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THESIS OVERVIEW 
 
i. SUMMARY 

The primary objective of this study was to develop approaches for controlling and monitoring 

stem cell behavior in vitro and in vivo for potential applications in regenerative medicine. To 

control stem cell behavior in vitro and in vivo, signaling molecules including growth factors 

(GFs) were spatially patterned onto novel substrates and scaffolds to instruct stem cells to 

undergo desired cell behaviors such as musculoskeletal differentiation in register to the 

biochemical and geometric cues supplied. The premise for this approach is based on the 

biological phenomenon whereby stem cell behavior can be directed by instructive cues present in 

its immediate vicinity or microenvironment. Using this methodology, a primitive muscle-tendon-

bone (MTB) unit was patterned in vitro while ectopic bone tissue was patterned in vivo. In 

addition, the effect of inflammatory and anti-inflammatory microenvironments on osteoblast 

differentiation was characterized since inflammation is an important component of the wound 

healing response. In such studies, inflammatory microenvironments were found to inhibit 

osteoblast differentiation in several musculoskeletal progenitor cells and this inhibition could be 

reversed with anti-inflammatory IL-10. Primary cells such as muscle-derived stem cells 

(MDSCs) were also found to display differing levels of sensitivity to such osteoblast inhibition. 

To monitor stem cell behavior in vitro, a computer-vision based system was developed for real-

time adaptive subculture of muscle-progenitor cells. This computer-directed subculture system 

minimizes human labor and subjectivity during progenitor cell expansion and cells cultured with 

this system were comparable to those grown by a human operator. The work described here 

illustrates methods for controlling and monitoring stem cell behavior and may have potential 

applications in regenerative medicine.  

xvi 
 



ii. MOTIVATION 

The musculoskeletal system comprises of organs and tissues such as bone, muscle, tendon, 

cartilage, ligament as well as various tissue interfaces such as bone-to-tendon entheses or 

myotendinous junctions. The functions of the musculoskeletal system are diverse owing to its 

participation in numerous biological processes which include mechanical roles in supporting the 

body [1-3], maintaining posture [1-3], aiding movement [3-6], protecting internal organs from 

physical trauma [1-3] and facilitating the mechanics of hearing [3] as well as physiological roles 

in growth factor (GF) storage [3, 7], fat storage [3], calcium and phosphate homeostasis [3, 8], 

blood homeostasis [1-3, 9-11], protein and glucose metabolism [3, 8, 12] and thermoregulation 

[3, 12].  

 
Given its multifaceted roles, disorders of the musculoskeletal system can disrupt these 

mechanical and physiological processes to dramatically impact the standard of living [13, 14], 

resulting in significant morbidity or premature death [15]. In the United States alone, the impact 

of musculoskeletal diseases and trauma has an estimated direct and indirect cost of $849 billion 

USD annually [15-18].  This problem is likely to be exacerbated as the population of senior 

citizens increases throughout developed countries, highlighting a need to develop approaches for 

monitoring and controlling stem cell behavior to advance musculoskeletal stem cell research and 

therapeutic development. 

 
iii. OBJECTIVES 

MTB units occur throughout the musculoskeletal system and act as attachments between muscle 

and bone, and derivations of these units in the form of ligament-bone attachments and muscle-

bone attachments are also physiologically relevant [19, 20]. Presently, the clinical repair of 
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injuries to MTB represents a significant unmet challenge and presents itself as a potential target 

for developing novel therapeutics to address diseases and trauma of the musculoskeletal system. 

As reviewed in Chapter 1, cell behavior is heavily influenced by its surrounding 

microenvironment. Therefore, the use of highly oriented geometric scaffolds as well as 

controlling the physical placement of exogenous GFs including dosage modulation were logical 

considerations for mimicking physical and biochemical cues present in musculoskeletal tissues 

to study stem cell behaviors including musculoskeletal cell alignment and differentiation. In 

addition, it was crucial to consider the microenvironment within the context of the inflammatory 

response since inflammation is an integral component of the wound healing process and can 

drastically alter the cellular microenvironment [21-24]. To facilitate the application of stem cells 

in regenerative medicine, it was also important to develop tools to monitor stem cell behavior in 

vitro so that stem cells can be rapidly characterized and used clinically in a predictable fashion. 

 
The goal of this dissertation was to pattern various components of the cellular 

microenvironment for directing stem cell differentiation and alignment to create a 

primitive MTB unit and investigate the impact of inflammation on stem cell differentiation. 

In addition, it was crucial to develop software tools for monitoring and analyzing stem cell 

behavior in vitro to facilitate ex vivo stem cell expansion.  

 
The subsequent chapters of this thesis describe the experimental methods developed and the 

results obtained to fulfill the objectives outlined below. Chapter 1 is an introductory chapter that 

reviews the current literature behind the thesis work. Chapter 2 describes the use of 

piezoelectric inkjet-based bioprinting to control musculoskeletal stem cell differentiation to 

pattern a primitive MTB unit in vitro. Chapter 3 builds upon the work described in Chapter 2 to 
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pattern a primitive MTB unit while simultaneously controlling cell alignment in vitro. Chapter 4 

further builds upon the work of Chapter 2 and Chapter 3 to direct ectopic tissue formation in 

vivo. In Chapter 5 and Appendix A1, inflammatory and anti-inflammatory microenvironments 

are created to examine the immune cell cross-talk as well as the effect of inflammatory and anti-

inflammatory microenvironments on osteoblast differentiation and mineralization. In Chapter 6, 

Appendix A2, Appendix A3, Appendix A4 and Appendix A5, methods for monitoring stem 

cells via automated cell tracking approaches in time-lapse microscopy image sequences are 

described to facilitate the biological study of the stem cell microenvironment as well as ex vivo 

stem cell expansion. Appendix A6 describes the use of fluorescence time-lapse microscopy to 

investigate the mechanism of endomitosis during megakaryocyte differentiation.  

 
Objective 1: Demonstrate spatially patterning of a primitive MTB unit using solid-phase 

GFs in vitro (Chapter 2). 

Since a well-established literature on bone- and muscle-promoting GFs such as BMPs and IGFs 

already exists, Objective 1 sought to identify tendon-promoting GFs immunofluorescently on the 

basis of positive staining for the tendon marker Scx and negative staining for other 

differentiation markers such as Smooth Muscle Actin-α or (SMA- α). Subsequently, quantitative 

PCR was performed to study the mechanism of tendon cell differentiation. Following this, 

musculoskeletal progenitor or stem cells were exposed to tendon-promoting GFs in both liquid- 

and solid-phase experiments to determine if there was a dose dependent effect on tendon cell 

differentiation. For solid-phase experiments, tendon-promoting GFs were immobilized onto a 

fibrin-coated glass coverslips using inkjet-based bioprinting. Having identified and characterized 

the effect of tendon-promoting GFs on musculoskeletal progenitor or stem cells, a primitive 

MTB unit was patterned in vitro. 
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Objective 2: Demonstrate spatial patterning of a primitive MTB unit concurrently with 

musculoskeletal cell alignment using solid-phase GFs and highly oriented fibrous scaffolds, 

respectively, in vitro (Chapter 3). 

Having established an in vitro MTB unit, Objective 2 sought to study the effect of highly 

oriented polystyrene and polyurethane fibers on musculoskeletal cell alignment by seeding 

musculoskeletal progenitor or stem cells onto polystyrene and polyurethane STEP fibers. 

Subsequently, polystyrene and polyurethane STEP fibers were coated with ECM molecules such 

as fibrin and inkjet-printed with various GFs to pattern various musculoskeletal interfaces such 

as a primitive MTB unit while simultaneously controlling cell alignment. 

 
Objective 3: Demonstrate spatial patterning of musculoskeletal cell differentiation using 

solid-phase GFs in vivo (Chapter 4). 

Having demonstrated spatial control of musculoskeletal progenitor or stem cell differentiation in 

vitro, Objective 3 sought to pattern a MTB unit in vivo. First, the suitability of DermaMatrix 

scaffold for animal studies was determined using SEM and in vitro cell differentiation assays to 

determine if this scaffold could support cellular infiltration and musculoskeletal cell 

differentiation in vivo. In addition, an immunefluorescence screen was performed using the 

periosteum marker, Periostin to identify periosteum-promoting GFs for patterning a Periosteum-

Bone-Bone Marrow (PBM) unit. Subsequently, printed DermaMatrix scaffolds were 

subcutaneously implanted in mice to attempt to pattern a primitive MTB unit and PBM unit in 

vivo. 
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Objective 4: To study the influence of macrophage and dendritic cells on osteoblast 

differentiation under inflammatory and non-inflammatory conditions (Chapter 5). 

As inflammation is an integral component of the wound healing process and highly relevant to 

efficient musculoskeletal repair, Objective 4 sought to characterize the impact of macrophage 

and dendritic cell secretions on osteoblast differentiation. Various inflammatory (LPS) and anti-

inflammatory (IL-10) stimuli were used to activate J774A.1 macrophages and FSDCs towards 

type 1 pro-inflammatory and type 2 anti-inflammatory phenotypes, respectively. The conditioned 

media was harvested and used to culture various musculoskeletal progenitor or stem cells such as 

mouse C2C12 myoblasts, mouse MDSCs and mouse MC3T3-E1 fibroblasts in the presence of an 

osteogenic stimulus such as BMP-2 to determine the indirect effect of LPS and/or IL-10 on 

osteoblast differentiation. Similarly, these cells were also be cultured in the presence of LPS 

and/or IL-10 to determine the direct effect of LPS and/or IL-10 on osteoblast differentiation. 

 
Objective 5: Develop a real-time adaptive subculture system to obtain clinically relevant 

quantities of cells for cell-based therapy (Chapter 6). 

Objective 5 sought to facilitate the use of cell-based therapies in regenerative medicine by 

developing a real-time adaptive subculture system as a means towards automated stem cell 

culture. Software tools were developed to analyze phase-contrast time-lapse microscopy images 

in real time to detect cells and determine the level of cell confluency. Based on the measured 

level of cell confluency, the software modeled and predicted cell growth, alerting a human 

operator through email and mobile phone text messaging four hours prior to reaching a pre-

determined cell confluency threshold to prepare for cell culture. The software also enabled a 

human operator to remotely monitor the cell cultures via the Internet. With a target goal of 

producing 50 million cells, this computer-directed cell culture system was employed to grow 
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mouse C2C12 myoblasts as a paradigm stem cell population. The performance of this computer 

vision-based system was determined by assessing the number of serial cultures required to reach 

the target goal of 50 million cells as well as the capability of cells to differentiate into myocytes 

and osteoblasts thereafter. 

 
iv. RATIONALE FOR MATERIALS AND METHODS USED IN PRESENT STUDY 

In this thesis, various scaffolds and substrates such as ECM-coated glass coverslips, Spinneret-

based Tunable Engineered Parameters (STEP) fibers and acellular human skin allograft 

(DermaMatrix) were used in conjunction with piezoelectric inkjet-based GF bioprinting as well 

as cells of the musculoskeletal and immune system to achieve this. 

 
Fibrin-coated glass coverslips, fibrin- or serum-coated STEP fibers (polystyrene and 

polyurethane)  and Dermamatrix were utilized as printing substrates due to their inherent cell- 

and GF-binding capabilities [25-31]. In addition, fibrin has important physiological relevance 

due to its role as a provisional matrix during wound healing [25]. Spinneret-based Tunable 

Engineered Parameters (STEP) fibers were employed as they are sub-micron (nano) sized fibers 

that can be fabricated to approximate the size and morphology natural musculoskeletal ECM 

fibers [32-34].  DermaMatrix was used as it is a biomaterial that consists primarily of collagen, 

the most common major constituent in ECM. Furthermore, DermaMatrix has also been approved 

for clinical use in humans.  

 
To perform solid-phase GF patterning experiments that recreate physiologically-relevant 

conditions in the body, piezoelectric inkjet-based bioprinting was chosen as it is a non-contact 

and programmable mode of printing, and as such, would not damage the surface being printed on 

or require the fabrication of custom stamps. Furthermore, inkjet-based bioprinting is amenable to 
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a technique known as overprinting, where drops are jetted directly on top of one another, 

allowing for the dose of GF deposited to an area to be modulated, as long as the binding sites are 

not completely saturated [26, 29-31, 35]. Although our inkjet-based biopatterning method has 

much less resolution (approximately 14 pl drops which correspond to 75 µm diameter spots on 

fibrin-coated glass coverslips) than other protein arraying technologies such as photolithography, 

it has been demonstrated that this resolution was sufficient for studying the behavior of stem cell 

populations [26, 29-31, 35]. As such, patterning immobilized solid-phase growth factors coupled 

with the use of a single multipotent stem cell population will provide the required degree of 

precision to spatially pattern GFs to control cell behavior. 

 
Mouse C2C12 myoblasts, mouse C3H10T1/2 mesenchymal fibroblasts, mouse MC3T3-E1 

fibroblasts and Muscle-Derived Stem Cells (MDSCs) were utilized as they have previously been 

shown to differentiate into cells of the musculoskeletal system [26, 27, 29-31, 35-38] and may be 

relevant models of stem cells that participate in wound healing of a musculoskeletal injury while 

J774A.1 macrophages [39] and Fetal Skin Dendritic Cells (FSDCs) [40] were employed as they 

could be induced to activate and differentiate into type 1 and type 2 cells when challenged with 

lipopolysaccharide (LPS; a constituent of gram-negative bacteria cell wall) and IL-10, 

respectively. 
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1.1 INTRODUCTION 

1.1.1 Stem Cell Behavior is Tightly Coupled to its Cellular Microenvironment 

Stem cells, which are defined by their ability to self-renew and to give rise to differentiated cell 

types, reside in highly-regulated microenvironments called stem cell niches [1, 2]. Within these 

niches, stem cells occur at low frequency and are largely quiescent, in part, to protect the host 

from over-exuberant stem-cell proliferation that could otherwise lead to tumorigenesis, however, 

upon tissue injury, these cells migrate towards the injury site and proliferate extensively to 

participate in tissue repair [2, 3]. The application of multipotent stem cells for regenerative 

medicine requires a fundamental understanding of how the architecture and biochemical 

composition of a cell’s immediate microenvironment can impact cell behavior and function. 

 

Within the musculoskeletal system, differentiated cells such as myocytes, tenocytes and 

osteoblasts maintain tissue function primarily by contractile force generation, collagen secretion 

and collagen mineralization, respectively [4]. During tissue development, homeostasis and 

wound healing, stem cells integrate various signals from their microenvironment to participate in 

the generation of these differentiated cells [2] as well as modulate their external 

microenvironment through secretion of cell signaling molecules, ultimately promoting tissue 

formation or repair [5-7]. This highly dynamic and complex process is regulated, in part, by 

biochemical and physical cues encoded within the cellular microenvironment (Figure 1.1). 

These cues arise as a result of interactions between stem cells with the extracellular matrix 

(ECM) and neighboring cells as well as secreted local and systemic signaling molecules, 

including growth factors [2, 8-10]. Together, these microenvironmental cues modulate stem cell 



behaviors such as apoptosis [11], cell adhesion [12], cell proliferation [13], cell migration [14], 

differentiation [15-18] and cell alignment [19-23], ultimately influencing the native organization 

and function of these tissues. 

Figure 1.1. The Cellular Microenvironment is a Highly Complex System That Regulates 
Stem Cell Behavior. Elements of the cellular microenvironment that regulate stem cell behavior 
include constraint of the architectural space, mechanical forces arising from physical engagement 
of the stem cell with neighboring cell(s) or the ECM, signaling interactions between stem cells 
with the ECM, neighboring cells, paracrine or endocrine signals from local or distant sources as 
well as metabolic products of tissue activity. Adapted from Scadden et al., 2006 [2]. 
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The ECM is a critical component of the cellular microenvironment and is composed of a fibrillar 

meshwork of secreted proteins that is heterogeneous in nature and specialized for a particular 

tissue form and function. For example, the controlled deposition of hydroxyapatite in bone-

ligament/tendon interfaces has been postulated to minimize injury during the transfer of 

mechanical loads between rigid and soft tissues [24-27]. Indeed, the unique architecture and 

biochemical composition of the ECM fulfils both a structural role in facilitating cell attachment 
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and orientation as well as an instructive role in directing cell behavior through signaling cues 

derived from mechanical forces, ECM components or ECM-associated GFs [10].  

 

As mentioned, ECM architecture plays an important role by providing the necessary physical 

cues to control cell adhesion and orientation, which is especially important in the context of 

musculoskeletal tissue function since myocyte alignment is necessary for efficient force 

generation along a specific direction during muscle contraction [28-30], while tenocyte and 

osteoblast alignment are required for building highly oriented unmineralized and mineralized 

collagen matrices that can withstand mechanical loading during skeletal movement [24, 25, 31-

34]. Furthermore, it has recently been shown that aligned fibrous scaffolds promote increased 

calcium content and mineralization compared to unaligned fibrous scaffolds in a cell 

proliferation independent manner [34], suggesting that highly aligned fibrous scaffolds may 

promote more efficient bone differentiation. 

 

The ECM has a unique ability to sequester (immobilize) and release GFs at picogram to 

nanogram levels [10, 13, 17, 35-38], allowing GFs to reside in both ‘liquid-phase’ (freely 

diffusing) and ‘solid-phase’ (immobilized) forms in equilibrium between desorption from and 

adsorption to the ECM and cell surfaces (Figure 1.1) [10, 13, 17, 37, 38]. Immobilization of GFs 

to the ECM enables large amounts of information that are critical to the maintenance and normal 

function of a tissue to be stored and utilized for directing cell behavior in a temporal and spatial 

manner via modification of GF bioavailability and bioactivity [10, 39]. For example, GFs can be 

rendered with low biological activity by virtue of being bound to the ECM or rendered inert as a 

result of being buried within the ECM and becoming physically inaccessible for receptor binding 
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[10]. Under the appropriate conditions, ECM remodeling enzymes degrade the ECM to release 

these GFs and in certain cases, activate the GFs to increase their biological activity, regulating 

GF activity in a temporal fashion [10]. In essence, this process enables extracellular signaling to 

occur in the absence of new protein synthesis and is particularly beneficial during wound healing 

since GFs may not be rapidly synthesized when cells are injured [10]. Alternatively, the 

bioactivity of immobilized GFs may be enhanced in a spatially defined manner when compared 

to their soluble and freely diffusible counterparts since ECM-bound GFs may be protected from 

degradation and/or the ECM acts as a barrier to slow down diffusion, allowing a signal to persist 

spatially for a longer duration [10, 35, 39]. In addition, storage of GFs in the ECM further 

facilitates temporal signaling by allowing cells to transmit signals to other cells that come into 

contact with the same ECM at a later period [10].  

 

Together, the ECM provides a structural basis for multicellularity with GFs providing a critical 

regulatory role in the maintenance and function of normal, healthy tissue. Indeed, perturbations 

to the ECM composition such as elevated levels of ECM remodeling enzymes can affect the 

bioavailability and bioactivity of signaling molecules such as GFs and have been linked to a 

wide variety of diseases ranging from chronic wound inflammation to tumor progression [8, 9, 

35, 40-43]. 

 

1.1.2 Wound Healing and Inflammation in the Context of the Cellular Microenvironment 

1.1.2.1 Wound Healing 

Wound healing is a series of intricate and well-coordinated events initiated in response to tissue 

injury. It is characterized by four sequential but overlapping phases – (1) Hemostasis, (2) 



6 

 

Inflammation, (3) Proliferation and (4) Remodeling. This process has been described to exhibit 

dynamic reciprocity whereby ongoing, bidirectional interactions among cells and their 

surrounding microenvironment work in concert to direct tissue repair and regeneration [39, 44, 

45].  

 

During hemostasis, damaged blood vessels attempt to limit blood loss and isolate pathogens 

through blood vessel constriction and polymerization of fibrin to form a blood clot while platelet 

activation and degranulation results in the release of a variety of signaling molecules such as 

chemokines, cytokines, GFs and other soluble mediators to coordinate tissue repair [39, 44, 45]. 

Some of these signaling molecules such as platelet-derived growth factor (PDGF) and 

transforming growth factor-β (TGF-β) act as chemoattractants and/or mitogens for cells involved 

in the wound healing response including neutrophils, fibroblasts, monocytes, macrophages, and 

smooth muscle cells [45]. In addition, the polymerization of fibrin forms a provisional ECM that 

can sequester signaling molecules such as heparin-binding GFs to direct cell behavior [10, 13, 

14, 16-19, 46] as well as support cellular attachment to promote tissue in-growth [39, 44, 45].  

 

During the inflammatory phase, immune cells such as neutrophils and monocytes are recruited 

into the wound microenvironment to remove microbes and damaged tissue [4, 47, 48] as well as 

synthesize and release signaling molecules to organize the wound microenvironment [39, 44, 

47]. For example, neutrophils eliminate invading microbes through the combined action of 

phagocytosis, release of anti-microbial agents and generation of neutrophil extracellular traps 

[47, 48] as well as modulate the inflammatory response through juxtacrine and paracrine 

signaling to activate other immune cells such as macrophages, dendritic cells and T cells [47]. 
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Monocytes can differentiate into macrophages and monocyte-derived dendritic cells that are 

capable of phagocytosis, acting as antigen presenting cells (APCs) and secreting inflammatory 

mediators such as Tumor Necrosis Factor-α (TNF- α) [45, 49]. This further aids in the removal 

of microbes and damaged tissues, activates the acquired immune response and regulates tissue 

repair, respectively [39, 44, 49]. The net result of this sterilizes the wound and facilitates the 

eventual infiltration of progenitor cells such pericytes [6, 50, 51] and mesenchymal progenitor 

cells [7, 52] for the next phase of wound healing. 

 

During the proliferative phase, granulation tissue is formed to cover the wound [45]. This phase 

is generally characterized by several features [45] including fibroblast infiltration and 

proliferation, formation of loose connective tissue matrix consisting primarily of type III 

collagen via fibroblast-mediated ECM deposition, angiogenesis or formation of new blood 

vessels by vascular endothelial cells and new tissue in-growth from both neighboring cells [6] as 

well as progenitor cells [6, 7, 50-52]. In addition, myofibroblasts, which are fibroblasts that 

express smooth muscle characteristics, facilitate wound closure by exerting tractional and 

contractile forces to pull on the ECM and surrounding cells [53, 54]. Concurrently, immune cells 

such as neutrophils and macrophages play a key role in this process through maintenance of 

sterility, removal of the original blood clot or provisional wound matrix and secretion of 

signaling molecules such as vascular endothelial growth factor (VEGF) that are critical for 

normal wound healing [4, 47, 49, 55, 56]. Indeed, studies involving the depletion of immune 

cells such as macrophages in wounds resulted in reduced and abnormal vascularization, leading 

to impaired healing [57, 58]. 
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During the remodeling phase, tissue development occurs, requiring a delicate balance between 

elimination of cells and ECM components related to the initial wound healing stages with 

proliferation and synthesis of native tissue-resident cells and ECM components to restore normal 

tissue architecture and function [45]. For example, upon clearance of bacteria from the wound 

site, cells such as neutrophils and myofibroblasts that are no longer needed are removed by 

apoptosis [45, 47, 49, 53] while originally disorganized collagen fibers are replaced or 

rearranged, cross-linked and aligned in response to mechanical stimuli present in the wound to 

increase tissue strength [45, 59, 60]. Depending on the regenerative capability of the tissue as 

well as the severity of the wound, the remodeling phase can last for up to a year or longer. In 

tissues that are severely damaged or lack robust regenerative capability, fibrosis or scar tissue 

formation predominates and substitutes for the lost tissue [45]. Although scar tissue is 

mechanically strong, it lacks the flexibility and elasticity of most normal tissues and cannot 

perform native tissue function [4]. 

 

1.1.2.2 Inflammation 

Given the early presence of neutrophils and monocytes during the initial stages of wound healing 

as well as the persistence of tissue-resident and monocyte-derived macrophages throughout  

tissue repair, immune cells play an indispensable role in organizing the cellular 

microenvironment in response to tissue injury and trauma [45, 47, 61, 62]. Many studies to date 

have demonstrated that immune cells can be divided in to two broad categories based on their 

cytokine production profile – (1) Type 1 (Th1 for T-cells and M1 for macrophages) immune 

response associated with secretion of pro-inflammatory cytokines such as TNF-α and Interferon-
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Gamma (IFN-γ)  and (2) Type 2 (Th2 for T-cells and M2 for macrophages, respectively) immune 

response associated with secretion of anti-inflammatory cytokines such as Interleukin-4 (IL-4) 

and Interluekin-10 (IL-10) [7, 47, 61-65]. Recent studies have suggested that classification of 

immune cells maybe more complex than originally envisioned as other subpopulations of T-cells 

such as Treg [66], Th3 [67], Th9 [68] and Th17 [69] have been discovered, however, the 

nomenclature of type 1 and type 2 will be maintained for simplicity.   

 

In general, type 1 and type 2 cytokines possess cross-regulatory properties that coordinate two 

fundamentally antagonistic immune responses - a pro-inflammatory (type 1) response typically 

associated with the initial phase of wound healing to remove damaged tissue as well as bacteria 

and an anti-inflammatory (type 2) response associated with the subsequent attenuation of the 

initial inflammatory response to facilitate angiogenesis, tissue repair and tissue remodeling [62, 

70]. For example, classically-activated or M1 macrophages, in addition to synthesizing large 

amounts of Th1 cytokines such as TNF-α, Interleukin-1β (IL-1β) and Interleukin-12 (IL-12), also 

express nitric oxide synthase, an enzyme that uses its substrate L-arginine to synthesize large 

amounts of nitric oxide to kill intracellular pathogens [62, 63]. Alternatively-activated or M2 

macrophages can be divided into at least 3 classes – (1) M2a macrophages which express high 

levels of arginase to reduce nitric oxide levels and secrete signaling and ECM molecules 

including insulin-like growth factor-1 (IGF-1) to promote tissue repair, (2) M2b macrophages 

which are involved in sustaining antibody and high IL-10 production and (3) M2c macrophages 

which represent deactivated macrophages with increased debris scavenging capability [62, 63]. 

Both types 1 and 2 responses are required for proper wound healing and an imbalance between 

the two immune responses can impair musculoskeletal repair. Indeed, it has been demonstrated 
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that an overly exuberant type 1 response is typically associated with excessive tissue destruction 

[71] and halting musculoskeletal cell differentiation [63, 72-74] while an excessive type 2 (M2b) 

response may result in fibrosis [63, 70]. Such an imbalance ultimately affects the healing of bone 

fractures, tendon ruptures, muscle tears and integration of bone and dental implants, especially 

under settings of bacterial infection or disorders associated with chronic inflammation such as 

diabetes and osteoporosis [44, 58, 63, 64, 72-77].  

 

1.1.3 Organs and Tissues of the Musculoskeletal System 

The organs and tissues of the musculoskeletal system are highly organized structures designed to 

shield internal organs from injury, partake in sound transduction during hearing, support and 

maintain body posture, aid in body movement as well as facilitate homeostasis by virtue of their 

inherent tissue properties and participation in metabolic processes [4, 78-86]. A brief overview 

of muscle, tendon and bone is presented here to highlight relationships between their 

composition and structure with organ or tissue function as well as its response to injury or 

disease. 

 

1.1.3.1 Muscle Architecture and Function 

Muscle function is influenced by its underlying tissue composition and structure. Muscle 

contractile force is essential for bone movement and joint stabilization to support the body 

framework, maintain posture and facilitate locomotion [4]. In addition, muscle has an 

underappreciated metabolic role in homeostasis by generating heat to maintain body temperature 

and acting as a reservoir of amino acids for protein and glucose synthesis, especially during 
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starvation [85]. Indeed, perturbations in muscle metabolism have been identified as playing a 

critical role in the pathogenesis of conditions and diseases such as obesity, osteoporosis and type 

2 diabetes [85]. 

 

Each skeletal muscle is a discrete organ, composed of several tissues including muscle fibers, 

blood vessels, nerve fibers and substantial amounts of connective tissue [4]. Figure 1.2 shows the 

hierarchical composition and structure of muscle at the molecular cellular, tissue and organ 

levels (Figure 1.2). Muscle fibers, the contractile apparatus of muscle, are surrounded and 

supported together by three different layers of connective tissue – (1) The epimysium, which is a 

dense irregular connective tissue that surrounds the entire muscle organ, (2) The perimysium, 

which is a layer of fibrous connective tissue that groups individual muscle fibers into bundles of 

sticks called fasicles and (3) The endomysium, a fine sheath of connective tissue that surrounds 

each muscle fiber [4, 87-89]. The endomysium, perimysium and epimysium are continuous with 

one another as well as with connective tissue present in nearby muscle and tendon tissues. They 

contain numerous blood vessels and nerve fibers to supply the muscle, remove metabolic waste 

and initiate muscle contraction [4]. Together, the architecture of these intramuscular structures 

provide an efficient mechanism for coordinating and transmitting the propagation of contractile 

force from individual muscle fibers through the entire muscle organ, protecting muscle against 

tissue damage arising from friction and facilitating muscle growth [4, 87-89]. 

  

Each skeletal muscle fiber is a long cylindrical multinucleated cell produced by the fusion of 

many progenitor cells, resulting in a large cell with a typical diameter of 10 to 100 µm and a 
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length that may range up to several hundreds of centimeters long [4]. The obvious banded or 

striated appearance of skeletal muscle is a reflection of the precise alignment of their 

myofilaments [4]. The cytoplasm of a muscle fiber, termed a sarcoplasm is similar to those found 

in other cells, but is adapted for muscle contraction with its large stores of glycosomes (stored 

glycogen) for energy supply, myoglobin for oxygen supply and specialized organelles and 

components such as the sarcoplasmic reticulum, transverse (T) tubules and myofibrils for muscle 

contraction [4].  

 

T tubules are invaginations of the sarcolemma (muscle plasma membrane) that are studded with 

a large number of calcium channels that regulate the release of calcium ions from the 

sarcoplasmic reticulum in response to an action potential [4]. Myofibrils are the contractile 

elements of skeletal muscle and comprise approximately 80% of cellular volume [4]. Each 

myofibril is about 1-2µm in diameter and is composed of muscle segments called sarcomeres, 

which in turn is made up of contractile proteins myosin (thick filaments) and actin (thin 

filaments) as well as their accessory proteins anchored to the Z disk [4]. Myosin-containing thick 

filaments consist of two globular heads and a long tail with the tail element pointing inwards 

toward the center of the sarcomere and the head elements pointing towards the ends of the 

sarcomere [4]. The myosin heads are known as cross-bridges as they have the capability to bind 

to and move along the actin-containing thin filaments. This actin-myosin interaction 

subsequently forms the molecular basis for muscular force generation and movement [4]. 
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At rest, most cross-bridges are present in a ‘cocked’ configuration where myosin-containing 

thick elements are not bound to actin-containing thin filaments but contain adenosine 

diphosphate (ADP) and an inorganic phosphate (Pi) [4]. The release of calcium ions and its 

subsequent binding to actin-containing thin filaments of myofibrils results in conformational 

changes that unmask binding sites for myosin-containing thick filaments [4]. Upon the exposure 

of these sites, myosin-containing thick filaments bind to actin-containing thin filaments and 

release ADP and Pi, triggering a ‘power stroke’ where conformational changes to the cross-

bridge allow the myosin molecule to ‘walk’ 10-12 nm along the actin filament [4]. The net effect 

of this pulls the Z-bands towards the M-line and shortens the sarcomere [4]. Subsequently, 

adenosine triphosphate (ATP) binds myosin-containing thick filaments and causes the release of 

actin-containing thin filaments [4]. Thereafter, the hydrolysis of ATP releases energy to ADP 

and Pi ‘cocks’ the cross-bridge in preparation for the next cycle of muscle contraction [4]. The 

cycle repeats as long as ATP and calcium are present [4]. Muscle contraction stops when calcium 

has been completely pumped back into the sarcoplasmic reticulum [4].  The sliding interaction 

between the myosin cross-bridges and actin-containing thin filaments is known as the sliding 

filament mechanism and is responsible for muscle shortening or contraction [4]. 



 

Figure 1.2. The structure and composition of muscle at the molecular, cellular, tissue and organ 
levels. Taken from Marieb, 1999 [4]. 

 

Myosatellite cells or satellite cells are small mononuclear progenitor cells that are capable of 

self-renewal and are involved in the normal growth of muscle, as well as regeneration following 

injury or disease [90, 91]. Anatomically, they are found sandwiched between the basement 
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membrane and sarcolemma of individual muscle fibers, and are identified on the basis of 

expression of several muscle stem cell markers including the transcription factor Pax7 [91, 92]. 

Indeed, it has been shown that transplantation of satellite cells, either in the form of whole, intact 

myofibers [90] or individual cells [91] contributes towards muscle regeneration and can give rise 

to new satellite cells in the transplanted host muscle. The importance of the cellular 

microenvironment in muscle regeneration is further highlighted by studies that suggest the 

transplantation of satellite cells in the form of whole, intact myofibers may be more efficient than 

implantation of enzymatically isolated, single cell suspensions [90, 91, 93]. 

 

In muscle tissue, the repair process following acute tissue injury follows the stereotypical 

sequence of events displayed during wound healing with inflammatory cells working in concert 

with tissue-resident stem cells to remove damaged or dead muscle fibers as well as replace lost 

tissue to restore tissue function [63, 70, 94]. For example, when muscle tissue is damaged as a 

result of exercise, injury or disease, these normally quiescent cells become activated and 

proliferate rapidly to produce muscle progenitor cells that eventually fuse with existing 

myofibers to repair muscle tissue [90, 91]. This proliferation response requires the input of 

immune cells such as macrophages. During the early stages of wound healing, M1 macrophages 

secrete pro-inflammatory TNF-α, which increases NF-κB activation in satellite cells to increase 

cell proliferation and inhibit muscle differentiation through stabilization of the cell cycle 

regulator cyclin D1 and decreasing levels of the myogenic transcription factor, MyoD [70], 

ultimately increasing the number of myoblast progenitors for muscle repair. During the later 

stages of wound healing, M2 macrophages secrete anti-inflammatory cytokines such as IL-4 [62] 

which has been shown to promote muscle growth [70, 94-96]. However, during chronic muscle 
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damage in diseases such as the muscular dystrophies, a fibrotic microenvironment predominates, 

while the reparative capacity of satellite cells is diminished. For example, in Duchenne muscular 

dystrophy, a mutation in the protein Dystrophin causes fragile sarcolemmas which result in an 

accumulation of damage to myofibers, eventually leading to necrosis [63]. Although satellite 

cells are able to repair and replace these damaged fibers initially, repeated cycles of muscle 

damage either exhaust the satellite cell population or result in a loss of its regenerative capability 

[63, 70, 94, 97]. This ultimately leads to muscle tissue being progressively replaced by adipose 

and fibrotic tissue [63, 70, 94, 97]. 

 

1.1.3.2 Tendon Architecture and Function 

Tendons are white, dense regular connective tissues with a fibroelastic texture. Their primary 

function is to facilitate muscle-to-bone attachments by withstanding the large amount of tensile 

stress generated as a result of muscle-induced bone displacement during joint movement [4, 84, 

86, 98]. Tendons are complex composite materials, composed of 70% water and 30% dry mass. 

Type I collagen along with much smaller amounts of type III, V, XII and XVI collagen accounts 

for 65-85% dry mass whereas elastin accounts for 2-3% dry mass and proteoglycans including 

decorin account for 1-2% dry mass [4, 84, 86, 98]. In addition, tendons are populated by low 

numbers of cells such as tenocytes, tenoblasts, fibrocartilage cells and the occasional adipocyte. 

Overall, tenoblasts and tenocytes constitute about 90-95% of the cellular elements of the tendons 

[4, 84, 86, 98]. Derived from immature and spindle-shaped tenoblasts, tenocytes are located 

between collagen fibers along the long axis of tendon where they continuously synthesize tightly 

packed parallel bundles of collagen fibers and other ECM molecules that provide tendon with 
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tensile strength [4, 84, 86, 98]. Overall, collagen fibers have a crimp or slightly wavy appearance 

that allows the tissue to stretch in response to strain [4].  

 

To sustain great amounts of tensile stress, the collagen fibers are arranged in several hierarchical 

levels of increasing complexity (Figure 1.3). The basic unit in the structural hierarchy of tendons 

is the collagen polypeptide, which is characterized by the presence of a glycine residue at every 

third amino acid. Three such collagen polypeptides can associate into a triple helical collagen 

molecule and upon cleavage of their N- and C-terminals, self-assemble into primary bundles 

known as collagen fibrils, which subsequently group together into secondary bundles known as 

collagen fibers, which further arrange into tertiary bundles known as fascicles before organizing 

into tendon (Figure 1.3) [4, 84, 86, 98]. Adult human tendons have a bimodal distribution of 

collagen fibril diameters that range between 60 and 175 nm [99]. Tendon is surrounded and 

supported by two different layers of connective tissue – (1) The epitenon, which is a fine, loose 

connective tissue sheath that surrounds the entire tendon and (2) The endotenon, which is a thin 

reticular network of connective tissue that envelopes the primary, secondary and tertiary fiber 

bundles together. Both the epitenon and endotenon are continuous with one another and carry 

blood vessels, lymphatic vessels and nerve fibers to the tendon [4, 84, 86, 98]. Despite this, 

tendons are considered to be poorly vascularized and also obtain nutrients from the blood vessels 

of surrounding tissues including muscle (perimysium) and bone (periosteum) [4, 84, 86, 98]. 

Between the endotenon and collagen fibers is the hydrophilic proteoglycan-based ECM, which 

provides structural support for collagen fibers [100], regulates the size of collagen fibers [101, 

102] and hydrates the fibers to minimize shear stresses between collagen bundles during tendon 

gliding [103, 104]. Depending on the type of tendon, additional connective tissues such as 



fibrous sheaths or retinaculum, reflection pulleys, synovial sheaths, paratenon and tendon bursa 

may be present to further supply nutrients as well as facilitate smooth gliding of tendon against 

surrounding tissues via friction reduction [4, 84, 86, 98]. 

  

Figure 1.3. The structure and composition of tendon at the molecular, cellular and tissue levels. 
Taken from Banos et al., 2008 [98]. 

 

Tendon-derived stem cells have only recently been discovered and represent a population of self-

renewing [105], multipotent progenitor cells that are capable of generating cells of bone, fat, 

cartilage and tendon lineages [105-107] and are involved in the normal growth of tendon as well 

as regeneration following injury or disease [105, 108, 109]. Anatomically, they are found 

between parallel collagen fibers along the long axis of tendon within a proteoglycan-rich ECM, 

which has been shown to be essential for controlling the self-renewal and differentiation of these 

cells through BMP signaling [105]. Indeed, mice lacking proteoglycans such as fibromodulin and 
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biglycan show disrupted tendon organization and decreased levels of tendon marker scleraxis or 

scx [101, 105, 110]. 

 

During tendon healing, the stereotypical events associated with wound healing occur but injured 

tendon, which is characterized by marked collagen degeneration and disordered fiber 

arrangement, does not heal completely and ends with mechanically and functionally inferior 

tissue owing to formation of scar tissue and fibrous adhesions [84, 111-113]. Tendon healing has 

been described to occur by 2 distinct mechanisms – (1) Intrinsic healing via proliferation of 

epitenon and endotenon tenocytes, or (2) Extrinsic healing via the invasion of cells from the 

surrounding sheath and synovium [84]. Tendon tissue that intrinsically heals often has improved 

biomechanics and fewer complications overall owing to preservation of a normal gliding 

mechanism within the tendon sheath whereas extrinsic healing may exhibit poorer biomechanics 

and more complications owing to scar tissue or adhesion formation, which disrupts tendon 

gliding [84]. At present, the role of inflammation on tendon degeneration remains contentious 

[114] but recent studies indicate that the amount of inflammatory cell infiltrate correlates with 

the wound size [115-117], suggesting that the level of inflammatory response mounted in 

response to injury may ultimately influence tendon healing. 

 

1.1.3.3 Bone Architecture and Function 

Bones are organs, comprising predominantly of bone (osseous) tissue along with cartilage tissue 

at the articulating ends of bone, fibrous connective tissue lining the bone cavities, nervous tissue 

and vascular tissue [4, 81, 83]. Bone function is influenced by its underlying tissue composition 

and structure. Bones are involved in several mechanical functions including protecting internal 
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organs from physical injury [4, 81, 83], supporting the body [4, 81, 83], providing levers for 

muscles to act on during body movement [4, 81, 83], facilitating sound transduction during 

hearing [4] as well as several homeostatic functions including housing bone marrow for blood 

production [4, 81, 83], storing GFs such as bone morphogenetic proteins (BMPs) and minerals 

such as calcium and phosphorus in bone ECM [4, 118], storing fat in bone marrow [4], buffering 

blood pH through absorption and release of alkaline calcium phosphate minerals 

(hydroxyapatite) [78], detoxifying heavy metals from blood [80] and acting as an endocrine 

organ through secretion of fibroblast growth factor-23 (FGF-23) and osteocalcin to regulate 

phosphate levels and insulin sensitivity, respectively [79]. 

 

The primary tissue of bone is known as osseous tissue and consists primarily of three 

components – (1) Bone cells, (2) An organic bone ECM consisting primarily of type I collagen 

along with other proteoglycans and glycoproteins and (3) An inorganic bone ECM consisting of 

hydroxyapatite crystals that are tightly packed around collagen fibers [4, 81, 83]. Bone ECM 

comprises about ⅓ mass of the organic bone matrix and ⅔ mass of hydroxyapatite crystals, 

resulting in a hard but lightweight mineralized matrix that exhibits high compressive strength as 

well as a significant degree of elasticity [4, 81, 83]. Embedded within this matrix are three main 

types of bone cells which are osteoblasts, osteocytes and osteoclasts. Osteoblasts are derived 

from osteoprogenitor cells and function primarily to increase bone formation by secreting 

organic bone ECM components and increasing the local concentration of calcium and phosphate 

to form hydroxyapatite crystals while osteoclasts are giant multinucleate cells derived from 

macrophages and function primarily to increase bone resorption by secreting lysosomal enzymes 

and acids to digest organic bone ECM and dissolve hydroxyapatite crystals as well as 
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phagocytize demineralized matrix and dead osteocytes [4, 81, 83]. Osteocytes are derived from 

osteoblasts that have become trapped within the matrix they secreted and form a network with 

one another via long cytoplasmic extensions and act to regulate bone turnover through 

mechanotransduction and paracrine signaling [4, 119-121]. There are two types of osseous tissue 

– (1) Cortical/compact/lamellar bone, which is dense as well as mechanically strong and (2) 

Cancellous/trabecular/spongy bone, which is mechanically weaker than compact bone but has a 

higher surface area and consists of a honeycomb-like lattice that frequently contains red or 

yellow marrow [4, 81, 83]. The microstructure of compact and spongy bone as it relates to bone 

organ is further discussed below. 

 

Figure 1.4 shows the macroscopic and microscopic structure of a typical long bone (Figure 1.4). 

Generally, the overall organization of a long bone consists of a tubular diaphysis or shaft that 

forms the long axis of bone capped by two epiphyses or bone ends [4, 81, 83]. Both epiphyses 

and diaphysis have an exterior layer of compact bone and an interior layer of spongy bone [4, 81, 

83]. Between the diaphysis and each epiphysis of an adult long bone is an epiphyseal line that is 

a remnant of the hyaline cartilage disc that participated in bone lengthening during childhood [4, 

81, 83]. The diaphysis is comprised of a relatively thick layer of compact bone that surrounds a 

central medullary or marrow cavity that contains fat or yellow marrow during adulthood [4, 81, 

83] The entire external surface of bone is covered by connective tissues. The joint surface of 

each epiphysis is covered with a thin layer of articular cartilage to act as shock absorbers for 

opposing bone ends during joint movement while the remainder of the external bone surface is 

covered by a double-layered membrane called the periosteum, which consists of an outer fibrous 

layer of dense irregular connective tissue and an inner osteogenic layer of osteoprogenitors, 
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osteoblasts and osteoclasts [4, 81, 83]. The periosteum provides insertion and anchoring points 

for tendons/ligaments and is secured to the underlying bone by tufts of collagen fibers termed 

Sharpey’s fibers that extend from the fibrous layer into the bone matrix [4]. In addition, the 

periosteum contains numerous nerve fibers, lymphatic vessels and blood vessels that supply bone 

with nutrients and remove waste [4, 81, 83]. The internal surface of bone is covered with a 

delicate connective tissue membrane known as the endosteum which contains both osteoblasts 

and osteoclasts [4, 81, 83]. 

 

Compact bone has a porous structure and is infiltrated by nerve fibers, blood vessels and 

lymphatic vessels. The structural unit of compact bone is the osteon or Haversian system [4, 81, 

83]. Osteons are approximately 2.5mm elongated cylindrical structures arranged adjacent to one 

another and oriented parallel to the long axis of bone to function as load-bearing structs that 

resist compression (Figure 1.4). Each individual osteon consists of numerous lamella, each 3-7 

µm thick and arranged concentrically around a Haversian or central canal [4, 81, 83]. The osteon 

diameter, which is dependent on the number of lamellae present, ranges from 200-250 µm and 

collagen fibers in a particular lamella, along with their associated hydroxyapatite crystals, are 

aligned in a single direction with collagen fibers and hydroxyapatite crystals in the adjacent 

lamellae, often running 90o in the opposing direction, creating an alternating pattern that resists 

torsion stresses or twisting [4, 83, 122, 123]. The Harversian canal contains small blood vessels 

and nerve fibers that supply cells and are joined by perforating or Volkmann’s canals that lie at 

right angles to the long axis of the bone [4]. These canals are responsible for connecting the 

blood and nerve supply of the periosteum to those in the Harversian canals and the medullary 

cavity [4]. Like all internal bone cavities, both Harversian and Volkmann’s canals are lined with 
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endosteum [4]. Osteocytes occupy small cavities known as lacunae that occur at the junctions of 

the lamellae. Lacunae are connected to one another and to Harversian canals by hair-like canals 

called canaliculi, allowing osteocytes to form a network though their cytoplasmic extensions in a 

manner that mirrors the orientation of bone ECM [4, 33]. As previously mentioned, these 

osteocyte networks are formed when bone forming osteoblasts become entrapped within the 

mineralized matrix they secrete and the canaliculi eventually becomes filled with tissue fluid that 

facilitates exchange of nutrients and waste. This osteocyte network is important as osteocyte 

death results in resorption of the surrounding bone ECM [4, 124]. The spaces between intact 

osteons are filled with interstitial or incomplete lamellae and circumferential lamellae [4]. 

Interstitial lamellae represent new, forming osteons or the remnants of osteons that have been 

disrupted by bone remodeling while circumferential lamellae extend around the entire 

circumference of the bone shaft to further resist twisting of the long bone [4]. 

 

Spongy bone, contained in the end of long bones, is highly porous and vascularized, being the 

site for bone marrow synthesis. Spongy bone consists of numerous trabecula, which are 

characterized as rod- or plate-like structures that are no greater than 200 µm in thickness and 

about 1000 µm long [4, 81, 83]. Unlike osteons, trabeculae generally do not have a central canal 

with a blood vessel although it is possible to find unusually thick trabeculae containing a blood 

vessel and osteon-like structures with concentric lamellae [4, 81, 83]. Similar to compact bone, 

spongy bone consists of lamellae as well as osteocyte-containing lacunae and canaliculi [4, 81, 

83]. However, the lamellae are not arranged in a concentric manner but are arranged 

longitudinally along the trabeculae [4, 81, 83].  

 



At the molecular level, bone ECM in both compact and spongy consists primarily of mineralized 

collagen fibrils. Hydroxyapatite crystals are the smallest biogenic crystals known, measuring 2-6 

nm thick, 30-50 nm wide, and 60-100 nm long [31]. In mineralized collagen fibrils, 

hydroxyapatite crystals are organized into parallel arrays that align with the long axes of the 

collagen fibril [31]. The crystals localize in the approximately 40 nm gaps that occur at the ends 

of co-linear collagen molecules, as well as between adjacent collagen molecules that overlap 

with one another, accentuating the well-known D periodicity of collagen when observed under 

transmission electron microscopy (TEM) [31]. While the precise nature of collagen-mineral 

interactions is still not well understood, ionic bonds between the carboxyl and carbonyl groups of 

proteins with calcium ions in the crystals are thought to play a role in such interactions [31]. 

 

Figure 1.4. The structure and composition of bone at the molecular, cellular, tissue and organ 
levels. Adapted from Marie, 1999 [4] and Lakes, 1993 [125]. 
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Skeletal stem cells are a population of multipotent cells that have the ability to generate cells of 

several lineages including osteoblasts, adipocytes, chondrocytes , smooth muscle cells, stromal 

cells and endothelial cells that participate in bone healing and repair [126-130]. Skeletal stem 

cells have been purified by flow cytometry using positive selection for multiple markers 

including STRO-1 [131] as well as negative selection for hematopoietic markers including CD34 

[130]. These cells have also been referred to as osteogenic stem cells, marrow stromal 

fibroblastic cells, bone marrow stem cells, mesenchymal stem cells, stromal precursor cells [130] 

and are found in the bone marrow in close association with the hematopoietic stem cell niche 

[126]. Indeed, ectopic studies show that the formation of blood-forming cells is often preceded 

by bone formation [132] and osteoblast cells have been found to be involved in the regulation of 

hematopoietic stem cell niche through notch signaling [133]. Recent studies have suggested that 

skeletal stem cells may possess a pericyte origin and reside in microvascular networks within the 

bone marrow [50, 51, 130, 134]. 

 

During long bone healing, the stereotypical events associated with wound healing occur, 

requiring an intricate interplay of immune cells as well as bone progenitor cells. Due to the high 

vascularity of bone and its surrounding tissues, a relatively large hematoma is formed when bone 

is fractured [4]. Bone cells that are unable to receive nutrients due to disruptions in the vascular 

network undergo apoptosis and the tissue becomes inflamed [4]. Studies have indicated that a 

balanced inflammatory reaction is critical in regulating the regenerative healing process [7, 72, 

73, 135]. For example, it has been demonstrated that a prolonged pro-inflammatory 

microenvironment can alter the composition of immune cells that are recruited to the wound site 
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[73], resulting in an altered microenvironment that suppresses the differentiation of skeletal stem 

cells and delays bone healing [72, 73, 135]. This effect may be countered by modulating the 

inflammatory microenvironment to promote wound healing. For example, the systematic 

infusion of stem cells has been shown to mitigate a pro-inflammatory response by directing 

macrophages towards an anti-inflammatory or M2 phenotype to suppress local TNF-α production 

and increase IL-10 production, resulting in enhanced wound healing [7]. During the proliferation 

phase, the in-growth of capillaries as well as infiltration of phagocytic cells, fibroblasts and 

osteoblasts into the hematoma and surrounding area from the periosteum and endosteum forms a 

soft callus that is comprised fibrocartilage and cartilage [4]. This fibrocartilaginous callus 

bridges the gap between two fracture fragments and acts to splint the broken bone [4]. 

Thereafter, the callus is mineralized by osteoblasts and forms a hard bony callus, eventually 

resulting in bone union [4]. During the remodeling phase, the bony callus is reconstructed in 

response to mechanical stress in the environment [60] such that excess material on the bone shaft 

exterior and within the medullary cavity is removed and compact bone is laid down to 

reconstruct the shaft walls, resulting regenerated tissue that resembles the original tissue 

composition and architecture [4]. 

 

1.1.3.4 Architecture of Relevant Musculoskeletal Interfaces 

Musculoskeletal interfaces function to bridge the gap between two dissimilar tissues and 

facilitate load transfer between bone, cartilage, tendon, ligament and muscle tissue [25-27]. The 

biochemical composition and architecture of musculoskeletal interfaces is composed such that 

there is often a gradual transition in mechanical properties when crossing from one distinct tissue 
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to the other [25-27]. This serves to reduce stress concentrations at the interface and prevent 

mechanical failure, allowing the interface to undergo repeated and durable load transfer [25-27]. 

 

In muscle-bone attachments, the epimysium of the muscle is fused to the periosteum of a bone 

via the insertion of collagen fiber bundles with other ECM molecules such as tenascin, laminin 

and fibronectin [4, 136]. The ECM composition at the border of muscle-bone attachments have 

been found to vary with one another and are likely adapted for the tension and/or stretch applied 

between a specific muscle-bone pairing [4, 136].  

 

In muscle-tendon attachments, the endomysium, epimysium and perimysium of muscle tissue are 

interwoven together and eventually become synonymous with proper tendon tissue [4]. At the 

myotendinous junction, many finger-like processes are formed at the termini of tendons while 

extensive folding of muscle sarcolemma occurs to increase the surface area available for 

interdigitation of muscle and tendon tissues, ultimately reducing the tensile stress exerted on 

tendon during muscle contraction [27, 137, 138]. Specifically, tendon collagen fibrils are inserted 

into the deep recesses formed by myocyte processes [84, 139], allowing for contractile force to 

be transmitted from the intracellular proteins of muscle tissue to extracellular collagen fibers of 

tendon tissue [84]. 

 

In bone-tendon attachments, the osteotendinous junction is comprised of four distinct zones that 

progressively transition from soft tissue to hard tissue – (1) Tendon proper, (2) Fibrocartilage, (3) 

Mineralized fibrocartilage and (4) Mineralized bone. These four zones have region-specific 
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mechanical properties and function together to minimize stress concentrations and promote 

gradual load transfer from soft (tendon) to hard (bone) tissue [25, 27, 84]. 

 

1.1.4 GF Signaling Pathways Relevant to Musculoskeletal Tissues 

There are numerous GF signaling pathways related to the development and regulation of 

musculoskeletal tissues. However, only the BMP, FGF and IGF signaling pathways will be 

reviewed here since they are relevant to the present study. 

 

The BMP gene family is a subfamily of the TGF-β superfamily of GFs [140, 141] that are 

involved in a variety of cell behaviors such as cell differentiation [16, 18, 19, 142] and apoptosis 

[142]. BMPs are heparin-binding GFs that consist of two polypeptide chains linked by a single 

disulfide bond and interact with complexes of type I and type II serine/threonine kinase cell 

surface receptors [140, 141]. There are essentially two modes of intracellular signaling – (1) The 

canonical pathway and (2) The non-canonical pathway [141, 143-145]. In the canonical pathway, 

BMP binding induces phosphorylation of the threosine kinase receptors, which then activate 

intracellular signaling via the Smad receptors – Smad1, Smad5 and Smad8  [141, 144]. These 

Smad receptors are phosphorylated at their C-terminus by the activated type I receptor and 

complex with Smad4 to translocate to the nucleus where they bind to DNA and interact with 

transcription factors to alter gene expression [141, 144]. In addition, the Smad receptors may 

also interact with other non-Smad intracellular mediators to transmit signals to other pathways 

[144]. In the non-canonical pathway, BMP binding results in the direct phosphorylation of non-

Smad intracellular mediators such as the Mitogen Activated Protein Kinase (MAPK), eventually 

resulting in downstream signaling cascades that eventually modify gene transcription [143, 145]. 
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The FGF gene family is composed of 22 members that can be categorized into seven subfamilies 

based on sequence similarity [146, 147]. FGFs are a family of heparin binding GFs [146, 147] 

that are involved in a variety of cell behavior including cell proliferation [13] and differentiation 

[16]. FGF receptors are tyrosine kinase cell surface receptors that consist of an extracellular 

ligand domain composed of three immunoglobulin-like domains, a single transmembrane helix 

domain and an intracellular domain with tyrosine kinase activity [142, 146, 147]. There are 

seven FGF receptor isoforms which are produced as a result of alternative mRNA splicing of 

four FGF receptor genes – FGFR1, FGFR2, FGFR3 and FGFR4 [142, 146, 147]. When FGF 

binds to the extracellular domain of its receptor, the receptor dimerizes and rapidly activates the 

protein’s cytoplasmic tyrosine kinase domains, triggering the initiation and subsequent 

amplification of intracellular signaling cascades such as the MAPK, p38, Phospholipase C γ 

(PLCγ) and Phosphatidylinositol 3-kinase (PI3K) pathways to modify gene expression [142, 146, 

147]. In addition, several members of the FGF family such as FGF-1, FGF-2, FGF-3, FGF-11, 

FGF-12, FGF-13 and FGF-14 can also localize to the nucleus where it can interact with proteins 

such as transcription factors to alter gene transcription [147]. 

 

The IGF family of GFs comprise of two ligands – IGF-1 and IGF-2 that are structurally similar 

to insulin [148] and mediate cell behavior such as cell differentiation [143], cell survival [149] 

and cell proliferation [150]. IGFs are known to interact with three receptors – (1) IGF-1 receptor 

(a tyrosine kinase cell surface receptor), (2) IGF-2 receptor (a cation-independent mannose-6-

phosphate cell surface receptor; regarded as non-functional in the context of IGF signaling) and 

(3) Insulin receptor (a tyrosine kinase cell surface receptor) [148] as well as six IGF binding 
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proteins that regulate the bioavailability and bioactivity of the GF [151, 152]. Similar to all 

tyrosine kinase cell surface receptors, IGF binding causes tyrosine phosphorylation of the 

intracellular domain of the receptors, resulting in downstream activation of the PI3K/Akt and 

Ras/MAPK pathways to alter gene transcription [148]. 

 

1.1.6 Technologies to Mimic Aspects of the Cellular Microenvironment for Tissue Engineering 

Presently, various scaffold and patterning methodologies have been developed for promoting 

repair and regeneration of damaged tissues and organs. While there exists a large and diverse 

class of scaffolds such as metal-based implants, glass- and ceramics-based scaffolds, 

decellularized scaffolds as well as natural and synthetic polymer-based scaffolds whose final 

form include rigid, porous scaffolds, soft hydrogels and spun nano- or micron-sized fibers [15, 

18, 21, 23, 24, 111, 153-159], the general theme of these biomaterials is to recapitulate aspects of 

the cellular microenvironment such as tissue architecture and biochemical cues. In addition, such 

scaffolds and substrates may be further functionalized with biochemical cues using a variety of 

patterning technologies such as precision spraying [160], photolithography [161, 162], 

photoimmobilization [163], microcontact printing [164, 165], laser-based printing [166], inkjet-

based printing [167-169], acoustic droplet ejection [170], adsorption from solution [171], cross-

diffusion of alkanethiols [172, 173] to augment their capability.   
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2.1 ABSTRACT 

The capability to engineer microenvironmental cues to direct a stem cell population toward 

multiple fates, simultaneously, in spatially defined regions is important for understanding the 

maintenance and repair of multi-tissue units. Our lab has previously developed an inkjet-based 

bioprinter to create patterns of solid-phase growth factors (GFs) immobilized to an extracellular 

matrix (ECM) substrate, and applied this approach to drive muscle-derived stem cells toward 

osteoblasts ‘on–pattern’ and myocytes ‘off–pattern’ simultaneously. Here this technology is 

extended to spatially control osteoblast, tenocyte and myocyte differentiation simultaneously. 

Utilizing immunofluorescence staining to identify tendon-promoting GFs, fibroblast growth 

factor-2 (FGF-2) was shown to upregulate the tendon marker Scleraxis (Scx) in C3H10T1/2 

mesenchymal fibroblasts, C2C12 myoblasts and primary muscle-derived stem cells, while 

downregulating the myofibroblast marker α-smooth muscle actin (α-SMA). Quantitative PCR 

studies indicated that FGF-2 may direct stem cells towards a tendon fate via the Ets family 

members of transcription factors such as pea3 and erm. Neighboring patterns of FGF-2 and bone 

morphogenetic protein-2 (BMP-2) printed onto a single fibrin-coated coverslip upregulated Scx 

and the osteoblast marker ALP, respectively, while non-printed regions showed spontaneous 

myotube differentiation. This work illustrates spatial control of multi-phenotype differentiation 

and may have potential in the regeneration of multi-tissue units. 

  

2.2 INTRODUCTION 

As described in Chapter 1, the musculoskeletal system comprises multiple tissue types including 

bone, muscle, tendon, ligament and cartilage as well as their respective tissue interfaces such as 

bone-to-tendon entheses and muscle-to-tendon junctions. The maintenance and repair of these 
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multi-tissue structures involves the spatial control of stem cell differentiation toward tissue-

specific cells, such as osteoblasts, tenocytes and myocytes [1]. This process is regulated by 

physical and biochemical microenvironmental cues imparted by the interactions of cells with 

their extracellular matrix (ECM), neighboring cells, and secreted local and systemic signaling 

molecules, including growth factors (GFs) [1, 2]. Signaling molecules, regulate the pericellular 

environment where they reside in both the ‘liquid-phase’ (freely diffusing) form and the ‘solid-

phase’ (immobilized) form that exists in an equilibrium state between desorption from and 

adsorption to the ECM and cell surfaces [3]. The unique architecture and biochemical 

composition of the ECM allows it to sequester (immobilize) and release GFs at picogram to 

nanogram levels [3-7], and can negatively or positively regulate GF bioactivity and 

bioavailability [3]. As such, GF sequestration by the ECM immobilizes GFs to specific locations, 

which in turn imparts the temporal and spatial cues required for directing cell behaviors such as 

cell adhesion, migration, proliferation, differentiation and apoptosis, which are vital for 

orchestrating complex processes such as development, maintenance and wound healing [3, 7-19]. 

Therefore, developing toolsets that can be used to selectively control the physical placement and 

dosage of multiple exogenous GFs in a physiologically-relevant manner in order to spatially 

direct a stem cell population toward multiple cell fates simultaneously is a logical consideration 

for studying stem cell behaviors and may also have direct applications in regenerative medicine.  

 
Prior work reported by our group and by others has shown that ECMs patterned with solid-phase 

GFs can be engineered to control various aspects of stem cell behavior, including proliferation, 

migration and differentiation in vitro [8, 13, 14, 16, 20-23] as well as differentiation in vivo [10]. 

In addition, our lab has previously demonstrated that a GF-patterned fibrin ECM created using 

an inkjet-based bioprinting technology can drive a single stem cell population toward osteoblast 
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and myocyte fates simultaneously, in registration to printed patterns in vitro [16]. In the work 

presented here, this approach is extended to spatially drive stem cell differentiation towards a 

tendon fate simultaneously with osteoblast and myocyte differentiation.  

 
Using solid-phase GFs to direct stem cells to tenocytes in vitro has not been previously reported 

in literature. Therefore, prior to studying multi-lineage patterning, candidate tendon-promoting 

GFs had to be identified and validated. Candidate GFs were screened against mouse C3H10T1/2 

mesenchymal fibroblasts, C2C12 myoblasts and primary muscle-derived stem cells (MDSCs) 

using both liquid- and solid-phase immunofluorescence staining for the tendon marker Scleraxis 

(Scx) [24, 25]. Quantitative PCR studies were subsequently performed to elucidate the 

mechanism by which stem cells differentiated towards a tendon lineage. Following this, solid-

phase presentation of FGF-2 and/or BMP-2 on fibrin-coated glass coverslips using either coarse 

hand-printing or high resolution, low-dose inkjet bioprinting was used to demonstrate spatial 

control of stem cell differentiation towards multiple cell fates simultaneously. 

 

2.3 MATERIALS AND METHODS 

2.3.1 Cell Culture 

Multipotent mouse C3H10T1/2 cells (ATTC, Manassas, VA) were grown in Dulbecco’s 

Modified Eagle’s Media (DMEM; Invitrogen, Carlsbad, CA), 10% fetal bovine serum 

(Invitrogen, Carlsbad, CA) and 1% penicillin-streptomycin (PS; Invitrogen, Carlsbad, CA).  

Mouse C2C12 cells (ATTC, Manassas, VA) were grown in DMEM, 10% bovine serum 

(Invitrogen, Carlsbad, CA) and 1% PS. Multipotent MDSCs were isolated from primary mouse 

gastrocnemius muscle biopsies following a modified preplate technique [26] and were grown in 

DMEM (high glucose), 10% horse serum (HS; Invitrogen, Carlsbad, CA), 10% FBS, 0.5% Chick 
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Embryo Extract (Accurate Chemical Co, Westbury, NY) as previously described [26, 27]. For 

myogenic differentiation, cells were grown in low serum containing myogenic differentiation 

(DMEM, 2% HS, 1% PS) media for 3-5 days. This media is subsequently referred to as 

myogenic media or myogenic conditions for the remainder of the text. All cells were kept at 

37oC, 5% CO2 in a humidified incubator. 

 
2.3.2 Growth Factor Preparation and Use 

Recombinant human BMP-2 (Genetics Institute Inc, Cambridge, MA), FGF-2 (Peprotech, 

Rockyhill, NJ), FGF-4 (Peprotech, Rockyhill, NJ) and GDF-7 (Prospc Bio, Rehovot, Israel) were 

reconstituted according to manufacturer’s instructions to 1-2 mg/mL, aliquoted and stored at -

80oC. Prior to use, GFs were freshly diluted to the desired concentration in 10 mM sodium 

phosphate, pH 7.4. For liquid-phase GF experiments, cells were seeded at 2.6-3.1 x 104 cells/cm2 

in the presence or absence of GF (1-500 ng/mL) under proliferation (High serum) and myogenic 

(Low serum) media for 3-4 days. For solid-phase GF experiments, cells were seeded at 3.1-3.6 x 

104 cells/cm2 over printed fibrin-coated coverslips under proliferation and myogenic media for 3-

4 days. 

 
2.3.3 Preparation of Fibrin Coated Coverslips 

Homogenous fibrin films were prepared essentially as described by Campbell et al., 2005 [8]. 

Briefly, 18 x 18 mm epoxy-silanized glass coverslips (Thermo Fisher Scientific, Waltham, MA) 

were coated with 0.1 mg/mL fibrinogen (Aventis Behring, King of Prussia, PA or American 

Diagnostica Inc., Stanford, CT) and converted into fibrin by incubating coverslips in 4 U/mL 

thrombin (Enzyme Research Laboratories, South Bend, IN). Coverslips were then washed with 
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phosphate buffered saline (PBS) and sterile deionized water before air-drying in a laminar flow 

hood. The thickness of the fibrin films was previously estimated to be approximately 20 nm [8].  

 
2.3.4 Growth Factor Printing 

Prior to printing, GFs were freshly diluted to the desired concentration in 10 mM sodium 

phosphate, pH 7.4. Prior to filling the inkjet with the GF, the printhead was sterilized by rinsing 

with 70% ethanol followed by sterile deionized water. The bio-ink, consisting of 100-200 µg/ml 

GF was loaded into the printhead, and printed onto fibrin-coated glass coverslips as previously 

described [8, 14]. The concentration of inkjetted GFs can be modulated by overprinting, which is 

achieved by varying the number of times a GF is deposited in the same (x,y) location. In the case 

of hand-printed GF patterns, 1-2 µL of a 100 µg/mL GF solution was pipetted onto a fibrin-

coated glass coverslip instead and a diamond scribe pen was used to mark the droplet perimeter 

after it had been allowed to air-dry for 1 h at 37oC. After printing, fibrin-coated coverslips were 

incubated in PBS for 5 min followed by serum-free DMEM with 1% PS overnight at 37°C, 5% 

CO2 to wash off unbound GF prior to cell seeding. The surface concentration of GF present on 

fibrin-coated coverslips during cell seeding was estimated based on desorption measurements in 

previous studies [8, 13, 14, 28]. 

 
2.3.5 Quantitative PCR 

For the experiments investigating scx expression during muscle differentiation, C2C12 cells were 

grown at 1.55 x 102 cells/cm2 under proliferation conditions and at 2.5 x 103 cells/cm2 under 

myogenic conditions for 4 days to ensure similar number of cells in both conditions prior to 

RNA extraction. C3H10T1/2 cells were grown in proliferation medium at 1.5-2.0 x 104 cells/cm2 

in the presence or absence of FGF-2 (50 µg/mL) for 36 h and 72 h prior to extraction of total 
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RNA (RNeasy Mini Kit; Qiagen, Valencia, CA). Quantitative polymerase chain reaction analysis 

for pea3, erm and scx were performed as previously described [29, 30]. Target gene expression 

was normalized to 18S internal control. Gene expression is displayed as the mean of five 

independent experiments and represented as mean ± Standard Error Mean (SEM). Statistical 

analysis was performed as described below. 

 
2.3.6 Immunofluorescence staining 

Cells were washed in PBS, fixed in methanol for 5 min, air-dried and blocked with 10% donkey 

serum (Jackson Immunoresearch, West Gove, PA) for 20 min at RT. For mouse-on-mouse 

staining, an additional blocking step was performed by incubating cells with 100 µg/mL donkey 

anti-mouse FAB (Jackson Immunoresearch, West Gove, PA) for 1 h at RT. Cells were then 

rinsed with wash buffer (PBS, 0.1%BSA) and incubated with primary antibodies: rabbit anti-scx 

(10 µg/mL; Abcam, Cambridge, MA), mouse anti-myosin MF20 (1 µg/mL; DSHB, Iowa City, 

Iowa), mouse anti-α-smooth muscle actin (α-SMA; 1 µg/mL; Abcam, Cambridge, MA) or goat 

anti-myogenin (2 µg/mL; Santa Cruz Biotechnology Inc, Santa Cruz, CA) overnight at 4oC. 

Cells were then rinsed three times with wash buffer and incubated with secondary antibodies for 

1 h at RT – donkey anti-goat FITC (4 µg/mL; Santa Cruz Biotechnology Inc, Santa Cruz, CA), 

donkey anti-mouse Dylight 488 nm or donkey anti-rabbit Dylight 549 nm (15 µg/mL each; 

Jackson Immunoresearch, West Gove, PA). Lastly, cells were rinsed five times with wash buffer 

and imaged using a Zeiss Axiovert 200M microscope (Carl Zeiss Microimaging, Thornwood, 

NY) equipped with a Colibri LED light source. Quantification of immunofluorescence staining 

was performed using Adobe Photoshop 7.0 (Adobe Systems, San Jose, CA). Briefly, the 

rectangular marquee tool was used to draw a bounding box (Approximately 700 pixels by 700 
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pixels representing an area 0.9 mm by 0.9 mm in size) and the image histogram tool was used to 

measure average pixel intensity. Statistical analysis was performed as described below. 

  
2.3.7 ALP Stain 

Cells were seeded onto GF patterns for 72 h, washed in PBS and fixed for 2 min in 3.7% 

formaldehyde. Alkaline phosphatase activity (ALP; SIGMAFAST) was detected according to the 

manufacturer’s instructions (Sigma-Aldrich, St. Louis, MO). Where required, alkaline 

phosphatase-stained images were converted to CMYK format since this color format is 

representative of reflected light colors as opposed to emitted light colors (RGB). Since cyan and 

magenta form the color blue, these channels were added together and inverted. The average pixel 

intensity was determined using the image histogram tool in Adobe Photoshop 7.0 (Adobe 

Systems, San Jose, CA). 

 
2.3.8 Statistical Analysis 

For both quantitative PCR and immunofluorescence analysis, one-way analysis of variance 

followed by Fisher’s least significant difference post hoc test using SYSTAT 9 software (Systat 

Software Inc., Richmond, CA) was performed to determine significance among treatment 

groups. A p value ≤ 0.05 was considered statistically significant. 

 
2.4 RESULTS 

2.4.1 Effect of Liquid-Phase FGF-2 and FGF-4 on Scx Expression in C3H10T1/2 Cells 

By immunostaining for the tendon marker Scx, putative tendon-promoting growth factors (GFs) 

were identified in C3H10T1/2 cells. Upon addition of 50 ng/mL FGF-2, C3H10T1/2 cells 

displayed a spindle-like morphology and upregulated the tendon marker Scx   (Figure 2.1). 

Addition of 200 ng/mL BMP-2 alone or 500 ng/mL GDF-7 alone had little to no effect on Scx 
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levels  (Figure 2.1). Unexpectedly, addition of 500 ng/mL GDF-7 to FGF-2-treated cells 

decreased Scx levels   (Figure 2.1). When treated with 50 ng/mL FGF-4, C3H10T1/2 cells 

exhibited a spindle-like morphology  and upregulated the tendon marker Scx, displaying 

punctate nuclear staining of Scx transcription factor  (Figure 2.2).  

 
Figure 2.1. Effect of FGF-2, GDF-7 and BMP-2 on expression of tendon marker Scx in mouse 
C3H10T1/2 cells after 3.5 days in proliferation media. Scx was upregulated in the presence of 
FGF-2 but not GDF-7 or BMP-2. Cells also adopt an elongated spindle-like morphology when 
treated with FGF-2. Scale bar is 50 µm. 
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Figure 2.2. Dose-dependent effect of FGF-4 on expression of tendon marker Scx in mouse 
C3H10T1/2 cells after 72h in proliferation media. The tendon marker Scx was upregulated in the 
presence of FGF-4. Red box indicates magnified region (right). Note the punctate nuclear 
staining of Scx transcription factor in 50 ng/ml FGF-4. Scale bar 50 µm. 
 
2.4.2 Effect of Liquid-Phase FGF-2 on Scx Expression in C2C12 Cells 

To determine if FGF-2 was indeed a putative tendon-promoting GF, Scx expression in C2C12 

cells treated with FGF-2 under proliferation (high serum) as well as myogenic (low serum) 

conditions. Under proliferation conditions, increasing amounts of FGF-2 resulted in upregulation 

of the tendon marker Scx in a dose-dependent manner with punctate nuclear staining of Scx 

observed in cells treated at 25 ng/mL FGF-2 and 50 ng/mL FGF-2 (Figure 2.3). Under myogenic 

conditions, Scx expression was unexpectedly upregulated in nascent myotubes in the absence of 

FGF-2 (Figure 2.4). Confocal sectioning studies determined that the thickness of myotubes, 
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which is observed as a bright halo around cells in phase-contrast images (Figure 2.4), contributed 

in part to the high levels of Scx (data not shown). Furthermore, quantitative PCR analysis 

indicated that there was no fold change in scx expression between proliferating C2C12 cells 

(1.003 ± 0.075 fold change) and differentiating myotubes (1.022 ± 0.209 fold change). In the 

presence of FGF-2, myotube formation was inhibited and cells showed increased Scx expression 

when compared to non-myocytes in untreated control (Figure 2.4). 

 
Figure 2.3. Dose-dependent effect of FGF-2 on expression of tendon marker Scx in mouse 
C2C12 cells after 72h in proliferation media. Increasing amounts of FGF-2 resulted in 
upregulation of tendon marker Scx. White box indicates magnified region (right). Note the 
punctate nuclear staining of Scx transcription factor in 25 ng/ml and 50 ng/ml FGF-2. Scale bar 
50 µm. 
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Figure 2.4. Effect of FGF-2 on expression of tendon marker Scx in mouse C2C12 cells after 72h 
in myogenic media. Scx expression was upregulated in nascent myotubes in the absence of FGF-
2. In presence of FGF-2, myotube formation was inhibited and increased Scx expression was 
observed when compared to non-myotubes. White box indicates magnified region (right). Note 
the punctate nuclear staining of Scx transcription factor in 50 ng/ml FGF-2 which is absent in 0 
ng/ml FGF-2. Scale bar 50 µm. 
 

2.4.3 Effect of Liquid-Phase FGF-2 on Scx Expression in MDSCs 

Tendon specification in MDSCs was examined in cells treated with FGF-2 under proliferation 

and myogenic conditions. Under proliferation conditions, FGF-2 dose-dependently increased 

expression of the tendon marker Scx with punctate nuclear staining of Scx occasionally observed 

at 50 ng/mL FGF-2 (Figure 2.5). Similar to C2C12 cells, Scx expression was upregulated in 

nascent myotubes in the absence of FGF-2 (Figure 2.6). In the presence of FGF-2, myotube 

formation was inhibited with MDSCs exhibiting lower levels of the myogenic marker myogenin 

(Figure 2.6). In addition, Scx expression was upregulated when compared to non-myocytes in 

untreated control (Figure 2.6) and FGF-2-treated cells did not show increased expression for the 

myofibroblast marker α-smooth muscle actin (α-SMA; Figure 2.7). 
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Figure 2.5. Dose-dependent effect of FGF-2 on expression of tendon marker Scx in mouse 
MDSCs after 72 h in proliferation media. Increasing amounts of FGF-2 resulted in upregulation 
of tendon marker Scx. White box indicates magnified region (right). Note the punctate nuclear 
staining of Scx transcription factor in 50 ng/ml FGF-2. Scale bar 50 µm. 
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Figure 2.6. Dose-dependent effect of FGF-2 on expression of tendon marker Scx and muscle 
marker Myogenin in mouse MDSCs after 48h in myogenic media. Scx expression was 
upregulated in nascent myotubes in the absence of FGF-2. In presence of FGF-2, myotube 
formation was inhibited with decreased myogenin and increased Scx expression was observed 
when compared to non-myotubes. Scale bar 50 µm. 
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Figure 2.7. Effect of FGF-2 on expression of myofibroblast marker α-Smooth Muscle Actin (α-
SMA) in mouse MDSCs after 72h in proliferation media. α-SMA expression was downregulated 
on printed patterns of FGF-2. Red arrowheads indicate the boundary of the hand-printed FGF-2 
pattern. Parallel lines seen in phase-contrast images denote scratch marks used for identifying the 
location of hand-printed FGF-2 patterns. Scale bar 1000 µm. 
 
2.4.4 Regulation of scx in C3H10T1/2 Cells 

As previous studies indicated that members of the Ets family of transcription factors such as 

pea3 and erm were involved in regulation of scx during chick tendon development, quantitative 

PCR analysis of these genes were performed to determine if a similar mechanism was operating 

in these stem cell populations [31]. 50 ng/mL FGF-2 upregulated pea3 (43.1 ± 27.5 fold change, 

p = 0.005) and erm (16.5 ± 6.5 fold change, p = 0.178) at 36 h whereas scx levels remained 

constant. At 72 h, all three genes were upregulated: pea3 (169.6 ± 45.8 fold change, p = 0.008), 

erm (72.5 ± 16.2 fold change, p = 0.033) and scx (22.8 ± 5.4 fold change, p = 0.006). As such, 

the prior induction of pea3 and erm suggest that these two genes lie upstream of scx (Figure 2.8).  
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Figure 2.8. Effect of 50 ng/mL FGF-2 on expression of pea3, erm and scx transcription factors 
in mouse C3H10T1/2 cells at 36 h and 72 h in proliferation media. At 36 h, FGF-2 increased 
pea3 and erm but not scx expression, relative to control. At 72 h, all transcription factors are 
upregulated, relative to control. Columns indicate fold changes over control ± SEM (n=5). *, 
Significantly different from control; p ≤ 0.05. + +, Significantly different from 36 h; p ≤ 0.05. 
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2.4.5 Effect of Solid-Phase FGF-2 on Scx Expression in C3H10T1/2 Cells 

Having demonstrated that Scx expression was upregulated by liquid-phase FGFs, square patterns 

of FGF-2 (each measuring 1 by 1 mm) were inkjet printed onto fibrin-coated glass coverslips 

with 2, 6 and 12 overprints to determine if solid-phase GF patterns can spatially direct tendon 

specification in a dose-dependent manner. Our previous studies have shown that the surface 

concentration of GF that is deposited can be modulated by overprinting and that such GF 

patterns can persist for up to 144 hours under standard cell culture conditions [10, 13, 14, 16]. As 

shown in Figure 2.9A, the amount of FGF-2 deposited in 2, 6 and 12 overprints after washing 

and prior to cell seeding was estimated to be 40.8 pg/mm2, 122.4 pg/mm2 and 244.8 pg/mm2 

FGF-2 based on previous studies [8, 13, 14, 28]. Under proliferation conditions (High serum), 

C3H10T1/2 cells showed upregulation of Scx in response to solid-phase patterning of FGF-2 in a 

dose-dependent manner (Figure 2.9B). Although the lowest dose of solid-phase FGF-2 (40.8 

pg/mm2) was not sufficient to induce an increase in Scx expression relative to negative 

control/non-printed regions (p = 0.872), higher doses of solid-phase FGF-2 resulted in an 

increase in Scx expression relative to negative control/non-printed regions (p = 0.009 for 122.4 

pg/mm2 FGF-2 and p = 0.001 for 244.8 pg/mm2 FGF-2; Figure 2.9) in C3H10T1/2 cells. Thus, 

solid-phase patterning of FGF-2 can spatially control tendon cell fate (Figure 2.9). 
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Figure 2.9. Effect of inkjet printed patterns of FGF-2 on expression of tendon marker Scx in 
mouse C3H10T1/2 cells after 72 h in proliferation media. A. Inkjet printed patterns of FGF-2 
resulted in upregulation of the tendon marker Scx in a dose-dependent manner. B. Quantification 
of Scx Expression (n = 6). White squares indicates inkjet printed regions. The estimated surface 
concentration of FGF-2 present during cell seeding (after washing) is shown in terms of 
picograms/mm2. Scale bar 500 µm. *, Significantly different from control or non-printed regions; 
p ≤ 0.05. 
 
2.4.6 Effect of Solid-Phase FGF-2 on MF20 and Scx Expression in C2C12 Cells 

Similarly, square patterns of FGF-2 (each measuring 1 by 1 mm) were inkjet printed onto fibrin-

coated glass coverslips with 5, 10 and 30 overprints (corresponding to an estimated amount of 

102 pg/mm2, 203 pg/mm2 and 612 pg/mm2 FGF-2) to determine if multiple stem cell fates could 

be spatially controlled in a dose-dependent manner within the same construct. Under both 

proliferation and myogenic conditions, inkjet printed patterns of FGF-2 resulted in a dose-

dependent increase in Scx expression (Figure 2.10B, C).  
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Figure 2.10. Effect of inkjet printed patterns of FGF-2 on expression of tendon marker Scx (red) 
and muscle marker MF20 (green) in mouse C2C12 cells after 72 h in proliferation and myogenic 
media. Increasing amounts of FGF-2 dose-dependently upregulated Scx and inhibited myotube 
formation slightly. Non-printed regions showed spontaneous myotube differentiation due to high 
confluency levels. A. Inkjet printed patterns of FGF-2 (Black squares). B. Scx and MF20 
staining of printed patterns (White Squares). C. Quantification of Scx and MF20 stain. The 
estimated surface concentration of FGF-2 present during cell seeding (after washing) is shown in 
terms of picograms/mm2. Scale bar 1 mm. Error bars indicate Standard Error Mean or SEM (n = 
12 for proliferation media, n = 16 for myogenic media). *, Significantly different from control or 
non-printed regions; p ≤ 0.05. 
 
Under proliferation conditions, although the lowest dose of solid-phase FGF-2 (102 pg/mm2 

FGF-2) was not sufficient to induce an increase in Scx expression relative to negative 

control/non-printed regions (p = 0.099), higher doses of solid-phase FGF-2 resulted in an 

increase in Scx expression relative to negative control/non-printed regions (p = 0.01 for 203 

pg/mm2 FGF-2 and p = 0.000 for 612 pg/mm2 FGF-2) in C2C12 cells (Figure 2.10C). Under 

myogenic conditions, although lower doses of solid-phase FGF-2 were not sufficient to induce 

an increase in Scx expression relative to negative control/non-printed regions (p = 0.139 for 102 

pg/mm2 FGF-2 and p = 0.053 for 203 pg/mm2 FGF-2), the highest dose of solid-phase FGF-2 

resulted in an increase in Scx expression relative to negative control/non-printed regions (p = 
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0.022 for 612 pg/mm2 FGF-2) in C2C12 cells (Figure 2.10C). Within and outside the printed 

regions, cells fused to form multinucleated myotubes as a result of high cell density leading to 

spontaneous cell fusion under proliferation conditions or direct myogenic induction, as evidenced 

by the presence of muscle myosin or MF20 (Figure 2.10B). No difference in MF20 staining was 

observed between printed and non-printed regions (p > 0.05 for all cases). Taken together, these 

results demonstrate the simultaneous specification of myocyte and tenocyte fates within the same 

construct in a spatially defined manner in a dose-dependent fashion.  

 
2.4.7 Effect of Solid-Phase BMP-2 and FGF-2 on ALP, MF20 and Scx Expression in C2C12 

Cells 

Having demonstrated that multiple stem cell fates could be spatially controlled within the same 

construct, inkjet bioprinting technology was applied to determine if osteoblast, tenocyte and 

myocyte fates, representative of a primitive bone-tendon-muscle unit, could be simultaneously 

specified within the same construct. After 72 h in proliferation media, inkjet printed patterns of 

BMP-2 and FGF-2 increased ALP and Scx expression, respectively (Figure 2.11). On inkjet 

printed patterns of BMP-2, ALP expression was increased relative to negative control/non-

printed regions (p = 0.000) and inkjet printed patterns of FGF-2 (p = 0.000) but no increase in 

Scx expression was observed relative to negative control/non-printed regions (p = 0.146). On 

inkjet printed patterns of FGF-2, Scx expression was increased relative to negative control/non-

printed regions (p = 0.000) and inkjet printed patterns of BMP-2 (p = 0.003) but no increase in 

ALP expression was observed relative to negative control/non-printed regions (p = 0.887). 

Within and outside the printed regions, myotube formation was promoted due to the high density 

of cells resulting in spontaneous fusion of cells (Figure 2.11B). No difference in MF20 staining 

was observed between printed and non-printed regions (p > 0.05 for all cases). Taken together, 
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these results demonstrate the simultaneous specification of osteoblast, tenocyte and myocyte 

fates within the same construct in a spatially defined manner. 

 

 
 
Figure 2.11. Effect of inkjet printed patterns of BMP-2 and FGF-2 on expression of osteoblast 
marker ALP (blue), tendon marker Scx (red) and muscle marker MF20 (green) in mouse C2C12 
cells after 72 h in proliferation media. BMP-2 and FGF-2 patterns induced ALP and Scx 
expression, respectively, while non-printed regions spontaneously formed myotubes. A. Inkjet 
printed patterns of BMP-2 and FGF-2 (Black squares). B. ALP, Scx and MF20 staining of 
printed patterns (Black and white squares). C. Quantification of ALP, Scx and MF20 stain. 
Squares indicates inkjet printed region post-printing or post-immunofluorescence staining. The 
estimated surface concentration of GF present during cell seeding (after washing) is shown in 
terms of picograms/mm2. Scale bar 1 mm. Error bars indicate Standard Error Mean or SEM (n = 
8). *, Significantly different from control or non-printed regions; p ≤ 0.05. +, Significantly 
different from inkjet printed patterns of FGF-2; p ≤ 0.05. + +, Significantly different from inkjet 
printed patterns of BMP-2; p ≤ 0.05. 
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2.4.8 Effect of Solid-Phase FGF-2 on α-Smooth Muscle Actin Expression in C2C12 Cells 

To rule out the possibility that FGF-2 was directing C2C12 cells towards a myofibroblast fate as 

opposed to a tenocyte fate, FGF-2 was hand-printed onto a fibrin-coated coverslip and 

immunostained for the myofibroblast marker α-SMA (Figure 2.12). After 72 h in proliferation 

media, α-SMA, which is transiently expressed during muscle differentiation [32], was 

downregulated on hand-printed patterns of FGF-2, indicating that these cells were differentiating 

towards a tenocyte fate as opposed to a myofibroblast fate. 

 
Figure 2.12. Effect of FGF-2 on expression of myofibroblast marker α-Smooth Muscle Actin (α-
SMA) in mouse C2C12 cells after 72 h in proliferation media. α-SMA expression was 
downregulated on hand-printed patterns of FGF-2. Parallel lines observed in phase-contrast 
images denote scratch marks used for identifying the location of hand-printed FGF-2 patterns. 
White circle indicates the boundary of the hand-printed FGF-2 pattern. Scale bar 1000 µm. 
 
2.4.9 Effect of Liquid-Phase IGF-2 on Sarcomeric Myosin Expression in C2C12 Cells 

To identify potential muscle-promoting GFs, C2C12 cells were treated with numerous GFs and 

signaling molecules implicated in muscle differentiation, including amphoterin/HMGB1, 

decorin, follistatin, ghrelin, galectin-1, interleukin-4 (IL-4), insulin-like growth factor-1 (IGF-1), 
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insulin-like growth factor-2 (IGF-2), neuregulin-1 beta 2, sonic hedgehog and wnt3A and 

immunostained for upregulation of the muscle marker MF20. However, none of these putative 

muscle-promoting cues elicited an increased myogenic response relative to control under 

proliferation conditions in either liquid- or solid-phase experiments (Data not shown). Despite 

this, C2C12 cells grown under myogenic conditions showed a dose-dependence increase in 

MF20 staining and myotube size when treated with 0 ng/mL, 100 ng/mL, 500 ng/mL and 1000 

ng/mL IGF-2 (Figure 2.13). 

 

Figure 2.13. Dose-dependent effect of IGF-2 on expression of muscle marker MF20 in mouse 
C2C12 cells after 72h in myogenic media. Increasing amounts of IGF-2 resulted in upregulation 
of muscle marker MF20. Note the increase in myotube size in 100 ng/mL, 500 ng/ml and 1000 
ng/ml IGF-2. Scale bar 200 µm. 
 
2.5 DISCUSSION 

2.5.1 Directing Osteoblast Differentiation 

Our inkjet-based bioprinting approach was previously used to demonstrate spatial control of 

adjacent regions of osteoblast-myocyte differentiation [16]. In particular, when C2C12 cells and 
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MDSCs were cultured under myogenic conditions on BMP-2 patterns printed on fibrin, cells ‘on-

pattern’ differentiated toward the osteoblast lineage, whereas cells ‘off-pattern’ differentiated 

toward the myogenic lineage. The purpose of the research reported here was to extend such prior 

work to the control of more complex osteoblast-tenocyte-myocyte units, representing primitive 

but physiologically relevant [33, 34] constructs. 

 
2.5.2 Directing Myocyte Differentiation 

As mentioned previously, osteoblast-myocyte patterning experiments performed by Phillippi et 

al. explicitly induced osteoblasts ‘on-pattern’ with solid-phase BMP-2 and implicitly induced 

myocytes ‘off- pattern’ using myogenic media [16]. In an effort to explicitly pattern myocytes 

for this current study, numerous GFs and signaling molecules implicated in muscle 

differentiation, including amphoterin/HMGB1, decorin, follistatin, ghrelin, galectin-1, IL-4, IGF-

1, IGF-2, neuregulin-1 beta 2, sonic hedgehog and wnt3A were investigated [7, 35-45]. 

However, these candidate muscle-promoting cues did not elicit an increased myogenic response 

relative to control under proliferation conditions in either liquid- or solid-phase experiments 

(Data not shown). These negative results may be attributed to differences in experimental design 

such as the cell type and manner of myogenic induction used in these studies. Although IGF-2 

was able to dose-dependently induce an increased myogenic response (Figure 2.13), it was 

necessary to perform these experiments under myogenic or low serum conditions, indicating that 

IGF-2 was involved in muscle growth but not sufficient for initiating myogenesis. Therefore, I 

continued to rely on implicit patterning of myocytes off-pattern using either myogenic conditions 

to induce myogenic differentiation through serum starvation or proliferation conditions to 

increase cell-cell contact via cell receptors such as N-Cadherins, leading to spontaneous cell 

fusion and myotube formation [46, 47]. 
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2.5.3 Directing Tenocyte Differentiation 

There have been no prior reports on the use of solid-phase GFs to direct stem cells toward 

tenocytes in vitro. Furthermore, even liquid-phase protocols for differentiating these cell types to 

a tendon fate have yet to be firmly established. Since previous studies demonstrated that 

members of the BMP and FGF family of signaling proteins may be involved in tendon formation 

[31, 48-50], FGF-2, FGF-4, BMP-2 and BMP-12/GDF-7 were screened in liquid-phase 

experiments using immunofluorescence staining for the tendon marker Scx [24] to determine if 

these GFs could direct multipotent stem cells towards a tendon cell fate. Only FGF-2 and FGF-4 

in liquid-phase forms were shown to direct C3H10T1/2 cells, C2C12 cells and MDSCs towards a 

tendon lineage (Figure 2.1-Figure 2.6). To rule out the possibility that FGF-2-treated cells were 

differentiating towards myofibroblasts as opposed to tenocytes, FGF-2-treated cells were stained 

for the myofibroblast marker α-SMA. In these studies, FGF-2-treated cells did not induce 

upregulation of α-SMA in either C2C12 cells or MDSCs, and in fact, reduced expression of α-

SMA slightly (Figure 2.7 and Figure 2.12). Quantitative PCR analysis subsequently determined 

that the mechanism by which these stem cells differentiate towards a tendon fate may involve 

members of the Ets family of transcription factors such as pea3 and erm, which may act 

upstream of the tendon transcription factor scx (Figure 2.8), a finding that parallels tendon 

development in chick [31].  

 

Unexpectedly, high levels of Scx expression were observed in nascent myotubes (Figure 2.4 and 

Figure 2.6). This was later shown to be contributed, in part, by the thickness of myotubes, as 

evidenced by the bright halo around cells in phase-contrast images (Figure 2.4 and Figure 2.6) 

and confocal sectioning studies (data not shown). In addition, there was no change in scx gene 
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expression during myogenesis although increased levels of Scx protein in myotubes could be 

accounted for by post-transcriptional processes. Alternatively, myotubes may show increased 

Scx levels since Scx is a transcription factor that lies upstream of collagen, a major non-

contractile component of muscle. However, this is unlikely since nascent myotubes exhibit little 

to no nuclear staining of Scx when compared to FGF-2-treated cells (Figure 2.4 and Figure 2.6). 

 
2.5.4 Simultaneous Control of Multiple Musculoskeletal Cell Fates on Fibrin-Coated Glass 

Coverslips with Solid-Phase GF Patterns using Inkjet-based Bioprinting 

FGF-2 was used for all subsequent solid-phase tenocyte patterning experiments using high 

resolution, low-dose inkjet bioprinting because FGF-4 elicted a lower response in hand-printed 

and qPCR experiments (Data not shown). In these studies, C3H10T1/2 cells were shown to 

upregulate the tendon marker Scx in a dose-dependent fashion in response to inkjet printed 

patterns of FGF-2 (Figure 2.9). Similarly, C2C12 cells also dose-dependently upregulated the 

tendon marker Scx in response to inkjet printed patterns of FGF-2, with spontaneous fusion of 

myotubes occurring predominantly outside the printed region (Figure 2.10). Having 

demonstrated that solid-phase patterning of tenocytes and myocytes can be engineered under 

proliferation and myogenic conditions within the same construct, adjacent printed patterns of 

FGF-2 and BMP-2 were tested and shown to specify osteoblasts, tenocytes and myocytes within 

the same construct, representing a primitive muscle-tendon-bone unit (Figure 2.11). Although 

FGF-2 displays a clear dose-dependence increase on tendon cell differentiation, some variations 

in cell responses to printed GF patterns were observed. For example, some C2C12 cells that were 

‘off-pattern’ but in close proximity to high doses of FGF-2 or BMP-2 patterns exhibited weak 

Scx (Figure 2.10B, high serum panel) or ALP staining (Figure 2.11B), respectively. These 

variations may stem from desorption of GF from the printed region followed by its readsorption 
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outside the printed region prior to cell seeding or by paracrine signaling from cells ‘on-pattern’ 

to cells ‘off-pattern’ to differentiate. In addition, the differentiation response of cells within a 

printed GF pattern was not homogenous throughout as shown by non-uniform Scx staining along 

with sporadic MF20 staining on printed FGF-2 patterns (Figure 2.9, Figure 2.10 and Figure 2.11) 

and uneven ALP staining on printed BMP-2 patterns (Figure 2.11). This may be a function of 

several factors, including: non-uniform GF distribution within the printed region following inkjet 

printing and GF drying [28]; GF desorption followed by readsorption prior to cell seeding [13, 

14, 51, 52]; uneven cell density during cell seeding; cell heterogeneity [53]; or, a combination of 

all these factors. Furthermore, when multiple GFs are utilized, the dosage of individual GFs was 

found to be critical for simultaneously specifying multiple cell fates. When similar 

concentrations of FGF-2 and BMP-2 were inkjet bioprinted in close proximity, no positive ALP 

staining was observed on printed BMP-2 patterns (Data not shown). This may be attributed to 

desorption of FGF-2 from the fibrin surface followed by binding to the surface of cells seeded on 

printed BMP-2 patterns, resulting in the inhibition of BMP-2-induced osteoblast differentiation, 

which is an effect that is well characterized [14, 54]. This problem was eventually resolved by 

empirically optimizing the amount of BMP-2 and FGF-2 deposited by inkjet bioprinting, 

resulting in excess surface concentration of BMP-2 to overcome this inhibitory effect (Figure 

2.11).  

 
This work has demonstrated that inkjet-based bioprinting technology enables the investigation of 

spatial control of solid-phase GF-directed differentiation of stem cells toward single or multiple 

fates in physiologically-relevant engineered microenvironments in vitro. Prior work in this lab 

also provides support for the application of this technology in vivo [10]. Together, these in vitro 

and in vivo studies suggest that this technology may have practical implications for both basic 
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scientific research and therapy development and deployment targeting the musculoskeletal 

system. 

 
2.6 CONCLUSIONS 

This chapter identified both liquid- and solid-phase FGF-2 as being capable of upregulating the 

tendon marker Scx in C3H10T1/2 cells, C2C12 cells and MDSCs. Quantitative PCR analysis 

suggests that members of the Ets family of transcription factors such as pea3 and erm may lie 

upstream of scx. This report also demonstrates how inkjet bioprinting technology can create 

persistent GF patterns that direct a single stem cell population towards multiple fates, including 

tenocytes, myocytes or osteoblasts, within the same construct in a spatially defined manner. This 

capability not only offers an approach to study multi-lineage differentiation in vitro, but may also 

be translatable to new therapies to treat disease and trauma of the musculoskeletal system. 

 
2.7 ACKNOWLEDGEMENTS 

I would like to thank James Fitzpatrick for assistance with fluorescence microscopy and Larry 

Schultz for assistance with GF printing. This work was supported by NIH grants RO1EB004343 

and RO1EB007369 as well as funding from the Pennsylvania Infrastructure Technology Alliance 

(PITA). 

 
2.8 REFERENCES 

1. Scadden, D.T., The stem-cell niche as an entity of action. Nature, 2006. 441(7097): p. 
1075-9. 

2. Nelson, C.M. and M.J. Bissell, Of extracellular matrix, scaffolds, and signaling: tissue 
architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol, 
2006. 22: p. 287-309. 

3. Taipale, J. and J. Keski-Oja, Growth factors in the extracellular matrix. Faseb J, 1997. 
11(1): p. 51-9. 

4. Canalis, E., Growth factor control of bone mass. J Cell Biochem, 2009. 108(4): p. 769-
77. 

66 
 



5. Chen, D., M. Zhao, and G.R. Mundy, Bone morphogenetic proteins. Growth Factors, 
2004. 22(4): p. 233-41. 

6. Choi, Y.J., et al., The identification of a heparin binding domain peptide from bone 
morphogenetic protein-4 and its role on osteogenesis. Biomaterials, 2010. 31(28): p. 
7226-38. 

7. Unsicker, K. and K. Krieglstein, Cell Signaling and Growth Factors in Development, ed. 
K. Unsicker and K. Krieglstein. 2006, Germany: WILEY-VCH. 991. 

8. Campbell, P.G., et al., Engineered spatial patterns of FGF-2 immobilized on fibrin direct 
cell organization. Biomaterials, 2005. 26(33): p. 6762-70. 

9. Carinci, P., et al., Extracellular matrix and growth factors in the pathogenesis of some 
craniofacial malformations. Eur J Histochem, 2007. 51 Suppl 1: p. 105-15. 

10. Cooper, G.M., et al., Inkjet-based biopatterning of bone morphogenetic protein-2 to 
spatially control calvarial bone formation. Tissue Eng Part A, 2010. 16(5): p. 1749-59. 

11. Datta, N., et al., Effect of bone extracellular matrix synthesized in vitro on the 
osteoblastic differentiation of marrow stromal cells. Biomaterials, 2005. 26(9): p. 971-7. 

12. DeCarlo, A.A. and J.M. Whitelock, The role of heparan sulfate and perlecan in bone-
regenerative procedures. J Dent Res, 2006. 85(2): p. 122-32. 

13. Miller, E.D., et al., Dose-dependent cell growth in response to concentration modulated 
patterns of FGF-2 printed on fibrin. Biomaterials, 2006. 27(10): p. 2213-21. 

14. Miller, E.D., et al., Inkjet printing of growth factor concentration gradients and 
combinatorial arrays immobilized on biologically-relevant substrates. Comb Chem High 
Throughput Screen, 2009. 12(6): p. 604-18. 

15. Nelson, C.M. and J. Tien, Microstructured extracellular matrices in tissue engineering 
and development. Curr Opin Biotechnol, 2006. 17(5): p. 518-23. 

16. Phillippi, J.A., et al., Microenvironments engineered by inkjet bioprinting spatially direct 
adult stem cells toward muscle- and bone-like subpopulations. Stem Cells, 2008. 26(1): 
p. 127-34. 

17. Ruhrberg, C., et al., Spatially restricted patterning cues provided by heparin-binding 
VEGF-A control blood vessel branching morphogenesis. Genes Dev, 2002. 16(20): p. 
2684-98. 

18. Schultz, G.S. and A. Wysocki, Interactions between extracellular matrix and growth 
factors in wound healing. Wound Repair Regen, 2009. 17(2): p. 153-62. 

19. Wiradjaja, F., T. DiTommaso, and I. Smyth, Basement membranes in development and 
disease. Birth Defects Res C Embryo Today, 2010. 90(1): p. 8-31. 

20. de Juan-Pardo, E.M., M.B. Hoang, and I.M. Conboy, Geometric control of myogenic cell 
fate. Int J Nanomedicine, 2006. 1(2): p. 203-12. 

21. Flaim, C.J., et al., Combinatorial signaling microenvironments for studying stem cell fate. 
Stem Cells Dev, 2008. 17(1): p. 29-39. 

22. Ilkhanizadeh, S., A.I. Teixeira, and O. Hermanson, Inkjet printing of macromolecules on 
hydrogels to steer neural stem cell differentiation. Biomaterials, 2007. 28(27): p. 3936-
43. 

23. Lee, Y.B., et al., Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for 
neural stem cell culture. Exp Neurol, 2010. 223(2): p. 645-52. 

24. Cserjesi, P., et al., Scleraxis: a basic helix-loop-helix protein that prefigures skeletal 
formation during mouse embryogenesis. Development, 1995. 121(4): p. 1099-110. 

67 
 



25. Scott, A., et al., Scleraxis expression is coordinately regulated in a murine model of 
patellar tendon injury. J Orthop Res, 2011. 29(2): p. 289-296. 

26. Gharaibeh, B., et al., Isolation of a slowly adhering cell fraction containing stem cells 
from murine skeletal muscle by the preplate technique. Nat Protoc, 2008. 3(9): p. 1501-9. 

27. Qu-Petersen, Z., et al., Identification of a novel population of muscle stem cells in mice: 
potential for muscle regeneration. J Cell Biol, 2002. 157(5): p. 851-64. 

28. Miller, E., Inkjet Printing of Solid-Phase Growth Factor Patterns to Direct Cell Fate, in 
Biomedical Engineering. 2007, Carnegie Mellon University: Pittsburgh. p. 349. 

29. Jadlowiec, J., et al., Pregnancy-associated plasma protein-a is involved in matrix 
mineralization of human adult mesenchymal stem cells and angiogenesis in the chick 
chorioallontoic membrane. Endocrinology, 2005. 146(9): p. 3765-72. 

30. Jadlowiec, J., et al., Phosphophoryn regulates the gene expression and differentiation of 
NIH3T3, MC3T3-E1, and human mesenchymal stem cells via the integrin/MAPK 
signaling pathway. J Biol Chem, 2004. 279(51): p. 53323-30. 

31. Brent, A.E. and C.J. Tabin, FGF acts directly on the somitic tendon progenitors through 
the Ets transcription factors Pea3 and Erm to regulate scleraxis expression. 
Development, 2004. 131(16): p. 3885-96. 

32. Springer, M.L., C.R. Ozawa, and H.M. Blau, Transient production of alpha-smooth 
muscle actin by skeletal myoblasts during differentiation in culture and following 
intramuscular implantation. Cell Motil Cytoskeleton, 2002. 51(4): p. 177-86. 

33. Clayton, R.A. and C.M. Court-Brown, The epidemiology of musculoskeletal tendinous 
and ligamentous injuries. Injury, 2008. 39(12): p. 1338-44. 

34. Yang, P.J. and J.S. Temenoff, Engineering Orthopedic Tissue Interfaces. Tissue Eng Part 
B Rev, 2009. 15(2): p. 127-41. 

35. Chan, J., et al., Galectin-1 induces skeletal muscle differentiation in human fetal 
mesenchymal stem cells and increases muscle regeneration. Stem Cells, 2006. 24(8): p. 
1879-91. 

36. Elia, D., et al., Sonic hedgehog promotes proliferation and differentiation of adult muscle 
cells: Involvement of MAPK/ERK and PI3K/Akt pathways. Biochim Biophys Acta, 2007. 
1773(9): p. 1438-46. 

37. Filigheddu, N., et al., Ghrelin and des-acyl ghrelin promote differentiation and fusion of 
C2C12 skeletal muscle cells. Mol Biol Cell, 2007. 18(3): p. 986-94. 

38. Georgiadis, V., et al., Lack of galectin-1 results in defects in myoblast fusion and muscle 
regeneration. Dev Dyn, 2007. 236(4): p. 1014-24. 

39. Gros, J., O. Serralbo, and C. Marcelle, WNT11 acts as a directional cue to organize the 
elongation of early muscle fibres. Nature, 2009. 457(7229): p. 589-93. 

40. Horsley, V., et al., IL-4 acts as a myoblast recruitment factor during mammalian muscle 
growth. Cell, 2003. 113(4): p. 483-94. 

41. Kim, D., et al., Neuregulin stimulates myogenic differentiation in an autocrine manner. J 
Biol Chem, 1999. 274(22): p. 15395-400. 

42. Kishioka, Y., et al., Decorin enhances the proliferation and differentiation of myogenic 
cells through suppressing myostatin activity. J Cell Physiol, 2008. 215(3): p. 856-67. 

43. Kocamis, H., et al., Follistatin alters myostatin gene expression in C2C12 muscle cells. 
Acta Vet Hung, 2004. 52(2): p. 135-41. 

68 
 



69 
 

44. Sorci, G., et al., Amphoterin stimulates myogenesis and counteracts the antimyogenic 
factors basic fibroblast growth factor and S100B via RAGE binding. Mol Cell Biol, 2004. 
24(11): p. 4880-94. 

45. Straface, G., et al., Sonic hedgehog regulates angiogenesis and myogenesis during post-
natal skeletal muscle regeneration. J Cell Mol Med, 2009. 13(8B): p. 2424-35. 

46. Blau, H.M., et al., Plasticity of the differentiated state. Science, 1985. 230(4727): p. 758-
66. 

47. Goichberg, P. and B. Geiger, Direct involvement of N-cadherin-mediated signaling in 
muscle differentiation. Mol Biol Cell, 1998. 9(11): p. 3119-31. 

48. Edom-Vovard, F., et al., Fgf4 positively regulates scleraxis and tenascin expression in 
chick limb tendons. Dev Biol, 2002. 247(2): p. 351-66. 

49. Hoffmann, A., et al., Neotendon formation induced by manipulation of the Smad8 
signalling pathway in mesenchymal stem cells. J Clin Invest, 2006. 116(4): p. 940-52. 

50. Wolfman, N.M., et al., Ectopic induction of tendon and ligament in rats by growth and 
differentiation factors 5, 6, and 7, members of the TGF-beta gene family. J Clin Invest, 
1997. 100(2): p. 321-30. 

51. Morin, R., D. Kaplan, and B. Perez-Ramirez, Bone morphogenetic protein-2 binds as 
multilayers to a collagen delivery matrix: an equilibrium thermodynamic analysis. 
Biomacromolecules, 2006. 7(1): p. 131-8. 

52. Sahni, A., T. Odrljin, and C.W. Francis, Binding of basic fibroblast growth factor to 
fibrinogen and fibrin. J Biol Chem, 1998. 273(13): p. 7554-9. 

53. Collins, C.A., et al., Stem cell function, self-renewal, and behavioral heterogeneity of 
cells from the adult muscle satellite cell niche. Cell, 2005. 122(2): p. 289-301. 

54. Quarto, N., D.C. Wan, and M.T. Longaker, Molecular mechanisms of FGF-2 inhibitory 
activity in the osteogenic context of mouse adipose-derived stem cells (mASCs). Bone, 
2008. 42(6): p. 1040-52. 

 
 



CHAPTER 3: IN VITRO PATTERNING OF A PRIMITIVE MUSCLE-TENDON-
BONE UNIT: SIMULTANEOUS CONTROL OF MUSCLOSKELETAL CELL 

ALIGNMENT AND CELL DIFFERENTIATION WITH INKJET-BASED 
PRINTING OF BMP-2 AND FGF-2 PATTERNS ONTO SPINNERET-BASED 

TUNABLE ENGINEERED PARAMETERS (STEP) FIBERS 
 

 
 
 
 
 
 
 

Based on published work: 
 
 
 
 
 
 

Bioprinting of Growth Factors onto Aligned Sub-micron Fibrous Scaffolds for 
Simultaneous Control of Cell Differentiation and Alignment 

 
Dai Fei Elmer Ker, Amrinder S. Nain, Lee E. Weiss, Ji Wang, Joseph Suhan, Cristina 

Amon and Phil G. Campbell 

 
Biomaterials. 2011 Nov; 32 (32) 8097-8107. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

70 
 



3.1 ABSTRACT 

The capability to spatially control stem cell orientation and differentiation simultaneously 

using a combination of geometric cues that mimic structural aspects of native 

extracellular matrix (ECM) and biochemical cues such as ECM-bound growth factors 

(GFs) is important for understanding the organization and function of musculoskeletal 

tissues. Herein, oriented sub-micron fibers, which are morphologically similar to 

musculoskeletal ECM, were spatially patterned with GFs using an inkjet-based bioprinter 

to create geometric and biochemical cues that direct musculoskeletal cell alignment and 

differentiation in vitro in registration with fiber orientation and printed patterns, 

respectively. Sub-micron polystyrene and polyurethane fibers were fabricated using a 

Spinneret-based Tunable Engineered Parameters (STEP) technique and coated with 

serum or fibrin. The fibers were subsequently patterned with tendon-promoting fibroblast 

growth factor-2 (FGF-2) or bone-promoting bone morphogenetic protein-2 (BMP-2) 

prior to seeding with mouse C2C12 myoblasts or C3H10T1/2 mesenchymal fibroblasts. 

Unprinted regions of STEP fibers showed myocyte differentiation while printed FGF-2 

and BMP-2 patterns promoted tenocyte and osteoblast fates, respectively, and inhibited 

myocyte differentiation. Additionally, cells aligned along the fiber length. 

Functionalizing oriented sub-micron fibers with printed GFs provides instructive cues to 

spatially control cell fate and alignment to mimic native tissue organization and may have 

applications in regenerative medicine. 

 
3.2 INTRODUCTION 

Musculoskeletal tissues comprise multiple cell types such as osteoblasts, tenocytes and 

myocytes arrayed within a spatially-graded structural and biochemical 
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microenvironment. The native organization of these tissues is regulated, in part, by 

microenvironmental instructive signals such as growth factor (GF) biochemical cues and 

ECM architectural geometric cues to modulate stem cell behaviors such as differentiation 

and cell alignment during repair and regeneration [1-5].   

 
Within the pericellular microenvironment, signaling molecules such as GFs, can exist in 

both ‘liquid-phase’ (freely diffusing in solution) and ‘solid-phase’ (immobilized and 

bound to the ECM and cell surfaces) forms [4]. When bound to the ECM, GFs are 

immobilized at picograms to nanogram quantities and impart temporal and spatial cues 

that regulate cell behaviors such as cell adhesion, migration, proliferation, differentiation 

and apoptosis [4-12].  

 
In muscle, tendon and bone tissues, differentiated cell types such as myocytes, tenocytes 

and osteoblasts maintain tissue function by contractile force generation, collagen 

secretion and collagen mineralization, respectively. In addition, cell orientation plays an 

integral role since myocyte alignment is necessary for efficient force generation along a 

specific direction during muscle contraction [13-15], while tenocyte and osteoblast 

alignment are required for building highly oriented unmineralized and mineralized 

collagen matrices that can withstand mechanical loading during skeletal movement [1, 

16-20]. Furthermore, it has recently been shown that aligned fibrous scaffolds promoted 

increased calcium content and mineralization compared to unaligned fibrous scaffolds in 

a manner independent of increased cell proliferation or increased mRNA expression of 

osteogenic markers [18]. 
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Although there have been numerous investigations using exogenous biochemical cues to 

control musculoskeletal stem cell differentiation [21-26], and engineered geometric cues 

to control cell alignment [14, 27-29], such work has yet to address simultaneous control 

of both cell alignment and differentiation at high spatial resolution. 

 
Our research group has previously developed an inkjet-based bioprinter [6] that spatially 

patterns low doses (picograms to nanograms) of GFs and other signaling molecules onto 

and into native ECM-based scaffolds, including fibrin and acellular human skin 

allografts. The printed GFs subsequently bind to the ECM via native binding affinities to 

create physiologically-relevant solid-phase GF patterns that can control aspects of stem 

cell behavior such as differentiation, migration and proliferation in vitro [6, 8-12] and in 

vivo [7] in spatial registration with printed patterns. One advantage of using such an 

approach is that it can provide persistent biochemical cues for directing a single stem cell 

population towards multiple cell fates such as muscle, tendon and bone cells 

simultaneously within a single construct [8, 12]. In addition, our research group has also 

developed a novel pseudo-dry spinning technique that creates highly oriented sub-micron 

fibers as a means to control cell alignment [30, 31]. In the present study, bioprinted GFs 

were patterned onto highly oriented sub-micron polystyrene or polyurethane fibers 

fabricated with our Spinneret-based Tunable Engineered Parameters (STEP) technique 

[30, 31] to study the interactions of biochemical and geometrical cues on stem cell 

differentiation and alignment. This study was performed in the context of using the 

aligned fiber scaffolds patterned with GFs to spatially control stem cell differentiation 

toward myocyte, tenocyte and osteoblast fates simultaneously in vitro while also 

controlling cell alignment to create a primitive muscle-tendon-bone unit. 
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3.3 MATERIALS AND METHODS 

3.3.1 Fabrication of Polystyrene STEP Fibers 

To facilitate comparison of cell alignment between STEP fibers and standard tissue 

culture vessels, polystyrene STEP fibers were used. In addition, polystyrene is non-

resorbable and removes the resorption variable from this study. Sub-micron, oriented 

polystyrene STEP fibers were fabricated using the STEP pseudo-dry spinning process as 

previously described [30, 31] (Figure 3.1). Briefly, a glass micropipette was mounted on 

a manual XYZ stage (562 Ultra-align series, Newport Inc., USA) and oriented 

perpendicularly to a rotating cover slip substrate mounted on a DC motor. The DC motor 

was mounted on a motorized XYZ nano-positioner (Newport VP series, Irvine, CA). 

Polystyrene (2x106 g/mol, Scientific Polymer Products, USA, dissolved in Xylene 10% 

by weight) was drawn out and extruded through the pipette and continuously wound 

around the rotating substrate, becoming fibers as the solvent evaporated. By controlling 

the speeds of the nanopositioner and rotating motor, scaffolds with defined sub-micron 

fiber diameters and fiber spacing were fabricated. In addition, subsequent layers can be 

deposited on top of existing fiber layers and at other orientations to produce, for example, 

criss-cross fiber patterns that were oriented perpendicular to one another. In addition, 

aligned fibers wound around a hollowed-out substrate support base can be fabricated to 

form suspended fibrous structures. 

 
3.3.2 Fibrin- or Serum-Coating of Polystyrene STEP Fibers 

Polystyrene STEP fibers were sterilized with 70% ethanol for 5 min, rinsed with 

Phosphate Buffered Saline (PBS), and subsequently coated with serum by incubation in 

74 
 



100% serum overnight at room temperature (RT). Excess unbound serum proteins were 

removed by aspiration, rinsed with PBS and air-dried in a laminar flow hood. 

 
For fibrin coating, polystyrene STEP fibers were first coated with fibrinogen by 

incubation in 0.1 mg/mL fibrinogen (Aventis Behring, King of Prussia, PA or American 

Diagnostica Inc., Stamford, CT) contained in 10 mM sodium phosphate, pH 7.4 

overnight at RT. Excess unbound fibrinogen was removed by aspiration, rinsed with PBS 

and fibers were blocked with 0.3M glycine (Bio-Rad Laboratories, Hercules, CA), pH 7.4 

for 2 h at RT. Immobilized fibrinogen was converted into fibrin by incubating fibers in 

4U/mL thrombin (Enzyme Research Laboratories, South Bend, IN) for 2 h at 37oC, 

rinsed three times with PBS followed by three rinses with sterile deionized water before 

air-drying in a laminar flow hood. To confirm that the polystyrene STEP fibers were 

successfully coated with fibrin, Alexa Fluor 647-conjugated fibrinogen (Invitrogen, 

Carlsbad, CA) was used. 

 
3.3.3 Scanning Electron Microscopy 

To characterize the diameter of the polystyrene STEP fibers, samples were gold-coated 

using a Pelco SC-6 sputter coater (Ted Pella, Inc., Redding, CA) and examined using a 

Hitachi 2460N Scanning Electron Microscope (Hitachi High Technologies America, Inc., 

Schaumburg, IL). Images were obtained using Quartz PCI Image software. 

 
For cell-seeded STEP fibers, cells were washed once in PBS and subsequently fixed 

using 2.5% glutaraldehyde in PBS and prepared for SEM. After three PBS washes, the 

specimens were fixed for 1 h in 1% osmium tetroxide buffered with PBS. The osmium 

tetroxide was removed with three washes of DI water for 5 min followed by incubation 
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for 5 min in 1% thiocarbohydrazide in DI water. The specimens were washed three times 

in DI water followed by a 5 min exposure to 1% osmium tetroxide in DI water. The 

specimens were washed with three changes of DI water, and after the exposure to 

thiocarbohydrazide, the DI water washes, and treatment with osmium tetroxide was 

repeated. After fixation, the specimens were washed with three changes of DI water 

followed by dehydration in an ascending series of ethanol (50%, 70%, 80%, 90%, and 3 

changes of 100%). The specimens were dried in a Pelco CPD2 critical point dryer (Ted 

Pella, Inc., Redding, CA) using carbon dioxide at 1200 psi, and 42°C. Dried specimens 

were attached to SEM stubs using double-sided stick tape and coated with gold using a 

Pelco SC-6 sputter coater (Ted Pella, Inc., Redding, CA). Specimens were examined 

using a Hitachi 2460N Scanning Electron Microscope (Hitachi High Technologies 

America, Inc., Schaumburg, IL). Images were obtained using Quartz PCI Image software. 

 
3.3.4 Transmission Electron Microscopy 

To characterize polystyrene STEP fibers, samples were placed in a 35 mm Petri-dish and 

coated with gold using a Pelco SC-6 sputter coater (Ted Pella, Inc., Redding, CA). 

Subsequently, the Petri dishes were filled with Epon-Araldite and were infiltrated for at 

least three days at room temperature and placed in an oven at 30oC for 24 h, at 40oC for 

24 h, at 50oC for 24 h and finally at 60oC overnight to allow for slow polymerization of 

the Epon-Araldite. The samples were cut to fit into an embedding capsule and re-

embedded in Epon-Araldite.  Thin (100 nm) cross sections of the re-embedded sample 

were cut using a Reichert-Jung Ultracut E and a DDK Diamond knife. When required, 

the sections were stained with 1% uranyl acetate and Reynold’s lead citrate before 
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viewing on a Hitachi 7100 transmission electron microscope. Digital images were 

obtained using an AMT Advantage 10 CCD Camera System and NIH Image software. 

 
3.3.5 Cell Culture 

Multipotent C3H10T1/2 cells (ATTC, Manassas, VA) were grown in Dulbecco’s 

Modified Eagle’s Media (DMEM; Invitrogen, Carlsbad, CA), 10% fetal bovine serum 

(Invitrogen, Carlsbad, CA) and 1% penicillin-streptomycin (PS; Invitrogen, Carlsbad, 

CA).  C2C12 cells (ATTC, Manassas, VA) were grown in DMEM, 10% bovine serum 

(Invitrogen, Carlsbad, CA) and 1% PS. Cells were seeded onto polystyrene STEP fibers 

in a 50-70 µL droplet containing ~10-15x104 cells and allowed to attach for 1.5 h before 

flooding the dish with complete media. In experiments utilizing fibrin-coated fibers, a 

final concentration of 1 µg/mL aprotinin was added to complete media to minimize fibrin 

degradation (Sigma Aldrich, St. Louis, MO). All cells were kept at 37oC, 5% CO2 in a 

humidified incubator. 

 
3.3.6 Growth Factor Printing 

Prior to printing, GFs were freshly diluted to the desired concentration in 10 mM sodium 

phosphate, pH 7.4. Prior to filling the inkjet with a GF, the printhead was sterilized by 

rinsing with 70% ethanol followed by sterile deionized water. The bio-ink, consisting of 

50-100 µg/ml GF was loaded into the printhead, and printed as previously described [6, 

11]. The deposited concentration of inkjetted GFs was modulated by overprinting, which 

is achieved by varying the number of times a GF is deposited in the same (x,y) location. 

After printing, fibrin-coated STEP fibers were incubated in serum-free DMEM with 1% 

PS overnight at 37°C, 5% CO2 to wash off unbound GF prior to cell seeding. The surface 
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concentration of GF present on fibrin-coated STEP fibers prior to cell seeding was 

estimated based on the desorption measurements from previous studies [6, 9, 11, 32]. 

 
3.3.7 Alkaline Phosphatase (ALP) Staining 

Staining for the osteoblast marker Alkaline Phosphatase (ALP) was performed using an 

ALP staining kit (Kit 86C, Sigma Aldrich, St. Louis, MO) according to the 

manufacturer’s instructions. 

 
3.3.8 Immunofluorescence Staining 

Cells were washed in PBS, fixed in methanol for 5 min, air-dried and blocked with 10% 

donkey serum (Jackson Immunoresearch, West Gove, PA) for 20 min at RT. For mouse-

on-mouse staining, an additional blocking step was performed by incubating cells with 

100 µg/mL donkey anti-mouse FAB (Jackson Immunoresearch, West Gove, PA) for 1 h 

at RT. Cells were then rinsed with wash buffer (PBS, 0.1% BSA) and incubated with 

primary antibodies:  rabbit anti-scx (10 µg/mL; Abcam, Cambridge, MA) and/or mouse 

anti-myosin MF20 (1 µg/mL; Developmental Studies Hybridoma Bank, Iowa City, Iowa) 

overnight at 4oC. Cells were then rinsed three times with wash buffer (5 min each) and 

incubated with secondary antibodies for 1 h at RT – donkey anti-mouse Dylight 488 nm 

or donkey anti-rabbit Dylight 549 nm (15 µg/mL each; Jackson Immunoresearch, West 

Gove, PA). Lastly, cells were rinsed five times with wash buffer (5 min each) and imaged 

using a Zeiss Axiovert 200M microscope (Carl Zeiss Microimaging, Thornwood, NY) 

equipped with a Colibri LED light source.  
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3.3.9 Quantification of Immunofluorescence or ALP Staining 

When required, suspended parallel STEP fibers were subsequently transferred to a fresh 

dish after staining to rule out the possibility that cells below the fibrous layer (either on 

the support substrate or dish bottom) were aligning or responding to the printed GF 

patterns. This procedure ensured that any positive signals observed originated only from 

cells that had attached to the fibers. Quantification of immunofluorescence or ALP 

staining was performed using Adobe Photoshop 7.0 (Adobe Systems, San Jose, CA). 

Briefly, the rectangular marquee tool was used to draw a bounding box (depending on the 

size of the printed pattern and/or magnification) and the image histogram tool was used to 

measure average pixel intensity. As an alternative to using average pixel intensity, the 

number of myotubes greater than 250 µm in length was manually counted. Error bars 

were expressed as standard error of the mean (SEM).  

 
3.3.10 Actin Staining 

To determine the cytoskeletal arrangement of cells within GF-printed regions of STEP 

fibers, fibrin-coated STEP fibers were soaked or hand-printed with BMP-2 or FGF-2. The 

soaking mimicked the action of GF printing and facilitated these studies because the 

precise determination of GF-printed boundaries was not required. Briefly, a 50–70 µL of 

a 100 µg/mL GF solution was pipetted onto fibrin-coated STEP fibers (enough to cover 

the entire scaffold) and the GF was allowed to air-dry at 37oC. After drying, GF-soaked 

STEP fibers were stored at 4°C prior to cell seeding. 24 h post cell seeding, the GF-

soaked fibrin-coated STEP fibers were washed twice in PBS and fixed in methanol-free 

4% paraformaldehyde for 10 min. The fixative was aspirated and cells were washed twice 

in PBS and permeabilized with 0.1% Triton X-100 (Sigma Aldrich, St. Louis, MO) for 5 
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min. Cells were washed twice in PBS and blocked with wash buffer (PBS, 0.1% BSA) 

for 20 min at RT to reduce non-specific staining. Cells were subsequently washed twice 

in PBS before adding Alexa Fluor 647-conjugated phalloidin (Invitrogen, Carlsbad, CA) 

according to the manufacturer’s instructions (5 µL stock solution for every 200 µL PBS). 

Lastly, cells were washed twice in PBS and imaged using a Zeiss LSM 510 Meta NLO 

Confocor 3 inverted spectral confocal microscope (Carl Zeiss Microimaging, 

Thornwood, NY).  

 
3.3.11 Statisical Analysis 

Quantification of immunofluorescence measurements were analyzed using either one-

way analysis of variance followed by Fisher’s least significant difference post hoc test 

with SYSTAT 9 software (Systat Software Inc., Richmound, CA) or using a student’s t-

test with Microsoft Excel (Microsoft Corporation, Redmond, WA) to determine 

significance among treatment groups. A p value ≤ 0.05 was considered statistically 

significant. 

 
3.4 RESULTS 

3.4.1 Characterization of Polystyrene STEP Fibers 

Figure 3.1 illustrates the fabrication and characteristics of polystyrene STEP fibers. 

Briefly, during the process of pseudo-dry spinning, the solvent is evaporated by the 

surrounding ambient air as it is extruded from the micropipette (Figure 3.1A). This 

increases the local concentration of polystyrene and promotes entanglement of 

polystyrene chains, which reduces chain mobility and starts the process of forming a 

solidified fiber [30, 31]. By choosing an appropriate DC motor speed to control fiber 

80 
 



deposition as well as controlling the vertical speed of the nanopositioner to affect fiber 

spacing, scaffolds with parallel fibers are fabricated (Figure 3.1B, left panel). 

Furthermore, multiple layers can be deposited to produce criss-crossed fibers (Figure 

3.1B, middle panel). In addition, these fibers can be spun on a hollowed-out support base 

to produce suspended fibers (Figure 3.1B, right panel). SEM and TEM analysis of the 

fibers indicate that polystyrene STEP sub-micron fibers had a diameter of 668 ± 34 nm 

and 628 ± 63 nm, respectively (Table 3.1 and Figure 3.1C). Fibers were predominantly 

oriented in parallel arrays and deviated less than 2.54 ± 0.24 degrees with respect to one 

another (Table 3.1). SEM analysis also showed that polystyrene STEP fibers allowed for 

cell attachment and promoted cell alignment (Figure 3.1D). Lastly, polystyrene STEP 

fibers could be coated with various ECM proteins such as fibrin and printed on (Figure 

3.1E, F). Fibrin-coating of polystyrene STEP fibers was also confirmed by TEM analysis 

(Figure 3.2). When stained with Reynold’s lead citrate, TEM cross sections of fibrin-

coated polystyrene STEP fibers exhibit a dark stain (white arrowhead) around individual 

fibers which is indicative of an adsorbed protein layer whereas uncoated polystyrene 

STEP fibers do not (Figure 3.2). 
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Figure 3.1. Polystyrene Spinneret-based Tunable Engineered Parameter (STEP) sub-
micron fibers. A. Scheme illustrating STEP fiber fabrication. B. Types of STEP fibers 
that can be fabricated. The left scaffold consists of one set of fibers running in a parallel 
manner. The middle scaffold consists of two sets of fibers running perpendicular to each 
other. The right scaffold consists of one set of fibers running in a parallel manner with a 
hollowed-out support base. C. Typical SEM and TEM images of STEP fibers used for 
quantifying diameter length. D. Typical SEM image showing attachment of cells to 
polystyrene STEP fibers. E. Coating of polystyrene STEP fibers with Alexa649-
conjugated fibrin. Left image shows uncoated STEP fibers while right image shows 
fibrin-coated STEP fibers. Some fibers aggregate to form larger fiber bundles after 
numerous washing steps. F. Inkjet printing indicates that polystyrene STEP fibers can be 
printed on. Scale bars are as indicated. 
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TABLE. 3.1. Characterization of Polystyrene STEP Fibers. 
 Data ± Standard Error Mean 

Scanning Electron Microscopy (n = 43) 668 ± 34 nm 
Transmission Electron Microscopy (n = 20) 628 ± 63 nm 

Linearity of Fibers with respect to one another (n = 45) 2.54 ± 0.24 degrees 
 

 
Figure 3.2. TEM characterization of fibrin-coated polystyrene STEP sub-micron fibers.  
Cross sectional view of a single uncoated and fibrin-coated polystyrene STEP fiber (Dark 
grey ellipse).  A dark stain (white arrowhead) is observed around the fibrin-coated 
polystyrene STEP fiber, indicative of an adsorbed protein layer. Scale bar 500 nm. 
 
3.4.2 Effect of Polystyrene STEP fibers on Myotube Alignment 

Having characterized the structural properties of the polystyrene STEP fibers, Figure 3.3 

shows the geometric effect of polystyrene STEP fiber organization on C2C12 cells. 

Under conditions of high cell density, C2C12 cells spontaneously form elongated 

myotubes that are randomly oriented in a polystyrene dish. However, when seeded onto 

criss-crossed and parallel polystyrene STEP fibers, C2C12 cells form elongated 

myotubes that aligned along the fiber length (Figure 3.3). Similar results were obtained 

when C2C12 cells are seeded onto criss-crossed and parallel polyurethane STEP fibers 

under proliferation (High serum conditions for 6 days; Figure 3.4) and myogenic 
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conditions (Low serum conditions for 4 days; Data not shown). Occasionally, suspended 

parallel STEP Fibers clumped together (Figure 3.4) after wetting (in the absence of cells) 

and this phenomenon may be attributed to hydrophobic interactions among fibers in an 

aqueous environment.  

 
 
Figure 3.3. Effect of polystyrene STEP fiber organization on myotube alignment. Under 
conditions of high cell density, C2C12 cells spontaneously form elongated myotubes that 
are randomly oriented in a polystyrene dish. On criss-crossed and parallel polystyrene 
STEP fibers, C2C12 cells form elongated myotubes that align along the fiber length. No 
MF20 signal is observed in the no primary antibody control. Scale bar 1 mm. 

84 
 



 
 
Figure 3.4. Effect of polyurethane STEP fiber organization on myotube alignment. 
Under conditions of high cell density, C2C12 cells spontaneously form elongated 
myotubes that align along the fiber length on criss-crossed and parallel polyurethane 
STEP fibers. Scale bar 0.5 mm. 
 
3.4.3 Effect of Serum-Coated STEP Fibers Patterned with FGF-2 on Tenocyte 

Differentiation  

Given that STEP fibers can induce cell alignment, polystyrene STEP scaffolds were 

coated with serum and subsequently printed with FGF-2 patterns to determine if these 

patterns could drive C3H10T1/2 cell differentiation towards a tenocyte fate. As can be 

seen in Figure 3.5, our bio-inkjet printing technology allows for controlled deposition of 

varying amounts of GFs such as FGF-2 in a spatially precise manner (Figure 3.5A), 

which results in a dose-dependent increase in expression of the tendon marker Scleraxis 

(Scx) in C3H10T1/2 cells (Figure 3.5B, C). Although lower doses of FGF-2 (40 pg/mm2 

and 245 pg/mm2 FGF-2) immobilized to the scaffold (referred to as ‘solid-phase’ FGF-2) 

were not sufficient to induce an increase in the expression of the Scx tenocyte marker 

relative to non-printed control regions (p = 0.428 for 40 pg/mm2 FGF-2 and p = 0.052 for 

245 pg/mm2 FGF-2), higher doses of solid-phase FGF-2 (450 pg/mm2 and 650 pg/mm2 

FGF-2) resulted in an increase in Scx expression relative to non-printed control regions 

(p = 0.048 for 450 pg/mm2 FGF-2 and p = 0.025 for 650 pg/mm2 FGF-2; Figure 3.5) in 

C3H10T1/2 cells. SEM analysis verified that printed FGF-2 remain bound to serum-
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coated polystyrene STEP fibers as evidenced by the square bumps which indicate 

increased cell proliferation on mitogenic FGF-2 patterns (Figure 3.5D). 

 
Figure 3.5. Effect of Printed FGF-2 patterns on Scx expression in C3H10T1/2 cells. A. 
Phase-contrast image showing serum-coated STEP fibers post-FGF-2 printing. 2, 12, 22 
and 32 Overprints of 100 µg/mL FGF-2 corresponding to 40 pg/mm2, 245 pg/mm2, 450 
pg/mm2 and 650 pg/mm2 FGF-2 were printed. Black boxes indicate 1 x 1 mm printed 
regions. B. On serum-coated STEP fibers, C3H10T1/2 cells show a dose-dependent 
increase in Scx (tenocyte) staining with increased FGF-2 overprints. White boxes indicate 
1 x 1 mm printed regions. C. Quantification of Scx signal within printed regions (n = 3). 
Error bars indicate ± SEM. *, Significantly different from non-printed control regions; p ≤ 
0.05. D. SEM image showing serum-coated STEP fibers post-cell seeding. Black arrows 
and corresponding text indicate printed regions. Scale bar 1 mm. 
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3.4.4 Effect of Fibrin-Coated STEP Fibers Patterned with BMP-2 on Osteoblast 

Differentiation  

Having demonstrated that printed FGF-2 patterns could induce stem/progenitor cells 

towards a tendon lineage, polystyrene STEP fibers were coated with fibrin and printed 

with BMP-2 to determine if osteoblast differentiation could be patterned. As can be seen 

in Figure 3.6, printed patterns of BMP-2 show increased expression of the osteoblast 

marker, alkaline phosphatase (ALP) relative to non-printed control regions (p ≤ 0.001) in 

C2C12 cells (Figure 3.6). Similar results were obtained when C2C12 cells were seeded 

onto fibrin-coated polyurethane STEP fibers printed with BMP-2 with printed patterns of 

BMP-2 showing increased ALP expression relative to non-printed control regions (p = 

0.026; Figure 3.7). 

 

Figure 3.6. Effect of printed BMP-2 patterns on ALP expression in C2C12 cells (Fibrin-
coated polystyrene STEP fibers). A. Grey-scaled image of ALP staining. 36 Overprints of 
200 µg/mL BMP-2 corresponding to 4 ng/mm2 BMP-2 were printed onto fibrin-coated 
STEP fibers. Scale bar 2 mm. B-D. Quantification of ALP staining within printed regions 
(n = 5). Error bars indicate ± SEM. *, Significantly different from control or non-printed 
regions; p ≤ 0.001. Scale bars as indicated. 
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Figure 3.7. Effect of printed BMP-2 patterns on ALP expression in C2C12 cells (Fibrin-
coated polyurethane STEP fibers). A. Post-printing of 100 µg/mL BMP-2 into a 1x1 mm 
pattern on fibrin-coated polyurethane STEP fibers (Top left panel). Circular shapes 
within the printed regions indicate deposited GF droplets (Top left panel). On fibrin-
coated STEP fibers, C2C12 cells show increased ALP staining on BMP-2 patterns but 
little to none on unprinted regions (Top right). Normalization and quantification of ALP 
stain (Bottom panels). Scale bars as indicated. B. Quantification of ALP Signal (n = 2). 
Error bars indicate ± SEM. *, Significantly different from control or non-printed regions; 
p ≤ 0.05. 
 
3.4.5 Effect of Fibrin-Coated STEP Fibers Patterned with FGF-2 on Tenocyte and 

Myocyte Differentiation and Cell Alignment 

To determine if cell alignment and cell differentiation could be controlled simultaneously 

on oriented fibers printed with a single GF, patterns of FGF-2 were printed onto fibrin-

coated STEP fibers and seeded with C2C12 cells. As can be seen in Figure 3.8, printed 

FGF-2 patterns resulted in increased expression of Scx and decreased expression of the 

muscle marker MF20 in C2C12 cells (Figure 3.8). Although a low dose of solid-phase 

FGF-2 (240 pg/mm2 FGF-2) was not sufficient to induce an increase in Scx expression 

relative to 120 pg/mm2 FGF-2 (p = 0.494), higher doses of solid-phase FGF-2 (490 
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pg/mm2 and 730 pg/mm2 FGF-2) resulted in an increase in Scx expression relative to 120 

pg/mm2 FGF-2 (p = 0.04 for 490 pg/mm2 FGF-2 and p = 0.007 for 730 pg/mm2 FGF-2) 

in C2C12 cells. In addition, increasing doses of solid-phase FGF-2 (240 pg/mm2, 490 

pg/mm2 and 730 pg/mm2 FGF-2) inhibited myotube formation relative to 120 pg/mm2 

FGF-2 (p = 0.043 for 240 pg/mm2 FGF-2, p = 0.022 for 490 pg/mm2 FGF-2 and p = 

0.019 for 730 pg/mm2 FGF-2). Outside of the printed pattern, cells maintained elongated 

myotube structures that were aligned in a parallel fashion along the fiber length (Figure 

3.8A).  

 

Figure 3.8. Effect of printed FGF-2 patterns on MF20 and Scx expression in C2C12 
cells. A. 6, 12, 24 and 36 Overprints of 100 µg/mL FGF-2 corresponding to 120 pg/mm2, 
240 pg/mm2, 490 pg/mm2 and 730 pg/mm2 FGF-2 were printed. On fibrin-coated STEP 
fibers, C2C12 cells show a dose-dependent decrease in MF20 staining and a dose-
dependent increase in Scx staining with increasing FGF-2 overprints. Note alignment of 
myotubes along fiber axis. Scale bar 0.5 mm. B. Quantification of MF20 signal within 
printed FGF-2 regions (n = 6). Error bars indicate ± SEM. *, Significantly different from 
6 Overprints (120 pg/mm2 FGF-2); p ≤ 0.05. C. Quantification of Scx signal within 
printed FGF-2 regions (n = 6). Error bars indicate ± SEM. *, Significantly different from 
6 Overprints (120 pg/mm2 FGF-2). 
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3.4.6 Effect of Fibrin-Coated STEP Fibers Patterned with BMP-2 and FGF-2 on 

Osteoblast, Tenocyte and Myocyte Differentiation and Cell Alignment 

To determine if cell alignment and multiple differentiation fates could be controlled 

simultaneously on the same scaffold, patterns of FGF-2 and BMP-2 were printed onto 

fibrin-coated STEP fibers and seeded with C2C12 cells (Figure 3.9A). In this experiment, 

a suspended scaffold comprised of parallel STEP fibers spun over a hollowed-out base 

was used for cell seeding (Figure 3.1B). This scaffold was subsequently transferred to a 

fresh dish post-staining to rule out the possibility that cells below the fibrous layer (i.e. 

cells that had attached onto the support base or dish bottom) were responding to the GF 

patterns. As can be seen in Figure 3.9, printed BMP-2 and FGF-2 patterns resulted in 

increased expression of the osteoblast marker ALP and tenocyte marker Scx, 

respectively, while inhibiting myogenesis in C2C12 cells (Figure 3.9B, C, D). Expression 

of ALP within the BMP-2 pattern increased relative to both the printed FGF-2 pattern (p 

≤ 0.001) and non-printed control region (p ≤ 0.001). Expression of Scx within the FGF-2 

pattern was increased relative to non-printed control region (p = 0.033) but not to the 

printed BMP-2 pattern (p = 0.367). Concurrently, expression of the muscle marker MF20 

was decreased on both printed BMP-2 (p = 0.015) and FGF-2 (p = 0.032) patterns. 

Outside of the printed patterns, cells stained positive for the myotube marker MF20 and 

aligned in a parallel fashion along the fiber length (Figure 3.9B, E). To determine the 

alignment of cells within the printed GF patterns, manual annotation of printed BMP-2 

and FGF-2 patterns was performed (Figure 3.10). C2C12 cells adopted a predominantly 

parallel orientation with respect to the fiber length within and outside of printed regions, 

indicative of geometric control of cell alignment (Figure 3.10). To determine the 
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cytoskeletal arrangement of cells within GF-printed regions of STEP fibers, actin staining 

was performed on C2C12 cells seeded onto fibrin-coated STEP fibers that had been 

previously pre-soaked in BMP-2 or FGF-2 (Figure 3.11). The pre-soaking step mimicked 

the action of GF printing and facilitated these studies because the precise determination 

of GF-printed boundaries was not required. Actin staining demonstrated that actin 

filaments adopted parallel bundles with respect to fiber orientation (Figure 3.11). 

 
Figure 3.9. Effect of printed BMP-2 and FGF-2 patterns on ALP, MF20 and Scx 
expression in C2C12 cells. A. Post-printing of 100 µg/mL BMP-2 and 50 µg/mL FGF-2 
patterns (36 Overprints each) on fibrin-coated STEP fibers. Dark circular shapes within 
the printed regions (Black boxes) indicate deposited GF droplets. B. On fibrin-coated 
STEP fibers, C2C12 cells show increased Scx staining on FGF-2 patterns but little to 
none on BMP-2 patterns. Off-pattern, C2C12 cells form myocytes that are aligned along 
fiber axis. Scale bar 1 mm. C. On fibrin-coated STEP fibers, C2C12 cells show increased 
ALP staining on BMP-2 patterns but little to none on FGF-2 patterns. Scale bar 1 mm. D. 
Quantification of ALP, Scx and MF20 Signal (n = 4). Error bars indicate ± SEM. *, 
Significantly different from control or non-printed regions; p ≤ 0.05. +, Significantly 
different from FGF-2-printed regions; p ≤ 0.05. 
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Figure 3.10. Effect of printed BMP-2 and FGF-2 on alignment of C2C12 cells. A. 
Scheme of how manual annotation for cell alignment was performed. B. Alignment of 
cells within printed BMP-2 pattern. Green box indicates approximate region (1 x 1 mm) 
where printed BMP-2 pattern is. Red lines indicate alignment of C2C12 cells as 
determined by manual annotation. C. Alignment of cells within printed FGF-2 pattern. 
Green box indicates approximate region (1 x 1 mm) where printed FGF-2 pattern is. Red 
lines indicate alignment of C2C12 cells as determined by manual annotation. D. Enlarged 
view of cell alignment within printed BMP-2 and FGF-2 patterns. 
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Figure 3.11. Effect of fibrin-coated STEP fibers pre-soaked with BMP-2 and FGF-2 on 
C2C12 cell alignment. A. BMP-2 soaked fibrin-coated STEP fibers. B. FGF-2 soaked 
fibrin-coated STEP fibers. White arrow indicates fiber orientation. Scale bar 100 µm. 
 
3.5 DISCUSSION 

3.5.1 Fibrous Scaffolds as ECM Analogs for Musculoskeletal Tissue Engineering 

Our long-term goal is to engineer biomimetic scaffolds for aiding repair of 

musculoskeletal tissues. In this report, polystyrene sub-micron fibers, approximately 655 

nm in diameter, were fabricated using the STEP technique [30, 31], and then coated with 

ECM material such as serum or fibrin to make the fibers compatible with GF bioprinting 

(Figure 3.1 and Figure 3.2).  In addition, non-printed and uncoated polystyrene and 

polyurethane STEP fibers [30, 31] were found to promote myocyte alignment (Figure 3.3 

and Figure 3.4). However, for follow-on in vivo studies completely biodegradable STEP 

fibers made with fibrinogen, poly(lactic-co-glycolic acid)-fibrinogen blends [30, 31] or 

polyurethane are being developed (Figure 3.4).  

 
Polystyrene- and polyurethane-based fibers were fabricated such that the fiber diameter 

would approximate the diameter of ECM fibers [30, 31]. In particular, polystyrene-based 

fibers were primarily employed here as an appropriate control since the material used for 
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tissue culture vessels is based on polystyrene. STEP fiber fabrication is based on a 

recently discovered pseudo-dry spinning technique, which involves extruding a dissolved 

polymer solution from a glass micropipette spinneret [30, 31]. Upon extrusion, the 

polymer solvent is evaporated by ambient air and the solidified fiber is subsequently 

deposited on the substrate [30, 31]. Similar to electrospinning technique, the STEP 

technique relies on varying material parameters such as polymer molecular weight and 

solution polymer concentration to control fiber diameter; however, the fiber distribution 

and alignment is precisely controlled with the STEP technique by varying the angular and 

vertical speeds of the rotating substrate [30, 31]. Compared to other fiber fabrication 

platforms, the STEP technique uniquely allows for fabrication of uniform polymer fibers 

with diameters ranging from sub-50 nm to submicrometer to several millimeters, with 

highly defined orientations [30, 31]. Although some clumping was observed between 

suspended parallel STEP fibers, this could be minimized by spinning multiple fiber layers 

as observed in criss-crossed STEP fibers (Figure 3.4).   

 
3.5.2 Controlling Musculoskeletal Cell Alignment with STEP Fibers 

Although the precise mechanism behind geometry-induced cell alignment is presently 

unknown, it is likely that the alignment of cells observed on fibers may be attributed to a 

combination of factors including physical space constraint and relative stiffness of the 

underlying substrate (fiber), ultimately affecting changes in both cell spreading and cell 

stiffness [14, 33-37].  Since cell spreading and cell stiffness are not mutually exclusive 

phenomena and have been reported to interact in a complex fashion to alter cell 

morphology [36], cells may be predisposed towards a specific orientation through the 

modulation of mechanotransduction pathways via cytoskeletal rearrangements. This is 
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evident by the parallel arrangement of actin filaments observed in C2C12 cells grown on 

GF-soaked fibers (Figure 3.11). In the case of higher-ordered structures such as 

myotubes, which arise from cell-to cell fusion, this predisposition would promote 

increased cell-to-cell contact along the fiber length, ultimately biasing the manner in 

which cell-to-cell fusion occurs to elongate or ‘grow’ a myotube in a specific direction. 

 
 In this study, it should be noted that high levels of cell density (more than 90% confluent 

on the first day of the experiment) were required before differentiation would occur. Over 

the course of several days in culture, this results in cells growing on top of one another. 

As a result, cells that were not in direct contact with fibers may not have exhibited 

contact guidance. Thus, no attempt was made to quantify the degree of cell alignment 

because such quantification may not be reliable. However, cells in direct contact with 

non-printed (Figure 3.3 and Figure 3.4) or GF-soaked STEP fibers (Figure 3.11) 

exhibited contact guidance by aligning along the fiber length.  

 
3.5.3 Simultaneous Control of Musculoskeletal Cell Alignment and Cell Differentiation 

on STEP Fibers with Solid-Phase GF Patterns using Inkjet-based Bioprinting 

To spatially control stem cell differentiation, polystyrene STEP fibers were coated with 

ECM molecules such as fibrin and printed with GFs that promoted musculoskeletal cell 

differentiation. This approach takes advantage of the phenomena that biological spatial 

patterning occurs, in part, by sequestration of GFs to the ECM and cell surfaces, and it 

seeks to recreate physiologically-relevant conditions by immobilizing spatially-defined 

patterns of GFs, in picogram to nanogram levels, to ECM surfaces [4, 6, 8-12]. To create 

such patterns, GFs that have heparin-binding domains, such as FGF-2, BMP-2 and 
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heparin-binding EGF-like GF, are employed to immobilize them to appropriate ECM 

printing substrates via their native binding affinities [4, 6, 8-12]. Fibrin is one appropriate 

ECM material because of its inherent GF binding capability as well as its physiological 

relevance as a provisional matrix during the wound healing process [38]. In addition, 

since serum contains a complex mixture of ECM proteins, it was utilized in this study 

(Figure 3.5) to demonstrate that different ECM proteins can be used for immobilizing 

GFs as long as the ECM proteins possess inherent GF-binding capability [4]. BMP-2 and 

FGF-2 were employed here because previous studies have shown that these GFs can 

direct stem cells towards osteoblast and tenocyte differentiation, respectively [8, 11, 12, 

39, 40]. In addition, these bio-printed GF patterns have been previously shown to persist 

in vivo and can spatially promote or inhibit bone formation [7]. 

 
When C3H10T1/2 and C2C12 cells were seeded onto ECM-coated STEP fibers 

bioprinted with GFs, they differentiated appropriately on printed patterns (Figure 3.5-

Figure 3.9). The differentiation markers used for myocytes, tenocytes and osteoblasts 

were Sarcomeric Myosin [41], Scleraxis [40, 42-45] and Alkaline Phosphatase [46], 

respectively. Although several other differentiation markers such Eya [47], Six1 [48], 

Mohawk [49, 50] and tenomodulin [51, 52] are available for tenocytes, Scleraxis was 

utilized in this study as it is an early marker of tenocytes with highly specific expression 

in tendon progenitor cells and differentiating tendon cells [39, 44, 45]. In addition, 

Scleraxis expression is upregulated to coordinate injury response during tendon healing 

[53]. On serum-coated STEP fibers printed with FGF-2, C3H10T1/2 cells upregulated the 

tendon marker Scx in a dose-dependent manner, indicative of cells being driven towards 

a tenocyte fate (Figure 3.5). On fibrin-coated STEP fibers printed with BMP-2, C2C12 
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cells upregulated the osteoblast marker ALP, indicative of cells being driven towards an 

osteoblast fate (Figure 3.6 and Figure 3.7). On fibrin-coated STEP fibers printed with 

FGF-2, C2C12 cells upregulated the tendon marker Scx in a dose-dependent manner, 

indicative of cells being driven towards a tenocyte fate (Figure 3.8). Outside the printed 

region, myocytes aligned along the fiber length (Figure 3.8).  

 
To demonstrate that cell alignment and cell differentiation could be controlled 

simultaneously with oriented sub-micron fibers and multiple GFs, respectively, C2C12 

cells were seeded on adjacent patterns of FGF-2 and BMP-2 printed onto fibrin-coated 

polystyrene STEP fibers. ALP and Scx expression increased on the BMP-2 and FGF-2 

patterns, respectively, indicative of cells being driven towards osteoblast and tenocyte 

fates (Figure 3.9). Outside of the printed region, aligned myocytes were observed (Figure 

3.9B). Interestingly, BMP-2 was shown to upregulate expression of the tendon marker 

Scx although at much lower levels than FGF-2 (Figure 3.9B, D). This upregulation may 

be attributed to BMP-2 induced activation of the Smad signaling pathway, which has 

been previously shown to be involved in neotendon formation [54].The results shown 

here demonstrate that bioprinting of GFs onto aligned configurations of ECM-coated 

fibers can create a unique microenvironment that simultaneously controls cell 

differentiation and alignment, respectively. 

 
3.6 CONCLUSIONS 

This chapter focused on the characterization and systematic in vitro evaluation of a novel 

biomimetic, sub-micron fiber-based scaffold patterned with GFs to create biochemical 

and geometric cues that spatially direct a single stem cell population towards multiple 
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cell fates, including tenocytes, myocytes or osteoblasts, while simultaneously controlling 

cell alignment within the same construct. The capability to spatially control stem cell 

orientation and differentiation toward multiple phenotypes simultaneously, allows cells 

grown in vitro to more closely mimic aspects of native tissue organization and structure. 

This capability offers a systematic approach to study the basic principles involved in 

tissue formation and function in vitro and may lead to bioinspired strategies for improved 

material design to treat musculoskeletal diseases and trauma.  

 
3.7 ACKNOWLEDGEMENTS 

I would like to thank Bur Chu and Larry Schultz for assistance with GF printing. I would 

also like to thank Dr. Haibing Teng for assistance with confocal microscopy. This work 

was supported by NIH grants RO1EB004343 and RO1EB007369 as well as funding from 

the Pennsylvania Infrastructure Technology Alliance (PITA). The MF20 monoclonal 

antibody developed by Donald A. Fischman was obtained from the Developmental 

Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by 

The University of Iowa, Department of Biology, Iowa City, IA 52242. A. N and J. W are 

also thankful to Institute for Critical Technology and Applied Sciences (ICTAS) along 

with Nanoscale Characterization and Fabrication Laboratory (NCFL) at VT for SEM 

work. 

 
3.8 REFERENCES 

1. Beniash, E., Biominerals-hierarchical nanocomposites: the example of bone. 
Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2010. 3(1): p. 47-69. 

2. Fu, R.H., et al., Differentiation of Stem Cells: Strategies for Modifying Surface 
Biomaterials. Cell Transplant, 2010. 20(1): p. 37-47. 

98 
 



3. Nelson, C.M. and M.J. Bissell, Of extracellular matrix, scaffolds, and signaling: 
tissue architecture regulates development, homeostasis, and cancer. Annu Rev 
Cell Dev Biol, 2006. 22: p. 287-309. 

4. Taipale, J. and J. Keski-Oja, Growth factors in the extracellular matrix. FASEB J, 
1997. 11(1): p. 51-9. 

5. Unsicker, K. and K. Krieglstein, Cell Signaling and Growth Factors in 
Development, ed. K. Unsicker and K. Krieglstein. 2006, Germany: Wiley-VCH 
991. 

6. Campbell, P.G., et al., Engineered spatial patterns of FGF-2 immobilized on 
fibrin direct cell organization. Biomaterials, 2005. 26(33): p. 6762-70. 

7. Cooper, G.M., et al., Inkjet-Based Biopatterning of BMP-2 to Spatially Control 
Calvarial Bone Formation. Tissue Eng Part A, 2010. 16(5): p. 1749-1759. 

8. Ker, E.D., et al., Engineering spatial control of multiple differentiation fates 
within a stem cell population. Biomaterials, 2011. 32(13): p. 3413-22. 

9. Miller, E.D., et al., Dose-dependent cell growth in response to concentration 
modulated patterns of FGF-2 printed on fibrin. Biomaterials, 2006. 27(10): p. 
2213-21. 

10. Miller, E.D., et al., Spatially directed guidance of stem cell population migration 
by immobilized patterns of growth factors. Biomaterials, 2011. 32(11): p. 2775-
85. 

11. Miller, E.D., et al., Inkjet printing of growth factor concentration gradients and 
combinatorial arrays immobilized on biologically-relevant substrates. Comb 
Chem High Throughput Screen, 2009. 12(6): p. 604-18. 

12. Phillippi, J.A., et al., Microenvironments engineered by inkjet bioprinting 
spatially direct adult stem cells toward muscle- and bone-like subpopulations. 
Stem Cells, 2008. 26(1): p. 127-34. 

13. Hinds, S., et al., The role of extracellular matrix composition in structure and 
function of bioengineered skeletal muscle. Biomaterials, 2011. 32(14): p. 3575-83. 

14. Shimizu, K., H. Fujita, and E. Nagamori, Alignment of skeletal muscle myoblasts 
and myotubes using linear micropatterned surfaces ground with abrasives. 
Biotechnol Bioeng, 2009. 103(3): p. 631-8. 

15. Vye, M.V., The ultrastructure of striated muscle. Ann Clin Lab Sci, 1976. 6(2): p. 
142-51. 

16. Gigante, A., et al., Collagen I membranes for tendon repair: effect of collagen 
fiber orientation on cell behavior. J Orthop Res, 2009. 27(6): p. 826-32. 

17. Kerschnitzki, M., et al., The organization of the osteocyte network mirrors the 
extracellular matrix orientation in bone. J Struct Biol, 2011. 173(2): p. 303-11. 

18. Ma, J., X. He, and E. Jabbari, Osteogenic differentiation of marrow stromal cells 
on random and aligned electrospun poly(L-lactide) nanofibers. Ann Biomed Eng, 
2011. 39(1): p. 14-25. 

19. Moffat, K.L., et al., Characterization of the structure-function relationship at the 
ligament-to-bone interface. Proc Natl Acad Sci U S A, 2008. 105(23): p. 7947-52. 

20. Moffat, K.L., et al., Orthopedic interface tissue engineering for the biological 
fixation of soft tissue grafts. Clin Sports Med, 2009. 28(1): p. 157-76. 

99 
 



21. Erisken, C., D.M. Kalyon, and H. Wang, Functionally graded electrospun 
polycaprolactone and beta-tricalcium phosphate nanocomposites for tissue 
engineering applications. Biomaterials, 2008. 29(30): p. 4065-73. 

22. Munoz-Pinto, D.J., et al., Inorganic-organic hybrid scaffolds for osteochondral 
regeneration. J Biomed Mater Res A, 2010. 94(1): p. 112-21. 

23. Sahoo, S., et al., Growth factor delivery through electrospun nanofibers in 
scaffolds for tissue engineering applications. J Biomed Mater Res A, 2010. 93(4): 
p. 1539-50. 

24. Sahoo, S., S.L. Toh, and J.C. Goh, A bFGF-releasing silk/PLGA-based biohybrid 
scaffold for ligament/tendon tissue engineering using mesenchymal progenitor 
cells. Biomaterials, 2010. 31(11): p. 2990-8. 

25. Shi, J., et al., Incorporating protein gradient into electrospun nanofibers as 
scaffolds for tissue engineering. ACS Appl Mater Interfaces, 2010. 2(4): p. 1025-
30. 

26. Wang, F., et al., Fabrication and characterization of prosurvival growth factor 
releasing, anisotropic scaffolds for enhanced mesenchymal stem cell 
survival/growth and orientation. Biomacromolecules, 2009. 10(9): p. 2609-18. 

27. Jose, M.V., et al., Aligned bioactive multi-component nanofibrous nanocomposite 
scaffolds for bone tissue engineering. Macromol Biosci, 2010. 10(4): p. 433-44. 

28. Moffat, K.L., et al., Novel nanofiber-based scaffold for rotator cuff repair and 
augmentation. Tissue Eng Part A, 2009. 15(1): p. 115-26. 

29. Zhao, Y., et al., Fabrication of skeletal muscle constructs by topographic 
activation of cell alignment. Biotechnol Bioeng, 2009. 102(2): p. 624-31. 

30. Nain, A.S., et al., Dry Spinning based Spinneret based Tunable Engineered 
Parameters (STEP) Technique for Controlled and Aligned Deposition of 
Polymeric Nanofibers. Macromol Rapid Commun., 2009. 30(16): p. 6. 

31. Nain, A.S., et al., Control of cell behavior by aligned micro/nanofibrous 
biomaterial scaffolds fabricated by spinneret-based tunable engineered 
parameters (STEP) technique. Small, 2008. 4(8): p. 1153-9. 

32. Miller, E., Inkjet Printing of Solid-Phase Growth Factor Patterns to Direct Cell 
Fate, in Biomedical Engineering. 2007, Carnegie Mellon University: Pittsburgh. 
p. 349. 

33. Engler, A.J., et al., Matrix elasticity directs stem cell lineage specification. Cell, 
2006. 126(4): p. 677-89. 

34. Grosberg, A., et al., Self-organization of muscle cell structure and function. PLoS 
Comput Biol, 2011. 7(2): p. e1001088. 

35. Liu, X., et al., Guidance of neurite outgrowth on aligned electrospun 
polypyrrole/poly(styrene-beta-isobutylene-beta-styrene) fiber platforms. J Biomed 
Mater Res A, 2010. 94(4): p. 1004-11. 

36. Tee, S.Y., et al., Cell shape and substrate rigidity both regulate cell stiffness. 
Biophys J, 2011. 100(5): p. L25-7. 

37. Zemel, A., et al., Cell shape, spreading symmetry and the polarization of stress-
fibers in cells. J Phys Condens Matter, 2011. 22(19): p. 194110. 

38. Breen, A., T. O'Brien, and A. Pandit, Fibrin as a delivery system for therapeutic 
drugs and biomolecules. Tissue Eng Part B Rev, 2009. 15(2): p. 201-14. 

100 
 



101 
 

39. Brent, A.E. and C.J. Tabin, FGF acts directly on the somitic tendon progenitors 
through the Ets transcription factors Pea3 and Erm to regulate scleraxis 
expression. Development, 2004. 131(16): p. 3885-96. 

40. Cserjesi, P., et al., Scleraxis: a basic helix-loop-helix protein that prefigures 
skeletal formation during mouse embryogenesis. Development, 1995. 121(4): p. 
1099-110. 

41. Bader, D., T. Masaki, and D.A. Fischman, Immunochemical analysis of myosin 
heavy chain during avian myogenesis in vivo and in vitro. J Cell Biol, 1982. 
95(3): p. 763-70. 

42. Murchison, N.D., et al., Regulation of tendon differentiation by scleraxis 
distinguishes force-transmitting tendons from muscle-anchoring tendons. 
Development, 2007. 134(14): p. 2697-708. 

43. Perez, A.V., et al., Scleraxis (Scx) directs lacZ expression in tendon of transgenic 
mice. Mech Dev, 2003. 120(10): p. 1153-63. 

44. Pryce, B.A., et al., Recruitment and maintenance of tendon progenitors by 
TGF{beta} signaling are essential for tendon formation. Development, 2009. 
136(8): p. 1351-61. 

45. Schweitzer, R., et al., Analysis of the tendon cell fate using Scleraxis, a specific 
marker for tendons and ligaments. Development, 2001. 128(19): p. 3855-66. 

46. Henrichsen, E., Alkaline phosphatase in osteoblasts and fibroblasts cultivated in 
vitro. Exp Cell Res, 1956. 11(1): p. 115-27. 

47. Xu, P.X., et al., Mouse Eya genes are expressed during limb tendon development 
and encode a transcriptional activation function. Proc Natl Acad Sci U S A, 
1997. 94(22): p. 11974-9. 

48. Boucher, C.A., et al., Cloning of the human SIX1 gene and its assignment to 
chromosome 14. Genomics, 1996. 33(1): p. 140-2. 

49. Anderson, D.M., et al., Mohawk is a novel homeobox gene expressed in the 
developing mouse embryo. Dev Dyn, 2006. 235(3): p. 792-801. 

50. Liu, W., et al., The atypical homeodomain transcription factor Mohawk controls 
tendon morphogenesis. Mol Cell Biol, 2010. 30(20): p. 4797-807. 

51. Shukunami, C., et al., Scleraxis positively regulates the expression of 
tenomodulin, a differentiation marker of tenocytes. Dev Biol, 2006. 298(1): p. 
234-47. 

52. Docheva, D., et al., Tenomodulin is necessary for tenocyte proliferation and 
tendon maturation. Mol Cell Biol, 2005. 25(2): p. 699-705. 

53. Scott, A., et al., Scleraxis expression is coordinately regulated in a murine model 
of patellar tendon injury. J Orthop Res, 2011. 29(2): p. 289-96. 

54. Hoffmann, A., et al., Neotendon formation induced by manipulation of the Smad8 
signalling pathway in mesenchymal stem cells. J Clin Invest, 2006. 116(4): p. 
940-52. 

 
 



CHAPTER 4: IN VITRO AND IN VIVO EFFECT OF PRINTED BIOCHEMICAL 
FACTOR PATTERNS ON DERMAMATRIX SCAFFOLDS 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

102 
 



4.1 ABSTRACT 

In previous chapters, the capability to engineer microenvironmental cues such as persistent 

growth factor (GF) patterns to direct a stem cell population toward multiple fates, 

simultaneously, in spatially defined regions was demonstrated in vitro on fibrin-coated glass 

coverslips and ECM-coated sub-micron Spinneret-based Tunable Engineered Parameters (STEP) 

fibers. This chapter serves as a preliminary exploration of cell behavioral responses to inkjet-

printed patterns of biochemical factors (BFs; which include GFs and other signaling molecules) 

immobilized onto an acellularised human dermis scaffold known as DermaMatrix in vitro and in 

vivo for the purpose of patterning ectopic muscle-tendon-bone (MTB) units and periosteum-

bone-bone marrow (PBM) units. Initial characterization of DermaMatrix indicated that the 

DermaMatrix scaffold contained a porous internal structure, supported mouse C2C12 myoblast 

attachment and subsequent differentiation into myotubes. Concentration modulated patterns of 

BMP-2 were created with our bio-inkjet printer and demonstrated a dose-dependent increase in 

alkaline phosphatase (ALP) staining in register to printed patterns. Additionally, using rabbit 

muscle-derived cells, FGF-2 was identified as a periosteum-promoting GF by 

immunofluorescence staining for the periosteum marker, Periostin. Subsequent in vivo 

experiments were performed using printed DermaMatrix scaffolds containing BMP-2, FGF-2, 

GDF-7, IGF-2, Noggin, PDGF-BB and SDF-1β to pattern ectopic MTB units and PBM units 

with and without mouse primary Muscle-Derived Stem Cells (MDSCs). Printed, flat 

DermaMatrix scaffolds showed spatial control of bone formation but little-to-no tendon or 

muscle tissue, highlighting the need to identify tendon- and muscle-promoting BFs and the 

optimal dosage required for ectopic tissue patterning. Printed, rolled DermaMatrix scaffolds 

showed some cell infiltration and blood vessel formation at the scaffold periphery but little-to-no 
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cell infiltration in the middle of the scaffold. This work illustrates the potential for bio-printed 

DermaMatrix to be employed as a suitable scaffold for spatial control of multi-phenotype 

differentiation in vivo. 

 
4.2 INTRODUCTION 

As described in Chapter 1, the development and repair of musculoskeletal tissue involves the 

spatial control of stem cell differentiation toward multiple cell types such as osteoblasts, 

tenocytes and myocytes [1] and is regulated by physical and biochemical microenvironmental 

cues imparted by the interactions of cells with their extracellular matrix (ECM), neighboring 

cells, and secreted local and systemic signaling molecules (Biochemical Factors; BFs), including 

growth factors (GFs) [1, 2]. The capability to pattern muscle-tendon-bone (MTB) units and 

periosteum-bone-bone marrow (PBM) units in vivo using immobilized BFs is an important and 

logical consideration for regenerating damaged musculoskeletal tissues. 

 
As mentioned in Chapter 1, MTB units are physiologically relevant tissue units that enable body 

movement through the generation and subsequent transfer of mechanical force from soft 

(muscle) tissue to rigid (bone) tissue while minimizing stress damage [3-5]. As such, the 

capability to engineer a MTB in vivo may present an attractive and clinically-relevant option for 

treating diseases and trauma of the musculoskeletal system such as sports injuries. Similarly, a 

PBM unit recapitulates the overall architecture and composition of long bone – the outer 

periosteal layer provides an attachment site for tendon and ligaments, delivers nutrients and 

removes waste, the middle bone layer consists of mineralized collagen and bone cells, and the 

inner bone marrow layer houses elements of the hematopoietic system.  The capability to 

engineer a PBM unit in vivo may provide a means of accelerating wound healing in severe bone 
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trauma. Indeed, studies have shown that both periosteum and bone marrow tissues play critical 

roles in bone healing. For example, it has been shown that transplantation of vascularized 

periosteum tissue alone is able to promote bone regeneration in bone defects in canines and 

rabbits [6-8]. In addition, other studies have suggested that skeletal stem cells such as 

mesenchymal stem cells may have a perivascular origin [9-13]. The intimate relationship 

between osteoprogenitor cells and hematopoietic progenitor cells in the bone marrow 

microenvironment has been highlighted by studies which show that osteoblastic cells can 

regulate the size of the hematopoietic niche through Notch signaling [10] as well as by other 

studies that demonstrate that bone formation often accompanies bone marrow transplantation and 

vice versa [9, 10, 13-15]. 

 
Previous work in Chapters 2 and 3 demonstrate spatial control of cell differentiation in vitro on 

ECM-based substrates such as fibrin-coated glass coverslips and ECM-coated sub-micron 

Spinneret-based Tunable Engineered Parameters (STEP) fibers. This chapter seeks to address 

spatial control of cell differentiation in vivo using an acellularised human dermis scaffold known 

as DermaMatrix. Prior to animal studies, some preliminary Scanning Electron Microscopy 

(SEM) and in vitro studies were performed to characterize DermaMatrix scaffold structure and 

determine the suitability of using bio-printed DermaMatrix in vivo. For animal studies, putative 

periosteum-promoting GFs such as TGF-β1 and FGF-2 were identified from the literature and 

screened using immunofluorescence staining for the periosteum marker, Periostin [16] in rabbit 

muscle-derived cells. Periostin is an extracellular protein that is highly expressed in the 

periosteum and periodontal ligament as well as collagen-rich connective tissue such as skin and 

healing wounds [17-20]. To pattern bone tissue, BMP-2 was used as it has been previously 

demonstrated to induce osteogenesis in vitro [21-24] and in vivo [25]. To pattern bone marrow 
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tissue, a combination of SDF-1β, PDGF-BB and Noggin was employed since SDF-1 is a 

chemotactic GF expressed at high levels in the bone marrow and responsible for the homing and 

engraftment of hematopoietic stem cells [26] while PDGF has been shown to enhance blood cell 

production [27]. Noggin was used to suppress bone formation. To pattern muscle tissue, a 

combination of IGF-2 and Noggin was used as IGF-2 has been demonstrated to enhance 

myogenesis in vitro (Figure 2.13) while Noggin has been shown to inhibit bone formation in vivo 

[25]. To pattern tendon tissue, GDF-7 was used as it has been previously shown that GDF-7 can 

ectopically induce tendon differentiation in vivo [28]. Printed constructs were seeded with or 

without MDSCs and placed subcutaneously in mice for six weeks. 

 
4.3 MATERIALS AND METHODS 

4.3.1 Cell Culture 

Multipotent mouse C2C12 cells (ATTC, Manassas, VA) were grown in Dulbecco’s Modified 

Eagle’s Media (DMEM; Invitrogen, Carlsbad, CA), 10% fetal bovine serum (Invitrogen, 

Carlsbad, CA) and 1% penicillin-streptomycin (PS; Invitrogen, Carlsbad, CA). Multipotent 

MDSCs were isolated from primary mouse gastrocnemius muscle biopsies following a modified 

preplate technique [29] and were grown in DMEM (high glucose), 10% horse serum (HS; 

Invitrogen, Carlsbad, CA), 10% FBS, 0.5% Chick Embryo Extract (Accurate Chemical Co, 

Westbury, NY) as previously described [29, 30]. Muscle-derived cells were isolated from muscle 

biopsies of 10-day old New Zealand White Rabbits (Oryctolagus cuniculus) using an established 

procedure obtained from our collaborators at the Children’s Hospital of Pittsburgh (University of 

Pittsburgh Medical Center, Pittsburgh, PA). Briefly, approximately 2 mm x 6 mm x 2 mm of 

muscle tissue was obtained while taking care to avoid bone cartilage, blood vessel and fur. The 

muscle tissue was dissected into small pieces and placed in ice-cold PBS and kept on ice.  
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Subsequently, the muscle tissue was centrifuged at 2000 revolutions per min (rpm) for 5 min, 

aspirated to remove the PBS and incubated in 3 – 5 mL of 0.2% Collagenase XI (Sigma-Aldrich, 

St. Louis, MO) at 37ºC, 175rpm for 60 min. Following this, the muscle tissue was centrifuged at 

2000 rpm for 5 min, aspirated to remove the Collagenase XI and resuspended in 3 – 5 mL of 2.4 

U/mL Dispase (Sigma-Aldrich, St. Louis, MO) at 37ºC, 175rpm for 45 min. Next, the muscle 

tissue was centrifuged at 2000 rpm for 5 min, aspirated to remove the Dispase and resuspended 

in 3 – 5 mL of 0.1% Trypsin (Invitrogen, Carlsbad, CA) in Hank’s Buffered Salt Solution 

(Invitrogen, Carlsbad, CA) at 37ºC, 175rpm for 30 min. Lastly, the muscle tissue was centrifuged 

at 2000 rpm for 5 min, aspirated to remove the Trypsin and resuspended in 10 mL of DMEM, 

10% fetal bovine serum and 1% PS in a T75cm2 flask. A total of two isolates from one female 

and one male rabbit were used in these experiments. All cells were kept at 37oC, 5% CO2 in a 

humidified incubator. 

 
Both C2C12 cells and MDSCs were seeded at a density of 30 x 104 cells/scaffold in an 

adequately sufficient volume of media for covering the entire surface of the scaffold. The cells 

were allowed to attach for 15 – 60 min before flooding the tissue culture vessel with media. 

Muscle-derived cells were seeded at a density of 30 x 104 cells/fibrin-coated coverslip. Cells 

were grown in normal growth media (Proliferation media) as indicated above. Where necessary, 

a final concentration of 1 µg/mL Aprotinin (Sigma, St. Louis, MO) was added to the cell cultures 

to minimize fibrin degradation. 

 
4.3.2 Biochemical Factor Preparation and Use 

Recombinant human BMP-2 (Medtronic, Minneapolis, MN), FGF-2 (Peprotech, Rockyhill, NJ), 

growth and differentiation factor-7 (GDF-7/BMP-12, BioVision Inc., San Francisco, CA), 
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insulin-like growth factor-2 (IGF-2; Austral Biologicals, San Ramon, CA), noggin (Peprotech, 

Rockyhill, NJ), platelet-derived growth factor-BB (PDGF-BB, Peprotech, Rockyhill, NJ), 

stromal derived factor-1β (SDF1β; CXCL12, Peprotech, Rockyhill, NJ) and transforming growth 

factor-β (TGF-β; R&D Systems, Minneapolis, MN) were reconstituted according to 

manufacturer’s instructions to 1-2 mg/mL, aliquoted and stored at -80oC. Prior to use, BFs were 

freshly diluted to the desired concentration in 10 mM sodium phosphate, pH 7.4. 

 
4.3.3 Preparation of Fibrin Coated Coverslips 

Homogenous fibrin films were prepared essentially as described by Campbell et al., 2005 [31]. 

Briefly, 18 x 18 mm epoxy-silanized glass coverslips (Thermo Fisher Scientific, Waltham, MA) 

were coated with 0.1 mg/mL fibrinogen (Aventis Behring, King of Prussia, PA or American 

Diagnostica Inc., Stanford, CT) and converted into fibrin by incubating coverslips in 4 U/mL 

thrombin (Enzyme Research Laboratories, South Bend, IN). Coverslips were then washed with 

phosphate buffered saline (PBS) and sterile deionized water before air-drying in a laminar flow 

hood. The thickness of the fibrin films was previously estimated to be approximately 20 nm [31]. 

 
4.3.4 Preparation and Characterization of DermaMatrix Scaffold Structure 

Human Acellular DermaMatrix Dermis scaffolds (Synthes Inc., West Chester, PA) were cut to 

the required dimensions with a scissors or a biopsy punch (Acuderm Inc., Fort Lauderdale, FL). 

The structure and porosity of the DermaMatrix scaffold was characterized by SEM. 

DermaMatrix samples were gold-coated using a Pelco SC-6 sputter coater (Ted Pella, Inc., 

Redding, CA) and examined using a Hitachi 2460N Scanning Electron Microscope (Hitachi 

High Technologies America, Inc., Schaumburg, IL). Images were obtained using Quartz PCI 

Image software. 
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4.3.5 Biochemical Factor Printing 

Prior to printing, BFs were freshly diluted to the desired concentration in 10 mM sodium 

phosphate, pH 7.4. Prior to filling the inkjet with the BF, the printhead was sterilized by rinsing 

with 70% ethanol followed by sterile deionized water. The bio-ink, consisting of 100-200 µg/ml 

BF was loaded into the printhead, and printed onto DermaMatrix in a similar manner as 

previously described for fibrin-coated glass coverslips [23, 31]. The concentration of inkjetted 

BFs can be modulated by overprinting, which is achieved by varying the number of times a BF is 

deposited in the same (x,y) location. In the case of hand-printed BF patterns, 1-2 µL of a 100 

µg/mL BF solution was pipetted onto a fibrin-coated glass coverslip instead and a diamond 

scribe pen was used to mark the droplet perimeter after it had been allowed to air-dry for 1 h at 

37oC. After printing, DermaMatrix scaffolds or hand-printed fibrin-coated glass coverslips were 

incubated in PBS for 5 min followed by serum-free DMEM with 1% PS overnight at 37°C, 5% 

CO2 to wash off unbound BF prior to cell seeding or animal surgery.  

 
4.3.6 Printed Scaffolds 

DermaMatrix scaffolds were printed with BFs as shown in Figure 4.1 and Table 4.1. For Muscle-

Bone and Tendon 1-Tendon 2 patterns, the concentration of BFs and number of overprints (OPs) 

were adjusted such that a similar mass of BF(s) thought to be responsible for inducing a 

particular tissue type were deposited between the Muscle and Bone patterns or Tendon 1 and 

Tendon 2 patterns.  Likewise, the concentration of BFs and number of OPs for the Bone 

Marrow-Bone-Periosteum scaffolds were adjusted such that a similar mass of BF(s) were 

deposited between the Bone Marrow, Bone and Periosteum patterns. 
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Figure 4.1. Printing schematic for DermaMatrix scaffolds. A. Printing scheme for DermaMatrix 
scaffolds. B. Types of DermaMatrix scaffolds used. The size of each individual printed pattern, 
the concentration of the growth factors and the number of overprints (OPs) used for each 
construct are indicated as shown.  
 
Table 4.1 Biochemical Factors for Patterning Ectopic MTB and PBM units. 

Tissue Growth Factor(s) Rationale References 
Muscle IGF-2 

 
Enhances myogenesis in vitro. 

 
Figure 2.13 

Noggin Prevents bone formation. Cooper et al., 2010 [25] 

Tendon GDF-7 Induces ectopic tendon in a 
subcutaneous rat model. 

Wolfman et al., 1997 [28] 

Noggin Prevent bone formation since GDF-
7 mice have altered bone structure. 

Maloul et al., 2006 [32] 

Bone BMP-2 BMP-2 is a potent osteogenic 
stimulator in vitro and in vivo. 

Cooper et al., 2010; Ker et al., 
2011a, Ker et al., 2011b, Miller 
et al., 2007, Miller et al., 2009, 
Phillippi et al., 2008 [21-25, 33] 

Periosteum TGF-β Induces Periostin expression. Horiuchi et al., 1999 [16] 
FGF-2 Induces Periostin expression. Dangaria et al., 2009 [34] 
Noggin Prevents bone formation. Cooper et al., 2010 [25] 

Bone Marrow SDF-1β Chemotactic GF expressed at high 
levels in the bone marrow and 
responsible for the homing and 

engraftment of hematopoietic stem 
cells. 

Sharma et al., 2011 [26] 

PDGF-BB Enhances blood cell production. Yang et al., 2001 [27] 
Noggin Prevents bone formation. Cooper et al., 2010 [25] 
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4.3.7 Animal Surgery 

6 –18 month old C56BL/6 male and female mice (Jackson, Bar Harbor, ME) were used in this 

study. The animals were housed in a standard animal facility and all experiments involving 

animal use were performed in accordance with the Institutional Animal Care and Use 

Committee. The mice were anesthetized using isoflurane delivered by a gas apparatus (SurgiVet, 

Dublin, OH) and the fur shaved and cleaned with 70% ethanol prior to surgery. Under sterile 

conditions, an incision was made in the skin and skin pockets were made on either side of the 

mouse using a pair of surgical scissors. One scaffold was placed on either side of the mouse onto 

the muscle layer. Where necessary, scaffolds were sutured in place with 4-0 Ethilon silk and 5-0 

Ethilon nylon sutures (Ethicon Inc., Cincinnati, OH). Subsequently, the skin was sutured closed 

to ensure that no subcutaneous tissue was exposed. Mice were placed to one side to ease 

breathing and returned to its cage upon waking from anesthesia. 

 
4.3.8 DermaMatrix Harvesting 

6 weeks post-surgery, the mice were euthanized and the DermaMatrix scaffolds as well as 

surrounding tissue were harvested and fixed in 10% neutral buffered formalin overnight. Where 

necessary, tissue samples were decalcified in 10% EDTA solution prior to paraffin embedding 

for subsequent histological and immunofluorescence analysis. 

 
4.3.9 Sample Preparation for Histology 

The tissue samples were processed by the Thomas E. Starzl Transplantation Institute Histology 

Core Facility (University of Pittsburgh, Pittsburgh, PA) on an automated tissue processor. 

Briefly, the samples were first removed from the fixative and placed through a series of graded 

alchohols, cleared through xylene and subsequently infiltrated with paraffin on the processor 
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with vacuum. Upon removal from the automated processor, tissues were hand-embedded in 

paraffin. Once the paraffin blocks solidified, they were faced off, placed on ice and were cut 

using a microtome to generate 4 µm sections. These tissue sections were floated on a water bath 

and then collected onto positively charged slides which were baked in a 60 oC oven for 1 h. 

 
4.3.10 Immunofluorescence staining 

For immunofluorescence staining of C2C12-seeded DermaMatrix samples or muscle-derived 

rabbit cell-seeded fibrin-coated glass co, cells were washed in PBS, fixed in methanol for 5 min, 

air-dried and blocked with 10% donkey serum (Jackson Immunoresearch, West Gove, PA) for 

20 min at RT. For mouse-on-mouse staining an additional blocking step was performed by 

incubating cells with 100 µg/mL donkey anti-mouse FAB (Jackson Immunoresearch, West 

Gove, PA) for 1 h at RT. Cells were then rinsed with wash buffer (PBS, 0.1% BSA) and 

incubated with primary antibody – mouse anti-myosin MF20 (1 µg/mL; Developmental Studies 

Hybridoma Bank, Iowa City, Iowa) or goat anti-Periostin  (4 µg/mL; Santa Cruz Biotechnology 

Inc, Santa Cruz, CA) overnight at 4oC. Cells were then rinsed three times with wash buffer (5 

min each) and incubated with secondary antibodies – donkey anti-mouse Dylight 488 nm or 

donkey anti-goat Dylight 649 nm for 1 h at RT (15 µg/mL each; Jackson Immunoresearch, West 

Gove, PA). Lastly, cells were rinsed five times with wash buffer (5 min each) and imaged using 

a Zeiss Axiovert 200M microscope (Carl Zeiss Microimaging, Thornwood, NY) equipped with a 

Colibri LED light source.  

 
For immunofluorescence staining of histological sections, this procedure was performed by 

collaborators at the Stem Cell Research Center (University of Pittsburgh, Pittsburgh, PA). Slides 

were deparaffinized and antigen retrieval was performed by incubating slides in 10 mM sodium 
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citrate, 0.05% Tween 20, pH 6.0 at 95 – 98 oC for 20min. Slides were then air-dried and stained 

for e-Myosin Heavy Chain. Briefly, slides were blocked with serum and a mouse-on-mouse 

staining kit, incubated with anti e-Myosin Heavy Chain (1:50 dilution) and subsequently a 

secondary link antibody (Biotin-Horse Anti-Mouse) followed by Strepavidin-Alexa Fluor 594. In 

between, slides were rinsed with Phosphate Buffered Saline (PBS). Slides were imaged using a 

Zeiss Axiovert 200M microscope (Carl Zeiss Microimaging, Thornwood, NY) equipped with a 

Colibri LED light source.  

  
4.3.11 Histological Staining 

Slides were stained for hematoxylin and eosin according to the manufacturer’s instructions. 

Staining for the osteoblast marker Alkaline Phosphatase (ALP) was performed using an ALP 

staining kit (Kit 86C, Sigma Aldrich, St. Louis, MO) according to the manufacturer’s 

instructions. Where necessary, slides were imaged using a Zeiss Axiovert 200M microscope 

(Carl Zeiss Microimaging, Thornwood, NY).  

 
4.3.12 Statistical Analysis 

For analysis of ALP stained images, one-way analysis of variance followed by Tukey’s Honestly 

Significant–Difference post hoc test using SYSTAT 9 software (Systat Software Inc., Richmond, 

CA) was performed to determine significance among treatment groups. A p value ≤ 0.05 was 

considered statistically significant. 

 
4.4 RESULTS 

4.4.1 Characterization of DermaMatrix Scaffolds 

Figure 4.2 shows an SEM image of an 8 mm diameter circular DermaMatrix scaffold. The top 

view indicates that the surface of the DermaMatrix scaffold is relatively fibrous with several 
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pore-like structures and the cross-sectional view indicates that the interior of the DermaMatrix is 

relatively porous (Figure 4.2). Similar to polystyrene Petri dishes (Figure 3.3), DermaMatrix 

scaffolds can support the attachment of C2C12 cells and result in the spontaneously formation of 

elongated myotubes when grown under highly cell confluent conditions (Figure 4.3) 

 

 
Figure 4.2. SEM image of a circular DermaMatrix scaffold (8 mm diameter). The top view (left) 
of the side and cross-section (right) of the DermaMatrix are shown. Scale bars as indicated. 
 

 
Figure 4.3. Effect of DermaMatrix scaffold on MF20 expression in C2C12 cells. DermaMatrix 
scaffolds supported C2C12 cell attachment and under confluent conditions, promoted myotube 
formation. Scale bars as indicated. 
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4.4.2 Effect of DermaMatrix Patterned with BMP-2 on Osteoblast Differentiation 

Having characterized the DermaMatrix scaffold structure and demonstrated that it could support 

cell attachment, square patterns of BMP-2 (each measuring 0.5 mm x 0.5 mm; 100 µg/mL BMP-

2) were inkjet printed onto a 13.5 mm x 13.5 mm Dermamatrix scaffold with 10, 20, 30, 40 and 

50 OPs to determine if solid-phase GF-patterned DermaMatrix can spatially direct osteoblast 

differentiation in a dose-dependent manner (Figure 4.4A). Our previous studies have shown that 

the surface concentration of GF that is deposited can be modulated by overprinting and that such 

GF patterns can persist for up to 144 hours under standard cell culture conditions [23-25, 35]. 

Under proliferation conditions (High serum), C2C12 cells showed upregulation of ALP in 

response to solid-phase patterning of BMP-2 in a dose-dependent manner (Figure 4.4B, C). 

Printed BMP-2 patterns with 10, 20, 30, 40  and 50 OPs overprints showed an increase in ALP 

expression relative to negative control/non-printed regions (p = 0.015 for 10 OPs, p < 0.001 for 

20, 30, 40 and 50 OPs; Figure 4B, C). In addition, printed BMP-2 patterns with 30, 40  and 50 

OPs showed an increase in ALP expression relative to 10 OPs (p = 0.011 for 30 OPs, p = 0.001 

for 40 OPs and p < 0.001 for 50 OPs; Figure 4B, C). Furthermore, printed BMP-2 patterns with 

50 OPs showed an increase in ALP expression relative to 20 OPs (p = 0.007; Figure 4B, C). ALP 

activity did not level off or reach a steady state even at 50 OPs, indicating that BMP-2 binding 

sites within the DermaMatrix scaffold were not fully saturated (Figure 4.4C). Thus, solid-phase 

patterning of BMP-2 on DermaMatrix scaffold can spatially control osteoblast differentiation in 

a dose-dependent manner (Figure 4.4). 
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Figure 4.4. Effect of printed BMP-2 patterns on ALP expression in C2C12 cells (DermaMatrix 
scaffold). A. Printing scheme for BMP-2 patterned DermaMatrix scaffold. 10, 20, 30, 40, and 50 
Overprints of 100 µg/mL BMP-2 was printed onto a 13.5 mm x 13.5 mm DermaMatrix scaffold. 
B-C. Inkjet printed patterns of BMP-2 resulted in upregulation of the osteoblast marker ALP in a 
dose-dependent manner. ALP stained images of BMP-2 patterned DermaMatrix scaffold indicate 
that C2C12 cells show a dose-dependent increase in ALP expression after 4 days in proliferation 
media *, Significantly different from control or non-printed regions; p ≤ 0.05. +, Significantly 
different from 10 Overprints; p ≤ 0.05. ++, Significantly different from 20 Overprints; p ≤ 0.05. 
 
4.4.3 Effect of Fibrin-Coated Glass Coverslips Patterned with FGF-2 on Periostin Expression in 

Muscle-Derived Cells 

To identify periosteum-promoting GFs, hand-printed patterns of GFs were identified from the 

literature and screened for their ability to upregulate the periosteum marker, Periostin. TGF-β1 

was found not to promote Periostin expression at the concentrations tested (Data not shown) 

whereas FGF-2 was found to weakly promote Periostin expression in rabbit muscle-derived cells 

(Figure 4.5). 
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Figure 4.5. Effect of FGF-2 on expression of the periosteum marker Periostin in rabbit muscle-
derived cells after 3 days in proliferation media. Periostin was upregulated in the presence of 
FGF-2. Scale bar is 1000 µm. White circle indicates the boundary of the hand-printed FGF-2 
pattern. Parallel lines seen in phase-contrast images denote scratch marks used for identifying the 
location of hand-printed FGF-2 patterns. 
 
4.4.4 Effect of DermaMatrix Patterned with BMP-2, FGF-2, GDF-7, IGF-2 and Noggin In Vivo 

In flat DermaMatrix scaffolds, a high amount of cellular infiltration was observed in scaffolds 

seeded with and without MDSCs (Figure 4.6B). During surgical implantation of DermaMatrix 

scaffolds, a silk and nylon suture were each placed on opposing ends of the scaffold, facilitating 

the fiduciary marking of a particular printed pattern after sample harvesting and histological 

staining (Figure 4.6A). No ectopic muscle, tendon or bone formation was observed (5/5 

DermaMatrix scaffolds) in unprinted DermaMatrix scaffolds (Figure 4.6B, control). Ectopic 

bone formation was observe in 50% of the printed DermaMatrix scaffolds (5/10 DermaMatrix 

scaffolds) and these regions correlated with the printed BMP-2 pattern (Figure 4.6B). However, 

ectopic muscle (0/10 DermaMatrix scaffolds) or tendon (0/5 DermaMatrix scaffolds) tissues 
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were not observed. Additionally, no differences between MDSC-seeded and non MDSC-seeded 

scaffolds were observed. 

 
Figure 4.6. Effect of printed BMP-2, FGF-2, GDF-7, IGF-2 and Noggin patterns on 
DermaMatrix scaffold In Vivo. A. Subcutaneous implantation of printed DermaMatrix scaffolds. 
One silk or nylon suture (Black knots) was placed on each end of the DermaMatrix scaffold and 
anchored onto the superficial back muscles. B. Hematoxylin and eosin staining of DermaMatrix 
scaffold (Longitudinal sections). Ectopic bone formation (Black arrows) was observed within 
BMP-2 printed regions, indicating spatial control of tissue formation. However, little-to-no 
ectopic muscle or tendon tissue was observed. Scale bars as indicated. 
 
4.4.5 Effect of DermaMatrix Patterned with BMP-2, FGF-2, PDGF-BB, Noggin and SDF-1β In 

Vivo 

In rolled DermaMatrix scaffolds, three cross-sections corresponding to the top, middle and 

bottom of the scaffold were obtained (Figure 4.7A). A high amount of cellular infiltration was 

observed in the top region of the scaffold but little-to-no cellular infiltration was observed in the 

middle and bottom regions of the scaffold (Figure 4.7B). Little-to-no ectopic periosteum, bone 

and bone marrow was observed in all constructs (Figure 4.7B, 0/3 DermaMatrix scaffolds).  
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Figure 4.7. Effect of printed BMP-2, FGF-2, PDGF-BB, Noggin and SDF-1β patterns on 
DermaMatrix scaffold In Vivo. A. Schematic illustrating histological sectioning of 
subcutaneously implanted printed DermaMatrix scaffolds. B. Hematoxylin and eosin staining of 
DermaMatrix scaffold cross-sections. High amounts of cell infiltration was observed at the top 
end of the rolled DermaMatrix scaffold but there was little-to-no cellular infiltration in the 
middle and bottom ends of the rolled DermaMatrix scaffold. Little-to-no ectopic periosteum, 
bone or bone-marrow tissue was observed.  Scale bar is 1000 µm. 
 
4.5 DISCUSSION 

4.5.1 Characterization of DermaMatrix Scaffold 

With the long-term goal of engineering biomimetic scaffolds that for musculoskeletal tissue 

repair, this chapter aims to demonstrate spatial control of MTB units and PBM units in vivo. 

Prior to performing in vivo studies, DermaMatrix scaffolds were initially characterized by SEM 

(Figure 4.2), immunofluorescence staining (Figure 4.3) and ALP staining (Figure 4.4) to 

determine if scaffolds could support cell attachment and musculoskeletal cell differentiation. 

DermaMatrix scaffold was determined to be a suitable surrogate material to immobilize BFs onto 

for in vivo studies as its highly internal porous structure supported cell infiltration (Figure 4.2 

and Figure 4.5) while the scaffold facilitated both muscle differentiation (Figure 4.3) as well as 

osteoblast differentiation (Figure 4.4). In addition, DermaMatrix scaffold was capable of 
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immobilizing BFs at concentrations as high as 50 Ops (Approximately 1.67 µg/cm2 BMP-2 prior 

to washing).  

 
4.5.2 Identification of a Periosteum-Promoting GF 

To pattern periosteum tissue, an immunofluorescence screen was performed using the 

periosteum marker, Periostin[16] in rabbit muscle-derived cells. Rabbit muscle-derived cells 

were chosen as several printed DermaMatrix scaffolds for PBM patterning studies would be 

surgically implanted in rabbits (Data not shown). Although TGF-β1 did not result in 

upregulation of Periostin (Data not shown), FGF-2 weakly increased Periostin expression in both 

male and female muscle-derived rabbit cells (Figure 4.5). 

 
4.5.3 Spatial Control of Tissue Formation In Vivo 

To pattern MTB units and PBM units, printed flat and rolled DermaMatrix scaffolds were 

subcutaneously implanted in mice, respectively (Figure 4.6 and Figure 4.7). Flat DermaMatrix 

scaffolds supported high amounts of cellular infiltration and printed BMP-2 patterns induced 

ectopic bone formation (Figure 4.6). However, little-to-no ectopic muscle or tendon was 

observed, highlighting a need to identify a suitable mixture of BFs (including dosages used) for 

patterning muscle and tendon tissue (Figure 4.6). Even though ectopic bone formation was 

patterned, no stark differences were observed at the interface of different printed patterns owing 

to sporadic and uneven bone formation within printed BMP-2 regions (Figure 4.6). Unlike flat 

DermaMatrix scaffolds, rolled DermaMatrix scaffolds showed limited amounts of cellular 

infiltration, indicating that geometry plays an important role (Figure 4.7). Due to limited cellular 

infiltration, little-to-no ectopic periosteum, bone and bone marrow tissue was observed (Figure 

4.7) although other variables such as the choice and dosage of BFs used cannot be ruled out. Due 
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to the higher dosage of BFs required for ectopic tissue formation, future in vivo studies will 

examine the effect of printed DermaMatrix scaffolds in situ (i.e. at non-ectopic sites such as the 

MTB interface at the Achilles tendon) while rolled DermaMatrix scaffolds will include 

polyurethane spacers to better facilitate cell infiltration. 

 
4.6 CONCLUSIONS 

This chapter characterized the suitability of human acellular dermis (DermaMatrix) as a 

surrogate material for in vivo studies for spatially patterning MTB and PBM units. In addition, 

FGF-2 was identified as being able to upregulate the periosteum marker Periostin in rabbit 

muscle-derived cells. In vivo studies showed that printed BMP-2 patterns within flat 

DermaMatrix scaffolds can spatially control ectopic bone formation but further studies are 

required for patterning muscle and tendon tissue. Rolled DermaMatrix scaffolds showed poor 

cellular infiltration and little-to-no ectopic periosteum, bone and bone marrow tissue, 

highlighting a need for scaffold optimization. Future studies will examine the effect of printed 

BF patterns on DermaMatrix at relevant musculoskeletal interfaces in situ. 
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5.1 ABSTRACT 

The capability to control inflammation to create a permissive microenvironment for efficient 

stem cell differentiation such as osteoblastogenesis is important for understanding the tissue 

maintenance and repair. Our lab has previously developed a methodology to engineer pro-

inflammatory and anti-inflammatory environments by challenging immune cells such as 

dendritic cells and macrophage cells with lipopolysaccharide (LPS) and IL-10, respectively, and 

applied this approach to study osteoblast differentiation in mouse C2C12 myoblasts. In this 

chapter, this approach is extended to study osteoblast differentiation in mouse C2C12 myoblasts, 

mouse MC3T3-E1 fibroblasts and mouse Muscle-Derived Stem Cells (MDSCs). Utilizing 

alkaline phosphatase (ALP), inflammatory environments were shown to inhibit osteoblast 

differentiation and bone mineralization while anti-inflammatory agents such as IL-10 rescued 

this inhibitory effect. In addition, a specific MDSC isolate was found to be resistant to LPS-

mediated inhibition of osteoblast differentiation, highlighting heterogeneity in the stem cell 

response to inflammatory and anti-inflammatory microenvironments. This work illustrates that 

inflammatory and anti-inflammatory microenvironments can impact stem cell differentiation and 

may have potential use in tissue regeneration. 

 
5.2 INTRODUCTION 

As described in Chapter 1, inflammation is an integral component of the wound healing process 

and can drastically alter the cellular microenvironment to affect stem cell behavior. During 

inflammation, immune cells such as macrophages and dendritic cells respond to tissue injury 

according to two modes – the type 1 and type 2 pathway [1-5]. In the type 1 or classically 

activated pathway, a pro-inflammatory response typically associated with bacterial destruction 

predominates during the early phase of wound healing to eliminate pathogens from  the wound 
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whereas in the type 2 pathway, an anti-inflammatory response typically associated with ECM 

deposition, angiogenesis and tissue remodeling predominates during the later phase of wound 

healing to promote wound closure [1, 4, 6, 7]. Both types of response are required for tissue 

repair and an imbalance between the two pathways can impair musculoskeletal repair by 

inhibiting stem cell differentiation [1, 3, 4], ultimately affecting the healing of bone fractures, 

tendon ruptures, muscle tears and integration of bone and dental implants [1, 3, 4, 8-11]. 

 
Therefore, developing the capability to selectively control the inflammatory phenotype of 

immune cells in order to create permissive microenvironments to direct stem cell differentiation 

is a logical consideration for studying stem cell behaviors and may also have direct applications 

in regenerative medicine.  

 
Previous work performed in our lab had determined that the introduction of lipopolysaccharide 

(LPS; a component of gram-negative bacterial cell wall) and IL-10 (An immunomodulatory 

cytokine) directed immune cells such as dendritic cells and macrophages towards a type 1 

(Classically activated; pro-inflammatory) or type 2 (Alternatively activated; anti-inflammatory) 

pathway, respectively (Kwan et al., 2011 [12]; Chapter 1 and Appendix A1). In addition, prior 

work has also determined that chemical mediators secreted by type 1-activated immune cells 

inhibited osteoblast differentiation in mouse C2C12 myoblasts while chemical mediators 

secreted by type 2-activated immune cells did not have an adverse effect on osteoblast 

differentiation and could reverse this inhibition. Using conditioned media generated from mouse 

Fetal Skin Dendritic Cells (FSDCs) and mouse J774A.1 macrophage cells, the effects of type 1- 

or type 2-activated immune cell conditioned media on BMP-2-induced osteoblast differentiation 

were  characterized using mouse MC3T3-E1 fibroblasts and mouse Muscle-Derived Stem Cells 
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(MDSCs). In addition, the effects of J774A.1 macrophage cell conditioned media on osteoblast 

differentiation in C2C12 cells was performed using inkjet-printed (immobilized) BMP-2 to 

assess the influence of pro-inflammatory and anti-inflammatory microenvironments on spatially-

directed stem cell differentiation.  

 
5.3 MATERIALS AND METHODS 

5.3.1 Cell Culture 

Mouse J774A.1 macrophage cells (ATTC, Manassas, VA) were grown in RPMI media 

(Invitrogen, Carlsbad, CA), 10% fetal bovine serum (FBS; Atlas Biological, Fort Collins, CO) 

and 1% penicillin-streptomycin (PS; Invitrogen, Carlsbad, CA). Mouse Fetal Skin Dendritic 

Cells (FSDCs) were grown in RPMI media, 10% FBS, 1% PS with 8mM Glutamax (Invitrogen, 

Carlsbad, CA) as previously described [13]. Multipotent Mouse C2C12 cells (ATTC, Manassas, 

VA) were grown in DMEM (high glucose; Invitrogen, Carlsbad, CA), 10% FBS and 1% PS. 

Unipotent mouse MC3T3-E1 subclone 4 cells (ATTC, Manassas, VA) were grown in α-

Modified Eagle’s Media (α-MEM; Invitrogen, Carlsbad, CA), 10% FBS and 1% PS.  

Multipotent Muscle-Derived Stem Cells (MDSCs) were isolated from primary mouse 

gastrocnemius muscle biopsies following a modified preplate technique [14] and were grown in 

DMEM (high glucose), 10% horse serum (HS; Invitrogen, Carlsbad, CA), 10% FBS, 0.5% Chick 

Embryo Extract (Gemini Bio-Products, West Sacramento, CA) as previously described [14, 15]. 

Since MDSCs are a primary cell line, 3 different isolates were used to account for isolate-to-

isolate variability. Due to heterogeneity in cell growth, different seeding densities were used for 

different MDSC isolates. Isolate 1 was obtained from female mice while isolate 2 (D15/2) and 

isolate 3 (MTT PP6) were obtained from male mice. All isolates were obtained from 3 week old 

C57/BL/6 mice. All cells were kept at 37oC, 5% CO2 in a humidified incubator. 
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5.3.2 Conditioned Media 

Mouse J774A.1 macrophage cells and FSDCs were seeded at a density of 1 x 106 cells per 100 

mm Petri dish overnight. The next day, the media was aspirated and 10 mL fresh media was 

added. Cells were subsequently treated with nothing (Control), 100 ng/mL Escherichia coli LPS 

(Sigma-Aldrich, St Louis, MO; InvivoGen, San Diego, CA), 100 ng/mL IL-10-Fc (A kind gift 

from Dr. Zheng Xin Xiao, University of Pittsburgh, PA) and 100 ng/mL LPS with 100 ng/mL 

IL-10-Fc. After 48 h post-treatment, the conditioned media is collected and centrifuged at 110 g, 

4oC for 5 min to remove cells and debris. The conditioned media is then aliquoted and stored at -

80oC until further use. 

 
5.3.3 Osteogenic Differentiation 

To initiate osteogenic differentiation, cells were grown in their RPMI media containing 10% 

FBS and 1% PS (Unconditioned media) or immune cell-conditioned media in the presence of 

100 ng/mL BMP-2 (Medtronic, Minneapolis, MN) for 4-6 days with a media change every 48 h. 

This media is subsequently referred to as osteogenic media or osteogenic conditions for the 

remainder of the text. C2C12 cells were seeded at a density of 1.55 x 104 cells/cm2 overnight. 

MC3T3-E1 cells were seeded at a density of 2.32 x 104 cells/cm2 overnight. Due to heterogeneity 

in cell growth, different seeding densities were used for different MDSC isolates. MDSC cells 

(Isolate 1, female) were seeded at a density of 6.19 x 104 cells/cm2 overnight. MDSC cells 

(Isolate 2, male) were seeded at a density of 4.12 x 104 cells/cm2 overnight. MDSC cells (Isolate 

3, male) were seeded at a density of 1.03 x 104 cells/cm2 overnight. For experiments involving 

use of fibrin-coated coverslips, 1 µg/mL aprotinin (Sigma-Aldrich, St Louis, MO) was added to 

the media to minimize fibrin degradation. 
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5.3.4 ALP Stain 

Cells were fixed for 1 – 2 min in 3.7% formaldehyde. Alkaline phosphatase activity (ALP; 

Sigma-Aldrich, St Louis, MO) was detected according to the manufacturer’s instructions. For 

image analysis, regions of ALP activity (blue) were identified using two methods of image 

analysis which produced comparable results (Data not shown). 

 
In one method, regions of positive ALP activity were selected using the color select tool in 

Adobe Photoshop 7.0 (Adobe Systems, San Jose, CA). These regions were copied into a new 

image and converted to a grayscale image. The average pixel intensity was determined using the 

image histogram tool in Adobe Photoshop 7.0.  

 
Alternatively, images were analyzed using a customized spectral unmixing algorithm written in 

Matlab R2010 (Mathworks Inc., Natick, MA) by Elvira Osuna-Highley based on prior work by 

Newberg et al. [16]. This customized algorithm quantifies the level of ALP staining by blind 

spectral unmixing by non-negative matrix factorization. Briefly, simple linear unmixing is 

defined by: V = W × H, where V is the source image, an (m × n)-by-c matrix (the number of 

colors, c, is 3 for RGB images), W is the color-bases matrix, a c-by-r matrix (where r is the 

number of sources to be separated), and H is the unmixed image of the same size as the source 

image. Because of experimental variation, the spectra of immunocytochemical dyes are often not 

consistent across every image, making simple 123 linear unmixing inappropriate. Thus, non-

negative matrix factorization was used to blindly unmix the images [16]. Briefly, non-negative 

matrix factorization assumes that each stain contributes non-negatively to the overall image 

intensity. This method has been shown to be effective in unmixing brightfield images [16]. Blind 

spectral unmixing by non-negative matrix factorization uses a different color matrix, W, for each 
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image. H is randomly initialized and non-negative matrix factorization is used to solve for the 

non-negative matrix factors W and H by iteratively minimizing the distance between V and W × 

H. The post-processing of H into a new unmixed image was similar to that of linear unmixing, in 

which each channel was scaled and then remapped into the image data channels. The unmixed 

image was summed to determine the amount of ALP staining. 

 
5.3.5 Growth Factor Preparation and Use 

Recombinant human BMP-2 (Medtronic, Minneapolis, MN)was reconstituted according to 

manufacturer’s instructions to 1-2 mg/mL, aliquoted and stored at -80oC. Prior to use, BMP-2 

was freshly diluted to the desired concentration in 10 mM sodium phosphate, pH 7.4. 

 
5.3.6 Preparation of Fibrin Coated Coverslips 

Homogenous fibrin films were prepared essentially as described by Campbell et al., 2005 [17]. 

Briefly, 18 x 18 mm epoxy-silanized glass coverslips (Thermo Fisher Scientific, Waltham, MA) 

were coated with 0.1 mg/mL fibrinogen (Aventis Behring, King of Prussia, PA or American 

Diagnostica Inc., Stanford, CT) and converted into fibrin by incubating coverslips in 4 U/mL 

thrombin (Enzyme Research Laboratories, South Bend, IN). Coverslips were then washed with 

phosphate buffered saline (PBS) and sterile deionized water before air-drying in a laminar flow 

hood. The thickness of the fibrin films was previously estimated to be approximately 20 nm [17]. 

 
5.3.7 Growth Factor Printing 

Prior to printing, GFs were freshly diluted to the desired concentration in 10 mM sodium 

phosphate, pH 7.4. Prior to filling the inkjet with the GF, the printhead was sterilized by rinsing 

with 70% ethanol followed by sterile deionized water. The bio-ink, consisting of 100-200 µg/ml 

GF was loaded into the printhead, and printed onto fibrin-coated glass coverslips as previously 
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described [17, 18]. The concentration of inkjetted GFs can be modulated by overprinting, which 

is achieved by varying the number of times a GF is deposited in the same (x,y) location. In the 

case of hand-printed GF patterns, 1-2 µL of a 100 µg/mL GF solution was pipetted onto a fibrin-

coated glass coverslip instead and a diamond scribe pen was used to mark the droplet perimeter 

after it had been allowed to air-dry for 1h at 37oC. After printing, fibrin-coated coverslips were 

incubated in PBS for 5 min followed by serum-free DMEM with 1% PS overnight at 37°C, 5% 

CO2 to wash off unbound GF prior to cell seeding. The surface concentration of GF present on 

fibrin-coated coverslips during cell seeding was estimated based on desorption measurements in 

previous studies [17-21]. 

 
5.3.8 Statistical Analysis 

For analysis of ALP-stained images, one-way analysis of variance followed by Tukey’s honestly 

significant difference post hoc test using SYSTAT 9 software (Systat Software Inc., Richmond, 

CA) was performed to determine significance among treatment groups. A p value ≤ 0.05 was 

considered statistically significant. 

 
5.4 RESULTS 

5.4.1 Effect of FSDC and J774A.1 Cell Conditioned Media on ALP Expression in MC3T3-E1 

Cells 

By staining for the osteoblast marker ALP, the effect of unconditioned media as well as FSDC 

and J774A.1 cell conditioned media on MC3T3-E1 cells were investigated. In unconditioned 

media experiments, ALP expression was upregulated in unconditioned media containing BMP-2 

with respect to its counterparts that lacked BMP-2 (p = 0.001 for Control vs Control+BMP-2, p = 

0.004 for LPS vs LPS+BMP-2, p = 0.001 for IL-10 vs IL-10+BMP-2 and p = 0.002 for LPS with 
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IL-10 vs LPS with IL-10+BMP-2; Figure 5.1A and C). In addition, ALP expression in LPS 

unconditioned media containing BMP-2 was not different with respect to Control unconditioned 

media containing BMP-2 (p > 0.999 for Control+BMP-2 vs LPS+BMP-2; Figure 5.1A and C).  

 
In FSDC conditioned media experiments, ALP expression was upregulated in Control, IL-10, 

and LPS with IL-10 conditioned media containing BMP-2 with respect to its counterparts that 

lacked BMP-2 (p = 0.005 for Control vs Control+BMP-2, p = 0.002 for IL-10 vs IL-10+BMP-2 

and p = 0.022 for LPS with IL-10 vs LPS with IL-10+BMP-2; Figure 5.1B and D). However, 

ALP expression in LPS conditioned media containing BMP-2 was not different when compared 

to LPS conditioned media lacking BMP-2 (p = 0.983; Figure 5.1D). In addition, ALP expression 

in LPS conditioned media containing BMP-2 was downregulated with respect to Control 

conditioned media that contained BMP-2 (p = 0.056 for Control+BMP-2 vs LPS+BMP-2; Figure 

5.1B and D). These results indicated that LPS media conditioned by FSDCs inhibited MC3T3-

E1 osteoblast differentiation whereas unconditioned LPS media did not (Figure 5.1). In addition, 

this inhibitory effect on osteoblast differentiation was indirectly rescued through IL-10 addition 

during conditioned media generation. 

 
In J774A.1 cell conditioned media experiments, ALP expression was upregulated in Control, IL-

10, and LPS with IL-10 conditioned media containing BMP-2 with respect to its counterparts 

that lacked BMP-2 (p < 0.001 for Control vs Control+BMP-2, p < 0.001 for IL-10 vs IL-

10+BMP-2 and p < 0.001 for LPS with IL-10 vs LPS with IL-10+BMP-2; Figure 5.2B and D). 

However, ALP expression in LPS conditioned media containing BMP-2 was not different when 

compared to LPS conditioned media lacking BMP-2 (p > 0.999; Figure 5.2D). In addition, ALP 

expression in LPS conditioned media containing BMP-2 was downregulated with respect to 
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Control conditioned media that contained BMP-2 (p < 0.001 for Control+BMP-2 vs LPS+BMP-

2; Figure 5.2B and D). These results indicated that LPS media conditioned by J774A.1 cells 

inhibited MC3T3-E1 osteoblast differentiation whereas unconditioned LPS media did not 

(Figure 5.2). In addition, this inhibitory effect on osteoblast differentiation was indirectly rescued 

through IL-10 addition during conditioned media generation. 
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Figure 5.1. Effect of FSDC conditioned media (t = 48h) on expression of osteoblast marker ALP 
(blue) in mouse MC3T3-E1 cells after 4 days. A. For unconditioned media experiments, ALP 
expression was upregulated in the presence of Control, LPS, IL-10, and LPS with IL-10 
conditioned media containing 100 ng/mL BMP-2. B. For conditioned media experiments, ALP 
expression was upregulated in the presence of Control, IL-10, and LPS with IL-10 conditioned 
media containing 100 ng/mL BMP-2 but not LPS conditioned media. C. Quantification of ALP 
expression in unconditioned media experiments. D. Quantification of ALP expression in 
conditioned media experiments. Scale bar is 200 µm. Error bars indicate Standard Error Mean or 
SEM (n = 9). *, Significantly different from its respective non-BMP-2 treated counterpart; p ≤ 
0.05. +, Significantly different from Control conditioned media containing 100 ng/mL BMP-2; p 
≤ 0.05. 
 

134 
 



 
Figure 5.2. Effect of J774A.1 cell conditioned media (t = 48h) on expression of osteoblast 
marker ALP (blue) in mouse MC3T3-E1 cells after 4 days. A. For unconditioned media 
experiments, ALP expression was upregulated in the presence of Control, LPS, IL-10, and LPS 
with IL-10 conditioned media containing 100 ng/mL BMP-2. B. For conditioned media 
experiments, ALP expression was upregulated in the presence of Control, IL-10, and LPS with 
IL-10 conditioned media containing 100 ng/mL BMP-2 but not LPS conditioned media. C. 
Quantification of ALP expression in unconditioned media experiments. D. Quantification of 
ALP expression in conditioned media experiments. Scale bar is 200 µm. Error bars indicate 
Standard Error Mean or SEM (n = 6). *, Significantly different from its respective non-BMP-2 
treated counterpart; p ≤ 0.05. +, Significantly different from Control conditioned media 
containing 100 ng/mL BMP-2; p ≤ 0.05. 
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5.4.2 Effect of J774A.1 Cell Conditioned Media on ALP Expression in MDSC Cells 

To determine that the inhibitory effect of LPS conditioned media on osteoblast differentiation 

was not restricted only to cell lines but applicable to primary cell isolates, the previous 

experiments were repeated using unconditioned media as well as J774A.1 cell conditioned media 

on 3 MDSC isolates (1 female, 2 males).  

 
The effects of unconditioned and J774A.1 cell conditioned media on osteoblast differentiation 

for the first MSDC isolate (female) are summarized in Figure 5.3. In unconditioned media 

experiments, ALP expression was upregulated in unconditioned media containing BMP-2 with 

respect to its counterparts that lacked BMP-2 (p < 0.001 for Control vs Control+BMP-2, p < 

0.001 for LPS vs LPS+BMP-2, p < 0.001 for IL-10 vs IL-10+BMP-2 and p < 0.001 for LPS with 

IL-10 vs LPS with IL-10+BMP-2; Figure 5.3A and C). In addition, ALP expression in LPS 

unconditioned media containing BMP-2 was not different with respect to Control unconditioned 

media containing BMP-2 (p = 0.933 for Control+BMP-2 vs LPS+BMP-2; Figure 5.3A and C). In 

conditioned media experiments, ALP expression was upregulated in Control, LPS, IL-10, and 

LPS with IL-10 conditioned media containing BMP-2 with respect to its counterparts that lacked 

BMP-2 (p < 0.001 for Control vs Control+BMP-2, p < 0.001 for LPS vs LPS+BMP-2, p < 0.001 

for IL-10 vs IL-10+BMP-2 and p < 0.001 for LPS with IL-10 vs LPS with IL-10+BMP-2; Figure 

5.3B and D). In addition, ALP expression in LPS conditioned media containing BMP-2 was not 

different with respect to Control conditioned media that contained BMP-2 (p > 0.999 for 

Control+BMP-2 vs LPS+BMP-2; Figure 5.3B and D). These results indicated that both 

unconditioned and conditioned LPS media generated by J774A.1 cells did not inhibit MDSC 

osteoblast differentiation in this particular isolate (Figure 5.3). 
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Figure 5.3. Effect of J774A.1 cell conditioned media (t = 48h) on expression of osteoblast 
marker ALP (blue) in mouse MDSCs (Isolate 1, female) after 6 days. A. For unconditioned 
media experiments, ALP expression was upregulated in the presence of Control, LPS, IL-10, and 
LPS with IL-10 conditioned media containing 100 ng/mL BMP-2. B. For conditioned media 
experiments, ALP expression was upregulated in the presence of Control, LPS, IL-10, and LPS 
with IL-10 conditioned media containing 100 ng/mL BMP-2. C. Quantification of ALP 
expression in unconditioned media experiments. D. Quantification of ALP expression in 
conditioned media experiments. Scale bar is 200 µm. Error bars indicate Standard Error Mean or 
SEM (n = 9). *, Significantly different from its respective non-BMP-2 treated counterpart; p ≤ 
0.05. +, Significantly different from Control conditioned media containing 100 ng/mL BMP-2; p 
≤ 0.05. 
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The effects of unconditioned media and J774A.1 cell conditioned media on osteoblast 

differentiation in the second MSDC isolate (male) are summarized in Figure 5.4. In 

unconditioned media experiments, ALP expression was upregulated in unconditioned media 

containing BMP-2 with respect to its counterparts that lacked BMP-2 (p < 0.001 for Control vs 

Control+BMP-2, p < 0.001 for LPS vs LPS+BMP-2, p < 0.001 for IL-10 vs IL-10+BMP-2 and p 

< 0.001 for LPS with IL-10 vs LPS with IL-10+BMP-2; Figure 5.4A and C). In addition, ALP 

expression in LPS unconditioned media containing BMP-2 was not different with respect to 

Control unconditioned media that contained BMP-2 (p = 0.660 for Control+BMP-2 vs 

LPS+BMP-2; Figure 5.4A and C). In conditioned media experiments, ALP expression was 

upregulated in Control, IL-10, and LPS with IL-10 conditioned media containing BMP-2 with 

respect to its counterparts that lacked BMP-2 (p < 0.001 for Control vs Control+BMP-2, p < 

0.001 for IL-10 vs IL-10+BMP-2 and p < 0.001 for LPS with IL-10 vs LPS with IL-10+BMP-2; 

Figure 5.4B and D). However, ALP expression in LPS conditioned media containing BMP-2 was 

not different when compared to LPS conditioned media lacking BMP-2 (p = 0.427; Figure 5.4D). 

In addition, ALP expression in LPS conditioned media containing BMP-2 was downregulated 

with respect to Control conditioned media that contained BMP-2 (p < 0.001 for Control+BMP-2 

vs LPS+BMP-2; Figure 5.4B and D). These results indicated that in this particular isolate, LPS 

media conditioned by J774A.1 cells inhibited MDSC osteoblast differentiation whereas 

unconditioned LPS media did not (Figure 5.4). In addition, this inhibitory effect on osteoblast 

differentiation was indirectly rescued through IL-10 addition during conditioned media 

generation. 
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Figure 5.4. Effect of J774A.1 cell conditioned media (t = 48h) on expression of osteoblast 
marker ALP (blue) in mouse MDSCs (Isolate 2, male) after 4 days. A. For unconditioned media 
experiments, ALP expression was upregulated in the presence of Control, LPS, IL-10, and LPS 
with IL-10 conditioned media containing 100 ng/mL BMP-2. B. For conditioned media 
experiments, ALP expression was upregulated in the presence of Control, IL-10, and LPS with 
IL-10 conditioned media containing 100 ng/mL BMP-2 but not LPS conditioned media. C. 
Quantification of ALP expression in unconditioned media experiments. D. Quantification of 
ALP expression in conditioned media experiments. Scale bar is 200 µm. Error bars indicate 
Standard Error Mean or SEM (n = 6). *, Significantly different from its respective non-BMP-2 
treated counterpart; p ≤ 0.05. +, Significantly different from Control conditioned media 
containing 100 ng/mL BMP-2; p ≤ 0.05. 
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The effects of unconditioned media and J774A.1 cell conditioned media on osteoblast 

differentiation in the third MSDC isolate (male) are summarized in Figure 5.5. In unconditioned 

media experiments, ALP expression was upregulated in unconditioned media containing BMP-2 

with respect to its counterparts that lacked BMP-2 (p < 0.001 for Control vs Control+BMP-2, p < 

0.001 for LPS vs LPS+BMP-2, p < 0.001 for IL-10 vs IL-10+BMP-2 and p < 0.001 for LPS with 

IL-10 vs LPS with IL-10+BMP-2; Figure 5.5A and C). In addition, ALP expression in LPS 

unconditioned media containing BMP-2 was not different with respect to Control unconditioned 

media that contained BMP-2 (p = 0.641 for Control+BMP-2 vs LPS+BMP-2; Figure 5.5A and 

C). In conditioned media experiments, ALP expression was upregulated in Control, IL-10, and 

LPS with IL-10 conditioned media containing BMP-2 with respect to its counterparts that lacked 

BMP-2 (p < 0.001 for Control vs Control+BMP-2, p < 0.001 for IL-10 vs IL-10+BMP-2 and p < 

0.001 for LPS with IL-10 vs LPS with IL-10+BMP-2; Figure 5.5B and D). However, ALP 

expression in LPS conditioned media containing BMP-2 was not different when compared to 

LPS conditioned media lacking BMP-2 (p = 0.964; Figure 5.5D). In addition, ALP expression in 

LPS conditioned media containing BMP-2 was downregulated with respect to Control 

conditioned media that contained BMP-2 (p < 0.001 for Control+BMP-2 vs LPS+BMP-2; Figure 

5.5B and D). These results indicated that in this particular isolate, LPS media conditioned by 

J774A.1 cells inhibited MDSC osteoblast differentiation whereas unconditioned LPS media did 

not (Figure 5.5). In addition, this inhibitory effect on osteoblast differentiation was indirectly 

rescued through IL-10 addition during conditioned media generation. 
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Figure 5.5. Effect of J774A.1 cell conditioned media (t = 48h) on expression of osteoblast 
marker ALP (blue) in mouse MDSCs (Isolate 3, male) after 4 days. A. For unconditioned media 
experiments, ALP expression was upregulated in the presence of Control, LPS, IL-10, and LPS 
with IL-10 conditioned media containing 100 ng/mL BMP-2. B. For conditioned media 
experiments, ALP expression was upregulated in the presence of Control, IL-10, and LPS with 
IL-10 conditioned media containing 100 ng/mL BMP-2 but not LPS conditioned media. C. 
Quantification of ALP expression in unconditioned media experiments. D. Quantification of 
ALP expression in conditioned media experiments. Scale bar is 200 µm. Error bars indicate 
Standard Error Mean or SEM (n = 6). *, Significantly different from its respective non-BMP-2 
treated counterpart; p ≤ 0.05. +, Significantly different from Control conditioned media 
containing 100 ng/mL BMP-2; p ≤ 0.05. 
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5.4.3 Effect of J774A.1 Cell Conditioned Media on ALP Expression in C2C12 Cells 

Since GFs are capable of binding to the ECM in vitro and in vivo, the effect of J774A.1 cell 

conditioned media on ALP expression in C2C12 cells was assessed using immobilized patterns 

of BMP-2 created by inkjet printing (Figure 5.6). In such conditioned media experiments, C2C12 

cells grown on printed patterns of BMP-2 showed increased ALP expression for Control, IL-10, 

and LPS with IL-10 conditioned media when compared to Non-Printed Control (p < 0.001 for 

Control vs Non-Printed Control, p < 0.001 for IL-10 vs Non-Printed Control and p = 0.036 for 

LPS with IL-10 vs Non-Printed Control; Figure 5.6) as well as LPS conditioned media (p < 

0.001 for Control vs LPS, p < 0.001 for IL-10 vs LPS and p = 0.032 for LPS with IL-10 vs LPS; 

Figure 5.5). In addition, C2C12 cells grown on printed patterns of BMP-2 in LPS with IL-10 

conditioned media showed an ALP staining intensity intermediate between Control conditioned 

media and LPS conditioned media (p < 0.001 for Control vs LPS with IL-10 and p = 0.032 for 

LPS vs LPS with IL-10; Figure 5.5). Together, these results indicate that similar to liquid-phase 

experiments (where the BMP-2 is diffusing freely in solution; Figure 5.1, Figure 5.2, Figure 5.3 

and Figure 5.4), solid-phase or immobilized patterns of BMP-2 were inhibited from directing 

C2C12 osteoblast differentiation in LPS media conditioned by J774A.1 cells. In addition, this 

inhibitory effect on osteoblast differentiation was indirectly rescued through IL-10 addition 

during conditioned media generation. 
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Figure 5.6. Effect of J774A.1 cell conditioned media on expression of osteoblast marker ALP 
(blue) in mouse C2C12 cells grown on printed BMP-2 patterns after 4 days. A. ALP staining of 
C2C12 cells. ALP expression was upregulated within printed BMP-2 patterns in the presence of 
Control, IL-10, and LPS with IL-10 conditioned media compared to Non-Printed Control. No 
difference in ALP expression was observed between LPS conditioned media compared to Non-
Printed Control. Scale bar is 500 µm. B. Quantification of ALP expression within printed BMP-2 
regions. Error bars indicate Standard Error Mean or SEM (n = 8). *, Significantly different from 
Non-Printed Control; p ≤ 0.05. **, Significantly different from Control conditioned media; p ≤ 
0.05. +, Significantly different from LPS conditioned media; p ≤ 0.05. 
 
5.5 DISCUSSION 

5.5.1 Effect of Immune Cell Conditioned Media on ALP Expression in MC3T3-E1 Cells 

Prior work had previously determined that addition of LPS and IL-10 to immune cell cultures 

activated dendritic cells and macrophages towards a type 1 pro-inflammatory and type 2 anti-

inflammatory response, respectively [12]. The goal of this chapter was to characterize the effect 

of pro-inflammatory and anti-inflammatory microenvironments on osteoblast differentiation 

(Figure 5.1, Figure 5.2, Figure 5.3, Figure 5.4 and Figure 5.5).  
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In MC3T3-E1 cells, the presence of LPS and IL-10 in unconditioned media did not perturb 

BMP-2-induced ALP expression when compared to Control unconditioned media (Figure 5.1A 

and C). In addition, IL-10 media and LPS with IL-10 media conditioned by FSDCs did not 

perturb BMP-2-induced ALP expression when compared to Control conditioned media (Figure 

5.1B and D). However, LPS media conditioned by FSDCs inhibited BMP-2-induced ALP 

expression (Figure 5.1B and D). This inhibitory effect on BMP-2-induced ALP expression was 

rescued in LPS with IL-10 media conditioned by FSDCs (Figure 5.1B and D).   Similarly, IL-10 

media and LPS with IL-10 media conditioned by J774A.1 cells did not perturb BMP-2-induced 

ALP expression when compared to Control conditioned media (Figure 5.2B and D). However, 

LPS media conditioned by J774A.1 cells inhibited BMP-2-induced ALP expression (Figure 5.2B 

and D). This inhibitory effect on BMP-2-induced ALP expression was rescued in LPS with IL-

10 media conditioned by J774A.1 cells (Figure 5.2B and D). Together, these results illustrate that 

although LPS and IL-10 do not have a direct effect on MC3T3-E1 osteoblast differentiation, LPS 

conditioned media inhibited osteoblast differentiation and this inhibitory effect was rescued 

using LPS with IL-10 conditioned media (Figure 5.1 and Figure 5.2). 

 
5.5.2 Effect of Immune Cell Conditioned Media on ALP Expression in MDSCs 

To ensure that the inhibitory effect of LPS conditioned media on osteoblast differentiation was 

not only restricted to cell lines but applicable to primary cells, these experiments were repeated 

using primary MDSCs. To rule out isolate-to-isolate variability, a total of 3 isolates (1 female, 2 

male) were used (Figure 5.3, Figure 5.4 and Figure 5.5). 
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In all three isolates, the presence of LPS and IL-10 in unconditioned media did not perturb BMP-

2-induced ALP expression when compared to Control unconditioned media (Figure 5.3A and C, 

Figure 5.4A and C, and Figure 5.5A and C).  

 
In the first isolate (female), LPS media conditioned by J774A.1 cells did not inhibit BMP-2-

induced ALP expression (Figure 5.3B and D). This indicated that LPS conditioned media did not 

have an inhibitory effect on BMP-2-induced ALP expression in this particular isolate. However, 

in the second and third isolate (both males), LPS media conditioned by J774A.1 cells inhibited 

BMP-2-induced ALP expression (Figure 5.4B and D, and Figure 5.5B and D). This inhibitory 

effect on BMP-2-induced ALP expression was rescued in LPS with IL-10 media conditioned by 

J774A.1 cells (Figure 5.4B and D, and Figure 5.5B and D). This indicated that LPS conditioned 

media had an inhibitory effect on BMP-2-induced ALP expression in these two particular 

isolates. These contrasting results demonstrate the heterogeneous nature of MDSCs and may be 

attributed to a variety of factors including sex difference, variability in the cell isolation 

technique and differences in initial cell seeding density. 

 
Together, these results illustrate that although LPS and IL-10 did not have a direct effect on 

MDSC osteoblast differentiation, LPS conditioned media inhibited osteoblast differentiation (in 

two of three isolates) and this inhibitory effect was rescued using LPS with IL-10 conditioned 

media (Figure 5.3, Figure 5.4 and Figure 5.5). 
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5.5.3 Effect of Immune Cell Conditioned Media on ALP Expression in C2C12 Cells 

As described in Chapter 1, growth factors (GFs) occur naturally both in the liquid-phase (freely-

diffusing in solution) as well as in the solid-phase (immobilized or bound to the ECM) [22]. In 

addition, sequestration of GFs by the ECM can alter the bioavailability and bioactivity of a 

particular GF [22]. Since the preceding experiments involved osteoblast differentiation using 

liquid-phase BMP-2, inkjet printed patterns of BMP-2 were used to assess the impact of type 1 

pro-inflammatory and type 2 anti-inflammatory microenvironments on osteoblast differentiation 

(Figure 5.6). In these experiments utilizing J774A.1 cell conditioned media, C2C12 cells grown 

on printed patterns of BMP-2 in Control, IL-10, and LPS with IL-10 conditioned media showed 

increased ALP expression when compared to Non-Printed Control and LPS conditioned media, 

indicating that LPS conditioned media inhibited osteoblast differentiation (Figure 5.6). In 

addition, C2C12 cells grown on printed patterns of BMP-2 in LPS with IL10 showed levels of 

ALP expression intermediate between Control conditioned media and LPS conditioned media, 

indicating that the inhibitory effect of LPS conditioned media could be rescued (Figure 5.6). 

Together, these data suggest that similar to liquid-phase experiments, type 1 pro-inflammatory 

microenvironments inhibit BMP-2-induced osteoblast differentiation whereas type 2 anti-

inflammatory microenvironments can rescue this inhibitory effect. 

 
5.6 CONCLUSIONS 

This chapter identified LPS and IL-10 as being capable of directing the activation of immune 

cells such as dendritic cells and macrophages towards type 1 pro-inflammatory and type 2 anti-

inflammatory pathways to create inhibitory or permissive microenvironments for osteoblast 

differentiation in several musculoskeletal progenitor/stem cells, respectively. This chapter also 

highlights the heterogeneous nature of primary cells in regards to their response under pro-
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inflammatory and anti-inflammatory microenvironments. The capability to modulate the 

inflammatory response to create pro-inflammatory and anti-inflammatory microenvironments not 

only offers an approach to study the physiological role of stem cells during wound healing in 

vitro, but may also be translatable to new therapies to treat disease and trauma of the 

musculoskeletal system. 
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CHAPTER 6: REAL TIME ADAPTIVE SUBCULTURE OF PROGENITOR CELLS 
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6.1 ABSTRACT 

Current cell culture practices are dependent upon human operators and remain laborious and 

highly subjective, resulting in large variations and inconsistent outcomes, especially when using 

visual assessments of cell confluency to determine the appropriate time to subculture cells. 

Although efforts to automate cell culture with robotic systems are underway, the majority of 

such systems still require human intervention to determine when to subculture. Thus, it is 

necessary to accurately and objectively determine the appropriate time for cell passaging. 

Optimal stem cell culturing that maintains cell pluripotency while maximizing cell yields will be 

especially important for efficient, cost-effective stem cell-based therapies. Toward this goal a 

real-time computer vision-based system that monitors the degree of cell confluency with a 

precision of 0.791 ± 0.031 and recall of 0.559 ± 0.043 was developed. The system consists of an 

automated phase-contrast time-lapse microscope and a server. Multiple dishes are sequentially 

imaged and the data is uploaded to the server that performs computer vision processing, predicts 

when cells will exceed a pre-defined threshold for optimal cell confluency, and provides a Web-

based interface for remote cell culture monitoring. Human operators are also notified via text 

messaging and e-mail 4 hours prior to reaching this threshold and immediately upon reaching 

this threshold. This system was successfully used to direct the expansion of a paradigm stem cell 

population, C2C12 cells. Computer-directed and human-directed control subcultures required 3 

serial cultures to achieve the theoretical target cell yield of 50 million C2C12 cells and showed 

no difference for myogenic and osteogenic differentiation. This automated vision-based system 

has potential as a tool toward adaptive real-time control of subculturing, cell culture optimization 

and quality assurance/quality control, and it could be integrated with current and developing 

robotic cell cultures systems to achieve complete automation. 
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6.2 INTRODUCTION 

The use of stem cells for in vitro models of biological processes or for in vivo cell-based  

therapies typically requires total initial cell numbers that exceed those normally available from a 

single isolate of primary cells [1-6]. To produce sufficient numbers of cells requires first 

inducing proliferation in vitro utilizing standard subculturing processes whereby cells 

undergoing proliferation in each culture vessel are periodically subdivided and re-plated into 

multiple vessels through several passages [1]. The decision on when to passage cells is currently 

based on a human operator’s visual assessment of cell confluency, which refers to the amount of 

space in a tissue culture vessel that is occupied by cells and reflects cell population density. 

Predetermined schedules of time-points for subculturing might be sufficient for growing well 

characterized, established cell lines [7-10]. However, in general, unpredictable changes or 

disturbances in culture conditions [11] or large variations in isolate-to-isolate applications of 

primary cells [12, 13] dictate that subculture be adaptively determined on-the-fly by direct 

observation of confluence over time [14]. Traditionally, human operators manually estimate 

confluence by microscopic observations and subsequently decide on the appropriate time for 

performing subculture. Presently, the majority of automated or semi-automated cell culture 

systems that are commercially available or in development still rely on either human oversight or 

a pre-determined schedule to monitor cell cultures [7-10, 14]. While there are systems that use 

electrical impedance measurements of the cell-substrate as an indirect but automatic measure of 

confluence [15], some human oversight will still likely be required to monitor the process, 

including observing cell density and morphology to ensure optimal culture quality. The use of 

human operators to make decisions on subculturing is highly subjective and prone to intra- and 

inter-operator variability [7]. And, in the production of clinical-grade cells, the high cost of 
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skilled labor substantially increases the costs of quality control (QC) and quality assurance (QA) 

operations [16]. Furthermore, it is not practical or cost-effective for human operators to manually 

observe and monitor cell cultures continuously, and therefore key events such as the optimal 

times to perform subculture or identify problems might be missed. Delayed subculturing can 

result in cell overgrowth, which leads to loss of stem cell differentiative potential or stemness 

[11, 17], whereas premature subculturing can lead to longer production times to achieve targeted 

cell yields, with associated added costs. The overall lack of reproducibility and control of clinical-

grade cell expansion processes is a major concern of government regulatory bodies since this has 

a direct impact on product performance and product reproducibility [18-20]. In addition, the lack 

of subculture standardization and reproducibility hampers scaled, robust and cost-effective 

manufacture of cells and has been cited as a major hurdle in the development of stem cell 

engineered products [7, 16].   

 
Therefore, whether using a manual or robotic cell culture system, there is a need to automate 

monitoring of and decision-making for the subculturing process [16]. To begin to address this 

need, machine vision technology has been applied to detect cells and measure confluence to 

determine the appropriate time to culture cells [17, 21]; however, the images derived from this 

system are similar to that of a brightfield microscope and as such, of low-contrast [21], making it 

difficult to verify cell detection performance. Additionally, this system did not incorporate real-

time predictive modeling of cell growth, and lacks the capability to function as part of a QA/QC 

system by raising warning alarms if growth was not progressing as expected and, in manually 

operated systems, as a tool to alert human operators in a timely manner to make preparations for 

subculture. 
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Herein a new technology platform for continuous, fully automated monitoring, analysis, and 

predictive growth modeling of phase-contrast time-lapse microscopy imaging of the subculturing 

process has been developed. This platform is based on a previously developed real-time, 

computer vision-based cell tracking system [22], which is capable of tracking all cells and their 

lineages in an image sequence at high levels of confluence with high levels of accuracy and is 

amenable to analysis with population growth modeling tools [23]. These components are 

combined within the framework of a Web-based human-computer interface whereby images are 

acquired at 5 minute-intervals and uploaded to a server for image processing and analysis to 

predict future confluency. These results can be viewed over the Web, allowing human operators 

to conveniently monitor the process remotely. Furthermore, the system alerts the operators by 

email and text messaging 4 hours prior to reaching a pre-defined confluency threshold so that 

preparations for cell culture can be made, and an additional reminder is sent when the predefined 

threshold for confluency is reached. This system was validated by directing the expansion of 

mouse C2C12 cells as a paradigm stem cell population with the criterion that confluency must 

not exceed 0.5 (50%) in order to minimize the incidence of myoblast fusion that would otherwise 

deplete the stem cell population. Subsequently, C2C12 cells were differentiated towards 

myogenic and osteogenic fates to confirm that cells retained their capacity to differentiate into 

multiple cell types following cell expansion.  

 
6.3 MATERIALS AND METHODS 

6.3.1 Cell Culture 

Mouse C2C12 cells (ATTC, Manassas, VA) were grown in Dulbecco’s Modified Eagle’s Media 

(DMEM; Invitrogen, Carlsbad, CA), 10% fetal bovine serum (Invitrogen, Carlsbad, CA) and 1% 

penicillin-streptomycin (PS; Invitrogen, Carlsbad, CA).  For myogenic differentiation, cells were 
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grown in low serum containing myogenic differentiation media (DMEM, 2% Heat-inactivated 

horse serum, 1% PS) for 4 days with media renewal every 48 hours. For osteogenic 

differentiation, cells were grown in complete serum containing 100 ng/mL BMP-2 (Genetics 

Institute, Cambridge, MA) for 4 days with media renewal every 48 hours. Cells were kept at 

37oC, 5% CO2 in a humidified incubator. 

 
6.3.2 Phase-Contrast Time-Lapse Microscopy 

Time-lapse phase-contrast microscopy was performed using a Zeiss Axiovert T135V microscope 

(Carl Zeiss Microimaging, Thornwood, NY) equipped with a 5X, 0.15 N.A. phase-contrast 

objective, a custom-stage incubator capable of housing up to four 35mm Petri dishes, and InVitro 

software 3.2 (Media Cybernetics Inc., Bethesda, MD). Three fields of view representative of the 

cell density from each dish were selected, resulting in a total of 12 fields of view per culture 

experiment for both human- and computer-directed subculture experiments. Microscope images 

contained 1392 x 1040 pixels with a resolution of 1.3µm/pixel. Images were acquired at a 

frequency of every 5 minutes over a course of 1.5 – 3 days as determined by either the human 

operator or computer-generated confluency measurements. 

 
6.3.3 Confluency Measurement and Evaluation 

Every 5 minutes, a set of phase-contrast microscope images was acquired (12 different fields of 

view from 4 Petri dishes) and the images were automatically uploaded from the local microscope 

computer to a server (Open Cirrus™, a HP/Intel/Yahoo! Open Cloud Computing Research 

Testbed, https://opencirrus.org/) via a fast and versatile file copying tool known as rsync [24], 

which is available at http://www.samba.org/ftp/rsync/rsync.html. The server also contained the 
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computer vision-based cell tracking software, which segmented each image to identify and label 

cell and non-cell regions [25].  

 
Confluency for each image was calculated by dividing the number of pixels labeled as ‘cells’ 

over the total number of pixels in the image. The overall confluency was then calculated by 

averaging the confluency values from an entire image set (12 images) acquired at a single time 

point. To evaluate the accuracy of the algorithm, 3 phase-contrast images containing cells at 

different levels of confluency (low, medium and high) were printed onto a piece of paper and 

manually segmented using a red marker pen to trace the outline of cells. These cell tracings were 

then digitized using a Hewlett Packard Scanjet 5550c flatbed scanner (Hewlett Packard, Palo 

Alto, CA). Then, the cell tracings were selected using the ‘Color Range’ tool in Adobe 

Photoshop 7.0 (Adobe Systems, San Jose, CA) and manually filled in with color using the 

‘Paintbrush’ tool to generate a binary image consisting of cell and non-cell regions. Where 

necessary, a combination of the ‘Paintbrush’ and ‘Eraser’ tools was used to touch up the images 

because the scanner did not accurately capture the cell tracings. Pixels that contained cells in 

both the manually segmented and computer segmented images were considered true positives. 

Pixels that contained cells in the computer segmented images but did not overlap with cell 

positive regions in the manually segmented images were considered false positives. Pixels that 

contained cells in the manually segmented images but did not overlap with cell positive regions 

in the computer segmented images were considered false negatives. Pixels in the manually 

segmented images that did not contain any cells were considered true negatives. ‘Precision’ was 

defined as true positives divided by the sum of true positives and false positives. ‘Recall' was 

defined as true positives divided by the sum of true positives and false negatives. 
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6.3.4 Confluency Prediction and Notification 

The algorithm for confluency prediction was written in Matlab® (Mathworks, Natick, MA) and 

ran on a server, which is part of the HP/Intel/Yahoo!’s Open Cirrus™ Project. For the server, a 

virtual machine running a dual core processor and 2 GB Ram was created. For each set of 

images, the average confluency for the previous 300 frames was fitted to a 2nd order polynomial 

curve using the Matlab® polyfit() function and the estimated confluency in the next 4 hours was 

determined using the Matlab® polyval() function. If the value of the estimated confluency within 

the next 4 hours was greater than or equal to the threshold for confluency (0.5), the Matlab® 

sendmail() function was used in conjunction with Matlab® TxtMsgCreate to send an email and 

text message via a Gmail (Google Inc., Mountain View, CA) simple mail transfer protocol 

(SMTP) server.  Similarly, a reminder email and text message was also sent when the threshold 

for confluency had been reached. 

 
6.3.5 Cell Calculator User Interface Tool 

The web calculator interface was developed using HTML and Javascript to facilitate calculation 

of the theoretical cell yield. At the beginning of the experiment, the target number of cells and 

the initial number of dishes were entered into the calculator by the user. Subsequently, during 

cell passaging, the average number of cells obtained per dish was obtained using a 

hemocytometer and this number was entered into the web calculator. If the total number of cells 

harvested was more than or equal to the target number of cells, a ‘Stop experiment’ message was 

displayed and broadcast to signal that the experiment should be terminated. Otherwise, a 

‘Continue experiment’ message was issued and the user replated the cells at low density into 

additional Petri dishes for further cell expansion until the target cell number was achieved. For 

these experiments, a subculture ratio of 1:8 was assumed. 
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6.3.6 Real-time Adaptive Culture 

C2C12 cells were seeded at a density of 1.5 x 104 cells/35mm dish (~ 0.156 x 104 cells/cm2) and 

allowed to attach for 3-6 hours prior to initiating phase-contrast time-lapse microscopy. Cells 

were cultured until an average confluency of 0.5 was reached in 4 dishes as determined by either 

the human operator or computer-generated confluency measurements. Both human- and 

computer-directed subculture observations were limited to 12 fields of view per culture 

experiment. At ~ 0.5 confluency, the cells were trypsinized and the total number of cells were 

manually determined with the aid of a hemocytometer. This number was entered into the web-

based cell calculator. If the total number of cells was less than the target number of cells, the 

experiment was continued and a serial culture of cells was plated for a subsequent round of cell 

expansion with monitoring of cultures via phase-contrast time-lapse microscopy. For each serial 

culture, a subculture ratio of 1:8 was assumed. The experiment was terminated when the total 

cell number was equal to or more than the target number of cells. Following this, the 

differentiation capability of this expanded population of cells were tested by growing these under 

osteogenic and myogenic conditions and subsequently performing staining for osteogenic 

(Alkaline phosphatase; ALP), myogenic (Myogenin) and pluripotency (Pax7) markers. 

 
6.3.7 Alkaline Phosphatase (ALP) Staining 

Cells were seeded into 12 well plates at a density of 12 x 104 cells/well or 3.16 x 104 cells/cm2 

under osteogenic and control conditions for 4 days. Cells were washed in PBS and fixed for 2 

min in 3.7% formaldehyde. ALP activity was detected according to the manufacturer’s 

instructions (Kit 86C, Sigma-Aldrich, St. Louis, MO). Where required, ALP-stained images 

were converted to CMYK format since this color format is representative of reflected light colors 

as opposed to emitted light colors (RGB). Since cyan and magenta form the color blue, these 
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channels were added together and inverted. The ‘levels’ tool and the ‘histogram’ tool in Adobe 

Photoshop 7.0 were used to normalize the background and determine the average pixel intensity, 

respectively. Statistical analysis was performed as described below. 

 
6.3.8 Myogenin and Pax7 Immunofluorescence Staining 

Cells were seeded into 35mm glass-bottom Petri dishes at a density of 30 x 104 cells/dish or 3.16 

x 104 cells/cm2 under myogenic conditions for 4 days. Cells were washed in PBS, fixed in 

methanol for 5 min, air-dried and blocked with 10% donkey serum (Jackson Immunoresearch, 

West Gove, PA) for 20 min at room temperature (RT). For mouse-on-mouse staining, an 

additional blocking step was performed by incubating cells with 100 µg/mL donkey anti-mouse 

FAB (Jackson Immunoresearch, West Gove, PA) for 1 h at RT. Cells were then rinsed with wash 

buffer (PBS, 0.1% BSA) and incubated with primary antibodies: rabbit anti-myogenin (2 µg/mL; 

Santa Cruz Biotechnology Inc, Santa Cruz, CA) and mouse anti-Pax7 (2 µg/mL; Santa Cruz 

Biotechnology Inc, Santa Cruz, CA) overnight at 4oC. Cells were then rinsed three times with 

wash buffer and incubated with secondary antibodies for 1 h at RT – donkey anti-mouse Dylight 

488 nm and donkey anti-rabbit Dylight 649 (15 µg/mL each; Jackson Immunoresearch, West 

Gove, PA). Lastly, cells were rinsed 5 times with wash buffer and imaged using a Zeiss Axiovert 

200M microscope (Carl Zeiss Microimaging, Thornwood, NY) equipped with a LED light 

source.  

 
6.3.9 Statistical Analysis 

A student’s t-test was performed using Microsoft Excel software (Microsoft Corporation, 

Redmond, WA) to determine significance among treatment groups. A p-value ≤ 0.05 was 

considered statistically significant. 
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6.4 RESULTS 

6.4.1 Real-time Adaptive Subculture System 

The overall scheme of the real-time adaptive subculture system is summarized in Figure 6.1. The 

automated computer vision system comprised of an automated phase-contrast time-lapse 

microscope that acquired images every 5 minutes from multiple dishes housed in a heated-stage 

incubation chamber. These phase-contrast images were subsequently uploaded with Rsync to a 

server, where computer vision processing was used to identify cells within each image to 

determine the degree of confluency (Figure 6.1 and Figure 6.2). Predictive modeling employing 

a 2nd order polynomial fit was empirically found to be most suitable for predicting C2C12 

growth (Figure 6.3 and Figure 6.4) and was used to determine when the level of confluency 

would reach a user-defined threshold of 0.5 confluency (Figure 6.1, Figure 6.5 and Figure 6.6). 4 

hours prior to reaching this threshold, the predictive modeling subroutine alerted the human 

operator, via text messaging and email to make preparations for cell culture (Figure 6.1 and 

Figure 6.8).  In addition, the web-based application facilitated remote monitoring of confluency 

in individual dishes as well as confluency measurements and predictions via the Internet (Figure 

6.5). When cells reached the threshold for confluency, another email and text message was sent 

to remind the user (Figure 6.1, Figure 6.7). The cells were then subcultured and the total number 

of cells was determined (Figure 6.1 and Figure 6.8). If the target cell number was achieved, the 

experiment was terminated (Figure 6.1). Otherwise, the cells were re-plated at low density for 

further cell expansion and the process was repeated until the target cell number was reached 

(Figure 6.1).  
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Figure 6.1. Overall Scheme of Real-Time Adaptive Cell Culture System. Data are acquired 
using phase-contrast time-lapse microscopy and sent to a server for image processing where the 
confluency is calculated and predicted. 4 hours prior to reaching a predefined threshold for 
confluency (0.5 confluence), an email and text message is sent to alert the user to prepare for 
subculture. When the cells have achieved the threshold for confluency, another email and text 
message is sent to remind the user. The cells are subcultured and the total cell number is counted. 
If the target cell number has been achieved, the experiment is terminated. Otherwise, the cells are 
replated at low density for further cell expansion and the process is repeated until the target cell 
number is achieved. 
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Figure 6.2. Calculation and Evaluation of Confluency. A. Process of computer-generated 
confluency. (i) Original image. (ii) Image is inverted during the initial part of the restoration 
process to remove halo and shade-off artifacts. (iii) After restoration. (iv) Basic thresholding is 
applied to obtain a confluency mask. (v) The confluency mask is dilated to capture cellular 
processes that are hard to discern from background. (vi) The computer-generated confluency 
mask (green) is overlaid on top of the original image. B. Evaluation of computer-generated 
confluency versus human-generated confluency. (i) Human-generated cell tracing. (ii) The cell 
tracing is digitized and filled in to generate a confluency mask. (iii) The computer-generated 
confluency mask (green) is overlaid on top of the human-generated confluency mask (red) with 
overlapping regions (yellow, true positive) against the background (black, true negative). Green-
only regions (false positive). Red-only regions (false negative). (iv) The computer- (green) and 
human-generated (red) confluency masks are overlaid on top of the original image with 
overlapping regions highlighted (yellow). 
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Figure 6.3. Modeling C2C12 cell confluency by five methods utilizing every data point/frame: 
(1) 1st order polynomial (yellow line), (2) 2nd order polynomial (blue line), (3) 3rd order 
polynomial (green line), (4) logarithmic function (magenta line), (5) Exponential (red line). The 
computer-generated confluency measurement (black line) and the confluency threshold (grey 
line) are indicated. The 2nd order polynomial model fits the observed data (actual computed 
confluence) with the least root mean square error (RMSE). 1 data point/frame is equivalent to 5 
min. The data shown were derived from image sequences of C2C12 cells from 3 independent 
experiments, each with at least 4 replicates (n = 12). 
 

162 
 



 
 
Figure 6.4. Comparison of C2C12 cell confluency predictions utilizing every data point/frame 
(blue line) versus every 6th data point/frame (red cross). The computer-generated confluency 
measurement (black line) and the confluency threshold (grey line) are indicated. Both 2nd order 
polynomial models fit the observed data (actual computed confluence) with little-to-no 
difference in root mean square error (RMSE), indicating that every 6th data point/frame is 
sufficient to make accurate cell confluency predictions. 1 data point/frame is equivalent to 5 min. 
The data shown were derived from image sequences of C2C12 cells from 3 independent 
experiments, each with at least 4 replicates (n = 12). 
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Figure 6.5. Remote Monitoring of Confluency and Predictive Modeling via the Internet. A 
screen capture of the graphic user interface from the real-time adaptive cell culture system 
illustrating the calculated confluency level and predictions (top) and individual fields of view 
(bottom). 
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Figure 6.6. Confluency Prediction. A. Human-directed subculture. Confluency prediction was 
based on the human operator’s previous cell culture experience. The graphs show archived time- 
lapse image data from the human-directed subculture that was processed with the confluency 
prediction model for the purpose of comparison with the computer-directed subculture. B. 
Computer-directed subculture. The predefined threshold for confluency (blue line). The 
calculated confluency (red line). The predicted confluency (green line). 1 frame is equivalent to 5 
minutes. C. Variance in confluency prediction and actual confluency measurement in computer-
directed subculture. Variance (grey line) and trendline (black line) are as indicated. 
 

 
Figure 6.7. Email and Text Notification. A. 4 hours prior to reaching the predefined threshold 
for confluency, an email and text message is sent to alert the human user to prepare for 
subculture. B. Once the threshold for confluency is reached, a reminder email is sent.  
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Figure 6.8. Total Theoretical Cell Yield Achieved from Human- and Computer-directed 
Subcultures. A. Human-directed subculture. B. Computer-directed subculture. Both human- and 
computer-directed subcultures required 3 serial passages to achieve a theoretical cell yield of 50 
million C2C12 cells without exceeding 0.5 confluency. 
 
6.4.2 Evaluation of Confluency 

To determine the confluency in a given phase-contrast image (Figure 6.2Ai), a process known as 

restoration was applied (Figure 6.2Aii, Aiii) to generate an artifact-free image (Figure 6.2Aiii). 

Basic thresholding was subsequently used to obtain a binary image (Figure 6.2Aiv) consisting of 

cell (white) and non-cell regions (black), which was termed as a ‘confluency mask’. Taking into 

account that several cellular structures such as filopodia and lamellipodia were difficult to 

distinguish against the image background, this confluency mask was further dilated by a factor of 

8 (Figure 6.2Av). The resultant confluency mask (Figure 6.2Avi, green) was overlaid on top of 

the original image and showed good correspondence with regions containing cells. To quantify 

this correspondence, phase-contrast images at different levels of cell density were manually 

segmented using a red marker pen to trace the outline of cells (Figure 6.2Bi). The cell tracings 
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were digitized and filled in to generate confluency masks (Figure 6.2Bii). The human-generated 

confluency mask (Figure 6.2Biii, red and yellow regions) shows good correspondence with the 

computer-generated confluency mask (Figure 6.2Biii, green and yellow regions) with 

overlapping regions highlighted in yellow (Figure 6.2Biii, true positive) against the background 

(Figure 6.2Biii, black regions, true negative). Regions highlighted only in green and red were 

considered false positives and false negatives, respectively (Figure 6.2Biii). Some discrepancies 

between the human- and computer-generated confluency masks were observed, particularly for 

large, well-spread out cells (Figure 6.2Biv). The precision of the computer-generated confluency 

measurement was determined to be 0.791 ± 0.031 with a recall of 0.559 ± 0.043 (Table 6.1). 

 
Table 6.1. Confluence Measurements from Computer-Directed Subcultures. 

 ± SEM 

Difference between Time-to-Estimated Threshold for 

Confluency and Actual Threshold for Confluencya (hours) 

4 ± 0 

Average Confluency at Time of Notificationa 0.499 ± 0.003 

Precisionb (TP/TP+FP)c 0.791 ± 0.031 

Recallb (TP/TP+FN)c 0.559 ± 0.043 

a n = 3 independent experiments, b n = 3 phase-contrast images, c TP = true positive; FP = false 

positive; FN = false negative 

 
6.4.3 Performance of Real-time Adaptive Subculture System 

To determine if the performance of the real-time adaptive subculture system was similar to that 

of an experienced human operator, a set of human- and computer-directed cell expansions were 

performed. To facilitate such a comparison, time-lapse images from the human-directed cell 
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expansions were processed similarly as the computer-directed cell expansions a posteriori to 

determine confluency in human-directed cell expansions. Both human- and computer-directed 

subculture data showed similar performance in estimating and predicting when actual confluency 

(Figure 6.6A, B, red line) was close to the threshold for confluency (Figure 6.6, blue line). The 

predictive modeling performed poorly in the initial 200 frames (Data not shown) but 

progressively became more accurate as more data points were acquired and achieved a variance 

of close to zero (Figure 6.6A, B, green and red line, Figure 6.6C and Table 6.1). This enabled an 

accurate 4 hour prior notification (4 hours ± 0, σ2 = 0) of when the confluency threshold (0.499 ± 

0.003) would be exceeded (Figure 6.7 and Table 6.1). Using the criteria that C2C12 cells should 

not exceed a confluency of 0.5, both human- and computer-directed cell expansions required 3 

serial cultures to reach a theoretical yield of 50 million C2C12 cells (Figure 6.8) with an average 

cell yield of 22.71 ± 1.97 x 104 cells/dish and 19.92 ± 1.22 x 104 cells/dish, respectively (Table 

6.2). No significant difference was observed between the average cell yield obtained from 

human- and computer-directed cell expansions (p = 0.308).  

 
Table 6.2. Average Cell Yield per 35mm Petri Dish for Human- and Computer-directed 

Subcultures. 

 Number of Cells (x 104 cells 

per 35mm Petri dish) ± SEM 

Human-directed Subculture 22.71 ± 1.97  

Computer-directed Subculture 19.92 ± 1.22  
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In addition, human- and computer-expanded C2C12 cells showed increased ALP expression 

compared to control (p = 0.021 for human-directed cell expansion and p = 0.002 for computer-

directed cell expansion) in response to BMP-2 treatment, indicating that BMP-2-treated cells 

were differentiating towards an osteoblast fate (Figure 6.9). Furthermore, when grown under 

low-serum conditions to induce myogenesis, both human- and computer-expanded C2C12 cells 

stained positive for the myogenic marker, Myogenin in multi-nucleated and elongated myotubes 

(Myogenin, Figure 6.10) whereas undifferentiated mononuclear cells stained positive for the 

stem cell marker, Pax7 in the cell nucleus (Figure 6.10). Together, these results confirmed that 

both human- and computer-directed expanded cells maintained their stem cell capacity and were 

capable of undergoing osteogenic and myogenic differentiation under the appropriate conditions 

(Figure 6.9 and Figure 6.10). 

 
Figure 6.9. ALP Staining of Human- and Computer-directed Subcultures. A. ALP-stained plates. 
BMP-2-treated cells stain positive (blue) for the osteogenic marker, ALP. B. Quantification of 
ALP intensity (fold difference compared to control). This shows that cells expanded from both 
human- and computer-directed subcultures were still responsive to BMP-2-induced ALP 
expression, indicating that cells were differentiating towards an osteoblast fate. 
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Figure 6.10. Myogenin and Pax7 Staining of Human- and Computer-directed Subcultures. After 
96h in myogenic conditions, cells that have fused and differentiated towards a myocyte fate 
(elongated cells containing multiple nuclei) stain positive for the myogenic marker Myogenin 
(green). Undifferentiated cells stain positive for the stemness marker, Pax7 (red). This shows that 
cells expanded from both human- and computer-directed subcultures were capable of myocyte 
differentiation while undifferentiated cells retained their stemness marker. 
 
6.5 DISCUSSION 

6.5.1 Computer-Generated Cell Confluency Measurements for Manual and Adaptive Subculture 

Toward the goal of achieving complete automation and consistency for stem cell culture 

expansions, an automated computer vision-based system was developed for continuous 

monitoring and analysis of in vitro cell cultures to objectively determine the appropriate time to 

subculture cells based on confluency measurements (Figure 6.1). The main impetus for this work 

is that in the current state-of-art automated cell culture machines are capable of executing the cell 

passing procedure with high precision and minimal variability [7], however, they lack the ability 

to make adaptive decisions based on how fast or slow a culture of cells are growing. 

Furthermore, in manually-operated systems, estimation of confluency by human operators is 

highly subjective and dependent on the experience of the operator. The confluency measurement 

algorithm developed here may additionally serve as a useful training aid for new tissue culture 

users and help to reduce the subjective nature of confluency estimation.  

 
This system employs phase-contrast microscopy as it is a non-destructive imaging modality that 

is capable of generating high-contrast images of transparent specimens such as cells [26]. Thus, 
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cells can be easily visualized and imaged at high frequency, allowing the user to continuously 

monitor live cultures without affecting cell viability. Although an image acquisition period of 5 

minutes was utilized in these experiments, cells can be imaged at a higher or lower frequency in 

accordance to experimental requirements, with computer hard disk space and computer 

algorithm run-time being the only limitations. After image acquisition, the archived data is sent 

to a server for processing (Figure 6.2) and 2nd order polynomial curve fitting is used to predict 

future confluency (Figure 6.1, Figure 6.5 and Figure 6.6). Although the system is designed to be 

eventually autonomous when combined with a robotic-handling cell system, a human operator 

can remotely monitor the current and predicted levels of confluency as well as individual fields 

of view over the Internet (Figure 6.5). 4 hours prior to reaching a predefined threshold for 

confluency of 0.5, the human operator is alerted by the computer vision system via email and 

text messaging (Figure 6.7) to facilitate preparations such as warming media and various other 

reagents for cell culture. An additional reminder is sent when the predefined threshold for 

confluency is reached (Figure 6.7).  

 
Although a standard computer with a dual core processor and 2 GB Ram is sufficient for 

implementing the confluency measurement and predictions on a local machine, a server (cloud 

computing cluster) was utilized so that multiple experiments can be conducted in parallel from 

different microscope computers or locations. This capability was recently demonstrated for 

single-cell tracking experiments using image data acquired simultaneously from Tokyo, Japan 

and Pittsburgh, USA (Intel Developer Forum 2010, California, USA; data not shown). Rsync 

was chosen for facilitating file transfers because it utilizes a delta-transfer algorithm, which 

reduces the amount of data sent over the network by sending only the differences between the 

source files and the existing files in the destination [24]. The algorithms employed in this 
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automated computer vision-based system are efficient and can process one set of images (12 

phase-contrast images) prior to acquisition of the next set (within 5 minutes), enabling real-time 

monitoring and analysis of cell cultures. Although a high image acquisition rate is unnecessary 

for predicting confluency 4 hours ahead of time (Figure 6.4), it was used to demonstrate that 

accumulated photonic energy from a high image rate is non-detrimental to cell growth and that it 

would be feasible to eventually incorporate it into a real-time cell tracking software to monitor 

actively migrating and proliferating cells (Intel Developer Forum 2010, California, USA; data 

not shown), a process requiring high image rates. Furthermore, although less frequent data 

acquisition is adequate under normally progressing culture conditions (Figure 6.4), more 

frequent acquisition times would enable earlier identification of problems in a given culture, 

which may facilitate earlier interventions to mediate against possible loss of expensive or unique 

stem cell culture populations. 

 
6.5.2 Accuracy of Computer-Generated Cell Confluency Measurements 

Confluency, which is the percentage of the surface area in the cell culture vessel covered by 

cells, is traditionally used by cell biologists as a convenient indirect way to estimate the number 

of cells in a cell culture vessel. Thus, measuring confluency of an image area occupied by cells is 

an appropriate measure for estimating cell growth rates. The confluency algorithm utilized here 

segments cells on the basis of thresholding on the local intensity value of image pixels, a 

frequently applied methodology used in image segmentation. However, phase-contrast 

microscopy images have several characteristic halo and shade-off artifacts that arise as a result of 

technical limitations in the optical assembly of a phase-contrast microscope [26]. To improve 

segmentation results, a restoration process was applied to remove the halo and shade-off patterns 

to reconstruct an artifact-free image [25]. The output of the confluency algorithm has good 
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correspondence with manually annotated confluency (Figure 6.2B) with a precision of 0.791 ± 

0.031 and recall of 0.559 ± 0.043 (Table 6.1). Precision and recall were used to assess the 

performance of the computer-generated confluency measurements because they are widely 

employed performance metrics used for pattern recognition algorithms. In general, a precision 

and recall close to 1.0 indicates good recognition performance. Although some discrepancies 

between the human- and computer-generated confluency masks were observed, these errors 

stemmed largely from large, well-spread out cells whose cellular processes were difficult to 

discern from the image background (Figure 6.2Biv), resulting in low recall (0.559 ± 0.043) 

owing to higher false negatives (Figure 6.2Biv and Table 6.1). However, the precision (0.791 ± 

0.031) of the computer-generated confluency measurements is fairly high and these 

discrepancies in confluency measurement ultimately did not adversely impact C2C12 cell growth 

and differentiation (Figure 6.8, Figure 6.9 and Figure 6.10). Given that it is possible to segment 

cells with ease using computer vision technology, future improvements to the algorithm will 

incorporate additional measures such as cell density and assessment of cell shape, which may 

further inform cell culture decisions such as determining the percentage of differentiated cells in 

culture. 

 
6.5.3 Computer-Generated Cell Confluency Predictions 

To make confluency predictions, several data fitting models were empirically tested using 

previously acquired time-lapse phase contrast microscopy images of C2C12 cells and it was 

determined that that a 2nd order polynomial model produced the best curve fit (Figure 6.3) and 

that approximately 200 frames were required before prediction becomes reliable and the variance 

becomes lower than 0.001 (Figure 6.6). A 4 hour advance notification was used in conjunction 

with the prediction model because this was a sufficient time window to allow for planning if 
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personnel were on site, or for a reasonable transport timeframe back to the laboratory, and/or 

preparation for subculture. Although a 2nd order polynomial was empirically found to be most 

suitable for predicting C2C12 cell confluency (Figure 6.3) and adequate for expanding C2C12 

cells (Figure 6.9, Figure 6.10 and Table 6.2), this growth model may prove inadequate when 

culture conditions are altered or when different cell types are used. This is due to the sensitive 

nature of cells to their environments, which can be severely impacted by variability arising from 

cell handling, cell passage number, undefined media components such as fetal bovine serum as 

well as differences in growth and cell spreading rates when considering different cell types. For 

example, a population of cells that has been recently thawed from liquid nitrogen storage will 

display a slower rate of growth when compared to the same population after several passages. 

Mathematical models such as a 2nd order polynomial do not take perturbations in cell culture 

conditions into account and will exhibit poor performance when used under such scenarios. To 

overcome such limitations, a data-driven prediction model specific for C2C12 cells was 

developed by Yin et al. [23] using previously acquired time-lapse data. As long as cell culture 

conditions are constant, this model is able to predict confluency at least 8 hours in advance with 

a low error rate [23] and this will be incorporated into subsequent work.  

 
6.5.4 Adaptive Subculture of C2C12 Cells 

This system was successfully used to direct the expansion of C2C12 cells with the confluency 

threshold set at 0.5 (Figure 6.5, Figure 6.8, Figure 6.9, Figure 6.10, Table 6.1 and Table 6.2). 

C2C12 cells are utilized as a paradigm stem cell population because they are a multipotent cell 

line that has been previously shown to differentiate into cells of the musculoskeletal system [27-

31]. In addition, C2C12 cells are sensitive to the level of confluency and must not be allowed to 

become confluent, otherwise, cells will spontaneously fuse and deplete the progenitor or stem 
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cell population. Thus, such a cell line serves an excellent model for testing this real-time 

adaptive subculture system. Both human- and computer-directed subculture experiments each 

required 3 serial passages to theoretically reach a target number of 50 million cells (Figure 6.8) 

and showed no significant difference (p = 0.308) in average cell yields per dish (Table 6.2). 

 
Following cell expansion, C2C12 cells were differentiated towards osteogenic and myogenic 

fates to confirm that cells retained their capacity to differentiate into multiple cell types such as 

osteoblasts and myocytes (Figure 6.9 and Figure 6.10). In addition, undifferentiated mononuclear 

cells were shown to retain their stem cell identity as evidenced by positive staining for the 

stemness marker, Pax7 (Figure 6.10). 

 
It is interesting to note that although the computer-directed cell expansion had lower variability 

in terms of cell yield compared to the human-directed cell expansion (Table 6.1), it is not 

drastically different. This result may stem from the limitation that only 12 fields of view were 

utilized in this experiment. Although attempts were made to ensure that the 12 fields of view 

were representative of culture conditions in each of the 4 dishes, it is possible that sampling a 

larger number of fields of view may lower the variability observed from cell yield. In addition, 

the use of a hemocytometer for manual cell counting may have also contributed to an increase in 

cell yield variability due to sampling error. 

 
6.5.5 Adaptive Subculture for Stem Cell Manufacture and QA/QC 

Given that stem cell manufacture for different applications, including large-scale production for 

multiple patient use and small-scale production for autologous use, requires extensive ex vivo 

handling and expansion of cells from various tissue sources [32], a QA/QC system is vital to 

ensure robust production of cells that are of consistent quality. Although this system currently 
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does not incorporate warning alarms to alert users of potential problems associated with cell 

growth, such problems are easily noticed when overall cell confluency decreases. In such 

scenarios, individual fields of view can be observed remotely to identify problems (Figure 6.5). 

Future work will incorporate additional algorithms that detect and measure cell behaviors such as 

mitosis [33], apoptosis and cell fusion to provide a more comprehensive view of cell population 

behavior for maximizing stem cell growth while minimizing stem cell differentiation. Although 

the use of a microscope stage incubation chamber limited the number of petri dishes that can be 

observed at a particular given moment, it provided a representative overview of cell growth and 

confluency to facilitate manual stem cell production with little to no obvious loss in myogenic 

and ostegenic potential (Figure 6.9, Figure 6.10 and Table 6.2). In addition, this system can be 

integrated with existing commercially available robotic technology for handling cell culture 

flasks, allowing for the confluency of every individual flask or dish to be monitored provided 

that the time required for imaging the desired number of cell culture flasks does not exceed the 

image acquisition rate. In scenarios where a large numbers of cell culture vessels must be 

monitored, multiple instruments and computers may be employed in parallel to decrease the time 

required for image acquisition and image processing. 

 
6.6 CONCLUSIONS 

In summary, an automated computer vision-based system for adaptive subculture of stem cells 

based on confluency has been developed. Using mouse C2C12 cells as a paradigm stem cell 

population, this study demonstrated that both human- and computer-directed cell expansions had 

similar performance in terms of the number of serial passages required to reach a target cell 

yield. Furthermore, both human- and computer-expanded cell populations were capable of 

differentiating towards osteoblast and myocyte fates, indicating that stem cell capacity was not 
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lost during cell expansion. This capability offers an approach to reproducibly expand cell 

populations and may have applications in the manufacture of clinically-relevant cells and/or their 

cell-derived products.  Future work on this system will move towards complete automation of 

cell culture and QA/QC along with improved algorithm accuracy. 
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CHAPTER 7: CONCLUSIONS AND FUTURE DIRECTIONS 
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7.1 GROWTH-FACTOR PATTERNING AS A MEANS FOR PROVIDING 

BIOCHEMICAL CUES TO SPATIALLY CONTROL STEM CELL 

DIFFERENTIATION IN VITRO  

Although protocols for bone and muscle cell differentiation are well-established, this was not the 

case for tendon cell differentiation. The objective of Chapter 2 was to identify tendon-promoting 

GFs and employ them in conjunction with inkjet-based bioprinting of muscle- and bone-

promoting GFs to pattern a primitive MTB unit in vitro. Using immunofluorescence staining, 

members of the FGF family such as FGF-2 and FGF-4 were identified as tendon-promoting GFs 

on the basis of its ability to upregulate the tendon marker, Scx and downregulate the 

myofibroblast marker, SMA-α  [1]. Quantitative PCR studies further indicated that FGF-2 may 

upregulate scx expression via members of the Ets family of transcription factors, Pea3 and Erm, 

indicating that tendon cell differentiation shares a similar mechanism to tendon development in 

chick [1, 2]. To definitively establish that Pea3 and Erm were involved in Scx upregulation, it 

would be necessary to repeat the quantitative PCR studies with a siRNA against pea3 or erm. If 

Pea3 and Erm regulated scx expression, knockdown of pea3 and erm should correlate with little-

to-no change in Scx expression relative to control. However, if Pea3 and Erm were not involved 

in Scx regulation, knockdown of these 2 transcription factors should have no effect on FGF-2-

induced upregulation of scx.  

 

In inkjet-based bioprinting studies, immobilized patterns of FGF-2 were shown to upregulate Scx 

expression in C3H10T1/2 mesenchymal fibroblasts and C2C12 myoblasts in a dose-dependent 

manner [1]. To pattern a primitive MTB unit, FGF-2 was to be printed in conjunction with bone- 
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and muscle-promoting GFs. BMP-2 was employed as bone-promoting GF as it had been 

previously shown to induce osteoblast differentiation [3-5]. However, although IGF-2 was 

shown to promote muscle differentiation in a dose-depedent manner under low serum conditions 

(Chapter 2), it did not enhance muscle differentiation under high serum conditions (Data not 

shown). As such, MTB patterning studies relied only on FGF-2 and BMP-2 to spatially direct 

tendon and osteoblast differentiation in C2C12 muscle-progenitor cells, respectively, with 

spontaneous muscle cell differentiation occurring within regions of high cell density. Future 

work will seek to identify and screen for GFs and other signaling molecules that initiate muscle 

differentiation in stem cells. Potential candidates include members of the Wnt family [6-8] but 

technical limitations in expressing these highly insoluble recombinant proteins must be 

overcome. Alternatively, molecules such as N-cadherin which are known to induce myogenesis 

[9] but do not bind to the ECM may be engineered with ECM-binding domains to bind to ECM 

as well as direct muscle cell differentiation.  

 

During inkjet-based bioprinting studies, heterogeneity in cell responses (Chapter 2 and Chapter 

3) was observed. This may be a function of several factors, including: non-uniform GF 

distribution within the printed region following inkjet printing and GF drying [10]; GF 

desorption followed by readsorption prior to cell seeding [4, 11-13]; uneven cell density during 

cell seeding; cell heterogeneity [14]; cross-talk between cells located in adjacent patterns or, a 

combination of all these factors. Some of these limitations may be overcome by modifying the 

ECM-based substrate composition to augment GF-binding capability or engineering the GF to 

have enhanced ECM-binding capability. By increasing the affinities of the ECM and GF for each 
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other, the likelihood of GF desorption may be decreased. Alternatively, GFs may be covalently 

linked to the substrate after inkjet-based bioprinting to reduce GF desorption. 

 

The results from the studies described in Chapter 2 demonstrate that multiple GFs may be 

patterned simultaneously to direct multiple cell fates to produce a primitive MTB unit in vitro. 

Identifying GFs that promote myogenesis under high serum conditions as well as reducing the 

heterogeneity of printed pattern cell responses will improve and facilitate the patterning of more 

complex tissues.     

 

7.2 STEP FIBERS AS A MEANS FOR PROVIDING GEOMETRIC CUES TO 

CONTROL STEM CELL ALIGNMENT IN VITRO  

Although Chapter 2 demonstrated that inkjet-based bioprinting could pattern a MTB unit in vitro, 

it was necessary to demonstrate that cell alignment could also be controlled since cell orientation 

plays a critical role in the functioning of musculoskeletal tissues. Such examples include efficient 

force generation by parallel configurations of myofibers during muscle contraction [15-17] and 

fabrication of highly aligned and mechanically robust collagen matrices by tendon and bone cells 

for skeletal movement [18-23]. Using polystyrene and polyurethane-based STEP fibers, 

musculoskeletal stem cells were shown to exhibit contact guidance and align along the fiber 

length (Chapter 3). Upon coating with ECM proteins such as serum or fibrin, STEP fibers were 

patterned with GFs and seeded with C3H10T1/2 cells and C2C12 cells. These cells differentiated 

in register to the printed pattern(s) while simultaneously aligning along the fiber length (Chapter 

3). Actin staining of cells grown on fibers indicated that cells may be predisposed towards a 
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specific orientation through the modulation of mechanotransduction pathways via cytoskeletal 

rearrangements (Chapter 3). Perturbation of mechanotransduction pathways such as inhibtion of 

myosin II with blebbistatin [24] or inhibition of RhoGTPase [25] with Y-27632 or C3 transferase 

may yield insights into the mechanism of STEP fiber-induced cell alignment. Presently, efforts 

are underway to adapt the STEP fiber fabrication apparatus for in vivo studies. 

 

The results from the studies described in Chapter 3 demonstrate that multiple GFs may be 

patterned simultaneously onto highly oriented scaffolds (STEP fibers) to direct multiple cell fates 

as well as cell alignment to produce a primitive MTB unit in vitro. Future work will focus on 

elucidating the mechanism of STEP-fiber-induced cell alignment and characterizing the effect of 

STEP fibers on cell alignment in vivo. 

 

7.3 GROWTH-FACTOR PATTERNING AS A MEANS FOR PROVIDING 

BIOCHEMICAL CUES TO SPATIALLY CONTROL STEM CELL 

DIFFERENTIATION IN VIVO 

While Chapter 2 and Chapter 3 focused on the patterning of a primitive MTB unit in vitro, 

Chapter 4 sought to pattern MTB and PBM units in vivo. Prior to in vivo studies, several 

preliminary in vitro studies were performed to assess the suitability of an FDA-approved product 

called DermaMatrix (human acellular dermis) as a printing substrate and scaffold for supporting 

osteoblast and myocyte differentiation (Chapter 4). These preliminary studies indicated that 

DermaMatrix scaffold had a highly internal porous structure and could support C2C12 myoblast 

attachment as well as subsequent differentiation into myotubes (Chapter 4). In addition, in vitro 
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GF patterning experiments indicated that DermaMatrix scaffolds were amenable to GF printing 

and dose-dependently increased ALP expression in C2C12 cells when patterned with BMP-2 

(Chapter 4). In addition, using a similar methodology as in Chapter 2, FGF-2 was identified as 

being capable of upregulating the periosteum marker, Periostin in Rabbit muscle-derived cells 

(Chapter 4). Following this, DermaMatrix scaffolds were patterned with either muscle-, tendon- 

and bone-promoting GFs or periosteum-, bone- and bone marrow-promoting GFs and implanted 

in mice subcutaneously for 4-6 weeks to pattern MTB and PBM units in vivo. However, only 

ectopic bone tissue was spatially patterned in MTB patterning experiments while none of the 

desired tissues were spatially patterned in PBM patterning experiments (Chapter 4). This 

highlights a need to identify suitable BFs and the correct dosage required for in vivo experiments. 

In addition, PBM constructs had poor tissue formation owing to low cell infiltration. Increasing 

the porosity of the constructs by including polyurethane spacers may improve cell infiltration 

and tissue formation. Furthermore, it may be more challenging to pattern ectopic tissue as 

opposed to patterning a tissue within an orthotopic site. Presently, experiments are underway to 

pattern a MTB unit in an injured Achilles tendon mouse model.  

 

The results from the studies described in Chapter 4 demonstrate that GF patterning can spatially 

direct the formation of ectopic bone tissue in vivo but further GF and scaffold optimization is 

required for patterning a primitive MTB or PBM unit. Future work will focus on optimizing GF 

dosage as well as scaffold in an orthotopic model. 
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7.4 THE ROLE OF INFLAMMATION IN STEM CELL DIFFERENTIATION 

In Chapter 5 and Appendix A1, the effect of immune cell cross-talk between dendritic cells and 

macrophages was studied and the effect of inflammatory and anti-inflammatory 

microenvironments on osteoblast differentiation and mineralization were characterized. Using 

LPS and IL-10, immune cells were stimulated towards an inflammatory and anti-inflammatory 

phenotype, respectively (Kwan et al. [26], [27], Chapter 5 and Appendix A1).  

 

In immune cross-talk studies, LPS dose-dependently increased CD86 expression and the amount 

of NO production in J774A.1 cells, which are indicative of a type 1 phenotype (Appendix A1). 

Using griess reaction [26-28], FSDC conditioned media generated with LPS-conjugated beads 

activated J774A.1 cells towards a type 1 phenotype while FSDC conditioned media generated 

with IL-10-conjugated beads did not (Appendix A1). Similar results were obtained with the 

reciprocal experiment (Appendix A1). However, FSDC conditioned media generated with LPS- 

and IL-10-conjugated did not show decreased NO production relative to FSDC conditioned LPS-

conjugated beads (Appendix A1). This may be due to steric hinderance of LPS- and IL-10-

conjugated beads, resulting in activation of type 1 and type 2 phenotypes in subpopulations of 

J774A.1 cells (Appendix A1). Future work may employ beads that are smaller in size relative to 

FSDCs and J774A.1 cells. 

  

In studies characterizing the effect of inflammatory and anti-inflammatory microenvironments 

on osteoblast differentiation, conditioned media was harvested from type 1- and type 2-activated 

J774A.1 cells and FSDCs (Chapter 5). Inflammatory microenvironments (consisting of 
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conditioned media generated using LPS) were found to inhibit BMP-2-induced ALP expression 

in MC3T3-E1 cells, C2C12 cells and MDSCs while anti-inflammatory microenvironments 

(consisting of conditioned media generated using IL-10) did not (Kwan et al. [26] and Chapter 

5). In addition, this inhibition could be overcome by culturing cells in conditioned media 

generated using a combination of LPS and IL-10 (Kwan et al. [26] and Chapter 5). Furthermore, 

primary cells such as MDSCs demonstrated differing levels of sensitivity to LPS conditioned 

media with one isolate showing osteoblast differentiation that was not significantly inhibited 

relative to Control (Chapter 5). Although Chapter 5 was primarily devoted to studying the impact 

of inflammation on osteoblast differentiation, it would also be interesting to determine if 

inflammatory microenvironments had any detrimental effects on muscle and tendon 

differentiation. These would be relevant in diseases such as the muscular dystrophies as well as 

tedinopathy. 

 

To characterize the effect of LPS and IL-10 on osteoblast mineralization, MC3T3-E1 cells were 

grown in mineralization media in the presence of LPS, IL-10 or LPS with IL-10. MC3T3-E1 

cells cultured in the presence of LPS, IL-10 and LPS with IL-10 show decreased levels of 

mineralization relative to Control (Appendix A1). This inhibition in mineralization occurred in a 

manner independent of ALP expression. (Appendix A1). Presently, the effect of LPS and IL-10 

on bone healing is being studied in a mouse calvarial defect model. Furthermore, the effect of 

lipoteichoic acid (LTA), a component of gram-positive bacterial cell wall on osteoblast 

differentiation is presently being studied in vitro.   
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Together, these results demonstrate that during immune cell cross-talk, signaling molecules 

secreted by type 1-activated immune cells can activate neighboring cells to a type 1 phenotype 

and this activation can be reversed with IL-10. Also, inflammatory microenvironments were 

shown to inhibit BMP-2-induced osteoblast differentiation in several cell types and this 

inhibition can be reversed with anti-inflammatory microenvironments. Furthermore, the effect of 

LPS and IL-10 on osteoprogenitor cells is highly complex as direct treatment of MC3T3-E1 cells 

with these factors inhibit BMP-2-induced osteoblast mineralization in an ALP-independent 

manner. Future work will characterize the effect of LPS and IL-10 in vivo as well as the effects 

of other inflammatory molecules such as LTA in vitro. In addition, these experiments may also 

be repeated in the context of muscle and tendon cell differentiation. 

 

7.5 AUTOMATED CELL TRACKING AS A TOOL FOR STEM CELL PRODUCTION 

AND BIOLOGICAL CHARACTERIZATION OF STEM CELL BEHAVIOR 

In Chapter 6, Appendix A2, Appendix A3, Appendix A4 and Appendix A5, different software 

tools were developed to facilitate the in vitro monitoring of stem cells for ex vivo cell expansion 

and biological discovery.  

 

In Chapter 6 and Appendix A4, a computer vision-based system was developed for real-time 

adaptive subculture of stem cells. This system automatically measures cell confluency at 

frequent time-intervals, predicts future cell confluency and alerts a human operator several hours 

ahead of reaching a pre-defined confluency threshold so that cell culture preparations can be 

made in advance (Chapter 6 and Appendix A4). The system also permits a human operator to 
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monitor cell growth remotely via the Internet (Chapter 6). C2C12 cells grown using this 

computer-directed cell culture system required the same number of serial passages as those 

grown by a human operator to reach the target goal of 50 million cells (Chapter 6). In addition, in 

vitro differentiation assays indicated that cells grown by the computer-directed cell culture 

system were no different to cells grown by a human operator (Chapter 6). Future work will 

integrate this software system into a robotic cell culture system to fully automate the cell culture 

process. 

 

In Appendix A2 and Appendix A3, a software known as CTK was developed to facilitate both 

manual and automated cell tracking in phase-contrast time-lapse microscopy images as well as 

exporting of biologically relevant measurements such as various growth indices and indicators, 

the time taken for cell division, cell cycle length, cell speed, cell perimeter, cell area, cell 

confluence as well as a cell lineage tree. The software algorithms for automated cell tracking 

were robustly assessed with a single fully annotated image sequence (Target effectiveness = 

82.7% and Track purity = 68.3%) and 48 partially annotated image sequences (Appendix A2). 

The results indicated that although automated cell tracking can robustly detect and track cells in 

image sequences containing Control (Target effectiveness = 70.5%) and BMP-2-treated cells 

(Target effectiveness = 76.6%), changes in cell morphology for FGF-2-treated cells (Target 

effectiveness = 47.2%) and FGF-2 with BMP-2-treated cells (Target effectiveness = 58.6%) can 

dramatically reduce cell tracking capabilities (Appendix A2). An analysis of tracking errors was 

conducted by substituting human-based annotations for cell detection and cell division into the 

automated tracking system, resulting in a target effectiveness of 99.5% and a track purity of 

96.8%, indicating that further improvements need to be made with respect to cell detection and 
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cell division (Appendix A2). In addition, since biological interpretation of automated cell 

tracking results is entirely dependent on the construction of accurate cell lineages, it is vital that 

tracking errors are kept to a minimum, especially at the beginning of each image sequence as 

these errors may be further compounded with time. In Appendix A5, a new algorithm was 

developed for detecting cells using multiple DIC images. Presently, efforts are underway to 

improve cell detection algorithms by employing multi-modal (DIC and phase-contrast) imaging. 

In addition, a web-based version of the CTK software is being developed to facilitate real-time 

automated cell tracking.  

 

These results describe the development of computer vision-based tools for monitoring and 

characterizing stem cells in vitro. Future work will integrate the real-time adaptive subculture 

system into a robotic subculture system while further improvements will be made to automated 

cell tracking algorithms, especially with regards to cell detection and cell division. 

 

7.6 SUMMARY AND CONCLUSIONS 

This thesis utilized inkjet-based bioprinting to spatially pattern biochemical cues such as GFs to 

direct stem cell differentiation in vitro and in vivo. In addition, novel substrates and scaffolds 

such as fibrin-coated glass coverslips, STEP Fiber sand DermaMatrix were employed. In 

particular, the use of highly oriented STEP fibers in conjunction with GF patterning facilitated 

the simultaneous patterning of musculoskeletal stem cell alignment and differentiation, 

respectively. The biological principles utilized in these methods are applicable to biomaterial 

development and may prove useful in tissue engineering applications. In addition, the impact of 

inflammation on osteoblast differentiation was characterized while software tools for monitoring 
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stem cells were employed to facilitate stem cell expansion and biological discovery. The 

methods and principles developed here will be useful for controlling and monitoring stem cell 

behavior and may have potential applications in regenerative medicine.  
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A1.1 ABSTRACT AND RELEVANCE TO THESIS  

As described in Chapter 1 and Chapter 5, the capability to control inflammation to create a 

permissive microenvironment for efficient stem cell differentiation is crucial for understanding 

the tissue maintenance and repair. The work described here primarily reflects the efforts of 

Hirotaka Nakagawa, an undergraduate researcher in our lab who studied how immune cell 

activation was affected by crosstalk between dendritic cells and macrophages as well the direct 

effect of lipopolysaccharide (LPS) and Interleukin-10 (IL-10) on osteoblast mineralization. 

Using Griess assay and fluorescence activated cell analysis, LPS- and IL-10-free conditioned 

media demonstrated that immune cells such as Fetal Skin Dendritic Cells (FSDCs) and J774A.1 

macrophages can signal to one another to induce immune cell activation. Using alizarin red 

staining, LPS and IL-10 were shown to have a direct inhibitory effect on MC3T3-E1 fibroblast 

mineralization. Together, these results demonstrate that the cellular microenvironment is 

important in cell behaviors such as immune cell activation as well as osteoblast mineralization 

and may have potential use in tissue regeneration. 

 
A1.2 INTRODUCTION 

As described in Chapter 1 and Chapter 5, inflammation is an integral component of the wound 

healing process and can drastically alter cellular behavior. In addition, prior work performed in 

our lab (Kwan et al., 2011 [1]; Chapter 1 and Chapter 5) as well as by others in the field [2] have 

determined that the introduction of lipopolysaccharide (LPS; a component of gram-negative 

bacterial cell wall) and IL-10 (An immunomodulatory cytokine) directs immune cells such as 

dendritic cells and macrophages towards a type 1 (Classically activated; pro-inflammatory) or 

type 2 (Alternatively activated; anti-inflammatory) pathway, respectively. The studies described 
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herein seeks to characterize the effect of LPS- and IL-10-free conditioned media on FSDC and 

J774A.1 cell activation as well as the effect of LPS and IL-10 on MC3T3-E1 cell  mineralization.  

 
To characterize the effect of immune cell crosstalk on immune cell activation, conditioned media 

from FSDCs were used to culture J774A.1 cells and vice versa. However, the procedure used in 

Chapter 5 for generating conditioned media cannot be applied as there may be residual LPS and 

IL-10 left in the media. Thus, LPS and IL-10 were conjugated to sepharose beads for inducing 

immune cell activation whilst facilitating ease of separation of beads and media via 

centrifugation to generate LPS- and IL-10-free conditioned media. This step enables the 

culturing of FSDCs in J774A.1 cell conditioned media and vice versa without any residual LPS 

and IL-10 in the conditioned media. Both Griess reaction [3-5] and flow cytometry were used to 

monitor nitric oxide (NO) production and upregulation of the type 1 marker CD 86 [6], 

respectively, to assess type 1 immune cell activation.  

 
To characterize the effect of LPS and IL-10 on MC3T3-E1 cell mineralization, alizarin red 

staining was used to assess the extent of calcium deposition in LPS- and IL-10 treated cultures 

[7-9]. 

 
A1.3 MATERIALS AND METHODS 

A1.3.1 Cell Culture 

Mouse J774A.1 macrophage cells (ATTC, Manassas, VA) were grown in RPMI media 

(Invitrogen, Carlsbad, CA), 10% fetal bovine serum (FBS; Atlas Biological, Fort Collins, CO) 

and 1% penicillin-streptomycin (PS; Invitrogen, Carlsbad, CA). Mouse Fetal Skin Dendritic 

Cells (FSDCs) were grown in RPMI media, 10% FBS, 1% PS with 8mM Glutamax (Invitrogen, 

Carlsbad, CA) as previously described [10]. Unipotent mouse MC3T3-E1 subclone 4 cells 
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(ATTC, Manassas, VA) were grown in α-Modified Eagle’s Media (α-MEM; Invitrogen, 

Carlsbad, CA), 10% FBS and 1% PS.  All cells were kept at 37oC, 5% CO2 in a humidified 

incubator. 

 
A1.3.2 Conjugation of LPS and IL-10 to Sepharose Beads 

Epoxy activated, Sepharose CL-4B beads (Insight Genomics, Falls Church, VA) were 

conjugated to LPS (Sigma-Aldrich, St Louis, MO; InvivoGen, San Diego, CA) and IL-10-Fc (A 

kind gift from Dr. Zheng Xin Xiao, University of Pittsburgh, PA) according to manufacturer’s 

instructions. Conjugation of LPS to epoxy-activated Sepharose beads was confirmed by 

performing Griess Assay (Biotium Inc., Hayward, CA) on LPS-treated immune cells (Figure 1). 

Efficiency of IL-10 conjugation to epoxy-activated Sepharaose beads was estimated at 65 – 75% 

(Data not shown) using Pierce BCA assay (Thermo Fisher Scientific Inc., Rockford, IL).  

 
A1.3.3 Conditioned Media  

Mouse J774A.1 macrophage cells or FSDCs were seeded at a density of 20 x 104 cells per well 

(10.5 x 104 cells/cm2) in a 24 well plate overnight. The next day, the media was aspirated and 0.5 

mL fresh media was added. For experiments utilizing LPS- and IL-10 conjugated beads, cells 

were treated with 30 – 60 µL unconjugated beads (Control), 15 – 25 µL LPS-conjugated beads, 

15 – 35 µL IL-10-Fc-conjugated beads and 15 – 25 µL LPS-conjugated beads with 15 – 35 µL 

IL-10-Fc-conjugated beads. For experiments utilizing LPS-conjugated beads and 100 ng/mL IL-

10, cells were treated with nothing (Control), 15 – 25 µL LPS-conjugated beads, 100 ng/mL IL-

10 and LPS with IL-10 (15 – 25 µL LPS-conjugated beads and 100 ng/mL IL-10). After 48 h 

post-treatment, the conditioned media was collected and centrifuged at 110 g, 4oC for 5 min to 

remove beads and debris to generate LPS- and IL-10-free conditioned media. The conditioned 
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media was then used immediately or aliquoted and stored at -80oC until further use. Conditioned 

media generated using unconjugated beads, LPS beads, IL-10 beads and LPS with IL-10 beads 

were referred to as Control-stimulated conditioned media, LPS-stimulated conditioned media, 

IL-10-stimulated conditioned media and LPS with IL-10-stimulated conditioned media, 

respectively. Conditioned media generated using unconjugated beads, LPS-conjugated beads, 

100 ng/mL IL-10 and LPS-conjugated beads with 100 ng/mL IL-10 was referred to as control 

conditioned media, solid-phase LPS conditioned media, liquid phase IL-10 conditioned media 

and solid phase LPS with liquid-phase IL-10 conditioned media. 

 
To characterize the effect of immune cell crosstalk on immune cell activation, mouse J774A.1 

macrophage cells or FSDCs were seeded at a density of 20 x 104 cells per well (10.5 x 104 

cells/cm2) in a 24 well plate overnight. The next day, the media was aspirated and 0.5 mL of 

LPS-, IL-10- or LPS with IL-10-stimulated conditioned media was added. After 48 h post-

treatment, Griess assay was performed on the cell media. Where necessary, the immune cells on 

the well plate were detached using a cell scraper (for J774A.1 cells) or 0.05% trypsin 

(Invitrogen, Carlsbad, CA; for FSDCs) for flow cytometry analysis. If fixation was required, 

cells were fixed in 4% paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA) for 15 

mins, washed once with PBS and stored in PBS at 4oC until flow cytometry analysis. 

 
A1.3.4 Griess Assay 

NO detection (Biotium Inc., Hayward, CA) was performed according to the manufacturer’s 

instructions. 
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A1.3.5 Flow Cytometry 

Cell surface marker analysis on J774A.1 cells was performed using a flow cytometer (Becton 

Dickinson FACS DIVA, Becton, Dickinson and Company, Franklin Lakes, NJ). J774A.1 cells 

were washed with phosphate buffered saline (PBS; Fisher Scientific, Pittsburgh, PA), blocked 

with 1% BSA in PBS for 1 hour at 4 oC and subsequently washed in PBS prior to incubation 

with an antibody for the type I marker, FITC-conjugated rat anti-mouse CD86 (1:250 dilution, 

BD Biosciences, San Jose, CA) for 1 hour at 4 oC. Subsequently, cells were washed and analyzed 

on the flow cytometer. 

 
A1.3.6 Osteogenic Differentiation 

For mineralization experiments, MC3T3-E1 cells were grown in their respective growth media in 

the presence of 50 µg/mL ascorbic acid (Sigma-Aldrich, St Louis, MO), 10mM β-

glycerophosphate (Santa Cruz Biotechnology, Santa Cruz, CA) and 100 ng/mL BMP-2 

(Medtronic, Minneapolis, MN) for 18 – 21 days with a media change every 72 h. MC3T3-E1 

cells were seeded at a density of 10 x 104 cells per well (5.15 x 104 cells/cm2) in a 24-well plate 

overnight. 

 
A1.3.7 ALP Stain 

Cells were fixed for 1 – 2 min in 3.7% formaldehyde. Alkaline phosphatase activity (ALP; 

Sigma-Aldrich, St Louis, MO) was detected according to the manufacturer’s instructions. For 

image analysis, positive regions of ALP activity (blue) were identified using the color select tool 

in Adobe Photoshop 7.0 (Adobe Systems, San Jose, CA). These regions were copied into a new 

image and converted to a grayscale image. The average pixel intensity was determined using the 

image histogram tool. Alternatively, images were analyzed using a customized spectral unmixing 
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algorithm written by Elvira Osuna-Highley (Manscript in preparation) in Matlab R2010a 

(Mathworks, Natick, MA). Both methods of image analysis produced comparable results. 

 
A1.3.8 Alizarin Red Stain 

Cells were fixed for 15 min in 10% formalin at room temperature (RT). An osteogenesis assay 

kit (Millipore, Billerica, MA) was used according to the manufacturer’s instructions. 

 
A1.3.9 Statistical Analysis 

For quantification of ALP signal, alizarin red stain and FITC fluorescence, one-way analysis of 

variance followed by Tukey’s honestly significant difference post hoc test using SYSTAT 9 

software (Systat Software Inc., Richmond, CA) or STATPLUS2009 (AnalystSoft Inc., 

Alexandria, VA) to determine significance among treatment groups. A p value ≤ 0.05 was 

considered statistically significant. 

 
A1.4 RESULTS 

A1.4.1 Effect of LPS on J774A.1 Cell Activation 

The effects of LPS on J774A.1 cell activation are summarized in Figure A1.1. When J774A.1 

cells were treated with LPS, a dose-dependent increase in NO production was observed (p = 0.03 

for Control vs 50 ng/mL LPS, p < 0.001 for Control vs 100 ng/mL LPS and p < 0.001 for 

Control vs 200 ng/mL LPS; Figure A1.1A). In addition, LPS dose-dependently increased 

expression of the type 1 marker CD86 relative to Control (Figure A1.1B). Together, these results 

show that LPS can dose-dependently activate J774A.1 macrophages towards a pro-inflammatory 

type 1 phenotype. 
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Figure A1.1. Effect of LPS on J774A.1 cell activation. A. Effect of LPS on NO Production in 
J774A.1 cells. LPS dose-dependently increased NO production in J774A.1 cells. B. Effect of 
LPS on CD86 expression (Type 1 marker) in J774A.1 cells. LPS dose-dependently increased 
expression of type 1 marker CD86 in J774A.1 cells. Error bars indicate Standard Error Mean or 
SEM. *, Significantly different from Control; p ≤ 0.05. 
 
A1.4.2 Effect of LPS- and IL-10-free FSDC Conditioned Media on J774A.1 Cell Activation 

The effects of LPS-stimulated and IL-10-stimulated FSDC conditioned media on J774A.1 cell 

activation are summarized in Figure A1.2. When J774A.1 cells were treated with LPS-stimulated 

conditioned media, an increase in NO production was observed relative to Control while IL-10-

stimulated conditioned media did not (p < 0.001 for Control vs LPS, p > 0.99 for Control vs IL-

10 and p < 0.001  for Control vs LPS with IL-10; Figure A1.2A). However, LPS with IL-10-

stimulated conditioned media did not dramatically decrease NO production relative to LPS-

stimulated conditioned media (p = 0.57 for LPS vs LPS with IL-10; Figure A1.2A). Similarly, 

LPS-stimulated conditioned media increased expression of the type 1 marker CD86 relative to 

Control-stimulated conditioned media while IL-10-stimulated conditioned media did not (Figure 

A1.2B). However, LPS with IL-10-stimulated conditioned media did not dramatically decrease 

CD86 expression relative to LPS-stimulated conditioned media (Figure A1.2B). Together, these 

results show that LPS can dose-dependently activate J774A.1 macrophages towards a pro-

inflammatory type 1 phenotype. 
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Figure A1.2. Effect of LPS- and IL-10-free FSDC conditioned media on J774A.1 cell activation. 
A. Effect of LPS- and IL-10-free FSDC conditioned media on NO Production in J774A.1 cells. 
LPS-stimulated conditioned media increased NO production compared to control-stimulated 
conditioned media while IL-10-stimulated conditioned media did not increase NO production 
compared to control-stimulated conditioned media in J774A.1 cells. LPS and IL-10-stimulated 
conditioned media resulted in NO production intermediate between control- and LPS-stimulated 
conditioned media. B. Effect of LPS- and IL-10-free FSDC conditioned media on CD86 
expression (Type 1 marker) in J774A.1 cells. LPS-stimulated conditioned media increased CD86 
expression compared to control while IL-10-stimulated conditioned media did not increase CD86 
expression compared to control in J774A.1 cells. LPS and IL-10-stimulated conditioned media 
resulted in CD86 expression intermediate between control and LPS-stimulated conditioned 
media. Error bars indicate Standard Error Mean or SEM (n = 9). *, Significantly different from 
Control; p ≤ 0.05. 
 
A1.4.3 Effect of Solid-phase LPS and Liquid-Phase IL-10 J774A.1 Cell Conditioned Media on 

FSDC Activation 

The effects of solid-phase LPS and liquid-phase IL-10 FSDC conditioned media on J774A.1 cell 

activation are summarized in Figure A1.3. When J774A.1 cells were treated with solid-phase 

LPS or solid-phase LPS, NO production was increased relative to Control, respectively whereas 

liquid-phase IL-10 decreased NO production relative to control (p < 0.001 for Control vs LPS, p 

= 0.002 for Control vs IL-10 and p < 0.001 for Control vs LPS with IL-10; Figure A1.3). In 

addition, solid-phase LPS with liquid-phase IL-10 conditioned media decreased NO production 

relative to LPS-stimulated conditioned media (p < 0.001 for LPS vs LPS with IL-10; Figure 
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A1.3). Together, these results show that LPS can dose-dependently activate J774A.1 

macrophages towards a pro-inflammatory type 1 phenotype and this can activation can be 

attenuated with liquid-phase IL-10. 

 
Figure A1.3. Effect of solid-phase LPS and liquid-phase IL-10 J774A.1 cell conditioned media 
on FSDC activation. A. Effect of solid-phase LPS and liquid-phase IL-10 J774A.1 cell 
conditioned media on NO Production in FSDCs. Solid-phase LPS and solid-phase LPS with 
liquid-phase IL-10 conditioned media increased NO production compared to control while 
liquid-phase IL-10 conditioned media decreased NO production compared to control in FSDCs. 
Conditioned media generated using solid-phase LPS with liquid-phase IL-10 resulted in NO 
production intermediate between control and solid-phase LPS conditioned media. Error bars 
indicate Standard Error Mean or SEM (n = 12). *, Significantly different from Control; p ≤ 0.05. 
 
A1.4.4 Effect of LPS and IL-10 on MC3T3-E1 Cell Mineralization 

The effects of LPS and IL-10 on MC3T3-E1 cell mineralization are summarized in Figure A1.4 

and Figure A1.5. When MC3T3-E1 cells were grown in mineralization media, increased calcium 

deposition was observed in BMP-2-treated samples relative to non-BMP-2-treated counterparts 

(p < 0.001 for Control vs Control+BMP-2, p < 0.001 for LPS vs LPS+BMP-2, p < 0.001 for IL-

10 vs IL-10+BMP-2 and p < 0.001 for LPS with IL-10 vs LPS with IL-10+BMP-2). When 

MC3T3-E1 cells were treated with 100 ng/mL LPS, 100 ng/mL IL-10 or 100 ng/mL LPS with 
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100 ng/mL IL-10, alizarin red staining was decreased relative to Control (p < 0.001 for Control 

vs LPS, p = 0.002 for Control vs IL-10 and p < 0.001 for Control vs LPS with IL-10; Figure 

A1.4). This inhibition was independent of ALP staining (Figure A1.5). Together, these results 

indicate that LPS and IL-10 can inhibit BMP-2-induced osteoblast mineralization. 

 
Figure A1.4. Effect of LPS and IL-10 on MC3T3-E1 cell mineralization (Alizarin red staining) 
after 18 - 21 days. A. Alizarin red staining of LPS- and IL-10-treated MC3T3-E1 cells grown in 
the presence or absence of 100 ng/mL BMP-2. Alizarin red staining was not present in non-
BMP-2 treated cells. Alizarin red staining was present in Control, IL-10- and LPS with IL-10-
treated MC3T3-E1 cells, indicating that LPS and IL-10 directly inhibits MC3T3-E1 cell 
mineralization. B. Quantification of alizarin red staining in Control, LPS, IL-10 and LPS with 
IL-10-treated MC3T3-E1 cells. Error bars indicate Standard Error Mean or SEM (n = 9). +, 
Significantly different from its respective non-BMP-2 treated counterpart; p ≤ 0.05. *, 
Significantly different from Control conditioned media containing 100 ng/mL BMP-2; p ≤ 0.05. 
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Figure A1.5. Effect of LPS and IL-10 on Alkaline phosphatase (ALP; blue) expression in 
MC3T3-E1 cells after 18 - 21 days. A. ALP expression of Control-, LPS-, IL-10 and LPS with 
IL-10-treated MC3T3-E1 cells grown in the presence or absence of 100 ng/mL BMP-2 in 
mineralization media. Basal levels of ALP staining was present in non-BMP-2 treated cells. ALP 
expression was upregulated in BMP-2-treated MC3T3-E1 cells compared to non-BMP-2-treated 
counterparts. No differences in ALP expression were detected among Control-, LPS-, IL-10- and 
LPS with IL-10-treated MC3T3-E1 cells. B. Quantification of ALP staining in Control, LPS-, 
IL-10 and LPS with IL-10-treated MC3T3-E1 cells. Error bars indicate Standard Error Mean or 
SEM. *, Significantly different from its respective non-BMP-2 treated counterpart. 
 
A1.5 DISCUSSION 

A1.5.1 Effect of LPS- and IL-10-free Immune Cell Conditioned Media on Immune Cell Activation 

Prior work in our lab [1] and Chapter 5 had shown that addition of LPS and IL-10 to immune 

cell cultures activated dendritic cells and macrophages towards a type 1 pro-inflammatory and 

type 2 anti-inflammatory response, respectively. In addition, conditioned media obtained from 

type 1 activated cells were shown to inhibit osteoblast differentiation whereas conditioned media 

obtained from type 2 activated cells could rescue this inhibitory effect as determined by ALP 

staining (Kwan et al. [1] and Chapter 5). The goal of this chapter was to further characterize the 

effect of macrophage conditioned media on dendritic cell activation and vice versa (Figure A1.1, 

Figure A1.2 and Figure A1.3). In addition, the effect of LPS and IL-10 on osteoblast 

mineralization was also assessed (Figure A1.4 and Figure A1.5).  
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Type 1 activated cells show upregulation of type 1 surface markers such as CD86 as well as 

increased NO levels due to increased inducible NO synthase activity [2]. As such, the Griess 

reaction and flow cytometry were appropriate tools for determining type 1 activation of immune 

cells. When immune cells such as macrophages were treated with LPS, a dose-dependent 

increase in type 1 immune cell activation was observed as indicated by increased NO production 

and expression of type 1 marker CD86 (Figure A1.1). 

 
To assess the effect of J774A.1 cell conditioned media on FSDCs and vice versa, it was 

necessary to generate conditioned media that did not contain LPS or IL-10 since LPS and IL-10 

can directly activate immune cells. Using LPS- and IL-10-conjugated beads provided a simple 

means of generating LPS- and IL-10-free conditioned media. J774A.1 cells cultured in type 1-

activated FSDC conditioned media (LPS-stimulated conditioned media) showed increased NO 

levels and CD86 expression relative to Control-stimulated conditioned media (Figure A1.2). 

Similarly, FSDCs cultured in type 1-activated J774A.1 cell conditioned media (solid-phase LPS 

conditioned media) showed increased NO levels relative to Control conditioned media (Figure 

A1.3). Together, these results indicate that type 1-activated conditioned media contains 

molecules other than LPS which can a type 1 response (Figure A1.3). Cytokine analysis of 

immune cell conditioned media indicates that pro-inflammatory molecules such as Tumor 

Necrosis Factor-α (TNF-α) may be responsible [1, 2].  Although type 2-activated FSDC 

conditioned media (IL-10-stimulated conditioned media) did not increase J774A.1 cell type 1 

activation relative to Control-stimulated conditioned media, there was little-to-no 

downregulation of the type 1 response for J774A.1 cells cultured in LPS with IL-10-stimulated 

conditioned media (Figure A1.2) in stark contrast to previous experiments utilizing unconjugated 

LPS and IL-10 (Kwan et al. [1] and Chapter 5). This may be due to steric hindrance from the 
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beads (45 – 165 µm in diameter), which may prevent both LPS and IL-10 beads from contacting 

the same cell to exert an effect. When liquid-phase IL-10 was substituted in place of IL-10 beads 

during J774A.1 cell conditioned media generation, there was a pronounced attenuation of the 

type 1 response in FSDCs (Figure A1.3). Together, these studies show that crosstalk between 

immune cells such as dendritic cells and macrophages can result in activation of type 1 or type 2 

inflammatory phenotypes, highlighting the importance of the cellular microenvironment. 

 
A1.5.2 Effect of LPS and IL-10 on MC3T3-E1 Cell Mineralization 

As described in Chapter 5, prior experiments showed that LPS and IL-10 had little-to-no effect 

on osteoblast differentiation as determined by ALP staining. To assess the effect of LPS and IL-

10 on osteoblast mineralization, MC3T3-E1 cells were cultured in mineralization media 

containing LPS, IL-10 or LPS with IL-10 in the presence or absence of BMP-2 for about 3 weeks 

(Figure A1.4 and Figure A1.5). Alizarin red staining indicated that BMP-2-treated MC3T3-E1 

cells showed increased mineralization over their non-BMP-2-treated counterparts (Figure A1.4). 

However, BMP-2-treated MC3T3-E1 cells cultured in the presence of LPS, IL-10 and LPS with 

IL-10 showed decreased levels of mineralization relative to Control (Figure A1.4). A parallel 

experiment indicated that this inhibition occurred in a manner independent of ALP expression 

(Figure A1.5). Together, these results show that the interaction between LPS and IL-10 with 

progenitor and stem cells is highly complex and warrants further study. 

 
A1.6 CONCLUSIONS 

This chapter identified LPS and IL-10 as being capable of directing the activation of immune 

cells such as dendritic cells and macrophages towards and away from type 1 pro-inflammatory 

pathways, respectively. In addition, LPS- and IL-10-free conditioned media from type 1 
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activated J774A.1 macrophages could induce FSDCs towards a type 1 pathway as well as vice 

versa. This chapter also shows that LPS and IL-10 has a direct inhibitory effect on MC3T3-E1 

cell mineralization. The study of immune cell crosstalk between dendritic cells and macrophages 

as well as the characterization of the impact of LPS and IL-10 on osteoblast mineralization offers 

an approach to study the physiological roles of immune cells during wound healing and may be 

translatable to new therapies to treat disease and trauma of the musculoskeletal system. 
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A2.1 ABSTRACT AND RELEVANCE TO THESIS 

Live cell microscopy imaging is a useful tool for assessing and characterizing both individual 

and population behaviors of progenitor and stem cells such as cell division, cell morphology and 

cell motility simultaneously. Although a variety of software have been developed to facilitate 

individual cell tracking, the majority of these efforts have been focused on fluorescence time-

lapse microscopy images due to its ease of cell detection and relatively short image sequences 

owing to fluorescence-induced phototoxicity and photobleaching. In contrast, phase-constrast 

time-lapse microscopy is a non-destructive imaging modality that allows for cells to be imaged at 

high frequency over a period of several days. Presently, the availability of cell tracking software 

for manual as well as automated cell tracking to provide biologically-relevant measurements for 

analyzing cell growth kinetics is limited. In addition, there are no validation reports of various 

cell tracking software under multiple culture conditions due to the extremely time-consuming 

nature of manual cell annotation. In this section, a highly versatile software known as Cell 

Tracking Kit (CTK) was developed. This software contains features that are dedicated for both 

manual and automated cell tracking in phase-contrast time-lapse microscopy images. In addition, 

an evaluation of its automated cell tracking capabilities using C2C12 cells as a paradigm stem 

cell population under a variety of culture conditions was performed along with a detailed 

analysis of tracking errors to identify potential areas for further algorithm improvement. 

Furthermore, the CTK software exports a variety of biologically-relevant measurements at both 

individual and cell population level including mitotic index, cell cycle length, cell motility, cell 

morphology and a cell lineage tree that are amenable to further data transformation and 

subsequent statistical analysis. This work demonstrates the use of cell tracking software for 
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biologically-relevant analysis of cell cultures and may have potential applications in stem cell 

characterization and expansion for regenerative medicine. 

 
A2.2 INTRODUCTION 

The study and characterization of cells generally requires a variety of molecular and cytological 

techniques to be employed including genomic, proteomic, immunocytochemical, histological and 

microscopy approaches. In particular, the use of cell tracking methodologies for stem cell 

characterization provides rapid assessment of primary cell growth kinetics for biological 

discovery as well as potential applications in regenerative medicine.  

 
Presently, the expansion and application of primary cells for tissue engineering is often 

hampered by a lack of knowledge on cell growth kinetics owing to confounding factors such as 

cell heterogeneity as well as isolate-to-isolate variability [1-7]. Indeed, studying cell growth 

kinetics is vital for understanding biological processes including animal development [3, 8], 

tissue growth and repair [9], cell proliferation [10, 11], cell migration [12, 13], cell 

differentiation [14-18] as well as pursuing biotechnological applications such as stem cell 

reprogramming [19], optimal stem cell expansion [20-29], drug screening [30, 31] and disease 

modeling [32, 33]. 

 
Traditionally, characterization of cell growth kinetics often employs various techniques such as 

immunofluorescence staining to label a particular marker of interest. For example, fluorescently-

conjugated antibodies that react with Ki67 protein or the thymidine analog bromodeoxyuridine 

are used as cell proliferation markers. However, such experiments are often one-dimensional as 

they only provide a single data point with regards to a particular cell behavior of interest at a 

single time-point. As a result, multiple reagents and/or experiments may need to be used to 

211 
 



obtain a comprehensive view of cell growth kinetics, requiring high expenditure on reagents, 

time and human labor. In contrast, live cell tracking methodologies encompass a wide variety of 

optical and non-optical approaches that can be used to characterize multiple cell behaviors in 

vitro and in vivo with high spatiotemporal resolution simultaneously, which is important for 

biological discovery [2-7, 19, 34, 35] as well as ex vivo stem cell expansion [6, 20-24, 26-28, 35-

39].  

 
Cell tracking methodologies can be broadly categorized into optical and non-optical techniques 

although such techniques need not be mutually exclusive. Common optical approaches include 

fluorescence [40, 41], bioluminescence [42], brightfield [43, 44], differential interference 

contrast (DIC) [45] and phase-contrast time-lapse microscopy [46-50] while non-optical 

approaches also include fluorescence [51, 52] and bioluminescence [42, 51, 53] as well as 

magnetic resonance imaging [54], positron emission tomography [41, 52], and single photon 

emission computed tomography [52]. However, non-optical approaches such as magnetic 

resonance imaging are often used for in vivo cell tracking and presently do not offer sensitivity at 

the resolution of a single cell [55] and as such, not considered further. 

 
Recent advancements in optical microscopy such as improved microscope cameras, microscope 

stage incubation systems, computer processor speeds and computer disk storage have facilitated 

the automation and widespread adoption of time-lapse microscopy systems [5, 10, 11, 13, 40, 

56]. Automated tracking of cell populations in vitro using time-lapse microscopy images enable 

high-throughput spatiotemporal measurements of a range of cell behaviors, including mitosis 

(cell division), apoptosis (cell death), cell migration (cell movement), cell differentiation (cell 

fate), cell morphology (cell area and shape) and the reconstruction of cell lineages (mother-
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daughter relations) simultaneously [3, 5, 6, 8, 10, 11, 13, 34, 46-48, 50, 56-64]. As such, time-

lapse microscopy is a vital tool for studying the dynamic nature of stem cells given that such cell 

populations are often heterogeneous in nature and can exhibit a wide range of cell behaviors that 

occur within a time-span of several seconds to hours or even days [5, 6]. 

 
Given the utility of time-lapse microscopy for cell tracking, a brief review of the advantages and 

disadvantages of each optical approach is presented. Both fluorescence and bioluminescence are 

popular modes of time-lapse microscopy as they provide data that facilitate simple cell detection 

methods owing to a high signal to noise ratio [52], resulting in higher cell tracking performance 

[48]. However, these modes of imaging may require genetic manipulation, which can introduce 

unknown perturbations on cell growth kinetics and cell fate [19, 65-67]. In addition, data 

interpretation may be challenging especially in situations where quantification of fluorescence or 

bioluminescence signal is desired owing to complex gene interactions such as non-steady-state 

promoter activity [68, 69]. In scenarios where exogenous fluorescence labels such as dyes and 

quantum dots are used instead of genetically expressed proteins, these exogenous labels are 

diluted over time due to cell division and are not conducive for long-term cell tracking studies as 

a result of decreased fluorescence signal over time [55]. Furthermore, fluorescence time-lapse 

microscopy imaging is often limited to short and infrequent time exposures owing to 

fluorescence-induced phototoxicity and photobleaching [40]. In contrast, brightfield, DIC and 

phase-contrast time-lapse microscopy are label-free and non-destructive methods of cell imaging 

[40]. As such, cells do not require genetic modification or exogenous labels and can be imaged 

with high frequency (every min) over long periods (several days) with little-to-no phototoxicity 

[40]. Of these three imaging modes, phase-contrast microscopy is the most advantageous due to 

high specimen contrast and relative cost-effectiveness [40] since brightfield microscopy offers 
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low image contrast while DIC microscopy requires the use of expensive optics and glass 

substrates for culturing cells [40]. 

 
With the advent of highly automated time-lapse microscopy systems, generating time-lapse 

microscopy image sequences has become a relatively simple affair. However, analysis of cell 

behavior is a highly time-consuming and labor intensive task. For example, analyzing cell 

morphology would require a biologist to spend several weeks tracing the cell boundaries for each 

individual cell in every image frame of a give time-lapse microscopy image sequence. Such tasks 

would benefit from a software program that has robust manual annotation tools and/or automated 

cell tracking capabilities. A comprehensive review of biological tracking software is challenging 

since tracking in cell and developmental biology encompasses several size scales ranging from 

single molecules to individual cells to entire organisms [56]. Here, an attempt has been made to 

review major and relevant cell tracking systems and programs. These include – (1) commercial 

software such as Volocity [70], Imaris [71] and Simi BioCell [60, 62],  (2) academic software 

such as the MTrack2 plugin for ImageJ [72], CellProfiler [73], Cell Tracker [63, 64, 74], 

Timelapse Analyzer [75], the Large Scale Digital Cell Analysis System [57], Timm’s Tracking 

Tool [58, 61], and (3) several in-house cell tracking systems [46-50, 59, 76]. 

 
Although a diverse range of these toolsets are available, each of them has its own inherent 

advantages as well as limitations with regards to its specialization for a particular type of dataset, 

lack of robust validation and lack of a graphical user interface (GUI). For example, programs 

that offer a GUI such as Volocity [70], Imaris [71], Timm’s Tracking Tool [58, 61], CellTrack 

[77], ImageJ [72], CellProfiler [73] and Cell Tracker [63, 64, 74] have historically been used for 

tracking fluorescence datasets and may lack the versatility required for cell tracking in phase-
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contrast time-lapse microscopy images [48] whereas Simi Biocell [60, 62] despite possessing the 

capability to construct cell lineages is specialized for developmental studies (especially for 

Caenorhabditis elegans) [62]. In addition, there are little-to-no reports of validation results for 

Timm’s Tracking System [58, 61], ImageJ [72], CellTrack [77], CellTracker [63, 64, 74], the 

Large Scale Digital Cell Analysis System [57], Timelapse Analyzer [75], Volocity [70], Imaris 

[71], Cell Profiler [73] and Simi BioCell [60, 62] with regards to phase-contrast time-lapse 

microscopy images. Despite this, there are several in-house cell tracking systems built that are 

specialized for phase-contrast microscopy with reported validation results [46-50, 59]. These 

systems perform cell tracking based on an image registration algorithm [48], an extension to the 

Chan-Vese Level Set segmentation algorithm [47], algorithmic information theoretic prediction 

[46], topological alignments [59], a novel algorithm that systemically searches for tracking errors 

and discards incorrect cell tracks [50] and a modified level set method [49, 76]. However, many 

in-house systems are built with a specific biological question in mind and may not offer the 

capability to track and export biologically relevant measurements that may be of interest in other 

studies. For example, the tracking system based on algorithmic information theoretic prediction 

[46] was built specifically for retinal progenitor cell tracking and predicting cell differentiation. 

In addition, none of these systems performed robust validation [46-48, 50, 59] since they verified 

their tracking results within a single cell culture condition. In some cases, validation was 

performed on small data sets comprising of 40 cells [46]. In addition, several of these in-house 

built systems have no GUI available for public use [47, 48, 50, 59]. In summary, none of these 

commercial and academic software as well as in-house developed systems [46-50, 57-64, 70-77] 

have versatile annotation tools for manual cell tracking, dedicated automated cell tracking 

capabilities for phase-contrast microscopy, robust validation across multiple culture conditions 
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and a user-friendly GUI that exports biologically relevant measurements that may serve the 

broader interest of the biological research community. 

 
To address some of these issues, a GUI program called Cell Tracking Kit (CTK) has been 

developed to enable both manual and automated cell tracking in time-lapse phase-contrast 

microscopy images. This software incorporates active detection of cell behaviors such as cell 

division, is robustly validated on large multiple datasets with different culture conditions and 

generates a variety of biologically-relevant measurements at both individual and cell population 

level including mitotic index, cell cycle length, cell motility, cell morphology and a cell lineage 

tree for further data transformation and subsequent statistical analysis. In addition, a detailed 

analysis of cell tracking errors was conducted to highlight areas for further algorithm 

improvement. 

 
A2.3 MATERIALS AND METHODS 

A2.3.1 Cell Culture 

Mouse C2C12 cells (ATTC, Manassas, VA) were grown in Dulbecco’s Modified Eagle’s Media 

(DMEM; Invitrogen, Carlsbad, CA), 10% fetal bovine serum (Invitrogen, Carlsbad, CA) and 1% 

penicillin-streptomycin (PS; Invitrogen, Carlsbad, CA). Cells were kept at 37oC, 5% CO2 in a 

humidified incubator. 

 
In this study, C2C12 cells were seeded at a density of 2 x 104 cells per 35mm Petri dish 

overnight. The media was changed the next day and cells were grown under 4 different 

conditions – (1) Control (Untreated), (2) 100 ng/mL fibroblast growth factor-2 (FGF-2; 

Peptrotech Inc., Rocky Hill, NJ), (3) 100 ng/mL bone morphogenetic protein-2 (BMP-2; 
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Medtronic, Minneapolis, MN) and (4) 100 ng/mL FGF-2 and 100 ng/mL BMP-2 in complete 

media over the course of 3 – 4 days.   

 
A2.3.2 Phase-Contrast Timelapse Microscopy 

Time-lapse phase-contrast microscopy was performed using a Zeiss Axiovert T135V microscope 

(Carl Zeiss Microimaging, Thornwood, NY) equipped with a 5X, 0.15 N.A. phase-contrast 

objective, a custom-stage incubator capable of housing up to four 35mm Petri dishes, and InVitro 

software 3.2 (Media Cybernetics Inc., Bethesda, MD). Four fields of view representative of the 

cell density from each of the four dishes (Control, FGF-2 treated, BMP-2 treated, and FGF-2 and 

BMP-2 treated) were selected, resulting in a total of 16 fields of view per culture experiment. 

Each experiment was repeated a total of three times, resulting in a total of 48 image sequences 

(12 per treatment group). Images were acquired at a frequency of every 5 minutes over a course 

of 3.5 days and each image sequence contained approximately 1013-1062 frames. Microscope 

images were 1392 x 1040 pixels with a resolution of 1.3µm/pixel. 

 
A2.3.3 Development of Cell Tracking Kit (CTK) Software 

The CTK software was written in C++ [78] and Qt (Qt Development Frameworks, Oslo, 

Norway) and can be installed on a personal computer with a 32-bit or 64-bit Microsoft Windows 

(Microsoft, Redmond, WA) operating system. 

 
A2.3.4 Human-Aided Cell Annotation 

The data obtained were manually annotated using cell tracking software known as Cell Tracking 

Kit (CTK), which was developed in-house (Kang Li, 2007). Cells were individually tagged by 

placing a marker at the center of the cell (Cell centroid) at approximately every 1-8 frames with 

the CTK software applying interpolation to determine the cell centroid between these frames. 
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Within each frame, individual cells were also assigned a label to highlight the status of the cell. 

These include ‘Normal’, ‘Apoptosis’, ‘Dead’, ‘Mitotic’, ‘Newborn’, ‘Apoptotic/Mitotic’, 

‘Fused’, ‘Lost’, ‘Entered’ and ‘Departed’. Due to the time consuming process of manual 

annotation, a minimum of 3 cells per image sequence representing approximately 10% of the 

initial number of cells in the field of view was manually annotated from the beginning of the 

image sequence through to the end, resulting in 48 partially-annotated image sequences. A single 

image sequence (100 ng/mL BMP2, 3rd March 2009 Dataset) was manually annotated for all 

cells for 780 frames, representing 65 h. The manually annotated datasets are summarized as cell 

lineage trees, which illustrate the relationship between mother and daughter cells over time. 

 
A2.3.5 Computer-Based Cell Annotation 

Computer-based cell tracking was performed based on a tracking-by-detection approach, which 

first segments cells and then associates those cells over consecutive frames. The tracking 

algorithm consists of three modules – (1) Segmentation, (2) Mitosis detection, and (3) 

Association.  

 
During segmentation, cells are segmented from background using a microscope image 

restoration process [79]. Rather than utilizing traditional image segmentation methods such as 

intensity thresholding, gradient detection, and morphological operations, the microscope images 

were processed to remove phase-contrast microscopy artifacts such as the halo and shading 

effects, resulting in ‘restored’ microscope images. Using a recently discovered microscopy 

imaging model, a regularized quadratic objective function was formulated and minimized to 

restore the artifact-free images where background pixels had uniform zero values and foreground 
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pixels had positive values. On the restored high-contrast images, a simple thresholding method 

was sufficient to separate cell pixels from background pixels [79].  

 
During mitosis detection, images were processed using a three-step approach to identify the end 

of cytokinesis [80], facilitating improved tracking performance by establishing accurate parent-

daughter relationships. The three-step approach consisted of – (1) Candidate patch sequence 

construction, (2) Feature extraction, and (3) Identification of mitosis occurrence and localization 

of birth event. Briefly, during the first step, potential regions that may contain mitotic events 

were located in the image sequence based on their level of their pixel intensity and these areas 

were subsequently cropped to construct small-size candidate patch sequences. This step 

narrowed down the available search space required for locating mitotic cells to facilitate efficient 

mitosis detection and spatially locate the birth event. In the second step, visual features (a set of 

numbers that describe the characteristics of an image patch) were extracted from each candidate 

patch. Since cell size does not vary significantly during cell division and each cell can freely 

rotate when dividing, these visual features were extracted with a unique scale and a rotation 

invariance scheme was applied. In the third step, the visual features were examined by a 

probabilistic model constructed using machine learning approaches [80] to determine whether 

each candidate patch sequence contained a birth event and if so, detect the temporal locations of 

the birth event in the sequence. 

 
During the association step, results obtained from the segmentation and mitosis modules were 

used to correlate or link cell identities across successive images to facilitate cell tracking. Briefly, 

the segmentation algorithm identified cell-positive regions termed ‘blobs’ from the original input 

images that contained either individual cells or cells clustered together while the mitosis 
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detection algorithm determined when and where a cell completed cytokinesis and divided into 

two cells. Based on the outputs of these two algorithms, a hypothesis was constructed using data 

association methods that compared cells segmented at a particular time point (frame t = n) and 

cells segmented in the next time point (frame t = n + 1), generating a link or correspondence 

between the identities of individual cells or ‘blobs’ between the two images, which are termed 

‘cell tracks’ [76]. The association algorithm also considered for scenarios that include cell 

migration within the field of view, cell migration into and out of the field of view, mitosis, and 

cell clustering. The most possible links from the entire hypothesis set were founded by solving a 

linear programming problem [76], thus the cell identities with their characteristics (e.g. cell 

position, cell shape etc.) were identified between consecutive images. 

 
Both human- and computer-aided cell annotation data can be computed into biologically-relevant 

data and subsequently exported by CTK software into text-delimited files for further analysis. 

Presently, three types of data files can be exported – (1) an event-centric file which lists the time 

(frame) in which a particular cell underwent a particular process (event) as determined by its 

annotated cell status, (2) a population-centric file which lists the total number or fraction of cells 

involved in various particular biological processes as a function of time (frame), and (3) a cell-

centric file which lists individual cell data such as the length of its cell cycle. Data were graphed 

using Microsoft Excel (Microsoft, Redmond, WA) and Tableau Desktop (Tableau Software, 

Seattle, WA).   

 
A2.3.6 Evaluation of Human-Aided Cell Annotation versus Computer-Based Cell Annotation 

To evaluate the performance of computer-based cell tracking, four measures were used – (1) 

Precision, (2) Recall, (3) Target Effectivenss and (4) Track Purity. In the field of information 
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retrieval, Precision and Recall are widely employed evaluation metrics [81] and were used to 

evaluate individual components of the computer-based cell tracking system such as cell detection 

and cell division. Target Effectiveness and Track Purity [76, 82, 83] are modified versions of 

Recall and Precision for evaluating the computer-based cell tracking. Each of these is described 

in further detail below. 

 
A2.3.7 Statistical Analysis 

One-way analysis of variance followed by Tukey’s honestly significant difference post hoc test 

using SYSTAT 9 software (Systat Software Inc., Richmond, CA) was performed to determine 

significance among treatment groups. A p-value ≤ 0.05 was considered statistically significant. 

 
A2.4 RESULTS 

A2.4.1 Overview of Cell Tracking Kit (CTK) Software 

An overview of the CTK software capabilities and the software’s GUI is presented in Figure 

A2.1. The primary aim of this software is to provide a user friendly interface for performing 

versatile manual cell tracking of time-lapse microscopy images, automated cell tracking of 

phase-contrast time-lapse microscopy images and export of biologically relevant measurements 

for subsequent analysis (Figure A2.1). The CTK software displays time-lapse microscopy image 

sequences in the ‘Image Window’ and images can be manipulated using the ‘Image 

Adjustments’, ‘Image Frame’, ‘Solution Explorer’ and ‘Zoom’ tools. Multiple annotations can be 

added to a single time-lapse microscopy image sequence using the ‘Annotation Explorer’ to 

allow for comparison between different human annotators or different computer-based cell 

tracking algorithms. Manual cell tracking can be performed with the ‘Manual Annotation 

Toolbar’ and ‘Manual Annotation Explorer’ windows while automated cell tracking can be 
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performed using the ‘Process’ and ‘Track’ menubars. Cell annotations are displayed in a 

collapsible tree structure in the ‘Manual Annotation Explorer’ window and parent cells can be 

expanded or collapsed to show or hide daughter cells. Lastly, biologically-relevant 

measurements can be exported via the ‘Analyze’ and ‘File’ menubars (Figure A2.1).  

 

Figure A2.1. Overview of the CTK software. The CTK software allows for manual and 
automated cell annotation as well as export of biologically-relevant measurements. 
 
The process of manual cell tracking is shown in Figure A2.2. After importing a time-lapse 

microscopy image sequence, cells are added using the ‘Manual Annotation Explorer’ windows 

and subsequently marked with a cell centroid and/or cell boundary. The CTK software 

interpolates the location of the cell centroid between successive annotations such that annotation 
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of the cell centroid in every image frame is not required. Subsequently, a cell may be 

additionally labeled with various cell statuses at multiple time-points to mark changes in cell 

behavior (Figure A2.2). 

 

Figure A2.2. Manual cell annotation. A. Steps for performing manual cell annotation. B. 
Example outputs of each step during manual cell annotation.  
 
The process of automated cell tracking is shown in Figure A2.3. During automated cell tracking, 

an image segmentation algorithm is applied to detect individual cells in each image. In addition, 

a cell division algorithm is used to detect the end-point of cytokinesis. These two outputs are 

used by the computer-based cell tracking system to generate hypotheses to link individual cells 

across successive image frames to produce computer-aided cell annotations (Figure A2.3). 
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Figure A2.3. Automated cell annotation. A. Steps for performing automated cell annotation. B. 
Example outputs of each step during automated cell annotation. 
 
A2.4.2 Analysis of Automated Cell Tracking Errors 

To evaluate the performance of the automated cell tracking system, an image sequence 

comprising initially of 31 cells at the beginning of time-lapse was manually annotated for 780 

frames (65 hours) for all cells and their subsequent progeny as well as cells that migrated into the 

field of view. In addition another 48 image sequences where at least three initial cells and their 

subsequent progeny were manually tracked. In these 48 image sequences, C2C12 cells were 

cultured under multiple conditions including Control (untreated), FGF-2 (100 ng/mL FGF-2), 

BMP-2 (100 ng/mL BMP-2) and FGF-2 with BMP-2 (100 ng/mL growth-factor each). This fully 

annotated image sequence and 48 partially annotated image sequences were used to evaluate cell 

detection, cell division detection and cell tracking performance. 
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To compare cell detection performance, it was necessary to match human- and computer-

annotations together (Figure A2.4A). Within each image frame, matching was performed based 

on the nearest neighbor rule with a limit of 15 pixels. In addition, the matching must be bi-

directional in that a human annotated cell must be matched to its closest computer annotated 

neighbor and vice versa. Otherwise, the cell would be considered a false positive. For example, 

in Figure A2.4A, Human Annotated Cell 1 is the closest neighbor for Computer Detected Cell A 

while Computer Detected Cell A is the closest neighbor of Human Annotated Cell 1. Since the 

criterion of bi-directional matching is fulfilled, Human Annotated Cell 1 is matched to Computer 

Detected Cell A. In the case of Computer Detected Cell C, its nearest neighbor is Human 

Annotated Cell 1 but since there is no bi-directional matching, Computer Detected Cell C is 

considered a false positive (Figure A2.4A). In addition, Human Detected Cell 3 is considered a 

false negative since no matching partner can be found (Figure A2.4A). Using this criterion, 

precision was computed as the number of true positives divided by the sum of true and false 

positives while recall was computed as the number of true positives divided by the sum of true 

positives and false negatives (Figure A2.4B). Figure A2.4C shows a plot of precision and recall 

for each individual frame number as well as the overall precision and recall for the fully 

annotated sequence (Figure A2.4C). Although cell detection initially had an average precision of 

0.78 and recall of 0.61 for the first 50 frames (250 min), these subsequently increase in the next 

50 frames (Average precision of 0.88 and recall of 0.89) where it remains high, giving an overall 

precision of 0.89 and recall of 0.89 (Figure A2.4C). Further analysis indicated that the low 

precision and recall in the first 50 frames was caused by the round morphology of C2C12 cells as 

they had yet to fully adhere to the tissue culture substrate, resulting in a bright halo effect that 

interfered with the cell detection algorithm (Data not shown).   
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Figure A2.4. Evaluation of automated cell detection. A. Schematic for matching a detected cell 
to its human annotated counterpart. B. Calculation of precision and recall. C. Evaluation of fully 
annotated sequence. The overall as well as individual precision and recall for each frame is 
shown. 
 
To compare cell division detection performance, it was necessary to match human- and 

computer-annotations together (Figure A2.5A). Similar to cell detection evaluation, matching 

was performed based on the nearest neighbor rule with a limit of 25 pixels. In addition, since cell 

division is a spatiotemporal event, an additional tolerance of 10 frames (50 min) was used. 

Detected cell division events must satisfy both criteria to be matched to a human-annotated 

mitosis event otherwise it would be considered a false positive (Figure A2.5A). For example, in 

Figure A2.5A, Human Annotated Cell Division 1 is the closest neighbor for Computer Detected 
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Cell Division A and these events occur within 10 frames of each other. Since both spatial and 

temporal criteria are fulfilled, Human Annotated Cell Division 1 is matched to Computer 

Detected Cell Division A. In the case of Computer Detected Cell Division B and Human 

Detected Cell Division 2, if no match is found, they are considered a false positive and a false 

negative, respectively (Figure A2.5A). Using these criteria, precision was computed as the 

number of true positives divided by the sum of true and false positives while recall was 

computed as the number of true positives divided by the sum of true positives and false negatives 

(Figure A2.5B). In addition, a moving average of 50 frames was used for plotting precision and 

recall as a function of time. Figure A2.5C shows a plot of precision and recall for each individual 

frame number as well as the overall precision and recall for the fully annotated sequence (Figure 

A2.5C). Although cell division detection initially had an average precision of 0.43 and recall of 

0.75 for the first 50 frames (250 min), these subsequently increase in the next 50 frames 

(Average precision of 0.75 and recall of 1.00) where it remains high, giving an overall precision 

of 0.89 and recall of 0.88 (Figure A2.5C). Further analysis indicated that the low precision and 

recall in the first 50 frames was also caused by the round morphology of C2C12 cells as they had 

yet to fully adhere to the tissue culture substrate, resulting in a bright halo effect that the cell 

division detection algorithm misinterpreted as cell division (Data not shown).   
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Figure A2.5. Evaluation of automated cell division detection. A. Schematic for matching a 
detected cell division event to its human annotated counterpart. B. Calculation of precision and 
recall. C. Evaluation of fully annotated sequence. The overall as well as individual precision and 
recall for a sliding window (10 frames) is shown. 
 
To evaluate automated cell tracking, it was necessary to match human- and computer-

annotations together (Figure A2.6A). Due to inherent errors in computer-based cell tracking, 

multiple cell tracks from computer-based cell annotations may be assigned to a single human-

aided cell annotation at different time points, particularly when cell identity swaps occur (Figure 

A2.6A and Figure A2.6B). As such, both human- and computer-based annotations were paired 

together using the following criterion – if multiple computer-annotated cell tracks overlapped 

with a human-annotated cell track, the longest matching computer-annotated cell track was 

assigned to that particular human annotated cell track (Figure A2.6A). For example, Computer 
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Cell Track 1 overlaps with both Actual Cell Track 1 and Actual Cell Track 2. However, since 

Computer Cell Track 1 overlaps with Actual Cell Track 2 more, it is assigned to Actual Cell 

Track 2. Likewise, Computer Cell Track 2 is assigned to Actual Cell Track 1 (Figure A2.6A). 

Using these criteria, target effectiveness is computed as the number of correctly assigned frames 

divided by the total number of frames in a particular actual cell track (Figure A2.6C) while track 

purity is computed as the number of correctly assigned frames divided by the total number of 

frames in a particular computer track (Figure A2.6D). Although target effectiveness can be 

calculated using a partially annotated image sequence, track purity cannot since the number of 

correctly assigned frames in a computer track cannot be computed. Using these evaluation 

metrics, automated cell tracking of the fully annotated sequence was shown to have a target 

effectiveness of 0.83 and a track purity of 0.68 (Figure A2.7A). To robustly evaluate automated 

cell tracking under multiple culture conditions, automated cell tracking results were compared to 

the partially annotated 48 image sequences, achieving a target effectiveness of 0.71, 0.47, 0.77 

and 0.59 for Control, FGF-2-, BMP-2- and FGF-2 with BMP-2-treated C2C12 cells, respectively 

(Figure A2.7B). A preliminary analysis of the image sequences indicated that FGF-2- and FGF-2 

with BMP-2 treated cells exhibit a drastic morphological change (Figure A2.10A and Figure 

A2.10B) that interfered with the cell detection and cell division detection algorithms. At 17h, 

C2C12 cells show relative little-to-no difference in cell shape and appearance relative to control 

(Figure A2.10A). However, at 84h, FGF-2-treated cells adopt an elongated morphology and 

appear bright while BMP-2-treated cells adopt a well-spread morphology and appear larger 

relative to Control (Figure A2.10B). Also, FGF-2 with BMP-2-treated cells adopted a 

morphology intermediate between FGF-2- and BMP-2-treated cells (Figure A2.10B). Since both 

cell detection [79] and cell division detection [80] algorithms were dependent on such image 
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features for reliable cell and mitosis detection, low tracking performance was associated with 

FGF-2- and FGF-2 with BMP-2-treated C2C12 cells. Indeed, human annotators also experienced 

great difficulty in tracking FGF-2 and FGF-2 with BMP-2 time-lapse image sequences and at 

times could not track cells beyond 600 frames or 50 h (personal communications). To determine 

the effectiveness of the tracking module independent of cell detection and cell division detection 

results, human annotations of cell centroids and mitosis locations were used in conjunction with 

the automated tracking system and achieved a target effectiveness of 0.995 and track purity of 

0.968, respectively (Figure A2.8A and Figure A2.8B). Together, these results indicate that 

automated cell tracking systems could benefit from improvements in individual cell tracking 

components. 

 

Figure A2.6. Evaluation of automated cell tracking. A. Schematic for matching a detected cell 
track to its human annotated counterpart. B. Schematic example of a cell identity swap. C. 
Calculation of target effectiveness. D. Calculation of track purity. 
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Figure A2.7. Evaluation of automated cell tracking. A. Overall target effectiveness and track 
purity of fully annotated sequence. B. Overall target effectiveness of Control, FGF-2-treated, 
BMP-2-treated and FGF-2 with BMP-2-treated C2C12 cells (n = 48 image sequences). At least 3 
cells from the first frame of the image sequence and all their subsequent progeny were manually 
tracked for each sequence.  
 

 
Figure A2.8. Evaluation of automated cell tracking when human-annotated segmentation and 
mitosis results are used. A. Overall target effectiveness of fully annotated sequence is presented 
in a cell lineage tree format. B. Overall track purity of fully annotated sequence is presented in a 
cell lineage tree format. Both human (black line) and correctly matched computer (red line) 
annotations are indicated. 
 
A2.4.3 Generating Biologically-Relevant Measurements 

To facilitate characterization of cell growth kinetics, the CTK software allows for several 

biological measurements to be computed and exported including cell number, various growth 

indices and indicators, the time taken for cell division and cytokinesis, cell cycle length, cell 
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speed, cell perimeter, cell area, cell confluence as well as a cell lineage tree (Figure A2.9). Using 

the partially annotated 48 Sequences, it was shown that although growth factor treatment did not 

perturb the amount of time required for cell division and cytokinesis, BMP-2 was shown to 

increase the cell cycle length (p < 0.05; Figure A2.10). 

 
Figure A2.9. Biological measurements that can be derived from CTK software. The definition of 
each biological measurement is as indicated. 
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Figure A2.10. Effect of BMP-2 and FGF-2 on C2C12 cell cycle length and division time. A. 
C2C12 cells show little-to-no morphological changes 17 h after growth-factor treatment. B. 
C2C12 cells show dramatic morphological changes 84 h after growth-factor treatment. FGF-2-
treated cells adopt an elongated morphology and appear bright while BMP-2-treated cells adopt a 
well-spread morphology and appear larger relative to Control. FGF-2 with BMP-2-treated cells 
adopt a morphology intermediate between FGF-2- and BMP-2-treated cells. C. FGF-2 had no 
effect on C2C12 cell cycle length relative to control whereas BMP-2 increased C2C12 cell cycle 
length. D. Both BMP-2 and FGF-2 have no effect on the amount of time taken for C2C12 cells to 
undergo mitosis and cytokinesis. *, Significantly different from Control; p ≤ 0.05. 
 
A2.5 DISCUSSION 

A2.5.1 Development of CTK Software 

With the aim of achieving rapid cell characterization, a software package dedicated for both 

manual and automated analysis of time-lapse microscopy image sequences was developed 
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(Figure A2.1, Figure A2.2 and Figure A2.3). The CTK software provides a user-friendly GUI for 

performing manual annotation of the cell centroid or cell boundary in any type of optical time-

lapse microcopy image sequence (Fluorescence, bioluminescence, brightfield, DIC or phase-

contrast). The software reduces the tedious burden of manual annotation by interpolating the cell 

centroid between successive frames. As a result, the user is not required to annotate every single 

image frame in a sequence. In addition, the CTK software also allows for a variety of cell labels 

such as ‘mitotic’, ‘differentiated’, ‘fused’, etc. to be applied to the same cell at various time-

points to facilitate analysis of multiple cell behavior (Figure A2.2). Although the automated cell 

tracking system is presently specialized for cell tracking in phase-contrast time-lapse microscopy 

image sequences (Figure A2.3), future work will incorporate cell tracking algorithms for other 

imaging modalities as well as new modules for detecting other cell behaviors such as apoptosis 

and cell differentiation. Since it is likely that no single cell detection algorithm will be 

universally applicable to all cell types, the program has been modularly designed such that new 

algorithms can be added in subsequent work. To serve the broader interests of the biological 

research community, the CTK software can export biological measurements related to cell 

growth kinetics for subsequent data transformation and analysis (Figure A2.9). In addition, the 

CTK software can allow users to visualize parent-daughter relationships quickly and simply by 

generating a cell lineage tree (Figure A2.9). Using this software, manual annotation of 48 image 

sequences indicated that BMP-2-treated cells show increased cell cycle length (Figure A2.10C), 

which is in agreement with a reduction in cell proliferation during bone cell differentiation [84]. 

 
A2.5.2 Analysis of Automated Cell Tracking Errors 

To evaluate the automated cell tracking system and its individual components, precision, recall, 

target effectiveness and track purity were utilized [76, 81-83].  
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Precision and recall are widely used metrics for evaluating information retrieval [81] and thus are 

appropriate for evaluating cell detection (Figure A2.4) and cell division detection (Figure A2.5). 

In this context, precision refers to the fraction of correctly detected cell centroids or mitosis 

locations out of all computer-detected events while recall refers to the fraction of correctly 

detected cell centroids or mitosis locations out of all actual (human-detected) events. As such, a 

precision and recall value close to 1.0 is indicative of good algorithm performance. Using a fully 

annotated image sequence, cell detection had a precision of 0.89 and a recall of 0.89 (Figure 

A2.4) while cell division detection had a precision of 0.89 and a recall of 0.88 (Figure A2.5).  

 
Both target effectiveness (Figure A2.6C) and track purity (Figure A2.6D) are based on the 

concept of precision and recall, respectively, and are used in radar tracking where multiple 

objects of an unknown quantity must be tracked [76, 82, 83]. In this scenario, target effectiveness 

refers to the fraction of correctly-annotated computer cell tracks out of all actual (human-

annotated) cell tracks while track purity refers to the fraction of correctly-annotated computer 

cell tracks out of all computer-constructed cell tracks. [76, 82, 83]. Using a fully annotated 

sequence, cell tracking was shown to have a target effectiveness of 0.83 and a track purity of 

0.68 (Figure A2.7A). Using 48 partially annotated image sequences, the automated cell tracking 

system was robustly evaluated under multiple culture conditions where different growth factors 

such as FGF-2 and BMP-2 were present. FGF-2 and BMP-2 were used as they have been shown 

to promote C2C12 differentiation towards a tendon and osteoblast fate, respectively [15, 16]. 

FGF-2-treated cells showed elongated morphology and appeared brighter (indicative of increased 

cell height) while BMP-2-treated cells showed a well-spread morphology and appeared larger 

than Control cells (Figure A2.10). Control, FGF-2-, BMP-2- and FGF-2 with BMP-2-treated 
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C2C12 cells had a target effectiveness of 0.71, 0.47, 0.77 and 0.59, respectively (Figure A2.7B). 

A preliminary analysis of the image sequences indicated that different growth factor treatments, 

particularly the addition of FGF-2 lead to dramatic changes to the overall image and cell 

appearance (Figure A2.10A and Figure A2.10B), resulting in lowered cell detection (increased 

false negatives) and more cell division artifacts (increased false positives), ultimately causing a 

low target effectiveness (Figure A2.7B). These results highlight the need for automated cell 

tracking systems to be robustly validated under multiple conditions to ensure that these systems 

can be applied for biological experimentation since such studies often employ the use of multiple 

treatment conditions while most cell tracking studies only employ a single culture condition. 

When cell detection and cell division results were substituted with human annotations, a target 

effectiveness of 0.995 and a track purity of 0.968 is achieved (Figure A2.8A and Figure A2.8B), 

indicating that the tracking system can achieve good cell tracking performance independent of its 

individual cell tracking components. Subsequent work on automated cell tracking systems will 

emphasize on improving in individual cell tracking components. 

 
A major challenge in the development of automated cell tracking systems is that for any analysis 

to be relevant, it is critical that cell annotations are as complete and error-free as possible. This is 

particularly difficult as any error in cell tracking such as a cell identity swap can potentially 

obscure true parent-daughter relationships as well as other cell measurements such as cell cycle 

length to produce misleading biological results and interpretations. In addition, any errors that 

occur early in the sequence may potentially generate incorrect tracking hypotheses that further 

compound tracking errors. As such, a plot of precision or recall against time (image frame) is a 

useful indicator of the confidence level that can be assigned during interpretation of computer-

tracked time-lapse sequences as well as aiding in error analysis (Figure A2.4 and Figure A2.5). 
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In this scenario, it was observed that initiating time-lapse microscopy when cells had not fully 

spread-out after cell seeding resulted in brighter images, which caused cell detection and cell 

division detection artifacts that lowered precision and recall (Figure A2.4 and Figure A2.5). Such 

artifacts could be simply resolved by omitting the initial affected frames from automated cell 

tracking analysis or cells could be seeded overnight in future time-lapse experiments. 

Alternatively, the algorithms could be further improved to handle such exceptions as well. In the 

case of cell division detection, this may involve using a larger data set containing human 

annotated mitosis for improved supervised machine learning. 

 
In summary, a software package for manual and automated cell tracking was developed to serve 

as a standardized tool for biologically relevant cell culture analysis. Analysis of automated cell 

tracking performance indicated that automated cell tracking systems must be validated under 

multiple culture conditions for such systems to be used for biological experimentation. Future 

work on this system will seek to implement additional algorithms for more accurate automated 

cell tracking. This work demonstrates the use of cell tracking software for biologically-relevant 

analysis of cell cultures and may have potential applications in stem cell characterization and 

expansion for regenerative medicine. 
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A2.6 HUMAN- AND COMPUTER-ANNOTATED CELL LINEAGE TREES 

A2.6.1 Human-Aided Cell Annotations 

A2.6.1.1 3rd March 2009 Dataset 
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100 ng/mL BMP-2 

 

100 ng/mL BMP-2 (Fully annotated up to frame 780) 
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A2.6.1.2 18th March 2009 Dataset 
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A2.6.1.3 25th March 2009 Dataset 
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A2.6.2 Computer-Aided Cell Annotations 

A2.6.2.1 3rd March 2009 Dataset 
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A2.6.2.2 18th March 2009 Dataset 
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A2.6.2.3 25th March 2009 Dataset 
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A2.6.3 Computer-Aided Cell Annotations (Red) versus Human-Aided Cell Annotations (Black) 

A2.6.3.1 3rd March 2009 Dataset 
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A2.6.3.2 18th March 2009 Dataset 
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A2.6.3.3 25th March 2009 Dataset 
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A3.1 RELEVANCE TO THESIS 

Automated tracking of cells in phase-contrast time-lapse microscopy imaging offers a powerful 

and versatile tool for studying the cellular microenvironment via in vitro characterization of cell 

behavior. In this section, Seung-il Huh, a graduate student at the Robotics Institute devised a 

method for detecting cell division in phase-contrast time-lapse microscopy images independent 

of cell detection and cell tracking performance. This algorithm was based on machine learning 

methodologies and mitosis events were detected on the basis of image features such as local 

regions of high image intensity (brightness), which are often correlated with mitosis events. This 

algorithm precisely detects the spatial and temporal occurrence of cytokinesis and contributes 

towards accurate cell tracking by determining when a single cell has divided into two daughter 

cells. 
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Automated Mitosis Detection of Stem Cell
Populations in Phase-Contrast Microscopy Images

Seungil Huh*, Dai Fei Elmer Ker, Ryoma Bise, Mei Chen, and Takeo Kanade

Abstract—Due to the enormous potential and impact that stem
cells may have on regenerative medicine, there has been a rapidly
growing interest for tools to analyze and characterize the behaviors
of these cells in vitro in an automated and high throughput fashion.
Among these behaviors, mitosis, or cell division, is important since
stem cells proliferate and renew themselves through mitosis. How-
ever, current automated systems for measuring cell proliferation
often require destructive or sacrificial methods of cell manipula-
tion such as cell lysis or in vitro staining. In this paper, we pro-
pose an effective approach for automated mitosis detection using
phase-contrast time-lapse microscopy, which is a nondestructive
imaging modality, thereby allowing continuous monitoring of cells
in culture. In our approach, we present a probabilistic model for
event detection, which can simultaneously 1) identify spatio-tem-
poral patch sequences that contain a mitotic event and 2) localize a
birth event, defined as the time and location at which cell division
is completed and two daughter cells are born. Our approach sig-
nificantly outperforms previous approaches in terms of both detec-
tion accuracy and computational efficiency, when applied to multi-
potent C3H10T1/2 mesenchymal and C2C12 myoblastic stem cell
populations.

Index Terms—Event detection modeling, mitosis detection,
phase-contrast microscopy image analysis, sequential image anal-
ysis.

I. INTRODUCTION

S TEM cell research has attracted increasing attention due
to its enormous potential in regenerative medicine for re-

placing damaged or diseased tissues or organs. Methods for as-
sessing the proliferative activity of stem cells grown in vitro are
critical tools for monitoring the health and growth rate of a cell
population. Such methods have historically relied on detecting
mitosis [1], which is the process whereby the genetic material of
a eukaryotic cell is equally distributed between its descendants
through nuclear division, resulting in the birth of daughter cells.
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Presently, many cell proliferation assays that are compatible
with automated sample handling and high-throughput screening
have been developed to measure cell proliferation [2]. However,
the majority of these procedures utilize fluorescent, luminescent
or colorimetric assays which may require destructive methods
of cell manipulation, such as cell lysis and in vitro staining, and
do not allow for continuous monitoring of cells in culture.

Since phase-contrast microscopy is a form of nondestructive
imaging, automated time-lapse systems employing this imaging
modality for monitoring and analyzing cell populations in vitro
have enormous potential for cell biology and stem cell engi-
neering [3]–[6]. Such systems not only enable high-throughput
analysis of time-lapse microscopy images, but also facilitate
continuous monitoring of live and intact cells for studying
biological phenomena and quantifying various cell responses.
Moreover, since samples are continuously monitored, sampling
at various time points is abrogated, resulting in reduced human
labor and eliminating the costs of expensive reagents required
for cell lysis or in vitro staining. Within the context of such
microscopy systems, automated detection of mitosis can pro-
vide quantitative information regarding cell proliferation on a
continuous basis. This functionality is also expected to improve
automated cell tracking systems, a comprehensive tool for the
analysis of cell behavior [5], [7], [8].

In order to achieve these benefits, automated mitosis detec-
tion systems are required to localize birth events; we define a
birth event in each mitotic event as the time and location at
which the two daughter cells first appear and the boundary be-
tween the two is clearly observed. Accurate detection of birth
events facilitate the quantification of biological metrics, such as
the mitotic index and synchrony, allowing biologists to experi-
mentally assess how altering the conditions under which cells
are cultured can impact population growth. In addition, birth
event information is helpful in determining when and where a
trajectory of a mother cell branches into two trajectories of its
daughter cells in cell tracking. Furthermore, precise localization
of birth events may aid in the discovery and characterization
of novel biological phenomenon that occur at rare frequencies
such as a single cell division event giving rise to more than two
daughter cells.

Several mitosis detection methods for phase-contrast
time-lapse microscopy images have been proposed based on
cell tracking. Yang et al. [7] obtained blob regions along
each cell’s trajectory produced by a tracking method. Each
blob region is then examined to determine if it contains a
mitotic event based on several blob properties, including area,
perimeter, circularity, and average intensity. Debeir et al. [9]
adopted a combination of several mean-shift-processes to track

0278-0062/$26.00 © 2010 IEEE
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cells using an ensemble of nested kernels. One of the kernels
was designed to model cells in the mitotic state by taking into
account their morphological changes. Al-Kofahi et al. [10] pre-
sented a multiple-object matching method that can handle cell
divisions in the typical frame-by-frame segmentation tracking
method. Padfield et al. [11] investigated cell cycle phases
through tracking each nucleus over time. Mitotic events were
then identified by linking nonmitotic phases using both the
Euclidean distance metric and the fast marching method. These
approaches are intuitive but limited in that mitosis detection is
dependent on tracking performance, which is generally more
challenging to achieve than mitosis detection performance
itself. Several mitosis detection algorithms that do not involve
cell tracking have recently been proposed. Li et al. [5] applied
a fast cascade learning framework [13] adopting AdaBoost
classifiers [14] to volumetric Haar-like features extracted from
spatio-temporal patches covering the whole image region.
This approach requires a large number of training samples and
searches through the entire space due to the lack of explicit
candidate detection. Debeir et al. [12] proposed a method to
detect mitotic cell regions based on brightness change and link
the regions in consecutive frames into a cell division candidate
linkage. Each candidate was then validated based on its length
(the number of frames). This approach is efficient due to the
reduced search space by the candidate detection, but the val-
idation scheme is too simple to effectively distinguish actual
mitotic events from the other candidates.

More recently, Liu et al. [15] proposed an approach to
compensate for the drawbacks of the previous methods. After
mitosis candidate patch sequences are constructed through 3-D
seeded region growing, Hidden Conditional Random Fields
(HCRF) [16] are trained to examine each of the candidates. This
approach does not resort to tracking and adopts explicit can-
didate detection as well as model-based validation, achieving
good performance on C3H10T1/2 stem cell populations. How-
ever, this work does not detect birth events and is as such
limited in that its mitosis detection results may not be sufficient
for accurate quantitative analysis of cell proliferation or cell
tracking. In fact, the HCRF model is intrinsically not capable
of modeling birth events. In addition to inadequate modeling
power, this approach is computationally expensive due to the
preconditioning step [17], which was originally devised to
segment nonmitotic cell regions from background rather than
mitotic cell regions.

In this paper, we propose an effective mitosis detection ap-
proach that explicitly detects birth events. We developed a prob-
abilistic model that not only determines whether a mitotic event
occurs, but also provides the time at which the mitosis is com-
pleted and daughter cells are born. By additionally handling
the information of cell birth, EDCRF achieves higher discrim-
inating power than HCRF in the identification of mitosis oc-
currence. In addition, EDCRF is superior to possible alterna-
tives based on HCRF in the temporal localization of birth events
as well. We conducted experiments on multipotent C3H10T1/2
mesenchymal and C2C12 myoblastic stem cell populations, and
achieved good performance on the population with high conflu-
ency. Furthermore, we bypassed the time-consuming precondi-
tioning without sacrificing performance; as a result, computa-

tional efficiency is significantly improved compared to the pre-
vious work [15].

The remainder of this paper is organized as follows. We intro-
duce the overall process of our approach and describe the details
of the image processing part in Section II. We then formulate a
probabilistic model to determine mitosis occurrence and birth
event timing in Section III. The experimental setup and results
with discussions are presented in Sections IV and V, followed
by conclusions in Section VI.

II. APPROACH

Given a sequence of phase-contrast microscopy images, our
goal is to detect mitosis in the sequence and localize a birth event
during mitosis. To achieve this goal, we adopt the idea of can-
didate patch sequence construction from the previous work [12]
and form a process comprising three steps: candidate patch se-
quence construction, visual feature extraction, and identification
of mitosis occurrence/temporal localization of birth event. We
sketch each step to provide an overall view of our approach. The
detailed methods will be subsequently described in this and the
following sections.

• Candidate patch sequence construction: The goal of this
step is to detect all spatio-temporal patch sequences that
contain mitosis, while detecting as small a number of se-
quences not containing mitosis as possible. Through this
step, mitotic events are spatially localized and the search
space is significantly reduced from entire image sequences
to candidate patch sequences. As a result, the subsequent
steps can be more efficiently conducted, while maintaining
mitosis detection accuracy. Fig. 1 shows some examples of
candidate patch sequences our method automatically ex-
tracted.

• Visual feature extraction: Visual features are extracted
from each patch of candidate patch sequences based on
the characteristics of phase-contrast microscopy images.

• Identification of mitosis occurrence/Temporal localization
of birth event: For each candidate patch sequence, we per-
form two decision tasks regarding mitosis occurrence and
birth event. The identification of mitosis occurrence deter-
mines whether each candidate patch sequence contains a
mitosis, specifically, a birth event. For each patch sequence
determined to contain a birth event, the temporal localiza-
tion of the birth event decides which patch contains the
birth event in the patch sequence.

A. Candidate Patch Sequence Construction

For preprocessing, we compute the average image of all im-
ages in a given sequence; the average image is then subtracted
from each image. By this simple procedure, stationary bright
artifacts which may be misrecognized as mitosis cell candi-
dates are removed. In addition, intrinsic illumination variation
in phase-contrast microscopy images can be corrected.

For each image, candidate patches are first extracted based
on brightness (pixel intensity); it is known that the process of
mitosis typically exhibits a series of distinctive cell features
including increased brightness, increased circularity, and de-
creased size [5] (see Fig. 2). Each preprocessed image is con-
volved with a small-sized rectangular average filter and
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Fig. 1. Positive (top two) and negative (bottom) candidate patch sequences extracted from a multipotent C3H10T1/2 mesenchymal stem cell population. The
numbers of patches in candidate patch sequences are varied. The arrows indicate the frames containing manually annotated birth events, the location and time in
which daughter cells are born. The end of the mitotic phase involves cytokinesis, which is the pinching of the cell membrane to split a cell into two, typically shown
as a figure eight shape as in the first sequence; however, a figure eight shape is often not clearly observed as in the second sequence. The last sequence contains
apoptosis, or cell death, which exhibits similar visual characteristics to mitosis in the beginning of the process. Due to the increased brightness, apoptotic events
are mostly captured in candidate patch sequences. These sequences are extracted from frames 86 through 93 (top), 350 through 359 (center), and 819 through 831
(bottom) among the entire sequence consisting of 1436 frames.

Fig. 2. An example of candidate patch sequences located in consecutive phase-contrast microscopy images. After candidate patch extraction based on brightness,
spatially overlapped patches in consecutive frames are linked into a candidate patch sequence.

the result is thresholded with th, producing a binary image. For
each connected component in the binary image, a bounding box
is obtained and overlapping bounding boxes are then combined
into one bounding box that encloses all the overlapping boxes.
We then extract fixed-sized rectangular patches from the
image at the center position of each bounding box. The param-
eters and are closely related to the average cell size1. In our
experiments, we set parameters , th, and to be 10, 1000, and
50 using a typical cross validation scheme.

Following this, candidate patch sequences are constructed by
associating spatially overlapped patches in consecutive frames
as shown in Fig. 2. In the case that a patch in frame can be
linked with two or more patches in the following frame ,
the patch in frame is associated with the one of the patches in
frame , whereas each of the other patches in frame ini-
tiates a new candidate patch sequence. In our experiments, mul-
tiple possible associations seldom occur except right after a birth
event; a patch containing two new born cells that stick to each
other can be linked with two patches each of which contains
one of the daughter cells. In such a case, a birth event appears in
the patch sequence before multiple possible associations; thus,
association with either of the possibilities does not affect birth
event detection performance.

B. Visual Feature Extraction

Unique scale gradient histogram features are extracted from
each patch in candidate patch sequences. The unique scale gra-

1Our experiments show that the best performance is achieved when parame-
ters � and � are set to be approximately half and twice of the length of the square
enclosing the average size of mitotic cells.

dient histogram features reflect the characteristics of phase-con-
trast microscopy images.

• Relativity: The pixel values in phase contrast microscopy
images are influenced by many factors, such as artifacts
and neighboring cells. Thus, relative features which reflect
the change of pixel values, e.g., intensity gradient, are more
reliable than absolute features.

• Unique scale: The variation of cell scales is minimal since
the distances between the microscope lens and cells are al-
most uniform. Although cell sizes can differ within a cer-
tain range even during mitosis, the variation is limited and
can thus be statistically modeled by training samples.

• Rotation invariance: Cells in a given field show various
orientations. Regardless of the orientations, rotation invari-
ance generally allows similar features to be extracted from
cells with similar appearances.

The process computing unique scale gradient histograms fol-
lows scale invariance feature transform (SIFT) [19]. After di-
viding each patch into 4 4 subregions, we accumulate gra-
dient magnitudes weighted by a Gaussian function into 4 bins
along the orientations at each subregion as shown in Fig. 3. After

features are computed for each patch, L2 nor-
malization is applied to the feature vectors.

To achieve rotation invariance, each training candidate patch
sequence is duplicated by rotating all patches in the sequence
along several different orientations. This scheme results in per-
formance improvement when training samples are insufficient.
In our experiments, we applied three different orientations: 90 ,
180 , and 270 as shown in Fig. 3. Other rotation schemes are
not as effective as this simple duplication scheme because the
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Fig. 3. Schematic of unique scale gradient histogram computation. At each of 4� 4 subregions in a patch, a gradient histogram with four bins along the orientations
are computed. To achieve rotation invariance, each candidate patch sequence in the training set is duplicated by rotating all patches in the sequence along three
different orientations: 90 , 180 , and 270 .

Fig. 4. Graphical representations of two previous models (HCRF and LDCRF) and our EDCRF model. � and � represent the �th observation (the �th patch
in a given candidate sequence in our work) and the hidden state assigned on � , respectively. � represents a class label; one class label is assigned on the entire
sequence in HCRF, while a class label is assigned for each of observations in LDCRF. In EDCRF, � is the label indicating the timing of the birth event and � is
the �th sub-label determined by �. Gray circles denote observed variables for training. For testing, � and � are not observed.

major axis is not reliably found in phase-contrast microscopy
images [19] or the relative spatial information is generally lost
[20].

III. MITOSIS DECISION USING EVENT DETECTION

CONDITIONAL RANDOM FIELD

After candidate patch sequence construction and visual
feature extraction, the problem reduces to determining whether
each candidate contains a birth event and which frame the birth
event is located in. For these two decision tasks, we present
event detection conditional random field (EDCRF), a proba-
bilistic model for birth event detection and localization. After
introducing related probabilistic models, we formulate the
EDCRF model and describe its learning and inference process.

A. Related Models

We review two previous probabilistic models: hidden condi-
tional random fields (HCRFs) [16] and latent-dynamic condi-
tional random fields (LDCRFs) [18]. The graphical representa-
tions of these two models are shown in Fig. 4.

HCRF was devised to analyze temporal sequences, such as vi-
sion and speech applications [21], [22]. Particularly, it has been
applied to gesture recognition tasks and demonstrates its superi-
ority to hidden Markov models (HMM) and conditional random
fields (CRF) [23]. HCRF also excels in mitosis occurrence de-
tection [15]. However, since HCRF handles sequences on each
of which only one label is imposed, it cannot capture the timing
of particular events, such as birth events, in candidate patch se-
quences.

LDCRF was proposed to additionally capture extrinsic class
dynamics based on the idea of HCRF [18]. Hidden variables in
LDCRF not only model substructure of a class sequence, but
also learn dynamics between class labels; thus, the model can

be directly applied to unsegmented sequences. Efficient training
and inference schemes can be achieved by constraining each
class label to have a disjoint set of associated hidden states.
LDCRF has the potential to be modified into a model for event
detection in that an event can be expressed as a class dynamic
change when different labels are assigned on observations be-
fore and after the event.

B. EDCRF Formulation

EDCRF has one more variable containing event timing on
the top of LDCRF as shown in Fig. 4. Given the event timing
information, the sub-label variables in the subsequent layer are
set to show an explicit label transition between before and after
the event, which implies dynamic changes of observations. The
formulation of EDCRF is as follows.

Suppose that candidate patch sequence and label pairs
are given. Each label is

defined as

(1)
Each sequence consists of can-
didate patches where denotes the th patch ( can be
varied for different sequences). We assume hidden variables

and sub-labels
where and correspond to . When a sequence label is
given, the sub-labels , and are defined as

(2)

where label , and represent no event, before the event, and
after the event (including the event), respectively. In other words,
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if there exists a birth event in a given candidate sequence, the
sub-labelsbefore the event are set tobe and theother sub-labels
set to be . Otherwise, all the sub-labels are set to be .

Under these definitions, we define a latent conditional model
for each sequence

(3)

where is a set of parameters of the model.
In order to make the modeling efficient, we adopt the same

scheme as LDCRF [18], which restricts that each sub-class label
is associated only with hidden states in a disjoint set . Then

(4)

The proposed model is thus simplified as

(5)

We define using the typical conditional random
field (CRF) formulation

(6)

where is a partition function. and
are a state and a transition function,

respectively. and are the parameters of state and
transition functions, respectively. Also, .

We define state functions as

(7)

where is a visual feature vector of . The inner product
of can be interpreted as a compatibility mea-
sure between observation and hidden state [16]. We de-
fine transition functions as

(8)

where .
We restrict sub-level transitions among ,
and , which respectively represent no event, before the
event, during the event, and after the event. Aside from these
four transitions, there exists no other transition in our setting.

C. Learning Model Parameters

For learning parameters, we maximize the following regular-
ized log-likelihood function as conventionally [24], [25]

(9)

where is the variance of a Gaussian prior.

This optimization problem can be solved by gradient ascent
methods. The derivative of with respect to , which
is the th element of , is computed as

(10)

where is the th element of .
can be computed by belief propagation

[26] in [18].
Similarly, the derivative of with respect to

is computed as

(11)

For valid transition , since ,
the derivative can be simplified as

(12)

can also be efficiently com-
puted by belief propagation.

D. Inferences

For testing of a new sequence , we first compute the prob-
abilities of our conditional model with all possible and the
optimal parameter obtained in the training step

can be computed as

(13)
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TABLE 1
COMPARISON OF MITOSIS DETECTION PERFORMANCE BETWEEN EDCRF AND HCRF MODELS WHEN THE TIMING OF BIRTH EVENTS IS NOT

CONSIDERED. COMPARISON IS CONDUCTED IN TERMS OF PRECISION, RECALL, F-MEASURE, AND THE AUC OF THE PR-CURVE ON FOUR

C3H10T1/2 AND ONE C2C12 STEM CELL POPULATIONS. EDCRF OUTPERFORMS HCRF IN TERMS OF ALL THE METRICS

because leads to under our restricted
transition rule. Similarly

(14)

The other conditional probabilities can be computed as

(15)

For mitosis occurrence decision on each candidate sequence,
we compare and . If
the former is greater, EDCRF determines that there is no
mitotic event in the given sequence. Otherwise, the tem-
poral localization of the birth event follows by comparing

, and . More formally,

(16)

IV. EXPERIMENTAL SETUP

A. Data and Ground Truth

Multipotent C3H10T1/2 mesenchymal stem cells (ATTC,
Manassas, VA) serve as a model for the adult human mes-
enchymal stem cell and were grown in Dulbecco’s Modified
Eagle’s Media (DMEM; Invitrogen, Carlsbad, CA), 10%
fetal bovine serum (Invitrogen, Carlsbad, CA) and 1% peni-
cillin-streptomycin (PS; Invitrogen, Carlsbad, CA). C2C12
myoblastic stem cells (ATTC, Manassas, VA) have the capacity
to differentiate into osteoblasts and myocytes and were grown
in DMEM, 10% bovine serum (Invitrogen, Carlsbad, CA) and
1% PS. All cells were kept at 37 C, 5% CO in a humidified
incubator.

Phase-contrast microscopy images of the two types of stem
cell populations (C3H10T1/2 and C2C12) were generated
as follows. During the growth of stem cells, microscopy cell
images were acquired every 5 min using a Zeiss Axiovert

T135V microscope (Carl Zeiss Microimaging, Thornwood,
NY) equipped with a 5X, 0.15 N.A. phase-contrast objective,
a custom-stage incubator, and the InVitro software (Media
Cybernetics Inc., Bethesda, MD). Each of the images con-
tains 1392 1040 pixels with a resolution of 1.3 m/pixel.
C3H10T1/2 and C2C12 microscopy image sequences consist
of 1436 and 1013 images, respectively.

After acquiring the image sequences, manual annotation of
birth events was performed on one C2C12 and five C3H10T1/2
image sequences. For each birth event, the center of the
boundary between two daughter cells was marked when the
boundary is clearly observed. Since C2C12 myoblasts were
cultured to a much higher level of confluence than C3H10T1/2
mesenchymal stem cells in our data, each of the C3H10T1/2
sequences contain 41–128 mitotic events, while the C2C12
sequence contains 673 mitotic events.

B. Experiments

For mitosis detection without considering the timing of birth
events, we compare EDCRF with HCRF [16], which was pre-
viously used for mitosis occurrence detection. HCRF is known
to outperform hidden Markov models (HMM) and conditional
random fields (CRF) [15], [23].

To the best of our knowledge, there exists no probabilistic
model which has been used for automated temporal localization
of birth events given candidate patch sequences; in this respect,
our EDCRF model is original. In order to compare EDCRF
with possible alternatives, we additionally use either support
vector machines (SVM) or conditional random fields (CRF) for
the temporal localization of the birth event after the identifica-
tion of mitosis occurrence using HCRF. In these alternative ap-
proaches, the identification of mitosis occurrence and the tem-
poral localization of birth event are sequentially performed.

In the model incorporating HCRF and SVM
, a version of SVM that outputs probabilities is applied

to the sequences determined by HCRF to have a mitosis oc-
currence. More specifically, for training, candidate patches
containing manual annotation of birth events are used as posi-
tive samples and all patches in the candidate patch sequences
that do not contain mitosis as negative samples. For testing, the
SVM produces the probabilities that each patch contains a birth
event; the patch with the highest probability in the sequence is
then decided to contain a birth event.

In the model combining HCRF and CRF ,
the same labeling scheme as EDCRF is applied to temporally
localize birth events. More specifically, for training, one label is
assigned to the label variables before the birth event and another
label is assigned after the event. If there exists no birth event,
a third label is assigned to all the label variables. For testing,
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Fig. 5. The PR-curves of mitosis detection on the first C3H10T1/2 and the C2C12 image sequences when the timing of birth events is not considered. In terms of
AUC, the EDCRF model outperforms the HCRF model in both cell types.

Fig. 6. The PR-curves of EDCRF and two alternative models (�������� and��������) showing mitosis detection accuracy on the first C3H10T1/2
(top) and the C2C12 (bottom) image sequences. Detection results are considered true positive when the timing error of the birth event is not greater than a given
threshold (one of 1, 3, 5, and 10). In terms of AUC, our approach consistently outperforms the alternative approaches regardless of the threshold. The superiority
of our approach is more evident when the threshold is small, i.e., the evaluation on birth event timing is strict.

the same inference scheme as the EDCRF model is utilized to
determine a birth event’s temporal location.

For C3H10T1/2 image data, one sequence is used for training
and the other four sequences for testing whereas for C2C12
image data, half of all mitotic cells are used for training in turn,
and the other half are used for testing.

C. Evaluation

After constructing candidate patch sequences, the number of
undetected mitosis is counted. Each mitotic event, specifically
the birth event, is expected to be captured by one of the candidate
patch sequences. However, if there are birth events which are
not contained in any candidate patch sequence, such cases are
considered undetected. If one candidate patch sequence contains
more than one birth event, all of the birth events except the first
one are considered undetected as well. All of the undetected
mitosis are counted as false negatives when precision and recall
are computed.

After applying the probabilistic models, we first evaluated the
identification of mitosis occurrence in terms of precision and re-

call without examining the timing of birth events. In this case,
true positive is defined as the case that a candidate patch se-
quence containing a birth event is correctly identified no matter
how great the timing error of the birth event is. If one birth event
is located in more than one candidate patches, the birth event is
considered to exclusively belong to the patch whose center is
the closest to the birth event among the candidate patches.

We then evaluate the identification of mitosis occurrence with
the constraint of birth event timing. In this case, among the
aforementioned true positive cases, only the cases in which the
timing error of the birth event is equal to or less than a certain
threshold are considered true positive. In other words, although
a candidate sequence including an actual birth event is correctly
identified, if the timing error of the birth event is greater than
the threshold, the birth event is considered undetected as well
as the detection is regarded false. More specifically, the timing
error is measured as the frame difference between the patch
containing the ground truth and the patch containing the de-
tected birth event in the sequence. We use four different thresh-
olds (1, 3, 5, and 10) and report precision and recall for each
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TABLE II
MITOSIS DETECTION PERFORMANCE COMPARISON WHEN THE TIMING OF BIRTH EVENTS IS EXAMINED IN ADDITION TO MITOSIS OCCURRENCE. OUR APPROACH

IS COMPARED WITH THE ALTERNATIVE APPROACHES BASED ON HCRF (���� � ��� AND ���� ����) IN TERMS OF PRECISION, RECALL, F-MEASURE,
AND THE AUC OF THE PR-CURVE ON C3H10T1/2 AND C2C12 STEM CELL POPULATIONS. DETECTION RESULTS ARE CONSIDERED TRUE POSITIVE WHEN THE

TIMING ERROR OF THE BIRTH EVENT IS NOT GREATER THAN A GIVEN THRESHOLD (ONE OF 1, 3, 5, AND 10). WHEN A THRESHOLD IS SMALL (THE EVALUATION

IS STRICT), OUR APPROACH MORE CLEARLY OUTPERFORMS THE ALTERNATIVES

case. The smaller a threshold is, the stricter the evaluation is.
To compare the detection results, we also compute F-measure,
which is the harmonic mean of precision and recall, and the area
under the curve (AUC) of the precision-recall curve (PR-curve).
PR-curves are obtained by varying the decision probability in
(16).

V. RESULTS AND DISCUSSIONS

During candidate patch sequence extraction, one birth event
is not captured in four C3H10T1/2 sequences which are used
for testing. There is no case that one candidate patch sequence
contains more than one birth event in the C3H10T1/2 sequences.
In the case of the C2C12 sequence, one birth event is missed
and 36 birth events are detected following another birth event
in the same sequence; as a result, a total of 37 false negative
cases are reported before the decision tasks. Multiple mitosis in
a candidate patch sequence occur due to the adhesion of mitotic
cells at high confluency present in the C2C12 sequence. Under
such circumstances, it is difficult to identify attached cells as
separate entities.

As shown in Table I, the proposed mitosis detection method
achieves 0.913/0.870 and 0.950/0.893 in terms of precision/re-
call on C3H10T1/2 and C2C12 stem cell populations, respec-
tively, when only mitosis occurrence is considered. In terms of
F-measure and AUC, the accuracy on C2C12 is comparable to
that of C3H10T1/2, although the C2C12 cell population is more
challenging due to its higher level of confluence and deforma-
bility. Having more training samples for C2C12 might be the
reason.

Compared with the HCRF model, the EDCRF model is supe-
rior in mitosis occurrence detection in terms of precision, recall,
F-measure, and the AUC of the PR-curve as shown in Table I
and Fig. 5. A Student’s paired t-test on the F-measures shows

that the performance improvement is statistically significant at
the significance level 0.01 . These results indi-
cate that the information of birth event timing is actually helpful
for identifying the occurrence of mitosis. HCRF cannot utilize
such additional information due to its limited expression power.
On the other hand, EDCRF simultaneously models both mitosis
occurrence and birth event timing, resulting in higher discrimi-
nating power than HCRF in mitosis occurrence identification.

When we additionally consider the timing errors of birth
events and threshold them to obtain true positive cases, the supe-
riority of EDCRF is more obvious. Compared to the alternative
models, and , EDCRF consis-
tently outperforms them in terms of precision, recall, F-mea-
sure, and AUC regardless of the cell type and the threshold for
the timing error of birth events as shown in Table II. Student’s
paired t-tests on the F-measures show that the performance im-
provements are statistically significant at the significance level
0.01 regardless of the threshold of the timing error (EDCRF
versus , 0.0038, 0.0092, and
0.0028; EDCRF versus , 0.0013,
0.0055, and 0.0037 for the threshold , 3, 5, and 10, respec-
tively). When a smaller threshold corresponding to a stricter
evaluation of temporal localization is applied, our approach
significantly outperforms the alternative approaches as seen in
Fig. 6. In the alternative models, the identification of mitosis
occurrence and the temporal localization of birth events are
separately performed so the localization step may not be mean-
ingful if mitosis occurrence is incorrectly identified. In this
sense, the preceding mitosis occurrence decision may under-
mine the full potential of the localization step that follows. It is
worth mentioning that recalls do not reach one in the PR-curves
because some of existing mitosis are not detected regardless of
the decision probability of mitosis occurrence. The undetected

288



594 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 30, NO. 3, MARCH 2011

Fig. 7. Temporal localization precision of birth events of three approaches: EDCRF (left), ���� � ��� (middle), and ���� � ��� (right) on two cell
populations: C3H10T1/2 (top) and C2C12 (bottom). The histograms show the frequency distribution of birth event timing errors when at most 10 frame error is
allowed. Timing error is measured as the frame difference between the patches containing the ground truth and the detected result of the birth event among true
positive samples. The temporal localization of EDCRF is more accurate than the alternatives.

Fig. 8. Sample images illustrating examples of mitosis detection on the C2C12 microscopy image sequence. Each of the yellow circles in frames 678 and 680
surrounds a detected birth event. The EDCRF model temporally localizes birth events when there is a distinct boundary between daughter cells.

TABLE III
AVERAGE AND STANDARD DEVIATION OF THE TIMING ERROR OF BIRTH

EVENTS IN TERMS OF (ABSOLUTE) FRAME DIFFERENCE. THE ERROR OF

EDCRF IS SMALLER THAN THE ALTERNATIVE MODELS. THE IMPROVEMENT

IN PERFORMANCE IS STATISTICALLY SIGNIFICANT

mitosis occur due to either imperfect extraction of candidate
patch sequences or inaccurate temporal localization of birth
events.

Fig. 7 shows the distribution of the frame differences between
the human and computer annotations of birth events among true
positive samples on C3H10T1/2 and C2C12 sequences when at
most 10 frame difference is allowed in temporal localization of
birth events. The averages of the (absolute) frame differences
using EDCRF are smaller than using the alternative models as
shown in Table III. EDCRF achieves statistically significant im-
provements in the temporal localization of birth events; when
applying Student’s t-tests, we obtain p-values less than 0.001
for all of the four cases: comparison with on
C3H10T1/2 on C3H10T1/2

on C2C12 , and

on C2C12 . In addition to the lesser per-
formance of HCRF in the identification of mitosis occurrence,
SVM and CRF also fall short of the capability of EDCRF in
the temporal localization of birth events. SVM is not capable
of modeling temporal dynamic and CRF does not capture the
hidden state structures in candidate patch sequences.

Using our design, the overall process of mitosis detection is
more computationally efficient compared to the previous work
[15]. By removing the time-consuming preconditioning [17],
our approach can process a test image of 1392 1040 pixels
in less than 5 s, while the previous method spends more than
5 min on the preconditioning step alone when using a com-
puter with a dual core 2-GHz processor and 2-GB memory. This
computational improvement enables real-time analysis of mi-
croscopy images periodically taken even with a short time in-
terval. The previously used preconditioning scheme [17] is not
required because cells show distinctive characteristics during
mitosis. Mitotic cells can be recognized without applying the
complex method devised for nonmitotic cells rather than mitotic
cells.

Fig. 8 demonstrates two examples of birth events in the
C2C12 myoblastic stem cell population automatically detected
by our approach. Our approach shows good performance on the
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Fig. 9. Sample images illustrating examples of mitosis detection on the C2C12 microscopy image sequence from frames 1000 through 1007. Each of the yellow
circles surrounds a detected birth event produced by our approach, whereas each of green squares encloses a ground truth birth event annotated by a human. During
these eight frames, twelve birth events are correctly detected within one frame error and one birth event is missed in frame 1002.

C2C12 stem population with higher confluency (approximately
80%–90%) as shown in Fig. 9.

VI. CONCLUSION AND FUTURE WORK

We have proposed an effective approach for mitosis detection,
specifically birth event detection and temporal localization. Mi-
tosis detection accuracy and speed are considerably improved
compared to previous work by developing a probabilistic model
for event detection and bypassing the use of time consuming

modules. Experimental results on two types of stem cell popu-
lations validate the efficacy of our approach.

The mitosis detection algorithm described here will facili-
tate the quantification of biological metrics for cell proliferation.
Such quantification will be useful in the study and characteriza-
tion of biological processes and may have applications in high
throughput screens that are reliant on cell proliferation mea-
surements including identification of potent anti-mitotic drugs
for chemotherapy as well as determination of drug sensitivity
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in normal and diseased cells. In addition, we plan to develop a
real-time cell tracking system that incorporates the functionality
of our mitosis detection approach. The system would facilitate
online monitoring and adaptive control of stem cell expansions
by helping to make online decisions about when to subculture
the stem cells as well as alerting the users of abnormalities of
cell behaviors.
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A4.1 RELEVANCE TO THESIS 

In Chapter 6, a real-time computer-vision based system was devised to monitor and predict the 

growth of C2C12 cells as a paradigm muscle progenitor population for stem cell manufacture. A 

simple, 2nd order polynomial curve fitting model was used to predict C2C12 cell growth up to 4 

hours in advance. In this section, Zhaozheng Yin, a postdoctoral researcher at the Robotics 

Institute devised a data-driven approach for improving confluency predictions by using 

previously acquired data of C2C12 cells cultured under similar conditions. This methodology 

can predict C2C12 cell growth up to 8 hours in advance and outperformed both polynomial and 

exponential prediction models. This data-driven approach will be useful for building robust 

prediction models and facilitate growth monitoring of specific cell types for cell manufacture and 

production. 



Data-driven Prediction on Stem Cell Culture Process

Zhaozheng Yin, Dai Fei Ker, Silvina Junkers, Takeo Kanade, Mei Chen, Lee Weiss, and Phil Campbell

Abstract— Stem cell expansion culture aims to generate
sufficient number of clinical-grade cells for cell-based therapies.
One challenge for ex vivo expansion is to decide the appropriate
time to perform subculture. Traditionally, this decision has been
reliant on human estimation of cell confluency and predicting
when confluency will approach a desired threshold. However,
the use of human operators results in highly subjective decision-
making and is prone to inter- and intra-operator variability.
Using a real-time cell image analysis system, we propose a data-
driven approach to model the cell growth process and predict
the cell confluency levels, signaling times to subculture. This
approach has great potential as a tool for adaptive real-time
control of subculturing, and it can be integrated with robotic
cell culture systems to achieve complete automation.

I. INTRODUCTION

Stem cell engineering promises to revolutionize regener-
ative medicine by helping to repair diseased or damaged
tissues and organs. Starting with the relatively small number
of primary stem cells available in isolates from the body, one
of the critical bioprocessing steps required by successful cell-
based therapies is to generate a sufficient number of clinical-
grade stem cells through ex vivo cell culture expansions [4].
However, tight control of the expansion process remains a
challenge. In particular, determining the appropriate time to
perform cell subculturing is important. Delayed subculturing
of cells can result in cell overgrowth, which leads to loss
of stem cell differentiative potential (stemness); whereas
premature subculturing can lead to longer production time
to achieve targeted cell yields, with associated added costs.
Traditionally, the decision to subculture is based on cell
confluency which is related to the cell packing densities in
the culture vessel. However, estimation of cell confluency
by human operators is a highly subjective task and prone
to inter- and intra-operator variability [5]. Furthermore, it
is not practical or cost-effective for human operators to
manually observe and monitor cell cultures 24/7. Automating
the decision on when to subculture cells will result in more
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consistent outcomes and reduce variability, leading to more
efficient and reliable stem cell culture systems.

Time-lapse microscopy imaging has been used to mon-
itor the cell growth process [3] where the degree of cell
confluency level in images is used as a metric to assess
the cell culture process. To augment human monitoring, we
propose a data-driven approach to model the cell growth
process and predict the optimal confluency for a real-time
adaptive subculture system. First, time-lapse images of cells
under the same culture condition are acquired to monitor
the cell growth process, and to compute the cell confluency
over time. These experiments are terminated without further
subculture when the computed confluency exceeds a pre-
determined cell confluency level. These pre-recorded images
with computed time series of confluency metrics serve as
training data for subsequent real-time adaptive control ex-
periments. We then build a linear subspace using princi-
ple component analysis (PCA) on the training data. When
performing a new cell culture experiment with the same
culture conditions as our training experiments, we project the
observed confluency data onto the linear subspace to model
the cell growth process and predict the future confluency.
One application of our prediction approach is to notify a
human operator in advance when to perform a subculture.
For example, 4 hours prior to exceeding a pre-determined
confluency level (e.g. 50%), the image analysis and predic-
tion system alerts a human operator via text messaging and/or
email to prepare for subculture. The goal is to help human
operators expand a population of stem cells to reach a target
number in an efficient manner without exceeding or being
far away from the pre-determined optimal confluency level
(i.e., avoiding delayed or premature subculture).

In this paper, we first introduce in Section II how we com-
pute confluency metrics to monitor cell growth processes.
Then, in Section III we present our data-driven model. The
dynamic prediction on cell confluency levels is described in
Section IV. In Section V we quantitatively compare our data-
driven approach with other parametric models and introduce
the application of our prediction system.

II. MONITORING CELL GROWTH PROCESS

During the cell culture experiment, we capture real-time
phase contrast microscopy images to monitor the degree of
confluency inside the field of view. The confluency metric is
defined as the number of pixels occupied by cells divided
by the total number of pixels in the image. For a given
phase contrast image (Fig. 1a), we restore its corresponding
artifact-free image without the halo or shade-off effects [6],
as shown in Fig. 1b. In the restored image, cell pixels
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Fig. 1. Compute confluency. (a) A phase contrast microscopy image; (b)
Restored image without halo or shade-off artifacts; (c) The segmented cell
masks by globally thresholding the restored image; (d) Segmentation results
(red) overlaid on the original image.

Fig. 2. The confluency increases during the culture process. Five sample
images overlaid with segmented cell masks (red) show the confluency level
at five time instants.

have positive values while background pixels have near-zero
values, which is amenable to image segmentation by thresh-
olding. The thresholded binary mask is shown in Fig. 1c. The
resultant cell mask overlaid on top of the original image is
shown in Fig. 1d, which proves to be a good estimation of
the confluency metric.

Given a time-lapse microscopy image sequence, we com-
pute the confluency metric for each individual image. This
produces time series data on confluency. As shown in Fig. 2,
while stem cells keep dividing (mitosis), the confluency
of the culture process increases accordingly. The small
“dips” observed in the confluency curve correspond to minor
changes in cell shapes over a period time.

III. MODELING CELL GROWTH PROCESS

Monitoring cell growth with time-lapse microscopy imag-
ing generates time series confluency data (e.g Fig. 2). Para-
metric models on the cell growth process can be obtained
by data-fitting. For example, we can fit the second-order
polynomial model on the observed confluency data by

Fig. 3. Align time series confluency curves. (a) The original confluency
metrics of N time-lapse image sequences; (b) Aligned curves such that their
cell culture processes start from the same initial confluency.

x(t) = p2t
2 + p1t+ p0 (1)

where x = [x(0), · · · ,x(t), · · · ,x(T )]T is a vector storing
the observed confluency metrics from time t = 0 to time
t = T , and p = [p1,p2,p3]

T is the parameter vector. Or,
we can fit exponential model onto the data by

x(t) = ekt + c (2)

where k and c are the scalar parameters. All the parameters
(p, k, c) are computed using the least square technique [1].

However, these parametric models that depend on specific
cell types and culture experiments might lack practical
or biological meanings. Instead, we propose a data-driven
approach that models the growth process based on observed
training data without assuming any specific model. We
ran N cell culture experiments on the same type of cells
using the same culture condition to obtain the training data.
Images of the cell culture experiments were captured every 5
minutes using a phase contrast microscopy imaging system,
which generated N time-lapse image sequences for training
purposes. We computed confluency metrics for all the N
sequences (Fig. 3a). Since the first image of each sequence
may have different degrees of confluency (i.e., the number of
seed cells may be different for the N sequences), we search
the largest initial confluency of the N curves in Fig. 3a, and
then align all the N curves such that they start from the same
initial condition (Fig. 3b).

Then, we apply PCA [2] onto the training data using
Singular Value Decomposition (SVD)

X = USVT (3)

where data matrix X = [x1, · · · ,xN ] stores the vectors of
the confluency metrics of the N image sequences, U and
V are two orthogonal matrices, and S is a diagonal matrix
with rank-ordered singular values (Fig. 4). We choose the
column vectors of V that correspond to the first K (e.g.
K = 2) largest singular values to span a linear subspace for
our data-driven modeling.

For a new cell culture experiment having the same type
of cells and the same culture condition as our training
experiments, we monitor its culture process and compute the
observed confluency, z. The culture process can be modeled
in our trained linear subspace by

y =
K∑

k=1

akvk (4)
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Fig. 4. The variance (singular value) of each principle component.

Fig. 5. Modeling cell growth by three methods: (a) Data-driven; (b)
Polynomial, and (c) Exponential. The data-driven model fits the observed
data with the least error on the culture process.

where vk denotes the kth principle vector in V, the coeffi-
cient ak is computed by

ak = vT
k z. (5)

The performance of the modeling is evaluated by the sum of
absolute difference between the modeled culture process, y,
and the observed culture process, z,

Err =
T∑

t=0

|y(t)− z(t)|. (6)

Compared to the two parametric models (polynomial and
exponential), the data-driven model fits the observed data
with the least error on the culture process in Fig. 5.

IV. PREDICTING CELL CONFLUENCY

Our goal is to accurately predict the cell confluency at a
future time t+L based on the observed confluency data from
time 0 till time t, where L is the prediction time lag. When
L = 1, we predict the confluency at the next frame. When
L = 48, we predict the confluency 4 hours later (images are
captured every 5 minutes, and the time unit is represented
by the image index.) In this section, the data-driven model
(Eq. 4) is further extended to dynamic prediction. Denote
time-dependent data matrix X(t) = [x

(t)
1 , · · · ,x(t)

N ] where
x
(t)
i = [xi(0), · · · ,xi(t)]

T (i.e., x
(t)
i is the observed time

series confluency of sequence i from time 0 till time t), we
perform SVD

X(t) = U(t)S(t)V(t)T (7)

on all the t’s (t = 0, · · · , T ). Thus, for any time index t, we
get a set of K principle components , {v(t)

1 , · · · ,v(t)
K }.

When predicting the confluency level for a new cell culture
experiment, we first compute the coefficients based on the
current observed time series data, z(t) = [z(0), · · · , z(t)]T ,

a
(t)
k = v

(t)
k

T
z(t) (8)

then the confluency at time t+ L is predicted by

z(t+L)(t+ L) =
K∑

k=1

a
(t)
k v

(t+L)
k (t+ L) (9)

Fig. 6. Predicting the confluency in the next image using three prediction
methods: (a) Data-driven; (b) Polynomial, and (c) Exponential. The data-
driven model has the least prediction error on the culture process.

Fig. 7. Predicting the confluency 4 hours later using three prediction
methods: (a) Data-driven; (b) Polynomial, and (c) Exponential. The data-
driven model is more stable compared to the parametric models and it has
the least prediction error on the culture process.

Fig. 8. The prediction error of three methods regarding to different
prediction time lags. The data-driven prediction is stable and it outperforms
the other two parametric methods consistently with the least prediction error.

Using the evaluation criterion in Eq. 6, we compare the
data-driven prediction method to the other two predictions
using parametric models. As shown in Fig. 6, when predict-
ing the confluency in the temporal domain with a small time
lag, all three prediction methods work reasonably well and
the data-driven prediction achieves the least prediction error.
When the prediction time lag (L) increases, the error of all
the prediction methods increase (Fig. 7). In particular, the
prediction by a polynomial model is quite unstable at the
beginning when there is not enough data for model fitting
(Fig. 7b). The data-driven prediction still achieves the least
prediction error for the larger prediction lag.

We further quantitatively evaluate how well the three pre-
diction methods can predict future confluency by changing
the time lag from L = 1 (5 minutes) to L = 96 (8 hours).
As shown in Fig. 8, the data-driven prediction outperforms
the other two methods consistently with the least prediction
error, and the prediction by data-driven or exponential model
is much more stable than the prediction by polynomial model
as the time lag increases.

V. EXPERIMENTS

We recorded a total of 48 image sequences under four
different cell culture conditions with sample images shown
in Fig. 9. The images were captured every 5 minutes and
each sequence consists of 1000 images at the resolution of
1392*1040 pixels. Under each culture condition, we have
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Fig. 9. Sample images from four cell culture conditions. (a) Control; (b)
With FGF2; (c) With BMP2; (d) With FGF2+BMP2.

TABLE I
THE PREDICTION ERROR OF THREE METHODS WITH L = 24.

Control FGF2 BMP2 FGF2+BMP2
Data driven 122.2 68.7 154.0 137.6
Polynomial 146.2 105.3 179.6 168.2
Exponential 148.9 97.4 309.0 211.2

TABLE II
THE PREDICTION ERROR OF THREE METHODS WITH L = 48.

Control FGF2 BMP2 FGF2+BMP2
Data driven 136.0 74.4 169.6 157.8
Polynomial 259.5 222.7 304.8 315.6
Exponential 164.7 112.6 340.9 235.3

TABLE III
THE PREDICTION ERROR OF THREE METHODS WITH L = 96.

Control FGF2 BMP2 FGF2+BMP2
Data driven 153.4 78.4 192.6 178.9
Polynomial 631.7 628.9 714.8 809.7
Exponential 188.4 136.3 400.5 278.7

12 image sequences. We use the “leave-one-out” strategy to
evaluate the prediction performance. After selecting one out
of the 12 sequences, the remaining 11 sequences undergo
PCA analysis to obtain the principle components (Eq. 7).
Then, we run the prediction (Eq. 9) on the selected sequence
and compare the prediction with the observation using Eq. 6.
We repeat the “leave-one-out” evaluation for each of the
12 sequences and use the summation of all the prediction
errors as the final evaluation criterion on the 12 sequences.
As shown in Tables 1, 2 and 3, the data-driven prediction
achieves the least error at confluency prediction over all the
four culture conditions for different prediction time lags.

The data-driven prediction on cell culture process is useful
for automating the decision process for determining when
to perform subculture. A human operator first runs several
experiments to culture the cells until they reach a pre-
determined cell confluency level for subculture. The recorded
image sequences corresponding to these experiments will be
used to build the data-driven model in Eq. 4 and compute
the time series principle components in Eq. 7. Using the
same type of cells and under the same culture condition, the

Fig. 10. Advance notification for cell culture. (a) A human operator
was notified by text message and email 4 hours prior to exceeding a pre-
determined cell confluency level; (b) Confirmation text message and email
were sent when the cell confluency level approached the pre-determined
threshold.

human operator starts the recursive cell culture/subculture
process whose goal is to culture a sufficient number of cells.
In the meantime, the human operator sets up the image
analysis and prediction system such that it can notify him/her
h (e.g. h = 4) hours prior to exceeding a pre-determined
cell confluency level, to prepare for subculture. Fig. 10
shows a successful cell culture experiment by the advance
notification.

VI. CONCLUSION

Determining the appropriate time to perform subculture is
important to optimize the process of stem cell expansion. We
monitor the process of cell growth by computing the degree
of cell confluency in phase-contrast microscopy images.
Based on the cell confluency measurements, we propose a
data-driven approach to model the cell growth process and
predict when a pre-determined cell confluency threshold will
be exceeded, requiring cells to be subcultured. Compared to
the typical parametric models for predicting cell growth, our
data-driven approach learns the cell growth model from a
training set of cell culture experiments and achieves higher
prediction accuracy on cell culture experiments that have the
same culture condition as training experiments. This data-
driven prediction has great potential as a tool for adaptive
realtime control of subculturing, and it can be integrated with
robotic cell culture systems to achieve complete automation.

REFERENCES

[1] C. Bishop,“Pattern Recognition and Machine Learning,” Springer,
2006.

[2] R. Duda, P. Hart, and D. Stork, “Pattern Classification,” Wiley, 2001.
[3] M. Kino-oka, and J.E. Prenosil, “Development of an On-Line Monitor-

ing System of Human Keratinocyte Growth by Image Analysis and Its
Application to Bioreactor Culture,” Biotechnol. Bioeng., 67(2): 234-9,
2000.

[4] Y. Liu, P. Hourd, A. Chandra, and D. J. Williams, “Human Cell
Culture Process Capability: a Comparison of Manual and Automated
Production,” J. Tissue Eng. Regen. Med., 4:45-54, 2010

[5] F. S. Veraitch, R. Scott, J. Wong, Gary. J. Lye, and C. Mason, “ The
Impact of Manual Processing on the Expansion and Directed Differen-
tiation of Embryonic Stem Cells” Biotechnology and Bioengineering,
99(5): 1216-1229, 2008.

[6] Z. Yin, K. Li, T. Kanade and M. Chen, “Understanding the Optics
to Aid Microscopy Image Segmentation,” Proceedings of the 13th
International Conference on Medical Image Computing and Computer
Assisted Intervention (MICCAI), 2010.

297



APPENDIX A5: RESTORING DIC MICROSCOPY IMAGES FROM MULTIPLE 
SHEAR DIRECTIONS 

 
 
 

 
 
 
 
 
 

Based on published work: 
 
 
 
 
 
 
 

Restoring DIC Microscopy Images from Multiple Shear Directions 
 

Zhaozheng Yin, Dai Fei Ker, Takeo Kanade 
 

Information Processing in Medical Imaging: Proceedings of the 22nd International Conference. 
2011 July; 22 384-397. 

 
 
 

 

 

 

 

 

 

 

 

 

298 
 



299 
 

A5.1 RELEVANCE TO THESIS 

Cell detection is a critical step for automated cell tracking in time-lapse microscopy images. In 

this section, Zhaozheng Yin, a postdoctoral researcher at the Robotics Institute devised a method 

for detecting cells in Differential Interference Contrast (DIC) microscopy images. This algorithm 

estimates the shear angle from multiple DIC images and a reconstructed DIC image is produced. 

The reconstructed DIC image is artifact-free with respect to bias retardation (pseudo 3D effect 

commonly seen in DIC images) and is amenable to cell segmentation techniques. Future work 

will involve integrating this cell detection method with an automated phase-contrast time-lapse 

microscope for multi-modal (DIC and phase-contrast) time-lapse imaging and cell tracking. 

 



Restoring DIC Microscopy Images from
Multiple Shear Directions

Zhaozheng Yin1 Dai Fei Elmer Ker2 Takeo Kanade1

1Robotics Institute, 2Department of Biological Sciences
Carnegie Mellon University, Pittsburgh, US

Abstract. Differential Interference Contrast (DIC) microscopy is a non-destructive
imaging modality that has been widely used by biologists to capture microscopy
images of live biological specimens. However, as a qualitative technique, DIC mi-
croscopy records specimen’s physical properties in an indirect way by mapping
the gradient of specimen’s optical path length (OPL) into the image intensity. In
this paper, we propose to restore DIC microscopy images by quantitatively esti-
mating specimen’s OPL from a collection of DIC images captured from multiple
shear directions. We acquire the DIC images by rotating the specimen dish on the
microscope stage and design an Iterative Closest Point algorithm to register the
images. The shear directions of the image dataset are automatically estimated by
our coarse-to-fine grid search algorithm. We develop a direct solver on a regular-
ized quadratic cost function to restore DIC microscopy images. The restoration
from multiple shear directions decreases the ambiguity among different individ-
ual restorations. The restored DIC images are directly proportional to specimen’s
physical measurements, which is very amenable for microscopy image analysis
such as cell segmentation.

1 Introduction

Under a traditional brightfield microscope, living specimens such as cells are colorless
and transparent because they are predominantly phase objects that absorb and scatter
little illumination light. That is, cells do not significantly alter the amplitude of the light
waves passing through them and as a result, produces little or no contrast when viewed
under a brightfield microscope. For tissue culture cells, a cell’s optical path length (OPL,
product of its refractive index and geometric thickness) is normally different from that
of the surrounding medium (about 0.125µm or a quarter wavelength of green light).
This optical path difference induces a small phase difference between the light waves
passing through cells and those traversing the surrounding medium. Since human eyes
are sensitive to amplitude differences between light waves as opposed to phase differ-
ences, Differential Interference Contrast (DIC) microscopy technique was invented in
1950s to convert these minute phase variations to intensity changes that can be easily
detected by human eyes (see textbook [12]).

The DIC microscope works by splitting a polarized illumination light wave into
two component waves that are spatially displaced (sheared) along a specific direction,
and then recombining the two waves after they travel through adjacent locations on the
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specimen plate. The recombination (interference) is sensitive to phase variations be-
tween the two component waves. An adjustable bias (bias retardation) can be added
into the phase variation. Because the phase variation between the two waves is caused
by OPL difference at two adjacent locations, this microscopy imaging technique is then
called “differential interference,” and the observed intensity in DIC images is propor-
tional to the OPL gradient along the shear direction. The relief-like images generated
by DIC microscopy have the pseudo 3D shadow-cast effects as if the specimens are
illuminated from an oblique lighting resource (e.g. Fig. 1(a,b)), but this artifact only in-
dicates the orientation of a specimen’s OPL gradient rather than the real topographical
structure.

1.1 Related Work

Since the intensity of a DIC image is not a linear mapping of specimen’s inherent prop-
erties such as refractive index, thickness or OPL, this has triggered strong research
interest in reconstructing the original physical properties of specimens from DIC im-
ages. We summarize the related work in three aspects: hardware-related techniques,
reconstruction from a single DIC image and reconstruction using multiple DIC images.

(1) Arnison et al. [1] proposed a hardware extension to the conventional differential
interference by inserting an extra quarter wave plate in the optical layout of a DIC
microscope, and restored the phase objects by varying bias setting and using geometric
phase-shift techniques. Shribak et al. [15] developed an orientation-independent DIC
microscopy by adding liquid crystal devices in the common DIC microscopes. The
setup of these new optical configurations might be complicated and inaccessible to the
common biology labs.

(2) Noticing the gradient interpretation of DIC images, line integration methods
were developed to reconstruct DIC images [8]. The line-by-line integration along shear
direction introduces new streaking artifacts in reconstructed images and it is sensitive
to gradient noise, thus Hilbert transform [2] and other ad hoc techniques such as low-
pass filtering [7] were explored to reduce the streaking artifacts to a certain degree.
General image processing algorithms such as deconvolution by Wiener filter [7, 11]
or by Landweber iterations [6] have been applied to reconstruct optical path length
from DIC images. A preconditioning approach was recently proposed in [10] where
the DIC image is reconstructed by minimizing a nonnegative mixed-norm constrained
cost function. We reimplemented these three types of approaches and applied them on a
pair of DIC images of the same specimens captured from two different shear directions.
As shown in Fig. 1(c) and (d), we can observe the streak artifacts by line integration.
Fig. 1(e) and (f) show the unsatisfactory restoration results by Wiener filtering with 1%
noise-to-signal power ratio of the additive noise. The deconvolution performance de-
pends on the prior knowledge of various hardware parameters (such as shear directions
and bias setting) and image noise models. Fig. 1(g) and (h) show the reconstruction
results by the preconditioning method. It is time-consuming to estimate the direct mea-
surement on specimens by the iterative preconditioning method.

From Fig. 1, we have a common observation that the reconstructions of the image
pair (Fig. 1(c,d), Fig. 1(e,f), and Fig. 1(g,h)) are not the same for the same specimens.
That is, when biologists analyze specimens, they will obtain different measurements
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Fig. 1. Reconstructing optical path length from DIC images. (a,b) Two DIC image of the same
specimens captured from two different shear directions (the arrow denotes the shear direction θ);
(c,d) Reconstruction by line integration enhanced by low-pass filtering; (e,f) Reconstruction by
deconvolution (Wiener filtering); (g,h) Reconstruction by preconditioning.

on the specimen’s optical path length according to different shear directions. This is
very undesirable because biologist don’t know which direction-specific reconstruction
unveils the real properties of specimens.

(3) A few approaches have been proposed to restore specimen’s properties from
multiple DIC images [1, 6, 9, 13, 15]. These approaches either rotate prisms, change bias
settings or step the shear azimuth to capture multiple DIC images, and they require at
least two images captured from a pair of orthogonal shear directions. Without specially-
designed hardware, it is hard to rotate the specimen dish or prism manually by exact 90
degrees to satisfy the orthogonal requirement.

1.2 Our Proposal

We propose a novel approach to restore DIC microscopy images captured from multiple
shear directions without the strict orthogonal requirement. In Section 2, we derived a
closed-form solution for the restoration. Since the DIC images were captured by man-
ually rotating the dish on the stage of a common DIC microscope, there are Euclidean
transformation (rotation and translation) among captured DIC images. We designed an
Iterative Closest Point (ICP) algorithm to register the image dataset (Section 3). Rather
than measuring the shear directions of the DIC images manually, we propose a coarse-
to-fine grid search algorithm to find the shear directions automatically (Section 4). We
show our experiment results in Section 5 with the conclusion followed in Section 6.

2 Problem Formulation and Restoration Method

Based on the gradient interpretation of DIC images, we have the following simplified
DIC imaging model
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Fig. 2. Estimate the optical path length in DIC images. (a) The three observed gradient signals
along different shear directions; (b) The three signals after integration do not intersect in the
OPL space (i.e. there is no consensus among the restored signals); (c) We propose to restore
DIC images (i.e. estimate the optical path length) by minimize the total distance to all integrated
signals; (d) The spatial smooth constraint (gray mesh) is considered during the restoration; (e)
The restoration result using three DIC images.

g = ∇θf (1)

where g(u, v) is an observed DIC image1, ∇θ is the gradient operator along the shear
direction θ and f(u, v) is the DIC image to be restored. This imaging model is also
used by some other DIC reconstruction methods such as the iterative preconditioning
method [10] and deconvolution by Landweber iteration [6]. More accurate and compli-
cated DIC imaging models can be referred to [14].

Based on Eq.1, the DIC image can be restored by applying line-by-line integration
on the observed gradient g along the shear direction θ

f =

∫
g dxθ (2)

where xθ denotes a location on the lines along the shear direction. For a line on the
specimen plate with M locations, we can observe M − 1 gradient values by DIC mi-
croscopy. The line integration method reverses the differential problem by estimating
the OPL values at M locations from observed M − 1 gradient values, thus there are
more unknowns than available equations. The under-constrained equation system plus
the image acquisition noise may make the restored signal inconsistent when we per-
form line integration along different shear directions. As shown in Fig. 2(a), at a spec-
imen location, three gradient signals are extracted from three DIC images along their
shear directions. When we integrate the three gradient signals independently (Fig. 2(b)),
the three reconstructed signals do not intersect in the OPL space - they have different
restoration values on f at the same specimen location! To avoid the ambiguity and
achieve the consensus among different restorations, we propose to estimate the true f

1 We drop the 2D location indices (u, v) in all the equations for concise expressions.
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in a least-square sense. In other words, the real f at that location should have the mini-
mum total distance to all integrated signal curves (Fig. 2(c)). Thus, we are looking for
an image f to minimize

K∑
i=1

∫
R2

(f −
∫

gi dx
θi)2dx (3)

where i indexes the K DIC images captured from different shear directions θi on the
same specimens, x = (u, v) is a pixel location on the 2D Euclidean space R2. The
minimization on Eq. 3 needs to carry out the line integration

∫
gi dx

θi explicitly for
each DIC image. However, the line integration itself is not a satisfactory restoration
as we see in Fig. 1(c) and (d). Instead, we propose to restore f by minimizing a cost
function in the gradient domain directly

K∑
i=1

∫
R2

(∇θif − gi)
2dx. (4)

The goal is to compute an f whose gradients along different shear directions are as close
as possible to the corresponding given gradients, gi’s. After mapping the pixel location
from 2D Euclidean space to a new surface defined by the K shear directions

{x = (u, v),x ∈ R2} → {θ = (θ1, θ2, · · · , θK),θ ∈ Θ} (5)

and using the commutativity of
∑

and
∫

operations, the cost function (Eq. 4) is con-
verted into ∫

Θ

K∑
i=1

(∇θif − gi)
2dθ. (6)

Eq. 6 only measures the fidelity of the restoration to all the observed data. We en-
hances the data fidelity with smooth and sparse regularizations and propose the follow-
ing objective function for restoration

O(f) =

∫
Θ

[(
K∑
i=1

(dθi ∗ f − gi)
2

)
+ ωs(a ∗ f)2 + ωrf

2

]
dθ (7)

where dθ is a differential kernel along the shear direction θ, “*” is the convolution op-
eration, dθi ∗ f is equivalent to ∇θif , a is a kernel for local smooth, ωs and ωr are
weighting coefficients for the smooth and sparse regularizations, respectively. dθi can
be defined by a directional first-derivative-of-Gaussian kernel [10]. The smooth con-
straint encourages nearby pixels to have the same restoration values (Fig. 2(d)). For
example, we can regularize a restored pixel value to be close to the average of its neigh-
boring pixels (i.e. a = [1 1 1; 1 − 8 1; 1 1 1]/8 for 8-connected neighborhood). The
l2 sparse regularization penalizes large f values and enforces the restored background
pixels (with equal OPL at adjacent locations) to be close to zero. A stronger sparse
regularization is using l1 norm but there is no closed-form solution for that. More dis-
cussions on the regularizations can be referred to the rich research work on compressive
sensing [3].

The solution that minimizes Eq. 7 must satisfy the Euler-Lagrange equation
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Fig. 3. Restoring a DIC image. (a) An input image; (b) Restoration by inverse filtering; (c) Our
restoration by minimizing a regularized cost function.

∂E

∂f
−

K∑
i=1

∂

∂θi

∂E

∂fθi
= 0 (8)

where fθi is a shorthand notation of dθi ∗ f and E is the integrand inside Eq. 7

E =

(
K∑
i=1

(dθi ∗ f − gi)
2

)
+ ωs(a ∗ f)2 + ωrf

2. (9)

Substituting E into Eq. 8 for the differentiating, we have

2ωsa ∗ a ∗ f + 2ωrf − 2
K∑
i=1

dθi ∗ (dθi ∗ f − gi) = 0. (10)

Now, applying Fourier transform, F , on both sides of this equation, we obtain

2ωsA
2 · F + 2ωrF− 2

K∑
i=1

D2
θi · F + 2

K∑
i=1

Dθi ·Gi = 0 (11)

where A = F{a}, F = F{f}, Dθi = F{dθi}, Gi = F{gi}, “·” denotes the element-
wise production and D2

θi
= Dθi ·Dθi . Solving Eq. 11 for F, we have

F = −(
K∑
i=1

Dθi ·Gi)./(ωsA
2 + ωr −

K∑
i=1

D2
θi). (12)

where “./” denotes the element-wise division. f is then restored by f = F−1{F}.
Fig. 2(e) shows a restored result using three images with different shear directions.

For a single DIC image with shear direction θ, the direct solution is

F = −(Dθ ·G)./(ωsA
2 + ωr −D2

θ). (13)

If without regularizations (ωs = ωr = 0), Eq. 13 is degraded into an inverse filtering

F = G./Dθ. (14)

However, the simple inverse filtering can not restore a correct DIC image (Fig. 3(b)),
which justifies the needs of regularization. As a comparison, our restoration by Eq. 13
with ωs = 0.1 and ωr = 0.001 is shown in Fig. 3(c) that is much better than the inverse
filtering. Please note that the restoration from a single shear direction (Eq. 13) contains
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ambiguity to measure the real specimen property thus we have derived solution (Eq. 12)
to restore DIC images from multiple shear directions. Eq. 13 is only used in Algorithm
2 (Section 4) for estimating the shear direction of each individual DIC image.

3 Register a Collection of DIC Images

When capturing a collection of DIC images with different shear directions by rotating
and translating dishes, we must register those images such that the same pixel loca-
tion in the image dataset represents the same specimen sample in the world. Note: this
registration step can be waived if there is a DIC microscope with rotatable prisms at
hand. We revised the Iterative Closest Point (ICP) idea [4] to register two DIC images.
Harris corner detector [5] and local non-max suppression are used to locate corners as
feature points for matching in the ICP algorithm. The corners are tolerant to appearance
changes in DIC images from different shear directions. However, the ICP algorithm can
converge to the optimum only when the initialization (rotation R0 and translation T0)
is close to the optimum. To find the correct R and T to register images, we uniformly
sample the entire search space of all possible initializations (e.g. every 30 degrees of
rotation and every 100 pixels of translation) and run the ICP algorithm from these ini-
tializations to find the global optimal R and T. The new designed ICP algorithm is
summarized below. Fig. 4 shows an registration example using this ICP algorithm.

Fig. 4. Register two DIC images by Iterated Closest Point algorithm. (a,b) Image 1 and its corner
points (red squares); (c,d) Image 2 and its corner points (black circles); (e) The two groups of
corner points are matched with the least total distance cost; (f) The registered image 2 regarding
to image 1 based on the Euclidean transformation computed from matched corner points.
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Fig. 5. Register a collection of images and extract the sub-images within the overlapped regions
for our analysis. (a): Nine images are registered regarding to the first image. (b) The ten sub-
images within the overlapped square regions.

For a collection of DIC images, we randomly pick a reference image and register
all the others regarding to it. The registered images overlap in a polygon area and we
crop the largest square sub-images from the overlapped region for our analysis (Fig. 5).

Algorithm I: ICP Algorithm to Register Two DIC Images

Extract two groups of corner points {Qj} and {Pi} from image 1 and image 2, re-
spectively. Compute the centroids: P̄ = 1

|P|
∑
i Pi, and Q̄ = 1

|Q|
∑
j Qj . Update

Pi ← Pi − P̄, Qj ← Qj − Q̄.
Initialize R = R0, T = T0, and c = 0.
Repeat the following steps until there is no change on c.

1. Bi-directional Matching: ∀Pi, find the closest Qj in the Euclidean space. For
Qj , find the closest Pk. If i = k, the two corner points are matched, and update c+ =
|Pi −Qj |.

2. Transformation: For all matched corner points, compute W =
∑
<i,j> PiQ

T
j .

Take the singular value decomposition (SVD) of matrix W, W = UΣVT . Compute
the rotation matrix as R = VUT , and the translation vector as T = Q̄ − RP̄. ∀Pi,
update Pi ← RPi + T.
Use the final matched points to compute R∗ and T∗, rotate and translate image 2 re-
garding to image 1 accordingly.

4 Estimate the Shear Directions
After registration, the shear direction difference between the first image and the other
K − 1 registered images are actually the rotation angle θir (i = 1...K and θ1r = 0). In
other words, if the shear direction of the first image is θs, the shear directions of the rest
images are θs − θir. Since θir’s are already known from the registration step, we only
need to estimate a single unknown variable θs. As shown in Fig. 6(g), when correct
shear directions are estimated for a pair of DIC images, the difference between the two
restorations reaches the minimum. We use this fact to estimate the shear direction over
the collection of registered images by a fast coarse-to-fine grid search algorithm.

Algorithm II: Coarse-to-Fine Grid Search for Shear Direction θs
Initialize lb = 0, ub = 360 and δθ = 30.
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while δθ > 1
for θs = lb; θs < ub; θs = θs + δθ

for i = 1; i < K; i+ +
Solve fi with θ = θs − θir through Eq. 13;

cost[θs] =
∑

i6=j
i,j=1...K

|fi − fj |

θ∗s ← arg min cost[θs]; δθ ← δθ/4; lb← θ∗s − 2δθ; ub← θ∗s + 2δθ;
Return θ∗s ;

Fig. 6. Estimate the shear direction. (a,b) Image 1 and 2; (c,d) The restorations corresponding to
the correct shear directions; (e,f): The restorations corresponding to wrong shear directions; (g)
The difference between two restored images is a function of the shear direction.

5 Experiment Results

We captured DIC images from different shear directions by manually rotating the spec-
imen dish on the stage. The collected images are registered automatically by our ICP
algorithm and the shear directions of each image is estimated by our coarse-to-fine grid
search algorithm.

First, we qualitatively evaluate our restoration results. Fig. 7(a) shows an image
(700*700 pixels) on two cells with high magnification. When we apply the direct solver
on the captured images individually, we observe different restoration results (Fig. 7(c-
h)). The ensemble restoration on the entire collection of images reveals the cells’ optical
path length much better and has less noise left on the restoration (Fig. 7(b)). Fig. 8 show
the other three collections of DIC images we acquired with low magnification and their
image restorations. Compared to the independent restorations (e.g. the last two columns
of Figure 8), the jointly restored image by an ensemble of DIC images are closer to the
physical properties of cells. There is less ambiguity to compute the optical path length
in joint restoration than the rotation-variant independent restoration.

To quantitatively evaluate the effect of our restoration results on microscopy image
analysis, we apply it onto the cell segmentation task. As we see in the third column
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Fig. 7. Reconstructing DIC images. (a) One DIC image of the image collection; (b) The recon-
structed OPL from a collection of DIC images (3D surface view); (c-i) The independent restora-
tion from individual DIC images (green arrows denote the shear directions).

of Fig. 8, since the pixel values in the restored images represent the specimen’s inher-
ent properties, there is no pseudo 3D shadow-cast effect in the images. In the restored
images, cell pixels are always positive against approximately zero background, thus im-
ages can be easily segmented by straightforward thresholding for further applications
of cell counting, tracking etc., which is not easily possible with original DIC images.
We manually label all cell boundaries in each image collection as ground truth masks.
After thresholding the restored DIC image to obtain the cell mask, we compare it with
the manually-labelled ground truth mask using the accuracy as the evaluation measure

ACC = (|TP|+ |N | − |FP|)/(|P |+ |N |) (15)

where cell and background pixels are denoted as positive (P) and negative (N) respec-
tively, true positive (TP) stands for those cell pixels correctly labelled by both human
annotator and computer algorithms, and false positive (FP) are those cell pixels classi-
fied by computer algorithms mistakenly. We use the same technique in [16] to learn the
best threshold for segmentation.

With K DIC images, we pick k (k = 1...K) of them as a collection and run our
restoration algorithm on this collection. For example, when k = 1 we run the restora-
tion algorithm on each single DIC image. When k = 5, we pick 5 images from the K
DIC images and run the restoration. We exhaustively tested all the possible combinato-
rial choices, and computed the mean and standard deviation on the accuracy regarding
to different image collection sizes. As we see in Fig. 9, there are more ambiguities (the
vertical red bar in Fig. 9) among different restoration results when the image collection
size k is small. As more images are added into the image collection, the restoration
accuracy increases and the ambiguity decreases. The accuracy curve levels off when
enough DIC images from different shear directions are included into the image col-
lection. Overall, we achieve the segmentation accuracy of 81% − 95% on the three
collections of DIC images. Difficulties were encountered during the restoration of pre-
dominantly flat cells that consequently had low gradient values in the observed DIC
images. Less sparsity regularization on these regions may overcome the challenge. We
leave the spatially-adaptive regularization in the future work to explore.
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Fig. 8. Restoring DIC images. Column 1: one sample image in each collection; Column 2: the
jointly reconstructed OPL (3D surface view); Column 3: The reconstructed DIC images whose
intensity values correspond to the reconstructed OPL values; Column 4 and 5: Two indepen-
dent restorations of DIC images with different shear directions, as comparisons to the ensemble
restoration.

6 Conclusions

In DIC microscopy images, the intensity values are proportional to the gradient of spec-
imen’s optical path length (OPL). To quantitatively measure specimen’s physical prop-
erties directly, we propose to restore DIC images from multiple shear directions. The
specimen dish is manually rotated to acquire a collection of DIC images with different
shear directions. An Iterative Closest Point algorithm is designed to register these im-
ages, and the shear directions of the image dataset are automatically estimated by our
coarse-to-fine grid search algorithm. We formulate the restoration problem by minimiz-
ing a regularized a cost function with a closed-form solution.

Fig. 9. The mean (blue circle) and stand deviation (red bar) of the segmentation accuracy when
using different image collection size k. (a,b,c) are evaluation results from three image datasets
corresponding to Figure 8(a,b,c), respectively.

Compared to the reconstruction methods based on a single DIC image which may
reconstruct different optical path lengths according to different shear directions, our
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method is orientation-invariant. Without the strict requirement of at least two orthog-
onal shear directions as needed by the previous multiple-image-based reconstruction
techniques, our approach can restore DIC images from various shear directions. As
qualitatively and quantitatively proved by our experiments, restoration from multiple
shear directions can decrease the ambiguity among different individual restorations.
The restored DIC images are directly proportional to specimen’s physical measure-
ments without the pseudo 3D effect, which is very amenable for microscopy image
analysis such as cell segmentation.
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A6.1 RELEVANCE TO THESIS 

This section is the result of collaborative work with Diane Krause’s research group at Yale 

University and illustrates the use of fluorescence time-lapse microscopy to understand the 

mechanism of endomitosis during megakaryocyte differentiation. The final version of the 

manuscript did not include fluorescence time-lapse microscopy data acquired at Carnegie Mellon 

University but it is included in this thesis for reference. 
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Summary 

Polyploidization can precede the development of aneuploidy in cancer. Polyploidization in 

megakaryocytes, in contrast, is a highly controlled developmental process critical for efficient 

platelet production via unknown mechanisms. Using primary cells, we demonstrate that the 

guanine exchange factors GEF-H1 and ECT2, which are often overexpressed in cancer and are 

essential for RhoA activation during cytokinesis, must be downregulated for megakaryocyte 

polyploidization. The first (2N-to-4N) endomitotic cycle requires GEF-H1 downregulation while 

subsequent cycles (>4N) require ECT2 downregulation. Exogenous expression of both GEF-H1 

and ECT2 prevents endomitosis, resulting in proliferation of 2N megakaryocytes. Furthermore, 

we have shown that the mechanism by which polyploidization is prevented in megakaryocytes 

lacking Mkl1, which is mutated in megakaryocytic leukemia, is via elevated GEF-H1 expression; 

shRNA-mediated GEF-H1 knockdown alone rescues this ploidy defect. These novel mechanistic 

insights enhance our understanding of normal versus malignant megakaryocytopoiesis, as well as 

aberrant mitosis in aneuploid cancers. 
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 Highlights 

� Lack of RhoA activation at the equatorial regions region during endomitotic cytokinesis in 

megakaryocytes. 

� RhoA GEFs, GEF-H1 and ECT2, must be downregulated for megakaryocyte polyploidization 

� Exogenous expression of GEF-H1 and ECT2 results in proliferation of 2N megakaryocytes. 

� GEF-H1 downregulation in megakaryocytes is MKL1 dependent 

 

Introduction   

Polyploidy resulting from cellular stress precedes aneuploidy, which can lead to tumors 

associated with transformation to malignancy and a poor prognosis (Nguyen and Ravid, 2006; 

Nguyen and Ravid, 2010). In contrast, polyploidy of megakaryocytes (Mk), the hematopoietic 

cells that give rise to platelets, is a tightly controlled normal differentiation process. Diploid 

megakaryoblasts differentiated from hematopoietic stem cells undergo a progressive increase in 

ploidy (up to 128N) due to repeated DNA replication without cell division, a process termed 

endomitosis, resulting in large multilobulated, polyploid nuclei (Battinelli et al., 2007). 

Polyploidization is essential for efficient platelet production. In megakaryoblastic leukemia, low 

ploidy megakaryoblasts predominate (Raslova et al., 2007). 

 

Studies using time-lapse microscopy to observe endomitotic Mk suggest that the initial 

endomitotic cleavage event in which cells progress from 2N to 4N occurs due to failure at late 

cytokinesis with normal cleavage furrow ingression followed by furrow regression (Geddis et al., 

2007; Papadantonakis et al., 2008; Lordier et al., 2008; Leysi-Derilou et al., 2010). These 

endomitotic Mk form an apparently intact midzone with normal localization of essential 
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components including Survivin, Aurora B, INCENP, PRC1 (protein regulating cytokinesis 1), 

MKLP1 and 2 (mitotic kinesin-like protein), MgcRacGAP and microtubules (Geddis and 

Kaushansky, 2006; Lordier et al., 2008;).  During cytokinesis, RhoA signaling is required to 

establish the actomyosin ring at the cleavage furrow, generating the contraction force for 

completion of cytokinesis (Bement et al., 2005; Narumiya and Yasuda, 2006; Melendez J et al., 

2011). Activated RhoA and its effectors (ROCK, Citron, LIM and mDia) are localized to the 

cleavage furrow (Madaule et al., 1998; Yasui et al., 1998; Kosako et al., 2002; Tolliday et al., 

2002). Dominant-negative Citron and ROCK inhibitors prevent normal cytokinesis (Madaule , 

1998; Kosako et al., 2000).  In contrast to normal cytokinesis, the contractile ring of Mk 

undergoing endomitosis lacks non-muscle myosin IIA and contains decreased levels of RhoA 

and actin at the 2N to 4N transition; in higher ploidy cells, RhoA is not detectable at the cleavage 

furrow during anaphase (Geddis and Kaushansky, 2006; Lordier et al., 2008).  

 

Rho family small GTPases (e.g. RhoA, Rac1, and Cdc42) are molecular switches that regulate 

many cellular processes including actin cytoskeleton reorganization, microtubule dynamics, cell 

cycle progression and cytokinesis (Etienne-Manneville and Hall, 2002). Rho GTPase switching 

from the inactive GDP-bound state to the active GTP-bound state is facilitated by a group of 

proteins called Dbl family guanine nucleotide-exchange factors (GEFs), which have a tandem 

Dbl homology (DH) - Pleckstrin homology (PH) domain, in which the DH domain contains 

GDP/GTP exchange activity (Rossman et al., 2005). GEFs are involved in RhoA localization and 

activation during different stages of cytokinesis. Upon breakdown of the nuclear envelope during 

mitosis, the GEF ECT2 (Epithelial Cell Transforming Sequence 2) is dispersed from the nucleus 

to the cytoplasm, and recruited to the central spindle by the central spindlin complex (formed by 
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MKlp1 and MgcRacGAP) during late anaphase for establishment of the cleavage furrow 

(Petronczki et al., 2007; Yuce et al., 2005).  ECT2, required for cell cycle progression, is an 

oncogene that resides on chromosome 3q26, a region frequently targeted for chromosomal 

alterations in human tumors and overexpressed in many primary human tumors (Fields and 

Justilien, 2010; Iyoda et al., 2010). RNAi knock-down of ECT2 results in mitotic failure and 

binucleate cells due to the lack of cleavage furrow ingression (Birkenfeld et al., 2007). There are 

multiple studies suggested that ECT2 is important for RhoA localization and activation during 

cleavage furrow formation and ingression (Yuce et al., 2005; Nishimura and Yonemura, 2005; 

Yoshizaki et al., 2004), whereas some evidence suggested ECT2 may not be directly responsible 

for RhoA activation during furrow ingression. Without ECT2, RhoA still gets activated, but is 

mislocalized from the cleavage furrow (Chalamalasetty et al., 2006; Birkenfeld et al., 2007).  An 

N-terminal fragment of ECT2 lacking the catalytic DH/PH domain can rescue the furrow 

ingression defect in ECT2 RNAi treated cells (Chalamalasetty et al., 2006). Thus, ECT2 recruits 

RhoA to the cleavage furrow, but may not directly catalyze its activation. 

 

The microtubule associated protein GEF-H1, plays a critical role in cytokinesis by activating 

RhoA at the cleavage furrow (Birkenfeld et al., 2007). Association with polymerized 

microtubules inactivates GEF-H1 (Krendel et al., 2002). A truncated form of GEF-H1 lacking its 

microtubule-binding ability was discovered in the monocytic leukemia cell line U937 and is able 

to induce tumor formation in nude mice (Brecht et al., 2005). Also GEF-H1 is transcriptionally 

activated by mutant p53, and its expression is strongly induced in mutant p53 cell lines, leading 

to accelerated tumor cell proliferation (Mizuarai et al., 2006). During mitosis, GEF-H1 is first 

associated with the microtubule spindle, and later with the midbody (Birkenfeld et al., 2007). 
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The same authors also show that GEF-H1 binding to microtubules is facilitated by 

phosphorylation at Ser885 and Ser959 by the mitotic kinases Aurora A/B and Cdk1, respectively. 

At the onset of cytokinesis, GEF-H1 is dephosphorylated and released from microtubules so that 

it can activate RhoA. In contrast to ECT2 RNAi, in which cytokinesis is blocked and there is no 

cleavage furrow formation, GEF-H1 knock down causes a defect at a later stage of cytokinesis - 

the cleavage furrow is induced normally, but the furrow fails to close completely resulting in 

binucleate cells (Birkenfeld et al., 2007). 

  

Because of the importance of mitotic GEFs in RhoA localization and activation during 

cytokinesis, we hypothesized that decreased RhoA activation in Mk endomitosis may be caused 

by a decrease in mitotic GEFs. In the present work, we show that both GEF-H1 and ECT2 are 

downregulated at the mRNA and protein levels during Mk polyploidization. We show that 

MKL1-regulated GEF-H1 downregulation is required for endomitosis of 2N cells to become 4N, 

whereas ECT2 downregulation is required for polyploidization beyond the 4N stage. Together, 

these decreases in ECT2 and GEF-H1 are responsible for the decreased RhoA signaling that 

occurs in endomitosis, and downregulation of GEF-H1 represents one of the initiating events of 

endomitosis.  

 

Results 

Establishment of in vitro models to study megakaryocyte endomitosis 

We used primary murine Mk to study the involvement of Dbl family GEFs in Mk endomitosis. 

The first endomitotic event from 2N to 4N Mk occurs due to failure of cytokinesis at a late stage 

of cytokinesis with cleavage furrow regression. In contrast, there are different reports for when 
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subsequent endomitotic events driving 4N to higher ploidy Mk interrupt the normal cytokinesis 

machinery. Some report significant cleavage furrow formation for higher ploidy Mks (Lordier et 

al., 2008; Leysi-Derilou et al., 2010), while others report little apparent cleavage furrow 

formation in high ploidy endomitosis (Geddis et al., 2007; Papadantonakis et al., 2008). 

Therefore, we first examined how primary mouse Mk undergo endomitosis at different stages 

using Mks from GFP-tagged Histone 2B (H2B-GFP) transgenic mice visualized by timelapse 

microscopy for changes in both chromatin and cell morphology during endomitosis.  Mk 

progenitors (MkP, Kit+CD41+) sorted from BM were cultured in Tpo-only differentiation 

medium (DM) to promote Mk polyploidization. MkP endomitotic events were recorded by time-

lapse microscopy, and 2N, 4N and higher ploidy MKs were distinguished based on division 

history as well as their cell size after mitosis or endomitosis, a method established previously 

(Levine et al., 1982; Leysi-Derilou et al., 2010; Tomer, 2004; Tomer et al., 1988). Of the 2N 

cells (24 events) whose DNA division events we observed, 80% of 2N DNA divisions resulted in 

endomitosis with clear cleavage furrow formation followed by regression and formation of 4N 

cells (Fig. 1a, Movie S1), 7% of 2N cells underwent endomitosis without significant cleavage 

furrow ingression, and 13% of 2N cells underwent normal mitosis with complete cytokinesis. In 

contrast, for division of cells that started out with ≥ 4N DNA (37 events), 86% of divisions were 

endomitotic without noticeable cleavage furrow ingression (Fig. 1b, Movie S2), and 14% were 

endomitotic with significant cleavage furrow ingression followed by regression.  Our data 

confirm that there are two distinct phases of endomitosis in mouse primary Mks: for the 2N to 

4N transition, the cleavage furrow forms but fails to complete cytokinesis; and for ≥4N 

endomitosis, there is usually, but not always, little to no cleavage furrow ingression.  
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RhoA is not activated at the cleavage furrow during endomitosis 

RhoA activity is important for cleavage furrow ingression during cytokinesis. To understand the 

mechanisms underlying the failure to complete cytokinesis in 2N to 4N Mk endomitosis, we 

assayed localization of active RhoA during endomitosis using a FRET-based RhoA biosensor. 

As a control, total RhoA was also assessed. The biphenotypic megakaryocyte-erythroid 

progenitor population as defined by Akashi et al. and refined (Lin-Sca-Kit+CD41-

CD150+CD105-) and renamed ‘preMegE’ by Pronk et al. (Akashi et al., 2000; Pronk et al., 2007), 

was sorted from BM and cultured in growth medium (GM) with SCF, TPO, IL-3 and Flt-3 to 

serve as normal mitotic controls. Under these conditions, 100% of 2N cells undergoing mitosis 

complete cytokinesis (data not showed). RhoA is highly concentrated at the equatorial cortex as 

previously reported (Yuce et al., 2005), and also weakly associated with the central spindle in 

preMegE cells (Fig. 2a i-iii), while at the end of cytokinesis, RhoA is localized to the midbody 

(Fig. 2a iv-vi). When MkP are cultured in DM, during endomitotic anaphase and cytokinesis, 

less RhoA is seen, but it is still localized to the equatorial region (Fig. 2a vii-ix) and midbody 

(Fig. 2a x-xii). To better quantify the change of RhoA protein level during Mk differentiation, 

the RhoA protein levels from different stage of Mk differentiation as well as in platelets were 

analyzed by Western-Blotting. As shown in Figure S1, total RhoA protein was only slightly 

decreased (20%) during Mk differentiation, which is in agreement with the almost constant level 

of RhoA during Mk differentiation of CD34+ human blood cells (Chang et al. 2007).  

 

 In contrast to previous reports, we observed central spindle abnormalities in endomitotic cells 

(Fig. 2a viii), where the central spindle was either missing or misshapen. To assess RhoA 

activation directly, a widely-used single molecule RhoA activation FRET probe (Birkenfeld et al., 
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2007; Pertz et al., 2006), pBabe-Puro-RhoA Biosensor, was transduced into primary mouse 

megakaryocytes, and the FRET efficiencies (FRET/CFP ratio) in cells entering anaphase were 

monitored with a Leica SP5 scanning microscope equipped with temperature and CO2 control. 

Similar to endogenous RhoA shown above, CFP fluorescence of the biosensor was concentrated 

at the equatorial region of endomitotic cells (Fig. 2b; CFP panel). However, there was no 

significant FRET signal in this region, indicating lack of RhoA activation during megakaryocyte 

endomitosis at the cleavage furrow. As a positive control, we also analyzed RhoA activation 

during normal mitosis of NIH3T3 cells transduced with same RhoA biosensor under identical 

conditions. As shown in Figure 2c, NIH3T3 cells undergo mitosis show accumulation of RhoA 

biosensor at the equatorial region and also have high FRET signal at the cleavage furrow 

indicating high RhoA activity at this region, in agreement with published data on RhoA 

activation during cytokinesis in NIH3T3 cells (Yoshizaki et al., 2003).  Our data provide the first 

direct evidence that during 2N to 4N endomitosis, there is a failure of RhoA activation at the 

cleavage furrow, even though RhoA is localized correctly to this region.  

 

GEF-H1 and ECT2 levels decrease during Mk polyploidization 

To investigate the mechanisms underlying the failure of RhoA activation in Mks during 

endomitosis of 2N cells, and the absence of RhoA protein at the cleavage furrow region during 

endomitosis of higher ploidy cells, we assessed whether the mitosis-associated GEFs, ECT2 and 

GEF-H1, are differentially expressed during Mk differentiation. WT PreMegE and MkP were 

cultured in DM, and RNA expression assessed by quantitative RT-PCR over time. As shown in 

Figure 3, MkPs have lower levels of both GEF-H1 and ECT2 mRNA compared with preMegE, 

and Tpo treatment of preMegE decreases GEF-H1 and ECT2 mRNA levels by 67% and 78%, 
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respectively. GEF-H1 mRNA levels subsequently increased after prolonged Tpo exposure when 

high ploidy Mk were forming, whereas ECT2 mRNA levels remained low. GEF-H1 and ECT2 

protein levels also decreased (Fig. 3c), but with slightly different kinetics than the mRNA: GEF-

H1 protein reached a nadir after 1 day of culture of preMegE in Tpo medium, and then began to 

increase; in contrast, ECT2 protein levels were significantly decreased after two days, and then 

remained low.  

  

GEF-H1 and ECT2 levels during endomitosis 

ECT2 expression is induced by growth factors that promote cell cycle entry, and cells in G0 have 

little ECT2 (Saito et al., 2003). However, it is unlikely that decreased GEF-H1 and ECT2 levels 

during Tpo-induced Mk differentiation are caused by cell cycle exit. First, Tpo induces Mk 

progenitor cell cycling (Drayer, 2006). Second, the level of Anillin protein, an indicator of 

mitotic activity, which peaks in mitosis and decreases dramatically upon mitotic exit (Zhao and 

Fang, 2005), increased dramatically upon Mk Tpo treatment (Fig. S1), indicating increased cell 

cycling after Tpo treatment. To directly confirm that Mks undergoing the cell cycle have 

decreased GEF-H1 and ECT2 levels, we examined GEF-H1 and ECT2 protein in endomitotic 

Mks by immunofluorescence. In mitotic control cells (preMegEs in GM for one day), the 

microtubule spindle is normal, and GEF-H1 co-localizes with the microtubule spindle as 

reported previously (Birkenfeld et al., 2007) (Fig. 4a i-iii). In contrast, in endomitotic MkP 

cultured in DM for one day, the GEF-H1 protein level is low with little fluorescence signal 

detected above background (Fig. 4a iv-vi). After 2 days in DM, in polyploid (>4N) cells 

undergoing anaphase, the spindle appeared normal, and GEF-H1 protein was again easily 

detected with localization to the microtubule spindle (Fig. 4a vii-ix). The relative increase in 
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GEF-H1 was consistent with the changes in protein levels detected by Western blotting (Fig. 3c). 

In preMegE mitosis controls, ECT2 localized to the central spindle (Fig. 4b i-iii) as published 

previously (Tatsumoto et al., 1999; Yuce et al., 2005). During 2N to 4N endomitosis of MkP, 

ECT2 was easily detected and localized to the central spindle (Fig. 4b iv-vi). The 

immunofluorescence signal between these two samples did not show any apparent differences 

(Fig. 4bi, 4biv), although the ECT2 protein level in Mkp is about 30% lower than that of 

preMegE by Western-Blot (Fig. 3c). In high ploidy cells, ECT2 protein levels were very low 

(Fig. 4b, vii-ix), which is in agreement with the Western Blot data (Fig. 3c, S1). These data not 

only confirm that in endomitotic Mk cells, GEF-H1 and ECT2 levels decreases (albeit with 

different kinetics), but also suggest that during Mk differentiation, loss of GEF-H1 predominates 

in low ploidy Mk, whereas loss of ECT2 occurs later and predominates in higher ploidy 

endomitosis.  

 

Ectopic expression of GEF-H1 or ECT2 causes low ploidy Mks in vitro 

To test whether the decreases in GEF-H1 and/or ECT2 cause the sequential stages of 

endomitosis, we expressed exogenous GEF-H1 or ECT2 by retroviral transduction of preMegE 

cells, which were then induced to differentiate with DM in which 80% of mitotic events are 

endomitotic. After 3 days in DM, the ploidy of GFP positive (control vector vs. ECT2 

overexpression vs. GEF-H1 overexpression) CD41+ Mks was assessed by flow cytometry. 

Enforced expression of ECT2 or GEF-H1 did not affect the percentage of cells that were CD41+ 

(Fig. S2), suggesting that exogenous GEF-H1 or ECT2 does not affect preMegE differentiation 

down the Mk lineage. Cells transduced with empty viral vector had a normal Mk ploidy 

distribution. Although enforced expression of either GEF-H1 or ECT2 resulted in significantly 
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decreased mean ploidy (Fig. 5a,b), the ploidy profiles were significantly different. GEF-H1 

caused an increase in 2N cells, although Mks that became 4N were still able to become highly 

polyploid (Fig. 5a, middle). In contrast, ECT2 expression led to accumulation at the 2N, 4N and 

8N stage with far fewer cells having >8N (Figure 5b, right). We believe that the 8N peak in cells 

overexpressing ECT2 represents the G2/M peak of cycling 4N cells. Expression of GEF-H1 and 

ECT2 was confirmed by Western blot (figure 5d). To evaluate whether enforced expression of 

GEF-H1 plus ECT2 completely prevents endomitosis, we transduced preMegE cells with both 

GEF-H1 (with IRES-RFP) and ECT2 (with IRES-GFP) retroviruses. After 3 days in Tpo, the 

ploidy of CD41+ RFP+ and GFP+ (double positive) cells was determined. Compared with cells 

only expressing GEF-H1 or ECT2, double positive cells have more 2N cells, and far fewer >4N 

cells (Fig. 5c, far right, upper panel). These data indicate that exogenous expression of GEF-H1 

prevents the progression of cells from 2N to 4N in the first endomitotic event, whereas 

exogenous expression of ECT2 prevents the subsequent >4N endomitotic events to form highly 

polyploid Mk. Since RhoA acts downstream of ECT2 and GEF-H1, we next tested whether the 

dominant-negative RhoA mutant RhoA N19 can block the effect on Mk ploidy caused by 

enforced expression of ECT2 or GEF-H1 in Mk.  As shown in Fig. 5c (lower panel), the ability 

to make high ploidy Mk was restored in cells expressing both GEF-H1 and RhoA N19 or ECT2 

and RhoA N19 compared with only expressing GEF-H1 or ECT2 (Fig. 2c, upper panel). 

 

To assess whether downregulation of GEF-H1 plays a role in polyploidization of Mk in vivo, 

GEF-H1 transduced CD45.1 BM cells were transplanted into lethally irradiated WT CD45.2 

mice.  After 6 weeks, the ploidy of GFP positive (control vector vs. GEF-H1 transduced) Mks 

was assessed. In agreement with in vitro differentiation, ectopic expression of GEF-H1 resulted 
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in more 2N Mks (27.8%) compared with empty vector (13.1%), leading to a decrease in the 

average ploidy (Fig. 5e, f). However, as seen in vitro, those GEF-H1 transduced cells that did 

become 4N were able to undergo subsequent further polyploidization. These data demonstrate 

that enforced GEF-H1 decreases the likelihood of 2N to 4N endomitotic events in Mks in vivo. 

 

Down-regulation of GEF-H1 during Mk differentiation is mediated by MKL1 

Our lab previously demonstrated that knockout of the transcriptional cofactor Megakaryoblastic 

leukemia 1 (MKL1) leads to reduced Mk ploidy in vivo (Cheng et al., 2009). To study whether 

the down-regulation of GEF-H1 and/or ECT2 during Mk differentiation is MKL1 dependent, we 

analyzed GEF-H1 and ECT2 mRNA levels during Mk differentiation of preMegE and MkP from 

Mkl1-/- and WT mice. GEF-H1 levels in both preMegE and MkP are more than 15 times higher 

in Mkl1-/- mice than in WT mice (Fig. 6a). Unlike WT cells, there is little decrease of GEF-H1 

mRNA in Mkl1-/- cells differentiated in vitro. In contrast, ECT2 mRNA levels are the same in 

Mkl1-/- vs. WT cells (Fig. 6b).  

 

We next assessed GEF-H1 protein expression and localization in Mkl1-/- vs. WT preMegE 

cultured for 1 day in DM. GEF-H1expression is much higher in Mkl1-/- Mk than WT, although it 

is localized to both the cell periphery and the microtubule spindle compared with predominantly 

spindle localization in WT cells during normal mitosis (Fig. 6c). No obvious differences between 

WT and Mkl1-/- cells were found in ECT2 detection or localization (data not shown). As 

expected with higher GEF-H1 levels in Mkl1 knock out preMegE and Mk, GTP-bound active 

RhoA levels in preMegE with or without 24h exposure to Tpo are higher than wild type (Fig. 

S3). However the RhoA activity in Mkl1-/- cells is able to decrease after one day in Tpo similar 
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to wild type cells (Fig. S3). To further confirm that GEF-H1 down-regulation is MKL1-

dependent, we assessed the GEF-H1 mRNA levels in nonhematopoietic 293FT cells transfected 

with control vector, wild type, constitutive active, or dominant negative MKL1 constructs. Wild 

type MKL1 slightly decreased GEF-H1, constitutively active MKL1 further decreased GEF-H1 

levels, and dominant negative MKL1 actually increased GEF-H1 levels (Fig. 6d,e). MKL1 is 

part of the t(1;22)(p13;q13) chromosomal translocation, associated with acute megakaryoblastic 

leukemia (Mercher, 2001; Ma 2001). To test whether GEF-H1 is dysregulated in acute 

megakaryoblastic leukemia containing the MKL1 translocation, we analyzed the levels of GEF-

H1 and ECT2 in 6133 cells, a megakaryoblastic leukemia cell line derived from a transgenic 

mouse in which MKL1 was knocked in downstream of exon 1 of RBM15 to allow expression of 

the OTT-MKL1 fusion product (Mercher et al., 2009), compared with wild type preMegE. As 

shown (Fig. 6f), 6133 cells express elevated GEF-H1 and ECT2 compared to normal Mk 

progenitor preMegE. In summary, GEF-H1 is down-regulated by MKL1 during Mk 

differentiation, whereas the ECT2 decrease is MKL1-independent, and acute megakaryoblastic 

leukemia cells have increased GEF-H1 expression. 

 

Knock-down of GEF-H1 rescues the ploidy defect in Mkl1-/- Mks 

In order to test whether downregulation of GEF-H1 alone can restore polyploidization in Mkl1-/- 

Mk, we decreased GEF-H1 by shRNA in WT and Mkl1-/- PreMegE, that were then differentiated 

in DM. As expected, GEF-H1 shRNA had no effect on WT Mk ploidy compared with a control 

shRNA targeting luciferase (Fig. 7a). Mks differentiated from Mkl1-/- cells transduced with 

control shRNA had lower ploidy than WT cells (Fig. 7a). However, transduction of Mkl1-/- Mks 

with GEF-H1 shRNA led to much higher ploidy (Fig. 7a, far right). The average ploidy for each 
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condition (Fig. 7b) demonstrates that shRNA against GEF-H1 restores the ploidy level of Mkl1-/- 

cells to that of WT cells.  The GEF-H1 shRNA construct was validated in mouse NIH3T3 cells, 

in which there was approximately 70% knock-down (Fig. 7c). 

 

Discussion 

Our data confirm that there are two distinct stages of Mk endomitosis. For the 2N to 4N 

transition, cleavage furrow ingression occurs followed by furrow regression, whereas in 

endomitosis associated with ≥ 4N cells, there is little cleavage furrow ingression. Our data 

provide the first direct evidence that RhoA activation is absent from the cleavage furrow during 

the first of endomitotic cleavage, and that two mitotic GEFs, GEF-H1 and ECT2, are down-

regulated during megakaryocyte differentiation. Overexpression of GEF-H1 in differentiating 

Mk leads to more 2N MKs, but for those cells that do fail to complete cytokinesis, high levels of 

polyploidization are still achievable. In contrast, exogenous ECT2 inhibits 4N polyploid cells 

undergoing endomitosis but does not affect proliferation of 2N and 4N cells. Enforced 

overexpression of both GEF-H1 and ECT2 completely prevents polyploidization of primary 

megakaryocytes. A schematic summarizing our findings that GEFH1 and ECT2 are essential for 

subsequent stages of Mk endomitosis is shown in Figure S4.  

 

We conclude that decrease of GEF-H1 during megakaryocytopoiesis is mediated by the 

transcriptional cofactor MKL1, based on the markedly elevated GEF-H1 expression in Mkl1-/- 

Mk, and the downregulation of GEF-H1 in 293FT cells overexpressing constitutively active 

MKL1. The block of polyploidization in Mkl1-/- Mk can be restored by shRNA-mediated 

downregulation of GEF-H1, further confirming that GEF-H1 is downstream of MKL1.  
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Using primary murine preMegE and MkP differentiated in vitro down the Mk lineage with TPO, 

we observed late cytokinesis defects in the first round of endomitosis whereas for later rounds of 

endomitosis (>=4N), the majority of endomitosis occurred without apparent cleavage furrow 

ingression. These data differ from reports on endomitosis of human CD34+ derived Mk, 

especially cord blood CD34+, in which only about 30% of 2N cells undergo endomitosis, and the 

majority of high ploidy cells showed significant furrow ingression, and some high ploidy cells 

were able to complete cytokinesis and divide to two high ploidy cells (Lordier et al., 2008; 

Leysi-Derilou et al., 2010). The low endomitosis ratio at the 2N stage of the human CD34+ 

derived Mks may be due to contamination with other cell types, and the majority of 

immunofluorescence images of those cells may represent normal mitotic divisions. Alternatively, 

there may be intrinsic differences between murine and human megakaryopoiesis, especially that 

of cord blood. While the absence of cleavage furrow formation in high ploidy endomitosis has 

been reported previously as being associated with a lack of accumulation of RhoA (Lordier et al., 

2008, Geddis et al., 2006), the mechanism of cytokinesis failure in the early rounds of 

endomitosis was previously unknown since RhoA was correctly localized to the cleavage furrow 

at the 2N stage. Here we show that this correctly localized RhoA is not activated in cells 

undergoing endomitosis with a FRET-based RhoA activity biosensor in live Mk. 

 

We show that the mRNA and protein levels of two RhoA GEFs involved in cytokinesis are 

decreased with different kinetics during Mk differentiation: the reduction of GEF-H1 occurs at 

the 2N to 4N stage, while the significant reduction of ECT2 protein occurs at 4N and higher 

stages. Forced expressing GEF-H1 results in a higher percentage of Mk that are 2N, although 
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high ploidy Mk can still form, whereas forced expression of ECT2 results in accumulation of 2N 

to 8N Mks, and a lack of higher ploidy Mk. Taken together, these data suggest that loss of GEF-

H1 and ECT2 play distinct roles in Mk polyploidization: in low ploidy cells, with correct ECT2 

localization at the central spindle, RhoA is recruited to the equatorial region, but due to the lack 

of GEF-H1 protein, most of this RhoA is inactive. In high ploidy cells, despite restored levels of 

GEF-H1, significantly decreased levels of ECT2 lead to failure of RhoA recruitment to the 

equatorial region. GEF-H1 levels decrease again in platelets (Fig. S1). As we and others reported 

previously (Halene et al., 2010; Patel et al., 2005), the extensive microtubule network and actin 

cytoskeleton are essential for Mk maturation, platelet formation and function. It is thus possible 

that the reappearance of GEF-H1, a unique microtubule-associated RhoA GEF, in higher ploidy 

Mks may be essential for subsequent Mk maturation but not for platelet function.  

 

Our data from Mkl1-/- mice and overexpression of constitutively active (nuclear) MKL1 in 

293FT cells suggest that MKL1 down-regulates GEF-H1 mRNA, but not ECT2. MKL1 is a 

transcriptional cofactor for SRF. MKL1 is up-regulated and required for Mk maturation and the 

formation of highly polyploid Mk (Cheng et al., 2009). There is a confirmed SRF binding site 

close to the GEF-H1 promoter region (Cooper et al., 2007). The mechanism by which MKL1 

causes reduction of GEF-H1 during Mk differentiation requires further study. 

 

Acute megakaryoblastic leukemia is characterized by a high percentage of immature, low ploidy 

megakaryoblasts. We showed that GEF-H1 and ECT2 levels are dramatically increased in a 

megakaryoblastic leukemia cell line derived from a mouse AMKL model in which the t(1;22) 

fusion protein is encoded from the endogenous murine RBM15 locus. How and whether the 
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RBM15-MKL1 fusion protein regulates GEF-H1 and/or ECT2 expression remains to be shown. 

One possibility is that RBM15-MKL1 inhibits MKL1 activity, but this would not explain the 

increase in ECT2 levels. Future studies will need to explore the levels of GEF-H1 and ECT2 in 

AMKL patient samples, and whether targeting of either of these GEFs could be used to promote 

megakaryocyte polyploidy and maturation.  

 

Furthermore, these novel mechanistic insights into the normal polyploidization process of Mk 

differentiation have important implications for aneuploid cells, and their malignant 

transformation. In normal Mk, although there are high levels of cyclin E (Eliades et al., 2010) 

and D (Muntean et al., 2007) activity, which are required to overcome the cell cycle checkpoints 

in high ploidy cells undergoing endomitosis, proliferation is controlled due to the lack of GEF-

H1 and ECT2, which promotes polyploidy and stops expansion. In contrast, abnormal polyploid 

cells formed under stress conditions, with highly active GEF-H1 and ECT2, can divide, expand 

and transform to malignant aneuploid cells. Therefore GEF-H1 and ECT2 are potential 

therapeutic targets for cancer cell proliferation and expansion. 

 

Experimental Procedures 

Plasmids 

pBabe-Puro-RhoA Biosensor retroviral plasmids from Klaus Hahn (Chapel Hill, NC) were 

purchased from Addgene. Full length human GEF-H1 and ECT2 cDNAs were obtained from 

Open Biosystems (Huntsville, AL). GEF-H1 was subcloned into the XhoI-EcoRI sites of the 

MigR1 IRES GFP retrovirus vector (kind gift of Warren Pear, Univ. of Pennsylvania) using a 5’- 

primer containing an HA-tag sequence CCGCTCGAGATGTACCCATACGATGTTCCAGAT 
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and a 3’- primer AGAATTCTTAGCTCTCGGAGGCTACAGC. The ECT2 cDNA digested with 

EcoRI was inserted into MigR1’s EcoRI sites. A clone with the correct ECT2 orientation was 

confirmed by sequencing. To make the MigR1 IRES RFP, MigR1 GEF-H1 IRES RFP and 

MigR1 ECT2 IRES RFP retroviral vectors, the GFP fragments in the vectors were replaced with 

RFP from pCDNA3-TagRFP (kind gift of Roger Tsien, Univ. of California, San Diego) by PCR 

cloning with a 5’- primer GGG CC ATGGTGTCTAAGGGCGAAGAGCTG and a 3’- primer 

GGGGTCGACTTACTTGTACAGCTCGTCCATGCC at NcoI-SalI sites. Mieg3 RhoA N19 

retroviral plasmids were a kind gift of Yi Zheng (Cincinnati, OH). The full-length Mkl1 

expression plasmid was a kind gift of Stephan Morris (Memphis, TN). Constitutively active and 

dominant negative forms were produced by deletion of the N-terminal actin binding domain and 

transcriptional activation domains, respectively (Cen et al., 2003). 

 

Cell sorting  

All mouse procedures were performed according to Yale University Animal Care and Use 

Committee – approved protocols and complied with federal laws. Murine bone marrow (BM) 

cells were obtained by crushing hips, femurs and tibias in cold PBS with 1% FBS. After lineage 

depletion with the BD IMag™ Mouse Hematopoietic Progenitor (Stem) Cell Enrichment kit (BD 

Biosciences, San Jose, CA), the remaining BM cells were stained with FITC anti-CD41, PE anti-

lineage markers, PE-Cy5 anti-CD150, PE-Cy7 anti-CD105, Alexa 647 anti-Sca1, and APC-Hy7 

anti-Kit (CD117) antibodies (eBioscience, San Diego, CA, and Biolegend, San Diego, CA). The 

preMegE population, defined as the Lin-Sca-Kit+CD41-CD105-CD150+, and MkP population, 

defined as Lin-Sca-Kit+CD41+, were separated using a FACSAria sorter. For sorting MkP from 
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H2B-GFP transgenic mice (Jackson Laboratory, Bar Harbor, ME), we replace FITC anti-CD41 

antibody with eFluoro-450 labeled anti-CD41 antibody (eBioscience). 

 

Cell culture, megakaryocyte differentiation, and Western blotting 

For expansion, sorted preMegE were cultured at 1 x106 cells/mL in Growth Medium containing 

StemSpan (StemCell Technologies, Vancouver, BC, Canada) supplemented with 30% BIT9500 

(StemCell Technologies), 100 ng/mL murine SCF, 50 ng/mL murine Flt3-L, 10 ng/mL murine 

IL-3 (all purchased from PeproTech, Rocky Hill, NJ), 50 ng/mL murine Tpo, (from ConnStem, 

Cheshire, CT) and penicillin/streptomycin. For differentiation, sorted preMegE and MkP were 

cultured for three days in Differentiation Medium similar to the Growth Medium but with all 

cytokines replaced with 20 ng/mL murine Tpo. 6133 cells, a gift from Thomas Mercher 

(Villejuif, France), were grown as described (Mercher et al., 2009). For Western-blotting, about 

1x105 cells per sample were washed with cold PBS buffer, lysed with RIPA buffer for 15 

minutes, then centrifuged at 18,000g for 15 minutes. Platelet lysate was prepared as described 

(Halene et al., 2009), and 20 μg of lysate from each sample was analyzed by Western blot with 

the following antibodies:  mouse anti-α-tubulin antibody (1:2000, Sigma-Aldrich), rabbit anti-

GEF-H1 antibody (1:1000, Upstate), and rabbit anti-ECT2 antibody (1:500, Santa Cruz), and the 

corresponding secondary antibody. The density of protein bands was analyzed with ImageJ. 

 

Time-lapse video microscopy 

Primary murine MkP from H2B-GFP transgenic mice were sorted and cultured in 35mm glass 

bottom dishes (MatTeK, Ashland, MA) in differentiation medium. To maintain non-adherent 

cells within the field of view for time-lapse microscopy, 1% methylcellulose was added to 
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increase the viscosity to reduce cell movement caused by Brownian motion and convection 

currents. Live cell imaging was performed using a Vivaview system (Olympus, Japan) with a 

20x objective.  DIC and green fluorescence images were taken every 5 minutes for two days with 

an Orca-R2 camera (Hamamatsu, Japan). Imaging data were analyzed, compiled and exported 

into Quick Time video with Metamorph for Vivaview software.  

 

Immunofluorescent staining and confocal analysis 

PreMegE and MkP cells cultured as indicated, were cytospun onto glass slides, fixed with 3.7% 

formaldehyde for 15 minutes, and permeabilized with 0.1% Triton-X-100 (Sigma-Aldrich) for 

15 minutes. After blocking (PBS plus 3% BSA), slides were incubated with mouse anti-α-tubulin 

antibody (1:200, Sigma-Aldrich) plus rabbit anti-GEF-H1 antibody (1:200, Upstate) or rabbit 

anti-ECT2 antibody (1:100, Santa Cruz), or incubated with rabbit anti-tubulin antibody (Abcam, 

Cambridge, MA) plus mouse anti-RhoA antibody (1:100 Santa Cruz). Bound antibody was 

detected using Alexa-488 labeled donkey anti-mouse secondary antibody and Alexa-555 labeled 

donkey anti-rabbit secondary antibody, or Alexa-488 labeled anti-rabbit secondary antibody and 

Alexa-555 labeled anti-mouse secondary antibody (Invitrogen). Fluorescent images were 

obtained on a Leica SP5 confocal microscope (Leica microsystem, Wetzlar, Germany). 

 

Virus production and preMegE transduction 

For retrovirus production, in a T-175 flask, 90% confluent 293 GP cells constitutively expressing 

Gag/Pol were transfected with 40 μg pBabe-Puro-RhoA Biosensor, MigR1 empty vector control, 

MigR1-GEF-H1, MigR1-ECT2 or Mieg3 RhoA N19 and 14 μg of VSVG packaging plasmid by 

Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions. Supernatant was 

333



 21 

collected at 48 and 72 hours. Combined collections were spun at 3700g through Amicon filters 

(Millipore, Billerica, MA) to concentrate the virus to approximately 1×108 per ml, and aliquots 

stored at -80°C. Freshly sorted 5×104 preMegE cells in growth medium were infected with 

indicated viruses in the presence of polybrene (8 ug/mL) by spinfection at 900g for 1 hour at 

30°C. After two days in growth medium, the cells were switched to differentiation medium for 8 

hours before FRET analysis or another 3 days for ploidy analysis.  

 

FRET analysis of RhoA activation in endomitotic cells 

RhoA activity during endomitosis was visualized using a widely-used RhoA biosensor FRET 

probe (Pertz et al., 2006). After two days of viral transduction of preMegE cells, the live cell 

DNA was stained with Hoechst red 33342 for 15 minutes, then the cells were washed and placed 

in differentiation medium in a 35 mm glass bottom dish. After 8 hours, dividing cells in 

prometaphase expressing the RhoA biosensor were identified by YFP-fluorescence and 

chromosome morphology by UV excitation on a Leica SP5 confocal microscope equipped with 

temperature and CO2 control.  Then CFP, FRET, YFP and DIC images were acquired using a 

63× NA 1.4 objective. The fluorescence emission resulted from excitation with 458 (for CFP and 

FRET) and 514 (for YFP) nm laser lines from an argon laser through acousto-optical filter was 

detected with a prism spectrophotometer detection system, at a 490–500 nm spectral band width 

setting for CFP and a 520–590 nm spectral band width setting for FRET and YFP. Image 

analysis was performed using ImageJ essentially as described by Hodgson et al., 2010. Briefly, 

after shading correction and background subtraction, each CFP and the FRET image was 

multiplied with a binary threshold based mask to eliminate noise outside of the cell. Then, the 

FRET ratio image was generated by dividing the raw FRET image with the CFP image.   

334



 22 

 

Quantitative RT-PCR 

Total RNA from �×��4 cells was isolated using the RNAqueous-Micro Kit (Applied Biosystems, 

Foster City, CA), and treated with RNase-free DNase I to removed genomic DNA. First strand 

cDNA was produced using Superscript II Reverse Transcriptase (Invitrogen) and random 

primers (Invitrogen) with 20 ng RNA from each sample. Gene expression levels were quantified 

on an iCycler iQ RT machine (Bio-Rad, Hercules, CA) with 2 μl of cDNA product from each 

sample using TaqMan probes (Applied Biosystems) as follows: murine GEF-H1: 

Mm00434757_m1; murine ECT2: Mm01289559_g1; and Eukaryotic18S rRNA: 

Hs99999901_s1. Relative gene levels were calculated from standard curves and normalized to 

18s levels. 

 

Flow cytometric analysis of DNA content and surface markers 

In vitro differentiated megakaryocytes were collected, washed, and stained with APC-conjugated 

anti-CD41 antibody. The cells were then fixed and permeabilized using BD cytofix/cytoperm on 

ice for 30 minutes. After incubation with RNAase at 37°C for 30 min, nuclear DNA was stained 

with propidium iodide at 1 g/mL and analyzed using a FACS Calibur cytometer (BD Biosciences) 

and FlowJo software (TreeStar, Ashland, OR). In experiments using MigR1 RFP vectors, the 

nuclear DNA was stained with DAPI, and analyzed on a BD LSRII cytometer. To assay the 

megakaryocyte ploidy of transplanted mice, BM cells were collected, red cell lysis performed 

with PharmLyse (BD Biosciences), and ploidy analyzed as described above. 

 

Murine bone marrow transplant 
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WT CD45.1 (B6.SJL-PtprcaPep3b/BoyJ mice) and CD45.2 (C57Bl6) mice were purchased from 

the Jackson Laboratory. After pre-treatment with 150 mg/kg 5FU for 4 days, red cell deplete BM 

from CD45.1 donor mice (4-6 weeks old) was transduced with empty vector or MigR1 GEF-H1 

retrovirus by spinfection in Stemspan medium with 30% BIT9500, supplemented with 100 ng/ml 

SCF, 50 ng/ml TPO, 50 ng/ml Flt3 ligand, and 10 ng/ml IL-3. Lethally irradiated recipient 

C57Bl6/J mice were transplanted with 1 million cells 24 hours after transduction. Transplant 

efficiencies were monitored by detecting the CD45.1 ratio in the peripheral blood 4 weeks post-

transplantation. GFP positive megakaryocyte ploidy from recipient mice was analyzed 6 weeks 

post-transplantation. 

 

RNA interference 

The lentivirus pGIPZ vector containing shRNA targeting GEF-H1 (RHS4430-101128431) was 

obtained from Open Biosystems. The mir30 shRNA GEF-H1 sequence was cut with restriction 

enzymes Hpa1 and Bsut1, and ligated into the CMV-YFP-shRNA retroviral vector (gift from D. 

Wu, Yale University) digested with Hpa1, and retrovirus produced as described above. CMV-

YFP vector containing shRNA targeting luciferase was used as a control.  Sorted preMegE cells 

from WT or Mkl1-/- mice (kind gift from Stephan Morris, Memphis, TN) were transduced with 

the shRNA viruses, and incubated for 3 days in growth medium followed by 3 days in 

differentiation medium, and the ploidy of YFP positive cells then assessed. To confirm the GEF-

H1 shRNA efficiency, NIH3T3 cells were also transduced. After three days, YFP cells were 

sorted, and GEF-H1 protein levels detected by Western Blot.  

 

Statistical analysis 
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Data are represented as means ± s.e.m of at least three independent experiments. Statistical 

significance was calculated with Student’s t-test. *P<0.05, **P<0.01, ***P<0.005. 
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 Figure legends 

Figure 1. Endomitosis of MkP induced by Tpo. (A) 2N to 4N Mk endomitosis shows cleavage 

furrow ingression with subsequent regression, resulting in one 4N cell. (B) 4N to 8N Mk 

343



 31 

endomitosis showing no apparent cleavage furrow. The figures show overlays of DIC (gray) with 

green fluorescent H2B-GFP (green) images taken every 5 minutes. The time of each image 

relative to the first is indicated in each frame. 

 

Figure 2. Active RhoA is absent from the cleavage furrow during the first endomitotic cleavage. 

(A) Shown are (top) preMegE in growth medium, which undergo normal mitosis, and (bottom) 

MkP undergoing their first endomitotic cleavage after one day of culture in Tpo. Total RhoA 

(red) is localized correctly to the cleavage furrow during preMegE mitosis and MkP endomitosis 

at both anaphase and telophase. The stages of cell division were visualized by nuclear DAPI 

staining (blue) and the mitotic spindle and central spindle with anti-α-tubulin (green) antibody. 

(B) RhoA activation patterns during endomitosis. Mouse primary preMegE cells were transduced 

with the RhoA biosensor virus for 48 h before switching to differentiation medium. After 8 hours, 

the RhoA activation pattern throughout endomitosis was assessed by the RhoA biosensor’s 

FRET/CFP ratio, which represents RhoA activity (FRET), red color in FRET images indicates 

high RhoA activation. CFP channel indicated biosensor (and RhoA) localization. All images 

were processed identically. Elapsed time (minutes) with starting time set to 0 (8h post-Tpo 

administration)  is indicated at the right corner of each picture. NIH3T3 cells, grown in normal 

10% BS DMEM medium, transduced with same biosensor, were used as normal mitosis control. 

Images are representative of at least 4 similar images for each condition.  

 

Figure 3. GEF-H1 and ECT2 are down-regulated during megakaryocyte differentiation. Data 

shown for freshly sorted (d0) preMegE and MkP cells from WT mice, as well as preMegE 

cultured in DM for the time indicated. (A) Relative levels of GEF-H1 mRNA are reduced during 
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Mk differentiation. ***, P<0.005, versus value of preMegE day 0. (B) Relative levels of ECT2 

mRNA were also decreased. ***, P<0.005, versus value of preMegE day 0. (C) The protein 

levels of GEF-H1 and ECT2 are reduced with different kinetics as shown by Western-blotting. 

Anti-α-tubulin was used as the loading control. Relative protein level of each sample after 

normalization to tubulin and setting preMegE level as 1 are indicated above each band. 

 

Figure 4. GEF-H1 and ECT2 are reduced in endomitotic Mk. PreMegE were grown in GM and 

MkP in DM. (A) Cells were stained with anti-GEF-H1 (red), anti-α-tubulin (green) and DAPI. 

Examples of normal mitosis (i-iii, preMegE cultured in growth medium), 2N to 4N endomitosis 

(iv-vi), and ≥ 4N endomitosis (vii-ix) are shown. GEF-H1 protein level is reduced at the 2N to 

4N stage of endomitosis and increases at later stages (2 days) of endomitosis. (B) ECT2 protein, 

stained with anti-ECT2 antibody (red), is clearly detected in preMegE undergoing mitosis (i – iii), 

and at the 2N to 4N stage of endomitosis (iv-vi), but ECT2 levels are reduced at later stages (2 

days) of endomitosis (vii-ix).  

 

Figure 5.  Differential effects of overexpressing GEF-H1 or ECT2 on polyploidization of Mk. 

(A-C) PreMegE cells in growth medium were transduced with retroviral vectors (control and 

expressing individual GEFs) and cultured for two days, then transferred to differentiation 

medium for 3 days before the ploidy of each sample was assessed. (A) Shown is the effect of 

overexpressing control (GFP) virus, GEF-H1 or ECT2 encoding virus. Ploidy of GFP+ cells in 

each condition is shown. The percentages of Mk in 2N, 4N, and ≥ 8N ploidy are indicated. (B) 

The average ploidy of Mks expressing GFP only (control), GEF-H1 or ECT2 is compared. ***, 

P<0.005, versus control.  (C) In this experiment, cells were transduced with 2 retroviral vectors 
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(one encoding RFP and the other GFP). Controls received vectors encoding only RFP and GFP. 

GEF-H1 (upper second panel) received GFP control plus GEF-H1-ires-RFP vectors, ECT2 

(upper third panel) received ECT2-ires-GFP plus control RFP vectors, the upper fourth panel 

shows cells transduced with ECT2-ires-GFP plus GEF-H1-ires-RFP. Samples in lower panel 

were transduced with RhoAN19-ires-GFP together with RFP control (left), GEF-H1-ires-RFP 

(middle), or ECT2-ires-RFP (right). Ploidy is shown for GFP+RFP+ (double positive) cells. (D) 

Western blot of HEL cells transduced with the indicated virus validate expression vectors. (E) 

Overexpression of GEF-H1 also decreases polyploidization of Mk in vivo. CD45.1 BM cells 

were transduced with control (GFP only) or GEF-H1–ires-GFP virus, and transplanted into 

lethally irradiated CD45.2 mice. After 6 weeks, the ploidy of GFP positive Mk was analyzed. 

Representative ploidy profiles from GFP+ Mks expressing empty virus or GEF-H1 are shown. (F) 

Average ploidy of GFP positive Mks recovered 6 weeks post-transplant. *, P<0.05, versus the 

value of control. 

 

Figure 6. Down-regulation of GEF-H1 is MKL1- dependent. (A) The relative mRNA level of 

GEF-H1 is significantly increased in Mkl1-/- Mk, and shows very little decrease with Mk 

differentiation. WT or Mkl1-/- preMegE or MkP were cultured in DM as indicated. ***, P<0.005, 

versus the corresponding WT control. (B) Relative ECT2 mRNA levels are the same for WT and 

Mkl1-/- cells. In both, ECT2 mRNA decreases during Mk differentiation. P>0.1 for the values of 

Mkl1-/- versus the corresponding WT control, (C) PreMegE cultured in growth medium (mitotic 

controls, i-iii and vii-ix) and MkP cultured in Tpo-only medium, which induces endomitosis, 

were immunostained as indicated. Unlike WT MkP (iv-vi), Mkl1-/- MkP do not show a loss of 

GEF-H1 protein level in response to TPO induction (x-xii). (D and E) 293FT cells were 
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transduced with empty vector (-); WT Mkl1 (WT); constitutively active (CA) Mkl1, which lacks 

the actin binding domain; or dominant negative (DN) Mkl1, which lacks the transcriptional 

activation domain, but can still heterodimerize with endogenous Mkl1. Overexpression of CA 

MKL1 significantly reduces endogenous GEF-H1 mRNA (D) and protein (E) levels compared to 

cells transduced with empty vector (-), wild type Mkl1 (WT) and dominant negative (DN) Mkl1. 

GAPDH was used as a loading control in (E). ***, P<0.005, and **, P<0.01, versus the value of 

empty vector (-). (F) Quantitative RT-PCR reveals much higher levels of GEF-H1 and ECT2 

mRNA in the 6133 cell line compared to WT PreMegE with PreMegE value set to 1. Values 

normalized to 18S RNA. ***, P<0.005. 

 

Figure 7. Knockdown of GEF-H1 restores polyploidy in Mkl1-/- Mks in vitro.  (A) WT or Mkl1-/- 

preMegE were transduced with retrovirus encoding either shRNA targeting luciferase or GEF-

H1, as indicated. After Tpo induced differentiation, ploidy was assessed. A representative ploidy 

plot for each condition is shown. The percentages of Mk in 2N, 4N, 8N and ≥ 16N ploidy are 

indicated. (B) Average ploidy of these samples. *** P <0.005. (C) Validation of shRNA 

mediated knockdown of GEF-H1 protein in NIH3T3 cells transduced with the indicated 

constructs. GFP positive shRNA expressing cells were sorted, and analyzed by Western Blot. 

GAPDH was used as the loading control. 
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Inventory of all supplemental items with explanation of their relationship to the 
main figures 

 

Supplemental Movie S1 shows the movie of the cells from which still images are shown in 

Figure 1A. 

Supplemental Movie S2 shows the movie of the cells from which still images are shown in 

Figure 1B. 

Supplemental Figure S1 shows quantification of total and activated RhoA protein levels 

during Mk differentiation, as well as in platelets. Also shown is the relative level of anillin 

protein over time, which is relevant to the data shown in Figure 4. Thus, Figure S1 is a 

supplement to Figure 2 and also to Figure 4. 

Supplemental Figure S2 shows the gating strategy used to obtain the data shown in 

Figure 5.  It is a supplement to Figure 5.  

Supplemental Figure S3 shows a blot of total and activated RhoA levels.  It is a 

supplement to Figure 6. 

Supplemental Figure S4 is a model summarizing all of the data obtained. We refer to this 

figure at the end of the manuscript, and it relates to all of the figures (Fig 1-7) by 

summarizing all of the data in the manuscript. 

Inventory of Supplemental Information
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Supplemental figures and legends (Gao et al) 

 

Figure S1 

 

Figure S1. Western-Blot for Anillin, GEF-H1, ECT2, RhoA and α Tubulin from Tpo treated 

preMegE and platelets. Relative levels of each protein after normalized to tubulin and setting 

preMegE level to 1 are labeled above each band. Both GEF-H1 and ECT2 were undetectable 

(UD) in platelets. 

 

 

Supplemental Figures and Text
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Figure S2 

 

Figure S2. Enforced overexpression of GEF-H1 and ECT2, as labeled, does not significantly 

change the percentage of cells that are CD41+ compared with control cells transduced with GFP 

vector. An isotype (Iso) control antibody was used to determine gating of the CD41+ population.  
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Figure S3 

 

Figure S3. GTP-bound active RhoA level from WT and MKL1-/- preMegE with or without 

culture in Tpo for one day as analyzed by RhoA effector pull down using the RhoA Activation 

Assay Kit from Millipore. Briefly, 2x105 preMegE before and after culturing in Tpo were 

washed with PBS, and lysed in 300 μl lysis buffer, which contains Mg2+ to maintain RhoA in its 

GTP-bound state. For the pull down, 10 μl beads coated with GST-Rhotekin Rho binding 

domain were added to the lysate, incubated for 40 minutes, then washed twice with lysis buffer. 

Relative protein level of each sample after normalization to Total RhoA and setting 

preMegE Tpo day0 level as 1 are labeled above each band.
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Figure S4 

 

Figure S4. The schematic shows the how the lack of GEF-H1 and ECT2 acts to promote 

endomitosis during Mk polyploidization. In mitotic preMegE cells, ECT2 localizes to the 

central spindle midzone, and recruits RhoA protein to the central spindle and equatorial 

cortex; and GEF-H1 localizes to the central spindle and activates RhoA at the cleavage 

furrow. After Tpo induced differentiation, endomitotic 2N Mks have adequate ECT2 

localization to the midzone, and RhoA is also localized normally. However, due to the lack 

of GEF-H1, most of this RhoA is inactive. In endomitosis of high ploidy Mks, although GEF-

H1 is again present, since the ECT2 protein level is significantly decreased, RhoA is no 

longer recruited to the central spindle and equatorial cortex.   

GEF-H1            ECT2             RhoA        RhoA-GTP   

  

preMegE 2N to 4N Mk 4N to higher MK 
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Legends for Supplemental Movies S1 and S2 

Movie S1. An example of endomitosis of 2N to 4N Mk with significant cleavage furrow 

ingression, followed by regression with formation of a 4N cell. 

Movie S2. An example of endomitosis of 4N to 8N Mk without apparent cleavage furrow 

formation.  
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