∗̃ > 

𝑝1
∗̃+𝑝2

∗̃−𝑝1
∗̃𝑝2

∗̃

1+𝑝2
∗̃

0.99999 ∗
𝑝2
∗̃

1−𝑝2
∗̃  𝑖𝑓 𝑝𝑘

∗̃ = 
𝑝1
∗̃+𝑝2

∗̃−𝑝1
∗̃𝑝2

∗̃

1+𝑝2
∗̃

𝑝2
∗̃𝑝3

∗̃

𝑝1
∗̃+𝑝2

∗̃−𝑝1
∗̃𝑝2

∗̃−2𝑝2
∗̃𝑝3

∗̃  𝑖𝑓 𝑝𝑘
∗̃ < 

𝑝1
∗̃+𝑝2

∗̃−𝑝1
∗̃𝑝2

∗̃

1+𝑝2
∗̃

  

Equation C-39 

The coefficient 0.99999 is added in the second case to ensure that the 𝜎𝛽,𝑚𝑎𝑥 remains finite when 

𝑝2
∗̃ = 1 (Dr. Frédérique Laurent-Nègre, École Centrale Paris, personal correspondance).  

 Recall that the purpose of the search procedure is to find the smallest value of 𝜎𝛽 such that 

𝐽𝑖(𝜎𝛽) = 0.  Once the bounds on 𝜎𝛽 are known, they can be narrowed using an unbounded search 

procedure such as the secant method until a new interval is found for which 𝐽𝑖(𝜎𝛽,𝑚𝑖𝑛) and  

𝐽𝑖(𝜎𝛽,𝑚𝑎𝑥) straddle the y-axis.  Since 𝐽𝑖(0) is, by definition, positive, this search procedure generally 
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reduces 𝜎𝛽,𝑚𝑎𝑥 until 𝐽𝑖(𝜎𝛽,𝑚𝑎𝑥) < 0.  At this point, we may switch to a bounded search procedure 

such as Ridder's method in order to rapidly converge on a solution.   

We found that it sometimes helped to start our search procedure with a non-zero but very 

low lower bound such as 10-50.  However, the reader should be aware that this approach may require 

other small changes to the search procedure; 𝐽𝑖(0) is guaranteed to be non-negative, but no such 

guarantee applies to an arbitrarily selected non-zero lower bound. 

 In practice, the value of 𝜎𝛽 chosen by the search procedure may lead to a "unrealizable" or 

invalid star moment set, or one for which one or more abscissas fall outside of the size domain.  The 

star moment set is realizable if its lowest Hankel determinant (Equation C-37) is positive (see 

Appendix B in 57 for details).  If our moment set was found to be unrealizable, we simply discarded 

that estimate in favor of the smallest value of 𝜎𝛽 tried during the search procedure for which a 

realizable star moment set was generated (as suggested by 134). 

 

C.1.5.d. Secondary quadrature and the second coordinate transformation 

We have now successfully discovered 𝜎𝛽 and a set of primary quadrature points and can proceed to 

find the secondary quadrature points of the distribution. 

 By performing a second (simpler) coordinate transformation on the transformed moment set 

to define it on the domain [-1,1] instead of [0,1], we can express the beta distribution as a Jacobi 

polynomial that is orthogonal with respect to the following weight function 𝑤(𝑡) = (1 − 𝑡)𝜀(1 +

𝑡)𝜁 where 𝜀 = 𝜇𝑖 − 1  and 𝜁 = 𝑖 − 1 (note that, in this case, t is not time).57  The quadrature 

points associated with Jacobi polynomials can be calculated with high accuracy and low 

computational demands.  Details are provided by ref 206 (Chapter 3).  This algorithm closely mirrors 

the Product-Difference and modified Wheeler algorithms as described by refs 58, 142, 152. 
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Briefly, 𝜀 and 𝜁 are used in the following recurrence relation to determine 𝑎𝑗 and 𝑏𝑗 , the diagonals 

and co-diagonals of the Jacobi matrix, J (Eq. 3.143a p.84 of 206): 

 

𝑎𝑗 =
𝜁2 − 𝜀2

(2𝑗 + 𝜀 + 𝜁)(2𝑗 + 𝜀 + 𝜁 + 2)
 

𝑏𝑗 =
4𝑗(𝑗 + 𝜀)(𝑗 + 𝜁)(𝑗 + 𝜀 + 𝜁)

(2𝑗 + 𝜀 + 𝜁 − 1)(2𝑗 + 𝜀 + 𝜁)2(2𝑗 + 𝜀 + 𝜁 + 1)
 

 

J=

[
 
 
 
 
 𝑎0 √𝑏1

√𝑏1 𝑎1

      

√𝑏2    ⋱               

 ⋱ 
 

 
 

⋱   

√𝑏𝑁−1
 

𝑎𝑁−1 √𝑏𝑁

√𝑏𝑁 𝑎𝑁 ]
 
 
 
 
 

 

 

The ith abscissa associated with each secondary quadrature point is the ith eigenvalue of the Jacobi 

matrix.  The ith weight, wi, is the squared value of the first component of the ith eigenvector. 

Once secondary weights and abscissas are determined for each primary quadrature point to create 

the two-dimensional set of secondary quadrature points, (𝑤𝑖1,𝑖2 ,𝑚𝑖1,𝑖2), we perform another 

coordinate transformation to once again define them on the domain [0,1].   

We now have the so-called "dual quadrature" representation of the particle size distribution: 

 

𝑓(𝑚) = ∑ ∑ 𝜌𝑖1,𝑖2
𝑛2
𝑖2=1

𝑛1
𝑖1=1

𝛿(𝑚 −𝑚𝑖1,𝑖2)        where 𝜌𝑖1,𝑖2 = 𝑤𝑖1𝑤𝑖1,𝑖2  

Equation C-40 
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Note that 𝛿(𝑚 −𝑚𝑖1,𝑖2) is the Dirac delta function as seen in Equation C-22, and not the 

continuous alternative seen in Equation C-30, 𝛿𝜎𝛽(𝑚,𝑚𝑖). 

 

C.1.5.e. Evolution of the moments 

Yuan et al. 57 use the dual quadrature approximation to derive expressions for the moment evolution 

equations, 
𝑑𝜇𝑘

𝑑𝑡
.  The equations for dissolution and aggregation closely parallel the moment evolution 

equations used in classical QMOM (Equation C-14) and the source terms used in DQMOM 

(Equation C-24).  Note that the first coordinate transformation must be reversed before evolving 

the moments from one time step to the next in order to place the moment set back on its true 

domain, [mmin, mmax]. 

 

[
𝑑𝜇𝑘

𝑑𝑡
]
𝑎𝑔𝑔

=
1

2
∑ ∑ ∑ ∑ 𝜌𝑖1,𝑖2𝜌𝑗1,𝑗2

𝑛2
𝑗2=1

𝑛1
𝑗1=1

𝑛2
𝑖2=1

𝑛1
𝑖1=1

[(𝑚𝑖1,𝑖2 +𝑚𝑗1,𝑗2)
𝑘 −𝑚𝑖1,𝑖2

𝑘 −𝑚𝑗1,𝑗2
𝑘 ]𝛼𝑖𝑗𝛽𝑖𝑗  

Equation C-41 

 

[
𝑑𝜇𝑘

𝑑𝑡
]
𝑑𝑖𝑠𝑠

= 𝑘∑ ∑ 𝑚𝑖1,𝑖2
𝑘−1𝜌𝑖1,𝑖2𝐴(𝑚𝑖1,𝑖2)

𝑛2
𝑖2=1

𝑛1
𝑖1=1

  

Equation C-42 

 

 

C.1.5.f. Calculation of the dissolution flux 

Equation C-31 allows us to reconstruct the particle size distribution from its primary quadrature 

points at each time step.  Evaluating Equation C-31 at mmin also allows us to approximate the 

dissolution flux using Equation C-15.  Of course, for our numerical solution, we must estimate the 

dissolution flux during a time step rather than at a particular time.  To do so, we take the integral of 
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Equation C-31 over the range of particle sizes expected to dissolve completely within that time step 

(calculated using Equation C-6).  All secondary abscissas are then advected towards the lower 

boundary (again according to Equation C-6), and the weights of any quadrature point that crosses 

the lower boundary is set to zero. 

 The dissolution flux may also be approximated as the sum of the weights (particle number) 

associated with each quadrature point that crosses the lower boundary during a time step.  However, 

this approach is slower than the integral approach because it requires far more secondary absciccas 

per primary abscissa.  For example, upwards of 1000 abscissas could be required, as opposed to the 

(e.g.) 5 ≤ n2 ≤ 80 suggested when using the integral approximation.57  

 

C.1.6. Analytical Solutions 

Consider a lognormal distribution such as we have at the start of our simulation.  The following are 

some useful properties of this distribution. 

 

Probability density function (used in the analytical solution): 

𝑓(𝑚, 𝑡) =
𝑁

𝜎𝑙𝑛𝑚√2𝜋
𝑒
− 
(ln𝑚−𝜇𝑙𝑛)

2

2(𝜎𝑙𝑛
2)  

Equation C-43 

 

Cumulative distribution function, where erfc() is the complementary error function (used in the 

Sectional Method to bin the initial NP population): 

𝐹(𝑚, 𝑡) =
𝑁

2
erfc (−

ln𝑚−𝜇𝑙𝑛

𝜎𝑙𝑛√2
)  

Equation C-44 
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Fractional moments (used to initialize the moments in the EQMOM and DQMOM): 

𝜇𝑘(𝑡) = 𝑁𝑒
𝑘𝜇𝑙𝑛+

1

2
𝑘2𝜎𝑙𝑛

2

  

Equation C-45 

 

Williams et al. (1982) provide the following analytical solution for a particle size distribution with any 

known initial functional form 𝑛0 dissolving according to the rate law 
𝑑𝑚

𝑑𝑡
= 𝐹𝑑𝑚

𝑑, where 𝐹𝑑 and d 

are arbitrary constants:155 

𝑓(𝑚, 𝑡) = [1 −
(1−𝑑)𝐹𝑑𝑡

𝑚1−𝑑 ]

𝑑

1−𝑑
𝑓0([𝑚

1−𝑑 − (1 − 𝑑)𝐹𝑑𝑡]
1/(1−𝑑))    

Equation C-46 

 

In our case, under sink conditions (i.e., [𝑀𝑒+]𝑡=0), 𝑑 = 2/3 and 𝐹𝑑 = −𝑘𝑆,𝑝𝑏[𝑀𝑒
+]𝑒𝑞 (see 

Equation C-6). 

 Park et al. (2000) provide an analytical solution for aggregation of an initially lognormal 

particle size distribution according to the rate law given in Equation C-9.  In this case, the 

distribution is assumed to remain lognormal (of the form given by Equation C-43).156  Parameters 

change over time according to Equation C-47, where 𝐾 = 𝛼
2𝑘𝐵𝑇

3𝜇
 (see Equation C-9), 𝜎𝑑(𝑡) =

𝑒𝜎𝑙𝑛/3 and 𝑣𝑑(𝑡) = 𝑒
𝜇𝑙𝑛 . 

 

𝑙𝑛2𝜎𝑑 =
1

9
ln [2 +

X

𝑌
]  

 𝑣𝑑 = 𝑣𝑑,0
exp(9 ln2𝜎𝑑,0/2)𝑌

[2+
𝑋

𝑌
]

  

𝑁 = 𝑁0
1

𝑌
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where  X = exp(9 ln2𝜎𝑑,0) − 2   

Y=1 + {1 + exp(9 ln2𝜎𝑑,0/𝐷𝑓
2)}𝐾𝑁0𝑡 

Equation C-47 

 
Equation C-46 and Equation C-47 are used in the appropriate expressions (e.g., the moment 

definition equation, Equation C-11) in order to calculate values of interest (values plotted in Figure 

4-2 of the main text).  Integral expressions were evaluated over the particle size domain.  Thus, 

particle flux during dissolution was accounted for simply by omitting from the solution the portion 

of the size distribution that fell below the lower size boundary.  
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C.2 Supporting Figures 
 

      

 
Figure C-1. Model results (dot-dashed blue line, from the Sectional Method) compared to 

experimental data (yellow dots) for the calibration procedure used to provide an order-of-

magnitude estimate of the ZnO NP dissolution rate and aggregation rate for all test cases.   
Experimental data is from Majedi et al. for moderately hard water (MHW) at 25oC (compare to Fig. 
3b and Fig. 1c).159  Model inputs: Mean (52 nm), standard deviation (9 nm), equilibrium ion 
concentration (2.04 mg/L), and initial concentration (20 mg/L).  We assume that the hydrodynamic 
diameter of the particles is 60% of their collision diameter (Equation 4-22).43   
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Figure C-2. Model results for dissolution of 100 g/m 3 of a lognormal population of NPs 

(low skew) with different initial particle sizes for sink conditions  (ion concentration in bulk 
solution is set to zero). Solid grey = Analytical Solution, Dot-dashed blue = Sectional Method (SM), 
Dashed orange = Direct Quadrature Method of Moments (DQMOM) with ratio constraints, 
Dashed yellow = DQMOM without ratio constraints, Dotted red = Extended Quadrature Method 
of Moments (EQMOM).   
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Figure C-3. Model results for dissolution of 100 g/m3 of a lognormal population of NPs 

(low skew) with different initial particle sizes for dissolution to equilibrium (ion 
concentration in bulk solution increases until equilibrium is reached, at which point dissolution 
stops). Dot-dashed blue = Sectional Method (SM), Dashed orange = Direct Quadrature Method of 
Moments (DQMOM) with ratio constraints, Dashed yellow = DQMOM without ratio constraints, 
Dotted red = Extended Quadrature Method of Moments (EQMOM).  No analytical solution is 
available for this case. 
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Figure C-4. Model results for aggregation of 100 g/m 3 of a lognormal population of NPs 

(low skew) with different initial particle sizes.  Dot-dashed blue = Sectional Method (SM), 
Dashed orange = Direct Quadrature Method of Moments (DQMOM) with ratio constraints, 
Dotted red = Extended Quadrature Method of Moments (EQMOM).  Analytical solution not 
shown. 
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Figure C-5. Error in the EQMOM (dotted red), the DQMOM without ratio constraints 

(dashed orange), and the SM (dot-dashed blue) compared to the analytical solution (solid 

grey) for estimates of the evolution of the (normalized) number concentration during 

dissolution.  Worst-case scenario (“sink conditions”) are assumed in order to maximize possible 
error (see Figure C-3(b) for results to equilibrium).  The error calculation is not normalized.  Error 
remains below 20% for the EQMOM, which also largely captures the nature of the dissolution 
curve. 
 
 
 
 

 
Figure C-6. Initial particle size distributions in the Sectional Method for the error analysis 

shown in Figure 4-4.  Distributions were normalized by the bin width so that they could be 
overlain on the continuous distribution as shown.  
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Figure C-7. Effect of the resolution of the size coordinate on error and runtimes in the 

SM for aggregation of ~50±10 nm NPs.  Error is given relative to the analytical solution 

(solid grey).  Unlike the numerical solution for dissolution, which can use an arbitrary binning 
scheme, the numerical solution for aggregation requires the geometric binning scheme defined in 
Equation 4-2. Thus q could not be reduced below 1 and the number of bins could not be reduced 
below 49. 

 
 

 

 
 

Figure C-8. Initial particle size distributions used in the analysis presented in Figure 4-5 

(main text) transformed to be in terms of the internal coordinate, particle mass.   Size 
distributions expressed in terms of mass are more skewed than distributions expressed in terms of 
diameter.  The solid black curve represents the initial size distribution for 50±10 nm NPs in our 
"base case" (e.g., Figure 4-2). 
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Figure C-9. First-order linear inhomogenous equation (Equation 4-24) fit for the case of 

dissolution to equilibrium (compare to Figure 4-5).  The equilibrium ion concentration was 
calculated from the Ostwald-Freundlich relation using the initial surface-weighted geometric mean 
diameter.  Benchmark curves (solid grey) in (a) represent the SM validated against the EQMOM and 
the DQMOM.  In (b), curves represent the DQMOM validated against the EQMOM. 
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