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Abstract. Under various appropriate hypotheses it is shown that there is
only one determinacy model of the form L(R, µ) in which µ is a supercompact
measure on P!1 (R). In particular, this gives a positive answer to a question
asked by W.H. Woodin in 1983. It is also proven that it is relatively consistent
that there are di↵erent ZF models of the form L(R, µ) in which µ witnesses
that !1 is R-supercompact.
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CHAPTER 1

Introduction

In this thesis we deal with several set theories, most of which include ZF+DC.
Here, ZF is Zermelo-Fraenkel set theory and DC is the Dependent Choice principle.
One such theory is ZFC, which is ZF+AC, where AC is the Axiom of Choice. Other
examples are

ZFC+ there exists a measurable cardinal,

and

ZF+DC+AD .

We start by reviewing the basic notions.

1.1. Large Cardinals and Inner Model Theory

By definition, an uncountable cardinal  is measurable if and only if there is a
non-principal -complete and normal ultrafilter over . In ZFC, this is equivalent
to the existence of a transitive class M and an elementary embedding j : V ! M
with critical point . The proof of this equivalence uses an ultrapower construction
and  Los’ Theorem, which in turn uses AC. The existence of a measurable cardinal
is an example of a large cardinal axiom. Another example is the existence of a
supercompact cardinal. An uncountable cardinal  is S-supercompact if and only
if there is a -complete ultrafilter on P(S) which is fine and normal. We say 
is supercompact if and only if it is S-supercompact for every non-empty set S. In
ZFC, this is equivalent to, for every cardinal �, there exists a transitive classM with
�M ✓ M and an elementary embedding j : V ! M with crit(j) =  and j() > �.
Again we emphasize that AC is used to prove this equivalence. Clearly, in ZFC
if  is supercompact, then  is measurable and the set of measurable cardinals is
unbounded in . This can be used to show that the consistency of the theory

ZFC+There is a measurable cardinal

is a theorem of the theory

ZFC+There is a supercompact cardinal.

In other words, the second theory has greater consistency strength than the first.
It is an empirical fact that large cardinal axioms line up this way.

One of the central motivations of inner model theory is the construction of
canonical inner models of ZFC for di↵erent large cardinal axioms. For example,
the constructible universe, L, is the minimal transitive proper class model of ZFC.
Gödel proved this fact in ZF. For any set S, we construct a transitive proper class
L[S] by setting L0[S] = ; and L↵+1[S] to be the family of subsets of L↵[S] that are
definable over the structure

(L↵[S],2, S \ L↵[S])

1



2 1. INTRODUCTION

and taking unions at limits. If U is a normal measure on P() and

U = U \ L[U ],
then

U 2 L[U ] = L[U ]
and

L[U ] |= ZFC+U is a normal measure on P().

This is a theorem of Solovay; see [1]. Extending this, Kunen (cf. [4]) proved that for
a given models of this form are unique (see Theorem 2). For several decades, inner
model theory has strived to extend such results to more powerful large cardinals.
In spite of great progress, supercompact cardinals remain beyond our reach so far
in the context of ZFC.

1.2. Determinacy

If S is a set, then ADS says that, for every game of length ! in which two
players alternate choosing members of S, one or the other player has a winning
strategy. The instances relevant here are AD!, more commonly called AD or the
Axiom of Determinacy, and ADR. It is an easy well known result that AC implies
AD fails. In other words, ZFC+AD is inconsistent. However, the consistency of
the theory

ZF+DC+AD

is a theorem of the theory

ZFC+ There is a supercompact cardinal.

In fact, combining results of Martin and Steel ([5]) and of Woodin ([28]) one can
prove in ZFC that if there is a supercompact cardinal, then L(R) is a model of AD.
Unfortunately, the reader must distinguish between types of parentheses. Here
L(R) is constructed by setting L0(R) = HC (we identify R with HC), L↵+1(R)
to be the family of sets definable over (L↵(R),2), and taking unions at limits.
Woodin reduced the hypothesis of this result to a large cardinal axiom strictly
between measurability and supercompactness. In fact, he showed that the existence
of a certain countable structure called M]

! su�ces. Woodin also showed that the
consistency of the theory

ZF+DC+ADR
is a theorem of the theory

ZFC+There is a supercompact cardinal.

1.3. Supercompactness measures under ZF+AD

One important and surprising consequence of determinacy is that !1 is a large
cardinal. Solovay proved that, under ZF+AD, the club filter on !1 is a normal
measure and is the unique such measure (see [3]). He also proved that under
ZF+ADR, !1 is R-supercompact as witnessed by the club filter on P!1(R) (see
[12]). We recall that C is a club subset of P!1(R) if there is ⇡ : <!R ! R such that
� 2 C if and only if � is closed under ⇡. We define C as the collection of subsets of
P!1(R) that contain a club.

We start to discuss the theory ZF+AD+ !1 is R-supercompact in further de-
tail. For this we must define another kind of model which is built by a combination
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of two constructions. Suppose µ is a collection of subsets of P!1(R). By L(R, µ),
we mean “throw in R at the bottom” and “use µ as a predicate”. That is, define
L0(R, µ) = HC, L↵+1(R, µ) to be the collection of sets definable over the structure

(L↵(R, µ),2, µ \ L↵(R, µ))
and take unions at limits. Notice that µ might not belong to L(R, µ) but µ\L(R, µ)
does and

L(R, µ) = L(R, µ \ L(R, µ))
We usually think of L(R, µ) as a structure in which the extra symbol µ̇ is interpreted
as µ\L(R, µ). It is immediate from Solovay’s theorem about ZF+ADR and other
well-known facts that assuming ZF+ADR, L(R, C) is a model of the theory

ZF+DC+AD+!1 is R-supercompact

where the R-supercompactness is witnessed by µ̇L(R,C) = C\L(R, C). It is natural to
ask whether under ZFC one can also build canonical models of this theory. Towards
this we have the following, which is proved in Chapter 3.

Theorem 1 (Rodŕıguez, Trang). Assume ZFC and suppose M]
!2 exists. Let C

be the club filter on P!1(R). Then L(R, C) models

ZF+DC+AD+ C \ L(R, C) is an R-supercompactness measure.

Moreover, if µ ⇢ P(P!1(R)) is such that

L(R, µ) |= AD + µ̇ is a R-supercompactness measure,

then L(R, C) = L(R, µ).

The meaning of M]
!2 and the sense in which it is iterable will be discussed in

Chapter 2. The large cardinal hypothesis that M]
!2 exists is slightly stronger than

the consistency strength of the theory ZF+DC+AD+ !1 is R-supercompact. In
this context, the existence of M]

!2 is nearly optimal because the theories

ZF+AD + !1 is R-supercompact

and
ZFC+ there are !2-many Woodin cardinals

are equiconsistent (e.g. see [25]).
Recall Kunen’s result on the uniqueness of minimal models with a measurable

cardinal.

Theorem 2 (Kunen). Assume ZFC. Suppose that for i < 2,

L[Ui] |= ZFC+ Ui is a normal measure on .

Then L[U0] = L[U1] and U0 \ L[U0] = U1 \ L[U1].

Motivated by Theorem 2, Woodin asked the following analogous question in
[27].

Question 3 (Woodin, 1983). Assume ZF+DCR +AD. Suppose that for i < 2,

L(R, µi) |= ZF+DC+AD+ µ̇ is an R-supercompactness measure.

Is is true that L(R, µ0) = L(R, µ1)?

In Chapter 4 we give a proof for the following theorem
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Theorem 4 (Rodŕıguez, Trang). The answer to Question 3 is yes. Moreover,
if V = L(P(R)), then the unique such model is L(R, C) where C is the club filter on
P!1(R).

Building on Theorems 1 and 4 and their proofs, we show in Chapter 5 how can
gets rid of the hypothesis that M]

!2 exists. To obtain the following optimal result.

Theorem 5 (Rodŕıguez). Assume ZFC. Then there is at most one model of the
form L(R, µ) that satisfies AD+ µ̇ is an-R-supercompactness measure.

We also note that in the absence of M]
!2 it is relatively consistent that the

unique model of the theory AD+ !1 is R-supercompact is not L(R, C), we show
this in Chapter 6. Finally, also in Chapter 6, we show that if we drop the hypothesis
that L(R, µ) satisfies AD in Theorem 5, then the conclusions can fail.

Theorem 6 (Rodŕıguez). Assume ZFC and there exists a measurable cardinal of
Mitchell order two. Then there is a proper class model of ZFC in which there are
subsets µ and ⌫ of P(P!1(R)) such that L(R, µ) and L(R, ⌫) are models of

ZF+ µ̇ is R-supercompactness measure,

and there is A 2 L(R) such that A 2 ⌫ \ µ.



CHAPTER 2

Preliminaries

We give a summary of theorems and results we use throughout this paper.
Unless we say otherwise, our base theory will be ZF+DCR. We start by reviewing
the general theory of AD and AD+ models and then move into mice and genericity
iterations and lastly we discuss some general theory of the models L(R, µ) satisfying
AD+ !1 is R-supercompact.

2.1. The theory of AD and AD+

Recall that AD, the axiom of determinacy proposed myMycielski and Steinhaus
in [7], is the statement that every game with payo↵ contained in !! is determined.
Under AD there is a complete analysis of the descriptive set theory and fine struc-
ture of L(R) by recursion along its Wadge hierarchy. In other models determinacy
alone does not yield such a detailed structural analysis. Woodin introduced AD+

to make up for the di↵erence. Good sources that cover this material are [3] and
Chapter 9 of [29]. All theorems and definitions of this section are due to others
and can be found in [29] unless otherwise mentioned. Before defining AD+ the
following notion get us started.

Definition 7. Let A ✓ R. We say A is 1-Borel if there is a formula �(x, y) and a
set S ⇢ ON such that

x 2 A if and only if L[S, x] |= �(x, S).

Let us recall that ⇥ is the least ordinal that is not a surjective image of a
function with domain R. In other words,

⇥ = {↵ 2 ON | there is f : R ! ↵ surjective }.

Definition 8. AD+ is the conjunction of the following two sentences:

(1) Every set of reals is 1-Borel.
(2) Let � < ⇥ and ⇡ : �! ! R be a continuous function; then ⇡�1[A] is

determined for every A ✓ R.

The ordinal ⇥ has the following approximations. For A ✓ R, we define

✓(A) = {↵ | there is a surjection f : R ! ↵ with f 2 ODA}

The Solovay sequence is defined as follows.

Definition 9. Assume AD+. Define a sequence of ordinals  ⇥ as follows.

• ✓0 = ✓(;).
• If � is a limit ordinal, then ✓� = sup{✓↵ |↵ < �}.
• ✓↵+1 = ✓(A) for A any set of Wadge rank ✓↵.

5
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In L(R), the minimal model of AD+ every set is ordinal definable from a real,
hence ⇥ = ✓0. Adding conditions on the length of the Solovay sequence yields a
hierarchy of strengthenings of AD+. For example, AD+ +⇥ = ✓! implies ADR.
Another example is AD+ +⇥ = ✓!1 , which implies DC+ ADR.

The following ordinal is also an approximation to ⇥ but in a di↵erent sense.

Definition 10. �21 is the least ordinal that is not the rank of a �2
1 pre-wellorder

on R, in other words

�21 = {↵ 2 ON | there exists a �

2
1 pre-wellorder on R of rank ↵}

In L(R), �21 is the least ordinal ↵ such that L↵(R) �1 L(R). For this reason we
call �21 the least stable ordinal. This is closely related to the fact, that under AD,

⌃L(R)
1 is the largest scaled point-class of L(R) and, for every bounded formula, �, if

L(R) |= 9A ⇢ R �(A),

then L(R) has a Suslin co-Suslin witness for �. Recall that AD+ was introduced to
generalize theorems of AD+V = L(R). Here is an example.

Theorem 11. Assume AD+ and V = L(P(R)). Suppose that � is a bounded
formula such that �(A) holds for some A ✓ R. Then there is a Suslin co-Suslin
witness A for �.

It is an open problem whether AD implies AD+. However, models of deter-
minacy often come in the form of derived models, which we will define after the
following theorem. Such models are known to satisfy AD+.

Theorem 12 (The Derived Model Theorem). Suppose that � is a limit of
Woodin cardinals. Let G ⇢ col(!, < �) be V -generic and R⇤

G =
S
{RV [G�↵] |↵ < �}.

For A ✓ R⇤
G, let A 2 �G if and only if

A 2 V (R⇤
G) and L(R⇤

G, A) |= AD+ .

Then L(RG,�G) |= AD+.

We refer to L(RG,�G) as the derived model given by the generic G. Note
that the theory of the derived model does not depend on G, as the forcing is
homogeneous.

Here are three important theorems that relate AD, AD+ and ADR

Theorem 13. Assume AD and let � = {A ✓ R |L(R, A) |= AD+}. Then
L(R,�) |= AD+. Moreover, if � 6= P(R), then L(R,�) |= ZF+DC+ADR .

Theorem 14. Assume AD and V = L(P(R)). Suppose A ✓ R and L(R, A) 6= V .
Then A] exists.

Theorem 15. Assume AD+ and V = L(P(R)). Suppose that !1 is R-supercompact.
Then ADR holds.

Theorems 13 and 14 can be used to see that AD+¬AD+ implies the consistency
of ZF+ DC+ ADR. It is not known whether AD implies AD+. The models we
care most about in this thesis have the form L(R, µ). This models are not of the
form L(P(R)) and it turns out that ADR fails in these models.
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2.2. Mice, genericity iterations and K

We will assume that the reader has familiarity with the basic concepts of ex-
tender models and mice. Sources for this subject are [21] and [6]. However, for the
non-expert we will summarize the key parts of the theory of mice we will be using.

We start by recalling that a premouse M is a fine structural model of the
form (JE

↵ ,2,E � ↵, E↵), where E is a fine extender sequence. Let us fix some
notation: suppose M is as above and � < ↵, we write M|� for the structure
(JE��

� ,2,E � �, E�). Suppose that M and N are two pre-mice we say that M
is an initial segment of N and write M E N , if there is �  ON\N such that
M = N|�.

If M is a k-sound mouse, we say that M is (k,�, �) or (k,�)-iterable if player II
has a winning strategy for the iteration games Gk(M,�, �) or Gk(M,�) respectively,
see sections 3 and 4 of [21] for a precise definition. A mouse is a k-sound pre-mouse
that is either (k,!1+1)-iterable . Whenever k = ! we will abuse notation and write
!1 + 1-iterable for (!,!1 + 1) etc. M]

!2 is the mouse we will be most interested in
this work. We warm up for its presentation with the following definition.

Definition 16. A pre-mouse is called !2-small if whenever  is the critical point
of an extender in the sequence of M, then

M| 2 “There are !2 many Woodin cardinals”.

Definition 17. M]
!2 is the unique sound, (!,!1,!1+1)-iterable mouse that is not

!2-small, but all of whose initial segments are !2-small.

Notice that ⇢1(M]
!2) = ! and p1(M]

!2) = ;, hence M]
!2 is countable. We will

see in Chapter 3 that M]
!2 is related to L(R, C) very much like M]

! is related to
L(R). Recall the Solovay sequence defined in section 2.1. Its length not only entails
stronger versions of determinacy but also the existence of mice with certain large
cardinal structure. A fact we will repeatedly use is that under AD+ if ⇥ > ✓0, then
there is a non-tame mouse, which we introduce now.

Definition 18. Let M be a pre-mouse. We say M is tame if for any � such that
M |= “� is Woodin” and for any E� in the sequence of M with crit(E�) < �, then
� < �.

Note that a non-tame mouse is a mouse that has a cardinal that is strong past
a Woodin cardinal. Also, if a non-tame mouse exists, it is easy to see that M]

!2

exists.

Theorem 19 (Woodin, see [19]). Assume AD+ + ⇥ > ✓0, then there is an
(!1 + 1)-iterable non-tame mouse.

One important application of mice is that they help when analyzing certain
determinacy models. For example, one of the key ingredients for the analysis of
HODL(R) is that one can iterate M]

! to make any given real generic. We will also
use this technique in this work.

Theorem 20 (Genericity Iterations). Let ⌃ be an (!1 + 1)-iteration strategy
for a countable mouse M and � be an ordinal in M such that

M |= � is a Woodin cardinal.

Then there is a Boolean algebra BM
� 2 M such that BM

� ⇢ V M
� and M |= B� is �-

c.c. Moreover, for every x 2 R, there is a countable iteration tree T such that
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• T is a play according to ⌃,
• T has a final model, say MT

� ,
• T is nowhere dropping and

• there is an MT
� -generic filter G for BMT

�

iT0,�(�)
= iT0,�

�
BM
�

�
such that

MT
� [G] = MT

� [x]

The Boolean algebra BM
� is called the extender algebra of M at �. We will use

genericity iterations and M]
!2 to compute the theory of L(R, C) in Chapter 3.

Now we discuss some basic core model theory. See [16] and [2] for a detailed
treatment or [9] for a basic exposition. Roughly speaking the core model K (if
it exists) is the maximal canonical inner model of ZFC. If 0] does not exist then
L = K. Historically the definition of K has been given progressively with weaker
anti-large cardinal hypotheses. Near the state of the art, Jensen and Steel defined
K assuming “there is no proper class model with a Woodin cardinal”. See their
paper [2], their definition builds on much work by them and others as is explained
in the introduction to [2]. We will use the phrase “K exists” to refer to any of
the settings in which K can be defined and its theory works. Let us list the key
properties that we will use the properties that we will use in this thesis.

First K is an extender model. Second K is absolute to generic extension. In
other words, if G is set-generic for V , then K = KV [G]. Third, the core model is
inductively definable. In particular, K \ HC is definable over L!1(R). Fourth, the
core model is maximal in the general sense that if V has certain large cardinals,
then so has K (we are intentionally vague here, we will be precise when we apply
this concept). Finally, although K is not absolute between inner models of ZFC we
do have KK = K. This will be of particular importance in Chapter 6.

2.3. The theory of L(R, µ)

In the present section we summarize the known theory of models of the form
L(R, µ) satisfying AD+!1 is R-supercompact. All the results of this section can
be found in [25] and [29]. First, let us recall that, by a theorem of Woodin, the
consistency strength of AD+!1 is R-supercompact is exactly the strength of

ZFC+ there are !2 Woodin cardinals.

There is more than an equiconsistency in that there are ways of translating models
from these two theories that we describe next.

First, let M be a model of ZFC with !2-many Woodin cardinals. Let �M↵ be
the ↵-th Woodin cardinal of M . Also, let

�M� = sup{�M↵ |↵ 2 �}.

Suppose that G is an M -generic filter for col(!, < �M!2). Let �i =
[

↵<!i

RM [G�↵] and

R⇤ =
[

↵<!2

RM [G�↵]. In M [G], define the tail filter, F , on P!1(R⇤) as follows: for

A ✓ P!1(R⇤)

A 2 F if and only if 9n 2 ! 8m � n (�m 2 A).

by [25] L(R⇤,F) |= AD+ + !1 is R-supercompact. The ideas behind the proof are
similar to the ideas used to prove the the derived model theorem, Theorem 12.
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In fact, we will refer to L(R⇤,F) as the derived model associated to M and G,
although technically this is incorrect.

Towards the other direction of the equi-consistency , let L(R, µ) be a model of
AD in which !1 is R-supercompact as witnessed by µ. Then, in a forcing extension
of L(R, µ) there exists a proper class inner model M of ZFC with !2-many Woodin
cardinals. Moreover, there is G an M -generic filter for col(!, < �M!2), such that the
derived model associated to M and G is precisely L(R, µ). This implies that any
L(R, µ) model of AD+!1 is R-supercompact is actually a model of AD+. We will
use this fact repeatedly in this paper without explicitly mentioning it.

We discuss now the internal structure of L(R, µ). The following approximation
to Theorem 5 was proved by Woodin

Theorem 21. Suppose L(R, µ) is a model of AD+ µ is an R-supercompactness
measure. Then

L(R, µ) |= “µ is the unique R-supercompactness measure”

Suppose that L(R, µ) is a model of AD + !1 is R-supercompact. Theorem 21
easily implies that µ is definable in L(R, µ), and hence

L(R, µ) |= ⇥ = ✓0

Combining this with Theorem 15 we have that.

Lemma 22. Suppose that L(R, µ) |= AD+ !1 is R-supercompact, Then

L(R, µ) |= “µ is not the club filter.”

Proof. Let us work in L(R, µ) and for contradiction suppose that in L(R, µ) µ
is the club filter. Then L(P(R)) = L(R, µ), hence by Theorem 15 L(R, µ) |= ADR.
This contradicts the fact that L(R, µ) |= ⇥ = ✓0. ⇤

Although µ cannot be seen internally by L(R, µ) to be the club filter, the
following theorem due to Woodin implies that these two filters agree up to �21 .

Theorem 23. Assume L(R, µ) is a model of AD+ µ̇ is an R-supercompactness
measure, then

• L�2
1
(R, µ) �1 L(R, µ)

• L(R, µ) |= “if A 2 µ \ L�2
1
(R, µ), then A contains a club”

Suppose that L(R, µ) is a model of AD+ µ̇ is an R-supercompactness measure.
Recall that HODL(R,µ)(R) is the smallest proper class containing HODL(R,µ) and
R. Note that µ is definable, as it is the unique R-supercompactness measure in
L(R, µ). Moreover, by the proof of Theorem 3.1 in [25], µ 2 HODL(R,µ)(R). This
implies the following key lemma.

Lemma 24. Suppose L(R, µ) is a model of AD+ µ̇ is an R-supercompactness
measure, then

HODL(R,µ)(R) = L(R, µ).





CHAPTER 3

Uniqueness under ZFC + M]
!2 exists

In this chapter, we proof Theorem 1. But first we prove the following proposi-
tion, which is weaker than Theorem 1. It has an extra hypothesis, namely that µ
concentrates on stationary sets.

Proposition 25. Assume ZFC and suppose that M]
!2 exists. Then:

(1) L(R, C) |= AD + µ̇ is an R-supercompactness measure.
(2) If µ ⇢ P(P!1(R)) is such that for every A 2 µ, A is stationary, and

L(R, µ) |= AD + µ̇ is a R-supercompactness measure,

then L(R, C) = L(R, µ).

Proposition 25 is proved in section 3.1. To read Section 3.1 the reader should be
familiar with the technique of iterating mice to make reals generic as summarized
in Chapter 2.

In Section 3.2, we prove Theorem 1. For this, we use the HOD analysis of
the models L(R, µ) that satisfied AD+ !1 is R-supercompact, to show that on a
Turing cone of reals x,

HODL(R,C)
x = HODL(R,µ)

x .

See [17] for the HOD analysis in L(R); other good sources on this subject are
[23] and [25]. We recall here that the meaning of ordinal definability in L(R, µ) is
di↵erent from the usual notion in that the language for the definitions includes the
predicate µ̇ which is interpreted as µ \ L(R, µ).

3.1. The ZFC case under the stationarity assumption

In this section, we prove Proposition 25. Assume its hypotheses. Recall that
M]

!2 is the unique, active, sound mouse projecting to !, with !2-many Woodin
cardinals all whose initial segments are !2-small. See Chapter 2 for its definition.
Part of what it means to be a mouse is that M]

!2 has an (!,!1,!1 + 1)-iteration
strategy, which happens to be unique; we call it ⌃. We now make an additional
assumption about ⌃ that we will eliminate when we finish the proof of Proposition
25 at the end of this section. Let  = (2c)+. Assume that ⌃ is coded by a -
universally Baire set of reals. In other words, there are trees T and U such that:

• p[T ] codes ⌃ and p[U ] = R \ p[T ].
• If P 2 V, then V P satisfies that p[T ] codes an (!,!1,!1 + 1)-iteration
strategy on M]

!2 and p[U ] = R \ p[T ].
Fix such trees T and U . We will abuse notation by using ⌃ to refer to the strategy
coded by p[T ] in any small generic extension of V . If P is a countable ⌃-iterate of
M]

!2 , then ⌃ can also be considered an (!,!1,!1 + 1)-iteration strategy on P . If

11
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Q is a ⌃-iterate of such a P and there is no dropping in model on the branch from

P to Q, then we write P
⌃! Q.

Recall the construction at the beginning of Section 2.3. Eventually, we will find
a ⌃-iterate, M and an M -generic filter G on col(!, < �M!2) such that the associated
R⇤ is R and the corresponding tail filter contains the club filter, C. Towards this,
the following gets us started.

Lemma 26. Suppose that � is a cardinal such that � � 2c
+

. Let X0 and X1 be
countable elementary substructures of H� such that R \ X0 2 X1 and T, U 2 X0.

Then there is an iteration tree T on M]
!2 of successor length ⇣ + 1 such that

T � ↵ 2 X0 for all ↵ < ⇣ and T 2 X1, and there exists G 2 X1 such that G is

MT
⇣ -generic on col(!, < �

MT
⇣

! ) and the associated set of symmetric reals is R\X0.

Proof. Given the assumptions above note that R \ X0 2 X1, so there is
hxi | i 2 !i an enumeration of R \ X0 in X1. By Theorem 20 there is T0, an
iteration tree on M]

!2 according to ⌃, with last model P0, such that i : M]
!2 ! P0

exists and x0 is generic for BP0
�0
, the extender algebra at �P0

0 . Note M]
!2 2 X0 and

has a unique strategy, hence T0 belongs to X0 and is countable there. We continue
iterating P0 ! P1 in the interval (�0, �1), say via T1, to make the next real x1,
generic for the extender algebra at �P1

1 . Note that in this case both x0 and x1 are
set generic over P1 for posets in V P1

�
P1
!

. Continuing in this fashion we get ⌃-iteration

trees Tn with branch embeddings Pn�1 ! Pn such that xn is Pn-generic for the
extender algebra at �Pn

n . Also every xi for i < n is set generic over Pn.
In X1, define T to be the concatenation of the Tn. Now T has a unique cofinal

branch b. Let P = MT
b .

Claim: There is a P -generic filter G for col(!, < �P! ) in X1 such that the associated
set of symmetric reals is R \X0.

Proof of Claim. Let � = R\X0 and � = �P! . By construction the following
hold:

(1) For every x 2 � there is a poset P 2 V P
� such that x is P -generic for P.

(2) � = sup{!P [x]
1 |x 2 �}.

(3) P |= “� is a strong limit cardinal”.

Define a poset T in P (�) as follows.

• g is a condition in T if there is ↵ < � and x 2 � such that g is P -generic
for col(!, < ↵) and g 2 P [x].

• g0 T g1 if g0 ◆ g1.

Suppose that H is P (�)-generic for T and let H =
S

G. We claim that G is as
wanted. We left to the reader to check that H is indeed P -generic for col(!, < �).
Moreover note that by construction

[

↵<�

RP [H�↵] ✓ �

Finally, if x 2 � let Dx = {g 2 T |x 2 P [g]}. We show that Dx is dense in T. For
this let g 2 T, so there is y 2 � such that g 2 P [y] and g is P -generic for some

small collapse. By (1) there are ↵ < � and P 2 V
P [y]
↵ such that x is P [y]-generic

for P. Also as � is a strong limit in P , by (2), there is z 2 � such that V
P [y]
↵+1 is

countable in P [z]. We may assume also without loss that x and y are in P [z]. So,
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there is g̃ ⇢ col(!, < ↵) in P [z] extending g such that x 2 P [g̃] and g̃ is P -generic.
Hence Dx is dense, and so

[

↵<�

RP [H�↵] = �

as wanted. ⇤

⇤

Note that in the proof of the Lemma 26 we used the interval (�M0 ,�M! ), where
M = M]

!2 but we could have used any ⌃-iterate M of M]
!2 with M 2 X0 and any

interval (�M!i,�
M
!(i+1)) to obtain the same result.

Lemma 27. In V col(!,2c), there is a ⌃ -iterate P of M]
!2 and a P -generic filter G

for col(!, < �P!2) such that if F is the associated tail filter, then CV is contained in
F .

Proof. In the statement of the lemma, we are writing CV for the club filter on
P!1(R) as computed in V . In V col(!,(2c)), we let hXi|i 2 !i be a chain of countable

elementary substructures of HV
+ such that

[

i2!

Xi ◆ P(R)V and if �i = Xi\R, then

�i 2 Xi+1 and �i is countable in V . We may assume that M]
!2 , T and U are in X0.

We construct an iteration of the formM]
!2 ! P0 ! P1 ! · · · ! Pi ! Pi+1 · · · ! P

by recursion using Lemma 26 so that the iteration Pi�1 ! Pi is done in the interval
(�!(i�1),�!i) and makes �i�1 the set of symmetric reals associated to a Pi-generic

on col(!, < �Pi

!i). Let P be the direct limit of the Pi, by a similar argument given
in the claim of Lemma 26, there is a P -generic filter G for col(!, < �P!2) such that

�i =
[

↵<!i

RP [G�↵]. Note that the set of symmetric reals associated to G and P

is RV . Let F be the corresponding tail filter. Consider any A 2 CV . Let ⇡ 2 V
be such that ⇡ : R<! ! R and its closure points belong to A. Then there is an
n 2 ! such that ⇡ 2 Xn. So for all m � n, ⇡ 2 Xm and �m is closed under ⇡, thus
A 2 F . ⇤

The two key facts in the proof of Lemma 27 are that if A is an element of CV ,
then there is an i 2 ! such that A 2 Xi, and that every Xi is closed under ⌃. This
motivates the following definition.

Definition 28. Suppose N is a set model of some set theory, such that P(R)N is
countable. Then we say hXi | i 2 !i is a good resolution of N if for all i 2 !, we

have Xi � N and R \Xi 2 Xi+1, and
[

i2!

Xi � P(R)N .

Note that in the proof of Lemma 27 instead of H(2c)+ we could have used any

N that is a model of enough set theory and P(R)N is countable in V col(!,2c). We
give an example of such a situation in the following lemma.

Lemma 29. Suppose that A is stationary in P!1(R). Then it is forced by col(!, 2c)
that there exist a ⌃-iterate P of M]

!2 , and P -generic filter G for col(!, < �P ) such
that A belongs to the tail filter associated to G and P .
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Proof. By homogeneity it is enough to find a generic filter for col(!, 2c) with
the desired property. Consider PA, the forcing poset whose conditions are countable,
closed, increasing sequences from A. In other, words p = h�↵ |↵ < �i is a condition
in PA if

• for all ↵ < �, we have that �↵ belongs to A,
• for every ↵ and ↵0 in � if ↵ < ↵0 then �↵ ✓ �↵0 , and

• if ↵ < � is a limit ordinal, then �↵ =
[

i2↵

�i.

We say p  q if p end-extends q. It is easy to see that this poset shoots a
club through A. Also, the usual argument will show that this forcing is (!1,1)-
distributive, so in particular it does not add any new reals. Let h be V -generic for
PA. Then RV [h] = R and, as the forcing has size continuum, we have that 2c is the
same ordinal in V and V [h]. Applying Lemma 27 in V [h], if G0 is V [h]-generic for
col(!, 2c), then in V [h][G0] the conclusion of the lemma holds as A 2 CV [h]. Finally,
note that there is a V -generic filter G for col(!, 2c) such that V [G] = V [h][G0]. ⇤

Suppose that in V col(!,2c) there are two ⌃-iterates P and Q of M]
!2 and generic

filters G and H for col(!, < �P!2) and col(!, < �Q!2) respectively such that the set of
symmetric reals of P [G] and Q[H] is precisely RV . Let E and F be the tail filters
associated to P , G and Q, H respectively. We will show that if this is the case then
L(R, E) = L(R,F).

Lemma 30. In V col(!,2c), let N1 and N2 be transitive sets containing T and U that
model a reasonable amount of ZFC such that RN

i = RV for i = 1, 2. Let hX1
i |i 2 !i

and hX2
i |i 2 !i be good resolutions of N1 and N2 respectively and F1 and F2 be

the the associated tail filters. Then L(R,F1) = L(R,F2).

In practice N1 would be HV
+ and N2 would be H

V [h]
+ V -generic for some filter

h which is V -generic for small forcing.

Proof. Let �1
j = X1

j \R and similarly �2
j = X2

j \R. Iterate M]
!2 inductively

as follows. Let �0 = �1
0 and let M]

!2 ! P0 be the iteration to make �0 generic on
the first !-many Woodins. Note that �0 can be coded as a single real, so there is
i1 such that �0 2 X2

i1
and thus the iteration M ]

! ! P0 is actually in X2
i1
. Define

�1 = �2
i1

and iterate P0 ! P1 on the second !-many Woodins to make �1 generic.
There is i2 such that �1 2 X1

i2
. Let �2 = �1

i2
and continue the iteration in this

fashion. We get an iteration M]
!2 ! P0 ! P1 · · · ! Pi ! Pi+1 ! · · · ! P and

a P -generic filter G for col(!, < �P!2) such that �i =
[

↵<!i

RP [G�↵]. Let F be the

associated tail filter. Note also that for any i 2 ! there are j > i and k > i, and
natural numbers m and n such that �1

j = �m and �2
k = �n.

Claim: L(R,F1) = L(R,F) = L(R,F2).

Proof of the Claim. We have that F1 is an ultrafilter relative to sets in
L(R,F1), and similarly F is an ultrafilter in L(R,F). Now by an induction on
↵ 2 ON, we see that L↵(R,F1) = L↵(R,F) and F \ L↵(R,F1) = F \ L↵(R,F) ,
which would give the desired claim. Limit stages are clear. Now if the induction
hypotheses hold at ↵, it is clear that L↵+1(R,F1) = L↵+1(R,F). Given A ✓
P!1(R), a set in L↵+1(R,F1) \ F1, we have that either A or its complement is in
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F . But A contains a tail of the �1
i , hence by construction its complement cannot

contain a tail of �i, which means A 2 F . The other direction is similar, so the
induction hypotheses hold at ↵+ 1. ⇤

Clearly the claim completes the proof of the Lemma 30. ⇤

For simplicity we will refer to the unique model in V col(!,2c) coming from con-
structions a la Lemma 27 as L(R,F). Note that by the homogeneity of the collapse,
L(R,F) is definable from T and U in V , as is F \V . We refer to F \V as F when
there is no ambiguity.

Lemma 31. Let L(R, µ) |= AD+ µ̇ is a R-supercompactness measure, and suppose
that µ contains only stationary sets. Then L(R, µ) = L(R,F).

Proof. First we will show again inductively that L↵(R,F) = L↵(R, µ) and
F \ L↵(R,F) = µ \ L↵(R,F). As in the proof of the claim in the last theorem,
we only need to take care of the successor steps. Now given A 2 F \ L↵+1(R,F),
by induction either A or its complement is in µ. For contradiction suppose A /2 µ.
Then Ac 2 µ, so Ac is stationary, applying Lemmas 29 and 30 giving Ac 2 F , which
is a contradiction. ⇤

Lemma 32. C \ L(R,F) = F \ L(R,F).

Proof. Otherwise by Lemma 27, there is A 2 F \ L(R,F) that does not
contain a club, which means that Ac is stationary so by Lemma 29 and 30 we have
Ac 2 F , which gives a contradiction. ⇤

To summarize we have seen that L(R, C) is the unique model of AD + !1

is R-supercompact under the hypotheses of Proposition 25 and the additional as-
sumption that ⌃ is (2c)+-universally Baire. Our final step is to eliminate this extra
assumption.

Assume that M]
!2 exists and ⌃ is an (!,!1,!1 + 1)-iteration strategy but

not necessarily universally Baire. Suppose that µ is as in the statement of the
proposition. Let � be such that V� reflects enough set theory, and let N � V� be
countable such that ⌃ and µ are in N . Let H be the transitive collapse of N and
⇡ : H ! N be the uncollapsing map. Define µ̄ = ⇡�1(µ) and ⌃ = ⇡�1(⌃).

Let us review how the universal Baireness of ⌃ was used in the proofs of the
earlier lemmas. The key points are that ⌃ canonically extends to a strategy in
V col(!,2c) and P(R)V is countable in V col(!,2c). The relationship between H and V

is similar enough to the relationship between V and V col(!,2c) to obtain the following
in V without assuming ⌃ universally Baire. There is a countable iterate P of M]

!2

and a P -generic filter K for col(!, < �P!2) such that RH is the set of symmetric reals
of P [K]. Moreover, if F is the associated tail filter, then F \H belongs to H and
in H, L(RH ,F) = L(RH , µ) = L(RH , CH), and the three filters are the same on the
common model. By elementarity and the choice of �, L(R, µ) = L(R, C) and the
two filters agree on the common model. This completes the proof of Proposition 25.

3.2. The general ZFC case

Assume M]
!2 exists. In the last section we saw that if µ consists only of

stationary sets and L(R, µ) is a model of AD + !1 is R-supercompact, then µ \
L(R, µ) = C \ L(R, µ). Let us give an example that illustrates there is more to do.
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Let SV be the collection of stationary subsets of P!1(R) in V . By Proposition 25
we have that L(R,SV ) is a model of AD + !1 is R-supercompact. Let A ⇢ P!1(R)
be a stationary set whose complement is also stationary and let h be a V -generic
filter for the poset that shoots a club through Ac (as in the proof of Theorem 29).
Applying Proposition 25 in V [h], L(R,SV [h]) is the unique model of AD + !1 is
R-supercompact. We would like to conclude that L(R,SV ) = L(R,SV [h]) but it
does not follow from Proposition 25 applied in V [h] because A 2 SV but A is
nonstationary.

Notice that the proof given in the last section relies heavily on the fact that if
A 2 µ, then one can shoot a club through A without adding reals. Without this
available to us we need a di↵erent idea. We use Woodin’s Analysis of HOD in order
to prove Theorem 1. The HOD Analysis for structures of the form L(R, µ) was done
in [25], however we will use a variant closer to the exposition of [17]. We start by
doing the analysis for L(R, C) and then generalize to L(R, µ). We first give some
useful definitions and lemmas. We will work, as in the last section, with M]

!2 and
its strategy ⌃, as well as with trees T and U that witness that ⌃ is (2c)+-universally
Baire. Ultimately, the universally Baire assumption on ⌃ will be eliminated using
the same ideas from last section.

3.2.1. P(R) in Models of AD+ !1 is R -supercompact

We start by analyzing P(R) in “minimal” AD models of !1 is R-supercompact.
the following terminology will get us started.

Definition 33. Given µ, a subset of P(P!1(R)), we use the following notation:

• Pµ(R) = P(R)L(R,µ)

• �21(µ) = �21
L(R,µ)

• ⇥(µ) = ⇥L(R,µ)

The following lemma says that the power sets of the reals of such models line
up with that of L(R, C).

Lemma 34. Suppose that µ ⇢ P(P!1(R)) is such that L(R, µ) |= AD+ !1 is R
-supercompact. Then either Pµ(R) ✓ PC(R) or PC(R) ✓ Pµ(R).

Proof. Suppose neither Pµ(R) ✓ PC(R) nor PC(R) ✓ Pµ(R). Let � =
PC(R) \ Pµ(R). By Theorem 3.7.1 of [26] L(R,�) |= ADR. Hence by a theorem
of Solovay mentioned in the introduction, if ⌫ is the club filter defined in L(R,�),
then L(R, ⌫) |= AD+ !1 is R-supercompact. Moreover, we have that ⌫ is a subset
of C, so by an induction in the constructive hierarchy (like the one in the proof of
Lemma 30) we have L(R, ⌫) = L(R, C), which readily gives a contradiction. ⇤

We will need the notion of the envelope of a point-class. For a complete expo-
sition of this subject the reader may consult Chapter 3 of [26]. We will mostly be

interested in envelopes of point-classes of the form ⌃Lp(R)|�
1 where Lp is the lower

part operator (see Chapter 3 of [10]). We recall the definitions below.

Definition 35. For a set X we have the following.

• Given a mouse M on X we say that M is countably iterable if for any M̄
countable and elementary embeddable into M, we have that M̄ is !1 +1
iterable.
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• Lp(X) is the union of all countably iterable and soundX-mice that project
to X.

Definition 36. Suppose that � is an admissible ordinal of Lp(R). Let � = ⌃Lp(R)|�
1 .

For A ✓ R
• We say A 2 OD<� if there is ↵ < � such that A is ODLp(R)|↵.
• We say A 2 Env(�) if for every � 2 P!1(R) there is A0 2 OD<� such that
A \ � = A0 \ �.

We also note that the definition of the envelope can be relativized to any real

x. Recall that Env(�), the boldface envelope, is
[

x2R
Env(�(x)) . The notion of

the envelope is particularly useful when analyzing the ⌃1-gaps and the pattern of
scales in the structure Lp(R) (see [14], [20] and [11]).

We turn now to prove that for any µ such that L(R, µ) |= AD+ !1 is R-
supercompact, we have that Pµ(R) = PC(R).

Lemma 37. Suppose that µ is a subset of P(P!1(R)) such that L(R, µ) satisfies
AD+ !1 is R-supercompact. Then L(R, C) and L(R, µ) have the same sets of reals.

Proof. For contradiction suppose that this is not the case. Without loss of
generality we may assume that µ and C measure some subset of P!1(R) di↵erently,
as otherwise the lemma would follow trivially. By Lemma 34 we have the following
two cases.

Case 1: Pµ(R) is strictly contained in PC(R).
In this case without loss we will assume that µ is such that Pµ(R) is minimal. In
other words, given any other ⌫ ⇢ P(P!1(R)) such that L(R, ⌫) |= AD+ !1 is R-
supercompact, then Pµ(R) ✓ P⌫(R).

By (R, µ)], we mean the theory of the reals and indiscernibles of L(R, µ) in a
language with predicates for membership and µ and constant symbols ẋ for each real
x. Let B belong to PC(R) but not to Pµ(R). Then (R, µ)] = �n2!T µ

n , where each
T µ
n is Wadge reducible to B. Since there is a real x that codes all these reductions,

(R, µ)] 2 L(R, C). Also, recall that L�2
1(C)(R, C) �1 L(R, C) (see Chapter 2), hence

there is such a sharp in L�2
1(C)(R, C). Let µ̄ be such that (R, µ̄)] 2 L�2

1(C)(R, C) and
L(R, µ̄) |= AD+ !1 is R-supercompact.

Claim: In L(R, C), M]
!2 exists and is !1 + 1-iterable.

Proof of the claim. Let us work in L(R, C). First, by results of [25] we
have that PC(R) ✓ Lp(R)L(R,C) and Pµ̄(R) ✓ Lp(R)L(R,µ̄). Note that if M is an
R-mouse in L(R, µ̄) projecting to R, there is a set of reals in Pµ̄(R) coding it. Thus
M 2 L�2

1(C)(R, C). Also, if M is countably iterable in L(R, µ̄), by definition, if M̄

is a countable hull of M it is iterable in L(R, µ̄). As R ⇢ L(R, C) any such M̄
is !1-iterable in L(R, C). But !1 is measurable in L(R, C) hence M̄ is iterable in
L(R, C). This gives us that:

Lp(R)L(R,µ̄) C (Lp(R)|�21(C))L(R,C).

This implies that �21(µ̄) starts a ⌃1-gap in Lp(R)L(R,C). Let

� = ⌃Lp(R)L(R,µ̄)

1 .

We claim that Env(�) = Pµ̄(R), where the envelope is as defined in L(R, C).
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For this note that by results of [20], we have Env(�) = P (R)Lp(R)|� , where �
is the largest ordinal such that Lp(R)|�21(µ̄) �1 Lp(R)|�. Note that � � ⇥L(R,µ̄),
and for all we know this inequality could be strict. However, since [�21(µ̄), �] is a
⌃1-gap, we have that Lp(R)|(� + 1) is the first initial segment of L(R)L(R,C) that
has a subset of the reals not in Lp(R)L(R,µ̄), in fact (R, µ̄)] 2 Lp(R)|(� + 1). Thus
Pµ̄(R) = P(R) \ Lp(R)|� and so Env(�) = Pµ̄(R), as wanted.

Let ~B be a self-justifying system sealing Env(�). Since ~B is countable, there
exists a real x such that each element in ~B is ODL(R,µ̄)

x . As a result of the analysis
of HODL(R,µ̄) (done in Section 3 of [25]) for every real y there is a set extender
model My with the following properties.

• My |= “there are exactly !2-many Woodin cardinals.”

• V
HODL(R,µ̄)

y

⇥(µ̄) = My|⇥(µ̄) and My |= “⇥(µ̄) is the first Woodin cardinal”.

• For every ODL(R,µ)
y set of reals A and any Woodin cardinal � in My, there

is a term ⌧A,� that captures1 A at �.

We point out here that in section 3.2.2 we develop a variant of the HOD analysis.
Our Theorem 61 will also imply the existence of the extender models My (the proof
of Theorem 61 does not depend on this lemma).

Let M = Mx. Then M has !2-many Woodin cardinals and terms capturing
every B in ~B at every Woodin cardinal � of M. Let ⌧B,� be the standard term

witnessing this. Let us define N = HullM({⌧B,� |B 2 ~B and � Woodin in M})
(sketch: the Woodin cardinals of N remain Woodin in L[N ] ✓ L(R, µ̄) and, in
L(R, C) we have (R, µ̄)].). Hence N is an x-mouse that captures all the elements
of a self-justifying system. Thus, by a theorem of Woodin, the strategy that picks
branches that are realizable into M and moves these term relations correctly is an
iteration strategy for N (see [10]). In other words, N is !1-iterable in L(R, C), and
hence N ] exists and is !1-iterable in L(R, C). Therefore M]

!2 exists and it is !1

(and hence !1 + 1) iterable.
⇤

We claim that if ⌫ is the club filter in L(R, C), then L(R, ⌫) |= AD+ !1 is R-
supercompact. We cannot apply Proposition 25 directly but we can work our way
into a situation where the proof can be adapted. For this, let ↵ be such that
L↵(R, C) reflects enough set theory. By results of [25] we have that DC holds in
L(R, C). Therefore, there is a countable set N , such that N � L↵(R, C) and M]

!2

and its unique strategy are in N . Let N̄ be the transitive collapse of N . Then
the proof of Proposition 25 implies that N̄ believes that “if ⌫̄ is the club filter,
then L(R, ⌫̄) |= AD+ !1 is R-supercompact”. By elementarily and the choice of
↵, we get that L(R, C) believes this as well. Also, ⌫ ✓ C and by an induction on
the constructive hierarchy, as in the proof of Lemma 30, we get L(R, ⌫) = L(R, C).
This contradicts Theorem 22.

Case 2: PC(R) is strictly contained in Pµ(R).
Using the same argument as in Case 1, we have that PC(R) is contained in L�2

1(µ)
(R, µ).

Recall that µ\L�2
1(µ)

(R, µ) is a subset of the club filter of L(R, µ). So ifA 2 PC(R) \ µ

1 We say that ⌧ captures A at � in M if for any M-generic H ⇢ col(!, �), A \ RM[H] = ⌧ [H].
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then A contains a club in V . Hence C \ L(R, C) ✓ µ. By an induction on the con-
struction hierarchy we have L(R, C) = L(R, µ), a contradiction. ⇤

Note that the proof of Lemma 37 implies that any two models, L(R, µ) and
L(R, ⌫) that satisfy AD+ !1 is R-supercompact would have the same ⇥ and so
they would also share the same �21 . This justifies referring to ⇥(µ) and �21(µ) simply
as ⇥ and �21 respectively.

Also, in the proof of Lemma 37, we used that L(R, µ) cannot have an !1 + 1
iteration strategy for M]

!2 . The careful reader might note that more is true: if
L(R, µ) is a model of AD+ !1 is R-supercompact, then it cannot have an iterable
proper class model with !2 many Woodin cardinals that is also iterable. Also, recall
Theorem 19, which implies that if AD+ + ⇥ > ✓0 holds then there is a non-tame
mouse. These two facts combined yield:

Lemma 38. Suppose that L(R, µ) is a model of AD+ !1 is R-supercompact. Then
L(R, µ) does not contain a proper class model N of ZF such that R ⇢ N and
N |= ⇥ > ✓0.

Proof. Recall that given the hypotheses L(R, µ) |= AD+ and so N |= AD+.
If N |= ⇥ > ✓0, then we have that N has a non-tame mouse and hence M]

!2 exists

and is !1 + 1-iterable in N . But R ⇢ N , hence M]
!2 exists and is !1 + 1 iterable

in L(R, µ), which is a contradiction. ⇤

We finish this section mentioning a useful corollary to Lemma 38.

Corollary 39. Suppose that L(R, µ) is a model of AD+ !1 is R-supercompact.
Then L(Pµ(R)) |= AD+ + ⇥ = ✓0.

3.2.2. A HOD Analysis for L(R, C)
We start the outline of the HOD analysis by adapting the standard notions.

This means, we will define, in V , a directed system whose limit agrees with a rank
initial segment HODL(R,C), understand what the rest of HODL(R,C) looks like and
define in L(R, C) a corresponding covering system. Then we will generalize these
results to models L(R, µ) of ZF+AD+ !1 is R-supercompact.

Definition 40. We say P is a �0-bounded ⌃-iterate of M]
!2 if there is an iteration

tree T on M]
!2 built according to ⌃, such that,

• P is the last model of T ,

• all extenders used in T have critical point below the image of �
M]

!

2

0 , and
• there is no drop in model on the branch leading to P so that there is an
embedding i : M]

!2 ! P given by T .

Let

D+ = {P |P is a �0-bounded iterate of M]
!2}.

For P and Q in D+, say P �+ Q if P iterates to Q via ⌃ in a �0-bounded
way, in which case we let ⇡P,Q be the corresponding embedding given by ⌃. By
the Dodd-Jensen property of ⌃, ⇡P,Q is well defined. The Dodd-Jensen property
also guarantees that (D+,�+,⇡Q,P ) is a directed system. Take the direct limit of
(D+,�+,⇡P,Q) and iterate the away the sharp ON-many times to obtain a proper
class model M+

1. Also, let ⇡Q,1 be the natural map from Q to M+
1.
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We will eventually prove that, L[M+
1,⌃ � X] = HODL(R,C), for some set of

iteration trees X in L(R, C). Motivated by the work of Steel and Woodin for L(R)
the next step is to adapt the definition of suitability. From now on, we work in
L(R, C).

Definition 41. Let ↵ < !2. Let P be a premouse. We say P is ↵-suitable if there
exist a sequence h�Pi ii<↵ in P such that

(1) For every cut-point ⌘ of P , Lp(P |⌘)E P .
(2) If ⌘ < o(P ), but is not a Woodin cardinal of P , then Lp(P |⌘) |= “⌘ is not

Woodin”.
(3) If � = sup

i2↵
�Pi , then o(P ) = sup

n2!
(�+n)P .

We will say P is suitable if there is ↵ < !2 such that P is ↵-suitable and
define ↵(P ) = ↵. It is an easy consequence of mouse capturing and the definition
of suitability that if P is suitable, ⇠ a P -cardinal and A ✓ ⇠ is such that A is

ODL(R,C)
P , then A 2 P . On the other hand if A 2 P , then A is ODL(R,C)

P . We will
use this fact repeatedly without explicitly mentioning it.

Definition 42. Let T be normal tree on a suitable mouse P . We say T is guided
if and only if for all limit ⌘ < lh(T ), we have that Q([0, ⌘)T , T � ⌘) exists and is
an initial segment of Lp(M(T � ⌘)). We say that T is maximal if Lp(M(T )) |=
�(T ) is Woodin; otherwise we say T is short.

Notice that if T has successor length, then it is short.

Definition 43. Consider an ↵-suitable premouse P and A ✓ R. Let ⌘ be a
cardinal of P . We say that P captures A at ⌘ if there is a col(!, ⌘) name ⌧ , such
that whenever g is P -generic on col(!, ⌘), we have ⌧ [g] \ R = A \ R. We say that
P captures A if for every i < ↵(P ), P captures A at �Pi .

Note that given A ⇢ R and a suitable P that captures A at �Pi , say via ⌧ ,
there is a standard term that witnesses the capturing, following [17], we give its
definition

⌧PA,i = {(p,�) |� is a name for a real and p ||�col(!,�P
i

) � 2 ⌧}.
Our next step is to define a notion of iterability that is strong enough so that

one can compare suitable mice. Note the connection with [17], where the analysis of
HODL(R) used a system of suitable mice with only finitely many Woodin cardinals.
In our situation, however, suitable mice are allowed to have fewer than !2 many
Woodin cardinals. That is why we need a stronger form of iterability that we
describe below.

We will define a slight modification of Definition 1.8 from [15]. A suitable P is
said to be weakly* (!,!2)-iterable if player II has a winning strategy for the game
WG⇤(P,!2) in which I and II alternate moves for !2 many rounds as follows. The
game starts by letting P0 = P . At round ↵, player I plays a countable normal,
guided, putative iteration tree T↵ on P↵. At that point player II has two options.
The first option is only available if T↵ has a wellfounded final model; then II may
accept I’s move in which case we set P↵+1 = MT

↵

lh(T
↵

)�1. The second option is for
player II to play a maximal wellfounded branch b↵ on T↵, such that, if T↵ is short
then Q(b↵, T↵) exists and is an initial segment of Lp(M(T↵)). The game continues
by setting P↵+1 = MT

↵

b
↵

. There are additional requirements for both players at
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limit rounds. Namely, if I and II have played for all � < � and � is a limit ordinal
then:

• If there is i < ↵(P ) such that for infinitely many � < �, we have that T�
is a tree based on P� |�

P
�

i then I loses.
• The direct limit of P� for � < � is wellfounded. Otherwise II loses.

After the !2 rounds have been played, the only condition for II is that the di-
rect limit along the main branch is well-founded. We illustrate the weak* game,
WG⇤(P,!2) game as follows:

Player 0 1 . . . ! . . .

I T0 on P0 T1 on MT0
b0

�
P!

T!
II b0 b1 b!

Note that if P and Q are suitable premice such that II has a winning strategies
⌧P and ⌧Q for WG⇤(P,!2) and WG⇤(Q,!2) respectively. Then one can form guided
iteration trees TP and TQ using the extenders that cause the “least” disagreement,
and using ⌧P and ⌧Q when a maximal tree arises in this comparison. Since each
P and Q have < !2-many Woodin cardinals, this comparison succeeds. Note also
that the end model of this comparison is still weakly* (!,!2)-iterable.

Recall that a stack ~T on a premouse P is a pair consisting of a sequence of
iteration trees hTi | i < �i and a sequence of premice hPi | i  �i such that

• P0 = P ,
• for every i < �, Ti is an iteration tree of successor length on Pi and with
last model Pi+1, and

• for every limit ordinal � < �, P� is the direct limit of hPi | i < �i and the
tree embeddings.

Note that hPi | i  �i is determined by the sequence hTi | i < �i. Also for a stack ~T
on P , we define M~T

1 = P� and i
~T
1 : P ! M~T

1, the natural embedding associated
to this stack (if it exists). Notice that in WG⇤(P,!2) players I and II collaborate
to form a stack on P .

If P is a suitable mouse capturing some A ✓ R it will be desirable that “good”
iterations of P maintain the suitability condition and move the terms capturing A
correctly.

Definition 44 (A-iterations). For a suitable P that captures a set of reals A we
define the following.

(1) We say P isA-iterable if II has a winning strategy for the gameWG⇤(P,!2)
such that whenever ~T is a stack given by a game according to the strategy

and i
~T
1 : P ! M~T

1 exists, then M~T
1 is suitable and for any i < ↵(P ) we

have that i
~T
1(⌧PA,i) = ⌧

M~T
1

A,i . We will call such a strategy an A-strategy for
P .

(2) An A-iteration of P is a stack ~T on P given by a run in WG⇤(P,!2)
according to an A-strategy.

(3) We will say Q is an A-iterate of P if there is an A-iteration ~T on P such

that Q = M~T
1 and i

~T
1 exists.
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(4) For T , a normal guided tree on P of successor length ⌘ + 1, such that
T � ⌘ is maximal, we let T � = T � ⌘. In other words T � is T without
the last branch.

Also, given a a finite sequence ~A of sets of reals, we say P is ~A-iterable in
case there exists a winning strategy in WG⇤(P,!2) that simultaneously witnesses
A-iterability for every A in the sequence ~A.

So far we do not know whether there are A-iterable suitable mice but we prove
next that these exist when M]

!2 is present. The following pair of lemmas are
adaptations of results in Chapter 3 of [17].

Lemma 45. Suppose A ✓ R is definable in L(R, C) from indiscernibles and assume

that Ñ is a ⌃-iterate of M]
!2 , such that i : M]

!2 ! N (given by ⌃) exists. Then

any suitable initial segment of Ñ is A-iterable.

The idea in the proof is the following. Note that if Ñ is a ⌃-iterate of M]
!2 ,

by Lemma 27, given a Woodin cardinal � of Ñ , we can iterate Ñ
⌃! K above � to

make L(R, C) realizable as the derived model associated to K and some K-generic
filter. Hence, one can define truth in L(R, C) in K using the homogeneity of the
collapse. We show the details below.

Proof. Let Ñ as above and suppose that A ✓ R is definable in L(R, C) from
indiscernibles. Let ' be a formula such that for any increasing sequence of indis-
cernibles c0 < c1 < · · · < cn for L(R, C)

x 2 A , L(R, C) |= '(c0, . . . , cn�1, x).

Let Q be a suitable initial segment of Ñ , and ↵ = ↵(Q). Let us define N to be
the proper class model resulting when iterating the last extender of Ñ ON-many
times. Let � < ↵ and define ⌧ as (p, x) 2 ⌧ if

p ||�col(!,<�N
�

)

N ||�col(!,<�N

!

2 )

N L(Ṙ, Ḟ) |= '(č0, č1, . . . , čn�1, x),

where Ṙ is the standard name for the symmetric reals under col(!, < �N!2) and Ḟ is
the name for the tail filter associated to this forcing as defined in Chapter 2. Now
by suitability of Q we have that ⌧ 2 Q.

Let us see first that ⌧ captures A at �Q� . For this let G be Q-generic for

col(!, �Q� ). Note that by suitability G is also N -generic. Now, we can use ⌃ to

iterate N , above �Q� , in the fashion of Lemma 27 to get an embedding j : N ! M

and an M [G]-generic filter H such that G ⇤ H is M -generic for col(!,�M!2), and

j(Ḟ)[G ⇤H] = C and j(Ṙ)[G ⇤ H] = R. With no loss we may assume that the
indiscernibles are fixed by j. This implies that if (p, x) 2 ⌧ and p 2 G, then

M [G ⇤H] |= L(R, C) |= '(c0, . . . , cn�1, x[G])

In other words if x[G] 2 ⌧ [G] ) x[G] 2 A. Conversely if x 2 A\Q[G], then by
homogeneity of the second forcing over N we have that

||�col(!,<�N

!

2 )

N L(Ṙ, Ḟ) |= '(č0, č1, . . . , čn�1, ˇ(x[G])),

so there is a condition p 2 G such that

p ||�col(!,<�N
�

)

N ||�col(!,<�N

!

2 )

N L(Ṙ, Ḟ) |= '(č0, č1, . . . , čn�1, x).
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In other words A \Q[G] ✓ ⌧ [G], and so ⌧ [G] = A \Q[G].
By the way ⌧ is defined it is easy to see that ⌃ moves ⌧ correctly and so it is

an A-iteration strategy. ⇤
Corollary 46. Suppose A is an ODL(R,C) set of reals. Then for every ↵ < !2 there
is an ↵-suitable P that is A-iterable.

Proof. Suppose that there is a counterexample A. By minimizing the ordinals
from which A is defined we may assume that A is actually definable in L(R, C). Let
↵ < !2 and Q is the suitable initial segment of M]

!2 with ↵(Q) = ↵. By Lemma
46 Q is A-iterable, a contradiction. ⇤

The point in the proof of Corollary 46 is that given a counterexample in L(R, C)
to a statement of the form “for all ODL(R,C) sets of reals” then one can, by min-
imizing the counterexample, find a definable one. However it is the case that,
usually, the suitable initial segments of M]

!2 witness that there are no definable
counterexamples. The same argument essentially gives the following lemma.

Lemma 47 (Comparison). Suppose that P is A-iterable and Q is B-iterable.
Then there is an A � B-iterable suitable mouse R, an A-iteration from P to a
suitable initial segment of R and a B iteration from Q to suitable initial segment
of R.

It is clear that our notion of A-iterability is downwards absolute to L(R, C).
The next step is to define a covering system using pairs (P,A), where A is an
ODL(R,C) set of reals and P is an A-iterable mouse. However, it could be the case
that for such a P , there are two di↵erent A-iterations ⇡ : P ! Q and � : P ! Q,
and this would be a clear problem in building a directed limit. For this reason we
need to work with relevant hulls and a stronger notion of iterability. We define
below these concepts.

Definition 48. For an A-iterable mouse P , we let

(1) P� = P |(�+!
0 )P

(2) �PA,i = sup(HullP (⌧PA,i) \ �P0 ).
(3) �PA = supi2↵(P ) �

P
A,i.

(4) ⇠PA = �P
�

A .
(5) H(P,A) = HullP (⇠PA [ {⌧PA,i | i < ↵(P )})

Note that if P is a suitable A-iterable mouse, then P |(�+!
0 )P is 1-suitable and

A-iterable .
Using the usual “zipper argument” (see [13] or [18] ) we get the following

lemma.

Lemma 49. Let T be a tree of limit length on P , a suitable pre-mouse. Suppose
further that there are branches b and c such that T _b and T _c are A-iterations
and MT

b and MT
c are A-iterable. Then iTb � �PA = iTc � �PA and so iTb � H(P,A) =

iTc � H(P,A).

A delicate point here is that if P is an A-iterable mouse we could potentially
have two A-iterations associated to two di↵erent trees on P leading to the same
end model Q, so Lemma 49 would not apply. Hence we define the notion of strong
iterability in the natural way and prove the existence of strongly iterable mice.
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Definition 50. For A ✓ R and a suitable A-iterable mouse P , we say P is strongly
A-iterable, if whenever i : P ! Q and j : P ! Q are two A-iterations, then
i � H(P,A) = j � H(P,A).

Note again that when proving that for any A ✓ R which is ODL(R,C) there is a
strongly A-iterable mouse it is su�cient to prove that for any definable set A there
is a strongly A-iterable mouse. The following lemma, in contrast to most of what
we have discussed so far, is not an “easy” generalization of the HOD Analysis in
L(R). The reason of this is the extra complexity in the iteration games considered.
We give a detailed proof for the existence of strongly A-iterable mice.

Lemma 51. Let A be an ODL(R,C) set of reals and let P be A-iterable. Then there
is an A-iterate of P that is strongly A-iterable.

Proof. By the discussion above, we may without loss assume that A is defin-
able in L(R, C). Given an A-iterable mouse P , by comparison we can A-iterate P

to Q, an initial segment of a correct iterate of M]
!2 . We claim that Q is as wanted.

Suppose ~T and ~U are A-iteration stacks on Q with the same last model R. We
want to show that the embeddings given by ~T and ~U agree on H(Q,A). We will
actually show that both embeddings agree with embeddings given by ⌃ on H(Q,A).
Here we have to be an extra bit more careful than in the analogous situation of
L(R), because our iteration games can have more rounds and at limit stages it is not
straightforward how to proceed, we will show next the details of how to overcome
this di�culty.

We look inductively at the trees in the stack ~T = hTi | i 2 ↵i. Let Qi (for
i 2 ↵) be the model starting round i in the weak* game. We will construct trees Si

inductively such that ~S = hS | i 2 ↵i is according to ⌃ and has the property that

the embedding given by ~S agrees with i
~T on �QA . We will assume with no loss of

generality that every tree Ti for i 2 ↵ is based on a window of the form (�Qi

k
i

, �Qi

k
i

+1).
Start with T0. Let us define S0 as follows. First suppose that T0 is based on

Q0
�. If it is according to ⌃ we let S0 = T0. Otherwise T0 is a maximal tree with a

last branch b. Recall that T �
0 denotes the maximal part of T0. Let c be the branch

given by ⌃ through T �
0 and, note that, by Lemma 45, c respects A. Let S0 be

T �
0

_
c. Also, by Lemma 49, we have that iT0 and iS0 agree on ⇠QA . Recall that Q1

is the last model of T0, and let Q̄1 be the last model of S0, hence by fullness and
maximality of T �

0 , we get Q�
1 = Q̄�

1 .
If T0 is above �0 then let S0 = ;, iS0 = id and Q̄1 = Q0. Here we get also get

trivially that iT0 and iS0 agree on ⇠QA and Q�
1 = Q̄�

1 .
Let us consider then T1. If it is based on Q1

� we can regard it as a tree on
Q̄1 and then we can again use ⌃ to get S1 on Q̄1 such that iT1 and iS1 agree on

⇠Q1

A = ⇠Q̄1

A . Again, by fullness we get that if Q̄2 is the last model of S1, then
Q�

2 = Q̄�
2 .

Otherwise we just let S1 = ; and the desired agreement is maintained so far.
Note that by the rules of the weak* game one has that Ti can be based on

Qi
� only for finitely many i 2 !. Hence Q̄! agrees with Q! up to their common

1-suitable initial segment and the embedding on the T -side agrees with the one
given by the S-side up to ⇠QA .
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We proceed inductively in this fashion. At successors simply use ⌃ if the tree
is based below the least Woodin cardinal, and otherwise define the corresponding
tree in the S-side as empty.

After ↵-many steps in this induction we will have that Q̄↵ is a ⌃-iterate of Q.
Let �̄ be the branch embedding. Then we have that Q̄↵ agrees with Q↵ = R up to

their common 1-suitable initial segment, and that �̄ � ⇠QA = i
~T � ⇠QA .

Similarly for ~U one can get the analogous construction. So, we get that i
~U

agrees with �0 : Q ! Q0
↵, an embedding given by ⌃. Furthermore R, Q̄↵ and Q0

↵

agree up to their 1-suitable initial segment, and so since �R0 is a cut-point of both
Q̄↵ and Q0

↵ by the Dodd Jensen property of ⌃ we can conclude that �̄ and �0 agree

up to �Q0
0 , and so i

~T and i
~U agree up to ⇠QA . Hence i

~T � H(Q,A) = i
~U � H(Q,A)

as wanted. ⇤
Our covering system in L(R, C) will be

D = {H(P, ~A) |P is strongly ~A-iterable and ~A 2 ODL(R,C)}.

Also we let (P, ~A) � (Q, ~B) if Q is an A-iterate of P and ~A ✓ ~B. We let �(P, ~A),(Q, ~B)

be the unique embedding from H(P, ~A) to H(Q, ~B) given by an (any) ~A-iteration
from P to Q. The following results show that the suitable initial segments of correct
iterates of M]

!2 together with the theories of indiscieribles for L(R, C) are in some
sense “dense” in D.

Let
M1 = lim(D,�,�(P,A),(Q,B))

and let us define �(P,A),1 the natural embedding from H(P,A) to this direct limit.
Let T C

n be the theory of n-many indiscernibles with real parameters of L(R, C)
(coded as a subset of R). Lemma 5.6 and Lemma 5.9 in [17] give the following
results, we omit their proofs as they are word by word the same, except that we use
M]

!2 and L(R, C) instead of M! and L(R) (the key, again, is that one can realize

L(R, C) as the derived model of an iterate of M]
!2).

Lemma 52. Suppose that P is a suitable initial segment of a ⌃-iterate of M]
!2 ,

then �P0 = sup{⇠PT C
n

|n 2 !}.

Lemma 53. Assume A is ODL(R,C), and P is a strongly A-iterable suitable mouse.

Then there is R, a suitable initial segment of a ⌃-iterate of M]
!2 , and a natural

number n such that (P,A) � (R,A�T C
n ) and moreover H(R,A�T C

n ) = H(R, T C
n ).

Let us pause for a moment and discuss the general L(R, µ) case. The lemma
above will also be valid in this context by an application of ⌃1-reflection.

Lemma 54. Suppose L(R, µ) |= AD+ !1 is R-supercompact, and let A be ODL(R,µ).
Given P a strongly A-iterable suitable mouse and B an ODL(R,µ) set of reals, with
A W B, there is R a suitable and A � B-iterable mouse, such that (P,A) �
(R,A�B) and moreover H(R,A�B) = H(R,B).

Proof. Otherwise fix A and B a counterexample to the statement. Fix � large
enough such that L�(R, µ) |= ZF+AD+DC and A and B are ordinal definable
over L�(R, µ), but L�(R, µ) has no R and A-iteration of P witnessing the conclusion
of the Lemma. This ⌃1 statement about � can then be reflected below �21 . Hence
there is such a � < �21 . But then L�(R, C) = L�(R, µ) since below �21 both µ and C
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are just the club filter. We get then that there are A and B counterexamples of the
statement in L�(R, C) (and moreover OD in this structure). But then we can get the
desired R and A-iteration in L(R, C) and, by closure of �, an A-iteration of P leading
to R can be computed in L�(R, µ), so A and B cannot be the counterexample of
L�(R, C), contradiction. ⇤

The lemmas above allow us to compute the direct limit of D just by looking
at suitable initial segments of ⌃-iterates of M]

!2 with corresponding theories of
indiscernibles. We have the following agreement.

Theorem 55. M1 = M+
1|�M

+
1

!2

Proof. We define a map i : M1 ! M+
1 that is surjective below �

M+
1

!2 and
respects the membership relation as follows. For x 2 M1 there is a natural n and
a suitable initial segment of a correct iterate of M]

!2 , say P , such that x is in the
range of �(P,A�T C

n

),1, and there is z 2 H(P, T C
n ) such that �(P,A�T C

n

),1(z) = x.

Now we have an iteration M]
!2

⌃! N such that P is a suitable initial segment of

N . Note that N might not be a �0-bounded iterate of M]
!2 . We can however split

the iteration from M]
!2 to N in a �0-bounded part and the rest. Namely, there is

N ⇤ such that M]
!2

⌃! N ⇤ into a �0-bounded way, and N ⇤ ⌃! N . Note that this

second iteration does not move �N
⇤

0 (because all its extenders have critical point
above the first Woodin cardinal). This implies that z is in the range of ⇡N⇤,N , let
z̄ be its pre-image. Then we define i(x) = ⇡N⇤,1(z̄), it is routine to show that i is
well defined (see Theorem 5.10. of [17]). Now Lemma 53 gives us the surjectivity

as follows: Let x 2 M+
1|�M

+
1

!2 so there is z 2 N a correct iterate of M]
!2 such that

⇡N ,1(z) = x. Let P be a suitable initial segment of N such that z 2 P . Because

N is an �0 bounded iterate of M]
!2 we have that z is definable from ordinals less

than �N0 and indiscernibles, but this is easily computable from T C
n for a suitable n

(again this follows essentially by Corollary 5.7 of [17]). Because ⇠PT C
n

is unbounded

in �N0 we conclude that z 2 H(P, T C
n ) for a su�ciently large n. This readily implies

x is in the range of i as wanted. ⇤
Let us work for a moment in V col(!,R). Here we have that M+

1 is a countable
⌃-iterate of M!2 . Also if G is M+

1-generic for col(!, < �M1
!2 ), and R⇤ and F are the

symmetric reals and associated tail filter, then L(R⇤,F) is model of AD+ !1 is R-
supercompact. Following the notation and the content of Chapter 6 from [17], for
every n we can define, T C

n
⇤
, an ODL(R⇤,F) set, by pieces as follows. For (P, T C

n ), an
element of D, and for i < o(P ) let

⌧⇤T C
n

,i = �(P,T C
n

),1(⌧PT C
n

,i)

and
T C
n

⇤
=

[

i2!2

⌧⇤T C
n

,i[G � �M1
i ].

We also have that any suitable initial segment of M1 is strongly T C
n

⇤
-iterable (in

V col(!,R) as witnessed by ⌃ and in L(R⇤,F) by absoluteness). Similarly we define
A⇤, an ordinal definable in L(R⇤,F) set of reals, for each A in ODL(R,C). Recall
that M�

1 is the 1-suitable initial segment of M1. We summarize the discussion
above in the following lemmas.



3.2. THE GENERAL ZFC CASE 27

Lemma 56. For any set of reals A which is OD in L(R, C) we have that A⇤ is OD
in L(R⇤,F). Moreover for any such A, M�

1 is strongly A⇤-iterable in the sense of
L(R⇤,F).

Proof. This follows exactly as in the case of L(R) so we omit details. These
proofs can be essentially be found in Chapter 6: Claims 1,2 and 3 of [17]. ⇤

Recall that X is the set of finite full stacks on M�
1 in M1|(�M1

!2 ). We then

have that when computing the correct branches through ~T it is enough to choose
the unique branch that moves all the terms for A⇤ correctly. That is to say

Lemma 57. Suppose T 2 L(R⇤,F) is a guided maximal tree on M�
1 as in the

sense of L(R⇤,F). Then ⌃(T ) = b if and only if T _b is an A⇤-iteration for all A

in ODL(R,C).

Proof. This is claim 4 of Chapter 6 in [17]. Here we use Lemma 53 instead
of Lemma 5.8 of [17], everything else follows word by word. ⇤

From this and the homogeneity of the collapse it follows that L[M1,⌃ � X] ✓
HODL(R,C). Also, note that if M⇤

1 is the direct limit defined in L(R⇤,F), then

there is an embedding � : M�
1 ! M⇤

1, where � =
[

A2ODL(R,C)

�(M�
1,A⇤),1.

Lemma 58. Let � be the embedding above. Then � 2 L[M1,⌃ � X].

Proof. Note that although � is not in L(R⇤,F); for any A 2 ODL(R,C) the
partial embedding �(M�,A⇤),1 is in L(R⇤,F) as it is one of the embeddings of the
directed system D (as computed in L(R⇤,F)). Hence, it is enough to show that
the iterates of M�

1 given by ⌃ and trees in X are cofinal in the ;-iterates of M�
1

in L(R⇤,F). For this, let Q 2 L(R⇤,F) be a ;-iterate of M�
1. Then there is

p 2 col(!, < �M1
!2 ) and a name q̇ for Q such that

p ||�M1 L(Ṙ, Ḟ) |= q̇ is an ;-iterate of M�
1

Let �M1
i be such that p is an element of col(!, �M1

i ). Using the definability of
forcing note that one can define in M1 an iteration tree that compares M�

1 simul-
taneously with any q̇[H] (such that H is M1-generic with p 2 H). This implies
that there is a ;-iterate of Q in L[M1,⌃ � X] as wanted. ⇤

Recall that �M1
0 is the smallest Woodin cardinal of M1. We have the following

Lemma 59. �M1
0 = ⇥

Proof. We first show that �M1
0  ⇥. Fix ↵ < �M1

0 . Then there is a (P,A) 2
D and an ↵̄ < �P0 such that ⇡(P,A),1)(↵̄) = ↵. Consider

Ã = {(x,H(Q,A)) | (P,A) � (Q,A) and x 2 H(Q,A)}
Note that Ã can be coded as a subset of the reals. For (x,H(Q,A)) 2 Ã let
f(x,H(Q,A)) = ⇡(Q,A),1(x). Then we have that ↵ ✓ range(f), and f is a function
on R. This implies ⇥ > ↵.

Now we show that ⇥  �M1
0 . Let ↵ < ⇥. Then there is a pre-wellorder

on R of rank ↵. So, there is a formula ' and a sequence of ordinals s such that
↵ = {� |L(R, C) |= “� is the unique ordinal such that '(s, x,�)” for some x 2 R}.
Let us work in V col(!,(2c)+). We will use the construction done in Lemma 27, to
get sequences hMi | i 2 !i and hM!

i | i 2 !i satisfying the following:
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(1) Mi 2 D+ and for any M 2 D+ there is a k 2 ! such that M �+ Mk,
(2) Mi �+ Mk for any two natural numbers i < k. In this case we will write

⇡+
i,k : Mi ! Mk for the embedding given by ⌃.

(3) For any x 2 RV , x is Mk-generic for BM
k

�
M

k

0

for infinitely many k.

(4) M!
i is a ⌃-iterate of Mi and there are embeddings (given by ⌃)

⇡!
i : Mi ! M!

i

(5) There are embeddings ⇡!
i,k : M!

i ! M!
k , given by ⌃, for any i < k, such

that

⇡!
k � ⇡+

i,k = ⇡!
i � ⇡!

i,k

(6) For any i 2 ! there is an M!
i -generic filter for the collapse up to the

supremum of the Woodins of M!
i , say Gi, such that L(R, C) is realized as

the derived model given by Gi over Mi (see Section 2.3).

To construct such sequences let us fix a big enough � and let hXi|i 2 !i
be an elementary chain of substructures of HV

� , such that P (R)V ✓
[

i2!

Xi and

�i = Xi \R 2 Xi+1 and it is countable there. Let hxi | i 2 !i be an enumeration of
RV such that xi 2 Xi.

Let hMi | i 2 !i be such that it satisfies conditions (1), (2) and (3) above (note

that this is possible in V col(!,(2c)+), where RV is countable).
We construct M!

i inductively as follows (see the diagram below). By Lemma
26 there is a tree T 0

0 on M0 (based on the window (�M0
0 ,�M0

! )), with last model
M1

0 , such that �0 is realized as the symmetric reals for an M1
0 -generic filter for

col(!, < �
M1

0
! ). We let ⇡1

0 : M0 ! M1
0 be the iteration embedding.

Note, that there is an i such that T 0
0 and M1 are elements of Xi .Let i01 be the

least such i. Hence in Xi01
we can copy T 0

0 using ⇡+
0,1 to get the tree ⇡+

0,1T 0
0 on M1.

Use Lemma 26 again to get a tree on the last model of ⇡0,1T 0
0 , with last model M1

1 ,

such that �0 the symmetric reals of an M1
1 generic filter for col(!, < �

M1
1

! ). Let T 0
1

be the concatenation of ⇡+
0,1T 0

0 with the latter tree and ⇡1
1 : M1 ! M1

1 the tree
embedding. By copying, we have also an embedding ⇡1

0,1 : M1
0 ! M1

1 such that

⇡1
0,1 � ⇡1

0 = ⇡1
1 � ⇡+

0,1 (note that we can do all this construction in Xi01
).

Note that there is i02 > i01 such that T 0
1 and M2 are in Xi02

. Using the copying

construction together with Lemma 26 we get a tree T 0
2 on M2 with last model M1

2

such that �0 can be realized as the symmetric reals for an M1
2 -generic filter for the

collapse up to �
M2

2
! , together with embeddings satisfying ⇡1

2 �⇡+
1,2 = ⇡1

1,2 �⇡1
1 (where

⇡1
1,2 : M1

1 ! M1
2 and ⇡1

2 : M2 ! M1
2 are the embeddings coming from the copying

construction and iteration tree respectively).
We continue in this fashion inductively. So, for i 2 !, we get M1

i an iterate
of Mi, such that �0 can be realized as the symmetric reals of an M1

i -generic filter

for col(!, < �
M1

i

! ). We get also embeddings ⇡1
i,i+1 and ⇡1

i satisfying ⇡1
i,i+1 � ⇡1

i =

⇡1
i+1 � ⇡

+
i,i+1.

Let T 1
0 be the tree on M1

0 , with last model M2
0 , such that �1 are the symmetric

reals for an M2
0 -generic filter for the collapse up to �

M2
0

2! . We can then copy this tree
using ⇡1

0,1 and then apply Lemma 26 to get a tree T 1
1 on M1

1 with last model M2
1 ,
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such that �i01 can be realized as the symmetric reals associated to a M2
1 -generic

filter for the collapse over col(!, < �
M2

1
2! ).

It is clear how to proceed inductively in this fashion. So for i < ! let M!
i be

the direct limit of the models Mk
i and ⇡!

i : Mi ! M!
i the direct limit embedding.

Note that by construction we get also embeddings ⇡!
i,i+1 : M!

i ! M!
i+1. We define

M!
1 to be the direct limit of the models M!

i and embeddings ⇡!
i,i+1. We call ⇡!

i,1
the direct limit embedding from M!

i into M!
1 (see the diagram below). Note that

M!
1 embeds naturally into a ⌃-iterate of M1 so it is wellfounded.
Now, by construction we have that crit(⇡1

i ) > �Mi

0 . Hence ⇡+
i,i+1 � M�

i =

⇡!
i,i+1 � M�

i .
Now let us go back to the proof. For � < ↵ there is an x 2 R such that

L(R, C) |= “� is the unique ordinal such that '(s, x,�)”

Let i 2 ! be large enough so that for all k � i we have that ⇡!
k,k+1(s) = s and

⇡!
k,k+1(�) = �. For k � i let Bk be the set of ordinals defined by:

⌘ 2 Bk if, there is p 2 BM!

k

�0
,

such that

p ||�BM

!

k

�0 ||�col(!,<�
M

!

k

!

2 ) L(Ṙ, Ḟ) |= “⌘̌ is the unique ordinal such that '(s, ẋ, ⌘̌)”

Here ẋ is the name for the generic object associated to the extender algebra BM!

k

�0
,

Ṙ and Ḟ are the symmetric reals and the tail filter associated to the collapse
respectively. By construction we have that R and C can be realized as Ṙ[G] and
Ḟ [G], for some M!

k -generic G.

M0 M1 M2 · · · Mi · · · M1

M1
0 M1

1 M1
2 · · · M1

i · · · M1
1

M2
0 M2

1 M2
2 · · · M2

i · · · M2
1

...
...

... · · ·
...

...
...

M!
0 M!

1 M!
2 · · · M!

i · · · M!
1

⇡+
1,0 ⇡+

1,2

⇡1
0,1 ⇡1

1,2

⇡2
0,1 ⇡2

1,2

⇡!
1,2⇡!

0,1

⇡1
0

⇡!
0,1

⇡1
1

⇡2
1

⇡1
0

⇡2
0

⇡1
2

⇡2
2

⇡1
i

⇡2
i

Intuitively Bk is the set of “all possible values for �”. Note that as BM
k

�0
is �Mk

0 -c.c.

we have that Bk has order type less than �Mk

0 and if x is generic for this extender
algebra, we have that � 2 Bk. For � and k as above define �(�, k) to be the unique
� such that � is the �-th element of Bk and define ⇠(�) = ⇡+

k,1(�(�, k))
Claim 1: � 7! ⇠(�) is well defined (i.e. independent of k )
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proof of Claim 1. Let Mk0 and Mk1 be two candidates for the definition
of ⇠(�). Without loss we may assume Mk0 �+ Mk1 , also by elementarity and the
fact that � gets fixed by ⇡+

k0,k1
we have that ⇡+

k0,k1
(�(�, k0)) is the unique � such

that � is the �-th element of Bk1 , that is

⇡+
k0,k1

(�(�, k0)) = �(�, k1)

Which in turn implies that ⇠(�) does not depend on k.
⇤

To finish note that for �0 < �1 < ↵ we have ⇠(�0) < ⇠(�1) < �M1
0 , this implies

↵  �M1
0 . Since ↵ was an arbitrary ordinal below ⇥ we conclude ⇥  �M1

0 . ⇤

Lemma 60. Suppose that N0 and N1 are countable ⌃-iterates of M]
!2 , Gi is Ni-

generic for col(!,�Ni

!2 ) and L(Ri,Fi) are the associated derived models in the sense
of 2.3.

Then given x 2 R0 \ R1 we have

hL(R0,F0), x, T
0
ni ⌘ hL(R1,F1), x, T

1
ni,

where T i
n is the theory of n indiscernibles for L(Ri,Fi).

Proof. Fix x as in the hypotheses. Then there exist k 2 !2 such that for

i = 0, 1 we have x 2 RN
i

[G
i

��Ni

k

]. Fix c0 < c1 < · · · < cn�1 indiscernibles for
L(R0,F0), L(R1,F1) and L(R, C). Let ' be a formula and assume L(R0,F0) |=
'(x, c0, . . . , cn�1). We will see that L(R, C) satisfies the same formula. By homo-
geneity of the collapse we have that

||�
col(!,<�

N0
!

2 )

N0[G��N0
k

]
L(Ṙ, Ḟ) |= '(x̌, č0, . . . , čn�1)

Now in V col(!,(2c)+) we can iterate N0 above �N0
k to realize L(R, C) as a derived

model (see Lemma 45). Picking c0, . . . cn large enough we get that

L(R, C) |= '(x, c0, . . . , cn�1)

By symmetry of the argument we cannot have L(R1,F1) |= ¬'(x, c0, . . . , cn�1),
which completes the proof. ⇤

We have the following HOD analysis result.

Theorem 61. Suppose M]
!2 exists and its iteration strategy is (2c)+-universally

Baire. Then the following are the same model.

(1) HODL(R,C)

(2) L[M1,⌃ � X]
(3) L[M1,�]

Proof. Note that by the discussion after Lemma 57 we have that L[M1,⌃ �
X] ✓ HODL(R,C) . By Lemma 58 we have that L[M1,�] ✓ L[M1,⌃ � X]. So, it
is enough to show that HODL(R,C) ✓ L[M1,�]. By Theorem 3.1 in [25] we have
that HODL(R,C) = L[B] for some B ⇢ ⇥L(R,C) definable in L(R, C). Let us fix ' a
formula such that

L(R, C) |= '(�) if and only if, � 2 B

We will show that B 2 L[M1,�]. Let � < ⇥, then by lemmas 52, 53 and 59 there
exists P a suitable initial segment of a ⌃-iterate of M]

!2 such that ↵(P ) = 1 and
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for some natural number n, there is �̄ 2 H(P, Tn) such that ⇡(P,T
n

),1(�̄) = �. Let
us define  (u, v, w) to be the formula

“(u, v) 2 D and w 2 u and '(⇡(u,v),1(w))”

We have

L(R, C) |= '(�) i↵ L(R, C) |=  (P, Tn, �̄)

i↵ L(R⇤,F) |=  (P, T ⇤
n , �̄), by Lemma 60

i↵ L(R⇤,F) |=  (M�
1, T ⇤

n ,�), factoring through M�
1

i↵ L(R⇤,F) |= '(�(�))

But then L[M1,�] can compute L(R⇤,F) |= '(�(�)) using the homogeneity of the
collapse. Hence B 2 L[M1,�] ⇤

Also for an arbitrary µ ⇢ P(P!1(R)) such that L(R, µ) |= AD+ !1 is R-
supercompact we can define the corresponding Dµ. Let M1,µ be its direct limit
(see for example Theorem 3.13. and subsequent discussion in [25]). Furthermore
by [25] we have the following result.

Theorem 62. Suppose L(R, µ) |= AD+ !1 is R-supercompact. Then

HODL(R,µ) = L[M1,µ,⌃µ]

where ⌃µ is defined in L(R, µ) using the corresponding definition given in Lemma
57.

Let us fix a µ as in the discussion above from now on. Note that the construc-
tion recovering HOD can be relativized to any particular real y as follows. The
existence of M]

!2 implies the existence of M]
!2(y) and so one has HODL(R,C)

y =
L[M1,µ(y),⌃µ(y)], where M1,µ(y) is the direct limit of

Dµ(y) = {H(P,A) |P is a strongly A-iterable y-mouse and A 2 ODL(R,C)
y }.

And ⌃µ(y) is the strategy whose domain consists of finite full stacks of trees on
M�

1,µ(y) that are in

M1,µ(y)|(�
M1,µ

(y)
!2 )

and ⌃µ(y) picks branches b such that respect every A⇤ for A 2 ODL(R,µ)
y . We define

A⇤ in L(R⇤,F), the model given by a generic filter over M1,µ for the collapse up
to the sup of its Woodins. The crux of the main theorem of this section is the
following observation.

Note that by Lemma 37 we have that PC(R) = Pµ(R). This implies that the
notion of suitability is the same in L(R, C) and L(R, µ). The notion of ordinal
definability might however be di↵erent. Define T µ

n to be the theory of n many
indiscernibles of L(R, µ).

We have that for any n there is k such that T C
n W T µ

k , and vice versa, for any
n there is a k such that T µ

n W T C
k . From now on let us fix a real number x that

codes all of these reductions in a natural way2. If P is a suitable initial segment

2 Fix z 7! h(z)iii2! a recursive bijection between R and R! and fix x such that given n 2 ! there
exists i and j naturals such that (x)i codes a continuous reduction witnessing T µ

n W T C
k (for

some k) and the similarly (x)j codes a reduction T C
n W T µ

k (fore some other k).
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of a ⌃x-iterate of M]
!2(x) then by Lemmas 45 and 51 we have that P is strongly

T C
n -iterable. Furthermore as x 2 P by Lemma 5.9 of [17] we have that P captures

T µ
n for every natural n. Moreover we have that if x codes a reduction T µ

n W T C
k

then for any i < o(P ), ⌧PT µ

n

,i
2 H(P, T C

k ) and moreover every T C
k -iteration of P is

also a T µ
n iteration. The following lemma will show that as in the case of L(R, C)

the pairs of the form (P, T C
n ) are dense in Dµ in the sense of Lemma 53. In other

words.

Lemma 63. Suppose L(R, µ) |= AD+ !1 is R-supercompact. Let A be ODL(R,µ)
x

and P is an x-mouse that is A-iterable. Then there is a natural number n and a
suitable initial segment of a correct iterate of M]

!2(x), say Q, that is A�T C
n -iterable,

⌧QA 2 H(Q, T C
n ) and is an A-iterate of P .

Proof. Here just note that {T C
n |n 2 !} is Wadge cofinal in the Wadge hier-

archy of L(R, µ). Also for every n we have that T C
n is ODL(R,µ)

x . We can then apply
Lemma 54 and comparison to get the desired Q. ⇤

Theorem 64. Suppose that L(R, µ) |= AD+ !1 is R-supercompact. Then for a

Turing cone of y 2 R we have that HODL(R,µ)
y = HODL(R,C)

y .

Proof. Using the previous Lemma, the proof of Theorem 55 follows in the

same way giving that M1,µ(x) = M+
1(x)|�M

+
1(x)

!2 . But then Theorem 55 gives that
M1(x) = M1,µ(x). Hence the covering limits agree. Now, we turn to see that the
strategies agree as well.

Claim: ⌃µ,x = ⌃x when restricted to the relevant trees 3.

Proof of the Claim. We will prove inductively that if ~T is a stack of n
trees, and is according to both ⌃x and ⌃µ,x then these strategies pick the next
branch the same way. Note that by the definitions of ⌃x and ⌃µ,x we have that

⌃x(~T ) = b if and only if ~T _b is an T C
n

⇤
-iteration on M�

x for all n 2 ! (here again

the key fact is that the ⇠
M�

x

T C
n

and the ⇠
M�

x

T µ

n

are cofinal in �
M�

x

o ). As we noted above

this means that ~T _b is a T µ
n

⇤-iteration for all n 2 !, in other words ⌃µ,x(~T ) = b,
which finishes the proof of the claim. ⇤

But then this implies HODL(R,C)
x = HODL(R,µ)

x by Theorem 64. Note also that
if y �T x then the analogous results relative to y is still valid. This completes the
proof.

⇤

Proof of Theorem 1. First lets suppose that ⌃ is (2c)+-universally Baire,
so all the previous results of this section hold. By Theorem 64 we can fix a real x
such that HODL(R,µ)

x = HODL(R,C)
x . Then, by Theorem 24 we have that

L(R, µ) = HODL(R,µ)
x (R) and HODL(R,C)

x (R) = L(R, C),
which clearly implies L(R, C) = L(R, µ).

Now, if ⌃ is just an !1 + 1-iteration strategy, but not necessarily universally
Baire. Pick � such that V� reflects enough set theory, and let N � V� be countable
and H its transitive collapse. Then we are in the same situation as when proving

3 We refer as ⌃x the strategy given by Lemma 57 and ⌃µ,x the one given in L(R, µ).
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Proposition 25. Hence the result follows word by word from the proof of Proposition
25. ⇤





CHAPTER 4

The AD+DCR Case

We give in this Chapter a proof of Theorem 4. We will first assume AD+ and
for contradiction suppose that the theorem does not hold and then we reflect this
statement to a Suslin co-Suslin set. Then we can use [22] and [10] to construct
models with Woodin cardinals and run a version of the last chapter’s arguments.
We start by noting some preliminary facts. Lastly we show how to reduce the
hypotheses to AD+DCR

Lemma 65. Suppose V = L(P(R)) + AD+ and let µ be a filter such that L(R, µ)
satisfies AD+ !1 is R-supercompact. Then Pµ(R) 6= P(R).

Proof. Otherwise we have that V = L(P(R)) believes there is a supercompact
measure on P!1(R). Also V = L(R, µ), so by Theorem 9.103. of [29] (Theorem 15
here) L(R, µ) |= ADR but this is impossible since we have L(R, µ) |= ⇥ = ✓0. ⇤

From now on we will also assume that V |= ⇥ = ✓0, as otherwise there exists
a non-tame mouse and hence M]

!2 exists and it is iterable so the results of last
section would hold. Since ⇥ = ✓0 we have that, in particular, DC holds in V . We
now prove the first approximation to our main result

Theorem 66. Suppose V = L(P(R)) + AD+. Then there is at most one model
of the form L(R, µ) satisfying AD+ !1 is R-supercompact. Moreover if such model
exists then the unique such model is L(R, C) where C is the club filter on P!1(R).

Proof. Suppose that there is µ ✓ P(P!1(R)) such that L(R, µ) |= AD+
!1 is R-supercompact. Let µ be chosen such that Pµ(R) is the minimal (in that
given any ⌫ such that L(R, ⌫) |= AD+ !1 is R-supercompact then we have that
Pµ(R) ✓ P⌫(R)). Note that by Lemma 65 we have that there is a set of reals A

such that L(R, µ) is definable from parameters in L(R, A) and moreover by AD+ we
have (R, µ)] 2 L(R, A). Now by Theorem 11 and minimality of µ we may assume
that A is Suslin and co-Suslin.

Let us work from now on in L(R, A). By minimality of µ we get that (R, µ)] is
Suslin and co-Suslin in L(R, A). The presence of (R, µ)] implies trivially the exis-

tence of N = (M1,µ)
]. Here we identify N with the least active mouse extending

M1,µ. Let � be ⌃L(R,µ)
1 and ~B a self-justifying system sealing Env(�). Let us fix

⇣ to be the largest Suslin cardinal in L(R, A).

Claim 1: Env(�) ⇢ Lp(R)

Proof of Claim 1: Let B 2 Env(�). First, note that B is in L⇣(P⇣(R)).
So, for any � 2 P!1(R) we have that B \ � 2 M� where M� = HOD

L
⇣

(P
⇣

(R))
{B,�}[� .
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By the definition of Env we have that B \ � 2 ODL(R,µ)
{�,A}[�, and so by mouse

capturing in L(R, µ) we have that B \ � 2 Lp(�). Define M� C Lp(�) to be the
least initial segment of Lp(�) having B\� as an element. Note that M� 2 M� and
M� |= “M� is countably iterable” because the unique iteration strategy for M� is
definable.

Also the club filter C is an ultrafilter on P⇣(R). So, we can define M =Y

�2P
!1

M�/C, where the functions of this ultraproduct are f : P!1(R) !
Q

�2P
!1

M�

and f 2 L⇣(P⇣(R)). Note that by [24], C is normal and countably complete. Then
we have that ⌃1- Los holds, since L⇣(P⇣(R)) satisfies ⌃1-replacement. Let M =
[� 7! M�]C ; we claim that M believes “M is countably iterable”. To see this let M̄
be a countable transitive hull ofM, then we have that M̄ 2 � for club-many �. Also
[� 7! M̄]C = M̄ (by countable completeness of C). Now by ⌃1 - Los we have that
for club-many �, M̄ is a countable hull of M� and so M� |= “M̄ is !1-iterable”.
Let ⌃� be the unique iteration strategy of M̄, then the function � 7! ⌃� is in
L⇣(P⇣(R)) and is such that M� |= (HC,⌃�)“ |= ⌃�is an !1 strategy for M̄”. By
 Los, again, we get that M |= “M̄ is !1-iterable”.

Also, B = [� 7! B \ �]C hence B 2 M. Note that in L(R, A), M is actually
countably iterable, so we have MC Lp(R) and so B 2 Lp(R). ⇤

Arguing as in the proof of the Claim in Lemma 37 we then get that Env(�) =
Pµ(R). Let ~B be a self-justifying system sealing Env(�). Recall that N captures

every B in ~B, say via ⌧B . Define then

M = HullN ({⌧NB |B 2 ~B}).
Here we think of M as the transitive collapse of this Hull. Then we have that M
is !1 + 1 iterable and so M]

!2 exists and is !1 + 1-iterable.

Claim 2: L(R, C) is a model of AD+ !1 is R-supercompact and the only such
model.

Proof of Claim 2. Here we use the results of Section 2. The key point is
that the iteration strategy for M]

!2 might not extend to big generic collapses. For
this though we use instead a countable elementary substructure of L↵(R, A), where
↵ is such that L↵(R, A) reflects enough set theory. Let N � L↵(R, A) be countable
and elementary such that M]

!2 2 N (here we use that DC holds in V ). Let H̄ be
the transitive collapse of N . Then as in the proof of Proposition 7 the results of
Section 2 give that H̄ models “L(R, C) satisfies AD+ !1 is R-supercompact”, but
then N does and so does V .

The same argument combined with the results of Section 3 will show that
since M]

!2 exists L(R, C) is the unique model of AD+ !1 is R-supercompact. This
concludes the proof. ⇤

⇤
Let us mention that the key fact about AD+ we used in the proof of Theorem

66 is that given µ such that L(R, µ) |= AD+!1 is R-supercompact, then one can
reflect the existence of such a µ to the Suslin co-Suslin part of a model of the form
L(R, A), where A is a set of reals. This is particularly useful as then one can take
ultraproducts using the club filter. In the absence of AD+ this can be a little bit
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more tricky, but we show how to overcome this di�culty and get the proof of the
result under AD+DCR.

Proof of Theorem 4. First let us assume AD+ holds, and then we will use
this proof to get a proof under AD+DCR. Suppose that there are µ and ⌫ such that
L(R, µ) and L(R, ⌫) are models of AD+ !1 is R-supercompact. We may assume
with no loss that V = L(R, µ, ⌫) and ⇥ = ✓0, as otherwise there is a non-tame
mouse 1.

Note that the proof of Lemma 37 holds in this case too, so Pµ(R) = P⌫(R).

Claim: P(R) is strictly larger that Pµ(R).

Proof of the Claim. Otherwise we have that P(R) = Pµ(R) = P⌫(R). We

can fix then an ODL(P(R)) tree T that projects to a universal ⌃2
1. Following [25]

we let D = {hdi | i 2 !i | 8i 2 ! di is a ⌃2
1 degree and di < di+1}. We recall in the

following lines the definition of the auxiliary measures µ̄ and ⌫̄ on D.
For A ✓ D, let S ⇢ ON be an 1-Borel code for A, then

A 2 µ̄ i↵ 8⇤µ�L[T, S](�) |= “AD+ +� = R and 9(;, U) 2 P̄(;, U) ||� Ġ 2 AS”

Where P̄ is the usual Prikry forcing using ⌃2
1-degrees in L[S, T ](�) and the Martin

measure (see section 6.3 of [3]), also Ġ is the name of the corresponding Prikry
sequence and AS is the interpretation of the set of reals coded by S.

By results of [25] we have:

• For any S ⇢ ON we have that 8⇤µ�L[T, S](�) |= “AD+ +� = R”.
• Whether A 2 µ̄ does not depend on the code S.
• Let A ✓ P!1(R) and for d 2 D let

�d = {y | there are i and x such that y  d(i)}.

Then we have that if Ā = {d 2 D |�d 2 A}

A 2 µ if and only if Ā 2 µ̄.

Let us recall the construction of the Prikry Forcing done in Section 2 of [25];
we however, will alternate using µ and ⌫ when choosing measure one sets. More
precisely, given X ✓ Dn+1 we say X 2 Un if

8⇤µ̄~z(0)8⇤⌫̄~z(1) · · · 8⇤µ̄~z(n� 1)8⇤⌫̄~z(n) (h~z(i) | i < n+ 1i 2 X)

We also define P as follows. Conditions will be pairs (p, ~U), with ~U(n) 2 Un for all

n 2 ! and such that p = h~di | i < ni is a sequence of elements in D, such that ~di is in

L[x, T ] for any (all) x 2 ~di+1(0) and it is countable there. We say (q, ~W ) P (p, ~U)
if q = p_r and r_s 2 ~U(n + k) for all k, and s 2 ~W (k). As in Section 6 of [3]
we will have that P has the Prikry property, which is to say that given a forcing
statement � and a condition (p, ~U) 2 P, there is ~W such that (p, ~W ) decides �.
We summarize the facts of this forcing that we will use (see [25]).

1 Here L(R, µ, ⌫) is constructed by induction as follows. L0(R, µ, ⌫) = R, for ↵ 2 ON we let
L↵+1(R, µ, ⌫) be the collection definable sets over (L↵(R, µ, ⌫),2, ⌫\L↵(R, µ, ⌫), µ\L↵(R, µ, ⌫))
and taking unions at limit stages.
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• For a given set a that admits a well order rudimentary in a, there is a

cone of reals x such that HODL[T,x]
T,a |= !

L[T,x]
2 is Woodin. For a real x we

let �(x) = !
L[T,x]
2 . And for a ⌃2

1-degree d, we let �(d) = �(x) for any (all)
x 2 d.

• Given h~di | i < ni 2 Dn, we let

Q0(~d) = HODL[~d0,T ]
~d0,T

| sup{�(d0(n)) |n 2 !},

and

Qi+1(~d) = HODL[T,~d
i+1]

Q
i

,~d
i+1,T

|(sup{�(di+1(n)) |n 2 !}).

• Given G generic for P define g =
S
{p | (p, ~U) 2 G for some ~U}. Let Qi(g)

be Qi(g � i). Then L[[i2!Qi(g), T ] has !2 many Woodin cardinals.

• If �i = {x | 9i, n(x 2 ~di(n))} then the tail filter F generated by �i is such
that L(R,F) |= AD+ !1 is R-supercompact.

Let us fix G a V-generic filter for P and let F be its associated tail filter. We
claim that L(R, µ) = L(R,F) = L(R, ⌫). For this, suppose that A 2 F \ V , we
will show A 2 µ. Otherwise we have A /2 µ, let (p, ~U) ||� A 2 F . Let ~W be
defined as ~W (2n) = ~U(2n) \ D \ Ā, and ~W (2n + 1) = ~U(2n + 1) for n 2 ! (here
Ā is the translation to of A to D as defined before). But then it is clear that
(p, ~W ) ||� A /2 F , a contradiction. Hence L(R, µ) = L(R, ⌫) and so V = L(R, µ)
which is impossible. ⇤

Hence P(R) is strictly larger than Pµ(R), and we can choose A ✓ R such that
L(R, µ) and L(R, ⌫) are definable (from parameters) in L(R, A) and hence the result
follows from Theorem 66.

Now, assume AD+ does not hold, then we have that Pµ(R) is strictly smaller
than P(R) (because AD+ holds in L(R, µ)). Let � be {A ⇢ R | L(R, A) |= AD+}
by Theorem 9.14. of [29] we have that L(R,�) |= AD+. We have two cases. If �
strictly contains Pµ(R), then we have that L(R, µ) is definable from parameters in
L(R,�) and hence one can work in L(R,�) and the theorem follows from Theorem
66.

If � = Pµ(R), then � 6= P(R) and, by Theorem 9.14 of [29] again, we get
L(R,�) |= ADR, and so L(R, µ) |= ADR, which is a contradiction.

⇤



CHAPTER 5

The ZFC case without M]
!2

This chapter can be seen as a continuation of Chapter 3. We remind the reader
that in this case M+

1 does not exists as the existence of M]
!2 is not assumed.

However, if L(R, µ) is a model of AD+!1 is R-supercompact then HODL(R,µ) =
L[M1,µ,⌃µ] (see Theorem 61), where M1,µ is the direct limit of the internal
system Dµ, with partial order � and maps ⇡µ

(P,A)(Q,B). For technical reasons that
will be clear later we will consider subsystems of this system. We say that a
set B of ODL(R,µ) sets of reals is Wadge cofinal in P(R)L(R,µ) if and only if for
every A 2 P(R)L(R,µ) there is a B 2 B with A W B. M1,µ can be computed
using B as follows. Note that by Lemma 54 given any (P,A) there is a B 2 B
and Q, an A-iterate of P , such that Q is strongly A � B-iterable, and moreover
H(Q,A�B) = H(Q,B).

Definition 67. DB
µ is the set of (P,B �A) 2 Dµ such that

(1) B 2 B and A 2 ODL(R,µ)

(2) A W B, and
(3) H(Q,A�B) = H(Q,B).

By the observations before Definition 67, given B Wadge cofinal in P(R)L(R,µ)

we have that DB
µ is a directed system, and its direct limit is exactly M1,µ.

Lemma 68. Let L(R, µ) |= AD+ !1 is R-supercompact and suppose that B ⇢
ODL(R,µ) is Wadge cofinal in P(R)L(R,µ). Then the direct limit of DB

µ is M1,µ.

Now, we have the main ingredients to start the path for Theorem 5. Let us
prove our first approximation to the main result.

Lemma 69. If L(R, µ) and L(R, ⌫) are both models of AD+ !1 is R-supercompact
and P(R)L(R,µ) = P(R)L(R,⌫). Then M1,µ = M1,⌫ .

Proof. Let us define � to be P(R)L(R,µ). First, by Corollary 39 we have that
L(R,�) |= ⇥ = ✓0. In other words ODL(R,�) is Wadge cofinal in �. Note also that
if A is an ODL(R,�) set then it is also ODL(R,µ) and ODL(R,⌫). We will conclude the
proof of the lemma by constructing an isomorphism � : M1,µ ! M1,⌫ .

Let z 2 M1,µ. Then by Lemma 53 there exist a B 2 �, A 2 ODL(R,µ) and
z̄ 2 H(P,B) such that �µ

(P,A�B),1(z̄) = z. Note that (P,B) 2 D⌫ (as the notion

of suitability is the same in both models). Now, we can define �(z) = �⌫
(P,B),1(z̄).

This map clearly respects the membership relation so we need to see that it is well
defined and surjective.

Claim 1: � is well defined:

Proof of Claim 1. Suppose that for i = 0, 1 there are (Pi, Ai � Bi) 2 D�
µ

and zi 2 H(Pi, Bi) such that �µ
(P

i

,A
i

�B
i

),1(zi) = z.

39
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Because �µ
(P

i

,A
i

�B
i

),1(zi) = z for i = 0, 1, by directness of Dµ there ex-

ists P3 and z3 2 P3, such that (P3, A1 � B1 � A2 � B2) 2 Dµ, and if �i =
�µ
(P

i

,A
i

�B
i

),(P3,A1�B1�A2�B2)
, then �i(zi) = z3. Note that �i is in particular a

Bi-iteration of Pi. Note also that since P(R)L(R,µ) = P(R)L(R,⌫) then the strat-
egy giving raise to �i is also in L(R, ⌫) and L(R, ⌫) |= “�i is a Bi-iteration and
(P3, B1 � B2) 2 D⌫”. In other words �⌫

(P
i

,B
i

),(P3,B1�B2)
(zi) = z3, which implies �

assigns a unique value to z. ⇤
Claim 2: � is surjective:

Proof of Claim 2. Let z 2 M1,⌫ then by Lemma 53 (applied in L(R, ⌫))
there exists a B 2 �, A 2 ODL(R,⌫) and z̄ 2 H(P,B) such that �⌫

(P,A�B),1(z̄) = z.

Now (P,B) 2 Dµ hence �⌫
(P,B),1(z̄) is in the range of � but of course the identity

on P is a B-iteration, hence �⌫
(P,B),1(z̄) = �⌫

(P,A�B),1(z̄). Hence z is in the range
of � as wanted. ⇤

These claims finish the proof of the Lemma.
⇤

Theorem 70. If L(R, µ) and L(R, ⌫) are both models of AD+ !1 is R- supercom-
pact and P(R)L(R,µ) = P(R)L(R,⌫). Then L(R, µ) = L(R, ⌫).

Proof. By Lemma 69 we have that M = M1,µ = M1,⌫ and moreover as
⌃µ and ⌃⌫ can be defined by M and � = P(R)L(R,µ) = P(R)L(R,⌫) via the same

formula, then ⌃µ = ⌃⌫ . So, by Theorem 64 we have HODL(R,µ) = HODL(R,⌫).
Finally by [29] we have that

L(R, µ) = HODL(R,µ)(R) = HODL(R,µ)(R) = L(R, ⌫)
⇤

We will conclude the proof of our main Theorem by showing that it is the
case that models of “AD+ !1 is R-supercompact” share the same sets of reals. We
begin with the following approximations.

Lemma 71. Suppose that L(R, µ) models “AD+ !1 is R-supercompact” and A ✓
P!1(R) is club in L(R, µ). Then A 2 µ

Proof. Otherwise let A be a counterexample. As the statement “A is club
and A /2 µ” is ⌃1, by Theorem 23 we have that there is such a counterexample in
L�2

1
(R, µ). But again, Theorem 23 implies that µ restricted to L�2

1
(R, µ) is the club

filter (of L(R, µ)) restricted to L�2
1
(R, µ), contradiction. ⇤

We have the following refinement of Lemma 34 that we will use. The proof is
essentially the same except we use Lemma 71 instead of assuming that µ or ⌫ is
the club filter.

Lemma 72. Suppose that L(R, µ) and L(R, ⌫) are models of “AD+ !1 is R-
supercompact”. Then either P(R)L(R,µ) ✓ P(R)L(R,⌫) or P(R)L(R,⌫) ✓ P(R)L(R,µ).

Proof. Suppose neither P(R)L(R,µ) ✓ P(R)L(R,⌫) nor P(R)L(R,⌫) ✓ P(R)L(R,µ).
Let � = P(R)L(R,µ) \ P(R)L(R,⌫). By Theorem 3.7.1 of [26] L(R,�) |= ADR.
Hence by a theorem of Solovay, if C is the club filter defined in L(R,�), then
L(R, C) |= AD+ !1 is R-supercompact (see [12]). Moreover, by Lemma 71, C ✓ µ.
This implies L(R, C) = L(R, µ), a contradiction. ⇤
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Theorem 73. Suppose that L(R, µ) and L(R, ⌫) are models of “AD+ !1 is R-
supercompact”. Then P(R)L(R,µ) = P(R)L(R,⌫).

Proof. Suppose for a contradiction that there are µ and ⌫ such that L(R, µ)
and L(R, ⌫) are models of “AD+ !1 is R-supercompact”, but P(R)L(R,µ) is strictly
contained in P(R)L(R,⌫).

Claim 1: L(R, µ) is definable (from parameters) in L(R, ⌫).

Proof of Claim 1. Let us call � = P(R)L(R,µ). Recall that, by Corollary
39, L(R,�) is a model of ⇥ = ✓0 and hence ODL(R,�) is Wadge cofinal in P(R)L(R,µ).
Now, in L(R, ⌫) we can define D to be the set of (P,A) such that A 2 ODL(R,�)

and P is a �-suitable and strongly A-iterable mouse. Note that D ✓ Dµ, and is
directed. Let M be its direct limit, then essentially by the argument in Lemma
69 we have that M = M1,µ. Also � 2 L(R, ⌫) hence HODL(R,µ) is definable in

L(R, ⌫), and so since L(R, µ) = HODL(R,µ)(R) it is definable in L(R, ⌫) as well. ⇤
Note that as L(R, µ) ⇢ L(R, ⌫), there is A ⇢ R in L(R, ⌫) such that L(R, A)

can define L(R, ⌫) (any A ⇢ R of Wadge rank ⇥(µ) would su�ce). Moreover, as
L(R, A) 6= L(R, ⌫), its easy to see that A] exists and is in L(R, ⌫). So (R, µ)] 2
L(R, ⌫) (here by (R, µ)] we mean the theory of indiscernibles for L(R, µ)). Also,
recall that by Theorem 23 we have that L�2

1(⌫)
(R, ⌫) �1 L(R, ⌫) (where �21(⌫)

is the least stable of L(R, ⌫)). Hence there is a sharp (R, µ̄)], for a model of
“AD+ !1 is R-supercompact”, in L�2

1(⌫)
(R, ⌫). By the the proof of Lemma 37 we

have that M]
!2 exists and is !1 + 1-iterable in L(R, ⌫). Hence the proof of Theo-

rem 1 will imply that if C is the club filter of L(R, ⌫) then L(R, C) is a model of
“AD+ !1 is R-supercompact” but as in the proof of Lemma 72 this is a contradic-
tion.

⇤





CHAPTER 6

Complementary Results

6.1. µ is not necessarily the club filter

In this section we prove that ZFC plus the existence of a model of the form
L(R, µ) where µ does not contain only elements containing a club is relatively
consistent. Here there is a delicate line as by [8] the existence of M]

!2 implies that
L(R, C) |= ZF+AD+ !1 is R-supercompact and hence the unique such model.

Theorem 74. Suppose that L(R, µ) is a model of ZF+ AD+ !1 is R supercompact
as witnessed by µ. Then there is a universe M of ZFC, with µ 2 M but L(R, µ) 6=
L(R, C).

Proof. Let N = L(R, µ) be as in the statement, we will work in N . Fix
A 2 µ such that N |= “A does not contain a club” and consider the following club
shooting poset PA. Conditions are:

• p = h�i | i < �i for some � 2 !1,
• for all i 2 �, �i 2 P!1(R) \A,
• for i < j, i, j 2 � we have �i ✓ �j , and

• for i 2 � limit �i =
[

j<i

�j

The order is reverse inclusion. Let G be N generic for PA, then by assumption
P!1(R) \ A is stationary and so M = N [G] has the same reals numbers as N and
M has a well-order of the reals hence M |= ZFC. Also µ 2 M and A 2 µ but does
not contain a club (in M) as P!1(R) \ A is in the club filter, yet L(R, µ) |= ZF+
AD+ !1 is R supercompact as witnessed by µ. ⇤

6.2. Two Di↵erent Models of ZF+!1 is R-supercompact

By results of the previous section there is at most a model of ZF+ AD+ !1

is R-supercompact of the form L(R, µ), where µ ⇢ P(P!1(R)). A natural question
is whether models of ZF+ !1 is R-supercompact are also unique. We show this is
not the case if there is a measurable  of Mitchell order 2. Let us recall that the
existence of a model of ZF +!1 is R-supercompact is exactly that of a measurable
(see [25]). Let us start by reviewing a construction found in [25].

Let  be a measurable cardinal, U a normal -complete filter over  and G
be V-generic for col(!, < ). Let jU = V :! Ult(V,U) = M be the ultra-power
embedding. Note that if H is such that G ⇥ H is M -generic for col(!, < jU ())
one can extend jU to j+U : V [G] ! M [G][H]. We define then F on P!1(RV [G]) as
follows. A 2 F if and only if

RV [G] 2 j+U (A), for any H, such that G⇥H ⇢ col(!, < jU ()) is M -generic

43
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The fact of [25] we will use is that L(RV [G],F) is a model of ZF+ !1 is R-
supercompact.

Proof of Theorem 6. Suppose there is such a measurable and without loss
of generality that there is no Woodin cardinal. Then by maximality of the the core
model K (as defined in [2]) we have that K has a measurable of Mitchell order 2.
For now we will work in K.

Now, let un fix U0 and U1 the measures on  such that

B := {↵ 2  |↵ is measurable} 2 U1 \ U0.

Let j0 : K ! M0 and j1 : K ! M1 be the ultrapower maps. Also let G be
a K-generic filter for col(!, < ) and, let us define R⇤ = RK[G]. Then given any
H0 such that G⇥H0 is M0-generic for col(!, < j0()), there is a unique extension
j+0 : K ! M0[G][H0] of j0. Let us define P0 to be the factor poset such that
col(!, < j0()) = col(!, < )⇥ P0 and define F0 (in K[G]) as follows:

A 2 F0 if and only if, ||�M0
P0

(R⇤ 2 j+0 (A))

In other words, A 2 F0 if for any H0 ⇢ P0 and M0-generic, then R⇤ 2 j+0 (A).
We also define F1 in the analogous way. Also by the discussion above, we know
that L(R⇤,Fi) is a model of ZF+ !1 is R⇤-supercomapct (for i = 0, 1). Now since

KK = K by generic absoluteness we also have that KK[G] = K, besides !K[G]
1 = ,

also by Theorem 1.1. of [2], we have that K| is definable in L(R⇤) and hence
B 2 L(R⇤,F0) \ L(R⇤,F1). Let us define B⇤ as

B⇤ = {� 2 P!1(R⇤) | sup� 2 B}.
Here the sup� denotes the supremum of the order types of the reals in � coding

a well order (under some reasonable coding). Then from the definition of B and
the fact that supR⇤ =  we have that B⇤ 2 F1 \ F0 so L(R⇤,F0) and L(R,F1) are
di↵erent models of the theory ZF+ !1 is R⇤-supercompact. ⇤
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