

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY
INDUSTRIAL ADMINISTRATION

(ALGORITHMS, COMBINATORICS AND OPTIMIZATION)

Titled

“MODELS AND METHODS FOR OMNI-CHANNEL FULFILLMENT”

Presented by

Jeremy Karp

Accepted by

 R. Ravi 9/19/17
___ _________________
Chair: Prof. Ramamoorthi Ravi Date

Approved by The Dean

 Robert M. Dammon 9/21/17
___ _________________
Dean Robert M. Dammon Date

CARNEGIE MELLON UNIVERSITY

DOCTORAL THESIS

Models and Methods for Omni-channel
Fulfillment

Author:
Jeremy KARP

Supervisor:
Dr. R. RAVI

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in

Algorithms, Combinatorics, and Optimization
Tepper School of Business, Carnegie Mellon University

November 19, 2017

http://www.cmu.com
http://aco.math.cmu.edu/
http://tepper.cmu.edu

iii

Declaration of Authorship
I, Jeremy KARP, declare that this thesis titled, “Models and Methods for Omni-
channel Fulfillment” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

v

Abstract
Omni-channel retailing, the combination of online and traditional store channels,
has led to the use of traditional stores as fulfillment centers for online orders. A key
aspect of omni-channel fulfillment problems is the tradeoff between cancellations of
accepted online orders and profits: a riskier fulfillment policy may result in more
online sales but also more cancelled orders.

In this dissertation, I will describe two approaches to the fulfillment problem cast
generally as a stochastic optimization problem of setting inventory thresholds above
which the online channel stays open.

In the more traditional approach, we build a stochastic model of the process lead-
ing to order cancellations for a single item so that retailers may find inventory and
fulfillment policies that effectively use this information along with shipping costs
between various locations. We describe iterative algorithms based on Infinitesimal
Perturbation Analysis (IPA) that converge to optimal and locally optimal policies
within certain flexible policy classes for the multiple-location version of this model,
and show their empirical performance on simulated data based on real data from a
high-end North American retailer.

In a more modern approach, we apply techniques from machine learning and
discrete optimization to find fulfillment policies that perform well empirically at
maximizing revenues subject to a constraint on cancellations across a large portfolio
of items. Using the real data mentioned earlier, we build estimators that predict the
cancellation probability and other features of incoming online orders. We formu-
late and solve an optimization problem based on these estimates to get a fulfillment
policy in a separate second step. Then we investigate a joint estimation and opti-
mization model based on a neural network to find both the generative parameters
for our estimates as well as the policy that maximizes revenue while limiting cancel-
lations. We show how both the separate and joint estimation and optimization mod-
els can be used to account for data truncation. The joint methods typically identify
policies that more closely track target cancel rates than the separate estimation and
optimization methods. For the joint method, we also custom built a neural network
layer to efficiently solve the knapsack optimization problem central to our model
and demonstrate substantial empirical improvement in running time and scalability
over existing methods.

vii

Acknowledgements
First, I must thank my advisor, Ravi, who has taught me so much and gave me the
opportunity to write this dissertation. I’m grateful for all the time and effort you
have spent in meetings and discussions with me as well as all of your feedback on
my paper drafts, write-ups, and various notes written throughout my time at CMU.
Thank you for patiently exploring many research topics with me and for pushing
me to do my best work.

I would also like to thank Prof. Sridhar Tayur for all your help and advice on this
dissertation. Thank you for introducing me to all kinds of useful papers, books, and
ideas I would otherwise not know about and for helping me structure the ideas and
models in my research.

I am also grateful to Dr. Srinath Sridhar for your collaboration during my thesis
research. Thank you for introducing me to many interesting challenges in the retail
industry and for helping me turn them into research problems, and thank you for
allowing me to use Onera’s data to inform and validate my results.

Lastly, I would like to thank my family and friends for motivating me and sup-
porting me throughout my PhD. Thank you to my parents for instilling an interest in
learning, research, and academics. Thank you to Andrea for supporting me uncon-
ditionally throughout graduate school. Thank you to my peers in ACO/OR at CMU:
Alex, Christian, Stelios, Thiago, Yang, Jenny, Sercan, and everyone else who moti-
vated me to learn about a wide range of fascinating topics. And thank you to my
friends and family who helped me stay connected to the world outside of operations
research and machine learning during graduate school.

ix

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

1 IPA Methods for Omni-Channel Fulfillment 1
1.1 Introduction . 1

1.1.1 Problem Description . 2
1.1.2 Summary of Contributions . 2

1.2 Related Work . 3
1.3 Omni-Channel Fulfillment Model . 4

1.3.1 Details . 5
1.3.2 First Stage . 5

Threshold Policies . 5
1.3.3 Second Stage . 6
1.3.4 Model Variables and Parameters 7

1.4 Single-Store Model . 8
1.5 Infinitesimal Perturbation Analysis Method 16

1.5.1 Overview . 16
1.5.2 Second Stage Assignment Problem 16

Original minimization assignment problem 16
1.5.3 First Stage Decision Problem . 24

IPA Algorithm Overview . 24
Local Threshold Derivative Estimates 24
Global Threshold Derivative Estimates 24

1.5.4 Threshold Policy Properties . 25
1.6 Complete Retail Network Results . 30
1.7 Insights from Two-Store Instances . 32

1.7.1 Inventory Balance . 32
1.7.2 Magnitude of In-Store Demand 33
1.7.3 Impact of Cancel Costs . 36
1.7.4 Global Thresholds Performance 36

1.8 Extensions . 40
1.8.1 Nested Threshold Policies . 40
1.8.2 Single Store Instances with Unknown Demand Distributions . . 41

x

1.9 Conclusion . 46

2 Optimizing Inventory Exposure with Knapsack Threshold Models 49
2.1 Introduction . 49

2.1.1 Contributions . 50
2.2 Literature Review . 51
2.3 Problem Formulation . 52

2.3.1 Threshold Choice Models and Truncation 52
2.3.2 Data Sources . 53

2.4 Optimization Models . 54
2.4.1 Tractability . 54

Theoretical Tractability . 54
Empirical Tractability . 57

2.4.2 Pure Optimization Model: Sample Average Approximation . . 58
2.5 Supervised Learning . 58

2.5.1 Comparison of Cancel Rate Prediction Methods 59
2.6 Separate Estimation and Optimization 60

2.6.1 Maximum Likelihood Estimation 61
Clustering and Demand Estimation 61
Cancel Rate Estimation Details 62

2.6.2 Expectation-Maximization . 63
Maximization Step . 64
Expectation Step . 64

2.6.3 Proxy Maximum Likelihood Estimation 64
2.7 Dynamic Threshold Policy . 65
2.8 Empirical Results . 66

2.8.1 Methods . 66
2.8.2 Results . 67

2.9 Discussion . 69

3 Joint Estimation and Optimization of Knapsack Threshold Models 71
3.1 Introduction . 71

3.1.1 Contributions . 71
3.2 Background . 72

3.2.1 Neural Networks . 72
3.3 Related Work . 75
3.4 GreedyNet: Differentiable Greedy Optimization 76

3.4.1 Forward and Backward Pass Algorithms 76
Forward Pass . 77
Backward Pass . 77

3.4.2 Requirements and Correctness of GreedyNet 77
3.5 SafetyNet: A Neural Network Model for Joint Estimation and Opti-

mization of the Knapsack Threshold Model 79

xi

3.5.1 Architecture Overview . 79
3.5.2 SafetyNet Models . 80

Full SafetyNet . 81
No-Optimization SafetyNet . 81
MLE SafetyNet . 81

3.5.3 Generative Parameters . 82
3.5.4 Knapsack LP Layer . 83

GreedyNet . 83
OptNet . 84

3.5.5 Observed and Latent Outcomes 85
3.5.6 Training SafetyNet . 86

3.6 Empirical Results . 87
3.6.1 Simulation Experiments . 87

Methods . 87
Results . 88

3.6.2 Real Data Experiments . 89
Methods . 89
Results . 92

3.6.3 Discussion . 92
3.7 GreedyNet Performance Evaluation . 93
3.8 Conclusion . 95

4 Conclusion 97

Bibliography 99

xiii

List of Figures

1.1 Plot of G(S) for instance where DO ∼ Poisson(10) 12
1.2 Plot of G(S) for instance where DO ∼ Poisson(15) 13
1.3 Plot of G(S) for instance where DO ∼ Poisson(50) 14
1.4 Minimum cost flow formulation of maximization LP 1.4 23
1.5 Single-commodity flow formulation of Linear Program 1.25 29
1.6 Average fulfillment costs across 20 full-network instances 31
1.7 Overall average costs of each inventory balance condition for Inven-

tory Balance experiments . 34
1.8 Average cost of each inventory balance condition for total inventory

of 50% mean total demand . 34
1.9 Average cost of each inventory balance condition for total inventory

of 100% mean total demand . 34
1.10 Average cost of each inventory balance condition for total inventory

of 150% mean total demand . 34
1.11 Average objective value for one UPC as inventory balance is shifted

between stores. Inventory is 50% of mean total demand 35
1.12 Average objective value for one UPC as inventory balance is shifted

between stores. Inventory is 100% of mean total demand 35
1.13 Average objective value for one UPC as inventory balance is shifted

between stores. Inventory is 150% of mean total demand 35
1.14 Overall average costs of each in-store demand condition for demand

magnitude experiments . 37
1.15 Average cost of each in-store demand condition for starting inventory

of 5 at each location . 37
1.16 Average cost of each in-store demand condition for starting inventory

of 10 at each location . 37
1.17 Average cost of each in-store demand condition for starting inventory

of 15 at each location . 37
1.18 Average cost of each in-store demand condition for starting inventory

of 20 at each location . 37
1.19 Overall average costs of each cancel penalty condition for cancel cost

magnitude experiments . 38
1.20 Average costs of each cancel penalty condition for starting inventory

of 5 at each location . 38

xiv

1.21 Average costs of each cancel penalty condition for starting inventory
of 10 at each location . 38

1.22 Average costs of each cancel penalty condition for starting inventory
of 15 at each location . 38

1.23 Average cost of each covariance condition 39
1.24 Average objective value as the mean online demand parameter is shifted 40
1.25 Upper bounds on g(Ŝ, dO, dP)− g(S∗, dO, dP) when Ŝ ≤ S∗ 42
1.26 Upper bounds on g(Ŝ, dO, dP)− g(S∗, dO, dP) when Ŝ > S∗ 44

2.1 Example of dynamic programming method for supervised learning.
Blue circles denote the nodes in set S for this instance. 60

2.2 Summary of supervised learning results 60
2.3 Example fit of Weibull distribution of inventory counts to real Onera

data . 61
2.4 Example fit of logistic function to observed cancel rates on real Onera

data . 62
2.5 EM Pseudocode . 63
2.6 Simulation results for experiment with unadjusted cancel rate target . 68
2.7 Simulation results for experiment with cancel rate target shifted down

30% . 68

3.1 The computational graph representation of a forward pass through a
typical neural network. 74

3.2 The computational graph representation of one step of a backward
pass through a typical neural network. 75

3.3 GreedyNet Forward and Backward Pass Pseudocode 78
3.4 The architecture of SafetyNet, featuring a Knapsack LP layer that uses

a differentiable linear program approximation and a Latent Outcomes
layer that uses input data and generative parameters to correct data
truncation. 80

3.5 Performance comparison for individual simulations across conditions 90
3.6 Average outcomes by simulation condition 91
3.7 Simulation results for JEO and SEO methods on real data 92
3.8 Running time comparison (in seconds) of GreedyNet and SafetyNet

across varied instance sizes . 94
3.9 Running time (in seconds) of GreedyNet across varied instance sizes . 94

xv

Dedicated to my parents

1

Chapter 1

IPA Methods for Omni-Channel
Fulfillment

1.1 Introduction

Omni-channel retailing, the combination of online and traditional store channels,
advocates the use of traditional stores as shipping centers for originating online or-
ders, customer pickup points for online orders, or even as transshipment points for
re-balancing stock. Many retailers have begun to ship items ordered online directly
from their brick-and-mortar locations. This clicks and bricks business model allows
retailers to save money by keeping more of their inventory in retail locations as op-
posed to building or leasing warehouses. When filling these online orders, the re-
tailer must at some point trade off additional cancelled orders in order to increase
revenues by accepting additional online orders. These cancellations occur when no
inventory remains to fulfill online orders due to in-store sales. We study a new set
of research questions related to acceptance and fulfillment of these online orders in
omni-channel retail operations. Our models focus on the acceptance and fulfillment
decisions for online channels, taking into consideration the costs of fulfillment in-
cluding shipping costs when they are filled and the possibility of canceling some
of the accepted online orders. We tackle the problem of omni-channel fulfillment
from a stochastic inventory theory perspective where inventory is held at physi-
cal stores and shared between in-store demand and online demand. Physical retail
stores, however, are not designed for online fulfillment, and these inventory pooling
arrangements often lead to cancelled orders. A major driver of order cancellations is
that the required inventory for an online order can be listed in the retailer’s inventory
database when the order is placed but then depleted by an in-store sale before the
item is picked for shipment. Our analytical models optimize the trade-off between
policies that fill many online orders, yielding additional revenue, and the penalties
incurred from cancelling online orders if too many are accepted. While the tradeoff
is the same as the one studied in Chapters 2 and 3, in this chapter we incorporate the
effect of shipping costs into our model and introduce a class of policies that consider
the locations of inventory demand while making fulfillment decisions.

2 Chapter 1. IPA Methods for Omni-Channel Fulfillment

1.1.1 Problem Description

This work is focussed on fulfillment problems in omni-channel retailing. At the
highest level, the problem we model is determining under which conditions should
a retailer accept online orders, and the retailer’s objective is to minimize fulfillment
costs in expectation. There are n regions in which demand can originate, and in
each region is a physical retail store. We use the terms store location and region
interchangeably. In this model, the retailer has inventory for a single item spread
across the n store locations. There are two streams of demand at each store location,
in-store and online demand (online orders are attributed to the closest store to each
customer), and the core challenge is that inventory is shared between these demand
streams. The model has two stages: in the first stage the online orders arrive in
sequence and the retailer must decide whether to accept or reject each order as it
arrives. This stage reflects that an online retailer can dynamically set an item to be
listed as in or out of stock on its website. The second stage occurs after all online
orders have been accepted or rejected, and the retailer must decide how to fulfill
all accepted online orders. In-store orders are given first priority as these sales are
completed as the online orders arrive, and any remaining inventory not used to
fulfill in-store orders may be used to fulfill accepted online orders. Any online orders
that cannot be fulfilled with the remaining inventory are cancelled and the retailer
pays an associated cost. To be clear, this work is not about planning of inventories.
Instead, we are interested in the fulfillment of orders given inventory levels.

1.1.2 Summary of Contributions

1. We formulate an analytical model for omni-channel fulfillment that incorpo-
rates uncertainty due to inventory pooling across sales channels as a multi-
location two-stage stochastic optimization problem.

2. We introduce Local Threshold and Global Threshold policy classes for the first
stage problem and present a sampling-based optimization method to set these
policies. Our optimization method uses Infinitesimal Perturbation Analysis
to estimate derivatives of the objective function with respect to the threshold
policy parameters. These derivative estimates rely on the dual values of a
linear program related to the second stage problem.

3. We present empirical results from numerical experiments to provide insights
and demonstrate the effectiveness of policies generated by our methods. Through
a partnership of with retail analytics firm Onera, we use retail industry data
to generate realistic problem instances. We conduct a series of experiments
on two-store instances to demonstrate how certain instance attributes lead to
strong performance of one class of threshold attributes relative to the other. In
particular, we find that Local Thresholds perform especially well in settings
where inventory is not well aligned with demand, when inventory levels are

1.2. Related Work 3

low, when in-store demand levels are low, and when cancel costs are low rel-
ative to the item’s price. We also use Onera’s retail data to formulate realistic
full-network problem instances on which we show both Local Thresholds and
Global Thresholds achieve a considerable reduction in costs compared to other
baseline policies.

1.2 Related Work

Other aspects of omni-channel retailing, such as the costs and benefits of “buy online
and pick up in store” policies [20], information sharing [21], inventory optimization
[27], and multi-channel price optimization [29, 11] have been studied by the Oper-
ations Management community, but this is the first attempt to formulate and study
stochastic models of cancellations caused by omni-channel fulfillment. Our analyses
use techniques that have been successful in other areas within Operations Manage-
ment including transshipment problems [32], sensitivity analysis [23], and Sample
Average Approximation [43, 42].

The multi-location transshipment problem has been previously formulated and
studied [32, 31]. This work presents a stochastic multi-period model, and its main
theoretical result is that optimal inventory replenishment policies in this model are
“order-up-to S” policies. Research on newsvendor models is also closely related
to the models in this section [49]. There are many versions and extensions of the
newsvendor model, but a central feature of these models is that the vendor must use
their knowledge of a demand distribution to select an order quantity so as to balance
penalties for ordering both too many and too few items. The models in this section
incorporate some of the complexities considered in the multi-location transshipment
problem, but these new models also include order cancellations as a major compo-
nent that must be accounted for by the retailer. The tradeoff between cancellations
and additional sales places this model in a similar space as newsvendor models, but
the inclusion of two sources of demand drawing from the same inventory adds a
layer of complexity that is new. Extending this model to multiple locations combines
the newsvendor-like tradeoff of cancellations and sales with fulfillment decisions in
a network.

There has also been work on omni-channel fulfillment with an emphasis on pric-
ing [29]. This work models how customer demand responds to changes in price,
allowing the retailer to optimally set clearance prices in all sales channels by solving
an integer program. In our work prices are fixed and our focus is on fulfillment with
uncertain inventory and stochastic demand.

Sample Average Approximation (SAA) [40, 42] has proved to be a successful
technique for obtaining theoretical performance guarantees on related problems.
SAA is a Monte Carlo simulation-based method for stochastic optimization where

4 Chapter 1. IPA Methods for Omni-Channel Fulfillment

the random inputs are approximated by their empirical distribution, the sample av-
erage of observed data points. We apply this approach to our omni-channel op-
timization problem when demand distributions are unknown but can be sampled.
SAA has previously been studied in the context of the newsvendor problem [43], and
we use similar techniques to prove convergence bounds on versions of this omni-
channel problem. Akcay et al. [2] studied a related inventory problem with un-
known demand distributions, representing the unknown demand distribution with
Johnson translation systems, a parameterized family of distributions that can closely
approximate any probability distribution.

1.3 Omni-Channel Fulfillment Model

One objective of omni-channel fulfillment is to provide customers with an integrated
experience across all sales channels while allowing the retailer to share inventory be-
tween these channels. Our model allows retailers to decide when and how to accept
and fulfill online orders when inventory is shared with physical retail locations. We
study a single-period model with n regions of demand, each containing a store. The
demand comes in two streams, online and in-store. The regional split between on-
line and in-store demand is assumed to be pre-existing. We consider a single product
and assume that online and in-store demand are drawn from fixed probability dis-
tributions. The core omni-channel problem is to determine under what inventory
conditions should the online store be kept open. A crucial consideration for this de-
cision is that if the online store is kept open despite having a low inventory count
the retailer becomes exposed to the risk of needing to cancel some accepted online
orders, incurring a cancellation cost.

Conversely, closing the online store when sufficient inventory is available results
in lost sales through the online sales channel. Online demands that are satisfied are
fulfilled only by shipping the order directly to the customer (no walk-in pickups at
local stores). An online channel, if open, can tentatively accept orders as demands
arrive; a confirmation or a cancellation notice is sent out at the end of the period.
This models the reality that online orders are confirmed and fulfilled typically at the
end of each day and also that changes in inventory records are not always updated
instantaneously. Demands not immediately accepted are considered lost and the
retailer is penalized for the associated lost margin. Orders accepted online are to be
considered tentative as they may be canceled at the end of the period if no inventory
from physical store is found. At the end of the period, each store location can fulfill
online orders from its remaining inventory after fulfilling the day’s physical orders.
On-line orders that are filled pay the appropriate shipping cost and those that are
not fulfilled from any of the physical locations are cancelled. The resulting problem
is to minimize fulfillment costs by setting a policy to trigger the opening and closing
of the online sales channel at each physical location. This model allows for multiple
physical stores with differing starting inventory levels. In these scenarios the retailer

1.3. Omni-Channel Fulfillment Model 5

must also determine a fulfillment policy to ship online orders to their recipients,
potentially by filling online orders from far away stores in the network.

1.3.1 Details

The model contains a network of n store locations. Fixed exogenous inventory Ii
is stored at each location i in this system. At each location i, there are two streams
of demand, on-line (DOi) and physical (DPi), which both draw from the same pool
of inventory. Physical demand is fulfilled with higher priority than online demand,
and online orders are cancelled if there is not sufficient inventory to fill them. There
is a cost, c, associated with canceling an order, and there is also a penalty cost, p,
associated with not accepting an order that could have been filled. The goal for the
retailer is to set a policy so as to minimize total costs in expectation. The retailer may
be given the probability distributions of demand or it may be unknown, and their
costs are determined by how many orders are filled and how many are cancelled
after these demand distributions are realized. We capture this process through a
two-stage stochastic model.

1.3.2 First Stage

The first stage of the problem occurs as online orders arrive at the retailer. The re-
tailer must decide whether to accept or reject each order as it arrives, in an online
manner. We are mostly interested in threshold policies, a restriction that reflects
real-world policies used by retailers. However, these are not the only policies which
could be used, in principle, to solve this first stage decision problem. The first stage
concludes after all online orders have arrived and are accepted or rejected by the
retailer.

More formally, online orders will arrive during the interval [0, T]. At any mo-
ment t, the state parameter λ = [λ1, . . . , λn] contains the set of online orders that
have previously been accepted from each location. The first stage problem for the
retailer is to set a 0 − 1 function f , so that when an order occurs from location i at
time t, f(i, t, λ) = 1 if this order is to be accepted and f(i, t, λ) = 0 if the order is
to be rejected. For most of this work, we restrict f to a class of policies we define
as threshold policies. These policies are commonly used in the retail industry and
focusing on this policy class makes this problem more approachable.

Threshold Policies

We consider two types of threshold policies, Local Thresholds and Global Thresh-
olds.

Definition 1. A Local Threshold policy [S1, . . . , Sn] accepts the first Si online orders from
location i ∀i ∈ [n] and rejects all remaining orders.

6 Chapter 1. IPA Methods for Omni-Channel Fulfillment

Local Threshold policies have a parameter for each store location, allowing the
retailer fine-tuned control over which areas are accepting online orders.

Definition 2. A Global Threshold policy S accepts the first S online orders (from all loca-
tions) and rejects all remaining orders.

Global Threshold policies have a single parameter for the full network of stores.
Global Threshold policies allow the retailer more control over the total number of
online orders accepted but less fine-tune control than with Local Thresholds over
which orders are accepted.

Many retailers already use threshold policies to manage their online sales chan-
nels, so it is natural to focus on this policy class. Restricting the retailer to threshold
policies also helps us analyze the model. More complex policies might utilize the
arrival times of orders, but this is not our focus in this analysis. In Section 1.5 we
will explore how a retailer can set these threshold policies.

1.3.3 Second Stage

After the first stage concludes, the retailer learns the amount of in-store demand
they received as the online orders arrived. The retailer then must decide whether
to cancel or fulfill each accepted online order, and from which store will inventory
be used to fill these orders. This problem can be naturally formulated as a network
flow problem and is solvable as the following optimization problem:

minimize pmin(

n∑
i=1

(Ii −min(Ii,DPi)−
n∑
j=1

Fij),

n∑
i=1

(DOi −AOi))

+
n∑
i=1

(ciCi +
n∑
j=1

sjiFji)

such that min(DPi , Ii) +Ri +
n∑
j=1

Fij = Ii, ∀i ∈ [n]

Ci +
n∑
j=1

Fji = AOi , ∀i ∈ [n]

Ci, Ri, Fij ≥ 0, ∀i, j.

(1.1)

Consider first the objective function:

pmin(
n∑
i=1

(Ii −min(Ii,DPi)−
n∑
j=1

Fij),
n∑
i=1

(DOi −AOi)) +
n∑
i=1

(ciCi +
n∑
j=1

sjiFji).

The expression
∑n

i=1(Ii − min(Ii,DPi) −
∑n

j=1 Fij) is the amount of remaining in-
ventory after all orders have been fulfilled or cancelled. Ii is the starting inventory
at location i, DPi is the in-store demand at location i, and Fij is the number of filled
online orders received at location j and filled from inventory at location i. The ex-
pression

∑n
i=1(DOi −AOi) is the number of online orders that were rejected. DOi is the

1.3. Omni-Channel Fulfillment Model 7

amount of online demand at location i, and AOi is the number of online orders ac-
cepted from location i in the first stage. Consequently, min(

∑n
i=1(Ii−min(Ii,DPi)−∑n

j=1 Fij),
∑n

i=1(DOi − AOi)) is the number of rejected online orders which could
have been fulfilled had they been accepted. The objective function assigns a cost
of p to each of these orders, reflecting the sale price of the item. The expression∑n

i=1 ciCi reflects the sum of all cancellation penalties orders that are cancelled. ci
is the cost parameter of a cancelled order from location i and Ci is the decision vari-
able for the number of online orders cancelled from location i. Lastly, the expression∑n

i=1

∑n
j=1 sjiFji represents the shipping costs for all online orders that were ac-

cepted and fulfilled. sji is the shipping cost between locations j and i, and Fji is
the decision variable reflecting the number of online orders filled from inventory at
location j and shipped to customers in location i.

The constraints of the form min(DPi , Ii) + Ri +
∑n

j=1 Fij = Ii express that all
inventory at location i must be used to fulfill in-store demand, be saved, or be used
to fulfill online demand. Ri is a decision variable reflecting the amount of inventory
that is left over. The constraints of the form Ci +

∑n
j=1 Fji = AOi reflect that all

accepted orders must be either cancelled or fulfilled.

1.3.4 Model Variables and Parameters

The overall optimization problem is to minimize the expected value of second stage
problem. The components of this model are the following:

Inputs:

• Online demand DOi for customers at location i, drawn from probability distri-
bution fOi

• In-store demand DPi at location i, drawn from probability distribution fPi

• Inventory level Ii at location i

• Cancellation penalty c

• Unnecessary rejection penalty p. The retailer pays a penalty of p for rejecting
an order that would have been filled successfully if accepted.

• Shipping costs sij between locations i and j

Decisions:

• Threshold level Si at location i (if a threshold policy is in place)

• Filled online orders, Fij received at location j and filled from inventory at lo-
cation i

Bookkeeping:

• Cancelled online orders Ci for customers at location i

8 Chapter 1. IPA Methods for Omni-Channel Fulfillment

• Accepted online orders AOi for customers at location i

• Accepted physical orders APi for customers at location i

• Leftover inventory Ri at location

We first investigate a single-store, known demand distribution setting. Access to
the CDFs of the demand distributions allows us to compute a closed form solution
that maximizes expected retailer profits. With only a single physical location, the
fulfillment problem for accepted online orders is trivial, and we are able to prove
optimal reserve thresholds in a similar manner to the the analysis of the classical
Newsvendor problem.

Next, we generalize to a multiple-store, unknown demand distribution setting.
In addition to determining conditions to open and close the online sales channel, the
retailer must now also set a fulfillment policy to ship the accepted online orders to
their destinations. Given a fixed threshold policy, we show that the fulfillment prob-
lem can be solved as a network flow problem. Furthermore, we can examine certain
dual values of a network flow linear program to compute unbiased estimates of the
derivative of the reserve thresholds with respect to the retailer’s expected profit. This
leads to an Infinitesimal Perturbation Analysis (IPA) algorithm [23] we will use to
set threshold policies for the retailer. We conclude with numerical experiments that
provide insight into when and why these threshold policies are effective for solving
this model.

1.4 Single-Store Model

We will consider the special case of our Omni-Channel Fulfillment Model where
there is only a single store location and first stage policies are restricted to Local
Threshold policies. Note that for a single-location instance Local Threshold and
Global Threshold policies are equivalent classes. This restriction simplifies the prob-
lem, allowing us to build some intuition for the full model. We will show that
single-location restriction means that the second stage problem is straightforward:
min(I − min(I,DP),min(DO, S)) accepted online orders are filled and the rest are
cancelled. In this section, we remove the subscripts denoting store location when
discussing single-location instances of the model (S1 becomes S, etc.). There is no
need to solve a linear program to determine a fulfillment assignment. Using this
observation, we can re-write the optimization problem in a simpler form. Consider

1.4. Single-Store Model 9

the linear program from the second stage:

minimize pmin(
n∑
i=1

(Ii −min(Ii,DPi)−
n∑
j=1

Fij),
n∑
i=1

(DOi −AOi))

+
n∑
i=1

(ciCi +
n∑
j=1

sjiFji)

such that min(DPi , Ii) +Ri +

n∑
j=1

Fij = Ii, ∀i ∈ [n]

Ci +

n∑
j=1

Fji = AOi , ∀i ∈ [n]

Ci, Ri, Fij ≥ 0, ∀i, j.

(1.2)

We will re-write the objective function knowing that we are considering only sin-
gle store instances (and remove store-location subscripts when appropriate). First,
we can remove the summations, replace AO1 with min(DO, S), and remove shipping
costs as we assume s11 = 0:

pmin(I −min(I,DP)− F,DO −min(DO, S)) + cC.

We observe that F will be at most the number of accepted online orders AO, and
F will also be at most the amount of remaining inventory after in-store demand is
filled. It will be optimal to maximize F subject to satisfying these constraints as it is
preferable to fill all accepted orders for which there is leftover inventory, rather than
cancelling these orders.

Proposition 1. For a single-store instance of the Omni-Channel Fulfillment Model F =

min(DO, S, I −min(I,DP)) is satisfied in any optimal solution.

Proof. First, we show that for any feasible solution, (C,R, F),

F ≤ min(AO, I −min(I,DP)).

By constraint C+F = AO, F ≤ AO. Similarly, by constraint min(DP , I)+R+F = I,
F ≤ I −min(DP , I). Then F ≤ min(AO, I −min(I,DP)).

Now consider an arbitrary feasible solution where this inequality is not tight,
F < min(AO, I − min(I,DP)). We will demonstrate that such a solution cannot
be optimal. In such a solution F < AO and F < I − min(DP , I). If F < AO

then C > 0, and if F < I − min(DP , I) then R > 0. Then for any ε < min(R,C),
(C−ε, R−ε, F+ε) will be a feasible solution whose objective value is ε(c+p) smaller
than the objective value of (C,R, F). Consequently, F = min(AO, I − min(I,DP))

in any optimal solution. We recall that AO = min(DO, S) by the definition of a Local

10 Chapter 1. IPA Methods for Omni-Channel Fulfillment

Threshold policy. Therefore,

F = min(AO, I −min(I,DP))

= min(min(DO, S), I −min(I,DP))

= min(DO, S, I −min(I,DP)).

By Proposition 1 and the constraint C + F = AO, we see that for any optimal
solution, C = min(DO, S) − min(DO, S, I − min(I,DP)) and F = min(DO, S, I −
min(I,DP)). Consequently, this re-stated objective function reaches the same value
as the original objective function at an optimal solution:

p min(I −min(I,DP)−min(DO, S, I −min(I,DP)),

DO −min(DO, S))

+c (min(DO, S)−min(DO, S, I −min(I,DP))).

This function contains none of the decision variables in the constraints of the
second stage linear program, but it does depend on the value of threshold parameter
S, which is set during the first stage. Consequently, we can write the entire Omni-
Channel Fulfillment problem in a single line for the single-store case:

min
S
EDO,DP [p ·min[I −min(I,DP)−min(DO, S, I −min(I,DP)),

DO −min(DO, S)]

+c·(min[DO, S]−min[DO, S, I −min[I,DP])].

Next, we will prove a closed-form optimal solution to the problem when the cu-
mulative distribution functions (CDFs) of the demand distributions are fully known.
In Section 1.8.2 we consider the case where the CDF is not available and we estab-
lish a sample complexity bound on the number of samples needed to obtain a high
quality solution to the problem with high probability.

I show in Theorem 1 that the optimal threshold for this problem takes a similar
form to the solution to the newsvendor problem:

S = I − F−1
P (

c

c+ p
).

One interesting consequence of this theorem is that the optimal threshold de-
pends only on the distribution of physical demand, not online demand.

The proof of the optimal threshold also provides insight on the structure in this
optimization problem. The theorem is proved by arguing that G(S), the expected

1.4. Single-Store Model 11

value of the optimization problem as a function of threshold S is unimodal and
finding the point where the derivative of G(S) with respect to S changes signs. We
compute the derivative of G(S) and observe that this derivative reduces to the ex-
pression

P [S < DO](cP [DP ≥ I − S]− pP [DP < I − S])

The factor in this expression,

cP [DP ≥ I − S]− pP [DP < I − S].

is nearly identical to the derivative of the classical newsvendor problem’s expected
objective with respect to the quantity purchased. This reveals a close connection
between the omni-channel fulfillment problem studied and the classical newsvendor
model. Additionally, it is the presence of the other multiplicative factor, P [S < DO],
which makes this makes the function G(S) non-convex (though still unimodal).

We observe this empirically by plotting the average objective value over 50000

samples taken at each feasible threshold level. Figures 1.1-1.3 present these results
for instances all with c = 15, p = 10, I = 30, DP ∼ Poisson(20), but DO is drawn
from Poisson distributions with rate parameters ranging from 10 to 50. It’s clear that
the optimal threshold value does not depend on the online demand distribution,
but this distribution does significantly influence the shape of function G(S) and can
result in non-convex G(S) functions when P [x < DO] is small for x < I . These
observations hold in the full, multi-location version of the model, which is why we
focus on proving unimodality rather than convexity in Theorem 2.

Theorem 1. For the above model,

arg min
S
EDO,DP [p ·min[I −min(I,DP)−min(DO, S, I −min(I,DP)),

DO −min(DO, S)]

+c·(min[DO, S]−min[DO, S, I −min[I,DP])]

= I − F−1
P (

c

c+ p
).

12 Chapter 1. IPA Methods for Omni-Channel Fulfillment

FIGURE 1.1: Plot of G(S) for instance where DO ∼ Poisson(10)

1.4. Single-Store Model 13

FIGURE 1.2: Plot of G(S) for instance where DO ∼ Poisson(15)

14 Chapter 1. IPA Methods for Omni-Channel Fulfillment

FIGURE 1.3: Plot of G(S) for instance where DO ∼ Poisson(50)

Proof. Let

G(S) =EDO,DP [p ·min[I −min(I,DP)−min(DO, S, I −min(I,DP)),

DO −min(DO, S)]

+c · (min[DO, S]−min[DO, S, I −min[I,DP])].

1.4. Single-Store Model 15

We can also observe the derivative of this function with respect to threshold S:

d

dS
[EDO,DP [p ·min[I −min(I,DP)−min(DO, S, I −min(I,DP)),

DO −min(DO, S)]

+ c · (min[DO, S]−min[DO, S, I −min[I,DP])]]

=
d

dS
[

∫ ∞
0

∫ ∞
0

fP (x)fO(y)(p ·min[I −min(I, x)−min(y, S, I −min(I, x)),

y −min(y, S)]]

+ c · (min[y, S]−min[y, S, I −min[I, x]))dxdy]

=

∫ ∞
0

∫ ∞
0

fP (x)fO(y)(c · 1[I −min(I, x) ≤ S ≤ y]

− p · 1[S < min(y, I −min(I, x)])dxdy

= cP [I −min(I,DP) ≤ S < DO]− pP [S < min(DO, I −min(I,DP))]

= cP [S < DO]P [S ≥ I −min(I,DP)]− pP [S < DO]P [S < I −min(I,DP)]

= P [S < DO](cP [S ≥ I −min(I,DP)]− pP [S < I −min(I,DP)])

= P [S < DO](cP [DP ≥ I − S]− pP [DP < I − S]).

Then, assuming 0 < FO(x) < 1 for x ∈ (0, I), G′(S) = 0 if and only if
pFP (I − S) = c(1− FP (I − S)) or equivalently if I − S = F−1

P (c
c+p). Let

S∗ = I − F−1
p (c

c+p), or equivalently P [DP < I − S∗] = c
c+p . If S < S∗ then

G′(S) < 0:

G′(S) = P [S < DO](cP [DP ≥ I − S]− pP [DP < I − S])

= P [S < DO](c(1− P [DP < I − S]− pP [DP < I − S])

< P [S < DO](c− c2

c+ p
− cp

c+ p
)

= 0.

Similarly, if S > S∗ then G′(S) > 0:

G′(S) = P [S < DO](cP [DP ≥ I − S]− pP [DP < I − S])

= P [S < DO](c(1− P [DP < I − S]− pP [DP < I − S])

> P [S < DO](c− c2

c+ p
− cp

c+ p
)

= 0.

G() is decreasing when S < S∗ and increasing when S > S∗, so S∗ is an optimal
threshold.

16 Chapter 1. IPA Methods for Omni-Channel Fulfillment

1.5 Infinitesimal Perturbation Analysis Method

We return to the complete omni-channel fulfillment model, now in the multiple-
location setting, to present an Infinitesimal Perturbation Analysis (IPA) algorithm
that converges to optimal policies for certain policy classes. This IPA method can be
used to obtain Global Threshold and Local Threshold policies for the Omni-Channel
Fulfillment Model. Recall that this problem has two stages: the first stage problem is
to accept or reject incoming online orders, and the second stage problem is to assign
accepted online orders to stores for fulfillment and cancel any unfulfilled orders.
The key insight behind our IPA method is that we can use dual values of a linear
program related to the second stage problem to produce unbiased estimates of the
derivative of the objective function with respect to threshold parameters. We apply
this method to set both Global and Local Threshold policies.

1.5.1 Overview

We focus on two policy classes for the first stage, Local Thresholds and Global
Thresholds. Recall that a Local Threshold policy has a threshold value, Si, for each
store location, and the first Si online orders are accepted for each location i and all re-
maining orders are rejected. A Global Threshold policy has a single threshold value
S so that the first S orders (from any location) are accepted and all remaining orders
are rejected. We will use essentially the same IPA algorithm to find optimal local and
global threshold policies.

After all online orders have been accepted or rejected, the accepted orders must
be assigned to store locations for fulfillment or cancelled. This assignment problem
can be formulated as a linear program. We will use dual values from this linear pro-
gram in our IPA method to optimize both Global and Local Thresholds, so we begin
by formulating and describing the second stage problem. Then, we will develop the
optimization procedure for each threshold policy class.

1.5.2 Second Stage Assignment Problem

Original minimization assignment problem

Recall the original assignment problem defined in Section 1.3.3:

1.5. Infinitesimal Perturbation Analysis Method 17

minpmin(
n∑
i=1

(Ii −min(Ii,DPi)−
n∑
j=1

Fij),
n∑
i=1

(DOi −AOi))

+

n∑
i=1

(ciCi +

n∑
j=1

sjiFji)

such that min(DPi , Ii) +Ri +

n∑
j=1

Fij = Ii, ∀i ∈ [n]

Ci +
n∑
j=1

Fji = AOi , ∀i ∈ [n]

Ci, Ri, Fij ≥ 0, ∀i, j.

(1.3)

The objective function of this LP reflects the number of rejected orders which
could have been filled with leftover inventory, the number of cancelled orders at
each location, and the shipping costs associated with filling online orders. The first
set of constraints requires all inventory to be sold in-store, salvaged, or used to fill
online demand. The second set of constraints requires all accepted online orders
to be cancelled or filled. We intend to compute derivative estimates using the dual
values of this constraint set. However, we cannot do this with the above LP because
the value that changes when relaxing the right-hand side of this constraint, AOi , also
appears in the LP’s objective function.

We formulate an alternative LP with equivalent optimal solutions. This will al-
low us to compute gradient estimates in a more straightforward manner. Through
this transformation we will obtain the following linear program:

max
n∑
i=1

(pmin(DPi , Ii)− ciCi +
n∑
j=1

(p− sji)Fji)

such that min(DPi , Ii) +Ri +

n∑
j=1

Fij = Ii, ∀i ∈ [n]

Ci +

n∑
j=1

Fji = AOi , ∀i ∈ [n]

Ci, Ri, Fij ≥ 0, ∀i, j.

(1.4)

We can immediately observe it has an economic interpretation consistent with
the original LP 1.3, and we will go on to show that this LP is equivalent for the
purpose of computing derivative estimates. The first term in the objective function,∑n

i=1(pmin(DPi , Ii), reflects a profit of p for each unit sold in-store. The remaining
terms of the objective function, −ciCi +

∑n
j=1(p − sji)Fji, reflect a profit of p for

each unit sold online, with costs deducted for cancellations and shipping costs. This
interpretation of LP 1.4 may at first seem counterintuitive because p was originally

18 Chapter 1. IPA Methods for Omni-Channel Fulfillment

defined as the penalty cost for missed sales. However, we can observe that the dam-
age incurred to the retailer from missing a sale is the profit they would get from
making an additional sale, which explains why the economic interpretations of LPs
1.3 and 1.4 are consistent with each other. Both interpretations implicitly assume
that the retailer gets no value from holding on to excess inventory. In the event that
this is an unrealistic assumption, it is very straightforward to incorporate a salvage
value of inventory into the model.

Proposition 2. For any optimal solution to the original minimization LP 1.3 there is an
optimal solution to the maximization LP 1.4 that yields an identical assignment of orders to
stores.

Proof. Consider again the objective function in the original minimization LP 1.3:
pmin(

∑n
i=1(Ii−min(Ii,DPi)−

∑n
j=1 Fij),

∑n
i=1(DOi −AOi))+

∑n
i=1(ciCi+

∑n
j=1 sjiFji)

We’ll focus on the first term,

min(

n∑
i=1

(Ii −min(Ii,DPi)−
n∑
j=1

Fij),

n∑
i=1

(DOi −AOi)),

which reflects the amount of leftover inventory that could have been used to meet
unfilled demand. By the constraints of the LP, Ci +

∑n
j=1 Fji = AOi , so we can

rewrite this as min(
∑n

i=1(Ii −min(Ii,DPi)−
∑n

j=1 Fij),
∑n

i=1(DOi −Ci −
∑n

j=1 Fji)).
We assume in the original formulation that if any cancellations occur, then there
is no remaining inventory. This is equivalent to assuming that p − maxi,j∈[n] sij >

c. In other words, the maximum ship cost in the network is small enough that it
is always preferable to fill an online order rather than cancel the order. Note that
once we have reformulated the problem we will be able to drop this assumption.
Consequently, if Ci > 0 then

∑n
i=1(Ii − min(Ii,DPi) −

∑n
j=1 Fij) = 0. This is the

crucial observation that leads to the precise correspondence between LPs 1.3 and
1.4. Ci +

∑n
j=1 Fji = AOi ≤ DOi so

∑n
i=1(DOi − Ci −

∑n
j=1 Fji) ≥ 0. Therefore,

min(
∑n

i=1(Ii − min(Ii,DPi) −
∑n

j=1 Fij),
∑n

i=1(DOi − Ci −
∑n

j=1 Fji)) is equivalent
to min(

∑n
i=1(Ii − min(Ii,DPi) −

∑n
j=1 Fij),

∑n
i=1(DOi −

∑n
j=1 Fji)) for all feasible

solutions to the LP. We can rewrite this as min(
∑n

i=1(Ii −min(Ii,DPi)),
∑n

i=1DOi)−∑n
i=1

∑n
j=1 Fji).

We rewrite the objective function using this reformulation and get the following:

pmin(

n∑
i=1

(Ii −min(Ii,DPi)),

n∑
i=1

DOi) +

n∑
i=1

(ciCi +

n∑
j=1

(sji − p)Fji).

Observe that the first term, pmin(
∑n

i=1(Ii −min(Ii,DPi)),
∑n

i=1DOi) no longer con-
tains any decision variables, and all decision variables are part of the remaining
terms

∑n
i=1(ciCi +

∑n
j=1(sji − p)Fji). The first term is important for the economic

interpretation of this LP, but only the later terms impact the quality of a feasible so-
lution. Then, maximizing the negative of this function and adding a constant will

1.5. Infinitesimal Perturbation Analysis Method 19

result in an equivalent problem. This is results in the maximization LP 1.4:

max
n∑
i=1

(pmin(DPi , Ii)− ciCi +
n∑
j=1

(p− sji)Fji)

such that min(DPi , Ii) +Ri +
n∑
j=1

Fij = Ii, ∀i ∈ [n]

Ci +

n∑
j=1

Fji = AOi , ∀i ∈ [n]

Ci, Ri, Fij ≥ 0, ∀i, j.

(1.5)

This correspondence means that an adjustment to the constraints of the maxi-
mization problem leads to the same improvement in the objective function of the
minimization problem as the maximization LP. Then, we can use the dual values the
Maximization LP to optimize our policy in the First Stage problem.

The original minimization problem placed assumptions that the cancel cost must
be high enough that the retailer would never want to cancel an order they could
possibly fill. Without this assumption, it is unclear what it means to “unnecessarily
reject” an order, because there could be orders which could theoretically be filled but
this would not be the profit-maximizing decision for the retailer. This new LP formu-
lation models the full profits received by the retailer from both online and in-store
sales, rather than just costs, so it is no longer necessary to make this assumption if
we wish to only use this formulation of the second-stage problem. There are advan-
tages still to the original problem, including that a cost-based objective function can
make percentage changes in the objective function more interpretable. For example,
if we add k to each Ii as well as shift the probability distributions of DPi up by k,
this will increase all realizations of the maximization assignment problem’s objec-
tive function by pk, whereas the original minimization problem’s objective function
would not change. Fortunately, if we wish we can still use the original problem as
our second stage problem while using this reformulation to get information for our
IPA method.

Our interest in the maximization LP 1.4 is so we can extract sensitivity informa-
tion from the constraints Ci +

∑n
j=1 Fji = AOi , ∀i ∈ [n] using LP dual values. To

access this sensitivity information, we will express these constraints as inequality
constraints:

Ci +
n∑
j=1

Fji ≤ AOi , ∀i ∈ [n]

Ci +
n∑
j=1

Fji ≥ AOi , ∀i ∈ [n].

20 Chapter 1. IPA Methods for Omni-Channel Fulfillment

Then, we will dualize the first set of inequalities to obtain the following LP:

max
n∑
i=1

(pmin(DPi , Ii)− (ci +M)Ci +MAi +
n∑
j=1

(p− sji −M)Fji)

such that min(DPi , Ii) +Ri +
n∑
j=1

Fij = Ii, ∀i ∈ [n]

Ci +

n∑
j=1

Fji ≥ AOi , ∀i ∈ [n]

Ci, Ri, Fij ≥ 0, ∀i, j.

(1.6)

We show in Proposition 3 that this LP 1.6 has the same optimal solution as the origi-
nal second-stage and maximization LPs. This means we will be able to use the dual
values of constraints Ci +

∑n
j=1 Fji ≥ AOi , ∀i ∈ [n] to obtain gradient estimates for

the Omni-Channel Fulfillment Model.

Proposition 3. The linear program 1.6 has the same optimal solution as the linear program
1.4 when M > p.

Proof. By moving the constraints Ci +
∑n

j=1 Fji ≤ AOi , ∀i ∈ [n] to the objective
function, we are relaxing the linear program 1.4 by allowing solutions that pay a
penalty of M for each unit of violation of constraints Ci +

∑n
j=1 Fji ≤ AOi , ∀i ∈ [n].

The cancel variables Ci only appear in the the order acceptance constraints and have
a negative coefficient in the objective, even with the violation penalty M removed.
Consequently, any solution where any of constraints Ci +

∑n
j=1 Fji ≥ AOi , ∀i ∈ [n]

have slack and any variable Ci > 0 is not an optimal solution because it can be
improved by decreasing Ci by a sufficiently small value ε.

If constraints Ci +
∑n

j=1 Fji ≥ AOi , ∀i ∈ [n] have slack, Ci = 0 ∀i ∈ [n]. In
this case, there necessarily exists i, j such that Fij > 0, and we will show that this
solution also cannot be optimal. The solution obtained by reducing Fij by ε and
increasing Ri by ε (for a value of ε smaller than the slack in the Ci +

∑n
j=1 Fji ≥ AOi

constraint) will be a feasible solution with an objective value at least M − p > 0

greater than the prior solution. Consequently, no optimal solution will have slack in
any of constraints Ci +

∑n
j=1 Fji ≥ AOi , ∀i ∈ [n] and therefore this solution will also

be feasible in linear program 1.4.

Proposition 4. The minimization LP 1.3 is integral.

Proof. The integrality of the maximization LP 1.4 follows from the observation that
this LP models a minimum cost feasible flow problem. The network shown in Figure
1.4 has exact flow requirements indicated by the edge labels and unrestricted capac-
ity on all unlabeled edges. Flow out of the top node on the left column of nodes
represents cancelations, and all flow exiting this node incurs a cost of c. Flow into
the top node on the right column of nodes represents salvaged inventory. There is
no cost to send flow to this node and has unlimited capacity. The remaining nodes

1.5. Infinitesimal Perturbation Analysis Method 21

in the left column represent remaining inventory at each store after in-store demand
is filled, and the remaining nodes in the right column represent accepted online or-
ders. Flow from a left inventory node Ii,a to a right inventory node Ij,b represents
inventory at location i used to fill orders at location j and has a cost si,j − p.

We will demonstrate that this minimum cost flow problem is equivalent to min-
imization LP 1.3 by writing out the flow problem as a linear program. Before we
write the complete flow LP, let’s enumerate its constraints moving from left to right
Figure 1.4. The first layer of edges sets and exact flow constraint from node s to each
node Ii,a for all locations i. These constraints can be expressed as

xs,Ii,a = Ii −min(DPi , Ii), ∀i ∈ [n]. (1.7)

The next layer of nodes in the network has no capacity constraints, but each node
has flow conservation constraints. We consider first the flow conservation constraint
on node C:

xs,C =
n∑
i=1

xC,Ii,b . (1.8)

The flow conservation constraints on the left inventory nodes are

xs,Ii,a = xIi,a,R +
n∑
j=1

xIi,a,Ij,b , ∀i ∈ [n]. (1.9)

There are no edge capacities on the central edges, so we move on to the flow
capacity constraints on the right side of nodes. The flow conservation constraint on
node R is

n∑
i=1

xIi,a,R = xR,t. (1.10)

The flow conservation constraints on the right inventory nodes are

xC,Ii,b +

n∑
j=1

xIj,a,Ii,b = xIi,b,t, ∀i ∈ [n]. (1.11)

The edge capacity constraints from the right inventory nodes to t is

xIi,b,t = Ai, ∀i ∈ [n]. (1.12)

22 Chapter 1. IPA Methods for Omni-Channel Fulfillment

Finally, flow conservation constraint on nodes s and t are

xt,s = xs,C +
n∑
j=1

xs,Ij,a (1.13)

xR,t +
n∑
j=1

xIj,b,t = xt,s. (1.14)

xt,s is otherwise unconstrained, so we replace this set of constraints with the
following set of constraint:

xs,C +
n∑
j=1

xs,Ij,a = xR,t +
n∑
j=1

xIj,b,t. (1.15)

Now we will reduce these constraints to the set of constraints in the minimization
LP 1.3. Variable xs,Ii,a is set to a fixed value by constraint 1.7 so we will replace xs,Ii,a
with Ii − min(DPi , Ii) in all other constraints. We will rename variables xIi,a,Ij,b to
Fi,j , variable xC,Ii,b to Ci, and xIi,a,R to Ri, ∀i ∈ [n]. We now re-state the constraints,
using new variable names and replacing all variables that are constrained to a fixed
value with that value:

xs,C =
n∑
i=1

Ci (1.16)

Ii −min(DPi , Ii) = Ri +
n∑
j=1

Fi,j , ∀i ∈ [n] (1.17)

n∑
i=1

Ri = xR,t (1.18)

Ci +
n∑
j=1

Fj,i = Ai, ∀i ∈ [n] (1.19)

xs,C +
n∑
j=1

Ij −min(DPj , Ij) = xR,t +
n∑
j=1

Aj . (1.20)

We can consolidate constraints 1.16, 1.18, and 1.20 into a single constraint:

n∑
i=1

Ci + Ii −min(DPi , Ii) =

n∑
i=1

Ri +Ai. (1.21)

1.5. Infinitesimal Perturbation Analysis Method 23

FIGURE 1.4: Minimum cost flow formulation of maximization LP 1.4

This results in the following constraint set for the minimum cost flow problem
shown in Figure 1.4:

Ii −min(DPi , Ii) = Ri +
n∑
j=1

Fi,j , ∀i ∈ [n] (1.22)

Ci +
n∑
j=1

Fj,i = Ai, ∀i ∈ [n] (1.23)

n∑
i=1

Ii −min(DPi , Ii) =

n∑
i=1

Ri +Ai − Ci. (1.24)

Constraints 1.22 and 1.23 are exactly the constraints of minimization LP 1.3. Con-
straint 1.24 is redundant and is implied by constraints 1.22 and 1.23. Finally, we must
verify that the objective functions of these two problems are the same or shifted by
a constant. We will write out the objective function of the minimum cost flow prob-
lem:

n∑
i=1

ciCi +
n∑
j=1

(sij − p)Fij .

We observed in the proof of Proposition 2 that this is equal to a constant plus
the objective function of minimization LP 1.3. Therefore, the minimization LP 1.3
describes the minimum cost flow problem shown in Figure 1.4 and consequently is
integral.

24 Chapter 1. IPA Methods for Omni-Channel Fulfillment

The integrality of this LP is important because fractional solutions do not corre-
spond to acceptable real-world fulfillment plans in our discrete model.

1.5.3 First Stage Decision Problem

Online orders arrive in sequence and must be accepted or rejected at the time of ar-
rival. We assume that in-store and online demand are drawn from fixed distributions
and the sequence in which online orders arrive is drawn uniformly at random from
all orderings of the given demand realization. We consider two policy classes for
this decision problem, Local Thresholds and Global Thresholds. The IPA algorithm
to optimize these policy classes is similar and relies on the same techniques.

IPA Algorithm Overview

This IPA algorithm can be accurately interpreted as a stochastic gradient descent
method. We begin by specifying a starting policy P , and a value U , which will be
the number of samples we use to compute a single gradient estimation iteration. U
demand samples are drawn, and online orders are accepted and rejected according
to policy P for each of the U samples. We assume that policy P is a local or global
threshold policy, but the method may apply to additional policy classes. Then, we
solve the maximization assignment LP to fulfill the accepted orders in each of the
demand samples. Dual values of the maximization assignment LP are used to com-
pute unbiased estimates of the gradients of the fulfillment profit with respect to the
policy parameters (Si in the case of local thresholds). We then update the threshold
parameters with their gradients, multiplied by a step size value.

Local Threshold Derivative Estimates

We compute derivative estimates by looking at the dual values corresponding to the
LP constraints Ci +

∑n
j=1 Fji ≥ AOi , ∀i ∈ [n] from linear program 1.6, where AOi and

Ci are the number of accepted and cancelled online orders at location i, respectively,
and Fji is the number of online orders at location i filled from inventory from store
j. The dual value from one of these constraints indicates the rate of increase in the
objective function from relaxing the constraint. For the case of local threshold poli-
cies, if demand at location i exceeds threshold Si then this dual value is precisely the
gradient on the total profit of the LP with respect to threshold Si. We average these
gradient estimates over the U samples to get an unbiased estimate of the gradient
each time we update the threshold values.

Global Threshold Derivative Estimates

We use the same dual values used to estimate derivatives with respect to Local
Threshold parameters, those corresponding to constraints Ci+

∑n
j=1 Fji ≥ AOi , ∀i ∈

1.5. Infinitesimal Perturbation Analysis Method 25

[n] from linear program 1.6, to estimate derivatives of the objective function with re-
spect to a Global Threshold parameter. The dual value from one of these constraints
indicates the rate of increase in the objective function from relaxing the constraint.
For a global threshold policy, if total demand exceeds threshold S, then the deriva-
tive of the total profit of the LP with respect to threshold S is the sum of these dual
values, weighted by the probabilities that first rejected order is from each store.

Lemma 1. dG(S)
dS = E[

∑n
i=1

λi∑n
j=1 λj

g(i)1[S <
∑n

k=1DOi]] where λi is the mean online

demand at location i, fOi , the distribution from which random variable DOi is drawn, is a
Poisson distribution, and g(i) is the dual value of constraint Ci +

∑n
j=1 Fji ≥ AOi after

solving the maximization LP 1.6 for a demand sample, and G(S) is the expected value of the
Omni-Channel Fulfillment Model with Global Threshold S.

Proof. Among instances when the first rejected order is at location i, g(i) is the un-
biased derivative estimate, so in general, the unbiased derivative estimate is the
weighted sum of dual values across all locations, weighted by arrival probabil-
ity.

We average these gradient estimates over the U samples to get an unbiased esti-
mate of the gradient each time we update the threshold values.

1.5.4 Threshold Policy Properties

In this section we prove structural properties about threshold policies for the Omni-
Channel Fulfillment Model. Theorem 2 states that the expected value of the Model
as a function of a Global Threshold is unimodal. A consequence of Theorem 2 is that
our IPA method will converge to the optimal policy within this class. We use the
same proof technique to show that when all but one Si of a Local Threshold Policy
is fixed, the expected value of the Model as a function of the free Local Threshold
parameter is unimodal.

The intuition behind these proofs comes from extending our observations about
single-store instances in Section 1.4 to the more general multiple-location setting.
We observed that the optimal threshold policy for single-store instances is the c

c+p -
fractile of the in-store demand distribution. The online demand distribution influ-
ences the shape of the expected cost as a function of the threshold, though it does
not influence the value of the optimal threshold. An informative way to think about
this property is to consider the marginal effect on cost with respect to the threshold.
For realizations where online demand is below the threshold this marginal effect is
zero, and this marginal effect will have the same non-zero value for all realizations
where online demand is above the threshold. Then, the sign of this marginal effect
on cost is determined entirely by the demand distribution restricted to realizations
where online demand is greater than the threshold value.

We lift these observations to the multiple-store setting and use them to analyze
the marginal effect of increasing the threshold. This marginal effect on penalties

26 Chapter 1. IPA Methods for Omni-Channel Fulfillment

for missed sale opportunities is negative and decreasing in magnitude, and we use
Lemma 2 to establish that the marginal effect on fulfillment costs (including cancel
costs) is also always increasing with respect to the threshold. These properties are
sufficient to argue that the total expected cost as a function of Global Threshold S

(or Local Threshold Sk at location k with all other Local Threshold elements fixed)
is unimodal.

Lemma 2. In a minimum-cost single-commodity flow problem with multiple sources, one
sink, and integer supplies, demands, and capacities, the objective value of a minimum cost
feasible flow as a function of the supplies at the source nodes is supermodular.

Proof. Let s = (s1, . . . , sn) be the vector of supply at the source nodes, and let V (s) =

V (s1, . . . , sn) be the objective value of the minimum cost flow in a fixed network as
a function of s. We will complete the proof by arguing that

V (s1 + 1, s2 + 1, . . . , sn)− V (s1, s2 + 1, . . . , sn)

≥V (s1 + 1, s2, . . . , sn)− V (s1, s2, . . . , sn).

In other words, increasing the supply by one unit at a supply node cannot decrease
the marginal cost of increasing the supply at another node. First observe that the
marginal cost of increasing the supply at a specific supply node is the cost of the
shortest path in the residual network obtained by computing the minimum cost flow
in the network without this additional unit of demand. Suppose that the above
inequality is not always true and there is a network where

V (s1 + 1, s2 + 1, . . . , sn)− V (s1, s2 + 1, . . . , sn)

<V (s1 + 1, s2, . . . , sn)− V (s1, s2, . . . , sn).

Then adding a unit of supply to source node 2 decreases the marginal cost of
adding supply to source node 1. For this to happen, the shortest path in the residual
network between source node 1 and the sink under supplies (s1, s2, . . . , sn) must
be different from the shortest path in the residual network between source node 1

and the sink under supplies (s1, s2 + 1, . . . , sn). This requires the shortest path from
source node 2 and the sink in the residual network under supplies (s1, s2, . . . , sn) to
create a new arc in the residual network by reversing flow in a saturated arc. Then,
the shortest path from source node 1 and the sink in the residual network under
supplies (s1, s2 + 1, . . . , sn) must use this newly created arc. This cannot happen,
however, because if this newly created path in the residual network (after adding
supply to source node 2) is cheaper than the original path from source node 1 to the
sink, this contradicts the fact that the augmenting path taken from source node 2 to
the sink is a minimum cost path in that residual network.

Theorem 2. G(S), the expected value of the objective function of the Omni-Channel Ful-
fillment Model as a function of Global Threshold S, is unimodal.

1.5. Infinitesimal Perturbation Analysis Method 27

Proof. Let S∗ be an optimal solution to the Omni-Channel Fulfillment Model, a so-
lution that minimizes G(). We want to show that G(S + 1)−G(S) ≤ 0 ∀S < S∗ and
G(S + 1) − G(S) ≥ 0 ∀S > S∗. Our proof strategy will be to decompose G(S) into
the sum of two functions P (S) and F (S). Then, we will define functions G(S,D),
P (S,D), and F (S,D), which are the functionsG(S), P (S), and F (S) under arbitrary
demand distributions D = (DO,DP), which may differ from the true demand dis-
tributions. P (S,D) represents the “missed sales” cost component of the model and
F (S,D) represents the fulfillment costs component of the model.

First, we observe that by the assumptions of our model, in the optimal solu-
tion accepted orders will be cancelled only if there is no available inventory to ful-
fill the orders. Consequently,

∑
i,j Fij = min(S,

∑n
i=1DOi ,

∑n
i=1(Ii − min(Ii,DPi))).

Then P (S,D) = ED[pmin(
∑n

i=1(Ii − min(Ii − DPi)) − min(S,
∑n

i=1DOi ,
∑n

i=1(Ii −
min(Ii,DPi))),

∑n
i=1(DOi −AOi)]. Similarly, we can remove the missed sales term from

the objective function of the second stage problem and the optimal solution will not
change:

min

n∑
i=1

(ciCi +

n∑
j=1

sjiFji)

such that min(DPi , Ii) +Ri +
n∑
j=1

Fij = Ii, ∀i ∈ [n]

Ci +
n∑
j=1

Fji = AOi , ∀i ∈ [n]

Ci, Ri, Fij ≥ 0, ∀i, j.

(1.25)

Now, letD(S) be the true demand distribution restricted to only outcomes where∑n
i=1DOi > S. We observe that G(S + 1) > G(S) if and only if G(S + 1, D(S)) >

G(S,D(S)) and likewiseG(S+1) < G(S) if and only ifG(S+1, D(S)) < G(S,D(S)).
This is true because for specific realizations of demand where

∑n
i=1DOi ≤ S the

value of the model will be equal for Global Thresholds S and S + 1. Then the re-
alizations of demand where

∑n
i=1DOi > S are the only ones needed to determine

whether G(S + 1) is greater or smaller than G(S).
To complete the proof, we will show first show that P (S+ 1, D(S))−P (S,D(S))

andF (S+1, D(S))−F (S,D(S)) are increasing with S. Consequently,G(S+1, D(S))−
G(S,D(S)) is also increasing with S. We will use this to show thatG(S+1)−G(S) ≤
0 ∀S < S∗ and G(S + 1)−G(S) ≥ 0 ∀S ≥ S∗, concluding the proof.

Observe that P (S + 1, D(S)) − P (S,D(S)) = −p · Pr(
∑n

i=1 min(Ii,DPi) + S <∑n
i=1 Ii). This expression is clearly increasing with S and so P (S + 1, D(S)) −

P (S,D(S)) is increasing with S. Next we show that F (S + 1, D(S)) − F (S,D(S))

is also increasing with S. Linear Program 1.25 may be viewed as a minimum cost
single-commodity flow problem in a bipartite network where nodes corresponding
to each location are on one side of the bipartition and have supplies equal to the
number of accepted orders at that location. Nodes corresponding to each location

28 Chapter 1. IPA Methods for Omni-Channel Fulfillment

and a node corresponding to cancellations are on the other side of the bipartition.
This second set of nodes all have arcs directed to a sink node, and these arcs have
capacities equal to the number of unsold units of inventory at the corresponding
location and an unlimited capacity on the arc between the cancellation node and
the sink. The sink node has demand equal to the sum of the supplies on the nodes
representing accepted orders. This network flow problem is displayed in Figure 1.5.

F (S + 1, D(S)) − F (S,D(S)) is the difference in expected value between fulfill-
ment costs from accepting S + 1 and S orders restricted to demand instances where
there are at least S + 1 online orders. An immediate consequence of Lemma 2 is
that the marginal cost of fulfilling an order o in addition to a set of orders O, the dif-
ference between the minimum possible fulfillment cost of some set of orders O and
the minimum possible fulfillment cost of orders O + {o}, is at least as large as the
marginal cost of fulfilling order o in addition to any subset of O. Suppose we have
sets M and N of orders whose locations are selected at random from a common
probability distribution and |N | > |M |. Then the expected marginal cost of filling
an order o in addition to orders N will be greater than the expected marginal cost
of filling order o in addition to set M . This is a consequence of the supermodularity
property seen in Lemma 2 and because the probability distribution of the first |M |
order locations in set N is the same as the distribution of order locations in set |M |.
That F (S + 1, D(S)) − F (S,D(S)) is increasing with S follows from the previous
observation if we consider the case when |N | = |M | + 1 and apply the observation
over the probability distribution of possible orders o.

We have seen that both P (S + 1, D(S)) − P (S,D(S)) and F (S + 1, D(S)) −
F (S,D(S)) are increasing with S and so G(S + 1, D(S)) − G(S,D(S)) is also in-
creasing with S. By assumption that S∗ is the optimal Global Threshold, G(S∗ +

1) − G(S∗) ≥ 0. Then G(S∗ + 1, D(S∗)) − G(S∗, D(S∗)) ≥ 0 and consequently
G(S + 1, D(S))−G(S,D(S)) ≥ 0 and likewise G(S + 1)−G(S) ≥ 0 ∀S ≥ S∗. Simi-
larly, G(S∗)−G(S∗− 1) ≤ 0. Then G(S∗, D(S∗− 1))−G(S∗− 1, D(S∗− 1)) ≤ 0 and
consequentlyG(S,D(S−1))−G(S−1, D(S−1)) ≥ 0 and likewiseG(S)−G(S−1) ≤ 0

∀S ≤ S∗. This concludes the proof as we have proved that G(S) is decreasing at all
values of S below S∗ and that G(S) is increasing at all values of S above S∗.

We can apply a similar argument to show that when all but one Si of a Local
Threshold Policy is fixed, the expected value of the Model as a function of the free
Local Threshold parameter is unimodal.

Theorem 3. G(Sk), the expected value of the objective function of the Omni-Channel Ful-
fillment Model as a function of Local Threshold Sk, is unimodal, when all other Local Thresh-
old parameters, Sj for j 6= k are fixed values.

Proof. The proof of this theorem follows from nearly the identical argument as was
used to prove Theorem 2. Function G(Sk) is decomposed into the sum of P (Sk)

and F (Sk). Note that the values of G(Sk), P (Sk), and F (Sk) depend on all Local
Thresholds Si, ∀i ∈ [n], but we express these functions as functions of Sk to indicate

1.5. Infinitesimal Perturbation Analysis Method 29

FIGURE 1.5: Single-commodity flow formulation of Linear Program
1.25

that Sk is a variable that can change while all other Local Thresholds Sj for j 6= k are
fixed values. We observe that some of the equations change slightly, but the same
arguments are true of these revised equations. Now:

∑
i,j

Fij = min(
n∑
i=1

min(Si,DOi),
n∑
i=1

(Ii −min(Ii,DPi)))

and

P (Sk, D)

=ED[pmin(

n∑
i=1

(Ii −min(Ii −DPi))−min(

n∑
i=1

min(Si,DOi),

n∑
i=1

(Ii −min(Ii,DPi))),

n∑
i=1

(DOi −min(Si,DOi)].

We can define D(Sk) as the true demand distribution restricted to outcomes where
DOk > Sk and we see thatP (Sk+1, D(Sk))−P (Sk, D(Sk)) = −p·Pr(

∑n
i=1 min(Ii,DPi)+

min(Si,DOi) <
∑n

i=1 Ii). The economic interpretation of the probability in this ex-
pression is −p times the probability there is unsold inventory after physical and
accepted online orders are filled. This probability is decreasing as we increase Sk
and so P (Sk + 1, D(Sk)) − P (Sk, D(Sk)) is increasing in Sk. F (Sk + 1, D(Sk)) −

30 Chapter 1. IPA Methods for Omni-Channel Fulfillment

F (Sk, D(Sk)) is also increasing in Sk as a direct consequence of Lemma 2 by the
same argument used in the proof of Theorem 2. It follows that G(Sk) is decreasing
at all values of Sk below S∗k and that G(Sk) is increasing at all values of Sk above S∗k ,
concluding the proof.

Theorems 2 and 3 establish that the expected value of the objective function as a
function of a single Global or Local Threshold variable are unimodal. We conclude
this section by demonstrating that this property is sufficient to show that Global
Threshold policies and single thresholds of Local Threshold policies can be set opti-
mally and efficiently.

Lemma 3. Let F (S) and F (Sk) be the linear interpolation of the integer values of functions
G(S) and G(Sk), defined in Theorems 2 and 3. F (S) and F (Sk) are quasi-convex and
Lipschitz continuous.

Proof. F (S) and F (Sk) are unimodal functions because G(S) and G(Sk) are uni-
modal functions and have global minima at integer values. The quasi-convexity
of functions F (S) and F (Sk) follows trivially from the Theorems 2 and 3 as these are
unimodal functions of a single variable. The Lipschitz-continuity of these functions
is also trivial as the absolute value of the slope of these functions cannot exceed the
maximum of cost parameters c, p, and sij .

These technical conditions allow us to apply a theorem from [30] to prove that
F (S) and F (Sk) can be efficiently minimized. The theorem proves that the Stochastic
Normalized Gradient Descent algorithm will find an ε-optimal minimum F (S) and
F (Sk) with poly(1

ε) unbiased gradient estimates and optimization steps.

Theorem 4. An ε-optimal minimum F (S) and F (Sk) can be obtained with poly(1
ε) unbi-

ased gradient estimates and optimization steps by the Stochastic Normalized Gradient De-
scent algorithm.

Proof. The theorem follows directly from Lemma 3 and Theorem 5.1 of [30].

1.6 Complete Retail Network Results

In Section 4, we develop a method that finds optimal local and global threshold
policies for our omni-channel fulfillment problem. In this section we will assess the
empirical performance of these policies on full-size instances. This will give us in-
sight into the strengths of each policy class while also verifying that this IPA method
is of practical use. In our experiments, we will use demand distributions that are
estimated from sales and inventory data of an upscale North American retailer. We
use the demand data across the full retail network from the top 20 bestselling UPCs
at this retailer to generate a realistic instance corresponding to each of these 20 UPCs.

1.6. Complete Retail Network Results 31

Average Cost Saving %
Siloed Fulfillment 471 -

Reactive Fulfillment 369 21.5%
Global Threshold 116 75.3%
Local Threshold 104 77.9%

FIGURE 1.6: Average fulfillment costs across 20 full-network in-
stances

This data has been made available to us by analytics firm Onera Inc. A typical in-
stance will have inventory located at 30 to 40 store locations. The cancel parameter is
set to two times the price parameter, and ship costs are proportional to distance. In-
ventories are set to two units at each retail location so as to generate instances where
careful supervision of online fulfillment is necessary. For each of these test instances,
we compare Local Threshold and Global Threshold policies to Siloed Fulfillment and
Reactive Fulfillment policies.

Definition 3. The Siloed Fulfillment policy treats each store location as a separate retail
network and computes the optimal Global Threshold policy for each individual store as its
own instance.

Siloed Fulfillment policies might be used in practice if a retailer is not aware
or sophisticated enough to implement a coordinated full-network ship from store
program.

Definition 4. The Reactive Fulfillment policy is the Local Threshold policy that uses the
thresholds from the Siloed Fulfillment policy as its threshold parameters.

Reactive Fulfillment policies use the same set of thresholds for the first stage
problem as are computed by the Siloed Fulfillment policy, but the retailer is still
able to execute long-distance shipments when solving the second stage problem. A
policy similar to the Reactive Fulfillment policy might occur in practice if a retailer
sets its online order acceptance thresholds without considering its entire network
but has a modern ship from store fulfillment process running in production for its
accepted online orders.

We select the 20 UPCs to test our algorithms on by selecting the top 20 UPCs in
terms of total sales during the month of May 2016. We used the mean daily number
of units sold at each store location during May 2016, calculated from the retailer’s
archived analytics data, to estimate Poisson demand distributions at each store lo-
cations. This use of these statistics is also consistent with the maximum likelihood
estimation approach to estimating Poisson distributions. We compute shipping costs
proportional to the Haversine distance between the Zip Codes of every pair of stores
in the network. The Haversine distance in kilometers is multiplied by 1

250 to gener-
ate realistic costs. The four fulfillment algorithms are tested in 100 trials for each of
the 20 UPCs to generate the results described in this section and Figure 1.6.

32 Chapter 1. IPA Methods for Omni-Channel Fulfillment

We find that across our test instances Local Thresholds and Global Thresholds
provide great improvement (78 and 75 percent improvement, respectively) over the
Siloed Fulfillment and Reactive Fulfillment policies. For many retailers the Global
Threshold policies may be sufficient, providing most of the benefit possible from
a network-wide optimization procedure and maintaining a simple policy that can
be implemented easily in a production environment. In Section 1.7 we provide ad-
ditional insight into the tradeoffs between Local Threshold and Global Threshold
policies.

1.7 Insights from Two-Store Instances

We conduct experiments on two-store instances of the problem to provide insight
into how Local Threshold and Global Threshold policies compare. We are specifi-
cally interested in four questions:

1. What is the effect of balanced and imbalanced inventory?

2. How does magnitude of in-store demand affect performance?

3. Does relative performance of policies vary with cancel costs?

4. What conditions result in good performance of Global Thresholds?

To answer each of these questions, we conduct two-store experiments where we run
our policies across several instances that vary in a deliberate way across a small
number of specific parameters. This controlled variation across instances grants us
insight into when and why our methods are effective. To assess the effect of inven-
tory balance, we vary how evenly inventory is distributed between stores, whether
this inventory is aligned with demand, and whether the total amount of inventory
available modulates with this effect. We investigate the effect of in-store demand
magnitude by testing our algorithms on four different in-store demand levels each
tested on instances with four different inventory levels. Lastly, we test our algo-
rithms on an instance where cancel cost c is varied from 50% to 400% of the un-
necessary rejection penalty p to understand the impact of the ratio of cancel cost to
rejection penalty on the relative performance of our methods. We conduct each of
these two-store experiments on demand distributions fit to 10 real-life UPCs. This is
to make sure our findings are reproducible across various realistic demand patterns.

1.7.1 Inventory Balance

To assess the effect of inventory balance we conducted experiments using distribu-
tions fit to 10 popular UPCs. For each UPC, we fit Poisson demand distributions
for its two top-selling store locations (with respect to online demand). We allowed
inventory to vary at three levels ranging from 50% of mean total demand to 150%

1.7. Insights from Two-Store Instances 33

of mean total demand. We also let inventory balance vary from 25% to 75% of to-
tal inventory in the first location, across three conditions. This results in nine trials
for each UPC evaluated. Our primary finding is that Local Thresholds provide the
greatest improvement over Global Thresholds when inventory is not aligned with
demand. We also observe that this effect is magnified by low inventory levels. As
the total amount of starting inventory increases the performances of the two meth-
ods become very similar.

We first report overall results in Figure 1.7, averaged by inventory balance con-
dition. Each inventory balance condition was evaluated at 3 total inventory levels
per UPC, and 10 UPCs were tested. Every individual instance is evaluated by taking
the average cost of each policy over 10000 samples of demand. We call the inventory
balance conditions "25%:75%", "50%:50%", and "75%:25%". In these conditions the
first percentage refers to the percent of total inventory located at the location with
the higher online demand rate, and the second percentage indicates the percent of
total inventory located at the location with the lower online demand rate.

Across all instances Local Thresholds slightly outperform Global Thresholds,
and both Threshold policies substantially outperform the two benchmark policies,
Siloed Fulfillment and Reactive Fulfillment. The gap between our IPA Threshold
policies (Local Thresholds and Global Thresholds) and these benchmarks grows in
absolute terms yet shrinks in percentage terms as inventory is most out of balance
with online demand. Specifically, we see that in the "25%:75%" condition, Local
Thresholds average an improvement of 40.7 cost units (25.8%) over Siloed Fulfill-
ment. In the "50%:50%" condition this change becomes 18.2 cost units (28.2%), and
in the "75%:25%" condition this change becomes 17.7 cost units (33.3%).

In Figures 1.8-1.10 we split the results presented in Figure 1.7 across the three
levels of total inventory tested. We observe that the savings from using Local and
Global Threshold Policies are greatest in absolute terms for the middle inventory
level, where total inventory available is equal to 100% of the mean total demand.
This demonstrates that the optimization problem studied in this chapter is most dif-
ficult when inventory scarcity is at a "sweet spot" such that fulfillment decisions can
dramatically influence costs. We also see that Global Thresholds perform poorly
when inventory is most scarce, though the performance gap between Local Thresh-
olds and Global Thresholds shrinks as inventory levels increase. At the highest in-
ventory level Local Thresholds and Global Thresholds perform nearly identically –
and substantially better than the benchmark policies.

Figures 1.11-1.13 plot the results of these experiments for a single UPC, visualiz-
ing a characteristic example of the outcomes we observed.

1.7.2 Magnitude of In-Store Demand

To answer this question, we fit online demand to the two top-selling store locations
of 10 popular UPCs. We set inventory equal at each location, but we tested four lev-
els of inventory at each location: 5, 10, 15, and 20. For each inventory level we test

34 Chapter 1. IPA Methods for Omni-Channel Fulfillment

Siloed Fulfill Reactive Fulfill Global Thresh Local Thresh
25%:75% 157.9 145.7 128.0 117.2
50%:50% 64.7 53.2 51.1 46.4
75%:25% 53.1 46.2 40.6 35.4

FIGURE 1.7: Overall average costs of each inventory balance condi-
tion for Inventory Balance experiments

Siloed Fulfill Reactive Fulfill Global Thresh Local Thresh
25%:75% 71.5 68.2 90.2 63.1
50%:50% 52.8 45.1 54.3 44.9
75%:25% 39.9 36.0 48.4 36.6

FIGURE 1.8: Average cost of each inventory balance condition for to-
tal inventory of 50% mean total demand

Siloed Fulfill Reactive Fulfill Global Thresh Local Thresh
25%:75% 215.9 201.0 168.2 162.8
50%:50% 107.6 90.0 80.8 76.4
75%:25% 74.9 65.4 53.5 49.9

FIGURE 1.9: Average cost of each inventory balance condition for to-
tal inventory of 100% mean total demand

Siloed Fulfill Reactive Fulfill Global Thresh Local Thresh
25%:75% 186.2 168.0 125.6 125.7
50%:50% 33.8 24.6 18.1 18.1
75%:25% 44.5 37.2 19.6 19.7

FIGURE 1.10: Average cost of each inventory balance condition for
total inventory of 150% mean total demand

three Poisson rate parameters of in-store demand: 25%, 50% and 75% of inventory.
This results in 12 trials for each UPC. We observe that Local Thresholds outperform
Global Thresholds across all scenarios, but the performance of Local Threshold poli-
cies is more sensitive to increases in in-store demand. For example, increasing mean
in-store demand from 25% to 50% of the inventory level increased Local Thresh-
old costs by an average of 5.4% compared to only a 0.9% average cost increase for
Global Threshold policies. This difference in sensitivity to changes of in-store de-
mand rates can be seen consistently across the scenarios evaluated. These results are
presented in Figures 1.14-1.18. In our first trial, where inventory is set to 5 units at
both store locations, Global Thresholds comes closest to the performance of Local
Thresholds when in-store demand is high. In our other trials with higher inventory
levels Local Thresholds outperform Global Thresholds when in-store demand is low
and Global Thresholds perform similar to Local Thresholds when in-store demand
is high. We expect that when inventory is low and in-store demand is high, both
Global Thresholds and Local Thresholds will accept a similar set of orders. Local

1.7. Insights from Two-Store Instances 35

FIGURE 1.11: Average objective value for one UPC as inventory bal-
ance is shifted between stores. Inventory is 50% of mean total de-

mand

FIGURE 1.12: Average objective value for one UPC as inventory bal-
ance is shifted between stores. Inventory is 100% of mean total de-

mand

FIGURE 1.13: Average objective value for one UPC as inventory bal-
ance is shifted between stores. Inventory is 150% of mean total de-

mand

36 Chapter 1. IPA Methods for Omni-Channel Fulfillment

Thresholds policies still have a small advantage, though, because they are able to en-
sure that accepted orders are balanced between stores. In Section 1.7.4 we consider
related scenarios involving correlated demands that could give Global Thresholds
an advantage of Local Thresholds.

1.7.3 Impact of Cancel Costs

In this experiment, we fit demand to two top-selling store locations of 10 popular
UPCs. We set test three inventory levels: 5, 10, and 15 units at each store location.
For each of these inventory levels we compare our policies at the following cancel
costs: 20, 40, 60, and 80. This results in 12 total trial for each UPC. The price of the
item is set to 20 for all trials. Results from these experiments are presented in Figures
1.19-1.22.

Our first finding is that the performance of Global Thresholds is less sensitive to
changes in cancel cost than are Local Thresholds. We observe that as cancel costs
increase, Local Thresholds’ performance decreases both in absolute terms and in
comparison to Global Thresholds. At the lowest cancel penalty, 20, Local Thresholds
incur 13% lower costs on average than Global Thresholds. For our trials with cancel
penalty 80 this decrease in costs is on 9% on average. A likely explanation for these
results is that any advantage Local Threshold polices have over Global Threshold
policies comes from their ability to balance accepted orders across store locations.
When the cancel penalty is high, the total amount of cancel costs realized becomes a
more important factor that is better managed by Global Thresholds.

We also find that the performance differences between Global Thresholds and
Local Thresholds are magnified at higher inventory levels. The percentage decrease
in average cost from Global Thresholds to Local Thresholds ranged from -3% to 3%
at inventory level 5. At inventory level 15, these same average percentage decreases
in cost ranged from 13% to 16%. When inventory levels are low the policies will
accept fewer orders, which can result in the Local Threshold and Global Threshold
policies accepting very similar sets of orders, reducing the observable differences in
performance between these policies.

1.7.4 Global Thresholds Performance

Throughout our previous experiments we have found Local Thresholds to consis-
tently outperform Global Thresholds, though often by only a small margin. The
instances tested in these experiments are formulated from distributions that were
chosen to be similar to what we observe in real retail data, so a reasonable conclu-
sion may be that Local Thresholds are a high-performing policy for real-life scenar-
ios. However, in this section we explore potentially artificial scenarios that result in
Global Threshold policies outperforming Local Threshold policies.

We consider a set of two-store instances where inventory is fixed at 20 at both
locations. c = p = 20, and the shipping cost between the two stores is .5. Demand

1.7. Insights from Two-Store Instances 37

Demand Siloed Fulfill Reactive Fulfill Global Thresh Local Thresh
25% 54.4 47.0 50.8 41.7
50% 58.8 47.1 51.2 43.9
75% 63.1 47.9 52.5 46.9

FIGURE 1.14: Overall average costs of each in-store demand condi-
tion for demand magnitude experiments

Demand Siloed Fulfill Reactive Fulfill Global Thresh Local Thresh
25% 30.1 23.5 31.8 23.3
50% 40.13 47.1 34.2 30.1
75% 42.1 47.9 33.6 32.2

FIGURE 1.15: Average cost of each in-store demand condition for
starting inventory of 5 at each location

Demand Siloed Fulfill Reactive Fulfill Global Thresh Local Thresh
25% 48.4 40.9 47.8 37.1
50% 52.6 40.5 47.2 38.9
75% 59.6 45.1 53.9 44.3

FIGURE 1.16: Average cost of each in-store demand condition for
starting inventory of 10 at each location

Demand Siloed Fulfill Reactive Fulfill Global Thresh Local Thresh
25% 66.5 59.6 61.2 51.7
50% 65.6 53.8 57.1 48.6
75% 70.9 53.1 58.5 52.3

FIGURE 1.17: Average cost of each in-store demand condition for
starting inventory of 15 at each location

Demand Siloed Fulfill Reactive Fulfill Global Thresh Local Thresh
25% 72.6 64.1 62.2 54.6
50% 76.9 63.6 66.4 58.1
75% 79.8 59.8 64.1 58.6

FIGURE 1.18: Average cost of each in-store demand condition for
starting inventory of 20 at each location

38 Chapter 1. IPA Methods for Omni-Channel Fulfillment

Cancel Penalty Siloed Fulfill Reactive Fulfill Global Thresh Local Thresh
20 60.6 50.9 52.5 45.7
40 71.3 60.1 58.8 53.1
60 77.4 66.4 62.7 57.1
80 81.8 71.1 65.8 60.0

FIGURE 1.19: Overall average costs of each cancel penalty condition
for cancel cost magnitude experiments

Cancel Penalty Siloed Fulfill Reactive Fulfill Global Thresh Local Thresh
20 29.0 25.8 25.9 25.1
40 32.0 29.0 28.4 27.8
60 33.9 30.2 28.9 29.9
80 35.7 31.1 29.7 29.9

FIGURE 1.20: Average costs of each cancel penalty condition for start-
ing inventory of 5 at each location

Cancel Penalty Siloed Fulfill Reactive Fulfill Global Thresh Local Thresh
20 65.7 53.3 57.3 49.6
40 80.7 65.0 66.0 61.1
60 88.8 76.1 71.8 65.6
80 94.0 81.3 76.7 70.8

FIGURE 1.21: Average costs of each cancel penalty condition for start-
ing inventory of 10 at each location

Cancel Penalty Siloed Fulfill Reactive Fulfill Global Thresh Local Thresh
20 87.2 73.8 74.2 62.5
40 101.1 86.2 81.9 70.5
60 109.5 92.9 87.5 75.7
80 115.6 100.9 91.1 79.2

FIGURE 1.22: Average costs of each cancel penalty condition for start-
ing inventory of 15 at each location

1.7. Insights from Two-Store Instances 39

In-Store Var Online ρ Siloed Fulfill Reactive Fulfill Global Thresh Local Thresh
1.5 -.7 41.2 26.6 16.5 22.8
6 -.7 61.2 36.8 30.7 34.2

10.5 -.7 74.1 42.4 37.2 40.4
1.5 0 32.1 20.0 15.5 19.9
6 0 56.0 31.8 28.9 31.8

10.5 0 67.9 38.5 37.1 38.5
1.5 .7 25.3 15.9 15.5 15.9
6 .7 51.1 31.2 29.1 29.6

10.5 .7 65.6 38.2 36.4 36.7

FIGURE 1.23: Average cost of each covariance condition

distributions are multivariate normal (rounded to the nearest non-negative integer),
and we will vary the covariance matrix across several conditions. The in-store de-
mand distribution has mean demand 15 at each location and values along the di-
agonal of the covariance matrix 1.5, 6, and 10.5 across three conditions tested. The
covariance of in-store demand between the two locations is zero. The online demand
distribution has mean demand 5 at each location and the values along the diagonal
of the covariance matrix are 5. The covariance between the two stores is set such that
the correlation coefficient of online demand is −.7, 0, and .7 across three conditions
tested. We evaluated 10000 observations of demand across all combinations of the
three in-store demand conditions and the three online demand conditions, resulting
in 9 total conditions tested. Full results from these trials are displayed in Figure 1.23.

There are several factors that influence the results of these trials in favor of the
Global Threshold policies. For one, we set shipping costs to be relatively low. If
shipping costs are zero then the model becomes equivalent to a single-store instance
and Local Threshold will no longer outperform Global Threshold, but this alone is
not always enough to give Global Threshold a distinct advantage. In particular, for
Global Threshold to have an advantage online demand rates should be in a narrow
range where there is enough demand to differentiate the policies but not enough
demand for a Local Threshold policy to accept always accept up to its threshold
value at all locations. This intuition led us to set the mean online demand to 5 at
each location. We verify this intuition by varying the mean online demand from 1
to 15 at each location for the first condition tested in this set of trials, where in-store
variance is 1.5 and online correlation is -.7. The average costs at each demand rate
are plotted in Figure 1.24, confirming that the advantage Global Threshold policies
have in this covariance scenario are only visible through a somewhat narrow range
of demand distributions.

We hypothesized that negatively correlated online demand would further help
Global Threshold policies. Negatively correlated online demand will require Lo-
cal Threshold policies to be set at fairly high levels for both store locations. This is
because most of the time the demand will be imbalanced between the stores. Occa-
sionally there will still be high demand at both locations and this will cause the Local

40 Chapter 1. IPA Methods for Omni-Channel Fulfillment

FIGURE 1.24: Average objective value as the mean online demand
parameter is shifted

Threshold policy to accept more orders than is ideal. Global Threshold policies are
largely unaffected by correlation in online demand, though they may end up paying
higher shipping costs than a Local Threshold policy especially if online demand is
negatively correlated. Our results are consistent with this observation, where Global
Threshold policies have 19% lower cost than Local Threshold policies when online
demand has a correlation coefficient of -.7, compared to cost decreases of 7% and 4%
for correlation coefficients 0 and .7, respectively.

Similarly, we expected lower rates of in-store variance to benefit Global Thresh-
olds. We expected Global Threshold policies to outperform Local Threshold policies
when total online demand tends to be relatively close to the total available inventory
after fulfilling in-store demand. Our results along this dimension are also consistent
with this hypothesis. Global Threshold policies have 13% lower cost than Local
Threshold policies when in-store variance is 1.5, compared to cost decreases of 10%
and 1% for variances of 6 and 10.5, respectively.

1.8 Extensions

1.8.1 Nested Threshold Policies

Nested Threshold policies are a class of policies that generalize Local Thresholds and
Global Thresholds by implementing a global threshold across all stores in addition
to a local threshold at each store location. Nested Thresholds are easy to implement
as all threshold parameters can be updated using the same IPA methods and gra-
dient estimates developed to update Local Threshold and Global Threshold policies
separately. We evaluated Nested Thresholds in the experiments conducted in Sec-
tions 1.6 and 1.7, and we found that in nearly all cases Nested Thresholds closely
tracked either Local Thresholds or Global Thresholds, whichever method was per-
forming better on that instance. An interesting future direction could be to seek out
conditions where Nested Threshold policies strictly dominate Local Thresholds and
Global Thresholds or to argue why such conditions could not exist.

1.8. Extensions 41

1.8.2 Single Store Instances with Unknown Demand Distributions

In this subsection, we consider the same model as in Section 1.4, except now the
demand distributions are unknown to the retailer. Instead, the retailer is given N

i.i.d. samples from the demand distributions for online and in-store demand. We
assume in this section that in-store and online demands are independent. In the case
of nonzero correlation between in-store and online demand, comparable bounds to
Theorem 5 can be proven by taking two samples of N observations (2N total obser-
vations) and using one set of N observations to estimate the empirical distribution
of DO and the other set of N observations to estimate the empirical distribution of
DP .

I demonstrate that for sufficiently large values of N , the retailer can use the ob-
served empirical distribution of the N samples as an approximation of the true de-
mand distributions and set a policy whose performance is arbitrarily close to that
of the optimal policy. Let F̂P () to be the empirical distribution function of observed
physical demand and let Ŝ = I − F̂−1

P (c
c+p).

Definition 5. Let S be a constant and let 0 < α < 1. We will say that S is α-accurate if
FP (I − S) ≥ c

c+p − α, F̄P (I − S) ≥ p
c+p − α.

This definition is a modified version of the definition of α-accuracy in [43]. We
use tail bounds to reason about the probability Ŝ is α-accurate when computed from
a sample of n observations:

Lemma 4. Threshold Ŝ = I− F̂−1
P (c

c+p), generated from a sample ofN observations ofDP ,
is α-accurate with probability at least 1− 2ε−2Nα2 .

Proof. The empirical CDF fromN independent random samples of physical demand
(dP1 , . . . , d

P
N) can be expressed as the sum of N independent [0, 1] variables:

F̂P (x) =
1

N

N∑
i=1

1[dPi ≤ x].

The expected value of each of these terms is equal to the true CDF evaluated at x,
E[1[dPi ≤ x]] = FP (x), and so E[F̂P (x)] = FP (x). Then, we can use Hoeffding’s
Inequality [46] to bound the probability the empirical CDF is close to the true PDF:

Pr(| c

c+ p
− FP (I − Ŝ)| ≥ α)

=Pr(|F̂P (I − Ŝ)− FP (I − Ŝ)| ≥ α)

=Pr(| 1
N

N∑
i=1

1[dPi ≤ I − Ŝ]− E[
1

N

N∑
i=1

1[dPi ≤ I − Ŝ]]| ≥ α)

≤2e−2Nα2
.

42 Chapter 1. IPA Methods for Omni-Channel Fulfillment

dO ≤ Ŝ Ŝ < dO < S∗ S∗ ≤ dO

dP ≤ I − Ŝ 0 p(dO − Ŝ) p(S∗ − Ŝ)

I − Ŝ ≤ dP 0 −c(dO − Ŝ) −c(S∗ − Ŝ)

FIGURE 1.25: Upper bounds on g(Ŝ, dO, dP)−g(S∗, dO, dP) when Ŝ ≤
S∗

Lemma 5. Suppose Ŝ is α-accurate, then G(Ŝ) ≤ (1 + ε)G(S∗) for ε ≥ F̄O(Ŝ)α(p+c)
F̄O(S∗)(cp

c+p
−αc)

Proof. First, we will prove this result for the case where Ŝ < S∗. We will then use a
similar argument to consider the remaining case, though it this first case that requires
a stronger condition on ε.

Let g(S, dO, dP) represent the cost function for threshold S and realized demands
dO and dP . Figure 1 presents upper bounds on g(Ŝ, dO, dP) − g(S∗, dO, dP) for all
possible values of DO and DP , broken into cases:

In this case,

G(Ŝ)−G(S∗) ≤FO(Ŝ)0 + ∆2 + ∆3

where ∆2 = EdO,dP [g(Ŝ, dO, dP)−g(S∗, dO, dP)|Ŝ < dO < S∗] and ∆3 = EdO,dP [g(Ŝ, dO, dP)−
g(S∗, dO, dP)|dO ≥ S∗]

∆2 =

∫ S∗

Ŝ
EDO,DP [g(Ŝ,DO,DP)− g(S∗,DO,DP)|DO = x]fO(x)dx

=

∫ S∗

Ŝ

∫ ∞
0

[g(Ŝ, x, y)− g(S∗, x, y)]fO(x)fP (y)dydx

=

∫ S∗

Ŝ
[

∫ I−Ŝ

0
(g(Ŝ, x, y)− g(S∗, x, y))fO(x)fP (y)dy

+

∫ ∞
I−Ŝ

(g(Ŝ, x, y)− g(S∗, x, y))fO(x)fP (y)dy]dx

≤
∫ S∗

Ŝ
[FP (I − Ŝ)p(x− Ŝ)− (F̄P (I − Ŝ)c(x− Ŝ)]dx

≤
∫ S∗

Ŝ
[(

c

c+ p
+ α)(p+ c)(x− Ŝ)− (c(x− Ŝ)]dx

≤
∫ S∗

Ŝ
[α(p+ c)(S∗ − Ŝ)]dx

= (FO(S∗)− FO(Ŝ))[α(p+ c)(S∗ − Ŝ)]

1.8. Extensions 43

and

∆3 =

∫ ∞
S∗

EDO,DP [g(Ŝ,DO,DP)− g(S∗,DO,DP)|DO = x]fO(x)dx

=

∫ ∞
S∗

∫ ∞
0

[g(Ŝ, x, y)− g(S∗, x, y)]fO(x)fP (y)dydx

=

∫ ∞
S∗

[

∫ I−Ŝ

0
(g(Ŝ, x, y)− g(S∗, x, y))fO(x)fP (y)dy

+

∫ ∞
I−Ŝ

(g(Ŝ, x, y)− g(S∗, x, y))fO(x)fP (y)dy]dx

≤
∫ ∞
S∗

[FP (I − Ŝ)p(S∗ − Ŝ)− (F̄P (ˆI − S)c(S∗ − Ŝ))]dx

≤
∫ ∞
S∗

[(
c

c+ p
+ α)(p+ c)(S∗ − Ŝ)− (c(S∗ − Ŝ))]dx

≤
∫ ∞
S∗

[α(p+ c)(S∗ − Ŝ)]dx

= F̄O(S∗)[α(p+ c)(S∗ − Ŝ)].

Then, G(Ŝ)−G(S∗) ≤ F̄O(Ŝ)[α(p+ c)(S∗ − Ŝ)].
Let ∆(Ŝ) = α(p+ c)(S∗ − Ŝ). Then

G(Ŝ)−G(S∗) ≤ F̄O(Ŝ)∆(Ŝ)

= F̄O(Ŝ)α(p+ c)(S∗ − Ŝ).

We also lower bound G(S∗):

G(S∗) ≥ F̄O(S∗)F̄P (I − Ŝ)c(S∗ − Ŝ)

≥ F̄O(S∗)(
p

c+ p
− α)c(S∗ − Ŝ)

= F̄O(S∗)(
cp

c+ p
(S∗ − Ŝ)− αc(S∗ − Ŝ))

= F̄O(S∗)(
cp

c+ p
− αc)(S∗ − Ŝ).

Consequently, the following is a sufficient condition for an ε-optimal solution
when Ŝ ≤ S∗.

ε ≥ F̄O(Ŝ)α(p+ c)

F̄O(S∗)(cp
c+p − αc)

.

This is the required criteria in the Lemma’s statement, and so the Lemma is valid
for this case when Ŝ ≤ S∗

Next, we perform a similar analysis for the remaining case, where Ŝ > S∗, from
which we will obtain a slightly relaxed version of the above condition on ε.

44 Chapter 1. IPA Methods for Omni-Channel Fulfillment

dO ≤ S∗ S∗ < dO < Ŝ Ŝ ≤ dO

dP ≤ I − Ŝ 0 −p(dO − S∗) −p(Ŝ − S∗)
I − Ŝ ≤ dP 0 c(dO − S∗) c(Ŝ − S∗)

FIGURE 1.26: Upper bounds on g(Ŝ, dO, dP)−g(S∗, dO, dP) when Ŝ >
S∗

In this case,

G(Ŝ)−G(S∗) ≤FO(S∗)0 + ∆2 + ∆3

where ∆2 = EdO,dP [g(Ŝ, dO, dP)−g(S∗, dO, dP)|S∗ < dO < Ŝ] and ∆3 = EdO,dP [g(Ŝ, dO, dP)−
g(S∗, dO, dP)|dO ≥ Ŝ]

∆2 =

∫ Ŝ

S∗
EDO,DP [g(Ŝ,DO,DP)− g(S∗,DO,DP)|DO = x]fO(x)dx

=

∫ Ŝ

S∗

∫ ∞
0

[g(Ŝ, x, y)− g(S∗, x, y)]fO(x)fP (y)dydx

=

∫ Ŝ

S∗
[

∫ I−Ŝ

0
(g(Ŝ, x, y)− g(S∗, x, y))fO(x)fP (y)dy

+

∫ ∞
I−Ŝ

(g(Ŝ, x, y)− g(S∗, x, y))fO(x)fP (y)dy]dx

≤
∫ Ŝ

S∗
[−FP (I − Ŝ)p(x− S∗) + (F̄P (I − Ŝ)c(x− S∗)]dx

≤
∫ Ŝ

S∗
[(c(x− S∗)− (

c

c+ p
− α)(p+ c)(x− S∗)]dx

≤
∫ Ŝ

S∗
[α(p+ c)(Ŝ − S∗)]dx

= (FO(Ŝ)− FO(S∗))[α(p+ c)(Ŝ − S∗)]

1.8. Extensions 45

and

∆3 =

∫ ∞
Ŝ

EDO,DP [g(Ŝ,DO,DP)− g(S∗,DO,DP)|DO = x]fO(x)dx

=

∫ ∞
Ŝ

∫ ∞
0

[g(Ŝ, x, y)− g(S∗, x, y)]fO(x)fP (y)dydx

=

∫ ∞
Ŝ

[

∫ I−Ŝ

0
(g(Ŝ, x, y)− g(S∗, x, y))fO(x)fP (y)dy

+

∫ ∞
I−Ŝ

(g(Ŝ, x, y)− g(S∗, x, y))fO(x)fP (y)dy]dx

≤
∫ ∞
Ŝ

[−FP (I − Ŝ)p(Ŝ − S∗) + (F̄P (ˆI − S)c(Ŝ − S∗))]dx

≤
∫ ∞
Ŝ

[(c(Ŝ − S∗))− (
c

c+ p
− α)(p+ c)(Ŝ − S∗)]dx

≤
∫ ∞
Ŝ

[α(p+ c)(Ŝ − S∗)]dx

= F̄O(Ŝ)[α(p+ c)(Ŝ − S∗)].

Then, G(Ŝ)−G(S∗) ≤ ∆2 + ∆3 ≤ F̄O(S∗)[α(p+ c)(Ŝ − S∗)].
Let ∆(Ŝ) = α(p+ c)(Ŝ − S∗). Then

G(Ŝ)−G(S∗) ≤ F̄O(S∗)∆(Ŝ)

= F̄O(S∗)α(p+ c)(Ŝ − S∗).

We also lower bound G(S∗):

G(S∗) ≥ F̄O(S∗)F̄P (I − Ŝ)c(Ŝ − S∗)

≥ F̄O(S∗)(
p

c+ p
− α)c(Ŝ − S∗)

= F̄O(S∗)(
cp

c+ p
(S∗ − Ŝ)− αc(Ŝ − S∗))

= F̄O(S∗)(
cp

c+ p
− αc)(Ŝ − S∗).

Consequently, the following is a sufficient condition for an ε-optimal solution
when Ŝ > S∗:

ε ≥ α(p+ c)

(cp
c+p − αc)

.

This is a relaxation of the required criteria in the Lemma’s statement and there-
fore the Lemma also holds when Ŝ > S∗, concluding the proof.

46 Chapter 1. IPA Methods for Omni-Channel Fulfillment

Theorem 5. For each ε > 0 and 0 < δ < 1, if the number of samples, N meets criteria

N ≥
− log(δ2)

2 log(ε)
(
F̄O(Ŝ)(p+ c) + εF̄O(S∗)c

εF̄O(S∗) cp
c+p

)2

then G(Ŝ) ≤ (1 + ε)G(S∗) with probability at least 1− δ.

Proof. Theorem 5 follows directly as a consequence of Lemma 4 and Lemma 5.

We observe from Theorem 5 that the sample size requirement for Sample Aver-
age Approximation to produce a near-optimal solution at a high probability depends
on the demand distributions only with respect to the convergence rate of the empir-
ical quantile function of online demand. Exact convergence rates of the empirical
quantile function to the true quantile function for general probability distributions
are not known, but some asymptotic properties are known in the statistics literature
(see [55] for the proof of Lemma 6 and additional information on the convergence of
the empirical quantile distribution):

Lemma 6. Fix 0 < p < 1. If CDF F if differentiable at F−1(p) with positive derivative
f(F−1(p)), then

√
n(F−1

N (p)−F−1(p)) is asymptotically normal with mean 0 and variance
p(1−p)

f2(F−1(p))
.

Proof of Lemma 6 can be found in [55].

1.9 Conclusion

In this chapter we introduce a new stochastic model for omni-channel fulfillment.
This model incorporates new risks that occur when fulfillment operations are com-
bined for in-store and online demand. We obtain a closed-form optimal solution
to this model for instances with only a single store location. We also identify some
structural similarities between this model and the classical newsvendor model that
inform our understanding of this model even in multiple store settings.

We continue by studying the complete, multiple-store setting of this model, where
we introduce Local Threshold and Global Threshold policy classes for the first stage
problem. We also present a sampling-based Infinitesimal Perturbation Analysis al-
gorithm to optimize threshold policies within each of these policy classes.

Next, we evaluate our methods on a variety of test instances. At first, we attempt
to create realistic instances and find that our IPA-optimized Local Threshold poli-
cies consistently outperform Global Threshold policies and other benchmark poli-
cies on these instances. We also explore several environmental factors and discuss
how changes along these dimensions affects the performance of our policies.

We continue in the next chapter to investigate policies for omni-channel fulfill-
ment, shifting our focus toward limiting order cancellations globally across an entire

1.9. Conclusion 47

catalog of products sold by a retailer. We use techniques from machine learning and
discrete optimization to produce store-wide policies that maximize revenues while
limiting cancellations in a coordinated manner.

Acknowledgments: Prof. R. Ravi and Prof. Sridhar Tayur are co-authors on
this work. We thank Dr. Srinath Sridhar for access to real retail data and helpful
discussions that informed this work.

49

Chapter 2

Optimizing Inventory Exposure
with Knapsack Threshold Models

2.1 Introduction

One of the most recent revolutions in e-commerce is omni-channel fulfillment. The
idea of omni-channel fulfillment is to merge the multiple sales channels of the re-
tailer into one seamless experience and present a unified view of inventory. In ad-
dition to improving customer experience, omni-channel retailing provides an op-
portunity to realize new operational efficiencies by optimizing across retail channels
rather than treating them as separate silos. The impact of omni-channel fulfillment
has been so immense that it is now routinely cited in quarterly earnings reports as
the primary driver in the increased top line sales and/or reduction in costs [38, 25,
3, 18].
SFS and BOPUS. In this chapter, we focus on omni-channel ship-from-store (SFS)
programs where a customer can buy an item online and the merchant fulfills that or-
der by shipping from a store as opposed to shipping from a traditional warehouse.
There are several advantages of SFS initiatives. Firstly, the volume of inventory sold
in stores is an order of magnitude higher than the volume of inventory sold on the
retailers websites. Therefore at any point in time, the combined network-wide store
inventory is significantly higher than warehouse inventory from where online or-
ders are traditionally fulfilled. Other advantages of SFS programs include faster ful-
fillment time, cheaper fulfillment cost and possible avoidance of store markdowns.
This has triggered many of the top retailers including Best Buy, Gap, Macy’s, Sears,
Toys R’ Us just to name a select few, to turn on omni-channel initiatives such as SFS
and BOPUS [50, 51]. The models of this chapter also extend in a straightforward
way to omni-channel buy-online-pickup-in-stores (BOPUS) programs.
Challenges. Stores are designed for store fulfillment where a customer walks into
a store and buys an item. Similarly warehouses are designed for online fulfillment
where items are carefully categorized and meticulously organized spatially and op-
erational efficiencies are pushed to the limits. The biggest obstacle that retailers face
while enabling SFS programs is inventory accuracy in stores. While warehouse inven-
tory is extremely accurate, store inventory is highly inaccurate because of shrinkage,

50 Chapter 2. Optimizing Inventory Exposure with Knapsack Threshold Models

misplacement and inventory cycle counts that are only performed a few times a
year. As an example, [15] shows that a multi-billion dollar retailer has roughly 65%
of their store SKUs with incorrect inventory.
Balancing Revenue with Cancellations. When SFS programs are enabled by top
retailers, they can not take on too many online orders relying on the store inventory
systems and later cancel those orders because they can not be fulfilled. It is unac-
ceptable to have customer experience suffer significantly while the top line revenue
grows in the short term. This leads to an interesting trade-off between maximizing
top-line revenue by making store inventory available online for SFS programs and
ensuring that customer experience does not suffer because of too many cancels.
Threshold Policies. Retailers that enable SFS programs therefore adopt strategies
to ensure that orders do not cancel because of inaccurate store inventory. These are
typically threshold policies that just expose those items that have more than t units
network wide across all stores. For example, if t = 5, this would simply only make
items that have more than 5 units across all stores to be made available for SFS. The
idea is simple and intuitive that the inventory systems have to be so inaccurate that
5 is in reality 0 for the order to be canceled. The effect of such simplistic models is
significant on revenue. As an example, most pieces of expensive jewelry or cameras
may be made unavailable for SFS programs. Onera Inc., an analytics firm that pro-
vides decision support for omni-channel retail, has designed algorithms that model
each product differently based on the product ontology, price, price status and the
inventory count. As examples, it knows to treat diamond jewelry, scarves, socks,
gift cards, and clearance bin items differently from both standpoints of inventory
accuracy as well as expected top-line revenue. This optimization problem is one of
Onera’s core product offerings. The work presented in Chapters 2 and 3 of this the-
sis was done in collaboration with Dr. Srinath Sridhar of Onera to thoroughly study
this very interesting problem.

2.1.1 Contributions

1. We introduce the problem of optimizing inventory for omni-channel fulfill-
ment.

2. We build a practical model that shows how top-line revenue can be maximized
while customer experience is kept within satisfactory limits and the inventory
assortment made available online is broad. Although our model suggests an
NP-complete formulation, we show that it can be solved to near optimality in
both theory and practice.

3. We describe and investigate methods to estimate a data generation model and
then feed these estimates to an integer programming optimization model to
determine thresholds. We call these Separate Estimation Optimization (SEO)
models. Chapter 3 studies a second class of models for this problem. These
models are end-to-end optimizers that jointly estimate the model parameters

2.2. Literature Review 51

as well as the threshold decisions, and are termed Joint Estimation Optimiza-
tion (JEO) models.

4. We consider supervised learning methods to predict order cancellations as well
as dynamic methods to tune threshold policies and discuss the applications
and tradeoffs of using these methods compared to our SEO and JEO models.

5. We use real-life data to fit realistic generative models to capture demands, in-
ventory positions and cancel rates. An important practical concern is that the
real-life training data used for these models have an intrinsic data truncation
problem (censoring) which we describe how to address. We assess the accu-
racy of the coefficients estimated, the recovery of truncated data and the per-
formance of our model on revenues and cancellations through experimental
trials using real data from a major online retailer. These experiments provide
a taste for the massive impact our models can have on the top-line revenue of
a multi-billion dollar online retailer.

2.2 Literature Review

Retail Applications of Machine Learning. The value of our optimization models
rely on applying machine learning techniques to structured retail data. Tree-based
learning algorithms have been successfully used at Rue La La to generate inputs
for an optimization model of pricing decisions [17]. Forecasting and optimization
methods have been combined [19, 22] for a method to make shipment decisions at
Zara. Large scale network flow models have been used make similar pricing deci-
sions [34].
Learning from Truncated and Censored Data. Learning and optimization based on
truncated (or censored) data is an important element of our work, and we benefit
from insights previously made in this area. We use the EM algorithm, a well cele-
brated classical method [16], as a tool to counter data truncation. EM methods are
used in a similar way [10] in the context of analyzing medical data, and to solve a de-
mand estimation problem with incomplete data [6] among many other applications.
Bayesian methods have also been used to solve Operations Management problems
involving censored data [12, 45]. Survival models have also used successfully [56, 4]
to learn from censored data in the context of online advertising.
Omni-Channel Retailing. Although the problem of managing cancellations in omni-
channel retailing is new, researchers are studying other challenges related to omni-
channel retailing using game-theoretic models of customer-firm interactions [20, 21]
Lastly, the idea of using thresholds to limit cancellations is conceptually similar
to that of safety stocks, a class of policies commonly used in Operations Manage-
ment on models such as the Newsvendor problem [48] and the transshipment prob-
lem [32].

52 Chapter 2. Optimizing Inventory Exposure with Knapsack Threshold Models

Optimization. One of the pure optimization based methods we use is Sample Aver-
age Approximation (SAA), a method for stochastic optimization [40]. We also note
that an approximation algorithm for a nonlinear knapsack [33] can be applied to
efficiently solve our optimization models, which can also be viewed as a multi-
objective optimization model of the ε-Constraint Method [14]. The latter has been
applied along with machine learning methods in areas such as email volume opti-
mization [28] and recommendation systems [1].

2.3 Problem Formulation

At a high level, the problem of optimizing inventory for omni-channel fulfillment is
to select the set of store products to make available online using threshold policies.
Such policies assign each product an integer threshold that is passed to the retailer’s
inventory system. Each product is then made available for SFS if its (network-wide)
inventory level is at or above its threshold. The idea is that the thresholds need to be
updated only periodically and if the inventory gets low as units are sold, the items
would automatically be suppressed from online availability once they fall below
the threshold. This allows retailers to automate and optimize a process that is often
otherwise performed in a manual and ad-hoc manner. Our models assign thresholds
to items based on a variety of features of the product including its price, price status
(regular price, markdown, clearance etc.), its location in the hierarchy of the product
ontology and the historical cancellation behavior.

2.3.1 Threshold Choice Models and Truncation

We model the problem of setting optimal thresholds as a variant of the classical
knapsack problem. In our setting, we have I products and the goal is to find thresh-
olds ti for every product i. The intent is that item i will be made available to be
purchased online via SFS if and only if the network-wide inventory across all stores
is at least ti.

Our model is set up to optimally trade off between multiple objectives such as
cancellations, revenues and orders accepted. For threshold ti, we define expected
revenue and cancellations as functions of our thresholds: r(ti), and c(ti). The objec-
tive is to find ti for all items i so as to maximize the total expected revenue

∑I
i=1 ri(ti)

subject to the expected total items canceled being at most C, i.e.
∑I

i=1 ci(ti) ≤ C .
Note that if ti = 0 for all i, there will be maximum revenue but there will likely also
be a lot of cancels. Intuitively this is because the orders accepted at very low inven-
tory counts are likely to cancel. If ti = ∞ for all i, then the SFS program is void and
no orders will be accepted.
Truncated demand data. An important aspect in our model is that coefficients ci(ti)
and ri(ti) must be learned from data. Specifically using historical data, we need to
estimate for each product i, the expected cancellations and revenue if we set a thresh-
old of ti. These expectations are over the next period over which the thresholds will

2.3. Problem Formulation 53

be active, which for the purpose of this chapter is the next day. However, intrinsi-
cally historical data will only contain online orders for items with inventory counts
greater than their thresholds that were set before. Thus, we will not observe any
demand or any cancels for any items i where inventory counts were lower than the
historical thresholds ti. Therefore to obtain coefficients ci(ti) and ri(ti) when inven-
tory is less than ti, we have to learn based on the orders and cancellations at higher
inventory counts that we do observe among other similar products. We consider
several methods for estimating these coefficients in Sections 2.6 and 3.5.

2.3.2 Data Sources

To solve this optimization problem, Onera receives feeds that are in three parts: Or-
ders, Inventory and Products. Note that, these are received typically hourly, but for
the purpose of this chapter, we can assume that the models are constructed every
day and output of the models, the thresholds ti for different items (either SKUs of if
the data is too sparse for categories of SKUs), are updated by the retailer for the next
day. We summarize the information received in each of the feeds below leaving out
some details for the sake of simplicity.
Orders: We can express this as a tuple of (order id, item id, status). An order id
is a unique id corresponding to a customer’s order, the item id is a unique id cor-
responding to the item that was ordered and the binary status can be one of {0, 1}
indicating if the order was canceled or fulfilled respectively1. We will assume that
every order is either fulfilled or canceled wholly and a cancellation occurs only due
to inventory not being found in the store when the inventory system indicated oth-
erwise2.
Inventory: This feed is a snapshot in time of the inventory across all stores and can
be expressed as the following tuple: (item id, inventory count).
Products: This feed describes the items that are being sold by the retailer so that
one can analyze their ontology to generate features that help with our parameter
estimations. This feed is keyed by the item id, contains the location in the product
ontology (typically a 4th to 7th level tree node in the product hierarchy), the price,
and price status (such as regular, markdown, clearance etc). The price, for the sake
of the chapter, will refer to the online price although there is a distinction that can
be made between the online price, per store price and the price that the customer
actually paid for the order.
Cancel Constraint: This is simply the number C specified in the above model that
is a business constant provided by the retailer to Onera. The idea is to try to en-
sure that cancels do not exceed C. Note that C can be assumed to be an integer
as denoted in the model above or equivalently a real number in [0, 1] denoting the
cancellation rate. The model remains unchanged in complexity and can be used in

1For the sake of simplicity we are ignoring quantity ordered whereas in reality, computing an order
status and quantity can be more complicated.

2In reality, there are multiple cancellation codes. We filter out irrelevant cancels from our analysis.

54 Chapter 2. Optimizing Inventory Exposure with Knapsack Threshold Models

either form since the accepted orders (denominator of cancel rate) can be normal-
ized out everywhere. Since these are stochastic optimization problems in reality and
there can be no guarantees on future variations, it is acceptable if the cancellations or
cancellation rate are a few percentage points off from the estimated target C when it
is in production; thus, this is viewed as a guideline target as opposed to a hard con-
straint. The cancellation rate used by retailers are typically in the range of 2%-15%
of SFS demand which might translate to .2%-1.5% of all online demand depending
on SFS penetration, whether the retailer is a high-end or discount store and practical
operational efficiencies.

2.4 Optimization Models

In this section we address tractability of the underlying optimization problem and a
pure optimization approach for setting thresholds.

2.4.1 Tractability

Theoretical Tractability

To formulate the threshold choice model as an integer program, we assume an upper
bound U on the thresholds we can set. This gives us to the following formulation,
where xi,j represents the choice that the threshold for item i is set to inventory value
j. The data coefficients ri,j and ci,j correspond to the revenue and cancel rate for
item i if the threshold is set to j, and are estimated from data.

max

I∑
i=1

U∑
j=1

ri,jxi,j

such that
I∑
i=1

U∑
j=1

ci,jxi,j ≤ C

U∑
j=1

xi,j = 1 ∀i ∈ [I]

xi,j ∈ {0, 1} ∀i ∈ [I], ∀j ∈ [U]

(2.1)

We will at times refer to integer program 2.1 as the Knapsack Threshold Problem
or Knapsack Threshold IP. Since the constraint

∑I
i=1

∑U
j=1 ci,jxi,j ≤ C represents a

knapsack constraint, it is not difficult to derive the following theorem from known
results [36].

Theorem 6. The linear programming relaxation of the integer program 2.1 has an optimal
solution with fractional variables corresponding to at most one item. Given an optimal solu-
tion with fractional variables corresponding to multiple items, there is a O(U · I) algorithm
to convert this solution to one with fractional variables corresponding to at most one item.

2.4. Optimization Models 55

Proof. We prove this by demonstrating that if there exists an optimal solution with
fractional variables corresponding to more than one item, we can convert this so-
lution into one with fewer fractional variables. Let two of the items with fractional
variables be items i and j, such that xi,a, xi,b, xj,c, and xj,d are all in the range (0, 1).
Our intention is to perturb these fractional variables so at least one variable becomes
0 or 1, all constraints remain satisfied, and the objective does not decrease.

Consider a new LP solution y, where y = x except yi,a = xi,a + ε1, yi,b = xi,b − ε1,
yj,c = xj,c + ε2, yj,d = xj,d − ε2. We wish to find ε1, ε2 so that y satisfies the model’s
constraints. For notational convenience let c1 = ci,a − ci,b and c2 = cj,c − cj,d. Then
we need ε1 and ε2 to satisfy the equation c1ε1 + c2ε2 = 0.

This is a single linear equation with two free variables, so it is possible to define
ε2 in terms of ε1 and consider all solutions to these equations as determined by ε1.
In other words, we can define x′(ε), as x′(ε) = x except x′(ε)i,a = xi,a + ε, x′(ε)i,b =

xi,b − ε, x′(ε)j,c = xj,c + f(ε), x′(ε)j,d = xj,d − f(ε) where f(ε) ensures that equation
c1ε+ c2f(ε) = 0 remains satisfied.

Let ε′ = max(ε : x′(ε) ∈ [0, 1]U ·Iand x′(−ε) ∈ [0, 1]U ·I) Intuitively, ε′ will be
the largest value such that both x′(−ε′) and x′(ε′) will be feasible solutions to the LP
relaxation of Equations 2.1. Consequently, one of x′(−ε′) or x′(ε′) will have fewer
fractional variables than x. From the definition of f(ε) we see if we set ε to either
ε′ or −ε′ that both knapsack constraints of the LP is still satisfied, and x′ is feasible
because |ε| is such that all variables remain in the range [0, 1], but at least one of the
fractional variables is now exactly 0 or 1. If ε(ri,a − ri,b) + f(ε)(rj,c − rj,d) = 0, then
setting ε to one of ε′ or −ε′ results in a feasible x′ with fewer fractional variables
than x. Otherwise, setting ε to one of ε′ or −ε′ results in a feasible x′ with a higher
objective function value than x, contradicting the optimality of x. To convert an
optimal solution with too many fractional variables into the desired optimal solution
we can repeat the process shown in this proof over all fractional variables except for
those corresponding to the last fractional item.

Corollary 7. If the functions ci() and ri() that we linearize to form the integer program-
ming formulation of the Knapsack Threshold Problem are convex and concave, respectively,
then the linear programming relaxation of the Knapsack Threshold Problem has an optimal
solution with at most two fractional variables.

Proof. Consider the LP solution guaranteed by Theorem 6 with fractional variables
corresponding to at most one item. If this solution has more than two fractional
variables, consider three of them, xi,a, xi,b, and xi,c such that 0 < xi,α+xi,β+xi,γ ≤ 1.
Assume without loss of generality that α ≤ β ≤ γ and so by the convexity and
concavity of ci() and ri() we know that λci,α + (1− λ)ci,γ = λci(α) + (1− λ)ci(γ) ≥
ci(λα+ (1− λ)γ) and λri,α + (1− λ)ri,γ = λri(α) + (1− λ)ri(γ) ≤ ri(λα+ (1− λ)γ).
Let λ = β−γ

α−γ so that λα + (1 − λ)γ = β. Then λci,α + (1 − λ)ci,γ ≥ ci(β) = ci,β

and λri,α + (1 − λ)ri,γ ≤ ri(β) = ri,β . Then, consider a policy x′(ε) where x′(ε) = x

except x′(ε)i,α = xi,α − λε, x′(ε)i,β = xi,β + ε, and x′(ε)i,γ = xi,γ − (1− λ)ε and ε > 0.

56 Chapter 2. Optimizing Inventory Exposure with Knapsack Threshold Models

The constraint
∑u

j=1 xi,j = 1 is still satisfied by x′(ε). The knapsack constraint is still
satisfied because replacing xwith x′(ε) decreases the left-hand side of the constraint:

(xi,α − λε)ci,α + (xi,β + ε)ci,β + (xi,γ − (1− λ)ε)ci,γ

= xi,αci,α + xi,βci,β + xi,γci,γ + ε(ci,β − (λci,α + (1− λ)ci,γ))

≤ xi,αci,α + xi,βci,β + xi,γci,γ + ε(ci,β − ci(λα+ (1− λ)γ))

= xi,αci,α + xi,βci,β + xi,γci,γ + ε(ci,β − ci,β)

= xi,αci,α + xi,βci,β + xi,γci,γ .

Let ε = min{xi,αλ , 1−xi,β,
xi,γ
1−λ}. For this selection of ε, the constraints xi,j ∈ {0, 1} for

j ∈ {α, β, γ}also continue to be satisfied, so x′(ε) is a feasible solution. Let OPT =∑n
i=1

∑u
j=1 ri,jxi,j , the value of the objective function under solution x. Since x is

assumed to be optimal, we see that

OPT ≥OPT − (xi,αri,α + xi,βri,β + xi,γri,γ)+

((xi,α − λε)ri,α + (xi,β + ε)ri,β + (xi,γ − (1− λ)ε)ri,γ)

which is equivalent to the following by rearranging terms:

xi,αri,α + xi,βri,β + xi,γri,γ ≥(xi,α − λε)ri,α + (xi,β + ε)ri,β + (xi,γ − (1− λ)ε)ri,γ

0 ≥ ε(ri,β − (λri,α + (1− λ)ri,γ))

λri,α + (1− λ)ri,γ ≥ ri,β.

Earlier we observed that λri,α + (1 − λ)ri,γ ≤ ri,β from the concavity of ri(), so it
must be the case that λri,α + (1− λ)ri,γ = ri,β . Then x′(ε) is also an optimal solution
with fewer fractional variables than x.

Corollary 8. If the functions ci() and ri() that we linearize to form the integer program-
ming formulation of the Knapsack Threshold Problem are convex and concave, respectively,
then the linear programming relaxation of the Knapsack Threshold Problem has an optimal
solution with at most two fractional variables. Furthermore, these two fractional variables
correspond to neighboring thresholds for the same item.

Proof. The first part of this corollary is given to us by Corollary 7. Consider the
optimal LP solution x guaranteed to us by Corollary 7. Suppose that the fractional
variables in this solution do not correspond to adjacent thresholds, then let xi,α and
xi,γ be fractional such that xi,β = 0 andα < β < γ. Let λ = β−γ

α−γ so that λα+(1−λ)γ =

β. Then, consider a policy x′(ε) where x′(ε) = x except x′(ε)i,α = xi,α − λε, x′(ε)i,β =

xi,β + ε, and x′(ε)i,γ = xi,γ − (1 − λ)ε. If we set ε = min{xi,αλ , 1,
xi,γ
1−λ}, then from the

calculations in the proof of Corollary 7 we see that x′ is feasible and also optimal. I
claim that at least one of x′(ε)i,α or x′(ε)i,γ will be 0. If ε =

xi,α
λ then x′(ε)i,α = xi,α −

λε = xi,α−λxi,αλ = 0. If ε =
xi,γ
1−λ then x′(ε)i,γ = xi,γ− (1−λ)ε = xi,γ− (1−λ)

xi,γ
1−λ = 0.

2.4. Optimization Models 57

Lastly, if ε = 1 then x′(ε)i,β = 1. Since
∑u

j=1 x
′(ε)i,j = 1 then x′(ε)i,α = x′(ε)i,γ = 0.

Then, x′(ε) is an optimal solution with either fewer fractional variables than x or
it continues to have two fractional variables corresponding to thresholds closer to
each other than the thresholds with fractional variables in solution x. This process
can be repeated until we have a solution with no fractional variables or two adjacent
fractional variables, proving the corollary.

Theorem 6 and its corollaries are of practical significance because they provides
a high-level guarantee on the value of a policy dictated by the solution to the linear
programming relaxation. In Chapter 3 we introduce SafetyNet, an end-to-end neu-
ral network model for this same setting of omni-channel fulfillment. These findings
explain how the SafetyNet models effectively use the linear programming relaxation
of the Knapsack Threshold Problem to find near-integer threshold policies. The opti-
mum solution is of course the solution with integer variables. However, this theorem
shows us that when I is large, say you have 100,000 items you can immediately find
a solution with fractional variables corresponding to at most one item and the rest
being integer.

The contribution of those fractional variables, for at most two items among the
entire set of items carried by the retailer is practically tiny to the revenue or cancel-
lations of the retailer. Moreover, heuristic methods like branch-and-bound typically
solve the relaxation and find integer variables quite easily because the number of
variables that need to be rounded is very small in each iteration. These theoretical
results show that although technically the problem is NP-complete, it is tractable in
practice.

Empirical Tractability

Given the above results, it is not surprising when we report that commercial integer
programming solvers are able to handle relatively large instances of our knapsack
threshold problem with ease. Running on a computer with a 2.50 GHz CPU and
16 GB RAM, Gurobi 6.5.0 was able to solve simulated problem instances where I =

500, 000, U = 10 in under 15 seconds, and instances where I = 1, 000, 000, U =

10 in less than 1 minute. In reality, the number of products tracked in a typical
large retailer is roughly about 2-5M across their network. However, the number of
products that are actively sold at any time, with inventory greater than 0 is only
about 200-500K. Out of these, some simple practical methods to merge very similar
products to treat them as a single category reduces the item space by another order
of magnitude which makes the above problem sizes fully realistic.

Before we proceed to describe methods for specifying parametric forms for the
various coefficients ri,j and ci,j and estimating them in the next section, we first de-
scribe a non-parametric method that uses sample data (as an empirical distribution)
to solve a pure optimization problem of choosing the thresholds for the items.

58 Chapter 2. Optimizing Inventory Exposure with Knapsack Threshold Models

2.4.2 Pure Optimization Model: Sample Average Approximation

Sample Average Approximation (SAA) is a Monte Carlo simulation method that ap-
proximates an expected value function by taking a random sample of observations
and computing the corresponding sample average. As an illustration, an iid sample
of the order data can be used to generate a simple, unbiased estimate of ri,j by com-
puting the revenue from all orders accepted for item i when its inventory is at least
j in the sample. However, our goal is to compute the thresholds for the items, so
we use these samples as trial data points for a large optimization model that chooses
thresholds.

Suppose we are given the following data about a large stream of orders: ci,j,k is
1 if order (i, j, k), the kth observed order of item i at inventory level j, is cancelled
and 0 otherwise. ri,j,k = (1− ci,j,k)pi,j,k where pi,j,k is the price of order (i, j, k). Now
by setting ci,j =

∑j
t=1

∑Kt
k=1 ci,t,k, and ri,j =

∑j
t=1

∑Kt
k=1 ri,t,k ∀i, j, we can use these

estimated coefficients in solving the integer program 2.1.
As the size of the iid sample of demand approaches infinity, the estimates of co-

efficients ci,j and ri,j converge to the true expected values of cancels and revenue
respectively, for item i when its threshold is j, due to the Law of Large Numbers.
In turn, the SAA method using these coefficients can be shown to converge to opti-
mal threshold values. There is an extensive literature on SAA methods that provide
stronger convergence guarantees under more restrictive assumptions on our data
(See [40] or [37]).

2.5 Supervised Learning

We considered several supervised learning techniques to identify orders likely to
be canceled. When using supervised learning techniques to predict cancellations,
an important set of features is the product ontology. Each product is classified at
a number of different levels of specificity which form a tree structure. The lower
level features of the product ontology strictly determine the higher level features in
the ontology, meaning that for many classification methods at most one ontology
feature can be included in the learning model without violating assumptions about
feature independence. To protect the anonymity of the retailer providing us data, we
will call the features in the product ontology A, B, C, and D, where A is the highest
level feature in the ontology, and D is the lowest level.

In our Separate Estimation and Optimization methods presented in Section 2.6,
we rely on logistic regressions for each item category (determined by a single on-
tology feature) to estimate cancel rates as a function of inventory level. This model
fits the real retail data nicely (see Figure 2.4) and also ensures that cancel rate as
a function of inventory is strictly decreasing within each category. This is an intu-
itively desirable property and also one that becomes mathematically required for
the methods we consider later on in Chapter 3 to work correctly. In the rest of this
section we present some findings from our exploratory work in estimating cancel

2.5. Supervised Learning 59

rates. Most significant to the rest of the work presented in this chapter, we identified
only a very modest benefit from using cancellation prediction models that consider
multiple ontology features.

2.5.1 Comparison of Cancel Rate Prediction Methods

As a baseline we trained multiple naive Bayes classifiers, each using a different on-
tology feature along with a set of other predictive features (inventory count, price
status, vendor ID, order quantity). Our metric for performance of these models is
the area under the curve (AUC) of its receiver operating characteristic (ROC) curve.
Without any modifications, several of these baseline models performed well at iden-
tifying cancellations. The best of these models has an AUC of .7891, computed using
10-fold cross-validation. In the remainder of this section, we present new techniques
which we hope can lead to improvements over this baseline (see Figure 2.2 for their
relative performances).

The first alternative method we consider is a dynamic programming-based best-
of-many approach. Our goal is to choose the best of our baseline classifiers to use
on this order. We take the tree defined by the features of the ontology and give each
node an error value, which is the number of mistakes made by the baseline classifier
that uses the ontology feature at the same level in the tree as the current node on the
orders that match the value of the current node. Our objective is to find a minimum
cost set S of nodes such that every leaf node is either in S or has an ancestor that is
in S. For each order, we find the node in set S whose feature matches with the order
and we use the predictive model corresponding to this feature to predict the cancel-
lation probability of the order. Using standard dynamic programming techniques it
is straightforward to compute S. Figure 2.1 visualizes a possible set S for an example
of a product ontology (real product ontologies are not necessarily binary trees like
this simple example). Unfortunately, this does not seem to provide improvement
over the baseline models. This best-of-many approach produced a ROC curve with
an AUC of .7839, also using 10-fold cross-validation.

The next method takes a convex combination of the predictions output by the
different baseline models to predict the outcome of an order. In principle, this ap-
proach allows different products in the ontology to use different weights in the con-
vex combination. However, at present, we only have implemented a simple average
over several of higher-performing baseline models. Still, this is able to give a mod-
est improvement over the best baseline model, with an AUC of .7897 using 10-fold
cross-validation.

In our implementations of algorithms to produce threshold policies we have de-
cided to use models of cancel rates that consider a single ontology feature. We have
also chosen to use logistic regression models of the cancel rate to ensure the can-
cel rate functions fed into our optimization are strictly decreasing as inventory in-
creases. The findings in this section may still provide insight into predicting can-
cellations in ship-from-store online retail programs that may be incorporated into

60 Chapter 2. Optimizing Inventory Exposure with Knapsack Threshold Models

FIGURE 2.1: Example of dynamic programming method for super-
vised learning. Blue circles denote the nodes in set S for this instance.

Model AUC
Ontology Feature A .7860
Ontology Feature B .7891
Ontology Feature C .7840
Ontology Feature D .7810

Dynamic Programming .7832
Shrinkage .7897

FIGURE 2.2: Summary of supervised learning results

future threshold optimization algorithms.

2.6 Separate Estimation and Optimization

In this section, we describe a class of models to specify and learn the coefficients
ci,j and ri,j . While there are several possible ways of performing this, we show two
different approaches in this section – Maximum Likelihood (MLE) and Expectation-
Maximization (EM) – motivated by theory and practice that might be of interest. In
the next chapter, we introduce the SafetyNet class of models that perform both the
parametric estimation and the optimization of the thresholds described in Section
2.4 together in one end-to-end pass using neural networks. We then compare the
relative accuracy of these various methods, the pure optimization SAA method from
the previous section, the two estimation methods MLE and EM from this section
feeding the IP optimization, and the end-to-end method from the next section in
Section 3.6.

2.6. Separate Estimation and Optimization 61

FIGURE 2.3: Example fit of Weibull distribution of inventory counts
to real Onera data

2.6.1 Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) can be used to generate more accurate esti-
mates of our coefficients when we have a parametric model of the distributions that
determine our coefficients. To use this method, we first introduce the estimation of
a demand variable that will be useful later in estimating the other coefficients.

Clustering and Demand Estimation

To help with demand estimation, we collapse the set of items I into categories or
clusters. In practice this is performed using the product feed features to generate
clusters of similar products which are then assumed to be drawn iid from the clus-
ter’s demand distribution. Henceforth, we will use clusters or items I interchange-
ably. Demand for an item within each cluster is modeled by a Weibull distribution.
The Weibull distribution is appropriate as it is a flexible class of distributions ca-
pable of modeling both symmetric and right skewed distributions. Figure 2.3 is a
histogram of inventory counts for a representative category of items at one of On-
era’s clients along with a fitted Weibull distribution, motivating this methodology.

We use MLE to obtain the parameters λi (scale) and ki (shape) of the Weibull
distribution for each cluster. We are using a continuous approximation of a discrete

62 Chapter 2. Optimizing Inventory Exposure with Knapsack Threshold Models

FIGURE 2.4: Example fit of logistic function to observed cancel rates
on real Onera data

distribution with the Weibull distribution, so to estimate di,j , the expected demand
for cluster i at inventory level j, we multiply Pi(j − 1 ≤ x ≤ j) = e−(j/λi)

ki −
e−((j−1)/λi)

ki by the total volume of orders for item i in our training sample.

Cancel Rate Estimation Details

We model cancel rates as a function of inventory x for an item in cluster i by the
logistic function fi(x) = 1

1+e−(β0i+β1ix)
. In real-life omni-channel SFS programs, can-

celations are often due to phantom inventory, where inventory is listed in a database
as available but is not actually available. Consequently, orders accepted for items
with lower listed inventory levels are more likely to be cancelled, motivating our
use of a logistic function to model cancel rates. We use the machine learning library
Scikit-learn [47] to estimate parameters β0i and β1i for each cluster i by MLE. We use
this function to compute our cancellation coefficients: ci,j =

∑U
x=j fi(x)di,x where

di,x is the demand estimate described above. Figure 2.4 compares the fit of a Logistic
function to the observed cancel rates for a category of items at one of Onera’s clients.

2.6. Separate Estimation and Optimization 63

1: function EM(Data, Thresh)
2: λ, k ← MLE(Data)
3: λprev, kprev ←∞,∞
4: while max(|λ− λprev|, |k − kprev|) > ε do
5: λprev, kprev ← λ, k
6: EstTruncData← MAXIMIZATIONSTEP(Data, λ, k,Thresh)
7: λ, k ← EXPECTATIONSTEP(Data,EstTruncData)
8: end while
9: return λ, k

10: end function
11:
12: function MAXIMIZATIONSTEP(Data, λ, k,Thresh)
13: PctTrunc← CDF(Thresh, λ, k)
14: Out← {}
15: for Inv = 1 to Thresh do
16: Expect← (CDF(Inv, λ, k)− CDF(Inv− 1, λ, k)) · |Data|

1−PctTrunc
17: Out← Out + Inv|Expect|

18: (Append expected value of orders at
19: inventory level Inv to Out data)
20: end for
21: return Out
22: end function
23:
24: function EXPECTATIONSTEP(Data,EstTruncData)
25: EstFullData← CONCAT(Data,EstTruncData)
26: return MLE(EstFullData)
27: end function

FIGURE 2.5: EM Pseudocode

2.6.2 Expectation-Maximization

As mentioned earlier, historical data is intrinsically truncated because orders are not
observed for items i with inventory lower than the thresholds ti that were set histor-
ically. So far, our methods do not fully account for this truncation in the demand at
lower inventory counts. We use Expectation-Maximization (EM) to perform MLE on
a distribution that has been truncated at a known point. MLE SafetyNet, presented
in Section 3.5, can also be used to estimate distributions from data with multiple
points of truncation in a conceptually similar manner.

EM methods converge to an MLE estimate of the un-truncated distribution un-
der general conditions that include this setting [10]. In our experiments we iterate
through the Maximization and Expectation steps until the Weibull Distribution pa-
rameters λi (scale) and ki (shape) converge and stop changing significantly between
iterations. We use EM specifically to get an MLE estimate of a Weibull distribution of
inventory within clusters of items where the order data for the clusters are truncated
by previous threshold values. We outline the conceptual algorithm for the two steps
below. Psuedocode for this method is shown in Figure 2.5. More detail on the EM

64 Chapter 2. Optimizing Inventory Exposure with Knapsack Threshold Models

method we implement in our empirical studies can be found in prior work [10].

Maximization Step

The Maximization step for this use case is largely the same as what is described in
Section 2.6.1. The only significant change is that the sample data we use to fit our
Weibull distributions includes both the original data and the additional data points
that are added during the Expectation step.

Expectation Step

The Expectation Step considers each inventory level below the cluster’s maximum
threshold value throughout the training sample, the point where our data gets trun-
cated. At each of these inventory levels we compute the expected level of demand
based on the Weibull distribution fit during the most recent Maximization step. If
this is greater than the observed demand we add these values as additional data
points in our training sample to be used in the following Maximization step.

2.6.3 Proxy Maximum Likelihood Estimation

The Expectation-Maximization estimation method from the previous section aims to
correct for the effect of truncation in the orders data. In this section we present the
Proxy-MLE method of parameter estimation, which accounts for data truncation by
estimating the distribution of inventory levels and mean demand rates using inven-
tory data as a proxy for orders data. This method has the advantage that inventory
data is independent of the retailer’s threshold policy. However, a potential down-
side to this method is that the estimates mades from inventory data may not exactly
correspond to the ground truth of the orders data.

We use the same parametric model as described in the MLE estimation method.
A Weibull distribution over the inventory level of items in each cluster is estimated
by MLE, though for this method we use the inventory data as the source of data
samples. We use up to three months of inventory data collected prior to the time
of estimation, and we filter out UPCs for which no sales have been recorded in the
previous five months.

Overall cluster demand rates are estimated at the UPC level and then aggregated
at the cluster level. We use the inventory data to identify the dates when each UPC’s
inventory count was above its threshold value, meaning it had been available for
purchase online. We take the mean of the volume of orders recorded across the
days when inventory was at or above the relevant cluster’s threshold value as the
mean demand rate for each UPC. These demand rate estimates are exactly the MLE
estimates of Poisson rate parameters if demand was modeled as an independent
Poisson process for each UPC.

2.7. Dynamic Threshold Policy 65

2.7 Dynamic Threshold Policy

The previous techniques we consider all rely on using historical data to determine a
policy for the present. However, if many orders begin to cancel for reasons that are
not reflected in changes to the input features of these models, we may not be able to
adapt to these changes quickly enough. The adaptability and simplicity of this dy-
namic policy is its primary appeal; we don’t expect this type of policy to outperform
the other methods if cancellations are following patterns found in historical data.

We observe in our data that the probability of fulfillment for an order as a func-
tion of its threshold can be closely approximated by a logistic function. We can use
this observation to define a formal model of this policy for theoretical analysis. Let
our logistic function be p(x) = 1

1+e−
x
b

, where x is the current value of the threshold
and b is a constant.

Definition 6. A (+a,−b) policy is a dynamic threshold policy, where the threshold is in-
creased by a each time an order is canceled and decreased by b each time an order is success-
fully filled.

We then observe that if we want our long-term cancellation rate to be λ, a (+ε,− λ
1−λε)

policy has many desirable properties.

Lemma 7. Let x = p−1(1 − λ) and let x′ be the threshold after one iteration of the
(+ε,− λ

1−λε) policy. Then E[x′] = x.

Proof. The proof follows immediately from the value of x:

E[x′] =x+ ε(1− p(x))− λ

1− λ
εp(x)

=x+ ελ− λ

1− λ
ε(1− λ)

=x.

Lemma 8. Suppose x > p−1(1 − λ) and let x′ be the threshold after one iteration of the
(+ε,− λ

1−λε) policy. Then E[x′] < x.

66 Chapter 2. Optimizing Inventory Exposure with Knapsack Threshold Models

Proof. The proof is similar to that of Lemma 2:

E[x′] =x+ ε(1− p(x))− λ

1− λ
εp(x)

=x+ ε− εp(x)− λ

1− λ
εp(x)

=x+ ε− 1− λ
1− λ

εp(x)− λ

1− λ
εp(x)

=x+ ε− εp(x)

1− λ

<x+ ε− ε(1− λ)

1− λ
=x.

Lemma 9. Suppose x < p−1(1 − λ) and let x′ be the threshold after one iteration of the
(+ε,− λ

1−λε) policy. Then E[x′] > x.

Proof. The argument is nearly identical to the proof of Lemma 3.

However, if the retailer was aware of the function p(x), they would be able to
simply set the threshold to p−1(1−λ) and would not have to bother with a dynamic
policy. Then, an interesting variant of this model is one in which the parameter b
varies rather than remaining constant. In this case it is clear that a dynamic policy
would be more effective.

2.8 Empirical Results

2.8.1 Methods

We use real Onera data to evaluate how effective our methods are at optimizing
revenue while maintaining a pre-specified cancel and acceptance rate in realistic
conditions. We compare the performance of our five methods – Onera-SAA, Onera-
MLE, Onera-EM, Onera-Proxy, and Onera-Dynamic – for estimating the coefficients
of this model to each other and to Retail-1-threshold policies which accept or re-
ject orders for all items based on a single unified threshold. These Onera policies
are implementations of each of the three statistical estimation methods described
in Sections 2.6 and 2.7 : Sample Average Approximation, Maximum Likelihood Es-
timation, Expectation-Maximization, Proxy Maximum Likelihood Estimation, and
Dynamic Threshold Policy, respectively.

The first two methods, Onera-SAA and Onera-MLE make no adjustments for
data truncation and serve as benchmarks for what can be expected from optimiza-
tion methods that do not model the effects of truncated demand. The Onera-EM
method explicitly accounts for truncated demand, allowing us to assess the practi-
cal impact of explicitly accounting for truncation in our models. The Onera-Proxy

2.8. Empirical Results 67

method gets around the problem of data truncation by using non-truncated inven-
tory data as a proxy for some of the information typically gathered from truncated
orders data, and so this method’s performance is a valuable point of comparison for
the Onera-EM method. Lastly, the Onera-Dynamic method does not attempt to op-
timize for revenue in any way, but it is able dynamically adjust thresholds to track
the target cancel rate, even if the data generation process changes over time.

A limitation of using real retail data is that our choice of thresholds cannot al-
ways influence which orders get truncated. However, using real data is important to
demonstrate that our models and estimation methods can be applied in production
systems and not just in a stylized environment. We are able to partially compensate
for the truncated orders that are not observed in our data by artificially truncating
orders that were below an artificial threshold we impose for our experiments. This
artificial truncation creates an environment where we can at least partially observe
the ground truth data that are not visible to our estimation algorithms.

We use a high-end multi-billion dollar annual online revenue fashion retailer to
demonstrate our results. We used the SFS orders from 3 consecutive months of 2016
of this retailer as the data set for the analysis. We evaluate our methods one week
at a time, allowing our models to train on all data prior to the evaluation week. In
addition to naturally occurring data truncation, we exclude all orders whose listed
inventory is less than 8 from the training data to insert an additional source of data
truncation that is observable. This process truncates approximately 35% of the orig-
inal training data. Across our 12 evaluation weeks we compare our Onera policies
to a benchmark policy, Retail-1-Threshold, which sets a constant threshold of 10 to
all orders.

We use the realized cancel rate of this Retail policy as inputs to our model and
demonstrate that our methods can produce dominant policies. This target cancel
rate is calculated from the artificially truncated training data collected prior to the
first evaluation week. We note that this target cancel rate was 5.2%, which is some-
what lower than the cancel rate realized by this same policy across the weeks evalu-
ated in the simulation, 6.2%. This suggests that the real-world circumstances driving
the data generation process may be changing over time.

Additionally, we ran a second set of evaluations where we scale the cancel rate
target of our Knapsack Threshold IP down by 30%, producing policies that are more
conservative about allowing cancellations. This is to ensure that we produce a set of
policies that adhere to the cancel rate limit and will strictly dominate the benchmark
policy by achieving lower cancel rates as well as greater revenues.

2.8.2 Results

The Figures 2.6 and 2.7 show, for all policies tested, the mean cancel rates, mean
revenues (as a percent of the maximum possible revenue), and percentage increase
in revenue over the benchmark Retail-1-Threshold policy.

68 Chapter 2. Optimizing Inventory Exposure with Knapsack Threshold Models

Simulation Results
Policy Cancels Revenue Increase
Retail-1-
Threshold

6.19% 54.24% N/A

Onera-SAA 7.09% 71.42% 31.65%
Onera-MLE 7.25% 75.75% 39.64%
Onera-EM 6.67% 72.29% 33.26%
Onera-Proxy 8.08% 78.52% 44.74%
Onera-
Dynamic

6.35% 61.42% 13.22%

FIGURE 2.6: Simulation results for experiment with unadjusted can-
cel rate target

Simulation Results - Adjusted Cancel Target
Policy Cancels Revenue Increase
Retail-1-
Threshold

6.19% 54.24% N/A

Onera-SAA 6.33% 66.28% 22.19%
Onera-MLE 5.97% 67.32% 24.10%
Onera-EM 5.70% 64.95% 19.73%
Onera-Proxy 6.07% 68.01% 25.36%
Onera-
Dynamic

5.42% 54.83% 1.07%

FIGURE 2.7: Simulation results for experiment with cancel rate target
shifted down 30%

2.9. Discussion 69

We find that our methods consistently produce sizable increases in revenue over
the benchmark Retail-1-Threshold policy, with a minimum average revenue increase
across all policies of 13.22%. However, especially when using unadjusted cancel rate
targets, these policies tend to overshoot the stated cancel rate target. As a conse-
quence, it it difficult to perform a direct comparison between the Onera policies and
the benchmark Retail-1-Threshold policy. We do see that the Onera-EM method,
which attempts to correct for data truncation, has the closest cancel rate among Sep-
arate Estimation and Optimization (SEO) methods to that of the Retail-1-Threshold
policy, but a smaller difference in cancel rates would be better. The Onera-Dynamic
method performs relatively better than the other methods at tracking its target can-
cel rate (5.2%), as we might expect, but it does not appear to produce policies that
approach Pareto efficiency. We see that the policies produced by Onera-EM with an
adjusted cancel target dominate the Onera-Dynamic method by achieving a higher
revenue percentage and a lower cancel rate.

When we scale down the cancel rate target in the Onera models by 30% we get
policies that much more closely track the cancel rate of the Retail-1-Threshold policy.
In particular, the Onera-EM method strictly dominates the Retail-1-Threshold policy,
with a just slightly lower cancel rate and a 19.73% increase in revenue. In Onera’s
production systems they perform significant manual tuning to ensure their policies
closely track the target cancel rate. Our results from the set of policies with adjusted
cancel rates provide evidence that these models can be successfully used to substan-
tially outperform the benchmark if the cancel rate target is tuned properly. For a
typical retailer whose revenue is a billion dollars online, SFS can contribute to about
10-20% of the overall volume yielding about 100-200M in annual revenue. A 25% lift
on a 200M annual revenue is a substantial 50M dollars in incremental revenue or 5%
increase in the entire online revenue for the retailer.

2.9 Discussion

In this chapter, we introduced the problem of optimizing inventory for omni-channel
fulfillment and presented knapsack-inspired threshold models as tools to solve this
problem. We show theoretical and empirical evidence that these models can be for-
mulated and solved efficiently. To account for demand data truncation that occurs
in real-life settings, we provide two method to estimate the parameters that explic-
itly corrects for this factor. Finally, we use real retail data to show the significant lift
in revenue that can be realized by using an intelligent model to optimize inventory
thresholds for omni-channel fulfillment.

The results from our experiments also expose some limitations of these methods,
which we will go on to address in Chapter 3. In particular, we see that running
our algorithms without manual supervision can lead to threshold policies that are
Pareto efficient – or at least close – but may not always track the cancel rate target
specified by the retailer. Depending on the application, this may not be acceptable.

70 Chapter 2. Optimizing Inventory Exposure with Knapsack Threshold Models

An ideal algorithm would be able to measure how closely it tracks the target cancel
rate and adjust its policies accordingly, rather than relying on manual tuning. This
observation motivates the SafetyNet models that are the focus of Chapter 3. These
SafetyNet models provide end-to-end learning methods that address these concerns.

Acknowledgments: Prof. R. Ravi and Dr. Srinath Sridhar are co-authors on this
work. The real retail data analyzed in this chapter was graciously provided by Dr.
Sridhar and his company Onera.

71

Chapter 3

Joint Estimation and Optimization
of Knapsack Threshold Models

3.1 Introduction

Chapter 2 presents the problem of setting threshold policies to efficiently balance
revenue and cancelled orders in an omni-channel retailing setting. We provided
motivation for studying this problem, most notably that analytics consultancy Onera
provides services related to this problem as one of its core products, and we intro-
duced and evaluated several methods to algorithmically generate threshold policies.
The work presented in this chapter is motivated by the limitations of the methods
investigated in Chapter 2. These methods perform optimization of threshold poli-
cies and the underlying estimates of model parameters as separate steps in an algo-
rithmic pipeline. A negative consequence from using this class of methods is small
errors or biases in the estimation process can have unexpected effects on the final
policy when these estimates are used to formulate the optimization problem respon-
sible for producing this policy. We observed this, where some of our methods in
Chapter 2 produced efficient policies, though manual tuning was required to find
policies that closely tracked the pre-specified cancel rate targets.

In this chapter, we use artificial neural networks to construct end-to-end mod-
els that perform parameter estimation and threshold policy optimization in a single
parametric model. We present GreedyNet, a neural network layer which performs
differentiable optimization using a greedy algorithm. GreedyNet allows us to em-
bed the argmax function of many optimization problems that can be solved exactly
or approximately by a greedy algorithm, such as the threshold optimization prob-
lem introduced in Chapter 2, inside a neural network. We demonstrate the utility of
GreedyNet as a component in SafetyNet, a network architecture that performs end-
to-end optimization of threshold policies for the omni-channel fulfillment problem
studied in Chapter 2.

3.1.1 Contributions

We make the following contributions in this chapter:

72 Chapter 3. Joint Estimation and Optimization of Knapsack Threshold Models

1. We introduce GreedyNet, a neural network layer for differentiable greedy op-
timization, and we provide technical details on its implementation.

2. Leveraging GreedyNet, we formulate network architecture SafetyNet, an end-
to-end model for the omni-channel fulfillment problem. We provide technical
details of several versions of the SafetyNet architecture and discuss their rela-
tive trade-offs.

3. Three versions of SafetyNet are evaluated on the same conditions used to test
the separate estimation and optimization methods from Chapter 2. These eval-
uations involve tests using both real and simulated retail data, and provide
empirical evidence that SafetyNet models find high-quality threshold policies
which more closely track the target cancel rates than our earlier methods and
benchmarks.

4. We compare the running time of GreedyNet with that of OptNet [5], an exist-
ing architecture for differentiable optimization. We present empirical results
comparing the running time of SafetyNet models powered by both GreedyNet
and OptNet. Our experiments show a 4x speedup in favor of GreedyNet on
moderate-sized instances, and greater gains in performance as the instance size
increases.

3.2 Background

3.2.1 Neural Networks

Our work on GreedyNet and SafetyNet builds on a large body of research on artifi-
cial neural networks. A good source for a more general overview of neural networks
is the Deep Learning textbook by Goodfellow et al. [24]. Within the context of this
chapter, it is most useful to think of neural networks as a flexible class of parametric
functions. Each neural network can be represented as computational graph. In this
representation, the neural network is a directed acyclic graph (DAG), where each
edge represents a vector and each node in the graph represents a differentiable func-
tion which receives a set of vectors as input and returns a vector as output. There
are more general representations of neural networks in which edges of the compu-
tational graph pass multi-dimensional objects known as tensors between nodes [24,
Chapter 2], but it is sufficient to restrict ourselves to vectors for the purposes of this
background section. The DAG structure of this graph allows us to sort the graph
topologically and pass information through this graph in both directions.

The typical training process for fitting a neural network is to minimize a loss
function using a first-order optimization method such as Stochastic Gradient De-
scent [9]. There are also many newer optimization methods such as Adam [39], Nes-
terov Momentum [53], and RMSProp [54] that have become very popular for train-
ing neural networks in recent years. The gradient estimates required to implement

3.2. Background 73

these optimization methods are computed by the neural network using operations
referred to as forward and backward passes. The forward pass operation evaluates
the current function represented by the neural network for a set of input values and
computes a scalar-valued loss function from this output. Intuitively, the backward
pass sends information backwards through the graph and determines how much
influence each parameter had on the loss function for the input values evaluated
during the last forward pass. More precisely, the backward pass recursively applies
the chain rule of calculus backwards through the network to compute the partial
derivative of the loss function with respect to each parameter of the network. Upon
completion of a backward pass, the vector of these partial derivatives forms the gra-
dient estimate needed to run an iteration of Stochastic Gradient Descent or some
other first-order optimization method. This process is repeated until the parameters
of the network converge such that the loss function is at a local minimum.

A forward pass evaluates the neural network function for a set of input values
by computing the composition of all the functions contained inside the graph, as or-
dered by the topological ordering. Nodes in the DAG may contain additional stored
parameters that are inputs to that node’s differentiable function. The nodes of the
DAG with no incoming edges initiate the forward pass operation by passing input
values or stored parameters to the next layer of the model. The nodes of the DAG
with no outgoing edges return the output value from the neural network function.
We can specify that there will be only a single node with no outgoing edges and
it will return a scalar loss or objective function. Alternative formulations of neural
networks allow for one or many multi-dimensional output nodes, and a scalar loss
or objective value can be computed with a function that exists outside of the neural
network.

The other primary requirement of a standard neural network is that each node
must contain a differentiable function so that a backward pass may flow backwards
through the network. Satisfying this requirement allows us to recursively apply
the chain rule backwards through the network DAG to compute gradients of the
network output function with respect to the network’s parameters. This process is
known as backpropogation in the machine learning community, and we will spend
the next several paragraphs describing this process in more detail.

Concretely, consider a neural network with m layers in the topological ordering
of its DAG, where each layer i ∈ [1, . . . ,m] has ni intermediate vectors, xi,1, . . . , xi,ni
as inputs. These intermediate vectors are the vectors represented by the edges of
the DAG and get computed during each forward pass through the network. The
output of this network will be a loss function L(xm,1, . . . , xm,nm). Figure 3.1 presents
a visual display of a forward pass through this computational graph. First, let’s
consider the case where there is only a single path in the DAG connecting x1,k to
L(xm,1, . . . , xm,nm). We can reference the vectors along this path p as xp1 , xp2 , . . . , xpl .
We can compute the gradient of x1,k = xp1 with respect to the loss function L, ∂L

∂xp1
by taking the matrix product across the Jacobian matrices for every function along

74 Chapter 3. Joint Estimation and Optimization of Knapsack Threshold Models

FIGURE 3.1: The computational graph representation of a forward
pass through a typical neural network.

path p:

∂L

∂xp1
=

∂L

∂xpl

l−1∏
i=1

∂xpi+1

∂xpi

In the event that there are multiple paths, p1, . . . , pa, between x1,k andL(xm,1, . . . , xm,nm),
then the gradient of x1,k with respect to the loss function will be the sum of the ma-
trix product of the Jacobians along each path:

∂L

∂x1,k
=

a∑
j=1

∂L

∂xpj,lj

lj−1∏
i=1

∂xpj,i+1

∂xpj,i

This may at first seem like a large amount of computation for each backward
pass, but many of the calculations required can be shared by computing gradients
iteratively, layer by layer through the graph. By induction, as we reach each node of
the DAG, we have already computed the gradient of the loss function with respect
to each of the output vectors from this node, xo,1, . . . , xo,b. Then, to compute the
gradient of each input vector xi to this node with respect to the loss function, we
only need to sum the matrix products of the Jacobians ∂xo,i

∂xi
with gradients ∂L

∂xo,i
:

∂L

∂xi
=

b∑
j=1

∂L

∂xo,j

∂xo,j
∂xi

.

Figure 3.2 visualizes a step in the recursive backpropogation algorithm described
above.

The backpropogation algorithm described above allows us to efficiently compute

3.3. Related Work 75

FIGURE 3.2: The computational graph representation of one step of a
backward pass through a typical neural network.

gradients of the parameters of a neural network model with respect to any differen-
tiable scalar loss function of the outputs of the network. First-order optimization
methods can be applied to these gradient values to set the parameters in the model
so as to (locally) minimize the loss function.

In this chapter we will introduce GreedyNet, which is a method to embed the
argmax function of certain optimization problems as a node in a neural network. We
utilize GreedyNet to present SafetyNet, a neural network architecture which can be
optimized with respect to a task-based loss function related to our omni-channel ful-
fillment problem. SafetyNet embeds a Threshold Policy as part of its internal state,
allowing us to obtain high-quality Threshold Policies from an optimized instance of
the model.

3.3 Related Work

Much of the mathematics underlying neural networks, including the backpropoga-
tion algorithm, has been known for decades, but in the past five years we have seen
a resurgence of interest in these models as neural networks have been found to be
highly effective in solving a wide range of machine learning tasks. Neural networks
have been used to obtain state-of-the-art performance on many tasks including ones
related to computer vision [41], natural language processing and translation [57],
and game playing (Go, Atari) [52]. One driving force behind these recent advances
has been the increasing availability of computing power for processing neural net-
work operations. In particular, advances in Graphics Processing Units (GPUs) have

76 Chapter 3. Joint Estimation and Optimization of Knapsack Threshold Models

made possible the fast matrix operations necessary to rapidly perform forward and
backward passes through neural networks [13].

Of particular relevance to our research is previous work on argmin differentia-
tion for various classes of optimization problems as a node in a neural network [26,
44]. A good example from this body of work is the recent development of OptNet
[5], a neural network architecture that embeds the argmin function of a quadratic
program inside a neural network. It is possible to implement our SafetyNet models
using an OptNet layer. However, this adds unnecessary complexity to our model,
and we demonstrate that when we can use a more efficient network layer that lever-
ages the specific structure of the embedded optimization problem. Sensitivity anal-
ysis techniques in Operations Research and Operations Management [8, 23] are also
closely related and may be used to efficiently embed certain optimization problems
inside neural networks.

To the best of our knowledge, GreedyNet is the first attempt to embed differ-
entiable argmin or argmax functions in a neural network using greedy algorithms.
However, GPUs have previously been used in fast implementations of greedy algo-
rithms for other purposes such as compressed sensing [7]. This line of work provides
implementations similar to what we use in GreedyNet’s forward pass. Backward
passes of gradient information, however, are not considered in this prior work on
GPU implementations of greedy algorithms.

3.4 GreedyNet: Differentiable Greedy Optimization

GreedyNet is a neural network architecture that allows the argmin or argmax func-
tion for certain optimization problems to be embedded in neural network layers. In
this section we present the forward and backward pass algorithms of Greedynet,
we state the requirements for an optimization problem to be compatible with Gree-
dyNet, and lastly we prove the correctness of the forward and backward pass opera-
tions when these required conditions are met. In Section 3.7 we evaluate the running
time of GreedyNet by comparing performance with OptNet [5] on an optimization
problem compatible with both architectures.

3.4.1 Forward and Backward Pass Algorithms

We present the forward and backward pass algorithms of GreedyNet under the as-
sumption that the input parameters are initialized with some form of randomness
and consequently the probability of a tie between elements on the Scores function
or that the final value of Fraction is exactly equal to zero or one is infinitesimal.
This is a standard practice in neural network architectures, with the Rectified Lin-
ear Unit (ReLU) as a popular example. The ReLU function f(x) = max(0, x) is a
commonly used non-linear activation function in neural networks, even though it
is non-differentiable at zero. Implementations of ReLU neural network layers will

3.4. GreedyNet: Differentiable Greedy Optimization 77

typically return either zero or one as its derivative in the unusual event that the net-
work attempts to evaluate its derivative at zero [35]. We will follow this example
and have our code return a derivative of zero at isolated non-differentiable points
for our implementation of GreedyNet. In the following discussion we will assume
that our parameters are such that the Scores function does not have ties and the
value of Fraction is in between 0 and 1.

Forward Pass

The solution vector z is initialized as a vector of all zeros. z is transformed one ele-
ment at a time into the optimal solution based on an updating score vector, Scores.
At each iteration, Scores is computed based on the current solution, z , and the in-
put values, θ (Scores = GreedyScore(θ, z)). The index of the maximum element in
Scores, i, is recorded, and zi is reassigned to 1. After each iteration a stopping cri-
teria is calculated, and once this criteria is met none of the elements of z currently
still at value 0 will be altered. When the stopping criteria is met, this often signals
that the current solution is in violation of some constraint, and so the most recently
updated element in z may be reassigned to the maximum fractional value between
0 and 1 such that the resulting vector z is feasible. Pseudocode for this forward pass
algorithm is shown in Figure 3.3.

Backward Pass

An important observation is that an infinitesimal adjustment of the input parameters
will only shift the value of the fractional element in solution z. This motivates the
backward pass algorithm. During the backward pass, GreedyNet stores the value in
index AddIndex of ∂L

∂z [AddIndex]. Then, this value is multiplied element-wise with
∂FixViolation(z,θ,AddIndex)

∂θ to obtain ∂L
∂θ .

3.4.2 Requirements and Correctness of GreedyNet

The most fundamental requirement for an optimization problem to be compatible
with GreedyNet is that it must be solvable by a greedy algorithm. More specifically,
we require that the optimal solution, represented as vector z, can be computed ac-
cording to the forward pass algorithm of GreedyNet described in Section 3.4.1 and
in Figure 3.3.

FixViolation(z, θ,AddIndex) is the function that determines the magnitude of the
final fractional value that gets assigned after the stopping criteria is met during the
forward pass. The role of function FixViolation(z, θ,AddIndex) may also be seen
in the pseudocode shown in Figure 3.3.This function FixViolation(z, θ,AddIndex)

must be differentiable with respect to θ. Lastly, we require that the GreedyScore(θ, z)

function must be continuous with respect to θ.

78 Chapter 3. Joint Estimation and Optimization of Knapsack Threshold Models

1: function FORWARD(θ)
2: z ← ZEROS(n)
3: Options← ONESLIKE(z)
4: while STOPPINGCRITERIA(z, θ) = False do
5: Scores← GREEDYSCORE(θ, z)
6: AddIndex← INDEXMAX(Scores ◦Options)
7: z[AddIndex]← 1
8: Options[AddIndex]← 0
9: end while

10: Fraction← FIXVIOLATION(z, θ,AddIndex)
11: z[AddIndex]← Fraction
12: self.SaveForBackward← (z, θ,AddIndex)
13: return z
14: end function
15:
16: function BACKWARD(self,dL_dz)
17: z, θ,AddIndex← self.SaveForBackward
18: dL_dFraction← dL_dz[AddIndex]

19: dFraction_dTheta← ∂FIXVIOLATION(z,θ,AddIndex)
∂θ

20: dL_dTheta← dL_dFraction ◦ dFraction_dTheta
21: return dL_dTheta
22: end function

FIGURE 3.3: GreedyNet Forward and Backward Pass Pseudocode

Proposition 5. The forward pass algorithm returns the optimal solution to the target opti-
mization problem of GreedyNet.

Proposition 5 is true by definition, as this is a requirement for an optimization
problem to be compatible with GreedyNet. This forward pass algorithm describes a
fairly general framework for a greedy algorithm. z represents a (possibly fractional)
set of elements that define a solution. At each iteration a score for each element
not in the set is calculated, and the item with the highest score is added added to
the set. Between iterations, the stopping criteria checks if the algorithm is finished
or may continue to add all or part of another element to the solution set. Before the
algorithm stops it checks to see if the last element added to the set needs to be shifted
down to a fractional value so the overall solution is feasible.

Proposition 6. The backward pass algorithm returns the correct gradient ∂L∂θ .

Proof. We observe that an infinitesimal adjustment of parameters θ will only alter
the value of the fractional element of z. This is the element at index AddIndex,
which we will re-label as index i for this proof. This observation is true because
of the assumption that the scoring function, GreedyScore(θ, z), is continuous with
respect to θ. Without a tie in maximum scores, an infinitesimal adjustment to θ

would not change the index of the final element added to z, only the magnitude of its
fractional value. Mathematically, we express this observation as ∂z

∂θ [AddIndex, k] =
∂FixViolation(z,θ,AddIndex)

∂θ [k] and ∂z
∂θ [j, k] = 0, ∀j 6= AddIndex, ∀k ∈ 1, . . . ,m.

3.5. SafetyNet: A Neural Network Model for Joint Estimation and Optimization of
the Knapsack Threshold Model

79

We can obtain a closed-form expression for the gradient of the loss function, L,
with respect to θ using the chain rule of calculus:

∂L

∂θ
=
∂L

∂z
· ∂z
∂θ
.

∂z
∂θ is an n × m Jacobian matrix, the matrix of partial derivatives of a vector-

valued function, and by our above observation, it is entirely zero except for its i-
th row. Consequently, when we perform the matrix multiplication of ∂L

∂z ·
∂z
∂θ we

find that ∂L
∂θ [k] = ∂L

∂z [i] × ∂z
∂θ [i, k], ∀k ∈ 1, . . . ,m. We observed above that ∂z

∂θ [i, k] =
∂FixViolation(z,θ,i)

∂θ [k], and so the chain rule expression for the true gradient is equivalent
to what is computed during the backward pass of GreedyNet.

3.5 SafetyNet: A Neural Network Model for Joint Estimation
and Optimization of the Knapsack Threshold Model

We return to the practical problem of optimizing inventory exposure in omni-channel
retailing using threshold policies. To this end we present SafetyNet, an artificial
neural network architecture we use to compute threshold policies for the omni-
channel fulfillment problem studied in Chapter 2. SafetyNet differs from the meth-
ods presented in Chapter 2 in that all estimation of the model parameters is per-
formed simultaneously with threshold optimization in a single end-to-end model.
One concrete advantage of this paradigm over separate estimation and optimization
pipelines is that in the event that estimation errors lead to threshold policies that
miss the cancel rate target, SafetyNet is able to adjust the coefficients of an embedded
Knapsack Threshold Problem linear program in an adaptive manner. SafetyNet’s
utility when applied to problems in omni-channel retailing motivates the develop-
ment of GreedyNet (Section 3.4), as GreedyNet can be used to greatly improve the
speed and scalability of SafetyNet implementations. We describe an overview of
three variants of the SafetyNet model, then we describe each layer of the network in
detail, followed by the algorithms we use to train SafetyNet.

3.5.1 Architecture Overview

There are two source nodes, Input Data and Generative Parameters, which begin
any forward pass through the network. The input data is the batch of orders data,
each order containing information on price, inventory level at time of order, item
category, cancel status (whether the order was successfully filled or cancelled), and
the threshold policy in place at the time of collection. The generative parameters
can be interpreted as the current state of the network’s internal parametric model

80 Chapter 3. Joint Estimation and Optimization of Knapsack Threshold Models

FIGURE 3.4: The architecture of SafetyNet, featuring a Knapsack LP
layer that uses a differentiable linear program approximation and a
Latent Outcomes layer that uses input data and generative parame-

ters to correct data truncation.

of the un-truncated stream of orders data. They includes cancel logistic function
parameters β0,i, and β1,i, inventory level distribution parameters λi and ki, and de-
mand distribution parameters di for each item category i. Typically, average prices
pi for each item category are fixed values known to the retailer, but it is also very
easy to store these values as adjustable parameters. We store two copies of each of
these parameters, one copy (optimization parameters) is used to formulate the linear
program in the Knapsack LP layer, and the other (estimation parameters) is used to
estimate the impact of data truncation on threshold policies produced by SafetyNet.
The cancel rate target C is also a model parameter, though only one copy of this pa-
rameter is needed, for use in the Knapsack LP layer. The Knapsack LP layer contains
a differentiable encoding of the linear programming relaxation of (2.1) which takes
elements from Generative Parameters as inputs and outputs a threshold policy to
the subsequent layers. Observed outcomes computes the revenue and cancels of the
threshold policy from the Knapsack LP layer as applied to the batch of Input Data.
Latent Outcomes computes an estimate of additional revenue and cancel outcomes
related to orders that are filtered out of the Input Data due to truncation. Task-based
Loss Functions return truncation-adjusted revenues and cancels, as well as log like-
lihoods of the Input Data with respect to the estimation version of the Generative
Parameters.

3.5.2 SafetyNet Models

We focus on three versions of the SafetyNet model: Full SafetyNet, No-Optimization
SafetyNet, and MLE SafetyNet.

3.5. SafetyNet: A Neural Network Model for Joint Estimation and Optimization of
the Knapsack Threshold Model

81

Full SafetyNet

The Full SafetyNet model is the version of SafetyNet where backward passes through
the network, in particular the Knapsack LP layer, are used to directly update stored
elements in Generative Parameters. These updates result in the optimization pa-
rameters taking on values that may diverge from the estimation parameters. The
elements of the right-hand side of the cancel constraint in LP (2.1) also update dur-
ing backward passes through the network, allowing Full SafetyNet to find thresh-
old policies that closely track the retailer’s cancel rate requirements. The estimation
parameters converge to truncation-adjusted maximum likelihood estimates while
the optimization parameters adjust themselves to produce threshold policies that
optimize the network’s task-based loss functions. We discuss two versions of Full
SafetyNet, where the Knapsack LP layer is implemented using either the GreedyNet
architecture or the OptNet architecture [5]. In Section 3.7 we compare the running
time performance of these two optimization layers. For the purpose of understand-
ing the SafetyNet model the GreedyNet and OptNet implementations are largely
interchangeable as they perform the same high-level operations during the forward
and backward passes.

No-Optimization SafetyNet

This model removes the Knapsack LP layer and represents the threshold policy as a
discrete distribution that are just additional parameters of the neural network model.
During backward passes through the network, gradients of the task-based loss func-
tions are propagated through the network so it can iteratively update the stored
(probabilistic) threshold policy in an improving direction.

MLE SafetyNet

The MLE SafetyNet model sets the optimization parameters equal to the estimation
parameters and uses backward passes through the network only to update the esti-
mation parameters within the Generative Parameters with respect to the likelihood
of the Input Data. The task-based outputs of the network such as revenue and cancel
rates are not used to train MLE SafetyNet, and so the Generative Parameters simply
reflect truncation-adjusted maximum likelihood estimates. This model is concep-
tually similar to our Expectation-Maximization model introduced in Section 2.6.2,
though MLE SafetyNet is able to account for multiple threshold levels used dur-
ing data collection. Our EM method assumes a single set of thresholds to collect its
training data, which can lead to inaccurate estimates if this assumption is violated.

82 Chapter 3. Joint Estimation and Optimization of Knapsack Threshold Models

3.5.3 Generative Parameters

The Generative Parameters layer assumes a parametric model of the data where
orders are samples drawn from discrete probability distributions over the item cate-
gories. The inventory level of each order is drawn from a Weibull distribution inde-
pendently. The order status, specifically whether an order is cancelled is character-
ized by a logistic function over inventory counts conditioned on the item’s category.

As mentioned earlier, two sets of parameters related to this model of the data
are stored. One set is used to estimate the effect of data truncation and the other for
the optimization of threshold policies. dE = [d1,E , . . . , dI,E] and dO = [d1,O, . . . , dI,O]

represent that probability distributions of demands over item category. (λi,E , ki,E)

and (λi,O, ki,O) define Weibull distributions of inventory positions

gi,E(x) = e
−(x

λi,E
)
ki,E

− e
−(x−1

λi,E
)
ki,E

and

gi,O(x) = e
−(x

λi,O
)
ki,O

− e
−(x−1

λi,O
)
ki,O

∀i ∈ I . Similarly, (βi,0,E , βi,1,E) and (βi,0,O, βi,1,O) define logistic cancel functions

fi,E(x) = 1− 1

1 + eβi,0,E+xβi,1,E

and

fi,O(x) = 1− 1

1 + eβi,0,O+xβi,1,O

∀i ∈ I . Each item category i has a price parameter pi, and the cancel rate limit
in the Knapsack LP is the parameter bc. In No-Optimization SafetyNet, threshold
policies are parameterized as a probability distribution where ti,j is the stored prob-
ability of setting the threshold for category i to inventory value j. The solution to
the Knapsack LP layer in Full SafetyNet has the same representation as the thresh-
old parameters of No-Optimization SafetyNet, but by Theorem 6 we are guaranteed
that the solution can be made nearly-integral. The SafetyNet models are able to ac-
commodate fully fractional threshold policies, but this is less desirable than integral
or nearly-integral solutions from the perspective of a retailer who would want to
implement these policies in production.

3.5. SafetyNet: A Neural Network Model for Joint Estimation and Optimization of
the Knapsack Threshold Model

83

3.5.4 Knapsack LP Layer

The Knapsack LP layer embeds the linear programming relaxation of the Knapsack
Threshold Problem integer program (Equations 2.1) as a neural network layer within
SafetyNet. This embedding can be done with either a GreedyNet or an OptNet [5]
layer. We show in Section 3.7 that GreedyNet is faster and scales to larger instances
(more knapsack categories and threshold options) than can be solved by OptNet.
Both GreedyNet and OptNet layers enable SafetyNet to solve this specific Knap-
sack Threshold Problem linear program during a forward pass of the network and
allows gradients to be backpropogated through the linear program in this layer of
SafetyNet.

We conclude in Section 3.7 that GreedyNet achieves better performance than
OptNet within the context of implementing SafetyNet. However, some of our em-
pirical results were obtained using SafetyNet models powered by OptNet so it is
important to include its related implementation details along with these details for
GreedyNet.

GreedyNet

GreedyNet was introduced in a more general setting in Section 3.4, so it is necessary
to explain in detail how it can be applied to as the Knapsack LP layer of SafetyNet.
The inputs to the forward pass, θ, will be marginal revenue and marginal cancel
matrices which are computed directly from the stored SafetyNet model parameters.
Element (i, j) of marginal revenue matrix Mr indicates the marginal effect on rev-
enue from increasing the threshold on items in category i from j − 1 to j. Similarly,
element (i, j) of Mc, the marginal cancel matrix, indicates the marginal effect on
cancelations from increasing this same threshold. These n × m matrices can be re-
shaped into vectors of length nm. We will refer to these vectors as vr and vc. The
output vector z, which represents the threshold values, will also have nm elements.

The greedy scoring function GreedyScore(θ, z) used to compute scoring vec-
tor Scores is the vector of element-wise quotients of vr and vc. In other words,
Scores[i] = GreedyScore(vr, vc) = vr[i]

vc[i]
, ∀i ∈ 1, . . . , nm. We define our StoppingCriteria(z, θ)

function as follows:

StoppingCriteria(z, vc) =

{
1 if

∑nm
i=1 z[i]vc[i] > C

0, else

}
.

The FixViolation(z, θ,AddIndex) function computes the fractional value the last el-
ement added to the solution will get set to:

FixViolation(z, vc, C,AddIndex) = 1−
∑nm

i=1 z[i]vc[i]− C
vc[AddIndex]

.

84 Chapter 3. Joint Estimation and Optimization of Knapsack Threshold Models

Theorem 9. The forward pass of GreedyNet, as specified in this section, solves the linear
programming relaxation of the Knapsack Threshold Problem.

Proof. The solution vector z contains a representation of a threshold policy, but this
may not be immediately clear. First, we will want to re-shape z into an n×m matrix
we will call Tz . Element (i, j) of Tz indicates the probability an order for category i
at inventory level j is accepted. For a policy defined by Tz to be a threshold policy,
it must be the case that Tz[i, j1] ≤ Tz[i, j2] ∀i ∈ [n], ∀j1, j2 ∈ [m], j1 < j2. Fortu-
nately, this will always be the case for solution matrices Tz . This is a consequence
of the parameterization of the coefficients in the Knapsack Threshold Problem LP.
The quotient of marginal revenue and marginal cancelations rate for category i at
inventory level j is (1−fi,O(j))gi,O(j)di,Opi

fi,Ogi,O(j)di,O
=

(1−fi,O(j))pi
fi,O(j) . Cancel rate function fi,O(j)

is necessarily decreasing with respect to j and so the greedy scoring function is nec-
essarily increasing within each category with respect to j. Therefore, Tz will always
obey the required condition and represents a threshold policy.

We conclude the proof by arguing the threshold policy represented by Tz is an
optimal fractional threshold policy. For this, we will use an argument commonly
used to prove that a similar greedy algorithm is optimal for the linear programming
relaxation of the classical Knapsack problem. Suppose there is another feasible solu-
tion that obtains more revenue than the policy represented by Tz . Let this solution
be represented by T ′. Then there must be i1, i2, j1, j2 such that T ′[i1, j1] > Tz[i1, j1]

and T ′[i2, j2] < Tz[i2, j2]. It is also necessarily true that Mr[i1,j1]
Mc[i1,j1] ≤

Mr[i2,j2]
Mc[i2,j2] , otherwise

Tz[i1, j1] = 1. This is a contradiction, proving the optimality of the threshold policy
obtained by the forward pass of GreedyNet.

The remaining requirements for using GreedyNet as a layer of SafetyNet are that
FixViolation(z, vc, C,AddIndex) is differentiable and GreedyScore(vr, vc,) is contin-
uous. Earlier in this same section we have provided closed-form expressions for
these functions that clearly demonstrate these conditions are met.

We have also performed extensive empirical checks on the accuracy of both the
forward and backward passes. We compare the threshold policies obtained from
forward passes of GreedyNet with solutions to the original linear programming for-
mulation and find that the mean value of the maximum difference of elements in
solution vector z is less than 8

107
across 10, 000 randomly generated instances. We

also compare relative error the gradient for these same instances by a numerical gra-
dient check and get a mean relative error less than 2

106
, confirming the accuracy of

the gradients computed during backward passes of GreedyNet.

OptNet

OptNet is a neural network module implemented in PyTorch that embeds differ-
entiable quadratic (and linear) programs into artificial neural networks, allowing

3.5. SafetyNet: A Neural Network Model for Joint Estimation and Optimization of
the Knapsack Threshold Model

85

gradients to backpropagate through the "arg max" function of the embedded op-
timization problem. This allows us to compute gradients of the underlying opti-
mization parameters with respect to the task-based outcomes. We embed the same
linear program (2.1) described in Section 2.4.1, with coefficients determined by dif-
ferentiable functions of θ. In this LP ci,j =

∑U
x=j(fi,O(x)gi,O(x)di,O) and ri,j =

pi
∑U

x=j((1 − fi,O(x))gi,O(x)di,O). The output of this layer is a matrix that encodes
a threshold policy. By Theorem 6, the solution to this LP will be almost entirely
integral, so most rows of this thresholds matrix provide a one-hot encoding of a
threshold policy. In the event that one category has fractional variables, SafetyNet
will interpret this as a probabilistic policy. The retailer can easily turn this fractional
solution into an integer threshold either by taking an average or using a heuristic.

3.5.5 Observed and Latent Outcomes

The threshold policy is applied to the batch of input data to determine revenue
and cancel outcomes. These values are computed in the Observed Outcomes layer.
SafetyNet computes the expectation of the distribution of orders that was truncated
when the batch of input data was collected, conditional on the thresholds used dur-
ing data collection, by performing operations that combine the input data with gen-
erative parameters. The Latent Outcomes layer computes these conditional distri-
butions and applies the thresholds obtained from the Knapsack LP layer to this es-
timation of truncated demand to obtain associated revenue and cancel outcomes.
Lastly the outputs of the Observed Outcomes layer and Latent Outcomes layer are
aggregated into several loss functions corresponding to the objective function of the
stochastic program we are attempting to solve and the violation of each of the con-
straints that must be satisfied in expectation.

The Latent Outcomes layer contains a series of calculations over the input data
and stored parameters to obtain estimates about data that was truncated as the in-
put data was collected. For each order o in the input data, we compute the estimated
acceptance probability across all incoming orders of this category under the thresh-
olds in place at the time of collection. This acceptance probability for category i

orders collected under thresholds t (where t is the set of thresholds specific to this
order o and ti,j is the probability the threshold for category i is inventory level j)
is α(i, t) =

∑U
y=0 gi,E(y)

∑y
x=0 ti,x. The expected quantity of orders truncated corre-

sponding to order o is m(i, t) = 1
α(i,t) − 1. We then distribute these m(i, t) estimated

truncated orders across all inventory levels according to the estimated distribution of
inventory levels. m(i, t, j) = m(i, t)gi,E(j) defines this distribution, where m(i, t, j)

is the expected quantity of truncated orders of category i at inventory level j corre-
sponding to each order in the batch of category i received under threshold value t.
The Latent Outcomes layer aggregates these values over all orders in the input data
to obtain overall estimates of truncated orders for each category and inventory level
that correspond to the input data. The thresholds received from the Knapsack LP

86 Chapter 3. Joint Estimation and Optimization of Knapsack Threshold Models

layer are applied to these estimated truncated orders to determine estimates of rev-
enues and cancels that will occur if these thresholds are applied to incoming orders.

3.5.6 Training SafetyNet

Optimizing the parameters in a large statistical model like SafetyNet is challenging,
but we have identified methods tailored to the specific challenges of training Safe-
tyNet that yield highly-effective threshold policies. The parameters in SafetyNet
have an interpretation as a constructive model for the retailer’s orders data, and we
have found that maximum likelihood estimates serve as good initial values. In our
experiments we use the benchmark set of thresholds (all threshold set to a single
value, for example) to collect the first set of data and initialize all model parameters
using this data.

We can use SafetyNet to find maximum likelihood estimates that account for data
truncation for many of the model’s parameters. Forward passes through SafetyNet
return the likelihood of attributes of the input data, such as the counts of categories,
inventory levels and cancel outcomes found in the inventory data. Backward passes
starting from these likelihood-based outcomes allow us to find truncation-adjusted
estimates of dE , λi,E , ki,E , βi,0,E and βi,1,E , ∀i ∈ I .

During the first day of training we cut the Knapsack LP layer out of SafetyNet
and run forward passes on batches of that day’s order data starting from the input
data and threshold variables taken from the benchmark policy. We use the back-
ward passes through this network to obtain gradient estimates on the estimation
parameters and update them by stochastic gradient descent. Before continuing to
the second period of order collection we set the optimization parameters equal to
their corresponding estimation parameters. Lastly, the cancel rate parameter C that
appears on the right-hand side of the Knapsack LP are initialized to the observed
cancel rate in the first day of data collected under the benchmark thresholds.

At all other times the thresholds used to control the flow of orders are those
produced by SafetyNet. In Full SafetyNet and MLE SafetyNet, all forward passes
begin with the optimization parameters and flow through the Knapsack LP layer
to determine the threshold values. The difference between these models is that
the optimization parameters get reset to the values of the corresponding estima-
tion parameters after each iteration and C is not allowed to vary in MLE SafetyNet.
No-Optimization SafetyNet removes the Knapsack LP layer and always operates
with forward passes originating from the threshold distribution. Backward passes
through No-Optimization SafetyNet update the threshold parameters directly.

On every forward pass, several outcomes are computed as output of the network:
revenue, violation of cancel rate target, and likelihood measures of the data based
on the estimation parameters. In all versions of SafetyNet the estimation parameters
get updated by backward passes from the likelihood outcomes. Full SafetyNet and
No-Optimization SafetyNet first checks if the violation of the cancel target is posi-
tive. If these targets are in violation the next update of the optimization parameters

3.6. Empirical Results 87

will use gradients obtained from backward passes originating from the relevant vio-
lation outcome. Otherwise, if all constraint violations are negative the network uses
a backward pass from the revenue outcome to update the optimization parameters.

The Full SafetyNet model poses some unique challenges as backward passes
backpropogate gradients through the arg max function of a linear program. This
class of functions can be more sensitive to small changes than the non-linear acti-
vation functions typically seen in neural networks and we found that successfully
optimizing the parameters of Full SafetyNet required using smaller learning rates
for our parameter updates than were required for versions of the model without
backward gradient passes through this arg max function. We that adaptive opti-
mization algorithms such as Adam did not perform well on Full SafetyNet. These
adaptive optimizers would either settle on solutions of very poor quality or would
fluctuate between wildly different solutions every update. We suspect this is be-
cause SafetyNet produces multiple loss function outputs on each forward pass, and
the values of these loss functions determine the origin of the backward pass used to
produce the next gradient values. A consequence of this procedure is that loss func-
tion values used to initialize backpropagation can vary greatly between iterations,
and this leads to the poor performance of the adaptive optimization algorithms we
tested. Ultimately, we found that stochastic gradient descent with a small fixed step
size allowed us to find effective parameter values for all versions of SafetyNet. Ad-
ditionally, we found that for Full SafetyNet updating optimization parameters for
a single category of each items performed better than updating all parameters on
every iteration.

3.6 Empirical Results

3.6.1 Simulation Experiments

Methods

We use simulated data to evaluate how effective our models are at optimizing rev-
enue while maintaining a pre-specified cancel rate in the presence of truncated data.
We compare the performance of our six methods – Onera-SAA, Onera-MLE, Onera-
EM, Onera-SN-Full, Onera-SN-NoOpt, and Onera-SN-MLE – for estimating the co-
efficients of this model to each other and to Retail-1-threshold policies which accept
or reject orders for all items based on a single unified threshold. These Onera policies
are implementations of each of the methods described in Sections 2.6 and 3.5: Sam-
ple Average Approximation, Maximum Likelihood Estimation, Expectation-Maximization,
Full SafetyNet, No-Optimization SafetyNet, and MLE SafetyNet, respectively.

The distributions and parameters used in this simulation were selected to reflect
the real data observed from a high-end multi-billion dollar fashion retailer. In Sec-
tion 2.6 we demonstrated that our modeling choices are appropriate for this data.
Each simulation takes place over 7 time periods on a set of 50 clusters (categories)

88 Chapter 3. Joint Estimation and Optimization of Knapsack Threshold Models

of items. Note that at larger cluster numbers, the improved performance of our
knapsack models will in fact be significantly more pronounced but even as few as
50 clusters is enough to make a significant impact. Demand for each cluster is mod-
eled as a Poisson process whose rate parameter is drawn from a Normal distribution
with mean 10 and standard deviation 5. Each day of the simulation allows the Pois-
son processes generating demand to run for either 40 or 400 time units (depending
on simulation condition). Inventory distributions for each category are modeled as
Poisson distributions with rate parameters drawn from a Uniform distribution from
1 to 20. The price of items in each category is drawn from a Normal distribution
with mean 800 and standard deviation 400. Each order is assigned a cancel probabil-
ity based on a logistic function of the form 1 − 1

1+ea+b·I
, where I is the item’s stated

inventory level and a and b are parameters of the item’s category. a and b are drawn
for each category from Normal distribution with mean .5 and −.2 and standard de-
viations .1 and either .05 or .15 (depending on simulation condition), respectively.
The inventory distribution parameters, cancel parameters, demand rates, and prices
are all truncated at 0 to prevent negative values.

We run simulations of 8 scenarios that vary across the following conditions:
amount of data truncation, volume of demand, and variability of cancel rate. We
test two parameter options for each of these dimensions of variation. We vary data
truncation by setting our benchmark Retail-1-threshold policies to single thresholds
of either 8 or 14, allowing approximately 1

3 and 2
3 of total demand to get truncated,

respectively. Volume of demand is varied by allowing either 40 or 400 time units
for the demand generating Poisson process during each period of the simulation.
We control cancel variability by running simulations where the standard deviation
of cancel parameter b is .05 as well as .15. We test the Onera and Retail-1-threshold
policies on 10 runs of each of the 8 (23) combinations of these simulation variants.
We wish to compare against corresponding Onera policies. We use the correspond-
ing Retail-1-threshold policy as the starting threshold for the Onera policies and then
let the Onera policies train on the data it collects and determine its own thresholds
for the remaining days. At the end of the simulation, we compare the Onera policy
to the Retail-1-threshold policy in terms of cancel rate and revenues.

Results

We can visualize the differences in performance of our methods most clearly through
scatterplots of the cancel rate and revenues of our policies on individual simulation
runs. Figure 3.5 shows that across all conditions Full SafetyNet and No-Optimization
SafetyNet most closely track the target cancel rate and provide increases in revenue
that are along the efficient frontier of outcomes produced by our set of policies. We
observe that the condition where truncation is high, demand low, and cancel vari-
ation high is the most challenging for our policies as there is less data available to
learn from, a large amount of incoming demand is truncated by the benchmark pol-
icy and there is large variation in cancel rates between items. In contrast, results for

3.6. Empirical Results 89

the simulation with low truncation, high demand, and low cancel variation show
the policies generally differ less from the benchmark, but again we see that Full
SafetyNet and No-Optimization SafetyNet closely track the target cancel rate and
provide a substantial increase in revenue.

In Figure 3.6, we present cancel rates, and revenue as percentage increases com-
pared to the corresponding Retail-1-threshold policy in the following tables. The
first three columns describe the truncation (T), demand (D) and cancel variation (V)
conditions of each set of simulations, and the remaining columns present the rev-
enue (and cancel) increases for each policy. Recall that the objective of our policies
is to maximize the lift in revenue without increasing cancel rates.

We find that Full SafetyNet method yields the best performance of all Onera
methods. Full SafetyNet averages 32.6% more revenue than its corresponding Retail-
1-threshold policy across all simulations while increasing cancels only 1.2% on av-
erage, closely tracking the cancel rate target set by this benchmark. In general, we
observe that the SafetyNet methods are able to track the target cancel rate set by the
Retail-1-threshold policy more closely than the Separate Estimation and Optimiza-
tion (SEO) methods, and this difference is magnified in the high truncation condi-
tions. This suggests that SafetyNet’s ability to account for data truncation gives it an
advantage over the SEO methods that do not account for data truncation or in the
case of Onera-EM account for truncation under assumptions that may be violated.

3.6.2 Real Data Experiments

Methods

It is also important to evaluate the performance of our algorithms using real retail
data provided by Onera. We test the SafetyNet models introduced in this chapter
using the same simulation as in Chapter 2. A strong motivating factor in develop-
ing the Full SafetyNet model is that it can adjust its internal optimization model
to produce threshold policies that track the desired cancel rate. Consequently, an
important measure of the utility of the SafetyNet models is whether they can pro-
duce threshold policies that accurately track the desired cancel rate while increasing
revenues over the simple benchmark policy.

We compare the performance of the three SafetyNet models – Onera-SN-Full,
Onera-SN-NoOpt, and Onera-SN-MLE – to each other, to a benchmark Retail-1-
threshold policy, and to the results presented in Chapter 2 of the SEO models –
Onera-SAA, Onera-MLE, and Onera-EM – in this simulation.

We will review the most important aspects of this experimental design. A com-
plete description and discussion of the methodology used in this experiment can be
found in Section 2.8.1. We used the 3 months of SFS orders from a multi-billion dollar
annual online revenue fashion retailer to demonstrate our results. We evaluate our
methods one week at a time, allowing our models to train on all data prior to the
evaluation week, excluding the orders that are rejected by our artificial threshold

90 Chapter 3. Joint Estimation and Optimization of Knapsack Threshold Models

FIGURE 3.5: Performance comparison for individual simulations
across conditions

3.6. Empirical Results 91

Revenue (Cancel) Increase wrt Retailer Threshold
T D V Onera-SN-

Full
Onera-SN-
NoOpt

Onera-SN-
MLE

High High High 91% (3%) 55% (-25%) 57% (-39%)
High High Low 25% (-1%) 18% (-5%) 21% (-7%)
High Low High 87% (5%) 65% (-9%) 52% (-41%)
High Low Low 7% (6%) 12% (0%) 12% (-3%)
Low High High 23% (-6%) 8% (-9%) 14% (-16%)
Low High Low 4% (-2%) 3% (-2%) 2% (-6%)
Low Low High 19% (3%) 13% (-5%) 14% (-14%)
Low Low Low 4% (2%) 4% (0%) 3% (-4%)

Revenue (Cancel) Increase wrt Retailer Threshold
T D V Onera-

SAA
Onera-
MLE

Onera-EM

High High High 76% (25%) 73% (9%) 90% (28%)
High High Low 23% (89%) 5% (38%) 27% (68%)
High Low High 77% (37%) 125% (4%) 91% (39%)
High Low Low 11%

(125%)
0% (48%) 40%

(117%)
Low High High 21% (1%) 20% (2%) 27% (5%)
Low High Low 2% (16%) -4% (-8%) 6% (8%)
Low Low High 17% (9%) 17% (1%) 27% (20%)
Low Low Low 0% (11%) -2% (-5%) 10% (16%)

FIGURE 3.6: Average outcomes by simulation condition

92 Chapter 3. Joint Estimation and Optimization of Knapsack Threshold Models

Simulation Results
Policy Cancels Revenue Increase
Retail-1-
Threshold

6.19% 54.24% N/A

Onera-SN-
Full

5.27% 58.08% 7.07%

Onera-SN-
NoOpt

5.53% 61.13% 12.69%

Onera-SN-
MLE

4.83% 47.39% -12.64%

Onera-SAA 7.09% 71.42% 31.65%
Onera-MLE 7.25% 75.75% 39.64%
Onera-EM 6.67% 72.29% 33.26%
Onera-Proxy 8.08% 78.52% 44.74%

FIGURE 3.7: Simulation results for JEO and SEO methods on real data

which is set to 8. We compare our Onera policies to a benchmark policy, Retail-1-
Threshold, which sets a constant threshold of 10 to all orders. The target cancel rate
for our models was 5.2%, which is somewhat lower than the cancel rate realized by
this same policy across the weeks evaluated in the simulation, 6.2%. The target can-
cel rate is the realized cancel rate of the benchmark policy prior to the dates evalu-
ated in this experiment. This discrepancy suggests that the real-world circumstances
driving the data generation process may be changing over time.

Results

Figure 3.7 shows, for all policies tested, the mean cancel rates, mean revenues (as a
percent of the maximum possible revenue), and percentage increase in revenue over
the benchmark Retail-1-Threshold policy:

We find that the Full SafetyNet and No-Optimization SafetyNet models strictly
dominates the benchmark policy in this experiment. It is also encouraging to see that
the cancel rate realized by Full SafetyNet is very close to the target cancel rate (5.2%)
and falls in between the target cancel rate and the realized cancel rate of the bench-
mark policy during the evaluation period. This result indicates that Full SafetyNet
may be more robust to underlying changes in order patterns than the benchmark
policy.

3.6.3 Discussion

The combined results from both sets of experiments, using simulated and real retail
data, show that across all policies tested Full SafetyNet is able to closely track its
target cancel rate while also providing a substantial increase in revenues over the
benchmark policy. Revenues increased relative to the benchmark revenue from 4%
to 91% in simulated data experiments and 8% in real data experiments using Full
SafetyNet policies.

3.7. GreedyNet Performance Evaluation 93

The difference between Full SafetyNet (Onera-SN-Full) and the SEO EM method
(Onera-EM), the most similar of the SEO methods, is quite dramatic when we con-
sider the cancel rates realized by these policies. In the simulated data experiments,
Onera-EM exceeds the target cancel rate by at least 5% and by as much as 117%
across the simulation conditions tested. In constrast, the maximum increase in can-
cel rate across all simulation conditions for Onera-SN-Full is 6%, and five of the
other conditions tested had the realized cancel rate differ from the target rate by at
most 3%. To be clear, these are discussions of percentage changes relative to the
benchmark, which is why a 117% increase in cancel rate is possible.

A major difference between the Full SafetyNet and SEO EM models is that Full
SafetyNet is able to adjust the embedded optimization problem based on the data
observed. One specific adjustment Full SafetyNet is capable of making is decreas-
ing the right-hand side value of its Knapsack LP in the event that too many orders
are cancelling. It’s important to know if this feature is the primary driver of the
empirical success of Full SafetyNet or if the parametric model that formulates this
LP is valuable. Note that the same parametric model is used for both Full Safe-
tyNet, Onera-EM, and Onera-MLE. It is the process for estimating the underlying
parameters that varies between these models. No-Optimization SafetyNet shares
the adaptivity of Full SafetyNet but does not incorporate this parametric model. The
improved overall performance of Full SafetyNet over No-Optimization SafetyNet
supports the idea that using parametric models to construct the threshold-setting
optimization problem is a valuable component of the Full SafetyNet model.

3.7 GreedyNet Performance Evaluation

In Section 3.5.4 we describe how both GreedyNet and OptNet architectures can be
used to accurately implement the forward and backward passes required of the
Knapsack LP layer in Full SafetyNet. Now we will compare the performance of
these two architectures for performing the forward pass operation of solving the lin-
ear programming relaxation of the Knapsack Threshold Problem followed by a back-
ward pass operation. We tested both architectures on randomly generated instances
of this linear program at each of a variety of instance sizes. We scale the number of
knapsack categories and the number of threshold options simultaneously, so an in-
stance with size parameter k has both k knapsack categories and k threshold options.
100 randomly generated instances are evaluated for each of size parameters 10, 20,
30, 40, 50, 60, 70, 80, 90, and 100. A comparison of the running times of GreedyNet
and OptNet across these simulated conditions if plotted in Figure 3.8

We observe a dramatic difference between these architectures, with GreedyNet
achieving much faster solve times. This is not surprising as OptNet is able to solve
a wider range of optimization problems, but these results show that there is great
benefit in SafetyNet from using GreedyNet layers. At the largest instance size tested
(100 categories and 100 threshold options), GreedyNet took .82 seconds per iteration

94 Chapter 3. Joint Estimation and Optimization of Knapsack Threshold Models

FIGURE 3.8: Running time comparison (in seconds) of GreedyNet
and SafetyNet across varied instance sizes

FIGURE 3.9: Running time (in seconds) of GreedyNet across varied
instance sizes

on average, compared to an average running time of 172.46 seconds with OptNet.
Even at the smallest instance size of 10 categories and threshold options, GreedyNet
took an average of .008 seconds compared to an average of .019 seconds per iteration
using OptNet. Figure 3.9 plots the running times of GreedyNet only to show that
GreedyNet does slow down as the instance size increases, just at a different scale
than we observe with OptNet.

3.8. Conclusion 95

3.8 Conclusion

In this chapter we introduce SafetyNet models to provide greater sophistication and
more flexible solutions to the problem of efficiently limiting cancellations in ship-
from-store omni-channel retail programs. We demonstrate on both real and simu-
lated data that these methods are able to produce policies that dominate our bench-
mark policies and more closely track pre-specified cancel rate targets than the sepa-
rate estimation and optimization methods introduced in Chapter 2.

We develop GreedyNet during this process as a tool to efficiently implement
our SafetyNet models in a scalable way that would not be possible with pre-existing
methods. For the Knapsack Threshold Problem we observe that GreedyNet provides
a dramatic improvement over OptNet in running time and scalability. An open av-
enue of research is to find other applications for GreedyNet or similar neural net-
work architectures that internally solve combinatorial problems. Some applications
of GreedyNet could use a greedy algorithm as a heuristic for a more complex deci-
sion problem, allowing for complex planning to occur inside of a machine learning
algorithm. Stochastic or online job scheduling may be an area where these tech-
niques could be applied successfully.

Acknowledgments: Prof. R. Ravi and Dr. Srinath Sridhar are co-authors on this
work. The real retail data analyzed in this chapter was graciously provided by Dr.
Sridhar and his company Onera.

97

Chapter 4

Conclusion

Each chapter of this dissertation investigates different ways algorithms and mathe-
matical models can be applied to alleviate some of the operational challenges faced
by omni-channel retail businesses. In Chapter 1 I utilize linear programming sen-
sitivity analysis to optimize fulfillment policies that fill as many orders as possible
while accounting for location-specific shipping costs as well as probabilistic cancella-
tion costs. Chapter 2 further studies the tradeoff between limiting cancelled orders
and maximizing revenue in omni-channel ship-from-store program. I explore the
effect of data truncation on this process and use methods from machine learning to
overcome this challenge. Chapter 3 continues this line of work, introducing a joint
estimation and optimization model that can adaptively track target cancel rates.

My goal in each of these chapters is to present results that are of interest to prac-
titioners in the retail industry as well as researchers at universities. It is my hope
that I have provided constructive insights into the conditions that are favorable for
various fulfillment policies and the useful methods to account for data truncation in
omni-channel fulfillment. It is also my intention for my technical contributions on
differentiable optimization in neural networks to lead to advances in other applica-
tion areas and to communicate meaningful connections from my models of omni-
channel fulfillment to other classical models of Operations Research and Operations
Management.

99

Bibliography

[1] Deepak Agarwal et al. “Personalized click shaping through lagrangian du-
ality for online recommendation”. In: Proceedings of the 35th international ACM
SIGIR conference on Research and development in information retrieval. ACM. 2012,
pp. 485–494.

[2] Alp Akcay, Bahar Biller, and Sridhar Tayur. “Improved inventory targets in
the presence of limited historical demand data”. In: Manufacturing & Service
Operations Management 13.3 (2011), pp. 297–309.

[3] Seeking Alpha. Lowe’s Reports Fourth Quarter Sales And Earnings Results. 2016.
URL: https://seekingalpha.com/pr/16757192-lowes-reports-
fourth-quarter-sales-earnings-results.

[4] Kareem Amin et al. “Budget optimization for sponsored search: Censored
learning in MDPs”. In: arXiv preprint arXiv:1210.4847 (2012).

[5] Brandon Amos and J Zico Kolter. “OptNet: Differentiable Optimization as a
Layer in Neural Networks”. In: arXiv preprint arXiv:1703.00443 (2017).

[6] Ravi Anupindi, Maqbool Dada, and Sachin Gupta. “Estimation of consumer
demand with stock-out based substitution: An application to vending ma-
chine products”. In: Marketing Science 17.4 (1998), pp. 406–423.

[7] Jeffrey D Blanchard and Jared Tanner. “GPU accelerated greedy algorithms
for compressed sensing”. In: Mathematical Programming Computation 5.3 (2013),
pp. 267–304.

[8] J Frédéric Bonnans and Alexander Shapiro. Perturbation analysis of optimization
problems. Springer Science & Business Media, 2013.

[9] Léon Bottou. “Large-scale machine learning with stochastic gradient descent”.
In: Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–186.

[10] Igor V Cadez et al. “Maximum likelihood estimation of mixture densities for
binned and truncated multivariate data”. In: Machine Learning 47.1 (2002), pp. 7–
34.

[11] Kyle Cattani et al. “Boiling frogs: Pricing strategies for a manufacturer adding
a direct channel that competes with the traditional channel”. In: Production and
Operations Management 15.1 (2006), p. 40.

[12] Li Chen and Adam J Mersereau. “Analytics for operational visibility in the
retail store: The cases of censored demand and inventory record inaccuracy”.
In: Retail Supply Chain Management. Springer, 2015, pp. 79–112.

https://seekingalpha.com/pr/16757192-lowes-reports-fourth-quarter-sales-earnings-results
https://seekingalpha.com/pr/16757192-lowes-reports-fourth-quarter-sales-earnings-results

100 BIBLIOGRAPHY

[13] Dan C Ciresan et al. “Flexible, high performance convolutional neural net-
works for image classification”. In:

[14] Kalyanmoy Deb, Karthik Sindhya, and Jussi Hakanen. “Multi-objective opti-
mization”. In: Decision Sciences: Theory and Practice. CRC Press, 2016, pp. 145–
184.

[15] Nicole DeHoratius and Ananth Raman. “Inventory Record Inaccuracy: An
Emprical Analysis”. In: Management Science 54.4 (2008), pp. 627–641.

[16] Arthur P Dempster, Nan M Laird, and Donald B Rubin. “Maximum likelihood
from incomplete data via the EM algorithm”. In: Journal of the royal statistical
society. Series B (methodological) (1977), pp. 1–38.

[17] Kris Johnson Ferreira, Bin Hong Alex Lee, and David Simchi-Levi. “Analytics
for an online retailer: Demand forecasting and price optimization”. In: Manu-
facturing & Service Operations Management 18.1 (2015), pp. 69–88.

[18] Abercrombie Fitch. Abercrombie Fitch’s omnichannel sales grow 7.8 pct in Q1.
2017. URL: https://www.digitalcommerce360.com/2017/05/25/
abercrombie-fitchs-omnichannel-sales-grow-7-8-q1/.

[19] Jérémie Gallien et al. “Initial shipment decisions for new products at Zara”.
In: Operations Research 63.2 (2015), pp. 269–286.

[20] Fei Gao and Xuanming Su. “Omnichannel retail operations with buy-online-
and-pick-up-in-store”. In: Management Science (2016).

[21] Fei Gao and Xuanming Su. “Online and offline information for omnichan-
nel retailing”. In: Manufacturing & Service Operations Management 19.1 (2016),
pp. 84–98.

[22] Andres Garro. “New product demand forecasting and distribution optimiza-
tion: a case study at Zara”. PhD thesis. Massachusetts Institute of Technology,
2011.

[23] Paul Glasserman and Sridhar Tayur. “Sensitivity analysis for base-stock levels
in multiechelon production-inventory systems”. In: Management Science 41.2
(1995), pp. 263–281.

[24] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[25] Dick’s Sporting Goods. DICK’S Sporting Goods Reports Fourth Quarter and Full
Year 2016 Results. 2017. URL: http : / / www . prnewswire . com / news -
releases/dicks- sporting- goods- reports- fourth- quarter-

and-full-year-2016-results-300418947.html.

[26] Stephen Gould et al. “On differentiating parameterized argmin and argmax
problems with application to bi-level optimization”. In: arXiv preprint arXiv:1607.05447
(2016).

https://www.digitalcommerce360.com/2017/05/25/abercrombie-fitchs-omnichannel-sales-grow-7-8-q1/
https://www.digitalcommerce360.com/2017/05/25/abercrombie-fitchs-omnichannel-sales-grow-7-8-q1/
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.prnewswire.com/news-releases/dicks-sporting-goods-reports-fourth-quarter-and-full-year-2016-results-300418947.html
http://www.prnewswire.com/news-releases/dicks-sporting-goods-reports-fourth-quarter-and-full-year-2016-results-300418947.html
http://www.prnewswire.com/news-releases/dicks-sporting-goods-reports-fourth-quarter-and-full-year-2016-results-300418947.html

BIBLIOGRAPHY 101

[27] Aravind Govindarajan, Amitabh Sinha, and Joline Uichanco. “Inventory Op-
timization for Fulfillment Integration in Omnichannel Retailing”. In: (2017).

[28] Rupesh Gupta et al. “Email Volume Optimization at LinkedIn”. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM. 2016, pp. 97–106.

[29] Pavithra Harsha, Shivaram Subramanian, and Joline Uichanco. Omni-channel
revenue management through integrated pricing and fulfillment planning. Tech. rep.
Working Paper, Ross School of Business, University of Michigan, 2016.

[30] Elad Hazan, Kfir Levy, and Shai Shalev-Shwartz. “Beyond Convexity: Stochas-
tic Quasi-Convex Optimization”. In: Advances in Neural Information Processing
Systems 28. Ed. by C. Cortes et al. Curran Associates, Inc., 2015, pp. 1594–1602.
URL: http://papers.nips.cc/paper/5718-beyond-convexity-
stochastic-quasi-convex-optimization.pdf.

[31] Yale T Herer and Ayelet Rashit. “Lateral stock transshipments in a two-location
inventory system with fixed and joint replenishment costs”. In: Naval Research
Logistics (NRL) 46.5 (1999), pp. 525–547.

[32] Yale T Herer, Michal Tzur, and Enver Yücesan. “The multilocation transship-
ment problem”. In: IIE transactions 38.3 (2006), pp. 185–200.

[33] Dorit S Hochbaum. “A nonlinear knapsack problem”. In: Operations Research
Letters 17.3 (1995), pp. 103–110.

[34] Shinji Ito and Ryohei Fujimaki. “Large-Scale Price Optimization via Network
Flow”. In: Advances in Neural Information Processing Systems. 2016, pp. 3855–
3863.

[35] Justin Johnson. Simple examples to introduce PyTorch. https://github.com/
jcjohnson/pytorch-examples.

[36] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer Berlin
Heidelberg, 2013. ISBN: 9783540247777. URL: https://books.google.
com/books?id=wmL2BwAAQBAJ.

[37] Sujin Kim, Raghu Pasupathy, and Shane G Henderson. “A guide to sample av-
erage approximation”. In: Handbook of Simulation Optimization. Springer, 2015,
pp. 207–243.

[38] Sujin Kim, Raghu Pasupathy, and Shane GForbes Magazine Henderson. “In-
formation Acquisition and Exploitation in Multichannel Wireless Network-
sOnline Sales To Boost Revenue For Urban Outfitters”. In: (May 2017).

[39] Diederik Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion”. In: arXiv preprint arXiv:1412.6980 (2014).

[40] Anton J Kleywegt, Alexander Shapiro, and Tito Homem-de Mello. “The sam-
ple average approximation method for stochastic discrete optimization”. In:
SIAM Journal on Optimization 12.2 (2002), pp. 479–502.

http://papers.nips.cc/paper/5718-beyond-convexity-stochastic-quasi-convex-optimization.pdf
http://papers.nips.cc/paper/5718-beyond-convexity-stochastic-quasi-convex-optimization.pdf
https://github.com/jcjohnson/pytorch-examples
https://github.com/jcjohnson/pytorch-examples
https://books.google.com/books?id=wmL2BwAAQBAJ
https://books.google.com/books?id=wmL2BwAAQBAJ

102 BIBLIOGRAPHY

[41] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classifica-
tion with deep convolutional neural networks”. In: Advances in neural informa-
tion processing systems. 2012, pp. 1097–1105.

[42] Retsef Levi, Georgia Perakis, and Joline Uichanco. “The data-driven newsven-
dor problem: new bounds and insights”. In: Operations Research 63.6 (2015),
pp. 1294–1306.

[43] Retsef Levi, Robin O Roundy, and David B Shmoys. “Provably near-optimal
sampling-based policies for stochastic inventory control models”. In: Mathe-
matics of Operations Research 32.4 (2007), pp. 821–839.

[44] Julien Mairal, Francis Bach, and Jean Ponce. “Task-driven dictionary learn-
ing”. In: IEEE transactions on pattern analysis and machine intelligence 34.4 (2012),
pp. 791–804.

[45] Adam J Mersereau. “Demand estimation from censored observations with in-
ventory record inaccuracy”. In: Manufacturing & Service Operations Manage-
ment 17.3 (2015), pp. 335–349.

[46] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Chapman
& Hall/CRC, 2010.

[47] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python”. In: Journal
of Machine Learning Research 12.Oct (2011), pp. 2825–2830.

[48] Nicholas C Petruzzi and Maqbool Dada. “Pricing and the newsvendor prob-
lem: A review with extensions”. In: Operations research 47.2 (1999), pp. 183–
194.

[49] Evan L Porteus. “Stochastic inventory theory”. In: Handbooks in operations re-
search and management science 2 (1990), pp. 605–652.

[50] Forrester Report. Why Every Online Retailer Should Ship-from-Store. 2014.

[51] Total Retail. Top 100 Omnichannel Retailers. 2017. URL: http://www.mytotalretail.
com/resource/top-100-omnichannel-retailers/file/.

[52] David Silver et al. “Mastering the game of Go with deep neural networks and
tree search”. In: Nature 529.7587 (2016), pp. 484–489.

[53] Ilya Sutskever et al. “On the importance of initialization and momentum in
deep learning”. In: International conference on machine learning. 2013, pp. 1139–
1147.

[54] Tijmen Tieleman and Geoffrey Hinton. “Lecture 6.5-rmsprop: Divide the gra-
dient by a running average of its recent magnitude”. In: COURSERA: Neural
networks for machine learning 4.2 (2012), pp. 26–31.

[55] Aad W Van der Vaart. Asymptotic statistics. Vol. 3. Cambridge university press,
2000.

http://www.mytotalretail.com/resource/top-100-omnichannel-retailers/file/
http://www.mytotalretail.com/resource/top-100-omnichannel-retailers/file/

BIBLIOGRAPHY 103

[56] J Wang and W Zhang. “Bid-aware gradient descent for unbiased learning with
censored data in display advertising”. In: ACM Knowledge Discovery and Data
Mining (KDD). Vol. 22. Association for Computing Machinery (ACM). 2016,
pp. 665–674.

[57] Yonghui Wu et al. “Google’s neural machine translation system: Bridging the
gap between human and machine translation”. In: arXiv preprint arXiv:1609.08144
(2016).

	Dissertation Karp.pdf
	DISSERTATION
	Titled
	Presented by
	Accepted by
	Approved by The Dean

	jkarp_Tepper_2017
	Declaration of Authorship
	Abstract
	Acknowledgements
	IPA Methods for Omni-Channel Fulfillment
	Introduction
	Problem Description
	Summary of Contributions

	Related Work
	Omni-Channel Fulfillment Model
	Details
	First Stage
	Threshold Policies

	Second Stage
	Model Variables and Parameters

	Single-Store Model
	Infinitesimal Perturbation Analysis Method
	Overview
	Second Stage Assignment Problem
	Original minimization assignment problem

	First Stage Decision Problem
	IPA Algorithm Overview
	Local Threshold Derivative Estimates
	Global Threshold Derivative Estimates

	Threshold Policy Properties

	Complete Retail Network Results
	Insights from Two-Store Instances
	Inventory Balance
	Magnitude of In-Store Demand
	Impact of Cancel Costs
	Global Thresholds Performance

	Extensions
	Nested Threshold Policies
	Single Store Instances with Unknown Demand Distributions

	Conclusion

	Optimizing Inventory Exposure with Knapsack Threshold Models
	Introduction
	Contributions

	Literature Review
	Problem Formulation
	Threshold Choice Models and Truncation
	Data Sources

	Optimization Models
	Tractability
	Theoretical Tractability
	Empirical Tractability

	Pure Optimization Model: Sample Average Approximation

	Supervised Learning
	Comparison of Cancel Rate Prediction Methods

	Separate Estimation and Optimization
	Maximum Likelihood Estimation
	Clustering and Demand Estimation
	Cancel Rate Estimation Details

	Expectation-Maximization
	Maximization Step
	Expectation Step

	Proxy Maximum Likelihood Estimation

	Dynamic Threshold Policy
	Empirical Results
	Methods
	Results

	Discussion

	Joint Estimation and Optimization of Knapsack Threshold Models
	Introduction
	Contributions

	Background
	Neural Networks

	Related Work
	GreedyNet: Differentiable Greedy Optimization
	Forward and Backward Pass Algorithms
	Forward Pass
	Backward Pass

	Requirements and Correctness of GreedyNet

	SafetyNet: A Neural Network Model for Joint Estimation and Optimization of the Knapsack Threshold Model
	Architecture Overview
	SafetyNet Models
	Full SafetyNet
	No-Optimization SafetyNet
	MLE SafetyNet

	Generative Parameters
	Knapsack LP Layer
	GreedyNet
	OptNet

	Observed and Latent Outcomes
	Training SafetyNet

	Empirical Results
	Simulation Experiments
	Methods
	Results

	Real Data Experiments
	Methods
	Results

	Discussion

	GreedyNet Performance Evaluation
	Conclusion

	Conclusion
	Bibliography

