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Abstract

Mode-resolved thermal transport across semiconductor heterostructures
by

Simon Lu

Chair: Professor Alan J. H. McGaughey

Thermal transport across three-dimensional Lennard-Jones superlattices, two-dimensional

heterostructures of graphene and hexagonal boron nitride (hBN), and in C60 molecular crys-

tals is studied atomistically. The first two systems are studied as finite junctions placed

between bulk leads, while the molecular crystal is studied as a bulk. Two computational

methods are used: molecular dynamics (MD) simulations and harmonic lattice dynamics

calculations in conjunction with the scattering boundary method (SBM).

In Lennard-Jones superlattice junctions with a superlattice period of four atomic mono-

layers at low temperatures, those with mass-mismatched leads have a greater thermal con-

ductance than those with mass-matched leads. We attribute this lead effect to interference

between and the ballistic transport of emergent junction vibrational modes. The lead effect

diminishes when the temperature is increased, when the superlattice period is increased,

and when interfacial disorder is introduced, and is reversed in the harmonic limit.

In graphene-hBN heterostructure junctions, the thermal conductance is dominated by

acoustic phonon modes near the Brillouin zone center that have high group velocity, pop-

ulation, and transmission coefficient. Out-of-plane modes make their most significant con-

tributions at low frequencies, whereas in-plane modes contribute across the frequency spec-

trum. Finite-length superlattice junctions between graphene and hBN leads have a lower

thermal conductance than comparable junctions between two graphene leads due to lack of

transmission in the hBN phonon band gap. The thermal conductances of bilayer systems

differ by less that 10% from their single-layer counterparts on a per area basis, in contrast

to the strong thermal conductivity reduction when moving to from single- to multi-layer
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graphene.

We model C60 molecules using the polymer consistent force-field and compute the single

molecule vibrational spectrum and heat capacity. In the face-center cubic C60 molecular

crystal at a temperature of 300 K, we find three frequency peaks in the center-of-mass

translations at 20, 30 and 38 cm−1, agreeing with the average frequencies of the three

acoustic branches of the frozen phonon model of the same system and suggesting that a

phonon description of center-of-mass translations. We use both direct method and Green-

Kubo MD simulations to predict the thermal conductivity of the molecular crystals at

a temperature of 300 K. We find that the thermal conductivity of the molecular crystal

is 20 to 50% lower than that of a reduced order model where only molecular center-of-

mass translations are present, suggesting that molecular vibrations and rotations act as

significant scattering sources for the center-of-mass phonons.
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Introduction

1.1 Motivation

Technological applications in areas such as microelectronics, solid state lighting, solar en-

ergy, and thermoelectrics require heterostructures composed of different crystalline semi-

conductors and molecules. Tuning the relative length scales and geometric configurations

of the constituent materials allows design for specific electronic and electron transport

properties in these devices. Their performance, however, is limited by the scattering of

electrons with atomic nuclei, which generates heat. The dissipation of this heat is critical

to practical device operation, hence, understanding the mechanisms of vibrational thermal

transport in such systems is of technological importance [1, 2].

Thermal transport in heterostructured and multi-component systems is determined in

large part by the transmission of atomic vibrations across interfaces and junctions formed

by the constituent materials, where A the characteristic area of the junction [3]. In a system

composed of two different crystals, such as a superlattice, a junction can be an interface

between the two crystals [4, 5, 6]. In low-dimensional semiconductor materials such as

graphene and hexagonal boron nitride, junctions between the two materials form possible

building blocks to band gap graphene devices [7, 8]. In a large unit cell (LUC) crystal,

such as face-centered cubic (FCC) C60, the weak effective bond between neighboring C60

cages may be treated as a junction [9].

1



1.2 Objectives

1.2.1 Overview

The thermal transport property of a material can be summarized by its thermal conduc-

tivity κ or its thermal conductance G,

κ = − q
A

(
dT

dx

)−1
(1.1)

G = − q

A∆T
. (1.2)

where q is the heat flow throw a material, A is its cross-sectional area, T is the temperature

field, x is any Cartesian direction, and ∆T is a finite difference in temperature along that

direction. Eq. 1.1 is the Fourier law and Eq. 1.2 defines the thermal conductance G. Both

are empirical, linear response models relating a temperature difference or temperature

gradient to heat flow. Thermal conductivity κ is an intrinsic property, and is best used

to describe bulk, homogenous materials. G is an extrinsic property, and is best used

to describe objects of finite extent, such as a junction. Both k and G are macroscopic

quantities that can be computed from the underlying microscopic dynamics of a solid [10,

11].

The objective of this thesis is to understand thermal transport across junctions between

crystalline semiconductors and within C60 molecular crystals. We apply molecular dy-

namics simulations, harmonic lattice dynamics calculations, and mode-resolved scattering

boundary method calculations to compute the thermal conductance of junctions between

(i) three-dimensional semiconductors and (ii) two-dimensional semiconductors. We also

apply molecular dynamics simulations to compute the thermal conductivity of molecular

crystals. Our calculations provide fundamental insight into the thermal transport proper-

2



ties in semiconductors and molecular crystals at the phonon-mode level.

1.2.2 Three-dimensional semiconductor junctions

Three-dimensional semiconductors are widely-used in technological applications such as

solid state lighting, microelectronics, and thermoelectric energy conversion. In particular,

semiconductor superlattices are popular due to the dependence of their electronic and

thermal properties with the superlattice period [5, 6]. We investigate the thermal transport

across junctions of 3D semiconductor superlattices. We also identify finite-size effects that

arise from both the superlattice period and the overall size of the junction.

1.2.3 Two-dimensional semiconductor junctions

Two-dimensional materials (e.g., graphene) have received considerable research attention

due to their unique physical properties. Examples include the quadratic behavior of

the phonon dispersion at the Brillouin zone-center and very high thermal and electrical

conductivities[12, 13]. Recently, researchers have fabricated heterostructures of graphene

and other 2D materials for the purposes of tuning the electronic band gap[14, 15]. We

study the transport of phonons across junctions between graphene and hexagonal boron

nitride (hBN).

1.2.4 Molecular crystals

Molecular crystals are crystals formed not by atoms but instead by molecules. An example

is the C60 molecular crystal, where C60 molecules arrange themselves in cubic structures.

These materials exhibit crystal-like to amorphous-like thermal transport depending on the

temperature. The low temperature behavior is like that of an atomic crystal, where plane

wave motion of the molecules’ centers of mass dominates thermal transport. However, near

3



room temperature, the individual C60 molecules rotate freely about their centers of mass,

causing a transition to amorphous-like thermal transport [9, 16]. In order to characterize

the effect of the orientational disorder, we will study the thermal conductivity in C60

molecular crystals with varying degrees of freedom frozen out.

1.3 Methods

Two atomistic methods will be used for in this work. The first is molecular dynamics

simulation, where numerical time integration of the classical equations of motion is used to

predict the trajectories of atoms given some initial condition [17]. The second is harmonic

lattice dynamics[18], where atoms are assumed to (i) sit at their equilibrium positions and

(ii) be coupled to other atoms via harmonic springs. Their dynamics are determined by

solving the coupled spring-mass system. While both quantum and classical population

distributions can used in harmonic lattice dynamics, molecular dynamics simulations are

inherently classical and cannot account for quantum population effects. This is limita-

tion of the molecular dynamics method makes it unsuitable for room temperature study

of materials with high Debye temperature, where quantum population effects significantly

impact the thermal transport properties [19, 20]. In both harmonic lattice dynamics and

molecular dynamics, the interaction between atoms must be specified. In molecular dynam-

ics, the interatomic interactions may be fully anharmonic and may come from empirical

potentials such as Lennard-Jones[21] or Tersoff [22] or from ab initio density functional

theory calculations [23, 24]. In harmonic lattice dynamics, the interatomic interactions

can only be specified up to the second-order force constant (i.e., the Hooke’s law spring

constant). These force constants may be taken from either empirical potentials or from

DFT calculations. The limitation of harmonic lattice dynamics to second-order force con-

stants limits its ability to describe real crystals, as phenomenon such as thermal expansion
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and finite thermal conductivity within bulk crystals requires the presence of cubic- and

higher-order force constants [19, 20]. We overcome this limitation by studying only ther-

mal conductance using the harmonic lattice dynamics approach, where the theory allows

prediction of thermal conductance from only second-order force constants.

Both molecular dynamics and harmonic lattice dynamics are applied to study junction

thermal conductance in separate ways. With molecular dynamics, we use the direct heat

method [25], where a finite heat is applied across the simulation domain and interpolation

of the resultant temperature versus position data is used to extract a thermal conductance

or thermal conductivity. MD simulation with the direct heat method allows us to capture

the finite-temperature effects associated with anharmonic interatomic interactions. With

harmonic lattice dynamics, we use the scattering boundary method [26, 27, 28]. Within the

scattering boundary method, the junction is assumed to connect two bulk crystalline leads.

Bulk vibrational modes (i.e., phonons) of one lead scatter from the junction and are either

reflected or transmitted to the other lead, resulting in a transmission coefficient associated

with each mode. The total transmitted energy flux is calculated for all modes and is used

to compute the thermal conductance. The scattering boundary method has the advantage

of providing mode-level detail and allows the use of quantum statistical distributions.

1.4 Overview

The remainder of the thesis is organized as follows. The theoretical foundations of the

methods utilized in this thesis are discussed in Chapter 2. The basics of atomistic modeling

are discussed. The technique of molecular dynamics is developed, along with the notion

of temperature in molecular dynamics. The procedure necessary to perform direct heat

molecular dynamics simulation is given. Harmonic lattice dynamics is developed for crystal

systems, and the notion of phonon modes and phonons are introduced. Harmonic lattice
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dynamics is then coupled to the Landauer formalism and the scattering boundary method

for computing junction conductance is developed. Symmetry conditions in the scattering

boundary method are considered.

In Chapter 3, superlattice heterostructures of three-dimensional semiconductors are

studied using a representative Lennard-Jones system. The thermal conductance of a su-

perlattice junction is calculated as a function of its length using both direct heat molecular

dynamics and the scattering boundary method, and compared against a thermal circuit

model.

In Chapter 4, heterostructure junctions composed of two-dimensional materials are

studied. Specifically, the thermal conductance of various junctions between graphene and

hexagonal boron nitride is calculated at a temperature of 300 K. The junction types consid-

ered include armchair and zig-zag interfaces, armchair-aligned superlattice junctions, and

bilayer junctions. The contributions to the thermal conductance is mapped at a mode-

resolved level throughout the first Brillouin zone of graphene.

In Chapter 5, the thermal conductivity of the face-centered cubic C60 molecular crystal

is calculated using direct heat molecular dynamics simulations. The bonded interactions

within individual C60 are described by the polymer consistent force field, while intercage

interactions are described by a Lennard-Jones potential. Thermal conductivites predicted

from full-fidelity simulations are compared to thermal conductivities in simulations where

each C60 molecule is represented by a point mass, allowing us to quantify the effect of

both molecular rotation and intracage vibrations on the thermal conductivity. The point

mass interaction is computed by averaging the interaction between two fully defined C60

molecules over all angular configurations.

In Chapter 6, the primary contributions of this thesis are summarized and suggested

directions for further study are presented.
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Theory and methods

2.1 Introduction

In this chapter, we will derive the theoretical underpinnings of and provide practical details

for the two major methods used in this thesis: molecular dynamics (MD) simulations and

the scattering boundary method (SBM). We show that the methods provide two paths

to solving the interacting many-body problem, each under a different set of assumptions.

As a result, we are able to use both MD simulation and the SBM to calculate thermal

transport properties in different regimes.

In order to study thermal transport in solid materials, it is first necessary to develop

a model for the dynamics of the solid. We view a solid as composed of interacting nuclei

and electrons which evolve in time under the Hamiltonian

HSolid = HNuclei + HElectrons + HN-N + HE-E + HN-E . (2.1)

HNuclei and HElectrons are the self-energies of the nuclei and electrons, while HN-N, HE-E,

and HN-E describe their interactions with one another. Since the materials of interest are

electrical semiconductors or insulators, the electron contribution to thermal transport is

ignored, as are the detailed electron dynamics. Instead, we take the Born-Oppenheimer

approximation [20]. That is, we instead recognize that the presence of electrons and their

resultant electric fields serve to screen or modify the interactions between nuclei. Hence,

instead of considering an interacting many-body quantum system involving both nuclei and

electrons, we now have an interacting many-body classical system involving only nuclei.
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This simplification leads to the following Hamiltonian

HSolid = HNuclei + HN-N , (2.2)

We further assume that the nuclei are well approximated as point masses, and HSolid can

be written out explicitly as

HSolid(x1,x2, . . . ,v1,v2, . . .) =
N∑
i

1

2
miv

2
i + HN-N(x1,x2, . . .) (2.3)

=
N∑
i

1

2
miv

2
i + U(x1,x2, . . .) . (2.4)

The xi and vi are the classical phase space variables representing the positions and veloc-

ities of the N nuclei in the system. The first term on the right-hand side is the kinetic

energy of the nuclei, where each nucleus is indexed by i and mi is the mass ith nucleus. The

second term on the right-hand side HN-N(x1,x2, . . .) = U(x1,x2, . . .) is the potential energy

of the internuclear interactions, which is assumed to be velocity independent. The nuclei

are often referred to as atoms and U(x1,x2, . . .) as the interatomic potential or simply the

potential.

Formally, the potential U should include the direct Coulombic interaction between

protons, the screening effect of the electrons, and all quantum effects such as exchange

interaction. Practically, in a computational framework where we aim to model physical

reality as opposed to exactly recreating it, U can range in form from simple analytical

pair potentials to interaction parameters computed from first principals density functional

theory. In this thesis, we use the following potential types: Lennard-Jones (LJ) [21],

Tersoff [22], and Polymer consistent Force Field (PCFF) [29].
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2.2 Molecular dynamics simulations

2.2.1 Formulation

The Hamiltonian in Eq. 2.4 is associated with the following set of equations of motion

mi
dvi
dt

= −∂U(x1,x2, . . .)

∂xi
, (2.5)

where t is time and ∂U/∂xi is the force in direction i. The solution of Eq. 2.5 given an

initial condition will result in the time evolution (or trajectory) {x(t),v(t)} of all of the

atoms. The trajectory can then be used to extract physically relevant quantities, including

thermal transport properties. However, even with the simplifications already made, Eq. 2.4

is still intractable due to two reasons. First, to represent technologically relevant solids,

the number of atoms N can range from thousands to numbers on the order of 1023. Second,

any form of U more complicated than Hooke’s law would make Eq. 2.5 a set of coupled,

non-linear, differential equations, which cannot be solved analytically [20].

The first challenge can be overcome by appropriately selecting a small system that

is representative of the solid. In this thesis, we focus on charge-neutral crystals, which

are well represented by model systems composed of thousands or tens of thousands of

atoms. When coupled with the use of periodic boundary conditions, this choice results in

a tractable system size.

The second challenge can be overcome by numerically integrating Eq. 2.5. The use

of numerical integration to solve for the atomic trajectories in a judiciously chosen model

system is MD simulation. MD simulation is a mature technique with many available

general-use software packages. In this thesis, the Large-scale Atomic/Molecular Massively

Parallel Simulator (LAMMPS) software package [30] is used exclusively to conduct MD

simulations.
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In a MD simulation, time t is discretized into a sequence 0, t1, . . . , tp, where tp = p∆t

and ∆t is the time step. An initial state in phase space is specified as {xi(0),vi(0)} and

the evolution in phase space at future times {xi(t),vi(t)} is approximated by discrete

sequences {xpi ,v
p
i }, where the simulation trajectory xpi is an approximation of the physical

trajectory xi(t
p). In the limit as ∆t→ 0, the phase space sequence approaches the physical

phase space trajectory, {xpi ,v
p
i } → {x(t),v(t)}. Practically, it is impossible to make ∆t

infinitesimal, and the choice of ∆t depends on the characteristics of the interaction potential

U . ∆t is usually chosen to be five to ten times smaller than the period associated with

the highest frequency oscillation present in U . Trial and error is then used to pinpoint the

appropriate time step. A properly chosen ∆t will result in energy conservation to five or

six significant figures during the MD simulation with no drift in the mean energy. The

choice of time step is critical to MD simulations. Too large a time step will cause {xpi ,v
p
i }

to diverge from {x(t),v(t)} and result in an MD simulation that does not represent the

classical equations of motion. Too small a time step will make the simulation unnecessarily

long in terms of computational time.

In addition to the choice of time step, the algorithm used to predict {xp+1
i ,vp+1

i } from

{xpi ,v
p
i } (e.g., the numerical integration scheme) must also be specified. In LAMMPS, the

explicit velocity Verlet algorithm is used. The algorithm goes as follows

xp+1
i = xpi + vpi∆t+

1

2

dvpi
dt

∆t2 (2.6)

vp+1
i = vpi +

1

2

[
dvpi
dt

+
dvp+1

i

dt

]
∆t . (2.7)

In Eqs. 2.6 and 2.7, dvpi /dt and dv
p+1
i /dt are defined according to Eq. 2.5. More details

regarding MD simulations can be found in Ref [17].
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2.2.2 Temperature in MD

In order to predict thermal transport properties from MD simulations, it is necessary to

connect the phase space trajectories {xp+1
i ,vp+1

i } that are calculated by the simulation to

the temperature. The instantaneous temperature T p of a group of N atoms in a three-

dimensional MD simulation is given by

T p =
2

3NkB

N∑
i=1

1

2
miv

p
i
2 , (2.8)

where kB is the Boltzmann constant and the summation on the right-hand side is the

kinetic energy of that group of atoms. Eq. 2.8 is based on the definition of temperature in

the kinetic theory of gasses. Two assumptions are made. First, we assume that the classical

equipartition theorem holds and each quadratic degree of freedom has a heat capacity of

kB/2. Second, in terms of temperature computation, atoms in an MD simulation behave

as a non-interacting ideal gas just as in the kinetic theory of gasses. While U is not only

non-zero, but also has terms beyond quadratic order in most MD simulations, the definition

of temperature given in Eq. 2.8 is one that is convenient to compute and well-established

in the literature. The thermodynamic temperature 〈T 〉 of a group of atoms in an MD

simulation can then be defined as the time-average of the instantaneous temperature over

long time

〈T 〉 =
1

P

P∑
p=0

T p . (2.9)

While formally 〈T 〉 should be computed as an ensemble average over the phase space

variables, it is assumed that the system is ergodic, and that time averaging is equivalent

to phase space averaging. Often times, the same system is initiated from many initial

conditions and the simulations are averaged together for faster convergence of 〈T 〉 and

other thermodynamics quantities.
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2.2.3 Direct heat MD simulation

Once temperature is defined within the framework of an MD simulation, it is possible

to conduct a “computational experiment” by which thermal transport properties can be

extracted in direct analogy to an experiment in a laboratory. The empirical Fourier law,

introduced in one-dimensional form in Eq. 1.1, relates the gradient in temperature field T

to the heat q flowing across a cross-section of area A

q = −κA∇x T (2.10)

via κ, the thermal conductivity tensor [10]. κ is only non-zero on the diagonal elements,

indicating that heat always flows in the same direction as the temperature gradient. It is

often more convenient to write individual equations for each of the on-diagonal elements.

Let κα represent the α−α component of thermal conductivity and let the related thermal

conductance Gα be a property that relates heat flow in the α direction to a finite difference

in temperature, also along the α direction (on occasions when there are no ambiguities,

the α superscript is dropped). The Fourier law can be written along a specific direction as

qα = −καA dT

dxα
(2.11)

qα = −GαA∆αT . (2.12)

Eq. 2.11 defines the intrinsic material property of thermal conductivity κα and is most

appropriate to describe bulk or homogenous materials. Eq. 2.12 defines the thermal con-

ductance of a single object with finite spatial extent and is most appropriate to describe

interfaces or junctions between bulk materials. In both Eqs. 2.11 and 2.12, xα is the

αth Cartesian direction, qα is the heat flux normal to the xα direction, and A is the area

normal to the xα direction. ∆αT is the finite change in the temperature profile along the
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xα direction usually defined across an object of interest, such as an interface. In order

to extract κα or Gα from an MD simulation, we create an atomistic representation of the

material, impose a heat flux within the material, run the MD simulation until the system is

at steady state, and extract the resultant temperature profile using the method discussed

in Sec. 2.2.2. Eqs. 2.11 and 2.12 are then applied to the temperature profile to extract κα

or Gα. This technique is the direct heat method, and is a steady-state, non-equilibrium

method of computing κα and Gα from MD simulation [25, 31]. It is also referred to simply

as non-equilibrium MD (NEMD).

For clarity, assume that the direction xα in Eqs. 2.11 and 2.12 is z. Since the direction

of interest is usually apparent, the superscript z will be left out of κ and G. The simulation

cell has fixed boundary conditions along the z-direction, but is periodic along the x and

y. The sample is a collection of atoms that has a length L along the z-direction and cross-

sectional area A normal to the z-direction. At z = 0 and z = L, layers of fixed atoms are

placed that interact with the remainder of the sample, but themselves have no dynamics.

They exist to prevent the sample from sublimating. In LAMMPS, the fixed atoms can be

created with the fix setforce command. The fixed atoms remain so for the entirety of

the simulation and are excluded from the discussion from this point forward. Immediately

adjacent to the fixed atoms are the reservoir atoms. Without loss of generality, the reservoir

atoms near z = 0 form the hot reservoir, while the reservoir atoms near z = L form the

cold reservoir.

Since both κ and G are temperature-dependent quantities, the MD simulation is initi-

ated by scaling the velocities of all atoms so that the overall distribution of atomic velocities

corresponds to that of the Maxwell-Boltzmann velocity distribution at the desired temper-

ature T [32]. At every time step, the velocities of the atoms are artificially rescaled so that
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their distribution is

D(vα) ∝ exp

(
m̄vα2

2kBT

)
(2.13)

up to a normalization factor. m̄ is the average atomic mass of the system and the index α

ranges over the three Cartesian coordinates. Following the initial scaling of the velocities,

the velocities are rescaled at every time step according to the difference between the actual

instantaneous temperature and the target instantaneous temperature. This rescaling is

not done from a distribution, but is rather performed by computing the difference from

the target kinetic energy for the entire system, and adding or subtracting an even amount

of kinetic energy from each atom. Velocity rescaling is performed for PRescale time steps,

and can be accomplished in LAMMPS using the fix temp/rescale command.

While velocity rescaling allows the entire system to come close to the correct temper-

ature in a short number of time steps, it is artificial and disruptive when compared to

the energy-conserving dynamics described by Eq. 2.5. In addition, it may not achieve the

desired equilibrium Maxwell-Boltzmann velocity distribution. Instead, the Nose-Hoover

thermostat [33], a less disruptive method of achieving thermal equilibrium, is used follow-

ing the rescaling for PN-H time steps. The Nose-Hoover thermostat alters the equations of

motion given in Eq. 2.5 to

mi
dvi
dt

= − ∂U

∂(x1,x2, . . .)
xi + η(T )vi(t). (2.14)

The velocity-dependent second term on the right-hand side of Eq. 2.14 represents the inter-

action of the system with a large bath at temperature T . The strength of the interaction

and the temperature of the bath is determined by the damping parameter η(T ). The aim

of the Nose-Hoover thermostat is to alter the dynamics of the atoms as to emulate the

existence of equilibrium in the canonical ensemble. Specifically, it aims to match the fluc-
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tuations in the system’s kinetic energy to that of the canonical ensemble. When Eq. 2.14

is integrated, the system is gradually brought into thermal equilibrium at temperature T .

Nose-Hoover requires more time steps than velocity rescaling but produces a more stable

equilibrium velocity distribution, hence it is used for fine temperature adjustment after

velocity rescaling. The Nose-Hoover thermostat can be activated in LAMMPS using the

fix nvt command. Following the Nose-Hoover thermostat, the equations of motion are

returned to those in Eq. 2.5, and the system is evolved in an energy-conserving manner for

PRelax time steps (accessible in LAMMPS using the fix nve command).

After the system is at thermal equilibrium at temperature T , the transient portion of

the simulation begins. For the next PTransient time steps, a heat flux is imposed in the

sample along the z direction by removing ∆E from the kinetic energy of the cold reservoir

and adding ∆E to the kinetic energy of the hot reservoir at every time step. Doing so

conserves the total energy in the system, but establishes a heat flow

qz =
∆E

∆t
. (2.15)

Establishing the heat flow be accomplished in LAMMPS using the command fix heat

twice in succession, once to remove heat and once to add heat. Throughout this period,

apart from the addition and subtraction of heat from the reservoirs, the entire sample is

evolved according to Eq. 2.5.

Following the transient period, the system is at steady state and the data collection

portion begins. During this portion, no changes are made to the simulation dynamics. Since

the objective is to extract either dT/dz or ∆zT , is it necessary to divide the sample into

groups of atoms according to their position in the z-direction. If the sample is crystalline,

a natural grouping would be crystal planes normal to the z-direction. For each atomic

group (corresponding with an average z location), the temperature T (z) is calculated
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using Eq. 2.8 and recorded. To avoid excessive data output, it is best to create running

averages of temperature that are rarely output. This is achievable in LAMMPS using the

fix ave/time command. After data output is performed for PCollection time steps, the

simulation concludes. A linear fit to the extracted temperature profiles T (z) can be used

to extract k according to Eq. 2.11. Likewise, G can be extracted by inspection according

to Eq. 2.12.

The choice of system size parameters L and A, the choice of heat qz, as well as the

time steps necessary for each portion of the simulation PRescale, PN-H, PRelax, PTransient, and

PCollection are critical to the success of the simulation. A should be chosen so that the

center-to-edge dimension on a plane normal to z at least exceeds the cut-off distance of the

interaction potential U . Convergence can performed in both L and A so that the predicted

k or G is invariant to changes in the system size. If convergence cannot be achieved

within tractable system sizes, extrapolation may be necessary. Similarly, the predicted

k or G should be invariant to changes in qz. Typically, qz should be selected so that

the overall change in temperature across the sample is no more than 10% of the average

system temperature T . Further, qz should not be made so large that the temperature

profile T (z) becomes non-linear. Non-linearities in T (z) are often times unavoidable near

the hot and cold reservoirs, as the addition and substraction of ∆E at each time step is

physically artificial. Linear fits to T (z) should avoid portions near the reservoir where non-

linearities are present. PTransient must be chosen to be large such that the system is at steady

state prior to data collection. PTransient depends on the thermal diffusivity of the sample,

but since that is often times unknown, PTransient must be determined by trial and error.

Though parameters will vary for different systems, PRescale = PN-H = PRelax = 200, 000,

PTransient = 1 × 107 and PCollection = 3 × 106 serve as good starting points. The workflow

for direct head MD simulations is summarized in Fig. 2.1.
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Rough Temperature Adjustment

Use velocity rescaling to bring entire system 

close to desired average temperature.

Fine Temperature Adjustment

Use Nose-Hoover thermostat to ensure

atomic velocity distribution is equilibrium.

Relax System

Allow system to evolve in energy-

conserving fashion.

Transient Run

Develop temperature profile by removing

and adding to/from the reservoirs

Collect Data

After steady-state, collect temperature

data using position-separated bins.

.

Generate Structure

Create the desired, relaxed structure

for input into the MD simulator

Process Data

Average the outputted temperature

data and fit to the Fourier law
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Figure 2.1: Workflow for direct heat MD simulations. Blue boxes indicate pre- and post-
simulation tasks, while black boxes indicate tasks completed within the MD simulation
program.
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2.3 Harmonic lattice dynamics calculations

2.3.1 Formulation

While MD simulations are a robust method of overcoming the difficulties associated with

Eq. 2.5, an alternate method known as harmonic lattice dynamics (HLD) is applicable

to solids that are crystalline. A crystal is an infinite periodic arrangement of unit cells

(UCs), where each UC contains atoms that have equilibrium positions fixed relative to

the origin of the UC. The dynamics of the atoms involve only small deviations away from

the equilibrium positions. Since a perfect crystal is both infinite in extent and perfectly

periodic, no real material is exactly described by this model, however, it provides a very

useful starting point.

Previously in Eq. 2.4, each atom was assigned an index i that ranged up to N , the

total number of atoms in the system. In a crystal, the total number of atoms is infinite

and this indexing scheme is not useful. Instead, the index i will range only through the

atoms within a single UC, while N represents the total number of atoms in a UC. In a

three-dimensional crystal, the UC is replicated endlessly throughout space in a periodic

fashion via three primitive translation vectors a1, a2, and a3, such that any integer linear

combination of the translation vectors gives the origin of a UC, called a lattice vector.

Each UC will be given a single index n or l (one can imagine that as the countably infinite

UCs are built up from the translation vectors, each one is assigned a countably infinite

index). The nth lattice vector (or equivalently the origin of the nth UC) rn is

rn = aa1 + ba2 + ca3 , (2.16)

where a, b and c are integers (the exact mapping from a, b, and c to n is irrelevant). Since

each UC is indistinguishable from the next, any arbitrary lattice vector may be selected as
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the origin and be referred to as the central cell. The equilibrium position of the ith atom

within the nth UC will be denoted as rni. Since atoms are assumed to deviate slightly from

their equilibrium positions, the variable xni(t) is now the time-dependent deviation of the

ith atom in the nth UC from its equilibrium position. The xni differ from the xi used in

Sec. 2.2 only by a translation rn, and hence make equally valid phase space variables. The

velocities vni do not differ from vi, as the UC origins rn do not move in time.

In addition to assuming the existence of a periodic lattice, we also assume that the

interatomic potential U is harmonic, that is, U is at most quadratic in the phase space

variables. This is akin to assuming that the interactions between atoms are governed by

Hooke’s law springs. The equations of motion in Eq. 2.5 are modified to

mi
dvni
dt

= −Φni,lj xlj , (2.17)

where Φni,lj is the matrix of second-order force constants between atom i in unit cell n and

atom j in unit cell l. It is best to define Φni,lj by its α-β matrix elements Φαβ
ni,lj individually.

Φαβ
ni,lj =

∂2U

∂xαni∂x
β
lj

, (2.18)

where U is the interatomic potential in Eq. 2.5. The commutativity of the two partial

differentiations in Eq. 2.18 ensures that Φni,lj is Hermitian (e.g., self-conjugate). This is a

consequence of Newton’s third law. Using Φαβ
ni,lj, it is possible to write Eq. 2.17 as scalar

equations involving the individual Cartesian components of xn,i

mi
dvαni
dt

= −
∑
l,j

Φαβ
ni,lj x

β
lj . (2.19)

In Eq. 2.19, the summation is performed over all atoms j in all unit cells l. vαi , and xβj
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represent the α and β Cartesian components of the velocity and position vectors of the ith

and jth atoms. The assumption of harmonic interactions ensures that no non-linear terms

can appear in the equations of motion Eq. 2.19. Indeed, Eq. 2.19 now represents a set of

coupled, homogenous, linear, second-order, ordinary differential equations that are exactly

solvable. The numerical integration used in MD simulation (see Sec. 2.2.1) is no longer

necessary, and we proceed with an analytical solution. We make the ansatz that the xni

evolve periodically in time so that

xαni(t) =
1
√
mi

uαni exp (−iωt) , (2.20)

where ω is the frequency of oscillation, i is the imaginary unit, and uni is the time-

independent portion of xni. The factor 1/
√
mi on the right-hand side is placed for symmetry

later in the derivation. Substitution of Eq. 2.20 into Eq. 2.19 results in

ω2uαni =
∑
l,j

1
√
mimj

Φαβ
ni,lj u

β
lj . (2.21)

The equations have been transformed from a set of coupled differential equations (Eq. 2.19)

to a set of coupled difference equations (Eq. 2.21). However, because the index n must

range over the countably infinite UCs in a crystal, Eq. 2.21 represents an infinite set of

difference equations. Fortunately, the periodicity of the crystal allows us to reduce the

dimensionality of the problem from infinite to 3N (e.g., three times the number of atoms

in a UC). We make another ansatz stating that uni must be spatially periodic in the lattice

vectors rn, in accordance to the periodicity of the crystal

uαni = eαi exp (ik∗rn) . (2.22)
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k is the spatial frequency or wavevector and ei is the portion of uni that is independent

of the UC position. rn is any lattice vector (see Eqn. 2.16). Furthermore, because all UCs

are identical, the force constant matrix must depend only on the difference between lattice

vectors, and not their absolute positions

Φαβ
ni,lj = Φαβ

ij (rl − rn) . (2.23)

Substitution of Eqs. 2.22 and 2.23 into Eq. 2.21 results in

ω2eαi =
∑
j

1
√
mimj

[∑
l

Φα,β
ij (rl − rn) exp

[
(ik†(rl − rn)

]]
eβj , (2.24)

which is a set of 3N difference equations. The quantity within the square brackets on the

right-hand side of Eq. 2.24 is the wavevector-dependent dynamical matrix. Without loss

of generality, we choose UC n to be the central cell such that rn = 0. The elements of the

dynamical matrix Dαβ
ij then can be written in the illustrative form

Dαβ
ij (k) =

1
√
mimj

∑
l

Φαβ
ij (rl) exp (ik†rl) . (2.25)

Eq. 2.25 reveals that the dynamical matrix is the discrete spatial Fourier transform of the

force constant matrix Φαβ
ij from the lattice vector variable rl to the wavevector variable k.

While the summation over l should formally cover UCs very far from the central UC (e.g.,

rl →∞), potentials U used for non-ionic dielectric solids go to zero at finite distance due

to cut-offs. Hence, Φαβ
ij (rl) goes to zero for |rl| greater than the cut-off distance of U and

the Fourier transform summation is convergent. In practice, the summation can simply be

truncated at the cut-off distance without loss of fidelity.

Dαβ
ij can be composed into 3× 3 pairwise dynamical submatrices Dij that describe the
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interaction between atoms i and j within a unit cell

Dij(k) =


D11
ij . . . D13

ij

... . . . ...

D3,1
ij . . . D33

ij

 . (2.26)

Using the notation in Eq. 2.25, Eq. 2.24 can be rewritten compactly as

ω2eαi = Dαβ
ij (k) eβj . (2.27)

If we concatenate the elements eαi to form a 3N -dimensional vector describing the time- and

lattice vector-independent displacements of an entire UC (called the polarization vector)

e = [e11, e
2
1, e

3
1, e

1
2, . . . , e

3
N ] (2.28)

and similarly concatenate the 3× 3 pairwise dynamical submatrices Dij into the 3N × 3N

dynamical matrix D

D(k) =


D11 . . . D13

... . . . ...

D31 . . . D33

 , (2.29)

we can rewrite Eq. 2.25 as

D(k) e = ω2 e , (2.30)

which is a 3N × 3N Hermitian eigenvalue problem where the squared frequencies ω2 are

the eigenvalues and the UC complex polarization vectors e are the eigenvectors. Due to

the hermiticity of D, the eigenvectors e are of unit norm such that e†e = 1. Eq. 2.30 can

be solved using any hermitian eigenvalue solver. The open source C++ library Eigen [34]

was used for all data presented in this thesis, while ScaLAPACK [35] is a parallelized but

22



less user-friendly alternative.

Solution of Eq. 2.30 at a given k produces 3N eigenvector-eigenvalue pairs [e(k), ω(k)]ν ,

where the branch index ν ranges through all pairs. Each pair corresponds to a plane wave

solution to the equations of motion (Eq. 2.17) of the form

xk,ν(r, t) = e(k, ν) exp
[
ik†r− iω(k, ν)t

]
, (2.31)

where x is the time- and lattice vector-dependent atomic displacement from equilibrium

for an entire UC (e.g., x = [xn1, xn2, . . . , xnN ] for any n). Solutions of the form given in

Eq. 2.31 are called phonon modes. Due to the linearity of Eq. 2.17, any solution can be

written as a complex-coefficient linear combination of phonon modes, so that the general

solution of Eq. 2.17 is

xGeneral(r, t) =

∫
FBZ

dk
3N∑
ν=1

A(k, ν) e(k, ν) exp
[
ik†r− iω(k, ν)t

]
, (2.32)

where the coefficients A(k, ν) can be selected to suit any initial condition. Eq. 2.32

indicates that the phonon modes form a complete basis for the dynamics of a crystal.

Instead of integrating the equations of motion as in MD simulation, the objective of an

HLD calculation is to determine all the phonon modes of a system. Unlike continuous

systems, the range of k required for the phonon modes to be complete basis is not infinite

but is instead a finite region in k-space called the first Brillouin zone (FBZ). The geometric

configuration of the FBZ differs for different configurations of crystal. More information

can be found in Refs. [18, 19, 20].

Since all phonon modes are plane waves (Eq. 2.31), properties attributed to systems

described by wave equations can also be attributed to crystals. Specifically, the dispersion
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relation ω(k, ν), and the related group velocity vg(k, ν)

vg(k, ν) = ∇k ω(k, ν) (2.33)

are of great importance. The group velocity is the propagation velocity of a wave packet

composed of many phonon modes. More importantly, it is the velocity at which energy

propagates, and hence is used as the velocity of phonon modes for the purposes of energy

flux computation in particle models of phonon transport.

2.3.2 Temperature in HLD

Before thermal transport properties within crystals can be discussed, the notion of tem-

perature must be introduced into the HLD/phonon mode framework. To do this, we

must quantize the classical derivation presented in Sec. 2.3.1 and introduce the individual

phonon, which is the quasi-particle representing one quantum of energy within a phonon

mode.

The procedure of second quantization is applied to the Hamiltonian in Eq. 2.4, which,

under the HLD assumptions, becomes

HHLD =
∑
n,i

p2ni
2mi

+
∑
n,i

∑
j,l

Φni,jlxnixjl . (2.34)

The derivation involves performing spatial Fourier transforms similar to what is done in

Sec. 2.3.1 and introducing creation and annihilation operators for each phonon mode.

Details of the diagonalization of a quantum one-dimensional crystal can be found in Ap-

pendix B. Details of the complete derivation of phonons from quantum mechanics can be

found in most solid state physics textbooks [20], but is particularly clear in Refs. [36, 37].

The quantization of the electromagnetic field shares many similarities with the second
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quantization of phonons, and can be found, for example, in Ref. [38].

Each phonon mode is revealed to behave as independent quantum harmonic oscilla-

tors, thus the energy of each phonon mode is given by the quantum harmonic oscillator

eigenvalue spectrum

E(k, ν) = ~ω(k, ν)

[
n(k, ν) +

1

2

]
, (2.35)

where ~ is the reduced Planck constant, ω(k, ν) is the frequency of the phonon mode as in

Eq. 2.30 [20]. n(k, ν) is the occupation number, representing the number of phonons in the

phonon mode at k and ν. Phonons are bosons, thus it is possible for each phonon mode

to contain a unlimited number of phonons. Further, it is possible to define temperature in

the context of the crystal system using Bose-Einstein statistics. For a crystal in thermal

equilibrium at temperature T , the occupation number n(k, ν) depends only on the phonon

mode frequency n(k, ν) = n(ω(k, ν)) and is given by the Bose-Einstein distribution nBE

nBE(T, k, ν) =
1

exp
[
~ω(k, ν)
kBT

]
− 1

. (2.36)

Combining Eq. 2.36 with Eq. 2.35, the energy of a crystal at temperature T is

ECrystal(T ) =

∫
FBZ

dk
3N∑
ν=1

~ω(k, ν)

[
nBE(T, ω(k, ν)) +

1

2

]
. (2.37)

2.3.3 Crystal thermal conductivity

Phonons as introduced in Sec. 2.3.2 allow more parallels to be drawn between crystals and

the kinetic theory of gasses. If phonons are thought of as particles that travel at their

group velocity vg(k, ν) and carry energy ~ω(k, ν), then we can define the heat q in the
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phonon basis and rewrite the Fourier law (Eq. 2.10) for crystals as

1

V

∫
FBZ

dk
3N∑
ν=1

~ω(k, ν) vg(k, ν) n(k, ν) = −κ∇xT , (2.38)

where V is the volume of a UC. Note that n(k, ν) is not the equilibrium Bose-Einstein

distribution, since the introduction of a temperature gradient moves the crystal out of

equilibrium. The task of computing κ involves solving for the steady-state non-equilibrium

distribution function n(k, ν) under an applied temperature gradient. This can be done by

modeling the phonon particle dynamics using the Boltzmann transport equation

vg(k, ν)† ∇xn(k, ν) =

[
∂n(k, ν)

∂t

]
Coll

. (2.39)

The partial derivative on the right-hand side of Eq. 2.39 accounts for changes to n(k, ν)

due to scattering of phonons. For the perfect crystal described in Sec. 2.3.1, phonons do

not scatter. However, the perfect crystal must be modified to better describe real crystals.

In doing so, the finite boundaries of the crystal cause boundary scattering. Impurities

and defects are also a source of scattering. The presence of terms in the interatomic

potential U of cubic and greater order in the phase space variables causes anharmonic

or phonon-phonon scattering. These deviations away from the perfect crystal cause the

phonon modes (Eq. 2.31) to decay in time into other phonon modes. The central challenge

in solving Eq. 2.39 is to solve for the phonon scattering dynamics with all possible sources.

This technique is called anharmonic lattice dynamics (ALD) and is done by introducing

boundaries, impurities, anharmonicity, etc., as perturbations to the perfect crystal. More

information on the practical application of ALD to research topics can be found in Refs. [39,

40, 41]. For pedagogical treatment of phonon-phonon interactions, Ref. [42] and [43] are

invaluable. Discussion of phonon transport is best in the classical text by Ziman [44],
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but is also covered in the survey text Ref. [11]. Since most of phonon transport theory is

based on analogues to the kinetic theory of gasses, Reif [32] is a good reference for classical

thermodynamics and transport.

2.4 Scattering boundary method

2.4.1 Landauer formalism

While ALD as discussed in Sec. 2.3.3 provides a framework for calculating the thermal

conductivity κ of a crystal, the Landauer formalism allows the calculation of thermal

conductance G of junctions connecting crystals. The physical picture provided by the

Landauer formalism is akin to that of the kinetic theory of gasses. Suppose that a junction

joins two bulk crystals L and R, and that the center of the junction is located at z = 0.

Though the junction has finite spatial extent, as z → −∞, we approach a pure crystal

of type L, called the left lead. Similarly, as z → ∞, we approach a pure crystal of

type R, called the right lead. Since the leads are very far away from the junction, the

phonon picture as described in Sec. 2.3 is a valid and complete description of the lead

dynamics. Much like in Sec. 2.3.3, the lead phonons behave as particles that travel at their

group velocities vg(k, ν), each carrying energy ~ω(k, ν). The leads L and R are held at

equilibrium separately at temperatures TL and TR. Without loss of generality, assume that

TL > TR such that the net heat across the junction is

qNet = qL→R + qR→L , (2.40)
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where the L to R heat qL→R and the R to L heat qR→L are defined as

qL→R(TL) =
1

VL

∫
FBZL

dk
+z∑
ν

~ωL(k, ν) vg,L(k, ν)†ẑ nBE(TL, k, ν)αL→R(k, ν) (2.41)

qR→L(TR) =
1

VR

∫
FBZR

dk
−z∑
ν

~ωR(k, ν) vg,R(k, ν)†ẑ nBE(TR, k, ν)αR→L(k, ν) . (2.42)

Subscripts of L and R in Eqs. 2.41 and 2.42 indicate summation over the respective FBZs

of the two leads, while the limits of the summation on the right-hand sides indicate only

phonons traveling in the positive z (negative z) direction are considered for crystal L (R).

Only the z-components of group velocity are considered. Eqs. 2.41 and 2.42 differ slightly

from the heat as defined in Eq. 2.38 by the addition of the transmission coefficient αL→R

(αR→L) on side L (side R). The transmission coefficient ranges from zero to unity and is a

property of the junction describing the fraction of phonons at phonon mode k and ν that

transmit across the junction. The Landauer formalism was originally developed for electron

transport [45]. Ref. [46] gives a thorough survey of both the Landauer formalism and other

formalisms in the context of electron transport, which has many parallels with phonon

transport. Ref. [11] discusses Landauer specifically in the context of phonon transport.

In the case that TL = TR = T , qNet must vanish, hence qL→R(T ) = −qR→L(T ). This

allows us to express qR→L(TR) purely in terms of the phonon modes of the left lead

qR→L(TR) = −qL→R(TR) = − 1

VL

∫
FBZL

dk
+z∑
ν

~ωL(k, ν)vg,L(k, ν)†ẑnBE(TR, k, ν)αL→R(k, ν).

(2.43)

Substitution of Eq. 2.43 into Eq. 2.40 gives

qNet =
1

VL

∫
FBZL

dk
+z∑
ν

~ωL(k, ν) vg,L(k, ν)†ẑ
[
nBE(TL, k, ν)− nBE(TR, k, ν)

]
αL→R(k, ν) .

(2.44)
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Eq. 2.44 represents the net heat crossing the junction from the left lead to the right lead

using only the phonon modes of the left lead. Combining Eq. 2.44 with the Fourier law

for G (Eq. 2.12) and assuming that the temperature difference between the leads TL − TR

is infinitesimally small, we arrive upon the Landauer formula for the phonon thermal

conductance G of the junction

G(T ) =
1

VL

∫
FBZL

dk
+z∑
ν

~ωL(k, ν) vg,L(k, ν)†ẑ
∂nBE(T, k, ν)

∂T
αL→R(k, ν) , (2.45)

where T is the temperature of the junction, T = TL ≈ TR. The partial derivative of the

Bose-Einstein distribution with respect to temperature on the right-hand side of Eq. 2.45

comes from the first-order term of the limit as TL − TR goes to zero. A schematic of the

Landauer formalism is shown in Fig. 2.2

While Eq. 2.45 is compact and physically intuitive, there are limitations. First, we

assume that the temperature difference between the left and right leads is infinitesimal

such that the distribution functions are well approximated by the equilibrium Bose-Einstein

distribution at a single temperature. The Landauer formalism as stated in Eq. 2.45 is thus

not suitable for finite temperature differences, nor does it account for the non-equilibrium

phonon population distributions that must exist in the leads in order for a finite heat to

flow. Some work has be done in attempting to use non-equilibrium distributions with

the Landauer formalism (see Ref. [4]), but a complete solution must simultaneously solve

Eq. 2.45 as well as the ALD problem (discussed in Sec. 2.3.3) for the non-equilibrium

distributions in the left and right leads.

Second, G is computed as a summation over the phonon modes in Eq. 2.45 and the

transmission coefficients αL→R are properties of individual phonon modes. The summation

can be interpreted as an assumption that the simultaneous scattering of many phonons

from many different phonon modes act independently, and the scattering of a particular
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L R

Junction

... ...

z = 0

Figure 2.2: A schematic of a junction system in the Landauer formalism. Bulk leads L
and R are connected via the junction, but the leads are positioned far from the junction.
Phonon scattering events, as represented by the transmission event of a single phonon into
two, occur within the junction.

phonon mode does not impact that of others. Eq. 2.45 assumes that, when crossing the

junction, phonons interact only with the junction and not with each other, and so the

Landauer formalism is referred to as a model for ballistic transport. While phonon-phonon

events may be accounted for in the scheme used to compute αL→R, all phonon-phonon

events must still be reduced to a single transmission coefficient for each phonon, much like

the relaxation time approximation that can be used in ALD.

2.4.2 Scattering boundary equations

All terms within Eq. 2.45 can be determined by solving the HLD problem (Eq. 2.30) asso-

ciated with crystal L with the exception of the transmission coefficients αL→R. Calculation

of αL→R requires consideration of the structure and dynamics of the junction itself and

cannot be ascertained by considering only the lead dynamics. The scattering boundary

method (SBM) is a method to compute the transmission coefficient α(κ, ν). It is an HLD-

like method that was first formulated by Lumpkin et al.[26] as an analytical solution to

an interface between two one-dimensional chains. This formalism was extended to two

dimensions by Young and Maris[47] and to three dimensions by Zhao and Freund[28]. It

has since been applied to silicon/germanium[4, 27] and Lennard-Jones[48] systems. The

SBM is theoretically equivalent[49] to the atomistic Green’s function method[50].

The SBM computational domain, shown in Fig. 2.3, is an atomistically-defined junction
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with left and right boundaries (representing semi-infinite leads) that is treated as a classical

spring-mass system. The required inputs to the SBM are the bulk phonon modes of the left

and right leads, the atomic structure of the junction, and the second-order (i.e., harmonic)

force constants between the atoms within the junction. The formulation presented here is

applicable to one-, two-, and three-dimensional systems [28].

The SBM computes α(κ, ν) by solving Newton’s second law of motion in the steady

state after phonon mode (κ, ν) is incident on the junction from the left boundary. The

phonon modes are treated as plane waves and, because all interactions are harmonic, the

entire system evolves at ω(κ, ν), the frequency of the incident phonon.

For every atom within the junction, the equations to be solved are

− ω2(κ, ν)mixiα =
∑
j,β

Φij
αβ x

j
β , (2.46)

where mi is the mass of atom i, the unknown xiα is the αth Cartesian degree of freedom

of atom i, and Φij
αβ is the second-order force constant between the αth Cartesian degree of

freedom of atom i and the βth Cartesian degree of freedom of atom j. The summation is

over all atoms and their degrees of freedom both in the junction and in the boundaries,

including self-interaction terms involving the on-diagonal force constant element Φii
αα.

In the boundaries, the condition that is needed to represent the incoming and outgoing

phonon modes is a radiation boundary condition [51]. For all atoms in the left boundary,

the unknown atomic degrees of freedom xiα for atoms that interact with the junction are

prescribed by

xiα = e(κ, ν)iα +
L∑

κ′, ν′

r(κ′, ν ′) e(κ′, ν ′)iα δ[ω(κ, ν)− ω(κ′, ν ′)] . (2.47)

Here, e(κ, ν)iα is the eigenvector component of phonon mode (κ, ν) corresponding to the
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αth Cartesian degree of freedom of atom i. The first term on the right hand side represents

the incident phonon mode. Without loss of generality, it is given unit amplitude. The

second term on the right hand side represents a superposition of reflected phonon modes,

where the summation is performed over the phonon modes of the left lead. The delta

function indicates that only reflected modes with the same frequency as the incident mode

are considered. The amplitudes of the reflected waves, r(κ′, ν ′), are unknown.

For all atoms in the right boundary, the unknown atomic degrees of freedom xiα for

atoms that interact with the junction are prescribed by

xiα =
R∑

κ′,ν′

t(κ′, ν ′) e(κ′, ν ′)iα δ[ω(κ, ν)− ω(κ′, ν ′)] . (2.48)

Since the right boundary contains only transmitted modes, the summation is performed

over the phonon modes of the right lead and the unknowns t(κ′, ν ′) are the amplitudes of

the transmitted waves.

Equations (2.46)-(2.48) form a linear system of equations of the form Ax = b that can

be solved for the unknowns xiα, r(κ′, ν ′), and t(κ′, ν ′). The transmission coefficient α(κ, ν)

can then be computed via

α(κ, ν) =
R∑

κ′,ν′

|t(κ′, ν ′)|2 vg,x(κ
′, ν ′)

vg,x(κ, ν)
δ[ω(κ, ν)− ω(κ′, ν ′)] , (2.49)

where vg,x is the phonon mode group velocity in the cross-junction direction. The size of

the boundaries should be chosen to contain enough atoms so that the system is at least

exactly solvable (i.e., A is square). That is, the number of degrees of freedom within the

left (right) boundary should coincide with the number of modes summed over in Eq. (2.47)

[(2.48)].

For reliability, we recommend that a buffer region be made between the boundaries
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Figure 2.3: Schematic representation of the SBM computational cell for an armchair inter-
face indicating the left boundary (red) and right boundary (blue).

and the junction. All atoms within the left (right) buffer region are then subject to both

Eq. (2.46) and Eq. (2.47) [(2.48)]. The addition of the buffer region creates an overdeter-

mined system (i.e., A has more rows than columns) that can be solved using singular value

decomposition.

2.4.3 Symmetry considerations

Within the scattering boundary method (SBM), the equations of motion within the left and

right boundaries are given by Eqs. (2.47) and (2.48). The summations over the reflected

and transmitted modes are performed over the first Brillouin zones of their respective leads.

A numerical solution of these equations would require meshing and summing over a large

number of wavevectors and representing the Dirac delta functions as narrow Gaussians.

The computational load can be decreased by reducing the number of wavevectors considered

to those that (i) satisfy the appropriate geometric condition and (ii) satisfy the frequency

constraint imposed by the delta functions. The implementation of these conditions is

discussed in the following sections.
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2.4.3.1 Crystal momentum conservation

The perfect interface between two leads shown in Fig. 2.3 is aperiodic in the cross-interface

x-direction, but remains periodic in the y-direction along the interface (and the z-direction

for a three-dimensional system). Whether or not the y- and z- period of the interface

match the corresponding bulk periods depends on the interface being studied. Note that the

following discussion pertains only to two- and three-dimensional systems, as the wavevector

condition is trivial in one-dimension. Note also that no specific rule disallowing in-plane to

out-of-plane mode conversion in two-dimensional materials is necessary, as the momentum

conservation accounts for this. It would be trivial, however, to explicitly implement such

a rule.

In the event that the interface periods matches those of the bulk leads, scattering is

specular and

κy(κ
′, ν ′) = κy(κ, ν) (2.50)

κz(κ
′, ν ′) = κz(κ, ν) . (2.51)

That is, all scattered phonon modes have the same wavevector components along the

interface as the incident mode.

In the event that the interface periods are larger than those of the bulk (the case for

all junctions considered in this work), Eqs. (2.50) and (2.51) are modified to

κy(κ
′, ν ′) ≡ κy(κ, ν) (mod 2π/aInt,y) (2.52)

κz(κ
′, ν ′) ≡ κz(κ, ν) (mod 2π/aInt,z) , (2.53)

where aInt,y (aInt,z) is the interface y-period (z-period). Whereas the conditions given by
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Eqs. (2.50) and (2.51) lead to only two planes of constant κy and κz within the first

Brillouin zone upon which scattering might occur, Eqs. (2.52) and (2.53) lead to many,

whose number increases as aInt,y and aInt,z increase. As aInt,y and aInt,z go to infinity

(as would be required for a rough interface) all wavevectors are possible and scattering is

diffuse. Within the context of graphene/hBN, where the Brillouin zone is two-dimensional,

only the first condition [Eq. (2.52)] is considered.

2.4.3.2 Energy conservation

After consideration of the wavevector condition, the possible scattered modes are reduced

to those that lie along certain planes of constant κy and κz. The next step is to select from

each plane the modes that have frequency ω(κ, ν) [28].

The first step is to find the κx’s at a given κy and κz that have a mode at frequency

ω(κ, ν). Let D be the bulk dynamical matrix associated with the lead in question. The

dependence of D on κx is isolated by decomposing D into segments corresponding to the

period in the x direction, ax,

D(κ) = D−,Ne−iNκxax + . . .+ D−,1e−iκxax + D0 + D+,1e
iκxax + . . .+ D+,Ne

iNκxax . (2.54)

There are N unit cell replications in the −x and +x directions relative to the central unit

cell. With this decomposition, D−,i and D+,i depend only on κy and κz. All dependence

on κx is in the complex phase factors. Now treat κx as an unknown parameter and rewrite
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the harmonic lattice dynamics problem as



D−,N D−,N−1 . . . D−,1 01 . . . 0N

I

I

.

.

.

I



v = ξ



0 ω2I−D0 D+,1 D+,2 . . . D+,N

I

.

.

.

I

0



v,

(2.55)

where ξ = exp (iκxax) and

v† =

[
ξ−Ne ξ−(N−1)e . . . ξ−1e e ξe . . . ξ(N−1)e ξNe

]
. (2.56)

Here, 0 and I represent zero and identity matrices of the same dimension as D, blanks

are zeros, and e is the harmonic lattice dynamics polarization eigenvector of the as yet

unknown matching mode. Eq. (2.55) is a generalized eigenvalue problem with eigenvectors

v and eigenvalues ξ. Once the eigenvalues ξ are found, κx can be determined via κx =

−i log (ξ)/ax.

This process is repeated for all planes of constant κy and κz until a complete list of

reflected and transmitted modes is formed. Once this list is formed, Eqs. (2.47) and (2.48)

are simplified to

xiα = e(κ, ν)iα +
L∑
ρ

rρ e(κ
′, ν ′)iα,ρ (2.57)

and

xiα =
R∑
τ

tτ e(κ
′, ν ′)iα,τ , (2.58)

where the ρ and τ index over the reflected and transmitted mode lists. The workflow for

36



Solve HLD problem at k

Compute polarization e(k, ν) and ω(k, �)

for all branches at k.

Inputs

Structures for the left lead, right lead, and 

junction.

Second-order force constants for the left

lead, right lead, and junction.

k-point list  (random sampling 

or FBZ mesh).

Outputs

For each polarization ν at each k-point:

Frequency ω

Group velocity vg

Transmission coefficient α

Integrate Landauer formula with outputs

to compute  G

Select wavevector k.

Select branch ν.

Figure 2.4: Workflow for SBM calculations. Blue boxes represent pre- and post-processing
steps, while black boxes indicate calculations done within the SBM program. Dotted gray
boxes indicate computations that must be repeated for every wavevector, and every phonon
polarization at a wavevector.

SBM calculation is summarized in Fig. 2.4.
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Lennard-Jones superlattice junctions

3.1 Introduction

Semiconductor superlattice nanostructures have received considerable research attention

since their first appearance in the 1970s [5, 6]. They have applications in solid state lighting

and thermoelectric energy conversion due to the size-tunability of their electronic proper-

ties. Within a light-emitting diode, lattice-assisted electron-hole recombination generates

heat, which must be adequately dissipated in order to maintain performance and pro-

long device life. The possibility of tuning superlattice design for low thermal conductivity

provides a potential path to optimizing the thermoelectric figure of merit.

Early experimental measurements of superlattices revealed that their thermal conduc-

tivities were reduced from the bulk thermal conductivities of their constituent materials

[52, 53, 54]. This finding was attributed to (i) reduction of phonon mean free paths within

the layers and (ii) thermal resistance at the internal interfaces. Computational work on

thermal transport within superlattices has been performed using equilibrium [55, 56] and

non-equilibrium [31, 55, 57, 58, 59, 60, 61] molecular dynamics (MD) simulations. MD

studies are limited by classical statistics and are performed on systems for which empirical

potentials are available [e.g., LJ argon, Stillinger-Weber Si-Ge, and Tersoff graphene-BN].

Work has also been done using perturbative anharmonic lattice dynamics calculations,

using force constants from both analytical potentials and from density functional theory

calculations [62, 63, 64].

A minimum in superlattice thermal conductivity with superlattice period length was

predicted using a simple theoretical model by Simkin and Mahan [65], observed computa-
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tionally using both MD and lattice-based computational techniques [55, 60, 61, 66], and

recently observed experimentally by Ravichandran et al. [67]. This minimum is described

as a consequence of the transition between a regime where vibrational wave interference

significantly affects thermal transport (i.e., the coherent regime) and a regime where waves

do not interfere and a particle-like treatment is appropriate [65].

Since superlattices in technological applications are typically grown on substrates and

are finite in length, they differ significantly from the ideal infinite superlattice. Instead, it is

appropriate to treat them as junctions sandwiched between two bulk leads and to associate

the thermal transport through the junction with a thermal conductance. Modeling of

thermal transport across solid-solid interfaces and junctions began in the 1950s [68] but

was limited to simple analytical models (e.g., the acoustic mismatch and diffuse mismatch

models) that could not account for detailed interface geometry [3]. Beginning with Lumpkin

et al. [26], a harmonic lattice-based analytical technique was developed that accounted

for exact interface atomic postions and interactions. This technique was based on the

scattering of incident phonons by the interface [47, 69], was generalized by Zhao and

Freund to arbitrary three-dimensional interfaces [28], and is now known as the scattering

boundary method (SBM). Zhao and Freund studied ideal Si-Ge intefaces and verified the

validity of the SBM against MD studies of interfaces that used wave packets [70]. Other

studies using the SBM focused on the effect of incidence angle on transmission [27] and on

the use of non-equilibrium distribution functions in the leads [4].

The use of non-equilbrium MD (NEMD) simulation to probe interface thermal trans-

port developed in parallel to the SBM. Maiti et al. were the first to use NEMD simulation

to predict interface thermal conductance, studying grain boundaries in Si [71]. NEMD has

since been used to study defective interfaces with LJ and Morse interactions [72], tempera-

ture and disorder effects at LJ interfaces [73] and Si-Ge interfaces using the Stillinger-Weber
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potential [4]. Duda et al., using NEMD, noted that the thermal conductance of an isolated

LJ interface increased linearly with increasing temperature [74].

The study of finite-size junctions extended naturally from the techniques developed

for isolated interfaces. Landry and McGaughey investigated Si (Ge) thin films sandwiched

between bulk Ge (Si) leads. In particular, they studied the dependence of junction thermal

conductance on junction length using both SBM calculations and NEMD simulations [75].

Tian et al. [76] studied Si-Ge superlattice junctions using a harmonic lattice-based tech-

nique [49, 77], where they found that the introduction of disorder at interfaces destroyed

coherent transport of phonons, particularly those with high frequencies.

Previous works on superlattices [65, 67] and superlattice junctions [64, 76] suggest that

thermal transport in superlattice junctions depends on both period length and junction

length, and is modified by disorder. In this chapter, we vary both period length and junc-

tion length, and consider the effects of lead composition, finite temperature, and disorder.

In Sec. 3.2, we define the structure of the superlattice junction. We describe the three

techniques used in Sec. 3.3: the thermal circuit model, NEMD simulations, and the Lan-

dauer transport formula with the SBM. Our findings, notably a lead effect, are reported

in Sec. 3.4 and summarized in Sec. 3.5.

3.2 Superlattice junction structure: the multiple thin

film system

We are interested in calculating the thermal conductance of superlattice junctions with

bulk leads. The atoms in our representative crystalline material interact via the pairwise
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Figure 3.1: Example structure for the case of eight thin films (m = 8, a mismatched case)
with five monolayers per thin film (n = 5). Cyan atoms are Type 1 and pink atoms are
Type 2. The red and blue atoms are in the reservoirs and the gray atoms are fixed for use
in the MD simulations.

LJ potential with argon parameters. The LJ pairwise interaction is

φij(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
, (3.1)

where r is the distance between any atoms i and j. The argon LJ parameters are ε =

1.67 × 10−21 J and σ = 3.40 × 10−10 m. The interaction is cut off at 2.5σ. Two atomic

species are used in order to generate the superlattice junction structures: regular argon

(Type 1) and “heavy” argon (Type 2). Type 1 and Type 2 atoms interact identically. They

differ only in their masses, µ1 and µ2. Type 1 argon has the true argon atomic mass,

µ1 = 6.634 × 10−26 kg. In keeping with previous work on similar systems [56, 74] and to

capture an atomic mass ratio typical of real nanostructures, µ2 = 3µ1. Thin films of Type

1 and Type 2 atoms are built along the [001] crystallographic direction (i.e., the z axis) in

a fashion that alternates between Type 1 and Type 2, as shown in Fig. 3.1.

The alternating Type 1 and Type 2 thin films form the superlattice junction. A junction

is defined by the number of atomic monolayers per thin film n, the number of thin films

in the junction m, and the argon face-centered cubic (FCC) conventional unit cell lattice

constant a (5.315 Å and 5.370 Å at temperatures of 20 K and 40 K) [78]. The length of

a single thin film is na/2. The length of the entire junction is mna/2. We discuss cases

where n = {2, 4, 8} and m ranges from 1 to 40, leading to junction lengths ranging from 1

nm to 40 nm. We do not explore junction lengths greater than 40 nm, as such structures
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may result in a numerical divergence of the thermal conductance prediction as described

by Hu et al [79]. Finally, the junction is sandwiched between two bulk-like leads. The

left lead is always of Type 1. For m odd, the right lead will be of Type 1 (i.e., matched

leads). For m even, the right lead will be of Type 2 (i.e., mismatched leads). m1 (m2)

are the number of thin films of Type 1 (Type 2) in the junction, such that m1 +m2 = m.

Method-specific details are provided in Secs. 3.3.2 and 3.3.3.

3.3 Methods

3.3.1 Thermal circuit

If we assume that each Type 1 - Type 2 interface inside a junction acts as a memoryless

phonon scatterer and that each constituent thin film has the thermal conductivity equiva-

lent to a bulk of its type, then the junction can be represented by a series of interface and

thin film thermal resistors. This assumption leads to a simple but naïve prediction of the

junction thermal conductance

GJ,TC(T ) =

[
m1∑
i=1

na

k1(T i)
+

m2∑
j=1

na

k2(T j)
+

m1+m2+1∑
k=1

1

GInt,1−2(TInt,k)

]−1
, (3.2)

where k1 (k2) is the temperature-dependent bulk crystal thermal conductivity of Type

1 (Type 2) atoms and GInt,1−2 is the temperature-dependent per unit area thermal con-

ductance of an isolated Type 1 - Type 2 interface. T is the average temperature of the

junction, T i is the average temperature of the ith film within the junction, and TInt,k is the

temperature of the kth interface within the junction.
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3.3.2 Non-equilibrium molecular dynamics

The direct heat method [25] in NEMD simulation (see Sec. 2.2.3) is performed on the

systems of interest using LAMMPS [30] and a time step of 4.34 fs. In an MD simulation,

the classical equations of motion are numerically integrated to predict the trajectories

of atoms. MD simulations can account for the full effect of the anharmonic interactions

between atoms, which is important at finite temperature for LJ interface systems [74].

The aim of the direct heat method is to predict the temperature distribution in the cross-

interface (z) direction given a fixed heat flow.

The cross-sectional area of the simulation cell is 6 × 6 FCC conventional unit cells,

giving an area A = 36a2, which is 10.17 nm2 and 10.38 nm2 at temperatures of 20 K

and 40 K. Each atomic monolayer in the z-direction (i.e., half a conventional unit cell) is

composed of 6 × 6 × 2 = 72 atoms. The first four and last four monolayers (288 atoms)

of the NEMD system are fixed to prevent atomic sublimation and to give the other atoms

a bulk-like environment. Immediately adjacent to both sets of fixed atoms are 16 atomic

monolayers (1152 atoms) of thermal reservoir, from which energy will be added or removed

during the non-equilibrium portion of the simulation. Interior to the thermal reservoirs on

both ends are 120 atomic monolayers (8640 atoms) serving as bulk-like leads.

Velocity rescaling is first performed for 106 time steps to ensure that the mean kinetic

energy per atom is 1.5kBT , where kB is the Boltzmann constant. The system is then

evolved in the microcanonical ensemble for 106 time steps to recover realistic Hamiltonian

dynamics. For the next 8 × 106 time steps, a fixed amount of energy is removed from

the right reservoir and placed in the left reservoir every time step such that total system

energy is conserved. This energy transfer is accomplished by rescaling the velocities of the

reservoir atoms. Based on the thermal circuit model described in Sec. 3.3.1, the energy

transfer (i.e., heat flow) is specifically chosen for the film number, number of monolayers per
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Figure 3.2: Temperature profile from NEMD for eight films (m = 8) of eight atomic mono-
layers each (n = 8) at an average temperature of 20 K. The error bars on the monolayer
temperatures represent their standard deviation over the data collection time steps. The
intrajunction films are numbered 1 through 8, while the left and right leads are labeled L
and R.

film, and average temperature of the system so as to produce a cross-junction temperature

difference of 5 K. After the 8× 106 time step run to steady-state, monolayer temperatures

and positions are averaged and collected for 5×106 time steps. A monolayer’s temperature

is defined as the temperature corresponding to its mean kinetic energy.

The result of the averaging is a temperature versus position distribution like that shown

in Fig. 3.2 for the case of eight films of eight atomic monolayers each (m = 8, n = 8) at

an average temperature of 20 K. Least-squares linear fits to the temperature profile are

performed in the leads. Data in the 40 atomic monolayers closest to either reservoir are

not included in the lead fits as their dynamics are influenced by the velocity rescaling.

Interface temperatures are defined by extrapolation of the fits to the interface locations

and then averaging the values on each side. The thermal conductance of the junction

region is obtained from

GJ,NEMD(T ) =
q

A∆T
, (3.3)

45



16 18 20 22
Temperature (K)

0.5

1.0

1.5

2.0
T

h
e
rm

a
l 
C

o
n
d

u
c
ti
v
it
y
 (

W
/m

K
)

R

L

7 5
3

1

8

6

4
2

Type 1 Films

Type 2 Films

Type 1 Bulk

Type 2 Bulk

(a) n = 8, m = 8

16 18 20 22
Temperature (K)

40

60

80

100

120

140

160

180

In
te

rf
a

c
e

 T
h

e
rm

a
l 
C

o
n

d
u

c
ta

n
c
e

 (
M

W
/m

2
K

)

Isolated Type 1 -Type 2 Interface
Type 1 - Type 2 Interface within Junction

(b) n = 8, m = 8

Figure 3.3: Intrajunction (a) film thermal conductivities and (b) film-film interface thermal
conductances for the same case as Fig. 3.2 (n = 8, m = 8). These data are averaged
from temperature profiles from five independent NEMD runs, including the profile shown
in Fig. 3.2. They are compared against temperature-dependent NEMD values of bulk
thermal conductivity and isolated interface thermal conductance. The error bars indicate
the standard deviation over the five independent runs.

where ∆T is the difference between the temperatures of the left lead fit extrapolated to

the first interface and the right lead fit extrapolated to the last interface. T is the mean

of those two temperatures. As shown in Fig. 3.2 and in previous work [57], this method is

also able to resolve individual thin film thermal conductivities and intrajunction interface

thermal conductances when the thin films are sufficiently large. For systems with eight

atomic monolayers per film (e.g., Fig. 3.2), the resolution is good. For systems with two

or four atomic monolayers per film, the resolution is poor.

For a system with eight thin films of eight atomic monolayers each at an average

temperature of 20 K, the intrajunction film thermal conductivities are plotted in Fig. 3.3(a)

as a function of the average individual film temperature. These results are compared

against temperature-dependent thermal conductivities for bulk Type 1 and Type 2 argon.

The film-film thermal interface conductances for the same case are plotted in Fig. 3.3(b)

as a function of interface temperature. The results are compared against the temperature-
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dependent thermal conductance of an isolated Type 1 - Type 2 interface. The bulk thermal

conductivities and isolated interface thermal conductances are obtained from independent

NEMD simulations.

The decrease of thermal conductivity inside the thin films [points 1 through 8 in

Fig. 3.3(a)] compared to bulk is consistent with the memoryless interface scattering as-

sumption of the thermal circuit model, where complete carrier scattering at the interfaces

causes a reduction of their mean free paths. Note that for the long leads [points L and

R in Fig. 3.3(a)], no such reduction is present and the thermal conductivity predictions

are close to the bulk values. The 50 to 100% increase of the film-film interface thermal

conductances [Fig. 3.3(b)], however, is not consistent with the assumption of memoryless

interface scattering. A possible cause of the elevation in thermal conductance is the emer-

gent periodicity of the superlattice junction. The periodicity causes interference between

vibrational waves that are scattered by the regularly-spaced interfaces. This effect may be

masked within MD simulations due to anharmonic scattering, so we will use a harmonic,

lattice-based technique for further analysis.

3.3.3 Scattering boundary method

3.3.3.1 Landauer formula

To isolate the effects of the emergent periodicity, we now limit our analysis to harmonic

interactions and consider the transport of vibrational mode energy across the junction.

The Landauer formalism as described in Sec. 2.4 is used and is briefly summarized here.

Despite the advantages described in Sec. 3.3.2, MD simulations do not provide information

about the vibrational modes of the system without additional, computationally-expensive

processing steps [56, 80, 81]. In order to extract mode-level detail, we move to a method

built explicitly upon the basis of vibrational modes. Consider a model where the vibra-
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tional modes of the left lead are coupled to vibrational modes of the right lead via the

junction. Since the leads are bulk crystals, their vibrational modes are phonon modes.

Further, because there is no anharmonic scattering, the transport through the junction

is ballistic and the transmission is elastic (i.e., there is no coupling between vibrational

modes of different frequency). Finally, we assume that the temperature difference between

the left and right leads is infinitesimal. These conditions and assumptions allow us to

apply the Landauer ballistic transport formula to compute the thermal conductance of our

superlattice junctions [45].

In the classical limit, application of this formula results in the following expression for

the junction thermal conductance

GJ,SBM =
1

V

Left,+z∑
κκκ,ν

kB v
I
g,z(κ, ν) αL→R(κ, ν) . (3.4)

The summation is performed over all rightward traveling bulk phonon modes of the left lead

(i.e., incident phonon modes), with each phonon mode being described by a wavevector

κ and a polarization ν. V is the volume per mode in the reciprocal space of the left

lead crystal. vIg,z is the z-component of the group velocity of the incident phonon mode

(I indicates incident). Determination of the bulk phonon properties is done via harmonic

lattice dynamics calculations (see Sec. 2.3) [18]. The junction coupling comes in via the

transmission coefficient αL→R, a mode-dependent dimensionless quantity that takes on

values between zero and unity. In the particle picture, α is the fraction of phonon energy

quanta that cross the junction given an incident flux. In the wave picture, α is the fraction

of energy flux from the incident wave that crosses the junction.

We use the SBM to compute the transmission coefficients of the incident phonon

modes [4, 27, 28, 47]. The SBM is comprised of two steps, which are briefly described

in Secs. 3.3.3.2 and 3.3.3.3. For a detailed derivation, see Sec 2.4, or Wang and Wang

48



[27] or Zhao and Freund [28]. For each junction, bulk phonon properties and phonon

transmission coefficients are calculated for rightward traveling modes at 10,000 wavevec-

tors uniformly sampled from the first Brillouin zone of the left lead. Thermal conductance

is computed by performing a summation over the sampled modes as shown in Eq. 3.4.

We validate our implementation of the SBM against a zero temperature extrapolation of

the isolated Type 1 - Type 2 interface thermal conductances from our NEMD simulations

[the black line in Fig. 3.3(b)]. The difference between the SBM calculation and the NEMD

extrapolation is 8%. Our NEMD interface thermal conductances and extrapolation agree

well with results from Duda et al [74].

3.3.3.2 Determination of scattered modes

When phonons of wavevector and polarization [κ, ν]I encounter the junction, some of the

energy is reflected back into the left lead, while the remainder is transmitted into the right

lead. The first part of the procedure to compute αL→R([κ, ν]I) is to determine what modes

are excited in reflection and what modes are excited in transmission. Let the set of possible

reflected modes be denoted by [κ, ν]Rj and the set of possible transmitted modes be denoted

by [κ, ν]Ti , where indices i and j indicate that there may be many such modes. Due to the

identical crystal structures and lattice constants of Type 1 and Type 2 argon, periodicity

in the x-y plane is preserved, hence the x and y components of κR
j and κT

i must equal those

of the incident mode. The conservation of the wavevector in the x-y plane is equivalent

to assuming totally specular scattering. Due to the assumption of elastic transmission,

the frequency of the reflected and transmitted modes are identical to that of the incident

mode. The problem of finding all phonon modes in both the left and right leads that have

the same κx, κy, and ω as the incident mode can be formulated and solved as a generalized

eigenvalue problem.
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3.3.3.3 Scattering boundary equations

Once the reflected and transmitted mode sets [κ, ν]Rj and [κ, ν]Ti have been determined,

αL→R([κ, ν]I) can be computed by solving the equations of motion of the junction atoms

and the lead atoms in the vicinity of the junction. The Newtonian equations of motion

are written down explicitly for each junction atom, including interactions with junction

atoms and lead atoms. Two equations are written down for each lead atom. The first

equation is its Newtonian equation of motion. The second equation is one that enforces

the motion of the lead atom as a superposition of incident and reflected modes (for the left

side) or transmitted modes (for the right side). These modes have unknown amplitudes

Rj and Ti. The assumption of elastic scattering allows us to ascribe an identical periodic

time-evolution of exp (iωt) to each atom. The specification of this evolution converts the

system of linear differential equations into a system of linear algebraic equations. The

identical periodic time evolution means the SBM solutions are time coherent.

This overdetermined system of equations is solved by minimizing the squared error using

singular value decomposition. Finally, the modal transmission coefficient is determined as

αL→R(κ, ν) =
∑
i

vIg,z
vTg,i,z
|Ti|2 , (3.5)

where the summation is performed over all transmitted modes. vTg,i,z is the z-component

of the group velocity of the ith transmitted mode.
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Figure 3.4: Length-dependent junction thermal conductances for the cases (a) n = 2,
T = 20 K, (b) n = 2, T = 40 K, (c) n = 8, T = 20 K, and (d) n = 2, T = 20 K with
p = 0.2 interfacial species disorder from NEMD and the thermal circuit model. The n = 2,
T = 20 K case shows a strong lead effect, which persists as the number of junction thin
films increases. The lead effect is diminished at higher temperatures, greater number of
monolayers per thin film, and with the introduction of species disorder at the interfaces.

51



3.4 Results

3.4.1 NEMD indicates a lead effect

The length dependence of the thermal conductance for superlattice junctions with two, four,

and eight atomic monolayers per thin film at average temperatures of 20 K and 40 K were

extracted from NEMD simulations. Values for each case were determined as an average

over five independent simulations. A select subset of the results are plotted in Figs. 3.4(a)-

3.4(d). Power law fits for even thin film number and odd thin film number junctions are

also plotted, as is the thermal conductance predicted from the thermal circuit model for the

same configurations [Eq. (3.2)]. In all cases, the thermal circuit model underpredicts the

NEMD result. The average underprediction throughout the length domain as a percentage

of the thermal circuit conductance for two atomic monolayers per film is 60% at 20 K

and 26% at 40 K. For four atomic monolayers per film, the underprediction is 34% at 20

K and 9% at 40 K. For eight atomic monolayers per film, the underprediction is 16% at

20 K and 11% at 40 K. This consistent underprediction indicates that the assumption of

diffusive transport within films and memoryless scattering at the intrajunction interfaces

in the thermal circuit model is an incomplete description of the energy transport process.

The discrepancy is largest at low temperature and small film thickness [Fig. 3.4(a)], while

the high temperature [Fig. 3.4(b)] and large film thickness [Fig. 3.4(c)] NEMD results

are closer to the thermal circuit predictions. The latter results are not surprising since

diffusive transport becomes dominant in the high temperature and large film thickness

limits. The data in Fig. 3.4(d) are for cases where species disorder is introduced at the

lead-junction and intrajunction interfaces. Disorder at the interface is introduced in this

fashion: atoms within a thin film of Type 1 (Type 2) immediately adjacent to an interface

have a probability p of being Type 2 (Type 1). No comparisons to the thermal circuit
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model are made for the disordered cases.

The power law fits are used to differentiate between cases where the thin film number is

odd and the leads are of the same type (matched) and cases where the thin film number is

even and the leads are of differing type (mismatched). We observe for both temperatures

and at all thin film thicknesses that the junction thermal conductances of the mismatched

cases are elevated compared to the matched cases at similar lengths. Since the mismatched

and matched cases are always at different lengths, it is more appropriate to compare

the power law fits. In most of the configurations presented, the difference between the

matched and mismatched cases is within the uncertainty of the fits. A clear difference

in trend, however, can be observed for the case of two atomic monolayers per film at

a temperature of 20 K [Fig. 3.4(a)]. In this case, the 95% confidence intervals of the

power law fits (which, for the sake of clarity, are not shown) share very small overlap

and the difference between the trends is statistically significant. The mismatched cases

consistently exhibit a thermal conductance that is 10% higher than the matched cases at

comparable length. In the thermal circuit model, matched and mismatched cases differ

only in an additional interface resistance. This difference goes to zero in the limit of large

junction size, as the resistance of a single interface becomes negligible compared to the

overall resistance of the junction. The 10% difference in conductance seen in the NEMD

results, however, persists at all examined lengths with no noticeable attenuation up to

the longest lengths investigated. Further NEMD simulations for the n = 2 case were

performed at average junction temperatures of 15, 10, and 5 K (The conventional unit cell

lattice constants of LJ argon at 5, 10, and 15 K are 5.280 Å, 5.289 Å, and 5.303 Å. These

values are interpolated from data presented in Ref. [78]). The same lead effect persists at

all temperatures investigated. In conjunction with the elevation of intrajunction interface

thermal conductances discussed in Sec. 3.3.2 [Fig. 3.3(b)], the lead effect provides further
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evidence that the thermal circuit model is insufficient.

The lead effect diminishes when (i) temperature is increased [Fig. 3.4(b)], (ii) the in-

trajunction thin films are made thicker [Fig. 3.4(c)], and (iii) species disorder is introduced

to the lead-junction and intrajunction interfaces [Fig. 3.4(d)]. The increase of temperature

increases anharmonic scattering, leading to diffusive transport. Hence, one hypothesis is

that the lead effect is caused by partial ballistic transport of energy carriers across the

junction. These carriers are not bulk phonons of the constituent films, but rather emer-

gent modes of the superlattice junction. Much like phonons of bulk superlattices [56], these

modes do not consider the intrajunction interfaces as defects and do not scatter from them.

Disorder at the intrajunction interfaces, however, does act as a scattering source for these

emergent modes. Hence, in agreement with earlier work [76], the introduction of species

disorder at interfaces also leads to diffusive transport.

If the lead effect is completely attributable to ballistic transport, we would expect

saturation of both matched and mismatched junction thermal conductances to a single,

fully diffusive limit at long junction lengths (as is the case with thin films of bulk crystals)

[75]. For the junction lengths evaluated, however, this saturation is not observed. Instead,

the lead effect diminishes as the length of the junction’s constituent thin films is increased

[Fig. 3.4(c)], not as the total junction length is increased. Within a single thin film, this

result can be explained as a size effect related to the thin film length and the mean free

paths of the phonons of the film’s constituent material [75]. In the picture of the emergent

superlattice modes, however, increasing the superlattice period alters the modes themselves

[56]. It is known that the thermal conductivity of a bulk superlattice is sensitive to its

period (i.e., the minimum in superlattice thermal conductivity) and can be partitioned

into a regime where vibrational wave interference is significant and one where interference

is not [65, 67]. Hence, another hypothesis is that the lead effect is partially attributable
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to vibrational wave interference in the superlattice junction. Increasing the period of the

superlattice junction attenuates the lead effect by moving the system out of the regime

where interference is significant.

3.4.2 Lead effect is reversed in harmonic calculation

The interesting case of two atomic monolayers per film at a temperature of 20 K is now

analyzed using the SBM. As discussed in Sec. 3.3.3.3, the fully harmonic nature of the

SBM calculation has two consequences. First, it considers transport that is completely

ballistic. Second, any spatial interference effects caused by the emergent superperiodicity

of the junction are preserved. Hence, the SBM can be used to evaluate the two hypotheses

posed at the end of Sec. 3.4.1.

Since classical statistics are used to achieve parity with the MD simulations, the only

finite temperature effect in the SBM is the setting of the lattice constant equal to the

equilibrium value at a temperature of 20 K. As plotted in Fig. 3.5, the SBM junction
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thermal conductances converge to length-independent values at a junction length of ap-

proximately 4 nm. These results stand in contrast to the NEMD results, where scattering

within the junction causes the junction thermal conductances to continue to decrease with

increasing junction length. While the SBM results are length-independent beyond junction

lengths of 4 nm, they exhibit a strong dependence on the lead properties (i.e., matched

or mismatched) at all lengths. The cases with matched leads converge to a junction ther-

mal conductance of 16 MW/m2K, while the cases with mismatched leads converge to 13

MW/m2K, a difference of 19%. The SBM captures the lead effect, but the relative magni-

tudes of the matched versus mismatched junction thermal conductances are flipped when

compared to the NEMD results.

The origin of the lead effect in the SBM calculations can be revealed by examining the

transmission coefficients plotted in Figs. 3.6(a) and 3.6(b). Fig. 3.6(a) corresponds to a

matched case with seven junction thin films (3.7 nm), while Fig. 3.6(b) corresponds to a

mismatched case with eight junction thin films (4.2 nm). Since the thermal conductances

for both cases have converged with junction length (Fig. 3.5), the differences in their

transmission coefficients must be due to the differing mass of the right lead. The lead

effect is not due to the lower cutoff frequency of the Type 2 material, but instead due to

details in the shared frequency range of the two materials. While the mismatched case has

exactly zero transmission for incident phonons of frequency greater than the Type 2 cutoff,

the matched case shows only small transmission beyond the Type 2 cutoff. This finding

is highlighted in Fig. 3.7, where the accumulation of the junction thermal conductance

against incident phonon frequency is plotted for both matched and mismatched cases. For

the matched case, incident phonons above the Type 2 cutoff frequency result in only 0.7%

of the overall thermal conductance. Instead, the difference in thermal conductance can

be attributed to dips in the transmission coefficients that appear at 1 and 3 Trad/s in
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Fig. 3.6(b), but are far less significant in Fig. 3.6(a). The difference can also be attributed

to slower accumulation of the thermal conductance between 2-3 and 5-6 Trad/s. We

attribute the maxima and minima in the transmission coefficients seen in Figs. 3.6(a) and

3.6(b) to constructive and destructive interference between reflections and transmissions

across successive intrajunction interfaces.

3.5 Summary

Our investigation of superlattice junctions in this chapter reveals that their thermal conduc-

tance at finite temperature depends on the material properties of the leads. Specifically,

systems with mass-mismatched leads have higher thermal conductance than those with

mass-matched leads. This dependence persists when overall junction length is increased

[Fig. 3.4(a)], but diminishes when temperature is increased [Fig. 3.4(b)], when the thick-

nesses of the constituent films are increased [Fig. 3.4(c)], and when species disorder is
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introduced at the lead-junction and intrajunction interfaces [Fig. 3.4(d)].

We partially attribute the lead effect to ballistic transport of emergent modes of the

superlattice junction. These modes travel ballistically across the junction and do not

scatter from the intrajunction interfaces. Increasing temperature and the introduction of

species defects at interfaces cause these emergent modes to scatter with one another and

with the defects, resulting in attenuation of the lead effect. Increasing the superlattice

period of the junction likewise attenuates the lead effect, suggesting that the effect can

also be attributed to vibrational wave interference within the junction. The dependence of

the lead effect on the superlattice period may be similar to the transition between coherent

and incoherent regimes in a bulk superlattice.

As evidenced by the SBM calculations, the lead effect is also present in the zero temper-

ature, harmonic limit (Fig. 3.5), but it is reversed. In this limit, the phonon transmission

coefficients (and consequentially the thermal conductances) are highly dependent on the

right lead mass (Fig. 3.6). It is not surprising that the lead effect can be altered by the

introduction of finite temperature (and along with it, anharmonic interactions). It is sur-

prising, however, that the effect of finite temperature is not simply to reduce the lead effect
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until none can be observed. Instead, the reversal of the lead effect when comparing the

SBM data to the NEMD data (Fig. 3.5) suggests the existence of a regime where finite

temperature affects the matched and mismatched cases differently. In this intermediate

regime, the effect of finite temperature appears to drive the junction thermal conductance

of the matched case higher than that of the mismatched case. As discussed in Sec. 3.4

A, we performed NEMD simulations at average junction temperatures as low as 5 K for

the case of n = 2 in an attempt to access this regime. We observed the same lead effect

as at 20 K in all cases and did not notice any evidence of an appreciable attenuation or

reversal. While direct heat method NEMD simulation does not provide concrete evidence

of the reversal of the lead effect, the existence of the intermediate regime could be probed

by modal anharmonic analysis of matched and mismatched cases in the temperature range

of 0 to 5 K [81, 82, 83].
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Graphene/hBN heterostructures

4.1 Introduction

Since its discovery, graphene has been the subject of intense experimental and theoretical

study [84]. The lack of an electronic band gap, however, has stymied graphene’s applica-

tion in nanoelectronic devices. An avenue to graphene-based materials with tunable band

gap is in-plane heterostructures built with other two-dimensional materials, such as hexag-

onal boron nitride (hBN). Using chemical vapor deposition, researchers have fabricated

graphene/hBN heterostructures such as superlattices to a high degree of precision [7, 8].

Due to the need to dissipate heat in nanoelectronic devices, understanding the thermal

properties of graphene/hBN heterostructures is critical. Thermal transport in graphene

and hBN is dominated by phonons [85] and significant experimental and theoretical work

has been done on bulk and nanostructured samples [85, 86, 87, 88, 89, 90, 91, 92, 93, 94].

Suspended graphene has an exceptionally high thermal conductivity, reported to be in the

range 2,600-5,300 W/m-K experimentally [85, 86, 87] and as high as 3500 W/m-K compu-

tationally [88, 89]. Graphene supported by a substrate has a lower thermal conductivity. A

computational study reported a value of 2450 W/m-K [90], while experimental values are

reported to be between 370 and 600 W/m-K [91, 92]. Wang et al. measured the thermal

conductivity of bilayer hBN to be 600 W/m-K [93], while computational studies report the

intrinsic single-layer hBN thermal conductivity to be as high as 800 W/m-K [94]. Thermal

transport across in-plane interfaces between graphene and hBN is not as well studied. To

date, no experimental measurements have been made.

Computational studies of thermal transport across graphene/hBN interfaces have been
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performed, all using the Tersoff interatomic potential [61, 95, 96, 97, 98]. Jiang and Wang

[95] used nonequilibrium (NE) molecular dynamics (MD) (see Sec. 2.2.3) simulation to

study in-plane islands of hBN embedded within a graphene sheet. They observed that

the reduction of heat current across these structures varied linearly with the perimeter of

the embedded object. Zhu and Ertekin performed NEMD simulations of armchair-aligned

graphene/hBN superlattices. They studied periods ranging from 2 to 500 unit cells (0.5

to 125 nm at a temperature of 300 K). They observed a minimum in thermal conductiv-

ity at a period of 10 unit cells, suggesting that interference effects involving superlattice

phonons are significant at such small periods. They also independently predicted an iso-

lated armchair graphene/hBN interface conductance of 2.59 GW/m2K. da Silva et al. [96]

used equilibrium MD simulations and normal mode decomposition to compute phonon

lifetimes in armchair- and zig-zag-aligned graphene/hBN superlattices up to twenty unit

cells in period. Their results indicate that the minimum in thermal conductivity is due to

a reduction in phonon group velocity, a result that has been observed in other superlattice

systems [56, 65, 67].

Due to the high Debye temperature of graphene (2,300 K for in-plane modes [99]),

its room temperature thermal transport properties are strongly dependent upon quantum

statistical effects, which cannot be captured by the MD techniques. Jiang and Wang rec-

ognized this limitation and explored graphene/hBN interfaces using the atomistic Green’s

function (AGF) technique, which is a harmonic, lattice-based, transfer matrix approach

that can naturally include quantum statistics. They calculated the thermal conductance

of armchair and zig-zag graphene/hBN interfaces to be 3.5 and 6.9 GW/m2K at a temper-

ature of 300 K. Ong and Zhang [97] studied the armchair graphene/hBN interface using

the AGF technique and found a thermal conductance of 3.59 GW/m2K at 300 K, in good

agreement with Jiang and Wang. Building off of theoretical contributions made by Huang
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et al. [100], Ong and Zhang computed transmission coefficients for phonon modes in the

non-primitive rectangular Brillouin zones of graphene and hBN. They quantified the effect

of off-normal phonon incidence on the transmission coefficient and decomposed the thermal

conductance into contributions from transverse, longitudinal, and flexural modes. More

recently, using the same method, Ong et al. calculated the thermal conductance of the

boron (nitrogen) bonded zig-zag interface configuration to be 3.05 (3.42) GW/m2K at a

temperature of 300 K [98].

In this chapter, we investigate phonon transport across a variety of heterostructures

built from graphene and hBN by calculating the modal contributions to the thermal con-

ductance using the scattering boundary method (SBM, see Sec. 2.4) [4, 26, 27, 28, 47].

In Sec. 4.2, we review the Landauer model of the interface, the geometry and configura-

tion of the junctions considered, and the empirical potentials used to model the atomic

interactions. In Sec. 4.3, we present and discuss results for (i) ideal interfaces between

graphene and hBN along armchair and zig-zag directions, (ii) finite-length graphene/hBN

superlattices, and (iii) substrated and bilayer junctions. We summarize our findings in

Sec. 4.4.

4.2 Thermal conductance model

4.2.1 Landauer formalism

Using the Landauer formalism discussed in Sec. 2.4, we model a junction as a scattering

source positioned between two phonon emitters, leading to a three-part domain composed

of the left lead, the junction, and the right lead. The left and right leads are semi-infinite,

behave as bulk crystals, and are at thermal equilibrium at temperatures TL and TR. Any

deviations from equilibrium are so small that they can be ignored. Without loss of gener-

63



ality, we impose that TL > TR so that the net flow of heat is from the left lead to the right

lead through the junction. If we assume that the temperature difference TL − TR is small

so that TL ≈ TR = T , the thermal conductance due to ballistic transport of phonons from

the left lead to the right lead through the junction, G, can be written using the formula

[45]

G =
1

∆

∫
κ ∈ first
Brillouin
zone

Left, +x∑
ν

~ω(κ, ν) vx(κ, ν)
∂fBE
∂T

α(κ, ν) dκ. (4.1)

The integral is taken over the first Brillouin zone of the left lead and the summation is

taken over the phonon modes ν at a particular wavevector κ that have a positive group

velocity component vx(κ, ν) in the cross-interface (i.e., x) direction. ω(κ, ν) and α(κ, ν)

are the frequency and transmission coefficient associated with the phonon mode at (κ, ν)

and fBE is the Bose-Einstein distribution. ∆ is the out-of-plane thickness of the junction,

which is 3.4 Å for single layer systems and 6.8 Å for bilayer systems.

The terms within Eq. (4.1) can be split into three parts. First, the integral is performed

numerically by discretizing the hexagonal first Brillouin zone into a 40,000-point uniform

rectangular grid. While the thermal conductance is converged to within 1% for a 10,000-

point sampling of the first Brillouin zone, more points are used to achieve higher resolution

in figures. Second, the ω(κ, ν) and vx(κ, ν) are bulk crystalline properties that are deter-

mined via HLD calculations (see Sec. 2.3). Third, the α(κ, ν) are junction properties that

are determined by the SBM (see Sec. 2.4.2) [4, 26, 27, 28, 47].

All results presented in this paper are at a temperature of 300 K. We assume that

phonon scattering in the junction involves only two-phonon processes that conserve energy

and that phonon momentum is conserved up to the periodicity of the junction. Details

regarding the application of the conservation rules are provided in Sec. 2.4.3. The uncer-

tainty in our thermal conductance predictions is quantified by considering the convergence
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of thermal conductance with the size of the junction. Convergence is assessed based on

the length of the buffer region (see Sec. 2.4.2). The error is computed by comparing the

thermal conductance of each junction Type to that of a prototype junction with a long

buffer region and converged thermal conductance. Due to the computational expense as-

sociated with longer systems, the buffer region is 16 primitive unit cells (39.97 Å) long in

the prototypes and 8 primitive unit cells (19.98 Å) long in the junctions discussed in this

chapter. In the case of single-layer junctions, the prototype is an armchair graphene/hBN

interface. In the case of bilayer junctions, the prototype is two armchair graphene/hBN

interfaces. The errors are ±4% for single-layer and ±9% for bilayer.

4.2.2 Junction configurations and force constants

The required inputs to the SBM are the atomic structure of the junction and the second-

order (i.e., harmonic) force constants that describe the atomic interactions in and between

the leads and the junction. A list of all junctions considered is provided in Table 4.1.

The lattice mismatch between graphene and hBN is resolved by isotropically straining the

graphene, which has an unstrained lattice constant of 1.4388 Å[101], by 0.2363% to match

the hBN lattice constant of 1.4422 Å[102]. The structure of the armchair and zig-zag

graphene/hBN interfaces are shown in Fig. 4.1.

For intralayer interactions, we use the Tersoff interatomic potential [22] with parameters

fit to bulk dispersions generated from first principles density functional theory calculations

[101, 102]. The phonon dispersions for graphene and hBN along high-symmetry directions

are plotted in Fig. 4.2. Of note is the phonon band gap in hBN between 215 and 235

Trad/s. The z-acoustic branches in both graphene and hBN are quadratic, the origin of

which has been argued from symmetry considerations by Lifshitz [103]. Note that the

thermal characteristic frequency kBT/~ at a temperature of 300 K is 39.4 Trad/s.
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Type I junctions contain a perfect armchair (IA) or nitrogen-bonded zig-zag (IZ) inter-

face between graphene and hBN. The masses of the three atomic species are the correct

physical values, but the Tersoff parameters used for all interactions are identical. Specifi-

cally, those published by Lindsay and Broido for graphene [101].

Type II junctions are geometrically identical to Type I junctions, but we instead use

Tersoff parameters specific to graphene [101] and hBN [102]. At the interface, the cross-

species interaction parameters are computed according to the standard Tersoff mixing

rules [104]. The introduction of mixing makes Type II junctions a more realistic model of

graphene/hBN interfaces than Type I junctions. In junctions IIA-S and IIZ-S, an on-site

potential is added to model the presence of a substrate. For the ith atom in the N th unit

cell, this potential has the form

USubstrate,N,i =
1

2
kzz

2
N,i , (4.2)

where zN,i indicates the displacement along the z (i.e., out of plane) direction. kz is chosen

to be 16 N/m to represent a typical van der Waals interaction between single-layer graphene

and a substrate [105].

In both Type I and Type II junctions, we show results only for boron-bonded zig-zag

interfaces. Nitrogen-bonded zig-zag interfaces are also possible. Because our choice of

Tersoff parameters for hBN applies an average of B-N-B and N-B-N bond coefficients to

all bonds, we observe no discernable difference in thermal conductance between the two

structures.

Type III junctions are finite-length superlattices composed of alternating layers of

graphene and hBN. The armchair-aligned superlattice unit cell is built from two atomic

layers of hBN attached to two layers of graphene, forming a 2× 2 unit cell. The unit cell

is then repeated n times to form a 2× 2× n junction, where n ranges from 1 to 18. These
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(a) Armchair

(b) Boron-bonded Zig-zag

Carbon Boron Nitrogenx

y

Figure 4.1: Graphene/hBN interfaces: (a) armchair and (b) boron-bonded zig-zag.

2×2×n junctions have mismatched graphene and hBN leads. To study the effect of having

matched leads, each 2× 2× n junction has a 2× 2× (n+ 1/2) counterpart, which has an

additional two atomic layers of hBN, such that both leads are graphene. The interatomic

interactions in the Type III junctions are the same as those in the Type II junctions.

Type IV junctions are bilayer systems created using AB (Bernal) stacking [106]. Type

IVA-1 is an armchair graphene/hBN interface over an identical armchair graphene/hBN

interface. In Type IVA-2, the bottom layer is graphene and the top layer is an armchair

hBN-graphene interface. The intralayer interactions in the Type IV junctions are identical

to those used in the Type II and III junctions and the interlayer interactions are modeled

using a 12-6 Lennard-Jones potential with ε and σ values of 3.85×10−22 J and 3.4 Å[105].
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4.3 Results

4.3.1 Junction Types I and II: Cross-interface interaction

The acoustic mismatch and diffuse mismatch models for predicting interface thermal con-

ductance [3] ignore the cross-interface interaction. They instead attempt to describe inter-

faces using only the bulk properties of the adjoining materials. It is well-known that these

techniques can be inaccurate when compared to ones that incorporate a detailed cross-

interface interaction [4, 107, 108]. We use the SBM to quantify the difference in thermal

conductance between a model where only mass properties differ (Type I) to a higher-

fidelity model that incorporates mixed interactions across the interface (Type II). In Type

I junctions, the predicted thermal conductance is 5.56 ± 0.22 GW/m2K for armchair and

5.46±0.22 GW/m2K for zig-zag. In Type II junctions, the predicted thermal conductance

is 3.67 ± 0.15 GW/m2K for armchair and 3.70 ± 0.13 GW/m2K for zig-zag. Even with

an identical interface geometry, the addition of a physically realistic cross-species interac-

tion and a more accurate potential for hBN reduces the predicted thermal conductance by

40-50%. If classical statistics are used in the evaluation of Eq. (4.1), the thermal conduc-

tances of Type IIA and Type IIZ junctions are 11.6±0.46 and 12.0±0.48 GW/m2K, three

times the values predicted using quantum statistics. The use of the correct Bose-Einstein

statistics is thus critical when predicting thermal conductance at a temperature of 300 K.

The Type IIA armchair junction thermal conductance is within 2% of the value reported

by Ong et al., who also used graphene- and hBN-specific Tersoff potentials and mixing rules

at the interface [97]. For the Type IIZ junction, the difference in our thermal conductances

between the nitrogen-bonded and boron-bonded variants is small enough as to be within

their uncertainties. Our Type IIZ zig-zag thermal conductance is 8% larger than the

nitrogen-bonded value reported by Ong et al. and 20% larger than their value for the
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Figure 4.2: Phonon dispersion along the high symmetry loop Γ-M-K-Γ in the first Brillouin
zone of (a) graphene and (b) hBN using force constants from the Tersoff potential. The
quadratic z-acoustic (ZA) branch is indicated for both systems. The band gap in hBN is
highlighted. Both graphene and hBN are at a lattice constant of 1.4422 Å

boron-bonded case [98]. We attribute this difference to differences in Tersoff parameters.

Specifically, their parameter set distinguishes between N-B-N and B-N-B angular bonds

while ours does not.

The Landauer integrand [Eq. (4.1)] throughout the first Brillouin zone is shown for the

Type I junctions in Figs. 4.3(a) and 4.3(b) and for the Type II junctions in Figs. 4.3(c)

and 4.3(d). Despite the significant differences in how the integrands are distributed across

the first Brillouin zone, the total thermal conductances of the armchair and zig-zag inter-
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faces are within their uncertainties for each type. As expected, common to all integrands

is symmetry about κy = 0 and asymmetry about κx = 0. Type I junctions have larger

integrands throughout the first Brillouin zone when compared to Type II junctions and a

slower decrease in the integrand from the Γ-point to the zone edge. This effect is due to

the homogenous interaction environment in Type I that is broken by the Tersoff mixing

rules in Type II. Such a homogenous environment allows the transmission coefficients to

be higher for most modes.
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Figure 4.3: The Landauer integrand [Eq. (4.1)] throughout the graphene first Brillouin zone
for the (a) Type IA, (b) Type IZ, (c) Type IIA, (d) Type IIZ, (e) Type III: 2×2×14, and
(f) Type III: 2×2×14.5 junctions. κx and κy are given in units of Å−1. In (f), the white
dashed line highlights contributions of modes whose frequencies lie within the hBN band
gap. These modes contribute in cases of matched leads (f), but not in cases of mismatched
leads (e).
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All Type II integrands show significant contributions to thermal conductance for κx > 0

(89 and 92% of the total for Types IIA and IIZ). The most significant contributions to

thermal conductance come from wavevectors near the Γ-point, where the acoustic modes

are highly populated and have high group velocities and transmission coefficients. In fact,

60% of the thermal conductance for both Type II junctions comes from acoustic phonon

modes with frequencies less than 100 Trad/s. The contribution decays for large ratios of

|κy/κx| (i.e., large incidence angles) and large wavevector magnitudes.

The small contribution from the left half of the first Brillouin zone (κx < 0) is because

the majority of those modes have negative cross-interface group velocity vg,x. These modes

do not contribute to the summation in Eq. (4.1). As shown in Fig. 4.2, for modes with

κx < 0, the only contributors to thermal conductance are the three optical branches with

positive vg,x near the zone edge along K-Γ and, to a lesser extent, M-Γ. In both Type

II junctions, the Landauer integrand extinguishes for all wavevectors greater than 1 Å−1,

with the exception of small contributions at the K points. The zig-zag interface differs from

the armchair interface in the drop off of the Landauer integrand with respect to incidence

angle. This drop off occurs sharply at |κy/κx| = 1 for the zig-zag case, while there is little

angular drop off in the armchair case.

The accumulation of thermal conductance with respect to mode frequency for the arm-

chair interface is plotted in Fig. 4.4(a). The zig-zag interface is qualitatively identical. We

distinguish between in-plane (IP) and out-of-plane (OP) modes by projecting the real por-

tion of the normalized mode eigenvector onto the z unit vector. If the result is greater than

0.5, we consider the mode OP, otherwise, we consider it IP. The OP modes, which are a

third of all modes, contribute 32% to the total thermal conductance. The modal contribu-

tions to thermal conductance are plotted in Fig. 4.4(b). At frequencies near zero (i.e., the

Γ-point), the OP modes contribute nothing as the ZA branch has zero group velocity due
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Figure 4.4: (a) Accumulation and (b) modal contribution to thermal conductance as a func-
tion of frequency for Type IIA junctions. Note that the characteristic thermal frequency
at 300 K is 39.2 Trad/s.

to its quadratic shape, see Fig. 4.2(a). Their contributions peak at 40 Trad/s due to the

increasing group velocity but decreasing Bose-Einstein population. The OP thermal con-

ductance accumulation saturates near 150 Trad/s, corresponding to the highest frequency

of graphene’s ZA branch. There are steep drop offs in the conductance contribution of

the OP modes at 50-100 Trad/s and between 110-140 Trad/s. These drop offs are due to

changes in the transmission coefficient, which often varies dramatically between near unity
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and zero, and stand in contrast to the lack of modal transmission at 215-235 Trad/s, which

is due to the hBN band gap. Whereas most of the OP contribution to thermal conductance

comes at frequencies lower than 75 Trad/s, IP contributions are more evenly distributed

throughout the frequency range. At low frequency, individual IP modes contribute highly,

but there is a low density of states. Between 100 and 200 Trad/s, the IP density of states

increases, but the single mode contributions decrease due to low group velocity. Only IP

modes exist above the hBN band gap and are responsible for all transmission above 235

Trad/s.

4.3.2 Junction Type III: Finite superlattices

The thermal conductance of the graphene/hBN superlattice junctions as a function of

the number of periods is plotted in Fig. 4.5. The addition of a single 2 × 2 superlattice

period into a perfect armchair interface between graphene and hBN decreases the junction

thermal conductance by 10% from 3.67 to 3.24 GW/m2K. This decrease is much smaller

than the 66% reduction predicted from a series conductance model that assumes that the

introduction of a single superlattice period increases the number of isolated graphene/hBN

interfaces from one to three. The thermal conductance continues to decrease as more

periods are added. The rate of decrease becomes smaller as period number increases. For

ballistic transport (as assumed here) in the limit of a large number of periods, the thermal

conductance will converge to a value representative of an infinite superlattice. We see

this convergence as the superlattice approaches 18 periods, with matched and mismatched

trends converging to 2.2 and 2.1 GW/m2K. As was the case with the Type I and II

junctions, acoustic modes near the Γ point dominate in their contribution to the thermal

conductance of superlattice junctions, see Figs. 4.3(e) and 4.3(f). At all period numbers

considered, modes less than 100 Trad/s in frequency account for no less than 71% of the
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total thermal conductance.

The matched leads [2 × 2 × (n + 1/2)] superlattice junctions consistently have higher

thermal conductance than the corresponding mismatched leads (2×2×n) junctions. Thus,

despite having an additional two atomic layers within the junction, changing the leads to

graphene/graphene from graphene/hBN causes the thermal conductance to be greater than

that of the shorter mismatched case. We previously observed this effect in finite superlattice

junctions built from Lennard-Jones solids [48]. Though the current system differs from that

study in that it is two-dimensional and incorporates cross-interface interaction mixing, the

effect is still observed. The origin of this effect can be understood by considering the

distribution of the Landauer integrand across the first Brillouin zone for the 2×2×14 and

2× 2× 14.5 cases. As shown in Figs. 4.3(e) and 4.3(f), the superlattice junction integrand

distributions contain an abundance of peaks and valleys, in contrast to those for the simple

interfaces shown in Figs. 4.3(a)-4.3(d), which have a single, central peak at the Γ point and

uniform decay. This added structure is caused by interference effects in the superlattice

junctions that are absent from the single interfaces.

The difference between the matched and mismatched lead superlattice junctions is

more subtle. The two cases differ primarily due to a band of high transmission found in

the matched case forming an arc starting at (κx, κy) = (0.5, −1.5) Å−1, going through

(1.4, 0) Å−1, and ending at (0.5, 1.5) Å−1. This band is absent from the mismatched

case and corresponds to phonon transmission from the highest transverse acoustic branch

and second to highest transverse optical branch in graphene [see Fig. 4.2(a)]. Between

215 and 235 Trad/s, these two graphene branches have no matching branches in hBN due

its band gap. As a result, in the mismatched leads cases, there are no energy conserving

transmission pathways available to these phonon modes.
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Figure 4.5: Thermal conductance of Type III junctions as a function of the number of
superlattice periods. The purple line corresponds to a single graphene/hBN interface. The
gray lines serve as a guide for the eye.

4.3.3 Junction Types II-S and IV: Substrates and bilayers

A simple model for estimating the junction thermal conductance of a bilayer system is

to consider the two layers as independent parallel channels. Because we report thermal

conductance on a per area basis [see Eq. (4.1)], the thermal conductance GParallel is then

the arithmetic average of the two isolated single layer conductances, GTop and GBottom,

GParallel =
GTop +GBottom

2
. (4.3)

In reality, interactions between the layers cause the actual thermal conductance G to

deviate from GParallel by

G = GParallel + ∆GInteraction , (4.4)
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where ∆GInteraction is negative. We quantify ∆GInteraction by comparing the thermal conduc-

tances of bilayer Type IV and substrated II-S junctions to those of the Type II junctions

coupled through the parallel transport model.

We consider two bilayer systems. The Type IVA-1 junction is a graphene/hBN armchair

interface over an identical graphene/hBN armchair interface, while the Type IVA-2 junction

is a graphene/hBN armchair interface over a layer of graphene. In both cases, zone-center

acoustic phonon modes are again the dominant contributors to the thermal conductance.

Modes with frequencies less than 100 Trad/s in Type IVA-1 and IVA-2 junctions contribute

72 and 78% to the total. For junction Type IVA-1, GTop is identical to GBottom and is 3.67

GW/m2K, so that GParallel is 3.67 GW/m2K. The SBM result is 3.38 ± 0.30 GW/m2K,

giving a ∆GInteraction of −0.29 GW/m2K. For junction Type IVA-2, GTop is again 3.67

GW/m2K, while GBottom is 5.87 GW/m2K [representing the phonon radiation limit, i.e.,

when all α in Eq. (4.1) are unity]. GParallel is then 4.77 GW/m2K while the SBM result is

4.31± 0.39 GW/m2K, giving a GInteraction of −0.46 GW/m2K. Unlike in bilayer graphene,

where the addition of a second layer reduces the thermal conductivity by nearly an order

of magnitude [91, 92], the addition of a second layer reduces the thermal conductance of

graphene/hBN interfaces by less than 10%.

The effect of the interlayer interaction can be understood by considering the modal

transmission coefficients as a function of frequency for the single-layer and bilayer systems,

as plotted in Figs. 4.6(a)-4.6(c). Aside from the doubling of the number of modes from a

single-layer to a bilayer system, the transmission coefficient plots for Type IIA and Type

IVA-1 junctions are nearly indistinguishable. The most notable differences are the reduced

transmission coefficients near 50 Trad/s and in the region 250-300 Trad/s in the Type IVA-

1 junction. In the Type IVA-2 junction, the transmission coefficients shown in Fig. 4.6(c)

can be decomposed to those in the range 0.5 to 1, where the profile closely replicates that
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of the Type IIA system, and those in the range 0 to 0.5, where the great number of modes

at 0.5 suggest a similarity to single-layer graphene, where all transmission coefficients are

unity. These qualitative similarities suggest that many modes are largely unaffected by the

interlayer interaction. This is not the case for all modes, the most obvious of which are the

modes with transmission coefficients that lie between 0 and 0.5. Since they do not fit either

the Type IIA profile or the single-layer graphene profile, they are influenced by the bilayer

interaction in a non-trivial manner. It is the reduction in the transmission coefficient of

these modes that creates a negative ∆GInteraction. The limitation of ∆GInteraction to only 10%

of the single-layer value can be attributed to the weakness of the van der Waals interlayer

interaction.

The Type II-S junctions, where the substrate is modeled by an on-site potential, repre-

sent a simpler computational approach for capturing the bilayer interaction. The thermal

conductances of the substrated Type IIA-S and Type IIZ-S junctions are 3.16± 0.13 and

3.19± 0.13 GW/m2K, a decrease from the monolayer Type IIA and Type IIZ junctions of

15%. This reduction is similar in magnitude to the 9 and 11% reductions observed in the

explicit bilayer calculations. Two thirds of this decrease comes from the contributions of

the OOP modes. The primary effect of the substrate interaction is to lift the ZA branch

from 0 to 25 Trad/s at the Γ point, so that these modes are less populated. Accompanied

with this change is a reduction of vg,x of the ZA branch from Γ to K and Γ to M. A similar

effect is seen in the explicitly modeled bilayer systems, where the second layer lifts the ZA

branch from 0 to 18 Trad/s [90]. Indeed, the change to the ZA branch is the only major

alteration to the dispersion when a second layer of either graphene/hBN (Type IVA-1) or

graphene (Type IVA-2) is added. The accuracy of the simple substrate model lies in its

ability to capture this change in the dispersion.
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Figure 4.6: Modal transmission coefficient versus frequency for (a) Type IIA, (b) Type
IVA-1 and (c) Type IVA-2 junctions and their corresponding thermal conductances as
calculated from the SBM.
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4.4 Summary

In this chapter, we used the SBM to compute mode-resolved transmission coefficients of

phonon modes. We found that the primary contributors to the thermal conductance of

graphene/hBN heterostructures are acoustic phonon modes with frequencies below 100

Trad/s. These modes have have high group velocity, high population, and transmission

coefficients near one [see Figs. 4.4(a) and 4.4(b)]. The use of an accurate cross-interface

interaction and quantum statistics dramatically impact the interface thermal conductance.

Ignoring the former increases the prediction by a factor of 1.5, while ignoring the latter

increases it three-fold. The thermal conductances of the isolated armchair and zig-zag

graphene/hBN interfaces correspond to a Kapitza length of 700 nm of single-layer graphene

based on a thermal conductivity of 2,600 W/m-K [87]. While the thermal resistance of

such interfaces is significant compared to bulk graphene, the thermal conductances are one

to two orders of magnitude larger than typical interface conductances in three-dimensional

materials, which range from tens to hundreds of MW/m2K [3].

The thermal conductance of a finite graphene/hBN superlattice junction depends on

the superlattice length and the lead species. As shown in Fig. 4.5, junctions with matched

graphene/graphene leads have a 5 to 10% greater thermal conductance than comparable

junctions with mismatched graphene/hBN leads. This difference is a result of transmission

that occurs in the matched lead case but cannot occur in the mismatched lead case due

to the hBN band gap. This lead effect is a consequence of our assumption of harmonic

interactions, but because the Debye temperatures of both graphene and hBN are high,

such behavior may be observable at room temperature.

Finally, we found that the thermal conductances of explicitly-modeled bilayer junctions

of graphene/hBN do not differ greatly from those predicted from simpler models (e.g.,

an independent parallel transport model or a single-layer with an on-site potential). The
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strength of the intralayer van der Waals interaction is not strong enough to cause significant

coupling between the layers. Since the intralayer interactions are far softer than the in-

layer interactions, however, anharmonic effects could be significant at room temperature,

which may increase the thermal conductance of a real bilayer junction [74].
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C60 molecular crystal

5.1 Introduction

C60 buckminsterfullerene is a spherical molecule of covalently-bonded carbon atoms often

referred to as a cage. The centers of mass of a bulk sample of C60 will self-organize into a

crystal. At temperatures below 260 K, bulk C60 is has a rotationally-ordered simple cubic

structure with a four cage unit cell. A transition occurs as the temperature surpasses 260

K, where the rotationally aligned C60 being to rotate freely. While the centers of mass

do not move from the low temperature structure, but the high temperature, rotationally

disordered structure now forms an FCC crystal [109]. Though C60 was first synthesized

in 1985, it has recently attracted great attention due to its possible application in devices

[110]. First, due to its strong absorption in the visible and ultraviolet regimes, it has

possible applications in organic photovoltaics [111, 112]. Second, due to the low thermal

conductivity of C60, it has possible applications as a thermal insulator and possibly as an

organic thermoelectric material[113]. Third, it is relatively easy to modify the electronic

and magnetic properties of C60 by chemically functionalizing the cage with atoms, ions,

or molecules. A commonly used derivative of C60 is phenyl-C61-butyric acid methyl ester

(PCBM), where a C60 is functionalized with an organic molecule to allow for solution-based

fabrication [114].

The thermal conductivity of the bulk C60 crystal is critical to the performance and

function of potential C60-based devices. Only a handful of measurements of been per-

formed of C60’s thermal conductivity. In 1992, Yu et al. used a steady-state single heater

method and reported a thermal conductivity of 0.4 W/m-K, a value that was temperature-
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independent for temperatures of 260 K and above [9, 16]. Later on, the 3ω method was

used on a C60/C70 alloy and a thermal conductivity of 0.1 W/m-K was reported at room

temperature [115]. Wang et al. reported a similar thermal conductivity of 0.1 W/m-K

for disordered C60 at room temperature [115]. Measurements on the C60 derivative PCBM

have resulted in thermal conductivities in the range 0.03-0.06 W/m-K [116, 117]. Chen

et al. performed direct method MD simulations on face-centered cubic C60 and hexagonal

close-packed PCBM using the polymer consistent force-field (PCFF) and reported room

temperature thermal conductivities of 0.2 and 0.075 W/m-K, representing the only pub-

lished computational work on C60 thermal conductivity thus far [118]. They concluded

that the much smaller thermal conductivity of PCBM as compared to C60 was due to the

scattering of long wavelength C60 phonons by the functional group.

In this chapter, we study the mechanisms of thermal transport in crystalline C60 using

MD simulation. Specifically, we consider the impact of the degrees of freedom of a single

C60 (vibrational, rotational, center-of-mass translation) on the thermal conductivity of a

bulk crystal. Even without the added complexity of functional groups, the physics of

C60 is rich at room temperature due to the free rotation of the cages. A requirement

of the crystal description of a solid (and the phonon description of thermal transport) is

that the atoms only deviate slightly from a equilibrium position (See Section 2.3). The free

rotation of the cages represents a large displacement, hence, at room temperature, it is only

appropriate to treat the translations of the centers-of-mass of the C60 as a crystal, while

the cage rotations and intra-cage vibrations do not fit the phonon picture. By predicting

the thermal conductivity separately for full degree of freedom C60 crystal and point mass

C60 crystal (where both intra-cage vibrations and cage rotations are removed), we explore

the impact of the non-crystal-like degrees of freedom on thermal conductivity.

The remainder of the chapter is organized as follows. In Sec. 5.2, we describe the
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structure and interaction potentials used to model the two forms of C60. In Sec. 5.3, we

describe details regarding the MD simulations performed. In Sec. 5.4, we present thermal

conductivity results and conclude in Sec. 5.5.

5.2 C60 model

5.2.1 Structure

To generate the structure of a single C60 molecule, shown in Fig. 5.1, we use the program

specified by Senn, which is briefly described here [119]. The positions of the atoms are

calculated based on the vertices of a truncated icosahedron of the appropriate size. We

first specify the parameters defining the size of the cage. Two bond lengths are required.

First, r6 = 1.391 Å is the length of the carbon-carbon double bond. Second, r5 = 1.455 Å

is the length of the carbon-carbon single bond. The radius of the circumscribed sphere of

the icosahedron is then

r12 =

(
r5 +

1

2
r6

) √
5 +
√

5

2
. (5.1)

The positions of ten of the twelve vertices of the icosahedron are given by

Xk =
2r12√

5
cos kδ , (5.2)

Yk =
2r12√

5
sin kδ , (5.3)

Zk = (−1)k
r12√

5
, (5.4)

where δ = 36◦. The integer index k ranges from 1 to 10. The two remaining vertices are

[X11, Y11, Z11] = [0, 0,−r12] and [X12, Y12, Z12] = [0, 0, r12]. We can now compute the

positions of two unique carbon atoms on a C60 by considering pairs of connected vertices
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Figure 5.1: A single C60 molecule, viewed along the z-axis of construction.

k and j. The nth carbon atom is located at

xn = Xj +

(
r5

2r5 + r6

)
(Xk −Xj) , (5.5)

yn = Yj +

(
r5

2r5 + r6

)
(Yk − Yj) , (5.6)

zn = Zj +

(
r5

2r5 + r6

)
(Zk − Zj) . (5.7)

That is, using Eq. 5.7 with a non-repeating choice of two vertices k and j as input will

generate the position of a carbon atom. The choice of coordinate system places the center-

of-mass of the C60 molecule at [0, 0, 0].
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5.2.2 Polymer consistent force-field

Once the structure of a single C60 molecule is defined, it is necessary to define the bonded in-

teractions on the cage. We use the PCFF, a subclass of the class2 potential in LAMMPS [30]

UPCFF = (UBond + UAngle + UDihedral)Bonded + UvdW . (5.8)

The first three terms on the right-hand side of Eq. 5.8 represent the bonded intra-cage

interactions, while the last term represents the non-bonded van der Waals interaction that

couples different cages. PCFF parameters are traditionally tabulated in energy units of

Kcal/mol. All parameters are taken from LAMMPS documentation or Ref. [29].

We will specify the forms and parameters of UPCFF term by term. The first term in the

bonded portion of Eq. 5.8 is the two-body bond term UBond. It is composed of the single

and double covalent bonds between nearest neighbor carbon atoms

UBond =
∑

U2,Single +
∑

U2,Double . (5.9)

The summations are performed over all single and double bonds. Both U2,Single and U2,Double

have the same form U2,

U2 = K2(r − r0)2 +K3(r − r0)3 +K4(r − r0)4 , (5.10)

where r represents the distance between the bonded atoms. For U2,Single, r0 = r5 = 1.455

Å, K2 = 299.67 Kcal/mol-Å2, K3 = −501.77 Kcal/mol-Å3, and K4 = 679.81 Kcal/mol-Å4.

For U2,Double, r0 = r6 = 1.391 Å while other parameters remain the same.

The second term in the bonded portion of Eq. 5.8 is the three-body angle term UAngle.

It is composed of angular bonds between three carbon atoms. Note that, in a C60 molecule,
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three-atom chains form on the perimeter of either pentagons or hexagons, hence

UAngle =
∑

U3,108 +
∑

U3,120 , (5.11)

where U3,108 represent the in-pentagon bonds and U3,120 represent the in-hexagon bonds.

The summations are performed over all occurrences of the two types of angles. Both U3,108

and U3,120 have the same form U3,

U3 = [Q2(θ− θ0)2 +Q3(θ− θ0)3 +Q4(θ− θ0)4] + [N1(rij− r1)(θ− θ0) +N2(rjk− r2)(θ− θ0)] .

(5.12)

Each three-atom chain is defined by a central atom and two edge atoms. θ is the smaller

angle formed by the two lines connecting the central atom with the edge atoms. rij is the

distance between the central atom and the first edge atom, while rjk is the distance between

the central atom and the second edge atom (the labeling of first and second edge atoms is

irrelevant for C60). For the three-atom chains existing in a hexagon, θ0 = 120◦, Q2 = 39.52

Kcal/mol-deg2, Q3 = −7.44 Kcal/mol-deg3, Q4 = −9.56 Kcal/mol-deg4, N1 = N2 = 8.02

Kcal/mol-deg-Å and r1 = r2 = 1.423 Å. For three-atom chains existing in a pentagon,

θ0 = 108◦ while all other parameters are identical to the hexagon case.

The final term on the right-hand side of Eq. 5.8 is the non-bonded van der Waals

interaction. It is specified by a 9-6 Lennard-Jones potential,

UvdW =
∑

ε

[
2
(σ
r

)9
− 3

(σ
r

)6]
, (5.13)

where the summation is performed over all pairs of atoms (both within a cage and between

cages). The energy and distance parameters ε and σ are 0.054 Kcal/mol and 4.01 Å.

UvdW is strictly cut off at distances beyond 15.5 Å, encompassing the center-of-mass of the

88



second-nearest neighbor cage.

After the PCFF as defined is applied to the structure constructed in Sec. 5.2.1, single-

cage relaxation is performed using MD simulation. After relaxation, the relaxed average

bond lengths at a temperature of 300 K are r6 = 1.422 Å and r5 = 1.498 Å. A bulk

system is then built by placing the centers-of-mass of multiple cages in a FCC crystalline

arrangement where the rotational orientation of each cage is uniformly randomized over the

three Euler angles. Relaxation is performed at 300 K and the zero pressure conventional

face-centered cubic lattice constant is found to be 14.387 Å, which is comparable to the

experimental lattice constant of 14.17 Å.

5.2.3 Point mass

To isolate the center-of-mass translations of the C60 cages independent of all intra-cage

vibrations and cage rotations, we model each C60 molecule as a point whose mass is sixty

times that of a single carbon atom. The challenge involved in creating this reduced order

model is the definition of the effective pair potential UEff(r) between C60 two molecules.

In the full degree of freedom model, this was done by calculating the exact inter-atomic

interactions and summing them. However, in the point mass model, the individual atoms

are not modeled and it is necessary for UEff(r) to capture the average effect of the angular

disorder in the system. We compute the interaction energy between a pair of rigid C60

molecules whose centers-of-mass are separated by a distance r atomistically by summing

the interaction energy across all interacting atoms. Call this quantity Ul(r), where the index

l indicates the rotational orientation of one C60 relative to the other (i.e., l is shorthand

for three Euler angles). We choose W random orientations and create UEff(r) by taking
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the weighted average of the Ul(r) over all orientations considered

UEff(r) =

∑W
l Ul(r) exp [−min(Ul)/kBT ]∑W

l exp [−min(Ul)/kBT ]
. (5.14)

Here, min(Ul) is the minimum energy (i.e., well depth) of Ul(r) for the particular orientation

l. Eq. 5.14 forms UEff(r) by weighing each orientational pair energy Ul(r) by the Boltzmann

factor of their energy minimum. For our work,W is taken to be 1,000. To ensure that 1,000

is sufficient for statistical convergence, five different random sequences of 1,000 orientations

were used to generate five different versions of UEff(r). The maximum deviation between

any two of the five potentials was 2% throughout the range of r. UEff(r) is sampled at 2,000

evenly spaced points between r = 5 and 25 Å and implemented in LAMMPS using the

command pair_style table linear (i.e., a lookup table). UEff(r) is plotted in Fig. 5.2

The method of generating UEff(r) presented here is not the only method, though it

provides for a simple way to sample the rotational phase space experienced by a single C60

molecule within the FCC environment. It is also possible to sample the rotational phase

space by observing and recording the orientation of C60 molecules within an equilibrium

MD simulation at a temperature of 300 K.

5.3 Thermal conductivity calculation

Direct heat non-equilibrium MD (Sec. 2.2.3) is used to predict the thermal conductivity of

full degree of freedom and point mass systems.

In the full degree of freedom simulations, a 2×2 unit cell (826.0 Å2) cross-sectional

area is used. The fixed and reservoir regions are 2 unit cells (28.74 Å) in length, while

the sample length varies from 5 to 35 unit cells (65.1 to 489 Å). The simulation time step

is 0.3 femtoseconds and the applied heat flux is 0.0035 Kcal/mol-fs. Velocity rescaling,
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Figure 5.2: The effective molecular pair potential UEff(r) used in point mass simulations.
The vertical line crosses the minimum of the potential, which occurs at a pair separation
of 9 Å.

Nose-Hoover thermostatting, and relaxation are run for 100,000 time steps each. The heat

flux is applied for 1×107 time steps prior to a 3×106 time step data collection sequence. A

diagram of the direct method simulation cell and an example output temperature profile

are plotted in Fig. 5.3.

In the point mass simulations, the time step is 1.0 femtoseconds, the reservoirs are 4

unit cells in length, and all other parameters are identical to the full degree of freedom

simulations. The lattice constant is changed to 12.68 Å from the 14.387 Å used in the

full degree of freedom case in order to produce a zero pressure system at a temperature of

300 K. A 2×2 unit cell cross-sectional area is used for comparability to the full degree of

freedom simulations.
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Figure 5.3: A diagram of a full degree of freedom C60 direct method MD simulation cell
along with the temperature profile for a 15 unit cell (216 nm) long sample. Note that the
rotational orientations of the C60 are random. Each data point represents the temperature
of a layer of C60 molecules. The error bars represent the standard deviation of the kinetic
energy within a layer (see Sec. 2.2.2).

5.4 Results

5.4.1 Validation

We validate our model of C60 by first comparing the vibrational characteristics of single

molecule C60 to that of first principals density functional theory (DFT) [120] and to that

of experiment [121]. The results are plotted in Fig. 5.4.

As shown in Fig 5.4(a), the PCFF model overestimates the single molecule heat capacity

of the more accurate DFT model in the temperature range of 100 to 2000 K. At 300 K,

the PCFF heat capacity is 36% greater than that of both DFT and experiment. The

origin of the overestimation can be determined by comparing the molecular vibrational

specta produced using PCFF and using DFT [Fig 5.4(b)]. The PCFF model has a great

number of modes at frequencies between 200 and 400 cm−1 that are not present in the DFT
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model. Instead, the DFT model shows a peak in mode number near 800 cm−1, as well as

modes near 1600 cm−1 that are not present in the PCFF model. PCFF shifts modes that

would otherwise be at higher frequency to lower frequencies, causing the heat capacity to

accumulate faster at low temperature.

Despite the PCFF’s inability to reproduce the DFT C60 vibrational spectrum, it cor-

rectly models the range of frequencies over which the molecular vibrations occur. This can

be observed by comparing the high-temperature heat capacities of PCFF versus DFT C60,

which differ by less than a percent at 2000 K.

We validate the ability of our PCFF model to model crystalline C60 by comparing the

frequency spectrum of the center of mass translations in an energy-conserving, full degree

of freedom MD simulation of FCC arranged C60 to that of a frozen phonon model produced

by Chen et al. (also using PCFF). The results are plotted in Fig. 5.5.

The three vibrational peaks at 20, 30 and 38 cm−1 in Fig. 5.5 agree well with the average

frequencies of the three acoustic branches of the phonon dispersion. While comparison

against another PCFF model cannot inform us regarding the accuracy of the PCFF model,

the agreement between MD simulation and the frozen phonon model suggests that the

phonon picture is an appropriate model for the center-of-mass translations in FCC C60

crystal.

5.4.2 Thermal conductivity

The length-dependent thermal conductivity of full degree of freedom and center-of-mass

translation only FCC C60 are plotted in Fig. 5.6. Results of direct method MD simulation

are compared to results using the Green-Kubo method [78] for the same system.

In the full degree of freedom system, the thermal conductivity as predicted from direct

method appears to plateau to 0.28 W/m-K at a sample length of 28 nm before diverging

93



(a)

(b)

Frequency (1/cm)

Figure 5.4: The (a) heat capacity and (b) spectrum of molecular vibrations of a single C60

molecule from the PCFF model compared to that using first principals density functional
theory. Note that the experimental value was measured by Jin et al. [121] from crystalline
C60 and has been normalized to a single crystal.

Figure 5.5: The frequency spectrum of center of mass translations in FCC C60 using the
PCFF compared against the frozen phonon dispersion by Jin et al., also produced from
PCFF. The three peaks highlighted in red correspond with the average frequencies of the
three acoustic branches.

linearly for samples 30 nm and longer. The Green-Kubo [78] thermal conductivity of 0.25

W/m-K agrees well both the plateau and with simulations results reported by Chenet

al. [118]. We suspect that the linear divergence seen in the direct method results is a

numerical artifact. Such divergence is well known for direct method MD simulations and
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has been demonstrated by Hu et al. [79] to systematically occur in isotropic crystalline

samples with length to cross-sectional area ratios (aspect ratios) greater than 100. While

the aspect ratio of the samples considered here peak at only 12, it is unclear how the

disorder introduced by the free rotations affects the divergence. In order to investigate

the nature of the divergence further, it is necessary to determine whether the direct heat

thermal conductivity at lower aspect ratios agrees with the plateau value by considering a

28 nm sample with 3×3 cross-sectional area.

In the center-of-mass translation only system, the direct method simulations converges

at a sample length of 30 nm. The thermal conductivity of the 50 nm system is 0.36 W/m-

K. The Green-Kubo thermal conductivity of the center-of-mass translation system is 0.45

W/m-K, 25% larger than the direct method prediction.

If the direct method thermal conductivity near a sample length of 25 nm is assumed to

be the length-converged thermal conducitivity of full degree of freedom FCC C60, then both

direct method and Green-Kubo simulations suggest that a system with only center-of-mass

translations has a higher thermal conductivity (30% greater in direct method, 80% greater

in Green-Kubo) than a full degree of freedom system. This behavior is counter-intuitive

from a degree of freedom perspective, as less degrees of freedom are available to carry

heat in the translation only system. However, the results suggest that the intra-molecular

vibrations and molecular rotations present in the full degree of freedom system, but absent

in the translation-only system, act as scattering sources of the center of mass phonons,

inhibiting their transport and lowering thermal conductivity.

5.5 Conclusions

In this Chapter, we presented evidence that the motions of the centers of mass in an

FCC C60 crystal may be treated as phonon-like. We also discovered that the thermal
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Figure 5.6: Thermal conductivity of full degree of freedom and center-of-mass translation
only C60 systems at a temperature of 300 K.

conductivity of a full degree of freedom C60 crystal is lower than that of a system that

considers only the motions of the molecular centers of mass. This behavior suggests a

physical description of thermal transport whereby the center of mass phonons are scattering

with molecular vibrations and rotations. An argument can be made that the large gap

in frequency between the center of mass acoustic phonons and the intracage vibrations

make any interaction between the two unlikely. Such an argument, however, does not

sufficiently capture the role of rotations, both in their direct interaction with the center of

mass phonons and in their role of possibly mediating interaction between center of mass

phonons and molecular vibrations. Since the rotations are not limited in amplitude, they

cannot be properly described in a phonon picture.

We have also revealed that the direct method prediction of thermal conductivity in full

degree of freedom C60 crystal diverges for aspect ratios as low as 12. To better characterize

the divergence, it is necessary to performed direct method MD simulations at lower aspect

ratios using a 3×3 unit cell cross-sectional area.
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Summary and future work

6.1 Overview

6.1.1 Summary

The aim of this thesis was to investigate thermal transport across two- and three-dimensional

heterostructure junctions joining bulk crystals and in molecular crystals. In Chapter 2 we

presented theoretical and practical underpinnings of two methods: direct heat MD simula-

tion and HLD with the SBM. MD simulations allow us to integrate the coupled, non-linear

equations of the classical many-body problem, while the direct method is a “computational

experiment," whereby thermal conductivity and thermal conductance can be extracted

from the temperature profiles that result from the MD simulation. Though MD is pow-

erful, it is inhibited by its inability to account for quantum effects. Within the scope of

this thesis, the most pertinent facet of this limitation is the inability of MD to account

for quantum statistics, specifically, the Bose-Einstein population distribution of phonons

at thermal equilibrium. For soft systems that are at or near their Debye temperatures,

this limitation does not present a problem. However, for stiff systems (like graphene) near

room temperature, results from MD simulations can not be directly compared with results

from experiment. HLD with the SBM overcomes this shortcoming of MD by naturally

accounting for quantum statistics. The SBM is also inherently mode-level, allowing us to

sweep over the first Brillouin zones of crystals and compute the transmission coefficients

associated with every phonon mode. Integration then allows computation of thermal con-

ductance using the Landauer formalism. The SBM, however, cannot account for the full
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anharmonicity of the interatomic interactions in the way that MD simulations can, and

hence the thermal conductance predicted from the SBM and the Landauer formalism will

deviate in soft systems. It is appropriate to consider MD simulation as representative of

the high-temperature limit of a system, and HLD with the SBM as representative of the

harmonic, low-temperature limit.

In Chapter 3, we applied MD simulations and the SBM to a soft, three-dimensional

semiconductor heterostructure junction, the Lennard-Jones superlattice joining crystalline

leads. Using classical statistics, we identified a lead effect in the SBM, where nearly iden-

tical junctions have a higher thermal conductance when placed between leads of the same

mass as opposed to being placed between leads of differing masses. This phenomenon

results from the lack of anharmonic scattering occurring within the junction due to the

assumptions of the SBM, causing the phonon properties of the leads to play a more im-

portant role in determining the junction thermal conductance. When the same systems

are simulated using MD, we find that the lead effect is reversed, that is, a higher thermal

conductance is observed when the junction is placed between leads of differing masses.

The lead effect disappears in MD when higher temperatures, long superlattice periods,

and rough interfaces are introduced. In smooth, short period systems at low temperatures,

a lead effect transition takes place as we move from the SBM to MD, that is, as more and

more anharmonicity is added.

In Chapter 4, we applied the SBM with quantum statistics to heterostructure junc-

tions of graphene and hBN, exploiting the SBM’s ability to more accurately represent

graphitic systems at room temperature. We validated our method by demonstrating that

our predictions for the thermal conductance of armchair- and zig-zag aligned graphene-hBN

interfaces are in good agreement with literature. By applying the SBM across a uniform

wavevector grid, we are able to plot the contributions to the thermal conductance as a
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two-dimensional function of wavevector. Modes close to the center of the zone, which are

both highly populated and have high group velocities, make the most significant contri-

butions to thermal conductance. In graphene/hBN superlattice junctions, the lead effect

discovered in the LJ superlattice system appears as well. Due to wavevector mapping of

the thermal conductance contributions, we are able to isolate the cause of the lead effect

in the graphene/hBN system to transmission at frequencies in the band gap of hBN that

cannot occur if hBN is a lead. In bilayer systems, we discovered that, due to weak inter-

layer coupling, the reduction in thermal conductance when moving from single to double

layer reduces 10% on a per-area basis, which is insignificant when compared to the drastic

reduction in thermal conductivity when moving from single to double layer graphene.

In Chapter 5, we used MD simulations’ ability to model non-crystalline systems to study

C60 molecular crystals at a temperature of 300 K. We formulated a model of C60 using

PCFF, a potential that encompasses both covalent bonds and van der Waals interactions.

We found that the molecular vibrational spectrum is similar in order of magnitude to results

from first principles density functional theory calculations. When placed in a face-centered

cubic crystal, the translations of the centers-of-mass of the C60s show frequency peaks that

agree with literature values using a frozen phonon approach. C60 at room temperature is

interesting from a thermal transport perspective because while the centers-of-mass form a

crystal, the molecules themselves rotate freely. By inhibiting first intramolecular vibrations

and then both intramolecular vibrations and molecular rotations, we observe the effects of

the different degrees of freedom as well as their interactions with one another.

6.1.2 Molecular dynamics versus scattering boundary method

It is important to summarize the situations where direct heat MD simulations (see Sec. 2.2.3)

are most appropriate and the situations where Landauer formalism and the SBM (see
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Sec. 2.4) are most appropriate.

Direct heat MD simulations are most appropriate for modeling systems at temperatures

higher than their Debye temperature. In the high-temperature limit, the classical statistics

present in the MD system do not differ drastically from quantum statistics. Further,

the ability of MD simulations to capture anharmonic dynamics is critical in this limit

as anharmonic dynamics are more significant at high temperature. Special care must

be taken when using MD simulations at temperatures very low relative to the system’s

Debye temperature. First, the lack of quantum statistics presents an additional source of

error if the aim is to compare results from MD to results from experiments. Second, as

phonon mean free paths become longer at low temperature, the system lengths necessary

for there to be a detectable temperature gradient can become very large, requiring very

long computation time for convergence. In the limit of zero temperature, or in a MD

simulation with only harmonic interactions, no phonons originating from the reservoirs

interact with one another in the sample to thermalize, and hence there exists no near-

equilibrium temperatures within the sample to record a temperature profile. In this ballistic

limit, it is still possible to extract average kinetic energies within the sample, but these

average kinetic energies cannot be directly converted to a temperature as they associated

with distribution functions that are far out of equilibrium.

The Landauer formalism in conjunction with SBM is most appropriate for modeling

systems at temperatures far below their Debye temperature. As formulated in this thesis,

the SBM does not account for anharmonic interactions at all but does account for the

quantum Bose-Einstein distribution of phonons, making it ideal for the low temperature

regime. The notion of temperature within SBM pertains only to the distribution functions,

and not to the level of anharmonic interactions. Even if a distribution function for a high

temperature is used, the thermal conductance predicted from SBM is only a harmonic
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value. It cannot be said in generality whether a harmonic thermal conductance is higher

or lower than a fully anharmonic thermal conductance as it will depend on the specific

material system. Another important limitation of the Landauer formalism as written in

Sec. 2.4.1 is that the formulation is based on the assumption of an infinitesimal heat flow

across the junction. While the thermal conductance predicted from infinitesimal heat flow

is typically valid in the linear regime (i.e., the Fourier regime where heat varies directly

with temperature difference), the SBM cannot be used to predicted thermal conductance

in the presence of large heat or temperature gradients. The method suggested in Sec. 6.2.1

should instead be considered.

6.2 Future work

6.2.1 Coupled leads

As discussed in Sec. 2.3.3, anharmonic lattice dynamics can be used to predict the thermal

conductivity of crystals at finite temperature. First, phonon-phonon scattering rates are

accounted for by treating the anharmonic interatomic interactions perturbatively. The

Boltzmann transport equation associated with the non-equilibrium phonon population is

then solved (either directly or iteratively) using the phonon-phonon scattering rates as

input.

In the form presented in Sec. 2.1, the Landauer formalism assumes that the left and right

leads are nearly in thermal equilibrium. That is, the temperature of the leads differ only by

an infinitesimal amount, and similarly, the heat that flows between the leads through the

junction is infinitesimal. In realistic situations, finite heat flows between the leads and the

leads are not at thermal equilibrium. This inconsistency presents a major limitation of the

HLD and SBM formalism as presented and used in this thesis. An alternate scheme can
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be used whereby the leads L and R are explicitly modeled using two separate Boltzmann

transport equations. The junction can then be introduced as a coupling term between the

two equations. The Boltzmann transport equations are

vg,L(k, ν)† ∇xnL(k, ν) =

[
∂nL(k, ν)

∂t

]
L↔L

+

[
∂nL(k, ν)

∂t

]
L↔R

, (6.1)

vg,R(k, ν)† ∇xnR(k, ν) =

[
∂nR(k, ν)

∂t

]
R↔R

+

[
∂nR(k, ν)

∂t

]
R↔L

. (6.2)

In Eqs. 6.1 and 6.2, x is the cross-junction direction, n is the wavevector-domain phonon

distribution function, and subscripts L and R refer to the two leads. The first terms of the

right-hand sides include all scattering events occurring within a given lead, including but

not limited to phonon-phonon scattering, boundary scattering, and impurity scattering.

The second terms of the right-hand sides are the cross-junction terms and account for the

loss and gain of phonons across the junction, that is, the cumulative effect of transmission

and reflection events. If the SBM is used to compute phonon transmission coefficients

α(k, ν), then, using a probabilistic interpretation of transmission coefficient, a possible

form of the cross-junction term might be

[
∂nL(k, ν)

∂t

]
L↔R
∝ αL→R(k, ν)nL(k, ν)vxg,L(k, ν)+

R∑
k′, ν′

α
′

R→L(k′, ν ′,k, ν)nR(k′, ν ′)vxg,R(k′, ν ′),

(6.3)

along with a prefactor that has a unit of inverse length. Eq. 6.3 models the cross-junction

term as the modal phonon fluxes in the x-direction mediated by transmission coefficients.

The first term on the right-hand side represents the outgoing flux of phonon mode (k, ν).

The second term on the right-hand side represents the incoming flux into phonon mode

(k, ν) from all R phonon modes (k′, ν ′). Note that α′ on the right hand side differs from

α as α′ describes the specific transmission coefficient from one R mode to a single L mode,

as opposed to one R mode to all L modes.
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An inconsistency that arises if Eq. 6.3 is used with Eqs. 6.1 and 6.2 is that, while the

collision terms within the leads account for anharmonic effects perturbatively, the SBM

does not account for any anharmonic effects. While use of the SBM with this model

allows us to model harmonic junctions between anharmonic, out-of-equilibrium leads, the

calculation of the cross-junction coupling with anharmonicity, perturbatively or otherwise,

remains a challenge.

6.2.2 C60 intercage thermal conductance

In Chapter 5, we proposed the notion that center of mass phonons were interacting with

cage vibrations and rotations, reducing thermal conductivity. In this picture, collective

waves carry energy through bulk C60, scattering from time to time. An alternate picture

is that energy diffuses from molecule to molecule, where energy is trapped in the high-

frequency vibrations of the cage (in a classical picture) but is slowly drained by the weak

cross-cage interaction. In the limit of harmonic interactions, the timescales involved with

the cross-cage interaction can be computed on the basis of the vibration modes of the single

C60 molecule, and, in conjunction with the Landauer formalism, can be used to predict

the thermal conductance between C60 cages. In the case of two neighboring cages, we can

compute the vibrational spectrum and normal modes of the isolated cage as well the as

vibrational spectrum and normal modes of the two cage system, the latter of which takes

into account the harmonic intercage interaction. It is then possible to establish a system

where a single molecular mode is active in one cage and no other modes are present. We

can then calculate the lifetime of that mode in the presence of a neighboring cage. We can

also calculate the exact rate at which energy leaves the initial mode to the other modes of

the system. By establishing a list of mode-to-mode energy transfer rates, it is possible to

use a Landauer-like formalism to calculate the harmonic intercage thermal conductance.
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See Appendix A for further discussion on this method.
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Intermolecular interactions by mode

projection

A.1 Theory

Suppose we have a system of atoms F that interact via Hooke’s law springs and are

governed by classical physics. F can be divided into two disjoint sets of atoms A and B,

representing two molecules that share no degrees of freedom. F has a total of N degrees

of freedom, NA of them in A and NB of them in B, such that N = NA + NB. We think

about how energy moves between A and B in terms of their vibrations. This will allow us

to describe the thermal conductance between individual molecules.

F is described by a configuration vector x(t) that varies with time t. x lives in an N -

dimensional space F . If interaction operator is H (that is, H describes all interactions in

F ), then the time evolution of x(t) is given by Newton’s laws

d2x

dt2
= Hx . (A.1)

We will assume H is time-independent. The analysis is analogous for time-variant H,

however the results are more involved practically and beyond the scope of this report. The

crux of the technique to be described is to represent the motion of F using the vibrational

modes of A and B in isolation. Conceptually, this is no different than choosing to use a

different coordinate system to describe some situation. Practically, it is only slightly more

involved.
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Due to disjointness, x can be split between A and B without any complication: x =

(xA,xB), where the operation (· , ·) indicates the concatenation of two vectors. xA de-

scribes A alone, and lives in an NA-dimensional subspace A. Similarly, xB describes B

alone and lives in an NB-dimensional subspace B. It is convenient to define HA as the

interaction operator containing only interactions internal to A. Similarly, HB contains

only interactions internal to B. Then, in the basis upon which interactions are described,

H =

HA 0

0 HB

+ δH = H0 + δH , (A.2)

where δH describes intermolecular interactions.

Suppose {a1, . . . , aNA
} ∈ A forms a basis for A and {b1, . . . ,bNB

} ∈ B forms as basis for

B. Then certainly {(a1,0B), . . . , (aNA
,0B), (0A,b1), . . . , (0A,bNA

)} ∈ F , or {an} ∪ {bm}

for short, forms a basis for F . A possible basis for A is set of eigenvectors of HA, so let

{an} be the eigenvectors of HA (i.e., the natural modes of A). Similarly, the eigenvectors

of HB form a basis for B, so let {bm} be the eigenvectors of HB (i.e., the natural modes of

B). For compactness, we will refer to {an}∪{bm} as {e0
p}, where the first NA eigenvectors

are those of HA, and the remaining NB are those of HB. Since {e0
p} is a basis for F , any

configuration of the system can be written as the superposition

x(t) =
N∑
p

cp(t)e
0
p exp (−iω0

pt) , (A.3)

where ω0
p is the natural frequency associated with basis element e0

p. These frequencies can

be obtained by solving the eigenproblem for HA or HB. The components {cp(t)} are, in

general, time-dependent. This is because {e0
p} are generally not eigenvectors of H. As a

result, despite the explicit time dependence exp (−iω0
pt) in every term in the sum, no term

is of single frequency. In quantum mechanical parlance, these modes are not “stationary.”
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We are interested in finding the components {cp(t)} as their squares will tell us about the

energy in modes of A and modes of B as a function of time. Substitution of Eq. A.3 into

Eq. A.1 results in

N∑
p

(
d2cp
dt2
− i2ω0

p

dcp
dt

)
e0
p exp (−iω0

pt) =
N∑
p

cpδHe0
p exp (−iω0

pt) . (A.4)

Keeping in mind the orthonormality condition e0
q
†e0
p = δpq, projection of Eq. A.4 onto

modes e0
q from the left results in

d2cq
dt2
− i2ω0

q

dcq
dt

=
N∑
p

cp
(
e0
q
†δHe0

p

)
exp (−iω0

pt) . (A.5)

Speaking in the language of anharmonic lattice dynamics, the term e0
q
†δHe0

p is the p-q

matrix element of the perturbation δH in the unperturbed eigenbasis {e0
p}. If we isolate

cq on the left hand side, we get

d2cq
dt2
− i2ω0

q

dcq
dt
−
[(

e0
q
†δHe0

q

)
exp (−iω0

q t)
]
cq =

N∑
p6=q

cp
(
e0
q
†δHe0

p

)
exp (−iω0

pt) . (A.6)

This is a set of N coupled second order complex linear differential equations for the mode

amplitudes cq(t). Note that the strength of coupling depends on the matrix elements of

the intermolecular interaction δH. Since these equations are linear, they can be solved to

extract squared amplitudes |cq(t)|2, which are directly proportional to the energy in mode

e0
q at time t.

While Eq. A.6 is general, its solution may be involved. By limiting ourselves to harmonic

interactions, we exploit the N eigenvectors {em} of H and their associated frequencies
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{ωm} to avoid solving Eq. A.6 directly. We decompose Eq. A.3 as

x(t) =
N∑
p

cp(t)e
0
p exp (−iω0

pt) =
N∑
m

bmem exp (−iωmt) , (A.7)

where in this case the coefficients bm are determined by the initial conditions and do not

vary in time

bm =
N∑
p

cp(0)e†me0
p . (A.8)

Taking the inner product of Eq. A.7 with e0
q gives

cq(t) =
N∑
m

[(
N∑
p

cp(0)e†me0
p

)
e0
q
†em exp [i(ω0

q − ωm)t]

]
, (A.9)

where we have substituted Eq. A.8 for bm.

Once we have the amplitudes cq(t) we can consider their energy content |cq(t)|2 under a set

of initial conditions where some A mode e0
p ∈ A has unit amplitude at t = 0 and no other

mode is activated. We can then observe the amplitudes in all of the B modes and the rates

of change of their energies. These energies, of course, come from the initially excited A

mode. From this we can build a matrix of energy transfer timescales Tpq, paving the way

to thermal conductance prediction.

A.2 Toy example

While the following example may appear too simple to be useful, it serves to drive home

two points. First, despite the apparent complication that comes with generalization, this

method is no different from plucking an atom and seeing how another atom starts to

move in response. Second, this method can be used to study energy transfer between any

arbitrary subset of a F with any other arbitrary subset of F , as long as these subsets do
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not share degrees of freedom. These subsets can be individual atoms, or even individual

degrees of freedom within an atom.

Suppose two atoms of unit mass are attached to walls with springs of unit stiffness. These

are our “molecules.” They interact via a spring of stiffness k. We have N = 2, NA = 1,

NB = 1. In the basis of the atomic positions, we have

HA = HB = −1 , H =

−1− k k

k −1− k

 , (A.10)

with

{e0
1 , e0

2} , {ω0
1 , ω

0
2} = {

1

0

 ,

0

1

} , {1 , 1} , (A.11)

and

{e1 , e2} , {ω1 , ω2} = {

1

1

 ,

−1

1

} , {−1 , −2k − 1} . (A.12)

We want to see how energy flows from left side mode e0
1 to right side mode e0

2. This is just

a general way of saying we would like to see how energy flows to the second atom when the

first atom is plucked. The appropriate initial condition is c1(0) = 1 and c2(0) = 0. First,

solve for {bm}

b1 = e†1e
0
1 =

[
1 1

]1

0

 = 1 (A.13)

b2 = e†2e
0
1 =

[
−1 1

]1

0

 = −1 . (A.14)
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Next, solve for the amplitude of e0
2, c2(t)

c2(t) = b1e
0
2
†e1 exp [i(ω0

2 − ω1)t] + b2e
0
2
†e2 exp [i(ω0

2 − ω2)t] (A.15)

=

[
0 1

]1

1

 exp [i2t]−
[
0 1

]−1

1

 exp [i2(k + 1)t] (A.16)

= exp [i2t]− exp [i2(k + 1)t] . (A.17)

Finally, consider the square amplitude, a real number proportional to mode energy

|c2(t)|2 = [sin (2t)− sin [2(k + 1)t]]2 + [cos (2t)− cos [2(k + 1)t]]2 (A.18)

= 4 sin2 (kt) . (A.19)

As expected, the energy moves back and forth between the left and right “molecules” with

a frequency proportional to k, the interaction stiffness. How do we extract a timescale

τ12? Here, the frequency is an obvious timescale, but in general there will not be a single

frequency. We apply a trick similar to what is done in Fermi’s Golden Rule, which is

|c2(t)|2 = 4 sin2 (kt) ≈ 4[exp (2kt)− 1] . (A.20)

This will be true very close to t = 0, as sin (x) and exp (x) have the same linear term in

their Taylor series expansion about x = 0. A central assumption of Fermi’s Golden Rule

is that the amplitude varies slowly so that cn(t) ≈ cn(0). Going by this convention, we say

τ12 =
1

2k
. (A.21)
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As k goes to zero, the lifetime of e0
1 goes to infinity, as it does not lose energy to e0

2. As k

increases, the mode lifetime goes to zero. This agrees with intuition.

A.3 Towards thermal conductance

Both temperature and quantum population effects can be added to this model. Suppose

that A is at temperature TA, meaning some external influence holds the square amplitudes

of mode e0
p at ~ω0

pfBE(TA, ω
0
p), where fBE is Bose-Einstein distribution. To get to thermal

conductance, consider the energy current balance between A and B

q = qA→B − qB→A . (A.22)

In Landauer thermal conductance for crystalline systems, qA→B is

qA→B =
1

2π

∫
dκ

+∑
ν

~ω(κ, ν)vz(κ, ν)α(κ, ν)fBE(κ, ν, TA) . (A.23)

In analogy, qA→B should be

qA→B =

NA∑
n

~ω0
nfBE(ω0

n, TA)

[
NB∑
m

1

Tnm

]
. (A.24)

Note that
∑NB

m 1/Tnm has taken the role of vz(κ, ν)α(κ, ν)dκ. The linear response relation

q = G∆T for thermal conductance G is only valid for ∆T small. For ∆T small enough to

be well approximated by the linear term of the Taylor series for fBE about TA, thermal

conductance can be written as

G =

NA∑
n

~ω0
n

∂fBE
∂T

(ω0
n, TA)

[
NB∑
m

1

Tnm

]
. (A.25)
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Phonons as an operator equation
In Sec. 2.3, a derivation of the phonon modes for a three-dimensional periodic mass-spring

model of a crystal was given using Newtonian classical mechanics. While the derivation is

the easiest to conceptually understand, it is not usually how it is done in most texts on the

subject. Instead, an operator-based derivation compatible with both Hamiltonian mechan-

ics and quantum mechanics will be summarized in this Appendix for a one-dimensional sys-

tem. Intuitive understanding of the one-dimensional case leads to intuitive understanding

of the three-dimensional case, however, the algebra involved in the three-dimensional case

is more involved. A textbook such as Ref. [36] can be referred to for the three-dimensional

derivation.

The Hamiltonian for the one-dimensional chain is

H =
∑
n

∑
i

p̂2ni
2mi

+
∑
n,l

∑
i,j

Φni,lj(x̂ni − x̂lj)2 . (B.1)

n and l are indices over the unit cells, while i and j are indices over the atoms within a

unit cell. mi are the scalar atomic masses, while p̂ni and x̂ni are the atomic momentum

and position operators. Suppose that the crystal has a unit cell length of a so that na is

a lattice vector for any integer n. If we assume that there is only one atom per unit cell,

that each atom interacts only with its immediate neighbors, and that all interactions are

identical, Eq. B.1 can be simplified to

H =
∑
n

p̂2n
2m

+
mω2

0

2
(x̂n−1 − x̂n)2, (B.2)

where the atom index has been dropped and the force constant has been written in terms
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of its natural frequency. Assume that x̂n and p̂n have Fourier decompositions

x̂n =
∑
k

X̂k exp (ikna) (B.3)

and

p̂n =
∑
k

P̂k exp (ikna) , (B.4)

where k is the wavenumber. To the best of my understanding, Eqs. B.3 and B.4 ensure

that operators x̂ni and p̂ni are invariant with respect to translation by a unit cell, that is,

invariant in the change of index n. The exact theoretical origin is found in the spectral

theory of self-adjoint operators and is beyond the scope of this thesis. Substitution of

Eqs. B.3 and B.4 into Eq. B.2 gives

H =
∑
n

[∑
k,q

P̂kP̂q exp (i(k + q)na)

2m
+

mω2
0

2
(exp (−ika)− 1) exp (−ikna)X̂k (exp (−iqa)− 1) exp (−iqna)X̂q

]
.

(B.5)

The second term requires expansion of the square Hooke’s law term in the Hamiltonian.

Using the orthonormality condition
∑

n exp [i(k + q)na] = δk,−q, the summation over the

unit cell indices n can be performed to reveal

H =
∑
k

P̂kP̂−k
2m

+
mω2

0

2
(exp (−ika)− 1) (exp (ika)− 1) X̂kX̂−k , (B.6)

which can be further simplified using trigonometric identities to

H =
∑
k

P̂kP̂−k
2m

+
mω2

0

2
4 sin2(ka/2)X̂kX̂−k . (B.7)

The transforms in Eq. B.3 and B.4 diagonalizes Eq. B.2 into Eq. B.5, the latter of which can
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be thought of as an countably infinite matrix with only diagonal elements and where each

diagonal element is indexed by a wavenumber k. It is important to notice the similarity of

Eq. B.7 with the Hamiltonian for the simple harmonic oscillator, as this analogy carried

forth will bring about the phonon modes.

Since Eq. B.7 is left as an operator equation, the procedure to derive the phonon

modes completely can be done either classically or quantum mechanically. If done quantum

mechanically, the procedure is to first show that X̂k and P̂k are canonically conjugate (i.e.,

a Heisenberg pair). Then, treating X̂k and P̂k as canonical position and momenta, an

equivalent simple harmonic oscillator system is solved by defining ladder operators âk and

â†k and rewriting Eq. B.7 in terms of the ladder operators. This derivation can be found in

any standard text on quantum mechanics.
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